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Abstract 
 

As a dominant terrestrial ecosystem of the Earth, forest environments play profound 

roles in ecology, biodiversity, resource utilization, and management, which highlights 

the significance of forest characterization and monitoring. Some forest parameters can 

help track climate change and quantify the global carbon cycle and therefore attract 

growing attention from various research communities. Compared with traditional in-

situ methods with expensive and time-consuming field works involved, airborne and 

spaceborne remote sensors collect cost-efficient and consistent observations at global 

or regional scales and have been proven to be an effective way for forest monitoring. 

With the looming paradigm shift toward data-intensive science and the development 

of remote sensors, remote sensing data with higher resolution and diversity have been 

the mainstream in data analysis and processing. However, significant heterogeneities 

in the multi-source remote sensing data largely restrain its forest applications urging 

the research community to come up with effective synergistic strategies. 

 

The work presented in this thesis contributes to the field by exploring the potential of 

the Synthetic Aperture Radar (SAR), SAR Polarimetry (PolSAR), SAR Interferometry 

(InSAR), Polarimetric SAR Interferometry (PolInSAR), Light Detection and Ranging 

(LiDAR), and multispectral remote sensing in forest characterization and monitoring 

from three main aspects including forest height estimation, active fire detection, and 

burned area mapping.  

 



 

 

ii 
 

First, the forest height inversion is demonstrated using airborne L-band dual-baseline 

repeat-pass PolInSAR data based on modified versions of the Random Motion over 

Ground (RMoG) model, where the scattering attenuation and wind-derived random 

motion are described in conditions of homogeneous and heterogeneous volume layer, 

respectively. A boreal and a tropical forest test site are involved in the experiment to 

explore the flexibility of different models over different forest types and based on that, 

a leveraging strategy is proposed to boost the accuracy of forest height estimation. 

 

The accuracy of the model-based forest height inversion is limited by the discrepancy 

between the theoretical models and actual scenarios and exhibits a strong dependency 

on the system and scenario parameters. Hence, high vertical accuracy LiDAR samples 

are employed to assist the PolInSAR-based forest height estimation. This multi-source 

forest height estimation is reformulated as a pan-sharpening task aiming to generate 

forest heights with high spatial resolution and vertical accuracy based on the synergy 

of the sparse LiDAR-derived heights and the information embedded in the PolInSAR 

data. This process is realized by a specifically designed generative adversarial network 

(GAN) allowing high accuracy forest height estimation less limited by theoretical 

models and system parameters. Related experiments are carried out over a boreal and 

a tropical forest to validate the flexibility of the method. 

An automated active fire detection framework is proposed for the medium resolution 

multispectral remote sensing data. The basic part of this framework is a deep-learning-

based semantic segmentation model specifically designed for active fire detection. A 

dataset is constructed with open-access Sentinel-2 imagery for the training and testing 
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of the deep-learning model. The developed framework allows an automated Sentinel-

2 data download, processing, and generation of the active fire detection results through 

time and location information provided by the user. Related performance is evaluated 

in terms of detection accuracy and processing efficiency. 

The last part of this thesis explored whether the coarse burned area products can be 

further improved through the synergy of multispectral, SAR, and InSAR features with 

higher spatial resolutions. A Siamese Self-Attention (SSA) classification is proposed 

for the multi-sensor burned area mapping and a multi-source dataset is constructed at 

the object level for the training and testing. Results are analyzed by different test sites, 

feature sources, and classification methods to assess the improvements achieved by 

the proposed method.  

 

All developed methods are validated with extensive processing of multi-source data 

acquired by Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Land, 

Vegetation, and Ice Sensor (LVIS), PolSARproSim+, Sentinel-1, and Sentinel-2. I 

hope these studies constitute a substantial contribution to the forest applications of 

multi-source remote sensing. 
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Chapter 1 Introduction 

1.1 Scientific Relevance and Motivation 

Forest are distributed throughout the world as the dominant terrestrial ecosystem of 

the Earth. The State of the World’s Forests 2020 reported that almost 31% of the global 

land area is covered by forests providing habitats for 80% of amphibian species, 75% 

of bird species, and 68% of mammal species (FAO, 2020). Besides that, by converting 

carbon dioxide into oxygen and biomass, forests are acting as a carbon sink to mitigate 

climate change (Kiat et al., 2020, Xu et al., 2020). In the past decades, deforestation 

and forest degradation continue to take place at alarming rates because of human 

activities such as agriculture, mining, infrastructure, and urban expansion (Van Khuc 

et al., 2018), which have caused significant decreases in biodiversity and negative 

carbon emission (Binzaid, 2020). On the one hand, human-wildlife conflicts will occur 

when the natural balance is disrupted by habitat losses. The interaction between 

humans and wildlife increases the exposure and risk of people to zoonotic diseases 

such as malaria, Chagas disease, African trypanosomiasis, leishmaniasis, Lyme 

disease, HIV, Ebola, and also the recent COVID-19 pandemic (Austin, 2020, 

Tollefson, 2020). On the other hand, deforestation and forest degradation weaken the 

ability of forests in capturing and storing carbon and thus increase the potential of 

climate change (Withey et al., 2019). The duration of fire season and the occurrence 

of catastrophic fires are significantly increased by the extreme weather, which turns 

into a huge threat to life and property (Jones et al., 2020). The large amounts of smoke 

and ash produced by the wildfire can impact human health by triggering lung disease 
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and the burned areas left behind are susceptible to extreme rainfalls and more likely 

to cause landslides and mudslides (Xu et al., 2020). In a word, a sustainable forest 

ecology is critical to human society and the natural environment, and therefore the 

global monitoring and management attract a lot of research.  

 

As an effective approach in pressing environmental challenges and driving solutions, 

remote sensing techniques have been widely applied in forest ecology (Goswami et 

al., 2020, Lechner et al., 2020). The physical parameters, three-dimensional structures, 

and spatial distributions of forest ecosystems can be efficiently estimated through the 

reflected and released electromagnetic radiation collected by sensors onboard airborne 

and spaceborne platforms without direct contact with the Earth’s surface (Luo et al., 

2019, Yao et al., 2019). Compared with traditional in-situ methods with expensive and 

time-consuming field works involved, the spaceborne and airborne remote sensors can 

provide consistent and cost-efficient observations at the regional or/and global scales. 

With the rapid advancement in the associated sensors, remote sensing data with better 

spatial, temporal, spectral, or radiance resolution are continuously captured to support 

applications in weather, agriculture, forest ecosystems, water resources, and marine 

sciences (Cui et al., 2019, Shanmugapriya et al., 2019, Watt et al., 2019). The 

continuous upgrade of remote sensing systems inevitably benefits the development of 

related data processing algorithms. At the earlier stage, researchers are dedicated to 

extracting environmental parameters based on physical models, which largely rely on 

prior knowledge and exhibit great uncertainties in the various physical processes and 

imaging scenarios (Yuan et al., 2020). Hence, the looming paradigm shift toward data-

intensive science like Machine Learning (ML) especially Deep Learning (DL) (Zhu et 
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al., 2017). In the past few years, with the increasing availability of Earth’s big data, 

various ML or/and DL methods (Zhang et al., 2016a, Yuan et al., 2020) have achieved 

significant success in various remote sensing tasks. However, new challenges emerge 

when applying the ML or DL methods to remote sensing data because they are often 

multimodal, geolocated, quality controlled, and time-varying. These characteristics of 

remote sensing data urge scientists to further explore the potential and tackle the 

challenge of applying ML and DL methods for different scientific purposes. 

1.2 Research Objective and Thesis Outline 

1.2.1 Research Object 

The general goal of this thesis is the optimum exploitation of SAR, InSAR, PolSAR, 

PolInSAR, LiDAR, and multi-spectral remote sensing for forest characterization and 

monitoring from three main aspects including the forest height estimation, active fire 

detection, and burned area mapping. In normal conditions, the focuses are mainly on 

forest height estimation using PolSAR, PolInSAR, or/and LiDAR products to provide 

a key indicator of forest productivity and biomass level. During a wildfire, research is 

dedicated to active fire detection based on multi-spectral acquisitions to extract timely 

and effective geolocation information of the burning fires. After the fire event, studies 

on the burned area mapping with the synergy of SAR, InSAR, and multi-spectral data 

can help to evaluate biomass losses, manage post-fire policies, and prevent secondary 

disasters. Since different sources of remote sensing data are involved in different forest 

applications, multiple data processing strategies need to be deployed to boost accuracy. 

 



 

 

4 
 

First of all, prior studies have been dedicated to estimating the canopy height through 

a series of model-based methods using PolInSAR data. Although physical models can 

effectively express the formation process from forest parameters to related PolInSAR 

observations, the forest parameter inversion performance exhibits a strong dependency 

on the prior knowledge of model parameters, imaging scenarios, and data acquisition 

configurations. This dependency brings uncertainties into the large-scale or long-term 

forest height inversion because the physical and imaging process varies with different 

regions and times. Therefore, the forest height inversion performance of models with 

different structural and physical characteristics needs to be evaluated in conditions of 

different imaging scenarios and data acquisition configurations. On basis of that, the 

ultimate goal is to achieve confidence forest height measurements for PolInSAR data 

by taking advantage of different physical models. 

 

Though efforts have been placed on improving the performance of model-based forest 

height inversion using PolInSAR data. Limitations still exist because, in a SAR image, 

3D radar reflectivity is projected into an azimuth-range domain where the forest height 

information is compressed in the complex pixel values. Though physical models offer 

prior knowledge for the forest height inversion, it is still hard for them to fully describe 

the physical process with high complexity, which will inevitably limit the accuracy of 

PolInSAR-based forest height inversion. Compared with PolInSAR, LiDAR measures 

the forest height more intuitively and thus provides height metrics with higher vertical 

accuracy. However, LiDAR samples are normally with lower spatial densities and thus 

unable to reveal the spatial details of height. Therefore, the goal is to develop a fusion 

algorithm to generate forest height estimates with higher spatial resolution and vertical 
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accuracy using PolSAR, PolInSAR, and LiDAR data. As a natural candidate to tackle 

the challenge in remote sensing data fusion, a deep neural network (DNN) is employed 

to complete this fusion task. 

 

As to active fire detection, most prior studies take advantage of thermal infrared and 

mid-infrared bands with coarse spatial resolutions. However, the background radiance 

in coarse resolution pixels tends to overwhelm signals from subtle fires making it hard 

to reveal active fires with more spatial details. Hence, further efforts have been placed 

on active fire detection using medium-resolution multispectral data, where active fires 

exhibit sharp contrast with the background in the shortwave infrared (SWIR) and red 

false-color composite. By formulating active fire detection as a semantic segmentation 

task, different deep-learning-based models can be applied. The goal is to compare the 

detection performance of different segmentation models and adjust the architecture of 

DNN to make it more suitable for fire detection. Besides that, an automated active fire 

detection framework is constructed on the developed model for its further application 

on global monitoring. 

 

The capability of medium-resolution multispectral data on burned area mapping has 

been evidenced in prior studies. However, the exclusive use of multispectral data for 

burned area mapping will be limited by solar illumination, weather condition, and 

spectral confusion. In this regard, the potentials of SAR and InSAR techniques on 

burned area mapping have also been explored because the active microwave has better 

penetration through the cloud coverage and less dependency on the weather condition. 

However, marginal improvements have been achieved by the synergy of the radar 
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backscatter coefficient (BS) and surface reflectance (SR) over cloud-free areas. The 

goal is to explore whether improvements in burned area mapping can be achieved 

through the synergy of SR, BS, and interferometric coherence (COR). As an effective 

tool to address challenges in multi-source feature extraction and fusion, a DNN is used 

to complete this task. 

1.2.2 Thesis Outline 

Chapter 3 describes a dual-baseline model-based method to extract forest height from 

airborne L-band repeat-pass PolInSAR data. Volumetric and temporal decorrelations 

with homogeneous and heterogenous descriptions are employed in the physical model 

to explore the potential of different structural and physical characteristics in the forest 

height inversion. PolInSAR data collected in repeat-pass dual-baseline configurations 

are used to address the underdetermined problem between coherence observations and 

forest parameters and a leveraging strategy is used to effectively utilize the advantages 

of different descriptions in the physical model.  

 

Chapter 4 depicts a deep-learning-based unsupervised forest height estimation method 

based on the synergy of L-band repeat-pass PolInSAR and sparse large-footprint full-

waveform LiDAR data. By reformulating the forest height inversion process as a pan-

pansharpening task between the sparse LiDAR height and the high-resolution PolSAR 

and PolInSAR features, forest height estimates with high spatial resolution and vertical 

accuracy can be generated by a tailored PolGAN model with one generator and two 

discriminators. Shape, texture, and other spatial information embedded in high-spatial-

resolution features are effectively utilized by the Convolutional Neural Network (CNN) 
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in the proposed architecture and the dependency of forest height inversion on physical 

models is significantly reduced. Contents in this chapter have been summarized and 

submitted to the ISPRS Journal of Photogrammetry and Remote Sensing. 

 

Chapter 5 develops an automated active fire detection framework for the Sentinel-2 

imagery. The basic part of the framework is an active fire detection module built on a 

DCPA (Dual-domain Channel-Position Attention)+HRNetV2 model and a dataset 

with semi-manually annotated active fire samples are constructed for the training and 

testing. Concepts in this framework can be further applied to remote sensing data in 

SWIR and Red ranges and serve as a cost-efficient resource in support of governments 

and fire service agencies that need timely firefighting plans. Contents in this chapter 

have been published to the Remote Sensing. 

 

Chapter 6 investigates if the existing coarse burned area mapping products derived 

from the exclusive use of SR acquisitions can be further improved by the synergy of 

SR, BS, and/or COR data with higher spatial resolutions. An SSA classification is 

proposed for the multi-sensor burned area mapping and a multi-source dataset is 

constructed at the object level for training and testing. Contents in this chapter have 

been published in the Remote Sensing of Environment (Zhang et al., 2021a).  
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Chapter 2 Background 

This chapter presents an overview of the multi-source remote sensing techniques used 

in the study (SAR and optical) along with a brief introduction of related deep-learning-

based algorithms. 

 2.1 Radar Remote Sensing 

2.1.1 Synthetic Aperture Radar 

As an active imaging sensor working in the microwave portion of the electromagnetic 

spectrum, SAR maps scattering properties of the Earth’s surface almost independently 

on natural illuminations and weather conditions (Curlander and McDonough, 1991). 

SAR sensors transmit frequency-modulated pulsed waveforms (the chirp signal with 

a constant amplitude and an instantaneous frequency linearly varying over time) and 

receive the scattered echoes from the imaging target. This transmission and reception 

process is repeated every pulse repetition interval, which is equivalent to the reciprocal 

of the pulse repetition frequency (Richards, 2009). The typical SAR imaging geometry 

is presented in Figure 2.1, where the platform moves along the azimuth direction and 

views the ground target in a slant range direction perpendicular to the flight path. The 

swath width gives the ground-range extent of the radar scene. 

 

The received raw SAR data need to be further processed to present useful information 

on the scenario. This is accomplished by compressing the two-dimensional complex 

echo signals with two separate matched filtering operations in the range and azimuth 

directions. Other processings like thermal noise removal, speckle reduction, geometric 
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and radiometric calibrations are also needed for the further applications of SAR data, 

which will not be presented in detail in this thesis but readers can refer to prior studies 

in (Curlander and McDonough, 1991, Fitch, 2012, Moreira et al., 2013, Ferro-Famil 

and Pottier, 2016) for more information.  

 

Figure 2.1 SAR imaging geometry. 

 

The history of SAR started in 1951 when the Goodyear Aircraft company first brought 

up the concept. In 1978, the launch of the world’s first spaceborne SAR called SeaSAT 

was conducted by the Jet Propulsion Laboratory (JPL) marking a successful entry of 

SAR into space. Several notable missions have been conducted since then including 
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ERS-1/2 satellites launched by the European Space Agency (ESA) in 1991 and 1995, 

JERS-1 launched by Japan Aerospace Exploration Agency (JAXA) in 1992, Radarsat-

1/2 satellites launched by the Canadian Space Agency (CSA) in 1995 and 2007, 

Envisat satellite launched by ESA in 2002, ALOS satellite launched by JAXA in 2006, 

COSMO-SkyMed constellation with four satellites launched by the Italian Space 

Agency (ISA) from 2007 to 2010, TerraSAR-X/TanDEM-X satellites launched by the 

German Aerospace Centre (DLR) in 2007 and 2010, ALOS-2 satellite launched by 

JAXA in 2014, Sentinel-1A/B satellites launched by ESA in 2014 and 2016, Radarsat 

constellation with three satellites launched by CSA in 2019 (Lavalle, 2009). Recently, 

small satellite SAR technologies have been developed at a dramatic pace since the 

launch of the world’s first SAR satellite under 100 kg (ICEYE-X1) in 2018 attracting 

several commercial companies such as the ICEYE, Capella Space, and UrtheCast to 

deploy and design small satellite constellation for high-quality, informative, and near-

real-time earth observation in the future. Besides that, large SAR satellite missions are 

also planned by space agencies and companies, like TanDEM-L, ROSE-L, ALOS-4, 

etc. The more and more advanced techniques extended SAR acquisitions into multi-

polarization, multi-frequency, and multi-baseline to discern the geophysical properties 

of the target, which boosted the development of successive techniques like PolSAR, 

InSAR, PolInSAR, and SAR Tomography (TomoSAR).  

 

2.1.2 Synthetic Aperture Radar Polarimetry 

The introduction of electromagnetic wave polarization provides SAR systems with the 

capability to explore a complete description of propagation and scattering phenomena. 

Instead of the scattering scalar in single-polarimetric SAR, PolSAR offers a scattering 
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matrix observation 𝑺𝑺 allowing to construct a powerful feature space that is sensitive 

to shape, orientation, and dielectric properties of the scatterers and to develop physical 

models for the identification and separation of different scattering mechanisms in the 

same resolution cell (Moreira et al., 2013). 𝑺𝑺 is acquired by transmitting microwave 

energy interleaved in the horizontal (H) and vertical (V) polarizations and recording 

scattered waves received in the two polarizations simultaneously. Other orthogonal 

polarization bases can also be used to measure the scattering matrix indicating that 

information embedded in 𝑺𝑺  is independent of the orthogonal polarization bases. 

Accordingly, the scattering matrix of arbitrary polarization bases can be reconstructed 

through the linear combination of the elements in 𝑺𝑺 (van Zyl, 2011). 

𝑺𝑺 = �𝑆𝑆𝐻𝐻𝐻𝐻 𝑆𝑆𝐻𝐻𝐻𝐻
𝑆𝑆𝑉𝑉𝑉𝑉 𝑆𝑆𝑉𝑉𝑉𝑉

� (2.1) 

In monostatic configurations with co-located receiver and transmitter, 𝑺𝑺 is symmetric 

(𝑆𝑆𝐻𝐻𝐻𝐻 = 𝑆𝑆𝑉𝑉𝑉𝑉) for all reciprocal scattering media. Although the deterministic (point-like) 

scatterers can be fully described by 𝑺𝑺, it does not apply to distributed scatterers made 

up of randomly distributed scattering elements. Therefore, second-order statistical 

formalisms like coherency 𝑻𝑻 and covariance 𝑪𝑪 matrices are used to fully characterize 

the polarimetric scattering behavior of distributed scatterers.  

𝑻𝑻 = 〈𝑘𝑘�⃗ 𝑃𝑃𝑘𝑘�⃗ 𝑃𝑃
†〉 = �

𝑇𝑇11
𝑇𝑇12∗
𝑇𝑇13∗

 
𝑇𝑇12
𝑇𝑇22
𝑇𝑇23∗

 
𝑇𝑇13
𝑇𝑇23
𝑇𝑇33

� , with 𝑘𝑘�⃗ 𝑃𝑃 =
1
√2

�
𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉
𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉

2𝑆𝑆𝐻𝐻𝐻𝐻
� (2.2) 

𝑪𝑪 = 〈𝑘𝑘�⃗ 𝐿𝐿𝑘𝑘�⃗ 𝐿𝐿
†〉 = �

𝐶𝐶11
𝐶𝐶12∗
𝐶𝐶13∗

 
𝐶𝐶12
𝐶𝐶22
𝐶𝐶23∗

 
𝐶𝐶13
𝐶𝐶23
𝐶𝐶33

� , with 𝑘𝑘�⃗ 𝐿𝐿 = �
𝑆𝑆𝐻𝐻𝐻𝐻
√2𝑆𝑆𝐻𝐻𝐻𝐻
𝑆𝑆𝑉𝑉𝑉𝑉

� (2.3) 

 𝑘𝑘�⃗ 𝑃𝑃 and  𝑘𝑘�⃗ 𝐿𝐿 are 3×1 scattering vectors in the Pauli and Lexicographic reformulations. 
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These polarimetric statistical characteristics have been widely used for terrain and land 

classification and segmentation based on scattering features extracted by polarimetric 

decomposition algorithms. For example, the scattering matrix is divided into dihedral, 

sphere, and helix scattering components in the Krogager algorithm (Krogager, 1990), 

the coherency matrix is decomposed using a four-component strategy (surface, double 

bounce, volume, and helix) in the Yamaguchi algorithm (Yamaguchi et al., 2011), and 

the covariance matrix is decomposed as a combination of the first-order Bragg surface, 

the canopy with randomly oriented dipoles, and the double-bounce scatter in Freeman 

decomposition (Freeman and Durden, 1998). Other methods including Cloude, Vanzyl, 

Huynen, H/A/Alpha, etc., have also been proposed for the polarimetric decomposition 

with their unique pros and cons (Lee and Pottier, 2017). 

 

2.1.3 Synthetic Aperture Radar Interferometry 

SAR interferometry is an imaging technique developed based on SAR for measuring 

the topography of a surface and/or its changes over time (Rosen et al., 2000). The basic 

principle of InSAR is to measure the phase difference between two or more complex 

radar images for a given scenario obtained by antennas at slightly different positions 

or/and at different times. Since this range information embedded in the phase of each 

SAR pixel is accurate to a small fraction of the radar wavelength, InSAR is possible 

to measure the surface topography and to detect the tiny path changes with centimetric 

or millimetric accuracy independent of the distance between the sensor and the scene. 

Principles of across-track InSAR for topographic mapping are similar to the traditional 

stereoscopic approach, where echos received by two mutually displaced antennas are 

coherently combined to extract the interferometric phase. The interferometric phase is 
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directly related to the difference between two geometric path lengths from the antenna 

to the target which can be further converted into the altitude of the target. In essence, 

the interferometric phase provides measurement in a third dimension in addition to the 

along- and cross-track location of the target allowing for a three-dimensional (3D) 

reconstruction of the topography (Bamler and Hartl, 1998). Changes of the target can 

be measured by the along-track or differential InSAR (Goldstein and Zebker, 1987, 

Ferretti et al., 2000, Reigber and Scheiber, 2003). Along-track InSAR observations 

are acquired in the same flight trajectory and imaging geometry but at different times. 

In this condition, changes of the SAR system clock, variable propagation delay, or/and 

surface motion in the direction of the radar line of sight can be measured by the phase 

differences of SAR pixels. SAR images used for differential InSAR are acquired with 

temporal and across-track separations at the same time, and thus contain information 

on both the topography and temporal changes (Moreira et al., 2013). The topographic 

component can be subtracted from the interferometric phase using an external DEM 

leading to a differential InSAR measurement sensitive to subtle changes of the range 

distance. 

2.1.4 Polarimetric Synthetic Aperture Radar Interferometry 

PolInSAR is developed by a coherent combination of InSAR and PolSAR supporting 

radar acquisitions sensitive to both physical and vertical properties of the scattering 

medium (Papathanassiou et al., 1998, Papathanassiou and Cloude, 2001). When a fully 

polarimetric coherent radar system observes the natural medium from two slightly 

different look angles at separated times as shown in Figure 2.2 PolInSAR imaging 
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geometry., two complex scattering matrices, 𝑺𝑺𝟏𝟏 and 𝑺𝑺𝟐𝟐, related to the backscattered 

energy from the imaged scene will be obtained.  

 

Figure 2.2 PolInSAR imaging geometry. 

 

The scattering matrices are then vectorized into two Pauli vectors  𝑘𝑘�⃗ 𝑃𝑃𝑖𝑖 to further obtain 

the second-order statistical matrices of PolInSAR. 

 𝑘𝑘�⃗ 𝑃𝑃𝑖𝑖 =
1
√2

�
𝑆𝑆𝑖𝑖𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑖𝑖𝑉𝑉𝑉𝑉
𝑆𝑆𝑖𝑖𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑖𝑖𝑉𝑉𝑉𝑉

2𝑆𝑆𝑖𝑖𝐻𝐻𝑉𝑉
� , with 𝑖𝑖 = 1,2 (2.4) 

𝑻𝑻𝟏𝟏𝟏𝟏 = 〈𝑘𝑘�⃗ 𝑃𝑃1𝑘𝑘�⃗ 𝑃𝑃1
† 〉,𝑻𝑻𝟐𝟐𝟐𝟐 = 〈𝑘𝑘�⃗ 𝑃𝑃2𝑘𝑘�⃗ 𝑃𝑃2

† 〉,𝜴𝜴𝟏𝟏𝟏𝟏 = 〈𝑘𝑘�⃗ 𝑃𝑃1𝑘𝑘�⃗ 𝑃𝑃2
† 〉 (2.5) 
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where 𝑻𝑻𝟏𝟏𝟏𝟏 and 𝑻𝑻𝟐𝟐𝟐𝟐 are 3×3 hermitian coherency matrices describing the polarimetric 

properties of each image and 𝜴𝜴𝟏𝟏𝟏𝟏 is a 3×3 non-hermitian complex matrix containing 

both polarimetric and interferometric information. 

 

Finally, a general expression for the estimation of complex interferometric coherence 

can be derived from the second-order statistical matrices above. 

𝛾𝛾 =
〈𝜔𝜔��⃗ 1

†𝜴𝜴𝟏𝟏𝜔𝜔��⃗ 2〉
〈𝜔𝜔��⃗ 1

†𝑻𝑻𝟏𝟏𝟏𝟏𝜔𝜔��⃗ 1〉〈𝜔𝜔��⃗ 2
†𝑻𝑻𝟐𝟐𝟐𝟐𝜔𝜔��⃗ 2〉

= |𝛾𝛾|exp(𝑗𝑗𝑗𝑗) (2.6) 

where 𝜔𝜔��⃗ 1 and 𝜔𝜔��⃗ 2 are the complex unitary vectors for an arbitrary choice of scattering 

mechanism, 𝜙𝜙 is the expected interferometric phase, |𝛾𝛾| is the coherence magnitude. 

The estimated PolInSAR coherence mainly depends on decorrelations from thermal 

noise 𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆, baseline 𝛾𝛾𝑏𝑏, volume 𝛾𝛾𝑣𝑣𝑣𝑣𝑣𝑣, and temporal changes 𝛾𝛾𝑡𝑡.  

𝛾𝛾 = 𝛾𝛾𝑆𝑆𝑁𝑁𝑁𝑁𝛾𝛾𝑏𝑏𝛾𝛾𝑣𝑣𝑣𝑣𝑣𝑣𝛾𝛾𝑡𝑡 (2.7) 

 

A thermal noise decorrelation is a real number only affecting the coherence magnitude 

and can be calculated by the signal-to-noise ratio (SNR) of the radar system (Fore et 

al., 2015). 

𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆 =
1

1 − 𝑆𝑆𝑆𝑆𝑅𝑅−1
, with 𝑆𝑆𝑆𝑆𝑅𝑅 =

𝜎𝜎0
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(2.8) 

where, 𝜎𝜎0  is the normalized measure of the radar return from a distributed target and 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 represents the sensitivity of the radar system to areas with low radar backscatter. 

 

Baseline decorrelation contains a range and an azimuth spectral decorrelation derived 

from the slightly different incidence angles and Doppler centroids. Both contributions 

can be compensated by the so-called common spectral band filtering (Moreira et al., 
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2013). The volumetric and temporal decorrelations are directly related to the vertical 

structure, temporal stability, and physical property of the scattering medium and have 

been widely applied to extract the vertical scattering reflectivity and temporal change 

profiles, especially over the forest area. Further details on the PolInSAR-based forest 

characterization and its state-of-art are provided in Chapter 3. 

