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Abstract

Atomic force microscopes (AFMs) are used in many nanopositioning applications in

order to measure the topography of various specimens at an atomic level through

surface imaging. The imaging of samples in AFMs is carried out by using a three

degree-of-freedom positioning unit called a piezoelectric tube scanner (PTS). The

majority of the commercially available AFMs use PTS for x, y and z positioning

because of its simplicity, large achievable scan range (>100 µm) and smaller capaci-

tance. In spite of having such good qualities, there are some limitations of the PTS

which adversely affect the scanning speed and limit the overall performance of the

AFM. The PTS of the AFM suffers from the problem of vibration, cross coupling

effects between the axes of the scanner and nonlinear effects such as creep and hys-

teresis. This thesis presents several ways to compensate for the above mentioned

problems of the PTS to improve the speed and accuracy of the PTS for high speed

atomic force microscopy using robust control.

The first contribution of this dissertation is the design of damping controllers

to compensate for the effect of vibrations induced by the PTS. The first design

uses a damping controller namely the resonant controller to damp the first resonant

mode of the scanner. The design of the controller is presented both in single-input

single-output (SISO) and multiple-input multiple-output (MIMO) forms. Experi-

mental results show that the resonant controller significantly damps the first reso-

nant mode of the scanner. One of the limitations of the use of the resonant controller

is its high pass nature. The high pass nature of the resonant controller may add

high frequency sensor noise and destabilise the system if there are unmodelled high

frequency dynamics.

In order to make the system robust to high frequency dynamics we next pro-

pose the design of a passive damping controller to damp the resonant modes of the

scanner. The motivation to design a passive damping controller for the PTS is its

bandpass nature. The bandpass nature of the passive damping controller not only

reduces the addition of high frequency sensor noise but also results in large gain and

phase margins. In order to design the passive damping controller for the PTS we

have proposed a new analytical framework. The analytical framework examines the

finite gain stability for a positive feedback interconnection between two stable linear
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systems where one system has mixed negative-imaginary (NI), passivity, and small-

gain properties and the other system has mixed NI, negative-passivity (NP) and

small-gain properties. The closed-loop system with this passive damping controller

is robust against changes in the plant dynamics. Although the closed-loop system

using the passive damping controller is robust, the performance of this controller is

not same for all possible changes in plant dynamics.

In order to achieve robust performance against changes in the plant dynamics,

we propose another damping controller namely a minimax linear quadratic Gaussian

(LQG) controller to compensate for induced vibrations in the PTS. This type of con-

troller not only provides robust performance against changes in the plant dynamics

but also results in large gain and phase margins. Due to its bandpass nature the

minimax LQG controller also reduces the addition of high frequency sensor noise.

A second contribution of this thesis is the design of an integral minimax LQG

controller to improve the tracking performance of the PTS. The tracking accuracy

of the PTS is hampered due to the low resonance frequency of the PTS. Here, we

have proposed the design of a minimax LQG controller with integral action to track

the reference triangular signal used for raster scanning in most commercial AFMs.

The design of the controller includes uncertainty which arises due to the spill over

dynamics of the system at high frequencies. Experimental results are compared with

an integral controller to demonstrate the effectiveness of the proposed controller.

The experimental results show that the integral minimax LQG controller achieves

four times better performance as compared to the integral controller.

The third and final contribution of this thesis is the design of a multi-variable

controller for damping, tracking and cross coupling reduction of PTSs. At first

we propose a design of multi-variable NI controllers for damping and cross coupling

reduction of the PTS using a resonant and an integral resonant controller. Secondly,

we propose a design of a double resonant controller with integral action to damp

the resonant mode of the scanner, reduce the cross coupling effects of the scanner

and improve the tracking performance of the PTS. The design of controllers in this

case is done using a reference model matching approach.

In all cases a performance comparison is made by implementing the controllers

on the PTS. Experimental results presented in the thesis show that the proposed

controllers provide significant improvement in the performance of the AFM.
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Chapter 1

Introduction

Scanning probe microscopy (SPM) [1] refers to a group of imaging techniques that

collect images of sample surfaces through scanning [2,3]. Many types of SPM systems

such as the scanning tunneling microscope (STM) [2, 3], atomic force microscope

(AFM) [4–6], and magnetic force microscope (MFM) [7] are used to view sample

surfaces. The SPM was invented in the form of the STM. The STM uses only

conducting samples to scan which limits the use of STM for non-conducting samples.

This led to the invention of the AFM. The AFM is a type of SPM system which is

used to measure the topography of various specimens down to an atomic level. The

AFM generates three dimensional images of both conducting and non-conducting

samples in vacuum and non-vacuum environments. In the AFM imaging process the

sample is placed on a positioning unit termed a nanopositioner. The nanopositioner

is designed to achieve fine mechanical displacements at an atomic scale [3, 8, 9].

Different types of nanopositioners such as piezoelectric tube scanners (PTSs) [4–

6], serial-kinematic [10], and flexure based [11] are used in SPM systems depending

on the applications. The nanopositioners used in most commercial SPM systems are

of two types and the types are (a) the scan-by-sample [4] and (b) the scan-by-head

[12]. Both types of nanopositioners are equally used in nanopositioning applications.

In the case of the scan-by-sample the scanner moves during the operation whereas

the scan-by-head scanner remains fixed during operation [4, 12].

Nanopositioners are designed to cover a large scanning area which is accom-

plished by having a large length-to-diameter ratio of the nanopositioner [4, 13–15].

A major disadvantage of having a large length-to-diameter ratio is the low me-

chanical resonance frequency of the scanner [15]. In practice, in most cases, the

nanopositioner is actuated in a raster pattern, which uses a triangular signal in the

fast axis, i.e., the X-axis of the scanner [9,16]. One of the disadvantages of using the

triangular signal in the X-axis of the scanner is that the triangular signal contains

all odd harmonics of its fundamental frequency [4, 13]. Therefore, when PTSs are

actuated by a triangular signal, the odd harmonics of the fundamental frequency

of the triangular signal excites the mechanical resonance of nanopositioners. This

1



Section 1.1 Thesis Objectives 2

excitation of the resonant modes of nanopositioners results in a loss of precision

positioning in the scanner [13–15].

Nanopositioners used in SPM systems are multiple-input multiple-output (MIMO)

systems. There exists a cross coupling [17] between the lateral and longitudinal axes

of the piezo scanner. Due to these cross coupling effects, signal applied to one of

the axes of the scanner results in a displacement in both axes of the scanner. If the

magnitude of the cross coupling is high then the X and Y sensors show modulated

triangular signals, i.e., triangular signals with the addition of staircase signals in

both sensor outputs. The resulting images generated from SPMs are rotated if the

magnitude of the cross coupling is high.

The precision positioning of nanopositioners is also affected due the nonlinear

behavior of the piezoelectric actuator. The nonlinear behavior of the nanopositioner

can be observed in the hysteresis and creep effects. Hysteresis arises in applications

such as PTSs, hard disk drives. The hysteresis nonlinearity of a piezoelectric actu-

ator affects the positioning accuracy of the piezo scanner. The effects of hysteresis

become visible in PTSs with an increase of the frequency or amplitude of the ap-

plied voltage signals [6]. A deviation of 15% between the forward and backward

movements of the applied signal can occur due to the effect of hysteresis [15, 18].

1.1 Thesis Objectives

The main objective of this research is to improve the high speed positioning perfor-

mance of a PTS using a feedback control approach. The first barrier for high speed

nanopositioning of the PTS is its induced vibration. The positioning performance of

the PTS is greatly affected due to the induced vibration. The first aim of this thesis

is the design of a damping controller to damp the resonant modes of the scanner

to compensate for the effect of induced vibration. The work done in regard to the

design of the damping controller in this thesis is listed below:

1. Resonant controller design for PTSs: a mixed negative-imaginary and small-

gain approach;

2. Passive damping controller design for PTSs: a mixed passivity, negative-

imaginary and small-gain approach; and

3. Minimax linear quadratic Gaussian (LQG) controller design for PTSs.

The second obstacle for high speed nanopositioning of the PTS is its low tracking

performance at high scanning rates. The tracking bandwidth of the PTS is limited
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to one percent of its first resonance frequency. The tracking performance is largely

affected by the excitation of the mechanical resonant mode of the scanner. The

second objective of this research is the design of a tracking controller to improve

the tracking performance of the PTS for high speed nanopositioning. This thesis

proposes a design of an integral minimax LQG controller to track the triangular

reference signal. The second work of this thesis is given below:

1. Integral minimax LQG controller design for tracking control of PTSs.

The third obstacle for high speed nanopositioning of the PTS is the cross coupling

effect between the axes of the scanner. The third and final aim of this research is

the design of multivariable controllers to attenuate the cross coupling effect between

the axes of the scanner. The works in this regard is listed below:

1. Multivariable negative-imaginary controller design for damping and cross cou-

pling reduction of PTSs;

2. Multivariable double resonant controller design for robust damping, tracking

and cross coupling reduction of PTSs.

1.2 Thesis Outlines

This thesis begins with an introduction to the atomic force microscopy system in

Chapter 2. Firstly, it includes a description of the working principles and various

operating modes of the AFM. The PTS is considered as the heart of the AFM system.

In this chapter a detail introduction to the construction and mechanics of the PTS

is discussed. This is then followed by an in-depth discussion of the factors, namely

scan induced vibration, hysteresis and creep, that limit the precision positioning of

the PTS for high speed nanopositioning.

Chapters 3, 4 and 5 form the first part of this thesis. The first objective of

this research is to compensate for the scan-induced vibrations of the PTS. In these

chapters we have discussed the design of three damping controllers to compensate

for the vibration of the PTS. The first design is the design of a resonant controller

for the PTS to damp the first resonant mode of the PTS. The design of the resonant

controller for the PTS is presented based on a mixed negative-imaginary and small-

gain approach. The resonant controller design is presented both as a single-input

single-output (SISO) and multiple-input multiple-output (MIMO) system. The sec-

ond contribution discussed in Chapter 4 is the design of a passive damping controller

for the PTS to damp the first resonant mode of the scanner. This time the design
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of the passive damping controller is based on a mixed passivity, negative-imaginary

and small-gain approach. In this regard we have proposed a new analytical frame-

work that establishes the finite-gain stability for a positive feedback interconnection

between two stable, linear time-invariant systems where one system has mixed pas-

sivity, negative-imaginary and small-gain properties and the other system has mixed

negative-imaginary, negative-passivity, and small-gain properties. The third contri-

bution in regard to the design of damping controller is proposed in Chapter 5. First

Chapter 5 proposes the design of a minimax linear quadratic Gaussian (LQG) con-

troller to damp the first resonant mode of the scanner. The motivation for designing

different damping controllers for the PTS is also discussed in these chapters.

The second objective of this thesis is also addressed in Chapter 5. The objective

is to design a tracking controller to improve the high speed tracking performance

of the PTS for raster scanning. Here we propose the design of a minimax LQG

controller with integral action for tracking control of PTSs.

Chapter 6 focuses on the third objective of this thesis. The third objective of

this thesis is to compensate for the effect of cross coupling between the axes of the

scanner. In order to do so we propose the design of multi-variable controllers for

robust damping, tracking and cross coupling attenuation in the PTS. The design of

the controllers is presented based on a reference model matching approach.

Chapter 7 presents the concluding remarks and a note on proposed future work.



Chapter 2

Atomic Force Microscopy

This chapter presents an overview of the basic principles of the AFM used in this

thesis. The first section of this chapter briefly discusses the various kinds of SPMs

and their applications to measure surface topography. Section 2.2 describes the op-

erating principle of the AFM. This includes the description and operation of each

component used in the AFM. Section 2.3 presents the various operating modes of

the AFM used to measure the properties of the sample. In Section 2.4, a detailed

description of the main component of this thesis, i.e., the piezoelectric tube scanner

(PTS) is presented. This description includes the electrical and mechanical behavior

of the PTS and the construction and mechanics of the scanner. Section 2.5 sum-

marizes the limiting factors of the PTS for high speed nanopositioning. A detailed

discussion on these limiting factors, namely induced vibration, coupling effect, non-

linearities such as hysteresis, is presented in this section. Finally the chapter is

concluded with a summary.

2.1 Introduction

Nanotechnology is the branch of science which deals with the manipulation of mat-

ters on an atomic level. Nanotechnology as defined by size is naturally very broad,

including fields of science as diverse as surface science, organic chemistry, molec-

ular biology, semiconductor physics, and microfabrication. The viewing of surface

texture at an atomic level with high resolution was a great challenge until the in-

troduction of the scanning tunneling microscope (STM) [2,3,19,20]. The STM was

developed by Gerd Binning and his colleagues in 1981 at the IBM Zurich Research

Laboratory in Switzerland [2, 3]. The STM was the first SPM technique capable of

directly obtaining three-dimensional (3-D) images of solid surfaces. The discovery of

the STM has brought a Nobel Prize to Binning and Rohrer in Physics in 1986. The

STM can only be used to measure the topography of surfaces which are electrically

conductive to some degree. This limits the use of the STM for the surfaces which

are non-conductive in nature.

5
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The invention of the AFM has opened a new era in the field of nanotechnology

to study non-conductive sample surfaces. The AFM is used to measure the topog-

raphy of surfaces, whether it is electrically conductive or insulating. The invention

of the AFM has also led to the invention of a family of scanning probe microscopy

techniques. These include scanning electrostatic force microscopy [21], scanning

force acoustic microscopy (or atomic force acoustic microscopy (AFAM)) [22, 23],

magnetic force microscopy [24, 25], scanning near field optical microscopy [26, 27],

scanning thermal microscopy [28, 29], scanning electromechanical microscopy [30],

scanning Kelvin probe microscopy [31, 32], scanning chemical potential microscopy

[33], scanning ion conductance microscopy [34, 35] and scanning capacitance mi-

croscopy [36, 37].

The reason for calling them SPMs is because of the use of a probe in these devices

for investigation and manipulation of matter. The commercial use of the SPM was

started in 1987 with the STM and in 1989 with the AFM by Digital Instruments

Inc. The basic stages for the development of the SPM system is as follows:

1. 1981- Scanning tunneling microscope. G. Binning ang H. Rohrer. Atomic

resolution images of conducting surfaces.

2. 1982- Scanning near-field optical microscope. D. W. Pohl. Resolution of 50

nanometers in optical images

3. 1984- Scanning capacitive microscope. J. R. Matey, J. Blanc. 500 nm (lateral

resolution) images of capacitance variation.

4. 1985- Scanning thermal microscope. C. C. Williams, H. K. Wickramasinghe.

Resolution of 50 nm in thermal images.

5. 1986- Atomic force microscope. G. Binning, C. F. Quate, Ch. Gerber. Atomic

resolution on non-conducting (and conducting) samples.

6. 1987- Magnetic force microscope. Y. Martin, H. K. Wickramasinghe. Resolu-

tion of 100 nm in magnetic images.

7. 1988- Inverse photoemission microscope. J. H. Coombs, J. K. Gimzewski,

B. Reihl, J. K. Sass, R. R. Schlittler. Detection of luminescence spectra on

nanometer scales.

8. 1989- Near-field acoustic microscope. K. Takata, T. Hasegawa, S. Hosaka, S.

Hosoki, T. Komoda. Low frequency acoustic measurements with the resolution

of 10 nanometers.
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9. 1990- Scanning chemical potential microscope. C. C. Williams, H. K. Wickra-

masinghe. Atomic scale images of chemical potential variation.

10. 1991- Kelvin probe force microscope. N. Nonnenmacher, M. P. O’Boyle, H. K.

Wickramasinghe. Measurements of surface potential with 10 nm resolution.

11. 1994-Apertureless near-field optical microscope. F. Zenhausern, M. P. O’Boyle,

H. K. Wickranmasinghe. Optical microscopy with 1 nm resolution.

2.2 Operating Principle of the AFM

The AFM is a very high-resolution type of SPM with demonstrated resolution on

the order of a fraction of a nanometer. The STM can investigate only the conductive

or semi-conductive samples. This disadvantage was overcome by the invention of

the AFM. Like the STM, the AFM relies on a scanning technique to produce very

high resolution 3-D images of sample surfaces. The AFM is based upon the principle

of sensing the forces between a sharp tip and the surface to be investigated. The

forces can be attractive or repulsive depending on the operating modes. When tip

to sample distance is large the interactive force is attractive and when the tip to

sample distance is small the interactive force is repulsive. The forces are measured

by measuring the motion of a very small cantilever beam. During the operation

of the AFM the sample is scanned instead of the tip (unlike the STM) because

the AFM measures the relative displacement between the cantilever surface and the

reference surface.

