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MacKinlay
Daniel

This thesis is concerned with two topics rooted in the analysis of time-series.

In the first, we improve the estimation of rare-event probabilities by stochastic simulation.
The proposed method, quasi-monotone splitting uses generalized splitting  to estimate integrals with respect to intractable 
target distributions by instead estimating them with respect to the terminal state of a certain Markov chain, allowing us to use 
time series methods to study them.
We employ two innovations to this end:
Problem constraints are exploited to derive a simple, efficient estimation strategy automatically for a tractable problem class, 
and
The performance of the estimator is improved through  the use of survival analysis and extreme value theory, in which near-
optimal parameters can be derived with minimal intervention.
We demonstrate applications of this algorithm to a variety of wireless reliability problems.
The performance of the resulting algorithms are competitive with specialized Monte Carlo estimators for specific problems, 
and provide novel estimators for problems previously lacking known, efficient estimators.
Some of the methods in this section were developed for a paper with several co-authors which has now been published.

The second topic is audio signal analysis.
An important task here is style transfer, which attempts to synthesize a new signal from two others, a source and a target. The 
new synthetic signal should possess the microscopic “stylistic” statistics of the source, and the macroscopic “semantic” 
statistics of the target. We solve this problem using mosaicing style transfer, which decomposes the source signal into 
microscopic sub-samples, superimposing them to produce the new synthetic signal whose macroscopic statistics approximate 
the target. In such models, one chooses parameters by minimising some loss function which ideally approximates acoustic 
similarity as perceived by a human listener. We leverage the insight that human pitch perception is related to the local 
autocorrelogram of a signal to construct a novel loss function based on a difference between autocorrelograms. This, in 
combination with a signal approximation method based on orthogonal matching pursuits, results in  a novel synthesis 
algorithm called autocorrelogram mosaicing.
This algorithm is the only one we know of with public code that can mosaic with arbitrary pitch transposition of source audio, 
enabling style transfer between differently tuned instruments while maintaining musical consonance.
The strength and weakness of this algorithm for various source materials is demonstrated.
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Abstract

This thesis is concerned with two topics rooted in the analysis of time-series.
The first is in the area of rare-event simulation. This is of particularly impor-

tant in areas where rare but crucial events are of great interest, such as finance and
wireless networking. Many such rare event probabilities are numerically intractable
to calculate, even where all the parameters are known. Such quantities must be
estimated by approximate means. One such approximate means is stochastic sim-
ulation, which has a number of desirable properties, such as small or zero bias,
and well-understood asymptotic behaviour.

We improve these stochastic estimators for certain special classes of problems
by a new technique. Our quasi-monotone splitting uses generalized splitting (Botev
et al. 2012) to estimate rare event probabilities by transforming them into estima-
tors with respect to some “nice” Markov chain. This allows us to treat the target
quantities as a time series estimation problem, using all the power of time series
methods. The performance of the resulting algorithms are competitive with spe-
cialized Monte Carlo estimators for specific problems, and provide novel estimators
for problems previously lacking known, efficient estimators.

The second topic pertains to a different times series: audio signals. An impor-
tant task here is style transfer, which attempts to synthesize a new mosaic signal
from two others, a source and a target. Intuitively, the mosaic signal should have
the ‘content’ of the target, but the ‘style’ of the source. This problem is important
in industrial applications such as voice and music synthesis. Our approach to this
problem uses mosaicing style transfer. This method decomposes the source signal
into very short snippets, then superimposes those snippets into a a new mosaic
with the large-scale structure matching the target. There are many mosaicing-
type methods; ours is unique because it is based on the autocorrelogram, which
characterises signals by their self-similarity, which is a simple approximation to hu-



man pitch perception. Autocorrelograms are usually considered computationally
intractable, but we handle them using a combination of a sparse basis decompo-
sition and a stochastic simulation method to find good local matches. The result
is a novel synthesis algorithm called autocorrelogram mosaicing. We apply it to a
number of musically relevant tasks and compare it with other benchmark tasks.
Although quantitative measures are difficult in this domain, the result is qualita-
tively effective and produces novel and aesthetically interesting effects.
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Chapter 1

Introduction

1.1 A thesis in two parts
This thesis is concerned with two topics which over the course of time have evolved
divergently.

Much like the dinosaur and the chicken, the family relationship between these
is no longer obvious. For our current purposes we present these parts separately,
each comparatively independent.

Nonetheless, they have indeed speciated from a single common ancestor. That
common ancestor is the theory of time-indexed stochastic processes, and it is our
hope that in the future their shared history will reveal strange and new relations
between them.

In the first part, we consider the use of stochastic processes in Monte Carlo
estimation. Specifically, we improve the estimation of rare-event probabilities by
stochastic simulation using Lévy processes. The proposed method, quasi-monotone
splitting uses generalized splitting (Botev et al. 2012) to estimate integrals with
respect to intractable target distributions by instead estimating them with respect
to the terminal state of a certain Markov chain. This allows us to use time series
methods to study these processes.

We employ two innovations to this end:

1. Problem constraints are exploited to derive a simple, efficient estimation
strategy automatically for a tractable problem class, and
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2. The performance of the estimator is improved through the use of survival
analysis and extreme value theory, in which near-optimal parameters can be
derived with minimal intervention.

We demonstrate applications of this algorithm to a variety of wireless reliability
problems. The performance of the resulting algorithms are competitive with spe-
cialized Monte Carlo estimators for specific problems, and provide novel estimators
for problems previously lacking known, efficient estimators. Some of the methods
in this section were developed for a paper with several co-authors which has now
been published (Ben Rached et al. 2020).

The second part covers audio signal analysis. An important task here is style
transfer, which attempts to synthesize a new signal from two others, a source
and a target. The new synthetic signal should possess the microscopic “stylistic”
statistics of the source, and the macroscopic “semantic” statistics of the target.
We solve this problem using mosaicing style transfer, which decomposes the source
signal into microscopic snippets, superimposing them to produce the new synthetic
signal whose macroscopic statistics approximate the target.

In such models, one chooses parameters by minimising some loss function which
ideally approximates acoustic similarity as perceived by a human listener. We
leverage the insight that human pitch perception is related to the local autocorrel-
ogram of a signal to construct a novel loss function based on a difference between
autocorrelograms. This, in combination with a signal approximation method based
on orthogonal matching pursuits, results in a novel synthesis algorithm called auto-
correlogram mosaicing. This algorithm is the only one we know of with public code
that can mosaic with arbitrary pitch transposition of source audio, enabling style
transfer between differently tuned instruments while maintaining musical conso-
nance. The strength and weakness of this algorithm for various source materials
is demonstrated.

1.2 Probability background
We introduce our choice of terminological and notational conventions, in probabil-
ity theory in particular, that will be useful throughout, and essential for the first



1.2. Probability background 3

part of the thesis in particular.
In this thesis, most of the random objects we encounter are random variables

taking values in state space Rd. A random variable X has associated law µ(A) =
P[A] on the state space for an X -measurable event A. We treat X through its
cumulative distribution function (CDF) on Rd, which contains the information we
need to characterise the law (or distribution) of the random variable. The CDF of
X is a function F : Rd → [0, 1]) such that if X ∼ µ then F (x) = P(X ∈ [−∞, x1]×
· · · × [−∞, xd]), for x = [x1 x2 . . . xd]. i.e., F (x) = µ([−∞, x1]× · · · × [−∞, xd]).
It is thus right continuous and non-decreasing in each coordinate of its argument.
When F is the CDF of a continuous random variable (i.e., one with no atoms) it
is convenient to discuss the density f(x) = dF (x)/dx. This is not always feasible;
we consider, for example, distributions of discrete support which do not possess
density functions with respect to the Lebesgue measure on real line. We allow
integrals with respect to functions of bounded variation in the Riemann-Stieltjes
sense, in particular, with respect to CDFs. For the Rd-valued random variables we
consider, all the following expectations coincide, where they are defined:

Eϕ(X ) =
∫

ϕ(x)µ(dx) as a Lebesgue-Stieltjes integral

=
∫

ϕ(x)dF (x) as a Riemann-Stieltjes integral

=
∫

ϕ(x)f(x)dx as a Riemann integral.

In this context we may meaningfully describe the distribution of X though a CDF,
X ∼ F or through a law X ∼ µ and mean the same thing, which is that X is a
random variable with law µ, which induces CDF F over the state space. We have
collapsed iterated integrals over a vector valued integrand into a single integral
sign to avoid a tedium of multiple integral signs. Each of these is interpreted as
an iterated integral over the coordinates. For example,

∫
ϕ(x)f(x)dx =

∫
· · ·

∫
ϕ([x1 · · · xd]>)dx1 . . . dxd.

Many of the random objects we consider are what we would refer to as stochastic
process, i.e., families of random variables indexed by some set tmax ⊆ R. We em-



4 Chapter 1. Introduction

phasise that a random object is a stochastic process by writing it as {X (t)}t∈tmax .
We have been using a notational convention from machine learning literature

— e.g. Domke (2020) — that when discussing a random variable X we use a sans
serif font. This has the convenient property that we can assume capital serif letters
to represent a CDF and lower-case serif letters to represent a density per default,
so that X ∼ F is not ambiguous.
{G} ∼ F1 × F2 × . . . Fd denotes that the coordinates of the state of random

process {G} = (G1, G2, . . . , Gd) are mutually independent with laws {Gi} ∼ Fi, i =
1, 2, . . . , d. In this case we understand it to mean that the joint distribution of
the coordinates of X is given by a product measure µ1 × · · · × µd, where µi is the
measure associated to CDF Fi. In the common case of d independent components
with identical laws F = F1 = F2 = · · · = Fd we write {G} ∼ F ×d. We allow this
notation also for independent stochastic processes sharing a common time index.

We write variables in boldface x rather than normal weight x to emphasise that
they are Rd vectors rather than scalars. Likewise, we boldface random variables
who take vector values. We have already used the convention that a boldfaced
vector’s are per default written as non-boldfaced versions of the sign denoting
that vector, so that x = [x1 x2 . . . xd] and xi is understood to be a coordinate of
x.

A hatted symbol θ̂ denotes an estimator of some estimand, θ∈Θ. Target es-
timands are mostly finite positive numbers so Θ = (0,∞), although some other
estimands are important. For example, we can estimate entire CDFs. An esti-
mator is a statistic, which is to say, a function of some set of random observed
or simulated data D∈Υ such that θ̂ : Υ→Θ. Although estimators are themselves
random variables, we do not write them in sans serif fonts. Usually the dependence
on the data D is suppressed and we write θ̂ rather than θ̂(D).
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Quasi-monotone splitting
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In this part we introduce the machinery of splitting-based rare event estimation,
the kind of problems that it is meant to solve, and the alternative methods by which
it can be solved. The context and importance are introduced first, in Section 2.1.
Subsequently, we develop the technical definitions and alternative methods that
provide the technical landscape in which our method is set.

Our own contribution, the quasi-monotone method, was developed for a pub-
lished paper (Ben Rached et al. 2020), to which the author is a major contributor.
The presentation of these results, in Chapter 3 is based upon that work but in-
cludes a revised presentation and some additional results. In Chapter 4 we extend
this work substantially with new, previously-unpublished results. These further
analyse and improve upon the efficiency of the quasi-monotone method by allowing
it to self-tune its free parameters.

Implementations of all methods, in the open-source MATLAB-like language Ju-
lia, are available at https://github.com/danmackinlay/MonotoneSampling., made
freely available for extension, and further research.

https://github.com/danmackinlay/MonotoneSampling




Chapter 2

Rare event estimation

We introduce the background to the field of rare event simulation, including the
structure and difficulties of the problem of estimating quantities related to rare
events. We explain several alternative estimators for these quantities, as well as
measures of efficiency of these estimators.

2.1 Background
Rare event problems arise in many application areas where events of small likeli-
hood are of great importance in some behaviour of interest in a system.

Examples are common in actuarial and financial risk models. Ruin probabil-
ities for a firm paying our contracts at some random rate are of great interest
(McNeil, Frey, and Embrechts 2005) and are by design intended to be small and
by necessity must be quantified. Under non-trivial assumptions these probabili-
ties do not have analytic forms and must be estimated. Similarly, in transmission
systems such as power or communications networks, overall system reliability re-
quires good estimation of probabilities of rare, but potentially extremely costly
failures (Botev, L’Ecuyer, and Tuffin 2018; Botev et al. 2012) and indeed one of
the early applications of the Generalised splitting method (upon which we build)
is in network reliability estimation.

For the current purposes we draw examples particularly from the wireless re-
liability field. In this domain, network outages are modelled by probability dis-
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tributions over signal and noise power levels. Different combinations of signals of
interest, other interfering signals, and of background noise, are all represented by
different combinations of random variables, and an outage in signal transmission
is corresponds to a rare tail event. Within such a model, maintaining a specified
level of wireless network reliability requires controlling the rate of outages repre-
sented by these by these rare tail events (Simon and Alouini 2005). Under different
assumptions upon the transmission infrastructure and noise distributions we may
find a rich variety of different rare event models.

More generally, we might wish to estimate not only the magnitude of the
probability of a certain rare event, but also an integral conditional upon it; for
example, we might wish to know the magnitude of our shortfall in a financial ruin
context. Our method can also be bent to this task.

2.2 Method
We are concerned with problems of estimating certain expectations of a random
variable or process ϕ(X ) ∼ F with values restricted to a target set, L. There are
two problems of interest to us in this context. Firstly, the restricted expectation,1

EF [ϕ(X )I{L}] =
∫

L
ϕ(x)dF (x). (2.1)

Secondly, the closely-related conditional expectation,

θ = EF [ϕ(X ) | L] =
∫

L ϕ(x)dF (x)
PF [L]

. (2.2)

Here ϕ : Rd → R, X is an Rd-valued random vector, and L is some target event.
For our purposes, we consider only θ > 0. Hereafter, where the distribution is clear
we suppress the subscript, writing P for PF and E for EF .

Specifically, we propose methods which are effective with the rare event setting
1The reader, having read the theoretical introduction section, will recall that this integral

with respect to F is to be interpreted as a Riemann-Stieltjes integral with respect to the CDF
F which, for the Rd-valued random variables we consider, coincides with the Lebesgue-Stieltjes
integral with respect to the law X ∼ µ of the random variable, where

∫
L ϕ(x)µ(dx) =

∫
L ϕdF (x)

with F (x) = µ([−∞, x1]× · · · × [−∞, xd]).
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— that is, we want to guarantee that our methods are effective for low-probability
target events where P[L] = E[I{L}]� 1, say P[L] = 10−6.

More generally, we wish to analyse the performance of methods across a family
of similar problems where the target rare event is parameterized by some scalar ε >

0. We write the parameterized target rare event Lε and the associated quantities
θε and ℓε.

Definition 2.1 (Rarity parameter). We call an event parameter ε ∈ R a rarity
parameter if P[Lε] is monotone non-increasing in ε and limε↘0 P[Lε] = 0.

Where we are not discussing behaviour of the estimator with respect to a rarity
parameter, we suppress it.

Example 2.1. A case of (2.1) of particular importance is the flat case where
ϕ ≡ 1 and the quantity of interest is the probability of the rare event itself, i.e.,

ℓ
def= E [I{L}] = P[L]. (2.3)

We reserve the symbol ℓ for estimands of this type.

Example 2.2. An illustrative case of a problem of the rare-event conditional
expectation form (2.2) is the conditional excess over threshold κ. Here, Lκ

def=
{S(X ) > κ} and we wish to estimate

θ(κ) = E [S(X ) | S(X ) > κ] = E [S(X )I{S(X ) > κ}]
P[S(X ) > κ]

(2.4)

for some importance function S : Rd → R.2 The conditional excess is needed in
important risk models, being used, for example, in the expected shortfall measure
for portfolios of risky assets (McNeil, Frey, and Embrechts 2005). It also occurs
in our own calculations in the extreme-value tail approximations of Section 4.1.
Observe that, taking S : x 7→ ∑

i xi where all the components are non-negative,
ε = 1/κ becomes a rarity parameter for this problem.

2The name of this function indicates a relationship to ‘vanilla’ importance sampling, with the
distinction that it is a degenerate case of such a function, taking values only in {0, 1}.
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2.3 Rare event estimation via Monte Carlo
Often, the expectation of interest is not analytically tractable and thus we must
estimate it numerically. If we can simulate according to the distribution3 F, ob-
taining an approximation to the quantity of interest via stochastic simulation
may provide a tractable alternative. This is the Monte Carlo (MC) approach.
Stochastic approximation of such rare event-restricted integrals is our major topic
throughout Part I. Here, we give a brief outline of Monte Carlo theory required for
this purpose. In-depth treatments may be found in standard Monte Carlo mono-
graphs such as Asmussen and Glynn (2007, p. VI), Kroese, Taimre, and Botev
(2011, Ch 10), Rubinstein and Kroese (2016, Ch 9), Bucklew (2004), and Rubino
and Tuffin (2009).

To begin, we introduce the Crude Monte Carlo (CMC) estimator. The generic
CMC method for integrals of the form

θ = E [ζ(X )] =
∫

ζ(x)dF (x) (2.5)

approximates the value of the integral by replacing the CDF F with an empirically
estimated CDF. The empirical CDF is constructed from from simulations Dn

def=
{X(1), . . . , X(n)}, drawing each X(i) ∼ F independently. Then, the crude empirical
CDF estimate is

F̂ CMC(x) = 1
n

n∑
i=1

I{X(i) ≤ x}. (2.6)

Here “≤” is taken coordinate-wise, i.e. y ≤ x⇔ (y1 ≤ x1)∩ (y2 ≤ x2)∩· · ·∩ (yd ≤
xd). This is the empirical CDF associated with the empirical measure

µ̂CMC(A) = = 1
n

n∑
i=1

I{X(i) ∈ A} (2.7)

for (Borel-measurable) A ⊂ Rd. All the empirical distributions we obtain from
simulation have a similar form, although we change the generating mechanism for

3We recall that, as mentioned in the theoretical section p. 2, we treat the laws of random
variables through their CDFs.
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the variates X(i) and/or weight the samples in the various Monte Carlo estimators
we use.

Substituting F̂ CMC for F in (2.5) turns the expectation, interpreted as a
Riemann-Stieltjes integral, into

θ̂CMC =
∫

ζ(x)dF̂ CMC(x) = 1
n

n∑
i=1

ζ(X(i)). (2.8)

We say an estimator is unbiased if Eθ̂ = θ. A CMC estimator is unbiased
provided the integral in question is finite, since

Eθ̂ = E
1
n

n∑
i=1

ζ(X(i)) = 1
n

n∑
i=1

Eζ(X(i)) = 1
n

nEζ(X(1)) = Eζ(X(1)) = θ. (2.9)

An important class of problems is the estimation of the tail probability.

Example 2.3. Where ϕ ≡ 1 (2.3) we obtain ζ : x = I{x ∈ L} and the CMC
estimator (2.8) becomes

ℓ̂CMC(n) = 1
n

n∑
i=1

I{X(i) ∈ L}. (2.10)

The accuracy of CMC, like most MC methods, depends upon the amount
of computational effort invested to obtain the estimand, which often scales with
some parameter like n. We quantify the computational effort through the (possi-
bly random) amount of time dedicated to running the algorithm under specified
conditions. We parameterize MC estimator run time via an effort parameter η.

When needed, we make the dependence on η explicit for a given estimator by
writing it as an argument, θ̂(η). Effort parameters are chosen so that a greater
effort parameter implies a greater wall-clock execution time. We return to this
point momentarily.

An important property of MC estimators is consistency: the estimator con-
verges in probability to the estimand as η →∞. That is,

lim
η→∞

P[|θ̂(η)− θ| > δ] = 0 (2.11)
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for any δ > 0. In the case of the CMC estimator, a natural effort parameter is
η = n, the number of independent and identically distributed (IID) realizations
we generate to construct our estimate. For finite ζ(X ) it follows immediately from
the strong law of large numbers that θ̂CMC a.s.→ θ in n, which implied (2.11), so the
Crude Monte Carlo estimator (2.8) is consistent.

To quantify how close a Monte Carlo estimator is “on average” to its corre-
sponding estimand, we examine its variance, denoted Var[θ̂]. We often report this
in terms of the standard error se(θ̂) def=

√
Var[θ̂].

Example 2.4 (Variance of the CMC estimator). We note that as a sum of in-
dependent Bernoulli trials, the distribution of the CMC estimator for (2.3) is
(nℓ̂CMC(n)) ∼ Binom(n, ℓ). It follows that Eℓ̂CMC(n) = ℓ and

Var[ℓ̂CMC(n)] = ℓ(1− ℓ)/n, (2.12)

thus

se[ℓ̂CMC(n)] =
√

ℓ(1− ℓ)
n

. (2.13)

In rare event problems, standard error is not necessarily a useful property. We
are generally interested in the behaviour of the error relative to the magnitude
of the estimand. For strictly positive estimands (our focus throughout), it is
reasonable to analyze efficiency in terms of relative error.

Definition 2.2 (Relative error). The relative error of an estimator θ̂ of estimand
θ > 0 is given by

re(θ̂) def= se(θ̂)
θ

=

√
Var[θ̂]

θ
. (2.14)

Example 2.5 (Relative error of the CMC estimator). When estimating the tail
probability (2.3), with ℓ � 1 we can calculate the relative error of our CMC
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probability estimate as

re(ℓ̂CMC(n)) =

√
ℓ(1− ℓ)/n

ℓ
(2.15)

=
√

1− ℓ

ℓn
(2.16)

≈ 1√
nℓ

as 1− ℓ ≈ ℓ for small ℓ. (2.17)

Relative error is the quantity we aim to control even in the small-probability
limit as ℓ→ 0. There are many metrics which can be used to quantify the scaling
of relative error with rarity. Overviews are available in, for example, Cancela,
Rubino, and Tuffin (2005) and L’Ecuyer et al. (2010). A desirable guarantee of
small-probability error is given by bounded relative error (BRE) (L’Ecuyer et al.
2010; Shahabuddin 1994). An estimator θ̂ε is said to possess this quality with
respect to rarity parameter ε and effort parameter η if

lim sup
ε→0

re2(θ̂ε(η)) < K(η) (2.18)

for some finite K(η) which does not depend upon ε. Some of the state-of-the-art
estimators we compare our own estimators with are known to possess BRE. The
CMC estimator (2.17) fails to possess BRE, since we can always make the relative
error arbitrarily large by decreasing ε and hence ℓε.

Many problems of importance have no known estimators for which BRE can
be established. For such problems, we usually satisfy ourselves with weaker guar-
antees, the most important of which is logarithmic efficiency (Asmussen and Ru-
binstein 1995), now widely used (e.g. Rubinstein and Kroese 2016, p. 389). An
estimator which achieves logarithmic efficiency has the property that the expected
computational cost of attaining a given relative error grows at a polynomial rate
in log(ℓ) (Kriman and Rubinstein 1995). A sufficient condition for an unbiased es-
timator θ̂ of θ with rarity parameter ε to be logarithmically efficient is (Asmussen
and Rubinstein 1995)

lim
ε→0

logE
[
θ̂2

ε

]
log θε

= 2. (2.19)
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Example 2.6 (CMC and logarithmic efficiency). The CMC estimator is not log-
arithmically efficient since

lim
ε→0

logE
[
(ℓ̂CMC

ε )2
]

log ℓε

= lim
ε→0

log
(
Var[ℓ̂CMC

ε ] + E[ℓ̂CMC
ε ]2

)
log ℓε

(2.20)

= lim
ε→0

log (ℓε(1− ℓε) + ℓ2
ε)

log ℓε

(2.21)

= lim
ε→0

log ℓε

log ℓε

(2.22)

= 1 < 2. (2.23)

Here we make the significance and interpretation of the effort parameters con-
crete. The wall-clock time (implicitly, with respect to a given configuration of
hardware and software) to compute θ̂(η) for a given run of the estimator with a
specified effort parameter η is denoted time(θ̂(η)). We use this wall-clock run-time
to quantify how much work a given algorithm requires. We naturally prefer esti-
mators which can attain a certain accuracy with the least possible amount of work.
The run-time can be random, in which case we quantify work with the expected
(wall-clock) time C(θ̂(η) def= E[time(θ̂(η))]. Henceforth, we make the approximation
(which holds reasonably well for all estimators considered herein) that, for a given
estimator θ̂(η), C(θ̂(η)) is approximately linear in some appropriately-chosen η.

That is, there is a constant C0 such that C(θ̂(η)) ≈ C0η. These run times by as-
sumption have small variance relative to their expectation. The effort parameter
η usually scales proportionally with the expected number of random realizations
required in some method.

To quantify the scaling of estimator error with estimator effort, we use effort-
or work-normalization of the variance. We define the work-normalized variance
(WNV) as

WNV(θ̂(η)) def= Var[θ̂(η)]C(θ̂(η)). (2.24)

Sometimes it is convenient to use instead the effort-normalized relative variance,

ENV(θ̂(η)) def= Var[θ̂(η)]η. (2.25)
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In the case, as stipulated here, that C(θ̂(η)) ≈ C0η, these efficiency measures are
related by

WNV(θ̂(η)) ≈ C0 ENV(θ̂(η)). (2.26)

For rare-event problems we translate WNV and ENV into relative measures by
substituting relative error in place of absolute error.

Definition 2.3 (Effort normalized relative variance). The effort normalized rela-
tive variance (ENRV) of an estimator θ(η) with effort parameter η is

ENRV(θ̂(η)) def= ENV(θ̂)
θ2 = Var[θ̂(η)]η

θ2 = re2(θ̂(η))η. (2.27)

Definition 2.4 (Work normalized relative variance). With all terms as given in
ENRV, the Work Normalized Relative Variance (WNRV) is

WNRV(θ̂) def= Var[θ̂(η))C(θ̂(η)]
θ2 = re2(θ̂(η))C(θ̂(η)). (2.28)

This form for work-normalization is widely used in the analysis of Monte Carlo
estimators due to an argument of Glynn and Whitt (1992) which states that, over
a broad class of estimators, the large-effort asymptotic relation

lim
η→∞

WNV(θ̂(η)) = constant (2.29)

holds in probability. In the rare-event setting we use the equivalent relation

lim
η→∞

WNRV(θ̂ε(η)) = constant(ε). (2.30)

Estimators which, in the large-effort asymptotic limit, attain constant WNRV are
said to scale at the canonical rate.

In the large-effort asymptotic limit, at least, there is a natural ranking of the ac-
curacy of estimators which accounts for both computational time and the variance
of the estimator — an estimator with a lower asymptotic WNRV asymptotically
outperforms one with a higher asymptotic WNRV. This large-effort asymptotic
argument motivates the use of canonical-rate variance normalization as a rule-
of-thumb metric to compare Monte Carlo estimators. Small effort performance
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guarantees do not necessarily follow from the large-effort asymptotic guarantees,
although this nicety is often assumed away, and we assume the normalization is
reasonable even in small effort regimes.

Effort- and work- normalized performance are closely related, but have different
strengths. We can compare estimators using effort normalization where we know a
priori that this implies a valid comparison of wall-clock execution time. The virtue
of this approach is that we need not keep identical computer hardware at hand to
re-run simulations for comparison. When we are comparing estimation methods
with incommensurable effort parameters, for example because the estimators are
structurally different, or differently parameterized, we use work normalization.
This situation can arise if, say, an alternative estimator θ̂′(η) of the same quantity
simulates different random variates to accomplish the same estimation to some
baseline θ̂(η).

Example 2.7 (Efficiency of CMC). The CMC estimator has a constant
ENRV/WNRV with respect to a fixed target event, since, by (2.12)

ENRV(ℓ̂(n)) = Var[ℓ̂(n)]
ℓ2 n = (1− ℓ)

ℓ
. (2.31)

Since by assumption CCMC(ℓ̂(n)) = CCMC
0 n for some constant CCMC

0 we have

WNRV(ℓ̂(n)) = CCMC
0

(1− ℓ)
ℓ

. (2.32)

Clearly neither of these depends upon the effort parameter, n.

