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ABSTRACT 

 

The work involved studies of two separate aspects of natural fibre composites. 

The first part of the work examined the use of high aspect ratio short fibres in 

thermoplastic matrix composites. This required that the technical fibres were first 

broken down into elementary fibres. Kenaf fibres were used in this part of the study 

with high-density polyethylene (HDPE) as the matrix.  

Several different treatments were examined for isolating the elementary fibres 

from the technical fibres, the most successful being 60% nitric acid treatment and 20% 

hydrogen peroxide/glacial acetic acid treatment. The hydrogen peroxide/acetic acid 

treatment produced full length elementaries with an average length of 2.3 mm and an 

average aspect ratio of 180. However, the nitric acid treatment caused fragmentation of 

the elementary fibres resulting in an average length of only 0.2 mm and an average 

aspect ratio of 15. It also caused an increase in the defect density of the fibres. Both 

treatments increased the cellulose crystallinity but caused some oxidation of the fibres.  

The elementary fibres were used to produce HDPE composites with a 40 wt% 

fibre fraction. The behaviour of these composites was then compared with that of 

composites of the same fibre fraction, prepared using chopped technical fibres with an 

average length of 0.7 mm and an average aspect ratio of 8. Breakup of the elementaries 

occurred during extrusion reducing the fibre length by as much as a factor of 10. 

However, the chopped technical fibres were unaffected. No improvement in modulus or 

strength over that of the chopped fibre composites was obtained for the nitric acid 

treated fibre composites, due to the very low fibre aspect ratio. However, an 

improvement of 20% in both modulus and strength was obtained for the hydrogen 

peroxide/acetic acid treated fibre composites.  

The second part of the work examined the suitability of using the results 

obtained from single fibre testing and from flat fibre bundle testing to predict the tensile 

properties of unidirectional composites made from the fibres. Flax fibres were used in 

this part of the study. Unidirectional composites were prepared with a fibre volume 

fraction of 25% using vinyl ester as the matrix resin. 

The modulus and strength obtained by backing out the fibre properties from 

tensile data obtained from the composites were both within 7% of those obtained from 



x 
 

single fibre testing, once proper account was taken of the true fibre cross sectional shape 

and the effect of fibre length on fibre strength. The flat fibre bundle tests gave values 

which were only 43% of the single fibre data. However, the scatter in results was much 

lower indicating that this test may be useful for assessing batch to batch variation. 
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1. INTRODUCTION 

 Natural plant fibres are attractive for use as the reinforcement in plastic matrix 

composites because of their low density, low cost, non-abrasiveness, biodegradability, 

high electrical resistance, high specific properties, low energy consumption and 

utilization, and decrease of greenhouse gas (CO2) emissions. Their use can also lead to 

the development of non-food agricultural/farm-based economies thereby creating job 

opportunities in rural areas (Rowell, Sanadi, Jacobson & Caulfield, 1999; Sain & 

Panthapulakkal, 2004; Sanadi, Caulfield, Jacobson & Rowell, 1995; Sreekumar & 

Thomas, 2008). Moreover, the fibres are harmless to workers and do not cause health 

issues such as lung cancer (Lee, Kim & Yu, 2009, cited in Wanjale & Jog, 2011). Major 

sources of plant fibres are listed in Table 1.1. 

 

Table 1.1: Inventory of major potential world fibre sources (Rowell, 2008)   

 

Fibre Source 
World 

(dry tonnes) 

Wood 1,750,000,000

Straw (wheat, rice, oat, barley, rye, flax and grass) 1,145,000,000

Stalks (corn, sorghum and cotton) 970,000,000

Sugar cane bagasse 75,000,000

Reeds 30,000,000

Bamboo 30,000,000

Cotton staple 15,000,000

Corn (jute, kenaf and hemp) 8,000,000

Papyrus 5,000,000

Bast (jute, kenaf and hemp) 2,900,000

Cotton linters 1,000,000

Esparto grass 500,000

Leaf (sisal, abaca and henequen) 480,000

Sabai grass 200,000

Total 4,033,080,000
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The work involved development of a suitable process for reducing the technical 

fibres to elementaries which were then analysed to establish any effect of the process on 

the fibre chemistry. The elementaries were subsequently used to produce extruded 

composites and the mechanical properties of the composites then determined.  

A major issue affecting commercial uptake of natural fibre composites is 

variability in the fibre properties from batch to batch, since this flows on into the 

resulting composite. One possible method of managing this variability would to be to 

grade each batch of fibres mechanically and use the mechanical grading as an indicator 

for the performance of the composites. This was investigated for flax/vinyl ester 

composites. Flax fibres were used rather than kenaf since untwisted flax unidirectional 

fabrics are now available which overcome the inherent difficulty of making 

unidirectional natural fibre composites with good fibre alignment. 

One way of mechanically grading fibres is to measure the tensile strength of 

individual (technical) fibres. However, even within a batch, there is considerable 

variability and this necessitates testing of a large number of fibres (typically 100), 

which is very time consuming. A simpler method, which is widely used for grading in 

the textiles industry, is flat fibre bundle testing. The work in this part of the study 

involved measuring the mechanical properties of the flax fibres using both methods and 

then evaluating how well these properties compared with fibre properties determined 

from unidirectional composites.      

1.2 Thesis Outline 

Chapter 2 presents a review of existing literature on natural fibres and natural 

fibre composites. The review focuses on kenaf and flax, kenaf fibre-reinforced 

polyolefin composites and unidirectional natural fibre-reinforced thermoset-matrix 

composites.  

The methods used to break down kenaf fibre bundles into elementary fibres by 

chemical treatment are described in Chapter 3. The elementary fibres obtained are then 

characterised physically and chemically to determine the effect of the chemical 

treatments.  

Successful treatments are then used to produce larger quantities of elementaries 

which are compounded with HDPE to produce extruded composites. Mechanical testing 

is then conducted to evaluate the performance of the composites. This part of the work 

is described in Chapter 4.  



6 
 

The tensile properties of flax fibres determined using single fibre tests and also 

flat bundle testing are given in Chapter 5. These are compared with fibre tensile 

properties obtained from tests conducted on unidirectional flax/vinyl ester composites. 

Chapter 6 presents the conclusions and recommendations.  

 



 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 



9 
 

2. LITERATURE REVIEW 

2.1 Introduction	

In this chapter, natural fibres and natural fibre composites are reviewed. This 

chapter is divided into three parts: natural fibres, interface modification of natural fibres 

and natural fibre composites. Firstly, the structure of natural fibres, chemical 

composition and properties of natural fibres, with particular focus on kenaf and flax 

fibres, are reviewed. Secondly, chemical, physical and thermal treatments of natural 

fibre surfaces, particularly for kenaf fibres, are described in detail. The modification of 

fibre-matrix interfaces by the addition of coupling agents is also described in this 

section. Finally, processing methods and properties of kenaf fibre-reinforced polyolefin-

matrix composites and unidirectional natural fibre-reinforced thermoset-matrix 

composites are reviewed. The advantages and disadvantages of natural fibre composites 

are also discussed. 

2.2 Natural Fibres 

 Natural fibres used as reinforcements in polymer composites are classified into 

non-wood and wood fibres as shown in Figure 2.1. Non-wood fibres include bast fibres, 

leaf fibres, seed/fruit fibres, grass fibres and straw fibres, whereas wood fibres consist of 

soft and hard woods and recycled wood fibres (Mohanty, Misra, Drzal, Selke, Harte & 

Hinrichsen, 2005). This research focuses on bast fibres, especially kenaf and flax.  

Bast fibres are extracted from the inner bark or phloem of plant stems (Rowell, 

2008; Zimniewska, Wladyka-Przybylak & Mankowski, 2011). The quantity of phloem 

and fibres for kenaf, flax, hemp, jute and ramie is given in Table 2.1. Yields and 

qualities of the bast fibres are dependent on the type of plants, the climatic conditions 

and the soil (Munder, Fürll & Hempel, 2005). Factors affecting the fibre quality are 

shown in Table 2.2. The structure of natural fibres from the outside to the inside 

includes the primary wall and three layers of secondary wall referred to as S1, S2 and S3 

(Kabir, Wang, Lau & Cardona, 2012), as shown in Figure 2.2. 
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Figure 2.1:  Natural fibre classification (Mohanty et al., 2005).  

 

Table 2.1:  Fibre content by weight in straw (Urbanczyk, 1985, cited in Zimniewska, 

Wladyka-Przybylak & Mankowski, 2011) 

Fibrous 

plant 

Phloem content in 

dry straw (%) 

Fibre content in 

phloem (%) 

Fibre content in 

dry straw (%) 

Kenaf 

Flax 

Hemp 

Jute 

Ramie 

23-28 

36-42 

22-32 

30-48 

20-35 

48 

47-54 

46-49 

- 

24-48 

16-17 

17-22 

10-15 

19-20 

4-21 
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magazine 
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Grass 
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Leaf 
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fruit 

Straw 
fibres 
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hard 
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Reinforcing natural fibres 

Non-wood fibres Wood fibres 
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is degraded into sugar molecules. Hemicellulose can absorb water which results in 

swelling. This affects the dimensional stability of the fibres (Biagiotti et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4:  Structures of (a) cellulose (Biagiotti et al., 2004), (b) hemicellulose, (c) 

lignin (Gwon, Lee, Chun, Doh & Kim, 2010) and (d) pectin (Williams, 

Hosur, Theodore, Netravali, Rangari & Jeelani, 2011).  

 

Lignin (Figure 2.4c) has a crosslinked aromatic structure. It is strongly resistant 

to most microorganism attack (Biagiotti et al., 2004). Lignin is hydrophobic and 

amorphous. Lignin dissolves in hot alkali, however, it is not acid hydrolysed (Thomas et 

(a) 

(b) 

(c) 

(d) 
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al., 2011). A function of lignin in plants is to support and hold polysaccharide fibres 

together. Another function is to protect the cellulose in plants (Sain & Panthapulakkal, 

2004). The glass transition temperature and melting temperature of lignin are 

approximately 90oC and 170oC, respectively (Thomas et al., 2011). 

The decomposition temperature of cellulose, hemicellulose and lignin ranges 

from 360-370oC, 280-320oC and 230-500oC, respectively (Li, Li & Zhang, 2002, cited 

in Han, Han, Cho, & Kim, 2007). 

 Other chemical components of natural fibres are pectins and waxes. Pectin 

(Figure 2.4d) is heteropolysaccharide including polygalacturon acid. A function of 

pectin in plants is to give flexibility (Thomas et al., 2011). Pectin can dissolve in hot 

alkali (Wong & Shanks, 2009). Waxes include different alcohols (Thomas et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Non-textile applications of bast fibres (Suddell & Evans, 2005). 
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Table 2.3: Use of natural fibres for serial parts in the automotive industry in 1997-

2001 (Karus & Kaup, 2002)  

Manufacturers

/Customers 

Model/Application (dependent on model) 

Audi TT, A2, A3, A4, A4 Avant (1997), A4 Variant (1997), A6, A8 (1997), 
Roadster and Coupe  
Seat back, side and back door panels, parcel tray, boot lining, rear flap 
lining, rear storage panel and spare tire lining 

BMW 3, 5 and 7 Series and others
Door inserts/door panels, headliner panel, boot lining and seat back 

Citroen C4 (2001)
Door inserts 

DaimlerChrysler A-Klasse, C-Klasse, E-Klasse and S-Klasse
Door inserts, windshield/dashboard, business table and column cover 

Fiat Punto, Brava, Marea, Alfa Romeo 146, 156 and Sportwagon 

Ford Mondeo CD 162 (1997), Cougar (1998), Mondeo (2000) and Focus
Door inserts, B-column cover, parcel tray and in the future also motor 
protection (cover undershield) 

MAN Bus (1997)
Headliner panel 

Mitsubishi Miscellaneous models (since 1997)

Nissan Miscellaneous models

Opel Astra, Vectra and Zafira
Headliner panel, door inserts, column cover, instrument panel and rear 
shelf panel 

Peugeot New model 406

Renault Clio and Twingo

Rover Rover 2000 and others
Insulation and rear storage panel 

Saab Coupe (1998)
Door inserts 

SEAT Door inserts and seat backs

Toyota Miscellaneous models

Volkswagen Golf A4, Golf 4 Variant (1998), Passat Variant and BoraDoor inserts
Seat backs , rear flap lining and parcel tray 

Volvo C70, V70 and Coupe (1998)
Door inserts and parcel tray 

   

Bast fibres are used in several non-textile applications as shown in Figure 2.5. 

The particular applications are dependent on the fibre length (Suddell & Evans, 2005). 
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Table 2.3 shows the use of natural fibres for various parts in the automotive industry 

during the period 1997-2001 (Karus & Kaup, 2002). 

2.2.1 Kenaf Fibres 

 Kenaf (Hibiscus cannabinus L.) is an annual crop which grows in temperate 

climates (Rowell & Han, 1999). It goes through 5 stages in its life cycle, these being 

germination, growth, flowering, seed formation and death. Kenaf is cultivated in India, 

China, Bangladesh, United States of America, Indonesia, Malaysia, South Africa, 

Vietnam, Thailand, parts of Africa, and some areas in southeast Europe (Zimniewska et 

al., 2011). The ideal climatic conditions for growing of kenaf are given in Table 2.4 

(Rowell, 2008). Kenaf can grow up to more than 3 m in height and 3-5 cm in base 

diameter under a variety of weather conditions (Nishino, 2004). The growth of kenaf 

can be up to 10 cm/day in height under optimum ambient conditions (Rowell & Han, 

1999, cited in Nishino, 2004). Kenaf absorbs nitrogen and phosphorous during growth 

and also absorbs high amounts of carbon dioxide (Michell, 1986, cited in Zampaloni et 

al., 2007). The average nitrogen and phosphorous absorption rates of kenaf are 0.81 

g/m2/day and 0.11 g/m2/day, respectively (Abe & Ozaki, 1998, cited in Nishino, 2004).  

  

Table 2.4: Climate requirements for kenaf fibres (Rowell, 2008)   

Requirement  

Optimum temperature (oC) 22-30 

Minimum water (mm) required during the growing season 120 

Optimum soil pH 6.0-6.8 

Growing cycle (days) 150-180 

Fibre yield (kg/hectare) 1,700 

 

The physical appearance of kenaf is shown in Figure 2.6 while optical and 

scanning electron micrographs of the cross section of a kenaf stem are shown in Figure 

2.7. The kenaf stem contains both inner core fibres (~0.5-0.8 mm; 75-60%) and outer 

bast fibres (~2-2.5 mm; 25-40%) (Abdul Khalil, Yusra, Bhat & Jawaid, 2010; Wang, 

Shang, Song & Lee, 2010). As is discussed later in this section, the properties of the 

bast fibres are superior to those of the core fibres.  

The structure of a mature kenaf stem is also shown in Figure 2.8. The stem is 

shown viewed under white light in Figure 2.8a and viewed using UV epifluorescence, to 
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were 2.45 mm (1.17-4.94 mm) and 12 µm (5.63-21.25 µm), respectively. Zimniewska 

et al. (2011) have reported a somewhat greater elementary fibre length of 1.5 mm to 11 

mm. This probably reflects differences within the plant species and/or in the growing 

conditions.  

The characteristics of kenaf bast and core stems are shown in Table 2.5 while 

the lengths of the elementary bast and core fibres are shown in Table 2.6. The bast 

elementary fibres have lengths approximately three-times those of the core fibres. The 

bast elementary fibres are longest in the middle of the plant and shortest at the top while 

the core fibres are longest at the top of the plant and shortest at the bottom, Table 2.6, 

(Abdul Khalil et al., 2010). 

 

Table 2.5:  Characteristics and properties of kenaf stems (values in brackets 

represent one standard deviation) (Abdul Khalil et al., 2010)  

Characteristics/Properties Bast Core Stem 

Dimension (cm)    

     Height (range)  145-250 145-250 

     Diameter  1.52 (0.095) 1.74 (0.212) 

     Perimeter  5.73 (0.131) 6.60 (0.101) 

Proportion (%)    

     Cross-section area 21.96 (2.03) 78.04 (2.51)  

     Weight proportion 32.2 68.5  

Density (g/cm3) 1.21 0.21 (0.038) 0.29 (0.044) 

Acidity (pH) 7.13 5.21 5.87

      1Zimniewska et al. (2011)  

 

The chemical components of kenaf fibres include α-cellulose, holocellulose 

(cellulose and hemicellulose (Owen & Thomas, 1989)), lignin, extractive and ash, as 

given in Table 2.7. As can be seen from Table 2.7 the bast fibres have a higher α-

cellulose and lower lignin content than the core fibres and this results in higher strength 

(Abdul Khalil et al., 2010). 
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groups in hemicellulose and for the aldehyde groups in lignin appear at 1,739 cm-1 and 

1,650 cm-1 (Abdul Khalil et al., 2010). 

The traditional applications of kenaf are in ropes, canvas and sacking (Nishino, 

Hirao, Kotera, Nakamae & Inagaki, 2003). Recent applications of kenaf include paper 

products, building materials (decking, railing, flooring and wall frames), absorbents, 

animal feeds (Edeerozey, Akil, Azhar & Ariffin, 2007; Sain & Panthapulakkal, 2004), 

automotive structural parts (Du, Zhang & Xue, 2008), furniture, toys, gardening 

equipment and packaging (Rowell et al., 1999; Sain & Panthapulakkal, 2004). 

Harvesting of kenaf before full maturity can be of benefit to its use in both paper 

and composites. This is because lignin is lower in immature plants than in mature 

plants. This is particularly significant for paper manufacturing, since chemical removal 

of lignin is required in the pulping process (Rowell & Han, 1999). Likewise, if lignin 

needs to be removed from the fibres before composite manufacture, the use of immature 

plants is attractive. 

2.2.1.1 Properties of Kenaf Fibres 

 As for other plant fibres, the properties of the kenaf fibres are anisotropic (Xue, 

Du, Elder, Wang & Zhang, 2009). Kenaf fibre properties also depend on the source, 

cultivation, age, separation techniques and kenaf fibre history (Feng et al., 2001; Sanadi 

et al., 1995). The density of the kenaf fibres is approximately 1.38-1.40 g/cm3 (Liu, 

Drzal, Mohanty & Misra, 2007; Rowell et al., 1999; Sanadi et al., 1995; Zampaloni et 

al., 2007). The modulus of kenaf fibres is approximately 60 GPa (Liu et al., 2007) while 

the tensile strength is 217-740 MPa, the yield strength is 195-666 MPa and the strain to  

failure is 1.3-5.5% (Ashby, 2013). Thermal properties of kenaf fibres are given in Table 

2.8. 

 

Table 2.8: Thermal properties of kenaf fibres (Ashby, 2013) 

Thermal property  

Glass temperature (oC) 107-117 

Thermal conductor or insulator? Poor insulator 

Thermal conductivity (W/m·oC) 0.25-0.35 

Specific heat capacity (J/kg·oC) 1,200-1,220 

Thermal expansion coefficient (µstrain/oC) 15-30 
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The effect of strain rate on the tensile properties of kenaf bast fibre bundles (also 

known as technical fibres) has been examined by Xue et al. (2009) using strain rates of 

2.5, 25 and 250 µm/s. Both Young’s modulus and tensile strength increased 

progressively with strain rate, with the increase in Young’s modulus being from 12.7 to 

17.2 GPa and the increase in tensile strength being from 146 to 223 MPa. However, the 

maximum failure strain of 1.5% occurred at a strain rate of 25 µm/s with values of 1.1-

1.2% and 1.2-1.3% being obtained at the lower and higher strain rates respectively. Two 

failure mechanisms were observed, fibre pullout from the bundles and complete bundle 

breakage.  

 

Table 2.9: Tensile properties of kenaf bast fibre bundles at temperatures of 110-

190oC for 3, 6 and 9 hours (Du et al., 2008) 

Condition  Tensile Property  

Time 

(hours) 

Temperature 

(oC) 

 Tensile Modulus 

(GPa) 

Tensile Strength 

(MPa) 

Failure Strain 

(%) 

3 110  12.0 136.5 1.17 

 130  13.8 162.6 1.13 

 150  14.4 140.1 1.05 

 170  15.0 147.8 0.92 

 190  9.2 49.7 0.72 

6 110  15.3 214.0 1.39 

 130  14.2 173.2 1.20 

 150  13.4 152.7 1.13 

 170  15.3 133.1 0.83 

 190  8.0 72.8 0.81 

9 110  13.0 176.6 1.33 

 130  14.3 166.7 1.24 

 150  13.7 146.3 1.02 

 170  14.3 91.3 0.57 

 190  6.8 41.4 0.47 

 

The effect of exposure at elevated temperature on the room temperature tensile 

properties of kenaf bast fibre bundles has also been examined. Du et al. (2008) treated 
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cellobiose which is produced by acid hydrolysis of cellulose (Battista, 1971, cited in 

Wang et al., 2010). SEM micrographs of the MCC from both bast and core fibres are 

shown in Figure 2.12. The properties of the MCC are given in Table 2.10. 

The degree of polymerization ( DP ) was calculated as follows: 

    
w

c
DP  95      (2.1) 

where w is the dried weight (g) of MCC taken; c is the MCC concentration (g/mol) in 

0.5 M cupriethylenediamine solution.    is the intrinsic viscosity (ml/g) of the solution. 

As shown in Table 2.10, the degree of polymerization was slightly higher for the bast 

MCC (MCC-B) than for the core MCC (MCC-C) (Wang et al., 2010).  

 The crystallinity index (CrI ) was obtained from x-ray diffraction data using the 

intensity measurements at 2Ө vlues of 22.0-22.5o (crystalline region) and 18.0-18.5o 

(amorphous background) 2Ө using Segal’s equation: 

   
002

002

I

II
CrI am

      (2.2) 

where 002I  denotes the maximum intensity of the 002 peak at about 2Ө = 22.0-22.5o and 

amI is the lowest intensity corresponding to 2Ө value near 18.0-18.5o (Segal, Creely, 

Martin & Conrad, 1959; Wang et al., 2010). As shown in Table 2.10, the crystallinity 

index was substantially higher for the bast MCC than for the core MCC, indicating a 

higher level of crystallinity. The bast MCC also absorbed less moisture than the core 

MCC which was attributed to its higher level of crystallinity (Wang et al., 2010).  

2.2.2 Flax Fibres 

 Flax (Linum usitatissimum L.) is an annual herbaceous plant, grown in mild 

climates (Ehrensing, 2008). The climatic conditions most suitable for growing flax are 

given in Table 2.11 (Rowell, 2008). Flax grows up to 80-150 centimetres in height in 

80-110 days. The bast fibres are produced from the central section of the flax plant only. 

The lengths and diameters of flax fibre bundles (Figure 2.13) range from 60-140 

centimetres and from 40-80 µm, respectively (Bismarck, Mishra & Lampke, 2005). The 

technical fibre lengths and elementary fibre lengths of flax fibres range from 0.2-1.4 

meters and from 13-40 millimetres, respectively. The diameter of elementary flax fibres 

ranges from 17-20 µm. The density and linear density of flax fibres are 1.50 g/cm3 and 

0.289 tex, respectively (Zimniewska, Wladyka-Przybylak & Mankowski, 2011). The 
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Mankowski, 2011, are given in Table 2.12. While there is some variation amongst the 

different results, the analysis all lie within the range 64-84 wt% cellulose, 16-21 wt% 

hemicellulose, 0.6-5.0 wt% lignin, 1.8-2.3 wt% pectin and 1.5-1.7 wt% wax. 

Comparison with the data given for kenaf in Table 2.7 shows that flax has a 

substantially higher cellulose content than kenaf while the hemicellulose and lignin 

contents are substantially lower.  

Flax fibres have been used extensively in the textile industry to make linen 

fabrics. More recently, they have been used as the reinforcement in polymer composites 

used as components in the automotive and transportation industry (Foulk, Akin, Dodd 

& Ulven, 2011).  

	2.2.2.1 Properties of Flax Fibres 

 As for other plant fibres, including kenaf, the reported tensile properties for flax 

fibres vary widely, Table 2.13. As noted in Section 2.2.1.1, this is due to differences 

within the species, differences in the growth conditions, differences in age, differences 

in separation technique, etc. The gauge length used for testing can also have a 

substantial effect on the measured tensile strength and strain to failure (Romhány, 

Karger‐Kocsis & Czigány, 2003).  

 

Table 2.13: Tensile properties of flax fibres (Ashby, 2013; Cheung, Ho, Lau, 

Cardona & Hui, 2009; Saheb & Jog, 1999; Wanjale & Jog, 2011) 

Tensile Property Reference 

Ashby 

(2013) 

Cheung et al. 

(2009) 

Saheb & Jog 

(1999) 

Wanjale & Jog  

(2011) 

Young’s modulus 

(GPa) 

75-90 24-80 27 27.6 

Tensile strength 

(MPa) 

750-940 300-1,500 344 45-1,100 

Yield strength 

(MPa) 

150-338 - - - 

Elongation (%) 1.2-1.8 1.3-10% - - 

 

Ashby (2013) reported a Young’s modulus of 75-90 GPa, a tensile strength of 

750-940 MPa, a yield strength of 150-338 MPa and strain to failure of 1.2-1.8% for flax 
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fibres. Wanjale & Jog  (2011) reported that the Young’s modulus and tensile strength 

were 27.6 GPa and 45-1,100 MPa, respectively, while Saheb & Jog (1999) reported that 

the tensile modulus and strength were 27 GPa and 344 MPa, respectively. Cheung, Ho, 

Lau, Cardona & Hui (2009) reported a Young’s modulus of 24-80 GPa, a tensile 

strength of 300-1,500 MPa and an elongation at break of 1.3-10%.  

Thermal properties of flax fibres are given in Table 2.14. In terms of electrical 

properties, flax fibres are good insulators (Ashby, 2013). Rowell (2008) has reported 

that the equilibrium moisture content (EMC) of flax fibres is 7% at 21oC and 65% 

relative humidity (RH). Dittenber & GangaRao (2012) reported moisture contents of 8-

12 wt%.  

 

Table 2.14: Thermal properties of flax fibres (Ashby, 2013) 

Thermal property  

Glass temperature (oC) 110-130 

Thermal conductor or insulator? Poor insulator 

Thermal conductivity (W/m·oC) 0.25-0.3 

Specific heat capacity (J/kg·oC) 1,220-1,420 

Thermal expansion coefficient (µstrain/oC) 15-30 

 

Baley, Le Duigou, Bourmaud & Davies (2012) examined the effect of drying on 

the tensile properties of flax fibres, with average fibre diameters of 21.6 µm and 23.9 

µm. The undried flax fibres had Young’s moduli of 64.1 and 51.3 GPa, tensile strengths 

of 1,499 and 1,317 MPa and failure strains of 2.9 and 3.3%, for the 21.6 µm and 23.9 

µm diameter fibres, respectively. After drying at 105oC for 14 h the average fibre 

diameters decreased only marginally to 20.9 µm and 23.8 µm. However, the strength 

and failure strain decreased substantially with values of 870 and 711 MPa being 

obtained for the strength and 2.1 and 1.7% for the failure strain, for the two fibre 

diameters, respectively. The modulus appeared unaffected by drying with values of 59.2 

and 58.7 GPa being recorded. 

2.3 Interface Modification of Natural Fibres 

Several different methods are used for surface modification of natural fibres for 

use in composites. The major methods are chemical treatment, physical treatment, 
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thermal treatment, and the use of coupling agents. These methods are discussed below 

with particular reference to kenaf fibres since surface treatment was used in the present 

study for these fibres only.  

2.3.1 Treatments of Natural Fibre Surfaces 

2.3.1.1 Chemical Treatments 

 Chemical treatment of kenaf fibres can modify the fibre surface, retarding 

moisture absorption and increasing surface roughness. The chemical treatments also 

improve fibre-matrix adhesion and fibre strength (Li, Tabil & Panigrahi, 2007). Several 

different chemical treatments are used.  

(2.3.1.1.1) Alkaline Treatment 

An effective and inexpensive chemical treatment (Edeerozey et al., 2007) is 

alkaline treatment (also known as mercerization) using alkalis such as sodium 

hydroxide (NaOH), potassium hydroxide (KOH) or lithium hydroxide (LiOH) (Wanjale 

& Jog, 2011). Alkaline treatment enhances fibre surface roughness, removes wax and 

oils, but also increases the amount of amorphous cellulose (Li et al., 2007; Zimniewska 

et al., 2011). The chemical reaction between natural fibres and aqueous sodium 

hydroxide (Agrawal, Saxena, Sharma, Thomas & Sreekala, 2000, cited in Li et al., 

2007) is given as follows: 

 

Fibre – OH  +  NaOH   Fibre – O – Na  +  H2O. (2.3) 

 

Edeerozey et al. (2007) examined the alkaline treatment of kenaf fibres using 

concentrations of 3, 6 and 9% NaOH at room temperature and at a temperature of 95oC. 

They found that a concentration of at least 6% NaOH was required to effectively 

remove impurities from the fibre surfaces at both of the temperatures, although the 3% 

NaOH treatment improved the tensile strength of the fibres. The highest strength was 

obtained at 6%, with the strength being reduced substantially below the untreated fibre 

value when the 9% NaOH treatment was used.   Other workers have also reported that 

high concentrations of alkali, such as 10% NaOH, have negative effects on the fibres 

(Mishra et al., 2000, cited in Li et al., 2007). Based on their study, Edeerozey et al. 

(2007) concluded that 6% NaOH was the optimum concentration for treating kenaf 
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NaOH treatment gave the best mechanical performance when the kenaf fibres were 

incorporated into thermoplastic matrix composites 

(2.3.1.1.2) Silane Treatment 

 Silane coupling agents are chemical compounds containing SiH4. They modify 

the interface between natural fibres and the polymer matrix, increasing the interfacial 

strength. Silanes can also decrease the level of hydroxyl groups in cellulose in natural 

fibres. The silanes are converted to silanols by moisture and hydrolysable alkoxy 

groups. The silanols can then react with the hydroxyl groups of the fibres (Li et al., 

2007). Factors including silane type, concentration of silane, temperature, time of 

silanization, quantity of moisture and fibre volume fraction all affect the extent to which 

the treatment improves fibre-matrix adhesion in composites (Abdalla & Pickering, 

2002; Abdalla et al., 2002; Bledzki & Gassan, 1997, cited in Zimniewska et al., 2011). 

The chemical reaction steps (Karnani, Krishnan, & Narayan, 1997) are given as follows:  
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 Condensation 

       

          (2.5) 
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intensity of the C – O stretching peak of the acetyl group of lignin at 1,239 cm-1 was 

also reduced more by the alkaline treatment than by the silane treatment alone 

indicating that alkali pretreatment also partly removes lignin from the fibres.  

(2.3.1.1.3) Acetylation Treatment 

 Acetylation treatment is an esterification method. It involves reacting the 

hydroxyl groups (OH-) of the fibres with acetyl groups (CH3CO-) (Zafeiropoulos, 

2008). The acetylation generates acetic acid (CH3COOH) as a byproduct. The treatment 

improves the fibre-matrix adhesion and dimensional stability of natural fibre composites 

(Li et al., 2007). The chemical reaction between natural fibres and acetic anhydride 

(CH3-C(=O)-O-C(=O)-CH3) (Hill, Abdul Khalil & Hale 1998, cited in Li et al., 2007) is 

given as follows: 

 

   Fibre – OH + CH3 – C (= O) – O – C (= O) – CH3 

   Fibre – OCOCH3  +  CH3COOH.   (2.8) 

2.3.1.2 Physical Treatments 

The physical treatments used to modify the fibres include stretching, 

calendaring, thermotreatment and electrical discharge (corona and cold plasma) 

treatments. These treatments can change the fibre structure and/or the fibre surface, 

thereby improving the fibre-matrix bonding (Bledzki & Gassan, 1999; Wanjale & Jog, 

2011). For example, the surface of the fibres can be changed and free radicals, ions and 

electrons can be formed by using plasma treatment (Morales et al., 2006, cited in Lee et 

al., 2011). This leads to changes in the surface properties of the fibres, such as 

chemistry, wettability, and roughness of the surface, depending on the nature of the 

plasma feed gas. There are five types of plasma source, these being arc and torches, 

corona, dielectric barriers, low-pressure discharge and atmospheric pressure discharge 

(Lee et. al., 2011). The characteristics of the different plasma sources are shown in 

Table 2.15. 

The fibre surface can also be modified by electron beam irradiation (EBI). This 

technique is dry, clean and environmentally friendly (Han et al., 2007). The process is 

reported to change the structure and properties of cellulose in the fibres (Takacs, 

Wojnarovits, Foldvary, Hargittai, Borsa & Sajo, 2000, cited in Han et al., 2007). 

However this is contrary to the findings of Han et al. (2007) who conducted an FTIR 
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2.3.1.3 Thermal Treatment 

 Thermal treatment is carried out at the glass transition temperature of lignin 

(Rinne, Boettger, Loader, Robertson, Switsur & Waterhouse, 2005), to remove lignin 

and some hemicellulose from the fibres (Sain & Panthapulakkal, 2004). The glass 

transition temperature of lignin in kenaf ranges from 66oC to 70oC (Lora & Glasser, 

2002). The physical and chemical properties of cellulose also change when cellulose is 

heated. The physical properties affected include enthalpy, weight, strength, colour and 

crystallinity. The chemical properties affected include a decrease in degree of 

polymerization due to bond scission, free radical creation, formation of carbonyl, 

carboxyl and peroxide groups, and evolution of water and carbon dioxide (Shafizadeh, 

1985, cited in Zafeiropoulous, 2008).  

As a result of these changes thermal treatment can improve the compatibility 

between the fibres and the polymer matrix. The effectiveness is dependent on the 

atmosphere used with heating in an inert atmosphere being considered to give better 

results than heating under normal conditions (Sain & Panthapulakkal, 2004). As noted 

in Section 2.2.1.1, heating to temperatures above ~170oC can, however, reduce the 

mechanical properties of kenaf fibres due to chemical degradation. 

2.3.2 Modification of the Fibre/Matrix Interface by Adding Coupling 

Agents to the Matrix Resin 

Fibre treatments using chemical and physical techniques are effective methods 

for improving fibre-matrix adhesion in composites. However, these techniques increase 

the cost of manufacturing the composites. An alternative inexpensive method for 

improving adhesion between the fibres and the matrix is the addition of a coupling 

agent to the matrix resin. As for coupling agents applied directly to the fibres, this 

technique enhances stress transfer from the polymer matrix to the fibres, improving the 

properties of the composite (Bledzki et al., 2008; Rowell, Sanadi, Caulfield, & 

Jacobson, 1997). 

Grafted maleic anhydride is commonly used as the coupling agent in 

thermoplastic matrix composites. The addition of maleic anhydride grafted 

polypropylene (MAPP) has been shown by several workers to improve the mechanical 

properties of polypropylene composites (Clemons & Sanadi, 2007; Feng et al., 2001; 

Ganster, Fink, & Pinnow, 2006). Yang, Wolcott, Kim, Kim & Kim (2007) have also 
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demonstrated that the form in which the maleic anhydride is used is important, with 

maleated polyethylene (MAPE) addition being less effective than MAPP addition in 

polypropylene composites.  

The reaction mechanism between the coupling agent and natural fibres is shown 

in Figure 2.19 (Karnani et al., 1997). The improvement in properties brought about by 

addition of the coupling agent is attributed to the formation of ester linkages between 

the maleic anhydride of the MAPP and hydroxyl groups of the cellulose fibres (Ganster 

et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Reaction mechanism between maleated polypropylene (MAPP) and 

lignocellulosic fibres (Karnani et al., 1997). 

  

2.4 Natural Fibre-Reinforced Polymer-Matrix Composites 

 Natural fibres have become attractive materials for reinforcing polymers because 

of their low cost and good environmental credentials. The present study examines both 

short kenaf fibre reinforced thermoplastic composites and long flax fibre reinforced 

thermoset matrix composites. Accordingly, this section is divided into two parts, natural 

fibre-reinforced thermoplastic-matrix composites and natural fibre-reinforced 

thermoset-matrix composites. The first part is focused on kenaf fibre-reinforced 
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electrical properties, good dimensional stability and good impact strength (Sain & 

Panthapulakkal, 2004). 

 

Table 2.16:  Properties of synthesis thermoplastics (Schwartz & Goodman, 1982 and 

Van de Velde & Kiekens, 2001, cited in Sain & Panthapulakkal, 2004)  

Property PP HDPE LDPE PS Nylon 6 Nylon 6,6

Density (g/cm3) 0.899-

0.920 

0.941-1 0.910-

0.925 

1.04-1.09 1.09-1.14 1.090-

1.19 

Water absorption 

after 24 hours (%) 

0.01-0.02 0.01-0.2 <0.015 0.03-0.10 1.3-1.8 1.0-1.6

Tg (
oC) -10 to     

-23 

-133 to   

-100 

-125 - 48 80

Tm (oC) 160-176 120-140 105-116 110-135 215-216 250-269

Heat deflection 

temp. (Td) at 1.8 

MPa (oC) 

50-63 43-60 32-50 Max. 220 56-80 75-90

Coefficient of 

linear thermal 

expansion (αT) 

(mm/mm/oC × 

105) 

6.8-13.5 12-13.0 10 6-8 8-8.6 7.2-9.0

Tensile strength 

(MPa) 

26-41.4 14.5-38 4-78.6 - 43-79 12.4-94

Young’s modulus 

(GPa) 

0.95-

1.776 

0.413-

1.490 

0.055-

0.38 

4-5 2.9 2.5-3.9

Elongation (%) 15-700 12-1000 90-800 1-2.5 20-150 35 to       

>300 

Izod impact 

strength (J/m) 

21.4-267 26.7-

1068 

>845 0.05-

0.551 

42.7-160 16.0-654

1Units ft lb/inch. 

 

2.4.1.2 Processing Methods 

Common processing methods used in fabricating natural fibre-reinforced 

thermoplastic composites include extrusion, injection moulding and compression 
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equipment for compression moulding is less than that for injection moulding, due to 

lower pressure requirements (Ashby & Jones, 2006). Compression moulding is 

appropriate when producing simple and flat products. However, compression moulding 

machines cannot produce complex geometric products (Bledzki et al., 2008). 

 There are three major concerns when compounding natural fibres and 

thermoplastics for fabricating natural fibre/thermoplastic composites. Firstly, it is 

difficult to feed the compounder because the bulk density of the fibres and the 

thermoplastic is different. Secondly, dispersion of the fibres in the thermoplastic matrix 

is difficult because of intramolecular and intermolecular bonding in the fibres. This can 

bring about fibre agglomeration leading to inefficient reinforcement of the composites. 

Thirdly, the degree of shear produced during compounding is important since this can 

lead to fibre attrition (reduction in the fibre length) (English, Chow & Bajwa, 1996, 

cited in Sain & Panthapulakkal, 2004).   

 The level of fibre attrition depends on the type of compounding and moulding. 

In addition to the shearing forces generated in the equipment, other important factors 

affecting the level of attrition are loading contents, residence time, temperature and 

blend viscosity (Czarnecki & White, 1980, cited in Rowell et al., 1997). The level of the 

fibre attrition is also dependent on the screw configuration in the extruder. Modified 

screw configurations can be used to decrease fibre attrition (Yam, Gogoi, Lai & Selke, 

1990, cited in Rowell et al., 1997).  

In addition to affecting fibre length, processing can also affect fibre dispersion 

and/or fibre orientation, all of which have significant effects on the mechanical 

properties of polymer composites. Injection moulding can enhance fibre dispersion in 

the polymer composites, bringing about improvements in the mechanical properties of 

the composites (Mohanty, Wibowo, Misra & Drzal, 2004, cited in Liu et al., 2007). 

However, injection moulding causes fibre damage which leads to a decrease in fibre 

length and diameter (Carneiro & Maia, cited in Liu et al., 2007). Although injection 

moulding has an adverse effect on the fibres, it can produce better consolidation of the 

polymer composites than is achievable with compression moulding. This is attributed to 

the closed mould, which allows higher transmission of pressure into the composites 

during processing (Mohanty et al., 2004, cited in Liu et al., 2007). Although polymer 

composites fabricated using compression moulding in a frame mould do not receive as 

high transmitted pressure as composites fabricated using injection moulding in a closed 
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that the failure strain of the composites was significantly less than that of the neat 

polypropylene and this was attributed to obstruction of the mobility of the polymer 

molecules by the presence of the fibres. For the composites with the MAPP addition, 

the strength increased progressively with fibre content while the failure strain decreased. 