A schematic of the AFM is presented in Fig. 2.1. The basic components include

a micro-cantilever with a sharp tip mounted on a micromachined cantilever, a posi-

tioning unit, a laser source, and a laser photodetector. In the imaging process of the

AFM, a sample is placed on a positioning unit. There are different types of posi-

tioning units used in the AFM such as piezoelectric tube scanners, serial-kinematic

scanners, flexure based scanners. The choice of the positioning unit depends on the

application of the AFM. A detail discussion on the various types of the positioning

unit used in the AFM is given later. The displacement of the positioning unit during

the imaging is measured by sensor. In most of the cases capacitive sensors are used

to measure the displacement of the scanner.

When the sample is placed on the positioning unit, a cantilever beam with a

sharp tip is brought in close proximity of the sample. Various types of cantilevers

are used in the AFM. The cantilever used in the AFM should meet the following
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Figure 2.1: Block diagram of the AFM working principles.
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criteria: (1) low normal spring constant (stiffness); (2) high resonant frequency; (3)

high cantilever quality factor Q; (4) high lateral spring constant (stiffness); (5) short

cantilever length; (6) incorporation of components (such as mirror) for deflection

sensing; and (7) a sharp protruding tip. The cantilevers used in the AFM system also

have different shapes and in most of the cases a tip is attached with the cantilever.

In order to achieve a large imaging bandwidth the cantilever should have a

high resonant frequency. The Youngs modulus and the density are the material

parameters that determine the resonant frequency, aside from the geometry. This

makes the cantilever the least sensitive part of the system. In order to register a

measurable deflection with small forces it is also required that the cantilever should

have low spring constant. The combined requirement of having a high resonance

frequency and a low spring constant is met by reducing the mass of the cantilever.

The tip used with the cantilever should have radius much smaller than the radii of

the corrugations in the sample in order for these to be measured accurately. The

cantilever is typically silicon or silicon nitride with a tip radius of curvature on the

order of nanometers. Silicon nitride cantilevers are less expensive. They are very

rugged and well suited to imaging in almost all environments. They are especially

compatible with organic and biological materials.

Common methods to detect cantilever deflections are the optical lever method,

the interferometric method, and the electronic tunneling method. The optical lever

method is the most used, since it is the most simple to implement. It consists of

focusing a laser beam on the back side of the cantilever and in detecting the reflected

beam by means of a position sensor, that is usually a quartered photodiode. Both

cantilever deflection and torsion signals may be collected.

When the sample is placed on the positioning unit of the AFM, the cantilever

is placed in the close contact to the sample. In this process, an electric field is

applied across the positioning unit of the AFM. This induces a displacement of the

positioning unit. The displacement of the positioning unit is measured using a sen-

sor such as a capacitive sensor. A laser beam is transmitted to and reflected from

the cantilever for measuring the cantilever orientation. The reflected laser beam is

detected with a position-sensitive detector consisting of two closely spaced photodi-

odes whose output signal is collected using a differential amplifier. In most cases,

the photo detector has four quadrants. A photodiode is a type of photodetector

capable of converting light into either current or voltage, depending upon the mode
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of operation. The output of the photodetector is provided to a computer for pro-

cessing of the data for providing a topographical image of the surface with atomic

resolution. The currently used position-sensitive detectors are four-sectional which

allows measuring not only longitudinal motion but torsion of bending too.

2.3 Operating Modes of the AFM

The operating mode of the AFM can be classified into different types depending on

the different measurement parameters used in sensing the interactive forces. Three

basic fundamental operating modes of the AFM are: (1) contact mode; (2) non-

contact mode; and (3) tapping mode.

2.3.1 Contact mode

In contact mode, the tip of the cantilever is placed in contact with the sample. This

mode is the most commonly used mode for the AFM. The force acting in this mode

is repulsive force in the order of 10−9 N. The force is set by pushing the cantilever

against the sample surface. In this mode, the deflection of the cantilever is first

sensed and than compared to some desired value of the deflection. The repulsion

force F acting upon the tip is related to the cantilever deflection value x under

Hooke’s law: F = −kx, where k is the cantilever spring constant. The spring

constant value for different cantilevers usually varies from 0.01 to several N/m. The

deflection of the cantilever is converted into an electrical signal DFL. The DFL is

the difference signal between top and bottom halves of the photo diode. The DFL

signal is used to characterize the interection force between the tip and the surface.

During contact mode when the atoms are gradually brought together, they first

weakly attract each other. This attraction increases until the atoms are so close

together that their electron clouds begin to repel each other electrostatically. This

electrostatic repulsion progressively weakens the attractive force as the interatomic

separation continues to decrease. The force goes to zero when the distance between

the atoms reaches a couple of Angstroms, about the length of a chemical bond.

When the total Van der Waals force becomes positive (repulsive), the atoms are in

contact.

The slope of the Van der Waals curve is very steep in the repulsive or contact

regime. As a result, the repulsive Van der Waals force balances almost any force that

attempts to push the atoms closer together. In the AFM this means that when the

cantilever pushes the tip against the sample, the cantilever bends rather than forcing
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the tip atoms closer to the sample atoms. Two other forces are generally present

during contact AFM operation: a capillary force exerted by the thin water layer often

present in an ambient environment, and the force exerted by the cantilever itself.

The capillary force arises when water surrounds the tip, applying a strong attractive

force (about 10−8 N) that holds the tip in contact with the surface. The magnitude

of the capillary force depends upon the tip-to-sample separation. The force exerted

by the cantilever is like the force of a compressed spring. The magnitude and sign

(repulsive or attractive) of the cantilever force depends upon the deflection of the

cantilever and upon its spring constant.

As long as the tip is in contact with the sample, the capillary force should be

constant because the tip and the sample are virtually incompressible. It is assumed

that the water layer is reasonably homogeneous. The variable force in contact with

the AFM is the force exerted by the cantilever. The total force that the tip exerts

on the sample is the sum of the capillary plus the cantilever forces, and must be

balanced by the repulsive Van der Waals force for contact AFM. The magnitude

of the total force exerted on the sample varies from 10−8 N to the more typical

operating range of 10−7 to 10−6 N. Most AFMs detect the position of the cantilever

with optical techniques. In the most common scheme, a laser beam bounces off

the back of the cantilever onto a position-sensitive photodetector (PSPD). As the

cantilever bends, the position of the laser beam on the detector shifts. The PSPD

itself can measure displacements of light as small as 10 Angstroms. The ratio of the

path length between the cantilever and the detector to the length of the cantilever

itself produces a mechanical amplification. As a result, the system can detect sub-

Angstrom vertical movement of the cantilever tip.

If the deflection of the cantilever does not match with the predefined value of

the deflection a voltage across the positioning unit of the AFM is applied to raise or

lower the sample relative to the cantilever to restore the desired value of deflection.

The voltage that the feedback amplifier applies to the positioning unit is a measure

of the height of features on the sample surface. The predefined value of the cantilever

deflection depends on the operating mode. Two types of mode are used in contact

mode atomic force microscopy, (a) constant force mode; and (b) constant height

mode. In constant force mode, the force between the tip and sample remains fixed.

This means that the deflection of the cantilever remains fixed. By maintaining a

constant cantilever deflection (using the feedback loops) the force between the probe



Section 2.3 Operating Modes of the AFM 12

and the sample remains constant and an image of the surface is obtained. In this

mode vertical deflection, i.e., the control voltage applied to Z electrode is measured.

The vertical deflection is used to plot the surface topography. The advantage of the

constant force mode is that this method allows us to measure the surface topography

with high resolution. Constant force mode is also good for rough samples, used in

friction analysis

Constant force mode also has some disadvantages. The scanning speed of the

AFM in constant force mode is restricted by the response time of the feedback

system. The soft samples such as polymers and biological samples can be destroyed

due to interaction between the sharp probe and sample. The local flexure of the

soft sample surfaces may be varied. The existence of the substantial capillary forces

between the probe and the sample can decrease the resolution as well.

During scanning in constant height mode the distance between the tip of the

cantilever and sample remains fixed. The cantilever base moves at a constant height

from the sample surface. In constant-height mode, the spatial variation of the can-

tilever deflection can be used directly to generate the topographic data set because

the height of the scanner is fixed as it scans. The main advantage of the constant

height mode is high scanning speeds. The scanning speed at constant height mode

is restricted only by resonant frequency of the cantilever. Constant height mode

also has some disadvantages. In constant height mode the samples are required to

be sufficiently smooth. A soft sample can be destroyed because the tip is in direct

contact with the surface of the sample.

The operation of the contact mode atomic force microscopy is described in

Fig. 2.2 by the force vs. distance curve. The line in Fig. 2.2 indicates the posi-

tion of the cantilever. The flat line indicates that the cantilever is away from the

sample. When cantilever approaches the sample an attractive force is generated as

shown in the point A. The point B indicates that the cantilever touches the sample

surface. At point C, the tip of the cantilever moves further from the sample. At this

point a repulsive force is generated to deflect the cantilever away from the sample.

Again during the retraction period of the sample an attractive force is generated as

shown by point D.

2.3.2 Non-contact mode

In non-contact mode the probe does not contact the sample surface, but oscillates

above the adsorbed fluid layer on the surface during scanning. This mode belongs to
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Figure 2.2: Force vs. distance curve in contact mode of the AFM imaging.

a family of modes which refers to the use of an oscillating cantilever. The non-contact

mode is used in situations where tip contact might alter the sample in subtle ways.

In this mode the tip hovers 50-150 Angstrom above the sample surface. Normally

the cantilever used in the non-contact mode has higher stiffness and high spring

constant in the order of 10 to 100 Nm−1. This is to avoid sticking to the sample

surface. The forces between the tip and sample are quite low, on the order of pN

(10−12 N). In this mode the cantilever is usually vibrated at its resonant frequency.

The amplitude of the oscillation is kept less than 10 nm. Attractive Van der Waals

force is acted between the tip and sample. This attractive force is substantially

weaker than the forces used by contact mode. That is why the tip is given a small

oscillation so that the AC detection methods can be used to detect the small forces

between the tip and the sample. This is done by measuring the change in amplitude,

phase, or frequency of the oscillating cantilever in response to force gradients from

the sample. The detection scheme is based on measuring changes to the resonant

frequency or amplitude of the cantilever due to its interaction with the sample.

The imaging resolution using non-contact mode depends of the distance between
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tip-sample. The tip-sample distance could be reduced further to achieve AFM im-

ages with high resolution. This can also be achieved in a ultra-high vacuum (UHV)

environment instead of the ambient condition. One of the limitations of operating

the AFM in an ambient condition is that the tip-sample must be set at a larger dis-

tance to avoid the tip from being trapped in the ambient water layer on the sample

surface. Non-contact modes of the AFM are classified into two catagories, namely

amplitude modulation (AM) and and frequency modulation (FM). In amplitude

modulation mode, an external signal with constant amplitude and phase is applied

to the piezo actuator of the cantilever to excite and vibrate the cantilever. In this

mode, the amplitude of the cantilever is affected by the repulsive force acting on

the tip during operation. In frequency modulation mode, the cantilever is always

excited to vibrate at its resonance frequency. The advantage of non-contact mode

is that in this mode a very low force is exerted on the sample about 10−12 N. This

extends the lifetime of the probe. The non-contact mode usually results in lower

resolution; contaminant layer on surface can interfere with oscillation; usually need

ultra high vacuum (UHV) to have best imaging.

2.3.3 Tapping mode

The tapping mode is also called semi-contact mode. This is an important mode in

AFM imaging. This is because this method allows for high resolution imaging of

sample surfaces that are easily damaged, loosely held to their substrate, or difficult

to image by other AFM techniques. In this mode the cantilever is oscillated at

its resonant frequency. Tapping mode overcomes problems associated with friction,

adhesion and other difficulties. This is done by alternatively placing the tip in

contact with the surface to provide high resolution. Then the tip is lifted off the

surface to avoid dragging the tip across the sample. The oscillation of the cantilever

in tapping mode is done using a piezoelectric crystal at the base of the cantilever.

When the piezoelectric crystal comes into motion the cantilever oscillates. The

amplitude of the oscillation of the cantilever is nearly in the order of 20 nm.

Selection of the optimal oscillation frequency is software-assisted and the force

on the sample is automatically set and maintained at the lowest possible level.

When the tip passes over a bump in the surface, the cantilever has less room to

oscillate and the amplitude of the oscillation decreases. Conversely, when the tip

passes over a depression, the cantilever has more room to oscillate and the amplitude

increases. The oscillation amplitude of the tip is measured by the detector and input
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Figure 2.3: Plot of force as a function of probe-sample separation.

to the controller electronics. The digital feedback loop then adjusts the tip-sample

separation to maintain a constant amplitude and force on the sample.

During scanning, the vertically oscillating tip alternately contacts the surface

and lifts off, generally at a frequency of 50,000 to 500,000 cycles per second. As

the oscillating cantilever begins to intermittently contact the surface, the cantilever

oscillation is necessarily reduced due to energy loss caused by the tip contacting

the surface. The reduction in oscillation amplitude is used to identify and measure

surface features.

Tapping mode inherently prevents the tip from sticking to the surface and causing

damage during scanning. Unlike contact and non-contact modes, when the tip

contacts the surface, it has sufficient oscillation amplitude to overcome the tip-

sample adhesion forces. Also, the surface material is not pulled sideways by shear

forces since the applied force is always vertical. Another advantage of the tapping

mode technique is its large, linear operating range. This makes the vertical feedback
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system highly stable, allowing routine reproducible sample measurements.

Tapping mode operation in fluid has the same advantages as in the air or vacuum.

However imaging in a fluid medium tends to damp the cantilever’s normal resonant

frequency. In this case, the entire fluid cell can be oscillated to drive the cantilever

into oscillation. This is different from the tapping or non-contact operation in air

or vacuum where the cantilever itself is oscillating. When an appropriate frequency

is selected (usually in the range of 5,000 to 40,000 cycles per second), the amplitude

of the cantilever will decrease when the tip begins to tap the sample, similar to

Tapping mode operation in air. Alternatively, very soft cantilevers can be used to

get the good results in fluid. The spring constant is typically 0.1 N/m compared

to the tapping mode in air where the spring constant may be in the range of 1-100

N/m.

The description of three modes of the AFM in terms of force vs. probe-sample

distance is shown in Fig. 2.3. The dominant force acting in the short probe-sample

distance of the AFM is the Van der Waals force. Long-range interactions such as

capillary, electrostatic, magnetic are significant further away from the surface. Dur-

ing contact with the sample, the probe predominately experiences repulsive Van der

Waals forces (contact mode). This leads to the tip deflection described previously.

As the tip moves further away from the surface attractive Van der Waals forces are

dominant (non-contact mode).

2.4 Piezoelectric Tube Scanner

A Piezoelectric tube scanner is an important feature of the AFM. The PTS is used as

the positioning unit in the AFM. In most cases, the PTS is usually fabricated from

lead zirconium titanate by pressing together a powder, then sintering the material.

The PTS is designed to achieve fine mechanical displacement in the x, y, and z

axis. Earlier before the invention of the PTS, the three dimensional positioning of

the AFM was achieved by using a tripod scanner. But due to lateral bending, it

causes cross coupling and low mechanical resonance which limit the scanning speed

of the AFM. Later using the piezoelectricity technology, PTSs were made. The PTS

works based on the piezoelectric effect. About 100 years before than the time of the

invention of the STM, the Curie brothers, Pierre Curie and Jacques Curie (1880)

discovered the piezoelectric effect in the materials.
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Figure 2.4: A typical illustration of a piezoelectric tube scanner. (a) Side view and (b)
top view.
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Piezoelectric materials are ceramics that change dimensions in response to an

applied voltage and conversely, they develop an electrical potential in response to

mechanical pressure. Piezoelectric materials are polycrystalline solids. Each of the

crystals in a piezoelectric material has its own electric dipole moment. These dipole

moments are responsible to move the piezo in response to an applied voltage. The

dipole moments within the scanner are randomly aligned after sintering. The ability

of the scanner to move depends on the align of the dipole. If the dipole moments

are not aligned, the scanner has almost no ability to move. The align of the dipole

moment is done by using a process called poling.

The process of poling in the scanner is done at 200 degree Celsius to free the

dipoles. At this moment, a direct current voltage source is applied. It takes few

hours to align the dipoles. After the aligning process the scanner is cooled to freeze

the dipoles into their aligned state. Then electrodes are attached to the outside of

the tube, segmenting it electrically into vertical quarters, for +x, +y, −x, and −y

travel. The electrode in the z direction of the scanner is attached in the center of

the scanner. A typical illustration of a PTS is presented in Fig. 2.4.