 

2.2 Optical Remote Sensing 

2.2.1 LiDAR 

Besides PolInSAR, LiDAR is also an effective active remote sensing technique well 

suited for forest characterization as it provides high-resolution information on vertical 

and horizontal vegetation structures and ground topography. LiDAR systems work at 

the near-infrared region of the electromagnetic spectrum measuring distances between 

the sensor and targets based on half the elapsed time between the emission of a pulse 

and the detection of the reflected returns (Wulder et al., 2012). LiDAR systems can be 

distinguished by the platform type (terrestrial, airborne, or spaceborne), footprint size 

(small or large), signal recording mode (discrete return or full-waveform), and sample 

scanning pattern (profiling or scanning). Large footprint profilers illuminate the target 

with circles in diameters from 10 to 25 m, whereas the diameters of the small footprint 

systems are much smaller (<1 m). Discrete systems record a single or multiple returned 

peaks, but full-waveform systems digitize the entire reflected energy. Profiling LiDAR 

instruments are usually used to measure the static or dynamic attributes of the forest 

at regional or/and global scales through sampling the vertical information over a swath 

width equal to the antenna footprint diameter, whereas the scanning LiDAR distributes 
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multiple pulses across a swath width providing vertical structures at stand level (Petrie 

and Toth, 2018).  

 

The most commonly used LiDAR systems in forestry applications are small-footprint 

discrete return and large-footprint full-waveform LiDAR (Silva et al., 2018). The high 

sampling density of the small-footprint system provides accurate vertical and spatial 

information on individual trees, which are further used to estimate the stem density 

and timber volume, model wildfire behavior, and identify tree species (Nayegandhi et 

al., 2006). However, small-footprint systems require extensive flights to cover large 

areas and the small-diameter beams are more likely to miss the tops of trees. Therefore, 

large-footprint LiDAR increases the footprint size to the approximate crown diameter 

of a canopy-forming tree so that the laser energy consistently reaches the ground even 

in dense forests. The higher flying altitudes of large-footprint systems also enable a 

wider imaging swath and hence reduce the cost of mapping large areas.  

 

Early LiDAR measurements were acquired by ground-based platforms in the 1960s 

following by the first flight on small aircraft in 1969 and on large aircrafts capable of 

the long-range measurements in the late 1970s. However, airborne LiDAR is usually 

limited by spatial coverage and high cost and hence is hard to apply to the regional or 

global scales. The first spaceborne LiDAR experiment was conducted using a shuttle 

in 1994. After that, long-duration spaceborne low-earth-orbit missions including the 

Ice, Cloud, and land Elevation Satellite (ICESat), ICESat-2, and the Global Ecosystem 

Dynamics Investigation (GEDI) were successively deployed in 2003 and 2018 (Schutz 

et al., 2005, Abdalati et al., 2010, Hancock et al., 2019), respectively. The development 
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of spaceborne LiDAR systems aims to generate a grid of the world’s surface profiles 

by reducing the spatial sampling density.  

2.2.2 Multispectral 

Multispectral techniques have been widely applied in forest characterization since the 

launch of the first Landsat Multispectral Scanner (MSS) System in 1972. Unlike active 

SAR and LiDAR, multispectral remote sensors normally operate in the passive mode 

imaging the Earth’s surface by detecting radiations reflected or/and emitted from the 

ground target. Passive multispectral remote sensing relies on two sources of radiation, 

visible, near-infrared, and shortwave infrared (VNIR-SWIR) radiation originated from 

the sun and thermal infrared (TIR) radiation emitted by materials on the Earth. This 

thesis mainly focuses on the applications of VNIR-SWIR radiation and hence a brief 

introduction will be carried out in this aspect. The VNIR-SWIR radiations at different 

locations of the electromagnetic spectrum are measured by the average reflected 

energy in a small spectral interval captured by multispectral sensors. Distinct spectral 

bands related to specific characteristics of the target are recorded simultaneously to 

form the multispectral observation. For instance, reflection characteristics in the range 

of 2 μm to 2.5 μm may give information about the mineral composition of the soil and 

the combined reflection characteristics of the red and near-infrared bands may indicate 

the biomass and health of vegetation. Inevitably, VNIR-SWIR bands are with a weaker 

penetration through the thick cloud and a stronger dependency on the solar illustration 

and weather conditions compared with the TIR bands (Schowengerdt, 2006, Xie et al., 

2008). 
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Landsat has the longest history and widest use in the multispectral Earth’s observation 

from space. Besides the first Landsat 1 launched in 1972, a series of Landsat missions 

from the Landsat 2 in 1975 to the Landsat 8 in 2013 has been successfully deployed 

and continuously delivered high-quality global observations for almost 50 years. The 

upcoming Landsat 9 satellite is being developed to replicate its predecessor Landsat 8 

carrying more sophisticated Operational Land Imager 2 (OLI–2) and Thermal Infrared 

Sensor 2 (TIRS-2) (Masek et al., 2020). Landsat data collected by the MSS, Thematic 

Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), OLI, and TIRS cover a wide 

range on the electromagnetic spectrum in a medium spatial resolution from 15m to 

100m and thus able to provide various spectral characteristics of the Earth’s surface. 

Besides Landsat, the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) on Terra and Multispectral Instrument (MSI) on Sentinel-2A/B 

also capture multispectral observations in a medium spatial resolution. Terra has a 

repeat cycle of 16 days (same as Landsat satellites) providing ASTER imagery of 14 

bands with spatial resolutions of 15m in VNIR, 30m in SWIR, and 90m in TIR. The 

Sentinel-2 constellation operates in a shared sun-synchronous orbit with a repeat cycle 

of 10 days for one satellite and 5 days for two offering MSI imagery in 13 bands with 

spatial resolutions ranging from 10m to 60m. Medium spatial resolution acquisitions 

have been widely used for forest characterization at local and/or regional scales. 

Multispectral data acquired by coarse resolution sensors such as the Advanced Very 

High-Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) have been widely applied to study regional or/and global 

vegetation distributions and conditions in ecosystems. MODIS sensors onboard Terra 

and Aqua together can map the entire Earth every 1 to 2 days with observations in 36 
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spectral bands. AVHRR has an image archive of 43 years and therefore is very useful 

to study long-term changes in the vegetation (Xie et al., 2008). Observations with 

higher spatial resolutions of less than 5m are usually acquired by commercial satellites 

such as IKONOS, QuickBird, Worldview, Pleiades, Planetscope, and KOMPSAT, etc. 

Compared with medium and coarse resolution imagery, much more details of the Earth 

are revealed in these high-resolution observations and are widely used to characterize 

individual trees or vegetations in a small area. 

2.3 Deep-learning-based Image Processing 

2.3.1 Segmentation 

By breaking down the digital image into segments with simplified representations, the 

segmentation process aims to provide a reformulated image easier for further analysis 

and interpretation. There are two groups of image segmentation, semantic and instance. 

Semantic segmentation associates every pixel of an image with a class label and treats 

multiple objects of the same class as a single entity. Instance segmentation also assigns 

a class label to each pixel of an image except that it treats multiple objects of the same 

class as individual entities. As a fundamental problem in computer vision, numerous 

segmentation algorithms have been proposed since the earliest days of the field, which 

includes the histogram-based method (Ohlander et al., 1978), thresholding (Otsu, 

1979), watershed (Najman and Schmitt, 1994), compression (Mobahi et al., 2011), k-

means clustering (Dhanachandra et al., 2015), region growing (Nock and Nielsen, 

2004), active contour (Kass et al., 1988), graph cuts (Boykov et al., 2001), Markov 

random fields (Plath et al., 2009), and the sparsity-based methods (Starck et al., 2005). 

Until recently, the success of deep-learning-based models in computer vision has 
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brought new momentum to this field. Since all forest applications in this thesis treat 

the same-class objects as a single entity, a brief introduction of the deep-learning-

based semantic segmentation methods is included in this section.  

 

As the milestone in deep-learning-based semantic segmentation, Fully Convolutional 

Network (FCN) (Long et al., 2015) includes only convolutional layers as presented in 

Figure 2.3(a) allowing the network to take images of arbitrary size as the input. Feature 

maps from final layers are upsampled and fused with those of the earlier layers through 

skip connections for the multiscale inference. To efficiently account for the potentially 

useful scene-level semantic contexts, probabilistic graphical models like Conditional 

Random Field and Markov Random Field are incorporated into the deep convolutional 

neural network (DCNN) (Chen et al., 2014, Liu et al., 2015) as indicated in Figure 

2.3(b). Besides that, several popular DCNN-based segmentation models are designed 

based on the encoder-decoder architecture, which learns to map data points from an 

input domain to an output domain via a two-stage network as shown in Figure 2.3(c). 

The encoder compresses high-dimensional inputs into low-dimensional latent-space 

representations to capture useful semantic contents, while the decoder predicts pixel-

wise class probabilities based on these low-dimensional features. Examples of the 

encoder-decoder-based segmentation include DeConvNet (Noh et al., 2015), U-Net 

(Ronneberger et al., 2015), and SegNet (Badrinarayanan et al., 2017). One limitation 

in the encoder-decoder-based methods is the loss of fine-grained information at the 

encoding stage. HRNet (Wang et al., 2020) is proposed to address this problem, where 

high-resolution representations are maintained by repeated information exchanging 

among high and low-resolution convolution streams. Multiscale analysis has also been 
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used in the DCNN-based semantic segmentation. Typical examples are Laplacian 

Pyramid Reconstruction and Refinement (Ghiasi and Fowlkes, 2016), Pyramid Scene 

Parsing Network (Zhao et al., 2017), and Feature Pyramid Network (Lin et al., 2017). 

Multiscale features are better integrated for semantic segmentation with the feature 

pyramid originated from the inherent multiscale and pyramidal hierarchy of DCNNs. 

Figure 2.3(d) presents the architecture of PSPN. By introducing a dilation rate into the 

convolution layer, the receptive field of a kernel can be enlarged without introducing 

additional parameters and computational losses. Hence, dilation convolution models 

are widely applied to real-time segmentation including DeepLab family (Chen et al., 

2017) and densely connected Atrous Spatial Pyramid Pooling (Yang et al., 2018). The 

architecture of the mostly used DeepLabV3+ model is shown in Figure 2.3(e). The 

attention mechanisms allow models to evaluate the importance of features from 

different positions and scales and to capture rich contextual dependencies by assigning 

different weights. It has also been deployed in DCNN-based models such as Object 

Context Network (Yuan et al., 2018b), Pyramid Attention Network (Li et al., 2018), 

and Dual Attention Network (Fu et al., 2019) for the semantic segmentation. Besides 

CNN, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and 

Transformer architectures commonly used in sequential data processing have also 

been applied in semantic segmentation (Byeon et al., 2015, Zheng et al., 2021).  
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(d) 

 

(e) 
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(g) 

 
(h) 

Figure 2.3 Deep-learning models for images segmentation: (a) FCN (Long et al., 

2015); (b) CNN+Conditional Random Field (Chen et al., 2014); (c) SegNet 

(Badrinarayanan et al., 2017); (d) Pyramid Scene Parsing Network (Zhao et al., 

2017); (e) DeepLabV3+ (Chen et al., 2018); (f) Dual Attention Network (Fu et al., 

2019); (g) Graph-LSTM (Liang et al., 2016); (h) Segmentation Transformer (Zheng 

et al., 2021). 
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2.3.2 Pan-sharpening 

As a special instance of the more general problem of super-resolution, pan-sharpening 

aims to improve the low-spatial-resolution image by fusing with the data characterized 

by sharper spatial information. This field is dominated by works on the multispectral, 

thermal, or hyperspectral data with a panchromatic band. The earlier pan-sharpening 

techniques include component substitution, multi-resolution analysis, and model-

based methods. Component substitution methods transform the low-spatial-resolution 

image into a suitable domain, where one of the components is replaced by the high-

spatial-resolution panchromatic image (Dou et al., 2007). After upsampling the other 

components, the whole set is back-transformed into the original domain. Component 

substitution methods such as principal component analysis (Kwarteng and Chavez, 

1989) and intensity-hue-saturation transform (Tu et al., 2001) are simple and easy to 

be implemented. Multi-resolution analysis methods like Laplacian pyramid (Aiazzi et 

al., 2002), discrete wavelet transform (Pradhan et al., 2006), curvelets (Ghahremani 

and Ghassemian, 2015) extract high-frequency details from the panchromatic images 

and inject them into the upsampled low-spatial-resolution images. These methods 

have better spectral fidelity than the projection substitution ones, while may exhibit 

spatial distortion and lower visual quality in the fused data. The model-based methods 

reformulate the pan-sharpening as an inverse problem and restore the high-spatial-

resolution image from the degraded panchromatic and low-spatial-resolution images 

by resorting to some optimization procedures. Typical examples are the Bayesian 

method (Fasbender et al., 2008, Zhang et al., 2009) and the compressed sensing 

method (Zhu and Bamler, 2012, Zhu et al., 2015).   
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Recently, deep-learning has been adopted to address the challenges in pan-sharpening 

inspired by the great success achieved in image super-resolution. A CNN-based Pan-

sharpening (PNN) model with three convolutional layers is first proposed based on the 

well-known Super-Resolution Convolutional Neural Network. PanNet used the skip 

connection in ResNet (He et al., 2016) and built a deeper network to learn the residual 

high-frequency features between the upsampled low-spatial-resolution image and the 

desired high-spatial-resolution image (Yang et al., 2017). By exploring the multiscale 

features extracted by different sizes of filters and multi-depth features from a shallow 

and a deep network, a multiscale and multi-depth convolutional neural network is 

further proposed to boost the performance (Yuan et al., 2018a). Super-resolution 

guided progressive pansharpening neural network uses a progressive pan-sharpening 

strategy to separate the spatial-resolution improvement process for a gradual and 

stable pan-sharpening (Cai and Huang, 2020). Two-stream Fusion Network fuses the 

panchromatic and low-spatial-resolution images in the feature domain and rebuilds the 

pan-sharpened image from the fused feature using a variant of U-Net (Ronneberger et 

al., 2015, Liu et al., 2020b). Pan-sharpening GAN (PSGAN) further improves TFNet 

with a generative and adversarial architecture (Liu et al., 2020a). All the methods are 

designed in a supervised fashion, which strongly depends on the training dataset and 

the availability of ground truth and hence restrains its application in the real scenario. 

Unsupervised pan-sharpening models are proposed to address this problem, where 

both Pan-GAN (Ma et al., 2020) and PGMAN (Zhou et al., 2021) are constructed 

based on GAN with a spatial and a spectral discriminator to refine the pan-sharpened 

image derived from the generator. The main difference is the generator of Pan-GAN 

uses a dense connection as in PNN, whereas PGMAN uses the rediual architecture in 
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PanNet. Besides CNN, the self-attention mechanism (Vaswani et al., 2017) has also 

been applied in the unsupervised pansharpening (Qu et al., 2020).  

 
(a) 

 
(b) 

 
(c) 
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(d) 

  
(e) 

 
(f) 
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(g) 
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(i) 

Figure 2.4 Deep-learning models for pan-sharpening: (a) PNN (Masi et al., 2016); 

(b) PanNet (Yang et al., 2017); (c) Multiscale and Multi-depth Convolutional Neural 

Network (Yuan et al., 2018a); (d) Super-resolution guided progressive 

pansharpening neural network (Cai and Huang, 2020); (e) Two-stream Fusion 

Network (Liu et al., 2020b); (f) PSGAN (Liu et al., 2020a); (g) Pan-GAN (Ma et al., 

2020); (h) PGMAN (Zhou et al., 2021); (i) UP-SAM (Qu et al., 2020). 
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2.3.3 DNN Architectures 

An overview of the DNN architectures used in this study including CNN, GAN, and 

the self-attention mechanism is presented in this section.  

 

As the most commonly used architecture in the DL community, CNN is a multi-layer 

neural network proposed based on the animal visual cortex (Dargan et al., 2020). The 

first practical CNN architecture was developed by LeCun et al (LeCun et al., 2015) 

and has been widely applied in the field of image processing in the past few years. 

CNN is normally composed of three types of layers, convolutional layers to extract 

features, nonlinear layers applying activation function to the feature map, and pooling 

layers to reduce the spatial resolution based on certain statistical information derived 

from the neighbor pixels. The neuronal units in each layer are locally connected in 

receptive fields of shared wrights, which results in a significantly smaller number of 

parameters than fully connected neural networks (Zhu et al., 2017). 

 

GAN was first proposed by Goodfellow (Goodfellow et al., 2014) designed based on 

game-theoretic principles. This architecture is composed of two adversarial networks 

including a generator and a discriminator. Taking the image generation as an example, 

the generator starts with Gaussian noise to produce images similar to the real samples, 

and the discriminator attempts to distinguish the generated fake samples from the real 

ones. This process continues until outputs of the generator are close enough to actual 

input samples, which can be characterized as a min-max game between the generator 

and the discriminator (Liu et al., 2020a). 
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As an integral component of Transformer, the self-attention mechanism is proposed 

in (Vaswani et al., 2017) to estimate the relevance of one item to the others in a given 

sequence. This is achieved by transforming the input sequence using three learnable 

weight matrices including query, key, and value. For a given entity in the sequence, 

the self-attention module computes the dot-product of the query with all keys, which 

is further divided by a scale factor and normalized by a softmax operator to obtain the 

weights on the values. Then the output of the self-attention module can be represented 

by the weighted sum of all entities in the sequence, which allows capturing long-term 

information and dependencies among each sequence element as compared to the RNN 

models (Khan et al., 2021). 
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Chapter 3 Forest Modeling for Canopy Height 

Estimation Using Airborne L-band Repeat-pass 

Dual-baseline PolInSAR Data 

This chapter is dedicated to presenting the advances of PolInSAR-based forest height 

inversion and exploring the potential of model-based algorithms. All the experiments 

are carried out on airborne L-band repeat-pass acquisitions with temporal baselines of 

less than hours and a dual-baseline model-based method is specifically designed for 

the forest height estimation. This achievement is largely attributed to prior studies on 

the principle of microwave remote sensing (Ulaby et al., 1982, Tsang et al., 1985), the 

characterization of the electromagnetic scattering and radar processing (Treuhaft et al., 

1996), and physical models expressing radar observations in terms of vegetation and 

ground parameters (Papathanassiou et al., 1998, Treuhaft and Siqueira, 2000). To 

characterize the interactions of radar waves with homogenous and heterogeneous 

scattering medium in the condition of airborne L-band repeat-pass configuration, the 

RMoG model (Lavalle and Hensley, 2015) is extended with different combinations 

among the Linear Volume Attenuation (LVA), Quadratic Volume Attenuation (QVA), 

Linear Volume Motion (LVM), and Quadratic Volume Motion (QVM) in the volume 

layer. The impacts of homogenous and heterogeneous attenuation and dynamic motion 

on the performance of forest height inversion are further explored thourgh PolInSAR 

coherence functions of the proposed model. To address the underdetermined problem 

between coherence observations and forest parameters, dual-baseline PolInSAR data 

is acquired to increase the degree of freedom (DOF) in the coherence observations and 
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thereby offers extra constraints on the forest parameters. A leveraging strategy is also 

employed during the forest height inversion to effectively utilize the advantages of 

LAV, QVA, LVM, and QVM depictions in the proposed model. Finally, experiments 

are performed on a boreal and a tropical forest site to test the proposed model and the 

associated inversion algorithm.  

3.1 Introduction 

PolInSAR provides an effective approach for forest characterization as it is sensitive 

to both physical properties and vertical structures of forest scattering medium (Moreira 

et al., 2009). This technique has been widely applied to deforestation monitoring, 

forest biomass estimation, and climate change investigation (Mette et al., 2004a, Mette 

et al., 2004b, Pardini et al., 2011). Prior studies have estimated the canopy height 

through a series of model-based methods applied to PolInSAR acquisitions. These 

sophisticated physical models establish mathematical relations between coherence 

observations and forest parameters from which the forest height can be estimated 

through the solution of non-linear equations (Garestier et al., 2008a, Garestier and Le 

Toan, 2009, Neumann et al., 2009b, Pichierri and Hajnsek, 2016, Lei et al., 2017). One 

mostly used model, the Random Volume over Ground (RVoG) model, represents the 

forest as a homogeneous volume of randomly oriented scattering particles statically 

distributed over the ground surface (Cloude and Papathanassiou, 2003). In this model, 

the volumetric attenuation of the radar scattering amplitude follows an exponential 

distribution with a constant extinction, and the PolInSAR coherence function derived 

is fully determined by four parameters including the ground phase, forest height, mean 

extinction coefficient, and ground to volume amplitude ratio. Several complementary 



 

 

36 
 

models have also been devised based on the RVoG model through integrating vertical 

heterogeneity into the forest representation (Garestier and Le Toan, 2009, Fu et al., 

2017). These models have been applied to various forest types and sensor wavelengths 

using single-pass PolInSAR data (Praks et al., 2007, Garestier et al., 2008a, Garestier 

et al., 2008b, Hajnsek et al., 2009, Hensley et al., 2012, Kugler et al., 2015).  

 

In the repeat-pass interferometry, temporal decorrelations derived from the dynamic 

changes of the vegetation and ground properties occurring between acquisition times 

affect the performance of forest parameter inversion. Hence, subsequent studies focus 

on overcoming the impact of temporal decorrelation by quantifying and compensating 

temporal components in repeat-pass PolInSAR coherences. The volumetric temporal 

decorrelation (RVoG+VTD) model was first proposed in (Papathanassiou and Cloude, 

2003), describing the temporal decorrelation of the volume and ground layers as two 

complex coefficients embedded in the coherence function of the RVoG model. More 

physically-based models like Random Motion over Ground (RMoG) model (Lavalle 

and Hensley, 2012, Lavalle and Hensley, 2015) were designed to compensate for the 

temporal decorrelation components derived from the scatterer motion in the volume, 

e.g., due to the wind. A physical model accounting for both the position and dielectric 

property changes (Lei et al., 2017) was proposed based on the RMoG model, where 

the dielectric property changes of volume and ground layers were described by two 

complex coefficients integrated into the RMoG coherence function. 
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Each physical model mentioned above has its unique advantages when dealing with 

different types of PolInSAR acquisitions. Data involved in this study are collected by 

UAVSAR (Hensley et al., 2008), which is a fully polarimetric L-band radar system 

collecting repeat-pass interferometric data within a short temporal baseline (half an 

hour to hours) under various weather conditions. When data is collected with suitable 

weather conditions, dielectric changes derived from the moisture content variations in 

both the canopy and ground are negligible and it is reasonable to assume a stationary 

ground in the model. In this condition, the primary temporal decorrelation is assumed 

to be derived from wind-induced movements of the scatterers in the volume layer like 

in the RMoG model (Lee et al., 2012). Although the RMoG model has been applied 

to the forest height estimation using UAVSAR data in several studies (Lavalle et al., 

2012, Lavalle and Hensley, 2015), the effect of different scattering attenuation and 

random motion characteristics on the inversion accuracy hasn’t been investigated yet. 

This is especially relevant when dealing with SAR data acquired at lower frequencies 

such as L-band and P-band, where longer radar waves are more likely to interact with 

the scattering elements within the canopy and therefore more sensitive to the forest 

structure (Garestier and Le Toan, 2009). To this end, we considered both homogenous 

and heterogeneous scattering attenuation and random motion properties (LAV, QVA, 

LVM, QVM) in the proposed model and investigated their performance on the forest 

height inversion over different sites. Besides that, a pixel-wise optimization strategy 

is employed to leverage the advantages of different attenuation and motion profiles. 

The large footprint full-waveform Lidar data (Blair et al., 1999, Fatoyinbo et al., 2021) 

obtained by airborne LVIS system over boreal and tropical forest sites are used as the 

ground truth for the result analysis. Although LiDAR observations are much sparser 
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compared to the spatial resolution and coverage of radar images, they can characterize 

a variety of vegetation and terrain types with higher vertical accuracy.  

 

This chapter is organized as follows. Test sites and datasets used in the experiments 

are shown in Section 3.2. Section 3.3 presents the proposed physical model, PolInSAR 

coherences, and forest height inversion method. Forest height inversion results over 

the boreal and tropical forest sites are shown in Section 3.4 following by a discussion 

in Section 3.5. Finally, conclusions are drawn in Section 3.6.  

3.2 Test sites and datasets 

3.2.1 Test sites 

As shown in Figure 3.1, test sites covered by boreal and tropical forests are involved 

in this experiment to investigate the applicability of the physical model with different 

volumetric profiles. This boreal forest site is part of the Boreal Ecosystem Research 

and Monitoring Sites (BERMS) in the Saskatchewan Province of Canada covering 

around 16 km along the east-west (104°46’38’’ W to 105°1’15’’ W) and 9 km along 

the north-south direction (53°52’29’’ N to 53°56’10’’ N). The southwest corner of the 

forest site (Candle Lake) is located ~70 km northeast of Prince Albert. Dominant tree 

species at the BERMS site are jack pine, black spruce, and aspen (Preston et al., 2014). 

The topography is relatively smooth with local elevation ranging from 504 m to 592 

m above mean sea level (AMSL), and the mean annual precipitation is about 466 mm 

(Metsaranta and Lieffers, 2008b, Metsaranta and Lieffers, 2008a).  
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As presented in Figure 3.2, the tropical test site is located in the Pongara National Park 

(PNP) on the south bank of Gabon Estuary. The image dataset covers a total area of 

around 12,008 ha within 0°4’15’’ N to 0°7’50’’ N and 9°45’20’’ E to 9°55’1’’ E. The 

dominant tree species in the PNP forest site are red mangroves covering about 55% of 

the total area (Giri et al., 2011). The PNP site exhibits a relatively smooth topography 

with an elevation range of less than 104 m. Annual precipitation over this area ranges 

from 2400 mm on the eastern portion to 2830 mm on the western side (Trettin et al., 

2021), and the annual temperature ranges in a small interval averaging approximately 

26.3 ± 0.9 °C (Hijmans et al., 2005). 

 

3.2.2 Datasets 

Three types of data including airborne SAR, airborne full-waveform LiDAR, and the 

simulated SAR data are involved in developing our forest height estimation method. 

The simulated SAR data are used to evaluate the sensitivity of the proposed theoretical 

models and airborne acquisitions are used as the real data for the algorithm validation.  

 

The airborne data over the boreal forest site are collected as part of the Arctic Boreal 

Vulnerability Experiment (ABoVE) Airborne Campaign deployed by NASA’s Earth 

Science Division (Miller et al., 2019). Starting in 2015, the ABoVE program tends to 

explore the vulnerability and resilience of the arctic and boreal forest to environmental 

change in North America (Greaves et al., 2016, Montesano et al., 2017, Bjorkman et 

al., 2018, Potter, 2018). As part of the ABoVE airborne data collections, airborne SAR 
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data over the BERMS forest site were acquired in late August 2018 and the associated 

airborne LiDAR data are collected by the LVIS in 2019.  

 

The airborne data over the tropical site are collected within the AfriSAR campaign in 

2016 (Fatoyinbo et al., 2021), which was deployed as a collaboration among National 

Park and international space agencies in support of ESA’s BIOMASS, NASA-ISRO 

Synthetic Aperture Radar (NISAR), and the NASA’s GEDI missions. Related airborne 

SAR and LiDAR data used in this study were collected over PNP in early February 

2016. 

3.2.2.1 UAVSAR 

UAVSAR is a fully polarimetric L-band (1.26 GHz, 80 MHz bandwidth) SAR system 

typically flying at 12.5 km altitude and was built and operated by JPL (Hensley et al., 

2008). This system is equipped with a precision autopilot system allowing for accurate 

repeat track acquisitions with short temporal baselines (Lavalle et al., 2017). Spatial 

resolutions of the UAVSAR single-look complex (SLC) image is 0.6 m in the azimuth 

direction and 1.6 m in slant range, which is further averaged by a rectangular window 

with sizes of 8 pixels in azimuth and 2 pixels in slant range to generate multi-looked 

polarimetric and interferometric image products with pixel spacings of 4.8 m in the 

azimuth direction and 3.2 m in slant range. 

 

UAVSAR data over BERMS are collected in eight tracks with uniformly distributed 

vertical separations of 40-280 m in 40 m increments. These tracks were flown from 
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6:38:39 to 19:35:37 UTC on August 19, 2018, with roughly 25-minute time spacings 

providing temporal baselines of 25-175 minutes between pairs. The geocoded multi-

looked SAR image in the Pauli color combination over BERMS is presented in Figure 

3.1(a). 

 

Five repeat-pass tracks were acquired over PNP with nonuniform vertical baselines (0, 

20, 45, 105 m) and roughly uniform temporal baselines from 12:30:11 to 14:13:21 

UTC in 25-minute spacings on February 27, 2016. The geocoded multi-looked SAR 

image in the Pauli color combination over PNP is presented in Figure 3.2(a). 

3.2.2.2 LVIS 

LVIS, a medium-altitude imaging laser altimeter designed and developed by NASA’s 

Goddard Space Flight Center, provides an accurate vertical structure of the canopy top 

and the underlying topography by digitally recording the returned signals (Blair et al., 

1999). Relative Height 100 (RH100) metrics in the LVIS Level-2 collection represent 

heights above the detected ground surface at which 100% of the waveform energy has 

been returned and is typically associated with maximum tree height within a resolution 

beam of LiDAR  (Simard and Denbina, 2017, Denbina et al., 2018). This study uses 

RH100 metrics as ground truth to evaluate the performance of forest height estimation. 