Only one fibre content (50 wt%) was examined without MAPP addition and this 

composite achieved only half the strength of its MAPP treated counterpart. The superior 

performance of the MAPP treated composite was attributed to the formation of covalent 

bonds between the anhydride groups in the MAPP and the hydroxyl groups in the fibre 

surface. Feng et al. (2001) also reported that the tensile strength of 50 wt% short fibre 

kenaf/polypropylene composites was improved by the addition of 3 wt% maleated 

polypropylene (MAPP). 

The MAPP treated 50 wt% kenaf fibre/polypropylene composites examined by 

Rowell et al. (1999) had a tensile modulus of 8.3 GPa, a tensile strength of 65 MPa, a 

flexural modulus of 7.3 GPa, a flexural strength of 98 MPa, an elongation at break of 

2.2% and a notched Izod impact strength of 32 J/m (Rowell et al., 1999). It is noted that 

the impact strength of composites is dependent on the type of impact test used. For 

notched impact testing, energy absorption occurs from the crack propagation 

mechanism, but for un-notched impact testing, energy absorption occurs from both 

crack initiation and crack propagation. High stress concentration regions, such as at 

fibre defects and fibre ends, can readily act as crack initiation sites (Sanadi et al., 1995). 

 

Table 2.17:  Details of the pure HDPE and the 50% kenaf fibre/HDPE composites 

(Lundin et al., 2004)  

Material Sample 

HDPE 50% Kenaf/HDPE 

 HDPE 100.0% 48.6% 

 UV stabilizer - 0.4% 

 Antioxidant - 0.2% 

 Kenaf fibres - 48.6% 

 MAPE - 2.1% 

 

Lundin, Cramer, Falk & Felton (2004) examined the flexural properties of pure 

high-density polyethylene (HDPE) and 50% kenaf fibre/HDPE composites. The 
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materials, used are given in Table 2.17 while their flexural properties are given in Table 

2.18. The flexural modulus of the 50% kenaf fibre/HDPE composites was 

approximately ten times higher than for the pure HDPE while the strength was 

approximately three and a half times higher. 

 

Table 2.18:  Flexural properties of the pure HDPE and the 50% kenaf fibre/HDPE 

composites (Lundin et al., 2004)  

Sample Flexural Property 

Flexural Modulus  

(MPa) 

Flexural Strength  

(MPa) 

HDPE 668 14.0 

50% Kenaf/HDPE 5,950 48.2 

 

(2.4.1.3.2) Thermal Properties	

 Feng et al. (2001) examined the thermal properties of untreated and 3 wt% 

MAPP treated 50 wt% kenaf fibre/polypropylene composites using differential scanning 

calorimetry (DSC). The specimens were initially heated from 25oC to 230oC at a rate of 

20oC/minute in order to remove previous thermal history. After that, the specimens 

were cooled to -100oC at a rate of 10oC/minute in order to determine the crystallisation 

temperature (Tc). The specimens were then reheated from -100oC to 230oC at a rate of 

20oC/minute to determine the melting temperature (Tm) and heat of fusion. The Tc and 

Tm were found to be slightly decreased (from 120.7oC to 120.0oC and 167.3oC to 

166.5oC) respectively in the MAPP treated composites. The crystallisation and melting 

behaviour of the MAPP treated composites depend on two important factors, these 

being the interactions between the anhydride groups of the MAPP and the hydroxyl 

groups of the fibres, and the interactions of the anhydride groups with themselves 

(Jarvela, Li & Jarvela, 1996, cited in Feng et al., 2001). When good interaction between 

the fibre surfaces and the MAPP exist, the mobility of molecules is limited and this 

depresses Tm. Likewise interactions of anhydride groups between themselves obstructs 

crystallisation and this depresses Tc (Feng et al., 2001).  

 The thermal stability of a 30 wt% kenaf fibre/polypropylene composite has also 

been examined using thermogravimetric analysis (TGA) (Han et al., 2007). The study 

was conducted over the temperature range of 30-500oC under a nitrogen atmosphere 
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with a heating rate of 5oC/min. The decomposition temperature of the composite was 

found to be approximately 455oC.  

(2.4.1.3.3) Dynamic Mechanical Properties 

 Dynamic mechanical analysis (DMA) is a common technique for analysing 

dynamic mechanical properties of natural fibre/polyolefin composites. The dynamic 

mechanical properties are dependent on the type, length, content, orientation and 

dispersion of the fibres, the fibre loading, and the adhesion between the fibres and the 

matrix since these properties all affect the mechanical properties of the end products 

(Tajvidi, Falk & Hermanson, 2006; Tajvidi, Falk, Hermanson & Felton, 2003).  

DMA studies of kenaf fibre/polypropylene composites have been conducted by 

Feng et al. (2001) and Tajvidi, Falk et al. (2006), in both cases at a heating rate of 

2oC/minute and a test frequency of 1 Hz. Feng et al. (2001) conducted their study over 

the temperature range -100oC to 180oC. They found that addition of 3 wt% MAPP 

increased the softening temperature of the composites which they attributed to improved 

fibre-matrix adhesion (Feng et al., 2001)  

Tajvidi, Falk et al. (2006) examined 25 wt% and 50 wt% kenaf 

fibre/polypropylene composites with additions of 1 wt% and 2 wt% MAPP. Their study 

was carried out over the temperature range -60oC to 120oC. The storage modulus (E’), 

loss modulus (E”) and tan δ values obtained from this work are given in Table 2.19. 

The results showed that increasing the fibre content increased the stiffness (storage 

modulus and loss modulus). There was no effect of fibre content on the mechanical loss 

factor, tan δ, (damping) at temperatures below 20oC but the 50 wt% composite had a 

lower tan δ at temperatures above 20oC.     

Tajvidi et al. (2003) also examined the dynamic mechanical properties of 

kenaf/HDPE composites. They again used 25 and 50 wt% fibre, but used maleated 

polyethylene, again at 1 wt % and 2 wt%, as the coupling agent. The study was carried 

out over the temperature range -110oC to 100oC at a heating rate of 2oC/minute, a 

frequency of oscillation of 1 Hz, and a strain amplitude of 0.1%. It was found that the 

storage modulus and loss modulus were higher for the kenaf fibre/HDPE composites 

than for the pure HDPE. As for the kenaf/PP composites, the 50 wt% kenaf/PE 

composite had a higher storage modulus and loss modulus than its 25 wt% counterpart. 

Also, the tan δ values the two PE composites were similar at temperatures below 20oC 

while the 50 wt% composite had a lower tan δ at temperatures above 20oC. The tan δ of 
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pure HDPE was the same as that of the kenaf fibre/HDPE composites at temperatures 

below 20oC, but higher than that of the kenaf fibre/HDPE composites at temperatures 

above 20oC.  

 

Table 2.19:  Storage modulus (E’), loss modulus (E”) and tan δ values of the kenaf 

fibre/ polypropylene composites (Tajvidi, Falk et al., 2006)  

Temperature 

(oC) 

Composite 

formulation 

E’ (GPa) E” (GPa) tan δ 

-60 25 KF-PP 5.530 0.164 0.030 

 50 KF-PP 7.349 0.219 0.030 

-20 25 KF-PP 5.118 0.156 0.030 

 50 KF-PP 6.701 0.198 0.030 

+20 25 KF-PP 3.126 0.189 0.060 

 50 KF-PP 4.733 0.225 0.048 

+60 25 KF-PP 1.835 0.117 0.064 

 50 KF-PP 3.132 0.182 0.058 

+100 25 KF-PP 1.047 0.096 0.092 

 50 KF-PP 2.001 0.166 0.083 

 

(2.4.1.3.4) Moisture Absorption 

 It is important to evaluate the moisture absorption of natural fibre composites 

since it has a substantial effect on their service performance.  Moisture absorption leads 

to fibre swelling and this affects the dimensional stability of the composites (Tajvidi, 

Najafi & Moteei, 2006). Moisture absorption also brings about an increase in heat 

conductivity and fungal sensitivity (Bledzki et al., 2008). Moisture absorption is 

dependent principally on the chemical structure of both the fibres and the polymer 

matrix, the presence or absence of coupling agents, and the service temperature and 

relative humidity (George, Bhagawan & Thomas, 1997).  Moisture absorption can be 

reduced by improving bonding between the fibres and the matrix (Rowell et al., 1997).  

 The water absorption of 25 wt% and 50 wt% natural fibre/polypropylene 

composites with 1 wt% and 2 wt% maleic anhydride polypropylene (MAPP) was 

studied by Tajvidi, Najafi et al. (2006). The natural fibres used included kenaf fibres, 

wood flour, rice hulls and newsprint fibres. It was found that water absorption by the 
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kenaf fibres was higher than that for the other natural fibres due to higher cellulose and 

hemicellulose contents and a lower lignin content. The maximum water absorption over 

5 weeks for the 25 wt% and 50 wt% composites was 2.1% and 13.2%, respectively,   

indicating that the rate of moisture absorption was strongly dependent on fibre content. 

It is noted that the moisture absorption had not reached the equilibrium level in either of 

the composites during the 5-week water immersion period.  

Rowell et al. (1999) reported a moisture absorption level of 1.1% after 24 hours 

immersion for a 50 wt% kenaf/PP composite with MAPP coupling agent.   

2.4.2 Natural Fibre-Reinforced Thermoset-Matrix Composites 

2.4.2.1 Thermosets 

Synthetic thermosets commonly used as matrices in natural fibre composites are 

polyester, epoxy and vinyl ester resins (Ray & Rout, 2005). The chemical structure of 

polyester, epoxy and vinyl ester resins is shown in Figures 2.24 to 2.26, respectively. 

Unlike thermoplastics, thermoset resins crosslink during curing (Campbell, 2010a). The 

stages of cure of a thermoset resin are shown in Figure 2.27. As a result of crosslinking, 

thermoset plastics are unable to be reshaped by heating (Aranguren & Reboredo, 2007). 

Physical and mechanical properties of polyester, epoxy and vinyl ester resins are given 

in Table 2.20. Advantages and disadvantages of these thermosets are shown in Table 

2.21.  

 

 

 

 

 

Figure 2.24: Chemical structure of a typical polyester resin (Ray & Rout, 2005). 

 

 

 

 

Figure 2.25: Chemical structure of a typical epoxy resin (Ray & Rout, 2005). 
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Table 2.21:  Advantages and disadvantages of polyester, epoxy and vinyl ester resins 

(Kroschwitz, 1985, Pritchard, 1980, Sarkar et al., 1997, cited in Ray & 

Rout, 2005) 

Thermoset Advantage Disadvantage 

Polyester - easy to use 

- lowest cost of resins available 

(£1-2/kg) 

- only moderate mechanical 

properties 

- high styrene emissions in open 

moulds 

- high cure shrinkage 

- limited range of working times 

Epoxy - high mechanical  and thermal 

properties 

- high water resistance 

- long working time available 

- temperature resistance can be 

up to 140oC wet/220oC dry 

- low cure shrinkage 

- more expensive than vinyl esters 

(£3-5/kg) 

- critical mixing 

- corrosive handling 

Vinyl ester - very high 

chemical/environmental 

resistance 

- higher mechanical properties 

than polyesters 

- postcure generally required for 

high properties 

- high styrene content 

- higher cost than polyesters       

(£2-4/kg) 

- high cure shrinkage 

 

2.4.2.2 Fabrication Techniques 

 Fabrication techniques commonly used for manufacturing natural fibre-

reinforced thermoset-matrix composites are hand lay-up, compression moulding, resin 

infusion, filament winding and pultrusion (Ray & Rout, 2005). 

 The hand lay-up technique involves laying fibres over a mould surface coated 

with a release agent. The thermoset resin is then applied to the mould (Higgins, 1994). 

Rollers or brushes are used to compact the material to remove air bubbles and extra 

resin. Composites of only low fibre volume fraction can be manufactured using this 

technique (Ray & Rout, 2005).  
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pulled through a preform die, followed by a finishing die. Heated dies are commonly 

used to accelerate curing. 

2.4.2.3 Mechanical Properties of Unidirectional Natural Fibre-

Reinforced Thermoset-Matrix Composites 

 Natural fibre thermoset matrix composites have been fabricated using a wide 

range of fibre forms, including mats, rovings and fabrics. The present study examined 

unidirectional fibre reinforced thermoset matrix composites and only these composites 

are considered here. A detailed review of thermoset matrix composites made using a 

wider range of fibre forms is given in Crosky et al. (2014).   

 

Table 2.22: Tensile properties of epoxy resin and unidirectional flax fibre/epoxy 

composites (values in brackets represent one standard deviation) 

(Oksman, 2001) 

Sample Fibre 

Volume 

Fraction (%)

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

Elongation 

at Break 

(%) 

Epoxy resin 

UD-Flax2/Epoxy 

ArcticFlax3/Epoxy 1 

ArcticFlax3/Epoxy 2 

ArcticFlax3/Epoxy 3 

- 

32 

21 

42 

47 

3.1-3.21 

15 (0.6) 

22 (4) 

35 (3) 

39 (6) 

761 

132 (4.5) 

193 (30) 

280 (15) 

279 (14) 

731 

1.2 

0.9 

0.9 

0.8 

     1Data supplied by the manufacturer  
      2UD-Flax is unidirectional flax fibre mat from Mühlmeier GmbH 
      3ArcticFlax is a trade name of unidirectional flax fibre mat from FinFlax Oy, Kiiminki, Finland   

 

Oksman (2001) examined the tensile properties of unidirectional flax 

fibre/epoxy composites, fabricated using resin transfer moulding. Composites with 21, 

42 and 47 volume% fibres were fabricated using flax fibres from a Finnish supplier 

while a 32 volume% composite was fabricated using flax fibres from a German 

supplier. The tensile modulus and strength of the composites made with the Finnish-

sourced fibres increased with increasing fibre volume fraction, while the strain to failure 

remained constant, Table 2.22. This behaviour is consistent with that observed for 

synthetic fibre composites (Harris, 1999). Interestingly, the modulus and strength of the 

32% composite made with the German-sourced fibres were only half the values 
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obtained by interpolation of the data for the composites made with the Finnish-sourced 

fibres to the same fibre fraction, Table 2.22. This indicates the substantial variation in 

the properties of fibres from different sources.   

Ratna Prasad & Mohana Rao (2011) fabricated 40 volume% unidirectional 

jowar, sisal and bamboo fibre/polyester composites using the hand lay-up compression 

moulding technique. The mechanical properties of the composites were determined and 

are given in Table 2.23. The jowar and bamboo composites both had similar mechanical 

properties, except for the flexural modulus which was substantially higher in the jowar 

composites. The sisal composites had lower mechanical properties than the other two 

composites.  

 

Table 2.23: Mechanical properties of jowar, sisal and bamboo fibre/polyester 

composites (Ratna Prasad & Mohana Rao, 2011) 

Composite Tensile Property  Flexural Property 

Strength 

(MPa) 

Modulus 

(GPa)  

Strength  

(MPa) 

Modulus 

(GPa) 

Cured polyester 

resin 

31.5 0.63  55.1 1.54 

Jowar/polyester 124 2.75  134 7.87 

Sisal/polyester 65.5 1.90  99.5 2.49 

Bamboo/polyester 126 2.48  128 3.70 

 

Charlet, Baley, Morvan, Jernot, Gomina & Bréard (2007) examined the tensile 

properties of fabricated 20 volume% unidirectional Hermés flax fibre/epoxy composites 

fabricated using wet impregnation. The flax fibres used were selected from 3 different 

locations of the stems, these being the top, middle and bottom as shown in Figure 2.31. 

The tensile properties of the composites are given in Table 2.24. It was found that the 

composites made with fibre from the middle of the stems had higher tensile properties 

than those made with fibre from the other two locations. The composites made from the 

bottom of the stems had the lowest tensile properties. A fracture surface from the flax 

fibre/epoxy composites is shown in Figure 2.32. 
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was 5.0 GPa. The strength parallel and perpendicular to the fibres was 150 MPa and 18 

MPa, respectively. The shear modulus was also determined and a value of 2.5 GPa was 

obtained.  

 

Table 2.25: Tensile properties of 45% unidirectional Alfa/unsaturated polyester 

composites with different fibre-tensile load angles in the longitudinal 

direction (Brahim & Cheikh, 2007) 

Angle between the fibres and 

tensile load (degree) 

Modulus 

(GPa) 

Strength 

(MPa) 

0 12.3 150 

10 11.5 104 

30 8.1 43 

45 6.4 33 

90 5.0 18 

 

Brahim & Cheikh (2007) also examined the influence of fibre volume fraction 

on the tensile properties of composites loaded in the longitudinal direction, using 

volume fractions from 0% to 44%, Table 2.26. As for the flax fibre composites 

examined by Oksman (2001), the modulus and strength increased progressively with 

increasing fibre content while the strain to failure remained constant.   

 

Table 2.26: Tensile properties of unidirectional Alfa/unsaturated polyester 

composites with different fibre volume fraction in the longitudinal 

direction (Brahim & Cheikh, 2007) 

Fibre Volume Faction (%) Modulus (GPa) Stress (MPa) Strain (%) 

0 4.1 64 2.7 

12 6.6 75 2.3 

21 8.2 96 2.3 

32 10.2 118 2.6 

44 12.3 149 3.1 

 

Abdullah, Khalina & Ali (2011) fabricated 15 volume% and 45 volume% 

unidirectional kenaf fibre/epoxy composites using hand lay-up compression moulding at 
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room temperature. The tensile properties obtained are given in Table 2.27. Consistent 

with the results obtained for flax fibre composites, the modulus and strength were 

higher at the higher volume fraction while the strain to failure remained unchanged.   

 

Table 2.27: Tensile properties of epoxy resin and unidirectional kenaf fibre/epoxy 

composites (Abdullah, Khalina & Ali, 2011) 

Sample Modulus of 

Elasticity 

(GPa) 

Tensile 

Strength at 

Break (MPa) 

Tensile 

Strain at 

Break (%) 

Epoxy resin 

15% Kenaf/epoxy 

45% Kenaf/epoxy 

1.78 

3.96 

7.76 

32.19 

57.95 

100.53 

3.40 

2.11 

1.90 

   

Table 2.28: Tensile properties of epoxy resin and untreated and 18% NaOH treated 

unidirectional sisal fibre/epoxy composites (Padmavathi, Naidu & Rao, 

2012) 

Sample Fibre Weight 

Fraction (%) 

Tensile Modulus 

(GPa) 

Tensile Strength 

(MPa) 

Epoxy resin 

Untreated sisal/epoxy 

Treated sisal/epoxy 1 

Treated sisal/epoxy 2 

Treated sisal/epoxy 3 

Treated sisal/epoxy 4 

Treated sisal/epoxy 5 

Treated sisal/epoxy 6 

- 

38.8 

15.7 

22.8 

26.4 

29.3 

33.5 

39.2 

3.50 

7.10 

5.62 

6.02 

6.36 

6.39 

6.40 

6.42 

70.0 

185.1 

161.3 

172.4 

189.3 

198.8 

203.5 

235.0 

 

Another study of the effect of fibre fraction was made by Padmavathi, Naidu & 

Rao (2012) for alkali treated unidirectional sisal fibre/epoxy composites fabricated 

using the wet lay-up technique. The fibre weight fraction was varied between 16% and 

39% They also examined a 40% fibre volume fraction untreated sisal fibre/epoxy 

composites. Their results are given in Table 2.28. Again the modulus and strength 

increased progressively with fibre weight fraction. For the 39-40% treated and untreated 
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composites it was found that the modulus was about 10% higher for the untreated 

composite, but the reverse was true for strength with the treated fibre composite being 

about 21% stronger than its untreated counterpart.  

 

Table 2.29: Compressive strength of epoxy resin and untreated and 18% NaOH 

treated unidirectional sisal fibre/epoxy composites (Padmavathi, Naidu 

& Rao, 2012) 

Sample Fibre Weight Fraction 

(%) 

Compressive Strength 

(MPa) 

Epoxy resin 

Untreated sisal/epoxy 

Treated sisal/epoxy 1 

Treated sisal/epoxy 2 

Treated sisal/epoxy 3 

Treated sisal/epoxy 4 

Treated sisal/epoxy 5 

Treated sisal/epoxy 6 

- 

38.8 

15.7 

22.8 

26.4 

29.3 

33.5 

39.2 

90.0 

115.5 

76.2 

84.9 

96.0 

117.2 

123.8 

136.6 

 

Table 2.30: Impact property of untreated and 18% NaOH treated unidirectional sisal 

fibre/epoxy composites (Padmavathi, Naidu & Rao, 2012) 

Sample Fibre Weight Fraction 

(%) 

Impact Energy 

(J) 

Untreated sisal/epoxy 

Treated sisal/epoxy 1 

Treated sisal/epoxy 2 

Treated sisal/epoxy 3 

Treated sisal/epoxy 4 

Treated sisal/epoxy 5 

Treated sisal/epoxy 6 

38.8 

15.7 

22.8 

26.4 

29.3 

33.5 

39.2 

4.3 

2.3 

3.7 

7.0 

7.5 

9.2 

11.1 

 

Padmavathi, Naidu & Rao (2012) also determined the compressive strength and 

impact strength of their composites, Tables 2.29 and 2.30, respectively. As for tensile 

strength, the compressive strength increased progressively with fibre weight fraction. 
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The compressive strength of the 39% treated fibre composite was also about 15% higher 

than that of the untreated 40% fibre composite, Table 2.29.  

The impact strength also increased progressively with fibre weight fraction, 

Table 2.30. Moreover, the impact strength of the 39% treated fibre composites was 

almost 3 times that of its untreated fibre counterpart. 

Van de Weyenberg, Chi Truong, Vangrimde & Verpoest (2006) studied the 

effect of alkali treatment on the flexural properties of 40 volume% unidirectional flax 

fibre/epoxy prepreg composites fabricated using autoclave curing. Three concentrations 

of NaOH were examined, 1, 2 and 3%, while composites were also prepared from 

untreated fibres, Table 2.31. The longitudinal flexural strength increased progressively 

with increasing NaOH concentration with the 3% treatment producing a 30% 

improvement over the untreated fibres. In the transverse direction, the improvement was 

even greater with 1% NaOH treatment producing a doubling in the flexural strength. 

However, there was no further improvement with increased NaOH concentration. The 

longitudinal flexural modulus increased by 28% with 1% NaOH treatment but showed 

no further improvement with the higher NaOH concentrations. The transverse modulus 

increased 6 fold with 1% NaOH treatment but the improvement was only about 3 fold 

for the higher concentrations.   

 

Table 2.31: Flexural properties of the untreated and treated flax fibre/epoxy 

composites (Van de Weyenberg et al., 2006) 

Flexural Property Fibre Treatment 

Untreated 1% NaOH 2% NaOH 3% NaOH 

Longitudinal Direction     

Strength (MPa) 218 237 261 283 

Modulus (GPa) 18 23 20 22 

     

Transverse Direction     

Strength (MPa) 8 20 15 19 

Modulus (GPa) 0.4 2.3 1.1 1.2 

 

Nosbi, Akil, Mohd Ishak & Abu Bakar (2010) examined the effect of water 

absorption on the compression properties of 70 wt% unidirectional kenaf 
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fibre/unsaturated polyester composites fabricated by pultrusion. The composites were 

soaked in distilled water, seawater and an acidic solution at room temperature, Table 

2.32. The compression strength and modulus were both reduced by the soaking 

treatments and this was attributed to hydrogen bonding of the water molecules to the 

kenaf fibres. There was no effect on failure strain. The degradation in compression 

strength and modulus was much greater in sea water and acid solution than in distilled 

water. 

 

Table 2.32: Compression properties of the unidirectional kenaf fibre/unsaturated 

polyester composites (Nosbi et al., 2010) 

Condition Strength 

(MPa) 

Young’s Modulus 

(GPa) 

Failure Strain 

(%) 

No soaking 45.3 2.32 31.4 

Distilled water 40.7 1.57 28.3 

Seawater 32.4 1.02 36.0 

Acidic solution 32.7 1.02 35.3 

 

2.4.3 Advantages and Disadvantages of Natural Fibre Composites 

2.4.3.1 Advantages of Natural Fibre Composites 

 Natural fibre composites have substantially lower density than glass fibres. As a 

result, they have specific strengths and stiffnesses which are comparable to those of 

glass fibres. Natural fibre composites can be easily formed into complex shapes in a 

single manufacturing process, with little tool abrasion (Anandjiwala & Blouw, 2007). 

They are also environmentally friendly and are generally considered to have a much low 

embodied energy than synthetic fibre composites, although this is not necessarily true 

when high levels of post-harvest processing are used (Dissanayake, Summerscales, 

Grove & Singh, 2009). Manufacturing processes for natural fibre composites are 

generally considered harmless to workers in terms of the fibres used. However, 

consideration should be given to the effect of any chemicals used as well as the effect of 

the composite fabrication process itself. The use of natural fibres is a low capital 

investment due to the low cost of the fibres. Natural fibres also have good thermal and 

acoustic insulation properties (Anandjiwala & Blouw, 2007). 
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2.4.3.2 Disadvantages of Natural Fibre Composites 

 Natural fibre composites have low impact strength and poor fire resistance. The 

fibres also absorb high amounts of moisture and this causes dimensional changes of the 

composites. Natural fibres have low resistance to ultra-violet radiation and this leads to 

structural degradation of the composites. Adhesion between the natural fibres and the 

polymer matrix is often poor and this requires fibre surface treatments. Natural fibre 

preparation is time-consuming and labour intensive. The quality of natural fibres is 

inconsistent due to the intrinsic variability in the fibre properties, which is dependent on 

fibre source and cultivation. Natural fibres are also susceptible to fungal attack and 

mildew. The price of natural fibres depends on the global demand and production and 

this brings about price fluctuation (Anandjiwala & Blouw, 2007).  

2.5 Summary	

The use of natural fibres in polymer-matrix composites is attractive since they 

have similar specific stiffness and strength to glass fibres, while also having much better 

environmental credentials. Moisture absorption and adhesion of the fibres to the matrix 

are problematic but can be largely overcome by the use of appropriate surface 

treatments.    

Extrusion and injection moulding are potential processes for high volume 

production of natural fibre composite thermoplastic products. Chopped fibres must be 

used in these processes. However chopped plant fibres have much lower aspect ratios 

than synthetic fibres because of their much larger diameter. Low aspect ratios result in 

reduced mechanical performance.  

One way of addressing this problem would be to reduce the plant fibres to 

elementary fibres. These have diameters similar to synthetic fibres and could thus 

provide short fibres with high aspect ratios, which could then be used in extruded and 

injection moulded thermoplastic composites. This was examined in the present study for 

kenaf/high density polyethylene (HDPE) composites. 

Natural fibre composites also show pronounced variability in their properties, 

even within a single species, due to climatic conditions, soil conditions, extraction 

conditions, etc. This causes difficulty in reliably predicting the behaviour of natural 

fibre composites in service and this has limited their commercial uptake. One way of 

addressing this problem would be to grade the fibres on a mechanical basis and use this 
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data to predict their performance in the composite. This was undertaken in the present 

study for composites fabricated from vinyl ester resin reinforced with untwisted yarns 

made from flax technical fibres.        
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3. KENAF FIBRE SEPARATION AND 

CHARACTERISATION 

3.1 Introduction 

 The first part of the study involved an examination of the effectiveness of using 

elementary fibres to produce high aspect ratio extruded thermoplastic matrix 

composites. This was done using kenaf fibres and a polyethylene matrix.  The work 

involved developing a suitable process for reducing the technical fibres to elementaries 

and then analysing the fibres to establish any effect of the process on the fibre 

chemistry. This work is reported in this chapter.  

The elementary fibres were subsequently used to produce extruded composites 

and the mechanical properties of the composites then determined. This work is reported 

in Chapter 4. 

Several different chemical treatments identified in the literature were evaluated, 

these being ethylenediaminetetraacetic acid (EDTA) (Stuart, Liu, Hughes, McCall, 

Sharma & Norton, 2006), ethylene-diaminetetraacetic acid (EDTA)/pectinase (Stuart et 

al., 2006), sulphuric acid (H2SO4) (Orts, Shey, Imam, Glenn, Guttman & Revol, 2005), 

nitric acid (HNO3) (Ogbonnaya, 1990, cited in Ogbonnaya, Roy-Macauley, Nwalozie & 

Annerose, 1997), a 50:50 mixture of hydrogen peroxide (H2O2) and glacial acetic acid 

(CH3COOH) (Hughes, Sebe, Hague, Hill, Spear & Mott, 2000), and glacial acetic acid 

on its own. 

 The elementary fibres were physically characterised to determine their width and 

length. The defects present in the fibres were also examined. The elementaries were also 

characterised chemically using Fourier transform infrared spectroscopy (FTIR) and 

Raman spectroscopy, while the level of cellulose crystallinity and the degree of 

oxidation were determined by X-ray diffraction (XRD) and solid state nuclear magnetic 

resonance (NMR) spectroscopy. Thermal gravimetric analysis (TGA) was also carried 

out. Untreated fibres were chemically characterised by these techniques also and the 

results compared with those obtained from the elementary fibres. X-ray photon 

spectroscopy (XPS) was used to examine the surface chemistry of the elementaries and 

untreated fibres.     
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above except that the treatment time was reduced to 3 hours and the amount of 0.1% 

TritonTM X-100 was increased to 40 drops. Washing and drying were again carried out 

as described above. A second solution was then prepared from distilled water. Acetic 

acid containing 5 ml/L Pectinex® Ultra SPL was added to the distilled water to adjust 

the pH to a value of 4.5 and 40 drops of 0.1% TritonTM X-100 then added. The EDTA 

treated kenaf fibres were then soaked in this solution for 2 hours at 40oC with a liquor to 

fibre ratio of 40:1. The treated fibres were washed in cold running tap water for 2 hours, 

then dried in air. The resulting fibres are referred to hereafter as KFTEDP treated fibres. 

(3.3.1.1.2) Sulphuric Acid Treatment 	

Sulphuric acid treatment was carried out using a method based on those used by 

Orts et al. (2005) and Liu, Yuan, Bhattacharyya & Easteal (2010). The esterification 

between hydroxyl groups of cellulose in the fibres and sulfate ions from H2SO4 is given 

as follows (Bondeson, Kvien & Oksman, 2006):  
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Cut fibre bundles were soaked in 60% H2SO4 (Orts et al., 2005), in a 150:1 
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finally, with deionized water. Subsequently, the fibres were freeze dried using the 

procedure given in Section 3.3.1.3. The resulting fibres are referred to hereafter as 

KFTS treated fibres. 

(3.3.1.1.3) Nitric Acid Treatment	

Nitric acid treatment is referred to as nitration. The chemical reaction between 

kenaf fibres and HNO3 is given as follows (Samal & Ray, 1997): 

 

       Conc. 
 HO  ̶  Kenaf  ̶  OH    HO  ̶  Kenaf  ̶  O  ̶  NO2. (3.2) 
       HNO3 

 

The treatment was carried out using 60% HNO3 in a 20:1 liquor to fibre ratio, at 80 ± 

2oC for 30 minutes (Ogbonnaya, 1990, cited in Ogbonnaya et al., 1997). The yield from 

this process was low so the treatment was continued in the same solution at room 

temperature in a fume cupboard for a minimum of 5 weeks. The treated fibres were then 

filtered and washed to remove HNO3, first using tap water, then distilled water and, 

finally, deionized water. The fibres were then washed until the pH value of the solution 

was approximately 6-7. They were then dried in air at room temperature or freeze dried, 

as described in Section 3.3.1.3. The fibres obtained from this treatment are referred to 

hereafter as KFTN treated fibres. This process was one of two processes subsequently 

used for large scale extraction of elementary fibres. 

(3.3.1.1.4) Hydrogen Peroxide/Glacial Acetic Acid Treatment	

 Fibre bundles were also treated using a 50:50 mixture of hydrogen peroxide and 

glacial acetic acid (50:50) as used by Hughes et al., (2000). The chemical reaction 

between the H2O2 and CH3COOH is given as follows (Kitis, 2004): 

   

CH3CO2H  +  H2O2   CH3CO3H  +  H2O.  (3.3) 

              acetic acid    hydrogen peroxide  peracetic acid 

 

Two different methods were evaluated for this treatment. In the first method, the fibre 

bundles were immersed in a 50:50 mixture of 30% hydrogen peroxide and glacial acetic 

acid, in a 100:1 liquor to fibre ratio, at 60 ± 2oC for 24 hours (Franklin, 1945; 

Rautiainen & Alen, 2009). Soaking in the solution was continued at room temperature 
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for 4 months. The treated fibres were subsequently filtered, washed with water until the 

pH reached approximately 7, then freeze dried as described in Section 3.3.1.3. The 

fibres treated in this manner are referred to hereafter as KFTHA1 treated fibres.  

The second treatment involved soaking the bundles in a 50:50 mixture of 20% 

hydrogen peroxide and glacial acetic acid (Gominho, Fernandez, & Pereira, 2001), in a 

75:1 liquor to fibre ratio, at 98 ± 2oC for 7 hours (Mazumder, Ohtani, Cheng, & 

Sameshima, 2000). The treated fibres were then filtered, washed with water, again until 

the pH of the solution was approximately 7, then freeze dried using the method 

described in Section 3.3.1.3. The fibres treated in this manner are hereafter referred to as 

KFTHA2 treated fibres. This method was the second method used to extract elementary 

fibres on a large scale. 

(3.3.1.1.5) Glacial Acetic Acid Treatment	

The treatment given above was successful in producing elementary fibres and it 

was therefore decided to examine the efficacy of glacial acetic acid on its own. 

Accordingly, fibres were treated with glacial CH3COOH, in a 70:1 liquor to fibre ratio, 

at 98 ± 2oC for 7 hours. The treated kenaf fibres were then washed with water and dried 

in air. The CH3COOH treated fibres are hereafter referred to as KFTA treated fibres. 

3.3.1.2 Nitric Acid and Hydrogen Peroxide/Acetic Acid Treatment of 

Alpha-Cellulose 

 As for other plant fibres, cellulose is the major component in kenaf fibres, Table 

3.1. To examine the effect of the treatments in the absence of the other components in 

the kenaf fibres, α-cellulose (AC), was treated with the nitric acid treatment given above 

(KFTN) and both of the hydrogen peroxide/acetic acid treatments (KFTHA1 and 

KFTHA2). As for these treatments the treated cellulose was freeze dried using the 

method given in Section 3.3.1.3. The nitric acid treated α-cellulose is referred to 

hereafter as ACTN while the hydrogen peroxide/acetic acid treated α-cellulose is 

referred to as ACTHA1 (treatment KFTHA1) and ACTHA2 (treatment KFTHA2). 

3.3.1.3 Drying of Elementary Fibres 

Two different drying techniques were used. The first involved drying the 

washed treated fibres in air at room temperature for several days. The second, which 

was used in most cases, involved first freezing the washed treated kenaf fibres and then 
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placing them in a Lyovac GT 2 freeze drier (Renneckar, Zink-Sharp, Esker, Johnson & 

Glasser, 2006; Sain & Panthapulakkal, 2004) for 1-2 days. For both techniques, the 

dried fibres were subsequently stored in desiccators to avoid moisture absorption.  

3.3.1.4 Untreated Fibres 

Analysis was also carried out on untreated kenaf fibres in the as-received 

condition for the purpose of comparison. For this, the fibre bundles were hand-cut to a 

length of approximately 2 mm and then manually separated to give chopped technical 

fibres. These fibres are referred to hereafter as UKF fibres. UKF fibres were also used 

for comparison in the extruded composites examined in Chapter 4.    

3.3.2 Scanning Electron Microscopy (SEM) 

 The fibres obtained from the UKF, KFTN, KFTHA1 and KFTAH2 processes 

were imaged using a Hitachi S3400-X scanning electron microscope (SEM). The fibre 

specimens were first sputter coated with gold using an Emitech K550x gold sputter 

coater. The SEM was operated in high vacuum mode at an accelerating voltage of 10 

kV.  

3.3.3 Fibre Length, Diameter and Aspect Ratio  

The length and diameter were measured for 500 UKF, 500 KFTN, 50 KFTHA1, 

and 50 KFTHA2 fibres and the aspect ratio then determined for each process using the 

average values of these two parameters. The fibres were sprinkled onto glass slides and 

then examined using a Nikon Eclipse ME600 optical microscope. The measurements 

were made using UTHSCSA ImageTool program. 

3.3.4 Defects in Elementary Fibres 

 The defects present in the elementary fibres were examined for the KFTN, 

KFTHA1 and KFTHA2 processes. Several different techniques were trialled. These 

included examination of fibres that had been placed wet onto glass slides then air dried 

on the slides (Hughes et al., 2000). The samples were then examined using a Nikon 

Eclipse ME600 optical microscope using transmitted light and also using a Hitachi 

TM3000 tabletop scanning electron microscope imaging with backscattered electrons 

(BSE). Both uncoated samples, and samples sputter coated with gold using the method 

described in Section 3.3.2, were examined using the TM3000 scanning electron 

microscope. 
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Fibres were also examined after placing them wet onto a glass slide using a 

dropper. The fibres were then dried, mounted in Eukitt mounting medium and examined 

under cross-polarised light using a Leica DMRB microscope. Digital images were 

recorded using a Leica EC3 digital camera. This work was carried out by Scion, New 

Zealand, and the images provided to UNSW.   

The final method used was to examine gold coated dry fibres using a Hitachi 

S3400-X scanning electron microscope, using the method described in Section 3.3.2, 

but with an accelerating voltage of 15 kV. In this technique, imaging was done using 

secondary electrons (SE). This technique was considered the most successful for 

imaging defects and was used to determine the defect density for the different fibre 

treatments. Ten elementary fibres were examined in each case.   

3.3.5 Fourier Transforms Infrared (FTIR) Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is a technique used to identify 

the molecular structure of components or groups of atoms absorbing in the infrared (IR) 

radiation region. Absorption occurs when an incident beam of radiation causes vibration 

of molecular dipoles. The radiation is absorbed at the same frequency as that of the 

molecular vibration (Kim & Mai, 1998).     

The untreated fibres (UKF), the fibres treated with HNO3 (KFTN), and the 

fibres treated with the two H2O2/CH3COOH solutions (KFTHA1 and KFTHA2) were 

analysed using FTIR spectroscopy. α-cellulose (AC), α-cellulose treated with HNO3 

(ACTN), and α-cellulose treated with the two H2O2/CH3COOH solutions (ACTHA1 

and ACTHA2) were also analysed. The analyses were carried out using a Perkin Elmer 

Spotlight 400 FTIR microscope in universal attenuated total reflectance (UATR) mode 

in the range of 4,000-650 cm-1, with a resolution of 4 cm-1. Sufficient material (~1 g) 

was placed on the crystal window to completely cover its area. A single sample was 

analysed for each different material and condition. 

3.3.6 Raman Spectroscopy 

Raman spectroscopy is a complementary technique to IR spectroscopy for 

chemical characterisation. Raman spectroscopy depends on the change in polarisability 

of the molecule associated with the vibrational motion, whereas FTIR spectroscopy 

depends on the permanent dipole moment of the molecule associated with the 

vibrational motion (Michielsen, 2001).     
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Samples of both the fibres and α-cellulose in both the untreated and treated 

conditions were analysed using a Perkin Elmer Ramanstation 785-nm (near-IR) laser-

based Raman spectrometer. A single sample approximately 1 g in weight was analysed 

for each different material and condition. The measurement conditions used are given in 

Table 3.2. 

  

Table 3.2:  Raman spectrum measurement conditions 

Instrument Conditions  

Excitation source 785-nm (near IR) laser 

Laser energy  100% 

Microscope objective 50 times 

Exposure time  30 per second 

Spectrum range or Raman shift  200-2,000 cm-1 

 

3.3.7 X-Ray Photoelectron Spectroscopy (XPS) 

 X-ray photoelectron spectroscopy (XPS) is used to identify elements at a depth 

of 2-10 nm in the surface of samples. This technique is also known as electron 

spectroscopy for chemical analysis (ESCA). An X-ray beam is used to eject electrons 

from the inner orbital of atoms with kinetic energies characteristic of the parent atoms. 

The intensities of the kinetic energy are analysed and the characteristic binding energies 

then used to determine the chemical composition (Kim & Mai, 1998). The total 

absorbed X-ray photon energy ( ) is given by 

   	 	      (3.4) 

where  is the kinetic energy and  is the electron binding energy (Kim & Mai, 

1998).  