The PTS given in Fig. 2.4 shows that the PTS typically consists of a cylindrical

tube made of radially poled piezoelectric materials. The PTS is fixed at one end

and free at other end. The PTS is segmented into four equal size electrodes. The

electrodes are marked as +X, =X, +Y in the figure. Another electrode is not marked

in the picture because the electrode is at the opposite end of the figure. The top

part of the electrode is unsegmented. Usually a sample holder is placed on the top

of the scanner to hold the sample.

Alternating voltages are applied to the +x and −x electrodes of the scanner.

The application of this voltage induces strain into the tube which causes it to bend

back and forth in the lateral, i.e., the x direction. A similar method is used to

apply voltage in the y direction of the scanner. The expansion and contraction of

the PTS depends on the polarity of the applied voltage with respect to the polling

direction of the material. The PTS expands when the polarity of the applied voltage

coincides with the polling direction. The PTS contracts when the the polarity of

the applied voltage is opposite to the polling direction. Voltages applied to the z

electrode cause the scanner to extend or contract vertically. The displacement of

the scanner is measured by using sensors. In most cases, capacitive sensors are used
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Figure 2.5: Piezoelectric tube scanner used in the experiment.

to measure the displacement of the scanner. The reason for using capacitive sensors

is their high speed response.

The maximum scan size of the PTS depends on many factors. These include

the length of the scanner tube, the diameter of the tube, its wall thickness, and the

strain coefficients of the particular piezoelectric ceramic from which it is fabricated.

Typically the PTS can scan from tens of angstroms to over 100 microns in the

lateral and longitudinal directions. In the vertical direction, it can scan from the

sub-angstrom range to about 10 microns. One of the PTS used in this thesis is

illustrated in Fig. 2.5. In this thesis, we have used three scanners. We started our

experiments with one scanner. Then after the damaging of the first resonant mode

of the scanner we have used a second scanner and ordered a new scanner. Some of

the work in this thesis are done using the new scanner as well.

In most cases the scanning operation in the AFM is performed by using a raster

scanning pattern. Raster scanning is performed by moving the PTS in the forward

and backward directions along the x-axis and moving the PTS in a small step in

y-axis. This is done by applying triangular signal in the x-axis and staircase signal

in the y-axis as shown in Fig. 2.6 (a) and Fig. 2.6 (b). When a triangular signal is

applied to x-axis and a staircase signal is applied to y-axis, a raster scanning pattern

is generated as shown in Fig. 2.6 (c).
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Figure 2.6: Raster scanning method in AFM imaging. (a) Triangular signal applied to
x-axis, (b) staircase signal applied to y-axis and (c) raster scanning method.
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Figure 2.7: Hysteresis terminology.

2.5 Limiting Factors for High Speed Nanopositioning of

the PTS

Accurate positioning of the PTS is required to achieve high quality images of the

sample. The high speed imaging performance of the AFM is limited due to some

inherent properties of the PTS such as hysteresis, induced vibration and cross cou-

pling. In the following section these issues are further discussed.
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2.5.1 Hysteresis

The term “hysteresis” is derived from an ancient Greek word “hustereia” meaning

“deficiency” or “lagging behind”. It was Sir James Alfred Ewing who described

the behavior of magnetic materials around 1890. Hysteresis is the dependence of

a system which not only depends on its current environment but also on its past

environment. This dependence arises because the system can be in more than one

internal state. It is the lag in response exhibited by a body in reacting to changes

in the forces.

Hysteresis can be represented graphically as a relation in the u−y plane. Fig. 2.7

shows an example of an hysteresis relation along with a sample path. The loop which

bounds the region where y(t) is multi-valued is called major loop. The domain of

input values u corresponding to this region is [u−, u+]; the range of outputs [y−, y+].

Each new segment of the output path in the u−y plane is called a branch. Successive

branches which cross inside the major loop form minor loops.

Hysteresis arises in diverse applications such as magnetic hysteresis is a typical

example. Hysteresis occurs in ferromagnetic materials and ferroelectric materials,

as well as in the deformation of some materials (such as rubber bands and shape-

memory alloys) in response to a varying force. The PTS is also fabricated from

piezoelectric materials which are ferromagnetic in nature. The ferromagnetic nature

of the PTS introduces hysteresis in the PTS. In most cases, the PTS in the AFM

is driven by a voltage source. This voltage source is responsible for introducing

hysteresis in the PTS.

The effect of hysteresis increases with an increase in the magnitude and frequency

of the applied voltage signal. Due to the hysteresis effect distortion occurs in the

scanned images of the AFM. As the fast axis of the PTS is driven by a triangular

signal, a deviation of fifteen percent can occur due to hysteresis [38]. This effect can

be minimized by allowing scan only for low range. This limits the scanners ability

for long range scan.

A number of research papers are available in the literature to model hysteresis.

The most commonly presented hysteresis models can be summarised as follows:

Electromechanical models [39]; Preisach models [40]; Prandtl-Ishlinskii (PI) models

[41]; Bouc-Wem models [42]; Rate-dependent or rate-independent hysteresis models

[43]. The compensation of hysteresis is important because this effect tends to move

the PTS from accurate nanopositioning. One way to compensate for hysteresis is
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Figure 2.8: Effect of hysteresis in imaging. (a) Measured scanners’s displacements (solid
line) for a 10 Hz triangular signal input (dashed line), (b) the resulting image of a cali-
bration grating sample.
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to model it as a nonlinear function and then eliminate it by cascading its inverse

with piezoelectric tube actuator. Though this is useful for open loop, it requires

accurate modeling of the system to compensate for hysteresis as it may change with

the parameter variation. Current and charge sources can also be used to reduce the

hysteresis instead of a voltage source. One of the disadvantages of using a charge

source is that, it leads to drift and saturation problem which greatly reduce the

range of piezoactuators [38].

Feedback control techniques have also been applied to reduce the hysteresis.

Integral or proportional integral (PI) controllers are used in most AFM systems

because of their simplicity and ease of implementation. Another advantage of the

use of integral or PI controllers is that these controllers apply high gain at low

frequency. This high gain of the integral controller results in a reduction of the

effect of hysteresis.

2.5.2 Creep

Piezoelectric creep effect is another major constraint for high speed nanopositioning

of the PTS. The creep effect is mainly prominent at a slow scanning rate. The creep

effect distorts the generated images from the AFM. When a voltage signal is applied

across the PTS to move the piezo in a direction, the piezo continue to displace even

after the removal of the voltage induced. This generates the creep effect in the PTS.

The creep effect can be minimized by allowing a sufficient amount of time. Fig. 2.9

illustrates the effects of the creep in imaging. It can be seen that the scanned image

is skew down at the bottom of the image due to the creep effect.

2.5.3 Induced vibration

The X axis of the PTS is actuated by using a triangular signal. When the PTS is

actuated using a triangular signal, the odd harmonics of the triangular signal excite

the mechanical resonant mode of the PTS. This causes the scanner to vibrate and

trace a distorted triangular waveform which can significantly distort the generated

AFM image. This image distortion is particularly objectionable when positioning

accuracy is required in a very small range such as nanometer. The induced vibration

often limits the positioning accuracy of the PTS to one percent of its first resonance

frequency [38]. Therefore it is necessary to compensate the effect of scan induced

vibration of the PTS due to the resonant nature of the PTS.
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Figure 2.9: Effect of creep in AFM imaging.

Fig. 2.10 illustrates the effect of scan-induced vibrations on a scanners displace-

ment. The scanner was excited by using triangular wave signals at 10 Hz, 100 Hz,

150 Hz and 200 Hz. The figures show that the scanner exhibits a large amount

of distortion due to the induced vibration of the scanner at high scanning rates.

This hampers the tracking accuracy of the PTS. The effect of the induced vibration

on AFM imaging is presented in Fig. 2.11. The comparison shows that the gener-

ated images are more distorted at high frequencies as compared to the low scanning

speeds.

2.5.4 Cross coupling

In practice, the axes of scanners are not independent SISO systems. There exists a

cross coupling effect between the axes of the scanner. The cross coupling between
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Figure 2.10: Effect of vibration on the PTS. Scanner displacements when driven by (a)
10 Hz, (b) 100 Hz, (c) 150 Hz and (d) 200 Hz triangular wave signals.

the axes of the nanopositioner may introduce large amounts of error for high speed

precision positioning [44]. This plays an important role in degrading the perfor-

mance of the scanner. It affects the tracking accuracy of the scanner. The low

tracking performance of the scanner results in large artifacts on the scanned images.

Such large image artifacts sometime miss the true sample topography. This is par-

ticularly objectionable when the sample topography features have a similar size as

the coupling caused artifacts. Due to the cross coupling effect the signal applied

to one of the axes of PTSs results in displacements in both axes of scanners (see

Fig. 2.12 (a,b,c,d)) and if the magnitude of the cross coupling effect is high then

the resulting images generated from AFMs are tilted (see Fig. 2.12 (e,f)) [4].

2.6 Chapter Summary

In this chapter, first a brief discussion on the invention of various types of SPM

systems were presented. Next, the working principles of the AFM system were dis-

cussed. Different types of the operating modes of the AFM were also discussed.
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Figure 2.11: Open-loop scanned images (a) 15.62 Hz (b) 31.25 Hz (c) 62.5 Hz (d) 125
Hz.
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This was subsequently followed by an in depth description of the positioning unit

of the AFM. Then, the chapter continued to discuss the various limiting factors

to high speed nanopositioning in the PTS. It was shown that these factors reduce

the performance of the PTS substantially in high speed nanopositioning. The fol-

lowing chapters discuss the various methods using a feedback control approach to

compensate for these effects to increase the positioning accuracy of the PTS at high

scanning rates.



Chapter 3

Resonant Control of Piezoelectric Tube

Scanners

This chapter describes the use of a feedback control approach to achieve high-speed

and high-precision positioning in a piezoelectric tube scanner (PTS) by compensat-

ing for induced vibration in the PTS. The aim of the design is to achieve a large

degree of damping of the first resonant mode of the scanner with large gain and

phase margins. In order to guarantee closed-loop stability and achieve a large level

of damping of the first resonant mode of the scanner, a mixed negative-imaginary

(NI) and small-gain approach [45] is exploited in this chapter. The motivation

behind the mixed NI and small-gain approach is that this approach can not only es-

tablish the finite-gain stability of the interconnection between the PTS and resonant

controller, but also allows for a higher gain of the resonant controller as compared

to a small-gain only approach. This leads to a large level of damping of the first

resonant mode of the scanner. The design of the resonant controller is presented in

two parts. The first design is for a single-input single-output (SISO) controller for

the lateral axis, i.e., the X-axis of the PTS and the second design is a multi-input

multi-output (MIMO) controller for the combined lateral and longitudinal axes of

the scanner.

The rest of the chapter is organized as follows. In the first section of this chapter,

a review of existing feedback and feedforward control techniques and the motivation

for this work are presented. The experimental setup and the identification of the

dynamics of the PTS are described in Section 3.2 and 3.3. Section 3.4 presents the

design of the SISO and MIMO resonant controllers for the PTS, Section 3.5 gives a

stability analysis of the interconnected systems. The experimental validation of the

proposed controller is described in Section 3.6. The chapter is concluded with brief

remarks in Section 3.7.

30
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3.1 Introduction

There has been a consistent effort in recent years to improve the accuracy and speed

of PTSs using feedback control techniques. The approaches to the design of damping

controllers to control the resonant mode of nanopositioners can be classified into two

categories and the categories are (a) open-loop control [9, 16] and (b) closed-loop

control [4, 13–15].

The design of open-loop damping controllers [9, 16] is popular because of their

noise efficiency as they do not require any additional sensors during implementation.

The identification of the dynamics of nanopositioners in open-loop control is done

by using additional sensor and hardware. One of the major drawbacks of the use of

open-loop control techniques is their low performance against variations in the plant

transfer function. The transfer function of nanopositioners vary for many reasons

such as due to the changing of loads on a scan-by-sample scanner. The transfer

function of scan-by-head scanners can also change due to changes in environmental

condition such as temperature and humidity.

The design of feedback controllers [4–6] to damp the resonant modes of the

scanner is of interest as they provide robustness against changes in the plant transfer

function. High bandwidth robust controllers such as H∞ [46–50] controllers are

designed to achieve a bandwidth near to the first resonance frequency of the system.

The order of controllers using H∞ methods depend on the order of the system

which increases the complexity in the design process for high order systems. The

implementation of high order controllers requires advanced DSP systems. The design

of H∞ controllers is done for finite number of resonant modes of systems. If the

system has a lot of resonant modes and the design of the controller is based on

only small number of modes, then that controller may result in instability because

the gain of the controller can still be high at the frequencies corresponding to those

un-modeled modes. This may excite the unmodeled dynamics of the scanner during

implementation.

Most commercial SPM systems use integral or proportional integral (PI) con-

trollers in the axes of nanopositoners because of their simplicity and the ease of

implementation [46,47]. The closed-loop system using a PI controller is sensitive to

changes in the plant transfer functions and can make the closed-loop system unstable

for a small-change in plant transfer functions. Another major drawback of integral
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controllers is the achievable closed-loop bandwidth [51]. Due to the low gain of inte-

gral controllers at high frequencies, the resultant closed-loop system corresponding

to the nanopositioner and an integral controller results in a low closed-loop band-

width. This limits the use of integral controllers for high speed nanopositioning of

the PTS.

Piezoelectric shunt damping [52] is another type of damping technique where

a shunt circuit which consists of an inductor is added in series with the nanoposi-

tioner to damp resonant modes. The amount of damping in shunt control depends

on the inductor. This value of inductor sometime reaches hundreds of Henries in

low-frequency domains. This shunt damping method is also sensitive to environ-

mental factors such as outside temperature, which may cause drift in the structures

resonance frequencies.

Positive position feedback (PPF) controllers [5] and integral resonant controllers

(IRCs) [6] are damping controllers used to damp the resonant modes of PTSs. PPF

controllers and IRCs are low pass controllers with a sharp roll-off at high frequencies.

In spite of providing good damping, PPF controllers and IRCs may suffer from the

problem of low gain and phase margins. One of the objectives of the proposed

controller is to suppress the first resonant mode of the scanner with little effect at

other frequencies in order to achieve large gain and phase margins. The resonant

controller [53, 54] provides excellent damping with large gain and phase margins.

Two important properties of PPF controllers, integral resonant controllers, and

resonant controllers are that the phases of the transfer functions of these damping

controllers lie between −180◦ and 0◦ and the imaginary parts of these controllers

transfer functions are negative at all frequencies. A transfer function which has

negative-imaginary part at each frequency is to be referred as NI [55]. A multi-input

multi-output transfer function matrix G(s) is said to be NI if j[G(jω)−G∗(jω)] ≥ 0

for all ω ∈ (0,∞) [55, 56]. Here, G∗(jω) is the complex conjugate transpose of

the matrix G(jω). The transfer function matrix G(s) is said to have the negative-

imaginary property at frequency ω if j[G(jω)−G∗(jω)] ≥ 0 at frequency ω.

PPF controllers, integral resonant controllers, and resonant controllers can be

used to damp the resonant modes of structures with collocated position sensors

and force actuators [5, 6, 53]. Structures with collocated position sensors and force

actuators are also NI systems. The transfer functions of lightly damped structures

with collocated position sensors and force actuators can be modeled by a sum of
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second order transfer functions of the form N(s) =
∑M

i=1
φφT

s2+2ξiωis+ω2
i

, where ξi > 0

is the damping coefficient of ith mode, ωi > 0 is the resonance frequency of the ith

mode, M is the number of modes of the structure and φ is a column vector [53,54].

The feedback interconnection between a structure with collocated position sensors

and force actuators and PPF controllers, integral resonant controllers, and resonant

controllers is guaranteed to be finite-gain stable if the DC loop-gain is strictly less

than unity as the plant and the controller are both NI with one of them being strictly

NI [55].

In practice, the transfer function matrix between the force actuators and the

position sensors of PTSs is not NI [4]. Possible reasons for the PTS system not

being NI are delays in the sensor or actuator electronics or the collocation of the

sensors and actuators may not be perfect. The electronic systems to which a PTS

is connected can also add additional phase lag to the system.

Previous work associated with the design of NI damping controllers [6] for PTSs

is based on the NI approach [55], i.e., PTSs are also considered as NI systems. Since

the PTS is in practice not NI, the design of NI damping controllers for the PTS

based on the NI approach [55] cannot guarantee closed-loop stability.