We estimate these quantities for given estimators empirically, as statistics of an
ensemble of R > 1 independent replications of the estimator in question. Usually
we use the natural sample estimator for a given quantity, e.g. taking sample vari-
ance as a true estimate of the estimator variance. The exception is in calculating
expected wall-clock time C(θ̂) and derived quantities. Empirical measurements
of wall-clock time produce noisy estimates of actual computational effort, being
dependent upon details of the hardware and software, and sensitive to interference
from other demands upon the system. We address the former problem by ensuring
that we hold hardware fixed and use, as far as possible, comparable software and
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execution conditions. We address the second problem with robust statistics: the
expected execution time C(θ̂(η)) is estimated not by sample mean of the replicates
but by α-trimmed sample mean. The trimmed mean reduces the impact of a small
number of outlier execution times. We write mean(x; α) to denote the α-trimmed
mean of x. We fix α = 5% throughout. Writing θ̂(r) to indicate a particular esti-
mate of θ̂ calculated from a distinct batch of R realizations, we define the following
empirical estimators:

Ê(θ̂) def= 1
R

∑
r

θ̂(r) (2.33)

V̂ar(θ̂) def= 1
R

∑
r

(
θ̂(r) − Ê(θ̂)

)2
(2.34)

r̂e(θ̂) def=

√
V̂ar[θ̂]
Ê(θ̂)

(2.35)

Ĉ(θ̂) def= mean({time(θ̂(r)), r = 1, . . . , R}; 0.05) (2.36)

ÊNRV(θ̂(η)) def= V̂ar(θ̂)η
Ê(θ̂)2

(2.37)

ŴNRV(θ̂) def= V̂ar(θ̂)Ĉ(θ̂)
Ê(θ̂)2

. (2.38)

We may be concerned in turn about the distribution of these estimators of the
Monte Carlo estimator distribution (i.e. the estimator distribution estimator dis-
tribution). We estimate confidence intervals for these values using non-parametric
bootstrap samples (DiCiccio and Efron 1996; Efron 1979) over the estimator repli-
cates.

In the sequel we compare state-of-the-art Monte Carlo methods for various
problems in terms of the efficiency measures discussed. The quasi-monotone split-
ting method Chapter 3, which is our main contribution, is from a family of methods
called splitting methods. The benchmark methods for problems we consider fall
mostly into the categories of Gibbs sampling Section 2.4, a Markov Chain Monte
Carlo (MCMC) method, or Importance Sampling (IS) (Section 2.5). We briefly
introduce all these methods here.
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2.4 Gibbs sampling
Markov Chain Monte Carlo (MCMC) methods form a large subclass of MC meth-
ods. They are useful in the case where simulating independently from the target
distribution F is intractable, but where it is possible to simulate the paths of a
Markov chain whose stationary distribution is F — hence Markov Chain Monte
Carlo. We focus on one particular method MCMC method, the Gibbs sampler
(Geman and Geman 1984), which is convenient in rare-event problems (e.g. Gud-
mundsson and Hult 2014). In a Gibbs sampler, each coordinate of a vector random
sample is updated separately, conditional on fixed values of the other coordinates.
A Gibbs sampler can be well-suited to estimating E[ϕ(X ) | L] where the tail event
is sufficiently “nice”. This is frequently possible in tail events defined by scalar
importance functions, (2.51), which are the only type of event we consider here.
Gibbs methods are simple, and require no tuning in the basic case. However,
they cannot give us estimates of the probability P[L].4 Protracted discussions
and extensive references are available in Kroese, Taimre, and Botev (2011) and
Rubinstein and Kroese (2016).

For our purposes, introducing the most basic Gibbs sampler suffices to illustrate
the principle. We discuss what Kroese, Taimre, and Botev (2011) refer to as the
“random sweep” Gibbs sampler, which is constructed as follows: Suppose that
X ∼ F is an Rd-valued random variable such that simulating from the joint law
F (x1, x2, . . . , xd) is difficult, but that simulating according to the coordinate-wise
conditional law

F[k](· | x) def= F (· | X1=x1, . . . , Xk−1=xk−1, Xk+1=xk+1, . . . , Xd=xd) (2.39)

is feasible for each k and all x ∈ supp(X ). The Gibbs sampler chooses each new
sample X (m) | X (m−1) = x(m−1) from the previous realization by updating a single
coordinate. At each step m we choose a random k ∈ {1, . . . , D}. The next sample
is the same as x(m−1), except that we update the kth component with a sample
from the corresponding conditional distribution, x

(m)
k ← x ∼ F[k]. Suppose that

X (m−1) ∼ F. Holding k fixed and drawing X (m) ∼ F[k](· | X (m−1)), the resulting
4See Gudmundsson and Hult (2014) for an example where additional restrictions on the form

of the problem enable estimating the P[L].
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transition kernel samples from F also. This fact follows directly from the defini-
tion of conditional probability. Writing this for compactness as a calculation in
conditional densities f(x) = ∂

∂x
F (x), we have

f[1](x1 | X )f(X2 = x2, . . . , Xd = xd) (2.40)
= f(x1 | X2 = x2, . . . , Xd = xd)f(X2 = x2, . . . , Xd = xd) (2.41)
= f(X1 = x1, X2 = x2, . . . , Xd = xd). (2.42)

It follows that if X ∼ F, [1](· | X ) D= F. We argued this for F[1], but by symmetry the
result holds for F[k], k = 1, . . . , d. Thus F is a stationary distribution of the Markov
chain with associated transition kernel F[k](· | ·) for each k. Combining these
coordinate-wise kernels by choosing a random coordinate at each step gives overall
a homogenous mixture kernel. In particular it is an equally-weighted mixture of
the d conditional transition kernels corresponding to each of the coordinates of the
variable.

F (· | x) = 1
d

d∑
k=1

F[k](· | x). (2.43)

The samples {x(m)}, m = 1, 2, . . . are by construction a realization of a Markov
chain whose stationary distribution is given by F. If the Markov chain correspond-
ing to the sampler is additionally irreducible it is ergodic, and sample averages
over this chain converge to the averages of samples drawn from the stationary
distribution; that is, it is a consistent estimator. Irreducibility is not in general
given for a Gibbs sampler. A sufficient condition to ensure irreducibility, which
holds in all examples we consider, is that the support of the chain is connected
(Roberts and Smith 1994).

2.5 Importance sampling
Importance sampling (IS) (Rubin 1987) modifies the CMC method for computing
expectations with respect to some inconvenient F into one that calculates that
expectation using reweighted samples from a different distribution Gτ . We present
here the weighted IS estimator in the form in which it is employed in rare event
problems (Botev and Ridder 2017; Kong 2014). Our exposition follows Rubino
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and Tuffin (2009, Chapter 2).
Consider an estimand of the form (2.5), i.e. θ = E [ζ(X )]. Suppose we have

a family of distributions {Gτ}τ parameterized by τ such that F is absolutely
continuous with respect to Gτ for all τ . Then dF (x)/dGτ (x) is defined on all
x ∈ supp(Z ) for Z ∼ Gτ . Suppose further, for ease of exposition, that auxiliary
law Gτ and target law F both have densities, respectively, gτ and f with respect to
the Lebesgue measure on Rd. Extension to distributions with atoms is immediate.
Importance sampling leverages the observation that

EX∼F [ζ(X )] =
∫

ζ(x)f(x)dx =
∫

ζ(x) f(x)
gτ (x)

gτ (x)dx = EZ∼Gτ

[
ζ(Z ) f(Z )

gτ (Z )

]
.

(2.44)

With this we modify the Crude Monte Carlo estimator (2.8) using independent
simulations Z(i) ∼ Gτ to find

ÊIS [ζ(X )] = 1
n

n∑
i=1

f(Z(i))
gτ (Z(i))

ζ(Z(i)). (2.45)

Unlike the basic crude Monte Carlo method (2.8), IS does not require us to simulate
exactly from F if we can instead simulate exactly from Gτ and calculate the
likelihood ratios f(x)

gτ (x) . The efficiency of this approach depends on finding a “good”
approximating Gτ such that the estimator variance is small. A complete recipe
for importance sampling fixes the family of auxiliary laws {Gτ}τ and specifies a
procedure to select an efficient value for the parameter τ .

Design and analysis of the efficiency of these algorithms in the general case is
a field of its own (e.g. Kroese, Taimre, and Botev 2011; Rubino and Tuffin 2009;
Vehtari et al. 2019). Achieving good performance often requires a hand-designed
analysis to tune parameter τ for each choice of F . For many of the problems
we consider the benchmark algorithm is such a minutely-tuned IS estimator. As
presaged, our innovation is estimators that are competitive with the state of the
art IS estimator without requiring such manual tuning.
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2.6 Splitting
Splitting methods are Monte Carlo techniques which sequentially decompose a dif-
ficult estimation problem for a given process into several easier ones. Intuitively,
such methods entail simulating variates attaining successive nested events con-
structed such that they converge in some sense to the desired target distribution
restricted to the event of interest. Methods based on the splitting idea are the
central concern of our subsequent analysis. We wish to estimate quantities of the
form (2.2) or (2.1). This can be either a rare-event-truncated integral θ = ϕ(X )|L
and/or rare-event truncated probability P[L] where ℓ = P[L] � 1. The splitting
method provides an unbiased estimate ℓ̂, and a consistent estimate of rare-event
conditional estimands θ̂ (Botev and L’Ecuyer 2020; L’Ecuyer, Botev, and Kroese
2018).

2.6.1 Basic splitting

Splitting methods originate in the physics simulation literature (Kahn and Har-
ris 1951). Their modern popularity dates to the introduction in altered form
of RESTART methods (Villén-Altamirano and Villén-Altamirano 1991; Villén-
Altamirano and Villén-Altamirano 1994). Since that landmark they have been
analysed and extended by many authors. Efficiency and optimality analysis of
various splitting methods can be found in Cérou et al. (2006), Dean and Dupuis
(2009), Glasserman et al. (1998a), and Glasserman et al. (1998b). Adaptive ver-
sions are considered by Bréhier, Lelièvre, and Rousset (2015), Cérou and Guyader
(2007), Cérou and Guyader (2016), and Charles-Edouard et al. (2015). Although
the original splitting method was applied strictly to time-indexed Markov stochas-
tic processes, it has been extended to broader settings (Botev and Kroese 2012;
Botev et al. 2012). Comprehensive synthesis of much of the research may be found
in the thesis by Garvels (2000). Connections between splitting methods and Se-
quential Monte Carlo (Del Moral, Doucet, and Jasra 2006; Doucet, Freitas, and
Gordon 2001) have been made by Cérou et al. (2006), Del Moral, Doucet, and
Jasra (2006), Del Moral and Lezaud (2006), Johansen, Moral, and Doucet (2006),
and L’Ecuyer et al. (2009). This has led to central limit theorems for splitting
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methods (Cérou et al. 2006; Del Moral and Lezaud 2006; Johansen, Moral, and
Doucet 2006; Le Gland and Oudjane 2006) which we use below. Splitting methods
are now established enough to feature as a staple of modern simulation method
textbooks, e.g. (Rubinstein and Kroese 2016, p. V.5; Kroese, Taimre, and Botev
2011, Ch 9; Asmussen and Glynn 2007, Ch 10; Rubino and Tuffin 2009, Ch 3).

The splitting method aims to sample some rare-event-truncated set by suc-
cessively simulating realizations of a some sequentially-dependent random objects
through a succession of increasingly rare target events. The motivating intuition is
that, although a CMC estimator might have poor relative error in calculating our
target event, possibly we can use instead a series of conditionally less-rare inter-
mediate events. The hope is that this decomposes the hard problem into a series
of easier problems such that the overall procedure is easier. A general version of
the method is elaborated in Rubinstein and Kroese (2016, Ch 9): we look for a
sequence of intermediate random variables, X (m), and a corresponding sequence of
events X (m) ∈ L(m) for m = 1, 2, . . . , M , such that these events are nested:

L(1) ⊇ L(2) ⊇ · · · ⊇ L(M). (2.46)

We consider the conditional survival probabilities

p(m) =

P[L(1)] if m = 1

P[L(k)|L(k−1)], m = 2, . . . , M.
(2.47)

We note that under the nesting condition (2.46)

P[L] = ℓ =
M∏

m=1
p(m). (2.48)

If each of these conditional survival probability problems is not a rare event prob-
lem so that p(m) � ℓ, for m = 1, 2, . . . , M, then we hope that estimating each of
them is in some sense tractable.

The splitting method constructs an empirical estimator p̂(1), p̂(2), . . . , p̂(M) of
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the conditional-survival-probabilities by simulation. The estimator of ℓ, is

ℓ̂ =
M∏

m=1
p̂(m). (2.49)

We examine the properties of this estimator momentarily, after detailing the basic
algorithm.

The intermediate random variables {X (m); m = 1, . . . , M} are usually presumed
to take values in some common state space, but this is not required. We require
that we can simulate from the successive conditional laws, F (1)(·) and F (m)(· |
X (k)), k < m] for m = 2, . . . , M. We call these conditional distributions evolution
distributions.

In the splitting method we maintain at each step m an ordered array X (m) of
particles generated by the same stochastic procedure, which we call a population.
When we wish to discuss, specifically, the samples realized from these random
variables, we write ξ(m), where each such ξ(m) is sampled from ξ(m) ∼ F (m)(· |
X (m−1) = ξ(m−1)). These objects are segments of the trajectory of some random
process in the state space Rd. We follow the Sequential Monte Carlo literature in
referring to such realizations as particles. Chains and realizations are also common
terms. Individual particles in a population are referenced by a subscript (i), for
example ξ

(m)
(i) ∈ X (m). We use I(X ) to denote an index set over all such particles

for a given X .

The algorithm proceeds iteratively. Starting with the initial population X̃ (0)

comprising ñ(0) copies of X (1), we discard (or “prune”) any that are not contained
in ξ /∈ L(1) and record the population of remaining particles as X (1). We record
the size of the surviving population as n(1) =

∣∣∣X (1)
∣∣∣ . The estimate for the first

conditional survival probability is p̂(1) = n(1)/ñ(0). We draw a resampling vector
r = (r1, r2, . . . ) ∼ R(·; n(m)) (to be discussed momentarily) and use it to clone
the surviving particles in X (1) by resampling. The new population is X̃ (1) =
{ξr1 , ξr2 , . . . }. We record the population count ñ(1) =

∣∣∣X̃ (1)
∣∣∣ . We conceptualize

this resampling as splitting the sample paths.
Now, for each successive step m = 2, 3, . . . , M we repeat a similar procedure.

Each particle in ξ(m) ∈ X̃ (m) is evolved forward independently, simulating from
the conditional evolution distributions, ξ(m) ∼ F (m)(· | X (m−1)=ξ(m−1)). We prune
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any particles that are not contained in the desired intermediate target set ξ /∈
L(m) and record the remaining population of particles as X (m). The size of the
surviving population we record as n(m) =

∣∣∣X (m)
∣∣∣. We calculate p̂(m) def= n(m)/ñ(m−1)

and ℓ̂(m) = ∏m
k=1 p̂(m) (2.49) as an estimate of P[L(m)]. This whole procedure is

elaborated in Algorithm 2.1.
The resampling distributions in splitting, unlike the evolution distributions,

do not depend upon the states ξ in the following sense. The splitting method
at each step chooses a resampling of the population, which is to say, the resam-
pling distributions R(·; n(m)) over resampling vectors describe random resamplings
whose realizations are rearrangements of lists. A realization of a resampling gives
us the (possibly duplicated) indices of the population to be selected for the next
time step, R : Ω → {1, 2, . . . , n(m)}|Ñ(m+1)|. Here Ñ (m+1) may itself be a random
variable. We allow R to depend upon the particles only through the cardinality of
the population N (m) and the step index m, but not the values of the particles in
the population list.

Popular choices for R include fixed factor splitting, and fixed effort splitting. In
fixed factor splitting, each particle is duplicated a fixed (deterministic) number KFF

of times, e.g. for KFF = 3 we would have a deterministic resampling R (m) ∼ RFF ⇒
P[r = [1, 1, 1, 2, 2, 2 . . . , n(m−1), n(m), n(m), n(m) = 1]. In fixed effort splitting, a fixed
population count ñ

def= ñ(0) = ñ(1) = · · · = ñ(M−1) is maintained by resampling with
replacement uniformly at random. In particular this formulation of fixed effort
is called fixed effort with random assignment using multinomial resampling, or
bootstrap resampling in the literature. In our case, this means for KFE = 3 we would
have R (m) ∼ RFE = Unif({1, . . . , N (m)})×ñ. Here Unif(X ) is the discrete uniform
distribution over the finite set X . In effect, this means that we renew the population
by sampling from it uniformly at random with replacement, i.e., bootstrap (Efron
1979) resampling. For our purposes, we assume fixed effort splitting with bootstrap
resampling throughout. In this fixed effort case, a natural effort parameter is
η = ñM, which counts the total number of random realizations.

A virtue of splitting estimators is that, under mild conditions, Algorithm 2.1
ℓ̂ = ∏M

m=1 p̂(m) yields an unbiased estimator E[ℓ̂(m)] = P[L(m)] of ℓ = P[L]. In fact
E[ℓ(m)] = P[L(m)] for each m (e.g. Asmussen and Glynn 2007, ch 9). For rare-
event conditional estimands, the situation is more complicated and we have fewer
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Algorithm 2.1 Generalized splitting
Require: Initial population count ñ(0).
Require: Target nested events L(1), . . . ,L(M), such that X (m−1) /∈ L(m−1) ⇒

X (m) /∈ L(m)

1: Simulate: X̃ (1) ← {ξ(m)
(i) ∼ F (1) : i = 1, . . . , ñ(0)}

2: Prune: X (1) ← X̃ (1) ∩ L(1)

3: Record pruned population count n(1) ← |X 1|
4: p̂(1) ← n(1)/ñ(0)

5: ℓ̂(1) ← p̂(1)

6: for all m = 2, 3, . . . , M do
7: Choose resample index vector [r1, . . . , rñ(m) ] = r ∼ R(·; n(m))
8: Split: X̃ (m) ← {rith particle of X (m) for each ri ∈ r}.
9: Record population count ñ(m) ← |X̃ (m−1)|

10: Simulate forward: X (m) ← {ξ(i)
(m) ∼ F (m)(· | X (m−1)=ξ(i)

(m−1)) for i ∈
I(X̃ ((m−1)))})

11: Prune: X (m) ← X (m) ∩ L(m)

12: Record pruned population count n(m) ← |X (m)|
13: if X (m) = ∅ then
14: return 0
15: p̂(m) ← n(m)/ñ((m−1))

16: ℓ̂(m) ← p̂(m)ℓ̂(m−1)

17: return ℓ̂(M), an estimate of ℓ = P[L(M)]
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concrete results. We examine the estimator distribution with such estimands in
Subsection 2.6.4.

The category of Generalized Splitting includes a vast number of possible estima-
tors, and we specialize in practical problems. Exploring one useful implementable
family of algorithms and problem structures comprises the bulk of the work in
Part I.

2.6.2 Dynamic splitting

Before we describe these, we introduce a concrete family of splitting methods,
known as dynamic splitting. Dynamic splitting is named for its applicability to
dynamic problems, by which we mean, problems whose target events are charac-
terized by the states of a time-indexed process {X (t)}t. We contrast these dynamic
problems with static problems wherein the process of interest has no (a priori) time
index. Dynamic splitting methods are historically prior to the Generalized Split-
ting method (Kahn and Harris 1951; Villén-Altamirano and Villén-Altamirano
1991). Within the realm of dynamic splitting methods there are many variations,
depending on the process of interest, the nature of the target event, and details of
the splitting procedure. Overviews are available in Rubinstein and Kroese (2016,
p. V.5), Kroese, Taimre, and Botev (2011, Ch 9), Asmussen and Glynn (2007, Ch
10), and Rubino and Tuffin (2009, Ch 3).

We give here the simplest formulation sufficient to our current purposes. The
process of interest {X (t)}0≤t≤tmax ∼ µ is Markov, i.e. X (u) ⊥⊥ X (s) | X (t) for any
s < t < u. We assume that we may sample path segments from the distribution of
{X (t)}t∈(s,u] over intervals (s, u] conditional on the value of the path at the start of
the interval.5 We write µ(· | X (s)) for the associated conditional distribution over
paths {X (t)}s<t | X (s). We refer to a realized path sampled from the distribution
of the process of interest over some interval I ⊂ R as {ξ(t)}t∈I . Realized paths
comprise the particles in the population at each of the intermediate splitting steps.
The intermediate target events are defined with reference to a series of splitting

5Properly speaking, discussing µ as a “distribution over paths” requires us to specify an
underlying probability space, stipulate our measurable events and so on. We are for the moment
assuming the existence of an appropriate underlying measure space. We shortly dispense with
the need for distributions over entire paths, and return to fixed sets of distributions, however.
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times, t1, . . . , tM . In terms of Generalized Splitting, the particles in Algorithm 2.1
are vectors of such path segments over intervals. Since this is a splitting method,
intermediate target events must be nested (2.46). Typically, the events are such
that the paths of the process are not permitted to escape from some target sets in
state space before a given time; we would choose, say, A(m) ⊂ Rd, m = 1, 2, . . . , M

with A(M) ⊆ A(M−1) ⊆ · · · ⊆ A(1), and define

L(m) def= {X (t) ∈ A(m)}t∈[0,tm]. (2.50)

Such events are by construction nested. The specialization of the Generalized
Splitting algorithm induced by such a structure is expanded in Algorithm 2.2.

Algorithm 2.2 Simple dynamic splitting
Require: Initial population count ñ(0).
Require: Splitting times t1 < · · · < tM = tmax.
Require: Nested target events L(m), . . . ,L(M).

1: Simulate particles’ states X̃ (1) ← {{ξ(t)(i)}t∈(0,t1] ∼ F (·; t1) : i = 1, . . . ñ(0)}
2: Prune: X (1) ←

{
ξ(i) for i ∈ I(X (m)) if ξ(i) ∈ L(1) = {S(ξ(i)(t)) ≤ κ, ∀t ≤ t1}

}
3: Record pruned population count n(1) ← |X 1|
4: p̂(1) ← n(1)/ñ(0)

5: ℓ̂(1) ← p̂(1)

6: for all m = 2, 3, . . . , M do
7: Choose resample index vector [r1, . . . , rñ(m) ] = r ∼ R(·; n(m))
8: Split states X̃ (m) ← {rith particle of X (m) for each ri ∈ r}.
9: Record initial population count ñ(m) ← |X̃ ((m−1))|

10: Simulate forward: X (m) ← {{ξ(i)(t)}t∈(tm−1,tm] ∼ F (· | ξ(i)(tm−1); tm) :
ξ(i) ∈ X̃ ((m−1))}

11: Prune: X (m) ←
{
ξ(i) for i ∈ I(X (m)) if ξ(i) ∈ L(m)

}
12: Record pruned population count n(m) ← |X (m)|
13: if X (m) = ∅ then
14: return 0, ∅
15: p̂(m) ← n(m)/ñ((m−1))

16: ℓ̂(m) ← p̂(m)ℓ̂(m−1)

17: return ℓ̂ an estimate of X ∈ L
18: return X (M), approximate samples from the distribution of X (tmax) | L
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There is a particularly useful class of target events which we employ henceforth:
target events defined as the set of paths of the process of interest such that some
function S : Rd → R of a Markov process’s state remains below a certain level.6

We call S an importance function. With respect to this function, the target event
is given

L = {S(X (t)) ≤ κ, ∀t < tmax}. (2.51)

A sequence of intermediate target events for such a problem is given by choosing
an importance function S, splitting times 0 < t1 < · · · < tM = tmax and splitting
levels κ(1), κ(2), . . . , κ(M) = κ. Then, choice of intermediate target events is given

L(m) = {S(X (t)) ≤ κ(m), ∀t ≤ tm}. (2.52)

This corresponds to a state-based intermediate target level (2.50) with the target
sets defined as A(m) def= {x : S(x) ≤ κ(m)}. It remains to the user to ensure the
intermediate target events are in fact nested as per (2.46).

2.6.3 Quasi-monotonicity

We introduce a property which is useful in the next example and in the sequel.

Definition 2.5 (Quasi-monotonicity). A function S : Rd → R is quasi-monotone
increasing in its vector argument for any element index 1 ≤ k ≤ d and any δ ≥ 0,

S





X1
...

Xk

...
Xd




≥ S





X1
...

Xk + δ
...

Xd




. (2.53)

If the last inequality is reversed, we say it is quasi-monotone decreasing. If it is
either of those, we say simply that it is quasi-monotone.

6Target events are often more general and can include complicated functions of the path, e.g.
attaining a particular target state set B ⊂ Rd before hitting some sink set C by the terminal
time. We do not require such machinery here.



2.6. Splitting 31

Hereafter we take decreasing (resp. increasing) to mean non-increasing (resp.
non-decreasing).

Example 2.8 (Quasi-monotone process splitting). A simple concrete example of a
dynamic splitting problem is given by the following structure. Consider a Markov
process {X (t)}t∈[0,tmax] taking values in Rd whose paths which are a.s. coordinate-
wise increasing. For concreteness we can assume this to be a subordinator (Defi-
nition B.2) such as a Gamma process (Section B.2). We assume P[X (0) = 0] = 1.

This target event is defined by the importance function exceedance, (2.52), as
L = {S(X (t)) ≤ κ, ∀t ≤ tmax}. We set the importance function S to be quasi-
monotone increasing. For this problem we use the natural intermediate target sets
L(m) = {S(X (t)) ≤ κ(m), ∀t ≤ tm}. A graphical depiction of a realization of a
splitting procedure in such a process is given in Figure 2.1.

Useful properties arise from the structure of the quasi-monotone subordinator
example. Note that a particle cannot “return” to the target set once it has left,
because the importance levels are increasing in each coordinate of the process, and
each coordinate is increasing in time. Then, for a target event L of the dynamical
splitting form (2.51),



X1
...

Xk

...
Xd


/∈ L ⇒



X1
...

Xk + δ
...

Xd


/∈ L. (2.54)

It follows that the following events are nested

{S(X (s)) ≤ κ′} ⊆ {S(X (t)) ≤ κ′} (2.55)

for all κ′ and s ≤ t. Similarly, the following events are equal

{S(X (s)) ≤ κ′, ∀s ≤ t} = {S(X (s)) ≤ κ′} (2.56)

for all κ′ and t. In particular, setting κ′ = κ and t = tmax we see that if we wish to
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know whether a particle has remained in the target set over the interval (tm−1, tm]
it suffices to inspect the value of that path at the last instant tm. By the same
logic, the intermediate target events L(m) are X (tm)-measurable.

We allowed the possibility above that the intermediate levels κ(m) were differ-
ent. In fact, in such a problem we should set the levels to be identical across all
intermediate target events, κ(1) = κ(2) = · · · = κ(M) = κ. This follows from the
fact that if κ(2) > κ(1) then we no longer have in general that L(1) ⊇ L(2) so this
possibility is excluded. If, on the other hand, we have κ(2) < κ(1) then the sets are
still nested L(1) ⊇ L(2), but we are admitting particles S(X (t1)) > κ(2) which we
know will be killed at some later step, and so we gain nothing by expending effort
in simulating their trajectories. It follows that we choose κ(2) = κ(1). We may by
induction argue that all κ(m) must be equal. Such target events are nested, since

L(m) = {S(X (tm) ≤ κ} ⊆ {S(X (tm−1) ≤ κ} = L(m−1). (2.57)

We revisit this example in depth in Chapter 3 where we make extensive use of
these properties.

2.6.4 Distribution of splitting estimates

In the dynamic splitting method we consider the distributions µ(m) of states of the
stochastic process X (tm) associated with each given target event L(m) conditional
upon that event, i.e.

(X (tm) | L(m)) ∼ µ(m). (2.58)

We call these entrance distributions. Of particular interest is the final entrance
distribution, µ(M) from whose distribution are drawn the samples that form our
ultimate estimator.
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Figure 2.1: Two equivalent depictions of simple dynamic split-
ting of a bivariate coordinate-wise increasing process (Example 2.8).
Here both components of X are independent univariate gamma sub-
ordinators, Section B.2 X∼GammaProc(6, 1

4)×2, threshold κ=1 and
S:x 7→‖x‖2. Splitting levels are all equal, κ(1) = κ(2) = · · · = κ(M) =
κ = 1. Colour of paths denotes time.
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Distribution of rare-event-probability estimates

The following derived estimator is unbiased for m = 1, . . . , M (L’Ecuyer et al.
2009, p. 44), i.e. for rare-event-truncated estimands (2.1):

Ê[ϕ(X (tm))I{L(m)}] def= ℓ̂
1

n(m)

∑
i∈I(X (m))

ϕ(ξ(i)(tm)). (2.59)

In particular, as we presaged in the case of Generalized Splitting, estimates of P[L]
are unbiased.