RH100 has been demonstrated to be a suitable forest height reference with RMSEs of 

3.29 m in boreal forests and 2.87 m in tropical forests when compared with field data 

(Simard and Denbina, 2017, Denbina et al., 2018). The LVIS data over BERMS (10 

m footprint diameter) were collected in July-August 2019 with a flight altitude of 12.5 

km and a swath width of 2.5 km. Related data over the PNP (18 m footprint diameter) 
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were obtained in the same period as the UAVSAR data (February-March 2016) with 

a flight altitude of 7.3 km and a swath width of 1.5 km. RH100 heights in BERMS and 

PNP are illustrated in Figure 3.1(b) and Figure 3.2(b). 

 
(a) 

 
(b) 

Figure 3.1 Study area in Boreal Ecosystem Research and Monitoring Sites 

(BERMS): (a) UAVSAR Pauli color composite image. Red: |𝑺𝑺𝑯𝑯𝑯𝑯 − 𝑺𝑺𝑽𝑽𝑽𝑽|𝟐𝟐, Green: 

𝟐𝟐|𝑺𝑺𝑯𝑯𝑯𝑯|𝟐𝟐, Blue: |𝑺𝑺𝑯𝑯𝑯𝑯 + 𝑺𝑺𝑽𝑽𝑽𝑽|𝟐𝟐; (b) LVIS 2019 RH100 height. 
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(a) 

 
(b) 

Figure 3.2 Study area in the Pongara National Park (PNP): (a) UAVSAR Pauli color 

composite image; (b) LVIS 2016 RH100 height. 

3.2.2.3 PolSARproSim+ 

Simulated SAR data generated by PolSARproSim+ are used to explore the scattering 

attenuation properties of different tree species. PolSARproSim+ is deployed on the 

distributed version of the ESA’s software with improvements that allow more flexible 

simulations of different mission requirements, observational scenes, and instrument 

parameters (Hensley et al., 2014, Hensley et al., 2021). For example, this package 

allows the simulation of mixed forest stands with an external definition of allometric 
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parameters while introducing temporal decorrelation effects originating from rain and 

wind. These extensions provide a powerful tool to explore the scattering attenuation 

properties in the forest medium and temporal decorrelation effects in the polarimetric 

interferometry and tomography. In this section, SAR simulations are performed using 

the system parameter of UAVSAR over 14 deciduous and 4 coniferous forest stands 

with average heights of 20 m as listed in Table 3.1. Related forest stand simulations 

of these 18 species are presented in Figure 3.3 and the average normalized scattering 

attenuation profiles are plotted versus height in Figure 3.4. 

Table 3.1 Parameters of the simulated forest stands 

Tree species Type Density (trees/ha) 

Striped maple (ACPE) Deciduous 36 

Red maple (ACRU) Deciduous 36 

Sugar maple (ACSA) Deciduous 33 

Yellow birch (BEAL) Deciduous 19 

Brazil nut (BEEX) Deciduous 36 

Sweet birch (BELE) Deciduous 51 

Paper birch (BEPA) Deciduous 51 

Grey birch (BEPO) Deciduous 51 

American beech (FAGR) Deciduous 33 

American hophornbeam (OSVI) Deciduous 60 

Red pine (PIRE) Coniferous 44 

Red spruce (PIRU) Coniferous 25 

White pine (PIST) Coniferous 26 

Black cherry (PRSE) Deciduous 51 

White oak (QUAL) Deciduous 27 

Red oak (QURU) Deciduous 28 

Red mangrove (RHMA) Deciduous 69 

Eastern hemlock (TSCA) Coniferous 15 
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                 (a)                                      (b)                                       (c) 

    
                (d)                                      (e)                                       (f) 

   
                (g)                                      (h)                                      (i) 

   
                (j)                                       (k)                                     (l) 

  
               (m)                                      (n)                                    (o) 
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               (p)                                       (q)                                     (r) 

Figure 3.3 Simulated forest stands of 14 deciduous and 4 coniferous tree species. (a) 

ACPE; (b) ACRU; (c) ACSA; (d) BEAL; (e) BEEX; (f) BELE; (g) BEPA; (h) 

BEPO; (i) FAGR; (j) OSVI; (k) PIRE; (l) PIRU; (m) PIST; (n) PIST; (o) QUAL; (p) 

QURU; (q) RHMA; (r) TSCA. 

 

                                 (a)                                                              (b) 

Figure 3.4 Normalized amplitude attenuation profile of different forest species. (a) 

Deciduous; (b) Coniferous. 

3.3 Methodology 

3.3.1 Physical model 

As shown in Figure 3.5, forest stands are simulated as volumes of dynamic scatterers 

with either homogeneous or heterogeneous random motion and scattering attenuation 
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over a stable ground surface in repeat-pass UAVSAR PolInSAR configuration. The 

dynamic volume with a homogeneous scattering attenuation and random motion has 

been previously modeled in the RMoG model (Lavalle and Hensley, 2015). Dynamic 

volumes with heterogeneous attenuation and motion are given in Figure 3.5 depicted 

by the gradient color in the volume and arrows with different lengths, respectively. 

θ θ

 

Figure 3.5 Schematic of the heterogeneous physical model 

In the RMoG model, an exponential function with a constant mean extinction is used 

to describe the homogeneous scattering attenuation (LVA), while the homogeneous 

random motion of the dynamic scatterers is integrated as a Gaussian-statistic function 

with zero mean and vertically linear variance (LVM). In this condition, the scattering 

attenuation 𝜌𝜌𝑣𝑣 and random motion 𝜂𝜂𝑣𝑣 profiles of the volume layer are given by  

𝜌𝜌𝑣𝑣(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

(ℎ𝑣𝑣 − 𝑧𝑧)� (3.1) 

𝜂𝜂𝑣𝑣(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝑧𝑧) (3.2) 

where 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿 is the constant mean extinction, ℎ𝑣𝑣 is the forest height, 𝜃𝜃 is the incident 

angle, and 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿 is the gradient of the Gaussian motion variance. 

 

We further explore the suitability of a different functional form for the description of 

the scattering attenuation and random motion profiles. 
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𝜌𝜌𝑣𝑣(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄(ℎ𝑣𝑣−𝑧𝑧)
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

(ℎ𝑣𝑣 − 𝑧𝑧)� (3.3) 

𝜂𝜂𝑣𝑣(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜏𝜏𝑄𝑄𝑄𝑄𝑀𝑀𝑧𝑧2� (3.4) 

where 𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄 is the gradient of the vertically linear extinction and 𝜏𝜏𝑄𝑄𝑄𝑄𝑀𝑀 is the second 

derivative of the Gaussian motion variance. Equation (3.3)-(3.4) give a heterogeneous 

scattering attenuation in the form of an exponential function with a vertically linear 

extinction (QVA) and a heterogeneous motion in the form of a Gaussian distribution 

with zero mean and vertically quadratic variance (QVM).  

 

Scattering attenuation and random motion shape evolutions in Equations (3.1)-(3.4) 

are plotted versus volume heights ranging from 0 to 25 m for an incidence angle of 40° 

in Figure 3.6. 

 

                                     (a)                                                           (b) 

Figure 3.6 Shape evolutions of the volumetric scattering attenuation and random 

motion. (a) LVA (left) and QVA (right); (b) LVM (left) and QVM (right). 
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3.3.2 PolInSAR coherence function 

As an evaluation of the interferometric quality, the complex PolInSAR coherence is 

statistically calculated by 

𝛾𝛾� =
〈𝜔𝜔��⃗ 1

†𝛺𝛺12𝜔𝜔��⃗ 2〉
〈𝜔𝜔��⃗ 1

†𝑇𝑇11𝜔𝜔��⃗ 1〉〈𝜔𝜔��⃗ 2
†𝑇𝑇22𝜔𝜔��⃗ 2〉

= |𝛾𝛾�|exp�𝑗𝑗𝜙𝜙�� (3.5) 

where, 𝜔𝜔��⃗ 1 and 𝜔𝜔��⃗ 2 are the complex unitary vectors in a certain transmit and receive 

polarization, 𝛺𝛺12 is a 3×3 non-hermitian complex matrix containing both polarimetric 

and interferometric information, 𝑇𝑇11  and 𝑇𝑇22  are 3×3 hermitian coherency matrix 

describing polarimetric properties, 𝜙𝜙� is the expected interferometric phase, and |𝛾𝛾�| is 

the coherence magnitude related to the phase noise (Papathanassiou and Cloude, 2001).  

 

After compensating spectral and SNR decorrelations (Kugler et al., 2015), the volume 

and temporal decorrelations are the two main components in the repeat-pass PolInSAR 

coherence. These two are directly related to the vertical structure, temporal stability, 

and physical characteristics of the forest scattering medium, and the compensated 

PolInSAR coherence can be further approximated as a coherence function based on 

the two-layer dynamic scattering model (Lavalle and Hensley, 2015). 

𝛾𝛾 = exp�𝑗𝑗𝜙𝜙𝑔𝑔�
𝛾𝛾𝑣𝑣𝑣𝑣 + 𝜇𝜇(𝜔𝜔��⃗ )
1 + 𝜇𝜇(𝜔𝜔��⃗ )

(3.6) 

where, 𝜙𝜙𝑔𝑔 represents the ground phase, 𝛾𝛾𝑣𝑣𝑣𝑣 is the coherence component with coupled 

effects from the volumetric scatterer and the wind-derived temporal change, and 𝜇𝜇(𝜔𝜔��⃗ ) 

is the ground to volume amplitude ratio varying with polarization 𝜔𝜔��⃗ .  
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Temporal changes in the ground layer are neglected in this coherence function because 

of the short temporal baselines of the UAVSAR acquisitions. The volumetric-temporal 

coherence can be further described by 

𝛾𝛾𝑣𝑣𝑣𝑣 =
∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝜂𝜂𝑣𝑣(𝑧𝑧)exp(𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

(3.7) 

where 𝑘𝑘𝑧𝑧 is the vertical wavenumber given by 

𝑘𝑘𝑧𝑧 =
4𝜋𝜋
𝜆𝜆sin𝜃𝜃

𝛥𝛥𝛥𝛥 ≈
4𝜋𝜋𝐵𝐵⊥
𝜆𝜆sin𝜃𝜃𝜃𝜃

(3.8) 

where 𝜆𝜆 is the radar wavelength, 𝛥𝛥𝛥𝛥 is the difference between the repeat-pass incident 

angles, 𝐵𝐵⊥ is the perpendicular baseline, and 𝑅𝑅 is the slant range.  

 

By substituting Equations (3.1)-(3.4) into (3.7), the volumetric-temporal coherences 

for physical models with different combinations of LVM, LVA, QVM, and QVA are 

after some algebraic manipulation given by 

𝛾𝛾𝑣𝑣𝑣𝑣(ℎ𝑣𝑣,𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿, 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿) =

2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
cos(𝜃𝜃) �exp � 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿

cos(𝜃𝜃) + 𝑗𝑗𝑘𝑘𝑧𝑧 − 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿� ℎ𝑣𝑣 − 1�

� 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
cos(𝜃𝜃) + 𝑗𝑗𝑘𝑘𝑧𝑧 − 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿� �exp � 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿

cos(𝜃𝜃)ℎ𝑣𝑣� − 1�
(3.9) 

𝛾𝛾𝑣𝑣𝑣𝑣�ℎ𝑣𝑣,𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿, 𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄� = 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿�
𝜋𝜋

𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄
exp

⎝

⎛
� 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿

cos(𝜃𝜃) + 𝑗𝑗𝑘𝑘𝑧𝑧�
2

4𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄
⎠

⎞ 

∙

�erf�
2ℎ𝑣𝑣𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄 − � 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿

cos(𝜃𝜃) + 𝑗𝑗𝑘𝑘𝑧𝑧�

2�𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄
� + erf�

2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
cos(𝜃𝜃) + 𝑗𝑗𝑘𝑘𝑧𝑧

2�𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄
��

cos(𝜃𝜃) �exp � 2𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
cos(𝜃𝜃)ℎ𝑣𝑣� − 1�

(3.10)
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𝛾𝛾𝑣𝑣𝑣𝑣�ℎ𝑣𝑣,𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄, 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿� = exp

⎝

⎜
⎛�

4𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣 + 𝑗𝑗𝑘𝑘𝑧𝑧 − 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿�

2

8𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)

⎠

⎟
⎞

 

∙ ⎣
⎢
⎢
⎢
⎢
⎡

erf

⎝

⎜
⎜
⎛4𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄

cos(𝜃𝜃)ℎ𝑣𝑣 + 𝑗𝑗𝑘𝑘𝑧𝑧 − 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿

�8𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃) ⎠

⎟
⎟
⎞
− erf

⎝

⎜
⎜
⎛𝑗𝑗𝑘𝑘𝑧𝑧 − 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿

�8𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃) ⎠

⎟
⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

exp �
2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣

2� �erf��
2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣

2��

(3.11)
 

𝛾𝛾𝑣𝑣𝑣𝑣�ℎ𝑣𝑣,𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄, 𝜏𝜏𝑄𝑄𝑄𝑄𝑄𝑄� = �
2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃) exp

⎝

⎜
⎛�

4𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣 + 𝑗𝑗𝑘𝑘𝑧𝑧�
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2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣

2� �erf��
2𝜎𝜎𝑄𝑄𝑄𝑄𝑄𝑄
cos(𝜃𝜃)ℎ𝑣𝑣

2��

(3.12)
 

 

The volumetric-temporal coherences described in Equations (3.9)-(3.12) are plotted in 

the complex plane with volume heights ranging from 0 to 25 m, a center frequency of 

1.26 GHz, a vertical wavenumber of 0.2 for an incidence angle of 40° as in Figure 3.6. 

Each blue segment in Figure 3.7 corresponds to an RMoG volume with LVA and LVM 

of a given height and the mean extinction from 0 to 1 dB/m, where volumes with lower 

extinction have smaller radial distances and thereby lower coherences. Compared with 
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the blue segments of the RMoG model, the introduction of QVA and QVM in Figure 

3.7(b)-(d) has little impact on volumetric-temporal coherences for lower heights and 

extinctions. However, larger differences are observed in volumes with higher forest 

heights and extinctions. Figure 3.7(b) illustrates that introducing QVM accelerates the 

loss of coherence magnitude with the increasing height, especially in volumes with 

higher extinction. As indicated in Figure 3.7(c), the introduction of QVA leads to a 

smaller interferometric phase at the same coherence magnitude level as RMoG volume, 

especially in the condition of higher extinction. Volumetric-temporal coherences that 

originated from the synergy of QVA and QVM are illustrated in Figure 3.7(d), where 

smaller interferometric phase and coherence magnitude can be observed at the same 

time compared with the RMoG volumes. 

 

 

    (a)                                                               (b) 
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    (c)                                                               (d) 

Figure 3.7 Volumetric-temporal coherence varying with different extinction 

coefficients: (a) LVA+LVM; (b) LVA+QVM; (c) QVA+LVM; (d) QVA+QVM 

Each blue segment in Figure 3.8 corresponds to an RMoG volume with LVA and LVM 

of a given height and the random motion coefficient ranging from 0 to 0.1, where 

volumes with stronger random motions have smaller radial distances. Similar variation 

can be observed in Figure 3.8 as in Figure 3.7, such as the introduction of QVM has a 

stronger impact on the coherence magnitude than the interferometric phase. As shown 

in Figure 3.8(b), coherence magnitudes drop faster with the increased height. Likewise, 

the introduction of QVA causes a smaller interferometric phase for the same coherence 

magnitude. The volumetric-temporal coherences in Figure 3.8(d) are originated from 

the synergy of QVA and QVM, which also exhibit smaller interferometric phases and 

coherence magnitudes at the same time compared with the RMoG volumes. 



 

 

54 
 

  

                                 (a)                                                                 (b) 

  

                                 (c)                                                                 (d) 

Figure 3.8 Volumetric coherence varying with different random motion coefficients: 

(a) LVA+LVM; (b) LVA+QVM; (c) QVA+LVM; (d) QVA+QVM 

3.3.3 Forest height inversion 

The PolInSAR coherence of a two-layer dynamic scattering model is fully determined 

by five parameters including the ground phase, forest height, random motion factor, 

ground to volume amplitude ratio, and the scattering attenuation coefficient. Three of 

them (attenuation coefficient, random motion factor, forest height) are accounted in 
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the polarization-independent volumetric-temporal coherence term equivalent to the 

PolInSAR coherence in the absence of ground backscatter contributions with ground 

phase removed. Equation (3.6) indicates a linear signature of coherences predicted by 

the proposed model on the unit circle, which can be further represented by a straight 

line varying with the ground-to-volume ratio in the complex plane. Theoretically, the 

value of the ground-to-volume ratio ranges from zero to infinity. When it is zero, all 

scattering components are derived from the volume layer and the complex PolInSAR 

coherence is simply given by 𝛾𝛾�𝑣𝑣𝑣𝑣exp�𝑗𝑗𝜙𝜙�𝑔𝑔�. When the ground to volume ratio comes 

to infinite, all the scattering contributions are from the ground and related PolInSAR 

coherence is exp�𝑗𝑗𝜙𝜙�𝑔𝑔�. The line fitting can be performed by a line regression of the 

complex coherence loci at a set of possible polarization channels including the typical 

linear and Pauli basis polarization channels (HH, HV, VV, HH+VV, HH-VV), and the 

phase diversity (PD) optimized polarizations with the highest and lowest phase center 

(Tabb et al., 2002). This fitted line intersects the unit circle at two points and one of 

them is the correct ground solution. We select the correct one by assuming the height 

of the highest observed phase center is less than 𝜋𝜋/𝑘𝑘𝑧𝑧 m above the ground as indicated 

in (Kugler et al., 2015, Denbina et al., 2018). After that, exp�𝑗𝑗𝜙𝜙�𝑔𝑔�𝛾𝛾�𝑣𝑣𝑣𝑣 is determined 

by the furthest coherence point from the estimated ground solution and the volumetric-

temporal coherence 𝛾𝛾�𝑣𝑣𝑣𝑣 can be estimated by removing the ground phase.  

 

However, one volumetric-temporal coherence estimation can only provide magnitude 

and phase information with two DOFs and thereby causes underdetermination for the 

inversion of three unknown parameters. Therefore, an extra pass of UAVSAR data is 
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acquired to form the dual-baseline repeat-pass interferometry. Each interferometry can 

provide one volumetric-temporal coherence estimation through the above-mentioned 

method. Since repeat-pass UAVSAR data are acquired at slightly different altitudes 

and incidence angles within hours, we assume a stable attenuation property (a constant 

attenuation coefficient) in the forest canopy within different passes. In this condition, 

one additional interferometry can provide volumetric-temporal coherence estimations 

with two more DOFs while only introducing one additional unknown motion factor. 

Then, the forest height can be estimated by solving nonlinear equations using iterative 

optimization to minimize the least square distance between the predicted and observed 

volumetric-temporal coherences. 

�
𝛾𝛾�𝑣𝑣𝑣𝑣1 = 𝑓𝑓𝑖𝑖�𝜌𝜌𝑣𝑣, 𝜂𝜂𝑣𝑣1 ,ℎ𝑣𝑣�
𝛾𝛾�𝑣𝑣𝑣𝑣2 = 𝑓𝑓𝑖𝑖�𝜌𝜌𝑣𝑣, 𝜂𝜂𝑣𝑣2 ,ℎ𝑣𝑣�

, with   𝑖𝑖 = 1,2,3,4 (3.13) 

where, 𝑓𝑓𝑖𝑖 is the volumetric-temporal coherence function as presented in Equations (3.9) 

-(3.12).  

 

Equations (3.9)-(3.12) provide four descriptions of the volumetric-temporal coherence 

for the forest height inversion. Each one corresponds to a certain scattering attenuation 

and random motion profiles in the two-layer dynamic scattering model. To leverage 

various scattering attenuation and random motion profiles, we choose the forest height 

that derived from the coherence function 𝑓𝑓𝑖𝑖 with the minimum distance between the 

predicted and observed volumetric-temporal coherences in each pixel during the forest 

height inversion, that is    

𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑖𝑖

��𝑓𝑓𝑖𝑖�𝜌𝜌𝑣𝑣, 𝜂𝜂𝑣𝑣1 ,ℎ𝑣𝑣� − 𝛾𝛾�𝑣𝑣𝑣𝑣1�
2 + �𝑓𝑓𝑖𝑖�𝜌𝜌𝑣𝑣, 𝜂𝜂𝑣𝑣2 ,ℎ𝑣𝑣� − 𝛾𝛾�𝑣𝑣𝑣𝑣2�

2� , with   𝑖𝑖 = 1,2,3,4 (3.14) 
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Comparative experiments are conducted between the proposed dual-baseline method 

and the prior Cloude’s dual-baseline method based on the RVoG model (Cloude, 2002) 

to validate the superiority of the proposed method. Forest height estimation results are 

quantitatively evaluated by computing the bias and Root Mean Square Error (RMSE) 

with the LVIS RH100 trees height, given by  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ ℎ𝑣𝑣(𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
−
∑ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
(3.15) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
�� �ℎ𝑣𝑣(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)�2

𝑛𝑛

𝑖𝑖=1
𝑛𝑛

(3.16)
 

3.4 Result 

3.4.1 Scattering attenuation fitting 

PolSARproSim+ allows building attenuation grids using the effective permittivities 

determined by integrating forward scattering amplitudes of the plant elements and 

interpreting them as effective polarizabilities (Hensley et al., 2014). These attenuation 

grids can provide approximate estimates of the attenuation by location during the 

scattering calculation, which maintains the heterogeneity of the tree crown distribution. 

To assess the applicability of LVA and QVA to a particular tree species, the forest 

stands and the scattering attenuation maps of fourteen deciduous and four coniferous 

species in Table 3.1 are generated using tree models embedded in the PolSARProSim+. 

Average attenuation profiles derived from these output attenuation maps are plotted 

as blue curves in Figure 3.9 and Figure 3.10. The red and yellow curves are the best-

fit LVA and QVA to the generated average attenuation profiles. Related RMSEs of 

the fitting results are also shown in the plots in Figure 3.9 and Figure 3.10. 
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Figure 3.9 Vertical scattering attenuation fitting results over the simulated deciduous 

forest stands. 
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Figure 3.10 Vertical scattering attenuation fitting results over the simulated 

coniferous forest stands. 

The attenuation description with a smaller RMSE is chosen as the best-fit attenuation 

model for the forest stands of a certain species as listed in Table 3.2, which indicates 

that LVA is more suitable to depict the coniferous species while a mixture of LVA 

and QVA is needed for different deciduous species. 
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Table 3.2 Best fit attenuation description for the forest stands of each species 

Species Best-fit model Species Best-fit model Species Best-fit model 

ACPE1 QVA ACRU1 LVA ACSA1 QVA 

BEAL1 LVA BEEX1 LVA BELE1 LVA 

BEPA1 LVA BEPO1 LVA FAGR1 LVA 

OSVI1 LVA PRSE1 LVA QUAL1 QVA 

QURU1 QVA RHMA1 QVA PIRE2 LVA 

PIRU2 LVA PIST2 LVA TSCA2 LVA 
        1 Deciduous species; 2 Coniferous species. 

 

3.4.2 Forest height inversion 

3.4.2.1 BERMS 

Dual-baseline PolInSAR data are selected from multi-baseline UAVSAR collections 

over BERMS collected in uniformly distributed vertical and temporal baselines (see 

Section 3.2.2.1). Vertical baselines between the primary and two auxiliary images are 

40 m and temporal baselines are 25 min with an average absolute vertical wavenumber 

of 0.09 and the 𝜋𝜋/𝑘𝑘𝑧𝑧 of 35 m. Since the maximum forest height in BERMS is about 

33 m, the selection of longer vertical baselines will result in a smaller ambiguity height 

than the canopy height and hence an invalid assumption during the ground solution 

selection. Forest height results derived from the proposed dual-baseline method using 

physical models with various attenuation and motion properties and the Cloude’s dual-

baseline method using the RVoG model are illustrated in Figure 3.11 along with the 

RH100 reference height, where the areas with low backscatter (less than -15 dB for an 

incidence angle from 0-35°, less than -21 dB for an incidence angle from 35-45°, less 

than -24 dB for an incidence angle from 45-55°, and less than -28 dB for an incidence 
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angle larger than 55°) are masked out (Denbina and Simard, 2017) and a 3×3 moving 

average is performed to smooth forest height maps. Related PolInSAR-derived heights 

are plotted versus LVIS RH100 height for a quantitative comparison as presented in 

Figure 3.12 and the associated RMSE, BIAS, and R2 metrics are given in Table 3.3, 

where the calculated RMSE and BIAS are precise to the centimeter, and R2 is precise 

to two decimal places as in the prior studies (Denbina et al., 2018, Simard and Denbina, 

2018). During the comparison, height samples are uniformly selected from the whole 

forest height image with a separation of 10 pixels in both the slant range and azimuth 

directions, and pixels corresponding to null height values in the RH100 map are not 

included in the calculation of any accuracy metrics.  

  
  (a)                                      (b)                                     (c) 
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  (d)                                      (e)                                     (f) 

 

(g) 

Figure 3.11 Forest height inversion results (in meters) over BERMS based on 

different models. (a) LVIS RH100 height; (b) LVA+LVM; (c) LVA+QVM; (d) 
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QVA+LVM; (e) QVA+QVM; (f) Pixel-wise optimization; (g) Cloude’s dual-

baseline 

 

                     (a)                                       (b)                                       (c) 

 

                     (d)                                       (e)                                       (f) 

Figure 3.12 Density plots of forest height inversion results versus the LVIS RH100 

metric over the BERMS site. Black lines are y=x and red lines are the linear fits. (a) 

LVA+LVM; (b) LVA+QVM; (c) QVA+LVM; (d) QVA+QVM; (e) Pixel-wise 

optimization; (f) Cloude’s dual-baseline 

Table 3.3 Accuracy metrics of forest height inversion results over BERMS. 

 LVA+LVM LVA+QVM QVA+LVM QVA+QVM Opt Cloude 

RMSE 5.31 m 3.56 m 6.56 m 4.43 m 3.21 m 8.32 m 

Bias 4.43 m 2.05 m 5.74 m 3.13 m 1.45 m 7.24 m 

R2 0.63 0.65 0.58 0.57 0.65 0.33 
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3.4.2.2 PNP 

Dual-baseline PolInSAR data are also selected from the multi-baseline collection over 

the PNP site as depicted previously in Section 3.2.2.1. The maximum forest height in 

PNP is much higher than the BERMS (~65 m) and thus requests for a smaller vertical 

baseline with a larger ambiguity height. Vertical baselines between the primary and 

the two auxiliary images are both 20 m with temporal baselines of 25 min and 50 min, 

respectively. Related average absolute vertical wavenumber is about 0.05 with 𝜋𝜋/𝑘𝑘𝑧𝑧 

of ~63 m. Forest height results in the PNP site derived from the proposed dual-baseline 

method using physical models with various attenuation and motion properties and the 

Cloude’s dual-baseline method using the RVoG model are presented in Figure 3.13. 

Similar masking and smoothing operations are conducted on the estimated height for 

PNP as was done for BERM. Density plots between these estimated forest heights and 

the LVIS RH100 height are presented in Figure 3.14 along with the associated RMSE, 

BIAS, and R2 metrics with the same decimal places given in Table 3.4. 
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  (a)                                      (b)                                     (c) 

 
  (d)                                      (e)                                     (f) 
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(g) 

Figure 3.13 Forest height inversion results (in meters) over the PNP site based on 

different physical models. (a) LVIS RH100 height; (b) LVA+LVM; (c) LVA+QVM; 

(d) QVA+LVM; (e) QVA+QVM; (f) Pixel-wise optimization; (g) Cloude’s dual-

baseline 
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                      (d)                                        (e)                                       (f) 

Figure 3.14 Density plots of forest height inversion results versus the LVIS RH100 

metric over PNP. Black lines are y=x and red lines are the linear fits. (a) 

LVA+LVM; (b) LVA+QVM; (c) QVA+LVM; (d) QVA+QVM; (e) Pixel-wise 

optimization; (f) Cloude’s dual-baseline 

Table 3.4 Accuracy metrics of forest height inversion results over PNP 

 LVA+LVM LVA+QVM QVA+LVM QVA+QVM Opt  Cloude 

RMSE 7.71 m 10.83 m 6.83 m 8.09 m 6.48 m 11.70 m 

Bias -2.74 m -7.29 m 0.43 m -4.25 m 0.41 m 0.91 m 

R2 0.83 0.91 0.92 0.93 0.92 0.76 

3.5 Discussion 

3.5.1 BERMS 

Compared with RH100 metrics, forest heights derived from the proposed and the prior 

Cloude’s dual-baseline method over BERMS are generally overestimated as presented 

in Figure 3.11 and Figure 3.12. The overestimation is more prominent in smaller trees 

than the taller ones. The proposed physical model with QVM significantly reduces the 

overestimation and exhibits a better performance in either the LVA or QVA conditions 
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as illustrated in Figure 3.12(b) and Figure 3.12(d). A 1.75 m reduction in the RMSE 

and a 2.38 m reduction in the bias are observed in the LVA+QVM result and a 2.13 m 

reduction in the RMSE and a 2.61 m reduction in bias are achieved by the QVA+QVM 

result. This suggests that Gaussian distribution with zero mean and vertically quadratic 

variance better fits the dynamic motion properties of forests in BERMS. Moreover, 

the proposed physical model with LVA surpasses QVA for forest height inversion in 

either LVM or QVM conditions because the heterogeneous attenuation aggravates the 

overestimation of smaller trees as indicated in Figure 3.12(c) and Figure 3.12(d). A 

1.25 m reduction in the RMSE and a 1.31 m reduction in the bias are achieved by the 

LVA+LVM result and a 0.87 m reduction in RMSE and a 1.08 m reduction in bias are 

observed in the LVA+QVM result. This is consistent with the scattering attenuation 

fitting results derived from the PolSARproSim+ simulated data (Section 3.4.1), where 

the physical model with LVA is more suitable for coniferous species such as the jack 

pine and black spruce in BERMS. Advantages of different scattering attenuation and 

random motion structures can be observed through using the pixel-wise optimization 

strategy, which leverages LVA, LVM, QVA, and QVM on a pixel basis and therefore 

achieves better performance than the others that don’t vary spatially. As presented in  

Figure 3.11(f) and Figure 3.12(e), a 0.35 m reduction in RMSE and a 0.60 m reduction 

in bias are observed compared with the best-performing single model (LVA+QVM). 