The chemical and elemental species present at the surface of the untreated fibres 

and the fibres in the two treated conditions were studied using a Kratos Axis Ultra X-

ray photoelectron spectrometer (XPS). Low resolution XPS survey spectra of all of the 

samples and also high resolution XPS spectra of the C 1s, N 1s and O 1s peaks of all of 

the samples were obtained.  



 

3.3.8 Cel

The

both the f

Philips X’p

α-cellulose

examined. 

voltage of 

revolution 

Segal’s eq

Marzouga,

in Figure 3

 

 

 

 

 

 

 

 

 

 

Figure 3.3

 

The

using solid

Solid State

deconvolut

Lorentzian

crystalline 

(from 80 p

cellulose (P

llulose Cr

e level of cr

fibres and α

pert Multipu

e, as well a

The specim

45 kV and 

time was 4

quation (eq

, Hassena, S

3.3.  

3: X-ray 

determ

Johnso

e crystallini

d-state 13C n

e NMR. Fig

tion was c

n distributio

and amorp

ppm to 93 

Park et al., 2

Figure 3

rystallinity

rystallinity 

α-cellulose 

urpose X-ra

as the fibres

mens were s

a current o

4 seconds. 

quation 2.2

Saklia & R

diffraction 

mination of t

on, 2010). 

ity index of

nuclear mag

gure 3.4 sho

carried out 

on function 

phous peaks

ppm) wer

2010). 

3.3 has been

7

y 

(crystallinit

in both the

ay Diffractio

s and α-cel

scanned fro

of 40 mA w

Percentage 

2 in Chapt

odeslib, 20

pattern sh

the crystalli

f cellulose w

gnetic reson

ows an exam

using Top

was also us

s at 89 ppm 

e used for 

n removed d

74 

ty index) in 

e untreated

on (XRD) S

llulose in th

om 8o to 55

ere used. T

crystallinit

ter 2) and

10). Peak in

howing mea

inity index 

was also de

nance (NMR

ample of the

SpinTM pea

sed for deco

m and 84 ppm

determinin

due to Copy

the cellulo

d and treate

System. Bot

he three tre

5o at 2Ө. A 

ime per step

ty indexes w

d multiplyin

ntensity wa

asurement o

(Park, Bake

etermined f

R), using a B

e cellulose N

ak deconvo

onvolution 

m, respectiv

ng the crys

yright restri

se was dete

ed condition

th untreated

ated condit

step size o

p was 51 se

were calcul

ng by 100

as measured

of peak int

er, Himmel

for the same

Bruker Avan

NMR spect

olution soft

and curve f

vely, in the 

tallinity ind

ictions. 

ermined for 

ns using a 

d fibres and 

tions, were 

of 0.026o, a 

econds and 

lated using 

0 (Sayeba, 

d as shown 

ntensity for 

l, Parilla & 

e materials 

nce III 300 

trum. Peak 

tware. The 

fitting. The 

 C4 region 

dex of the 



 

 Th

intensity o

amorphou

Fo

of each of

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4

 

3.3.9 De

Tre

peroxide/a

3.5 shows

HNO3 as 

HNO2, N

he crystallin

of the peak

us cellulose,

or each of th

f the differen

4: Solid 

101). 

carbon

peaks 

calcula

gree of O

eatment of

acetic acid w

s the struct

used in th

NO, N2O3 a

Figure 

nity index w

ks at 1,420 

 respectivel

he three me

nt materials

state 13C N

(a) Whole

ns in a gluc

assigned 

ated by X/(X

Oxidation

f both the 

would be ex

ture of oxi

e present w

and N2O5 (

3.4 has bee

7

was also d

cm-1 to 89

ly (Dai & F

ethods, the 

s.  

NMR spectru

e spectrum 

copyranose

to the C4

X+Y) (Park

fibres and

xpected to c

idised cellu

work genera

(Ogata, 19

en removed 

75 

etermined u

93 cm-1 whi

an, 2010).

results wer

um of the c

showing t

e repeat uni

4 in cellul

k et al., 2010

d α-cellulos

cause some 

ulose (Kum

ally contain

78, cited i

due to Cop

using FTIR

ich correspo

e obtained 

commercial 

the assignm

it and (b) s

ose. The 

0).  

se in nitric

oxidation o

mar & Yang

ns nitrogen 

in Kumar 

pyright restr

R from the r

ond to crys

from a sing

cellulose (A

ment of pe

sub-spectru

crystallinity

c acid and

of the cellul

g, 2002). C

n oxides suc

& Yang, 2

rictions. 

ratio of the

stalline and

gle analysis

Avicel PH-

eaks to the

m showing

y index is

d hydrogen

lose. Figure

Commercial

ch as NO2,

2002). The

e 

d 

s 

-

e 

g 

s 

n 

e 

l 

, 

e 



76 
 

N
2
O

4
2NO

2
O=N=O O-N=O

H+

HNO
2
+

H+
2NO

2

OH2

HNO
3
  +  HNO

2

NO  +  H
2
O

2HNO
2

N
2
O

3
  +  H

2
O NO

2
  +  NO  +  H

2
O

+  2NO

Cell CH2 OH

-hydrogen
abstraction

HNO
2

Cell CH OH

NO
2

Cell CH OH

NO O

NO
2

Cell CH OH

O N O -NO

Cell CH OH

O

Cell CH2 OH

Cell CH OH

Cell CH OH

OH
NO+

Cell CH OH

OH

+

OH2

-HNO
2

+

Cell C OH

OH

Cell-COOH
-H+

Cell C OH

O N O

OH

-HNO
2

-HNO
2

Cell-CHO
-HNO

2

+

Cell C O
-NO

2
Cell CH OH

O N O

OH2

generation of nitrogen oxides in HNO3 is shown in Figure 3.6. while the oxidation 

mechanism of cellulose due to HNO3 is shown in Figure 3.7 (Kumar & Yang, 2002). 

The degree of oxidation of cellulose in the treated kenaf fibres and treated α-

cellulose was determined from solid state 13C NMR spectra by integrating the peak at 

174 ppm (C6’) corresponding to the carboxyl groups (Lasseuguette, 2008). The 

integration was performed using the C1, the C4 and the C2,3,5 peaks separately as 

calibration to allow three separate estimates to be made. The degree of oxidation 

indicates the weight percent of the carboxyl in the cellulose (Ashton & Moser, 1968). 

 

 

 

 

 

Figure 3.5: Structure of oxidised cellulose (Kumar & Yang, 2002). 

 

 

 

 

 

 

 

 

 

Figure 3.6: Generation of nitrogen oxides in situ (Kumar & Yang, 2002).  

 

 

 

 

 

 

 

Figure 3.7: Oxidation mechanism of cellulose (Kumar & Yang, 2002). 
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Table 3.4: Assignments of peak positions of FTIR bands of kenaf fibres and α-cellulose in untreated and treated conditions 

Peak 
Position 
(cm-1) 

Assignment 

Sample 

Source 

U
K

F
 

K
F

T
N

 

K
F

T
H

A
1 

K
F

T
H

A
2 

A
C

 

A
C

T
N

 

A
C

T
H

A
1 

A
C

T
H

A
2 

3,329 O-H stretching vibrations in cellulose, hemicellulose and lignin × × × × × × × × 1 
2,900 C-H stretching vibrations in cellulose, hemicellulose and lignin × × × × × × × × 2 
1,716 C=O stretching vibrations of ketone and carbonyl groups in hemicellulose, 

pectin and waxes  
× 

 
× × 

 
× × ×

3 

C=O stretching vibrations of carboxylic groups in oxidised cellulose and/or 
those of acetyl groups due to  mixtures of H2O2 and CH3COOH   

4 

1,635 O-H bending vibrations due to moisture absorption   × × × × × × × × 5 
1,593 C=C aromatic in-plane vibrations combined with C=O stretching vibrations 

in lignin × × 
   

× 
  

6 

 -NO2 asymmetrical stretching vibrations      7 
1,500 C=C aromatic in-plane vibrations in lignin ×        8 
1,420 -CH2 and OCH in-plane bending vibrations in cellulose × × × × × × × × 9 
1,360 C-H bending vibrations in cellulose × × × × × × × × 10 
1,313 -CH2 wagging vibrations in cellulose × × × × × × × × 11 
1,280 -NO2 symmetrical stretching vibrations  ×    ×   12 
1,238 C-O stretching vibrations of acetyl groups in lignin  

× 
 

× × 
  

× ×
13 

C-O stretching vibrations of acetyl groups due to  mixtures of H2O2 and 
CH3COOH    

14 

1,170-1,082 Pyranose ring skeletal in cellulose × × × × × × × × 15 
1,102 C-OH group frequency in cellulose, hemicellulose and lignin × × × × × × × × 16 
893 COC, CCO and CCH deformation and stretching vibrations in cellulose × × × × × × × × 17 
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Table 3.5: Sources for assignments of peak positions of FTIR spectra 

Source  
1 Moran et al. (2008) 
2 Moran et al. (2008) 
3 Dai & Fan (2010), Li & Pickering (2008), and Moran et al. (2008) 
4 Luz et al. (2008) and Silverstein, Webster & Kiemle (2005) 
5 Han, et al. (2007) and Moran, et al. (2008) 
6 Garside & Wyeth (2003) and Kubo & Kadla (2005) 
7 Samal & Ray (1997) 
8 Kubo & Kadla (2005) 
9 Dai & Fan (2010) 
10 Dai & Fan (2010) 
11 Dai & Fan (2010) 
12 Edge et al. (1990) and Silverstein, Webster & Kiemle (2005) 
13 Sgriccia et al. (2008) 
14 Tserki et al. (2005) 
15 Dai & Fan (2010) 
16 Dai & Fan (2010) 
17 Dai & Fan (2010) 

 

There are however significant differences between the spectra obtained for the 

different fibre treatments, Figure 3.44. The untreated fibres (UKF) show a peak at 1,500 

cm-1 which is attributed to the C=C aromatic in plane vibrations in lignin (Kubo & 

Kadla, 2005). This peak is absent in the treated fibres indicating that all three treatments 

have removed the lignin.  

The untreated fibres also show a peak at 1,716 cm-1 which is attributed to C=O 

stretching of ketone and carbonyl groups in hemicellulose (Moran et al., 2008), pectin 

and waxes (Dai & Fan, 2010; Li & Pickering, 2008). This peak is again absent for 

KFTN but a peak at the same wavenumber is present for the two KFTHA treatments. 

However, for these treatments the peak is attributed to C=O stretching corresponding to 

carboxylic groups (Silverstein, Webster & Kiemle, 2005) from oxidised cellulose and/or 

acetyl groups (Luz, Del Tio, Rocha, Gonalves & Del’Arco Jr, 2008) due to the 

H2O2/CH3COOH treatment. The results are therefore considered to indicate that pectin 

and waxes have been removed by the fibre treatments. 

In addition, the untreated fibres show a peak at 1,593 cm-1. This is attributed to 

C=C aromatic in-plane vibrations combined with C=O stretching, which is again 

indicative of lignin (Garside & Wyeth, 2003; Kubo & Kadla, 2005). This peak is absent 

for the two KFTHA treatments although a peak at the same wavenumber is present for 

KFTN. This peak is however considered to be due to -NO2 asymmetrical stretching 
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vibrations (Samal & Ray, 1997) resulting from the reaction between cellulose and 

HNO3 (Gert, Morales, Zubets & Kaputskii, 2000). 

A further peak is evident for the untreated fibres at 1,238 cm-1 and this is 

attributed to C-O stretching of acetyl groups from lignin (Sgriccia et al., 2008). A peak 

is also present at the same wavenumber for the two KFTHA treatments but this is 

attributed to C-O stretching of acetates (Tserki, Zafeiropoulos, Simon & Panayiotou, 

2005) resulting from reaction of cellulose with H2O2/CH3COOH. The assignment of 

this peak to species other than lignin is consistent with the absence of the 1,500 cm-1 

lignin peak in the treated fibres.  

The KFTN fibres exhibit a peak at 1,280 cm-1 which is not present for the other 

treatments. This peak is attributed to -NO2 symmetrical stretching (Edge, Allen, Hayes, 

Riely, Horie & Luc-Gardette, 1990; Silverstein, Webster & Kiemle, 2005) due to 

reaction between cellulose and HNO3 (Gert et al., 2000) and is not considered to be due 

to the presence of lignin.  

The FTIR spectrum of the untreated α-cellulose (AC) was similar to that for the 

untreated fibres (UKF), Figure 3.44a except for the absence of the 1,716 cm-1, 1,593 cm-

1, 1,500 cm-1, and 1,238 cm-1 peaks. This confirms that the presence of these peaks in 

the untreated fibre spectrum was due to the presence of hemicellulose, lignin, pectin or 

waxes, all of which are absent in α-cellulose. 

The spectrum from α-cellulose treated with HNO3 (ACTN) contained the same 

peaks as the nitric acid treated fibres (KFTN), except for the addition a peak at 1,716 

cm-1, which is attributed to the presence of some oxidized cellulose. 

The spectra from α-cellulose treated with the two H2O2/CH3COOH solutions 

(ACTHA1 and ACTHA2) contained the same peaks as the fibres treated with the same 

solutions (KFTHA1 and KFTHA2). 

3.4.5 Raman Spectra	

Raman spectra of the untreated (UKF), and treated (KFTN, KFTHA1 and 

KFTHA2) fibres are shown in Figure 3.46 while spectra from the α-cellulose in the 

untreated (AC) and treated (ACTN, ACTHA1 and ACTHA2) conditions are shown in 

Figure 3.47. The assignment of Raman bands is given in Table 3.6 (Agarwal, 1999; 

Eichhorn, Sirichaisit & Young, 2001; Ooi, Rambo & Hurtado, 2011; Wiley & Atalla, 

1987). 
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Table 3.6: Assignments of Raman bands of kenaf fibres and α-cellulose in untreated and treated conditions 

Peak Position 
(cm-1) 

Assignment 

Sample 

U
K

F
 

K
F

T
N

 

K
F

T
H

A
1 

K
F

T
H

A
2 

A
C

 

A
C

T
N

 

A
C

T
H

A
1 

A
C

T
H

A
2 

376 Some heavy atom stretching vibrations1,2 × × × × × × × × 
430 Some heavy atom stretching vibrations1,2 × × × × × × × × 
454  Some heavy atom stretching vibrations1,2 × × × × × × × × 
520 Some heavy atom stretching vibrations1,2 × × × × × × × × 
894 Mixed modes (H-C-C, C-H-O at C6) including angle bending  vibrations1,3 × × × × × × × × 

1,094 Cellulose C-O ring stretching vibrations3 × × × × × × × × 
1,118 Heavy atom (CC and CO) stretching vibrations1 × × × × × × × × 
1,146 Heavy atom (CC and CO) stretching plus HCC and HCO bending vibrations1 × × × × × × × × 
1,276 HCC and HCO bending vibrations1,2 × × × × × × × × 

1,340 or 1,350 HCC and HCO bending vibrations1 × × × × × × × × 
1,374 HCC, HCO and HOC bending vibrations1,2 × × × × × × × × 
1,470 HCH and HCO bending vibrations2 × × × × × × × × 
1,600 Aromatic polymer in lignin4 ×        

 1Agarwal (1999) 
 2Wiley & Atalla (1987) 
 3Eichhorn, Sirichaisit & Young (2001) 
 4Ooi, Rambo & Hurtado (2011) 
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Table 3.8: XPS carbon (C) 1s, nitrogen (N) 1s and oxygen (O) 1s binding energies 

and atomic composition of UKF, KFTN and KFTHA1  

Sample Atomic Composition 

C 1s  N 1s  O 1s

C1 C2 C3 C4  N  O1 O2 O3 O4 

UKF            

Binding 

Energy (eV) 

285.0 286.6 288.1 288.9  400.3  531.5 532.5 533.2 534.5 

Total atomic 

% for each 

atom 

46.38 39.79 6.94 6.89  100  19.07 38.85 37.38 4.70 

Total atomic 

% for all the 

atoms 

32.4 27.8 4.9 4.9  3.0  5.1 10.5 10.1 1.3 

KFTN            

Binding 

Energy (eV) 

285.0 286.8 288.2 289.5  -  531.7 532.9 533.5 534.3 

Total atomic 

% for each 

atom 

11.22 61.42 22.08 5.28  -  5.79 50.23 36.32 7.65 

Total atomic 

% for all the 

atoms 

6.7 36.5 13.1 3.1  -  2.4 20.4 14.8 3.1 

KFTHA1            

Binding 

Energy (eV) 

284.9 286.6 288.1 289.2  -  531.5 532.7 533.3 534.3 

Total atomic 

% for each 

atom 

16.72 63.77 15.91 3.59  -  3.19 46.48 45.18 5.14 

Total atomic 

% for all the 

atoms 

10.6 40.5 10.1 2.3  -  1.2 16.9 16.5 1.9 
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The C 1s peaks of the UKF, KFTN and KFTHA1 include C1, C2, C3 and C4 

peaks. The C1 peak at 284.9-285.0 eV corresponds to C-C and/or C-H bonds (Buchert, 

Pere, Johansson & Campbell, 2001; Shchukarev, Sundberg, Mellerowicz & Persson, 

2002) due to lignin, hemicellulose and extractives, such as fatty acids (Merdy, Guillon, 

Dumonceau & Aplincourt, 2002; Shen, Mikkola & Rosenholm, 1998). The C2 peak at 

286.6-286.8 eV corresponds to C-OH bonds due to cellulose, hemicellulose, lignin and 

extractives, OCH bonds due to lignin, and C-O-C bonds due to cellulose, hemicellulose 

and extractives. The C3 peak at 288.1-288.2 eV corresponds to C=O bonds from lignin 

and extractives, and O-C-O bonds from cellulose and hemicellulose. The C4 peak at 

288.9-289.5 eV corresponds to CH3CO groups due to hemicellulose, O-C=O and 

COOH groups due to hemicellulose and extractives (Buchert et al., 2001; Shen, 

Mikkola & Rosenholm, 1998) and carboxyl groups from oxidized lignin or cellulose (de 

Lange, de Kreek, van Linden & Coenjaarts, 1992).  

The atomic percentage of the C1 in the fibres was reduced very substantially by 

the acid treatments with the values being 46.4%, 11.2% and 16.7% for the UKF, KFTN 

and KFTHA1 fibres, respectively, Table 3.8. Smaller reductions were also seen in the 

C4 for which the values were 6.9%, 5.3% and 3.6%, respectively. However, the atomic 

percentages of the C2 and C3 were increased substantially by the treatments, with the 

values for the C2 being 39.8%, 61.4% and 63.8%, respectively, while the values for the 

C3 were 6.9%, 22.1% and 15.9%, respectively.  

The N 1s peak at 400.3 eV corresponds to C-N of amine groups (Watling, Parr, 

Rintoul, Brown & Sullivan, 2011) and O=CN from pectin or proteins (Truss & Wood, 

2011). This peak appears in the high resolution XPS spectrum of the UKF; however, it 

disappears in the high resolution XPS spectra of the treated kenaf fibres (KFTN and 

KFTHA1). 

The O 1s peaks of the UKF, KFTN and KFTHA1 consist of O1, O2, O3 and O4 

peaks. The O1 peak at 531.5-531.7 eV corresponds to Ph-C=O*O groups. The O2 peak 

at 532.6-532.9 eV corresponds to C-O-C and C-OH bonds. The O3 peak at 533.2-533.5 

eV corresponds to C-O-C bonds and Ph-OH groups. The O4 peak at 534.3-534.5 eV 

corresponds to ester groups and/or oxygen of phenyl rings due to lignin and/or water 

absorption (Truss & Wood, 2011). 

The atomic percentage of the O1 in the kenaf fibres was considerably decreased 

by the treatments with values of 19.1%, 5.8% and 3.2% being observed for the UKF, 
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with 83% for untreated fibres. The nitric acid treatment substantially increased the 

crystallinity index with values of 96% and 97% being obtained for the KFTN and 

ACTN materials, respectively. The hydrogen peroxide/acetic acid treatments also 

increased the level of crystallinity, but to a lesser extent, especially in the α-cellulose. 

There was only minimal difference between the crystallinity indexes for the two 

different hydrogen peroxide/acetic acid treatments, with the values being 90% and 91% 

for KFTHA1 and KFTHA2, respectively, and 84% and 82% for ACTHA1 and 

ACTHA2, respectively, Table 3.9. 

3.4.7.2 Solid State 13C Nuclear Magnetic Resonance (NMR) 

Solid state 13C NMR spectra are shown for the untreated and treated fibres in 

Figure 3.60 and for the corresponding α-cellulose samples in Figure 3.61. The NMR 

spectrum of UKF, Figure 3.60, absorbs at 21 ppm and 56 ppm due to acetyl groups and 

methoxyl groups (Newman, 2004), respectively, in lignin (Evans, Newman, Roick, 

Suckling & Wallis, 1995). It exhibits a chemical shift at 153 ppm also corresponding to 

lignin (Newman, 2004) while there is a signal at 174 ppm which corresponds to 

carboxylic groups and/or ester groups (Silverstein et al., 2005). This signal appears in 

the spectrum of UKF due to the carboxylic ester in pectin and wax (Li & Pickering, 

2008).  

The signals at 21 ppm, 56 ppm and 153 ppm are no longer present in the 

spectrum for KFTN, consistent with the removal of lignin. A signal is still present at 

174 ppm, but in this case it is attributed to the presence of carboxylic groups and/or 

ester groups (Silverstein et al., 2005) produced as result of oxidation (Lasseuguette, 

2008).  

The 56 ppm and 153 ppm signals are also absent in the spectra for KFTHA1 and 

KFTHA2, although signals are still present at 21 ppm and 174 ppm. However in these 

spectra the 21 ppm signal is attributed to acetyl groups (Newman, 2004) resulting from 

the H2O2/CH3COOH treatment, while the 174 ppm signal is attributed to carboxylic 

groups and/or ester groups (Silverstein et al., 2005) resulting from oxidation. 

Collectively, the results indicate that the treatments have removed lignin, pectin and 

waxes, consistent with the findings from the FTIR and Raman studies.  
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The crystallinity indexes for the untreated and treated fibres and for the 

corresponding α-cellulose samples are given in Table 3.10. The values obtained are 

much lower than those obtained by XRD, ranging from 30-56% compared with 75-

97%. The trends were however generally similar. The untreated fibres and cellulose had 

the lowest crystallinity indexes (36% and 30%, respectively) while the nitric acid 

treated samples had the highest crystallinity indexes (56% and 55%, respectively). The 

crystallinity indexes were intermediate for the two hydrogen peroxide/acetic acid 

treatments (40% and 38-39%, respectively) but there was now no difference in the 

crystallinity levels in the fibre and α-cellulose samples, Table 3.10.  

 

Table 3.10: Percentage crystallinity indexes of cellulose in kenaf fibres and α-

cellulose examined from the NMR spectra 

Sample Area of 

Crystalline 

Peak in the 

C4 Region (X) 

Area of 

Amorphous 

Peak in the C4 

Region  (Y) 

Crystallinity 

Index 

(X/(X+Y)) 

Crystallinity 

Index  

(%) 

UKF 221.07 400.17 0.36 36 

KFTN 191.19 150.60 0.56 56 

KFTHA1 161.64 246.00 0.40 40 

KFTHA2 387.02 598.89 0.39 39 

AC 59.12 140.43 0.30 30 

ACTN 77.30 62.31 0.55 55 

ACTHA1 437.56 657.15 0.40 40 

ACTHA2 427.74 709.29 0.38 38 

 

3.4.7.3 FTIR 

The crystallinity indexes determined as the ratio of the absorption peak at 1,420 

cm-1 to the absorption peak at 893cm-1 from the FTIR spectra (Figures 3.44 and 3.45) 

are given for the fibres and α-cellulose for the different treatments in Table 3.11. The 

values were intermediate between those obtained using XRD and NMR ranging from 

42-74%. As before the crystallinity index was lowest for the untreated α-cellulose 

(42%) and highest for nitric acid fibres and α-cellulose (73% and 74%, respectively). 

However, the value for the untreated fibres (69%) was disproportionately high when 
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compared with the values obtained using the other two techniques, while the values for 

the hydrogen peroxide/acetic acid treated fibres (50% and 59%, respectively) were now 

lower than the value for the untreated fibres. The values for hydrogen peroxide/acetic 

acid treated α-cellulose samples (58% and 52%, respectively) were, however, 

intermediate between those for the untreated and nitric acid treated α-cellulose, as was 

found for both the fibres and the α-cellulose samples using the other two techniques.  

 

Table 3.11: Percentage crystallinity indexes of cellulose in kenaf fibres and α-

cellulose examined from the FTIR spectra using the ratio of the peaks at 

1420 cm-1 to 893 cm-1 

Sample 
Absorbance Crystallinity Index 

(%) At 1420 cm-1 At 893 cm-1 

UKF 0.09 0.13 69 

KFTN 0.11 0.15 73 

KFTHA1 0.10 0.20 50 

KFTHA2 0.10 0.17 59 

AC 0.05 0.12 42 

ACTN  0.14 0.19 74 

ACTHA1 0.07 0.12 58 

ACTHA2 0.11 0.21 52 

 

3.4.8 Degree of Oxidation 

The degree of oxidation of cellulose was calculated from integration of the 

signal at 174 ppm in the NMR spectra (Figures 3.60 and 3.61) of the treated fibres and 

α-cellulose samples. The values are given in Table 3.12 and range from 4-15%. As 

noted in Section 3.3.9, the degree of oxidation indicates the weight percent of carboxyl 

in the cellulose (Ashton & Moser, 1968). 

The results for the nitric acid treatment (KFTN and ACTN) were 7.4% and 

14.5% for the fibres and α-cellulose, respectively. Substantially lower values of 6.9% 

and 4.4%, respectively, were obtained from the 20% hydrogen peroxide/acetic acid 

treatment (KFTHA2 and ACTHA2). However, the results for the 30% hydrogen 

peroxide/acetic acid treatment were less consistent with a value of 11.8% being 
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obtained for the treated fibres (KFTHA1) while a value of 4.0% was obtained for the 

treated α-cellulose (ACTHA1).  

   

Table 3.12: Degree of oxidation of cellulose in treated kenaf fibres and treated α-

cellulose. Values in brackets represent one standard deviation.  

Sample 13C NMR Peak Integration Average Degree of 

Oxidation (%) At C6’ At C1 At C4 At C2,3,5 

KFTN 

7.32 100.00 93.46 315.51  

7.4 (0.4) 

 

7.84 106.99 100.00 337.58 

6.96 95.08 88.87 300.00 

KFTHA1 

11.57 100.00 93.82 299.96  

11.8 (0.4) 

 

12.34 106.59 100.00 319.73 

11.58 100.01 93.83 300.00 

KFTHA2 

6.62 100.00 91.81 293.16  

6.9 (0.3) 

 

7.21 108.93 100.00 319.33 

6.77 102.33 93.95 300.00 

ACTN 

14.25 100.00 93.06 309.61  

14.5 (0.8) 

 

15.31 107.46 100.00 332.70 

13.81 96.89 90.17 300.00 

ACTHA1 

3.83 100.00 89.53 290.07  

4.0 (0.2) 

 

4.27 111.70 100.00 324.01 

3.96 103.42 92.59 300.00 

ACTHA2 

4.11 100.00 87.62 287.82  

4.4 (0.3) 

 

4.69 114.13 100.00 328.49 

4.29 104.23 91.33 300.00 

 

3.4.9 TGA 

The thermogravimetric analysis (TGA) and first derivative thermogravimetric 

analysis (DTG) curves of the untreated fibres (UKF), the nitric acid treated fibres 

(KFTN) and the fibres treated with 20% H2O2/CH3COOH (KFTHA2) obtained from 

analyses under an air atmosphere are shown in Figures 3.62 and 3.63, respectively. 

Table 3.13 gives the extrapolated onset and endset decomposition temperatures of the 
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Table 3.13: Summary of decomposition temperatures of UKF, KFTN and KFTHA2 

Temperature 
Sample 

UKF KFTN KFTHA2 

 

1st Step 

Tonset (
oC) 23 21 24 

Tmax (
oC) - - - 

Tendset (
oC) 60 87 58 

 

2nd Step 

Tonset (
oC) 258 187 310 

Tmax (
oC) 339 309 330 

Tendset (
oC) 353 347 343 

 

3rd Step 

Tonset (
oC) 439 413 422 

Tmax (
oC) 462 424 432 

Tendset (
oC) 481 441 440 

 

The onset temperature for each of the three steps was lower for the nitric acid 

treated fibres than for the untreated fibres, indicating that the treatment reduced the 

thermal stability of the fibres, particularly at the second step for which the onset 

temperatures were 187oC for the treated fibres (KFTN) compared with 258oC for the 

untreated ones (UKF). In contrast, the onset temperature for the second step was higher 

for the hydrogen peroxide/acetic acid treated fibres than for the untreated fibres (310oC 

compared with 258oC) indicating that this treatment substantially increased the thermal 

stability. The endset temperature at the second step was slightly lower for the hydrogen 

peroxide/acetic acid treated fibres than for the untreated and nitric acid treated fibres 

(343oC compared with 353oC and 347oC) indicating that degradation occurred faster in 

the KFTHA2 fibres during this step. 

3.5 Discussion 

3.5.1 Elementary Kenaf Fibres  

The fibre treatments evaluated for isolation of the elementary kenaf fibres were 

EDTA, EDTA/pectinase, sulphuric acid, nitric acid, acetic acid, and hydrogen 

peroxide/acetic acid. Of these treatments, only the sulphuric acid, nitric acid, and 

hydrogen peroxide/acetic acid treatments were successful in liberating the elementary 

fibres. The sulphuric acid treatment produced blackening of the fibres indicating that 
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al., 2008) but it seems unlikely that this would differ significantly for fibres of the same 

species. Johansson, Campbell, Koljonen & Stenius (1999) note that the XPS results can 

be affected by surface contamination and it is considered that the higher O/C ratio is due 

to contamination with aluminosilicates and possibly silicates. This is consistent with the 

higher Al and Si values in the results obtained by Sgriccia et al. (2008), Table 3.14. 

Panthapulakkal & Sain (2007) obtained a value of 0.33 for wood flour, which is lower 

than the value obtained here. 

The O/C ratio was increased by both of the treatments. This is considered to be 

due to removal of the carbon-rich wax layer from the surface of the fibres (Zhao & 

Boluk, 2010). This also indicates that the treated fibres were more hydrophilic than the 

untreated fibres. The nitric acid treated fibres had the highest O/C ratio (0.68) and, 

accordingly, were the most hydrophilic.  

 

Table 3.14: Atomic composition (%) in surfaces of the untreated kenaf fibres 

obtained in the present work and that of Sgriccia et al. (2008) 

  Atomic composition  Present Work Work of Sgriccia et al. (2008) 

   O (1s) 26.24 27.96 

   C (1s) 66.51 62.34 

   N (1s) 2.83 2.68 

   Ca (2p) - - 

   Si (2p) 3.05 4.26 

   Al (2p) 1.37 2.76 

   O/C 0.39 0.45 

 

Table 3.15 lists theoretical data for cellulose, hemicellulose, lignin and 

extractives obtained by Freudenberg & Neish (1968) cited in Laine, Stenius, Carlsson & 

Ström (1994), Gustafsson, Ciovica & Peltonen (2003), and Laine et al. (1994). The 

theoretical values for the O/C ratio are 0.83 for cellulose, 0.78-0.81 for hemicellulose 

0.33 for lignin and 0.11-0.12 for extractives. The C2 and C3 values are substantially 

higher for cellulose and hemicellulose than for lignin and extractives while the reverse 

is true for the C1. Differences in C4 are only marginal, Table 3.15. 

Data obtained for C 1s from previous studies of hemp fibres (Truss & Wood, 

2011), linen flax fibres (Buchart et al., 2001), green flax fibres (Zafeiropoulos, Vickers, 
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Baillie & Watts, 2003), wood fibres (Matuana, Balatinecz, Sodhi & Park, 2001), wood 

flour (Panthapulakkal & Sain, 2007) and kraft fibres (González, Santos & Parajó, 2011) 

are compared with the results obtained from the untreated kenaf fibres examined in the 

present study in Table 3.16.  

 

Table 3.15: O/C ratios and atomic percentages of C 1s of cellulose, hemicellulose, 

lignin and extractives  

Compound 
O/C 

Ratio 

Atomic Percentage 

C1 C2 C3 C4 

Cellulose (theoretical)1 0.83 - 83 17 - 

Hemicellulose (theoretical)2 0.80 - 83 17 - 

Galaktoglucomannan (theoretical 

hemicellulose)2 

0.78 3 78 16 3 

Arabinoglucuronoxylan (theoretical 

hemicellulose)1 

0.81 - 78 19 3 

Lignin (theoretical)3 0.33 49 49 2 - 

Resin acids (theoretical extractives)2 0.11 94 - - 6 

Stearic acid (theoretical extractives)2 0.12 94 - - 6 

Oleic acid (theoretical extractives)1 0.11 94 - - 6 
1 Laine, Stenius, Carlsson & Ström (1994) 
2 Gustafsson, Ciovica & Peltonen (2003) 
3 Freudenberg & Neish (1968), cited in Laine et al. (1994) 

 

The C1, C2, C3 and C4 values have similar relative magnitudes amongst the 

different fibres, although the values for any one parameter vary considerably reflecting 

chemical differences amongst the fibres. The C1 value for the untreated kenaf fibres 

obtained in the present study was lower than that of the other natural fibres, except 

hemp and kraft fibres. The C2 value was however higher than for the other fibres, 

except kraft fibres, while the C3 value was again lower than for the other fibres, except 

flax (linen). The C4 value was higher than for the other fibres, except hemp. 

Both of the treatments used in the present work produced a marked reduction in 

the C1 value (Table 3.8) and this is attributed to the removal of lignin and extractives, 

which as noted above both have high C1 values, Table 3.15. The C2 and C3 were 

increased after both treatments, consistent with increased cellulose and hemicellulose 
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contents due to loss of lignin and extractives. A decrease was observed in the C4 value, 

which is attributed to removal of extractives, Table 3.15. Some C4 was, however, still 

observed in the treated fibres even though it was not observed for either cellulose or 

hemicellulose, Table 3.15. Its presence is attributed to oxidised cellulose as was 

observed using NMR.   

 

Table 3.16: Atomic percentages of C 1s of kenaf fibres, hemp fibres, flax fibres 

(linen), wood fibres, wood flour and kraft fibres  

Natural Fibre 
Atomic Percentage 

C1 C2 C3 C4 

Untreated kenaf fibres (present work) 46.4 39.8 6.9 6.9 

Hemp fibres1  43.8 28.5 16.5 11.1 

Flax fibres (linen)2 66.2 25.9 6.7 2.0 

Green flax fibres3 52.6 34.7 12.6 - 

Wood fibres4 57.5 30.3 12.2 - 

Wood flour5 56.5 31.6 8.6 3.2 

Kraft fibres6 32.4 48.7 16.8 2.2 
       1 Truss & Wood (2011) 
       2 Buchert et al. (2001) 
       3 Zafeiropoulos, Vickers, Baillie & Watts (2003) 
       4 Matuana, Balatinecz, Sodhi & Park (2001) 
       5 Panthapulakkal & Sain (2007) 
       6 González, Santos & Parajó (2011) 
 

The N 1s peak was present in the untreated kenaf fibres but disappeared after 

treatment. This is attributed to the removal of pectin.  

The atomic percentage of the N 1s obtained for the untreated kenaf fibres was 

3.0% which is similar to the value obtained for wood by Shchukarev et al. (2002), while 

somewhat lower values were obtained by Gauthier, Derenne, Dupont, Guillon, Largeau, 

Dumonceau & Aplincourt (2002) for wheat straw and wheat bran (1.0% and <1%, 

respectively) 

The O 1s peaks obtained in the high resolution XPS scans in the present study 

were difficult to utilise to identify the surface chemical composition of the fibres. This 

is because multiple oxygen bonding peaks overlapped and this led to difficulties in 
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curve fitting. In this respect, it is noted that O 1s peaks of high resolution XPS scans of 

natural fibres are rarely found in the literature. 

Truss & Wood (2011) examined the O 1s peaks from high resolution XPS scans 

of hemp fibres. Their results are compared with those from the present study in Table 

3.17. The O1, O2, O3 and O4 values are of similar relative magnitudes for the two 

studies, but there are differences in the individual values. The O1 and O3 atomic 

percentages obtained by Truss & Wood (2011) were lower than those of the untreated 

kenaf fibres obtained in the present study. However, the O2 and O4 atomic percentages 

were higher. In view of the difficulties arising from peak overlap, and the possibility of 

the results being affected by surface contamination, it is difficult to assess the 

significance of these differences. 

 

Table 3.17: Atomic percentages of O 1s of kenaf fibres and hemp fibres 

Natural Fibre 
Atomic Percentage 

O1 O2 O3 O4 

Untreated kenaf fibres (present work) 19.1 38.9 37.4 4.7 

Hemp fibres (Truss & Wood (2011)’s work)  16.4 40.7 34.4 8.5 
      

3.5.7 Crystallinity of Cellulose 

The crystallinity of the cellulose before and after treatment was examined for 

both the fibres and the α-cellulose using XRD, solid state 13C NMR and FTIR 

spectroscopy. The XRD method has been used most widely for measuring the 

crystallinity index of cellulose, with NMR being used to a much lesser extent. FTIR 

spectroscopy is the simplest method, but it is not an absolute measurement technique 

(Park et al., 2010). The other two methods also have limitations and problems (Park et 

al., 2010) making it difficult to assess which of the three methods is the most 

appropriate. 

The results obtained from the three treatments are compared in Figure 3.74.  

XRD gave the highest values, NMR the lowest values while intermediate values were 

obtained from FTIR. It is noted that values obtained by XRD are generally found to be 

higher than those obtained by NMR (Park et al., 2010). 
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174 ppm and this indicates that the treated kenaf fibres were oxidized after both the 

nitric acid and the hydrogen peroxide/acetic acid treatments as discussed earlier. 

3.5.8 TGA 

Three distinct weight loss steps were observed in the TGA (Figure 3.62) and 

DTG curves (Figure 3.63) of the kenaf fibres. The weight loss at the first step was 

caused by loss of moisture from the fibres (Pereira, Nascimento, Cordeiro, Morais, 

Sousa & Rosa, 2010). The second stage of weight loss resulted from thermal 

decomposition of hemicellulose over the temperature range 280oC to 320oC (Han et al., 

2007) and of cellulose over the temperature range 320oC to 380oC (Keshk & Haija, 

2011). The weight loss at the third step was due to oxidation of the degradation products 

from the second step (Ciannamea, Stefani & Ruseckaite, 2010), as well as 

decomposition of thermally stable residues, such as lignin (Sharma & Kernaghan, 1988; 

Stuart et al., 2006).   

For the nitric acid treated fibres, the second step occurred at a substantially 

lower temperature than for the untreated fibres, with an onset temperature of 187˚C, 

compared with 258˚C, and with the maximum weight loss occurring at 309˚C, 

compared with 339˚C, Table 3.13. This is attributed to decomposition of cellulose 

nitrate produced as result of the nitric acid treatment.  The presence of the –NO2 group 

in cellulose nitrate was confirmed by the FTIR results, Figure 3.44b.  

TGA curves obtained for cellulose nitrate by Huang & Li, (1998) are shown in 

Figure 3.77. They found that 90% of the cellulose nitrate decomposed in 1 minute at 

212oC. This indicates that, while present, cellulose nitrate was only a minor component 

of the nitric acid treated fibres.  

The hydrogen peroxide/acetic acid treated fibres (KFTHA2) had a higher onset 

temperatures than the untreated fibres, with a value of 310oC compared with 258oC, 

Table 3.13.  A similar result was obtained by Zhao et al. (2010) for sugarcane bagasse 

treated using a mixture of 30% hydrogen peroxide and anhydrous acetic acid. They 

obtained onset temperatures approximately of 265oC and 315oC for the untreated and 

treated fibres, respectively, and attributed the increase in onset temperature to removal 

of lignin.  

The increased onset temperature of the hydrogen peroxide/acetic acid treated 

fibres observed in the present study is of particular significance for the use of natural 

fibres in thermoplastic matrix composites since it would permit higher processing 
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elementary fibres obtained for the nitric acid treatment were only one tenth this 

length with a similar reduction in their aspect ratio. The reduced elementary 

length is considered to be due to fibre breakage resulting from chemical attack at 

defects in the fibres. 