Analysis of the higher moments of the estimator distribution is more involved.
For fixed factor splitting, the estimator variance is studied in, for example, Botev,
L’Ecuyer, and Tuffin (2012), Dean and Dupuis (2009), Glasserman et al. (1998a),
and Glasserman et al. (1999). In the approach used here, fixed effort splitting, we
leverage the central limit theorems of Cérou et al. (2006). These use the interacting
particle systems formalism of Del Moral (2004) to derive large-effort asymptotic
results. In estimating ℓ specifically the following central limit theorem is useful
(e.g. Garvels and Kroese 1998; Garvels, Ommeren, and Kroese 2002; L’Ecuyer,
Demers, and Tuffin 2006):

Proposition 2.1 (Central limit theorem for rare-event truncated expectation by
fixed-effort splitting (Cérou et al. 2006; Chan and Lai 2013; L’Ecuyer et al. 2009)).
We define

hL(x) = P [L | X (t) = x] (2.60)

and

v(m) =
Var

[
hL(X (tm)) | L(m)

]
E2 [hL (X (tm)) | L(m)]

(2.61)

=
∫

E h2
L(x)dµ(m)(x)

(
∫

E hL(x)dµ(m)(x))2 − 1. (2.62)

Then, for each 1 ≤ m ≤M, in distribution as ñ→∞

√
ñ

(
p̂(1) · · · p̂(m)

p(1) · · · p(m) − 1
)

D−→ N
(
0,
√

V (m)
)

(2.63)
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where
V (m) =

m∑
k=1

(
1

p(k) − 1
)

+
m−1∑
k=1

v(k)

p(k) . (2.64)

In practice, it is difficult to evaluate the integral (2.62) to find the variance
V (m), since it is not clear how to handle these v(m) terms in the general case. The
standard argument (e.g. Botev, L’Ecuyer, and Tuffin 2012; Bréhier, Lelièvre, and
Rousset 2015; Garvels 2000; Glasserman et al. 1999; Guyader, Hengartner, and
Matzner-Løber 2011; L’Ecuyer, Demers, and Tuffin 2006; Lagnoux 2006) instead
analyses an “idealized” problem in which we can ignore the contribution of the
v(m) terms. We observe that the asymptotic variance term V (m) (2.64) decomposes
into two parts, one involving only the conditional survival probabilities p(m), and
one term which involves v(m) and thus the distributions of {X (tm)}t via the µ(m)

entrance distributions in (2.61). If we can work instead with a problem wherein

v(1) = · · · = v(M) = 0 (2.65)

then we can eliminate the troublesome terms. In such an idealized problem we
suppose that, for any given m,

Var
[
hL(X (tm)) | L(m)

]
= 0 (2.66)

and thus hL is constant on supp(µ(m)). In effect, this requirement implies that the
survival probability p(m) = P[L | X (tm) ∈ L(m)] of any given path of the process
depends on the state X (tm) only through tm. In this case, the conditional survival
probabilities are given by p(m) def= p(tm) for some unknown function p : [0, tmax]→
[0, 1]. At each step m the surviving population n(m) may then be regarded as an
independent draw of a random variable n(m) ∼ N (m) distributed as

N (m) ∼ Binomial(ñ, p(m)). (2.67)

We call this idealized model the state-independent model. For such state-
independent models, we can find the form for the large-effort asymptotic variance
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using (2.64) as

V (m) =
m∑

k=1

(
1

p(k) − 1
)

. (2.68)

This is not immediately applicable as we have not chosen p(k). We can also find and
analyse the optimal splitting levels in the state independent model. This amounts
to minimising the expected squared error loss function

L(M, p(1), . . . , p(M)) def= η

ℓ2 Var[ℓ̂] (2.69)

= Mñ

ℓ2 Var[p̂(1) . . . p̂(M)] (2.70)

subject to

M∏
m=1

p(m) = ℓ⇐⇒
M∑

m=1
log p(m) = log ℓ. (2.71)

Recalling that p̂(m) = N (m)/ñ, m = 1, . . . , M , we find the variance

Var
(
p̂(1) . . . p̂(M)

)
=

M∏
m=1

E[(p̂(m))2]− ℓ2 (2.72)

=
M∏

m=1
E

(N (m)

ñ

)2− M∏
m=1

(p(m))2 (2.73)

=
M∏

m=1

(
p(m)(1− p(m))

ñ
+ (p(m))2

)
−

M∏
m=1

(p(m))2. (2.74)

We have used here the fact that, as a binomial variate, E[(N (m))2] = p(m)ñ(1 −
p(m) + ñp(m)).

If we introduce the assumption that fortuitously, for some ideal target survival
probability p̌, ℓ = p̌M for M ∈ N then we may argue from invariance of (2.74)
with respect to exchanges in m, that

p(1) = · · · = p(M) = p̌. (2.75)

Further, in this case, we have
p̌ = ℓ1/M . (2.76)
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In this case we may simplify (2.69) to

Var[ℓ̂] =
(
p̌(1− p̌)/ñ + p̌2

)M
− p̌2M (2.77)

= Mp̌2M−1(1− p̌)
ñ

+ M(M − 1)p̌2M−2(1− p̌)2

ñ2

+ · · ·+ (p̌(1− p̌))M

ñM
. (2.78)

If we assume that ñ grows fast enough that ñ�M(1− p̌)/p̌ then all the terms
apart from the first are negligible. Discarding them, we find

lim
ñ→∞

ENRV(ℓ̂) = lim
ñ→∞

Mñ

ℓ2 Var[ℓ̂] (2.79)

= M2

ℓ2 p̌2M−1(1− p̌) (2.80)

= M2ℓ−1/M(1− ℓ1/M) (2.81)
= M2ℓ−1/M −M2ℓ (2.82)
↗M2ℓ−1/M as ℓ→ 0. (2.83)

Differentiating (2.83) we find

d
dM

M2ℓ−1/M = ℓ−1/M(2M − log ℓ) (2.84)

whose zero at M = −1
2 log ℓ, turns out to be a minimiser — which is, by assump-

tion, an integer. This gives us our ideal M . Back-substituting into (2.76) we
get

p̌ = 1/e2 ≈ 0.1353. (2.85)

The corresponding effort-normalized relative variance is

ENRV(ℓ̂) ≈ (log ℓ)2e2

4
. (2.86)

By comparison, the fixed splitting case (Garvels 2000; L’Ecuyer et al. 2009;
Lagnoux 2006) yields ENRV(ℓ̂) ≈ 1.5449(log ℓ)2. With these optimal parameters,
we rewrite the assumption ñ�M(1− p̌)/p̌ = −1

2 log ℓ(1−e−2)e2, i.e., ñ� − log ℓ.
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The resulting variance satisfies

Var[ℓ̂] ≈ −ℓ2(log ℓ)2e2

2ñ log ℓ
. (2.87)

We are now in a position to examine small-probability efficiency of a splitting
estimator constructed using the optimal parameters in the idealized case.

lim
ℓ→0

logE
[
ℓ̂2
]

log ℓ
= lim

ℓ→0

log
(
Var[ℓ̂] + ℓ2

)
log ℓ

(2.88)

= lim
ℓ→0

log
(
ℓ2 (log ℓ)2e2

4η
+ ℓ2

)
log ℓ

(2.89)

= lim
ℓ→0

2 log ℓ + log
(

(log ℓ)2e2

−2ñ log ℓ
+ 1

)
log ℓ

(2.90)

= 2 + lim
ℓ→0

log
(
− e2 log ℓ

2ñ
+ 1

)
log ℓ

(2.91)

≈ 2 + lim
ℓ→0

log 1
log ℓ

if ñ� − log ℓ (2.92)

= 2. (2.93)

That is, this idealized, asymptotic approximation of our splitting estimator is
logarithmically efficient.

Distribution of rare-event-conditional functional estimates

The calculations thus far have concerned the distribution of estimates of proba-
bility ℓ. For rare-event-conditional functionals θ = E[ϕ(X (tm)) | L] we have fewer
results, and the estimator is no longer in general unbiased (Botev and L’Ecuyer
2020; L’Ecuyer, Botev, and Kroese 2018). We have a large-effort central limit
theorem that guarantees us consistency and asymptotic normality:

Proposition 2.2 (Central limit theorem for rare-event-conditional expectation
estimation by fixed effort splitting). (Cérou et al. 2006). Let ϕ : Rd → R be a
bounded and continuous function. Let ξ(tm)(i), i ∈ I(X (M)) denote the values of
the paths at time tm of the surviving particles generated in a splitting estimator
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with fixed effort ñ, for m = 1, . . . , M. Then, there is a constant v(ϕ), such that

√
ñ

 1
n(m)

∑
i∈I(X (m))

ϕ(ξ(i)(tm))− E[ϕ(X (tm)) | L]

 D−→ N (0,
√

v(ϕ)) (2.94)

as ñ→∞. The result extends to unbounded ϕ under uniform integrability condi-
tions.

The idealization arguments we used to find the optimality of p̌ and M in the
rare-event probability are not directly applicable here, since we essentially assumed
there that the survival probabilities of the particles are identical at each step, and
thus by construction ϕ(ξ(i)(tm)) is constant across the target set and the problem is
trivial. Nonetheless, we presume in this case that the optimal p̌ and M heuristics
for the ℓ̂ estimand are also optimal for the rare-event conditional estimand.

Our arguments about efficiency and consistency of splitting methods have used
large-effort asymptotics in various capacities. We might be concerned that in finite-
effort settings our estimators are far from the asymptotic distributions. Indeed,
investigating numerically we observe that convergence can be different for different
estimation problems. An example is shown in Figure 4.8b of estimators converging
very slowly to the normal distribution as would be predicted by the Central Limit
Theorems. In any case we do not usually have closed form for the variance of
the central limit distribution. These asymptotic arguments assure us that the
estimators are consistent, but in practice we always check the empirical sampling
distribution of the estimator.

By the same token, we might be suspicious of the idealization arguments used
to choose p̌. More general arguments (e.g. Asmussen and Glynn 2007; Botev,
L’Ecuyer, and Tuffin 2012; Garvels 2000) propose that reasonable values lie in
p̌ ∈ [0.1, 0.5]. We address this problem with a simulation study in Section 4.3.

Even if we are satisfied with choice of M and p̌, we do not necessarily know how
to construct intermediate target events to p(1) = · · · = p(M) = p̌. The selection of
the ideal intermediate target events given a choice of optimal conditional survival
probabilities p̌ or more generally p(1), . . . , p(M), is referred to in the literature as
level selection, since it typically reduces to choosing the intermediate target events
by choosing levels of importance function, or even the parameters of an importance
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function (Garvels, Ommeren, and Kroese 2002). In our case, selecting levels per
se does not figure. We do still have have the problem of selecting intermediate
target events.

2.6.5 Selection of levels

We mention two common alternative approaches to the intermediate target event
selection problem. The first approach divides the effort into two runs. The first,
called pilot run, is not used to construct the pilot estimate, but strictly for inter-
mediate target event selection (e.g. Botev and Kroese 2008; Garvels and Kroese
1998; Glasserman et al. 1999; Villén-Altamirano et al. 1994). The final estimator
is constructed from the second, main, run. The alternative approach does a sin-
gle adaptive splitting simulation which calculates optimal parameters online (e.g.
Bréhier, Lelièvre, and Rousset 2015; Cérou and Guyader 2007; Cérou and Guyader
2016; Charles-Edouard et al. 2015). Throughout, we pursue the former alterna-
tive, although some methods we introduce are in principle also compatible with
adaptive splitting. In general, the effort levels required by the pilot run are small
enough that the wasted effort is merited by the relative simplicity of analysis.

Improvements to the method of estimating the target sets via a pilot run for our
sampling method are our major contribution in this research. This we return to in
Chapter 3, where we introduce an algorithm which can cheaply estimate ℓ and M

and perform intermediate target event selection to robustly approach ideal perfor-
mance. In particular, in the quasi-monotone-splitting case we are able to reduce
the nebulous problem of intermediate target event selection to an automatically
soluble problem of time selection.

Despite the caveats attached to these successive layers of approximation in
analysing its performance, the splitting estimator can in practice be a highly effi-
cient estimator in rare event problems. Our own particular splitting variants, for
example, do attain near-logarithmic relative efficiency in practice, as we observe
in experiments in the sequel.



Chapter 3

Splitting in quasi-monotone
problems

In this chapter we introduce the quasi-monotone splitting method, an efficient
splitting Monte Carlo estimator for a family of rare event estimation problems,
namely the quasi-monotone problems. A key benefit of the proposed method is
its wide applicability. It allows for the construction of splitting estimators in a
variety of different problems with minimal manual intervention. The method is
based on the simple dynamical splitting method for subordinators, introduced in the
previous chapter, with a method of mapping certain types of rare event problems
onto it. We apply it to rare-event expectations for problems including sums of
continuous random variables, partial sums of ordered RVs, ratios of RVs, and
weighted sums of Poisson RVs. All these examples are motivated by their practical
importance in reliability estimation problems related to wireless communication.
We investigate numerically the computational efficiency of the proposed estimator
in these problems via a number of simulation studies and find that it compares
favourably with existing estimators.

3.1 Quasi-monotonicity in splitting
The quasi-monotone splitting method generically produces an efficient sampler
for a rare event estimation problem by transforming it into a tractable dynamic
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splitting problem. The method is generic across a broad class of problems. This
chapter is dedicated to identifying the class of problems which can be so treated,
showing how the estimator can be constructed, and examining its properties.

For problems amenable to quasi-monotone splitting, the method has a num-
ber of desirable features. Unlike, say, Importance Sampling, which requires that
the user undertakes problem-specific calculations to choose (approximately) opti-
mal parameters, our method chooses appropriate free parameters automatically.
The self-optimized method produces efficient estimators for problems which had
none hitherto known, and can be competitive even with specialised Monte Carlo
methods.

The quasi-monotone splitting method as developed here targets static prob-
lems, i.e. ones without an a priori time index, which we translate into dynamic
splitting problems. The quasi-monotone method is thus an example of dynamic
splitting for static problems, a specialization of the Generalized Splitting intro-
duced earlier in Section 2.6. The workhorse tool of the method is the dynamic
splitting problem introduced in Example 2.8, using a quasi-monotone importance
function and dynamic latent process. The quasi-monotone method in fact maps
static problems onto members of this family of dynamic splitting problems.

The application of a dynamic splitting method to some static problem X ∈ L,
entails constructing a time-indexed Markov chain whose distribution at a fixed
terminal time instant tmax coincides with that of the desired distribution. The
random variable X and target event L is associated with a time-indexed stochastic
process {X (t)}t∈[0,tmax] with terminal marginal distribution

(X (tmax) | L′) D= (X | L) , (3.1)

where L′ is some specific event measurable with respect to the path of the process
{X (t)}t∈[0,tmax].
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3.1.1 Quasi-monotone problems

We recall the setup of quasi-monotone dynamic splitting from Example 2.8.
The underlying process in that case was a coordinate-wise increasing1 process
{X (t)}t∈[0,tmax] where the ultimate target event was determined by importance
function levels, Lκ

def= {S(X (t)) ≤ κ;∀t ∈ [0, tmax]}. For that problem, we
chose the intermediate target events as L(m) = {S(X (t)) ≤ κ, ∀t ≤ tm}. The
quasi-monotone process estimator had a variety of desirable features, notably a
simple distribution for particle forward simulation at each time step, and a simple
representation for the intermediate target sets in terms of time. We give here a
set of conditions which enable us to solve non-trivial static problems with the
quasi-monotone dynamic splitting method. These we discuss in a “left handed”
version. The handedness terminology is explained below.

Definition 3.1 (Left quasi-monotone problems). We say a rare event estimation
problem is a left quasi-monotone problem if all of the following conditions are
satisfied with respect to the rare event problem X ∈ L.

1. The estimand is of the form (2.1) or (2.2), e.g. θ = E [ϕ(X )I{Lκ}] for some
Rd-valued random variate X .

2. The target event is defined Lκ = {S(X ) ≤ κ} for some importance function
S : Rd → R.

3. The Lκ-conditional distribution X | Lκ is equal in distribution to the termi-
nal state of a certain transformed latent process {G(t)}0≤t≤1 taking values
on RD,

(X | Lκ) D= (ρ(G(1)) | L′
κ)

for some some recovery function ρ : RD → Rd, latent process target event
L′

κ and D ≥ d.

4. The target event for the latent process is given

L′
κ

def= {Sg(G(1)) ≤ α(κ)}
1Recall that we take decreasing (resp. increasing) to mean non-increasing (resp. non-

decreasing).



44 Chapter 3. Splitting in quasi-monotone problems

for some latent space importance function Sg : RD → R which is quasi-
monotone increasing in its argument, and some monotone α : R→ R.

5. The paths of each component Gk are almost surely coordinate-wise increasing
in t,

P[Gk(u) ≤ Gk(t)] = I{u ≤ t} (3.2)

with P[G(0) = 0] = 1

6. Sg is quasi-monotone increasing (2.5) in its vector argument.

We introduce some conventions for working with these processes. Although
the event L′

κ, as the target event of (3.1), is formally different to Lκ of the original
problem, hereafter we identify L′

κ ≡ Lκ without ambiguity. When we wish to
clarify, we distinguish the latent process {G(t)}t, from the original X by discussing
the original random variable as belonging to the ambient, as opposed to latent,
space. When we write G(t) we understand it to be referring to the instantaneous
value of the process at instant t, G(t) ≡ [G1(t) G2(t) . . . GD(t)]>. We also assume
w.l.o.g. that P[Lκ] = 0 when κ ≤ 0 and P[Lκ] > 0 for κ > 0.

Remark 3.1 (Role of α). We usually set α as the identity mapping, and where
we do not state otherwise, this is assumed. This is reasonably general, in that any
invertible monotone increasing α may be absorbed into Sg by defining a revised
S ′

g
def= Sg ◦ α−1 without changing the quasi-monotone structure of the problem.

We see later that the decreasing mapping α : κ 7→ −κ allows us to handle such
right-quasi-monotone problems with Lκ = {S(X ) ≥ κ} in the same setting, as
discussed in Definition 3.2. No other forms for α are required here.

Problems satisfying these conditions can be mapped into a variant of the simple
dynamic splitting estimator via a transform. The resulting construction aims to
simulate from the desired rare-event-conditional random variate X | Lκ by instead
simulating realisations of the latent random process ρ(G(1)) | Sg(G(1)) < α(κ)
and calculating estimands in the ambient space by taking the transform ρ(G(1)).
The splitting method applies to the paths of this latent {G(t)}t | Sg(G(t)) < α(κ).
The combined procedure is in Algorithm 3.1.

That this mapping samples from the correct target is immediate  — we have
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stipulated that in part 3 of the definition. The chief difficulty lies in finding a
mapping that satisfies the conditions. We treat this by giving a non exhaustive
list of families of problems that do satisfy the conditions. That is to say, we give
various sufficient conditions to produce quasi-monotone problems, but not exhaus-
tive necessary conditions. We return to this point momentarily, after expanding
upon some of the mechanics.

In a left quasi-monotone problem {Sg(G(t))}0≤t≤1 defines a real-valued process
with a.s. coordinate-wise increasing paths. By a similar argument to Example 2.8
we see that the target events L(m) are G(tm)-measurable. Consider a series of
times 0 = t0 < t1 < . . . < tM = 1 . For any two times u ≥ t, we have Sg(G(u)) ≥
κ⇒ Sg(G(t)) ≥ κ. It follows that the following events are equal,

L(m) = {Sg(G(t)) ≤ κ, ∀t ≤ tm} = {Sg(G(tm)) ≤ κ}. (3.3)

In practical terms, this means that the pruning of the particles in the quasi-
monotone splitting estimator is easy — we do not need to simulate the entire
trajectory {G(t)}tm−1<t≤tm | G(tm−1) to find if Sg(G(t)) ≤ κ, ∀tm−1 < t ≤ tm,

since it suffices to simulate the value at a single instant G(tm) | G(tm−1). For
a process which was not quasi-monotone, a practitioner would face considerable
manual labour to calculate survival over an interval even in this simple setting. A
non-monotonic process can upcross an importance threshold many times and yet
be below at the end of an interval.

The structure of the quasimonotone problem may be discussed in a left- or
right-handed version. These are nearly interchangeable, although some problems
are more naturally expressed in one formulation or the other. We the version
presented above left-handed since it most naturally handles problems about rare
events pertaining to the left tail of a random variable , i.e. where Lκ = {S(X ) ≤ κ}.

Definition 3.2 (Right quasi-monotone problems). It is convenient to allow the
following alternative formulation. We say a rare event estimation problem is a
right quasi-monotone problem if it satisfies left quasi-monotone conditions (Defi-
nition 3.1), with the following alterations:

2. The target event is defined Lκ = {S(X ) ≥ κ} for some importance function
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S : Rd → R.

4. The target event for the latent process is given

L′
κ

def= {Sg(G(1)) ≤ α(κ)}

for some latent space importance function Sg : RD → R which is quasi-
monotone decreasing in its argument, and some monotone α : R→ R.

6. Sg is quasi-monotone decreasing (2.5) in its vector argument.

A right quasi-monotone problem may be transformed into a left-quasi-
monotone problem by redefining α and Sg to be α′ : κ 7→ − α(κ) and
S ′

g : g 7→ − Sg(g) respectively. In right quasi-monotone problems we assume
w.l.o.g. that limκ→∞ P[Lκ] = 0 and P[L0] = 1. For left quasi-monotone problems
we can find a rarity parameter (Definition 2.1) which is an increasing function of
κ, and for right-quasi-monotone problems, we can find a rarity parameter which
is a decreasing function of κ. These adjustments do not add expressive power
to the left quasi-monotone structure; it is, however, more natural to discuss
simulating excess-over-threshold problems such as (2.4) in terms of right-handed
quasi-monotone splitting, rather than imagining solving an inverted problem with
α : κ 7→ −κ.

Hereafter we keep notation compact by allowing both left- and right-quasi-
monotone problems as convenient. We refer to both classes collectively as quasi-
monotone problems. We assume left quasi-monotone structure when describing
properties of splitting methods unless otherwise specified, bearing in mind that
transforming between them is trivial.

3.1.2 Constructing a mapping

We now return to the question of finding ρ, Sg and so on for particular families of
rare-event estimation problems.

A method to find monotone R→ R functions with desired target distributions
is the well-known inverse CDF or quantile transform method. We can generate
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Algorithm 3.1 Left quasi-monotone splitting
Require: Initial population count ñ(0).
Require: Splitting times t1 < t2 < · · · < tM = 1.
Require: Target level κ.
Require: Functions Sg, ρ, α and latent process {G} ∼ {G(·, t)} satisfying quasi-

monotone conditions for X and L.
Ensure: ℓ̂, an estimate of P (Sg(G(1)) ≤ ακ) = P (L) .

Ensure: θ̂, estimate of ϕ(X ) | L = ϕ(ρ(G(1))) | Sg(G(1)) ≤ α(κ).
1: Simulate latent initial states G̃(1) ← {ξ(t1)(i) ∼ G(·; t1) : i = 1, . . . ñ(0)}
2: Prune: G(1) ←

{
ξ(i) for i ∈ I(G(m)) if Sg(ξ(i)(t1)) ≤ α(κ),

}
.

3: Record population count n(1) ← |G1|.
4: p̂(1) ← n(1)/ñ(0).

5: ℓ̂(1) ← p̂(1).
6: for all m = 2, 3, . . . , M do
7: Choose resample index vector [r1, . . . , rñ(m) ] = r ∼ R(·; n(m)).
8: Split states G̃(m) ← {rith particle of G(m) for each ri ∈ r}.
9: Record population count ñ(m) ← |G̃(m−1)|.

10: Simulate latent particles forward: G(m) ← {ξ(i)(tm) ∼ G(· | ξ(i)(tm−1); tm) :
ξ(i) ∈ G̃(m−1)}.

11: Prune: G(m) ← {ξ(i) for i ∈ I(G(m)) if Sg(ξ(i)(tm)) ≤ α(κ).
12: Record population count n(m) ← |G(m)|.
13: if G(m) = ∅ then
14: return 0.
15: p̂(m) ← n(m)/ñ(m−1).

16: ℓ̂(m) ← p̂(m)ℓ̂(m−1).
17: return ℓ̂ = ℓ̂(M).
18: return θ̂ = 1

Ñ(M)

∑
i∈I(G̃(M)) ϕ(ρ(ξ(i)))
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any real marginal distribution using an appropriate mapping of a real random
variable which is continuous with respect to the real line.

Definition 3.3 (Quantile transform). Suppose our problem requires us to con-
struct a random variate equal in distribution to a real-valued random variable X ∼
F from samples of another real-valued random variable G ∼ G with supp(G) =
I ⊆ R where I is a non-trivial interval. If G is absolutely continuous with respect
to the Lebesgue measure on supp(G), we may define the following two quantile
transforms:2

qG,F def=g 7→ F −1(G(g)) the increasing transform. (3.4)

qG,F̄ def=g 7→ F̄ −1(G(g)) the decreasing transform. (3.5)

The naming reflects the fact that the mapping (3.4) is monotone increasing and
(3.5) is monotone decreasing.

Noting that

G(G(1)) ∼ Unif([0, 1]) (3.6)
1−G(G(1)) ∼ Unif([0, 1]). (3.7)

and that U ∼ Unif([0, 1])⇒ F −1(U) ∼ F, we observe that

qG,F (G) ∼ F (3.8)
qḠ,F (G) ∼ F. (3.9)

Here Unif([a, b]) denotes the continuous uniform distribution over the interval [a, b].
These transforms give us a means of simulating monotone Markov processes

with arbitrary coordinate-wise univariate marginal distributions at fixed time t =
1. Suppose the distribution G arises as the marginal of a monotone-increasing

2Recall that we write Ḡ
def= 1−G.



3.1. Quasi-monotonicity in splitting 49

scalar stochastic process {G(t)}t such that G(1) ∼ G. Then, processes

{qG,F (G(t))}t (3.10)
{qḠ,F (G(t))}t (3.11)

are, respectively, monotonic increasing and decreasing stochastic processes with
the marginal distribution F −1(G(G(1))) D= F −1(Ḡ(G(1))) ∼ F. In problems where
we have access to both F −1, and G and where evaluating their composition is
sufficiently cheap, these transforms comprise the workhorse tool to impose the
desired marginal distribution. Note however, that generating random variates by
the quantile transform method is often more expensive, computationally, than
simulating directly from the target distribution where the latter is possible.

A common pattern applies in the case that we have a rare event of the form
L def= {S(X ) ≤ κ} for some quasi-monotone importance function S : Rd → R and
X coordinate-wise independent, X ∼ F1 × F2 × · · · × Fd. Then, it is often possible
to set d = D and directly obtain a function q : RD → RD such that Sg = S ◦ q

is quasi-monotone. For example if S is itself quasi-monotone increasing, then we
can construct q as

qinc :


g1
...

gd

 7→


qE,F1(g1)
...

qE,Fd(gd)

 . (3.12)

Now {G}t ∼ GammaProc(1, 1)×D we have qinc(G(1)) D= X and thus Sg = S ◦ q is
an importance function for a left quasi-monotone problem as per Definition 3.1.

In a more general setting, suppose S is not quasi-monotone increasing in
all components, but that the argument may be partitioned into two parts x =
[xinc; xdec] where xinc = [x1, . . . , xk] and xinc = [xk+1, . . . , xd] such that S is quasi-
monotone increasing with respect to xinc and decreasing in xdec. Then, we can
still find q such that Sg = S ◦ q is quasi-monotone. We can create, say, a left-
quasi-monotone problem by generating marginal distributions through respectively
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increasing (3.4) and decreasing (3.5) quantile transforms.

qmixed :
(
g1, . . . , gd

)
7→



qE,F1(g1)
...

qE,Fk(gk)
qE,F̄k+1(gk+1)

...
qE,F̄d(gd)


. (3.13)

In such problems the q function may often serve also as the recovery function ρ.

We use (3.12) and (3.13) often enough that where there is no ambiguity we refer
to, e.g. “the” qmixed for a given problem.

3.1.3 Subordinators in Quasi-monotone problems

Given the generality of quantile transforms we can afford to restrict the family of
monotone latent processes G to a simple special case: processes with stationary
and independent increments. This family of Lévy processes is known as the subor-
dinators. We have already employed them in Example 2.8. The subordinators are
described in greater depth in Appendix B, and exhaustively in e.g. Bertoin (1996),
Kyprianou (2014), and Sato (1999). For the purpose of quasi-monotone splitting
their crucial property is that calculating increment distributions at arbitrary times
is easy by construction. Here we summarise the essential characteristics:

Definition 3.4 (Subordinator). An R-valued subordinator {G(t)}t∈[0,tmax]}t∈[0,tmax]

is a Lévy process indexed by t and possessing the following qualities:

1. G(t) − G(s) is independent of G(u) for any u < s < t. (Independent incre-
ments.)

2. G(s + t) − G(s) has the same distribution as G(t) − G(0) for any s, t > 0.

(Stationary increments.)
3. G(s)→ G(t) in probability as s→ t. (Continuity in probability.)
4. P[G(t)− G(s) ≥ 0] = I{t ≥ s}. (Non-negative increments.)

A d-dimensional subordinator is an Rd-valued stochastic process such that each
coordinate is an independent scalar subordinator.
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We further assume that the Lévy processes we use as latent processes have no
deterministic positive linear drift term. Thus

∀ε > 0,P[G(t + s)− G(t) < ε] > 0. (3.14)

An archetypal example of a subordinator is the gamma process, which we
employ in the majority of our examples. We write GammaProc(t; α, λ) for associ-
ated distribution. Realizations of the process are shown in Figure 3.1 for various
parameters. The salient feature for the current purpose is that {G(t)}t∈[0,∞] ∼
GammaProc(t; α, λ) ⇒ G(t; α, λ) − G(s; α, λ) ∼ Gamma(α(t − s), λ). These pro-
cesses are described in detail in Section B.2.