Besides that, as indicated in the high RMSE and bias and the low R2 in the last column 

of Table 3.3, the overestimation is much more prominent in the result originating from 

the prior Cloude’s dual-baseline method based on the RVoG model compared with the 
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results derived from the proposed dual-baseline method. We relate this discrepancy to 

the neglect of temporal decorrelation in the RVoG model. 

3.5.2 PNP 

Compared with RH100 metrics, forest heights derived from the proposed model over 

the PNP site are generally underestimated as presented in Figure 3.13 and Figure 3.14, 

particularly in the areas with taller trees. The LVM description in the proposed model 

significantly reduces the underestimation and exhibits a better forest height estimation 

performance in either LVA or QVA conditions as shown in Figure 3.14(a) and Figure 

3.14(c). A 3.12 m reduction in the RMSE and a 4.55 m increase in the bias are achieved 

by the LVA+LVM result, whereas a 1.26 m reduction in RMSE and a 4.68 m increase 

in bias are observed in the QVA+LVM result indicating that a Gaussian distribution 

with zero mean and vertically linear variance better fits the dynamic motion properties 

of tropical forests in PNP. Moreover, the physical model with QVA better performs 

on the forest height inversion than the LVA ones in either LVM or QVM conditions 

by reducing the underestimation of taller trees as shown in Figure 3.14(c) and Figure 

3.14(d). A 0.88 m reduction in RMSE and a 3.17 m increase in the bias are obtained 

by the QVA+LVM result and a 2.74 m reduction in the RMSE and a 3.04 m increase 

in the bias are achieved by the QVA+QVM result. This is consistent with the scattering 

attenuation fitting results over the simulated red mangrove (RHMA) forest stands (see 

section 3.4.1), where physical models with QVA appear to be more suitable to describe 

the scattering attenuation of RHMA species in PNP. Figure 3.13(f) and Figure 3.14(e) 

also provide evidence to support the superiority of the pixel-wise optimization, where 

a 0.35 m reduction in the RMSE and a 0.02 m reduction in bias are achieved compared 
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with the best-performing single model (QVA+LVM). Moreover, as indicated in Figure 

3.14(f), though neglecting the temporal decorrelation in the RVoG model reduces the 

underestimation in the associated forest height result, the RMSE is still very high due 

to the strong discrepancy between the scattering attenuation properties of the RVoG 

model and the real scenario. 

3.6 Conclusion 

In this chapter, we demonstrated the potential of dual-baseline repeat-pass airborne 

PolInSAR for estimating forest height at the landscape scale. A physical model with 

LVA, QVA, LVM, and QVM profiles in the volume layer is proposed based on the 

RMoG model to investigate the impacts of homogeneous or heterogeneous attenuation 

and random motion properties on the performance of forest height inversion. 

Experiments are carried out over a boreal and tropical forest site to show the efficacy 

of different volumetric profiles over various forest types. Related forest height results 

are compared with LVIS RH100 references for the quantitative evaluation. Volumes 

with LVA and QVM achieve the best performance (RMSE of 3.56 m and bias of 2.05 

m) over the boreal forest dominated by coniferous tree species, while volumes with 

QVA and LVM exhibit the best performance (RMSE of 6.83 m and bias of 0.43 m) in 

the tropical forests dominated by deciduous red mangroves. This is consistent with the 

scattering attenuation fitting results derived from the PolSARproSim+ simulated data. 

Forest height results generated by the pixel-wise optimization strategy surpass the 

best-performing single models in both the boreal (RMSE of 3.21 m and bias of 1.45 

m) and the tropical (RMSE of 6.48 m, bias of 0.41 m) forests, which indicates its 

superiority in leveraging the advantages of different volumetric profiles. 
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Chapter 4 Pol-GAN: A deep-learning-based 

unsupervised forest height estimation method 

based on the synergy of PolInSAR and LiDAR 

data 

The previous chapter explores the advance and potential of model-based forest height 

inversion using PolInSAR data, which retrieved the forest height by solving nonlinear 

equations established on the relationship between the forest parameters and coherence 

observations. These methods estimate forest height at pixel level and exhibit a strong 

dependency on the theoretical models. Hence, the discrepancy between the theoretical 

models and actual backscattering behaviors and the neglect of useful information like 

shape, texture, and spatial characteristics among pixels inevitably lead to errors in the 

model-based forest height estimates. Hence, LiDAR acquisitions with higher vertical 

accuracy are introduced into the forest height estimation through the synergy with the 

PolInSAR data. A deep-learning-based unsupervised forest height estimation method 

is proposed for data fusion. This method is based on a designed GAN architecture, 

which reformulates the forest height inversion as a pan-sharpening process between 

the sparse LiDAR-derived height and the high-spatial-resolution PolInSAR features 

to address the challenges in traditional PolInSAR-based forest height inversion. The 

forest height estimates with high spatial resolution and vertical accuracy are generated 

through a continuous generative and adversarial process, where a progressive network 

architecture underpins the generator to overcome the significant difference between 

spatial resolutions of spaceborne LiDAR and SAR acquisitions. Finally, experiments 
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are performed on a boreal and a tropical forest site to test the proposed forest height 

estimation algorithm.  

This work is accepted and in press in ISPRS Journal of Photogrammetry and Remote 

Sensing. 

Zhang, Q., Ge, L., Hensley, S., et al. PolGAN: A deep-learning-based unsupervised 

forest height estimation based on the synergy of PolInSAR and LiDAR data. ISPRS 

Journal of Photogrammetry and Remote Sensing 2022; 186, 123-139. 

4.1 Introduction  

One aspect of forest characterization encompasses describing the spatial and vertical 

distributions of trees, which plays a significant role in carbon sequestration estimation, 

sustainable forest management, and climate change monitoring (Hardiman et al., 2011, 

Wulder et al., 2012, Berndes et al., 2016, Kiat et al., 2020). As a critical part of the 

forest characterization, forest height estimation aims to provide a key indicator of the 

forest productivity and biomass level, statically or/and dynamically (Englhart et al., 

2011). Prior studies have been dedicated to measuring the forest height through in-situ 

or/and remote sensing methods (Schneider et al., 2014, Pause et al., 2016). In-situ 

methods employ plenty of expensive and time-consuming field works (Liang et al., 

2018), whereas spaceborne and airborne remote sensors can provide consistent and 

cost-efficient observations at regional or/and global scales. In particular, active remote 

sensors such as SAR and LiDAR are superior to passive ones thanks to their capability 

of providing data for inferences on vertical distribution and internal structure of the 

vegetation (Aghababaei et al., 2020, Guo et al., 2020a).  
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Advantages of SAR remote sensing such as cloud penetration, weather independence, 

wide coverage, and high spatial resolution are widely documented (Moreira et al., 

2013). However, in SAR images, 3D radar reflectivities are projected into an azimuth-

range domain where height information needs to be further retrieved through multi-

channel observations. For this purpose, Polarimetric SAR Interferometry (PolInSAR) 

(Papathanassiou and Cloude, 2001) emerged as an effective approach for estimating 

forest height due to its sensitivity to both the physical properties and vertical structure 

of the forest scattering medium. Several forest height inversion algorithms have been 

developed based on PolInSAR data, most of them are based on the theoretical models. 

The most commonly used Random Volume over Ground (RVoG) model (Cloude and 

Papathanassiou, 2003) simplifies the forest as a homogeneous volume of randomly 

oriented scattering particles statically distributed over the ground, where volumetric 

attenuation of the radar scattering amplitude follows an exponential distribution with 

a constant extinction coefficient. Other complementary models have also been devised 

based on RVoG model by integrating vertical heterogeneity into forest representation 

(Garestier and Le Toan, 2007) or/and compensating the temporal decorrelation caused 

by the dynamic change of vegetation and ground surface properties occurring between 

acquisitions (Papathanassiou and Cloude, 2003, Lavalle and Hensley, 2015, Lei et al., 

2017), which have been further applied to various forest types and sensor wavelengths 

for single-pass or repeat-pass interferometry (Praks et al., 2007, Garestier et al., 2008a, 

Garestier et al., 2008b, Hajnsek et al., 2009, Hensley et al., 2012, Kugler et al., 2015). 

Qualities of these forest height results normally exhibit a strong dependency on the 

theoretical model employed because they are estimated through solving non-linear 
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equations approximately established between the coherence observations and forest 

parameters. Besides that, other factors related to PolInSAR system (vertical baseline, 

signal to noise ratio, etc.), the data collection method (single or repeat-pass, single or 

multiple-baseline, etc.), and imaging scenario (topography, vegetation condition, etc.) 

may also influence the vertical accuracy of forest height inversion (Ahmed et al., 2011, 

Kugler et al., 2015, Zhang et al., 2016b).  

LiDAR measurements are based on the time elapsed from the round-trip travel of each 

laser pulse between the sensor and target (Sexton et al., 2009), which are less affected 

by PolInSAR-related errors such as the speckle noise and temporal decorrelation and 

normally exhibit a higher vertical accuracy. However, LiDAR data are economically 

and computationally constrained at a local scale because of the small swath. The most 

commonly used LiDAR systems in forest height estimation are the discrete return and 

full-waveform LiDAR (Silva et al., 2018). Discrete systems record single or multiple 

returned peaks from a given pulse whereas full-waveform systems digitize the entire 

reflected energy to provide complete vertical profiles (Sumnall et al., 2016). Studies 

confirmed that full-waveform systems are less affected by signal occlusion and are 

better at describing the details in the forest canopy and understory vegetation (Crespo-

Peremarch et al., 2020), which are equipped onboard spaceborne platforms to produce 

consistent but coarse-resolution forest structure maps at the continental or global scale 

(Qi and Dubayah, 2016, Martino et al., 2019). Full-waveform LiDARs operating from 

orbit measure the amount of reflected laser light from structures distributed vertically 

throughout the canopy volume and determine the forest canopy height and structure 

from metrics related to the vertical distribution of the reflected laser light, such as the 
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hundredth percentile of the cumulative waveform energy relative to the ground surface 

(RH100) (Anderson et al., 2006, Silva et al., 2018). 

 

To produce wide-coverage forest height maps with high spatial resolution and vertical 

accuracy, related studies have attempted to generate forest height estimates through 

the synergy of LiDAR and PolInSAR. Support vector machine (SVM) is employed 

(Pourshamsi et al., 2018) to extrapolate the  LiDAR-based canopy height using multi-

baseline PolInSAR inverted parameters. SVM is also employed for the LiDAR-aided 

baseline selection (Denbina et al., 2018) to determine the best pair from multi-baseline 

PolInSAR data for the forest height inversion over each pixel. Besides, some studies 

improved the performance of PolInSAR-based forest height inversion by extracting 

prior information (ground phase, mean extinction, etc.) from the LiDAR metrics (Fu 

et al., 2017, Qi et al., 2019). However, these methods still have a strong dependency 

on the simplified model used, which may lead to errors in the estimated vegetation 

parameters when the model largely departures from the real scene. Therefore, instead 

of inversion, this study reformulates the multi-source (LiDAR and PolInSAR) forest 

height estimation as an image pan-sharpening task aiming at the generation of high 

spatial resolution and vertical accuracy forest height through the synergy of LiDAR 

and PolInSAR data. The recent advances in deep learning and its success in computer 

vision and information fusion inspired us to explore its potential on this specific forest 

height estimation task.  

 

Pan-sharpening can be regarded as a super-resolution process guided by high-spatial-

resolution panchromatic images. Prior studies introduced the Convolutional Neural 
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Networks (CNN) (LeCun and Bengio, 1995) and Generative Adversarial Networks 

(GAN) (Goodfellow et al., 2014) into pan-sharpening tasks in terms of supervised and 

unsupervised learning. Following Wald’s protocol, supervised methods such as PNN 

(Masi et al., 2016), PanNet (Yang et al., 2017), PSGAN (Liu et al., 2020a), and RED-

cGAN (Shao et al., 2019a) use the spatial-degraded images as low-spatial-resolution 

inputs and the original images as ground truth for training. These methods either suffer 

from spectral or/and spatial distortions or require additional supervision. To address 

these issues, unsupervised methods such as Pan-GAN (Ma et al., 2020) and PGMAN 

(Zhou et al., 2021) directly use the original images as inputs and preserve the spectrum 

and spatial information by two separate discriminators throughout the generative and 

adversarial game.  

 

Since GAN has achieved remarkable performance on image pan-sharpening or super-

resolution, the reformulated forest height pan-sharpening task in this paper is realized 

by a tailored GAN method called PolGAN. Instead of parameter inversion, PolGAN 

is inversely a forest height generation process, where the generator produces a high 

spatial resolution and vertical accuracy height map based on the PolInSAR and LiDAR 

inputs and the feedback provided by the discriminators. The mathematical relations 

established between forest parameters and PolInSAR coherences in traditional model-

based methods are employed in one of the discriminators as the criteria to assess the 

quality of forest height generation. The designed structure of PolGAN not only reduces 

its dependence on the theoretical model but also mitigates the limitation of the spatial 

baseline during PolInSAR data acquisition because interferometric phase unwrapping 

reverses into a wrapping process, where the vertical wavenumber on longer needs to 
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fit with the various vegetation height such that the highest observed phase center can 

match the requirement of less than π (Kugler et al., 2015, Simard and Denbina, 2018). 

Moreover, as an unsupervised method, PolGAN fits an individual set of weights for 

each new image and the training process does not rely on the ground truth by designing 

specific loss functions. 

 

The rest of this chapter is organized as follows. Test sites and datasets used in the 

experiments are presented in Section 4.2. Section 4.3 describes details of the proposed 

PolGAN method. Forest height estimation results over the boreal and tropical forest 

sites are presented in Section 4.4 following by some discussions. Finally, conclusions 

are drawn in Section 4.5.  

 

4.2 Test sites and datasets 

4.2.1 Test sites 

A boreal and a tropical forest site are used to investigate the application of PolGAN 

to forest height estimation. As presented in Figure 4.1, the boreal forest site is part of 

the Howland research forest northeast of Bangor in the U.S. state of Maine. The whole 

imaging area covers about 24,018 ha from 44°48’41’’ N to 45°10’18’’ N and from 

68°34’22’’ W to 68°45’48’’ W. As a typical northern hardwood transition forest, the 

dominant tree species at this site are spruce-hemlock-fir, aspen-birch, and hemlock-

hardwood mixtures with an average height of around 20 m (Lei and Siqueira, 2014). 

The topography varies from relatively flat to gently rolling with a maximum elevation 

change of fewer than 70 m within 10 km. The climate is primarily cold and humid in 
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the Howland site with an annual temperature of 5.4±5.0 °C and an annual rainfall of 

1050±170 mm. The MODIS Land Cover Type Product (MCD12Q1) in 2009 provides 

a rough statistic of the landcover types and components in the selected boreal forest 

(evergreen needle-leaf forests of 0.9%, deciduous broadleaf forests of 6.4%, mixed 

forests of 67.5%, savannas of 18.3%, grasslands of 0.6%, built-up lands of 4.0%, and 

water bodies of 2.3%). 

As shown in Figure 4.2, the tropical forest site is part of the Lope National Park located 

in central Gabon (0°2’12’’ S to 0°19’34’’ S, 11°27’31’’ E to 11°43’29’’ E) covering 

a total area of around 33,062 ha. The north of the Lope site is mainly characterized by 

savannas while the south part is dominated by tropical forests providing a gradually 

varying canopy height and vertical structure through the whole imaging coverage (El 

Moussawi et al., 2019). Significant topographic variations are observed around this 

site with altitudes ranging from 0 m to 683 m and the largest slope greater than 20%. 

The annual rainfall is about 1500 mm in the northern part and 2500 mm in the southern 

(Mitchard et al., 2012). Likewise, the 2016 MCD12Q1 product gives a rough statistic 

of the landcover types and components in the tropical forest site (evergreen broadleaf 

forests of 52.1%, savannas of 42.2%, grasslands of 5.1%, wetlands of 0.3%, and water 

bodies of 0.1%). 

 

4.2.2 Datasets 

4.2.2.1 UAVSAR 

The SAR data involved in this study were collected by UAVSAR, which can be further 

used as a proxy for the NISAR’s L-band product (Lavalle et al., 2017, Chapman et al., 
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2019). UAVSAR data over the Howland forest site were collected in a zero-spatial-

baseline configuration with a repeat-pass time interval of 42 min on August 5, 2009. 

The UAVSAR data over the Lope site are collected on February 25, 2016, during the 

AfriSAR campaign (Fatoyinbo et al., 2021), with a vertical baseline of 20 m and a 

temporal baseline of 23 min. A typical UAVSAR SLC product has a ground range and 

an azimuth resolution of 2.5 m and 1.0 m (Fore et al., 2015), respectively, and can be 

further averaged by a rectangular window to reduce speckle noise and generate the 

multi-looked polarimetric and interferometric images. The geocoded and multi-looked 

SAR images in the Pauli color combination over the Howland and Lope forest sites 

are presented in Figure 4.1(a) and Figure 4.2(a). 

4.2.2.2 Land Vegetation and Ice Sensor (LVIS) 

The large-footprint full-waveform LiDAR data used in this chapter are RH100 metrics 

originating from the LVIS level-2 collection. LVIS products are can be used as a proxy 

for the sparse orbital LiDAR measurements from systems such as GEDI (Dubayah et 

al., 2020). The nominal footprint diameter of LVIS is 20 m to 25 m separated by 9 m 

(overlapping footprints) in the along-track direction while GEDI samples the Earth's 

surface with 25 m nominal footprints distributed at 60 m spacing along-track and 600 

m spacing cross-track (Dubayah et al., 2020). Therefore, RH100 metrics derived from 

LVIS data are downsampled to simulate GEDI-like data. LVIS data over the Howland 

site were captured on 6 August 2009 with a 20 m footprint diameter, an 8.5 km flight 

altitude, and a 1.7 km swath width. LVIS data over the Lope site were collected on 02 

March 2016 with an 18 m footprint diameter, a 7.3 km flight altitude, and a 1.5 km 
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swath width. LVIS RH100 metrics in the geographic projection over the Howland and 

Lope sites are illustrated in Figure 4.1(b) and Figure 4.2(b). 

 

       

                                       (a)                                                    (b) 

Figure 4.1 Howland site: a) UAVSAR Pauli color composite image. Red: |𝑺𝑺𝑯𝑯𝑯𝑯 −

𝑺𝑺𝑽𝑽𝑽𝑽|𝟐𝟐, Green: 𝟐𝟐|𝑺𝑺𝑯𝑯𝑯𝑯|𝟐𝟐, Blue: |𝑺𝑺𝑯𝑯𝑯𝑯 + 𝑺𝑺𝑽𝑽𝑽𝑽|𝟐𝟐. b) LVIS RH100 height. 

 



 

 

82 
 

                                      (a)                                                        (b) 

Figure 4.2 Lope site: a) UAVSAR Pauli color composite image. b) LVIS RH100 

height. 

4.2.2.3 Data preparation 

Downloaded UAVSAR SLC images are first multi-looked by a rectangular window 

with 6 pixels in both azimuth and range directions to reduce speckle noise and generate 

multi-looked polarimetric images with azimuth and ground range sampling spacings 

of 6 and 15 m. These multi-looked images are subsequently input into the polarimetric 

decomposition and the polarimetric interferometry modules in the preprocessing part 

of PolGAN (Section 4.3.2) to produce high-spatial-resolution features. LVIS RH100 

metrics are projected into the same slant range and azimuth frame as the multi-looked 

polarimetric images which are used as the ground truth during performance evaluation. 

This high-resolution RH100 height is downsampled by slicing with an azimuth factor 

of 100 and a range scaling factor of 4 (black dots in Figure 4.3(a)) to generate the low-

resolution LiDAR height inputs with azimuth and ground range sampling spacings of 

600 m and 60 m (same as GEDI).  
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Figure 4.3 (a) Example of the projected LVIS RH100 height. (b) Example of the 

downsampled low-spatial-resolution height map. 

 

4.3 Methodology 

4.3.1 Overview of Pol-GAN 

Goodfellow proposed the generative adversarial networks (GAN) to generate realistic 

images through estimating the underlying distribution of the given unlabeled samples 

(Goodfellow et al., 2014). The network is designed based on game-theoretic principles 

with two adversarial parts (a generator and a discriminator). The generator learns the 

distribution of the given data by mapping a random sample 𝑧𝑧 from any distribution to 

a sample 𝑥𝑥 from the data space and is trained to output images to fool the discriminator. 

The discriminator learns to distinguish the difference between the generated and real 

samples and outputs a scalar indicating the probability of a sample being real or fake 

(Creswell et al., 2018). This adversary continues until the generator-derived images 

cannot be further distinguished by the discriminator and the two-player min-max game 

can be formulated as an optimization problem as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺

 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

𝐸𝐸𝑥𝑥∼𝑝𝑝data(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧∼𝑝𝑝z(𝑧𝑧) �𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (4.1) 

where 𝐺𝐺 is the generator, 𝐷𝐷 is the discriminator, 𝑥𝑥 is a sample from the distribution of 

training data 𝑝𝑝data(𝑥𝑥), and 𝑧𝑧 is a sample from an arbitrary random distribution 𝑝𝑝z(𝑧𝑧).  

 

In this chapter, the traditional forest height inversion process is reformulated as an 

unsupervised pan-sharpening task aimed at generating forest heights with high spatial 

resolution and vertical accuracy based on the synergy of LiDAR and PolInSAR data. 



 

 

84 
 

A preprocessing step is employed to extract the high-spatial-resolution PolInSAR 

coherences and PolSAR decomposition features (see Section 4.3.2) before feeding into 

the pan-sharpening network. The preprocessing step is necessary because the repeat-

pass acquisitions have both necessary as well as superfluous information not needed 

for the forest height estimation. The pan-sharpening deep neural network is designed 

based on the generative adversarial strategy in GAN with one generator and two 

discriminators. The generator absorbs the spatial distributions of different scattering 

mechanisms in polarimetric decomposition features 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻(𝑟𝑟ℎℎ × 𝑟𝑟𝑤𝑤𝑤𝑤 × 𝑑𝑑𝑠𝑠), vertical 

distributions of the PolInSAR coherences 𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 (𝑟𝑟ℎℎ × 𝑟𝑟𝑤𝑤𝑤𝑤 × 𝑑𝑑𝑐𝑐), and low-spatial-

resolution heights derived from LiDAR sparse samples 𝐻𝐻𝐿𝐿𝐿𝐿 (ℎ × 𝑤𝑤 × 1) to produce a 

pan-sharpened forest height map 𝐻𝐻�𝐻𝐻𝐻𝐻 (𝑟𝑟ℎℎ × 𝑟𝑟𝑤𝑤𝑤𝑤 × 1) with greater spatial details and 

higher vertical accuracy. Here, ℎ and  𝑤𝑤 are the height and width of the low-resolution 

LiDAR height map, 𝑟𝑟ℎ and 𝑟𝑟𝑤𝑤 are ratios between LiDAR and radar pixel spacings in 

azimuth and range directions, 𝑑𝑑𝑐𝑐 and 𝑑𝑑𝑠𝑠 are the dimensions of PolInSAR coherences 

and PolSAR decomposition features.  

 

Training of the generator is dominated by the sum of pixel-wise spatial and vertical 

losses (see Section 4.3.3.1) along with two discriminators playing a refinement role to 

force the spatial and vertical distributions in the generated images consistent with that 

in high-resolution inputs. The structure of PolGAN is illustrated in Figure 4.4. 
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Figure 4.4 Structure of PolGAN with a multi-source data preprocessing module in the left box and the generative adversarial network with 

one generator and two discriminators in the right box.
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4.3.2 Data preprocessing 

The repeat-pass PolInSAR acquisition includes a master and a slave fully polarimetric 

SAR (PolSAR) image collected with a time separation of less than an hour. As listed 

in Table 4.1, two PolSAR images are fed into a polarimetric decomposition module to 

extract spatial features of different scattering mechanisms using different polarimetric 

decomposition algorithms (Cloude and Pottier, 1996, Freeman and Durden, 1998, Lee 

et al., 1999, Pottier and Lee, 2000, Yamaguchi et al., 2005, Neumann et al., 2009a). 

Taking the three-component Freeman decomposition as an example, each pixel in a 

multi-looked PolSAR image can be represented by a coherency matrix observation T 

𝑻𝑻 = 〈𝑘𝑘�⃗ 𝑝𝑝𝑘𝑘�⃗ 𝑝𝑝
†〉 = �

𝑇𝑇11
𝑇𝑇12∗
𝑇𝑇13∗

 
𝑇𝑇12
𝑇𝑇22
𝑇𝑇23∗

 
𝑇𝑇13
𝑇𝑇23
𝑇𝑇33

� ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑘𝑘�⃗ 𝑝𝑝 =
1
√2

�
𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉
𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉

2𝑆𝑆𝐻𝐻𝐻𝐻
� . (4.2) 

Where 𝑆𝑆𝐻𝐻𝐻𝐻, 𝑆𝑆𝐻𝐻𝐻𝐻 and 𝑆𝑆𝑉𝑉𝑉𝑉 are the scattering elements in scattering matrix 𝑺𝑺.  

 

In Freeman-Durden decomposition, the coherency matrix 𝑻𝑻 is modeled as a sum of 

contributions from the surface, double-bounce, and volume scattering mechanisms, 

given by  

𝑻𝑻 = 𝑃𝑃𝑠𝑠𝑻𝑻𝑠𝑠 + 𝑃𝑃𝑑𝑑𝑻𝑻𝑑𝑑 + 𝑃𝑃𝑣𝑣𝑻𝑻𝑣𝑣, (4.3) 

where 𝑃𝑃𝑠𝑠, 𝑃𝑃𝑑𝑑, and 𝑃𝑃𝑣𝑣 are powers of the surface, double-bounce, and volume scattering 

components, 𝑻𝑻𝑠𝑠  is the surface coherency matrix derived from a first-order Bragg 

surface scatterer, 𝑻𝑻𝑑𝑑 is the double-bounce coherency matrix from a dihedral corner 

reflector, and 𝑻𝑻𝑣𝑣 is a volume coherency matrix. 
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1
𝛽𝛽∗
0

 
𝛽𝛽

|𝛽𝛽|𝟐𝟐
0

 
0
0
0
� ,𝑻𝑻𝑑𝑑 =

1
1 + |𝛼𝛼|2 �

1
𝛼𝛼∗
0

 
𝛼𝛼

|𝛼𝛼|𝟐𝟐
0

 
0
0
0
� ,𝑻𝑻𝑣𝑣 =

1
4 �

2
0
0

 
0
1
0

 
0
0
1
� (4.4) 



 

 

87 
 

where 𝛼𝛼 and 𝛽𝛽 are scattering parameters with constraints that |𝛼𝛼| < 1 and |𝛽𝛽| < 1.  

The surface, double-bounce, and volume powers can be extracted by solving Equation 

(4.3), which are then fed into the generator and spatial discriminator along with other 

features (surface, double-bounce, volume, and helix scattering features derived from 

the Yamaguchi decomposition (Yamaguchi et al., 2005); anisotropy and orientation 

randomness features derived from Neumann decomposition (Neumann et al., 2009a); 

anisotropy, entropy, alpha angle, and orientation angle features from the H/A/Alpha 

decomposition (Cloude and Pottier, 1997); eigendecomposition of coherency matrix 

(Cloude and Pottier, 1996)). Examples of high-resolution polarimetric decomposition 

features are presented in Figure 4.5(a). 