A small-gain approach is a possible solution to guarantee finite-gain stability of

the interconnection between the PTS and NI damping controllers. The small-gain

theorem states that the feedback interconnection between two stable linear systems

is stable if the loop-gain of the two systems is strictly less than one [57,58]. Typically

PTSs have large gain near the resonance frequency. Thus the small-gain approach

requires that the gain of the controller must be low in order to make the loop-gain

less than one to satisfy the stability condition of the small-gain theorem. The low

gain of the controller results in a low level of damping of the resonant modes of the

scanner. This chapter presents the design of an NI controller for a system which is

not negative-imaginary. The system and controller considered in the chapter are a

PTS and a resonant controller.

3.2 Experimental Setup

The experimental setup consists of (i) a PTS housed in an SPM, (ii) a digital signal

analyzer (DSA) to measure the frequency response of the PTS, (iii) a high voltage

amplifier (HVA) with a gain of 15 to apply voltage to the PTS, (iv) a signal access
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Figure 3.1: Experimental setup used in the present work.

module (SAM) which allows direct access to the electrodes of the scanner, and (v) a

dSPACE system for the digital implementation of the controller as shown in Fig. 3.1.

The experimental implementation of the controller is performed at the University

of New South Wales, Canberra, Australia. The experiments were executed on a NT-

MDT scan-by-sample scanner with a scan range of 100 µm × 100 µm × 12 µm. The

scanner has positioning resolution of 50 nm and linear dimension error ±0.5%. The

resonance frequency of the scanner in the XY directions is 900 Hz and in the Z

direction is 5 kHz, approximately.

3.3 System Identification

SISO System Identification

A dual channel signal analyzer (HP35760A) is used to apply a swept sine input of

100 mV rms to the HVA to drive the piezoelectric actuator along the X-axis and

the corresponding position response from the X capacitive sensor is recorded. A

system identification method is used to obtain a transfer function for the X-axis

dynamics of the PTS. The system identification is done using a frequency domain

prediction-error minimization method [59] [60] by using the Matlab function ‘PEM’

to capture the first resonant mode of the scanner with a low order transfer function.

The following transfer function Gxx(s) is obtained in the identification process:

Gxx(s) =
Dx(s)

Vx(s)
=

−186.6s2 + 1.348× 106s− 2.412× 1010

s3 + 1755s2 + 3.452× 107s+ 4.459× 1010
(3.1)
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Figure 3.2: Measured (– the solid line) and identified model (- - the dashed line) frequency
responses of Gxx(s) .

where Dx(s) is the Laplace transform of the output voltage from the X sensor and

Vx(s) is the Laplace transform of the input voltage to the HVA driving the X-axis

of the piezo. Fig. 3.2 shows the match between the measured frequency response

and the frequency response of the identified model Gxx(s). The system given in Fig.

3.2 has the NI property between 918.3 Hz and 1.91 × 103 Hz as the phase of the

identified model is between 0 and -180◦ in that range of frequencies.

MIMO System Identification

The transfer function matrix of the MIMO PTS positioning system can be described

by the following equation:

[

Dx(s)

Dy(s)

]

= G(s)

[

Vx(s)

Vy(s)

]

(3.2)

where G(s) =

[

Gxx(s) Gxy(s)

Gyx(s) Gyy(s)

]

. The transfer function matrix in 3.2 has a state

space realization of the form

ẋ(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t) (3.3)
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Figure 3.3: Open-loop frequency responses relating the inputs [Vx, Vy]
T and the outputs

[Dx,Dy]
T . The solid line (–) represents the measured frequency responses and the dashed

line (- -) represents the identified model frequency responses. (a) Frequency response
of Gxx(s), (b) frequency response of Gyx(s), (c) frequency response of Gxy(s), and (d)
frequency response of Gyy(s).

where u is a vector of the inputs to the HVA and y is a vector of the outputs from

capacitive sensors of the scanner.

Swept sine inputs of 100 mV rms were applied to the HVA to drive the piezo-

electric scanner along the X- and Y-axis from the dual channel DSA and the cor-

responding capacitive sensor responses were recorded. The following values of the

A, B, C, and D matrices of the above state space model are obtained by using a

system identification method:
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Figure 3.4: Minimum eigenvalues of j(G(jω) −G∗(jω)).
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.
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Figure 3.5: Closed-loop system with resonant controller.

The MIMO system identification process is done using a frequency domain

prediction-error minimization method to capture the first resonant mode of the

PTS with a low order model. A comparison between the frequency responses of the

measured MIMO data and the identified model (3.3) is given in Fig. 3.3. In order to

display the range of frequencies for which the MIMO system (3) has the negative-

imaginary property, a plot of the minimum eigenvalues of j[G(jω) − G∗(jω)] for

positive frequencies is given in Fig. 3.4. The eigenvalues of j[G(jω) − G∗(jω)] are

greater than or equal to zero between 925.8 Hz and 1.69× 103 Hz, which indicates

that the MIMO PTS has the NI property between 925.8 Hz and 1.69× 103 Hz. The

first four orders of the model represent the first resonant modes in the X- and Y-axis

of the scanner and the rest of the model represents all other dynamics of the system

including any delay.

3.4 Controller Design

This section presents a brief discussion of the design of the SISO and MIMO reso-

nant controllers to damp the first resonant mode of the PTS. The structure of the

closed-loop system is given in Fig. 3.5 where M1(s) and M2(s) are the plant transfer

function and the resonant controller transfer function, respectively, u1 is the refer-

ence signal and y1 is the output from the capacitor sensor. The general form of the

transfer function of a SISO resonant controller is as follows:

M2(s) = −kv
s2 + 2ξvωvs

s2 + 2ξvωvs+ ω2
v

(3.4)
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Figure 3.6: Frequency intervals in the SISO design (NI: negative-imaginary, FG1: finite-
gain for system M1, FG2: finite-gain for system M2).

where kv > 0 is the gain of the controller, ξv > 0 and ωv > 0 are the damping

constant and the frequency at which resonant mode needs to be damped.

In the design process, choosing the right value of ωv is important. It is required

that ωv is chosen to be equal or nearly equal to the first resonance frequency of

the scanner. The amount of damping of the resonant mode depends on ξv and kv.

Choosing a low value of ξv would introduce a notch and undesirable phase shift in

the closed-loop. For a high value of ξv, there is hardly any damping. The value

of kv has an important effect on damping and stability. A low value of kv leads to

a low level of damping of the resonant mode and a high value of kv can make the

closed-loop system unstable.

A MIMO resonant controller has a transfer function matrix of the following form:

M2(s) = −kv
s2 + 2ξvωvs

s2 + 2ξvωvs+ ω2
v

βm×m (3.5)

where βm×m ≥ 0 is a matrix of order m×m. Here, m is the number of inputs and

outputs of the system. For the PTS, βm×m is a 2× 2 matrix.

In order to guarantee the closed-loop stability of the feedback interconnection

between the PTS and resonant controller and to achieve a large degree of damping of

the resonant mode of the scanner, this design of the resonant controller is based on

the framework of [45]. It is shown in [45] that, the positive feedback interconnection

as given in Fig. 3.5 between two strictly proper, causal and linear time invariant

systems M1(s) and M2(s) with mixed NI and finite-gain properties bounded by

gains k1 and k2, respectively is stable if the following conditions are satisfied:

(1) lim
ω→∞

M1(jω)M2(jω) = 0.
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Figure 3.7: Maximum singular value (σ̄(G(jω))) plot of M1(s).

(2) The systems M1(s) and M2(s) are bounded by gains k1 and k2, respectively

such that, k1 > |M1(0)|, k2 > |M2(0)|, and k1k2 < 1.

(3) In the intervals, ω ∈ [ωi, ωi+1], if M1(jω) does not have the NI property, both

M1(jω) and M2(jω) must be bounded by gains k1 and k2, i.e., |M1(jω)| < k1 and

|M2(jω)| < k2 for all ω ∈ [ωi, ωi+1].

(4) In the intervals, ω ∈ [ωp, ωp+1], if M1(jω) has the NI property and bounded

by the gain k1, M2(jω) must either have NI property or be bounded by the gain k2

or both.

In order to translate the mixed negative-imaginary and small-gain approach into

a suitable design process for the PTS and a resonant controller the following steps

are carried out:

(i) Find the frequency intervals at which the system M1(s) has the NI property.

(ii) Select a gain k1 such that at the frequency intervals where M1(s) does not

have the NI property the system is bounded by the gain k1.

(iii) Make the gain k1 as low as possible such that, M1(s) has either the NI

property or has a finite-gain bounded by the gain k1 or both at each frequency

interval in order to achieve a large gain of the controller.
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Figure 3.8: Frequency intervals in the MIMO design (NI: negative-imaginary, FG1:
finite-gain for system M1, FG2: finite-gain for system M2).

(iv) Find the frequency intervals at which M1(s) has only the NI property, only

the finite-gain property bounded by the gain k1 and both.

(v) Select the controller M2(s) parameters and find the frequencies at which

M2(s) has the NI property.

(vi) Increase the gain of the controller M2(s) to be as large as possible and select

the gain k2 for M2(s) such that, (a) k1k2 < 1, (b) M2(s) has only the NI property

at the frequency intervals where M1(s) has only the NI property, (c) M2(s) has only

the finite-gain property bounded by the gain k2 at the frequency intervals where

M1(s) has only the finite-gain property bounded by the gain k1, and (d) M2(s) has

either the NI or finite-gain properties bounded by k2 at the frequencies where M1(s)

has both the NI and finite-gain properties bounded by the gain k1.

Details of selecting the parameters of the controllers along with a corresponding

stability analysis are given in the next section.

3.5 Selection of the Controller Parameters and Stability of

the Closed-loop System

The SISO Case

The PTS used in this chapter has its first resonance frequency in the X-axis at

918 Hz (see Fig. 3.2). In this section, the transfer function model (3.1) is treated

as system 1 (M1(s)) and (3.4) is treated as system 2 (M2(s)). System 1 has the NI

property in the frequency interval between 918.3 Hz and 1.91 × 103 Hz. The DC

gain M1(0) of (3.1) is 0.54. It is required to select the gain k1 above 0.54 for system

1. Also, the gain k1 has to be selected in a way such that the system 1 has either
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Figure 3.9: Measured open- (– the solid line) and closed-loop (- - the dashed line)
frequency responses of the plant output for SISO design.

the NI or finite-gain (FG) properties bounded by gain k1 or both at each frequency.

A value of the gain k1 less than 1.03 introduces a frequency interval where system

1 has neither the NI nor FG properties bounded by gain k1. Therefore, the value of

gain k1 is selected as 1.05.

Now in order to meet the requirement discussed above for the SISO controller

design, the values of the controller parameters are selected as kv = 0.8, ωv = 954.9

Hz, and ξv = 0.56. Selecting the gain k2 = 0.95, the mixed properties for system 2

is shown in Fig. 3.6. System 2 has only the NI property in the frequency interval

between 953.3 Hz and 1750 Hz and in the frequency interval between −1750 Hz and

−953.3 Hz. System 2 has both the NI and FG properties bounded by gain k2 for the

remaining frequencies. At each frequency both systems have the same properties,

i.e., either the NI or FG and k1k2 < 1. Hence, the closed-loop system corresponding

to interconnection between M1(s) and M2(s) is stable.
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The MIMO Case

The MIMO controller design is based on the maximum singular value of the plant

M1(s) and the controller M2(s). For a square matrix P , the square roots of the

eigenvalues of P ∗P , where P ∗ is the complex conjugate transpose of P, are called

singular values. In this section, the system (3.5) is treated as system 1 (M1(s)) and

the system (3.5) is treated as system 2 (M2(s)). A plot of the maximum singular

values of the MIMO plant (3.3) given in Fig. 3.7 shows that the maximum singular

value of the MIMO plant at zero frequency (σ̄(M1(0))) is 0.55. From Fig. 3.4 it can

be observed that the MIMO PTS system has the NI property between 925.8 Hz and

1.69 × 103 Hz. The gain k1 is required to be selected above 0.55 so that at each

frequency system 1 has either the NI or FG properties bounded by the gain k1 or

both. Selecting the gain k1 = 1.37 for the MIMO system (3.3), the mixed properties

are shown in Fig. 3.8. The MIMO system (3.3) has both the NI and FG properties

bounded by gain k1 in the frequency interval between 925.8 Hz and 1.69 × 103 Hz

and in the frequency interval between −925.8 Hz and −1.69 × 103 Hz. It has only

the FG property bounded by the gain k1 in the remaining frequencies.

To meet the requirements discussed above for the MIMO resonant controller

design, the values of the MIMO controller parameters are selected as kv = 0.8,

ωv = 954.9 Hz, ξv = 0.56, and βm×m =

[

0.61 0.005

0.005 0.61

]

. Selecting the gain k2 = 0.725,

the mixed properties for system (3.5) are shown in Fig. 3.8. System (3.5) has only

the NI property in the frequency interval from 1159 Hz and 1483 Hz and in the

frequency interval from −1159 Hz and −1483 Hz. It has both the NI and FG

properties bounded by gain k2 in the remaining frequencies. Now at each frequency

both systems have the same properties, i.e., either the NI or FG and k1k2 < 1.

Hence, the closed-loop system corresponding to interconnection between M1(s) and

M2(s) for MIMO case is stable.

3.6 Experimental Verification

The performance of the proposed controller is examined first by measuring the open-

and closed-loop frequency responses in the X- and Y-axis of the scanner. Compar-

isons of the SISO and MIMO open- and closed-loop frequency responses are given

in Fig. 3.9 and Fig. 3.10, which show that the resonant controller is able to provide
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Figure 3.10: Measured magnitude frequency responses relating the inputs [Vx, Vy]
T and

the outputs [Dx,Dy]
T . The solid line (–) represents the measured open-loop frequency re-

sponses and the dashed line (- -) represents the measured closed-loop frequency responses.
(a) Frequency response of Gxx(s), (b) frequency response of Gyx(s), (c) frequency response
of Gxy(s), and (d) frequency response of Gyy(s).

3.5 dB and 3.0 dB damping of the first resonant mode of the scanner in the X-axis

for the SISO and MIMO cases, respectively.

To illustrate the controller performance in the time domain, triangular voltage

signals of different frequencies (50 Hz, 100 Hz, 150 Hz, 200 Hz) are applied to the

X-axis of the scanner in the open- and closed-loop cases and the corresponding X

sensor outputs are recorded. Fig. 3.11 shows the outputs from the X sensor in open-

and closed-loop cases for different frequencies obtained by using the SISO resonant

controller in the X-axis of the scanner. A small time delay was purposely added to

the open- and closed-loop sensor outputs in order to clearly display the open- and

closed-loop time responses. The closed-loop X sensor output shows less vibration

than the open-loop sensor output.
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Figure 3.11: Open- (red solid line) and closed-loop (black solid line) X sensor output
signals for (a) 50 Hz, (b) 100 Hz, (c) 150 Hz, and (d) 200 Hz triangular input signals in
SISO design.

The time domain performance of the proposed controller is further examined

by applying pulse signals of 1 Hz, 10 Hz, 50 Hz, and 100 Hz to the X-axis of the

scanner for the SISO case. The X sensor outputs in open- and closed-loop cases for

different frequencies of the pulse signals are given in Fig. 3.12 which shows that the

proposed controller is able to reduce the settling time to 17 percent of each pulse

period at low frequencies with a significant reduction of vibration.

In order to show the advantage of the mixed NI and small-gain approach as

compared to the small-gain only approach, a design of the SISO resonant controller

using the small-gain only approach is presented. The resonant controller design

using the small-gain only approach limits the loop-gain to be strictly less than one,

whereas the mixed NI and small-gain approach allows the loop-gain to be greater

than one as shown in Fig. 3.13. The gain of the resonant controller obtained in

the small-gain only approach is 0.66, whereas the gain of the resonant controller
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Figure 3.12: Open- (- - the dashed line) and closed-loop (– the solid line) X sensor
output signals for (a) 1 Hz, (b) 10 Hz, (c) 50 Hz, and (d) 100 Hz pulse input signals in
SISO design.

obtained in the mixed negative-imaginary and small-gain approach is 0.8. The

resonant controller with gain 0.8 achieved a reduction of resonant peak 3.5 dB and

the resonant controller with gain 0.66 achieved a reduction of resonant peak 2.85

dB as shown in Fig. 3.14.