 The defect density in the nitric acid treated elementaries was double that found 

in the hydrogen peroxide/acetic acid treated elementaries. This is again 

considered to be due to chemical attack of the fibres during the harsher nitric 

acid treatment. 

 

Table 3.18: Summary of significant findings  

Property KFTN KFTHA1 KFTHA2 Technique 

Fibre length (mm) 0.18 2.27 2.31 Microscopy

Fibre aspect ratio 15.3 137 179 Microscopy

Removal of lignin Yes Yes Yes FTIR, 

Raman, 

NMR, XPS 

Removal waxes and/or pectin Yes Yes Yes FTIR 

Removal of waxes (only) Yes Yes N/A XPS (O/C 

ratios) 

Removal of pectin (only) Yes Yes Yes XPS  

Removal of extractives Yes Yes Yes XPS (C4) 

Level of crystallinity Increased 

(16-56%) 

Increased 

(8-11%) 

Increased 

(8-10%) 

XRD, 

NMR 

Production of -NO2 groups Yes No No FTIR 

Production of -COOH groups Yes Yes Yes FTIR, XPS 

Production of -C(=O)CH3 

groups 

No Yes Yes FTIR 

Decomposition temperature  Decreased Not 

measured 

Increased TGA (step 

2) 

 

 Both chemical treatments removed lignin, pectin, waxes and extractives, as 

would be expected in isolation of the elementaries. They also increased the 
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hydrophilicity of the surface of the fibres but caused some oxidation of cellulose 

to occur. 

 Both treatments increased the level of crystallinity in the fibres which is 

beneficial to their mechanical performance. The cystallinity was increased more 

by the nitric acid treatment than by the hydrogen peroxide/acetic acid treatment. 

 The thermal stability of the fibres was decreased by ~70Co by the nitric 

treatment but was increased by ~50Co by the hydrogen peroxide/acetic acid 

treatment. The increase in thermal stability obtained from the latter treatment 

would permit higher processing temperatures which would allow a wider range 

of thermoplastics to be used as the matrix material in natural fibre composites. 

 



147 
 

 

 

 

 

CHAPTER 4 

EXTRUDED KENAF FIBRE-REINFORCED HDPE-

MATRIX COMPOSITES	

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



148 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



149 
 

 

 

4. EXTRUDED KENAF FIBRE-REINFORCED HDPE-

MATRIX COMPOSITES 

4.1 Introduction 

This chapter describes the work undertaken on extruded thermoplastic matrix 

composites reinforced with kenaf elementary fibres. The elementaries produced by both 

the nitric acid treatment (KFTN) and the 20% hydrogen peroxide/acetic acid treatment 

(KFTHA2) were used for fabricating the composites. These had average lengths of 0.2 

and 2.3 mm, respectively, and average aspect ratios of 15 and 179, respectively. In 

addition, composites were also produced from chopped untreated kenaf technical fibres 

(UKF) for purposes of comparison. These fibres had an average length of 0.7 mm and 

an average aspect ratio of 7.5. Details of the treatments and the physical and chemical 

characteristics for the three types of fibre used have been given in the previous chapter. 

High-density polyethylene (HDPE) was used as the matrix material with maleated 

polyethylene (MAPE) being used as the coupling agent.  

The components were compounded using twin-screw extruders. Initially, a 

single feed extruder was used but in subsequent work a twin feed extruder was 

employed. The extruded composites were metallographically characterised and the fibre 

weight fraction determined by dissolution of the matrix resin. The tensile properties of 

the composites, as well as those of the matrix resin without fibre reinforcement, were 

determined. The fracture surfaces of the composites were also examined after testing. 

4.2 Materials 

Untreated kenaf technical fibres (UKF), nitric acid treated fibres (KFTN) and 

20% hydrogen peroxide treated fibres (KFTHA2) were used to fabricate the composites. 

Details of the fibres are given in Chapter 3.  

ICORENE® 3925 or COTENETM 3925 (rotational moulding high-density 

polyethylene (HDPE) powder) obtained from ICO polymers was used as the matrix. 

Powdered HDPE was used to allow premixing with the fibres. The physical 

characteristics of the HDPE powder, as given in the product data sheet (Appendix IV), 

are shown in Table 4.1. Licocene PE MA 4351 fine grain maleated polyethylene 
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(MAPE) obtained from Clariant (Australia) Pty Ltd was used as the coupling agent. The 

properties of the MAPE powder as given in the product safety data sheet (Appendix 

IV), are given in Table 4.2. 1,2,4-trichlorobenzene was obtained from Sigma-Aldrich. 

 

Table 4.1: Physical characteristics of HDPE powder 

* Mechanical testing was conducted on 3.2 mm compression moulded samples prepared to ASTM D 1928.  
   Type M-II sample dimensions used for tensile testing whilst 25.4 mm sample width used for flexural testing. 

 

Table 4.2: Physical and chemical properties of MAPE powder 

Property  

Form Fine Grain 

Colour Yellowish 

Drop Forming Point (ASTM D 3954-94) Approx. 123oC 

Density (ISO 1183)  Approx. 0.99 g/cm3 (23oC) 

Solubility in Water  Insoluble (20oC) 

Acid number  Approx. 46 mg KOH/g 

Viscosity (Dynamic) (DIN 53018) Approx. 300 mPa.s (140oC) 

 

Physical Characteristics Value Test Method 

Melt Flow Index (MFI) 3.5 g/10min ASTM D 1238 

Annealed Density 0.941 g/cm3 ASTM D 1505 

Vicat Softening Point  123oC ASTM D 1525 

Environmental Stress-Cracking Resistance (ESCR) 

F50 (100% Igepal) >500 h ASTM D 1693 

Environmental Stress-Cracking Resistance (ESCR) 

F50 (10% Igepal) - h ASTM D 1693 

Flexural Modulus (1.3 mm/min)* 815 MPa ASTM D 790 

Tensile Modulus (0.5 mm/min)* 695 MPa ASTM D 638 

Tensile Strength at Yield (50 mm/min) 21 MPa ASTM D 638 

Elongation at Break (50 mm/min) 1,500% ASTM D 638 

ARM Impact Strength (3.2 mm sample at -40oC) 95 J ARM Method 

Shore Hardness 61 Shore D ASTM D 2240 

UV Rating (50% Retained Tensile Elongation) 8,000 h ASTM 2565 



 

4.3 Exp

4.3.1 Ex

In 

untreated 

simultaneo

extruder, 

weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1

periment

trusion o

initial wor

kenaf fib

ously comp

Figure 4.1.

1: Eurola

extrud

Barre

Die 

Pressure s

tal Meth

f Compos

rk, extruded

bres (UKF

pounding a

. The ratio 

ab co-rotatin

der (bottom)

Feede

Hoppe
l 

sensor 

1

hods 

sites 

d HDPE co

) and the

and extrud

 of kenaf f

ng twin-scr

). 

er 

er 

51 

omposites w

e nitric ac

ding in a E

fibres to H

rew extrude

were prepar

cid treated

EuroLab c

HDPE to M

r (top) and 

Extruder 

Extrud

red from th

d fibres (K

co-rotating 

MAPE was 

screws insi

Feeder 
control 
panel 

Extruder
control 
panel 

date 

he chopped

KFTN) by

twin-screw

40:57:3 by

ide Eurolab

d 

y 

w 

y 

b 



 

Prio

75oC for 2

and MAPE

the hopper

Extrusion 

screw spee

approxima

diameter c

of the com

after eme

KFTN/HD

and KFTN

 

 

 

 

 

 

 

Figure 4.2

 

Som

with surfac

using a tw

separately.

from the 

additionall

composites

Scientific E

25:1. The 

material, F

allow dog-

or to compo

4 hours and

E were mixe

r of the ex

was carried

ed of 100 r

ately 160oC 

circular dies

mposite extru

erging from

DPE/MAPE 

N/HDPE rod

2: Photog

materia

me variatio

ce rougheni

win feed ex

. According

untreated 

ly from the 

s were prep

Eurolab 16 

extruder ha

Figure 4.3. I

-bone speci

(a) 

ounding, the

d oven dried

ed in a plast

xtruder, as 

d out with 

rpm, at a pr

in each zo

s. Pure HDP

udates brok

m the die

samples ar

d composite

graphs of (

als fed into 

on in fibre 

ng, and it w

xtruder in w

gly, a second

fibres (UK

20% hydro

pared by sim

twin-screw

ad two hop

It was deci

imens to be

15

e UKF, KF

d at 75oC fo

tic bag and f

shown in 

a screw len

ressure of 2

one. The com

PE was also

e into appro

e. The ex

e referred t

s, respective

a) material

hopper of E

fraction wa

was consider

which the fi

d set of HD

KF) and the

gen peroxid

multaneous c

 extruder w

ppers for se

ded to extru

e used for t

52 

TN and MA

or at least 3

fed into a P

Figures 4.

ngth to scre

2 MPa. The

mposites w

o extruded 

oximately 2

xtruded H

to hereafter 

ely.   

ls mixed in

Eurolab extr

as observed

red that bet

fibres and th

DPE/MAPE 

e nitric ac

de/acetic ac

compoundin

with a screw 

eparate feed

ude the com

tensile testi

(b) 

APE were p

3 hours.  Th

PRISM feed

1 and 4.2,

ew diamete

e temperatu

were extrude

using the s

25 pieces ap

DPE, UKF

as-extruded

n PRISM f

ruder. 

d along the 

ter composi

he matrix m

matrix com

cid treated 

cid treated f

ng and extru

length to sc

ding of the 

mposite as 

ing. The di

pre-dried in 

he kenaf fibr

er which th

 using 30%

er ratio of 4

ure of the b

ed though t

ame condit

pproximately

F/HDPE/M

d HDPE, U

feeder and 

composite

ites might b

material cou

mposites wa

fibres (KN

fibres (KFTH

uding using

crew diame

fibres and 

strip since 

ie used was

an oven at 

res, HDPE 

hen fed into 

% feeding. 

40:1 and a 

barrels was 

twin 1 mm 

tions. Each 

y 3 m long 

MAPE and 

UKF/HDPE 

(b) mixed 

s, together 

be obtained 

uld be fed 

as prepared 

NTF), and 

HA2). The 

g a Thermo 

eter ratio of 

the matrix 

this would 

s a slit die 



 

having dim

again 40:5

Pri

minimum 

untreated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3

 

Fo

bag and a

simultaneo

mensions 25

57:3 by weig

ior to comp

of 14 hours

and treated 

3: (a) Th

and (b

or the untrea

added into F

ously added

Pressure 
sensor 

Die 

Extruder 
barrel 

(a) 

(b) 

5.4 mm by 2

ght. 

pounding, a

s. Slightly d

fibres.  

hermo Scien

b) control pa

ated fibres,

Feeder 1, w

d into Feede

Feeder 2

Small 
barrel of 
Feeder 2

1

2 mm. The 

all of the m

different pro

ntific Eurol

anel. 

 the HDPE

which then f

er 2, Figure

Hopp

53 

ratio of ken

materials wer

ocesses wer

ab 16 twin-

E and MAP

fed in Hopp

e 4.4, which

er 2 

Hopper 1

naf fibres to

re dried in 

e then used

-screw extr

E (57:3) w

per 1, Figur

h into turn f

Extrude

o HDPE to 

an oven at 

d in the extru

ruder with t

were mixed 

re 4.3. The 

fed into Hop

Control 
panel 

er 

Feeder 1 

MAPE was

75oC for a

uder for the

two feeders

in a plastic

fibres were

pper 2. The

s 

a 

e 

s 

c 

e 

e 



 

feed rate f

4.1 g/min)

The screw 

for zone 2

The UKF/

emerged fr

fibre comp

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4

 

 

 

 

 

 

 

 

 

Figure 4.5

 

HD

conditions

from the fee

, while that

speed was 

, 155oC for

/HDPE/MA

rom the die

posite to min

4: Inside 

5:  Large b

DPE and H

. The HDPE

Screw

eder to the 

t for the fib

100 rpm. T

r zone 3 and

APE extruda

e and imme

nimise warp

of Feeder 2

barrel of fee

HDPE/MAP

E/MAPE h

w of Feeder 2 

15

hopper for

bres was 50

The tempera

d 160oC for

ates were 

diately pres

ping. 

 used for fe

eder 2 for fe

PE extruda

ad the same

54 

r the HDPE

0% (approx

ature of the b

r zones 4-6 

cut into le

ssed by han

eeding the k

eeding the t

ates were 

e ratio (57:

E/MAPE wa

imately 2.7

barrels was

and also at

engths of 1

nd between 

kenaf fibres.

treated kena

also prepa

3) as in the

Mixe

as 8% (appr

7 g/min), re

approxima

t the die, Fi

150-200 mm

two panels

 

af fibres. 

ared using 

e composite

er

roximately 

espectively. 

ately 140oC 

igure 4.3b. 

m as they 

s of carbon 

the same 

es and was 



 

again prem

for the HD

Fo

changed t

100%, res

untreated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6

 

mixed in a 

DPE sample

or the treate

to a larger 

spectively, 

fibres. Othe

6:  (a) Wa

of Typ

10. 

(a

(b)

plastic bag 

es.  

ed kenaf fib

barrel, Figu

to maintain

erwise the p

ater jet cutti

pe V tensile

) 

) 

T 

D     
G     
L      
LO   
R      
T      
W     
WO  

(Dis
(Ga
(Le
(Le
(Ra
(Th
(Wi
(Wi

1

prior to fee

bres (KFTN

ure 4.5, wh

n a feed of

process rem

ing into dog

e specimen

L

G

R

stance between
auge length)  
ength of narrow
ength overall) 
adius of fillet) 
hickness)  
idth of narrow
idth overall)  

55 

eding into F

N and KFTH

hile the fee

f approxim

ained the sa

g-bone spec

n in accorda

W

G

D
LO

n grips)  

w section) 

w section)  

= 25
= 7.
= 9.
= 63
= 12
= ~
= 3.
= 9.

Feeder 1. F

HA2), the b

ed rate was 

ately 2.7 g

ame. 

cimens and 

ance with A

5.4 mm 
.62 mm 
.53 mm 
3.5 mm 
2.7 mm 
1-2 mm  
.18 mm 
.53 mm 

Feeder 1 wa

barrel of Fe

 changed t

g/min, as u

(b) schema

ASTM stand

WO 

as also used

eeder 2 was

o 27% and

sed for the

atic diagram

dard D638-

d 

s 

d 

e 

m 

-



156 
 

While care was taken to minimise warping by cutting the extrudate into short 

strips as it emerged from the die and hand pressing these strips before they had cooled 

to room temperature, it was noticed that the end of the strips which had emerged from 

the die first usually contained transverse wrinkling. In view of this, it was only possible 

to obtain samples for tensile testing from the flat end of the strips (i.e., the end which 

had emerged from the die last) as can be seen in Figure 4.6a. Test samples were 

however able to be obtained from the more heavily wrinkled strips after first flattening 

out the wrinkles for 10 minutes at 160oC using a Carver hot press. A pressure of 4 

tonnes was used for the HDPE and HDPE/MAPE samples while a pressure of 8 tonnes 

was used for the kenaf fibre/HDPE/MAPE samples. Different designations were used to 

allow the hot pressed samples to be distinguished from the as-extruded samples.  

Accordingly, the as-extruded samples are referred to hereafter as HDPE, HDPE/MAPE, 

UKF/HDPE, KFTN/HDPE and KFTHA/HDPE strip composites while, the hot pressed 

samples are referred to as HDPE_H, HDPE/MAPE_H, UKF/HDPE_H, 

KFTN/HDPE_H and KFTHA/HDPE_H strip composites. 

The extruded samples with and without hot pressing were water jet cut into Type 

V dog-bone tensile specimens in accordance with ASTM standard D638-10, as shown 

in Figure 4.6. The tensile specimens were dried in an oven at 70oC for 1 hour prior to 

testing to remove moisture. 

4.3.2 Fibre Weight Fractions of Extruded Composites 

The weight fraction of the fibres in the composites was determined by dissolving 

the HDPE/MAPE matrix using 1,2,4-trichlorobenzene as a solvent, as in previous work 

by Chu, Onclin & Ford (1984) and Macko, Pasch, Kazakevich & Fadeev (2003). For 

the rod composites, twenty-two specimens of each extrudate were examined. This was 

done by taking one specimen 6 cm long from each of 22 pieces of extrudate.  For the 

strip composites, four representative specimens were examined for each of the 

unpressed and pressed materials. The tab section of the tested dog-bone specimens was 

used for this purpose.   

The samples were weighed, then placed into 50 ml of trichlorobenzene in a fume 

cupboard at approximately 165 ± 5oC for 1 hour. The solution was continuously stirred 

at 400 rpm using a stirrer. After the HDPE had dissolved, the fibres were filtered using 

a filter paper of known weight, using a Buchner funnel and a side-arm flask connected 

to a vacuum pump. It was necessary to filter the fibres while the solution and glassware 
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were hot because the HDPE only remained dissolved while the solution was hot. The 

fibres and the filter paper were then dried in an oven at 100oC for 1.5 hours. They were 

then placed in a desiccator, allowed to cool to room temperature, and then weighed. The 

measured weight fraction was then determined. 

Since this method relies on the weight difference before and after immersion in 

the solvent, it was necessary to also take into account any weight loss resulting from 

dissolution of material in the fibres. Accordingly, samples of the UKF, KFTN and 

KFTHA fibres were soaked in hot trichlorobenzene using an identical procedure to that 

used for the composite samples. Four replicate samples were examined for each fibre 

type. The fibre weight loss was then determined and was used as a correction factor 

when determining the true fibre weight fraction of the composites as follows:   

	 	 	 	 %
	 	 	 	 %

100 	 	 	 %
	 100 

          (4.1) 

	 	 	 	 	 	
100

100 	 	 	 %
 

          (4.2) 

	 	 	 	 %

	 	 	 	 % 	

	 	 	 	 	 	 . 

          (4.3) 

The residue from the filtered solution was also analysed using a Perkin Elmer 

Spotlight 400 FTIR microscope within universal attenuated total reflectance (UATR) 

mode in the range of 4,000-650 cm-1, with a resolution of 4 cm-1. Prior to undertaking 

the analysis the filtered solution was heated at approximately 150oC on a hot plate to 

evaporate the trichlorobenzene.   

4.3.3 Transverse and Longitudinal Microstructures of Composites 

The transverse and longitudinal microstructure was examined for both the rod 

and strip composites. The transverse microstructure was examined in three randomly 

selected pieces approximately 6 metres in length from each of the UKF/HDPE and 

KFTN/HDPE rod composites. The two ends were cut from each piece and both were 

examined. Due to die swell, one end of the pieces had a larger diameter than the other 

end, and the specimen from this end was identified as End A while that from the other 
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end was identified as End B. Transverse sections were also taken from the gauge length 

of three representative tensile test specimens for each of the UKF/HDPE, KFTN/HDPE, 

KFTHA/HDPE, UKF/HDPE_H, KFTN/HDPE_H and KFTHA/HDPE_H composite 

strips. All specimens were mounted on the transverse plane using cold-setting epoxy 

resin.  

The longitudinal microstructure was determined in four randomly selected 

samples from the extruded rod composites (again ~ 6 mm long) and three representative 

tensile specimens from both the as-extruded and hot pressed strip composites. As for the 

transverse microstructure, the longitudinal microstructure was examined at both ends of 

the rod composites. All specimens were sectioned longitudinally and mounted in cold-

setting epoxy resin. In the case of the strip composites the longitudinal section was 

made perpendicular to the surface of the strip. 

After mounting the specimens were metallographically ground using 

successively finer emery papers then polished on diamond pads to 1 micron finish. The 

polished surfaces were then sputter coated with gold using an Emitech K550x gold 

sputter coater and examined using a Hitachi S3400-X scanning electron microscope 

(SEM) operated in high vacuum mode at an accelerating voltage of 15 kV. 

Backscattered electrons were used for imaging since this provided better contrast than 

was obtained using secondary electrons.  

4.3.4 Tensile Testing 

4.3.4.1 Rod Composites	

Tensile testing of the extruded HDPE and kenaf fibre/HDPE (UKF/HDPE and 

KFTN/HDPE) rod composites was carried out using an Instron 5565 universal testing 

machine. The tensile testing was conducted at a crosshead speed of 5 mm/min, using a 5 

kN load cell, under ambient conditions of temperature and humidity.  

Silicone rubber strips were bonded with double sided tape to each face of the flat 

grips of the testing machine to allow gripping of the specimens, as shown in Figure 4.7. 

Specimens 160 mm long were placed in the grips with a gauge length (distance between 

the two grips) of 20 mm. The diameter of the extruded rods was measured at 3 equally 

spaced positions along the gauge length.  

Six randomly selected specimens were tested for the HDPE rods while 22 

specimens were tested for both the untreated fibre/HDPE (UKF/HDPE) and nitric acid 
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The extracted fibres are shown at higher magnification in Figure 4.21. The 

untreated fibres appear essentially unchanged after the extrusion process, except for 

some fibrillation. However, the nitric acid treated fibres have been reduced to less than 

half their original length.  

The measured weight fractions are given for the individual samples in Appendix 

VII. The average values were 36.7% with a standard deviation of 2.4% (7% of average 

value), for the untreated fibre composites, and 33.3% with a standard deviation of 3.7% 

(11% of average value), for the treated fibre composites. 

The fibres are shown after extraction for the strip composites in Figure 4.22 

while the process is shown in Appendix VI. Again the fibres differ substantially in 

colour, consistent with the differences seen in the composites. 

The extracted fibres are shown at higher magnification in Figure 4.23. Again the 

untreated fibres show little change after the extrusion process, apart from some 

fibrillation. However, the hydrogen peroxide/acetic acid treated fibres have been 

reduced to about one tenth their original length, while the nitric acid treated fibres are 

very short, often having been reduced essentially to particulate.   

The average measured fibre weight fractions for the strip composites in both the 

as-extruded and hot pressed conditions are shown in Figure 4.24 while the individual 

results are given in Appendix VII. The results for the untreated fibre composites were 

similar for both conditions (UKF/HDPE and UKF/HDPE_H), with values of 16.8% 

(standard deviation 4.9%) and 14.4% (standard deviation 8.1%) being obtained for the 

as-extruded and hot pressed composites, respectively. 

The results for the hydrogen peroxide/acetic acid treated fibre composites 

(KFTHA/HDPE and KFTHA/HDPE_H) were also similar for both the as-extruded and 

hot pressed conditions, with the values being 30.1% (standard deviation 15.7%) and 

29.9% (standard deviation 15.7%), respectively. 

The results for the nitric acid treated fibre composites (KFTN/HDPE and 

KFTN/HDPE_H) were however quite different for the two conditions with values of 

34.4% (standard deviation 25.0%) and 8.1% (standard deviation 1.9%) being obtained 

for the as-extruded and hot pressed composites, respectively. The weight fraction should 

be the same for both the as-extruded and hot pressed composites, except for any place-

to-place variation in the locations from which the samples were taken from the 
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Table 4.3:  Weight loss of fibres after soaking in hot trichlorobenzene (values in 

brackets represent one standard deviation) and correction factors of fibre 

weight fractions of the composite samples 

Kenaf 

Fibres 

Average Weight Loss of Fibres 

after Soaking in Hot 

Trichlorobenzene (%) 

Correction Factor 

of Fibre Weight 

Fraction 

 UKF 3.7 (0.5) 1.04 

 KFTN 12.6 (0.7) 1.14 

 KFTHA 5.3 (0.3) 1.06 

 

 The fibre weight correction factors, determined from these measurements using 

equation 4.2, are also given in Table 4.3 and range from 1.04 to 1.14.  The true weight 

fractions determined from the measured values multiplied by the correction factors 

using equation 4.3 are given in Table 4.4. The true weight fractions were 38.1 and 38.0 

wt% for the untreated and nitric acid treated fibre rod composites, which are close to the 

value of 40 wt% used in the formulating the composites, Section 4.3.1.  

 

Table 4.4: Measured and true fibre weight fractions of composite samples  

Extruded Composites 

Samples 

Measured Fibre Weight 

Fraction (%)  

True Fibre Weight 

Fraction (%)  

UKF/HDPE rods 36.7 38.1 

KFTN/HDPE rods 33.3 38.0 

UKF/HDPE strip 16.8 17.4 

KFTN/HDPE strip 34.4 39.2 

KFTHA/HDPE strip 30.1 31.9 

UKF/HDPE_H strip 14.4 15.0 

KFTN/HDPE_H strip 8.1 9.2 

KFTHA/HDPE_H strip 29.9 31.7 
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The fibres were generally well dispersed in the composites. No marked 

directionality was evident in either the transverse or longitudinal sections indicating that 

the fibres were reasonably random in orientation. The lumens were generally filled with 

matrix. 

4.4.4 Tensile Properties	

4.4.4.1 Rod Composites	

Tensile tests were conducted on 6 randomly selected samples from the neat 

HDPE extruded rods and on 22 samples of both the untreated fibre and the nitric acid 

treated fibre extruded composite rods.  

The tensile stress strain curves are shown in Figures 4.36-4.38. All curves 

showed a progressive decrease in slope with increasing stress, as is usual for polymeric 

materials. The curves for the neat HDPE additionally showed the characteristic load 

drop which occurs at the onset of cold drawing. 

All the specimens are shown after failure in Appendix V. 

 

 

Figure 4.36: Tensile stress-strain curves of extruded neat HDPE rods. 
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Figure 4.37: Tensile stress-strain curves of extruded UKF/HDPE rod composites. 

 

 

Figure 4.38: Tensile stress-strain curves of extruded KFTN/HDPE rod composites. 

 

The tensile modulus, tensile strength and strain at maximum stress are given for 

the neat HDPE and the rod composites in Table 4.5 and shown in Figures 4.39-4.41. A 

statistical treatment of the data is given in Appendix XII.  
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The modulus for the neat HDPE was 238 MPa with a standard deviation of 9 

MPa (4%), and was, on average, 33% higher for the two composites. The value for the 

untreated fibre composite was 325 MPa with a standard deviation of 31 MPa (10%) 

while that for the nitric acid treated fibre composite was slightly lower being 310 MPa 

with a standard deviation of 28 MPa (9%). The difference was not however significant, 

Appendix O.  

 

Table 4.5: Tensile test data for extruded HDPE and short kenaf fibre/HDPE rod 

composites  

Tensile Property Sample 

HDPE UKF/HDPE KFTN/HDPE 

Modulus (GPa) 0.238 0.325 0.310 

SD (GPa) 0.009 0.031 0.028 

Ultimate strength (MPa) 19.1 23.4 21.4 

SD (MPa) 1.6 2.1 3.4 

Strain at maximum stress (%) 30.3 9.4 10.2 

SD (%) 4.2 1.3 2.6 

 

 

 

Figure 4.39: Tensile modulus of extruded HDPE, UKF/HDPE and KFTN/HDPE rod 

composites. Error bars indicate one standard deviation. 
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Figure 4.40: Ultimate tensile strength of extruded HDPE, UKF/HDPE and 

KFTN/HDPE rod composites. Error bars indicate one standard deviation. 

 

 

Figure 4.41: Strain at maximum stress of extruded HDPE, UKF/HDPE and 

KFTN/HDPE rod composites. Error bars indicate one standard deviation. 
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be due to additional strain occurring in the system, especially in the compliant silicone 

rubber pads used to grip the specimen. This is discussed in more detail in Section 

5.5.3.1. It is expected that the moduli of the composites would be underestimated by a 

similar amount. 

The tensile strength of the HDPE (stress at maximum load) was 19.1 MPa with a 

standard deviation of 1.6 MPa (8%). This is close to the value of 21 MPa given in the 

supplier’s data sheet, Table 4.1. The strength of the composites was, on average, 17% 

higher than for the neat HDPE, with the value for the untreated fibre composite being 

23.4 MPa with a standard deviation of 2.1 MPa (9%) and that for the nitric acid treated 

fibre composite being 21.4 MPa with a standard deviation of 3.4 MPa (16%). In this 

case, the lower value obtained for the nitric acid treated fibre composite was significant, 

Appendix XII. 

The strain at maximum stress was 30.3% (standard deviation 4.2%) for the neat 

HDPE with much lower values of 9.4% (standard deviation 1.3%) and 10.2% (standard 

deviation 2.6%) being obtained for the untreated and nitric acid treated fibre 

composites, respectively. The small difference between the two composites was not 

significant, Appendix XII.  

4.4.4.2 Strip Composites	

An extensometer was used when testing the strip composites to permit a more 

accurate determination of strain. However it was noticed after the tests that the 

extensometer data had corrupted, as is apparent from the stress strain curves given in 

Appendix XIII, and it was necessary to use the crosshead displacement data instead. 

This was possible since the distance between the grips was reset to the same value (25.4 

mm) after each test so that the same length of specimen was tested in each case. 

Neglecting any strain occurring in the testing machine, the strain in the gauge length of 

the specimen is proportional to the crosshead displacement. The crosshead displacement 

was determined using the time record for each data point (collected at 0.0625 second 

intervals) and the crosshead speed (5 mm/min.). From the geometry of the specimen it 

was possible to calculate the approximate crosshead displacement range corresponding 

to the strain range of 0.001-0.003. This range was 0.0156-0.0521 mm and was used to 

determine the chord modulus.  
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The stress-crosshead displacement curves are shown for the different specimens 

in Figures 4.42 to 4.50. Because of the problems with wrinkling in the as-extruded neat 

HDPE and HDPE/MAPE specimens, only one specimen could be successfully water cut 

from the neat HDPE extrudate while it was not possible to obtain any specimens from 

the HDPE/MAPE extrudate.  

The curves for the different specimens were reasonably similar for both the hot 

pressed HDPE and the hot pressed HDPE/MAPE, but substantial differences were 

evident in the curves for the different specimens for each of the composites, both as-

extruded and hot pressed.    

The values of tensile modulus, tensile strength and strain at maximum stress for 

the different materials are given in Table 4.6  and shown in Figures 4.51 to 4.53, 

respectively. The modulus values are calculated from the crosshead displacement, 

which as noted above is considered to be proportional to strain. The values given are 

therefore not absolute, but instead relative. Likewise the strain at maximum stress is 

relative and not absolute. These values are referred to hereafter as the relative modulus 

and relative strain. The tensile strength is independent of strain and the values given are 

therefore absolute.  

  

 

Figure 4.42: Stress-crosshead displacement curve of extruded HDPE strip. 
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Figure 4.43: Stress-crosshead displacement curves of extruded UKF/HDPE strip 

composites. 

 

 

Figure 4.44: Stress-crosshead displacement curves of extruded KFTN/HDPE strip 

composites. 
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Figure 4.45: Stress-crosshead displacement curves of extruded KFTHA/HDPE strip 

composites. 

 

 

Figure 4.46: Stress-crosshead displacement curves of hot pressed extruded HDPE 

(HDPE_H) strips. 
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Figure 4.47: Stress-crosshead displacement curves of hot pressed extruded 

HDPE/MAPE (HDPE/MAPE_H) strip composites. 

 

 

Figure 4.48: Stress-crosshead displacement curves of hot pressed extruded 

UKF/HDPE (UKF/HDPE_H) strip composites. 
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Figure 4.49: Stress-crosshead displacement curves of hot pressed extruded 

KFTN/HDPE (KFTN/HDPE_H) strip composites. 

 

 

Figure 4.50: Stress-crosshead displacement curves of hot pressed extruded 

KFTHA/HDPE (KFTHA/HDPE_H) strip composites. 
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Table 4.6: Tensile test data for extruded HDPE and short kenaf fibre/HDPE strip composites 

 

Sample Chord 

Modulus 

(MPa/mm) 

SD 

(MPa/mm)

SD (%) 

 

Ultimate 

Tensile 

Strength 

(MPa) 

SD 

(MPa) 

SD (%) 

 

Crosshead 

Displacement at 

Max. Stress  

(mm) 

SD 

(mm) 

SD (%) 

 

HDPE 23.7   13.9 -  1.83 -  

HDPE/MAPE -----------------------------------------------------------Not measured------------------------------------------------------------------- 

UKF/HDPE 35.8 5.8 16.3 16.5 1.0 5.9 1.17 0.34 29.1 

KFTN/HDPE 39.9 15.5 38.8 11.6 1.5 13.0 0.74 0.49 65.4 

KFTHA/HDPE 56.8 21.3 37.4 21.5 2.9 13.5 0.91 0.44 48.0 

HDPE_H 27.8 4.2 15.2 18.4 0.7 4.0 2.11 0.31 14.7 

HDPE/MAPE_H 33.4 2.7 8.2 18.9 0.6 3.3 1.93 0.09 4.6 

UKF/HDPE_H 40.5 8.7 21.5 17.5 1.0 5.5 0.78 0.22 27.7 

KFTN/HDPE_H 31.2 5.4 17.2 11.8 1.3 11.3 0.80 0.14 17.2 

KFTHA/HDPE_H 64.8 29.1 44.9 19.3 2.3 12.1 0.58 0.30 50.8 
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Figure 4.51: Relative modulus for HDPE, HDPE/MAPE, UKF/HDPE, KFTN/HDPE 

and KFTHA/HDPE strip composites with and without hot pressing. 

Error bars indicate one standard deviation. 

 

  

Figure 4.52: Ultimate tensile strength for HDPE, HDPE/MAPE, UKF/HDPE, 

KFTN/HDPE and KFTHA/HDPE strip composites with and without hot 

pressing. Error bars indicate one standard deviation. 
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Figure 4.53: Relative strain at maximum stress for HDPE, HDPE/MAPE, 

UKF/HDPE, KFTN/HDPE and KFTHA/HDPE strip composites with 

and without hot pressing. Error bars indicate one standard deviation. 
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lower than that of the HDPE for the nitric acid treated fibres, Figure 4.52. The relative 

strain at maximum stress is lower for all the composites than for the HDPE specimens, 

Figure 4.53.  
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deviations given in Table 4.6. The reason for this becomes apparent when the fibre 
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fractions are considered. The true fibre weight fraction (measured weight fraction × 

correction factor) for four of the composites of each type are given in Table 4.7 and can 

be seen to generally vary considerably from specimen to specimen (UKF/HDPE: 11-

23%, KFTN/HDPE: 7-61%, KFTHA/HDPE: 9-46%, UKF/HDPE_H: 9-27%, 

KFTN/HDPE_H: 8-12%, KFTHA/HDPE_H: 9-48%).  Measurements of the weight 

fraction were made for only four specimens of each type in the expectation that the fibre 

fraction would, in fact, be constant along the extrudate. 

 

Table 4.7: True fibre weight fraction of extruded strip composites 

Material  Sample 

No. 

Fibre 

Weight 

Fraction 

(%) 

 Material Sample 

No. 

Fibre 

Weight 

Fraction 

(%) 

UKF/HDPE 3A 23.3  UKF/HDPE_H 7A 26.7 

3D 11.0 7C 10.2 

3G 18.3 7D 14.1 

3H 17.2 7E 8.9 

KFTN/HDPE 2A 23.7 KFTN/HDPE_H 8A 12.4 

2D 49.7 8B 7.9 

2E 60.8 8D 8.3 

2G 7.0 8E 8.1 

KFTHA/HDPE 1C 42.6 KFTHA/HDPE_H 6B 39.7 

1D 29.4 6D 47.5 

1E 46.1 6F 30.5 

1H 9.4 6H 9.1 

 

The relative modulus and the strength are shown as a function of the true weight 

fraction for the as-extruded composites in Figures 4.54 and 4.55, respectively, and for 

the hot pressed composites in Figures 4.56 and 4.57, respectively. The data for neat 

HDPE has been used as the 0 wt% point for the as-extruded composites (no data was 

obtained for HDPE/MAPE), while the data for HDPE/MAPE_H has been used as the 0 

wt% point for the hot pressed composites. 
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Figure 4.54:  Relative modulus as a function of true weight fraction for as-extruded 

strip composites. 

 

  

Figure 4.55: Ultimate tensile strength as a function of true weight fraction for as- 

extruded strip composites. 
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intermediate for the untreated fibre composite and lowest for the nitric acid treated fibre 

composite.  

 

  

Figure 4.56:  Relative modulus as a function of true weight fraction for as hot pressed 

strip composites. 

 

  

Figure 4.57: Ultimate tensile strength as a function of true weight fraction for as hot 

pressed strip composites. 
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The tensile strength also increased progressively with fibre weight fraction for 

both the hydrogen peroxide/acetic acid treated fibre composite, and the untreated fibre 

composite, with the reinforcing efficiency again being highest for the hydrogen 

peroxide/acetic acid treated fibre material, Figure 4.55. However the tensile strength 

decreased slightly with fibre addition for the nitric acid treated fibre composite.  

 The relative modulus also increased with fibre addition for the hot pressed 

hydrogen peroxide/acetic acid treated fibre and the untreated fibre composites, with the 

reinforcing efficiency again being highest for the hydrogen peroxide/acetic acid treated 

fibre composite, Figure 4.56. However, it showed a slight decrease with fibre addition 

for the nitric acid treated composite. The strength of the hot pressed composites also 

increased progressively with fibre fraction for the hydrogen peroxide/acetic acid treated 

fibre composite, but it was essentially unchanged by fibre addition for the untreated 

fibre composite, while it decreased strongly with fibre fraction for the nitric acid treated 

fibre composite, Figure 4.57. It is noted that the level of lateral spread produced by hot 

pressing was least for the hydrogen peroxide/acetic acid treated fibre composite (Figure 

4.19), slightly greater for the untreated fibre composite (Figure 4.17), and much greater 

for the nitric acid treated composite (Figure 4.18), and this difference may have affected 

the results.     

4.4.5 Fracture Surfaces of Tensile Specimens	

SEM micrographs of the fracture surfaces of the tested rod specimens at varying 

magnifications are shown in Figure 4.58, while SEM micrographs of the as-extruded 

and hot pressed composites are shown in Figures 4.59 to 4.63. The micrographs show 

pulled out fibres with adhering matrix for all the composites, indicating that the fibre 

matrix adhesion was good. Microfibrils are evident on the fracture surface of the matrix 

indicating that it had failed in a ductile manner. No obvious differences were apparent 

between the as-extruded and hot pressed strip composites nor between the strip 

composites and the rod composites.   
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4.5 Discussion 

4.5.1 Extrusion 

4.5.1.1 Rod Composites  

 As noted in Section 3.3.1 several different techniques were trialled for 

production of the elementary fibres to be used in the composites. Moreover, a large 

number of batches of fibres had to be treated to produce sufficient elementaries for an 

extrusion run. As result of these factors, the nitric acid treated elementaries were 

available well before the hydrogen peroxide/acetic acid treated fibres and it was decided 

to undertake an initial extrusion trial using the nitric acid treated elementaries while 

preparation of the hydrogen peroxide/acetic acid treated fibres was still in progress. 

Chopped untreated fibres were also used for comparison. The components of the 

composites were first mixed together at room temperature and the mixture then fed into 

the extruder using a single hopper.  

      It was found that while the neat HDPE extruded easily, the composites were 

substantially more difficult to extrude due to their low melt flow characteristics. In 

addition, the nitric acid treated fibre composites were more difficult to extrude than the 

untreated fibre ones. This was because the nitric acid treated fibres were lighter and the 

mixture fed too quickly into the hopper, making it necessary to stop feeding periodically 

when the hopper became full. Die swell also occurred, indicating that the process was 

not run for long enough for full uniformity to occur. Unfortunately longer runs were not 

possible because of the limited amount of elementary fibres available.  

The (true) weight fractions of the untreated and nitric acid treated fibre 

composites, determined from analysis of 22 samples of each composite, were 38.1 and 

38.0%, respectively, with standard deviations of 2.5 and 4.2%, which is consistent with 

value of 40 wt% used in the formulation. However, some variation was evident along 

the extrudate with the range of values being from 34-43% for the untreated fibre 

composite and from 31-46% for the nitric acid treated fibre composites. In addition 

considerable roughening of the surface occurred for the composites. It was also found 

that the nitric acid treated elementary fibres were reduced to less than half their original 

length by the extrusion process, although the untreated chopped technical fibres were 

essentially unaffected.       



 

4.5.1.2 St

In 

with feedin

peroxide/a

fibres and 

acid treated

for purpos

produce str

Un

which wer

extruder. 

agglomerat

difficult to

untreated f

extruded st

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6

trip Comp

view of the

ng, it was d

cetic acid tr

matrix mate

d fibres whi

ses of comp

rip product 

fortunately,

re too light 

In addition

te, as show

o extrude, f

fibre comp

trip.  