Table 4.1 Polarimetric decomposition features 

Decomposition Feature Dimension 

Yamaguchi Odd, Dbl, Vol, Hlx 4 

Neumann Delta, Psi, Tau 3 

H/A/Alpha 
Alpha, Anisotropy, Beta, Delta, Entropy, Gamma, 

Lambda, HA, (1-H)A, H(1-A), (1-H)(1-A) 
11 

Freeman Odd, Dbl, Vol 3 

Cloude T11, T22, T33 3 
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(a) 

   
(b) 

Figure 4.5 Examples of the high-resolution features after preprocessing: (a) 

Polarimetric decomposition features; (b) Polarimetric interferometry features 
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Additionally, the PolSAR image pair is processed by a polarimetric interferometry 

module with a 3×3 moving window to generate PolInSAR coherences at any desired 

polarization state (e.g., HH, HV, VV, HH+VV, HH-VV, etc.) (Lavalle and Hensley, 

2015, Ghasemi et al., 2018, Simard and Denbina, 2018), where spectral and signal-to-

noise ratio (SNR) decorrelations are calibrated by methods in (Kugler et al., 2015). As 

illustrated in Figure 4.5(b), PolInSAR coherences carry the vertical information of the 

scattering volume and can be utilized by the generator and coherence discriminator for 

the forest height estimation.  

 

4.3.3 Generative and adversarial network 

4.3.3.1 Generator 

Unlike the traditional pan-sharpening tasks with upsampling scales of 4 or 8, scaling 

factors in the forest height generation process are much larger due to the significant 

difference between the spatial resolutions of spaceborne LiDAR and SAR acquisitions. 

As indicated in Section 4.2.2.3, high-resolution PolSAR and PolInSAR features are 

with azimuth (height) and ground range (width) sampling spacings of 6 m and 15 m, 

and the simulated low-resolution GEDI LiDAR height is with azimuth and ground 

range sampling spacings of 600 m and 60 m. Therefore, the scaling factors are set as 

100 and 4 in the azimuth and range directions. For a better performance over pan-

sharpening tasks with large upsampling scales, a progressive pan-sharpening strategy 

(Lai et al., 2018, Cai and Huang, 2020) is adopted, where the generator is decomposed 

into two sub-networks and each one of them is responsible for a 10×2 pan-sharpening 

as presented in Figure 4.6. Referring to the architecture of Pan-GAN (Ma et al., 2020), 
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the sub-network of the generator is built by a dense connection (Iandola et al., 2014) 

among four convolution layers with filter sizes of 9×9, 5×5, 5×5, and 3×3, strides of 

1 with padding, and channels of 256, 128, 64, and 1. This dense connection takes high-

resolution PolInSAR and PolSAR features and the upsampled low-resolution LiDAR 

height (nearest neighbor) as inputs and the activation function in each layer is set as 

ReLU with batch normalization (BN) except for the last one. All inputs are normalized 

to the same scale before feeding into the generator.  

 

Figure 4.6 The architecture of the progressive generator with the basic dense module 

in the blue box. 

The loss function of the generator is defined by the sum of vertical and spatial losses. 

ℒ𝐺𝐺 = ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (4.5) 

where ℒ𝐺𝐺 is the total loss of the generator, ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the sum of all vertical-related 

losses, and ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes all spatial-related losses. 
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ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
1

2𝑁𝑁
���↓ 𝐻𝐻�𝐻𝐻𝑅𝑅1 −  𝐻𝐻𝐿𝐿𝐿𝐿�𝐹𝐹

2 + �↓ 𝐻𝐻�𝐻𝐻𝑅𝑅2 −  𝐻𝐻𝐿𝐿𝐿𝐿�𝐹𝐹
2�

𝑁𝑁

𝑛𝑛=1

+ 𝛼𝛼ℒ𝑎𝑎𝑎𝑎𝑎𝑎1 (4.6) 

where N is the number of training data, ↓ represents the slicing downsampling,  𝐻𝐻�𝐻𝐻𝑅𝑅1 

and 𝐻𝐻�𝐻𝐻𝑅𝑅2 are the generated forest heights from two sub-networks, ‖∙‖𝐹𝐹2  is the matrix 

Frobenius norm and ℒ𝑎𝑎𝑎𝑎𝑎𝑎1 represents the adversarial loss derived from the coherence 

discriminator 𝐷𝐷𝑐𝑐 balanced by a regularization parameter 𝛼𝛼. 

ℒ𝑎𝑎𝑑𝑑𝑣𝑣1 =
1
𝑁𝑁
��𝐷𝐷𝑐𝑐 �𝐶𝐶𝐶𝐶�𝐻𝐻�𝐻𝐻𝑅𝑅2�� − 1�

2
𝑁𝑁

𝑛𝑛=1

(4.7) 

where 𝐶𝐶𝐶𝐶 is the coherence simulation operation. The spatial loss in Equation (4.5) can 

be written as  

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝛽𝛽

2𝑁𝑁
���𝛻𝛻𝐻𝐻�𝐻𝐻𝑅𝑅1 − 𝐴𝐴𝐴𝐴�𝛻𝛻( ↓ 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻)��

𝐹𝐹
2 + �𝛻𝛻𝐻𝐻�𝐻𝐻𝑅𝑅2 − 𝐴𝐴𝐴𝐴( 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝐻𝐻𝐻𝐻)�

𝐹𝐹
2�

𝑁𝑁

𝑛𝑛=1

 

+𝛾𝛾ℒ𝑎𝑎𝑎𝑎𝑎𝑎2 (4.8) 

where 𝛻𝛻 denotes the high pass filter extracting the high-frequency spatial information, 

𝐴𝐴𝐴𝐴(∙) denotes the average pooling operation in the channel dimension, 𝛽𝛽 and 𝛾𝛾 are 

the regularization parameters, and ℒ𝑎𝑎𝑎𝑎𝑎𝑎2 represents the adversarial loss derived from 

the spatial discriminator 𝐷𝐷𝑠𝑠. 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎2 =
1
𝑁𝑁
��𝐷𝐷𝑠𝑠�𝐻𝐻�𝐻𝐻𝑅𝑅2� − 1�2
𝑁𝑁

𝑛𝑛=1

(4.9) 

4.3.3.2 Coherence simulator 

The output of the generator is then processed by a coherence simulator before feeding 

into the coherence discriminator. This coherence simulator is constructed based on a 

simplified version of the RMoG model to generate a simulated volumetric-temporal 
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coherence, 𝛾𝛾�𝑣𝑣𝑣𝑣, for a non-zero baseline geometry or a simulated temporal coherence, 

𝛾𝛾�𝑡𝑡, for a zero-baseline geometry using forest height, random motion, and extinction 

coefficient inputs. In an RMoG model, coherences of the repeat-pass acquisition with 

a short temporal baseline can be approximated as a coherence function in Equation 

(4.10)  after the compensation of the spectral and SNR decorrelations. 

𝛾𝛾 = exp�𝑗𝑗𝜙𝜙𝑔𝑔�
𝛾𝛾𝑣𝑣𝑣𝑣 + 𝜇𝜇(𝜔𝜔��⃗ )
1 + 𝜇𝜇(𝜔𝜔��⃗ ) = exp�𝑗𝑗𝜙𝜙𝑔𝑔� �𝛾𝛾𝑣𝑣𝑣𝑣 +

𝜇𝜇(𝜔𝜔��⃗ )
1 + 𝜇𝜇(𝜔𝜔��⃗ )

(1 − 𝛾𝛾𝑣𝑣𝑣𝑣)� (4.10) 

where 𝜙𝜙𝑔𝑔 is the ground phase, 𝜇𝜇(𝜔𝜔��⃗ ) is the ground to volume amplitude ratio varying 

with polarization 𝜔𝜔��⃗ , and 𝛾𝛾𝑣𝑣𝑣𝑣 represents the coherence component with coupled effects 

from volume scattering and wind-derived temporal change.  

 

Under the assumption of exponential scattering decay and a Gaussian random motion 

in the volume layer, 𝛾𝛾𝑣𝑣𝑣𝑣 can be described by 

𝛾𝛾𝑣𝑣𝑣𝑣 =

� exp � 2𝜎𝜎
cos𝜃𝜃 𝑧𝑧� exp�− 1

2 �
4𝜋𝜋
𝜆𝜆 �

2
𝜎𝜎𝑣𝑣2(𝑧𝑧)� exp(𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑

ℎ𝑣𝑣

0

� exp � 2𝜎𝜎
cos𝜃𝜃 𝑧𝑧� 𝑑𝑑𝑑𝑑

ℎ𝑣𝑣

0

(4.11) 

where ℎ𝑣𝑣 denotes the forest height, 𝜎𝜎 is the mean extinction coefficient, 𝜃𝜃 is the local 

incidence angle,  𝜆𝜆 is the radar wavelength, 𝑘𝑘𝑧𝑧 is the vertical wavenumber, and 𝜎𝜎𝑣𝑣(𝑧𝑧) 

is the standard deviation of the Gaussian random motion which linearly varies with 

the height (Lei and Siqueira, 2014). 𝛾𝛾𝑣𝑣𝑣𝑣 can be computed in a closed form as function 

of forest height, mean extinction coefficient, and random motion factor 𝜏𝜏1, where 𝜃𝜃 

and 𝑘𝑘𝑧𝑧 are data layers supplied on the UAVSAR website given by 
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��

cos𝜃𝜃 �exp � 2𝜎𝜎
cos𝜃𝜃 ℎ𝑣𝑣� − 1�

(4.12)
 

 

The PolInSAR coherence function in Equation (4.10) is a straight line in the complex 

plane, which can be fitted by coherence observations at different polarizations using 

the least square method (Cloude and Papathanassiou, 2003, Hajnsek et al., 2009). This 

line intersects the unit circle at two points one of which is the ground phase exp�𝑗𝑗𝜙𝜙�𝑔𝑔�. 

Methods for selecting the correct ground phase have been discussed in several studies 

(Kugler et al., 2015, Denbina et al., 2018, Pourshamsi et al., 2018) and thus won’t be 

described in detail here. Then, exp�𝑗𝑗𝜙𝜙�𝑔𝑔�𝛾𝛾�𝑣𝑣𝑣𝑣 is determined by the furthest coherence 

point from the estimated ground solution and the observation of volumetric-temporal 

coherence 𝛾𝛾�𝑣𝑣𝑣𝑣 can be extracted by removing the ground phase. 

 

In the zero-baseline scenario with 𝑘𝑘𝑧𝑧 ≈ 0, 𝛾𝛾𝑣𝑣𝑣𝑣 degrades into a real temporal coherence 

𝛾𝛾𝑡𝑡 based on the mean value theorem for integration, which is fully determined by the 

forest height and the random motion factor 𝜏𝜏2,  

𝛾𝛾𝑡𝑡 = exp(−𝜏𝜏2ℎ𝑣𝑣2). (4.13) 

In this situation, the effect of volumetric scattering is negligible and the PolInSAR 

coherence in Equation (4.10) can be reformulated as a real function as,  

𝛾𝛾 =
𝛾𝛾𝑡𝑡 + 𝜇𝜇(𝜔𝜔��⃗ )
1 + 𝜇𝜇(𝜔𝜔��⃗ ) . (4.14) 
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Since 𝛾𝛾𝑡𝑡 < 1 and 𝜇𝜇(𝜔𝜔��⃗ ) > 0, it can be concluded that the reformulated PolInSAR 

coherence in Equation (4.14) monotonically increases with the ground-to-volume ratio 

and the observation of temporal coherence 𝛾𝛾�𝑡𝑡 can be estimated through the minimum 

of coherence observations at different polarizations.  

 

The coherence simulator is constructed based on Equation (4.12) in non-zero baseline 

geometry (Lope) or Equation (4.13) in zero-baseline geometry (Howland), where the 

forest height input is produced by the generator. The random motion and extinction 

coefficient inputs are generated by upsampling the relatively low-spatial-resolution 

estimates derived from the low-spatial-resolution PolInSAR coherences and the sparse 

LiDAR heights. This is reasonable because the scattering attenuation and random 

motion effects are relatively consistent in a local area and thus can be considered as a 

constant value among locally neighboring pixels (Simard and Denbina, 2017).  

4.3.3.3 Discriminator 

A spatial and a coherence discriminator are used in PolGAN to refine the spatial and 

vertical distributions of the generated forest height, respectively. Instead of a vertical 

discriminator, we developed a coherence discriminator for the vertical refinement 

because PolInSAR coherences implicitly provide high-spatial-resolution descriptions 

of the scattering vertical structure. This coherence discriminator learns to distinguish 

the difference between the observed and simulated temporal or volumetric-temporal 

coherences and gives feedback to the generator through coherence adversarial loss. 

Associated observations of volumetric-temporal 𝛾𝛾�𝑣𝑣𝑣𝑣  or temporal 𝛾𝛾�𝑡𝑡  coherences and 

the simulated volumetric-temporal 𝛾𝛾�𝑣𝑣𝑣𝑣 or temporal 𝛾𝛾�𝑡𝑡 coherences are obtained based 
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on the methods in Section 4.3.3.2. Like Pan-GAN, a spatial discriminator is deployed 

to refine the spatial distribution in the generated height image. Inputs of the spatial 

discriminator are the high-pass filtering results of the generated forest height and the 

polarimetric decomposition features. An averaging operation is conducted along the 

feature dimension before feeding into convolution layers. As shown in Figure 4.7, both 

discriminators are fully constructed by convolutional neural networks (CNN) but with 

different inputs. Each of them includes six layers with filter sizes of 3×3, strides of 2 

without padding except for the last one (filter: 6×6, stride: 1), and channels of 16, 32, 

64, 128, 256, and 1. Batch normalization is used except for the first layer and activation 

functions are set as Leaky ReLU for each layer. 

 

Figure 4.7 The architecture of the coherence and spatial discriminators 
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4.3.4 Implementation details 

High-spatial-resolution features and the associated low-spatial-resolution height over 

each site are cropped into small patches (50% overlaps) in sizes of 200×200 and 2×50, 

respectively, and then fed into the generators and discriminators. The batch size is set 

as 16 in the training process, the RMSProp optimizer is initialized with a base learning 

rate of 0.001 and a decay rate of 0.99, the regularization parameters 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 in 

Equations (4.6) and (4.8) are set as 0.05, 1, and 0.01, and the training epochs are set 

as 80 for both Howland and Lope sites. Ablation experiments are conducted over three 

more structures (a progressive generator with two dense connections and a spatial 

discriminator, a progressive generator with two dense connections and a coherence 

discriminator, and a standard generator with one dense connection and dual 

discriminators) to explore the contributions of each discriminator and different 

generator architectures to the pan-sharpening result. Related training details are the 

same as mentioned above, except that 𝛼𝛼 = 0 when there is no coherence discriminator 

and 𝛾𝛾 = 0 when there is no spatial discriminator. All experiments are implemented in 

the Pytorch framework based on two NVIDIA GeForce RTX 2080Ti GPUs. Besides 

that, comparative experiments are also conducted between PolGAN and a prior model-

based Kapok method (Denbina and Simard, 2017, Simard and Denbina, 2018) to 

validate the superiority of the proposed method.  
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4.4 Result and Discussion 

4.4.1 PolGAN results 

Forest heights 𝐻𝐻�𝐻𝐻𝐻𝐻 produced by PolGAN at different training stages are shown in this 

section. Quantitative evaluations are conducted based on accuracy metrics including 

the Root Mean Square Error (RMSE), Mean Signed Error (BIAS), and Coefficient of 

Determination (R2) (Denbina et al., 2018, Simard and Denbina, 2018). The RMSE, 

BIAS, and R2 measure the absolute difference, the signed difference, and dependency 

between the predicted and the reference values, respectively. Figure 4.8 represents the 

evolution of the generated forest height over the Howland site. Related quantitative 

evaluations are conducted over a region of interest (ROI) in the red frame and the 

PolGAN derived heights are plotted versus high-resolution RH100 heights as shown 

in Figure 4.9. The calculated RMSE and BIAS are precise to the centimeter, and R2 is 

precise to two decimal places as given in Table 4.2, where the negative BIAS indicates 

that the estimated height is overall lower than the reference RH100 height and vice 

versa. Epoch 0 corresponds to the upsampling height produced by the nearest neighbor. 

 



 

 

98 
 

   

   

Figure 4.8 PolGAN derived forest height maps over the Howland site at different 

training stages. 
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Figure 4.9 Evolution of PolGAN derived forest height over ROI (left column) and 

associated density plots versus RH100 heights (right column), where black lines are 

y=x, red lines are the linear fits 

Table 4.2. Evolution of the accuracy metrics over ROI 

Epoch 0 10 20 40 80 

RMSE 6.72 m 5.26 m 3.39 m 2.19 m 1.21 m 

BIAS -1.10 m -3.42 m -1.21 m -0.33 m -0.27 m 

R2 0.26 0.45 0.59 0.78 0.93 

 

As illustrated in Figure 4.8, at the earlier stages of the training, the generated forest 

heights are with coarse spatial details and lower vertical accuracies. After several 

iterations, spatial and vertical distributions are gradually refined by the spatial and 

coherence discriminator, and the generated forest height is converged to the high-

resolution RH100 height. Results over ROI in Figure 4.9 present the evolution of the 

generator more visually, where boundaries of water bodies and bare roads are getting 

clearer and more details in the vegetation height are gradually revealed by training. 

This is consistent with the decreasing RMSE (6.72 m to 1.21 m) and the increasing R2 

(0.26 to 0.93) metrics in Table 4.2.  
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Figure 4.10 shows the evolution of the generated forest height map over the Lope site. 

Some areas are not covered by the LVIS LiDAR acquisitions and associated pixels are 

set as NoData in the high-resolution RH100 height map. The number of NoData pixels 

is largely reduced in the low-resolution LiDAR height after downsampling and the 

NoData values are further set as zero in the normalized low-resolution input. Similarly, 

quantitative evaluation is conducted over the ROI in the red frame, where the NoData 

pixels in the high-resolution RH100 height map are not included in the calculation of 

any accuracy metrics. PolGAN-derived results are plotted versus the reference RH100 

height as shown in Figure 4.11 along with related RMSE, BIAS, and R2 metrics listed 

in Table 4.3. 
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Figure 4.10 PolGAN derived forest height maps over the Lope site at different 

training stages. 
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Figure 4.11 Evolution of PolGAN derived forest height over ROI (left column) and 

associated density plots versus RH100 heights (right column). 

Table 4.3. Evolution of the accuracy metrics over ROI 

Epoch 0 10 20 40 80 

RMSE 9.14 m 7.62 m 6.64 m 5.08 m 2.37 m 

BIAS -0.06 m -2.94 m -0.94 m -1.01 m -1.25 m 

R2 0.62 0.76 0.80 0.87 0.98 
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Similar evolution progress is observed in the generated forest height maps over the 

Lope site in Figure 4.10, where boundaries of short savannas become prominent and 

the vertical accuracies of tall evergreen broadleaf forests increase with training. This 

is also indicated in the decreasing RMSE (9.14 m to 2.37 m) and the increasing R2 

(0.62 to 0.98) in Figure 4.11. Note that RMSEs of the Lope site are overall higher than 

those of the Howland site, which is related to the height ranges at the two forest sites 

(Howland: 0-35 m, Lope: 0-68 m). Low-resolution LiDAR inputs are normalized to 

the range of (-1, 1) before feeding into the generator and the generator outputs are 

rescaled to the initial range as the estimated forest height. Errors in the outputs are 

amplified due to this scaling and hence larger scaling ratios lead to lower accuracies 

in the forest height results.  

 

4.4.2 Ablation studies 

As mentioned in section 4.3.4, ablation studies are conducted on models with different 

generator and discriminator structures. Related experiments are first performed on the 

progressive (P) generator with different discriminators (spatial only, coherence only, 

and dual discriminators) to explore the contributions from each discriminator. This is 

followed by an experiment on the standard (S) generator with dual discriminators to 

validate the superiority of the progressive architecture. Related forest height maps are 

presented in Figure 4.12 and quantitative evaluation is conducted over the same ROI 

in Howland. The generated heights are plotted versus high-resolution RH100 heights 

as presented in Figure 4.13  and related accuracy metrics with the same decimal places 

are summarized in Table 4.4. 



 

 

105 
 

  
(a)                                 (b) 

 
(c)                                (d) 

Figure 4.12 Forest height maps generated by models with different generator and 

discriminator structures: (a) Progressive generator with dual discriminator (P-
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Spatial&Coherence); (b) Progressive generator with spatial discriminator (P-Spatial); 

(c) Progressive generator with coherence discriminator (P-Coherence); (d) Standard 

generator with dual discriminators (S-Spatial&Coherence).   
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Figure 4.13 Forest height over ROI generated by models with different generator and 

discriminator structures (left column) and associated density plots versus RH100 

heights (right column). 

Table 4.4 Accuracy metrics of the ablation experiments 

Metric P-Spatial&Coherence P-Spatial P-Coherence S-Spatial&Coherence 

RMSE 1.21 m 5.87 m 2.74 m 2.43 m 

BIAS -0.27 m -5.34 m -0.10 m -0.08 m 

R2 0.93 0.72 0.67 0.80 

 

As presented in Figure 4.12, Figure 4.13, and Table 4.4, the forest height generated by 

the progressive generator with spatial discriminator has much lower vertical accuracy 

than the PolGAN-derived result (P-Spatial&Coherence) although the spatial details 

are quite clear. On the contrary, coarse spatial details but higher vertical accuracy can 

be observed in the forest height result derived from the progressive generator with a 

coherence discriminator. This indicates the responsibility of each discriminator and 

the necessity of dual discriminators during the forest height pan-sharpening process, 

where the spatial discriminator mainly focuses on the refinement of the spatial details 

while the coherence discriminator is dedicated to refining the vertical details.  
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It can also be concluded from Figure 4.12, Figure 4.13, and Table 4.4, the progressive 

generator with two dense connections used in the PolGAN (RMSE: 1.21 m; R2: 0.93) 

exhibits a better performance on the pan-sharpening task with large upsampling scales 

compared with the standard generator with one dense connection (RMSE: 2.43 m; R2: 

0.80). This is because the progressive generator has a much deeper network structure 

than the standard one and hence offers more parameters to simulate the pan-sharpening 

process. Additionally, training of the progressive generator is guided by two ground-

truth-derived losses at different spatial resolutions, whereas the training of standard 

architecture is only guided by one.  

4.4.3 Comparative experiments 

The comparison experiment is conducted between the PolGAN and Kapok methods. 

Kapok is a Python library developed by JPL to estimate forest height using the repeat-

pass PolInSAR data. The library can import UAVSAR acquisitions and generate forest 

height estimates based on the RVoG model. Forest height maps derived from the two 

methods are illustrated in Figure 4.14 and quantitative evaluation is conducted over 

the same ROI in the Lope site. The generated heights are plotted versus high-resolution 

RH100 heights as presented in Figure 4.15, where the RMSE, BIAS, and R2 of the 

PanGAN result are 2.37 m, -1.25 m, and 0.98 as listed in Table 4.3, and the RMSE, 

BIAS, and R2 of the Kapok result are 8.02 m, -1.91 m, and 0.73.  
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                                        (a)                                                 (b) 

Figure 4.14 (a) PolGAN-derived forest height map; (b) Kapok-derived forest height 

map. 
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(b) 

Figure 4.15 (a) Forest height over ROI generated by PolGAN and Kapok methods; 

(b) Density plots versus RH100 heights. 

As a typical model-based forest height inversion method, Kapok estimates the forest 

height by solving nonlinear equations of forest parameters, imaging geometry, sensor 

parameters, and coherence observations established based on the RVoG model. It has 

been mentioned in Section 4.1, RVoG model simplifies the forest as a homogeneous 

volume of randomly oriented scattering particles statically distributed over the ground, 

where the temporal decorrelation and the vertical heterogeneity are not considered in 

this model. Therefore, discrepancies between RVoG model and actual backscattering 

behaviors inevitably exist especially when using repeat-pass L-band PolInSAR data, 

where dynamic changes of forest properties occur within different acquisition times 

and longer radar waves in L-band are more likely to interact with scattering elements 

in the forest canopy (more sensitive to the forest structure). Besides, the Kapok method 

estimates pixel-wise forest heights using the coherence observations in each radar 

pixel meaning that the spatial characteristics among pixels like shape and texture are 

not considered during the inversion.  
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The proposed PolGAN method is intended to redress the above-mentioned challenges. 

Firstly, the forest height inversion is reformulated as an unsupervised pan-sharpening 

process on basis of the high-resolution polarimetric decomposition and polarimetric 

interferometry features and the low-resolution LiDAR height. The relation established 

based on the theoretical model is only employed before the coherence discriminator 

as a part of the vertical refinement of the generator. This significantly reduces the 

conformity requirement between the theoretical model and the actual scene. Secondly, 

both the generator and the two discriminators are constructed based on CNN, which 

has been widely used to extract shape, texture, and spatial characteristics in computer 

vision tasks and therefore provide PolGAN with the capability to use information 

among pixels that were not considered in the prior methods.  

4.4.4 Discussion 

At the current stage, PolGAN experiments are mainly conducted at the regional scale 

using the airborne PolInSAR data and the simulated GEDI data. For further application 

at the continental or/and global scale, several challenges need to be addressed. The 

first one is the availability of large-scale Lidar and PolInSAR collections. Spaceborne 

LiDAR missions like GEDI and Ice, Cloud, and land Elevation Satellite-1&2 (ICESat-

1&2) have been dedicated to providing global LiDAR observations since 2003 and the 

upcoming spaceborne SAR missions such as the NISAR, the European Space Agency 

(ESA)’s BIOMASS (Carreiras et al., 2017), and German Aerospace Center (DLR)’s 

Tandem-L (Moreira et al., 2015) are designed to get L-band PolInSAR measurements 

in single- or repeat-pass configurations within days. The second challenge would be 

the efficiency of the data processing method. For the two test sites involved in this 
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study, it averagely takes about 6 hours to get the final forest height estimation result 

over each forest site when implemented by two NVIDIA GeForce RTX 2080Ti GPUs. 

Attemptations have been made to explore whether PolGAN needs to be retrained for 

every new region, where the model trained over the Lope site is applied to Howland 

acquisitions to get the forest height pan-sharpening result. As presented in Figure 4.16, 

the RMSE, BIAS, and R2 of the Howland forest height generated by the model trained 

on the Lope site are 4.11 m, 2.61 m, and 0.67. RMSE is 2.90 m higher and R2 is 0.26 

lower than the result in Figure 4.9 indicating that retraining is necessary to get forest 

height estimates with higher accuracy. A possible way to improve the efficiency of 

PolGAN is to employ pre-trained weights from previous training during the retraining 

process. The third challenge is about the difference between airborne and spaceborne 

remote sensing. For example, the spatial resolution of spaceborne data is normally 

lower compared with airborne, the temporal baseline of the spaceborne repeat-pass 

SAR acquisition is much longer, and the vertical accuracy of the spaceborne LiDAR 

is lower. Therefore, further adjustments on the PolGAN model (architectures and 

hyperparameters) are inevitable to obtain better forest height estimations on different 

spaceborne missions. In summary, there are still ways to go for the global application 

of the proposed PolGAN, but its potential on the forest height estimation with high 

spatial resolution and vertical accuracy will greatly benefit further applications like 

global land management and biomass level monitoring (Mette et al., 2002, Mette et 

al., 2004a, Mette et al., 2004b, Duncanson et al., 2020). 
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                                      (a)                                                  (b) 

Figure 4.16 (a) Forest height over Howland ROI generated by the model trained on 

the Lope site; (b) Density plots versus RH100 heights. 