Since its marginal distribution is absolutely continuous with respect to the
Lebesgue measure on the positive real line, it is amenable to the quantile trans-
forms (Definition 3.3). For example, if we choose {G(t)}t ∼ GammaProc(1, 1)
it happens that the marginal distribution at time tmax = 1 has the particularly
simple form G(1) ∼ Exp(1). Its CDF is thus

E(x) = 1− exp(−x). (3.15)

Using the inverse lookup method we can construct arbitrary univariate marginal
distributions to construct, respectively, monotone increasing and decreasing expo-
nential maps

qE,F (g) = F −1(1− exp(−g)) (3.16)
qE,F̄ (g) = F −1(exp(−g)). (3.17)

These transforms justify a default choice of G ∼ GammaProc(1, 1)×d as our latent
process, since this is in practice flexible enough for many marginals of interest. By
a similar reasoning we set tmax = 1 without loss of generality, since we can always
rescale the time axis.

Although the inverse CDF constructions (3.4) and (3.5) can in principle gener-
ate any univariate marginal, in practice, CDFs may be computationally expensive
or numerically unstable to invert. Thus it is useful to consider a broader class of
latent subordinators than the gamma process alone. For example, tail probabilities
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Figure 3.1: Independent realizations of a gamma process G with
E[G(1)] = 1.
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Figure 3.2: Independent realizations of a Poisson process G with
E[G(1)] = 5.

involving discrete marginals such as the Poisson are of interest, and inverting the
Poisson CDF is not computationally efficient in the right tail of the distribution.
Generally, if a problem directly involves the values of a subordinator distribu-
tion it may be easier to simulate its values directly, i.e., using a Poisson process,
rather than by transformation of a gamma process. Such a case where it is more
convenient to simulate the desired marginal directly is given in Subsection 3.3.3,
where the variable in question has a Poisson marginal. Poisson processes are also
subordinators, but with a Poisson, rather than gamma, increment distribution.
Some representatives of the paths of such processes are shown in Figure 3.2, and a
thorough introduction is given in Section B.3. More generally we might find other
subordinators are convenient: compound Poisson processes, for example. Such
elaborations are not necessary for the current purposes.

3.1.4 An example splitter

Example 3.1 (Gaussian Tail). We begin with a test problem with an analytic
solution against which we can cross-check our implementation. To this end, we
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demonstrate a rare-event estimation problem involving a target set from a trun-
cated Gaussian distribution. We wish to estimate the tail probability P[β>X > κ],
where X = [X1, X2, . . . , Xd]> ∼ N (0, V). Here β is a vector of positive weights and
κ is some arbitrary real. The target event is thus Lκ = {β>X > κ}. When κ is
large, this becomes a rare event problem.

We proceed in two stages. First, we stipulate a latent process comprising
concatenated independent gamma processes, Gi ∼ GammaProc(1, 1)×d. Applying
(3.17) to each component, Zi(t)

def= N−1(exp(−Gi(t)), we have constructed an
intermediate vector-valued random process {Z (t)}t such that it has a standard
normal distribution at t = 1, i.e., Z (1) ∼ N (0, I). (Here N−1 denotes the inverse
complementary CDF of a standard normal.) To attain a normal vector with the
desired covariance V from a standard Gaussian we can use the usual trick —
given a standard d-dimensional normal variate Z , and a lower triangular matrix
M such that M>M = V, for strictly positive definite V, the linear transformation
thereof, X = MZ ∼ N (0, V) has the desired distribution. Thus we have that
q(X (1)) ∼ N (0, V), where q

def= MN−1(exp(G(1)). Here g 7→ N−1(exp(g)) is
applied coordinate-wise. The mapping of the level is the identity, α(κ) = κ.

Recovering a conditional sample in this problem is easy, with recovery function
ρ ≡ q. The acceptance function becomes Sg : g 7→ βq(g).

It remains to check the (right) quasi-monotone problem conditions (Def-
inition 3.2,) which means that Sg must be quasi-monotone decreasing. For
each i = 1, . . . , d the coordinate-wise map gi 7→ N−1(exp(−g)) is decreasing.
Thus we require that ∀i, Mx′ ≥ Mx where x = [x1, . . . , xi, . . . , xd]> and
x′ = [x1, . . . , x′

i, . . . , xd]> is a perturbed copy with x′
i ≥ xi. Equivalently, we

require M(x′ − x) ≥ 0 coordinate-wise, and thus M[0, . . . , (x′
i − xi), . . . , 0]> ≥ 0,

which implies all the elements of M must be non-negative. This problem is thus
amenable to our method for all V = M>M for coordinate-wise non-negative
lower-triangular M. As an aside, we note that a similar argument allows us
to simulate more generally from Gaussian copulas with a positive covariance
decomposition and arbitrary marginal distributions.

In this contrived case we can recover the true target probability in terms of the
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standard univariate normal CCDF since

P[L] = P[{β>X > κ}] (3.18)
= P[{β>MZ > κ}] (3.19)

= P
[{

Z1 >
κ

‖M>β‖2

}]
with Z1 ∼ N (0, 1) (3.20)

= N̄
(

κ

‖M>β‖2
; 0, 1

)
. (3.21)

We explore this model numerically. We fix parameters, choosing a two-
dimensional model which we may easily plot, where

X ∼ N
0,

 1 0.8
0.8 1

 and (3.22)

β =

1
1

 . (3.23)

The simulated results are shown in Table 3.1, and plotted in Figure 3.3, and
contrasted with the true value of the relative error (3.21). The results do not
contradict our supposition that this provides an estimator whose value hews closely
to the estimand.

Table 3.1: Probability estimates in the 2-dimensional Gaussian
right-tail problem with ñ = 104 particles.

κ ℓ ℓ̂ r̂e(%)
1 0.299 0.302 0.852
2 0.146 0.146 0.0619
3 0.0569 0.0567 0.431
4 0.0175 0.0174 0.562
5 0.0042 0.00412 2.04
6 0.000783 0.000792 1.16
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Figure 3.3: 1000 realizations generated by splitting simulation for
the right Gaussian tail model.
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3.2 Intermediate target event selection
In this section we develop a heuristic algorithm for ensuring low-variance estimates
by choosing optimal times. This is aligned with the version developed for Ben
Rached et al. (2020). We return to a more extensive treatment of the topic of
efficient optimal intermediate target event selection in Chapter 4.

Our criterion is that the ideal uniform splitting level relation (2.75) holds (ap-
proximately) between splitting levels, i.e., that the conditional survival proba-
bilities p(m) are constant, which have argued leads to large-effort asymptotically
optimal estimates, at least in idealized problems. Writing out the dependence on
intermediate target sets explicitly, this requires choosing L(m) to approximately
satisfy, for all m,

p(m) def= P[L(m) | L((m−1))] = P[L(m)]
P[L((m−1))]

= p̌ (3.24)

for some fixed desired conditional survival probability p̌. In the quasi-monotone
splitting setting, we are given already a natural choice for Sg and we have already
demonstrated that kappa should be held fixed. The intermediate target events and
thus the conditional survival probabilities (3.24) are uniquely determined for fixed
model parameters by the splitting instants tm, m = 1, . . . , M. We thus consider a
time selection procedure.

Accordingly we model the lifetime distribution, T (κ) ∼ T (·; κ), i.e., the distri-
bution of the random variable

T (κ) def= inf{t : Sg(G(t)) ≥ κ}. (3.25)

Where we hold κ constant we suppress it and simply discuss T ∼ T. This is by
construction a non-negative real random variable which measures the exit time of
a particle from the target event in the quasi-monotone splitting estimator.

The distribution of T gives us some insight into the behaviour of the algorithm
we have developed. Firstly, we note that T is of unbounded support. Since
the latent processes have no deterministic drift it follows from (3.14), the quasi-
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monotonicity of Sg and (3.25) that, conditional on Sg(G(0)) < κ],

P[T > M ] > 0, ∀M > 0 (3.26)

That is, the lifetime distribution is unbounded above and supp(T ) = [0,∞).
The nesting condition (2.46) for the intermediate target events under quasi-

monotonicity is then
{T > tm} ⊇ {T > tm+1}. (3.27)

With regard to T we may rewrite the criterion (3.24) using (3.25) as

p̌ = P
[
L(m) | L(m−1)

]
= P [Sg(G(tm)) ≤ κ]

P [Sg(G(tm−1)) ≤ κ]
= P[T > tm]

P[T > tm−1]
. (3.28)

We note that ℓ = P[T > t] = 1− T (t) = T̄ (t). Recursively applying (3.28), we see
the optimal times t1, . . . , tM must satisfy

tm = T̄ −1(p̌m), (3.29)

Of course, if we knew T̄ we would also know ℓ = T̄ (1), which is in general not
the case. Our solution to this difficulty is to dedicate a small proportion of the
simulation effort to a pilot run that guides the main simulation effort in the hope
that in combination these methods can be more efficient. Investigating effort
allocation to ensure this is the topic of the sequel, Chapter 4. We introduce here
the convention that we distinguish the parameters of the pilot run from those of
the main run by marking the pilot parameters with a prime, e.g. t′

k is a pilot run
splitting time.

The first step in the piloted quasi-monotone method applies an adaptive pilot
algorithm (Algorithm 3.2) which we explain in detail momentarily, in order to
determine a step count K and a set of intermediate splitting times {t′

k}K̄−1
k=1 with

tK = 1, and estimates of { ˆ̄T (tk)}K̄
k=1. From the output of a pilot run, we construct

point estimates T̂ (t′
k) at pilot times t′

k, k = 1, . . . , K, and interpolate between these
using a piecewise linear interpolant. We use a plug-in estimate of T̄ (tk) = ℓ′(k)

which we obtain as a side-effect of the quasi-monotone splitting estimator (i.e., in
Line 16 of Algorithm 3.1). This once again invokes the idealization of the splitting
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problem that we used in (2.65), in that we ignore any dependence upon the state
of the particles in the conditional survival probabilities, and further, ignore the
dependence between particles. We impose a particular form upon the CCDF, in
particular estimating that CCDF function T̄ (·) by linearly interpolating between
these point estimates. The resulting CCDF estimator is a linear spline using knot
times 0, t′

1, t′
2, . . . , t′

K = 1 and corresponding values 1, ˆ̄T (t′
1), . . . , ˆ̄T (tK) (marked as

green points in the diagram). The resulting pilot interpolant is shown as the blue
curve. By construction this interpolant is over [0, 1]. We require tM = 1, so we
choose

M = 1 + max
m∈N

ˆ̄T −1(p̌m) < 1 = dlog ℓ̂′/ log p̌e. (3.30)

Finally, we estimate remaining times by the plug-in method, inverting ˆ̄T as per
(3.29), giving tm = T̄ −1(p̌m), m = 1, . . . , M − 1. The resulting times satisfy (3.24)
with regard to the estimated CCDF ˆ̄T except for the final time increment, for
which p(M) ≤ p̌. These estimated ideal splitting times tm, m = 1, . . . , M are shown
with orange points. These splitting times and M values are themselves, properly
speaking, random estimators which would normally be written t̂m and M̂. We
suppress the hatted estimator notation, however, to reduce clutter. This method
is depicted in Figure 3.4.3

The adaptive pilot algorithm is a heuristic method to choose ideal times {t′
k}K̄−1

k=1

in an online search. We conduct an approximate random binary search, starting
from t0 = 0 and iteratively finding the next time tk+1 = tk + δ via a trial and error
search over δ. If δ is too large, then the proportion of states that survive is too
small (less than p∗). We then try a smaller δ ← δ/2 until the number of surviving
states is at least p∗. As a consequence of the nesting property of splitting, the
smaller is δ, the larger is the (expected) number of surviving states. Pseudo code
of the algorithm is given in Algorithm 3.2. The choice for ñ′ in the pilot should be
such that the cost of the pilot is a small fraction of the cost of the main splitting
run and thus insignificant in the eventual efficiency comparison. We return to
what in ‘insignificant’ means in practice in Chapter 4.

3We observe parenthetically that the “bumpy” appearance of the CCDF interpolant on the
log scale is suggestive that the interpolating curve is could possibly be improved by conducting
interpolation in the log domain. Indeed, that is one one of the extensions explored in Chapter 4.
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Figure 3.4: Stylized depiction of method of time selection by linear
CCDF interpolation. p̌ = 0.1. Note that the vertical log scale converts
the linear interpolants into piecewise convex curves.
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Algorithm 3.2 Adaptive pilot run to estimate { ˆ̄T (ti)}.
Require: Population count ñ′.
Require: Initial time increment δ
Require: Probability estimate lower bound p∗.

Ensure: { ˆ̄T (t′
k); k = 1, 2, . . . }, pointwise estimates of the complementary life

distribution CDF.
1: loop
2: t′

1 ← min{δ, 1}
3: Simulate forward: G̃ ′ ← {ξ′

(i)(t′
1) ∼ G(·; δ : i ∈ 1, . . . , ñ}

4: Prune: G ′ ←
{
ξ(i) for i ∈ I(G̃) if Sg(ξ(i)) ≤ κ,

}
5: if |G|

|G̃| ≥ p∗ then
6: EXIT the loop
7: else
8: δ ← δ/2
9: p̂(1) ← |G|

|G̃|

10: ℓ̂(1) ← p̂(1)

11: t1 ← t′
1

12: ˆ̄T (t′
1)← ℓ̂(1)

13: Split states: G ← ñ samples from G drawn uniformly with replacement.
14: δ ← 2δ (try increasing the size of δ)
15: k ← 2
16: while tk−1 < 1 do
17: loop
18: t′

k ← min{tk−1 + δ, 1}
19: Simulate forward: G̃ ′ ← {ξ′

(i)(t′
k) ∼ G(·; tk−1 + δ | ξ(k)(tk−1) : i ∈ I(G)}

20: Prune: G ′ ←
{
ξ(i) for i ∈ I(G̃) if Sg(ξ(i)) ≤ κ,

}
21: if |G|

|G̃| ≥ p∗ then
22: EXIT the loop
23: else
24: δ ← δ/2
25: p̂(k) ← |G|

|G̃|

26: ℓ̂(k) ← p̂(k)ℓ̂(k−1)

27: tk ← t′
k

28: ˆ̄T (tk)← ℓ̂(k)

29: Split states: G ← ñ samples from G drawn uniformly with replacement.
30: k ← k + 1
31: δ ← 2δ (try increasing the size of δ)
32: return K ← k and {ti}K

k=1 and { ˆ̄T (ti)}
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The adaptive pilot algorithm has, empirically, acceptable performance, but it
poses certain difficulties for analysis. There are no clear guidelines on how to
choose δ, ñ or p∗. Further, the relationship between the values of these parame-
ters and the simulation effort in any given problem is opaque, which complicates
effort-normalized variance analysis. With these caveats, we retain this method for
the remainder of the chapter, revisiting it in the sequel. We use empirical point
estimates of the WNRV for approximate comparison of these methods. For the
moment we set p∗ = 0.1, δ = 0.1, ñ′ = 200 and p̌ = 0.2.

3.3 Some quasi-monotone splitting probability
estimators

It turns out that a number of practical problems of industrial utility are quasi-
monotone. In this section we explore a selection of such estimation problems from
multiple fields, with a particular emphasis on problems from wireless network re-
liability estimation. We concern ourselves mostly with rare-event truncated prob-
ability estimates of P[L]. At the end there is with some tail-conditional sampling
E[ϕ(X | L].

The rare events of interest here are drawn from heavy-tailed families, including
log-normal, Weibull, and Generalized Pareto random variates. Log-normal random
variate problems arise in finance and biology, in for example, pricing of Asian
options and modelling bacterial growth (Botev, Salomone, and Mackinlay 2019;
Limpert, Stahel, and Abbt 2001). In reliability engineering, generalized Pareto
and Weibull variates are also important (Simon and Alouini 2005).

The importance functions here have simple forms. For instance, signal-to-
noise-ratio (SNR) and outage probability (OP) calculations may be expressed as
sums of random variables or partial sums of ordered random variables (Ben Rached
et al. 2016; Ben Rached et al. 2018b). In the presence of co-channel interferences
and noise we are concerned with the signal-to-interference-plus-noise ratio (SINR),
which is the ratio of the desired power signal and the sum of interfering power
signals plus noise (Ben Rached et al. 2017; Botev, Salomone, and Mackinlay 2019).

In addition to these applications, in which the considered RVs are typically con-
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tinuous, there are demands both in wireless communication applications (Bashir
and Alouini 2020) and physics (Tan, Lu, and Xia 2018) for estimands defined by
sums of discrete RVs. Of particular interest is the probability that a weighted sum
of independent Poisson RVs falls below a small threshold, which represents the
probability of missed detection of alignment in free space optical communication
systems. All the above applications can be handled as quasi-monotone problems.
This catalogue is not exhaustive. Many further applications are straightforward
extensions. We will discuss further classes of problems made tractable by this
method after introducing some concrete examples.

For the examples in this selection, we introduce the structure of the problem,
then stipulate how the design parameters G , Sg, α and ρ are to be chosen for a
given problem to attain a quasi-monotone structure matching Definition 3.1. In
order to estimate the variance of estimators we run the algorithm for R = 200
replications and estimate performance statistics numerically from these replicated
estimates using (2.33)-(2.38). The number of samples per level is for now fixed at
ñ = 3000.

3.3.1 A partial sum problem

An important class of problems in, for example, telecommunications, is the partial
sum of order statistics. These problems arise in, for example, reliability estimates
in wireless networking outage probabilities with certain transmission strategies
(Ben Rached et al. 2016; Ben Rached et al. 2018b). In these systems, we need to
know exceedance probabilities for partial sums of order statistics of independent
RVs. Concretely, we wish to find ℓ = P[L] for L = {S(X ) ≤ κ} with

S(X ) def=
d∑

i=1
X [i]. (3.31)

and some 1 ≤ d ≤ D. Here X [1], · · · , X [D] are the order statistics (i.e., the variables
sorted by value) of the ambient RVs X1 ∼ F1, X2 ∼ F2, . . . , XD ∼ FD. The sort is in
decreasing order, X [1] ≥ X [2] ≥ · · · ≥ X [D]. Closed-form results are available in cer-
tain restricted cases, e.g. when X1, · · · , XD are exponential, gamma, or generalized
gamma distributed RVs (Bithas, Sagias, and Mathiopoulos 2007; Nam, Alouini,
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and Yang 2010; Nam, Ko, and Alouini 2017), under additional restrictions upon
the parameters of the generating process. Specialized simulation methods exist
for those cases in which the RVs X1, · · · , XD are generalized gamma or log-normal
variates, and these are, to our knowledge, the most efficient available estimators
for this particular problem where applicable (Ben Rached et al. 2018a; Ben Rached
et al. 2018b).

This has introduced the version of the problem where we consider the largest-d
variates from the list of D variables, but generalizing is straightforward: estimators
for the version where we consider instead the smallest-d variables, and for the right
handed version with Lκ = {S(X ) ≥ κ} require no special treatment.

The application of quasi-monotone splitting to this problem is immediate. Ob-
serving that sorting the list of random variables preserves quasi-monotonicity,
we take latent process G ∼ GammaProc(1, 1)×D and use quantile transforms
to construct the desired ambient RVs, Xi

D= qE,Fi(Gi(1)). We take Sg : g 7→∑d
i=1 qE,Fi(gi)[i], where qE,Fi(gi)[i] means the ith element in the vector obtained

by sorting [qE,F1(g1), qE,F2(g2), . . . , qE,FD(gD)] into decreasing order. The recovery
function ρ is similar but returns only the first d coordinates of the sorted vector.
The result is a left quasi-monotone problem. Unlike the existing Monte Carlo
methods, we have introduced no assumptions on the distribution of the vectors,
and they may have different distributional parameters or come from different fam-
ilies. As long as the required CDF inversion is feasible, the overall method remains
feasible.

We perform numerical simulations of estimators where the component random
variables have the Weibull and log-normal distributions. The Weibull CDF is given
as follows

FWeibull(x; α, λ) = 1− e−(x/λ)α

x ≥ 0 x > 0, (3.32)

with α, λ > 0 denoting the shape and the scale parameters respectively. Weibull
distributions are included in the generalized gamma family, and thus amenable
to the specialized estimators of Ben Rached et al. (2018a) and Ben Rached et al.
(2018b). A log-normal distribution is the distribution of the exponential transform
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of a normal variate,

X ∼ LogNormal(µ, σ2)⇒ log X ∼ N (µ, σ2). (3.33)

We implement quasi-monotone splitting for partial sum problems for variables in-
volving both of these, and also side-by-side implementation with the best available
alternative Monte Carlo methods for comparison.

The results in Table 3.2 and Table 3.3 show quasi-monotone splitting for
Weibull variates with two efficient estimators proposed in Ben Rached et al.
(2018b), over different values of D and d. The two alternative methods are a
variance-reduced IS and a problem-specific “conditionalized Monte Carlo”. They
both leverage the structures of the underlying distributions (generalized gamma,
and in particular, the Weibull distribution) to attain efficient estimates — bounded
relative error in some cases. As such these dominate our mere near-logarithmic
efficiency. Indeed, quasi-monotone splitting does not outperform these alterna-
tives, having a strictly and substantially inferior WNRV over all of the κ values.
In contrast, when our random variates are log-normally distributed and the same
tricks are inapplicable, the quasi-monotone method can estimate the target val-
ues generically and often provides the best performance. Simulation results in
Table 3.4 and Table 3.5 demonstrate superior performance for quasi-monotone
splitting for certain choices κ. Concretely, quasi-monotone splitting achieves 10
times greater efficiency than the conditional MC estimator for the parameters of
Table 3.4 when κ = 0.15. The quasi-monotone splitting method also required min-
imal user derivations — specifically, our simple derivation for this problem fits into
a single paragraph, whereas the competing methods require extensive calculation.

Table 3.2: ℓ̂ for the partial sum of Weibull order statistics with
D = 8, d = 4, α = 0.5, ξ = 1.

Quasi-monotone splitting Universal IS estimator with n = 5 · 105 Conditional MC estimator with n = 5 · 105

κ ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂). ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂) ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂)

1 0.0029 0.61 4.78 · 10−4 0.0029 0.40 7.68 · 10−6 0.0029 0.12 1.72 · 10−5

0.5 3.36 · 10−4 0.94 1.5 · 10−3 3.37 · 10−4 0.49 1.15 · 10−5 3.37 · 10−4 0.13 2.02 · 10−5

0.1 1.26 · 10−6 1.36 4.5 · 10−3 1.27 · 10−6 0.66 2.09 · 10−5 1.27 · 10−6 0.15 2.70 · 10−5

0.05 9.80 · 10−8 1.51 6.4 · 10−3 9.85 · 10−8 0.71 2.42 · 10−5 9.79 · 10−8 0.16 3.07 · 10−5

0.01 2.10 · 10−10 1.90 1.43 · 10−2 2.06 · 10−10 0.80 3.07 · 10−5 2.07 · 10−10 0.17 3.46 · 10−5

0.005 1.39 · 10−11 2.05 2.03 · 10−2 1.39 · 10−11 0.81 3.15 · 10−5 1.38 · 10−11 0.17 3.46 · 10−5
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Table 3.3: ℓ̂ for the partial sum of Weibull order statistics with
D = 8, d = 4, α = 0.8, ξ = 1.

Quasi-monotone splitting Universal IS estimator with n = 5 · 105 Conditional MC estimatorwith n = 5 · 105

κ ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂). ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂) ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂)
1.03 3.38 · 10−4 0.93 1.5 · 10−3 3.41 · 10−4 1.28 9.99 · 10−5 3.37 · 10−4 0.1 1.28 · 10−5

0.38 1.31 · 10−6 1.42 5.1 · 10−3 1.29 · 10−6 2.31 3.20 · 10−4 1.31 · 10−6 0.12 1.74 · 10−5

0.09 2.09 · 10−10 2.00 1.71 · 10−2 2.22 · 10−10 3.20 6.24 · 10−4 2.10 · 10−10 0.13 2.06 · 10−5

0.058 1.36 · 10−11 2.29 2.90 · 10−2 1.33 · 10−11 3.49 7.43 · 10−4 1.35 · 10−11 0.13 2.04 · 10−5

Table 3.4: ℓ̂ for the partial sum of log-normal order statistics with
D = 8, d = 4, µ = 0, σ = 2.

Quasi-monotone splitting Universal IS estimator with n = 106 Conditional MC estimator with n = 106

κ ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂). ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂) ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂)
1 8.30 · 10−5 1.00 2.3 · 10−3 8.31 · 10−5 0.68 5.08 · 10−5 8.31 · 10−5 0.34 8.57 · 10−4

0.5 1.91 · 10−6 1.35 5.3 · 10−3 1.91 · 10−6 1.27 1.82 · 10−4 1.90 · 10−6 0.99 7.2 · 10−3

0.3 7.04 · 10−8 1.63 1.03 · 10−2 7.07 · 10−8 2.11 5.07 · 10−4 7.00 · 10−8 2.10 3.19 · 10−2

0.15 3.93 · 10−10 2.12 2.12 · 10−2 3.90 · 10−10 4.37 2.20 · 10−3 3.92 · 10−10 5.41 2.09 · 10−1

Table 3.5: ℓ̂ for the partial sum of log-normal order statistics for
with D = 15, d = 15, µ = 0, σ = 2.

Quasi-monotone splitting Universal IS estimator with M = 5 · 107

κ ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂). ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂)
3.4 1.93 · 10−6 1.98 2.48 · 10−2 2.00 · 10−6 0.94 7.3 · 10−3

2.3 6.74 · 10−8 3.04 6.73 · 10−2 6.50 · 10−8 2.50 5.25 · 10−2

1.39 3.68 · 10−10 3.44 9.31 · 10−2 4.20 · 10−10 9.58 6.79 · 10−1



3.3. Some quasi-monotone splitting probability estimators 67

3.3.2 A ratio problem

We consider now SINR problems, wherein we must evaluate the probability of rare
tail events generated by ratios of non-negative random variables of the form

P
[

X1∑d
i=2 Xi + E

≤ κ

]
(3.34)

where X1 represents the signal of interest, X2, . . . , Xd interfering signals and E the
noise. (Ben Rached et al. 2017; Botev, Salomone, and Mackinlay 2019). All RVs
are independent, with densities given Xi ∼ Fi, E ∼ Fe. We may take this as a
problem with importance function

S(x) = x1∑d+1
i=2 xi

. (3.35)

Noting that the ambient importance function is increasing in X1 and decreasing
in all other RVs, we can find a quasi-monotone structure with respect to latent
process vector G ∼ GammaProc(1, 1)×(d+1) by using a combination of increasing
(3.4) and decreasing (3.5) quantile transforms (i.e. we use the Sg

def= S ◦ qmixed

structure).

Sg(G) def= qE,F1(G1(t))∑d
i=2 qE,F̄i(g)(Gi(t)) + qE,F̄e(g)(Gd+1(t))

. (3.36)

In this problem the best competing algorithm to our knowledge is that of Ben
Rached et al. (2017), which applies to log-normally distributed RVs X1, . . . X1, E .
That algorithm leverages the observation that the target event may be transformed
into a problem of exceedance probabilities for correlated log-normal RVs, and thus
may be approached using importance sampling based on scaling the covariance
matrix of the corresponding Gaussian vector. In the comparison we apply that
log-normal IS algorithm with n = 2 · 106 importance samples.

The result of the comparison is in Table 3.6. The values of the relative errors
and WNRV show superiority in this case for quasi-monotone splitting attaining,
e.g., a fivefold better estimated efficiency than the alternative when γ = 0.001. In
this case, splitting is not only more efficient than the alternative but also more
general, being applicable outside the log-normal distribution already — all we need
do is change the CDFs used in the quantile transforms.
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Table 3.6: ℓ̂ for X1/(∑d
i=2 Xi + E ) for log-normal variates with

d = 11, µ0 = 20 dB, µ = 0 dB σ = 4 dB, σ0 = 6 dB, E = −10 dB.

Quasi-monotone splitting Variance scaling IS with M = 2 · 106

κ ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂). ℓ̂ r̂e(ℓ̂)% ŴNRV(ℓ̂)
0.02 2.11 · 10−5 1.41 5.0 · 10−3 2.01 · 10−5 2.70 1.33 · 10−2

0.003 2.90 · 10−8 2.03 1.82 · 10−2 2.83 · 10−8 7.30 1.2 · 10−1

0.001 2.94 · 10−10 2.40 3.43 · 10−2 3.35 · 10−10 11.45 1.72 · 10−1

3.3.3 Poisson sum problem

An advantage of the proposed splitting method is its ability to handle functionals
of discrete RVs as well as continuous RVs. Let X1, X2, · · · , Xd be a sequence of
independent Poisson RVs with rates λ1, λ2, · · · , λn and density

P[Xi = k] = λk
i exp (−λi) /k!, k = 0, 1, 2, . . . (3.37)

We would like to estimate the probability of weighted sum of these variates being
below a threshold κ, i.e.