64: KFTHA

posites 

e variation 

decided to u

reated fibre

erial. Comp

ile composi

parison. A 

that could b

, problems 

to feed pro

n the hydr

wn in Figur

followed by

osites. Diff

A fibres fed

20

of fibre fra

use a twin h

e composite

posites were

ites were ag

slit die wa

be used to p

were agai

operly and 

rogen pero

re 4.64. As

y the nitric 

ficulties we

d into a hopp

02 

action, surf

hopper extr

es, since this

e also extrud

gain extrude

as used rath

produce flat

in experien

needed to 

oxide/acetic 

s a result, t

acid treate

ere also exp

per of a twi

face roughe

ruder when 

s allowed s

ded using a 

ed using unt

her than a 

dog-bone t

nced with f

be pushed 

acid treat

these comp

ed fibre com

perienced w

in-screw ext

ening, and d

making the

eparate feed

second batc

treated chop

circular di

tensile speci

feeding of 

into the ba

ted fibres 

posites were

mposites an

with wrinkl

truder. 

difficulties 

e hydrogen 

ding of the 

ch of nitric 

pped fibres 

ie so as to 

imens.  

the fibres 

arrel of the 

tended to 

e the most 

nd then the 

ling of the 



203 
 

Due to the difficulties experienced in the extrusion process, the intended fibre 

weight fraction of 40% was not achieved with the average values being 16% for the 

untreated fibre composites, 24% for the nitric acid treated fibre composites and 32% for 

the hydrogen peroxide/acetic acid treated fibre composites. Moreover, the composites 

showed very substantial variation in fibre fraction along their length with the values 

varying from ~10-25 wt% for the untreated fibre composites and ~10-50 wt% for the 

treated fibre composites. 

It is noted that the nitric acid treated and hydrogen peroxide/acetic acid treated 

fibre composites were darker and lighter, respectively, than the untreated fibre 

composites. This may be associated with the different thermal stabilities of the fibres, as 

reported in Section 3.4.9.   

The elementary fibres obtained from both the nitric acid treatment and the 

hydrogen peroxide/acetic acid treatment were substantially reduced in length by the 

extrusion process, with the hydrogen peroxide/acetic acid treated fibres being reduced to 

about one tenth their original length and the nitric acid treated fibres being very short, 

often having been reduced essentially to particulate.   

4.5.2 Tensile Properties 

4.5.2.1 Rod Composites 	

 No significant difference was detected between the modulus of the untreated and 

nitric acid treated fibre rod composites but the value was 33% higher than that of the 

extruded HDPE rod. The strength of the composites was also on average 17% higher 

than that of the neat HDPE. However, there was a significant difference (9%) between 

the strength of the nitric acid treated fibre composite and that of the untreated fibre 

composite with the treated fibre composite having the lower value. This is considered to 

be due to the introduction of defects into the fibres during the nitric acid treatment, as 

shown in Section 3.4.3, reducing their reinforcing efficiency to below that of the 

untreated chopped fibres. 

The strain at maximum stress was reduced to about one third of the value for 

neat HDPE by introduction of both the untreated and treated fibres.  
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4.5.2.2 Strip Composites	

Because of the substantial variation in fibre fraction in the strip composites it 

was necessary to normalise the data by plotting the modulus and strength as a function 

of fibre fraction, which then allowed the trend lines to be compared. This showed that 

the strength and modulus were higher for the hydrogen peroxide/acetic acid treated fibre 

composites than for those made with untreated fibres but the reverse was seen for the 

nitric acid treated fibre composites, with the values being lower than those for the 

untreated fibre composites. These trends were consistent across both the as-extruded 

and hot pressed composites.    

A comparison of the magnitude of these differences was made by assuming a 

linear relationship between the fibre fraction and both the modulus and strength of the 

composites, and then using the difference between the linear trend lines given in Figures 

4.51-4.54 at a weight fraction of 38% (to be consistent with the weight fraction of the 

rod composites). As noted in Section 4.4.4.2, differences in the level of lateral spread 

during hot pressing were seen for the hot pressed composites and this may have affected 

those results so only the data for the as-extruded composites was considered. This gave 

an increase of 19% in modulus and 18% in strength for the hydrogen peroxide/acetic 

acid treated fibre composites, compared with the untreated fibre composites. However, 

reductions of 21% in modulus and 39% in strength were obtained for the nitric acid 

treated fibre composites when compared with the untreated fibre composites.  

The values given by the trend lines at a weight fraction of 38% were also 

compared with the values obtained for the neat HDPE. The modulus was increased by  

180%, 136% and 85% for the hydrogen peroxide/acetic acid treated, the untreated and 

the nitric acid treated fibre composites, respectively, over the value obtained for the neat 

HDPE extrudate. The strength was also increased by 65% and 40% over that of neat 

HDPE for the hydrogen peroxide/acetic acid treated and untreated fibre composites. 

However a decrease of 14% in strength was observed for the nitric acid treated 

composite. 

The behaviour of the nitric acid treated fibre composites was unusual since 

addition of the fibres increased the modulus above that of the matrix, as is expected for 

fibre reinforcement (Daniel & Ishai, 1994), but decreased the strength. This is attributed 

to the fibres being reduced essentially to particulate. The addition of higher modulus 

particulate to a polymer produces an increase in the modulus of the composite, but the 
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particulates cause stress concentration which results in a decrease in its strength (Ahmed 

& Jones, 1990).   

The nitric acid treated fibre strip composites also performed more poorly than 

their rod composite counterparts when compared with the corresponding composites 

made from untreated fibres. This is attributed again to the reduced fibre length in the 

nitric acid treated fibre strip composites, whereas no difference in fibre length was 

observed in untreated fibre composites.  

It is noted that the improvement in modulus and strength for the untreated fibre 

composites over that of the neat matrix polymer was greater in the strip composites than 

in the rod composites, with the increases being 136% and 33%, respectively, for the 

modulus and 40% and 23% respectively for the strength at 38% fibre weight fraction. 

The data for the matrix polymer used for the strip composites was for HDPE without 

MAPE addition (since no results were obtained for as-extruded HDPE/MAPE). 

However the data for the hot pressed composites indicates that the presence of MAPE 

raises the modulus of HDPE by 20% and the strength by 3%. Applying these factors to 

the modulus and strength of the as-extruded HDPE, and replotting the data with these 

values as the 0 wt% fibre values, reduced the increases produced by the untreated fibres 

to 81% for the modulus and 34% for the strength. These values are still substantially 

higher than the values for the rod composites and this may indicate that the strip 

composites had achieved better longitudinal fibre orientation, although this was not 

detectable at the level of examination used here.      

4.5.3 General Discussion 

The work presented in this and the previous chapter was undertaken to explore 

the possibility of obtaining improved mechanical performance of short fibre extruded 

thermoplastic matrix composites by using high aspect ratio elementary fibres. The work 

was focussed on kenaf due its importance as a crop in the South East Asia region.  

The elementaries obtained from both chemical treatments produced composites 

with well dispersed fibres, despite a tendency for agglomeration of the elementaries 

(especially the hydrogen peroxide/acetic acid treated fibres) prior to extrusion. It was 

also found that there was good fibre-matrix adhesion. Difficulty was experienced, 

however, in maintaining a uniform fibre fraction along the extruded composites. 

Moreover, the elementaries broke into fragments during extrusion, with the effect being 
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most pronounced for the strip composites where the fibre length was reduced by a factor 

of 10. 

None the less, modest improvements of ~20% in the modulus and strength, over 

that obtained for composites made from the chopped technical fibres, were achieved 

with the elementary fibres isolated using the hydrogen peroxide/acetic acid treatment. 

However, no improvement was obtained for the nitric acid treated fibres, even with the 

less damaging extrusion process used to make the rod composites. The poor 

performance of the nitric acid treated fibre composites is attributed to their much 

smaller initial aspect ratio (one tenth of that of the hydrogen peroxide/acetic acid treated 

fibres) combined with the presence of a higher level of defects resulting from the fibre 

isolation treatment.    

 The results are encouraging since the different levels of breakup of the 

elementaries produced using the two different extrusion processes suggests that there is 

scope for modifying the process to better retain the initial fibre length. It may also be 

possible to obtain better fibre alignment which would also lead to improved mechanical 

performance. Further examination of these possibilities was, however, outside the scope 

of this project. 

4.6 Summary	

 The important findings from this part of the research are summarised below. 

 Composites were successfully prepared from the elementary fibres using both 

single feed and dual feed (separate fibre and matrix feeding systems) extrusion.  

 The fibres were well dispersed and well bonded to the matrix. There was no 

distinct fibre orientation in the extrudates.  

 The composites extruded with the single feed system achieved the target fibre 

fraction, but the fibre fraction was substantially lower in the composites 

extruded using the dual feed system. 

 Difficulty was experienced achieving a constant fibre fraction along the 

extrudates, especially when using the dual feed system.   

 Considerable breakup of the elementary fibres occurred during the extrusion 

process, especially for the dual feed system where the fibre length was reduced 

by a factor of 10.   
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 Improvements of 20% in modulus and strength were obtained for the composites 

prepared from hydrogen peroxide/acetic acid treated elementaries over the 

values obtained for the chopped fibre composites.  

 The composites prepared from the nitric acid treated elementaries showed no 

improvement in modulus and strength when compared with the chopped fibre 

composites extruded as rod while the values were consistently lower for the 

composites extruded as strip. 
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CHAPTER 5 

TENSILE PROPERTIES OF FLAX FIBRES AND 

UNIDIRECTIONAL FLAX FIBRE/VINYL ESTER 

COMPOSITES	
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threads. The yarns were held in place in the fabric by transverse threads which had been 

applied every 10 mm, Figure 5.1. ArmorStar® IVSXH210 vinyl ester infusion resin with 

Arkema Luperox® DHD-9 hardener, supplied by CCP Composites US, was used as the 

matrix resin when making the composites. Data sheets for the flax fabric and vinyl ester 

resin are given in Appendix XIV.  

5.3 Experimental Procedures 

5.3.1 Characterisation of Fibres 

5.3.1.1 Optical and Scanning Electron Microscopy 

The flax fibres were examined using an Olympus SZ-STU2 low power optical 

microscope and a Hitachi S3400-X scanning electron microscope (SEM). The fibres 

examined by SEM were first sputter coated with gold using an Emitech K550x sputter 

coater. The SEM was operated in high vacuum mode at an accelerating voltage of 15 

kV.  

5.3.1.2 Measurement of Fibre Length	

The length of the technical fibres was determined for 100 fibres randomly 

selected from a yarn extracted from the unidirectional fabric. The measurements were 

made by ruler to an accuracy of 1 mm.   

5.3.1.3 Fibre Defects 

 Ten technical fibres were extracted from the unidirectional fabric then cut to a 

length of approximately 18 mm. The fibres were sputter coated with gold using an 

Emitech sputter coater, and then examined using a Hitachi S3400-X scanning electron 

microscope operated in high vacuum mode at an accelerating voltage of 15 kV. 

5.3.2 Tensile Testing of Single Technical Fibres 

5.3.2.1 Specimen Preparation 

Single fibre tensile testing was carried out on 113 fibres technical fibres, which 

had been extracted from the unidirectional fabric. Only fibres having a length of 90 mm 

or more were used. Each fibre was glued to a 0.6-mm thick paper tab with a 20-mm 

long slot, as shown in Figures 5.2 and 5.3, using cyanoacrylate adhesive. The specimens 
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Table 5.1: Strain ranges used for determination of tensile modulus  

Nominal Strain at Break or Percent 

Elongation at Maximum Load, ɛ (%) 

Strain Range (%) 

1.2 ≤ ɛ 

0.6 ≤ ɛ < 1.2 

0.5-1.0 

0.5-0.7 

  

5.3.2.4 Weibull Analysis 

The statistical distribution of the fibre strength and strain to failure was 

characterised using the two-parameter Weibull probability density function (PDF)  

   (5.1) 

where  is the shape parameter (Weibull modulus),  is the scale parameter 

(characteristic strength or strain) and    is strength or failure strain of the fibres. The 

two-parameter Weibull cumulative distribution function (CDF) is obtained by 

integration of the Weibull PDF (Virk, Hall & Summerscales, 2009) as follows:    

     (5.2) 

   1     (5.3) 

   1 .    (5.4) 

Multiplying by -1 gives: 

   1 .    (5.5) 

Taking the natural logarithm of both sides gives: 

   1 .   (5.6)  

As ,  

   1 	 .    (5.7) 

Multiplying by -1 gives: 

   	 1 .    (5.8) 

Taking the natural logarithm of both sides gives: 

   	 1 .   (5.9) 
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Since , 

   	 1 	 .   (5.10) 

And since , 

   	 1 	   (5.11) 

	 1 	 .  (5.12) 

Since 	 , 

   	 .   (5.13) 

Equation 5.13 can be written in the form  

    	 	 	 	 .      (5.14) 

where , and  . The Weibull probability plot can then be 

plotted as y versus x (Murty, Xie & Jiang, 2004). The slope is  and the y-axis intercept 

is 	 	 . The scale parameter 	is then obtained as follows: 

    y	intercept 	 slope	      (5.15) 

    ln 	 	 	
 .     (5.16) 

Taking the natural logarithm, 

    	 	
.    (5.17) 

As  , 

    ln 	 	 	
.     (5.18) 

Since ,  

    	 	 	
.   (5.19) 

It is necessary to rank the data from the lowest value to the highest value when the data 

is plotted. The cumulative probability of failure ( , ) is then assigned to each data 

point. The values of ,  are the median rank of the th of  samples tested 

(Fothergill, 1990). The median rank is given by 

    , 	 .

.
.    (5.20) 

Therefore,  is transformed into 
	

. 

 The shape parameter or Weibull modulus ( ) reveals the variation in strength or 

strain distribution. A high value of the Weibull modulus indicates only small scatter in 
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contrast. The true cross-sectional areas ( ) of the technical fibres was determined from 

the images using Image J. To successfully threshold the images it was necessary to 

improve the contrast further and this was done manually by colouring the fibres black. 

 The fibre area correction factor ( ) is given by 

            (5.21) 

where   and  are the measured and true fibre cross-sectional areas, respectively. 

Following the method developed by Virk (2010), the fibre area correction factor was 

calculated from the ratio of the geometric mean of the location parameter of the log-

normal distribution of  and . The log-normal probability density function (PDF) is 

given by  

       	
√

	    (5.22) 

where 	  and    is the fibre area.  is the location parameter, which is the 

arithmetic mean of natural logarithms of the fibre areas (the average of  ).  is also 

the scale parameter, which is the standard deviation of natural logarithms of the fibre 

areas (the standard deviation of ). The geometric mean and geometric standard 

deviation for the fibre area ( ) are then determined from 	  and 	 , 

respectively. The fibre area correction factor is then given by  

    	 	

	
	        (5.23) 

where  and  are the arithmetic means of the natural logarithms of  and , 

respectively and   and   are the geometric means for  and , respectively (Virk, 

2010).  

5.3.2.6 Determination of True Modulus and True Strength 

 Both the elastic modulus and tensile strength are inverse functions of the cross-

sectional area. From equation 5.21, the true area AT is given by  

           (5.24) 

Thus the true values of the modulus E and strength σ are given by  

           (5.25)  

and 

            (5.26) 

where the subscripts T and D refer to the true values and the values determined using the 

measured cross-sectional area, respectively.  
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The breaking force F in Newtons is given by:  

   	       (5.27) 

where S is the breaking force given (gf) 

and g is the acceleration due to gravity (9.80665 m/s2). 

 

The breaking stress σ in MPa is given by: 

   	         (5.28) 

where A is the cross-sectional area (mm).  

 

Assuming constant cross-sectional shape A can be determined from: 

   	
	

      (5.29) 

where D is the linear mass density (mg/m or tex) 

and ρ is the volumetric density (g/cm3). 

 

Thus  

   9.8	 	       (5.30) 

 which reduces to  

   9.8	 	       (5.31) 

where T is the tenacity (gf/tex).        

 

A value of 1.44 g/cm3 (Moran, Alvarez, Petrucci, Kenny & Vazquez, 2007) was used 

for the density ρ of the flax fibres. 

 

The modulus was calculated as the chord modulus over the strain range of 0.14-

0.15 mm/mm. For the calculation, the stress was determined from the tenacity using 

equation 5.31.     
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moulding (VaRTM). The composite panel was post cured at 82oC for 1 hour. 

ArmorStar® IVSXH210 vinyl ester infusion resin catalysed with 1.5 wt% Arkema 

Luperox® DHD-9 was used as the matrix resin with Biotex unidirectional flax fabric as 

the reinforcement. The composite panel was fabricated to have a fibre volume fraction 

Vf
 of 30% based on the mass fractions of the resin and the fabric. The volume fraction 

was determined using the following equation (Huda, Drzal, Mohanty & Misra, 2008):  

   	 100	
⁄

⁄ ⁄
    (5.32) 

where w and ρ are the weight fractions and density, respectively, and the subscripts f  

and m refer to the fibres and matrix, respectively. A value of 1.17 g/cm3 (Meatherall, 

2012) was used for the density of the resin and a value of 1.44 g/cm3 (Moran et al., 

2007) for the density of the fibres. It is noted that the spiral wrapping threads on the 

yarns and the transverse support threads in the fabric were included in the fibre mass 

fraction.   

A panel of the neat vinyl ester resin post cured for at 82oC for 1 hour was also 

prepared by the CIC for determination of the properties of the neat resin.    

5.3.4.2 Tensile Testing of Composites 

 Tensile testing of the cured vinyl ester resin and the 30 volume % unidirectional 

composites was carried out by the Industrial Technology Centre (ITC), Canada, under 

ambient laboratory conditions (22oC and approximately 40% relative humidity) using a 

MTS Landmark load-frame with a Tovey load cell and MTS controller/acquisition 

software. A mechanical extensometer with a 25.4 mm gauge length was used to 

measure strain. The extensometer was removed from the specimens after a strain of 

approximately 0.6% to avoid damage to the extensometer. As a result the strain at 

failure was not recorded. 

 Testing was carried out in accordance with ASTM D638 using dog bone shaped 

specimens having the dimensions shown in Figure 5.13. For the composite samples the 

longitudinal axis was parallel to the fibre direction. In each case five replicate 

specimens were tested. The tensile modulus was determined as the chord modulus at a 

strain range of 0.1% - 0.3% and the ultimate tensile strength determined as the 

maximum stress from the stress-strain curve.   
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analysis and it was necessary to manually enhance the contrast by colouring the fibres 

black. Voids were coloured white so as to be included in the matrix fraction. The 

images were then thresholded and processed using Image J to obtain binary images. The 

fibre volume fraction was determined as the area fraction in these images.  

The fibre volume fraction was determined both including the wrapping threads 

(wrapping threads coloured the same as the fibres) and excluding the wrapping threads 

(wrapping threads coloured the same as the matrix).  

The volume fraction of flax in the unidirectional fabric was also determined 

from its weight fraction. This was done by weighing a piece of the fabric 180 mm x 185 

mm then removing the wrapping threads and transverse threads and weighing them 

separately. The volume fraction of flax was determined using the following equation: 

  	 100	
⁄

⁄ ⁄
    (5.33) 

where w and ρ are the weight fractions and density, respectively, and the subscripts r  

and f refer to the wrapping threads and flax fibres, respectively. 

5.3.4.5 Scanning Electron Microscopy of Fracture Surfaces of 

Composites 

 Fracture surfaces of the tested tensile specimen of the unidirectional flax 

fibre/vinyl ester composites were examined using a Hitachi S3400-X scanning electron 

microscope (SEM) to assess the fibre-matrix adhesion. The SEM was operated in high 

vacuum mode at an accelerating voltage of 15 kV. The fracture surfaces were sputter 

coated with gold using an Emitech K550x gold sputter coater before examination. 

5.4 Results 

5.4.1 Characterisation of Flax Fabric 

Optical microscope images of a yarn from the unidirectional flax fabric are 

shown in Figure 5.14. The spiral wrapping thread on the yarn is clearly evident. Two 

separate counter rotating wrapping threads are in fact present, the first with a spiral 

angle of approximately 30o and the second with a much shallower angle. Scanning 

electron microscope images are shown in Figure 5.15 where the individual fibres are 

readily discernable. The fibres can be seen to be untwisted but are noticeably undulating 

as a result of the presence of the wrapping thread.  

 



 

 

 

 

 

 

 

 

 

Figure 5.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1

 

No

were analy

5.16 and 

rayon. The

 

14: Optica

15: SEM m

o informatio

ysed using 

5.17. and a

e peak assig

al microscop

micrograph

on on the w

FTIR and 

are consiste

gnments for

10

2

pe images o

s of the flax

wrapping thr

Raman spe

ent with the

r the spectra

0 mm 

229 

of a yarn fro

x yarns. 

reads was av

ectroscopy. 

e wrapping 

a are given i

Flax yar

Wrappin

om the unidi

vailable fro

The spectra

thread bein

in Appendix

Wrapping

n 

ng threads 

directional fl

om the supp

a are shown

ng made fr

x XV. 

g threads 

3 mm

lax fabric.  

plier so they

n in Figure

om viscose

m 

y 

e 

e 



 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1

39
6

16: FTIR s

17: Raman

and (b)

63
8

57
5 

51
6 

45
2 

39
6 

spectrum of 

n spectra of

) 514-nm ex

33
26

 
63

8 

23

f wrapping t

f wrapping 

xcitation. 

29
10

 

10
95

 

89
7 

30 

threads from

threads fro

13
40

 

m flax fabric

om flax fab

16
40

 

14
21

13
67

14
62

 

13
73

 

c. 

bric using (

14
21

 
13

67
 

13
38

 
13

12
 

12
61

 
12

28
 

89
3

(a) 785-nm 

89
3 

(a) 

(b) 



 

5.4.2 De

Th

yarns. The

as shown 

10 technic

Table 5.2.

was a con

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1
 

 

 

 

 

 

 

 

fect Dens

he fibre def

e defects ob

in Figures 

cal fibres ov

. The fibres

siderable va

18: SEM m

sity of Fla

fects were e

bserved wer

5.18 to 5.2

ver a length

s contained

ariability wi

micrograph

2

ax Fibres

examined i

re kinks, no

21, respectiv

h of approx

d on averag

ith the stand

s of the flax

231 

n technical

odes, micro-

vely. The d

ximately 20

e 31 defect

dard deviati

x technical f

 fibres extr

-compressio

defect densit

 mm and th

ts per mm 

ion being 39

fibres show

racted from

ons, and ini

ity was dete

he results a

length, alth

9%. 

wing kinks (a

m the fabric

itial breaks,

ermined for

are given in

hough there

arrowed). 

c 

, 

r 

n 

e 



 

 

 

 

 

 

 

 

 

 

Figure 5.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

 

 

 

19: SEM m

20: SEM 

compre

micrographs

micrograph

essions (arro

23

s of the flax 

hs of the 

owed). 

32 

 technical fi

 flax tech

fibres showi

hnical fibr

ng nodes (a

res showin

arrowed).  

ng micro-



 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

Table 5.2

Sa

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Av

SD

SD

 

5.4.3 Fla

5.4.3.1 F

A 

Figure 5.2

21: SEM 

(arrow

: Defect

ample No.  

0 

verage (De

D (Defects/

D (%) 

ax Techni

Fibre Leng

histogram 

22. The data

micrograph

wed). 

ts in flax tec

Fibre Len

17.87 

19.03 

18.47 

15.38 

16.66 

18.05 

17.99 

15.91 

18.20 

17.57 

fects/mm)

mm) 

ical Fibre

gth 

showing th

a has a norm

2

hs of the f

chnical fibr

ngth (mm)

es 

he measure

mal distribu

233 

flax technic

res 

No. o

763 

718 

819 

458 

308 

286 

263 

694 

406 

634 

d length of

ution. The fi

cal fibres 

f Defects 

f the techni

ibre length r

showing in

Defects/m

43 

38 

44 

30 

18 

16 

15 

44 

22 

36 

31 

12 

39 

ical fibres 

ranged from

nitial break

mm

is given in

m 39 mm to

k 

n 

o 



 

170 mm w

(27%). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

5.4.3.2 D

The

orthogonal

gauge leng

testing. Th

being mea

diameters i

A h

distribution

fibre diam

respectivel

µm.   

The

diameters 

5.25. The p

with the av

22: Histogr

Diameter a

e average f

l directions 

gth for the 

he fibres ha

asured. A 

is shown in 

histogram s

n can be see

meters, with

ly. The ove

e cross-sec

and assumi

positive ske

erage lengt

ram showin

and Cross-

fibre diame

at 18 appr

113 technic

ad been co

typical op

Figure 5.23

showing the

en to be pos

h the minim

erall average

ctional area

ing the fibr

ewedness is 

23

th being 93

ng lengths o

-Sectional

eter was det

roximately 

cal fibres th

onditioned a

ptical micro

3.  

e average fi

sitively ske

mum and 

e diameter 

a of the f

res to be c

now particu

34 

3 mm with 

of flax techn

l Area of 

termined fr

equally spa

hat were su

at 23oC an

oscope ima

fibre diamet

ewed. There

maximum 

was 82 µm

fibres deter

ircular in c

ularly evide

a standard

nical fibres.

Flax Tech

rom measur

aced locatio

ubsequently

d 50% rela

age used t

ters is given

e is consider

values bei

m with a stan

rmined from

cross-section

ent. The min

deviation 

hnical Fib

rements ma

ons along th

y used for s

ative humid

o measure 

n in Figure

rable variab

ng 41 and

ndard devia

m the ave

n is shown

nimum and 

of 25 mm 

bres  

ade in two 

the 20 mm 

single fibre 

dity before 

the fibre 

e 5.24. The 

bility in the 

d 135 µm, 

ation of 21 

erage fibre 

n in Figure 

d maximum 



 

and cross-

µm2 with 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

 

-sectional ar

a standard d

23: Typica

24: Histog

reas were 1

deviation of

al optical m

gram of mea

2

,290 and 14

f 2,851 µm2

microscope i

asured diam

235 

4,356 µm2, w
2.  

mage of fla

meters of fla

with the ave

ax technical 

x technical 

erage area b

fibre. 

fibres. 

500 

being 5,631

µm

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

5.4.3.3 F

Exa

Figure 5.2

for all 113 

 

 

 

 

 

 

 

 

Figure 5.2

 

 

 

 

25: Histogr

Fibre Area

amples of t

6 while the

fibres exam

26: Examp

50 µm 

ram of mea

a Correctio

the true cro

e cross-secti

mined in Ap

ples of cross

23

asured cross

on Factor

ss-sectional

ional shape

ppendix XV

s-sectional s

50 

36 

s-sectional a

r 

l shape of t

e and the tru

VI.  

shape of tec

µm 

areas of flax

the technica

ue cross-sec

chnical fibre

x technical f

al fibres are

ctional area

es. 

50 µm 

fibres. 

e shown in 

a are given 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2

 

27: Histog

28: Log-n

flax te

gram of true

ormal distr

echnical fibr

2

e cross-secti

ributions of 

res.  

237 

ional areas o

f measured 

of flax techn

and true cr

hnical fibres

ross-section

. 

nal areas off 



 

A h

Figure 5.27

lower with

value of 2,

Log

shown in 

equation 5

and scale p

the geomet

( ) determ

 

Table 5.3:

 

Location

Scale par

Geometr

Geometr

 

5.4.3.4 Te

A t

stress-strai

 

 

 

 

 

 

Figure 5.2

histogram o

7. The distr

h the minimu

205 µm2 an

g-normal d

Figure 5.2

5.22 are giv

parameter o

tric mean a

mined using 

 Locatio

standar

flax tec

n parameter 

rameter ( )

ric mean ( )

ric standard

Tensile Pro

technical fi

in curves are

29: Tested 

of the true c

ribution is a

um and max

nd a standar

distributions

28. The dat

ven in tabul

f the log-no

and geometr

equation 5.

on paramet

rd deviation

chnical fibre

( ) 

) 

) 

d deviation (

operties of

fibre is sho

e shown in 

flax fibre s

23

cross-section

again positiv

ximum valu

rd deviation 

s of the me

ta for the 

lated form 

ormal distrib

ric standard

23 was 2.70

ers, scale p

n of the me

es 

Fibr

Mea

( ) 

8.50

0.53

4,92

1.71

f Flax Tec

own after te

Figure 5.30

specimen in 

38 

nal areas of

vely skewed

ues being 50

n of 1,413 µm

easured an

log-normal

in Appendi

butions are 

d deviation.

0. 

parameters, 

easured and

re Cross-Se

asured Are

0 

3 

29 µm2 

1 µm2 

chnical F

esting in F

0. In most ca

n the univers

f the techni

d, but the va

06 and 6,69

m2. 

d true cros

l distributio

ix XVII. Th

given in Ta

. The fibre 

geometric 

true cross-

ectional Ar

ea ( ) 

Fibres  

Figure 5.29

ases the cur

sal testing m

cal fibres is

alues are su

90 µm with 

ss-sectional

ons, calcula

he location 

able 5.3, tog

area correc

mean and 

-sectional ar

rea 

True Are

7.51 

0.62 

1,827 µm2

1.86 µm2 

while repr

rves showed

machine. 

s shown in 

ubstantially 

an average 

l areas are 

ated using 

parameter 

gether with 

ction factor 

geometric 

areas of the 

ea ( ) 

2 

resentative 

d an initial  



239 
 

0
100
200
300
400
500
600

0 0.005 0.01 0.015 0.02

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0
100
200
300
400
500
600

0 0.01 0.02 0.03 0.04

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0

200

400

600

800

0 0.01 0.02 0.03

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0
100
200
300
400
500
600

0 0.01 0.02 0.03

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0
100
200
300
400
500
600

0 0.005 0.01 0.015 0.02

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0

100

200

300

400

500

0 0.005 0.01 0.015 0.02

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0
50

100
150
200
250
300

0 0.01 0.02 0.03

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

0

200

400

600

800

0 0.01 0.02 0.03

S
tr

es
s 

(M
P

a)

Strain (mm/mm)

run-in period (usually to strains of less than 0-0.005 mm/mm), after which they were 

linear. Small abrupt load drops (of approximately 3%) were frequently seen towards the 

end of the test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30:  Representative tensile stress-strain curves of flax technical fibres. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3

 

31: Histogr

32: Histogr

ram of mea

ram of mea

24

asured tensil

asured tensil

40 

le modulus 

le strength o

of flax tech

of flax techn

hnical fibres

nical fibres.

s. 

. 



 

Hi

given in F

measured 

applied. T

failure app

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3

 

Table 5.4

Proper

Modulu

Strengt

Failure

 

Th

standard d

from the r

19.4 GPa 

stograms sh

Figures 5.3

cross sectio

The modulu

peared to be

33: Histog

:  Measu

rty 

us (GPa) 

th (MPa) 

e Strain (%)

he minimum

deviations a

range of valu

with a stand

howing the 

1-5.33. The

onal area of

us values sh

e slightly po

gram of mea

ured tensile 

Ave

Val

19.4

347

) 1.8

m and maxi

are given in

ues and also

dard deviati

2

tensile mod

e modulus a

f the fibres

how a norm

ositively ske

asured strain

properties o

erage 

ue 

St

D

4 7.

 13

0.

imum value

n Table 5.4

o from the s

ion of 7.4 G

241 

dulus, tensil

and strength

, i.e., the ar

mal distribut

ewed.  

n to failure 

of flax techn

tandard 

eviation 

4 

36 

5 

es, together 

. The data 

standard dev

GPa (38%), 

le strength a

h have been

rea correctio

ion but the 

of flax tech

nical fibres 

Minimu

Value 

3.9 

106 

0.7 

with the a

shows wide

viations. Th

the tensile 

and strain to

n calculated

on factor ha

 strength an

hnical fibres

um Max

Valu

36.9

738 

3.2 

average valu

e scatter, as

he tensile m

strength wa

o failure are

d using the

as not been

nd strain to

s. 

ximum 

ue 

 

ues and the

s is evident

modulus was

as 347 MPa

e 

e 

n 

o 

e 

t 

s 

a 



242 
 

with a standard deviation of 136 MPa (39%), while the strain to failure was 1.8% with a 

standard deviation of 0.5% (28% of average value).   

 

Table 5.5: True tensile properties of flax technical fibres 

Property Average 

Value 

Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

Modulus (GPa) 52.4 20.0 10.5 99.6 

Strength (MPa) 936 368 286 1993 

Failure Strain (%) 1.8 0.5 0.7 3.2 

 

The true tensile properties, determined using the measured area correction factor 

K of 2.70, are given in Table 5.5. The true modulus was 52.4 GPa with a standard 

deviation of 20.0 GPa while the true strength was 936 MPa with a standard deviation of 

368 MPa. Strain to failure is independent of cross sectional area so the true strain to 

failure is the same as the measured strain to failure.   

5.4.3.5 Weibull Analysis 

 The Weibull probability plots for the true tensile strength and strain to failure of 

the flax fibres are shown in Figures 5.34 and 5.35, respectively. The data for the 

Weibull plots, calculated using equations 5.13 and 5.20 are given in tabulated form in 

Appendix XVIII. 

 The Weibull modulus was determined from the slope of the Weibull probability 

plots, while the scale parameter (characteristic strength or strain) was determined from 

the plots using equation 5.19. The tensile properties and two-parameter Weibull 

probability (  and ) are given in Table 5.6. 
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Table 5.6: True tensile properties of flax technical fibres and their Weibull modulus 

and scale parameters (values in brackets represent one standard 

deviation) 

Tensile Property Value Weibull 

Modulus 

( ) 

Scale 

Parameter 

( ) 

True strength 936 (368)  MPa 2.92 1,047 MPa 

Strain to failure 1.83 (0.49)% 4.33 2.00% 

 

5.4.4 Testing of Fibre Bundles 

5.4.4.1 Tensile Properties of Fibre Bundles 

Representative stress-strain curves for the flax fibre bundle tests are shown in 

Figure 5.36. The curves show a distinct run-in period up to a strain of approximately 

0.11-0.12 mm/mm. Thereafter, the slope increased rapidly with the curves being 

essentially linear but then eventually showing a reduction in slope, sometimes with 

small load drops, before final failure occurred. The run in period is considered to be due 

to settling in of the Stelometer clamps in the aluminium fixture. The tensile test data for 

the flax fibre bundles is given in tabulated form in Appendix XIX. 

 

 

 

 

 

 

 

 

 

 

Figure 5.36:  Representative tensile stress-strain curves of flax fibre bundles. 
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Optical micrographs and SEM images of longitudinal sections perpendicular to 

the surface of the composites are shown in Figures 5.44 and 5.45 while longitudinal 

sections parallel to the surface are shown in Figure 5.46. Both longitudinal sections 

show undulation of the fibres as was also evident in the dry flax yarns shown in Figure 

5.15.  Separation of the fibres from the matrix is again evident in the SEM micrographs, 

Figure 5.45. In some cases, this has led to sections of the fibres being removed from the 

surface during the grinding and polishing process leaving only imprints of their original 

shape. Some fibrillation of the fibres as a result of grinding and polishing can also be 

seen.    

5.4.5.2 Fibre Volume Fraction	

The transverse SEM images used for measuring the fibre volume fraction, 

together with the resulting binary images, both including and excluding the wrapping 

threads, are given in Figures 5.47 to 5.49 while the results of the measurements are 

given in Table 5.8. The measured fibre volume fraction with the wrapping threads 

included was 31.0% with a standard deviation of 1.4% (4.5% of measured value), which 

is consistent with the targeted value of 30% determined from the weight fractions used 

to make the composites. The volume fraction of the flax fibres alone (i.e., excluding the 

wrapping threads) was 25.0% indicating that the wrapping thread made up 19.4 volume 

% of the fabric.      

  The volume fraction of the wrapping threads plus the transverse threads was 

also determined from weight fraction measurements as described in Section 5.3.4.4. The 

volume fraction was calculated from the weight fraction using equation 5.33. A value of 

1.44 g/cm3 was used for the density of the flax fibres (Moran et al., 2007) and a value of 

1.49 g/cm3 for the viscose rayon (Hearle, 2001). The calculated volume fraction of 

viscose rayon in the flax fabric was 21.0%. This higher volume fraction is to be 

expected since the transverse threads as well as the wrapping threads have now been 

included in the viscose rayon fraction. 
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Table 5.8: Fibre volume fraction of unidirectional composites and flax fibre 

contents in unidirectional flax fabrics 

Image 

No. 

Fibre Volume Fraction (%) Wrapping 

thread (%) including wrapping 

threads 

excluding wrapping 

threads 

1 29.4 23.0 21.8 

2 32.0 25.5 20.3 

3 31.6 26.5 16.1 

Average 31.0 25.0 19.4 

SD 1.4 1.8 2.9 

 

5.4.5.3 Tensile Properties of Unidirectional Composites  

 The tensile stress-strain curves of the unidirectional composites and neat vinyl 

ester resin are shown in Figures 5.50 and 5.51, respectively. The strain was recorded 

only up to 0.6% after which the extensometer was removed. For the composites, the 

curves all exhibited a knee centred at a strain of approximately 0.2% after which the 

slope decreased by approximately 40%. However, all the curves of the neat matrix resin 

were linear. 

The measured tensile properties of the neat matrix resin and the unidirectional 

composites are given in Table 5.9. The resin had a modulus of 3.62 GPa with a standard 

deviation of 0.02 GPa (0.6%) and a strength of 59.8 MPa with a standard deviation of 

4.1 MPa (7%). The modulus of the composites was 13.2 GPa with a standard deviation 

of 0.4GPa (3%) while the strength was 122 MPa with a standard deviation of 5 MPa 

(4%). 

It is noted that all the specimens failed at the end of the parallel sided section of 

the dog bone specimens, as shown in Figure 5.52. However, substantial cracking was 

also seen within the parallel sided region, Figure 5.53 indicating that failure had 

initiated in this region also. It is therefore considered that the measured values provide a 

reliable estimate of the strength.  
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5.5.2 Technical Fibres	

5.5.2.1 Fibre Area Correction Factor 

 Conventionally, the mechanical properties of technical fibres have been 

determined assuming the fibres to be circular with a diameter equal to their measured 

width. As noted by Virk, Hall & Summerscales (2012) and Thomason et al. (2011), this 

leads to substantial error since the fibres are not generally circular in section, as was 

confirmed in the present study from a detailed examination of fibre cross-sections. 

Accordingly, a fibre area correction factor K was determined from 

measurements made on 113 technical fibres using the method developed by Virk, Hall 

& Summerscales (2009) and subsequently used by Thomason et al. (2011). The results 

gave a fibre area correction factor of 2.70. This is close to the value of 2.55 obtained by 

Thomason et al. (2011) for flax fibres. However these values are substantially higher 

than the value of 1.99 obtained by Thomason et al. (2011) for sisal fibres, the value of 

1.47 determined from data published by Terasaki, Goda & Noda (2009) for kenaf fibres 

and the value of 1.42 obtained by Virk, Hall & Summerscales (2012) for jute fibres. 

Collectively, these results indicate that the fibre area correction factor varies 

substantially for different types of fibre. 

5.5.2.2 Tensile Properties of Technical Fibres  

 As noted in Section 5.4.3.4, small abrupt load drops were frequently observed in 

the stress-strain curves of the technical fibres towards the end of the test. Similar 

behaviour has also been reported for technical flax fibres by Romhány, Karger‐Kocsis 

& Czigány (2003), although stress strain curves published by other workers do not show 

detectable load drops (Baley, 2002; Hu et al., 2010). As in the present study, Romhány, 

Karger‐Kocsis & Czigány (2003) found that load drops occurred in only some of the 

stress strain curves and this may account for their absence in the curves published by 

Baley (2002) and Hu et al. (2010).  

Romhány, Karger‐Kocsis & Czigány (2003) considered the load drop to be due 

to transverse microcracking in the elementary fibres. Their proposed failure mode for 

the fibres is discussed later in this section. The load drops are also similar to those seen 

by Ward, Tabil, Panigrahi, Crerar, Powell, Kovacs & Ulrich (n.d.) when testing flax 

yarns. These authors attributed the load drops to breakage of individual fibres in the 

yarn. Since these tests were strain-controlled the load will drop when an individual fibre 
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breaks. Breakage of individual elementary fibres within a technical fibre should 

likewise produce a load drop, consistent with the proposal of Romhány, Karger‐Kocsis 

& Czigány (2003). 

The tensile modulus and strength of the technical fibres, measured assuming a 

circular cross section (“measured” values), were 19.4 GPa and 347 MPa respectively. 