3.7 Chapter Summary

In this chapter, a SISO and a MIMO NI damping controller, i.e., the resonant

controller is designed to damp the first resonant mode of a PTS which is not NI.

The controller design presented is based on a mixed NI and small-gain approach,

which not only establishes the finite-gain stability of the closed-loop system but

also achieves larger damping of the first resonant mode of the scanner compared

to the small-gain only approach. The experimental results show that the resonant

controller provides 3.5 dB and 2.85 dB damping of the first resonant mode of the
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Figure 3.13: Loop-gains M1(jω)M2(jω) for SISO cases when the resonant controller is
designed using the small-gain only approach (– the solid line) and the mixed negative-
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Figure 3.14: Measured open- (– the solid line) and closed-loop frequency responses
of Gxx(s) for SISO case when the resonant controller is designed using the small-gain
approach (-. dashed dot line) and the mixed negative-imaginary and small-gain approach
(- - the dashed line).

scanner when the resonant controller is designed based on the mixed NI and small-

gain approach [45] and the small-gain only approach, respectively.

Resonant controller provides large gain and phase margins as compared to other

NI damping controllers such as PPF controller and IRC controller. Resonant con-

troller is a high pass controller. Due to its high pass nature the resultant closed-loop

system may suffer from the problem of addition of high frequency sensor noise. This

addition of high frequency sensor noise can limit the performance of the controller

where an extreme level of precision is required. In order to compensate for the ad-

dition of high frequency sensor noise we have proposed a design of another damping

controller namely a passive damping controller in the next chapter.



Chapter 4

Passive Damping Controller Design for

Piezoelectric Tube Scanners

This chapter describes the design of another damping controller namely a passive

damping controller for the PTS to damp the first resonant mode. One of the limita-

tion of using the resonant controller discussed in Chapter 3 for the PTS is its high

pass nature which results in large high frequency sensor noise. The motivation for

designing a passive damping controller for a nanopositioner is its bandpass nature

which not only results in large gain and phase margins but also results in low level

of sensor noise. The design of the controller is carried out by proposing a novel ana-

lytical framework. The analytical framework examines the finite-gain stability for a

positive feedback interconnection between two stable, linear time-invariant systems

where one system has mixed passivity, negative-imaginary and small-gain properties

and the other system has mixed negative-imaginary, negative-passivity, and small-

gain properties. The motivation to propose a mixed passivity, negative-imaginary

and small-gain approach as compared to the mixed negative-imaginary and small-

gain approach is to achieve a large gain of the controller, which allows a large level

of damping of the resonant mode of the scanner.

4.1 Introduction

A linear system P (s) is said to be passive ifRe[P (jω)] ≥ 0 for all ω > (0,∞) [57]. If a

square transfer function matrix P (s) is passive then it follows that P (jω)+P ∗(jω) ≥
0, for all ω ∈ R such that s = jω is not a pole of P (s) [56] where P ∗(jω) is

the complex conjugate transpose of the matrix P (jω). If P (s) is a single-input

single-output (SISO) passive transfer function, then, this is equivalent to the phase

condition ∠P (jω) ∈ [−π/2, π/2] for all ω > (0,∞). A transfer function matrix P (s)

is said to have the passivity property at frequency ω if P (jω) + P ∗(jω) ≥ 0 at ω.

Passive systems are of interest because of their many practical applications,

e.g., lightly damped flexible structures with collocated velocity sensors and force

actuators [56, 61]. The term collocated refers to the fact that the sensors and the

49
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Figure 4.1: Interconnection of systems with positive feedback.

actuators have the same location and same direction [53]. Collocated control with

velocity measurements is referred to as negative-velocity feedback and can be used

directly to increase the effective damping of structures [56]. The transfer functions

of such flexible structures with collocated velocity sensors and force actuators are

modeled by a sum of second order transfer functions G(s) =
∑M

i=1
φφT s

s2+2ξiωis+ω2
i

, where

ξi > 0 is the damping coefficient associated with the ith mode, ωi > 0 is the reso-

nance frequency of the ith mode, M is the total number of modes and φ is a column

vector obtained from the boundary conditions on the corresponding partial differ-

ential equations [56, 61]. A guarantee of the closed-loop stability between systems

with collocated velocity sensors and force actuators and passive controllers can be

established using the passivity theorem [61].

The passivity theorem states that the negative feedback interconnection between

two stable linear time invariant passive systems is stable where one of the system

is strictly passive [57]. The theoretical properties of negative-velocity feedback are

based on the idealized assumption of collocation and require the availability of ve-

locity sensors [56]. An alternative approach to negative-velocity feedback is positive-

position feedback, where position sensors are used in place of velocity sensors [56].

The use of position sensors in flexible structures corresponds to a class of systems

called negative-imaginary (NI) system [55, 56, 62].

A transfer function G(s) is said to be NI if j[G(jω) − G∗(jω)] ≥ 0 for all ω ∈
(0,∞) [55, 56]. A transfer function matrix G(s) is said to have the NI property at

frequency ω if j[G(jω)−G∗(jω)] ≥ 0 at frequency ω. For a SISO NI system G(s), this

is equivalent to the phase condition ∠G(jω) ∈ [−π, 0] for all ω ∈ (0,∞). A necessary

and sufficient condition for the stability of the positive feedback interconnection
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between two NI systems M1(s) and M2(s) as shown in Fig.4.1 is a condition on the

dc loop gain and one of the systems is required to be strictly NI [55,62]. A transfer

function G(s) is said to be strictly negative-imaginary if j[G(jω)−G∗(jω)] > 0 for

all ω ∈ (0,∞) [62].

There are many cases where interconnected systems do not have either the pas-

sivity or NI properties over all frequencies [45]. Rather, the systems have mixed

properties; i.e., the passivity or NI properties are satisfied only on certain frequency

intervals. The systems may have small-gain property at other frequencies. A system

G(s) is said to have the small-gain property at frequency ω if |G(jω)| < 1 at fre-

quency ω. The small-gain theorem states that the feedback interconnection of two

linear stable time invariant systems M1(s) and M2(s) as shown in Fig.4.1 is stable

if |M1(jω)| |M2(jω)| < 1 for all ω ∈ (0, ∞) [57].

A mixed NI and small-gain approach [45] can be used to establish the closed-

loop stability between PTSs and NI damping controllers. A mixed NI and small-gain

approach allows only a low gain of the controller which in turn results in a low level

damping of the resonant mode of the scanner. Another limitation of the mixed NI

and small-gain approach [45] is that, it cannot guarantee the closed-loop stability

for PTSs with passive damping controllers such as velocity feedback controllers [61].

The proposed framework enables the closed-loop stability in both cases.

Consider the following two transfer functions whereM1(s) is the transfer function

between a force actuator and a position sensor of a PTS obtained from [4] and M2(s)

is the transfer function of a velocity feedback controller:

M1(s) =
−186.6s2 + 1.348× 106s− 2.412× 1010

s3 + 1955s2 + 3.452× 107s+ 4.459× 1010
(4.1)

M2(s) =
−12000s

s2 + 6474s+ 3.341× 107
(4.2)

Consider M1(s) and M2(s) are connected in a positive feedback as shown in

Fig. 4.1. The Nyquist plots of these systems given in Fig. 4.2 show that M1(s)

and M2(s) are neither NI nor passive systems. The internal stability of the inter-

connection between the systems M1(s) and M2(s) can not be established by using

the negative-imaginary theorem or passivity theorem alone. The magnitude of the

loop-gain |M1(jω)||M2(jω)| is also not less than one over all frequencies as can be
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Figure 4.2: (a) Nyquist diagram of M1(s) of (4.1) for positive frequencies, (b) Nyquist
diagram of M2(s) of (4.2) for positive frequencies.
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Figure 4.3: Magnitude Bode diagram of M1(s) ∗M2(s).

seen from Fig. 4.3 which means that the small-gain theorem cannot be applied in

this case.

Motivated by the above practical example of PTSs, we propose a result which

merges the passivity, NI, and small-gain theorems in order to establish the closed-

loop stability of the positive feedback interconnection between a system with mixed

passivity, NI, and small-gain properties and a system with mixed NI, negative-

passivity, and small-gain properties.

4.2 Mathematical Definitions of Systems

Let Rm×n be the set of all real rational transfer function matrices and RHm×n
∞ be

the set of all real rational stable transfer functions matrices with m rows and n

columns. RL∞
m×n is the set of all proper, real-rational transfer function matrices

with no pole in the origin and L∞
m×n is a Banach space of matrices. For a transfer

function matrix G(s) ∈ Rm×n, G∗(s) is the complex conjugate transpose of G(s)

which is defined as G(−s)T . The largest and smallest singular values of a matrix A

are denoted by σ̄(A) and σ(A).



Section 4.2 Mathematical Definitions of Systems 54

Definition 1. Consider a causal linear time invariant (LTI) system with transfer

function matrix M(s) ∈ RHm×m
∞ . This system is said to be passive system in the

frequency interval [a, b] with a ≥ 0 if there exists γ, δ ≥ 0 such that

−γM∗(jω)M(jω) +M∗(jω) +M(jω)− δI ≥ 0.

The system in Definition 1 is said to be input strictly passive if Definition 1 is

satisfied with γ = 0; output strictly passive if Definition 1 is satisfied with δ = 0

and passive if Definition 1 is satisfied with γ = δ = 0 for all ω ∈ [a, b].

Definition 2. A linear causal time invariant system with transfer function

matrix M(s) ∈ RHm×m
∞ is said to be negative passive in the frequency interval [a, b]

with a ≥ 0 if there exists γ, δ ≥ 0 such that

−γM∗(jω)M(jω)−M∗(jω)−M(jω)− δI ≥ 0.

The system in Definition 2 is said to be input strictly negative passive if Definition

2 is satisfied with γ = 0; output strictly negative passive if Definition 2 is satisfied

with δ = 0 and negative passive if Definition 2 is satisfied with γ = δ = 0 for all

ω ∈ [a, b].

Definition 3. A linear causal time invariant system with transfer function

matrix M(s) ∈ RHm×m
∞ is said to be negative-imaginary in the frequency interval

[a, b] with a ≥ 0 if there exists α, β ≥ 0 such that

−αω2M∗(jω)M(jω) + jωM(jω)− jωM∗(jω)− βI ≥ 0.

The system in Definition 3 is said to be input strictly negative-imaginary if

Definition 3 is satisfied with α = 0; output strictly negative-imaginary if Definition

3 is satisfied with β = 0 and negative-imaginary if Definition 3 is satisfied with

α = β = 0 for all ω ∈ [a, b].

Definition 4. A linear causal time invariant system with transfer function

matrix M(s) ∈ RHm×m
∞ is said to be finite-gain system bounded by a gain k ≥ 0 in

the frequency interval [a, b] with a ≥ 0 if
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k := inf{k̄ ∈ R+ : −M∗(jω)M(jω) + k̄2I ≥ 0}

for all ω ∈ [a, b].

Definition 5. A linear causal time invariant system with transfer function

matrix M(s) ∈ RHm×m
∞ is said to be a system with mixed negative-imaginary,

passivity and finite-gain properties bounded by a gain k ≥ 0 if, for each frequency

ω ∈ R∪{±∞} : either (i) −αω2M∗(jω)M(jω)+jωM(jω)−jωM∗(jω)−βI ≥ 0; or

(ii) −γM∗(jω)M(jω)+M∗(jω)+M(jω)−δI ≥ 0; or (iii)−M∗(jω)M(jω)+k2I ≥ 0,

where α, β, γ, δ, k ≥ 0.

Definition 6. A linear causal time invariant system with transfer function

matrixM ∈ RHm×m
∞ is said to be a system with mixed negative-imaginary, negative-

passivity and finite-gain properties bounded by a gain k ≥ 0 if, for each frequency

ω ∈ R∪{±∞} : either (i) −αω2M∗(jω)M(jω)+jωM(jω)−jωM∗(jω)−βI ≥ 0; or

(ii)−γM∗(jω)M(jω)−M∗(jω)−M(jω)−δI ≥ 0; or (iii) −M∗(jω)M(jω)+k2I ≥ 0,

where α, β, γ, δ, k ≥ 0.

4.3 Test for Determining Mixedness of a System Using

Hamiltonian Matrices

In order to apply the robust stability results on the interconnection between two

stable, linear time-invariant systems where one system has mixed passivity, negative-

imaginary, and small-gain properties and the other system has mixed negative-

imaginary, negative-passivity, and small-gain properties, it is necessary to test the

property of systems at each frequency. In this chapter, for a given transfer function

matrix G(s), we compute the spectrum of the corresponding Hamiltonian matrices

to test the property of systems at each frequency.

4.3.1 NI test for multiple-input multiple-output (MIMO) LTI systems

Here, we present a test which characterizes a spectral method based on the Hamil-

tonian matrix to test the property of an NI system at each frequency.
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Consider a square transfer function matrix G(s) with minimal state-space rep-

resentation

ẋ(t) = Ax(t) +Bu(t), (4.3)

y(t) = Cx(t) +Du(t), (4.4)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈ R

m×m.

We start with the following lemma.

Lemma 1 Consider a square transfer function matrix G(s) with minimal state

space realization





A B

C D



. Suppose A has no pure imaginary eigenvalues, D = DT ,

and γ ≥ 0 is not an eigenvalue of the matrix (CB + BTCT ). Then, γ ∈ λ(T (jω0))

if and only if jω0 ∈ λ(Nγ). Here, λ(T (jω)) denotes the set of eigenvalues of the

matrix T (jω) = jω(G(jω)−G(jω)∗) and the Hamiltonian matrix Nγ is defined as

Nγ =

[

A+BQ−1
γ CA BQ−1

γ BT

−ATCTQ−1
γ CA −AT −ATCTQ−1

γ BT

]

(4.5)

with Qγ = γI − CB − BTCT .

Case 1

In this case CB+BTCT > 0 and the Hamiltonian matrix can be constructed directly

to check the NI property of the given MIMO LTI system.

Theorem 1 Consider an LTI system with square transfer function matrix G(s) and

minimal state space realization (4.3)-(4.4). Also, suppose that CB+BTCT > 0, A is

Hurwitz and D = DT . Then the transfer function matrix G(s) is NI over ω ∈ [a, b]

if and only if

1. the Hamiltonian matrix,

N0 =

[

A+BQ−1
0 CA BQ−1

0 BT

−ATCTQ−1
0 CA −AT − ATCTQ−1

0 BT

]

(4.6)

has no pure imaginary eigenvalues with odd multiplicity in ω ∈ (a, b). Here, Q0 =

−(CB +BTCT ).
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2. There exist at least one ω0 ∈ [a, b] such that jω0(G(jω0)−G(jω0)
∗) > 0.

The proof of this theorem will be similar to the proof of Theorem 1 in [63].

Case 2

We now consider the case where CB + BTCT is singular. Here, the Hamiltonian

method needs to be modified in order to derive spectral conditions for the NI prop-

erty.

Theorem 2 Consider an LTI system with square transfer function matrix G(s)

and minimal state-space realization (4.3)-(4.4). Also, suppose that A is Hurwitz,

det(CB+BTCT ) = 0, D = DT , and jω0(G(jω0)−G(jω0)
∗) > 0 for some ω0 ∈ ω ∈

[a, b]. Then, G(s) is NI over ω ∈ [a, b] if and only if the Hamiltonian matrix

N =

[

Ā+ B̄Q̄−1C̄ B̄Q̄−1B̄T

−C̄T Q̄−1C̄ −ĀT − C̄T Q̄−1B̄T

]

(4.7)

has no pure imaginary eigenvalues with odd multiplicity. Here, Q̄ = −(D̄ + D̄T ),

Ā = Ã−1, Ã = A− jω0I, B̄ = −Ã−1B, C̄ = CAÃ−1, and D̄ = CB − CAÃ−1B.

The proof of this theorem will be similar to the proof of Theorem 2 in [63].

4.3.2 Passivity test for MIMO LTI systems

In this section, we recall the results from [64] which characterize a spectral method

based on the Hamiltonian matrices to verify whether or not a given system satisfies

the passivity property and the small gain theorem in a finite frequency interval.