 

4.5 Conclusion 

This chapter proposed an unsupervised deep-learning-based forest height estimation 

method based on the synergy of the high-resolution repeat-pass PolInSAR and low-

resolution LiDAR acquisitions. The traditional model-based forest height inversion is 

reformulated as a pan-sharpening process between low-resolution LiDAR heights and 

high-resolution PolInSAR features and is further realized by a novel PolGAN network 

with one progressive generator and two discriminators. The generator absorbs the 

input features and produces forest height estimates with high spatial resolution and 

vertical accuracy and two discriminators distinguish spatial and coherence differences 

between the generated result and remote sensing observations and provide feedback 

to refine the generator. Compared with traditional PolInSAR forest height inversion 

methods, the proposed method exhibits less dependency on theoretical models and 

effectiveness in using shape, texture, and spatial information in high-spatial-resolution 

features. Results indicate that this method can achieve RMSEs of around 1.21 m over 
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the ROI in Howland and 2.37 m over the ROI in Lope and hence provide an effective 

approach for the forest height estimation with the synergy of PolInSAR and LiDAR 

data.  
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Chapter 5 Towards A Deep-Learning-Based 

Automated Active Fire Detection Framework 

Using Sentinel-2 Imagery  

Most prior studies on active fire detection take advantage of the emitted radiance in 

the thermal infrared and mid-infrared bands with coarse spatial resolutions. However, 

the background radiance in a coarse pixel tends to overwhelm signals from subtle fires 

making it hard to reveal more spatial details on small fires. Though further efforts have 

been placed on active fire detection using the reflectance in the short wave infrared 

bands with medium resolutions, these methods are still based on pixel or region-level 

comparisons using sensor-specific thresholds and neighborhood statistics. Since prior 

researches have indicated that active fires normally exhibit higher reflectances in the 

SWIR bands while negligible contributions in the red band, the active fire detection 

process is formulated as a semantic segmentation on the SWIR-Red false-color images 

in this chapter. Studies mainly focus on exploring the potential of deep-learning-based 

semantic segmentation models on active fire detection, which is a relatively new field 

with open demands for datasets and architectures. To address the challenges, a dataset 

is constructed using the open-access Sentinel-2 imagery and the performance of three 

deep-learning-based segmentation models trained on this dataset are further evaluated. 

Modifications are performed on the architecture of the best-performing model based 

on the unique behaviors of active fires in SWIR-Red false-color images to boost the 

detection accuracy. An automated active fire detection framework is developed based 

on this modified model for its further application on global fire monitoring, which 

allows an automated Sentinel-2 data download, processing, and the generation of the 
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active fire detection results through the time and location information provided by the 

user. Related performance is evaluated in terms of detection accuracy and processing 

efficiency.  

I have published this work in Remote Sensing (Zhang et al., 2021b). 

Zhang Q, Ge L, Zhang R, et al. Towards a Deep-Learning-Based Framework of 

Sentinel-2 Imagery for Automated Active Fire Detection. Remote Sensing 2021; 

13(23), 4790. 

5.1 Introduction  

Australia has experienced one of its most devastating fire seasons in 2019-2020, 

colloquially known as “Black Summer” (Kemter et al., 2021). Commenced in June 

2019, the fire was out of control across Australia from September 2019 to March 2020 

causing at least 33 deaths, a total burned area of almost 19 million hectares, and 

economic loss of over 103 billion AUD (Killian, 2020). Likewise, the United States 

has also experienced a series of wildfires since May 2020. By the end of that year, at 

least 46 deaths, a total burned area of over 4 million hectares, and an economic cost 

of almost 20 billion USD have been reported (Higuera and Abatzoglou, 2021). This 

dramatic increase in frequency and severity of wildfire events around the world is 

directly related to the changing climate that enhanced conditions for wildfires (low 

precipitation, high air temperature, and strong wind), urging more than ever before 

governments and fire management agencies to develop a reliable, timely, and cost-

efficient fire monitoring system (Hua and Shao, 2017, Jones et al., 2020). Associated 

earth observation satellites have been deployed to monitor fire activity in two aspects, 
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burned area mapping and active fire detection (Giglio et al., 2008, Schroeder et al., 

2016, Kumar and Roy, 2018, Chuvieco et al., 2019). This study will focus on the 

second one and detect the location of actively burning spots during the wildfire event. 

 

Most prior studies on the active fire detection use the emitted radiance in the thermal 

infrared and mid-infrared bands because the radiance from the coolest fires is more 

than two orders of magnitude greater than the radiance from a nonburning land surface 

in the middle-infrared and about an order of magnitude greater in the thermal infrared 

(Kumar and Roy, 2017). Acquisitions in the thermal infrared and mid-infrared bands 

acquired by sensors like AVHRR, Visible Infrared Imaging Radiometer Suite (VIIRS), 

MODIS, Sea and Land Surface Temperature Radiometer (SLSTR), Visible and Infra-

Red Radiometer (VIRR), etc., onboard the near-polar orbit satellites or/and Advanced 

Baseline Imager (ABI), Spinning Enhanced Visible and Infra-Red Imager (SEVIRI), 

and Space Environment Data Acquisition monitor (SEDI) onboard the geostationary 

satellites (Stroppiana et al., 2000, Wooster et al., 2012, Roberts and Wooster, 2014, 

Schroeder et al., 2014, Bessho et al., 2016, Giglio et al., 2016, Lin et al., 2018, Hall et 

al., 2019) are normally with coarse spatial resolutions. These data provide consistent 

measurements in near-real-time and have been deployed in several global monitoring 

systems such as the Digital Earth Australia Hotspots from Geoscience Australia (GA), 

European Forest Fire Information System (EFFIS) from ESA, Fire Information for 

Resource Management System (FIRMS) from NASA, etc. However, the background 

radiance in coarse resolution pixels tends to overwhelm signals from subtle hotspots 

due to the large instantaneous field of view (IFOV), and hence is hard to reveal active 

fires with more spatial details (Murphy et al., 2016).  
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Further efforts have been placed on the active fire detection using medium resolution 

acquisitions from Landsat and/or Sentinel-2 and several algorithms were developed 

based on the reflective wavelength bands (Murphy et al., 2016, Schroeder et al., 2016, 

Kumar and Roy, 2018, Hu et al., 2021). The Landsat-8 OLI data are mostly used to 

detect active fires at a spatial resolution of 30 m. The latest GOLI algorithm (Kumar 

and Roy, 2018) is proposed based on a statistical examination on the top of atmosphere 

(TOA) reflectance in the red and SWIR bands and exhibited comparable commission 

error (CE) and slightly lower omission error (OE) than other algorithms on the active 

fire detection results. This statistics-based method has been further applied to Sentinel-

2 acquisitions and an AFD-S2 method (Hu et al., 2021) is proposed for active fire 

detection at a spatial resolution of 20 m. 

 

Fast-growing deep-learning techniques (Zhu et al., 2017) provide great tools for large-

volume remote sensing data processing inspiring us to explore their potentials on 

active fire detection. This is a relatively new field and still lacks large-scale datasets 

and architectures for training and testing. The first contribution to this field is based 

on the Landsat-8 imagery (de Almeida Pereira et al., 2021), which introduces a large-

scale dataset to investigate how U-Net architecture can be applied to approximate the 

handcraft active fire maps (Ronneberger et al., 2015). This chapter will focus on 

investigating how deep learning architectures can be applied to the active fire detection 

of Sentinel-2 imagery, where active fire detection is formulated as a binary semantic 

segmentation task achieved by three different deep-learning-based models. A Dual-

domain Channel-Position Attention (DCPA) network is designed based on the unique 
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characteristics of active fires in the false-color images to further improve the detection 

accuracy. A dataset is constructed using the open-access Sentinel-2 products collected 

over wildfires on the east coast of Australia and the west coast of the United States in 

2019 and 2020. Based on the developed active fire detection network, an automated 

active fire detection framework with a data collection and preprocessing module, a 

deep-learning-based active fire detection module, and a final product generation 

module is proposed. This framework can automatedly output active fire detection 

results in a Geotiff format based on the geographic location and time input by the user. 

This Geographic Information System (GIS) preferred format is easily visualized and 

post-processed in software such as ArcGIS (Ormsby et al., 2004), QGIS (QGIS, 2018), 

etc. 

5.2 Test Sites and Datasets 

Sentinel-2 constellation is part of the ESA’s Copernicus Program providing high-

quality multi-spectral imagery of the Earth since 2015. The twin satellites share a sun-

synchronous orbit at 786 km altitude with a repeat cycle of 10 days for one satellite 

and 5 days for two (Bouzinac et al., 2018). Each satellite carries an MSI with 13 bands 

in the visible, NIR, and SWIR ranges (Spoto et al., 2012). Prior studies indicate that 

fires with larger sizes and higher temperatures normally exhibit higher reflectances in 

SWIR bands while negligible contributions in the red band (Kumar and Roy, 2018, 

Hu et al., 2021). Hence, active fire detection using Sentinel-2 imagery can be realized 

by filtering out pixels with high values in B12 and B11 and low values in B4 as in the 

AFD-S2 method. Details of Sentinel-2/MSI bands involved in this study are listed in 

Table 5.1, where B4, B11, and B12 are employed as inputs of deep neural networks 
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for active fire detection, and combinations of B12-B11-B4 and B12-B11-B8A are used 

as an auxiliary for the ground truth annotation and the fire patch sifting. 

Table 5.1 List of Sentinel-2/MSI band information 

Since most of the prior studies use TOA reflectance for active fire detection (Murphy 

et al., 2016, Schroeder et al., 2016, Kumar and Roy, 2018, Hu et al., 2021), in this 

chapter, Sentinel-2 Level-1C TOA products collected over 2019-2020 wildfires on the 

east coast of Australia and the west coast of the United States are downloaded from 

the Sentinel Open Hub (Potin et al., 2019) to build the dataset used for training and 

testing. This includes 135 Sentinel-2 Military Grid Reference System (MGRS) tiles 

over the states of New South Wales (NSW), Australia Capital Territory (ACT), and 

Victoria (VIC) covering areas of about 378,543 km2 from October 18, 2019, to January 

14, 2020, and 178 Sentinel-2 MGRS tiles over the state of California from July 28, 

2020, to October 12, 2020, with total coverage of about 457,594 km2. Figure 5.1(a) 

and Figure 5.1(b) illustrate the Sentinel-2 coverages in Australia and the United States, 

respectively.  

Channel 

Sentinel-2A Sentinel-2B 
Spatial 

resolution 
Central 

Wavelength 
Bandwidth 

Central 

Wavelength 
Bandwidth 

4 – Red 664.6 nm 31 nm 664.9 nm 31 nm 10m 

8A – Narrow NIR 864.7 nm 21 nm 864.0 nm 22 nm 20m 

11 – SWIR 1 1613.7 nm 91 nm 1610.4 nm 94 nm 20m 

12 – SWIR 2 2202.4 nm 175 nm 2185.7 nm 185 nm 20m 
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Figure 5.1 Sentinel-2 image coverage in Australia and the United States. Base map: 

land cover map derived from the 2019 Version 6 MODIS Land Cover Type 

(MCD12Q1) product (Sulla-Menashe et al., 2019) 

The downloaded Sentinel visible bands are with spatial resolutions of 10 m and 

associated NIR and SWIR bands are with spatial resolutions of 20 m. Hence, visible 

bands are downsampled to the same spatial resolutions as NIR and SWIR bands before 

the dataset construction. Related annotations are generated by the synergy of the AFD-

S2 method and the visual inspection of Sentinel-2 band combinations. In AFS-S2, a 

single criterion in Equation (5.1) is applied for the active fire detection in temperate 

conifer forests on the east coast of Australia, whereas multiple criteria in Equation (5.2) 

are used in the Mediterranean forests, woodlands, and scrubs on the west coast of the 

United States.  

0.504 ∗ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2
− 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝑎𝑎 (5.1) 
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0.734 ∗ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2
− 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝑏𝑏,  𝜌𝜌𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼2

≥ 𝑐𝑐,  𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1
≥ 𝑑𝑑 𝑜𝑜𝑜𝑜  𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2

≥ 1.0 (5.2) 

 

A crucial part is to determine a correct threshold to differentiate the active fire and the 

background pixels. In this study, a, b, c, and d are initialized as 0.198, 0.068, 0.355, 

and 0.475 as presented in the AFS-S2 method, where a fine-tuning is further applied 

referring to the visual inspection of B12-B11-B4 and B12-B11-B8A false-color 

combinations and a correction is also performed on the obvious mislabeling to reduce 

the OEs and CEs in the generated annotation map. 

 

A dataset consisting of false-color patches and associated dense pixel annotations of 

2 classes (active fire and background) is constructed by clipping and sifting Sentinel 

red and SWIR bands and the associated annotation map above (see section  5.3.1).  

5.3 Methodology 

5.3.1 Automated active fire detection framework 

Details of the proposed automated active fire detection framework are shown in Figure 

5.2, along with the data collection and preprocessing, deep-learning-based active fire 

detection, and product generation modules included in the yellow, green, and blue 

boxes, respectively. 
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Figure 5.2 Illustration of the automated active fire detection framework implemented 

in this research 

With the time and location information provided by users, Sentinel-2 TOA reflectance 

products can be automatically downloaded in the proposed framework through the 

API offered by ESA. Related SWIR and red bands are composited into false-color 

images with more salient active fires and normalized hotspot index (NHI) images are 

generated based on Equation 5.3 and Equation 5.4 (Marchese et al., 2019, Genzano et 

al., 2020) as auxiliaries in the upcoming sifting step to coarsely separate between 

patches with high-temperature anomalies (HTAs) (wildfires, industrial heat sources, 

volcanic activities, and land management fires) and the background paddings.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

(5.3) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 −𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 +𝑁𝑁𝑁𝑁𝑁𝑁 (5.4) 

 

Figure 5.3 presents an example of the false-color, 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 images in 

the active fire area. 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is more sensitive to high-temperature anomalies with 
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mid or low intensities, whereas folding values commence when further increase the 

intensity level. Compared with 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is more suitable to detect high-

temperature anomalies with high intensity and can be used as compensation for the 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝑅𝑅 derived results. Criteria for the HTA detection are slightly looser than those 

in (Marchese et al., 2019, Genzano et al., 2020) to make sure cool smoldering fires are 

included in the generated HTA maps. These HTA maps are further fed into the image 

cropping step along with the false-color combinations. 

 

 
                    (a)                                         (b)                                         (c) 

Figure 5.3 Example of false-color, 𝑵𝑵𝑵𝑵𝑵𝑵𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 images in the active 

fire area 

All images are cropped into small patches with identical sizes and sequential identities, 

which are further allocated to the active fire or the background dataset, respectively. 

Whether a false-color patch is active or not is determined by if there is a positive value 

in the related HTA patch. This dataset splitting strategy avoids redundant processing 

in the background area and thus reduces the time and memory cost of the framework. 

Besides that, the synergy of image cropping and dataset splitting can effectively reduce 

the imbalance between the active fire and background proportions in each false-color 
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patch. In a subsequent step, the active false-color patches are fed into the trained deep 

neural networks to generate the segmentation results while the background ones only 

deliver their identities to the padding images for further splicing. The segmentation 

results and associated background paddings are further projected back into the original 

frame to generated the final product in Geotiff format, where geographical information 

extracted from the original data is added into this spliced product.  

5.3.2 Deep-learning-based active fire detection 

Active fire pixels normally appear in bright orange in a SWIR-red false-color image 

due to the higher reflectance in SWIR bands and the lower reflectance in the red band 

(Miller and Thode, 2007, Schroeder et al., 2016, Gargiulo et al., 2019). After igniting, 

the active fire quickly spread around in the condition of high temperature and strong 

wind, which turns into local fire clusters of different sizes. The sharp contrast between 

active fire and background allows the fire detection task to be considered as a binary 

semantic segmentation of the false-color image, even though special attention needs 

to be paid to the unique behaviors of the active fire. For example, OEs are usually 

caused by small and cool fires, CEs are likely to occur in the soil-dominated pixels or 

highly reflective building rooftops, and proportions of the active fire and background 

pixels are unbalanced (Palacios et al., 2012).  

 

We first considered active fire detection as a regular binary semantic segmentation 

and three state-of-the-art (SOTA) deep-learning-based models (DeepLabV3+, Gated-

SCNN, and HRNet-V2) are employed to achieve this task. Introductions of these three 

models have been indicated in several studies (Chen et al., 2017, Sun et al., 2019, 
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Takikawa et al., 2019, Wang et al., 2020) and won’t be repeated here. To better balance 

the OE and CE in the active fire detection results, a DCPA network is further proposed 

by connecting a dual-domain feature extractor to the existing semantic segmentation 

models using a channel-position attention block. Taking the HRNetV2 model as an 

example, the DCPA+HRNetV2 network is shown in Figure 5.4. 

 

This proposal of the DCPA network is inspired by the principle of the visual inspection 

process. Modifications mainly focus on the first few layers of the deep neural network 

which is normally responsible for the extraction of simple features. During active fire 

detection, human attention is automatically placed on the salient regions that present 

a sharp contrast with the background. Besides that, boundaries of the active fires inside 

are outlined based on spatial distributions and interdependences of the associated fire 

pixels. Attention on the salient regions helps to locate anomalous regions and hence 

reduce the OEs in the sparse and cool fires, while statistics in the spatial distribution 

and interdependence provides a better distinction between the active fire area and the 

surrounding pixels, which help to reduce the CEs caused by the ambiguity between 

the hot soil and cooler active fire. Therefore, as illustrated in the yellow box of Figure 

5.4, a frequency and a spatial feature extractor are employed in our network to obtain 

the dual-domain features used for segmentation.  
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Figure 5.4 Structure of the proposed DCPA+HRNetV2 active fire detection network
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On the one hand, a frequency feature extractor is constructed using the visual saliency 

paradigm in (Li et al., 2012) with the quaternion matrix 𝑓𝑓 re-defined as below. 

𝑓𝑓(𝑛𝑛,𝑚𝑚) = 𝜔𝜔0𝑃𝑃0 + 𝜔𝜔1𝑃𝑃1𝑖𝑖 + 𝜔𝜔2𝑃𝑃2𝑗𝑗 + 𝜔𝜔3𝑃𝑃3𝑘𝑘 (5.5) 

𝑃𝑃1 = 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 ,𝑃𝑃2 = 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 ,𝑃𝑃3 = 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅 (5.6) 

where 𝜔𝜔0, 𝜔𝜔1, 𝜔𝜔2, and 𝜔𝜔3 are weights of the feature matrices 𝑃𝑃0, 𝑃𝑃1, 𝑃𝑃2, and 𝑃𝑃3, and 

i, j, k are imaginary units in the quaternion form (𝑖𝑖2=𝑗𝑗2=𝑘𝑘2=𝑖𝑖𝑖𝑖𝑖𝑖=−1, 𝑖𝑖𝑖𝑖=𝑘𝑘, 𝑖𝑖𝑖𝑖=𝑗𝑗, 𝑗𝑗𝑗𝑗=𝑖𝑖). 

The motion feature 𝑃𝑃0 of a static input is equal to zero and has no contribution to the 

quaternion matrix 𝑓𝑓. Weights of spectral feature matrices are set as 𝜔𝜔1=0.2, 𝜔𝜔2=0.4, 

and 𝜔𝜔3=0.4. Hypercomplex Fourier Transform (HFT) of the quaternion matrix 𝑓𝑓 can 

then be generated through 

𝐹𝐹𝐻𝐻[𝑢𝑢, 𝑣𝑣] =
1

√𝑀𝑀𝑀𝑀
� �𝑒𝑒−𝜇𝜇2𝜋𝜋(𝑚𝑚𝑚𝑚 𝑀𝑀⁄ +𝑛𝑛𝑛𝑛 𝑁𝑁⁄ )𝑓𝑓(𝑛𝑛,𝑚𝑚)

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0

= 𝐴𝐴(𝑢𝑢, 𝑣𝑣)𝑒𝑒𝜒𝜒Φ(𝑢𝑢,𝑣𝑣) (5.7) 

where 𝜇𝜇 = (𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) √3⁄  is a unit pure quaternion, 𝐴𝐴(𝑢𝑢, 𝑣𝑣)  and Φ(𝑢𝑢, 𝑣𝑣)  are the 

amplitude and phase spectrums of 𝐹𝐹𝐻𝐻[𝑢𝑢, 𝑣𝑣], and 𝜒𝜒 is a pure quaternion matrix as the 

aigenaxis spectrum (Ell and Sangwine, 2006).  

 

It has been proven that texture-rich salient regions like active fire are more likely to 

be embedded in the background of the amplitude spectrum whereas the repeated and 

uniform patterns such as the spatial background are prone to appear as sharp spikes 

(Chen et al., 2015). Therefore, frequency features of different salient regions can be 

effectively enhanced by smoothing the amplitude spectrum with a series of Gaussian 

kernels {𝑔𝑔𝑘𝑘} at different scales (Li et al., 2012).  

𝑔𝑔𝑘𝑘(𝑢𝑢, 𝑣𝑣) =
1

√2𝜋𝜋2𝑘𝑘−1𝜏𝜏0
𝑒𝑒−�𝑢𝑢2+𝑣𝑣2� �22𝑘𝑘−1𝜏𝜏02�� (5.8) 
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Λ𝑘𝑘(𝑢𝑢, 𝑣𝑣) = (𝑔𝑔𝑘𝑘(𝑢𝑢, 𝑣𝑣) ⋆ 𝐴𝐴)(𝑢𝑢, 𝑣𝑣) (5.9) 

where, 𝜏𝜏0 = 0.5, 𝑘𝑘 = 1, … , ⌈log2𝑚𝑚𝑚𝑚𝑚𝑚{𝐻𝐻,𝑊𝑊}⌉ + 1. 𝐻𝐻 and 𝑊𝑊 are the height and width 

of the image. A sequence of saliency maps {𝑠𝑠𝑘𝑘 ∈ ℝ𝐻𝐻×𝑊𝑊} can be further generated by 

the inversed HFT as part of the dual-domain feature stack. 

𝑠𝑠𝑘𝑘 = �
1

√𝑀𝑀𝑀𝑀
� �𝑒𝑒𝜇𝜇2𝜋𝜋(𝑚𝑚𝑚𝑚 𝑀𝑀⁄ +𝑛𝑛𝑛𝑛 𝑁𝑁⁄ )Λ𝑘𝑘(𝑢𝑢, 𝑣𝑣)𝑒𝑒𝜒𝜒Φ(𝑢𝑢,𝑣𝑣)

𝑁𝑁−1

𝑢𝑢=0

𝑀𝑀−1

𝑣𝑣=0

�

2

(5.10) 

 

On the other hand, two CNN layers with filter sizes of 3×3 and 1×1 are connected to 

a Resblock (He et al., 2016) as the spatial feature extractor. The outputs of this spatial 

feature extractor are the other part of the dual-domain feature stack 𝑆𝑆 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 with 

𝐶𝐶 representing the channel depth. 

 

This dual-domain feature stack is further fused by a channel-position self-attention 

block built on channel-wise and position-wise squeeze-and-excitation (SE) networks 

(Hu et al., 2018) as presented in the green box of Figure 5.4. In the yellow stream, 

global channel information is first squeezed into a position descriptor through average 

pooling in the channel dimension. 

𝑥𝑥 = 𝐹𝐹𝑠𝑠𝑠𝑠′ (𝑆𝑆) =
1
𝐶𝐶
�𝑆𝑆(: , : ,𝑘𝑘)
𝐶𝐶

𝑘𝑘=1

(5.11) 

An excitation operation is further performed on the squeezed output 𝑥𝑥 to capture the 

position-wise dependencies, which is achieved by a simple gating mechanism with the 

ReLU activation function 𝛿𝛿(∙). 

𝑥𝑥1 = 𝐹𝐹𝑒𝑒𝑒𝑒′ (𝑥𝑥) = 𝛿𝛿 �𝑊𝑊1�𝛿𝛿(𝑊𝑊2𝑥𝑥)�� (5.12) 
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where, 𝑊𝑊1 ∈ ℝ
𝐻𝐻×𝑊𝑊×𝐻𝐻×𝑊𝑊

𝑑𝑑  and 𝑊𝑊2 ∈ ℝ
𝐻𝐻×𝑊𝑊
𝑑𝑑 ×𝐻𝐻×𝑊𝑊  are the weights of two convolution 

layers with 𝑑𝑑 set as 256 for the best performance. The output of the yellow stream  𝑆𝑆′ 

can be obtained by rescaling 𝑆𝑆 with the excitation output 𝑥𝑥1. 

 

In the red stream, the average pooling is initially applied in the spatial dimension to 

obtain the squeezed channel descriptor. This is followed by an excitation operation to 

obtain the channel-wise dependencies. 

𝑦𝑦 = 𝐹𝐹𝑠𝑠𝑠𝑠′′(𝑆𝑆) =
1

𝐻𝐻 × 𝑊𝑊
��𝑆𝑆(𝑖𝑖, 𝑗𝑗, : )

𝑊𝑊

𝑗𝑗=1

𝐻𝐻

𝑖𝑖=1

(5.13) 

𝑦𝑦1 = 𝐹𝐹𝑒𝑒𝑒𝑒′′(𝑦𝑦) = 𝜎𝜎 �𝑊𝑊3�𝛿𝛿(𝑊𝑊4𝑦𝑦)�� (5.14) 

where, 𝜎𝜎(∙) is the sigmoid activation function, 𝑊𝑊3 ∈ ℝ
𝐶𝐶×𝐶𝐶

𝑟𝑟  and 𝑊𝑊4 ∈ ℝ
𝐶𝐶
𝑟𝑟×𝐶𝐶  are the 

weights of two fully connected layers with 𝑟𝑟 = 16 for the best performance. Likewise, 

the output of this stream 𝑆𝑆′′ is obtained by rescaling 𝑆𝑆 with the excitation output 𝑦𝑦1.  

 

The original feature stack 𝑆𝑆 is preserved through the green stream in the fusion process 

to tackle the gradient vanishing issue and to boost feature discriminability. Outputs of 

these three streams are then weighted summed to generate the segmentation input. 

𝑆̃𝑆 = 𝑆𝑆 + 𝛼𝛼𝑆𝑆′ + 𝛽𝛽𝑆𝑆′′ (5.15) 

where 𝛼𝛼 and 𝛽𝛽 are initialized as 0 and gradually increase during the training process. 

The fused feature is then fed into a semantic segmentation model to get the active fire 

detection result. 
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5.3.3 Evaluation Metrics 

Quantitative metrics that are commonly used in semantic segmentation and active fire 

detection such as CE, OE, and Intersection over Union (IoU) are calculated to evaluate 

the performance. All these metrics can be directly derived from the elements in the 

confusion matrix, which are, the numbers of True Positive (TP), False Positive (FP), 

True Negative (TN), and False Negative (FN) pixels. In an active fire detection task, 

TP represents the correctly labeled active fire pixel, FP is the background pixel 

incorrectly labeled as active fire, TN stands for the correctly labeled background pixel, 

and FN is the active fire pixel incorrectly labeled as background. 

Table 5.2 Metric calculation reference 

                    Reference 

Classified 
Active Fire Background 

Active Fire TP FP 

Background FN TN 

Based on Table 5.2, the IoU, CE, and OE can be calculated as 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
,    𝐶𝐶𝐶𝐶 =

𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

,   𝑂𝑂𝑂𝑂 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(5.16) 

5.3.4 Implementation details 

The deep-learning-based active fire detection module with different segmentation 

architectures (DeepLabV3+, GS-CNN, HRNetV2, and DCPA+HRNetV2) are trained, 

validated, and tested on the constructed dataset, respectively. After the clipping and 

sifting, this dataset has a total of 37,016 active fire samples with 21,342 of them from 

Sentinel-2 images collected over Australia (AU) and 15,674 of them from the United 
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States (US). Samples in the dataset are randomly divided into three subsets with 60% 

for training, 10% for validation, and 30% for testing. Each sample in the constructed 

dataset includes a false-color patch in size of 128×128×3 and a dense pixel annotation 

with two classes in size of 128×128. During the training process, inputs are augmented 

by random flipping and rotating. An Adam optimizer (Paszke et al., 2019) is initialized 

with a base learning rate of 0.01 and a weight decay of 0.0005. The poly learning rate 

policy with the power of 0.9 is employed to drop the learning rate during the training 

process. All experiments are implemented in the PyTorch framework on two NVIDIA 

GeForce RTX 2080Ti GPUs with a batch size of 16. 

5.4 Experiment Result 

5.4.1 Deep-learning-based active fire detection 

By treating the active fire detection as a regular binary semantic segmentation process, 

results derived from three SOTA deep-learning-based semantic segmentation models 

(DeepLabV3+, Gated-SCNN, and HRNet-V2) are first shown in Figure 5.5 and Figure 

5.6 with related accuracy metrics listed in Table 5.3. 
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Figure 5.5 Active fire samples (false-color composite and binary annotation) and the 

associated segmentation results on the east coast of Australia (Green: TP; Red: FN; 

Yellow: FP): (a) Ground truth; (b) DeepLabV3+; (c) Gated-SCNN; (d) HRNetV2; 

(e) DCPA+HRNetV2. 
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Figure 5.6 Active fire samples (false-color composite and binary annotation) and the 

associated segmentation results on the west coast of the United States (Green: TP; 

Red: FN; Yellow: FP), (a) Ground truth; (b) DeepLabV3+; (c) Gated-SCNN; (d) 

HRNetV2; (e) DCPA+HRNetV2 

Table 5.3 Accuracy metrics of the active fire detection result 

Method Backbone OE a CE a IoU a OE b CE b IoU b 

DeepLabV3+ Xception-71 7.6% 28.1% 67.8% 9.1% 25.3% 69.5% 

Gated-SCNN WideResNet-38 19.6% 16.0% 69.7% 19.9% 13.2% 71.4% 

HRNetV2 HRNetV2-W48 18.5% 14.2% 71.8% 19.0% 11.5% 73.2% 

DCPA+HRNetV2 HRNetV2-W48 17.3% 13.1% 73.4% 17.4% 9.2% 76.2% 
a East coast of Australia (AU); b West coast of the United States (US) 

Active fire detection results above indicate that Gated-SCNN and HRNetV2 models 

focus more on the spatial details in the segmentation result by paying more attention 

to the description of the boundaries and edges or preserving high spatial resolution 

representations throughout the propagation, which significantly reduces the CEs in the 

DeepLabV3+ result. The performance of HRNetV2 is slightly better than the Gated-

SCNN method. However, too much attention to the description of the active fire and 

background boundaries will lead to the neglect of cooler fires around and thus higher 

OEs in related results. It is also evidenced in the results above that the introduction of 

the DCPA network helps to locate sparse and isolated active fires with only a few 

pixels and balance the OEs and CEs for a better IoU thanks to the dual-domain feature 

extraction and the channel-position-wise attention employed. 
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5.4.2 Automated active fire detection framework 

The trained DCPA+HRNetV2 model is assembled back into the automated framework 

following by a further evaluation of the detection accuracy and processing efficiency. 