The adjusted values taking into account the true fibre cross-sectional area (“true” 

values) were 52.4 GPa and 936 MPa, respectively. The failure strain (both measured 

and true) was 1.8%. The individual results showed substantial variability, as is common 

for natural fibres (Virk, Hall & Summerscales, 2012) with the standard deviations being 

approximately 40% of the average values for the modulus and strength and 

approximately 30% for the strain to failure.  

The tensile properties of natural fibres (excluding their modulus) vary 

substantially with test gauge length as shown, for example, by Virk, Hall & 

Summerscales (2009). For this reason the following discussion is limited to studies 

which used a 20 mm gauge length, as in the present study. The most relevant data is that 

obtained for flax by Thomason et al. (2011), since they also used an area correction 

factor. The flax fibres were conditioned at 23 ± 1oC and 50 ± 10% relative humidity for 

24 hours before the testing, as in the present work. They present results for a gauge 

length of 20 mm for only three samples; these gave a modulus of 49.8-53.6 GPa, a 

strength of 611-940 MPa and a strain to failure of 1.23-2.13%. These results are in quite 

good agreement with the results of the present study.  

In their work, Thomason et al. (2011) used the cross-sectional area measured on 

the remnant section of each fibre attached to the paper tab to determine the modulus and 

strength. Thus each calculation used the actual cross-sectional shape. The present study 

used the procedure developed by Virk (2010) which involved multiplying the measured 

fibre diameter by a constant area correction factor which was determined from other 

untested fibres from the same batch. This assumes that each fibre differs from being 

circular by the same factor and does not account for differences from fibre to fibre. 

Nonetheless, the good agreement with the results obtained by Thomason et al. (2011) 

indicates that this procedure gives reasonably accurate results. 

Romhány, Karger‐Kocsis & Czigány (2003) also determined the tensile strength 

of flax technical fibres with a 20 mm gauge length. Fifty fibres were tested. The fibre 

cross-sectional area was determined assuming the fibres to be circular in shape (i.e., 
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from their measured diameters) so these results are best compared with the “measured” 

strength from the present study. Romhány, Karger‐Kocsis & Czigány (2003) obtained a 

tensile strength of 613 MPa compared with 347 MPa from the present work. However, 

their standard deviation of 72% (442 MPa) was almost double that obtained here. The 

difference in tensile strength may be due to differences in climate, soil conditions, 

processing techniques, etc (Feng et al., 2001; Munder, Fürll & Hempel, 2005). 

However, the true significance of this difference is difficult to assess in view of the 

large variability in their data.       

Thomason et al. (2011) also examined the tensile properties of sisal fibres. As 

with the flax fibres, only three samples were tested at the 20 mm gauge length. The true 

tensile modulus, true tensile strength and measured failure strain were 16.9-24.1 GPa, 

342-765 MPa, and 2.03-3.44%, respectively. These results indicate that the modulus 

and strength of sisal are significantly lower than those of flax, as has been found by 

other workers (Bismarck, Mishra & Lampke, 2005).       

Virk et al. (2009) measured the tensile properties of jute fibres with a 20 mm 

gauge length. One hundred fibres were tested. As noted in the previous section, they 

obtained a fibre area correction factor of 1.42. Using this, their true elastic modulus was 

44.0 GPa with a standard deviation of 9.9 GPa (23%), their true strength was 573 MPa 

with a standard deviation of 199 MPa (35%), and their failure strain was 1.29% with a 

standard deviation of 0.30% (23%). The true modulus and strength values are 

substantially lower than those obtained in the present study although the measured 

values (31.0 GPa and 403 MPa, respectively) are actually higher. This apparent 

anomaly arises because of the very substantial difference in the area correction factors 

for flax and jute. 

It is noted that when expressed as a percentage, the standard deviations obtained 

by Virk et al. (2009) were similar to those obtained in the present study for strength and 

strain to failure but the standard deviation for the modulus was only 61% of that 

obtained here. 

Zakaria (2014) determined the measured tensile properties for thirty untreated 

kenaf fibres with a 20 mm gauge length. The fibres were conditioned at 23oC and 51% 

relative humidity for 1 week before testing. The tensile modulus, tensile strength and 

failure strain were 13.0 GPa with a standard deviation of 5.8 GPa (45%),  184 MPa with 

a standard deviation of 99 MPa (54%), and 1.3% with a standard deviation of 1.1% 
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(85%), respectively. These measured strength and modulus values are substantially 

lower than the “measured” values for flax obtained in the present study, as has been 

commonly reported (Ashby, 2013; Liu et al., 2007; Bismarck, Mishra & Lampke, 

2005).  

Xue et al. (2009) also examined the measured tensile properties of 30 kenaf 

fibres with a 20 mm gauge length. Prior to testing, the fibres were conditioned at 23oC 

and 30-40% relative humidity for a minimum of 48 hours. Their measured modulus was   

12.7-17.2 GPa, their measured tensile strength was 146 to 223 MPa, and their failure 

strain was 1.12 to 1.46%. These results match well with those of Zakaria (2014).       

The Weibull modulus values obtained in the present work were 2.9 for strength 

and 4.3 for strain to failure. These values are slightly lower than the values obtained by 

Virk et al. (2009) for jute, which were 3.2 and 5.0, respectively, indicating that the 

scatter was slightly higher in the present case despite the similarity in number of 

specimens tested. The values were however higher than those obtained by Romhány, 

Karger‐Kocsis & Czigány (2003) for flax fibres (1.5) and Zakaria (2014) for kenaf 

fibres (1.9), both of whom only provided a Weibull modulus for strength. Their lower 

values probably reflect, at least in part, the smaller number of specimens tested 

(Sullivan & Lauzon, 1986; van der Zwaag, 1989).      

5.5.3 Fibre Bundle Tests 

5.5.3.1 Tensile Properties of Fibre Bundles 

Single fibre tests, as discussed in the previous section, are very time consuming 

and this limits their usefulness as a means of mechanically grading fibre batches. The 

flat fibre bundle test (ASTM D1445/D1445M-12; Burley and Carpenter, 1955) is 

reported to be a simpler test for mechanically characterizing fibres (ASTM 

D1445/D1445M-12; Burley and Carpenter, 1955) and was therefore evaluated using 

fibres from the same batch of fabric as were used in the single fibre tests. The test was 

developed more than 50 years ago and has been standardised in ASTM 

D1445/D1445M-12. It is widely used in the textiles industry for grading cotton.   

The tests gave a tenacity of 28.4 gf/tex with a standard deviation of 3.3 gf/tex 

(12%) which converts to a tensile strength of 401 MPa with a standard deviation of 47 

MPa (12%). The calculated modulus was 5.1 GPa with a standard deviation 1.0 GPa 

(20%). The calculations do not require measurement of cross sectional area since they 



264 
 

use the linear mass density instead. Strength and modulus are determined from the test 

data using the volumetric density of the fibres, therefore the values obtained do not 

require correction using the area correction factor. As a result, they should be compared 

with the true values obtained from single fibre testing. The strength is however half the 

true strength obtained from the single fibre tests while the modulus is only one tenth the 

true single fibre value. 

The reason for the discrepancy in the modulus value is readily apparent from 

examination of the stress strain curves given in Figure 5.36. Neglecting the run-in 

period at the start of the test, the measured strain to failure is still typically about 10% 

compared with less than 2% for the single fibre tests. ASTM D1445/D1445M-12 notes 

that slippage of the fibres in the clamps occurs and a correction factor of 0.8 is included 

in the equation provided for calculating the elongation. This would account for only a 

small part of the excess strain observed in the present work. 

It is considered that the remaining excess strain is due to additional strain 

occurring in the system. One possibility is shear deformation in the leather pads which 

are used to face the Stelometer clamps to avoid damage to the fibres, as shown 

schematically in Figure 5.56. It was necessary to replace the leather pads before the tests 

were conducted and glove leather was used since it was of an appropriate thickness 

(0.85 mm). It may be that this leather was excessively compliant. In view of the short 

gauge length of 3.2 mm, shear deformation of 0.16 mm in the leather facings of each of 

the two clamps would be sufficient to produce the entire observed strain of 10%. 

Thygesen, Madsen, Bjerre & Lilholt (2011) measured the tensile strength of flax 

and hemp flat fibre bundles using a universal testing machine fitted with Pressley 

clamps (the clamps from the Pressley instrument). In this case the gauge length used 

was 3.0 mm and the tested fibre bundle length was 14.8 mm. The fibre bundles were 

conditioned at 23 ± 2oC and 50 ± 10% relative humidity.  The tensile strength ranged 

from 238 to 482 MPa for the flax fibres, which is in good agreement with the value of 

401 MPa obtained in the present study. Somewhat higher values of 396 to 998 MPa 

were obtained for the hemp fibres. The fibres were reported to have different strengths 

depending on the type of processing used (dew retting, fungal retting, water retting, 

scutching, carding and cottonization).  

Sengloung, Kaveeta & Müssig (2008) examined the tensile strength of the hemp 

fibre bundles using a Stelometer at 3.2 mm gauge length. The fibre bundles were 
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can be seen that the bundle strength is substantially lower than the single fibre strength 

in all cases ranging from 43% for flax to 77% for kenaf. The data for kenaf is however 

an overestimate since the single fibre data does not include an area correction factor. 

Kenaf is generally considered to be similar to jute. Using the area correction factor of 

1.47 for kenaf obtained from the work of Terasaki, Goda & Noda (2009) the bundle 

strength reduces to 52% of the single fibre strength, Table 5.10. 

 

Table 5.10: Comparison of single fibre and bundle strengths 

Fibre Single fibre 

strength 

(MPa) 

 

Bundle 

strength 

(MPa) 

Bundle strength as 

percentage of single 

fibre strength  

(%) 

Flax 936 401 43 

Jute 5731 3072 54 

Kenaf 1843 1414 77 

Kenaf (corrected) 2705 141 52 
               1Virk et al. (2009) 
               2Parmar (2012) 
               3Zakaria (2014) 
               4Parmar (2011) 
               5includes area correction factor of 1.47 
 

Daniel & Ishai (1994) report that the bundle strength can be as low as 70% of 

the average fibre strength but the results above give an average value of only 50%. The 

data considered by Daniel & Ishai (1994) would almost certainly be data obtained from 

synthetic fibres. Natural fibres have more scatter in their strength than synthetic fibres, 

as indicated by their generally lower Weibull moduli (Pardini & Manhani, 2002; Qiu & 

Schwartz, 1993) and this would be expected to reduce the bundle strength. 

The bundle strength is to be expected to be lower than the average single fibre 

strength since, because of differences in the strength of the individual fibres, the fibres 

will fail progressively as the load increases. This increases the load on the remaining 

fibres. Eventually, failure of one fibre will cause the load on the remaining fibres to 

exceed their strength and catastrophic failure of all the remaining fibres in the bundle 

will occur. The bundle strength is calculated as the load at catastrophic failure divided 

by the cross sectional area of all the fibres. Since some of the fibres have already failed 
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prior to catastrophic bundle failure, the bundle strength will clearly be less than the 

average strength.  

To examine the results further, the fibre bundle strength was modeled for the 

flax fibres using the results obtained from the single fibre tests. Since the bundle tests 

carried out in the present work were done under strain control (i.e., loaded using 

crosshead displacement), the fibres were sorted from the lowest strain to failure to the 

highest strain to failure. Ten fibre bundles, each with eleven fibres, were then 

constructed from the set of fibres by taking the results for every tenth fibre. This 

required that the 113 fibres tested be reduced to a multiple of ten and so the results for 

the two fibres with the lowest strain to failure and the one with the highest strain to 

failure were discarded. The first bundle started with the first fibre in the 110 fibre set, 

the second bundle with the second fibre in the set, etc.  

 Under strain control, the fibre with lowest strain to failure will break first, 

followed by the fibre with the second lowest strain to failure, etc. To simulate this, the 

load in each fibre was calculated at the point of first fibre failure. The load was 

calculated by multiplying the stress in each fibre by its cross-sectional area. In turn, the 

stress in each fibre was determined as the product of the modulus of the fibre and strain 

at the point of first fibre failure. It was noticed that the stress at failure calculated in this 

manner was not identical to the strength of the fibres and the measured failure strains 

were adjusted so as to exactly equal the strength divided by the modulus.  

 

 

  

 

 

 

 

 

 

 

 

Figure 5.57:  Simulated load-strain curve for Bundle 9. 
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Once the load in each fibre was determined, the load at break of the first fibre 

was then determined as the sum of the load in each fibre. Under strain control, failure of 

a fibre will lead to a load drop and this was simulated by subtracting the load in that 

fibre from total load calculated above. The procedure was then repeated for the fibre 

with second lowest strain to failure, etc, until all fibres had broken. The procedure is 

illustrated in Figure 5.57. It can be seen that the load rises to a maximum, in this case 

after the third fibre failure, then decreases. The bundle strength for each of the simulated 

bundles was determined as the maximum load divided by the sum of the cross sectional 

area of all eleven fibres in the bundle. The bundle strength for each of the ten simulated 

bundles, together with the number of fibre breaks required to initiate failure is given in 

Table 5.11. The curve shown in Figure 5.57 is for Bundle 9 which had the average 

number of initial fibre breaks and approximately the average fibre bundle strength. 

 

Table 5.11: Results from simulated fibre bundle tests 

Bundle No. Bundle Strength 

(MPa) 

Fibre failures required to 

cause catastrophic failure  

1 482 1 

2 472 3 

3 579 3 

4 515 1 

5 598 1 

6 569 4 

7 636 3 

8 488 2 

9 627 3 

10 733 5 

Average 570 3 

Standard deviation  83 1 

 

 The load strain curve shown in Figure 5.57 extends out to a strain of 3% 

whereas the experimental bundle tests had a typical strain at failure of 10%. As noted 

above this is considered to be due to additional strain in the system. Assuming this 

additional strain to be elastic and linearly proportional to stress, the strain was corrected 
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at each data point to give a strain of 10% at maximum load. The corrected data is 

plotted in Figure 5.58.  

 

  

 

 

 

 

 

 

 

 

 

Figure 5.58:  Corrected simulated load-strain curve for Bundle 9. 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.59: Simulated experimental load-strain curve for Bundle 9. 

 

In this simulation, each load drop produces a corresponding drop in the 

additional strain (due to elastic recovery) and the maximum strain now corresponds 

with the maximum stress. Fibres that broke at strains above the strain at maximum load 

in Figure 5.57 now break at strains below the strain at maximum load since the 

additional strain contribution from the system diminishes as the load diminishes. This is 

because the elastic recovery in the system requires that extra strain occur in the fibres to 
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compensate for the strain recovery in the system. As a result all remaining fibres will 

fail once the strain reaches the maximum value in Figure 5.58.   

The resulting load displacement curve is shown in Figure 5.59. Since strain 

drops are not possible under strain control, the load drops associated with fibre failure 

occur at constant strain. The curve now resembles the curves obtained experimentally, 

neglecting the effect of run-in 

It can be seen from Table 5.11 that failure occurred in the ten simulated bundles 

after 1 to 5 fibre breaks with the average number of initial breaks being 3. The average 

bundle strength was 570 MPa which is 42% higher than the measured bundle strength, 

but still is only 61% of the single fibre strength. It is noted that the effect of gauge 

length was not taken into account in the simulations. The shorter gauge used for the 

bundle tests (3.2 mm) than for the single fibre tests (20 mm) should mean that the 

individual fibres in the bundle tests had on average higher strength than their measured 

single fibre values. This would increase the simulated bundle strengths, making the 

difference between the experimental values and simulated values even greater. While 

qualitatively the simulations give quite good agreement with the experimental 

observations, it is clear that at a quantitative level the situation is more complex than   

considered here.  

It is noted that the scatter in the results obtained from the bundle tests, both 

experimental and simulated, was much lower than that obtained from the single fibre 

tests, as is evident from the standard deviations differing by approximately a factor of 2. 

This is not surprising since several fibres are involved in the test and this should have an 

averaging effect. Because of the lower scatter, the bundle test is more discriminating 

than the single fibre test indicating that it should be more useful for identifying batch to 

batch variation. It is understood that this is in fact its role in the cotton industry.  

5.5.3.2 Fracture of Flax Fibres 

 It was not possible to examine the mechanism of fracture in the flax fibres after 

single fibre testing because the fibres disintegrated when they broke. However, it was 

possible to examine the fractures in the fibres after bundle testing. The features of the 

fractured fibres were similar to those reported by other workers (Baley, 2002; 

Romhány, Karger‐Kocsis & Czigány, 2003) with longitudinal separation, transverse 

fibre cracking and zigzag fracture being observed. 
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The processes described above are shown schematically in Figure 5.62. 

Eventually multiple fracture of the elementary fibres and their microfibrils occurs, often 

along a rather long fibre length, resulting in final failure. The final fracture mechanism 

is consistent with the disintegration of the fibres seen in the single fibre tests in the 

present study.  

5.5.4 Unidirectional Flax Fibre/Vinyl Ester Composites 

5.5.4.1 Tensile Properties of Unidirectional Composites 

(5.5.4.1.1) Stress-Strain Behaviour  

 The tensile stress-strain curves consisted of two essentially linear regions 

separated by a distinct knee, Figure 5.50 which occurred at a strain of approximately 

0.2%. The slope of the curves decreased by approximately 40% after the knee.  

Similar behaviour has been reported previously by Hughes, Carpenter & Hill 

(2007) for flax fibre/polyester composites, by Ruys (2007) for both flax/epoxy and 

hemp/epoxy composites, by Abdullah, Khalina & Ali (2011) for kenaf/epoxy 

composites and by Zakaria (2014) for kenaf/polyester composites.  

Hughes, Carpenter & Hill (2007) undertook loading/unloading experiments on 

either side of the knee, and found that the behaviour of the composite was fully 

reversible before the knee but that some irreversible behaviour occurred after the knee. 

They attributed the occurrence of the knee to the behaviour of kink bands present in the 

fibres during loading. Below the knee, the kink bands were considered to have no effect 

on the deformation behaviour, but above the knee they were considered to produce 

microstructural damage to the composite, which reduced its stiffness and produced a 

component of irreversible behaviour. However, Abdullah, Khalina & Ali (2011) 

considered that the knee was caused by the behavior of the matrix and did not involve 

any contribution from the kenaf fibres. This is unlikely to be the case in the present 

study since the stress strain curves for the matrix material showed no evidence of a 

knee, Figure 5.51.  

(5.5.4.1.2) Calculation of Fibre Modulus and Strength from Composite Tensile Test 

Data   

 The data obtained from tensile testing of the composites was used to calculate 

the modulus and strength of the fibres, using the rule of mixtures (Daniel & Ishai, 
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1994), for comparison with the results obtained from the single fibre tests. As noted in 

Section 5.4.1, the fibres that made up the yarns were not exactly parallel to the yarn 

direction but had been deformed into a spiral shape by the spiral wrapping threads. This 

is considered to be due to tension in the wrapping threads causing the yarns to deform 

into a conforming pattern. The misalignment was taken into account using the Krenchel 

reinforcing efficiency factor η (Krenchel, 1964, cited in Virk et al., 2012) as used by 

Virk et al. (2012) for prediction of modulus and by Shah, Shubel & Clifford (2012) for 

prediction of strength. The Krenchel reinforcing efficiency factor is given by (Krenchel, 

1964, cited in Shah, Shubel & Clifford, 2012):  

   	 ∑ cos      (5.34)  

where  is the fraction of the fibres orientated at an angle θ to the loading direction. In 

the present analysis it is assumed that the all the fibres are oriented at the same angle to 

the loading direction and  then becomes equal to 1.Thus, equation 5.34 reduces to 

   	 cos .      (5.35) 

The angular orientation of the fibres in the yarns was, in fact, somewhat variable but it 

was generally between 10o and 20o and a value of 15o was considered to be a reasonable 

estimate of θ.    

The yarns were wrapped with two viscose rayon threads one of which was 

parallel to the fibres, and thus had an angular orientation of about 15o while the other 

made an angle of about 30o to the yarn direction. Each of the two threads made up 3% 

of the volume fraction of the composite and the reinforcement provided by these yarns 

therefore needed to be considered. This was done by incorporating a contribution from 

the threads into the rule of mixtures equations, again using the Krenchel factor to 

account for misalignment with the loading direction.  The transverse supporting thread 

was not considered since it was perpendicular to the loading direction. 

A value for the modulus of viscose rayon was required for the calculations. 

Hearle (2001) gives a range of 4.8-8.8 N/tex which equates to 7.2-13.1 GPa. The mean 

value of 10.2 GPa was used in the calculations.  

Based on the above, the rule of mixtures equations gives the modulus E and 

strength σ of the composites as:  

	 cos cos cos  

         (5.36) 

and 
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          (5.37) 

where V is the volume fraction, σ' is the stress in the matrix and wrapping threads at the 

time of failure, and the subscripts c, f, m, w1 and w2 refer to the composite, the fibres, 

the matrix and the wrapping threads, respectively. As noted above, the transverse 

viscose rayon thread was not considered and the matrix volume fraction Vm was 

therefore obtained as     

   	 	1     (5.38) 

Assuming linear behaviour the stress terms in equation 5.37 can be replaced by  

         (5.39) 

giving 

	  

          (5.40) 

where ' is the strain in the fibres and wrapping threads when the fibres fail.    

Assuming isostrain conditions,  

.  

Equation 5.40 then becomes 

	  

          (5.41) 

Equations 5.36 and 5.41 can be rewritten to give the fibre modulus and strength as 

    (5.42) 

and 

    (5.43) 

The strength and modulus of the fibres were then calculated using these 

equations and the data given in Table 5.12. This gave a modulus of 47.0 GPa and a 

strength of 337 MPa. The value of Emf given in equation 5.43 was slightly higher than 

the measured strength of the matrix so the latter was used when calculating fibre 

strength. This anomaly is considered to be due to the assumption of linear behaviour.  

The predicted fibre modulus of 47.0 GPa is within 9% of the experimental true 

value of 52.4 GPa. The calculation was made using the 0.001-0.003 chord modulus 

from the composite tensile tests since this was the strain range used by Virk et al. 

(2012). However this strain range spanned the knee of the stress strain curves which 
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occurred at a strain of ~0.002, Figure 5.50. No knee was, however, observed in the 

stress strain curves for the fibres, Figure 5.30, and it is therefore considered that the 

knee is a result of damage occurring in the matrix of the composites, as proposed by 

Hughes, Carpenter & Hill (2007), rather than being an intrinsic property of the fibres. 

On this basis, the value of the modulus of the composites before the knee would appear 

to be more appropriate for determining the fibre modulus for comparison with the single 

fibre data. Using the strain range of 0.0001-0.0015 for both the composites and the vinyl 

ester resin gave a value of 55.6 GPa for the modulus of the fibres. This is within 6% of 

the value obtained from the single fibre tests.    

Virk et al. (2012) also obtained good agreement between the experimental and 

predicted values of the modulus using a fibre area correction factor and the Krenchel 

reinforcing efficiency factor, as used in the present study, in their work on jute fibre 

composites. They used the experimentally determined true fibre modulus to calculate 

the modulus of their composites and obtained agreement within 1%.   

 

Table 5.12: Data used for predicting the tensile modulus and strength of the flax 

fibres 

Parameter Value Source 

 (excluding wrapping threads) 0.25 Section 5.4.5.2 

Vw1 0.03  

Vw2 0.03  

  3.62 GPa Section 5.4.5.3 

Ew1 10.2 GPa  

Ew2 10.2 GPa  

 13.16 GPa Section 5.4.5.3 

θf 15o  

θw1 15o  

θw2 30o  

f 0.018  

 59.8 MPa Section 5.4.5.3 

 122.4 MPa Section 5.4.5.3 
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In contrast to the predicted modulus, the predicted fibre strength of 337 MPa is 

very much lower than the experimental true value of 936 MPa. However, the 

experimental value of fibre strength was determined using a 20 mm gauge length, 

whereas the average fibre length in the flax yarns used to make the composites was 93 

mm. Fibre strength is known to decrease substantially with increasing fibre length 

(Romhany, Karger‐Kocsis & Czigány, 2003; Virk, Hall & Summerscales, 2011) and 

this needs to be taken into account. Rohmany, Karger‐Kocsis & Czigány (2003) used 

data from testing of flax technical fibres with gauge lengths of 20, 40 and 80 mm, 

together with additional data for flax technical fibres reported by Stamboulis, Baillie, 

Garkhail, Van Melick & Peijs (2000) and Bos, Van Den Oever & Peters (2002), and 

found the following relationship between gauge length g (mm) and fibre strength σ 

(MPa): 

  ⁄      (5.44) 

where A = 12.2, B = 883.7 and C = 206.4. 

This equation was used to determine the ratio of strength at a 20 mm gauge to that at 93 

mm. This ratio was then used to convert the true fibre strength of 936 MPa obtained in 

the present study for a 20 mm gauge length to its equivalent strength at 93 mm, giving a 

value of 361 MPa. The value of 337 MPa calculated from the composite tests is within 

7% of this value and the agreement is again considered to be reasonably good.  

5.6 General Discussion 

 The work described in this chapter was undertaken to examine the suitability of 

using the results obtained from single fibre and flat fibre bundle testing to predict the 

tensile properties of unidirectional composites made from the fibres. Rather than using 

the fibre data to predict the composite data, the fibre properties were backed out from 

the composite data and then compared with the data from the two fibre tests.  

 For this part of the work, flax was used as the reinforcing fibre since it has now 

become available as unidirectional fabric made from untwisted yarn and this provided 

the possibility of producing well aligned unidirectional fibre composites. Unfortunately 

the fibres were found to adopt a spiral configuration, with a spiral angle of 

approximately 15o which appeared to result from tension applied to the wrapping yarn, 

and this needed to be taken into account. Additionally the wrapping threads provided 
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extra reinforcement and this needed to be accounted for also. The strength data also 

needed to be adjusted to take into account the effect of fibre length on fibre strength.  

 The fibre modulus and strength were within 7% of the single fibre values, 

indicating that the behaviour of the composite can be reasonably well predicted from 

single fibre test results, as has been reported previously by Virk, Hall & Summerscales 

(2012) from their study of jute fibre composites. However, as noted by them, it is 

necessary to use the true cross-sectional area of the fibres, rather than an area based on 

diameter measurements and the assumption that the fibres are circular in section. This 

was done in both the present work and that reported by Virk, Hall & Summerscales 

(2012) by using an experimentally determined fibre area correction factor. The 

correction factor obtained by Virk, Hall & Summerscales (2012) for jute fibres was 

1.42, which is just over half of the value of 2.70 obtained in the present study. The 

predicted modulus and strength scale in proportion to the correction factor and the good 

agreement between the experimental and predicted values for both parameters in both 

studies, despite the large difference in the magnitude of the correction factor, provides 

strong support for the validity of the procedure. 

 The bundle tests gave values of strength which were only 43% of the single fibre 

data. The results from bundle tests carried out by Parmar (2011, 2012) on kenaf and jute 

fibres, for which data was available for single fibre tests (Zakaria 2014; Virk et al, 

2012) conducted on the same fibres using the same gauge length as used in the present 

study gave similarly low values of 52% and 54%.  

 The values obtained from the bundle tests would substantially underestimate the 

behaviour of the composites if used for strength prediction. In addition the bundle test 

does not provide a value for the elastic modulus of the fibres. However, the results from 

the bundle test show much lower scatter than those obtained from single fibre testing 

indicating that the test could be suitable for mechanically grading individual batches of 

fibres on a relative basis.  

5.7 Summary 

The important findings from this part of the study are summarised below. 

 The fibres were found to have a distinctly non-circular cross-section having an 

area that was, on average, 2.7 times larger than that calculated from the 

measured diameter assuming the fibres to be round. This confirms that an area 
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correction factor needs to be applied to single fibre test data determined using 

fibre diameter measurements. 

 The modulus and strength of the fibres determined using fibre diameter 

measurements were 19.4 GPa and 347 MPa, respectively, while the strain at 

failure was 1.8%. The true values of modulus and strength obtained by applying 

the measured correction factor of 2.70 were 52.4 GPa and 936 MPa, 

respectively.    

 The unidirectional composites with a fibre volume fraction of 25% had a 

modulus of 13.2 GPa and a strength of 122 MPa. 

 The fibre modulus and strength obtained using the rule of mixtures to back out 

the data from the unidirectional composite tests were within 7% of the true 

values obtained from the single fibre tests when appropriate account was taken 

of fibre orientation and fibre length. 

 The strength obtained from the bundle tests was only 43% of the true value 

obtained from the single fibre tests. It was not possible to determine the elastic 

modulus for the method used. 

 The results obtained from the bundle tests showed much smaller scatter than 

those obtained from single fibre testing. This suggests that the bundle test may 

be useful for mechanically grading different batches of fibres on a relative basis. 
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6. SUMMARY AND CONCLUSIONS 

 The work consisted of two parts. The first involved extraction of the elementary 

fibres from kenaf fibres to produce high aspect ratio fibres for use in extruded and 

injection moulded natural fibre thermoplastic composites. High aspect ratio short fibres 

cannot be obtained by simply chopping the technical fibres because of their much larger 

diameter.  

Two treatments were found to successfully liberate the elementaries, these being 

treatment in 60% nitric acid and treatment in 20% hydrogen peroxide/acetic acid. The 

hydrogen peroxide/acetic acid treatment gave a 60% higher yield than the nitric acid 

treatment and required less time. Moreover, it produced full length elementaries with an 

average length of 2.3 mm and an average aspect ratio of 180. In contrast, the nitric acid 

treatment caused the elementaries to break up into much smaller pieces with an average 

length of 0.2 mm and an average aspect ratio of 15. The nitric acid treated fibres also 

had double the defect density of the hydrogen peroxide/acetic acid treated fibres.  

Both treatments removed lignin, pectin, waxes and extractives from the fibres. 

They also increased the level of crystallinity, with the increase being greater for the 

nitric acid treatment than for the hydrogen peroxide/acetic acid treatment. They also 

increased the hydrophilicity of the fibre surfaces. However both treatments caused some 

oxidation of the elementaries.  

The hydrogen peroxide/acetic acid treatment increased the thermal stability of 

the fibres with degradation starting at a temperature 50oC higher than for untreated 

fibres. In contrast the thermal stability was reduced by 70oC for the nitric acid treated 

fibres. 

Extruded HDPE composites containing 40 wt% fibres were prepared using both 

the nitric acid treated elementaries and those obtained from the hydrogen 

peroxide/acetic acid treatment. In addition composites were also prepared from chopped 

technical fibres having an average length of 0.7 mm and an average aspect ratio of 8.  

Two different methods were used to extrude the composites. Initially, a single 

feed extruder was used, but in subsequent work a dual feed extruder was used to allow 

separate feeding of the fibres and the matrix material in an attempt to improve the 

quality of the composites. Different dies were used for the two extruders with rod 
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composites being were produced from the single feed extruder and strip composites 

from the dual feed extruder. Only nitric acid treated and chopped untreated fibres were 

used for the composites made with the single feed system but hydrogen peroxide/acetic 

acid treated fibres were also used for the composites made with the dual feed system.  

Both processes produced composites with good dispersion of the fibres and good 

bonding to the matrix. However, some differences between the rod and strip extrudates 

were observed. The rod composites had a fibre weight fraction of 38%, consistent with 

the target value of 40%. Difficulties were experienced with the fibre feed in the dual 

feed system and the fibre fractions in the strip composites were well below the target 

value. Moreover, severe variation in fibre fraction was encountered in the strip 

composites with the fibre fraction varying from about 10-50%. A much more consistent 

fibre fraction was achieved for the rod composites for which the variation was from 31-

46%. Considerable breakup of the elementary fibres occurred during the extrusion 

process, especially for the dual feed system where the fibre length was reduced by a 

factor of 10.   

Differences were also seen in the mechanical behaviour. The rod composites 

made from the nitric acid treated fibres showed no improvement in mechanical 

performance over those made from the chopped untreated fibres, with the modulus 

being identical in the two cases. The strength was actually 9% lower for the nitric acid 

treated fibre composites than for their untreated fibre counterparts. This is attributed to 

fragmentation of the elementaries due to chemical attack during the nitric acid treatment 

together with further breakup of the fibres during the extrusion process.  

The strip composites made with nitric acid treated fibres also showed no 

improvement in mechanical performance over those made from the chopped untreated 

fibres, with the performance in fact being worse. This is attributed to even greater 

breakup of the elementaries during the strip extrusion process. 

However the strip composites made with the hydrogen peroxide/acetic acid 

treated fibres showed a modest improvement of ~20% in the modulus and strength, over 

those obtained for the composites made from the chopped technical fibres. This 

improvement occurred despite the elementaries being reduced in length by a factor of 

10 during the extrusion process. 

Overall, the results are encouraging since the different levels of breakup of the 

elementaries produced using the two different extrusion processes suggests that there is 
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scope for modifying the process to better retain the initial fibre length. It may also be 

possible to obtain better fibre alignment which would also lead to improved mechanical 

performance. Examination of these possibilities would appear to be a fruitful area for 

further research.   

The second part of the work involved an examination of the suitability of using 

the results obtained from single fibre and flat fibre bundle testing to predict the tensile 

properties of unidirectional composites made from the flax fibres. 

In earlier work, Virk, Hall & Summerscales (2012) had reported that very good 

agreement could be obtained between the modulus and strength of jute fibre composites 

and the values predicted from single fibre tests, if proper account were taken of the true 

fibre cross-sectional shape, the fibre orientation, and the effect of fibre length on fibre 

strength. Their procedure was evaluated in this part of the study. Flax fibres were used 

rather than kenaf since unidirectional flax fabric is now available made from untwisted 

flax yarn, allowing production of well aligned unidirectional laminates. Vinyl ester was 

used as the matrix resin. The composites were produced by resin transfer moulding and 

had a fibre volume fraction of 25%.  

The present study used the reverse procedure to that used by Virk, Hall & 

Summerscales (2012) and used data obtained from testing of the composites to predict 

the properties of the fibres, rather than using fibre data to predict the behaviour of the 

composites. None the less the two procedures can be considered to be equivalent in 

testing the validity of the methodology.  

The agreement between the predicted and measured values in the present study 

was within 7%, which is very encouraging. The procedure requires the use of an area 

correction factor to account for the fibres being non-circular in shape and the modulus 

and strength scale in direct proportion to this factor. The area correction factor of 2.70 

obtained for the flax fibres in the present study was almost twice that of 1.42 reported 

by Virk, Hall & Summerscales (2012) for their jute fibres. The good agreement from 

both studies, despite the substantial difference in magnitude of the area correction 

factor, is considered to provide strong support for the validity of the method.  

Because of natural variability in plant fibres, data from one batch of fibres 

cannot necessarily be used to predict the performance of composites made from a 

different batch, requiring that single fibre testing be conducted on each different batch. 
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This is extremely labour intensive and also time consuming and is unlikely to be 

feasible, either practically or economically. 

Batch to batch variation in fibres has long been recognised in the textiles 

industry and tests such as the flat fibre bundle test have been developed to grade 

different batches in terms of their mechanical performance. The flax fibre bundle test 

was therefore conducted on the flax fibres to evaluate its usefulness for predicting fibre 

properties. The bundle test gave a strength of only 43% of the value obtained by single 

fibre testing and would substantially underpredict the behaviour of composites made 

from the fibres. Moreover, it does not allow determination of the fibre modulus. 

However, since several fibres are present in the tested bundle, there is an averaging 

effect, which substantially reduces the scatter in results compared to that observed in the 

single fibre test. As a result the bundle test can discern between smaller differences and 

may be useful for assessing batch to batch variation. It is also much faster and easier to 

conduct than single fibre testing.  

This suggests an approach that might be viable for predicting the behaviour of 

natural fibre composites. First, single fibre tests as well as flat bundle tests are 

conducted on a batch of fibres of the type to be used in the composite. Flat bundle tests 

are then conducted on all incoming batches and the results compared with those for the 

original batch. Any differences found could then be used to scale the single fibre test 

results and the scaled data then used to predict the behaviour of the composites made 

from each batch. This approach is worthy of further study.      
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Appendix I: Chemical Treatment of Fibres and Alpha-

Cellulose   
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I.A EDTA Treatment 
Various stages in the EDTA treatment are shown in Figure I.1. While some 

change in colour of the solution is evident during the process, no breakdown of the 

technical fibres occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1: Untreated kenaf fibre bundles immersed in EDTA/NaOH at a pH of 11 

(a) at room temperature, (b) after 30 minutes at 60oC, (c) after 3 hours at 

60oC, (d) after 5 hours at 60oC, (e) after 7 hours at 60oC, and (f) after 24 

hours at 60oC.  

 

  

(a) (b) (c) 

(d) (e) (f) 
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I.B EDTA/Pectinase Treatment 
EDTA treated fibres were also subsequently treated with pectinase. Stages in the 

pectinase treatment are shown in Figure I.2. No break down of the EDTA of the 

technical fibres occurred during this subsequent treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.2: EDTA treated kenaf fibres immersed in CH3COOH distilled water 

solution containing Pectinex® Ultra SPL at a pH of 4.5, (a) immediately 

upon immersion, (b) after 30 minutes, (c) after 1 hour and (d) after 2 

hours. 

  

(a) (b) 

(c) (d) 
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I.C Sulphuric Acid Treatment 
Stages during the process of sulphuric acid treatment are shown in Figure I.3. 

The solution can be seen to have turned black.  

 

 

 

 

 

 

 

 

 

 

 

Figure I.3: Untreated kenaf fibre bundles immersed in 60% H2SO4 (a) at room 

temperature and (b) after 75 minutes at 55oC. 
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I.D Nitric Acid Treatment 
The nitric acid treatment is shown in Figure I.4. The solution changed from 

colourless to orange on addition of the fibres, Figure I.4a. On heating, the solution 

darkened and became cloudy due to the presence of elementary fibres, Figure I.4b. The 

colour then changed to yellow when the solution was cooled, with the elementary fibres 

settling to the bottom, Figure I.4c. The elementary fibres were not visible for several 

days if the solution was not heated. 

 

 

 

 

 

 

 

 

 

 

Figure I.4: Untreated kenaf fibre bundles (a) immersed in 60% HNO3 at room 

temperature, (b) solution after 30 minutes at 80oC and (c) solution after 

cooling to room temperature. 
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I.E 30% Hydrogen Peroxide/Glacial Acetic Acid Treatment 
Stages in the 30% hydrogen peroxide/glacial acetic acid treatment are shown in 

Figure I.5. The solution was initially clear, Figure I.5a, but then became yellow in 

colour, Figure I.5c, eventually again becoming clear and containing white elementary 

fibres, Figure I.5f.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.5: 30% H2O2/CH3COOH treatment (a) fibre bundles immersed in solution 

at room temperature, (b) after 30 minutes at 60oC, (c) after 3 hours at 

60oC, (d) after 5 hours at 60oC, (e) after 7 hours at 60oC and (f) after 24 

hours at 60oC. 
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I.F 20% Hydrogen Peroxide/Glacial Acetic Acid Treatment 
Stages in the 20% hydrogen peroxide/glacial acetic acid treatment are shown in 

Figure I.6. The process was similar to that observed for the 30% hydrogen 

peroxide/glacial acetic acid treatment, with the solution becoming yellowish initially, 

then becoming clear again with white elementary fibres present. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.6: 20% H2O2/CH3COOH treatment (a) fibre bundles immersed in solution 

at room temperature, (b) after 30 minutes at 98oC, (c) after 3 hours at 

98oC, (d) after 5 hours at 98oC and (e) after 7 hours at 98oC.    
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(c) (d) (e) 
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I.G Glacial Acetic Acid Treatment 
Stages during the glacial acetic acid treatment are shown in Figure I.7. No 

breakdown of the technical fibres occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.7: Glacial CH3COOH treatment (a) fibre bundles immersed in solution at 

room temperature, (b) after 30 minutes at 98oC, (c) after 1 hour at 98oC, 

(d) after 3 hours at 98oC, (e) after 5 hours at 98oC and (f) after 7 hours at 

98oC. 
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I.H Nitric Acid and Hydrogen Peroxide/Acetic Acid 

Treatment of Alpha-Cellulose 
Nitric acid treatment of the α-cellulose is shown at various stages in the process 

in Figure I.8 while soaking of the α-cellulose in the hydrogen peroxide/acetic acid 

solution is shown in Figure I.9. 