Passivity test

Theorem 3 Consider an LTI system with transfer function matrix G(s) and min-

imal state space realization (4.3)-(4.4). Suppose l ∈ R. The matrix G(jω0) +

G(jω0)
∗ − lI has no zero eigenvalues over ω ∈ [a, b] if and only if H1 does not

have eigenvalues on the imaginary axis between and including −ja and −jb, where

H1 =

[

−A +BX−1
1 C −BX−1

1 BT

−CTX−1
1 C AT − CTX−1

1 BT

]

, (4.8)

X1 = DT +D − lI is invertable.
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Small gain test

Theorem 4 Consider an LTI system with transfer function matrix G(s) and mini-

mal state space realization (4.3)-(4.4). Suppose ǫ ∈ R. The matrix −G(jω0)G(jω0)
∗+

ǫ2I has no zero eigenvalues over ω ∈ [a, b] if and only if H2 dose not have eigenvalues

on the imaginary axis between and including −ja and −jb, where

H1 =

[

−A− BX−1
2 DTC −BX−1

2 BT

CTDX−1
2 DTC AT − CTDX−1

2 BT

]

, (4.9)

X2 = −DTD + ǫ2I is invertable.

4.3.3 Test procedures

For a given system in a state-space description, we wish to determine whether or

not the system is mixed. Here we present a step by step algorithm to characterize

the mixedness of the system.

1. First, compute the matrix CB+BTCT , if it is invertible; then use Theorem 1

to determine the pure imaginary eigenvalues of the Hamiltonian matrix (4.6).

Then, sort these purely imaginary eigenvalues with odd multiplicity such that

ω1 < ω2 < ... < ωk, where k is the number of purely imaginary eigenvalues

of the Hamiltonian matrix. In case of CB + BTCT , is not invertible; we use

Theorem 4.7 instead. Note that if k = 0, this implies that the system is either

NI or not NI for all frequencies.

For every frequency interval (ωi, ωi+1) compute j(G(jωm) − G(jωm)
∗) where

ωm ∈ (ωi, ωi+1), i.e., a suitable choice is ωm = ωi+ωi+1

2
. If j(G(jωm) −

G(jωm)
∗) ≥ 0 then the system has the NI property in the frequency interval

(ωi, ωi+1), otherwise the system does not have NI property in this frequency

range. Note that if k = 0, this implies that the system is either NI or not NI.

2. Next, we use Theorem 3 to determine the pure imaginary eigenvalues of the

Hamiltonian matrix (4.8) by choosing l to be very small positive integer in

the case of DT + D is singular or l = 0 in the case DT + D is nonsingular.

Then, sort these purely imaginary eigenvalues with odd multiplicity such that

ω̃1 < ω̃2 < ... < ω̃k̃, where k̃ is the number of purely imaginary eigenvalues of

the Hamiltonian matrix (4.8).

For every frequency interval (ω̃i, ω̃i+1) compute (G(jωm̃) + G(jωm̃)
∗) where

ωm̃ ∈ (ω̃i, ω̃i+1), i.e., a suitable choice is ωm̃ = ω̃i+ω̃i+1

2
. IfG(ωm̃)+G(jωm̃)

∗) ≥ 0
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then the system has passivity property in the frequency interval (ω̃i, ω̃i+1),

otherwise the system does not have the passivity property in this frequency

range. Note that if k̃ = 0, this implies that the system is either passive or not

passive.

3. In the next step, we use Theorem 4 to determine the pure imaginary eigen-

values of the Hamiltonian matrix (4.9) by choosing ǫ < 1. Then, sort these

purely imaginary eigenvalues such that ω̄1 < ω̄2 < ... < ω̄k̄, where k̄ is the

number of purely imaginary eigenvalues of the Hamiltonian matrix (4.9).

For every frequency interval (ω̄i, ω̄i+1) compute G(ωm̄)G(ωm̄)
∗ < ǫI where

ωm̄ ∈ (ω̄i, ω̄i+1), i.e., a suitable choice is ωm̄ = ω̄i+ω̄i+1

2
. If G(ωm̄)G(ωm̄)

∗ < ǫI

then the system has the the small gain property in the frequency interval

(ω̄i, ω̄i+1), otherwise the system does not have the small gain property in this

frequency range. Note that if k̄ = 0, this implies that the system either satisfies

the small gain property or not for all frequencies.

4. Finally, we compute the intersection of the intervals in step 1,2 and 3. If the

intersection interval is φ, then the system is mixed, otherwise the system is

not mixed.

4.4 Interconnection of Two Mixed Systems with Positive

Feedback

Consider the positive feedback interconnection between M1(s) and M2(s) as shown

in Fig. 4.1, where M1(s) is a system with mixed passivity, negative-imaginary,

and finite-gain properties bounded by gain k1 and M2(s) is a system with mixed

negative-imaginary, negative-passivity and finite-gain properties bounded by gain

k2 on different frequency intervals.

In the following we will show some preliminary results in order to establish the

main results:

Lemma 2 Suppose M1(jω) ∈ RL∞
m×m and M2(jω) ∈ RL∞

m×m are two trans-

fer function matrices where at some ω ∈ R ∪ {±∞}, M∗
1 (jω) + M1(jω) > 0 and

−M∗
2 (jω)−M2(jω) ≥ 0, then det[I−M1(jω)M2(jω)] 6= 0 and det[I−1

g
M1(jω)M2(jω)] 6=

0 for any g ≥ 1.
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Proof: Since M∗
1 (jω) + M1(jω) > 0 and −M∗

2 (jω) − M2(jω) ≥ 0, hence,

R[λi[M1(jω)]] > 0 and R[λi[−M2(jω)]] ≥ 0 for all λi. Here, λi[.] is the ith eigen-

value. Therefore, M1(jω) is nonsingular. Now, M∗
1 (jω) + M1(jω) and M−∗

1 (jω) +

M−1
1 (jω) are Hermitian congruent [65], hence, M−∗

1 (jω) +M−1
1 (jω) > 0 which im-

plies that, M−∗
1 (jω)−M∗

2 (jω) +M−1
1 (jω)−M2(jω) > 0. Hence, R[λi[M

−1
1 (jω)−

M2(jω)]] > 0 for all λi and det[M−1
1 (jω) − M2(jω)] 6= 0 which also implies that,

det[I−M1(jω)M2(jω)] 6= 0, since, det[I−M1(jω)M2(jω)] = det[M1(jω)] det[M
−1
1 (jω)−

M2(jω)] and M1(jω) is nonsingular.

Now, since M−∗
1 (jω) + M−1

1 (jω) > 0, therefore, g(M−∗
1 (jω) + M−1

1 (jω)) > 0

for any g ≥ 1. Also, −M∗
2 (jω) − M2(jω) ≥ 0, hence, gM−1

1 (jω)) − M2(jω) +

gM−∗
1 (jω)−M∗

2 (jω) > 0. Therefore, R[λi[gM
−1
1 (jω)−M2(jω)]] > 0 for all λi and

det[gM−1
1 (jω)−M2(jω)] 6= 0 which also implies that, det[I − 1

g
M1(jω)M2(jω)] 6= 0

for all g ≥ 1. �

Lemma 3 Suppose M1(jω) ∈ RL∞
m×m and M2(jω) ∈ RL∞

m×m are two trans-

fer function matrices where at some ω ∈ R ∪ {±∞}, j(M1(jω) − M∗
1 (jω)) > 0

and j(M2(jω) − M∗
2 (jω)) ≥ 0, then det[I − M1(jω)M2(jω)] 6= 0 and det[I −

1
g
M1(jω)M2(jω)] 6= 0 for any g ≥ 1.

Proof: The above suppositions can be written as (jM1(jω)) + (jM1(jω))
∗ > 0

and (jM2(jω))
−1 + (jM2(jω))

−∗ ≥ 0. Hence, det[I − M1(jω)M2(jω)] = det[I +

(jM1(jω))(jM2(jω))] = det[(jM1(jω))+(jM2(jω))
−1] det[jM2(jω)] 6= 0. In a simi-

lar way as shown in Lemma 1, it can also be shown that, det[I− 1
g
M1(jω)M2(jω)] 6= 0

for any g ≥ 1. �

Theorem 5 [ [66], Theorem 5.8] Consider a positive feedback interconnection as

shown in Fig. 4.1 where M1(s) ∈ RHm×m
∞ , M2(s) ∈ RHm×m

∞ and the interconnection

is well-posed. Then, the feedback interconnection of Fig. 4.1 is stable if and only if

the Nyquist plot of det[I −M1(jω)M2(jω)] does not make any encirclements of the

origin for −∞ ≤ ω ≤ ∞.

The Nyquist plot of det[I−M1(jω)M2(jω)] belongs to a family of Nyquist plots of

det[I− 1
g
M1(jω)M2(jω)], where g ∈ [1,∞) and the sufficient condition so that det[I−

M1(jω)M2(jω)] does not make an encirclement of the origin for all ω ∈ R ∪ {±∞}
and g ∈ [1,∞) is det[I − 1

g
M1(jω)M2(jω)] 6= 0. In the following theorem, we will

explore the conditions for which det[I− 1
g
M1(jω)M2(jω)] 6= 0 for all ω ∈ R∪{±∞}
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and g ∈ [1,∞) to show the finite-gain stability of the interconnected systems as

shown in Fig. 4.1 where M1(s) is a system with mixed passivity, negative-imaginary

and finite-gain properties bounded by gain k1 and M2(s) is a system with mixed

negative-imaginary, negative-passivity and finite-gain properties bounded by gain

k2.

Now consider the following three frequency sets:

1. ΦNI is the set of frequency intervals [ω1, ω2] where 0 < ω1 ≤ ω2, contained in

[0,∞] over which both M1(s) and M2(s) have the NI property.

2. ΨP is the set of frequency intervals [ω3, ω4] where 0 ≤ ω3 ≤ ω4, contained in

[0,∞] over whichM1(s) has the passivity property andM2(s) has the negative-

passivity property or vice versa.

3. ΩFG is the set of frequency intervals [ω5, ω6] where 0 ≤ ω5 ≤ ω6, contained in

[0,∞] over which M1(s) is bounded by a gain k1 and M2(s) is bounded by a

gain k2 such that k1k2 < 1.

In the above frequency sets, it should be noted that zero frequency and its

neighborhoods are included in the passivity set or negative-passivity set ΨP or finite-

gain set ΩFG and zero frequency is always excluded from the negative-imaginary set

ΦNI.

Theorem 6 Suppose M1(s) ∈ RHm×m
∞ and M2(s) ∈ RHm×m

∞ are two strictly

proper, causal and linear time invariant systems which are connected as shown in

Fig. 4.1 where M1(s) is mixed passive, negative-imaginary, and finite-gain system

bounded by a gain k1 > σ̄(M1(0)) and M2(s) is mixed negative-imaginary, negative-

passive, and finite-gain system bounded by a gain k2 > σ̄(M2(0)). Suppose the

three sets of frequency intervals are such that ∪{ΦNI,ΨP,ΩFG} = [0,∞]. Here

∪{ΦNI,ΨP,ΩFG} denotes the union of all intervals contained in the sets ΦNI ,ΨP ,ΩFG.

Then the positive feedback interconnection is finite-gain stable if k1k2 < 1.

Proof: The proof of Theorem 6 is given by showing det[I− 1
g
M1(jω)M2(jω)] 6= 0

for all g ∈ [1,∞) and all ω ∈ (−∞,∞). In order to do so, the overall proof is split

into three parts: (i) first, it is shown that det[I − 1
g
M1(jω)M2(jω)] 6= 0 for all g ∈

[1,∞) and all ω ∈ ∪{ΦNI}; (ii) then, it is shown that det[I − 1
g
M1(jω)M2(jω)] 6= 0

for all g ∈ [1,∞) and all ω ∈ ∪{ΨP}; and (iii) finally, it is shown that det[I −
1
g
M1(jω)M2(jω)] 6= 0 for all g ∈ [1,∞) and all ω ∈ ∪{ΩFG}.
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Proof of part (i): When ω ∈ ∪{ΦNI}, then, there exists αi, βi > 0 for i =

1, 2 such that −αiω
2M∗

i (jω)Mi(jω) + jωMi(jω) − jωM∗
i (jω) − βiI ≥ 0, which

also implies that, jωMi(jω) − jωM∗
i (jω) > 0. Since, jωMi(jω) − jωM∗

i (jω) >

0, hence, 1√
g
jωMi(jω) − 1√

g
jωM∗

i (jω) > 0, for g > 0. Hence, from Lemma 2,

det[I − 1
g
M1(jω)M2(jω)] 6= 0 for all g ∈ [1,∞).

Proof of part (ii): When ω ∈ ∪{ΨP}, i.e., the frequency interval when M1(s)

has passivity property and M2(s) has negative-passivity property then there exists

γ1, γ2, δ1, δ2 > 0 such that −γ1M
∗
1 (jω)M1(jω) + M∗

1 (jω) + M1(jω) − δ1I ≥ 0 and

−γ2M
∗
2 (jω)M2(jω) − M∗

2 (jω) − M2(jω) − δ2I ≥ 0. This implies that, M∗
1 (jω) +

M1(jω) > 0 and −M∗
1 (jω) −M1(jω) > 0. Now, since M∗

1 (jω) + M1(jω) > 0 and

−M∗
1 (jω)−M1(jω) > 0, therefore, 1√

g
M∗

1 (jω) +
1√
g
M1(jω) > 0 and − 1√

g
M∗

1 (jω)−
1√
g
M1(jω) > 0 for g > 0. Hence from Lemma 1, det[I − 1

g
M1(jω)M2(jω)] 6= 0 for

all g ∈ [1,∞).

Proof of part (iii): When ω ∈ ∪{ΩFG}, then there exists ki > 0 for i = 1, 2 such

that −M∗
i (jω)Mi(jω) + k̄i

2
I ≥ 0. Since M1(s) and M2(s) are bounded by gain k1

and k2, i.e., k1 > σ̄(M1(0)) and k2 > σ̄(M2(0)) hence, det[I − 1
g
M1(jω)M2(jω)] 6= 0

if and only if k1k2 < 1 for all g ∈ [1,∞). This concludes the proof of Theorem 4. �

Remark 1: There are seven cases which can arise for the two systems. These

cases are:

(i) When M1(s) and M2(s) both are only negative-imaginary, then the positive

feedback interconnection between the two systems is stable according to the proof

of part (i) for Theorem 6.

(ii) When M1(s) and M2(s) are only passive and negative-passive, respectively

then the positive feedback interconnection between the two systems is stable accord-

ing to the proof of part (ii) for Theorem 6.

(iii) When M1(s) and M2(s) both are only finite-gain system bounded by gains

k1 and k2, then the positive feedback interconnection between the two systems is

stable if k1k2 < 1 according to the proof of part (iii) for Theorem 6.

(iv) When M1(s) has mixed negative-imaginary and passivity properties and

M2(s) has mixed negative-imaginary and negative-passivity properties, then the

positive feedback interconnection between the two systems is stable according to

the proof of part (i) and (ii) of Theorem 6.

(v) When M1(s) and M2(s) both have mixed negative-imaginary and finite-gain

properties bounded by gains k1 and k2, then the positive feedback interconnection
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between the two systems is stable if k1k2 < 1 according to the proof of part (i) and

(iii) of Theorem 6.

(vi) When M1(s) has mixed passivity and finite-gain properties bounded by a

gain k1 > σ̄(M1(0)) and M2(s) has mixed negative-passivity and finite-gain proper-

ties bounded by a gain k2 > σ̄(M2(0)), then the positive feedback interconnection

between the two systems is stable if k1k2 < 1 according to the proof of part (i) and

(iii) of Theorem 6.

(vii) When M1(s) has mixed negative-imaginary, passivity and finite-gain prop-

erties bounded by a gain k1 and M2(s) has mixed negative-imaginary, negative-

passivity and finite-gain bounded properties by a gain k2, then the positive feedback

interconnection between the two systems is stable if k1k2 < 1 according to the proof

of part (i), (ii) and (iii) of Theorem 6.

The combinations given above for the positive feedback interconnection of Fig.

4.1 also satisfy the conditions of the negative-imaginary [56], passivity [57] and

small-gain [58] theorems.

Corollary 1: Suppose the conditions of Theorem 6 hold and assume both systems

are negative-imaginary in the frequency interval (0,∞). The interconnected systems

given in Fig. 4.1 for positive feedback interconnection is finite gain stable if k1k2 < 1.

The internal stability result for the positive feedback interconnection between two

negative-imaginary systems where one system is strictly negative-imaginary is cap-

tured by Corollary 1. Since both systems are assumed as strictly proper, M1(∞) = 0

and M2(∞) = 0. Also, λ̄(M1(0)) = σ̄(M1(0)) and λ̄(M2(0)) = σ̄(M2(0)) accord-

ing to the Lemma 1 of [55] and λ̄(M1(0))λ̄(M2(0)) < k1k1. Hence the condition

k1k2 < 1 is equivalent to the condition λ̄(M1(0))λ̄(M2(0)) < 1. Also the condition

jωM(jω) − jωM∗(jω) > 0 and jωM(jω) − jωM∗(jω) ≥ 0 in Lemma 3 implies

that one of the systems is required to be strictly NI. Hence, the conditions of NI

theorem [55] are satisfied.