Binary segmentation results are automatically generated in Geotiff format by inputting 

the locations of the bounding box and the time of the fire event. With the details listed 

in Table 5.4, tests are performed on the east coast of Australia and the west coast of 

the United States, respectively. Final products are further zoomed into areas with 

dense active fire pixels and laid over the false-color base image in ArcMap as shown 

in Figure 5.7.  

Table 5.4 Test of the automated active fire detection framework 

East Coast of Australia 

Acquisition Date 2020-01-15 2020-01-25 2020-01-28 2020-01-30 

Top Left a -35.5, 148.7 -37.3, 148.5 -36.3, 147.6 -34.8, 148.7 

Top Right a -35.5, 150.2 -37.3, 149.2 -36.3, 148.7 -34.8, 150.6 

Bottom Left a -36.8, 148.7 -37.8, 148.5 -36.9, 147.6 -37.6, 148.7 

Bottom Right a -36.8, 150.2 -37.8, 149.2 -36.9, 148.7 -37.6, 150.6 

IoU 71.4% 71.1% 70.2% 68.7% 

Time Cost 358s 105s 133s 839s 

West Coast of the United States 

Acquisition Date 2020-10-13 2020-10-18 2020-10-28 2020-10-29 

Top Left a 37.2, -119.4 37.6, -118.9 37.6, -119.4 41.9, -123.7 

Top Right a 37.2, -118.6 37.6, -118.2 37.6, -118.9 41.9, -123.3 

Bottom Left a 36.7, -119.4 37.3, -118.9 37.3, -119.4 41.0, -123.7 

Bottom Right a 36.7, -118.6 37.3, -118.2 37.6, -118.9 41.0, -123.3 

IoU 72.6% 71.3% 73.0% 70.8% 

Time Cost 58s 51s 46s 132s 
   a Location of the corner pixels (Latitude, Longitude) in UTM projection and WGS84 geodetic system 
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As indicated in Table 5.4, the automated active fire detection framework achieved 

average IoUs of 70.4% over Australia and 71.9% over the United States. The most 

time-consuming parts of the framework are the data collection and active fire detection 

steps. Results indicated that, for Sentinel-2 input with total coverage of around 12,000 

km2, it takes about 350 seconds to get the final output, where the active fire detection 

process takes up to 140 seconds. This underlines the necessity of the active fire and 

background sample splitting in the preprocessing module. All the operations above are 

undertaken in configurations of Intel Core i7-9700k processer with a base frequency 

of 3.60GHZ, NVIDIA GeForce RTX 2080Ti GPU, and a system memory of 64 GB. 
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Figure 5.7 Test results of the automated framework in Australia and the United 

States 

5.5 Discussion 

In this section, discussions are carried out on the error sources in the generated active 

fire products including annotation method, data preprocessing step, data source, and 

segmentation algorithm. Compared with semantic segmentation applications in other 

fields, active fire detection can be simplified as a binary segmentation task, though of 

increased difficulty as it deals with a large volume of small fire objects. Annotations 

in the constructed dataset are derived from the synergy of the AFD-S2 method and the 

visual inspection of Sentinel-2 composites. Although the time and labor involved are 

significantly reduced by this semi-supervised operation, there are still some omitted 
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small and cool fires with lower radiance reflectance or mislabeled soil-dominated 

pixels and highly reflective building rooftops derived from the AFD-S2 method not 

corrected by the visual inspection, which may mislead deep-learning-based models to 

learn wrong recognition patterns in the active fire segmentation. Besides that, though 

criteria for the HTA detection are slightly loosened during the splitting of the active 

fire patch and the background padding, there are still some cool smoldering fires that 

are not included in the generated HTA map, and thus misclassified into the background 

dataset. Another source of error is intrinsic in SWIR/Red-based active fire detection, 

which mainly uses the sharp contrast between the high-temperature active fire and the 

background in the false-color image. However, the existence of heat radiation results 

in ambiguities between classes affecting the classification accuracy of pixels along the 

edges, and consequently, introducing errors in the segmentation results. As a way of 

example, Figure 5.8 zooms over areas with small and cool fires and highly reflective 

building rooftops to present the OEs and CEs in the results. 

 

                                     (a)                                                                         (b) 

Figure 5.8 Examples of OEs and CEs in the active fire detection result: (a) OE; (b) CE 

 

Despite the aforementioned sources of error, the proposed framework outperforms the 

current fire monitoring systems described in Section 5.1 in terms of delivering the 



 

 

141 
 

spatial details of the active fire, which can help to calibrate or/and improve the current 

low-resolution results. The detection accuracy of this framework can be further 

improved through developing the associated deep-learning-based algorithms or using 

the training datasets with higher spatial resolution.  

5.6 Conclusion 

This chapter develops an automated active fire detection framework including a data 

collection and preprocessing, a deep-learning-based active fire detection, and a final 

product generation module as a prototypical function for the future fire monitoring 

system. The active fire detection module is the basic part of the proposed framework 

developed on a specifically designed DCPA+HRNetV2 network, which is trained on 

the dataset constructed using the SWIR and red bands in Sentinel-2 Level-2C products. 

Results indicated this DCPA and HRNetV2 combination outperformed DeepLabV3, 

GS-CNN, and HRNetV2 segmentation models on the active fire detection, and the 

automated framework can effectively deliver detection results with an average IoU 

larger than 70%. Though in the current state, the refresh rate of this framework is just 

5 days and it is only suitable for inputs of Sentinel-2 acquisitions over the east coast 

of Australia and the west coast of the United States, the spatial resolution (20m) of the 

outputs is much higher than the results derived from the current fire systems. With the 

launch of more and more high-resolution and super-spectral sensors onboard remote 

sensing satellites, high-quality and near-real-time earth observation will be achieved 

in the future. At that time, an automated framework like this will offer a powerful tool 

and cost-efficient resource in support of the governments and fire service agencies that 

need timely, optimized firefighting plans.  
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Chapter 6 Deep-learning-based Burned Area 

Mapping using the Synergy of Sentinel-1 and 

Sentinel-2 Data  

This chapter intends to present the advantages of different satellite remote sensing on 

the application of burned area (BA) mapping and further investigates if the existing 

coarse BA mapping products derived from the exclusive use of the SR data can be 

further improved by the synergy of SR, BS, and/or COR features with higher spatial 

resolutions. This achievement is largely attributed to prior studies on the physical basis 

of mapping BA from satellite observations in the solar, mid-infrared, thermal infrared, 

and microwave domain and the associated BA mapping algorithms and BA products 

derived (Chuvieco et al., 2019). Experiments are carried out on the SR, BS, and COR 

features originated from Sentinel-1 and Sentinel-2 constellations, where high-spatial-

resolution PlanetScope imagery is used for annotation and validation. A Siamese Self-

Attention (SSA) classification strategy is proposed to explore the latent relationships 

of multi-source attributes and improve their synergies on BA mapping. A multi-source 

dataset is constructed at the object level for training and testing. Associated results are 

analyzed by different test sites, feature sources, and classification strategies to appraise 

the improvements achieved. Related BA products generated in this study can be used 

as a powerful data resource for governments and fire management agencies to inform 

post-fire planning and policy.  

I have published this work in Remote Sensing of Environment (Zhang et al., 2021a).  
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Zhang Q, Ge L, Zhang R, et al. Deep-learning-based burned area mapping using the 

synergy of Sentinel-1&2 data. Remote Sensing of Environment 2021; 264, 112575. 

6.1 Introduction  

Around 350 million hectares of land are affected by wildfires annually due to human 

activities and/or natural events (Syphard and Keeley, 2015, Schroeder et al., 2016). 

Prescribed burnings (Furlaud et al., 2018) provide benefits to biodiversity through 

promoting new plant growth and clearing the natural waste material. However, an 

uncontrollable fire can rapidly spread over a large scale and turn into a huge threat to 

the society and environment. The increasing frequency and severity of wildfire events 

over the past decades urge local governments and fire management agencies to call 

for reliable, timely, and cost-efficient fire mapping systems (Thompson et al., 2018, 

Lagadrilliere et al., 2019). Since the invention of the first Infrared camera (Mangeon 

et al., 2016), many in-situ and airborne tools have been developed for BA mapping. 

However, the inconsistency in data collection and mapping methods used makes it 

hard to analyze the performance at regional, continental or global scales (Chuvieco et 

al., 2019). Compared with the ground-based and airborne or unmanned aerial vehicle 

(UAV)-based methods, satellite remote sensing provides large-scale and cost-efficient 

earth observations in short revisit times, which is hence more suitable for developing 

a systematic and global fire mapping system (Colson et al., 2018). 

 

Prior research (Chuvieco et al., 2008, Hantson et al., 2013, Chuvieco et al., 2019) has 

evidenced the capabilities of multispectral remote sensing data for hotspot detection 

and BA mapping. In particular, the high temporal and coarse spatial resolution images 
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acquired by MODIS have been widely applied to the generation of global BA products 

(MCD45 (Roy et al., 2008), MCD64 (Giglio et al., 2018), Fire_cci v5.0 (Chuvieco et 

al., 2018) and Fire_cci v5.1 (Lizundia-Loiola et al., 2020)) in the past years. However, 

high discrepancies are observed in these products over small and fragmented burns 

which introduce uncertainties into the BA mapping result (Smith et al., 2007, Chang 

and Song, 2009, Ramo et al., 2021). Accuracies of these products are further improved 

using the medium-spatial-resolution images acquired by the Landsat ETM+ and OLI, 

and Sentinel-2 MSI (Bastarrika et al., 2011, Stroppiana et al., 2012, Warner et al., 

2017, Roy et al., 2019).  

 

Subsequent studies prove that the exclusive use of multispectral data for BA mapping 

is limited by solar illumination, weather condition, and spectral confusion among BA, 

dark soil, and cast shadow (Stroppiana et al., 2015, Fassnacht et al., 2021). In this 

regard, the potential of SAR and InSAR techniques on the BA mapping are further 

explored since the active microwave has better penetration through the cloud coverage 

and less dependency on the weather condition (Moreira et al., 2013). However, studies 

indicated that the BS feature over BA depends on many factors including polarization 

(HH, HV, VH, and VV), frequency (X, C, and L), topography, and soil moisture 

(Tanase et al., 2010a, Tanase et al., 2013), and lower accuracies are observed in SAR-

based BA mapping results than the multispectral-based ones (Tanase et al., 2020). 

Properties of the repeat-pass COR over BAs have also been investigated at different 

bands and polarizations (Tanase et al., 2010b) indicating a strong connection with the 

burned severity in the condition of a stable and dry environment. Synergies of active 

and passive remote sensing are further explored. Marginal improvements have been 
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achieved using the synergy of BS and SR features over cloud-free areas (Belenguer-

Plomer et al., 2021). However, whether improvements in BA accuracy can be achieved 

through the synergy of SR, BS, and/or COR data have not yet been investigated.  

 

In recent years, local-adaptive algorithms including support vector machine (SVM) 

(Cao et al., 2009), random forest (RF) (Ramo and Chuvieco, 2017), and linear 

regression (LR) (Huang and Pan, 2003) have been widely applied in the global BA 

mapping, taking advantage of the high processing efficiency and free access to the 

medium resolution imagery (Chuvieco et al., 2019). These algorithms discriminate the 

burned and unburned area by maximizing the inter-class and minimizing the intra-

class variation based on a set of attributes. Associated results indicated that the feature 

selection is a critical pre-step when adding extra information to the classification 

process (Dragozi et al., 2014). However, when a large number of features are involved, 

feature selection will be a quite time-consuming process and latent relations between 

features of different sources are hard to define. With the advances in deep-learning-

based algorithms, high-level features can be automatedly extracted by CNN (Lo et al., 

1995), RNN (Mikolov et al., 2010), and/or self-attention mechanism (Vaswani et al., 

2017), etc.  

 

Therefore, this chapter tends to explore whether details in the existing BA product 

derived from the coarse spatial resolution data can be further improved through the 

synergy of BS, COR, and/or SR data with higher spatial resolutions. To achieve this, 

an object dataset is constructed over 12 fire perimeters containing a certain proportion 

of burned and unburned samples, and a local-adaptive classification method is further 
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proposed for the automated feature extraction and BA discrimination to ensure this 

improvement is potentially able to be applied to regional or/and global scales. 

6.2 Test sites and datasets 

6.2.1 Test sites 

According to statistics from the California Department of Forestry and Fire Protection 

and the National Interagency Fire Center, there were 8,527 wildfires occurred in 

California in 2018 with an affected area of 1,893,913 acres and economic loss of 12 

billion USD (CALFIRE, 2018). This makes it the deadliest and most destructive fire 

season ever recorded in California history. In 2019, over 7,860 fires were recorded 

affecting a ground area of about 259,823 acres. In this study, 12 fire events with the 

largest BAs that occurred in California from 2018 to 2019 were selected as the test 

sites. Figure 6.1 and Figure 6.2 present the locations of these selected sites and the 

timelines of the associated fire events, respectively. The proportions of different land 

covers over each site are summarized from the 2018 Version 6 MODIS Land Cover 

Type (MCD12Q1) product (Sulla-Menashe and Friedl, 2018) as listed in Table 6.1. 
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Figure 6.1 Locations of the test sites along with an indication of the satellite image 

coverage (Sentinel-1, Sentinel-2, and PlanetScope). Base map: land cover map 

derived from MCD12Q1 product. 
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Figure 6.2 Timelines of the fire events. 
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Table 6.1 List of top 12 wildfire events in California (2018 – 2019) 

 

Table 6.2 Proportions of different land covers over each site 

 

Name Location Start Date Containment Date 

Mendocino 39.24°N, 123.10°W July 27, 2018 September 18, 2018 

Carr 40.65°N, 122.62°W July 23, 2018 August 30, 2018 

Camp 39.81°N, 121.44°W November 8, 2018 November 25, 2018 

Woolsey 34.24°N, 118.70°W November 8, 2018 November 22, 2018 

Ferguson 37.65°N, 119.88°W July 13, 2018 August 18, 2018 

County 38.81°N, 122.18°W June 30, 2018 July 14, 2018 

Stone 41.41°N, 121.06°W August 15, 2018 August 29, 2018 

Klamathon 41.89°N, 122.53°W July 5, 2018 July 16, 2018 

Donnell 38°21′N 119°56′W August 1, 2018 October 1, 2018 

Holy 33.74°N 117.52°W August 6, 2018 August 30, 2018 

Kincade 38.79°N, 122.78°W October 23, 2019 November 06, 2019 

Walker 40.05°N, 120.67°W September 04, 2019 September 25,2019 

Name 
The proportion of different land cover over BA Reported 

BA (Acres) Forest Shrubland Savanna Grassland Cropland 

Mendocino 28.5% 11.2% 42.5% 12.6% 0.1% 459,123 

Carr 50.6% 0.1% 39.3% 3.4% 0.2% 229,651 

Camp 40.8% 0.1% 35.4% 15.7% 5.6% 153,336 

Woolsey 0% 28.8% 10.3% 22.1% 0.3% 96,949 

Ferguson 17.9% 2.4% 74.9% 4.7% 0% 96,901 

County 1.4% 1.3% 28.0% 46.8% 15.3% 90,288 

Stone 1.8% 0% 38.2% 59.8% 0.1% 39,387 

Klamathon 5.1% 13.0% 18.7% 62.9% 0% 38,008 

Donnell 5.5% 0.1% 74.3% 18.9% 0% 36,450 

Holy 8.1% 49.8% 6.4% 25.5% 0% 23,136 

Kincade 21.0% 2.7% 70.9% 2.4% 0.1% 77,758 

Walker 23.0% 0% 52.7% 23.4% 0% 54,608 
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6.2.2 Datasets 

Spaceborne acquisitions over each site include one pre-fire and one post-fire SR image 

acquired by Sentinel-2, the time-series (TS) dual polarimetric SLC and Ground Range 

Detected (GRD) product obtained by Sentinel-1, and the pre- and post-fire visible and 

NIR images from PlanetScope. Sentinel acquisitions are used to provide multi-source 

attributes for BA discrimination, while high-resolution PlanetScope images are used 

to generate associated labels for training and validation. Related details of the original 

acquisitions are listed in Table 6.3.  

Table 6.3 Details of the downloaded multi-sensor acquisitions 

a Interferometric Wide Swath; b Resolution; c Temporal; d SLC+GRD;  e The research 

uses bands 2, 3, 4, 5, 6, 7, 8A, 11, and 12 (visible, NIR, and SWIR) 

 

A total of 140 Sentinel-1 SAR (SLC and GRD) and 24 Sentinel-2 products (see Figure 

6.1) were downloaded from the Sentinel Open Hub (Potin et al., 2019) based on the 

timeline of the events. Since the minimum repeat cycle is 6 days for the two-satellite 

constellation, time intervals of the downloaded time-series Sentinel-1 data are set as 6 

or 12 days for different fire events. For instance, time intervals are set as 6 days when 

fire periods are less than a month (Camp, Woolsey, Kincade, Walker) and set as 12 

days when fire periods are longer than months (Mendocino, Carr, Ferguson, Donnell). 

This improves the efficiency of SAR/InSAR processing. Besides that, some of the 

Sentinel-1A/B Sentinel-2A/B PlanetScope 

Mode IW a Wavelength 442-2200 nm Wavelength 455-860 nm 

Polarization VH+VV Band 13 e Band 4 

Spatial Res b 5m×20m Spatial Res 10-60 m Spatial Res 3 m 

Temp c Res 6 days Temp Res 5 days Temp Res 1 day 

Product Level-1 d Product Level-1C Product Level-3A 
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time intervals are set as 12 days though the fire periods are short than a month because 

acquisitions with an exact repeat cycle of 6 days are not available in these areas. Time 

intervals longer than 12 days are not considered in this research because severe 

temporal decorrelations in the interferometric coherence will increase difficulties in 

discriminating fire-affected areas. High-resolution PlanetScope data captured on the 

pre- and post-fire dates were downloaded through Planet Explorer (Planet, 2020). 

6.3 Methodology 

6.3.1 Object Dataset Construction 

The proposed BA mapping algorithm includes two parts, object dataset construction, 

and deep-learning-based classification. Figure 6.3 presents the whole process of object 

dataset construction. The original Sentinel acquisitions are preprocessed, stacked, and 

segmented into small objects with multi-source attributes, which are further assigned 

as burned or unburned referring to the PlanetScope data. 
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Figure 6.3 Object dataset construction method. Data processing in the black box: Blue-Sentinel-2, Yellow-Sentinel-1, Green-PlanetScope; 

Sentinel-1 footprint in the yellow boxes: Green-Pre-fire, Red-Wildfire, Blue-Post-fire.
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The downloaded Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) reflectances are in 

the sub-pixel registration to the UTM projection and WGS84 geodetic system. Only 

Sentinel-2 images without cloud coverage over BAs are selected to avoid the loss of 

ground information. Atmospheric, terrain and cirrus corrections are performed using 

the sen2cor module within SNAP to generate the Level-2A products with Bottom of 

Atmosphere (BOA) reflectances (Louis et al., 2016, Main-Knorn et al., 2017, Shao et 

al., 2019b). Instead of using all the spectral information, the costal aerosol, water vapor, 

and cirrus bands are disposed during the band selection because of their lower spatial 

resolutions. The strategy of using time-series multispectral imagery to enhance the 

pre- and post-fire BA mapping results is not employed here. This is because, during a 

wildfire event, images collected in visible and infrared bands are prone to be affected 

by the thick smoke from hotspots, which may aggravate errors during the classification. 

 

The downloaded SAR data are time-series Level-1 SLC data in slant-range geometry 

and time-series GRD products in ground-range geometry. Both SLC and GRD data 

are ranked in chronological order and further processed by the Sentinel-1 toolbox in 

SNAP (Veci et al., 2017). In terms of GRD data, the radiometric terrain correction 

(Filipponi, 2019, Truckenbrodt et al., 2019) is performed to produce the time-series 

gamma0 results (Small, 2011). Associated layover and shadow mask are generated 

through the SAR simulation module based on the Shuttle Radar Topography Mission 

(SRTM) DEM (Mondini, 2017). After that, gamma0 results at the pre- and post-fire 

dates are preserved as pre- and post-fire backscatter layers (𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑒𝑒 and 𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and the 

backscatter difference layer (𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is generated through the pixel-wise subtractions 

in Equation (6.1). 
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𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑠𝑠1 ,𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑠𝑠2 , … ,𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (6.1) 

 

The quality of the interferometric phase can be quantitated as the magnitude of the 

interferometric coherence (Bamler and Hartl, 1998). Compared to the unburned area, 

more fire-derived changes occurred in the scatterers of burned areas, which introduce 

extra noise into the interferometric phase and cause severe temporal decorrelations in 

the interferometric coherence. Therefore, coherence information can be used as an 

important piece of information for the BA discrimination (see section 6.6). During the 

process, time-series InSAR pairs derived from the chronological SLC data are fed into 

the TOPS interferometry workflow (Veci, 2015) within SNAP to generate time-series 

interferometric coherence results. As presented in Figure 6.3, the pre- and post-fire 

coherence layers are preserved and the coherence difference layer is produced based 

on Equation (6.2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠1 ,𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠2 , … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑛𝑛� (6.2) 

 

The pre-processed Sentinel images are transformed into the UTM/WGS84 coordinate 

system and resampled to a uniform spatial resolution of 20 m applying the bilinear 

interpolation (Baboo and Devi, 2010). This Sentinel stack is made up of 30 dimensions 

including 18 Sentinel-2 SR layers (9 pre-fire and 9 post-fire), 12 Sentinel-1 dual-

polarimetric (VV, VH) SAR layers (2 pre-fire BS layers, 2 BS difference layers, 2 

post-fire BS layers, 2 pre-fire COR layers, 2 COR difference layers, and 2 post-fire 

COR layers). Worth noting that, layover and shadow areas in SAR layers have been 

masked out by assigning large negative values (-9999).  
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Considering that BAs only occupy a small part of the whole Sentinel coverage, coarse 

clipping around the fire perimeters is applied on the layer stack to adjust the proportion 

of the burned and unburned samples in the object dataset. After clipping, the multi-

dimensional layer stacks are segmented by watershed transformation (Vincent and 

Soille, 1991) and full lambda-schedule (FLS) algorithm (Liu et al., 2011) delivering 

boundaries of the objects as vector files (shapefiles) and means of the values inside in 

each dimension as the attributes for classification. This object dataset is named after 

SR+COR+BS in the following sections for concise. The same operation is further 

performed on three more multi-source layer stacks to construct the SR+COR, SR+BS, 

and SR datasets. Object samples are of 30 dimensions in the SR+COR+BS dataset, 24 

dimensions in the SR+COR dataset, 24 dimensions in the SR+BS dataset, and 18 

dimensions in the SR dataset. 

 

Annotations of the samples in the object dataset are derived from the difference of 

normalized difference vegetation index (dNDVI) between the pre- and post-fire 

PlanetScope images. The most difficult part during the binarization is to determine the 

threshold for each dNDVI map. Binarizing the whole dNDVI map with a consistent 

threshold is not recommended since BAs often cover a large area where dNDVI values 

inside vary with heterogeneous landscapes and uneven environments. Hence, dNDVI 

maps are cropped into small patches with sizes of 256×256, where the binary threshold 

is manually chosen for each patch. These binarized patches are then integrated over 

each site and projected back into the same coordinate system as the multi-dimensional 

layer stack preserving the spatial resolution of 3 m. Labels of the Sentinel objects are 
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further assigned using binarized values of pixels that fall inside the associated object 

polygon based on the majority voting rule (Zwicker, 2016).  

 

After the construction of associated object datasets, a training and testing split strategy 

is further applied. Twelve test sites are divided into ten dependent and two independent 

sites (Stone and Walker), where each dependent site provides 60% of the objects for 

training and the other 40% for dependent testing while all objects in the independent 

sites are used for independent testing. The dependent testing offers to analyze the 

performance of different classification methods by feature sources, test sites, and land 

cover types, whereas the independent testing is designed to evaluate the robustness of 

the developed model over independent fire perimeters. 

6.3.2 Siamese Self-Attention Classification 

The diversity of the multi-source attributes is the main concern when applying binary 

classification because prior studies evidenced that adequate inputs have a decisive 

impact on the BA mapping accuracy (Ramo et al., 2018). Therefore, the self-attention 

mechanism (Vaswani et al., 2017) is employed here to explore the latent relations 

among multi-source features and to improve their synergies since it was designed to 

draw global dependencies of long sequences. Two self-attention modules are further 

connected by a Siamese structure with pairs of inputs and shared weights (Bromley et 

al., 1994) to maximize the inter-class and minimize the intra-class variations. This 

ensures the flexibility of the trained classifier on the whole training dataset. After 

training, either self-attention classifier can be used for the burned and unburned 
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discrimination. The details of the SSA classification strategy are presented in Figure 

6.4. 

 

Figure 6.4 Siamese Self-Attention (SSA) classification. 

In the proposed SSA network, a pair of multi-source attribute sequences are fed into a 

convolutional layer to generate the associated query 𝑄𝑄, key 𝐾𝐾, and value 𝑉𝑉 ∈ R𝑁𝑁×𝐷𝐷. 

A subsequent softmax operator is applied on the dot product of 𝑄𝑄 and 𝐾𝐾 to get the self-

attention mask 𝑀𝑀 ∈ R𝑁𝑁×𝑁𝑁. 

𝑚𝑚𝑖𝑖𝑖𝑖 =
exp�𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗𝑇𝑇�

∑ ∑ exp�𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗𝑇𝑇�𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

(6.3) 
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where, 𝑚𝑚𝑖𝑖𝑖𝑖 is the element in 𝑀𝑀 standing for the correlation between the 𝑖𝑖th row of the 

query and the 𝑗𝑗th row of the key.  

 

The replicate input sequence 𝐹𝐹 is further added to the masked weighted value 𝑀𝑀𝑀𝑀 as 

the output of the self-attention because this provides the network with a long-range 

channel-wise context dependency to tackle the gradient vanishing and to boost feature 

discriminability (Gomez et al., 2017).  

𝑃𝑃 = 𝑀𝑀𝑀𝑀 + 𝛼𝛼𝛼𝛼 (6.4) 

where 𝛼𝛼 is initialized as 0 and gradually learns to assign more weights in the training 

process. 

 

To make sure SAR attributes in the layover and shadow areas have no contributes to 

the binary classification, the large negative values of the input are reset as zero in 𝐹𝐹 

during the replication. Whereas these large negative values are retained in the 

calculation of 𝑀𝑀𝑀𝑀 because the softmax operator can convert them into zero in 𝑀𝑀 and 

hence have no contributions to 𝑃𝑃. 

 

The output 𝑃𝑃 is then fed into the multilayer perceptron (MLP) with two hidden layers 

to finalize the classification task, where the activation function is set as Leaky ReLU 

(Laurent and Brecht, 2018) and the classification loss is set as cross-entropy (Zhang 

and Sabuncu, 2018).  

𝐿𝐿𝑐𝑐 = −
1
2
�[𝑦𝑦𝑐𝑐log𝑦𝑦�𝑐𝑐 + (1 − 𝑦𝑦𝑐𝑐)log(1 − 𝑦𝑦�𝑐𝑐)]
2

𝑐𝑐=1

(6.5) 

where 𝑦𝑦𝑐𝑐 is the binarized label and 𝑦𝑦�𝑐𝑐 is the predicted probability of class c. 
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A Siamese loss is also considered in the total loss during the training process, which 

is defined after the Euclidean distance between the output feature pairs (𝑓𝑓1, 𝑓𝑓2) of the 

self-attention blocks. 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = (1 − 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠)𝑆𝑆2 + 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠max(0,1 − 𝑆𝑆)2 (6.6) 

𝑆𝑆 = 1 − exp(−‖𝑓𝑓1 − 𝑓𝑓2‖2) (6.7) 

where, 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 0 if the input pair are from the same class and  𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 1 if they are from 

different classes. Introducing Siamese loss can help the network to learn a nonlinear 

transformation that maps the input data into a low-dimensional manifold, where the 

distance between same-class samples is smaller and so the opposite (Yang and Jin, 

2006).  