 

 

 

 

 

 

 

 

 

 

Figure I.8: α-cellulose immersed in 60% HNO3 solution (a) at room temperature, (b) 

after 30 minutes at 80oC and (c) after cooling to room temperature. 

 

 

 

 

 

 

 

 

 

 

Figure I.9: α-cellulose immersed in a mixture of H2O2 and CH3COOH. 

 

For the nitric acid treatment, the solution became distinctly yellow, Figure I.8, as 

was observed when treating the kenaf fibres, but the α-cellulose remained its original 

white colour. No discolouration of either the solution or the α-cellulose was observed 

during either the 20% or 30% hydrogen peroxide/acetic acid treatments, Figure I.9. 

(a) (b) (c) 



 

 

 

 

Appendix II: Defects Density of Elementary Kenaf 

Fibres  
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Table II.1: Defect density of elementary kenaf fibres 
Sample 

No.  

KFTN Fibres  KFTHA1 Fibres  KFTHA2 Fibres 

Fibre 

Length 

(mm) 

No. of 

Defects 

Defects/mm  Fibre 

Length 

(mm) 

No. of 

Defects 

Defects/mm  Fibre 

Length 

(mm) 

No. of 

Defects 

Defects/mm 

1 0.51 5 9.8  2.86 7 2.4  2.34 34 14.5 

2 0.22 5 22.7  2.25 5 2.2  3.25 44 13.5 

3 0.45 11 24.4  2.56 38 14.8  1.98 30 15.2 

4 0.36 10 27.8  2.73 20 7.3  3.44 21 6.1 

5 0.59 5 8.5  1.68 37 22.0  1.61 14 8.7 

6 0.32 4 12.5  2.75 33 12.0  2.76 44 15.9 

7 0.24 8 33.3  1.90 34 17.9  2.91 31 10.7 

8 0.44 8 18.2  1.03 23 22.3  2.92 50 17.1 

9 0.47 15 31.9  2.30 41 17.8  1.36 23 16.9 

10 0.21 4 19.0  1.99 39 19.6  2.64 45 17.0 

Average   21    14    14 

SD   9    8    4 

%SD   43%    57%    29% 

 

 



 



 

 

 

 

Appendix III: T Test Output for Defect Density of 

Elementary Kenaf Fibres  
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T Test Output at 95% Confidence Interval for Defect Density of Elementary Kenaf Fibres  
 

KFTN versus KFTHA1 
Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

KFTN 10 20.81 8.795 2.781 1.901 18 0.0367 Yes 

KFTHA1 10 13.83 7.579 2.397 

 
KFTN versus KFTHA2 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

KFTN 10 20.81 8.795 2.781 2.390 18 0.0140 Yes 

KFTHA2 10 13.56 3.830 1.211 

 
KFTHA1 versus KFTHA2 

Sample N Mean Std. Deviation Std. Error Mean t df P value (Two-tailed) Significant? 

KFTHA1 10 13.83 7.579 2.397 0.1005 18 0.9210 No 

KFTHA2 10 13.56 3.830 1.211 
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Appendix IV: Material Data Sheets for HDPE and 

MAPE  
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M '. 
COTENE 

Product Description: 

SPECIALIST TANK GRADE 
CO I I!Nr- 3828 

RalalioNII Moulding PaMIIr t«PE 

.Miwaled Density ~c:rrf): 

MFI (~t Dmn): 
0-'41 

3.S 

COTENE.,. 3925 is ~ odeM copol)m« ~~ W~lhich uhtits ~ excelent ~ d stiffness and 
strenglh. mouldabiity and long term propenies. The ri(Ue nann of 1he rei'~ ~ for uc:epticNI 
processabilily with shorter~ limes com~ wilh conventional ~ft)IIIM ~· This combination of 
popenies milkes COTENE"' 3925 . ., idiNIINileriillfor use in ;applications such as large 4lbow ground Qnks 
as well as undefgtound tanks. COTENE.,. 3925 contains a fuly forml.lliad stlbilisalion pacbge (with a 
mininun UV8 r.ttiog). 

The COTENE"' 3025 T ~It colour range fi'IMts Austral~ food contact requirements (AS2070:t .8) and ~ 
Aus1raU\ ~ (drftking) warstandard AS4020. 

COTENE111 3925 is~ in 1he COTENE~'~~ Tank c:cilour range, and custom colours on~ 

Key ChM'acteri8tlcs: 
.,. Excelent stiffness 

... Excelent ftow and pr"OOHsabiity 

Typal Appliclltiona: 
.,. Large water and chemical tanks 

.,. Pool titers 

~ic81 a..cteriatica t 

M.lt Flow Index (MA) 

Annealed Density 

Softening Point <Vteatl 

ESCR F50 ( 1~ IGEPAL) 

ESCR F50 (104MI IGEPAll 

Flexural Modulus (1.3mmfmin)J 

Tensile Modulus (0.5mmlminP 

--------.. 

Tensile Strength at Y~ C50mmfmin) 

Elc:!nga«!n at Break (50mmlrninl 

Shore H.-dness 

W Rating (50% Retained Tensie Elongation) 

... Excellent long term creep resistonce 

... Excellent inpact sftnglh 

... Underground tJnks 

.,. ~s 

V•lue 
3.5 g / 10min 

0 .941 g /~ 

123 •c 
>500 Hrs 

Hrs 

815 MPa 

895 MPa 

21 MPa 

1500 ~ 

Q5 J 

61 ShoreD 

8000 Hrs 

ASTM D 1505 

ASTMO 152.5 

ASTM 0 1893 

ASTM 0 1893 

ASTMO 700 

ASTMO 838 

ASTMO 838 

ASTMO 838 

ARM Method 

ASTM02240 

ASTM 2565 

•o. Y-.s--~-- ttlr lllr MR rain MIS V.O..OilOCIIC ._. ttlr ~ ...... 
' IIIINctl~- --.-tNI:Ii:NS:I - ~--· ~~lnlng IS "~~NY~. 
0 ~ lamgiiiS ~been pef\ltlnl!ftOII l .2llllll CDIIjftSIIOIU IICIIileleel...,.... ~ III)J\3TU-()1n.a_ ~ fHiiltl saiSC T)pe 

M-1 Hl'l\ple 4imeftSICiftl., llllllt lleanl ~ -IIH!I oetltlniiH Ill! 2S.Amm ~ W1dtl. 

Stayr g ahead by workmg together and shaflng resources 

~ ~ leo,.., •. , ... 
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~Clariant 
Safety Data beet in accordance with Regulation (EC) No 
1907/2006 
Licocene PE MA 4351 Fine Grain 

Substance key: 000000183750 
Version : 1 - 2 I EU 

1. Identification of the substance/ re 

Trade name 
Llcocene PE MA 4351 Fine Grain 

Material number: 202386 

Use of the substance/preparation. 
Industry sector : Polymers Industry 

Page 1 

Revision Date: 05.12.2007 
Date of printing : 16.06.2009 

Paints, lacquers and varnishes industry 
Type of use : Additive 

Identification of the company 
Clariant Produkte {Deutschland) GmbH 

86368 Gersthofen 
Telephone no.: +49 6196 757 60 

lnfonnatlon about the substance/preparation 
Division Pigments & Additives 
+49 {0)821 479 2521 
e-mail: PA.PSGERSTHOFEN@CLARIANT.COM 

Emergency telephone number : +49 69 305 6418 

12. Hazards identification 

According to the present state of knowledge provided this product is handled correctly,there 
is no danger to humans or the environment 
The relevant minimum standards for protective measures in the chemical industry should be 
observed. 

red Ients 
Chemical characterization 

ethylene-maleic anhydride copolymer 

CAS number : 9006-26-2 

14. First aid measures 

Generallnformatlon 
Seek medical assistance If discomfort continues 

After contact with skin 
After contact with molten product cool quickly with cold water 
Do not pull solidified product from skin 
Take for medical treatment 

After contact with eyes 
Rinse the affected eye with plenty of water, at the same time keep the unaffected eye well 
protected. 

Advice to doctor 

mailto:PA.PSGERSTHOFEN@CLARIANT.COM
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~Ciariant 
Safety Data beet in accordance with Regulation (EC) No 
1907/2006 
Licocene PE MA 4351 Fine Grain 

Substance key: 000000183750 
Version : 1 - 2 I EU 

Symptoms 
Until now no symptoms known so far. 

Suitable extinguishing media 
water mist 
foam 
dry powder 
carbon dioxide 

Page 2 

Revision Date: 05.12.2007 
Date of printing : 16.06.2009 

Special hazards from the substance Itself, Its combustion products or from Its vapours 
None known. 

Special protective equipment for flrefightlng 
Impermeable protective clothing (jacket and trousers) with helmet. 

16. Accidental release measures 
Environmental precautions 

Do not allow entry to drains,water courses or soil 

Methods for cleaning up/taking up 
Take up mechanically 

17. Handling and storage 

Advice on safe handling 
Provide suitable exhaust ventilation at processing machines. 
Take precautionary measures against electrostatic loading. 

Advice on protection against fire and explosion 
Take precautions against accumulation of electrostatic charge 
Observe the general rules of industrial fire protection 

Fire class: B 

Occupational exposure controls 

General protective measures 

rotection 

Avoid contact of molten material with skin 

Hygiene measures 
Wash hands before breaks and after work. 
At work do not eat, drink. smoke or take drugs. 
Use barrier skin cream. 
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~Ciariant 
Safety Data Sheet in accordance with Regulation (EC) No 
1907/2006 
Licocene PE MA 4351 Fine Grain Page 3 

Substance key: 000000183750 
Version : 1 • 2 I EU 

Hand protection : 

Eye protection : 

Body protection : 

Nitrile rubber gloves. 

Revision Date: 05.12.2007 
Date of printing : 16.06.2009 

Minimum breakthrough time (glove): not determined 
Minimum thickness (glove): not determined 
Observe the information of the glove manufacturers on 
permeability and breakthrough times and other workplace 
requirements 

safety glasses 

working clothes 

19. Physical and chemical properties 
Form: Fine grain I Granulate 

Colour: yellowish 

Odour: not specified 

Drop forming point : approx. 123 ·c 
Method : ASTM D 3954-94 

Flash point : not tested. 

Oxidizing properties : not tested. 

Flammability 

lower explosion limit : not tested. 

Upper explosion limit : not tested. 

Combustion number : not tested. 

Evaporation rate : not tested. 

Vapour pressure : Not applicable 

Density : approx. 0,99 g/cm3 (23 "C) 
Method : ISO 1183 

Vapour density In relation to not tested. 
air : 

Solubility In water : (20 "C) 
insoluble 

Soluble In ... : not tested. 

pH value : Not applicable 

Acid number (mgKOH/g) : approx. 46 mg/g 

Octanollwater partition not tested. 
coefficient (log Pow) : 

Viscosity (dynamic) : approx. 300 mPa.s (140 "C) 
Method : DIN 53018 
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~C1ariant 
Safety Data Sheet in accordance with Regulation (EC) No 
1907/2006 
Licocene PE MA 4351 Fine Grain Page4 

Substance key: 000000183750 
Version : 1 - 2 I EU 

Revision Date: 05.12.2007 
Date of printing : 16.06.2009 

and reactivi 
Thermal decomposition : No decomposition if used as prescribed. 

Hazardous reactions 
No hazardous reactions known. 

Hazardous decomposition products 
No hazardous decomposition products known. 

111. Toxicological information 

Acute oral toxicity : LD50 > 2.000 mglkg (rat) 

Remarks 
The product has not been tested. The statements are derived from products of a similar 
composition. 

112. Ecological information 
Remarks 

Product is insoluble in water 
Harmful effects to fish and bacteria: not harmful 
May be separated out mechanically in treatment plants 
The ecotoxicity of the product has not been tested. The information given is based on 
products of similar structure or composition. 

113. Disposal considerations 
Product 

In accordance with the necessary technical regulations may be dumped or incinerated 
with household waste. after consultation with site operator and with the responsible 
authority 
Material may be recycled 

Uncleaned packaging 
Packaging that cannot be cleaned should be disposed of as product waste 

114. Transport information 

ADR 

ADNR 

RID 

lATA 

IMDG 

not restricted 

not restricted 

not restricted 

not restricted 

not restricted 
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~Clariant 

Safety Data Sheet in accordance with Regulation (EC) No 
1907/2006 
Licocene PE MA 4351 Fine Grain Page 5 

Substance key: 000000183750 
Version : 1 - 2 I EU 

Revision Date: 05.12.2007 
Date of printing : 16.06.2009 

115. Regulatory information 

Labelling In accordance with EC-Directlves 
The product does not require a hazard warning label in accordance with EC 
directives/German regulations on dangerous substances. 

Chemical Safety Assessment 
No Chemical Safety Assessment {CSA) is yet available for the substance, or for the 
component substances, contained in this product. 

116. Other information 

Decimal notation: "Thousands" places are identified with a dot {example: 2.000 mglkg 
means "two thousand mg/kg"). Decimal places are identified with a comma {example: 1,35 
glcm3). 

The data are based on the current state of our knowledge, and are intended to describe the 
product with regard to the requirements of safety. The data should not be taken to imply 
any guarantee of a particular or general specification. It is the responsibility of the user of 
the product to ensure to his satisfaction that the product is suitable for the intended purpose 
and method of use. We do not accept responsibility for any harm caused by the use of this 
information. In all cases, our general conditions of sale apply. 



 

 

 

 

Appendix V: Tensile Specimens of Extruded HDPE 

and Composite Strips after Testing  
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Figure V.1: Tensile specimens of extruded HDPE strip after testing. 

 

 

 

 

 

 

 

 

 

 

Figure V.2: Tensile specimens of extruded UKF/HDPE strip after testing. 

 

 

 

 

 

 

 

 

 

 

Figure V.3: Tensile specimens of extruded KFTN/HDPE strip after testing. 
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Figure V.4: Tensile specimens of extruded KFTHA/HDPE strip after testing. 

 

 

 

 

 

 

 

 

 

Figure V.5: Tensile specimens of hot pressed extruded HDPE (HDPE_H) strip after 

testing. 

 

 

 

 

 

 

 

 

 

Figure V.6: Tensile specimens of hot pressed extruded HDPE/MAPE 

(HDPE/MAPE_H) strip after testing. 
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Figure V.7: Tensile specimens of hot pressed extruded UKF/HDPE composites 

(UKF/HDPE_H) strip after testing. 

 

 

 

 

  

 

 

 

 

Figure V.8: Tensile specimens of hot pressed extruded KFTN/HDPE 

(KFTN/HDPE_H) strip after testing. 

 

 

 

 

 

 

 

 

 

Figure V.9: Tensile specimens of hot pressed extruded KFTHA/HDPE 

(KFTHA/HDPE_H) strip after testing. 
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Appendix VI: Process for Determining Fibre Weight 

Fraction of Extruded Composites  
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VI.A Process for Determining Fibre Weight Fraction of Rod 

Composites 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.1: UKF/HDPE (a) and KFTN/HDPE (b) rod composites immersed in 

stirred trichlorobenzene, HDPE from UKF/HDPE (c) and KFTN/HDPE 

(d) dissolved in hot trichlorobenzene, and filtered UKF (e) and KFTN (f) 

fibres. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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VI.B Process for Determining Fibre Weight Fraction of Strip 

Composites 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.2: UKF/HDPE (a) and UKF/HDPE_H (b) strip composites immersed in 

stirred trichlorobenzene, HDPE from UKF/HDPE (c) and UKF/HDPE_H 

(d) dissolved in hot trichlorobenzene, and filtered UKF fibres from 

UKF/HDPE (e) and UKF/HDPE_H (f). 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure VI.3: KFTN/HDPE (a) and KFTN/HDPE_H (b) strip composites immersed in 

stirred trichlorobenzene, HDPE from KFTN/HDPE (c) and 

KFTN/HDPE_H (d) dissolved in hot trichlorobenzene, and filtered 

KFTN fibres from KFTN/HDPE (e) and KFTN/HDPE_H (f). 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 



A VI-6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.4: KFTHA/HDPE (a) and KFTHA/HDPE_H (b) strip composites immersed 

in stirred trichlorobenzene, HDPE from KFTHA/HDPE (c) and 

KFTHA/HDPE_H (d) dissolved in hot trichlorobenzene, and filtered 

KFTHA fibres from KFTHA/HDPE (e) and KFTHA/HDPE_H (f). 

 

(a) (b) 

(c) (d) 

(e) (f) 



 

 

 

 

Appendix VII: Measured Fibre Weight Fractions of 

Extruded Composites 
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Table VII.1: Measured fibre weight fractions of extruded kenaf fibre/HDPE rod 

composite  

 

Sample No. 
Fibre Weight Fraction (%) 

UKF/HDPE KFTN/HDPE 

1 39.20 31.34 

2 36.84 36.02 

3 33.48 33.85 

4 38.22 37.71 

5 35.84 27.14 

6 34.06 29.77 

7 37.42 32.69 

8 38.22 31.26 

9 35.66 31.87 

10 40.20 37.42 

11 41.53 37.64 

12 37.91 37.86 

13 36.80 34.38 

14 36.87 31.24 

15 33.44 29.53 

16 34.64 34.57 

17 35.85 38.89 

18 33.01 39.93 

19 40.64 29.60 

20 36.97 30.36 

21 33.87 28.84 

22 35.96 30.87 

Average  36.67 33.31 

SD 2.40 3.71 

 

 

 

 



A VII-4 
 

Table VII.2: Measured fibre weight fractions of extruded kenaf fibre/HDPE strip 

composites  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Sample Name Sample No. Fibre Weight Fraction (%) 

UKF/HDPE 1 (3A) 22.42 

 2 (3D) 10.56 

 3 (3G) 17.55 

 4 (3H) 16.52 

 Average 16.76 

 SD 4.87 

KFTN/HDPE 1 (2A) 20.80 

 2 (2D) 43.57 

 3 (2E) 53.34 

 4 (2G) 6.13 

 Average 34.35 

 SD 24.92 

KFTHA/HDPE 1 (1C) 40.16 

 2 (1D) 27.70 

 3 (1E) 43.51 

 4 (1H) 8.85 

 Average 30.05 

 SD 15.69 
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Table VII.3: Measured fibre weight fraction of hot pressed extruded kenaf 

fibre/HDPE strip composites  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Sample Name Sample No. Fibre Weight Fraction (%) 

UKF/HDPE_H 1 (7A) 25.67 

 2 (7C) 9.82 

 3 (7D) 13.54 

 4 (7E) 8.55 

 Average 14.39 

 SD 7.81 

KFTN/HDPE_H 1 (8A) 10.92 

 2 (8B) 6.96 

 3 (8D) 7.25 

 4 (8E) 7.08 

 Average 8.05 

 SD 1.92 

KFTHA/HDPE_H 1 (6B) 37.42 

 2 (6D) 44.82 

 3 (6F) 28.73 

 4 (6H) 8.56 

 Average 29.88 

 SD 15.66 
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Appendix VIII: Process for Soaking Untreated and 

Treated Kenaf Fibres in Hot Trichlorobenzene  
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Figure VIII.1: (a) UKF fibres immersed in stirred trichlorobenzene, (b) UKF fibres  

after soaking in hot trichlorobenzene for 1 hour, and (c) filtered UKF 

fibres. 

 

 

 

 

 

 

 

 

Figure VIII.2: (a) KFTN fibres immersed in stirred trichlorobenzene, (b) KFTN fibres 

after soaking in hot trichlorobenzene for 1 hour, and (c) filtered KFTN 

fibres. 

 

 

 

 

 

 

 

 

Figure VIII.3: (a) KFTHA fibres immersed in stirred trichlorobenzene, (b) KFTHA 

fibres after soaking in hot trichlorobenzene for 1 hour, and (c) filtered 

KFTHA fibres. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Appendix IX: Peak Assignations for FTIR Spectra of 

Residue from Filtered Solution of Untreated and 

Treated Kenaf Fibres Soaked in Hot Trichlorobenzene  
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Table IX.1: Possible assignments of peak positions of FTIR band of residue from 

filtered solution of UKF fibres soaked in hot trichlorobenzene 

 

Peak 
Position 
(cm-1) 

  Possible assignment 

 3,396 O-H stretching vibrations (the average stretching of intermolecular 
hydrogen bonding) in lignin1 

 2,919 C-H stretching vibrations in lignin2 and asymmetric νCH2 in wax3  
 2,850 C-H stretching vibrations in lignin2 and symmetric νCH2 in wax3  
 1,715 Unconjugated C=O stretching vibrations in lignin2  
 1,594 Aromatic skeletal vibrations combined with C=O stretching vibrations 

in lignin1  
 1,512 Aromatic skeletal vibrations in lignin1 
 1,462 C-H deformation combined with aromatic ring vibrations in lignin4 and 

-C-H in wax5 
 1,422 C-H in-plane deformation combined with aromatic ring stretching 

vibrations in lignin2 
 1,371 δCH2 in-plane deformation vibrations i.e. bending vibrations in wax6  
 1,327 C-O vibrations of the syringyl ring in lignin1 
 1,213 C-C and C-O stretching vibrations in lignin1 
 1,153 Aromatic C-H in-plane deformation in the guaiacyl ring in lignin1 
 1,112 Aromatic C-H deformation in the syringyl ring in lignin1 
 1,032 Aromatic C-H deformation (C-O, C-C stretching vibrations and C-OH 

bending vibrations in polysaccharides) in lignin4 
 915 C-H out-of-plane vibrations in lignin2 
 829 C-H out-of-plane vibrations of guaiacyl units in lignin4 
 720 Doublet γCH2 (out-of-plane deformation vibrations i.e. rocking 

vibrations) in wax6  
1 Kubo & Kadla (2005) 
2 Pandey (1999) 
3 Merk, Blume & Riederer (1997) 
4 Boeriu et al. (2004) 
5 Athukorala, Mazza & Oomah (2009) 
6 Lattuati-Derieux et al. (2009) 
 

 

 

 

 

 

 

 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IX
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Table IX.2: Possible assignments of peak positions of FTIR band of residue from 

filtered solution of KFTN fibres soaked in hot trichlorobenzene 

 

Peak 
Position 
(cm-1) 

  Possible assignment 

 2,919 CH2 asymmetric stretching vibrations1 in EVA2  
 2,850 CH2 symmetric stretching vibrations1 in EVA2  
 1,732 Symmetric C=O stretching vibrations of ester groups in EVA3,4  
 1,594 C=C aromatic stretching vibrations in benzene5 
 1,472 >CH2 scissor vibrations in EVA3  
 1,371 C-H bending vibrations of CH3 in EVA3  
 1,239 C-O stretching vibrations of ester and acids in EVA3 
 1,096 C-O-C stretching vibrations of ether in EVA3 and/or C-H in-plane 

bending vibrations of p-substituted benzene5 
 1,020 =C-O-C stretching vibrations of ester and acids in EVA3 and/or C-H 

in-plane bending vibrations in p-substituted benzene5 
 941 C-H deformation of acetate in EVA3 
 801 C-H out-of-plane bending vibrations in m-substituted benzene5 
 720 Rocking deformation in EVA3  

1 Gulmine et al. (2002) 

2 Mathias et al. (1992) 
3 Chattopadhyay, Chaki & Bhowmick (2001) 
4 Datta et al. (1996) 
5 Socrates (2001) 

 

The FTIR spectrum of the residue from the filtered solution of the KFTHA 

fibres soaked in hot trichlorobenzene is shown in Figure IX.1, while possible peak 

assignments are given in Table IX.3. The spectrum of this residue is similar to that of 

oxidized polyethylene (Figure IX.7). The chemical structure of oxidized polyethylene is 

shown in Figure IX.8. This is considered to indicate that the residue was a substance 

similar to oxidised polyethylene, possibly oxidized wax.  
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Table IX.3: Possible assignments of peak positions of FTIR band of residue from 

filtered solution of KFTHA fibres soaked in hot trichlorobenzene 

 

Peak 
Position 
(cm-1) 

  Possible assignment 

 2,919 CH2 asymmetric stretching vibrations in polyethylene1 
 2,850 CH2 symmetric stretching vibrations in polyethylene1 
 1,732 Symmetric C=O stretching vibrations of ester groups in oxidised 

polyethylene2 
 1,715 Symmetric C=O stretching vibrations of carboxylic groups in oxidised 

polyethylene2 
 1,472 Bending deformation in polyethylene1 
 1,462 Bending deformation in polyethylene1 
 1,411 Long chain saturated ketones (R1R2C=O) in oxidised polyethylene2 
 1,371 Symmetric deformation in polyethylene1 
 1,170 Wagging deformation in polyethylene1 
 720 Rocking deformation in polyethylene1 

1 Gulmine et al. (2002) 
2 Durmuş et al. (2007) 
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Appendix X: SEM Micrographs of Transverse Sections 

of Extruded Composites  
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Figure X.1:  SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 1 and End A). 
 
                              
 
 
 
 
 
 
 
 
 
Figure X.2:  SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 1 and End B). 
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Figure X.3: SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 2 and End A). 
 
 
 
 
 
 
 
 
 
 
Figure X.4: SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 2 and End B). 
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Figure X.5: SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 3 and End A). 
 
 
 
 
 
 
 
 
 
 
Figure X.6: SEM micrographs of transverse section of UKF/HDPE rod composite (Sample no. 3 and End B). 
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Figure X.7: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 1 and End A). 
 
 
 
 
 
 
 
 
 
 
Figure X.8: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 1 and End B). 
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Figure X.9: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 2 and End A). 
 
 
 
 
 
 
 
 
 
 
Figure X.10: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 2 and End B). 



A X-8 
 

 
 
 
 
 
 
 
 
 
Figure X.11: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 3 and End A). 
 
 
 
 
 
 
 
 
 
 
Figure X.12: SEM micrographs of transverse section of KFTN/HDPE rod composite (Sample no. 3 and End B). 
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Figure X.13: SEM micrographs of transverse section of UKF/HDPE strip composite (Sample no. 1 (3B)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.14: SEM micrographs of transverse section of UKF/HDPE strip composite (Sample no. 2 (3D)). 
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Figure X.15: SEM micrographs of transverse section of UKF/HDPE strip composite (Sample no. 3 (3G)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.16: SEM micrographs of transverse section of KFTN/HDPE strip composite (Sample no. 1 (2B)). 
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Figure X.17: SEM micrographs of transverse section of KFTN/HDPE strip composite (Sample no. 2 (2D)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.18: SEM micrographs of transverse section of KFTN/HDPE strip composite (Sample no. 3 (2H)). 
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Figure X.19: SEM micrographs of transverse section of KFTHA/HDPE strip composite (Sample no. 1 (1A)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.20: SEM micrographs of transverse section of KFTHA/HDPE strip composite (Sample no. 2 (1E)). 
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Figure X.21: SEM micrographs of transverse section of KFTHA/HDPE strip composite (Sample no. 3 (1H)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.22: SEM micrographs of transverse section of UKF/HDPE_H strip composite (Sample no. 1 (7A)). 
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Figure X.23: SEM micrographs of transverse section of UKF/HDPE_H strip composite (Sample no. 2 (7C)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.24: SEM micrographs of transverse section of UKF/HDPE_H strip composite (Sample no. 3 (7D)). 
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Figure X.25: SEM micrographs of transverse section of KFTN/HDPE_H strip composite (Sample no. 1 (8A)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.26: SEM micrographs of transverse section of KFTN/HDPE_H strip composite (Sample no. 2 (8C)). 
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Figure X.27: SEM micrographs of transverse section of KFTN/HDPE_H strip composite (Sample no. 3 (8E)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.28: SEM micrographs of transverse section of KFTHA/HDPE_H strip composite (Sample no. 1 (6D)). 
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Figure X.29: SEM micrographs of transverse section of KFTHA/HDPE_H strip composite (Sample no. 2 (6F)). 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure X.30: SEM micrographs of transverse section of KFTHA/HDPE_H strip composite (Sample no. 3 (6H)). 
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Appendix XI: SEM Micrographs of Longitudinal 

Section of Extruded Composites 
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Figure XI.1: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 1 and End A). 

 

 

 

   

 
 
 
 
 
Figure XI.2: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 1 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.3:  SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 1 and End B). 
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Figure XI.4: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 1 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.5: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 2 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.6: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 2 and End A). 
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Figure XI.7: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 2 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.8: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 2 and End B). 

 

 

 
 
 
 
 
 
 

Figure XI.9: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 3 and End A). 
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Figure XI.10: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 3 and End A). 

 

 

 

   

 
 
 
 
 
Figure XI.11: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 3 and End B). 

 

 

 
 
 
 
 
 
 

Figure XI.12: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 3 and End B). 
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Figure XI.13: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 4 and End A). 

 

 

 

   

 
 
 
 
 
Figure XI.14: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 4 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.15: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at centre of specimen (Sample no. 4 and End B). 
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Figure XI.16: SEM micrographs of longitudinal section of UKF/HDPE rod composite 

at edge of specimen (Sample no. 4 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.17: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 1 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.18: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 1 and End A). 
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Figure XI.19: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 1 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.20: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 1 and End B). 

 

 

 
 
 
 
 
 
 

Figure XI.21: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 2 and End A). 
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Figure XI.22: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 2 and End A). 

 

 

 

   

 
 
 
 
 
Figure XI.23: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 2 and End B). 

 

 

 
 
 
 
 
 
 

Figure XI.24: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 2 and End B). 
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Figure XI.25: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 3 and End A). 

 

 

 

   

 
 
 
 
 
Figure XI.26: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 3 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.27: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 3 and End B). 
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Figure XI.28: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 3 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.29: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 4 and End A). 

 

 

 
 
 
 
 
 
 

Figure XI.30: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 4 and End A). 
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Figure XI.31: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at centre of specimen (Sample no. 4 and End B). 

 

 

 

   

 
 
 
 
 
Figure XI.32: SEM micrographs of longitudinal section of KFTN/HDPE rod composite 

at edge of specimen (Sample no. 4 and End B). 

 

 

 

 

 
 
 
 
 
 

Figure XI.33: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at centre of specimen (Sample no. 1 (3A)). 
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Figure XI.34: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at edge of specimen (Sample no. 1 (3A)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.35: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at centre of specimen (Sample no. 2 (3C)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.36: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at edge of specimen (Sample no. 2 (3C)). 
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Figure XI.37: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at centre of specimen (Sample no. 3 (3H)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.38: SEM micrographs of longitudinal section of UKF/HDPE strip composite 

at edge of specimen (Sample no. 3 (3H)). 

 

 

 

 

 

 

 

 

 

Figure XI.39: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at centre of specimen (Sample no. 1 (2A)). 

 



A XI-16 
 

 

 

 

 

 

 

 

 

 

Figure XI.40: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at edge of specimen (Sample no. 1 (2A)). 

 

 

 

 

 
 
 
 
 
 
 
Figure XI.41: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at centre of specimen (Sample no. 2 (2E)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.42: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at edge of specimen (Sample no. 2 (2E)). 
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Figure XI.43: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at centre of specimen (Sample no. 3 (2G)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.44: SEM micrographs of longitudinal section of KFTN/HDPE strip 

composite at edge of specimen (Sample no. 3 (2G)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XI.45: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at centre of specimen (Sample no. 1 (1C)). 
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Figure XI.46: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at edge of specimen (Sample no. 1 (1C)). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure XI.47: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at centre of specimen (Sample no. 2 (1D)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.48: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at edge of specimen (Sample no. 2 (1D)). 
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Figure XI.49: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at centre of specimen (Sample no. 3 (1G)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.50: SEM micrographs of longitudinal section of KFTHA/HDPE strip 

composite at edge of specimen (Sample no. 3 (1G)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.51: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at centre of specimen (Sample no. 1 (7B)). 
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Figure XI.52: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at edge of specimen (Sample no. 1 (7B)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.53: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at centre of specimen (Sample no. 2 (7E)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.54: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at edge of specimen (Sample no. 2 (7E)). 
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Figure XI.55: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at centre of specimen (Sample no. 3 (7G)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XI.56: SEM micrographs of longitudinal section of UKF/HDPE_H strip 

composite at edge of specimen (Sample no. 3 (7G)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.57: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at centre of specimen (Sample no. 1 (8B)). 
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Figure XI.58: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at edge of specimen (Sample no. 1 (8B)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.59: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at centre of specimen (Sample no. 2 (8D)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.60: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at edge of specimen (Sample no. 2 (8D)). 
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Figure XI.61: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at centre of specimen (Sample no. 3 (8F)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XI.62: SEM micrographs of longitudinal section of KFTN/HDPE_H strip 

composite at edge of specimen (Sample no. 3 (8F)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XI.63: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at centre of specimen (Sample no. 1 (6B)). 
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Figure XI.64: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at edge of specimen (Sample no. 1 (6B)). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure XI.65: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at centre of specimen (Sample no. 2 (6E)). 

 

 

 

 

 

 

 

 

 

Figure XI.66: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at edge of specimen (Sample no. 2 (6E)). 
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Figure XI.67: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at centre of specimen (Sample no. 3 (6G)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XI.68: SEM micrographs of longitudinal section of KFTHA/HDPE_H strip 

composite at edge of specimen (Sample no. 3 (6G)). 
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Appendix XII: T Test and One-Way Analysis of 

Variance (ANOVA) Output for Tensile Property Test 

Data for Extruded HDPE and Short Kenaf 

Fibre/HDPE Rod Composites  
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T Test and One-Way Analysis of Variance (ANOVA) Output at 95% Confidence Interval for Tensile 

Properties of Extruded HDPE and Short Kenaf Fibre/HDPE Rod Composites  
 

Tensile Modulus 
All of the Extruded Rods 

ANOVA Table Sum of Squares df Mean 

Square 

F Sig. 

Between groups 0.03587 2 0.01793 22.48 < 0.0001 

Within groups 0.03749 47 0.0007976 

Total 0.07335 49  

 
Tukey’s Multiple Comparison Test Mean Difference q Significant (p < 0.05) 95% Confidence Interval of diff. 

HDPE vs UKF/HDPE -0.08703 9.462 Yes -0.1185 to -0.05555 

HDPE vs KFTN/HDPE -0.07198 7.827 Yes -0.1035 to -0.04051 

UKF/HDPE vs KFTN/HDPE 0.01505 2.499 No -0.005562 to 0.03565 
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Effects of Reinforcements 

 1. HDPE versus UKF/HDPE  

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

HDPE 6 0.2383 0.009331 0.003809 6.611 26 < 0.0001 Yes 

UKF/HDPE 22 0.3254 0.03148 0.006711 

 

2. HDPE versus KFTN/HDPE 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

HDPE 6 0.2383 0.009331 0.003809 6.171 26 < 0.0001 Yes 

KFTN/HDPE 22 0.3103 0.02781 0.005929 

 
Effects of Kenaf Fibre Types 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

UKF/HDPE 22 0.3254 0.03148 0.006711 1.680 

  

42 

  

0.1004  No 

  KFTN/HDPE 22 0.3103 0.02781 0.005929 
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Tensile Strength 
All of the Extruded Rods 

ANOVA Table Sum of Squares df Mean 

Square 

F Sig. 

Between groups 105.1 2 52.57 7.103 0.0020 

Within groups 347.8 47 7.400 

Total 452.9 49  

 
Tukey’s Multiple Comparison Test Mean Difference q Significant (p < 0.05) 95% Confidence Interval of diff. 

HDPE vs UKF/HDPE -4.332 4.889 Yes -7.364 to -1.299 

HDPE vs KFTN/HDPE -2.240 2.528 No -5.272 to 0.7924 

UKF/HDPE vs KFTN/HDPE 2.092 3.607 Yes 0.1068 to 4.077 

 

 
 

 

 

 



A XII-6 
 

Effects of Reinforcements 

 1. HDPE versus UKF/HDPE 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

HDPE 6 19.11 1.615 0.6593 4.625 26 < 0.0001 Yes 

UKF/HDPE 22 23.44 2.121 0.4521 

 

2. HDPE versus KFTN/HDPE 

Sample N Mean Std. Deviation Std. Error Mean t df P value (Two-tailed) Significant? 

HDPE 6 19.11 1.615 0.6593 1.558 26 0.1314 No 

KFTN/HDPE 22 21.35 3.383 0.7212 

 
Effects of Kenaf Fibre Types 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

UKF/HDPE 22 23.44 2.121 0.4521 2.457 

  

42 

  

0.0091 

  

Yes 

  KFTN/HDPE 22 21.35 3.383 0.7212 
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Strain at Maximum Stress 
All of the Extruded Rods 

ANOVA Table Sum of Squares df Mean 

Square 

F Sig. 

Between groups 2218 2 1109 200.8 < 0.0001 

Within groups 259.6 47 5.523 

Total 2478 49  

 
Tukey’s Multiple Comparison Test Mean Difference q Significant (p < 0.05) 95% Confidence Interval of diff. 

HDPE vs UKF/HDPE 20.90 27.31 Yes 18.28 to 23.52 

HDPE vs KFTN/HDPE 20.01 26.15 Yes 17.39 to 22.63 

UKF/HDPE vs KFTN/HDPE -0.8850 1.766 No -2.600 to 0.8298 
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Effects of Reinforcements 

1. HDPE versus UKF/HDPE 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

HDPE 6 30.25 4.192 1.711 21.02 26 < 0.0001 Yes 

UKF/HDPE 22 9.352 1.261 0.2687 

 

2. HDPE versus KFTN/HDPE 

Sample N Mean Std. Deviation Std. Error Mean t df P value (One-tailed) Significant? 

HDPE 6 30.25 4.192 1.711 14.73 26 < 0.0001 Yes 

KFTN/HDPE 22 10.24 2.567 0.5472 

 
Effects of Kenaf Fibre Types 

Sample N Mean Std. Deviation Std. Error Mean t df P value (Two-tailed) Significant? 

UKF/HDPE 22 9.352 1.261 0.2687 1.452 

  

42 

  

0.1540 

  

No 

  KFTN/HDPE 22 10.24 2.567 0.5472 

 

 

 



 

 

 

 

Appendix XIII: Tensile Stress-Strain Curves of 

Extruded HDPE and Short Kenaf Fibre/HDPE Strip 

Composites  
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Figure XIII.1: Tensile stress-strain curve of extruded HDPE strip. 

 

 

Figure XIII.2: Tensile stress-strain curves of extruded UKF/HDPE strip composites. 
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Figure XIII.3: Tensile stress-strain curves of extruded KFTN/HDPE strip composites. 

 

 

Figure XIII.4: Tensile stress-strain curves of extruded KFTHA/HDPE strip  

                         composites. 
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Figure XIII.5: Tensile stress-strain curves of hot pressed extruded HDPE (HDPE_H) 

                         strips. 

 

 

Figure XIII.6: Tensile stress-strain curves of hot pressed extruded HDPE/MAPE 

                         (HDPE/MAPE_H) strips.  
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Figure XIII.7: Tensile stress-strain curves of hot pressed extruded UKF/HDPE  

  (UKF/HDPE_H) strip composites. 

 

 

Figure XIII.8: Tensile stress-strain curves of hot pressed extruded KFTN/HDPE 

             (KFTN/HDPE_H) strip composites.  
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Figure XIII.9: Tensile stress-strain curves of hot pressed extruded KFTHA/HDPE 

 (KFTHA/HDPE_H) strip composites. 
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Appendix XIV: Material Data Sheets for Flax Fabric 

and Vinyl Ester Resin  
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A XXIV-3 

Biotex Flax 
Technical Information 

Yarn 

linear Density 

Processing 

Fabrics 

Woven Fabrics 

Non-Crimp Fabrics 

Fabric Weight 

Fabric Width 

Processing 

Typical Properties 

Density 
Tensile Modulus 
Tensile Strength 
Tensile Elongation 
Flexural Modulus 
Flexura l Strength 
Charpy Impact (flo!) 
Charpy Impact (edge) 

250tex 
125-2000te 

Standard 
On request 

crbiotex 

Typical processes include filament winding and pultruslon. 
processed In the same w ay as glass fibre. 

2x2 twill 
4x4 hopsack 
Others 

Unidirectional 
+/ -45 biaxia l 
Others 

420-520gsm 
250-SOOgsm 

! .25m 
Up to 3m 

Standard 
Standard 
On request 

Standard 
Standard 
On request 

Standard (depending on w eave style ) 
On request 

Standard 
On request (w oven fabrics only) 

Typical processes for include hand lay-up, vacuum infusion a nd 
RTM with standard resins o r bio-based resins. Processing is carried 
out in the same w a y as with g lass fibre. 