S(x) def=
d∑

i=1
wixi < κ, (3.38)

where wi are non-negative weights.
A Poisson process may be used as the latent (and in fact, ambient) process in

quasi-monotone splitting. This is because each Poisson variable Xi already has the
same marginal distribution as the continuous-time Poisson process {Xi(t), t ≥ 0}
with Xi(0) = 0 at time t = 1. Poisson processes are indeed already subordinators
(Section B.3), so for this problem we take Sg ≡ S and the functions q and ρ are
simply the identity. We could alternatively attempt to generate such Poisson RVs
by CDF inversion using a gamma latent process, but this method is far cheaper,
as generating Poisson increments is computationally cheap (Devroye 1986).

The only immediately obvious alternative method uses IS (Section 2.5). Ac-
cordingly we devise an IS estimator. The question is how to choose the proposal
distribution Gτ . We choose a distribution based on scaling the rate of each Poisson
variate X1, · · · , Xd by a common factor τ with 0 < τ < 1 that goes to zero as κ
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goes to zero. Thus, under Gτ , each Xi is a Poisson RV with rate τλi,

Gτ [Xi = k] = (λiτ)k exp(−λiτ)
k!

, k = 0, 1, 2, . . . , d. (3.39)

Thus, the IS estimator is given by

ℓ̂IS = 1
n

n∑
i=1

I


d∑

j=1
wjXj(ωi) ≤ κ


d∏

j=1

exp (−λi(1− τ))
τXj(ωi)

, (3.40)

where for each replication, {Xj(ωi)}d
j=1 are sampled independently according to

(3.39). We choose the parameter τ such that the expected value of ∑d
i=1 wiXi

under (3.39) is equal to κ. It follows that τ is given by

τ = κ∑d
i=1 wiλi

. (3.41)

This IS estimator is, to the best of our knowledge, also novel.
We compare the results for the proposed quasi-monotone splitting method to

that of the CMC and IS estimators in Table 3.7. The rates and the weights we set
at λi = 1+(i−1)×0.2 and wi = i, i = 1, · · · , 12. The number of samples per level
is ñ = 3000. Variance is estimated over sample variance using R = 200 replicates.
We use n = 6 · 106 samples in the IS and the CMC algorithms. The CMC method
is, as expected, unsatisfactory for ℓ � 1. The quasi-monotone splitting and the
IS estimators perform better. The WNRV values reveal that the IS estimator is
slightly more efficient than the proposed quasi-monotone splitting estimator —
beating it by a factor of two when κ = 30. In this case we have devised both the
best (IS) and second-best (quasi-monotones splitting) estimators for this problem
at once. The quasi-monotone splitting estimator is still more general, however.
For example, if we need to calculate some quantity with respect to a more general
quasi-monotone functional than a weighted sum, quasi-monotone splitting requires
a trivial extension, but the IS method may be complex.

These problems are illustrative, but by no means exhaustive. Many other
classes of practical problems have quasi-monotone forms. Network reliability prob-
lems, (e.g. Gertsbakh and Shpungin 2016) and various network delay problems
such as those induced by stochastic Project Evaluation and Review Techniques
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Table 3.7: ℓ̂ for the sum of weighted Poisson RVs with
λi = 1 + (i− 1)× 0.2 and wi = i, i = 1, 2, · · · , 12.

CMC Quasi-monotone splitting Importance Sampling with n = 6 · 106

κ ℓ̂ re(ℓ̂)(%) ŴNRV(ℓ̂) ℓ̂ re(ℓ̂)(%) ŴNRV(ℓ̂) ℓ̂ re(ℓ̂)(%) ŴNRV(ℓ̂)

60 1.02 · 10−4 4.02 0.40 1.07 · 10−4 1.71 1.62 · 10−2 1.06 · 10−4 0.40 3.20 · 10−3

50 2.00 · 10−5 8.50 1.90 2.26 · 10−5 1.80 1.82 · 10−2 2.33 · 10−5 0.52 5.20 · 10−3

40 4.83 · 10−6 20.30 10.18 3.97 · 10−6 2.08 2.69 · 10−2 3.97 · 10−6 0.73 1.00 · 10−2

30 8.33 · 10−7 58.10 84.63 4.80 · 10−7 2.12 3.75 · 10−2 5.07 · 10−7 0.98 1.82 · 10−2

(e.g. Adlakha and Kulkarni 1989; Hagstrom 1990), i.e. PERT graphs, can be
put into quasi-monotone form. Indeed, many network reliability problems are
amenable to dynamic splitting, (Botev, L’Ecuyer, and Tuffin 2018; Botev et al.
2012) and these seem likely to be amenable to quasi-monotone splitting in partic-
ular. Various copula sampling problems (e.g. Embrechts, Lindskog, and McNeil
2003) can be reduced to quasi-monotone sampling problems, and indeed the gener-
alization from Example 3.1 to restricted classes of Gaussian copulas, for example,
is immediate. Many functionals are quasi-monotone with coordinate-wise posi-
tive vector arguments, e.g. Lp norms or more generally, weighted p-means, and
Kolmogorov f -means and monotone functions of such means. We return to some
particularly challenging problems based on these in Chapter 4. Quasi-monotone
splitting can treat all estimation problems whose importance function arises from
such functionals.

3.4 Asymptotics of quasi-monotone splitting
We take a moment to examine, through numerical simulation, the asymptotic be-
haviour of quasi-monotone splitting estimators. As mentioned in Section 2.3, in the
rare event setting we are concerned with two types of asymptotic behaviour, both
with regard to the rarity parameter as ε → 0 (LRE) and to the effort parameter
as η →∞ (ENRV/WNRV).

With regard to rarity asymptotics, we recall that the left quasi-monotone prob-
lems can employ ε ≡ κ as a rarity parameter, and correspondingly, ε ≡ 1/κ in the
right quasi-monotone case. We would like the estimator to attain LRE in the large
effort limit for idealized problems, but have no analytic results for the more general
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case. Rearranging the definition of logarithmic efficiency (2.19) for an estimator θ̂

we see that ultimately, as ε→ 0,

lnE
[
θ̂2

ε(η)
]
≈ 2 ln θε(η). (3.42)

We estimate this ratio by simulation. We use a quasi-monotone splitting estimator
of ℓ with fixed total effort η and tk = k/20 using 10% pilot effort and p̌ = 0.2,

estimating first and second moments empirically, across R = 200 replicates for each
distinct value of κ. We can fit a simple linear model to the resulting log Ê[ℓ2] ≈
β0 +β1 log ℓ̂, by ordinary least squares. Considering (3.42), the coefficient β̂1 serves
as an estimator for the true quantity of interest, limℓ→0

d(logE[ℓ2])
d(log ℓ) . In the case that

logarithmic efficiency is attained for an estimator and that the relationship between
these variables is indeed linear and hence our estimates unbiased, we should find
β1 ≈ limℓ→0

d(logE[ℓ2])
d(log ℓ) = 2. In practice, none of these criteria are fulfilled, and

this approximation has unknown error. For comparison, we repeat the whole for
two values of effort parameters η = 105 and η = 103. Holding effort fixed, we
run the quasi-monotone splitting estimator ℓ̂κ while varying κ so that ℓ → 0. We
repeat this procedure over 200 replications to estimate estimator distributions.
In Figure 4.11 we plot these values for a variety of κ values for a representative
partial-sum-of-order-statistics problem at two levels of effort. A line of best fit
through the empirical estimates shows a gradient of β̂1 = 1.997 when η = 105, and
β̂1 = 1.902 when η = 103, which is compatible with logarithmic efficiency in the
rarity parameter.

Turning to large-effort asymptotics, we consider the effort-normalized relative
variance, which we estimate empirically. For these simulations we fix all parame-
ters apart from effort, and choose κ values for each problem such that the target
event probabilities are comparable, with ℓ ≈ 5 · 10−15. We recall that under our
assumptions, the ENRV and WNRV are eventually constant for a given model and
set of parameters. We estimate WNRV over the replicates, calculating confidence
intervals by bootstrap resampling. Numerical simulations plotted in Figure 3.6
show some signs of this statistic converging to constant WNRV although this is
not particularly fast or clear-cut, and the confidence interval for this statistic is
wide.
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Figure 3.5: Small-probability-asymptotic behaviour in
quasi-monotone splitting, for the partial sum of log-normal order
statistics, with D = 8, d = 4, µ = 0, σ = 2. over R = 200 replications.
Error bars denote bootstrap 95% uncertainty intervals over 1000
replications.
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Figure 3.6: Large sample WNRV of quasi-monotone splitting, over
R = 100 replications, for the partial sum of log-normal order
statistics, with D = 8, d = 4, µ = 0, σ = 2. Error bars shows 95%
confidence interval over 1000 bootstrap replicates. Dotted line denotes
inverse-variance-weighted sample mean.
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3.5 A quasi-monotone rare-event conditional
problem

We have asserted that a useful facility of quasi-monotone splitting is not just the
tail-truncated probability estimation that all the examples in the chapter have used
so far but also the estimation of rare-event conditional estimands. We demonstrate
this by numerically estimating the (right-tailed) conditional excess (2.4) of the sum
over independent variables Xk, k = 1, . . . , d,

θ(κ) = E
[

d∑
k=1

Xk |
d∑

k=1
Xk > κ

]
. (3.43)

This is trivially a right-tailed quasi-monotone problem. It is a special case of, for
example, the sum-of-random-variates model of Subsection 3.3.1. The target event
here is Lκ

def= {∑d
k=1 Xk > κ} i.e., S(x) def= ∑d

k=1 xk. We take the components to
be independent log-normal variates. This problem in particular is of great interest
in finance, for example in the pricing of arithmetic Asian options (e.g. Kemna
and Vorst 1990). See also specialized approaches in, e.g. Botev, Salomone, and
Mackinlay (2019).

A classic alternative method for this problem is the basic Gibbs sampler, which
can also sample generically from this target set. A Gibbs sampler for such a right-
tailed sum problem is straightforward. We can use the univariate conditional CDF
(2.39),

F(k)(x) = P[Xk > x | X1, . . . , Xk−1, Xk+1, . . . ] (3.44)
= P[Xk > x | Xk > (κ−

∑
j 6=k

Xj)]. (3.45)

That is, the conditional CDF F(k) is the distribution of Xk ∼ Fk truncated to
the range ((κ−∑j 6=k Xj),∞). For general random variates we may simulate such
truncated random variates using quantile transforms. In this particular case, the
log-normal distribution, we simulate variates as transforms of truncated normal
variates. Simulating truncated normal variates is subject to various difficulties
(Botev and L’Ecuyer 2017; Robert 1995). We use the rejection sampling method
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of Robert (1995) to simulate rare tail events with high accuracy.
When comparing the quasi-monotone splitting and random-sweep Gibbs sam-

pling estimators for such a problem, we suspect the influence of the dimension d

may be significant. Since the Gibbs sampling, unlike quasi-monotone splitting, up-
dates dimensions separately, we might expect dimensionality to affect the methods
differently. Accordingly we construct a series of problems of increasing dimension
where for each dimension k the coordinate Xk is distributed

Xk ∼ LogNormal(1, k). (3.46)

To keep the target events comparably rare across different dimensions we select

κ = 50
d∑

k=1
E[Xk] (3.47)

= 50
d∑

k=1
exp(1 + k2). (3.48)

With this, we are able to perform numerical simulations of the relative performance
of these estimators. Estimated corresponding θ̂ values are given in Table 3.8.
Estimates are constructed via quasi-monotone splitting with ηpilot = 105, ηmain =
108 with R = 100 replications. The Gibbs sampler is run until it generates n = 107

total samples. Initial values are chosen to be xk = (2κ + 1)/d, k = 1, . . . , d.

Estimator variance in the Gibbs sampler is estimated by blocked means, dividing
the chain into 100 blocks of size 105. 4 As the sampling methods here are not at
all similar, we rely on WNRV to estimate an effort-parametrization-independent
measure of efficiency.

Our simulations here show the splitting method is comparable to the Gibbs
sampler, outperforming Gibbs sampling for 1 < d ≤ 4 by this estimated WNRV
metric. Unlike the Gibbs sampler estimator, the splitting estimator has simulta-
neously recovered an estimate ℓ̂ = P[Lκ], which is not in general possible for a
Gibbs sampler.5

4As an implementation detail, he pilot run for these quasi-monotone simulations is generated
using the non-adaptive method of Chapter 4, i.e., with fixed pilot splitting times t′

k = k/10.
5Although, one can also extract an estimate of ℓ from a Gibbs sampler under certain additional

restrictions upon S; see Gudmundsson and Hult (2014).
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Table 3.8: Estimator comparison for θ̂, the conditional excess, for
the example problems.

Gibbs Splitting

d κ θ̂ r̂e(θ̂) (%) ŴNRV(θ̂) θ̂ r̂e(θ̂) (%) ŴNRV(θ̂)
1 224 282 0.0272 2.66 · 10−6 282 0.268 1.42 · 10−5

2 1.23 · 103 2.61 · 103 0.209 0.00016 2.6 · 103 0.556 6.62 · 10−5

3 1.35 · 104 6.16 · 104 1.7 0.00903 6.01 · 104 2.59 0.00151
4 4.19 · 105 4.62 · 106 6.85 0.149 4.82 · 106 20.3 0.0913
5 3.69 · 107 1.13 · 109 9.31 0.255 1.24 · 109 59.9 0.812

3.6 Conclusion
In this chapter, we have proposed a dynamic quasi-monotone splitting estimator
which can efficiently solve a broad class of time-independent problems of industrial
interest. The method embeds a time-independent problem within a continuous-
time Markov process so that the target distribution corresponds to the marginal
distribution of the Markov process time t = 1. Estimates of functionals over this
distribution may then be found with a simple dynamic splitting estimator with
easy, and largely automatic, implementation. The resulting class of algorithms
is broadly applicable. It is not necessarily competitively efficient with particular
custom-designed Monte Carlo estimators for special-case problems. However, it
can be applied to problems without known specific Monte Carlo estimators, re-
quires only minimal and simple calculations, and is sometimes state-of-the-art in
efficiency. Several problems of importance in wireless reliability engineering, for
example, may be handled as quasi-monotone problems. We have left untouched
certain questions about how close these methods are to optimality, and what a
principled time selection method would look like. This question, we return to in
the next chapter.



Chapter 4

Improving pilot run time selection

We return to the question of choosing splitting times for quasi-monotone prob-
lems, and develop improved estimators of those splitting times. We numerically
investigate the importance of selecting time-steps well. We refine the method for
time selection developed in Section 3.2 using the tools of extreme value theory in
Section 4.1, and of survival analysis in Section 4.2. In Section 4.3 we perform
numerical comparisons against the baseline and derive recommendations for choice
of method.

We have asserted in previous chapters that splitting levels can affect the effi-
ciency of quasi-monotone splitting. Here we refine the efficacy of our method for
choosing the splitting levels by providing new alternatives, and quantifying the
precision of each. To reprise, in Section 3.2 we developed a simple algorithm that
attempts to enforce a constant conditional survival probability between levels with
a value close to an target p̌, which, on the basis of certain idealization arguments,
should lead to the smallest variance estimator. This is equivalent to selecting split-
ting times t(m), m = 1, . . . , M so that P[Sg(G(tm)) ≤ κ | Sg(G(tm−1)) ≤ κ] = p̌.

We can attain this using the lifetime distribution T ∼ T of the random variate
T = inf{t : Sg(G(t)) > κ}. More precisely, we need to estimate the inverse CCDF
T̄ −1. T optimal times are given by (3.29) as tm = T̄ −1(p̌m). With this in mind we
attempt to estimate the survival distribution T to find these times.

Throughout this chapter we use a set of contrived problems as test cases for the
efficacy of our method. These problems provide examples of different estimator
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behaviour, in particular with regard to optimal splitting times. Each is a left
quasi-monotone problem with the usual target set, Lκ

def= {S(X ) ≤ κ}.

Example 4.1 (LNSum(κ)). LNSum is a left quasi-monotone estimation prob-
lem concerning a vector of independent log-normal random variables, where Xi ∼
LogNormal(1, i). The importance function is given by a simple sum over the com-
ponents, S(X ) = ∑5

i=1 Xi.

Example 4.2 (PPNorm(κ)). PPNorm is a left quasi-monotone problem con-
cerning a vector whose components are independently distributed as generalized
Pareto random variates, Xi ∼ GPD((7 + i)/2, 2), i = 1, . . . , 7. The importance
function is the p-norm of the vector S(X ) = ‖Xi‖100.

Example 4.3 (PPMetric(κ)). Here we use the same random vector as PP-
Norm but in PPMetric(κ), the importance function now uses a different p-
norm (or more properly, metric, as it is no longer a true norm) with p = 1/10. It
is otherwise identical, i.e. S(X ) = ‖Xi‖1/10.

Where we do not assume a particular value for κ, we suppress it and simply
refer to, for example, PPNorm. All three example problems have intractable tail
distributions, in the sense of having no apparent analytic form for tail probabilities
ℓ̂ = P[Lκ]. They all have a simple quasi-monotone form. We take, for each of these,
{G(t)}t ∼ GammaProc(1, 1)×d, and Sg

def= S ◦ qinc.
We use a small set of comparable κ values for each of these problems. Estimated

corresponding ℓ̂ values are given in Table 4.1.
By way of illustration we plot the CCDF T̄ of the lifetime distributions of

the quasi-monotone splitting samples for each of these problems in Figure 4.1.
These curves are estimated using the method of Section 4.2, to be introduced
momentarily, with a large effort parameter so as to reduce error. Note that between
problems and also between κ values, the associated CCDFS have different shapes
and thus different ideal splitting times in our quasi-monotone splitting design.

In this chapter, as in Section 3.2, we use a pilot run to estimate T̄ . Here we
modify the structure of the pilot run; rather than the ad hoc adaptive method of
Algorithm 3.2 we use a pilot run which is identical to the usual fixed effort quasi-
monotone splitting method of Algorithm 3.1. We choose equally-spaced initial
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Table 4.1: ℓ̂ for the example problems, t′
k = k/64, ñ = 223. Relative

error estimate uses sample variance from R = 16 replications.

model κ ℓ̂ r̂e(ℓ̂)
LNSum 0.02 4.73 · 10−15 0.0852

PPNorm 0.1 7.96 · 10−15 0.0669
PPMetric 2 · 107 5.33 · 10−15 0.354

LNSum 0.2 1.4 · 10−7 0.0332
PPNorm 1 1.52 · 10−7 0.0431

PPMetric 2 · 108 7.09 · 10−8 0.168
LNSum 2 0.00317 0.0258

PPNorm 10 0.00614 0.0223
PPMetric 2 · 109 0.00871 0.0291

0.00 0.25 0.50 0.75 1.00
t
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Figure 4.1: Estimated CCDFs for example problems, calculated by
the survival method with ñ = 223, t′

k = k/64.
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times t′
k = k/K, i = 1 . . . , K and per-level effort ñ′. The virtue of this approach

is that we have a more transparent effort parameterization ηpilot = ñ′K which
explicitly upper bounds the number of random simulations. In the ad hoc adap-
tive method the run time arises from an opaque combination of search parameters
and the problem. Performing like-for-like comparisons across estimators in a pre-
dictable manner is difficult in such a setting. We prefer to side-step this problem
by altering the setup. In the main run we assign a per-level effort budget of ñ

at M times, and likewise an associated effort of ηmain = ñM. Where we have a
compound splitting estimator comprising a pilot run with per-level effort ñ′ and
K levels, which contributes ηpilot = ñ′K realizations, the total effort is upper
bounded by η = ηmain + ηpilot = ñM + ñ′K. Assuming that the expected cost of
simulating the latent processes remains close to constant on average across dif-
ferent parameter ranges, which we observe in practice, this gives us a reasonable
effort parameter with which to compare different quasi-monotone splitting estima-
tors. Accordingly we favour effort-normalized measures like ENRV over WNRV to
compare estimator parameters within a given model.

We have discussed ηpilot and ηmain as effort parameters which suggests that
the execution time is deterministic. This is not strictly true, because it ignores
the possibility of early extinction. Strictly, these effort parameters upper bound
the total number of, respectively, pilot run and main run random variate realiza-
tions. The splitting method may terminate early if the population undergoes an
extinction, i.e., when no particles remain in L(m) at step m < M . If this occurs
in either the pilot or main run, the total number of random variate realizations
is smaller than η. Since we expect premature extinctions to be rare in a splitting
algorithm specifically design to make the conditional survival probability large, we
use the approximation that the variation in effort due to premature extinctions
does not affect the linear computational scaling in this parameter. Where effort is
low, however, this approximation may be poor. In the pilot run in particular, the
number of particles is low and the chance of premature extinction may be high.
There is an additional complication with extinction in the pilot run, which is that
since ℓ̂(m) = 0 for some m < M , they lead to a non-invertible estimate ˆ̄T and
hence undefined splitting times. To address this possibility we give, for each of
the splitting time estimators, a reasonable smoothing which returns an invertible
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ˆ̄T even in the case of extinction. This choice of a non-adaptive pilot run in combi-
nation with small pilot effort increases the overall error — where the non-adaptive
pilot run suffers premature extinction, the estimated splitting times are far from
optimal. By contrast, in the adaptive method such an outcome is disallowed, and
extinctions lead instead to a random increase in pilot effort as new pilot times are
added. Our choice here to set aside adaptive pilot times, has exaggerated perfor-
mance differences between methods, although it should not change the ranking of
the methods. All methods here can be directly converted to an adaptive version in
a situation where we do not need to maintain such a strict effort parameterization
for the sake of comparison.

In the previous chapter we constructed estimates T̄ (tk) = ℓ(k) as a side-effect
in Algorithm 3.1 (Line 16) using initial counts at the start of each time in-
terval, ñ′(0), . . . , ñ′(K−1) and pruned survival counts at the end of each interval,
n′(1), . . . , n′(K). In this sequel we once again use the same basic setup, changing
the methods to construct the estimated ˆ̄T . We regard the recorded counts as real-
izations of random variables, n′(k) ∼ N ′(k) which count survival of random paths of
the splitting method, and fit statistical models to these. We present two alterna-
tive estimation methods, based upon extreme value theory and survival analysis.
These two alternatives constitute the chief point of difference between the previous
approach and our earlier approach. As before, all the estimators of ˆ̄T employ the
approximation used in our idealization arguments, that the data from our pilot
simulation represents independent observations drawn from the target distribu-
tion. Specifically, we assume that each of our particle lifetimes are drawn from
T ∼ T and that the observations ξ(tm) ∈ G(m), m = 1, 2, . . . , M ′ are mutually
independent, which is not in general true.

A point of difference between this chapter and the previous is that we modify
the spacing of estimating splitting times in the main run. In the prior version
(3.30) we chose

M = dlog ˆ̃ℓ/ log p̌e. (4.1)

then back-substituted into (3.29) to find the target splitting times. However, this
ignores that for a given target probability ℓ = [L] only certain values of p̌ are
feasible as a step size — specifically, those such that p̌M = ℓ for some M ∈ N.
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Previously we solved this problem by tolerating a different conditional probability
for the final step of p(M) < p̌. An alternative method adjusts p̌ to a feasible value,
given the preliminary estimate of ℓ̂ and the corresponding M, by setting

p̌∗ =
M
√

ℓ̂′. (4.2)

We refer to this as squeezing p̌. In the case that we have a noiseless estimate of
the CCDF this perturbs us away from the target p̌ splitting probability but leads
to more uniform splitting probabilities. Empirically, this change makes negligible
difference to estimator variance in any of the problems considered here, but we
will need to be precise about this matter when considering the estimation of con-
ditional survival probabilities, later. Throughout this chapter we squeeze splitting
estimators except where otherwise stated.

4.1 Extreme value method
Extreme Value Theory (EVT) studies the right tails of univariate distributions,
furnishing us with limiting distributions of the tail of various sequences of random
variables (McNeil, Frey, and Embrechts 2005) in particular those arising from
heavy-tailed random variable. EVT results tell us that many distributions are
“similar” in the sense that their right tail distribution over sum threshold eventu-
ally approaches a member of the Generalized Pareto Distribution (GPD) family
as the threshold increases.This motivates a simple parametric model for optimal
splitting times in which we assume that its dynamics are well modelled by some
GPD. In the extreme rarity regime where the estimation task is at its most chal-
lenging, this provides a low-complexity parametric approximation for the CCDF
for the lifetime distribution T which we estimate to understand tail behaviour
(McNeil 1997). We introduce background to this method here.

Definition 4.1 (Excess distribution over threshold u). Let T be an rv with law
T. The excess distribution over the threshold u has law

Tu(t) = P[T − u ≤ t | T > u] = T (t + u)− T (u)
1− T (u)

(4.3)
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for 0 ≤ t < tT − u, where tT ≤ ∞ is the right endpoint of T.

Parenthetically, we note that this is equal to the definition of the conditional
excess over threshold in (2.4) up to a translation by u, although that parallel is
not exploited here.

Definition 4.2 (Generalized Pareto distribution). For ν, β > 0, µ ∈ R the CDF
of a Generalized Pareto distribution (GPD) is given by

Gν,β,µ(t) =

 1− (1 + ν(t− µ)/β)−1/ν if ν 6= 0
1− exp(−(t− µ)/β) if ν = 0.

(4.4)

The support of this distribution is

T ∼ Gν,β,µ ⇒

supp(T ) = ({t ≥ µ} ∩ {ν ≥ 0}) (4.5)
∪ ({µ ≤ t ≤ µ− β/ν} ∩ {ν < 0}) . (4.6)

In numerical estimation the case ν arises with probability 0 (and in any case
may be recovered as a limit as ν → 0) so we hereafter suppress this possibility
(4.4), abbreviating

Gν,β,µ(t) = 1− (1 + ν(t− µ)/β)−1/ν . (4.7)

The main result of use to our ends from EVT is the Pickands-Balkema-de Haan
theorem (Balkema and de Haan 1974; Pickands III 1975).

Theorem 4.1 (Pickands-Balkema-de Haan). We can find a function β(u) such
that

lim
u→tT

sup
0≤t<tT −u

∣∣∣Tu(t)−Gν,β(u),0(t)
∣∣∣ = 0

if (and only if) T is in the maximal domain of attraction of the extreme value
distribution with parameter ν for some ν ∈ R.

This maximal domain of attraction was introduced in the Fisher-Tippett the-
orem (Fisher and Tippett 1928), and is well-analysed in the EVT literature (e.g.
Embrechts, Kluppelberg, and Mikosch 1997). For the current purposes it is suffi-
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cient to note that it contains most distributions in use in statistics. We assume in
particular that all T arising in our quasi-monotone splitting problems are in this
domain.

This motivates the modelling of the tail with a GPD. For a first attempt at
this method we will in fact model not just the tail but the entire survival time
distribution by a GPD, T ∼ Gν,β,µ(t) def= 1−

(
1 + ν(t−µ)

β

)−1/ν
. Then for t > s ≥ 0

and assuming that Gν,β,µ(s) > 0, the survival probability over an interval (s, t] is

ps,t,ν,β,µ
def= P[T ≥ t | T > s] (4.8)

= P[T ≥ t ∩ T > s]
P[T > s]

(4.9)

= P[T ≥ t]
P[T > s]

(4.10)

= Ḡν,β,µ(t)
Ḡν,β,µ(s)

(4.11)

=

(
1 + ν(t−µ)

β

)−1/ν

(
1 + ν(s−µ)

β

)−1/ν
(4.12)

=
(

β + ν(s− µ)
β + ν(t− µ)

)1/ν

. (4.13)

Under this assumption, the observations are once again binomially-distributed
survival counts over the increments of our pilot run as in Subsection 2.6.4, but now
the binomial probability parameter has a parametric form arising from the GPD.
Explicitly, in the kth step, the likelihood of each observation interval (t′

k, t′
k+1] is

given by the binomial probability mass function for N ′(k) survivals from a trial of
size Ñ ′(k−1). Thus the likelihood of any given interval is

L(m; ν, β, µ) = P[N ′(k) = n′(k) | Ñ ′(k) = ñ′(k−1); ν, β, µ] (4.14)

=
(

ñ′(k−1)

n′(k)

)
pn′(k)

t′
k−1,t′

k
,ν,β,µp̄ñ′(k−1)−n′(k)

t′
k−1,t′

k
,ν,β,µ (4.15)

=
(

ñ′(k−1)

n′(k)

)
pn′(k)

k p̄n̄′(k)

k . (4.16)
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For compactness we have introduced n̄′(k) def= ñ′(k−1) − n′(k) and pk
def= pn′(k)

t′
k−1,t′

k
,ν,β,µ.