Corollary 2: Suppose the conditions of Theorem 6 hold and assume one system

is passive and another system is negative-passive in the frequency interval (0,∞).

Then, the positive feedback interconnection of the two systems is finite gain stable.

The internal stability results for the positive feedback interconnection shown in

Fig. 4.1 when one system is passive and another system is strictly negative-passive,

can be captured by using Corollary 2. Since both systems are assumed as strictly

proper, M1(∞) = 0 and M2(∞) = 0. Also the condition M(jω) + M∗(jω) > 0
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NI1+P1 FG1+NP1FG1+P1+NI1FG1+NP1

inf

NP2

P1FG1+P1

0 3700 5272 5746 6131 6770

FG1+NP1+NI1

0 5039

FG2+NP2+NI2 NP2+NI2

5780 6630

NP2+FG2

12037

Figure 4.4: Frequency intervals (NI1: negative-imaginary region for system M1(s), NP1:
negative-passive region for system M1(s), P1: Passive region for system M1, FG1: finite-
gain region for system M1(s), NI2: negative-imaginary region for system M2(s), NP2:
negative-passive region for system M2(s), FG1: finite-gain region for system M2(s)).

and −M(jω)−M∗(jω) ≥ 0 in Lemma 2 implies that one of the systems is required

to be strictly passive or negative-passive. Therefore, the conditions of the passivity

theorem are also satisfied for Theorem 6.

Corollary 3: Let the suppositions of Theorem 6 hold and both systems are

finite-gain systems bounded by gains k1 and k2. Then, the positive feedback inter-

connection is finite-gain stable if k1k2 < 1.

4.5 Numerical Example

Consider the transfer functions M1(s) and M2(s) as given in (4.1) and (4.2). The

Nyquist plots of these systems given in Fig. 4.2 show that none of the negative-

imaginary, passivity or small-gain theorem alone can provide a guarantee of finite-

gain stability for the feedback interconnection of the two systems M1(s) and M2(s).

In the following, first we have shown the test for mixedness of the systems M1(s) and

M2(s) and then we have presented the stability analysis for the positive feedback

interconnection between M1(s) and M2(s) as shown in Fig. 4.1.

4.5.1 Test for mixedness

In order to check the mixedness of the systems M1(s) and M2(s) we have used

Theorem 1, Theorem 3, and Theorem 4. In the following we will present a brief

procedure to test the mixedness of the system M1(s). The test for M2(s) can be

done in a similar way. First, we compute the eigenvalues of the Hamiltonian matrix

(4.6) forM1(s) to check the frequency intervals for whichM1(s) have the NI property.

We found that the Hamiltonian matrix (4.6) has four purely imaginary eigenvalues,

±j5746.4 and ±j12037. Breaking the frequency range (0,∞) into the intervals
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(0, 5746.4], [5746.4, 12037] and [12037,∞) and examining the sign definiteness of

j(M1(jω)−M∗
1 (jω)) at some single frequency point within the each of these interval

as discussed in Section 4.3.3. After examining the sign definiteness of j(M1(jω) −
M∗

1 (jω)) in different frequency intervals we found that, M1(s) has the NI property

between [5746.4, 12037]. In a similar way, by using the Hamiltonian matrix (4.8) for

l = 0.0001 we found that, M1(s) has the passivity property in the frequency interval

[3700,6770] and negative-passivity property in the frequency interval [0, 3700] and

[6770, ∞).

We select ǫ = k1 = 0.55 for M1(s). We compute the eigenvalues of Hamiltonian

matrix (4.9) and we found that M1(s) has finite-gain property bounded by gain

0.55 in the frequency intervals [0,5272] and [6131,∞) rad s−1. In a similar way, for

ǫ = k2 = 1.8 we found that, M2(s) has negative-imaginary property in the frequency

interval [0,5780], negative-passivity property in the frequency interval [0,∞) and

finite-gain property bounded by gain 1.8 in the frequency intervals [0, 5039] and

(6630,∞) rad s−1.

4.5.2 Stability analysis

First the values of the gains k1 and k2 are selected as 0.55 (> σ̄(M1(0) = 0.54)) and

1.8 (> σ̄(M2(0) = 0)) which satisfy the condition k1k2 < 1. The mixed properties of

the two systems for gains k1 and k2 are illustrated in Fig. 4.4. The mixed properties

given above are only shown for positive frequencies. However, the mixed properties

between the systems for positive feedback interconnection can also be obtained for

negative frequencies in a similar way.

It can be seen that, at each frequency when M1(s) has the NI property, M2(s)

also has the NI property; when M1(s) has the passivity property, M2(s) has the

negative-passivity property, when M1(s) has the finite-gain property bounded by

gain k1, M2(s) has the finite-gain property bounded by gain k2 and k1k2 < 1.

Hence, the closed-loop system corresponding to interconnection between M1(s) and

M2(s) is stable. This is verified by calculating the corresponding closed-loop poles

for the positive feedback interconnection between the transfer functions M1(s) and

M2(s) and the closed-loop poles calculated as −841.1 + 6210.7i, −841.1 − 6210.7i,

−2314.8+3543.7i, −2314.8−3543.7i and −2116.8 which shows that the closed-loop

system is stable.
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4.6 Passive Damping Controller Design

The experimental setup to identify the dynamics of the PTS was described in Chap-

ter 3. The sensor of the PTS used in Chapter 3 was not working during this work.

We have used a different PTS for this work. The identification of the dynamics of

the PTS was done in a similar way as discussed in Chapter 3. The transfer function

for the dynamics of the PTS along the X-axis in this case is as follows:

Mxx(s) =
Mdx(s)

Mvx(s)
=

−131.9(s2−9196s+2.21×108)

(s+1593)(s2+134.1s+3.322×107)
(4.10)

Consider the block diagram of the closed-loop system shown in Fig. 4.1 where

M1(s) is the plant transfer function, i.e., the transfer function of the positioning

system of the PTS andM2(s) is the transfer function of a passive damping controller.

A passive damping controller can be realized by the following transfer function:

M2(s) = −kp
s

s2 + 2ξpωps + ω2
p

(4.11)

Here, kp > 0 is the gain of the passive damping controller, ξp > 0 is the damping

constant of the controller and ωp > 0 is the frequency at which resonant mode needs

to be damped. The selection of the controller parameters for the PTS is based

on the desired aim. The frequency at which the controller provides large gain is

frequency ωp. It is desired that in order to damp the resonant mode of the scanner

the value of ωp is chosen equal or nearly equal to the first resonant mode of the

scanner. The damping constant is chosen in a way to achieve large level of damping.

A low value of damping constant ξp introduces undesirable phase shift in the closed-

loop and a high value of the damping constant hardly has any effect on damping.

The controller gain kp plays a major role to damp the resonant mode of a piezo

scanner. The controller gain kp is selected as large as possible to achieve large level

of damping of the first resonant mode of the scanner. It is also important that,

the controller gain kp is chosen such that closed-loop system is stable and achieve

large level of damping of the resonant mode. In order to guarantee the closed-loop

stability and large level of damping of the first resonant mode of the piezo scanner,

the controller design is presented by exploiting Theorem 6.

The overall design process of the controller using Theorem 6 includes following

steps:
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(i) Find the frequencies at which the system M1(s) has the negative-imaginary,

passivity, and negative-passivity properties, i.e., the phase of the SISO syatem M1(s)

lies between [0◦ −180◦], [90◦ −90◦], and [−270◦ 90◦].

(ii) Select a gain k1 such that at the frequencies where M1(s) does not have the

negative-imaginary, passivity, and negative-passivity properties bounded by a gain

k1.

(iii) Make the gain k1 as low as possible such that, M1(s) has either the negative-

imaginary or passivity or negative-passivity properties or has a finite-gain bounded

by the gain k1.

(iv) Find the frequencies at which M1(s) has only the negative-imaginary, pas-

sivity, negative-passivity, and finite-gain properties bounded by the gain k1 and

both.

(v) Select the controller M2(s) parameters and find the frequencies at which

M2(s) has the negative-imaginary, passivity, and negative-passivity properties.

(vi) Increase the gain of the controller M2(s) to be as large as possible and select

the gain k2 for M2(s) such that, (a) k1k2 < 1, (b) M2(s) has the NI property at the

frequencies where M1(s) has the NI property, (c) M2(s) has the passivity property

at the frequencies where M1(s) has the passivity property,

Using the above selection criteria the controller is chosen as follows:

M2(s) =
−12500s

s2 + 8484s+ 3.672× 107
(4.12)

4.7 Performance of the Controller

The performance of the proposed controller is examined by implementing the con-

troller on an experimental PTS. A comparison of the measured open- and closed-loop

magnitude frequency responses ofMxx(s) is given in Fig. 4.5. The comparison shows

that the proposed controller is able to provide 20 dB damping of the first resonant

mode of the scanner. From the frequency response of Mxx(s) in open-loop it can

be observed that, there is a dip in the range of frequencies from 100 Hz to 800 Hz,

which means that there is a variation of gain in open-loop. The magnitude of the

output voltage in that range will vary even though the magnitude of the input volt-

age remain same. This will certainly reduce the performance of the PTS for high

speed nano-positioning. The closed-loop frequency response of Mxx(s) shows less

amount of dip in the frequency response as compared to the open-loop frequency
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Figure 4.5: Open- (the solid line –) and closed-loop (the dashed line - -) magnitude
frequency response of Mxx(s) .
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Figure 4.6: Magnitude Bode diagram of the controller.
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Figure 4.7: Open- (blue solid line) and closed-loop (red solid line) X sensor output
signals for (a) 1 Hz, (b) 10 Hz, (c) 50 Hz, and (d) 100 Hz triangular input signals.

response. The controller is also able to flatten the frequency response of the PTS.

This signifies large bandwidth of the closed-loop system which in turns ensure faster

scanning.

A magnitude Bode diagram of the controller is presented in Fig. 4.6. The mag-

nitude Bode diagram of the controller shows that the controller only applies high

gain near to the first resonance frequency of the scanner which in turn results in

large gain and phase margins. To illustrate controller performance in time domain,

triangular voltage signals of different frequencies (1 Hz, 10 Hz, 50 Hz, and 100 Hz)

are applied to the X-axis of the scanner in the open- and closed-loop cases and the

corresponding X sensor outputs are recorded. Fig. 4.7 shows the outputs from the

X sensor in open- and closed-loop cases for different frequencies obtained by using

the controller in the X-axis of the scanner. A small time delay was purposely added

to the open- and closed-loop sensor outputs in order to clearly display the open- and

closed-loop time responses. The closed-loop X sensor output shows less vibration as

compared the open-loop sensor output.
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Figure 4.8: Open- ( blue solid line – ) and closed-loop ( red dashed line - - ) X sensor
output signals for (a) 1 Hz, (b) 10 Hz, (c) 50 Hz, and (d) 100 Hz pulse input signals.

The time domain performance of the proposed controller is further examined by

applying pulse signals of 1 Hz, 10 Hz, 50 Hz, and 100 Hz to the X-axis of the scanner.

The X sensor outputs in open- and closed-loop cases for different frequencies of the

pulse signals are given in Fig. 4.8 which shows that the proposed controller is able

to reduce the settling time to 20 percent of each pulse period at low frequencies with

a significant reduction of vibration.

The transfer function of the PTS can change during operation due to different

loads on the scanner. Controllers design for high speed nano-positioning must be

able to maintain closed-loop stability in presence of changes in the plant transfer

function. In order to measure the performance of the proposed controller against

changes in the plant transfer functions we have placed three samples with different

load L1, L2, L3 on the scanner. The open- and closed-loop magnitude frequency

responses for the different loads were measured using the same controller. The

experimental results presented in Fig. 4.9 show that the controller is robust against
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changes in the plant transfer function. A comparison of the gain margins and closed-

loop bandwidths for different loads on the scanner is presented in Table 4.1. The

comparison shows that the proposed controller achieved more bandwidths in closed-

loop for different loads as compared to open-loop. The controller also achieved

significant amount of gain margin in the closed-loop as well.

Table 4.1: Open- and closed-loop bandwidth and gain margin for different loads on the
scanner together

Bandwidth
for no load

(Hz)

Bandwidth
for load L1

(Hz)

Bandwidth
for load L2

(Hz)

Gain
Margin
for no
load

Gain
Margin
for load

L1

Gain
Margin
for load

L2

Open-
loop

600 517 510 - - -

closed-
loop

920 850 750 3.63 3.47 3.19

The advantage of the proposed framework as compared to the small-gain only

approach is shown by designing a controller using a small-gain only approach. The

small-gain approach limits the loop-gain to be strictly less than one as shown in

Fig. 4.10, whereas, the proposed framework allows a loop-gain greater than one. The

gain of the controller obtained in the small-gain only approach is 1700, whereas the

gain of the controller obtained in the proposed framework is 12500. The controller

with gain 1700 achieved 7 dB damping of the first resonant mode of the scanner and

the controller with gain 12500 achieved 20 dB damping of the first resonant mode

of the scanner as shown in Fig. 4.11.

4.8 Chapter Summary

In this chapter a passive damping controller design is presented to damp the first

resonant mode of a PTS using a mixed negative-imaginary, passivity and small-gain

approach. It is shown that the positive feedback interconnection between the two

stable LTI systems, where one system has mixed passive, negative-imaginary and

finite-gain properties bounded by a gain k1, and the other system has mixed negative-

imaginary, negative-imaginary and finite-gain properties bounded by a gain k2, is

guaranteed to be finite-gain stable if k1k2 < 1. The stability analysis for the above
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Figure 4.9: Robustness analysis of the interconnected systems for different loads L1, L2
and L3 on the scanner.
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Figure 4.10: Loop-gains M1(jω)M2(jω) when the controller is designed using the small-
gain only approach (. . the dotted line) and the proposed analytical framework (– the
solid line).
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Figure 4.11: Measured open- (the solid line –) and closed-loop frequency responses in
the X-axis of the scanner using proposed approach (the dashed dot line -.) and small-gain
only approach ( the dashed line - -).

mentioned systems is done by using Nyquist stability criteria. The framework pro-

posed in the chapter includes individual theorems of passivity, negative-imaginary

and small-gain. A numerical example is provided to validate the proposed frame-

work.

The experimental results presented in the chapter show that the proposed con-

troller is able to flatten the frequency response by achieving 20 dB damping of the

first resonant mode of the scanner. The motivation for designing a passive damping

controller as compared to the resonant controller as discussed in Chapter 3 is that

this type of controller is a band pass controller for which the resultant closed-loop

system not only results in large gain and phase margins but also reduces sensor

noise at high frequencies. The experimental results also show that the controller is

robust against changes in plant transfer functions due to load changes. This signifies

another advantage of the proposed passive damping controller.

Although the passive damping controller results in a robust stability for the PTS,

however it does not guarantee robust performance in the closed-loop. The design

of the controller is not done to provide robust performance. In the next chapter we

present the design of the final damping controller of this thesis, where the controller
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design is carried out to provide robust performance against changes in the plant

transfer functions.



Chapter 5

Minimax LQG Control of Piezoelectric

Tube Scanners

In the previous chapters, we have presented the design of two damping controllers

namely a resonant controller and a passive damping controller to damp the resonant

mode of the PTS. Although the resonant controller and the passive damping con-

troller achieve large gain and phase margins and provide robustness against changes

in plant transfer functions and unmodelled dynamics, the performance of the reso-

nant controller and the passive damping controller is not robust against changes in

plant dynamics.

In order to ensure robust performance of the controller, we present another design

of a controller in this chapter. The controller is a minimax linear-quadratic-Gaussian

(LQG) controller. The major challenge in high speed precision positioning of the

PTS is the presence of mechanical resonance modes at low frequencies. The tracking

performance of the PTS at high scanning rates is largely affected due to its low

mechanical resonance frequency. The PTS has to track a triangular reference signal

during the raster scanning process. The triangular signal contains odd harmonics

of its fundamental frequency. When a triangular signal is applied to the PTS, the

harmonics of the PTS excites the mechanical resonance of the PTS. This results

in poor tracking performance of the PTS. The tracking performance of the PTS is

limited to one percent of its first resonance frequency. This is a great challenge to

control engineers to enhance the tracking performance of the PTS for high speed

nanopositioning.