 

The total loss of the whole SSA network is then updated as the sum of classification 

loss 𝐿𝐿𝑐𝑐 and Siamese loss 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝑐𝑐 + 𝜆𝜆𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 (6.8) 

where 𝜆𝜆 is a regularization parameter to balance the two losses in the training phase. 

6.3.3 Accuracy Metrics 

OE, CE, and Dice Coefficient (DC) are used to evaluate the quality of the BA product 

(Padilla et al., 2015). All these accuracy metrics can be calculated using the confusion 

matrix with the numbers of TP, FP, TN, and FP samples (Table 6.4). In BA mapping, 

TPs represent the burned samples that are correctly labeled, FPs are unburned samples 

incorrectly labeled as burned, TNs are the unburned samples correctly labeled, and 

FNs represent burned samples incorrectly labeled as unburned. 
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Table 6.4 Metric calculation reference 

            Reference 

Classified 
Burned Unburned 

Burned TP FP 

Unburned FN TN 

Based on Table 6.4, the OE, CE and DC can be calculated by 

𝑂𝑂𝑂𝑂 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(6.9) 

𝐶𝐶𝐶𝐶 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(6.10) 

𝐷𝐷𝐷𝐷 =
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
(6.11) 

6.3.4 Implementation details 

The training is carried out independently on the four training datasets (SR+COR+BS, 

SR+COR, SR+BS, and SR) using two classification methods (SSA and Random forest 

(RF)) (Breiman, 2001, Çömert et al., 2019). The training of SSA undertakes on two 

NVIDIA GeForce RTX 2080Ti GPUs under the PyTorch framework (Ketkar, 2017), 

where synchronized Adam solver (Kingma and Ba, 2014) is used allowing each GPU 

to process a batch of 32 pairs simultaneously. Layers in the SSA model are randomly 

initialized by a Gaussian distribution with zero mean and a standard deviation of 0.001. 

The base learning rate, momentum, and weight decay are set as 0.01, 0.9, and 0.0001. 

The training of the RF undertakes on the Intel Core i7-9700k processer with a base 

frequency of 3.60 GHz, where the number of decision trees is initiated as 1000 with a 

depth of 400. 
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6.4 Experiment Results 

6.4.1 Dependent Testing 

After training, four dependent testing datasets (SR+COR+BS, SR+COR, SR+BS, and 

SR) are fed into four SSA classifiers and four RF classifiers to predict the burned 

probabilities, where burned probabilities over 0.5 are classified as burned. Predictions 

are further compared with PlanetScope-derived annotations and associated accuracy 

metrics are calculated using the confusion matrix. DCs of the SSA and RF classifiers 

over each dependent site are presented in Figure 6.5 and more details about the OEs 

and CEs are listed in Table 6.5 and Table 6.6. 

 
Figure 6.5 DCs of different classifiers over each dependent site. 

The SSA classification results are further projected back into the UTM/WGS-1984 

coordinate system to present the final BA product. Since dependent testing datasets 
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only cover 40% of the objects in the dependent sites, these testing results can not give 

us an integrated BA map over each dependent site. Hence, predictions are also carried 

out on training datasets using the four SSA classifiers to generate the whole BA maps 

in Figure 6.6 to Figure 6.15. Worth noting, predictions over the training dataset are 

not involved in the calculation of any accuracy metrics above. 

 

 

 
Figure 6.6 Predicted BA maps (SSA) over the Mendocino fire. 
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Figure 6.7 Predicted BA maps (SSA) over the Carr fire. 
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Figure 6.8 Predicted BA maps (SSA) over the Camp fire. 

 

 

 

Figure 6.9 Predicted BA maps (SSA) over the Woolsey fire. 
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Figure 6.10 Predicted BA maps (SSA) over the Ferguson fire.  
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Figure 6.11 Predicted BA maps (SSA) over the County fire.  

 

  

  

Figure 6.12 Predicted BA maps (SSA) over the Klamathon fire. 
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Figure 6.13 Predicted BA maps (SSA) over the Donnell fire. 
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Figure 6.14 Predicted BA maps (SSA) over the Holy fire. 

  

  

Figure 6.15 Predicted BA maps (SSA) over the Kincade fire. 
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Table 6.5. Accuracy metrics of SSA classification result over each dependent site 

 Mendocino Carr Camp Woolsey Ferguson County Klamathon Donnell Holy Kincade 

 

SR+COR+BS 

OE 14.3% 18.7% 23.8% 12.1% 13.4% 5.6% 4.2% 20.0% 6.5% 17.7% 

CE 2.6% 3.1% 3.2% 2.6% 0.8% 0.4% 2.2% 3.8% 0.8% 2.5% 

DC 91.2% 88.4% 85.3% 92.4% 92.5% 96.9% 96.8% 87.3% 96.2% 89.3% 

 

SR+COR 

OE 14.3% 18.1% 23.5% 12.6% 11.7% 5.3% 4.4% 19.1% 6.1% 17.5% 

CE 2.6% 2.9% 3.2% 2.8% 0.8% 0.4% 1.6% 3.4% 1.1% 2.9% 

DC 91.2% 88.8% 85.5% 92.0% 93.4% 97.1% 97.0% 88.0% 96.3% 89.2% 

 

SR+BS 

OE 20.7% 33.1% 33.1% 16.7% 17.8% 6.1% 6.5% 34.3% 6.4% 28.2% 

CE 2.1% 2.4% 0.9% 2.3% 0.8% 0.4% 1.1% 1.1% 1.0% 1.0% 

DC 87.6% 79.4% 79.9% 89.9% 89.9% 96.7% 96.1% 78.9% 96.2% 83.2% 

 

SR 

OE 20.1% 32.9% 33.0% 15.8% 17.3% 5.8% 5.9% 34.1% 6.3% 27.1% 

CE 2.3% 2.4% 0.9% 2.0% 0.8% 0.3% 1.1% 1.0% 1.0% 1.1% 

DC 87.9% 79.5% 80.0% 90.6% 90.2% 96.8% 96.5% 79.1% 96.3% 83.9% 
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Table 6.6. Accuracy metrics of RF classification result over each dependent site 

 Mendocino Carr Camp Woolsey Ferguson County Klamathon Donnell Holy Kincade 

 

SR+COR+BS 

OE 19.0% 30.0% 27.7% 13.8% 17.8% 7.6% 10.3% 27.4% 8.4% 26.4% 

CE 2.6% 2.7% 3.1% 2.8% 0.9% 0.4% 1.3% 3.4% 0.8% 1.2% 

DC 88.4% 81.4% 82.8% 91.4% 89.9% 95.9% 94.0% 82.9% 95.2% 84.3% 

 

SR+COR 

OE 16.5% 19.8% 24.9% 15.5% 14.7% 5.2% 6.6% 24.2% 6.0% 20.0% 

CE 2.6% 3.0% 3.2% 2.7% 0.8% 0.4% 1.4% 3.6% 1.1% 2.6% 

DC 89.9% 87.8% 84.6% 90.5% 91.7% 97.1% 95.9% 84.8% 96.4% 87.9% 

 

SR+BS 

OE 24.3% 41.0% 36.2% 19.0% 20.3% 15.3% 13.8% 37.8% 8.7% 43.0% 

CE 1.9% 2.4% 0.7% 2.0% 0.8% 0.2% 0.8% 1.1% 0.7% 0.5% 

DC 85.5% 73.5% 77.7% 88.7% 88.4% 91.6% 92.3% 76.4% 95.1% 72.5% 

 

SR 

OE 20.5% 33.4% 33.0% 16.0% 17.5% 5.7% 5.9% 33.6% 6.4% 26.8% 

CE 2.2% 2.5% 0.9% 2.1% 0.8% 0.3% 0.8% 1.3% 1.0% 1.4% 

DC 87.7% 79.1% 79.9% 90.4% 90.1% 96.9% 96.6% 79.4% 96.2% 84.0% 
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Variations of BA mapping accuracies achieved by the four SSA classifiers are further 

analyzed as a function of the binary threshold applied on the burned probability. As 

indicated in Figure 6.16, DCs over shrublands and grasslands are slightly affected by 

the input multi-source data (shrubland: 96.0%-96.5%, grassland: 94.2%-95.4%) with 

optimum thresholds located between 0.4 and 0.6. More prominent improvements in 

DCs of multi-source inputs are observed over forests and savannas (forest: 77.7%-

90.6%, savanna: 89.1%-92.9%). Accuracies over forests improve when the softmax 

burned probability threshold was increased (optimum: 0.5-0.7) and conversely over 

savannas (optimum: 0.3-0.5). 

 

Figure 6.16 Variation of DC (SSA) as a function of the threshold applied on the 

burned probability. 

6.4.2 Independent Testing 

After validating the better performance of the proposed method, the robustness of the 

multi-source (SR+COR+BS) SSA classifier needs to be investigated over independent 

cases. This is necessary because the main part of the proposed method is underpinned 

by deep learning networks, which strongly rely on the sufficiency and diversity of the 

training dataset, although practically it is impossible to collect samples from every 



 

 

172 
 

place. Predictions with OE of 8.7%, CE of 2.6%, and DC of 94.2% (Stone) and OE of 

18.8%, CE of 3.5%, and DC of 88.2% (Walker) are achieved by the multi-source SSA 

classifier over the independent testing dataset. Figure 6.17 illustrates the associated 

reprojected BA maps. 

  
Figure 6.17 Predicted BA maps (SSA) over the Stone and Walker fires. 

6.5 Discussion 

As presented in Figure 6.5, overall DCs of both SSA and RF classifiers are lower in 

test sites with steep terrains or/and forest dominant covers such as Camp and Carr than 

areas with flat topography or/and non-forest covers like County and Klamathon. This 

directly relates to the characteristics of active and passive remote sensing acquisitions. 

On the one hand, spectral overlaps among BA and cast shadow originated from steep 

terrains or/and forests tend to cause misclassification when using SR-derived features 

(Stroppiana et al., 2009, Fassnacht et al., 2021). On the other hand, although the cloud 

coverage isn’t a problem in SAR-related features due to the penetration of microwave, 

the unique side-looking imaging geometry tends to cause distortions (foreshortening, 

layover, and shadow) over steep terrains. Besides that, the SAR data used in our study 



 

 

173 
 

are obtained by the Sentinel-1 C-band sensor where the penetration is not as strong as 

L-band SAR sensors and thus prone to be affected by the absorption and attenuation 

(Tanase et al., 2010a, Tanase et al., 2010b).  

 

The superiority of using multi-source features for BA discrimination is also indicated 

in Figure 6.5. Improvements are more prominent in test sites with steep terrains or/and 

forest covers (Camp: 5.5% for SSA classifier and 4.7% for RF classifier, Carr: 9.3% 

for SSA and 8.7% for RF) than regions with flat topography or/and non-forest covers 

(County: 0.3% for SSA and 0.2% for RF), where a large part of SR-derived errors are 

mitigated through introducing SAR features. Overall DCs achieved over the SR+COR 

dataset are higher than (3.4% for SSA and 2.4% for RF) those over the SR dataset. 

Conversely, lower DCs are observed over the SR+BS dataset than the SR dataset (0.3% 

for SSA and 2.6% for RF) indicating that the accuracy improvement mainly attributes 

to the COR features rather than the BS features.  

 

Comparison is also carried out between different classifiers, where the performance is 

evaluated by their flexibility over multi-source features and the classification accuracy 

achieved. Results in Figure 6.5 indicated that when new features are added to the input 

attribute, the SSA classifier can automatedly learn to pick up the more critical ones for 

BA discrimination and is less affected by redundant features through assigning proper 

weights during the training process. This largely attributes to the self-attention module 

used to learn the latent relations among inter-source and intra-source features and the 

Siamese structure employed to maximize the inter-class and minimize the intra-class 

variation. As to the classification accuracy, higher DCs are achieved by the SSA 
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classifiers over each dependent site than those from the RF classifiers (see Table 6.5 

and Table 6.6).  

 

In summary, the effectiveness of the SSA strategy over the synergy of Sentinel-1 COR, 

BS, and Sentinel-2 SR data has been validated based on the analysis above. Moreover, 

the robustness of the multi-source SSA classifier is evaluated over two independent 

sites delivering an average DC of about 90%. Accuracies in independent sites are 

overall lower than the dependent ones with similar land cover distributions and terrains. 

This is because less spatial and temporal correlation is shared between the training and 

independent testing datasets than the training and dependent testing ones although two 

independent sites are also located in the state of California with fire events that 

occurred in 2018-2019.  

 

Labels used for the validation are generated by PlanetScope data due to the validation 

protocol mentioned in (Chuvieco et al., 2019), which focuses on using higher spatial 

resolution data than the BA product derived. But the high cost of such commercial 

satellite imagery may restrict the application of this protocol over large geographical 

areas. An alternative way is to generate the pan-sharpened (10 m) Sentinel-2 products 

using the sen2res module (Brodu, 2017) in SNAP. Although the spatial resolution of 

this product is lower than the PlanetScope acquisitions, the reflectance in 13 optical 

bands acquired by MSI is preserved with open access. 
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6.6 Supplementary Material 

6.6.1 Principle of interferometric coherence for BA mapping 

The principle of SR and BS features in BA discrimination has been widely investigated 

in the past years. This section will focus on exploring how the COR features change 

with the fire based on a simplified coherence model and why it can be employed as an 

important auxiliary for BA mapping. Normally, wildfires are more likely to occur in 

vegetated areas where coherences are overall lower than the permanent scatterers like 

urban facilities while higher than water bodies (Ferretti et al., 2001). Vegetations are 

sabotaged by the fast destruction of wildfire causing severe temporal decorrelation in 

COR features. Afterward, vegetations gradually rehabilitate in burns though this may 

take months to years depending on the vegetation type. The pre-fire and post-fire dual 

polarimetric coherence maps over the Holy site are presented in Figure 6.18 with the 

time-series coherence difference. 

 

  
                               (a)                                                               (b) 
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                               (c)                                                               (d) 

 

                               (e)                                                               (f) 

Figure 6.18 Interferometric coherence: a) Pre-fire map in VV polarization; b) Pre-

fire map in VH polarization;  c) Difference map in VV polarization; d) Difference 

map in VH polarization; e) Post-fire map in VV polarization; f) Post-fire map in VH 

polarization. 

Practically, after compensating the spectral and SNR decorrelations, the volume and 

temporal decorrelations become two main components in interferometric coherence 

(Lavalle, 2009), which are directly related to the internal structure and the temporal 

stability of the scattering medium. Therefore, analysis of coherence changes is mainly 

carried out on these two decorrelations using a simplified coherence model in (Lei et 

al., 2017) given by 
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𝛾𝛾=exp(𝑗𝑗𝜙𝜙0)
𝛾𝛾𝑣𝑣𝑣𝑣 + 𝛾𝛾𝑔𝑔𝑔𝑔𝑚𝑚(𝜔𝜔)

1 + 𝑚𝑚(𝜔𝜔)
(6.12) 

where, 𝜙𝜙0 is the ground phase, 𝛾𝛾𝑔𝑔𝑔𝑔 is a complex value describing the ground temporal 

decorrelation, 𝛾𝛾𝑣𝑣𝑣𝑣 is the coherence component with coupled effects from volumetric 

scatterers and temporal changes, 𝑚𝑚(𝜔𝜔) represents the ground to volume ratio varying 

with polarization 𝜔𝜔.  

 

Unlike the coherence function mentioned in Chapter 3 and Chapter 4, Equation (6.12) 

accounts for both position and dielectric property changes in the ground and volume 

layers. This is because temporal baselines of spaceborne data involved in this chapter 

(6 and 12 days) are much longer than the airborne acquisitions (less than hours) used 

before and the fast destruction of the wildfire further accelerates and enhances these 

changes. Hence, the stable ground and the assumption of only wind-derived temporal 

change no longer stay. In this condition, the volumetric-temporal coherence function 

can be reformulated as 

𝛾𝛾𝑣𝑣𝑣𝑣 =
∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝜂𝜂𝑣𝑣(𝑧𝑧)𝑑𝑑𝑣𝑣(𝑧𝑧)exp(𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

(6.13) 

where, ℎ𝑣𝑣 is the forest height, 𝜌𝜌𝑣𝑣(𝑧𝑧) represents the radar backscattering attenuation at 

height 𝑧𝑧, 𝜂𝜂𝑣𝑣(𝑧𝑧) and 𝑑𝑑𝑣𝑣(𝑧𝑧) are the vertical decorrelation distributions derived from the 

changes of position and dielectric property in the volume layer, and 𝑘𝑘𝑧𝑧 is the vertical 

wavenumber.  

 

Coherence magnitudes in Equations (6.12) and (6.13) range from 0 to 1 representing 

the correlation level between two observations. The behaviors of coherence changes 
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throughout the fire can be explained by these functions using different decorrelation 

components.  

 

Before the fire, the dielectric properties of the ground and volume layers are relatively 

stable and the main decorrelation source in the pre-fire coherence (days before the start 

date) is the wind-derived random motion of leaves and branches. In this condition, the 

coherence function can be simplified as (Lavalle and Hensley, 2012) 

𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗𝜙𝜙0)
𝛾𝛾𝑣𝑣𝑣𝑣
𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚(𝜔𝜔)
1 + 𝑚𝑚(𝜔𝜔)

(6.14) 

𝛾𝛾𝑣𝑣𝑣𝑣
𝑝𝑝𝑝𝑝𝑝𝑝 =

∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝜂𝜂𝑣𝑣(𝑧𝑧)𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

∫ 𝜌𝜌𝑣𝑣(𝑧𝑧)𝑑𝑑𝑑𝑑ℎ𝑣𝑣
0

(6.15) 

 

During the fire, the stability of the scattering medium is damaged by the chemical and 

physical conversion process, and therefore the magnitudes of 𝛾𝛾𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡 and 𝛾𝛾𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 in the time 

series coherences rapidly drop to zero which further leads to �𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓� ≈ 0 in the fire-

affected area. 

 

Assuming that the vegetation area is severely burned where most of the leaves and 

branches are destroyed. In this condition, the decorrelation of volume scattering can 

be neglected and the ground to volume amplitude ratio becomes very large in the post-

fire coherence (days after the contained date and before the vegetation rehabilitation). 

Besides that, the ground decorrelation is more obvious than in normal conditions since 

the temperature and moisture of the burned ground change fast after the fire. 

𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = exp(𝑗𝑗𝜙𝜙0)𝛾𝛾𝑔𝑔
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (6.16) 
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In summary, the magnitudes of the during-fire coherence maps are much smaller than 

the pre and post-fire ones over the BA as illustrated in Figure 6.18. This means the 

noise in the during-fire interferometric phase is much larger than the pre and post ones, 

which applies to both the VV and VH polarizations. This variation of interferometric 

coherence throughout the fire event can be used as an important piece of information 

in the fire patch classification. 

6.6.2 Illustration of the multi-source data 

As mentioned above, the original satellite acquisitions over each site include the pre- 

and post-fire Sentinel-2 images with 13 bands, time-series Sentinel-1 SAR SLC and 

GRD images in dual polarizations, and the pre- and post-fire PlanetScope images with 

4 bands. Sentinel acquisitions are used to generate multi-source features for the BA 

discrimination and PlanetScope data are used to provide annotations for training and 

validation. Figure 6.18 to Figure 6.21 presents the associated pre-processed layers over 

the Holy site. 

 
                               (a)                                                               (b) 
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                               (c)                                                               (d) 

 

                               (e)                                                               (f) 

Figure 6.19 Backscatter coefficient: a) Pre-fire map in VV polarization, b) Pre-fire 

map in VH polarization, c) Difference map in VV polarization, d) Difference map in 

VH polarization, e) Post-fire map in VV polarization, f) Post-fire map in VH 

polarization. 
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                               (a)                                                               (b) 

  
                               (c)                                                               (d) 

Figure 6.20 Surface reflectance: a) Pre-fire true-color image, b) Post-fire true-color 

image, c) Pre-fire false-color image, d) Post-fire false-color image 

  

                               (a)                                                               (b) 
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Figure 6.21 Reference data: a) Pre-fire true-color image, b) Post-fire true-color 

image. 

The multi-source remote sensing data have their unique advantages in BA mapping. 

Compared with the SR and BS features, interferometric coherences are more sensitive 

to the temporal changes while containing fewer spatial details of the land covers. This 

is because interferometric coherence is a regional maximum likelihood estimation of 

the phase standard deviation (Moreira et al., 2013) and also the multi-looking process 

reduces the spatial details (Nielsen et al., 2020). SR images contain more details of the 

land cover. As indicated in Figure 6.20, the burned boundaries are more prominent in 

the SWIR-NIR composite than in the RGB image. Even so, there are still some shadow 

areas in the Holy site that are hard to tell whether they are burned or not. Luckily, 

these areas have lower values in the co-fire coherence which offers a useful auxiliary 

for the BA discrimination. 

6.7 Conclusion 

This chapter offers a deep-learning-based BA mapping method applied to a synergistic 

dataset constructed by Sentinel-1 and Sentinel-2 acquisitions. This process relies on 

the construction of an object dataset following by a supervised SSA classification. 

Experiment results evidenced that the performance of BA mapping can be improved 

through the synergy of SR and COR features and the SSA classification method 

surpasses the RF method on exploring the latent relations among multi-source features 

and hence the accuracy of BA mapping. The flexibility of the SSA classifier is further 

evaluated on the independent sites to investigate its potential to apply to the regional 
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or global fire perimeters. Related BA products generated in this research can be used 

as a powerful data resource for the governments and fire management agencies to 

inform post-fire planning and policy.  
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Chapter 7 Conclusion and Future Work 
 

7.1 Conclusion 

The main objective of this dissertation was defined in Chapter 1 as:  

“The general goal of this thesis is the optimum exploitation of SAR, InSAR, PolSAR, 

PolInSAR, LiDAR, and multi-spectral remote sensing for forest characterization and 

monitoring from three main aspects including the forest height estimation, active fire 

detection, and burned area mapping.” 

 

First of all, contributions to the field of forest height inversion are from two aspects, 

namely, an improvement in the model-based forest height inversion using PolInSAR 

data and a proposal of deep-learning-based forest height inversion with a synergy of 

PolInSAR and LiDAR data.  

 

For the first part, contributions include: 

o Extended the RMoG model with homogeneous and heterogeneous scattering 

attenuation and random motion descriptions and evaluated their performance 

on forest canopy height mapping at the landscape scale. 

o Balanced between the number of PolInSAR acquisitions and forest parameters 

in the physical model and deployed a dual-baseline repeat-pass PolInSAR data 

acquisition configuration to address the underdetermined estimation problem. 
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o Proposed a leveraging strategy in the optimization process to utilize advantages 

of homogenous and heterogeneous scattering attenuation and random motion 

properties in the physical model. 

As to the second part, contributions include: 

o Reformulated the forest height estimation as an image pan-sharpening process 

between high spatial resolution features derived from PolSAR and PolInSAR 

and high vertical accuracy height metrics from LiDAR. 

o Proposed a specifically designed GAN called PolGAN with one generator and 

two discriminators (spatial and coherence) to accomplish the forest height pan-

sharpening task. 

o Deployed a progressive pan-sharpening strategy in the generator to cope with 

the larger scale factors between spaceborne LiDAR and SAR acquisitions. 

o Evaluated the performance of PolGAN with standard or progressive generator 

in conditions of different downsampling strategies.  

 

SAR data involved in this thesis are collected by UAVSAR as a proxy for the NISAR-

like data. LiDAR data are acquired by LVIS, which can be used to simulate the GEDI-

like data through downsampling. Therefore, studies on forest height estimation in this 

thesis will benefit the upcoming spaceborne SAR missions (NISAR, BIOMASS, and 

Tandem-L) and spaceborne LiDAR missions (GDEI and ICESat-1&2). 

 

From the aspect of active fire detection, contributions include: 
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o Formulated the multispectral-based active fire detection as a binary semantic 

segmentation process and evaluated the detection accuracy of different deep-

learning-based segmentation models.  

o Adjusted the architecture of HRNetV2 with a DCPA network to make it more 

suitable for active fire detection. 

o Constructed a dataset using Sentinel-2 TOA products collected over wildfires 

that occurred on the east coast of Australia and the west coast of the United 

States in 2019-2020 for the training and testing. 

o Built an automated active fire detection framework for Sentinel-2 imagery as a 

cost-efficient resource in support of the global fire monitoring system. 

 

The concept in this framework can be further applied to other remote sensing sensors 

with data acquisitions in SWIR-Red ranges and further serve as a powerful tool to deal 

with large volumes of high-resolution data for fire monitoring and as a cost-efficient 

resource in support of the governments and fire service agencies to deploy timely and 

optimized firefighting plans. 

 

For burned area mapping, contributions include: 

o Explored the potential of burned mapping with the synergy of SR, BS, and 

COR data derived from Sentinel-1 and Sentinel-2 acquisitions. 

o Proposed an SSA classification strategy for multi-sensor feature extraction and 

burned area mapping. 

o Constructed a multi-source dataset over 12 California wildfires that occurred 

in 2018-2019 at the object level for training and testing. 
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o Evaluated the performance of burned area mapping by different sites, feature 

sources, and classification strategies to appraise the improvements achieved by 

the proposed method. 

 

Related burned area mapping products can be used as a powerful data resource for the 

governments and fire management agencies to evaluate biomass losses, manage post-

fire policies, and prevent secondary disasters. 
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7.2 Future Work 

Related studies on forest characterization and monitoring in this thesis are larger than 

single tree scales. Further efforts will be placed on the recognition and reconstruction 

of individual trees because global high-resolution remote sensing data are becoming 

available. Although the analysis of individual trees in remote sensing data has been a 

well-researched topic for quite a few years, most prior studies are based on the LiDAR, 

RGB-D, and photogrammetry data (Xie et al., 2020) whereas only a few studies have 

been conducted with SAR (Schmitt et al., 2015, Magnard et al., 2016). This is because 

generating high-density point clouds of forest canopies for individual tree recognition 

and reconstruction requires SAR acquisitions with spatial resolutions in the decimeter 

level and sharp focusing under most wind conditions and surface scattering. Moreover, 

sophisticated processing strategies have to be developed based on a thorough 

understanding of the radar imaging principle because the unique side-looking imaging 

geometry of SAR may result in severe height, displacement, and occlusion errors for 

individual trees due to layover and shadowing effects. However, compared with data 

acquired by LiDAR, RGB-D, and photogrammetry sensors, SAR acquisitions have 

the potential of wide-swath mapping in a short time and is less limited by the weather 

condition and solar illustration. Hence, it is necessary to further explore the potential 

of SAR imagery on the recognition and reconstruction of individual trees. 

 

The most commonly used 3D forest characterization technique is TomoSAR (Reigber 

and Moreira, 2000). As an extension of multi-baseline SAR interferometry, TomoSAR 

creates a second synthetic aperture along the elevation direction to retrieve the vertical 
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scattering profile, which has been further applied to generate point clouds of the forest 

canopy (Schmitt et al., 2015). An alternative way for 3D forest characterization is the  

Polarization Coherence Tomography (PCT) (Cloude, 2006), which approximates the 

reflectivity profile as a weighted series of basis functions and estimates the associated 

parameters through several PolInSAR coherences. As an extension of PolInSAR, PCT 

has also been applied to the multi-baseline condition to improve the vertical resolution 

(Cloude, 2007a, Cloude, 2007b). This method has not been applied to the point cloud 

generation yet.  

 

TomoSAR and PCT methods are normally applied to single-pass acquisitions to avoid 

the temporal decorrelation effect. However, in this condition, only a small number of 

acquisitions in irregular passes are available for the TomoSAR and PCT processing, 

which raises the difficulty of generating a point cloud with high vertical accuracy. One 

possible way to increase the number of acquisitions is to use repeat-pass data. To cope 

with the temporal decorrelation effect in TomoSAR, differential TomoSAR has been 

proposed by producing spatial and temporal signatures of the scatterers in a SAR cell 

and decoupling nuisance temporal components through spectral analysis (Lombardini 

and Cai, 2013, Aghababaee et al., 2019). As to PCT, a possible way is to simplify the 

dynamic forest canopy as random scatterers in Brownian motion and integrate it into 

the coherence function to compensate for the temporal decorrelation. Besides that, the 

fusion between multi-source cloud points can also be employed to improve the quality 

of cloud points (Zhang, 2010, Li et al., 2021). The generated 3D cloud points can be 

further processed by the traditional or deep-learning-based 3D shape classification, 3D 



 

 

190 
 

object detection and tracking, and 3D point cloud segmentation methods for different 

applications (Nguyen and Le, 2013, Guo et al., 2020b).   
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