UD flax- Biaxia l flax- Woven flax-
polyester polyester polyester 
laminate laminate laminate 
(0 dir) (0 d lr) (0 d ir) 

1.30g/cm3 1.30g/cm3 1.24g/cm3 
18.8GPo B.7GPa 7.2GPo (ISO 527-4) 
174M Po 8SMPo 68.3MPa (ISO 527-4) 
1.5% 1.7% 2.5% (ISO 527-4) 
15.1GPo 6.8GPa 4.0GPo (ISO 14125) 
196MPo 135MPo 97.4M Pa (ISO 14125) 
TBC TBC 28.0kJ/ m2 (ISO 179-1 U) 
TBC TBC 2 . kJ/m2 (ISO 1 9-1 U) 

Doto forlominotes mode from 30-33vol% Biote flax fabrics o nd unsaturated polyester b y the 
vacuum infusion process ond tested a t ambient temperature. 
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ve uc • ve sx • ve ax 

IVSXH210 

Vinyl Ester Infusion Resm 
Copyriaht 2010 

Oesaiption 

Technical she t 

~ IVSXH210 is a~. vinyl ester blended resin containing styrene monomer. It is 
fonnulated b" building reinforoed plas1ic parts using dosed moking prooesses and spec:ificaly infusion 
processes such as vacuum bagging. SCRIM~. and resin ir;ection. 

Features and Benefits 

ArmorSi.v• IVSXH21 0 of'feB the following fNtures: 

• low viscosiiy for good fiber wealng and mold Iii ng performance 

• Rapid fi times 

• Rapid cure and Bared dewlopmenl for qui<* demold 

• Exoelem s1n!ngth and tooghness fof crack resista.noe 

• Hjgh heat ci5Uiftion t~rature (HOT) 

• Superior bister resistance 

• Good surface oosmeacs 

• Compatible with standard catalyst and CHPIMEKP blends 

Typical Uquid Properties (at noF) 

liquid pt'Opl!f1ies of ArmorStarE> IVSXH210 are shown below. These values may or may not be 
manufactu""" control aieria: they are lsted fof a reference guide only. Particular batches wil not 
conform ex.actty 110 the nu~ ·listed because stcnge conditions. temper3llse chaoges. age. tesmg 
equipment (type and prooedl.ft) can eacl'l have a significant etrea on the results. Products outside of 
these read'ngs can perform acceptably. Final suitabi. of this product is in the end use pefformance. 

THt ~IVSXHl10 

V5005ity' 100 cps 

CCP~US · PO Eimr4 9la9 · """'ct)o li'IAI -6389 
• ea:H21·3S'90 • a15-l!IHDI! · F'ID" 8t5-39H.l3"' · .........,....,. ' "cam 
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Technical data sheet 

IVSXH210 - Copynght 2010 

Weight per Gallon 9.0 

'Brooklield RVF 112 at 50 rpm 
2100 g mass, 1.50% Luperox• DDM-9 

Physical Properties 

The physical properties of AnnorStar® IVSXH210 are shown below. The properties given below are for 
well cured castings and laminates. Resin and laminates at different stages of cure will have varying 

properties. 

Test 

Tensile Strength 

Tensile Modulus 

Tensile Elongation 

Flexural Strength 

Flexural Modulus 

Glass Transition Temperature. Tg 

Test Method' 

ASTM 0638 

ASTMD790 

CCP-22-TAS-TM-3008 

(DMA) 

Neat Resin Castlni Laminate3 

9,500 psi 16,000 psi 

580.000 psi 1,460,000 psi 

2 .4% 1.6% 

16,000ps1 31,000 psi 

590,000 psi 1,290,000 psi 

230"F (110"C) 

'All tests run per Internal CCP test methods. These methods are simHar to the ASTM Method fisted above. 
'Nea1 resin casting catalyzed willl1 .5% Merna Luperox• DH0-9. The casting cured for 16 hours at room temperature and was 
post cured for 4 hours at 150"f. 
"Lamina1e - Resin initiated with 1.5% Merna Luperox- OHD-9. The laminate sChedule was 2 plies of 1.5 oz. CSM. Glass content 
was 35-37%%. The panel was cured for 16 hours at room temperature and post cured for 4 hours at 150'F. 

Application 
The cure rate of thennoset resins depends on a number of factors including the product's age, temperature, 
catalyst type, catalyst level and ambient humidity. When used in a closed mok:fing application the laminate 
cure rate also depends on reinforcement content and laminate thickness as well as other factors. For these 
reasons, we recommend that customer's check the cure rate in your plant. 

AnnorStar® IVSXH210 is quality control tested using Arkema Luperox® DDM-9 bu1 can be used with a 
variety of peroxide initiators. When making thin laminates (<1 50 mils) Luperox® DDM-9 or a equivalent 
catalyst such as NOROX® MEKP-9, NOROX® MEKP-9H, Akzo Nobel CAOOX L-50a and CADOX D-50 are 
recommended. Arkema Luperox® DHD-9, Syrgis NOROX® MEKP-925, NOROX® MEKP-925H.and 
Chemtura HP-90.may also be used but gel and cure times may vary. 

For thicker laminates cumene hydroperoxide/melhyl ethyl ketone peroxide blends such as Arkema's 
Luperox® KC-70 and KC-50 can be used to reduce exothenn without negatively affecting the final cure of the 
composite. 

CCPCcmposileSUS PO. Box419389 KansasCIIy M1ssoun 64141-0389 
Tel ~1-3590 Tel 81&391-6000 Fu81&391-0337 · -~esuscom 
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Technical data sheet 

IVSXH210 - Copynght 2010 

The MEKP catalyst level should not exceed 2.4% or fall below 0.9% for proper cure. A catalyst level of 1.5% 
at n •F is considered ideal. Contact your catalyst supplier or your CCP representative for acceptable catalyst 
ranges for MEKP/CHP blends. This product should not be used whem temperature conditions are below 
60•F, as curing may be adversely affected. 

Caution 

Do not add any material other than the recommended organic peroxide to this product without the advice of a 
representative of CCP Composites US. 

Storage 

ArmorSta,.e IVSXH21 0 has a shelf life of three months from date of shipment from CCP when stored at 73•F 
or below in a closed, factory-sealed, opaque container, and out of direct sunlight. The usage life is cut in half 
for every 20•F over 73•F. 

CCPC.,..,_tesUS PO Box419389 KansasOiy Mosaa1.r1 6-4141-6389 
Tet ~1-3590 Tet 816-391.QJOO Fax816-391-6337 wwwc~com 



 

 

 

 

Appendix XV: Identification of Wrapping Threads 

Using Fourier Transforms Infrared (FTIR) and 

Raman Spectroscopy 
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XV.A Experimental Procedures 

Wrapping threads were removed from the unidirectional flax fabrics. They were 

then identified using a Perkin Elmer Spotlight 400 FTIR microscope within universal 

attenuated total reflectance (ATR) mode in the range of 4,000-650 cm-1, with a 

resolution of 4 cm-1.  

The wrapping threads were also identified using a Perkin Elmer Ramanstation 

785-nm (near-IR) laser-based Raman spectrometer and a Renishaw inVia Raman 

microscope 514-nm (green light) laser-based Raman spectrometer. The Raman 

spectrum measurement conditions used are shown in Table XV.1. 

 

Table XV.1:  The Raman spectrum measurement conditions 

Condition 

Instrument 

785-nm (near-IR) 

laser-based 

Raman 

spectrometer 

514-nm (green 

light) laser-based 

Raman 

spectrometer 

Excitation source 785-nm (near IR) 

laser 

514-nm (green light) 

laser 

Laser energy (%) 100 100 

Microscope objective 50 times 50 times 

Exposure time (per second) 30 4 

Spectrum range or Raman shift (cm-1) 200-2,000 200-2,000 

 

XV.B Results 

The FTIR spectrum of the wrapping threads is shown in Figure XV.1. The 

possible peak assignments of the spectrum are given in Table XV.2. The spectrum was 

the same as that of viscose rayon. 
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Appendix XVI: SEM Images of Cross-Sections of Flax 

Technical Fibres  
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50 µm 

Magnification: ×800 
Area (𝑨𝑻): 506 µm2 
 

30 µm 

Magnification: ×1,500 
Area (𝑨𝑻): 513 µm2 
 

20 µm 

Magnification: ×2,000 
Area (𝑨𝑻): 534 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 543 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 551 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 660 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 719 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 783 µm2 
 

50 µm 

Magnification: ×900 
Area (𝑨𝑻): 802 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 803 µm2 
 

50 µm 

Magnification: ×900 
Area (𝑨𝑻): 833 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 855 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 875 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 910 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 917 µm2 
 

50 µm 

Magnification: ×900 
Area (𝑨𝑻): 922 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 928 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 951 µm2 
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50 µm 

Magnification: ×900 
Area (𝑨𝑻): 964 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,005 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,017 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,024 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 1,033 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,046 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,075 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,079 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,123 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,131 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,136 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,157 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,160 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 1,229 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,234 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,284 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,306 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,337 µm2 
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50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,361 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,374 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 1,400 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,408 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,420 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,518 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 1,518 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,527 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,528 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 1,542 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,542 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,544 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,568 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,578 µm2 
 

50 µm 

Magnification: ×900 
Area (𝑨𝑻): 1,583 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,630 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,650 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 1,671 µm2 
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50 µm 

Magnification: ×900 
Area (𝑨𝑻): 1,681 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 1,691 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,697 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,697 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,770 µm2 
 

40 µm 

Magnification: ×1,200 
Area (𝑨𝑻): 1,815 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 1,832 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 1,848 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 1,992 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 2,129 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,188 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,191 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 2,227 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,241 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 2,312 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 2,387 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 2,389 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 1,682 µm2 
 



A XVI-7 
 

 
 
         
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
         
 
 
 
 
 
 
  
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,427 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,450 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 2,472 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,480 µm2 
 

50 µm 

Magnification: ×900 
Area (𝑨𝑻): 2,501 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 2,517 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 2,521 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 2,618 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 2,618 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,672 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 2,712 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 2,725 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 2,830 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 2,918 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 2,932 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 3,005 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 3,013 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 3,022 µm2 
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50 µm 

Magnification: ×600 
Area (𝑨𝑻): 3,035 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 3,198 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 3,247 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 3,286 µm2 
 

50 µm 

Magnification: ×1,000 
Area (𝑨𝑻): 3,309 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 3,462 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 3,778 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 3,819 µm2 
 

50 µm 

Magnification: ×800 
Area (𝑨𝑻): 3,990 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 4,048 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 4,107 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 4,175 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 4,502 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 4,783 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 4,848 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 4,863 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 5,122 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 5,353 µm2 
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100 µm 

Magnification: ×500 
Area (𝑨𝑻): 5,595 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 5,986 µm2 
 

50 µm 

Magnification: ×600 
Area (𝑨𝑻): 6,102 µm2 
 

50 µm 

Magnification: ×700 
Area (𝑨𝑻): 6,372 µm2 
 

100 µm 

Magnification: ×500 
Area (𝑨𝑻): 6,690 µm2 
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Appendix XVII: Calculations for the Log-Normal 

Distributions of Measured and True Cross-Sectional 

Areas of Flax Technical Fibres 
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XVII.A Calculations for the Log-Normal Distribution of 

Measured Cross-Sectional Area of Flax Technical Fibres 
 

Rank  

 

Measured Area (µm2) 

     

  
             

   

1 1290 7.162 0.0322 

2 1475 7.297 0.0585 

3 1504 7.316 0.0633 

4 1527 7.331 0.0676 

5 1547 7.344 0.0712 

6 2027 7.614 0.1874 

7 2041 7.621 0.1914 

8 2104 7.651 0.2099 

9 2251 7.719 0.2547 

10 2357 7.765 0.2881 

11 2447 7.803 0.3165 

12 2512 7.829 0.3371 

13 2546 7.842 0.3478 

14 2579 7.855 0.3581 

15 2666 7.888 0.3856 

16 2682 7.894 0.3903 

17 2756 7.922 0.4133 

18 2865 7.960 0.4461 

19 2905 7.974 0.4575 

20 2950 7.989 0.4706 

21 2980 8.000 0.4794 

22 3164 8.059 0.5292 

23 3190 8.068 0.5360 

24 3218 8.077 0.5431 

25 3307 8.104 0.5650 

26 3317 8.107 0.5673 

27 3417 8.137 0.5903 

28 3427 8.139 0.5923 

29 3433 8.141 0.5937 
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Rank  

 

Measured Area (µm2) 

     

  
             

   

30 3454 8.147 0.5983 

31 3486 8.157 0.6051 

32 3510 8.163 0.6101 

33 3564 8.179 0.6210 

34 3634 8.198 0.6344 

35 3741 8.227 0.6535 

36 3807 8.245 0.6642 

37 3807 8.245 0.6642 

38 3834 8.252 0.6684 

39 3851 8.256 0.6709 

40 3919 8.274 0.6808 

41 3998 8.293 0.6913 

42 4046 8.305 0.6973 

43 4071 8.312 0.7002 

44 4176 8.337 0.7114 

45 4191 8.341 0.7128 

46 4207 8.344 0.7144 

47 4218 8.347 0.7154 

48 4248 8.354 0.7181 

49 4258 8.357 0.7190 

50 4525 8.417 0.7369 

51 4810 8.478 0.7457 

52 4846 8.486 0.7461 

53 4885 8.494 0.7463 

54 4945 8.506 0.7464 

55 5029 8.523 0.7459 

56 5130 8.543 0.7443 

57 5208 8.558 0.7425 

58 5285 8.573 0.7401 

59 5293 8.574 0.7398 

60 5305 8.576 0.7394 
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Rank  

 

Measured Area (µm2) 

     

  
             

   

61 5548 8.621 0.7284 

62 5549 8.621 0.7283 

63 5563 8.624 0.7275 

64 5595 8.630 0.7257 

65 5739 8.655 0.7168 

66 5797 8.665 0.7128 

67 5950 8.691 0.7015 

68 5959 8.693 0.7008 

69 5994 8.698 0.6981 

70 6062 8.710 0.6925 

71 6179 8.729 0.6826 

72 6180 8.729 0.6824 

73 6232 8.737 0.6779 

74 6302 8.749 0.6716 

75 6372 8.760 0.6650 

76 6469 8.775 0.6558 

77 6514 8.782 0.6515 

78 6693 8.809 0.6336 

79 6721 8.813 0.6307 

80 6729 8.814 0.6299 

81 6800 8.825 0.6226 

82 6980 8.851 0.6038 

83 7218 8.884 0.5786 

84 7252 8.889 0.5749 

85 7332 8.900 0.5663 

86 7454 8.916 0.5532 

87 7716 8.951 0.5252 

88 7725 8.952 0.5242 

89 7809 8.963 0.5152 

90 7860 8.970 0.5098 

91 7940 8.980 0.5014 
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Rank  

 

Measured Area (µm2) 

     

  
             

   

92 8009 8.988 0.4941 

93 8040 8.992 0.4908 

94 8116 9.002 0.4829 

95 8174 9.009 0.4769 

96 8270 9.020 0.4670 

97 8831 9.086 0.4116 

98 9414 9.150 0.3586 

99 9693 9.179 0.3352 

100 9731 9.183 0.3321 

101 9826 9.193 0.3244 

102 10079 9.218 0.3048 

103 10123 9.223 0.3015 

104 10323 9.242 0.2867 

105 10455 9.255 0.2774 

106 10455 9.255 0.2774 

107 10495 9.259 0.2746 

108 10496 9.259 0.2745 

109 11029 9.308 0.2398 

110 12429 9.428 0.1669 

111 12430 9.428 0.1669 

112 13551 9.514 0.1246 

113 14356 9.572 0.1010 

Average 5631 8.503  

SD 2864 0.534  

 

 Mean (  ) = 5,631 µm2 with a standard deviation of 2,864 µm2 

 Location parameter (  
 ) = 8.50 

 Scale parameter (  
 ) = 0.53 

 Geometric mean (          
  ) = 4,929 µm2 

 Geometric standard deviation (         
  ) = 1.71 µm2 
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XVII.B Calculations for the Log-Normal Distribution of True 

Cross-Sectional Area of Flax Technical Fibres 
 

Rank  

 

True Area (µm2) 

     

  
             

   

1 506 6.226 0.0747 

2 513 6.240 0.0783 

3 534 6.280 0.0891 

4 543 6.298 0.0944 

5 551 6.312 0.0986 

6 660 6.492 0.1664 

7 719 6.578 0.2069 

8 783 6.663 0.2524 

9 802 6.687 0.2656 

10 803 6.689 0.2669 

11 833 6.725 0.2881 

12 855 6.751 0.3033 

13 875 6.774 0.3176 

14 910 6.813 0.3418 

15 917 6.821 0.3464 

16 922 6.826 0.3498 

17 928 6.833 0.3540 

18 951 6.858 0.3695 

19 964 6.871 0.3781 

20 1005 6.913 0.4046 

21 1017 6.924 0.4117 

22 1024 6.932 0.4162 

23 1033 6.940 0.4214 

24 1046 6.952 0.4292 

25 1075 6.980 0.4465 

26 1079 6.984 0.4487 

27 1123 7.024 0.4734 

28 1131 7.031 0.4774 

29 1136 7.035 0.4802 
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Rank  

 

True Area (µm2) 

     

  
             

   

30 1157 7.053 0.4907 

31 1160 7.056 0.4926 

32 1229 7.114 0.5253 

33 1237 7.120 0.5286 

34 1284 7.158 0.5481 

35 1306 7.175 0.5567 

36 1337 7.198 0.5677 

37 1361 7.216 0.5758 

38 1374 7.225 0.5799 

39 1400 7.245 0.5880 

40 1408 7.250 0.5902 

41 1420 7.258 0.5936 

42 1518 7.325 0.6166 

43 1518 7.325 0.6167 

44 1527 7.331 0.6183 

45 1528 7.332 0.6186 

46 1542 7.341 0.6211 

47 1542 7.341 0.6212 

48 1544 7.342 0.6216 

49 1568 7.357 0.6255 

50 1578 7.364 0.6272 

51 1583 7.367 0.6278 

52 1630 7.397 0.6341 

53 1650 7.409 0.6363 

54 1671 7.421 0.6383 

55 1681 7.427 0.6392 

56 1682 7.428 0.6393 

57 1691 7.433 0.6399 

58 1697 7.436 0.6404 

59 1697 7.437 0.6404 

60 1770 7.479 0.6441 
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Rank  

 

True Area (µm2) 

     

  
             

   

61 1815 7.504 0.6449 

62 1832 7.513 0.6450 

63 1848 7.522 0.6449 

64 1992 7.597 0.6387 

65 2129 7.664 0.6255 

66 2188 7.691 0.6182 

67 2191 7.692 0.6177 

68 2227 7.708 0.6128 

69 2241 7.715 0.6108 

70 2312 7.746 0.6000 

71 2387 7.778 0.5875 

72 2389 7.779 0.5871 

73 2427 7.794 0.5806 

74 2450 7.804 0.5764 

75 2472 7.813 0.5723 

76 2480 7.816 0.5708 

77 2501 7.824 0.5671 

78 2517 7.831 0.5641 

79 2521 7.832 0.5633 

80 2618 7.870 0.5447 

81 2618 7.870 0.5446 

82 2672 7.890 0.5341 

83 2712 7.905 0.5260 

84 2725 7.910 0.5235 

85 2830 7.948 0.5023 

86 2918 7.979 0.4843 

87 2932 7.983 0.4815 

88 3005 8.008 0.4667 

89 3013 8.011 0.4652 

90 3022 8.014 0.4633 

91 3035 8.018 0.4606 
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Rank  

 

True Area (µm2) 

     

  
             

   

92 3198 8.070 0.4282 

93 3247 8.085 0.4188 

94 3286 8.097 0.4112 

95 3309 8.104 0.4068 

96 3462 8.149 0.3783 

97 3778 8.237 0.3236 

98 3819 8.248 0.3170 

99 3990 8.291 0.2906 

100 4048 8.306 0.2821 

101 4107 8.320 0.2737 

102 4175 8.337 0.2641 

103 4502 8.412 0.2228 

104 4783 8.473 0.1922 

105 4848 8.486 0.1858 

106 4863 8.489 0.1844 

107 5122 8.541 0.1609 

108 5353 8.585 0.1425 

109 5595 8.630 0.1255 

110 5986 8.697 0.1024 

111 6102 8.716 0.0964 

112 6372 8.760 0.0839 

113 6690 8.808 0.0714 

Average 2205 7.510  

SD 1413 0.619  

 

 Mean (  ) = 2,205 µm2 with a standard deviation of 1,413 µm2 

 Location parameter (  
 ) = 7.51 

 Scale parameter (  
 ) = 0.62 

 Geometric mean (          
  ) = 1,827 µm2 

 Geometric standard deviation (         
  ) = 1.86 µm2 

 



 

 

 

 

Appendix XVIII: Calculations for the Weibull 

Probability Plot for True Tensile Strength and Strain 

to Failure of Flax Technical Fibres  
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

1 0.006 0.994 -5.085 105.79 4.661 285.63 5.655 0.71 -0.342 

2 0.015 0.985 -4.193 121.88 4.803 329.08 5.796 0.81 -0.211 

3 0.024 0.976 -3.726 124.53 4.825 336.23 5.818 0.81 -0.211 

4 0.033 0.967 -3.406 136.86 4.919 369.52 5.912 0.96 -0.041 

5 0.041 0.959 -3.162 137.32 4.922 370.76 5.916 0.98 -0.020 

6 0.050 0.950 -2.965 157.26 5.058 424.60 6.051 1.02 0.020 

7 0.059 0.941 -2.799 166.99 5.118 450.87 6.111 1.04 0.039 

8 0.068 0.932 -2.655 168.02 5.124 453.65 6.117 1.16 0.148 

9 0.077 0.923 -2.528 173.06 5.154 467.26 6.147 1.19 0.174 

10 0.086 0.914 -2.414 177.49 5.179 479.22 6.172 1.19 0.174 

11 0.094 0.906 -2.312 179.86 5.192 485.62 6.185 1.20 0.182 

12 0.103 0.897 -2.217 186.70 5.230 504.09 6.223 1.22 0.199 

13 0.112 0.888 -2.131 187.46 5.234 506.14 6.227 1.23 0.207 

14 0.121 0.879 -2.050 197.06 5.284 532.06 6.277 1.24 0.215 

15 0.130 0.870 -1.974 197.79 5.287 534.03 6.280 1.29 0.255 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

16 0.138 0.862 -1.904 199.12 5.294 537.62 6.287 1.31 0.270 

17 0.147 0.853 -1.837 204.18 5.319 551.29 6.312 1.33 0.285 

18 0.156 0.844 -1.774 205.87 5.327 555.85 6.320 1.33 0.285 

19 0.165 0.835 -1.714 207.39 5.335 559.95 6.328 1.35 0.300 

20 0.174 0.826 -1.656 207.89 5.337 561.30 6.330 1.35 0.300 

21 0.183 0.817 -1.602 208.55 5.340 563.09 6.333 1.36 0.307 

22 0.191 0.809 -1.549 209.35 5.344 565.25 6.337 1.41 0.344 

23 0.200 0.800 -1.499 215.33 5.372 581.39 6.365 1.42 0.351 

24 0.209 0.791 -1.451 219.30 5.390 592.11 6.384 1.43 0.358 

25 0.218 0.782 -1.404 219.51 5.391 592.68 6.385 1.45 0.372 

26 0.227 0.773 -1.359 220.39 5.395 595.05 6.389 1.45 0.372 

27 0.235 0.765 -1.315 222.60 5.405 601.02 6.399 1.47 0.385 

28 0.244 0.756 -1.273 228.00 5.429 615.60 6.423 1.50 0.405 

29 0.253 0.747 -1.232 230.22 5.439 621.59 6.432 1.50 0.405 

30 0.262 0.738 -1.192 238.52 5.474 644.00 6.468 1.52 0.419 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

31 0.271 0.729 -1.153 238.84 5.476 644.87 6.469 1.54 0.432 

32 0.280 0.720 -1.115 241.09 5.485 650.94 6.478 1.55 0.438 

33 0.288 0.712 -1.078 247.32 5.511 667.76 6.504 1.55 0.438 

34 0.297 0.703 -1.042 248.67 5.516 671.41 6.509 1.57 0.451 

35 0.306 0.694 -1.007 248.79 5.517 671.73 6.510 1.57 0.451 

36 0.315 0.685 -0.973 249.46 5.519 673.54 6.513 1.58 0.457 

37 0.324 0.676 -0.939 249.50 5.519 673.65 6.513 1.61 0.476 

38 0.332 0.668 -0.906 252.61 5.532 682.05 6.525 1.62 0.482 

39 0.341 0.659 -0.874 258.00 5.553 696.60 6.546 1.63 0.489 

40 0.350 0.650 -0.842 258.55 5.555 698.09 6.548 1.63 0.489 

41 0.359 0.641 -0.811 268.03 5.591 723.68 6.584 1.63 0.489 

42 0.368 0.632 -0.780 275.12 5.617 742.82 6.610 1.63 0.489 

43 0.377 0.623 -0.750 280.61 5.637 757.65 6.630 1.65 0.501 

44 0.385 0.615 -0.720 283.18 5.646 764.59 6.639 1.66 0.507 

45 0.394 0.606 -0.691 284.12 5.649 767.12 6.643 1.67 0.513 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

46 0.403 0.597 -0.662 286.01 5.656 772.23 6.649 1.70 0.531 

47 0.412 0.588 -0.634 291.06 5.674 785.86 6.667 1.70 0.531 

48 0.421 0.579 -0.605 292.20 5.677 788.94 6.671 1.71 0.536 

49 0.429 0.571 -0.578 302.71 5.713 817.32 6.706 1.75 0.560 

50 0.438 0.562 -0.550 303.61 5.716 819.75 6.709 1.76 0.565 

51 0.447 0.553 -0.523 315.19 5.753 851.01 6.746 1.76 0.565 

52 0.456 0.544 -0.497 322.51 5.776 870.78 6.769 1.79 0.582 

53 0.465 0.535 -0.470 328.46 5.794 886.84 6.788 1.79 0.582 

54 0.474 0.526 -0.444 329.34 5.797 889.22 6.790 1.80 0.588 

55 0.482 0.518 -0.418 332.49 5.807 897.72 6.800 1.81 0.593 

56 0.491 0.509 -0.392 333.66 5.810 900.88 6.803 1.81 0.593 

57 0.500 0.500 -0.367 335.07 5.814 904.69 6.808 1.82 0.599 

58 0.509 0.491 -0.341 337.82 5.823 912.11 6.816 1.83 0.604 

59 0.518 0.482 -0.316 338.57 5.825 914.14 6.818 1.83 0.604 

60 0.526 0.474 -0.291 340.27 5.830 918.73 6.823 1.83 0.604 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

61 0.535 0.465 -0.266 340.69 5.831 919.86 6.824 1.85 0.615 

62 0.544 0.456 -0.241 344.38 5.842 929.83 6.835 1.85 0.615 

63 0.553 0.447 -0.217 355.63 5.874 960.20 6.867 1.85 0.615 

64 0.562 0.438 -0.192 360.23 5.887 972.62 6.880 1.87 0.626 

65 0.571 0.429 -0.168 361.12 5.889 975.02 6.882 1.90 0.642 

66 0.579 0.421 -0.144 365.16 5.900 985.93 6.894 1.91 0.647 

67 0.588 0.412 -0.120 367.89 5.908 993.30 6.901 1.92 0.652 

68 0.597 0.403 -0.096 373.93 5.924 1009.61 6.917 1.92 0.652 

69 0.606 0.394 -0.072 387.27 5.959 1045.63 6.952 1.93 0.658 

70 0.615 0.385 -0.048 387.78 5.960 1047.01 6.954 1.93 0.658 

71 0.623 0.377 -0.024 389.90 5.966 1052.73 6.959 1.95 0.668 

72 0.632 0.368 0.000 390.89 5.968 1055.40 6.962 1.96 0.673 

73 0.641 0.359 0.024 395.77 5.981 1068.58 6.974 1.96 0.673 

74 0.650 0.350 0.048 400.66 5.993 1081.78 6.986 1.96 0.673 

75 0.659 0.341 0.072 404.10 6.002 1091.07 6.995 1.96 0.673 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

76 0.668 0.332 0.096 411.46 6.020 1110.94 7.013 1.97 0.678 

77 0.676 0.324 0.121 421.59 6.044 1138.29 7.037 1.98 0.683 

78 0.685 0.315 0.145 426.08 6.055 1150.42 7.048 2.00 0.693 

79 0.694 0.306 0.169 429.32 6.062 1159.16 7.055 2.00 0.693 

80 0.703 0.297 0.193 430.07 6.064 1161.19 7.057 2.03 0.708 

81 0.712 0.288 0.218 443.33 6.094 1196.99 7.088 2.04 0.713 

82 0.720 0.280 0.243 445.34 6.099 1202.42 7.092 2.05 0.718 

83 0.729 0.271 0.267 446.55 6.102 1205.69 7.095 2.05 0.718 

84 0.738 0.262 0.293 455.00 6.120 1228.50 7.114 2.05 0.718 

85 0.747 0.253 0.318 456.43 6.123 1232.36 7.117 2.05 0.718 

86 0.756 0.244 0.343 460.99 6.133 1244.67 7.127 2.07 0.728 

87 0.765 0.235 0.369 461.24 6.134 1245.35 7.127 2.08 0.732 

88 0.773 0.227 0.395 470.85 6.155 1271.30 7.148 2.09 0.737 

89 0.782 0.218 0.421 471.92 6.157 1274.18 7.150 2.10 0.742 

90 0.791 0.209 0.448 472.20 6.157 1274.94 7.151 2.11 0.747 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

91 0.800 0.200 0.475 478.63 6.171 1292.30 7.164 2.19 0.784 

92 0.809 0.191 0.503 483.15 6.180 1304.51 7.174 2.24 0.806 

93 0.817 0.183 0.531 483.54 6.181 1305.56 7.174 2.29 0.829 

94 0.826 0.174 0.560 483.82 6.182 1306.31 7.175 2.30 0.833 

95 0.835 0.165 0.589 484.64 6.183 1308.53 7.177 2.32 0.842 

96 0.844 0.156 0.619 499.68 6.214 1349.14 7.207 2.36 0.859 

97 0.853 0.147 0.650 502.26 6.219 1356.10 7.212 2.38 0.867 

98 0.862 0.138 0.682 502.92 6.220 1357.88 7.214 2.47 0.904 

99 0.870 0.130 0.714 514.00 6.242 1387.80 7.235 2.48 0.908 

100 0.879 0.121 0.748 515.79 6.246 1392.63 7.239 2.49 0.912 

101 0.888 0.112 0.784 516.27 6.247 1393.93 7.240 2.49 0.912 

102 0.897 0.103 0.820 516.74 6.248 1395.20 7.241 2.53 0.928 

103 0.906 0.094 0.859 519.99 6.254 1403.97 7.247 2.57 0.944 

104 0.914 0.086 0.900 520.72 6.255 1405.94 7.248 2.59 0.952 

105 0.923 0.077 0.943 532.95 6.278 1438.97 7.272 2.62 0.963 
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Rank  

(i) 

Median Rank 

(     )  

n = 113 

1 – Median 

Rank 

 

ln[-ln(1 – Median 

Rank)] 

Tensile 

Strength 

(  ) (MPa) 

ln (Tensile 

Strength) 

(      ) 

True 

Tensile 

Strength 

(  ) (MPa) 

ln (True 

Tensile 

Strength) 

(      ) 

Strain to 

Failure  

(%) 

ln (Strain to 

Failure) 

 

106 0.932 0.068 0.989 561.36 6.330 1515.67 7.324 2.62 0.963 

107 0.941 0.059 1.040 570.06 6.346 1539.16 7.339 2.67 0.982 

108 0.950 0.050 1.095 573.86 6.352 1549.42 7.346 2.73 1.004 

109 0.959 0.041 1.158 604.24 6.404 1631.45 7.397 2.73 1.004 

110 0.967 0.033 1.230 612.44 6.417 1653.59 7.411 2.73 1.004 

111 0.976 0.024 1.318 623.32 6.435 1682.96 7.428 2.85 1.047 

112 0.985 0.015 1.435 685.47 6.530 1850.77 7.523 3.12 1.138 

113 0.994 0.006 1.627 738.32 6.604 1993.46 7.598 3.20 1.163 

 



 

 

 

 

Appendix XIX: Tensile Test Data for Flax Fibre 

Bundles 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

1 26 37 5.7 9429 380.00 24.81 3.016 350.13 

2 26 37 4.2 7372 280.00 26.33 4.960 371.51 

3 26 37 3.3 6542 220.00 29.74 5.317 419.61 

4 26 37 4.9 7681 326.67 23.51 3.598 331.77 

5 26 37 4.2 8574 280.00 30.62 4.236 432.08 

6 26 59 3.9 8225 260.00 31.63 4.988 446.36 

7 26 59 2.7 5216 180.00 28.98 6.457 408.89 

8 26 59 2.7 5003 180.00 27.79 7.190 392.17 

9 26 59 5.0 9725 333.33 29.17 4.258 411.67 

10 26 59 4.8 9420 320.00 29.44 4.215 415.38 

11 26 59 3.8 7714 253.33 30.45 4.551 429.65 

12 26 59 4.1 7287 273.33 26.66 4.726 376.20 

13 26 59 4.4 9243 293.33 31.51 4.338 444.64 

14 26 59 2.7 5008 180.00 27.82 5.353 392.60 

15 26 59 4.9 8675 326.67 26.55 3.777 374.70 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

16 26 59 2.3 4901 153.33 31.96 7.709 451.00 

17 26 59 3.7 8023 246.67 32.53 5.276 458.98 

18 26 59 4.0 7478 266.67 28.04 4.804 395.72 

19 26 59 3.6 7623 240.00 31.76 5.287 448.17 

20 26 59 3.5 7562 233.33 32.41 5.743 457.33 

21 24 49.5 3.6 7411 240.00 30.88 5.504 435.75 

22 24 49.5 3.8 8018 253.33 31.65 5.196 446.58 

23 24 49.5 2.3 5455 153.33 35.57 8.732 501.96 

24 24 49.5 3.3 5457 220.00 24.80 5.830 349.98 

25 24 49.5 4.2 5896 280.00 21.06 4.147 297.12 

26 24 49.5 4.3 7782 286.67 27.15 4.387 383.04 

27 24 49.5 2.7 5264 180.00 29.24 6.257 412.62 

28 24 49.5 4.3 8161 286.67 28.47 4.427 401.70 

29 24 49.5 4.4 7353 293.33 25.07 4.095 353.69 

30 24 49.5 6.4 9355 426.67 21.93 3.210 309.38 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

31 24 49.5 3.4 6520 226.67 28.76 5.271 405.86 

32 24 49.5 5.6 8400 373.33 22.50 3.335 317.48 

33 24 49.5 4.7 7393 313.33 23.60 3.975 332.94 

34 24 49.5 4.9 8446 326.67 25.86 3.836 364.83 

35 24 49.5 4.6 8035 306.67 26.20 3.992 369.70 

36 24 49.5 3.5 6522 233.33 27.95 4.973 394.44 

37 24 51 3.1 6550 206.67 31.69 5.605 447.19 

38 24 51 4.4 8455 293.33 28.82 4.541 406.73 

39 24 51 4.8 8019 320.00 25.06 3.675 353.60 

40 24 51 4.2 7118 280.00 25.42 4.042 358.74 

41 24 51 3.8 5350 253.33 21.12 3.843 297.98 

42 24 51 3.3 5600 220.00 25.45 5.173 359.18 

43 24 51 3.8 8148 253.33 32.16 4.586 453.85 

44 24 51 4.1 8055 273.33 29.47 4.496 415.84 

45 24 51 4.7 8920 313.33 28.47 4.338 401.69 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

46 24 51 3.9 7381 260.00 28.39 4.423 400.56 

47 25 55 4.7 8158 313.33 26.04 4.095 367.38 

48 25 55 2.8 5521 186.67 29.58 6.558 417.35 

49 25 55 4.3 7734 286.67 26.98 4.837 380.69 

50 25 55 4.0 6748 266.67 25.31 4.454 357.09 

51 25 55 3.5 7699 233.33 33.00 5.150 465.58 

52 25 55 3.0 5850 200.00 29.25 5.709 412.75 

53 25 55 4.3 7775 286.67 27.12 4.265 382.71 

54 25 55 2.5 5396 166.67 32.38 6.507 456.87 

55 25 55 3.9 7928 260.00 30.49 5.058 430.28 

56 25 55 3.4 5694 226.67 25.12 5.122 354.46 

57 25 52 3.8 6189 253.33 24.43 5.341 344.71 

58 25 52 3.2 5522 213.33 25.88 6.002 365.24 

59 25 52 3.1 6581 206.67 31.84 6.154 449.33 

60 25 52 3.1 5484 206.67 26.54 6.348 374.44 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

61 25 52 2.9 6067 193.33 31.38 5.963 442.80 

62 25 52 4.1 7789 273.33 28.50 5.054 402.10 

63 25 52 3.0 6166 200.00 30.83 5.642 435.06 

64 25 52 4.2 8286 280.00 29.59 4.764 417.56 

65 25 52 5.2 8118 346.67 23.42 3.854 330.43 

66 25 52 3.3 6356 220.00 28.89 5.403 407.67 

67 25 52 4.4 7714 293.33 26.30 4.742 371.09 

68 25 52 5.1 10015 340.00 29.46 3.616 415.63 

69 25 52 3.4 6119 226.67 26.99 5.400 380.91 

70 25 52 4.2 6709 280.00 23.96 4.282 338.09 

71 25 52 3.4 6000 226.67 26.47 5.486 373.51 

72 25 52 3.6 7518 240.00 31.33 5.503 442.02 

73 25 52 2.5 5303 166.67 31.82 7.197 448.97 

74 25 52 4.2 8586 280.00 30.66 4.839 432.67 

75 25 52 3.7 6228 246.67 25.25 4.521 356.28 

 



A XIX-8 
 

 

Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

76 25 52 4.0 6743 266.67 25.28 4.988 356.78 

77 25 52 4.2 6803 280.00 24.30 4.434 342.82 

78 25 52 3.5 7129 233.33 30.55 5.255 431.11 

79 25 52 2.8 4678 186.67 25.06 5.920 353.65 

80 25 52 3.6 6288 240.00 26.20 5.269 369.69 

81 25 52 2.9 7618 193.33 39.40 6.991 556.02 

82 25 52 3.3 7557 220.00 34.35 5.755 484.71 

83 25 52 3.3 6581 220.00 29.91 5.845 422.12 

84 25 52 3.8 7420 253.33 29.29 5.009 413.27 

85 25 52 4.3 6720 286.67 23.44 4.436 330.77 

86 25 57.5 2.5 5594 166.67 33.57 6.647 473.64 

87 25 57.5 3.3 7683 220.00 34.92 6.002 492.77 

88 25 57.5 3.9 7015 260.00 26.98 5.082 380.74 

89 25 57.5 4.5 8185 300.00 27.28 4.683 384.98 

90 25 57.5 2.8 5143 186.67 27.55 5.830 388.79 
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Specimen 

No. 

Temperature 

of Testing 

(oC) 

RH of 

Testing 

(%) 

Weight of 

Specimen 

(mg) 

Breaking 

Load 

(gf) 

Linear Mass 

Density (tex) 

Tenacity 

(gf/tex) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

91 25 57.5 3.2 6355 213.33 29.79 6.109 420.33 

92 25 57.5 3.5 7831 233.33 33.56 5.527 473.58 

93 25 57.5 4.5 7934 300.00 26.45 4.177 373.18 

94 25 57.5 2.2 4913 146.67 33.49 7.117 472.63 

95 25 57.5 3.5 6440 233.33 27.60 4.672 389.47 

96 25 57.5 2.7 5370 180.00 29.83 5.736 420.98 

97 25 57.5 4.3 7485 286.67 26.11 4.554 368.45 

98 25 57.5 3.9 6503 260.00 25.01 4.823 352.91 

99 25 57.5 3.8 8327 253.33 32.87 4.810 463.81 

100 25 57.5 2.5 5214 166.67 31.28 5.982 441.40 

101 25 57.5 3.1 6124 206.67 29.63 5.880 418.14 

102 25 57.5 4.2 7841 280.00 28.00 4.156 395.13 

103 25 57.5 2.3 4340 153.33 28.30 6.085 399.37 

104 25 57.5 3.9 7381 260.00 28.39 4.830 400.58 

105 25 57.5 4.2 8160 280.00 29.14 4.306 411.23 
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