Under the usual idealization assumptions the observations are independent so the
the joint likelihood is approximated

L(D; ν, β, µ) = P[ñ′(0), . . . , ñ′(K−1), n′(1), . . . , n′(K); ν, β, µ] (4.17)

≈
K∏

k=1
P[N ′(k) = n′(k) | Ñ ′(k−1) = ñ′(k−1); ν, β, µ]. (4.18)

D here denotes the observed simulation output, D def= {Ñ (k−1), N (k), k = 1, . . . , K}.
The method of maximum likelihood estimates the parameters as

(ν̂, β, µ) = argmax
ν,β,µ

log L(D; ν, β, µ). (4.19)

where

log L(D; ν, β, µ) =
K∑

k=1

(
log

(
ñ′(k−1)

n′(k)

)
+ n(k) log pk + n̄(k) log p̄k

)
. (4.20)

This formula has no apparent explicit form for the maximiser. We solve it numer-
ically using automatic second-order gradient-based optimization (Mogensen and
Riseth 2018; Mogensen et al. 2020) with forward-mode automatic differentiation
(Griewank and Walther 2008; Rall 1981; Revels, Lubin, and Papamarkou 2016) to
find gradients efficiently.

This model entails strong assumptions which we do not suppose our models
meet in general. A GPD fit is in typical applications only considered for excess
distribution (Definition 4.1), T−u | T ≥ u, and a more complete fitting procedure
would in addition estimate the threshold u which gives us the value beyond which
the asymptotic approximation to a GPD-distribution is close enough to be useful.
For values of T < u, the “body” of the distribution, we have no reason to expect
good performance fitting to the GPD model. In lifetime estimation problems we
would typically prefer another model for the body of the life distribution, con-
structing the final estimator as a mixture of the extreme-value tail model and that
other body model. The other estimator introduced in this chapter, Section 4.2, for
example, would fit this purpose. For the instrumental goal of selecting splitting
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times from a pilot run well enough for the main run, we avoid such elaborate pro-
cedures. Various case studies in methods of that kind are available in Embrechts,
Kluppelberg, and Mikosch (1997), Markovitch and Krieger (2002), and McNeil
(1997) and references therein.

As a heuristic means of fitting GPD robustly despite possible ill fit in some
parts of the survival curve, we use a simple, weighted maximum likelihood pro-
cedure. Weighted maximum likelihood estimates (Hu and Zidek 2002; Wang
2001) minimise the influence of a bad fit for some observations by assigning a
low weight to those. In our case, this means updating (4.20) with weight function
w : {1, 2, . . . , K} → [0,∞),

(ν̂, β, µ)w
def=

K∑
k=1

w(m) log L(m; ν, β, µ). (4.21)

We use ad hoc weights, simply setting w(m) def= t′
m so that the tail values are

more important in the overall fit. More complicated schemes are possible, e.g.,
iteratively reweighting likelihoods; see, for example, Green (1984), Holland and
Welsch (1977), and Street, Carroll, and Ruppert (1988).

GPD models have well-known estimation challenges. Different methods are
required to attain convergence for different regions of parameter space and the
maximum likelihood estimator may even fail to exist for some parameter values
(Grimshaw 1993; Hosking and Wallis 1987; Hüsler, Li, and Raschke 2011; McNeil
1997). Standard regularity requirements for maximum likelihood estimation are
not satisfied: the support of this distribution depends upon its parameters (4.6).
We impose restrictions upon parameter ranges which obviate this problem.

Since we know by construction the support of T includes 0, allowing µ 6= 0 is
suspect. We fix µ ≡ 0. We could lift this restriction if we used a mixture model,
as mentioned earlier, wherein the GPD was fit only to the tail. We also exclude
negative ν values. ν < 0 implies that T has light tails, and in particular, has
bounded support, which we know is false in the quasi-monotone problem for all
latent processes without positive drift for which the support is unbounded (3.26).
We thus set ν > 0. Over this parameter range, the maximum likelihood estimates
are known to be asymptotically normal and asymptotically efficient (Grimshaw
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1993; Smith 1985). Under these assumptions, (4.13) simplifies to

ps,t,ν,β =
(

β + νt

β + νs

)−1/ν

. (4.22)

In pilot runs, the population of particles may go extinct with non-zero proba-
bility. In such cases, the maximum likelihood estimate is necessarily ν < 0, which
we have excluded a priori. We solve this problem by an ad hoc procedure, reg-
ularising the likelihood using Laplace smoothing of the binomial survival counts.
That is, we replace our actual observations D with a Laplace smoothed version,
Dsmoothed. In Dsmoothed we update the survival counts as ñ′(k)

smoothed = ñ′(k) + 2
and n′(k)

smoothed = n′(k) + 1. This method leads to well-defined, if additionally bi-
ased, splitting time estimates, even where the splitting method suffers premature
extinction.

Plugging estimated parameters based on smoothed data and reweighted likeli-
hoods in into (4.7) we estimate the lifetime distribution as T̂ = Ĝ

def= G
ν̂,β,0. We

read off the desired splitting times as per (3.29). This yields

log ˆ̄G(tm) = m log p̌ (4.23)
log(1 + ν̂(tm)/β̂) = −ν̂m log p̌ (4.24)

1 + ν̂(tm)/β̂ = exp(−ν̂m log p̌) (4.25)

tm = β̂

ν̂
(exp(−ν̂m log p̌)− 1) (4.26)

for m = 1, 2, . . . , M. Comparative results using this method are presented in Sec-
tion 4.3.

4.2 Splitting times via survival analysis
We revisit the method of Section 3.2, where we used linear interpolation to con-
struct our T̄ estimate. We introduce here the tools of survival analysis via hazard
functions which provide a theoretical motivation for a superior estimator of split-
ting times. These motivate using linear interpolation over the log-domain CCDF,
in order to improve the performance of the splitting time estimator with respect
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to the linear CCDF estimate.
Survival function theory provides a methodology for estimating the survival

function T̄ (t) def= P[T > t] of a non-negative scalar random variable T ∼ T. This
survival function we can recognise as precisely the CCDF of the lifetime distribu-
tion, T̄ . As the quasi-monotone splitting method is by construction a method of
estimating densities in terms of the lifetimes of simulated particles, this approach
arises naturally.

We define some useful quantities.

Definition 4.3 (Hazard function). The hazard function is given

h(t) def= dT (t)
dt

1
T̄ (t)

. (4.27)

This function is by inspection, non-negative, and gives the infinitesimal proba-
bility of a death at time t conditional upon it not having occurred so far. A death
in this context for a latent particle is defined as that particle leaving the target
event L. The hazard function, aside from the constraint that it be non-negative,
may be an arbitrary function which makes it a natural candidate for nonparamet-
ric estimation. Given a population of particles started at time 0 with lifespans
distributed as T, we think of h as the conditional intensity of death at time t given
that it has not yet occurred.

Definition 4.4 (Cumulative hazard function). The cumulative hazard function
H is given

H(t) def=
∫ t

0
h(s)ds. (4.28)

Over intervals of time [t, u] we use the cumulative hazard increment

H(t, u) def=
∫ u

t
h(s)ds = H(u)−H(t) (4.29)

and the survival ratio
T̄ (t, u) def= T̄ (u)

T̄ (t)
. (4.30)
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We use some additional relations which follow as immediate consequences of these:

T̄ (t) = exp[−H(t)] = j(t)
h(t)

. (4.31)

T̄ (t, u) = exp[−H(u)]
exp[−H(t)]

= exp[−H(t, u)]. (4.32)

In terms of the cumulative hazard function, the desired splitting times of equa-
tion (3.29) become, by the substitution of (4.32),

−H(tm) = m log p̌ (4.33)
⇒ tm = Ĥ−1(−m log(p̌)). (4.34)

Up to a sign change and a logarithm this is the CCDF. This small change, the
switching to log-CCDF estimation, turns out to be important, as the estimation
theory for the hazard function is better-behaved than that for linear CCDF in-
terpolation. These two representations of the CCDF are depicted depicted in
Figure 4.2b.

The major result of survival theory of use to us is unbiased estimators for some
of these quantities. In particular, we may estimate cumulative hazard increments
via the life table method (e.g. Aalen, Borgan, and Gjessing 2008). Suppose we have
a population of particles, and the life span of the ith member of the population is
given independently as Ti ∼ T . Let the random process {N(t)}t count the number
of surviving particles at each instant N(t) = ∑

i Ti > t. The life table estimate of
a survival ratio is unbiased and is given

ˆ̄T (t0, t1) = N(t1)
N(t0)

. (4.35)

We use this to estimate
ˆ̄T (tk−a, tk) = n(tk)

ñ(tk−1)
. (4.36)

Unbiased estimates of the survival function increments do not translate au-
tomatically to good estimates of the quantiles. The relationship between CCDF
estimators and the quantile estimators that optimal splitting times is complicated



90 Chapter 4. Improving pilot run time selection

(a) In CCDF representation

(b) In hazard function representation

Figure 4.2: Stylized depiction of method of time selection using
hazard function interpolation, using the same data as Figure 3.4.
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and depends upon the family of distributions in question (Makarov 2006). On
the other hand, the linear CCDF method we used in Section 3.2 has even weaker
guarantees, so we hope for some empirical improvement.

With these survival analysis tools in hand, we return to the problem of split-
ting time estimation. A simple estimate of splitting times arises from the hazard
function and thence the CCDF. This uses the hazard increment estimates from
the pilot simulation to construct a hazard interpolation. Suppose we observe pop-
ulation survival statistics over the time interval (t′

k, t′
k+1], as in a single step of a

splitting simulation. Plugging (4.35) in to (4.34), we obtain cumulative hazard
increment estimates over k = 0, 1, . . . , K − 1 for pairs

Ĥ(t′
k, t′

k+1) = − log ˆ̄T (t′
k, t′

k+1) (4.37)

= log ñ′(t′
k)

n′(t′
k+1)

. (4.38)

The introduction of additional assumptions allows us to estimate an entire cumu-
lative hazard function. We take h : R→ R to be piecewise constant

ĥ(t) =
∑

k

I{t′
k−1 < t ≤ t′

k}ĥk. (4.39)

for
ĥk =

Ĥ(t′
k−1, t′

k)
t′
k − t′

k−1
. (4.40)

From this we construct estimates Ĥ of the whole function H by integration, as
per equation (4.28),

Ĥ(t) =
∫ t

0
ĥ(s)ds. (4.41)

The resulting estimator is a linear interpolant with knots at times 0, t′
1, t′

2, . . . , t′
K .

Plugging Ĥ in to (4.34) we obtain a survival function estimate,

ˆ̄T (t) = exp(−Ĥ(t)). (4.42)

As in Section 4.1 we choose splitting level estimates to satisfy (3.30) and (3.29),
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which in terms of a hazard function gives

t̂m = Ĥ−1(− log(p̌m)), m = 1, . . . , M. (4.43)

Solving for tm in (4.34) requires us to invert Ĥ. Note that if 0 < n(t′
k) < ñ(t′

k−1)
for all m, then Ĥ is strictly continuous, strictly increasing and hence invertible.
Further, the inverse of a piecewise linear function is still piecewise linear, and we
can directly calculate Ĥ−1 by linear interpolation once again, with knots Ĥ(0) =
0, Ĥ(t1), Ĥ(t2) . . . , Ĥ(tM) and corresponding values 0, t1, t2, . . . , tM .

As in Section 4.1 we face a problem with regularity of the pilot run estimate;
if n′(k) = 0 for any k then the hazard function is non-invertible and the splitting
times become ill-defined. Once again we avoid this circumstance using Laplace
regularization of the Binomial counts, modifying the counts to be inflated pseudo-
counts ñ′(k)

smoothed = ñ′(k) + 2 and n′(k)
smoothed = n′(k) + 1 as before. With this change

we are able to provide meaningful estimates of the splitting times even for pilot
runs suffering from extinction by linear extrapolation from the existing data.

4.3 Estimators in numerical comparison
We have various free parameters in in our splitting algorithm, including effort al-
location, choice of splitting method and target survival probability. In this section
we compare the effects of each of these by numerical study.

4.3.1 Effect of target survival probability p̌ on accuracy

Recalling that the optimal choice of target survival probability p̌ in Subsection 2.6.4
hinges upon various approximations and assumptions that do not hold in practice,
we examine the sensitivity of the method to this parameter numerically. For each
set of model parameters we share a single pilot estimate across all simulations.
We use a large pilot effort budget ηpilot = 32 · 105 with pilot times t′

m = m/32,

and use the survival method Figure 4.1 to estimate ˆ̄T with high precision. We use
the same high precision ˆ̄T estimate for given model parameters across all replica-
tions. Choosing a fixed target p̌, we estimate t1, . . . , tM from the high precision
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ˆ̄T. The resulting estimates should be close to p(m) ≈ p̌, m = 1, . . . , M. In the
main simulation we use a smaller simulation budget of ηmain = 103. The resulting
estimator should have low error in splitting times, and thus we hope variance in
overall accuracy will be dominated by variance arising from the effect of our choice
of p̌.

We do observe diverse responses to this parameter in the example problems.
Results for all feasible values 0.01 ≤ p̌ ≤ 0.97 that differ by at least 0.005 are
shown in Figure 4.3. We observe that the relatively good values lie in the range
p̌ ∈ [0.1, 0.3] for all problems. It is not clear that there exists a consistent optimal
value of p̌ across models, or across κ values within a model, although values around
p̌ = 0.2 do reasonably well in all problems. This numerical result motivates a choice
of p̌ = 0.2 throughout this chapter.

4.3.2 Effect of time selection method

Here we compare the two new time selection methods introduced in this chap-
ter against the baseline, used in Section 3.2 and published in Ben Rached et al.
(2020), which used linear CCDF interpolation. In order to make the comparison
meaningful, we introduce a modification to the baseline linear CCDF method, to
fit it within the same bounded-effort framework as the other two estimators. Since
we stipulated bounded total pilot effort we must use a scheme which produces
meaningful estimates even where the pilot run suffers premature extinction. We
choose a simple ad hoc scheme which is that, if at time t′

k < 1 the pilot run suf-
fers an extinction (i.e., n′(k) = 0) and the run terminates, then we retrospectively
update t′

k ← 1.01. This ensures a strictly monotone and thus invertible CCDF
on [0, 1], and thence meaningful, if not ideal, time selection. We would expect
this construction to be particularly disadvantageous to the linear CCDF method
where the sample size is small enough that the extinction probability becomes
non-significant.

In the Section 3.2 we assumed that it would be reasonable to set ηpilot to be
“negligible.” In practice, in a constrained effort context where it is hard to know
what effort is truly negligible. If we have a constrained total effort budget η

then effort committed to the pilot run comes at the cost of removing it from the
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(a) Small probability target event

(b) Moderate probability target event

(c) Large probability target event

Figure 4.3: Relative error with various values for target survival
probabilities p̌; pilot times t′

m = m/30, pilot effort ηpilot = 32 · 105,
main effort ηmain = 103, R = 8000 replicates. Bars denote 95%
confidence interval over 1000 bootstrap samples.
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main run. As we expect variance to decay approximately as Var(ℓ̂(κ, ηmain)) ∝
1/ηmain the effort removed from the main run can make a material difference to
the precision of an estimate — if we were to hold the splitting times constant but
simply decrease the effort from ηpilot to η − ηpilot, we would expect the relative
error of the estimator to grow approximately as

re(ℓ̂(κ, η − ηpilot))
re(ℓ̂(κ, η))

≈
√

η

η − ηpilot
. (4.44)

This represents an approximate ‘cost’ that the pilot run must repay in efficiency
of the main run. The trade-off of this effort allocation is not clear. The less effort
that is available to the pilot run, the less precise are the estimates of splitting time
and thus ultimately the overall estimator quality.

We investigate this trade-off via simulation in the case where total effort is
constrained. For fixed total splitting effort budget η we dedicate various propor-
tions of simulation effort to pilot analysis, ηpilot/η. To this end, we set the pilot
times t′

k = k/10, k = 1, . . . , 10, and pilot per-step population ñ′ = dηpilote. Where
ηpilot/η = 0 we take the pilot times to be the main splitting times. There is a
choice of parameter K choosing the number of pilot splitting times.

In this setting we are able to perform like-for-like comparison across all the
estimators. Figure 4.4 and Figure 4.5 compare performance for the various time
selection methods across two different rarity regimes in terms of estimated rela-
tive error. In each comparison in this chapter, the GPD method denotes that of
Section 4.1, Survival denotes that of Section 4.2, and the Linear CCDF is that of
Section 3.2. The wide grey ribbon in each of these denotes the estimated relative
error (and its error bars) in the no pilot run scenario, where we simply split at the
times t′

k = k/10 and dedicate all effort to the main run.
Across these results we see no strictly dominant method for survival time se-

lection. As a rule, dedicating 5-10% of the effort to a simulation run, by either
the GPD or survival methods, produces near-optimal results. An exception is the
PPNorm(1) case of Figure 4.5b, where no amount of pilot effort allocation to
any method beats the no-pilot case. The linear CCDF method is never plausibly
the best option. It does beat at least the GPD method in Figure 4.5c. However,
the variance of the linear CCDF estimates becomes prone to exploding in the
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small effort setting. As we have set the estimators to use non-adaptive splitting
times in the pilot run, it is not unexpected that eventually it the estimator breaks
down. For all the events of medium probability the differences in methods, while
significant as measured by confidence intervals, are of small magnitude.

4.3.3 Attainment of target survival probability p̌

To explore how well we have attained the instrumental goal of enforcing uniform
conditional survival probabilities p(m) = p̌, we visualise the distribution of em-
pirical splitting probabilities achieved in the piloted splitting runs. In order to
have a comparable common target splitting time p̌ we do not squeeze the target
probability as per (4.2) but hold p̌ = 0.2 fixed regardless of the pilot estimate
ℓ̂′. Since the final step in this case can, by design, be far from the uniform value
p(M) 6= p̌, we discard all such final steps to avoid introducing extra bias. For
the remaining steps, p̌ is the target value, and we plot that as a dotted line for
reference. The empirical p̂(m) values are themselves noisy estimates of the true
conditional survival probabilities of a given set of splitting times, so we should
expect a non-trivial noise in the empirical realized conditional survival probability
estimates even if the splitting times were to be chosen to perfectly produce the
desired conditional survival probabilities. Ideally, in a good splitting method the
true conditional survival probabilities would be close to the target value.

We do not, of course, have access to the true conditional survival probabilities,
but instead must estimate them from empirical survival probabilities in the simu-
lations. In Figure 4.6 and Figure 4.7 we plot the range of empirical survival proba-
bilities for the parameters of the models of Figure 4.4 and Figure 4.5. Specifically,
we plot the means and 95% ranges for the concatenation p̂r

(m) = nr
(m)/ñr

(m−1),

over all steps m ≤ M of all replications r ≤ R of the main splitting run. We do
so for each splitting proportion ηpilot/η.

We observe a diversity of behaviours over the different parameter settings.
Empirical averages of p̂(m) show signs of being biased away from the target p̌. It
is not clear that the times attained are consistent in increasing pilot effort. The
magnitude and direction of the bias depends on both model and splitting method.
Asymptotically we observe that the range of empirical conditional survival prob-
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(a) LNSum(0.02)

(b) PPNorm(0.1)

(c) PPMetric(2 · 107)

Figure 4.4: Pilot effort proportion and relative for a very rare event,
pilot times t′

k = k/10, total effort η = 104, R = 103 replications. Bars
denote 95% confidence interval over 1000 bootstrap samples. Series
are offset horizontally for legibility.
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(a) LNSum(0.2)

(b) PPNorm(1)

(c) PPMetric(2 · 108)

Figure 4.5: Pilot effort proportion and relative error for a somewhat
rare event, pilot times t′

k = k/10, total effort η = 104, R = 103

replications. Bars denote 95% confidence interval over 1000 bootstrap
samples. Series are offset horizontally for legibility.
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abilities in the survival method is typically smaller than the GPD, although the
GPD method can outperform it in certain low-pilot-effort regimes. Either the lin-
ear CCDF or the survival estimate can attain a closer mean cumulative survival
probability to the target, depending upon the problem. In short, the differing
problem structures appear to lead to different ideal choices of optimal splitting
time selection methods, at least as regard the range and expectation of attain
conditional survival probabilities. We see that in practice while the precision can
improve over the baseline with regard to optimal splitting time selection, improve-
ment in this regard is not necessarily a given.

4.3.4 Large-effort asymptotics of the combined estimator

The next numerical simulations examine the efficiency of the various simulation
methods, applied to the various problems, in the large-effort limit.

For all combinations of model problems and of estimators, we estimate the
the empirical ENRV as a general indicator of the quality of the combination.
For each combination we choose several different effort levels and monitor the
large-effort scaling behaviour of the estimator. Pilot effort for each is fixed at
ηpilot/η = 0.05 with t′

k = k/20 except for the No pilot case, where we fix ηpilot = 0
and set the main splitting times to the same, tm = m/20. We estimate the large-
sample asymptotic limit by weighted means of the ENRV estimates. Writing
ENRV(ℓ̂(∞)) def= limη→∞ ENRV(ℓ̂(η)), the weighted estimator is

ÊNRV(ℓ̂(∞)) def= 1∑
η wη

∑
η

wηÊNRV(ℓ̂(η)). (4.45)

We set the weights to be inverse variances, wη = 1/V̂ar[ÊNRVℓ̂(η)], where the
variances in question are estimated by bootstrap resampling. In general, as the
effort increases from low levels there is a transient stage wherein the ENRV has a
high variance and may be far from an apparent asymptotic limit. We recall that
we only expect the ENRV to be asymptotically constant (2.30), so this behaviour
is not entirely surprising.

Across the different example problems we observe substantively different be-
haviour of the combined quasi-monotone splitting estimator. Firstly we consider
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(a) LNSum(0.02)

(b) PPNorm(0.1)

(c) PPMetric(2 · 107)

Figure 4.6: Pilot effort proportion and attained p̌ for a very rare
event, pilot times t′

k = k/10, total effort η = 104, R = 103 replications.
Central mark denotes mean and error bars denote 95% range. Series
are offset horizontally for legibility.
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(a) LNSum(0.2)

(b) PPNorm(1)

(c) PPMetric(2 · 108)

Figure 4.7: Pilot effort proportion and attained p̌ for a somewhat
rare event, pilot times t′

k = k/10, total effort η = 104, R = 103

replications. Central mark denotes mean and error bars denote 95%
range. Series are offset horizontally for legibility.
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the different behaviour of each of the model problems,plotted in Figure 4.8. For
these simulations we fix all parameters apart from effort, and choose κ values
such that the target event probabilities are comparable, with ℓ ≈ 5 · 10−15. Specif-
ically, ℓ̂(PPNorm(0.1)) ≈ 7.932 · 10−15, ℓ̂(LNSum(0.02)) ≈ 4.671 · 10−15, and
ℓ̂(PPMetric(2 · 107)) ≈ 5.724 · 10−15. The central limit theorem for fixed effort
splitting (Theorem 2.1) additionally tells us that estimates from splitting meth-
ods with fixed intermediate target sets are eventually normally distributed; we
know of no such results where, as here, the intermediate target sets are estimated
adaptively by a pilot run, although numerically we see that asymptotic normality
is a plausible hypothesis. We investigate the asymptotic distribution numerically
by applying the Anderson Darling test of the null hypothesis that samples are
drawn from a normal distribution. The results of this experiment are plotted in
Figure 4.8b. All three models show an increasing tendency to fail to reject the
null as effort increases, indicating a distribution that is in the sense of this test at
least, more normally distributed. The rate of convergence is problem dependent.
The example of PPMetric is particularly slow to converge. Even at η = 106, the
estimate is not plausibly normally distributed.

Holding the problem fixed and varying the time selection methods, results for
the PPNorm(0.1) and PPMetric(2×107) problem are plotted in Figure 4.9 and
Figure 4.9, and tabulated in Table 4.2 and Table 4.3. Results for other model is
omitted, since it demonstrates no new behaviour. As the effort changes, the rank-
ing of the preferred time selection method changes, and none is strictly dominant
over the whole range. Asymptotically, we notice that the GPD method performs
best, at least measured by having the smallest point estimate of asymptotic ENRV.
This is and inversion of the order we found in the small effort regime, where the
GPD method’s performance was unspectacular. Note, however that the overall
relative errors in question are small at this high effort level.

4.3.5 Small probability asymptotics of combined estimator

We consider also whether the quasi-monotone splitting method has attained loga-
rithmic relative efficiency (2.19). We recall the estimation method of Section 3.4,
in which estimated the closeness to logarithmic relative efficiency by examining the
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(a) ENRV of splitting estimates. Error bars shows 95% confidence
interval over 1000 bootstrap replicates. Dashed line denotes
inverse-variance-weighted sample mean ÊNRV(ℓ̂(∞)).
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(b) P-value for the Anderson-Darling test of the hypothesis that
samples are drawn from a normal distribution. Dotted lines are a
visual aid only.

Figure 4.8: Effort normalized relative variance of quasi-monotone
estimators, over R = 1000 realizations of the estimator for various
problems. Splitting times are found by the survival method with
ηpilot/η = 0.05.
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Table 4.2: Estimated large sample efficiency of quasi-monotone
estimators, in PPNorm(0.1) over R = 100 realizations of the
estimator for each time selection method.

Method ÊNRV(ℓ̂(∞))

No Pilot 3.80 · 103

GPD 2.58 · 103

Survival 2.85 · 103

Linear CCDF 3.51 · 103

Figure 4.9: Estimated large sample efficiency of quasi-monotone
estimators, over R = 100 realizations of the estimator for various time
selection methods in PPNorm(0.1). Pilot effort satisfies
ηpilot/η = 0.05 with t′

k = k/20. Series are offset horizontally for
legibility. Error bars show bootstrap 95% confidence intervals over
1000 repetitions.
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Table 4.3: Estimated large sample efficiency of quasi-monotone
estimators, in PPMetric(2× 107) over R = 100 realizations of the
estimator for each time selection method.

Method ÊNRV(ℓ̂(∞))

No Pilot 1.35 · 105

GPD 1.71 · 105

Survival 1.23 · 105

Linear CCDF 1.55 · 105

Figure 4.10: Estimated large sample efficiency of quasi-monotone
estimators, over R = 100 realizations of the estimator for various time
selection methods in PPMetric(2× 107). Pilot effort satisfies
ηpilot/η = 0.05 with t′

k = k/20. Series are offset horizontally for
legibility. Error bars show bootstrap 95% confidence intervals over
1000 repetitions.
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Table 4.4: Small-probability-asymptotic behaviour in
quasi-monotone splitting PPMetric under the various time selection
methods. Regression confidence intervals have no straightforward
interpretation and are are not reported.

η Method β̂1

103 No Pilot 1.839
103 GPD 1.826
103 Survival 1.878
103 Linear CCDF 1.780
105 No Pilot 1.953
105 GPD 1.957
105 Survival 1.967
105 Linear CCDF 1.935

slope of the regression line of logE[ℓ2] against log ℓ̂. Applying the same method
here, the results for PPMetric are plotted in Figure 4.11. The linear regression
fit is compatible with the hypothesis that we approach logarithmic efficiency with
higher efforts, but do not do so for smaller efforts. In the higher effort case, plotted
in Figure 4.11a, we achieve respectable values for the GPD and survival methods,
with a coefficient β̂1 > 1.95 for all methods. If we reduce the effort to η = 103

as in Figure 4.11b we are somewhat further from logarithmic efficiency, attaining
coefficients in the range 1.78 − 1.82. We do generally better with survival-based
splitting time estimates than with the other methods, in that survival-method pi-
lot runs consistently exceed the baseline without a pilot run. The observations
here are compatible with the interpretation that we are “somewhat close” to loga-
rithmic relative efficiency, and that our time selection method enhancements have
improved at least in some cases of small-probability efficiency. A similar pattern,
with slightly different coefficient estimates, is reproduced across the other exam-
ple problems. Since the results are not qualitatively different results so are not
shown. The caveat here is that we do not have good confidence bounds for β̂1 as
an estimator of true logarithmic efficiency, the estimates are suggestive only.
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(a) η = 105.

(b) η = 103.

Figure 4.11: Estimated small-probability-asymptotic efficiency in
quasi-monotone splitting PPMetric(2 · 107) under the various time
selection methods. Dashes show lines of best fit. Error bars show 95%
bootstrap confidence interval
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4.4 Guidance for practitioners
This simulation study has can be summarised as supporting that in the extremely
small effort regime, all methods are fragile and noisy. For higher effort levels,
the survival methods with a small pilot effort fraction frequently, although not
universally, improve the overall estimator variance. At high effort levels we are
generally indifferent to the choice of pilot run method. This heuristic advice leaves
details undetermined. In practice, the choice of the tuning parameters t′

1, . . . , t′
K

and ηpilot/η for a given application must depend upon the details of that applica-
tion. A reasonable rule of thumb based on these simulation studies is to dedicate
ηpilot/η = 5− 10% of the total effort to a splitting run using the survival analysis
method. Where the target event is particularly common and the effort budget
high, this pilot budget could possibly be reduced.

Choice of pilot t′
1, . . . , t′

K in this study was, as noted, arbitrary. Heuristically,
if we tolerate a survival probability of 10% at each step, the value used in this
chapter, K = 20, would be sufficient to encompass events with probability down
to ℓ ' 10−20, smaller than the values we use here. If this does not seem sufficiently
robust, outside of the constraint of this chapter that we should be able to compare
like-effort for like-effort, using some kind of adaptive splitting for the pilot run
could provide an automatic means of selecting t′

1, . . . , t′
K .

We have faced here a challenge characteristic of much fixed-effort splitting
research, which is that it is hard to produce analytic guarantees about the be-
haviour of our estimators. Our solution has been to apply various statistical mod-
els (weighted means, linear regression) and tests (Anderson-Darling) to understand
the distribution of estimators in simulation studies. The upshot has been com-
patible with certain hypotheses — that the hybrid estimators are not far from
logarithmically efficient, that the proposed time-selection procedures can reduce
estimator error, and that the resulting estimators are asymptotically normally dis-
tributed. All of these are to differing degrees dependent upon the level of effort,
the rarity of the target event, and the specifics of the problem in question.

On the basis of these hypotheses we have formulated heuristic recommenda-
tions about pilot effort and time selection methods. The universality of these rec-
ommendations is subject to the usual limitations that apply to simulation-based
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studies, and which are motivated by idealized and asymptotic analysis. We are
on especially shaky ground in the low-effort context, i.e. η < 104, and in this
domain recommendations are unclear. With higher effort levels, pilot runs using
survival-analysis-based time selection methods with a 5% effort allocation seems
a low-risk choice in most cases. In trials, this improves over the level-selection
method of Section 3.2 in intermediate effort levels, at a minimal cost in efficiency
compared to the case without a pilot run.





Chapter 5

Conclusions: Quasi-monotone
splitting

In Chapter 3 we introduced a type of splitting method, the quasi-monotone split-
ting sampler. This comes equipped with a convenient, simple procedure to design
splitting samplers across a wide variety of problems with appropriate structure.
The resulting samplers have the form of a Sequential Monte Carlo algorithm which
simulates and resamples realizations over successive intervals of a synthetic Markov
process whose terminal distribution is our distribution of interest, i.e., the dynamic
splitting for static problems technique. Simulating the intermediate sets using the
quasi-monotone splitting method is straightforward, since we only need to inspect
the values of the process at the final instant of each interval, which leads to sim-
ple and largely automatic simulation algorithms. The problem of selecting time
instants, we have argued though idealization arguments, can be approached by
studying the lifetime distribution of particles in the sampler. Estimating these
particles’ survival time quantiles gives us uniform conditional survival probabili-
ties p̌ = p(1) = · · · = p(1). In Chapter 4 we introduced tools from survival analysis
and extreme value theory to study these lifetime distributions. This provided us
means, based on the output of a pilot run, to estimate the optimal splitting times
which approach these uniform conditional survival probabilities. Throughout this
process, no splitting time method strictly dominated in terms of our relative er-
ror metrics. We have provided heuristic advice for selecting methods based on
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numerical simulation of their effectiveness.
It is tempting to consider improvements to the method of selecting the split-

ting times. Although we are able to improve the variance of the overall splitting
method, it is not clear that the optimal times themselves are consistently estimated
by any of our methods across all the example problems. Moreover, in the large ef-
fort limit, pilot run effort can become counter-productive. Many restrictive design
choices were made the statistical construct these estimators, and we might suppose
that lifting these restrictions could improve the behaviour of the combined esti-
mator. For example in the lifetime distribution estimators, we can construct more
sophisticated mixture models hybridising the nonparametric survival analysis and
GPD estimators, as seen in applied extreme value theory models (Markovitch and
Krieger 2002; McNeil 1997). We can also use data-driven methods to select pa-
rameters of the somewhat arbitrary regularization we used to construct the GPD
and survival estimators. Elaborations of our weighting scheme, such as learning
from data the weighting function w in iteratively reweighted model fits, are also
possible. We might also suppose that our estimators could be improved by directly
estimating the quantile (3.29) of interest, directly estimating tm = T̄ −1(p̌m), rather
than estimating the CCDF T̄ , which is essentially a nuisance parameter as regards
choosing the times. Direct estimation of quantiles in an Extreme Value Theory
context is considered in, e.g. Bhatti et al. (2018), Hosking and Wallis (1987), and
Makarov (2006). The use of splitting methods to directly estimate quantiles is ex-
plored in (Guyader, Hengartner, and Matzner-Løber 2011). We can also suppose
that switching between linear, survival and GPD CCDF estimators based on the
behaviour of the estimator might improve accuracy.

Such extensions are likely to be feasible. Whether they are worthwhile is less
certain. The magnitude of the improvement in the overall estimator from improved
level selection has been only modest in terms of improvement in the accuracy of
the splitting estimates. Our objective of uniform conditional survival probabilities
is in any case merely a surrogate for the true objective of minimising estimator
error. Having proceeded a way down this path of adjusting tm values to more
closely approximate the surrogate objective, it is unclear that further pursuing the
means to better approximate this surrogate objective ‘plucks the lowest hanging
fruit’. The idealizations for the level selection which we use to justify our methods
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include many assumptions. Possibly most notably, we made certain large-effort
asymptotic approximations of which we are particularly suspicious in the small-
effort regime where efficiency is most crucial. Further, layering complexity upon
complexity in a method that we have espoused for its simplicity could undermine
that desirable simplicity.

An alternative strategy could discard surrogate objectives in favour of direct
optimization of true objectives, or at least a closer surrogate. Directly estimat-
ing and optimising the error distribution of parametric Monte Carlo samplers is a
large, active field in the study of Monte Carlo methods. Various authors have ex-
plored directly optimising sampling distributions by minimising a loss function (see
sumary in Robert et al. 2018) and there is reason to suppose it could be feasible
in quasi-monotone splitting. Here, approximate gradient information for sampling
parameters with respect to some measure of sampling efficiency would be avail-
able by automatic differentiation (Mohamed et al. 2020). The virtue of such an
approach is that it potentially enables us to optimise a broader selection of param-
eters than simply a selection of splitting times. Using gradients we could exploit
information in particle state values rather than using only population counts as in
the idealized problem. In such a setup, we might feasibly optimise ideal param-
eters for a differentiable parametric importance function Sg. We could optimise
choice of time instants over a multivariate time axis, or parameters of the latent
processes themselves. This would align with the modern enthusiasm for methods
using gradient-based optimization to improve convergence in sampling problems
(e.g. Caterini, Doucet, and Sejdinovic 2018; Salimans, Kingma, and Welling 2015).

A largely orthogonal question to this is whether we can avoid the additional
parameter choices for pilot runs by using an entirely adaptive splitting strategy,
where a single adaptive splitting run calculates both optimal splitting parameters
and the desired target sample simultaneously. There is an active literature on
adaptive methods for splitting, encompassing methods more sophisticated than
our ad hoc adaptive pilot method of Section 3.2, (e.g. Bréhier, Goudenège, and
Tudela 2016; Bréhier, Lelièvre, and Rousset 2015; Cérou and Guyader 2007; Cérou
and Guyader 2016; Charles-Edouard et al. 2015). Adaptive methods pay a cost in
increased efficiency and complexity of analysis, so the utility of such a trade-off is
not immediate; this is once again a subject for future research.
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These speculations aside, the quasi-monotone splitting sampler is available to
use as-is, attains good performance on many problems, has broad generality and
a simple implementation. In many cases this easy procedure turns out to produce
state-of-the-art results. In the quasi-monotone setting, the task of extending the
method to novel distributions is a largely mechanical process, which we have illus-
trated with several examples. Many more can be easily constructed by users of the
algorithm. The methods developed here suggest suggest, further, the potential for
new hybridization with other splitting methods. Together, these factors lead us to
argue that this work advances the frontier of rare event Monte Carlo methods.
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Selected univariate distributions

A.1 Poisson distribution
The Poisson distribution is a univariate distribution intimately related to the Pois-
son process.

Definition A.1 (Poisson distribution). A random variate G supported on N0 with
probability mass function P[G = k; λ] is Poisson distributed if that mass function
is

P[G = k; λ] = λke−λ

k!
I{k ∈ 0, 1, 2, . . . }. (A.1)

We write G ∼ Poisson(λ). We refer to λ as the rate.

If G ∼ Poisson(λ) then

E[G ] = λ (A.2)
Var[G ] = λ. (A.3)

We use the following well-known facts about the Poisson distribution. Suppose
G ∼ Poisson(λ), G ′ ∼ Poisson(λ′) and G ⊥⊥ G ′. Then

G + G ′ ∼ Poisson(λ + λ′). (A.4)

From this it follows that the Poisson distribution is infinitely divisible, by which
we mean that any Poisson distributed random variate is equivalent in law to a sum
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of differently-parameterized independent Poisson random variables. We use this
property extensively when discussing the Poisson process.

A.2 Gamma distribution
The gamma distribution is a univariate distribution supported on the non-negative
reals. We use it here to find the increments of the gamma process.

Definition A.2 (Gamma distribution). A random variate G with density
g(x; α, λ) is gamma distributed if that density is

g(x; α, λ) = λα

Γ(α)
xα − 1e−λx, x ≥ 0. (A.5)

We write G ∼ Gamma(α, λ). We refer to λ as the rate and α as the shape

If G ∼ Gamma(α, λ) then
E(G) = α/λ (A.6)

and
Var(G) = α/λ2. (A.7)

In particular,
Gamma(1, λ) D= Exp(λ). (A.8)

We use various standard facts about the gamma distribution (Applebaum 2009;
Asmussen and Glynn 2007; Rubinstein and Kroese 2016).

Theorem A.1 (Transformations of gamma variates). Suppose G ∼ Gamma(α, λ),
G ′ ∼ Gamma(α′, λ), G ⊥⊥ G ′, and c 6= 0 is a real-valued constant. Then

1. G + G ′ ∼ Gamma(α + α′, λ) (superposition)

2. cG ∼ Gamma(α, λ/c) (scaling)

From theorem B.1.1 it follows that the gamma distribution is, like the Poisson,
infinitely divisible and thus a gamma distributed random variate is equivalent in
law to a sum of differently-parameterized independent gamma random variables.
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Subordinators

Subordinators are the predominant class of stochastic process used in quasi-
monotone splitting. These are pathwise almost-surely non-decreasing Lévy
processes, which are themselves a useful category of Markov processes. We
introduce Lévy processes generally first, then specialise to subordinators in
particular, and then the particular subordinators used in our models.

B.1 Lévy processes
Lévy processes are the most general class of Rd-valued processes with indepen-
dent, stationary increments. For a deeper presentation, see e.g. Bertoin (1996),
Kyprianou (2014), and Sato (1999).

Definition B.1 (Lévy process). A d-dimensional Lévy process {G(t)}t∈I is a
stochastic process indexed by an interval I ⊆ R and taking values in Rd, such
that it possesses

1. Independent increments: G(t) − G(s) is independent of {G(u) : u ≤ s} for
any s < t.

2. Stationary increments: G(s + t)− G(s) has the same distribution as G(t)−
G(0) for any s, t > 0.

3. Continuity in probability: G(s)→ G(t) in probability as s→ t.
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We deduce Lévy processes are Markov, by 1 and 2.
We often discuss Lévy processes through their increment distribution, which

specifies all finite dimensional distributions of the process with respect to the
natural filtration. Presuming we may simulate from the increment distribution,
we may simulate points on a path of a Lévy process by summing increments over
increasing time steps.

G(ti) '
∑
j<i

(G(ti+1 | G(ti))− G(ti)) =
∑
j<i

Gj. (B.1)

Definition B.2 (Subordinator). A Lévy process {G(t)}t∈I is a subordinator if the
increment distribution is, coordinate-wise, non-negative, i.e., for t > s

P[G(t)− G(s) ≥ 0] = 1 (B.2)

where the inequality here is interpreted coordinate-wise in the case of vector pro-
cesses.

Properties of particular subordinators, such as the gamma (Section B.2) and
Poisson processes (Section B.3), are introduced here.

B.2 Gamma process
A gamma process is a Lévy process whose increments are gamma distributed (Fer-
guson 1974; Ferguson and Klass 1972). Gamma processes comprise a sub-class of
subordinators that arises naturally in a variety of applications (Applebaum 2009;
Asmussen and Glynn 2007; Rubinstein and Kroese 2016). We review some prop-
erties here.

Definition B.3. A univariate Lévy process {G(t; α; λ}t is a gamma process if for
any index values t ≥ s increments of the process are distributed

G(t; α, λ)− G(s; α, λ) ∼ Gamma(α(t− s), λ). (B.3)

We write {G(t)}t∈[0,∞] ∼ GammaProc(t; α, λ). Where the index argument t is
unambiguous we suppress it, writing GammaProc(α, λ).
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This corresponds to increments per unit time in terms of E(G(1)) = α/λ and
Var(G(1)) = α/λ2. It follows that G(1; α, λ) ∼ Gamma(1, λt) = Exp(λ).

Some rules for gamma processes follow from the analogous results for the
Gamma distribution.

Proposition B.1 (Transformations of gamma processes). Suppose G =
{G(t)}t∈[0,1] ∼ GammaProc(α, λ), G ′ = {G ′(t)}t∈[0,1] ∼ GammaProc(α′, λ),
G ⊥⊥ G ′, and c 6= 0 is a scalar constant. Then,

1. G + G ′ ∼ GammaProc(α + α′, λ) (superposition)

2. {cG(t; α, λ)} D= {G(t; α, λ/c)} ∼ GammaProc(α, λ/c) (scaling)

3. {G(ct; α, λ)} D= {G(t; cα, λ)} ∼ GammaProc(cα, λ) (dilation)

Proof. Part 1 follows from theorem A.1.1. Part 2 follows from theorem A.1.2. Part
3 follows by substituting ct for t in (B.3) and comparing with (A.5).

A d-dimensional gamma process is the concatenation of d mutually-independent
univariate Gamma processes into a d-dimensional vector.

B.3 Poisson process
We call a Lévy process {G}t ∼ PoissonProc(λ) is a Poisson process if, in addition
to the usual Lévy process requirements, the increments of the process have a
Poisson distribution. Specifically, for tj ≥ ti:

G(tj)− G(ti) ∼ Poisson ((tj − ti)λ) . (B.4)

Equivalently, it is a counting process whose inter-jump times {ti}i∈G+ are iden-
tically and independently distributed such that ti − ti−1 ∼ Exp(1/λ), and each
jump is of size 1 a.s. We set all t0 = 0 and G(0) = 0 a.s. G : R 7→ Z+ such that
G(t) ≡ ∑G

i=1 I{ti<t}. It is easy to show that G(t) ∼ Poisson(λt) (A.1).
Note also the standard result that

λ
def= lim

h→0

E (G(t, t + h))
h

. (B.5)
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We call λ the rate.



Part II

Autocorrelogram mosaicing
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In this part we introduce a different project whose central object is audio
signal processing. Our particular context is a style transfer task. Problems such
as these are of great industrial interest, both in speech synthesizers for voice-based
computer interactions and in musical and creative audio applications.

This part is based on the work for the conference paper MacKinlay and Botev
(2019) of which Dan MacKinlay is primary author. Permissible minor corrections
and revisions for thesis style have been made, but the body of the text remains
substantively unaltered in line with the declaration of published works.

We make our Python code openly available for public use.1 This code release is
significant, in that at time of writing this was apparently the only openly-released
code available for this task in an open-source programming language, and the only
one that can be executed without substantial difficulty in forensic reconstruction
of an obsolete code environment. Benchmark code in this domain, such as NiM-
FKS, which is our major point of comparison here, is implemented in MATLAB,
which is not only expensive, but prone to sensitive version dependencies; many
of the openly available MATLAB options such as MATConcat (Sturm 2004) or
Coleman’s descriptor-driven synthesis (Collins and Sturm 2011) have not been re-
cently maintained and present considerable difficulties for the user to using recent
MATLAB installations. We hope that by lowering the barrier for entry, we might
improve the reproducibility of results in this area.

1https://github.com/danmackinlay/mosaicing_omp_ismir_2019/

https://github.com/danmackinlay/mosaicing_omp_ismir_2019/




Chapter 6

Mosaic synthesis background

We explain the background to audio style transfer problems generally and the mo-
saicing problem specifically.

Mosaicing synthesis is a particular approach to the style transfer problem. An
important task here is style transfer which attempts to synthesize a new signal
from two others, a source and a target. The new synthetic signal should possess
the microscopic “stylistic” statistics of the source, and the macroscopic “semantic”
statistics of the target. In musical applications the style is usually musical timbre,
and the content is the melody and rhythm of the performance. Concretely, if the
target were a trumpet playing a melody, and the source a recording of a singing
vocalist, the mosaic might aim to emulate the vocalist singing that melody.

There exist a variety of problem definitions of, and associated algorithms
for, mosaicing synthesis; (e.g. Caetano and Rodet 2013; Coleman, Maestre, and
Bonada 2010; Collins and Sturm 2011; Hoffman and Cook 2006; Hoffman, Cook,
and Blei 2009; Simon et al. 2005; Sturm 2004; Sturm et al. 2009; Zils and Pachet
2001), partially summarized in Schwarz (2011). In mosaicing specifically, we ac-
complish style transfer using a dictionary-based granular synthesis method. Such
methods construct their output by superposition of transformed short recordings,
grains, from an audio dictionary. This superposition is traditionally conducted in
the time domain as in classic granular synthesis (e.g. Driedger and Müller 2016;
Verhelst and Roelands 1993). More recently spectral domain methods have become
popular (Aarabi and Peeters 2018; Buch, Quinton, and Sturm 2017; Driedger and
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Pratzlich 2015). The latter methods work on superposing power spectral densities
of signals and then estimating phases by some kind of phase retrieval algorithm
(e.g. Driedger and Müller 2016; Griffin and Lim 1984; Perraudin, Balazs, and
Sondergaard 2013).

Granular synthesis methods in themselves are well understood and widely de-
ployed in industrial applications. They comprise a significant proportion of the
music industry market for software synthesizers, are integrated into every major
Digital Audio Workstation package, and have been extensively researched (e.g.
Roads 2004, and references therein).

The extension of granular synthesis into a style-transfer problem as mosaicing
is less well-understood. In this setting we choose the parameters of a granular syn-
thesis so as to optimally approximate a desired target audio signal in the sense of
optimising some measure of acoustic similarity. Typically this implies approximat-
ing, in the sense of minimising some approximation objective, the power spectral
density (PSD) of the target signal. Applications for this include musical accompa-
niment, creative musical effects, or user customization of speech synthesis (Chazan
and Hoory 2006).

Our sparse autocorrelogram method advances the capabilities of musical mo-
saicing applications, by leveraging a feature map that is related to, but more
convenient than, classical PSD methods. This method is enabled by two innova-
tions.

Firstly, we define signal similarity through the autocorrelogram, a representa-
tion of a time-domain signal in terms of covariance with delayed copies of itself.
The autocorrelogram and its relationship to PSD is well-known (e.g. Wiener 1930)
but our use in mosaicing synthesis appears novel. Although we use the autocor-
relogram in a standalone procedure, it may be included in the feature vectors of
loss functions of other mosaic techniques and is thus of independent interest.

Secondly, we decompose the high-dimensional empirical autocorrelogram into
a sparse dictionary of decaying sinusoids. By interpolating discrete signals, this
procedure efficiently calculates both error and gradients with respect to time-
scale parameters, enabling gradient-based optimization. The resulting technique
is flexible and straightforward to parallelize on modern Single Instruction Multiple
Data (SIMD) architectures such as Graphics Processing Units (GPUs).
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We make our Python code1 openly available for public use. We thereby aim to
facilitate both the investigations of future researchers and the immediate applica-
tion of these methods by musicians. Audio comparisons are made with benchmark
mosaicing implementation, NiMFKS (Buch, Quinton, and Sturm 2017).

6.1 Prior work
Style transfer techniques, construed broadly, have a long history in audio signal
processing research. Early work in this area begins with the channel vocoder
(Dudley 1964), via various innovations to the modern repertoire of methods which
includes recent advances such as neural style transfer methods (Engel et al. 2017;
Grinstein et al. 2017; Verma and Smith 2018). In the context of the style transfer,
mosaicing techniques form a sub field which fixes the choice of synthesis method
to dictionary-based granular synthesis.

We are concerned specifically with the musical applications of style transfer.
The archetypal task in this context is using the timbre of the ‘style’ signal to
express the melodic ‘content’ of another. Concretely, if the target were a trumpet
playing a melody, and the source a recording of a singing vocalist, the output
should emulate the vocalist singing that melody. Hereafter we adopt the common
convention that the style signal is the source, the content signal is the target and
the synthesized hybrid is the mosaic.

In mosaicing synthesis, the task of choosing synthesis parameters to synthesise
a mosaic with the desired properties is subject to ongoing research. Notable recent
progress includes matrix factorization methods to decompose audio (Aarabi and
Peeters 2018; Buch, Quinton, and Sturm 2017; Driedger and Pratzlich 2015),
various improvements in spectral matrix factorization (Aarabi and Peeters 2018;
Buch, Quinton, and Sturm 2017; Driedger and Pratzlich 2015) and optimization
over feature space loss functions (Caetano and Rodet 2013; Coleman and Bonada
2008; Slaney, Covell, and Lassiter 1996). A restriction of the commonly available
work is that few methods can conveniently handle time-scaling of audio, so that
time-scale parameters must be ignored, or selected by exhaustive search over scaled

1https://github.com/danmackinlay/mosaicing_omp_ismir_2019/

https://code.soundsoftware.ac.uk/projects/nimfks
https://github.com/danmackinlay/mosaicing_omp_ismir_2019/
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copies of the source signal. One recent exception is Sound Retiler (Aarabi and
Peeters 2018), which claims to handle time shifting via tensor decomposition,
although this is not publicly available. It is in this area that we make our main
contribution, by the application of autocorrelogram features in this task.

While the autocorrelogram itself is not new in audio synthesis (e.g. Slaney,
Naar, and Lyon 1994), our application of it to the mosaicing problem is, to our
knowledge, novel. The autocorrelogram-based analysis in combination with sparse
coding induces a analytically differentiable expression for the time scale parameter,
and it is this we use to solve the mosaic problems.

6.2 Problem description

6.2.1 Audio signals and notation

We work with audio signals, modelled as a Hilbert space H of real L2 functions
f : R → R mapping time to instantaneous signal pressure level (i.e., amplitude).
Where the argument of the signal is clear, we abbreviate, writing for example, t 7→
f(at) as f(at). We handle transforms on signals f(·) such as the autocorrelogram
A, and Fourier transform F . Where not clear from context which argument of
the signal with respect to which the transform is taken, we indicate it with a
subscript to the transform. Thus Ft{f(s, t)}(ξ) def=

∫
e−2πitξf(s, t)dt. Where we

specify a weight v for the inner product or norm, we write it as a subscript, i.e.,
〈f, g〉v

def=
∫
R v(t)f(t)g(t)dt.

In practice we do not observe continuous audio signals, but discretely sampled
observations of signals. Sampling in this context is meant in the signal processing
sense, which means observing the value of some signal at certain co-ordinates,
usually a lattice. The sense of ‘sample’ in the previous part of the theses, where
it implies simulating a realization of some random variable is more usual in the
stochastic simulation literature. Sampling fidelity is assumed, which is to say
signals are band-limited to some suitably low cutoff period Ω, such that we may
reconstruct them from the fixed-rate sampled version. We scale time so that the
sample period is tmax = 1 and Ω > 1/2. The sampling process is a train of Dirac
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impulses, and inner products with discrete signals are defined

〈g, f〉v
def=
∑
t∈Z

v(t)g(t)f(t). (6.1)

We denote length-M vectors in bold, x = [x1, x2, . . . , xM ]⊺.

6.2.2 Mosaicing

Given a target signal f0, we seek an approximant, the mosaic f̂0, as a sparse
linear combination of scaled signals, called codes, from a source dictionary G

def=
{g1, . . . , gD} subject to a maximum budget of J codes. In our earlier style transfer
example, f0 would be the recorded trumpet melody and G, recordings of the singing
vocalist. For a fixed dictionary the mosaic is specified completely by the length-J
parameter vectors α, γ, ρ and written

f̂0(t; α, γ, ρ) =
J∑

j=1
αjgγj

(ρjt). (6.2)

The problem requires selecting approximately optimal values for parameter vectors

{α, γ, ρ} ' argmin
{α,γ,ρ}

d
(
f̂0(t; α, γ, ρ), f0(t)

)
, (6.3)

where ρj ∈ R+, αj ∈ R, γj ∈ {1, . . . , D} and d : H×H 7→ R+ is a distance function
quantifying the poorness of the approximation. In contrast to sparse coding for
signal compression, f̂0 is an intentionally imperfect approximation of f0, possessing
qualities of both the source and target signals, i.e., transferring some elements of
the “style”.





Chapter 7

Autocorrelogram Mosaicing

We expand upon the autocorrelogram mosaicing method and the particular strengths
it has in style transfer. This chapter is based on the work for the conference paper
MacKinlay and Botev (2019) of which Dan MacKinlay is primary author. Some
minor corrections and revisions for thesis style have been made.

7.1 Autocorrelation mosaicing method
The autocorrelogram mosaicing method has two stages.

1. In the pre-training stage, autocorrelogram features are computed from the
source signals, and decomposed in a dictionary of decaying sinusoids.

2. In the inference stage, we search our dictionary of autocorrelogram decom-
positions for matches to the autocorrelogram of the target signal, and solve
an inverse problem, synthesizing a corresponding mosaic from our result.

Both stages leverage convenient properties of autocorrelograms and sparse dic-
tionary decompositions, which we now introduce.

7.2 Autocorrelograms
We now motivate the use of the autocorrelogram in our feature map. As with
other style transfer methods we face the challenge that the sample values of a
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time domain audio signal f are only indirectly indicative of how human listeners
perceive it. For audio analysis one typically operates on a feature map P{f} which
is in some sense closer to human perception of these signals. Specifically, we aim
to find a feature map such that two signals are similar if some distance between
their feature vectors is small, i.e., the similarity of f and f̂ is high iff the distance
dP(f, f̂) def= ‖P{f0}−P{f̂}‖ is low, with some choice of norm ‖ · ‖. We would like
dP to approximate specifically psychoacoustic similarity — the smaller dP(f, f̂),
the greater the similarity between f and f̂ , from the perspective of a typical human
listener. Ideally the feature map should also be of lower dimension than f , and dF

should be computationally efficient to manipulate.
True psychoacoustic similarity in this sense is not well-specified, so practical

algorithms settle for feature maps compromising between convenience and psy-
choacoustic plausibility. Usually, feature maps are empirical PSDs (Caetano and
Rodet 2013; Hoffman, Cook, and Blei 2009), or are derived from the PSD, as with
the Mel-Frequency Cepstral Coefficient (MFCC) (Mermelstein and Chen 1976) or
the Constant-Q transform (Brown 1991). These maps induce expensive mosaic-
ing optimization problems (Coleman and Bonada 2008; Coleman, Maestre, and
Bonada 2010). MFCCs for example, are suitable for low-dimensional indexing
and search. They are hard to invert, in the sense of recovering a signal in the
time domain given the low-dimensional feature representation, which makes them
problematic for synthesis applications. A raw empirical PSD is easier to invert
via Griffin-Lim iteration (Griffin and Lim 1984) or related methods. However the
dimensionality of PSDs is not substantially lower than the original signal, and
they are thus inconveniently large to store and index. One could ameliorate this
difficulty if a computationally convenient feature map could be found which was
well-behaved under operations of scaling and superposition, as in (6.2). In this
case we could conduct more of the calculations in the low-dimensional feature
space and still solve the inversion problem cheaply.

These desiderata suggest the autocorrelogram map,

A{f} :ξ 7→
(
ξ 7→ 〈f(t), f(t− ξ)〉

)
. (7.1)

This is the deterministic covariance between f(t) and f(t−ξ). The autocorrelogram
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is an even function in ξ, so we work with one-sided autocorrelograms R+ → R.

Autocorrelogram-like transforms are implicated in the neurological processing of
harmonic audio by human listeners (Bidelman and Krishnan 2009; Cariani and
Delgutte 1996; Langner 1992; Licklider 1951). For our purposes, the supposed
neurological basis is a secondary consideration to the demonstrated empirical use-
fulness in psychoacoustic tasks, most notably in pitch-detection (Rabiner 1977;
Slaney and Lyon 1990; Sondhi 1968). In this regard it resembles the cepstral
analysis method (Bogert, Healy, and Tukey 1963), which also effectively identifies
small numbers of periodic components by analysing a pointwise non-linear trans-
formation of the power spectrogram. Unlike the cepstrum it is well-behaved under
superposition.

Specifically, brief calculation (proved in Appendix C) shows the following useful
properties.

Scaling A{cf}(ξ) = c2A{f}(ξ) (7.2a)

Dilation A{f(rt)}(ξ) = 1
r
A{f}

(
ξ

r

)
(7.2b)

Randomized addition E [A{S1f + S2f
′}(ξ)] = A{f}(ξ) +A{f ′}(ξ), (7.2c)

Here f and f ′ are arbitrary signals, c ∈ R is an arbitrary constant and {Si} are
IID Rademacher variables, i.e., taking values in {+1,−1} with equal probability.

We note another desirable feature of the autocorrelogram: it preserves symme-
tries and transformational invariances known to be important in perceptual audio
analysis tasks. Finding such invariant features is an active area of research (e.g.
Benetos, Cherla, and Weyde 2013; Lattner, Dorfler, and Arzt 2019; Luo, Agres,
and Herremans 2019; Thickstun et al. 2017; Thickstun et al. 2018). Specifically,
the autocorrelogram, like the power spectral density, is invariant to translation in
time, since

A{f(t− s)} = A{f(t− ξ − s)} (7.3)

since 〈f(t−s), f(t−ξ−s)〉. Human listeners also have translation-invariant hearing
to a good approximation (e.g. a note of pitch G♯ under a millisecond delay is still
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still has pitch G♯). Feature maps which can preserve such invariances are likely
to be convenient for methods in feature space, e.g. learning operations which are
indifferent to human-imperceptible changes in the signal.

We note two obstacles to the application of these formulae in the mosaicing
problem. Firstly, (7.2b) is not well-defined for the discrete signals that comprise
the usual subject matter of digital signal processing. We handle discrete signals by
continuous interpolants, which turn out to be practically sufficient approximations.
Secondly, the additive rule (7.2c) is valid only in expectation, via the contrivance
of introducing Rademacher random variables. Solving for the deterministic case
by accounting for phase cancellation is indeed possible, but considerably more
involved, and constitutes an active area of research in its own right in the Overlap-
Add (Driedger and Müller 2016; Verhelst and Roelands 1993) and phase retrieval
(Jaganathan, Eldar, and Hassibi 2015; Shechtman et al. 2015) literatures. As the
randomized solution also turns out in practice to be already sufficient for many
tasks, we defer such extensions to future work.

In order to construct these interpolants efficiently, we decompose discrete au-
tocorrelograms using a matching pursuit, which we now introduce.

7.3 Orthogonal matching pursuit
In orthogonal matching pursuit (OMP) (Davis, Mallat, and Zhang 1994; Pati,
Rezaiifar, and Krishnaprasad 1993), given a target signal f0 and a dictionary of
code signals D = {gθ}θ∈Θ, one finds a decomposition f̂0 = OMPD,K(f0) of form

f0 ' OMPD,K(f0)
def=

K∑
i=1

µigθi
. (7.4)

A solution is a parameter vector [θ1, . . . , θK ] ∈ Θk and code weights [µ1, . . . , µK ] ∈
RK which nearly minimise ‖f0 − f̂0‖. We require that f0 and all codes gθ are L2

integrable and not null, i.e., possessing positive norm, ‖gθ‖ > 0.

The OMP algorithm is as follows.

1. Initialization. Let the first residual be r0
def= f. Set step counter k ← 1.

2. Find θk such that (possibly approximately)
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θk = argmax
θ

A(rk, gθ) (7.5)

where A is the normalized code product

A(rk, gθ)
def= 〈rk−1, gθ〉

‖gθ‖
. (7.6)

3. Solve the least sum of squares problem

[µk
1, . . . µk

k] = argmin
[µ1,...,µk]

∥∥∥ ∑
1≤ℓ≤k

µℓgθℓ
− f0

∥∥∥ (7.7)

giving kth decomposition f̂k = ∑
1≤ℓ≤k µℓgθℓ

.

4. Update the residual rk+1 = f0 − f̂k.

5. If k = K, stop, otherwise set k ← k + 1 and repeat from step (2).

We allow the components of θ to be either a) a discrete and finite, or b) a con-
tinuous parameter. For finitely enumerable components θfinite ⊆ θ we maximise
the normalized code product in (7.5) by enumeration. For continuous components
θcts ⊆ θ we assume that we can choose θcts approximately by iterative optimization
using the gradient ∇θctsA(rk, gθ). As the objective may not attain a global maxi-
mum, we choose I ≥ 1 different initial guesses, and select the best local optimum
attained. A first order gradient ascent with a fixed number of steps performs well
in our examples and moreover requires no branching instructions, as suits our goal
of a SIMD-compatible algorithm.

7.4 Sparse approximate autocorrelograms
In the pre-training stage, we find autocorrelograms for each of the empirical source
autocorrelogram codes in G, decomposing them into a dictionary of sparse OMP
matches, M. It is this dictionary which we search for mosaic matches, using
matches here to identify approximately matching codes in the original space G.



136 Chapter 7. Autocorrelogram Mosaicing

In this section we use ξ as the free argument for signals, and restrict ξ > 0. For
the interpolant dictionary we use decaying sinusoids.

S
def= {h(ξ; ω, τ, ϕ) def= cos(ωξ + ϕ)e−τξ : ϕ, τ, ω ∈ R}. (7.8)

The dictionary choice must ultimately be justified by empirical performance,
which we demonstrate in the final section of the chapter. It is notable that there
are also a priori reasons for favouring this one for musical audio. Firstly, this
basis decomposes an autocorrelogram into a global approximant, rather than a
piecewise interpolant, as with, for example, polynomial splines. Evaluations of this
interpolant are easy to parallelise without branching instructions, and therefore
more natural for modern SIMD architectures.

Secondly, decaying sinusoid models are effective in compactly decomposing
time-domain audio (Goodwin 1997), and the nature of the autocorrelogram sug-
gests that they could be similarly useful and even more compact in decomposing
autocorrelograms. The space of superpositions of decaying sinusoids is, by in-
spection, closed under the autocorrelogram transform, so it is just as plausible to
represent autocorrelograms in such a decaying sinusoid dictionary. The question
remains how compact such a representation is. Analytic expansion of the super-
position of many decaying sinusoids is a lengthy exercise in elementary calculus.
However, we suspect that the amplitude coefficient of most terms in such expan-
sions are negligible. Recall the Wiener-Khintchine theorem, which states that, for
signals of finite energy, assuming all these terms are well-defined,

Fξ{A{f}(ξ)}(s) = |Ft{f(t)}(s)|2 (7.9)

where Fξ{f(ξ)} is the Fourier transform of signal ξ 7→ f(ξ). This tells us that
the magnitude of sinusoidal components of the autocorrelogram are squared with
respect to the magnitude of sinusoidal components of the PSD, and thus relatively
sparser, in the sense that we can attain a close match whose squared error decays
rapidly in the number of components. This indicates that for autocorrelograms
of musical signals, which are well approximated by a superposition of sinusoidal
signals, the autocorrelogram could often be approximated with comparable relative
error by a yet smaller number of sinusoidal signals, as can be seen in Figure 7.1.
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Moreover, we know that the envelope of musical audio spectral content decays
eventually super-exponentially with frequency (Elowsson and Friberg 2017) and
thus high frequency content of an autocorrelogram is proportionally even lower
for musical content. This latter fact additionally implies that the autocorrelogram
calculations might even be downsampled with little loss in information content,
and some computational saving.

Figure 7.1: An example of a relatively simple form for (a) the PSD
of the autocorrelogram versus (b) a complex PSD of the signal itself.
The signal is a recording of a trumpet note onset. The scale of the
vertical axis is arbitrary, and signals have been normalized for
comparison. Sample period is 1/44100s and duration is 2048 time
steps.

Implementing the decomposition is straightforward. For each code g ∈ G we
perform the following calculation:

First, we find the empirical autocorrelogramA{g} at L points ξ = 0, 1, . . . , (L−
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1) with (7.1).
Next, we decompose each Ĝ = OMPS,C(A{g}) over the decaying sinusoid dic-

tionary, as defined in (7.8). There are many methods of fitting decaying sinusoids
to time series (Barkhuijsen et al. 1985; Prony 1795; Serra and Smith 1990), but
OMP is convenient in the current application (Goodwin 1997) as we may re-use the
same algorithm in the reconstruction stage of this algorithm. Autocorrelograms
of musical audio in our experiments are highly sparse with respect to this decay-
ing sinusoid dictionary, typically achieving negligible residual error with a number
of components C ≤ 4. Analytic normalizations for such atoms are available in
Section D.2.

We apply the OMP with product 〈·, ·〉v weighted by v(ξ) def= I{[0, L)}(ξ)/L,

returning parameters {τi, ωi, ϕi} and code weights µi. We first find the normalized
code product (7.6) in closed form. Substituting in (7.8) gives

A(r(ξ), h(ξ; ω, τ, ϕ)}) = 〈ri(ξ), cos(ωξ + ϕ)eτξ〉v
‖ cos(ωξ + ϕ)eτξ‖v

. (7.10)

The numerator is simply (6.1). Applying Euler identities gives the denominator

‖ cos(ωξ + ϕ)e−τξ‖2
v (7.11)

= 1
2

∫ L

0
(1 + cos(2ωξ + 2ϕ))e−2τξdξ (7.12)

= e−2ξτ

2
(ω sin(2ξω+2ϕ)−τ cos(2ξω+2ϕ))

4τ2+4ω2

∣∣∣ξ=L

ξ=0
+ 1−e−2Lτ

4τ
. (7.13)

Combining (6.1) and (7.13) gives a closed form normalized code product (7.10),
from which we can explicitly calculate gradients in τ, ω, ϕ as desired. Note that
although the original signal is discrete, our decomposition is a continuous near-
interpolant for it.

From these decompositions we construct the dictionary

M
def= {Ĝγ(ρξ) : γ ∈ (1, . . . , D), ρ ∈ R+}. (7.14)
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7.5 Synthesizing the mosaic
In the second stage, inference, we construct a mosaic f̂0 given a target f0. Here we
match the discrete autocorrelogram F0

def= A{f0} by a second OMP decomposition
F̂0

def= OMPM,J(F0), into

F̂0(ξ) def=
J∑

j=1
κjĜγj

(ρjξ) (7.15)

for index parameters {γi, ρi} and weights κi. The OMP has already been intro-
duced, but we pause to verify that it may be applied to this new context. Since
each Ĝγj

is a linear combination of decaying sinusoids (7.8), the normalizing de-
nominator of the code product (7.6) is again a linear combination of decaying
sinusoids, so its integral has a (lengthy) closed form as a linear combination of
integrals (7.13), and we can find an explicit gradient ∇ρA(rk, ρ). Thus we may
find F̂0 as required.

Now we wish to construct f̂0 (6.2) such that

E[A{f̂0}] = F̂0. (7.16)

Choosing f̂0
def= ∑

j Sjαjgγj
(ρjt) by matching pursuit, simulating Sj independent

Rademacher variates, and applying (7.2a) (7.2b) and (7.2c) to (6.2), we find

E[A{f̂0}] = E

A
∑

j

Sjαjgγj
(ρjt)

 (ξ)


=
∑

j

α2
j

ρj

A
{
gγj

(t)
}

(ρjξ)

'
∑

j

α2
j

ρj

Ĝγj
(ρjξ).

(7.17)

By inspection,

αj = Sj

√
|ρj||κj| (7.18)

satisfies (7.16). We resample the original discrete dictionary codes to target time
scale ρi by band-limited sinc interpolation (Smith 2018). Finally, we substitute
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the resulting αj into (6.2) and superpose grains to realise the desired mosaic.

7.6 Localized matching
So far we have discussed entire signals, implicitly assuming them to be brief.
The autocorrelogram, taken globally over a long signal such as an entire mu-
sical piece, no longer estimates the local, stylistic characteristics. Just as one
adapts the discrete Fourier transform for long signals into the Short-Time Fourier
Transform (STFT) (Blackman and Tukey 1959), so do we adapt the autocor-
relogram mosaic method, applying it locally. A simple localization is to slice
signals into short frames of fixed duration M, which are called grains by con-
vention. As in the STFT, we multiply each frame point-wise with real window
function w, supported on [0, M ] with ‖w‖ = 1. Hereafter, we assume a sine win-
dow, w(t) def= 2 sin(πt/M)I[0, M ]/M. We fix hop length H < M . Next, we localize
G into a new dictionary whose codes are precisely these time-shifted grains (dis-
allowing zero-energy grains).

Gw,H def= {w(t)g(t− ϕ) : g ∈ G, ϕ/H ∈ Z, ‖g′‖ > 0}. (7.19)

In musical material a localized dictionary tends to high redundancy and marginal
return on search effort decreases. Rather than proceeding exhaustively, we keep
the search tractable by searching a pseudorandom subset of fixed size, where the
size of this pseudorandom subset is a user selectable parameter.

In the synthesis stage, we localize the target signal, fw
0 (t; ϕ) def= w(t)f0(t − ϕ),

constructing a local mosaic f̂w
0 (t; ϕ) from Gw,H for ϕ ∈ {0, H, 2H, . . . }. Finally, we

superpose the local mosaics into a global one,

f̂0(t) =
∑
ℓ∈Z

f̂w
0 (t + Hℓ; Hℓ). (7.20)
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7.7 Experiments

a) Source g1

b) Target f0

0s 2s 3s 4s
t

c) Mosaic f̂w0

30 20 10 0 10 20 30 40

Figure 7.2: Power spectral density of signals a) source vocal
recording b) target trumpet recording and c) resulting mosaic.
Frequency increases up vertical axis, intensity in dB with arbitrary
normalization.

As an initial example we transfer style with target signal f0 as a trumpet solo1

and source signal {G} as a vocal recording.2 Audio is sampled with a period of
1/44100s. We fix parameters, taking grain size M = 8192, hop length H = M/2,

1credit Mihai Sorohan
2credit Emm Collins
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correlogram length L = 1024, number of sinusoidal components C = 4, matching
grains J = 1, and number of initial guesses I = 12. Optimization routines are left
at system defaults. Examining the spectrogram Figure 7.2 illustrates phenomena
compatible with our claims: In the mosaic we observe local features of the source
with the larger structure of the target, to wit, the pitch contours of the trumpet
solo with a spectral distribution approximating a human voice.

We next apply the algorithm across a small corpus and compare our results
against the mosaicing algorithm NiMFKS (Buch, Quinton, and Sturm 2017). NiM-
FKS is a useful benchmark for mosaicing synthesis, incorporating many different
user-selectable loss functions and decomposition methods from elsewhere in the
literature, and possessing openly available code.3 Their method generalizes clas-
sical mosaicing by using a non negative PSD factorization to further decompose
grains into a sparse product of activations and responses. Unlike our method it
does not infer optimal time scaling of audio.

Performance evaluation of mosaicing methods is subjective. In the following,
we nevertheless attempt to describe the behaviors of the two algorithms as ob-
jectively as we are able. In order to challenge the NiMFKS model, our corpus
samples are tuned to a variety of different root notes, scales and audio ranges,
including Indonesian, Western and centreless4 tunings. Style transfer is applied
to every pairing of samples. Parameters are left at default values in NiMFKS.
Parameters for the autocorrelogram mosaic are specified when they occur. These
may be heard in the online supplemental material. Subjectively, neither method
seems to produce naturalistic outputs for all pairs of source and target audio.
NiMFKS seems ascendant where the source audio is polyphonic and the factor-
ization succeeds at decomposing different notes where our method cannot. On
the other hand, where the target tuning is not spanned by the source, the sparse
autocorrelogram method is able to produce smoother and better related mosaics
by transposing source grains to match the target. Occasionally the sparse auto-
correlogram mosaics sound rough during rapid articulations. The method could
possibly be improved in these cases by adaptive selection of grain size, or tuning
of the free hyperparameters in the model, or extension with non-randomized re-

3https://code.soundsoftware.ac.uk/projects/nimfks
4i.e. recordings without a standard “root” notes

https://code.soundsoftware.ac.uk/projects/nimfks


7.8. Conclusions: Autocorrelogram mosaicing 143

construction methods. Even in these cases, however, simultaneous playback of the
target and the mosaic reveals that we maintain harmonic relationships with the
target audio. As such, even this imperfect reconstruction can be regarded as an
exotic musical effect. In summary, even at this early stage, our method succeeds
in extending mosaic methods to previously intractable tasks, and produces musi-
cally interesting output. Work remains to be done in improving performance and
integrating with other methods.

7.8 Conclusions: Autocorrelogram mosaicing
This trick extends the reach of mosaicing methods by demonstrating advantages
of the autocorrelogram feature map for solving problems in audio analysis. By
combining autocorrelogram feature maps and interpolating matching pursuit in
particular, we have extended the library of methods of audio mosaicing style trans-
fer. Our method in isolation produces interesting results on the sample data with
little tuning. Work remains to be done in analysing the robustness and general-
ity of the method, and selecting optimal trade-off of cost and quality of different
style transfer tasks under different choices of user parameters. More work also
remains to be done in integrating this method with existing ones. The array of
loss functions supported by, for example, NiMFKS, could be augmented to in-
clude autocorrelogram features, and the autocorrelogram approach can be applied
to spectrally decomposed signals, which are still audio signals. However, the ease
with which we produce good results suggests that further extensions and refine-
ments are worthy of pursuit. Should that source code become available,i t would
be instructive to compare against mosaicing method Music Retiler (Aarabi and
Peeters 2018) which claims to handle time scaling of audio via a different method.

This method has been phrased in terms of deterministic signal processing, but
the discussion of autocorrelation functions evokes models of stochastic processes
(Yaglom 1987), and indeed is reminiscent of the work in Gaussian process regres-
sion (Rasmussen and Williams 2006). This method could likely benefit from a
fully Bayesian treatment as a stochastic signal processing method in a probabilis-
tic function space. Lately fully probabilistic spectral analyses have made some
progress in related problems of audio analysis in the context of probabilistic spec-
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tral analysis (Alvarado, Alvarez, and Stowell 2019; Liutkus et al. 2014; Wilkinson
et al. 2019). Incorporating rich priors and a principled probabilistic model of the
signal is thus a provocative potential avenue for further research.



Appendix C

Properties of autocorrelograms

Consider an L2 signal f : R → R. We overload notation and write it with free
argument t, so that f(rt− ξ), for example, refers to the signal t 7→ f(rt− ξ).

The autocorrelogram transform A : L2(R) → L2(R) maps signals to signals.
Specifically, A{f} is a signal R→ R such that

A{f} def= ξ 7→ 〈f(t), f(t− ξ)〉 (C.1)

This is the (deterministic) covariance between f(t) and f(t− ξ). We list the prop-
erties of this transform.

Proposition C.1 (Multiplication by a constant). Consider a constant c ∈ R.

A{cf}(ξ) = 〈cf(t), cf(t− ξ)〉 (C.2)
= c2〈f(t), f(t− ξ)〉 (C.3)
= c2A{f}(ξ). (C.4)
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Proposition C.2 (Time scaling).

A{f(rt)}(ξ) = 〈f(rt), f(rt− ξ)〉 (C.5)

=
∫

f(rt)f(rt− ξ)dt (C.6)

= 1
r

∫
f(t)f(t− ξ

r
)dt (C.7)

= 1
r
A{f}

(
ξ

r

)
. (C.8)

Proposition C.3 (Addition).

A{f + f ′}(ξ) = 〈f(t) + f ′(t), f(t− ξ) + f ′(t− ξ)〉 (C.9)
= 〈f(t), f(t− ξ)〉+ 〈f(t), f ′(t− ξ)〉

+ 〈f ′(t), f(t− ξ)〉+ 〈f ′(t), f ′(t− ξ)〉 (C.10)
= A{f}(ξ) + 〈f ′(t), f(t− ξ)〉

+ 〈f(t), f ′(t− ξ)〉+A{f ′}(ξ). (C.11)
= A{f}(ξ) + 〈f ′(t), f(t− ξ)〉

+ 〈f(t + ξ), f ′(t)〉+A{f ′}(ξ). (C.12)
= A{f}(ξ) + 〈f ′(t), f(t− ξ)〉

+ 〈f ′(t), f(t + ξ)〉+A{f ′}(ξ). (C.13)

We can say little about the term 〈f ′(t), f(t−ξ)〉+〈f ′(t), f(t+ξ)〉 without more
information about the signals in question. However, we can solve a randomized
version. Suppose Si, i ∈ N are IID Rademacher variables, i.e., that they assume a
value in {+1,−1} with equal probability. Then, we have the following randomized
version.
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Proposition C.4 (Addition).

E[A{S1f + S2f
′}(ξ) = E[A{S1f}(ξ)+

〈S2f
′(t), S1f(t− ξ)〉

+ 〈S2f
′(t), S1f(t + ξ)〉+A{S2f

′}(ξ)] (C.14)
= E[A{S1f}(ξ)] + E〈S2f

′(t), S1f(t− ξ)〉

+ E〈S2f
′(t), S1f(t + ξ)〉+ E[A{S2f

′}(ξ)] (C.15)
= A{f}(ξ) + E[S1S2]〈f ′(t), f(t− ξ)〉

+ E[S1S2]〈f ′(t), f(t + ξ)〉+A{f ′}(ξ) (C.16)
= A{f}(ξ) +A{f ′}(ξ). (C.17)

The sum of expectations, that is, is not guaranteed to have a simple determin-
istic form, but the expectation of the randomized version is. This restriction is
shared with many mosaicing methods based on DFT power spectrograms, which
discard or randomise phase information; e.g. this is entailed by the additive-power
assumption of (Hoffman, Cook, and Blei 2009).





Appendix D

Decaying sinusoidal basis

Using Euler identities we find the antiderivative

∫ L

cos(ωξ) exp(−τξ)dξ = e−Lτ (ω sin(Lω + ϕ)− τ cos(Lω + ϕ))
τ 2 + ω2 (D.1)

and thus
∫ L

0
cos(ωξ) exp(−τξ)dξ = 1

τ 2 + ω2 e−ξτ (ω sin(ξω + ϕ)− τ cos(ξω + ϕ))
∣∣∣ξ=L

ξ=0
(D.2)

= 1
τ 2 + ω2

(
e−Lτ (ω sin(Lω + ϕ)− τ cos(Lω + ϕ))

− ω sin ϕ + τ cos ϕ)
)
. (D.3)
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D.1 Inner products of decaying sinusoidal atoms
We find norms for the atoms by mechanically calculation.

〈cos(ωξ + ϕ) exp−τξ, cos(ω′ξ′ + ϕ′) exp−τ ′ξ〉

= 1
2

∫
v(ξ)

(
cos(ωξ + ϕ− ω′ξ − ϕ′)

+ cos(ωξ + ϕ + ω′ξ′ + ϕ′)
)

exp(−(τ ′ + τ)ξ)dξ (D.4)

= 1
2

∫
v(ξ)

(
cos((ω − ω)ξ + ϕ− ϕ′)

+ cos((ω + ω′)ξ + ϕ + ϕ′)
)

exp(−(τ ′ + τ)ξ)dξ (D.5)

= 1
2

∫
v(ξ) cos((ω − ω′)ξ + ϕ− ϕ′) exp(−(τ ′ + τ)ξ)dξ

+ 1
2

∫
v(ξ) cos((ω + ω′)ξ + ϕ + ϕ′) exp(−(τ ′ + τ)ξ)dξ (D.6)

= 1
2

∫
v(ξ) cos(ω−ξ + ϕ−) exp(−τ+ξ)dξ

+ 1
2

∫
v(ξ) cos(ω+ξ + ϕ+) exp(−τ+ξ)dξ. (D.7)

Here we have defined the abbreviations ϕ+
def= ϕ + ϕ′, ϕ−

def= ϕ− ϕ′, ω+
def= ω + ω′,

ω−
def= ω − ω′ and τ+

def= τ − τ ′.
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If we choose “top hat” weight v = I[0, L], we may expand this using (D.3)

〈cos(ωξ + ϕ) exp−τξ, cos(ω′ξ′ + ϕ′) exp−τ ′ξ〉v

= 1
2

∫ L

0
cos(ω−ξ + ϕ−) exp(−τ+ξ)dξ

+ 1
2

∫ L

0
cos(ω+ξ + ϕ+) exp(−τ+ξ)dξ (D.8)

= 1
2

e−ξτ+ (ω− sin(ξω− + ϕ−)− τ+ cos(ξω− + ϕ−))
τ 2

+ + ω2
−

∣∣∣∣∣
ξ=L

ξ=0

+ 1
2

e−ξτ+ (ω+ sin(ξω+ + ϕ+)− τ+ cos(ξω+ + ϕ+))
τ 2

+ + ω2
+

∣∣∣∣∣
ξ=L

ξ=0
(D.9)

= 1
2(τ 2

+ + ω2
−)
(
e−Lτ+ (ω− sin(Lω− + ϕ−)− τ+ cos(Lω− + ϕ−))− ω− sin ϕ− + τ+ cos ϕ−

)
+ 1

2(τ 2
+ + ω2

+)
(
e−Lτ+ (ω+ sin(Lω+ + ϕ+)− τ+ cos(Lω+ + ϕ+))− ω+ sin ϕ+ + τ+ cos ϕ+

)
.

(D.10)

D.2 Normalizing decaying sinusoidal atoms
In matching pursuit we need to calculate inner products with normalized codes
(7.6). This means evaluating the denominator norm

‖ cos(ωξ + ϕ) exp τξ‖2
v =

∫
v(ξ) (cos(ωξ + ϕ) exp τξ)2 dξ (D.11)

=
∫

v(ξ) cos2(ωξ + ϕ) exp(2τξ)dξ (D.12)

= 1
2

∫
v(ξ)(1 + cos(2ωξ + 2ϕ)) exp(−2τξ)dξ. (D.13)

If we choose, for example, a top hat weight v = I[0, L] we can specialise (D.13)
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to give (7.10),

‖ cos(ωξ + ϕ) exp−τξ‖2
v =

∫ L

0
(cos(ωξ + ϕ) exp(−τξ))2 dξ (D.14)

= 1
2

∫ L

0
(1 + cos(2ωξ + 2ϕ)) exp(−2τξ)dξ (D.15)

= 1
2

∫ L

0
e−2ξτ cos(2ξω + 2ϕ) + e−2ξτ dξ (D.16)

= 1
2

∫ L

0
e−2ξτ cos(2ξω + 2ϕ)dξ + 1

2

∫ L

0
e−2ξτ dξ (D.17)

= e−2ξτ

2
(ω sin(2ξω + 2ϕ)− τ cos(2ξω + 2ϕ))

4τ 2 + 4ω2

∣∣∣∣∣
ξ=L

ξ=0
+ 1− e−2Lτ

4τ
.

(D.18)

We deduce closed form solutions for other weight functions based on, for example,
trigonometric functions, although these become tedious to write out in full.



Appendix E

Normalizing decaying sinusoidal
molecules

We consider a signal F which is a molecule comprising superposed decaying sinu-
soid atoms, i.e. F : ξ 7→ ∑K

k=1 αk cos(ωkξ + ϕk) exp τkξ. To normalize this molecule
we use linearity of inner products,

〈F, F 〉 =
〈∑

k

αk cos(ωkξ + ϕk) exp τkξ,
∑

k

αk cos(ωkξ + ϕ) exp τkξ

〉
(E.1)

=
∑
j,k

αjαk 〈cos(ωjξ + ϕj) exp τjξ, cos(ωkξ + ϕk) exp τkξ〉 (E.2)

= 2
K∑

k=1

∑
j<k

αjαk 〈cos(ωjξ + ϕj) exp τjξ, cos(ωkξ + ϕk) exp τkξ〉

+
K∑

k=1
α2

k‖ cos(ωkξk + ϕk) exp−τkξk‖2. (E.3)

Using, for example, the top hat weight function v = I[0, L] we can apply (D.18)
and (7.6) to find a (lengthy) closed-form expression for this normalizing term.





Chapter 8

Conclusion

The two parts of this thesis have diverged greatly from one another in the course
of development, starting from a common origin in models for time-series data. In
the first we expounded a method for solving certain rare event estimation prob-
lems with a set of convenient assumptions which lead to nearly-automatic design
and approximate optimization of the sampling parameters. In the second we used
autocorrelation features and a stochastic simulation method to solve approxima-
tion problems in audio analysis. While we hold an abiding belief in the unity
of stochastic approximation methods for time series analysis, a synthesis of these
two parts is beyond the reach of a humble graduate thesis. For now they stand as
separate endeavours, united only by a few shared tools in probability theory. In
both these domains we demonstrate the usefulness of randomized approximations,
and as such we map tributaries of the greater river of stochastic distributional
learning. Somewhere these tributaries meet in a great confluence of Monte Carlo
methods. Now we set sail, downstream.
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