This chapter presents a design and experimental implementation of a minmax

LQG controller for damping and tracking control of the PTS. The first design shows

the design of minimax LQG controller for damping the resonant mode of the scanner

and the second design shows the design of a minimax LQG controller with integral

action for tracking control of the PTS. The performance of the controller is compared

with an integral controller. The proposed controller achieves four times greater

bandwidth than the integral controller.

75
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The first section of this chapter presents a brief introduction and motivation

to design of a minimax LQG controller for the PTS. System identification and the

problem formulation is presented in Section 5.2. Section 5.3 presents a detailed

description of the minimax LQG theory. Section 5.4 discusses the design and selec-

tion of the controller parameters. The performance of the controller for damping is

presented in Section 5.5. The design and performance of the integral minimax LQG

controller is presented in Sections 5.6 and 5.7. Finally the chapter is concluded in

Section 5.8.

5.1 Introduction

Different types of damping controllers including open- and closed-loop controllers

were discussed in Chapter 3. The main motivation to design a minimax LQG con-

troller for the PTS is its excellent performance in damping the resonant mode of

structures and its ability to provide robust performance. Robust H2 and H∞ con-

trollers have been designed to suppress mechanical vibrations of structures [67, 68].

An appropriate cost function is selected in the H2 and H∞ methods to eliminate the

vibration of a system. Although the use of spatial H∞ controllers provides a good

level of damping of the resonant modes of the structure, the use of the H∞ norm

in the design of H∞ controllers often leads to a conservative controller for which

the resultant closed-loop system may result in a low level of damping. It is often

more suitable to use the H2 norm as the performance index. However, the design of

robust H2 controllers can be computationally intractable [69].

Most SPM systems use integral controllers for tracking control of the PTS. Inte-

gral controllers are used because of their ability to reduce the non-linearities of the

PTS. The major drawback of the use of integral controllers for the PTS is their low

closed-loop bandwidth. The bandwidth of integral controllers for nanopositioners

is limited to 2ωξ, where ω and ξ are the first resonance frequency and damping

constant of the nanopositioner [51].

Negative imaginary (NI) controllers [56] such as positive position feedback (PPF)

controllers [18], integral resonant controllers (IRCs) [15] are designed to improve the

tracking performance of integral controllers for nanopositioners. The motivation

to design NI damping controllers is their robustness against changes in the plant
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dynamics [15]. The IRCs and PPF controllers are low pass controllers. The closed-

loop system for scanners with IRCs or PPF controllers may have a low gain and

phase margin due to the low pass nature of the controllers.

Nonlinear control approaches using impulsive control [70] and signal transfor-

mation control [71] have been demonstrated for fast nanopositioning. These two

approaches are designed based on a trade-off between the tracking bandwidth and

sensitivity to the measurement noise. The impulsive control and signal transfor-

mation control approaches achieve good tracking performance, the control systems

using impulsive and signal transformation control are sensitive to disturbances and

uncertainty in the low frequency gain of the plant.

The minimax linear-quadratic-Gaussian (LQG) control [72–76] technique is a

damping technique which uses the H2 norm in the design process to solve two al-

gebraic Riccati equations. A minimax LQG controller is a special case of the LQG

controller, where the worst-case LQG performance index is minimized. In this work,

we first propose a design of a minimax LQG controller to suppress the vibrations of

the PTS.

Next we propose a novel tracking controller namely an integral minimax LQG

controller using the minimax LQG theory [72–76]. The integral minimax LQG

controller is designed by providing integral action to the minimax LQG controller.

Another motivation to design this type of controller is that it uses the H2 norm in

the design process for which the resultant controller does not result in a conservative

controller like H∞ controller. This type of controller is robust against changes in

plant dynamics and provides greater bandwidth as compared to integral controllers.

The controller is designed based on the consideration that the measurement noise

is minimum. For this two measurement noises are included in the modelling of the

system to account for the effect of measurement noise in the experiments.

5.2 System Identification and Problem Formulation

5.2.1 Dynamics of the piezoelectric tube scanner

As previously discussed in Section 5.1, the transfer function of PTS varies due to

different factors, let G1(jω) and G2(jω) be the two transfer functions of the system

at different temperatures between which the true transfer function of the system

varies. Now, let Gm(jω) = G1(jω)+G2(jω)
2

be the nominal model transfer function.

Then, the uncertainty due to the modelling error can be represented by (5.1):
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Figure 5.1: Uncertainty representation between G1(jω) and G2(jω).
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Figure 5.2: Comparisons between the two measured frequency responses of G1(jω) and
G2(jω) obtained at different times.

∆G(jω) = max{|Gm(jω)−G1(jω)|, |Gm(jω)−G2(jω)|}. (5.1)

A schematic view of the representation of the uncertainty between G1(jω) and

G2(jω) is presented in Fig. 5.1 and shows that, if the actual true transfer func-

tion of the system lies at point B, then the uncertainty is given by ∆G(jω) =

max{|Gm(jω)−G2(jω)|} where x+ d > x.

In order to identify Gm(jω) it is required to know G1(jω) and G2(jω) where

G1(jω) andG2(jω) are the transfer functions of the system at different temperatures.

The identification of G1(jω) and G2(jω) is done by applying swept sine waves from

10 Hz to 2 kHz to the X-axis of the scanner and recording the corresponding X-

sensor output at different times in different temperatures. A comparison of the
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measured frequency responses of G1(jω) and G2(jω) given in Fig. 5.2 shows that,

the two transfer functions frequency responses are different at different temperatures

which clearly signifies the motivation of the present work. After obtaining G1(jω)

and G2(jω), we obtain Gm(jω) from the relation Gm(jω) = G1(jω)+G2(jω)
2

. Next,

we used a subspace based system identification method [77] using Matlab to obtain

a model for Gm(jω). The identification is done to capture the first two resonant

modes of Gm(jω) with low a order transfer function matrix. In the identification

process, we found the following transfer function is the best fit with the measured

Gm(jω):

Gm(jω) =
Dx(s)

Vx(s)
=

−54.96s4+1.092×106s3−1.101×1010s2+4.444×1013s−5.615×1017

s5+1365s4+6.52×107s3+8.304×1010s2+8.705×1014s+9.804×1017
(5.2)

where Dx(s) is the Laplace transform of the output voltage from the X sensor and

Vx(s) is the Laplace transform of the input voltage to the HVA driving the X piezo.

A comparison of the measured and identified model frequency responses of Gm(jω) is

presented in Fig. 5.3. The comparison shows that, the identified model captures the

first two resonant modes of the measured frequency response. A higher order model

would capture the other modes of the measured frequency response as well. However,

we consider a low order transfer function intentionally to show the robustness of the

proposed controller against the spill over dynamics.

5.2.2 Uncertainty modelling

In the design of minimax LQG controller, the first step is the modelling of the un-

certainties. In this design, we consider two types of uncertainties which may arise in

a piezoelectric tube scanner. The uncertainties are: (a) the uncertainty due to high

order spill over dynamics and (b) the uncertainty which arises due to the changes

in the plant transfer function of the scanner due to changes of temperature. These

uncertainties are represented as a frequency weighted multiplicative uncertainty as

shown in Fig. 5.4. The true transfer function of the system including the uncertainty

is assumed to have the following form:

G∆(jω) = Gm(jω)[1 +Wm(jω)∆G(jω)] (5.3)
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Figure 5.3: Comparisons between the measured and identified frequency responses of
[G1(jω)+G2(jω)]/2. The blue solid line represents frequency response obtained from the
measured G1(jω) and G2(jω) and the red solid represents the identified model frequency
response.

where Wm(jω) is a suitable weighting transfer function, Gm(jω) is defined in (5.2)

and ∆G(jω) is an uncertain transfer function satisfying the H∞ norm bound

||∆G(jω)||∞ ≤ 1. (5.4)

The weighting transfer function Wm(jω) has a major role in damping the reso-

nant mode of the scanner. The selection of the magnitude of the weighting transfer

function Wm(jω) depends on the uncertainty. The low the magnitude of Wm(jω)

the better the performance of the controller and the lower the robustness of the

controller. The high the magnitude of Wm(jω) the better the robustness and the

lower the performance of the controller. Hence, there is always a trade off between

the performance and robustness of the controller. One point which should be noted

here is that the uncertainty representation in this design is for the uncertainty which

arises due to the unmodelled spill over effects and the changing of the plant transfer

functions due to changes in the temperature of the scanner. From Fig. 5.4, it can

be seen that the output of the uncertainty block enters the system through the same
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channel as the control input which means that the disturbance signal also enters the

system through the same channel as the control input.

5.2.3 Weighting transfer function selection

As indicated in the previous section, selecting the weighting transfer functionWm(jω)

is a key design step to achieve a trade-off between the control system performance

and control system robustness. Decreasing the magnitude of Wm(jω) at a given

frequency ω improves the performance of the closed-loop system and decreases the

closed-loop robustness at that frequency. Also, the order of the controller depends

on the order of Wm(jω). The larger the order of Wm(jω), the higher is the order

of the controller. The magnitude of the weighting transfer function can be selected

from the following formula:

G∆(jω)−Gm(jω)

Gm(jω)
= Wm(jω)∆G(jω). (5.5)

Since ∆G(jω) = max{|Gm(jω)−G1(jω)|, |Gm(jω)−G2(jω)|}, it follows that,
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max{|Gm(jω)−G1(jω)|, |Gm(jω)−G2(jω)|}
|Gm(jω)|

≤ |Wm(jω)|. (5.6)

Therefore, the selection of the magnitude of the weighting transfer function

mostly depends on (5.6). The weighing transfer function is selected in such a way

that (5.6) is satisfied. The weighting transfer function Wm(jω) is chosen as high

pass filter since the main uncertainty arises from neglecting the third and higher

order dynamics of the system. We want the magnitude |Wm(jω)| to be high at

high frequencies so that the controller provides robustness at high frequencies as

we neglected the high frequency dynamics of the systems. The high pass weighting

transfer function also improves the gain and phase margins of the system. In this

design, Wm(jω) is chosen as a high pass fourth order Chebychev filter with 1 dB

ripple in the pass band. In our final design, we used the following transfer function

of Wm(jω):

Wm(jω) =
s4+4442s3+9.867×106s2+1.284×1010s+8.352×1012

s4+1.045×104s3+5.463×107s2+1.672×1011s+2.56×1014
(5.7)

The magnitude Bode plot of Wm(jω) and
max{|Gm(jω)−G1(jω)|,|Gm(jω)−G2(jω)|}

|Gm(jω)| given

in Fig. 5.5 shows that, condition (5.6) is satisfied which signifies the performance

and robustness of the closed-loop system.

5.3 Minimax LQG Control Theory

Minimax LQG control theory is based on a kind of game type optimization problem

where the designer is considered as a minimizing player who tries to maintain a

certain level of robust performance of the controller against the plant uncertainty.

In this game type optimization problem, the uncertainty is treated as the maximizing

player. The minimax LQG control strategy is based on finding a controller which

minimizes the worst case of the following objective function:

J = lim
T→+∞

E
1

2T

∫ T

0

(x(t)′Rx(t) + u(t)′Gu(t))dt (5.8)

where, x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, R ≥ 0, and G > 0. The

term x(t)′Rx(t) in the cost function (5.8) corresponds to a requirement to minimize

the system variables of interest and the term u(t)′Gu(t) corresponds to a requirement

to minimize the size of the control inputs. The matrices R and G associated with
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Figure 5.5: Multiplicative uncertainty bound. The dotted (. .) line represents
max{|Gm(jω)−G1(jω)|,|Gm(jω)−G2(jω)|}

|Gm(jω)| and the solid line represents |Wm(jω)|.

the state and the control input, respectively are chosen such that the cost functional

reflects the desired performance objectives of the control system. Here, E[.] is the

expected value.

In order to define the minimax LQG control problem consider Gm(jω) and

Wm(jω) to have the following state space realizations:

Gm(jω) =

[

Ag Bg

Cg Dg

]

and Wm(jω) =

[

Aw Bw

Cw Dw

]

. Hence, from Fig. 5.4

ẋg(t) = Agxg(t) +Bg(u(t) + w(t)) (5.9)

y(t) = Cgxg +Dg(u(t) + w(t)). (5.10)

And

ẋw(t) = Awxw(t) +Bwu(t) (5.11)

z(t) = Cwxw +Dwu(t). (5.12)

Therefore, we can write
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Figure 5.6: Block diagram of uncertain stochastic system.

[

ẋg(t)

ẋw(t)

]

=

[

Ag 0

0 Aw

][

xg(t)

xw(t)

]

+

[

Bg

Bw

]

u+

[

Bg

0

]

w.

Consider the uncertain stochastic system given in Fig. 5.6 defined by the follow-

ing stochastic state equations of the form

ẋ = Ax+B1u+B2ξ +B2W,

z = C1x+D1u,

y = C2x+D2ξ +D2W (5.13)

where, x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, W (t) is a unity

covariance Gaussian white noise process corresponding to the nominal disturbance

input, z(t) ∈ R
q is the uncertainty output, ξ(t) ∈ R

p is the uncertainty input and

y(t) ∈ R
l is the measured output. Here, A =

[

Ag 0

0 Aw

]

, B1 =

[

Bg

Bw

]

, B2 =

[

Bg

0

]

,

C1 =

[

0

Cw

]

, C2 =

[

Cg

0

]

, D1 = Dw, D2 =
[

0 δ
]

. Since in the design of LQG theory

D2D
′
2 > 0 [72–76], we chose D2 =

[

0 δ
]

, where δ > 0 is a small positive number.

The uncertainty input ξ(t) and the uncertainty output z(t) are used to define a set
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of all addmissible uncertainties and the relationship between the input and output

of the uncertainty model is written by the following integral quadratic constraint:

lim
T→+∞

E
1

2T

[
∫ T

0

(||ξ(t)||2 − ||z(t)||2)dt
]

≤ d (5.14)

where d > 0 is a given constant that restricts the size of the disturbance signals

acting on to the system. The performance index of the minimax LQG controller is

expressed by (5.8) where the uncertainty constraint (5.14) is satisfied. In the design,

it is required to find a controller which minimizes the worst case of (5.8) satisfying

(5.14) and this is done by solving the following two algebraic Riccati equations:

(A−B2D
′

2
(D2D

′

2
)−1C2)Y∞ + Y∞(A−B2D

′

2
(D2D

′

2
)−1C2)

′ − Y∞(C′

2
(D2D

′

2
)−1C2−

1

τ
Rτ )Y∞ +B2(I −D′

2
(D2D

′

2
)−1D2)B

′

2
= 0 (5.15)

X∞(A−B1G
−1

τ
γ′) + (A−B1G

−1

τ
γ′

τ
)′X∞ + (Rτ − γτG

−1

τ
γ′

τ
)−X∞(B1G

−1

τ
B′

1
−

1

τ
B2B

′

2
)X∞ = 0 (5.16)

where, the solutions are required to satisfying following conditions:

X∞ > 0 (5.17)

Y∞ > 0 (5.18)

I − 1

τ
X∞Y∞ > 0 (5.19)

and

Rτ − γ′
τG

−1
τ γτ ≥ 0. (5.20)

Here,
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Rτ := R + τC ′
1C1,

Gτ := G+ τD′
1D1,

γτ = τC ′
1D1.

Comparing the above two Riccati equations given in (5.15) and (5.16) with the

standard Riccati equation of the form P ′X +XP −XMR−1M ′X +N = 0 we get

M =
[

C ′
2

√

(R)
]

and R−1 =

[

(D2D
′
2)

−1 0

0 − I
τ

]

for (5.15) and M =
[

B1 B2

]

and

R−1 =

[

G−1
τ 0

0 − I
τ

]

for (5.16), respectively.

Now the minimax LQG optimal controller can be defined by the following equa-

tion:

ˆ̇x = (A−B1G
−1

τ
γ′

τ
−
(

B1G
−1

τ
B′

1
− 1

τ
B2B

′

2

)

X∞)ˆ̇x +

(

I − 1

τ
X∞Y∞

)

−1

(Y∞C′

2
+B2D

′

2
)(D2D

′

2
)−1

×
(

y − (C2 +
1

τ
D2B

′

2
X∞)ˆ̇x

)

,

ut = −G−1

τ
(B′

1
X∞ + γ′

τ
)ˆ̇x (5.21)

where, for each value of the parameter τ > 0, the corresponding upper bound on

the cost functional is

Wτ =
1

2
tr

[

Y∞Rτ + (Y∞C2′ +B2D
′

2
)(D2D

′

2
)−1 × (C2Y∞ +D2B

′

2
)X∞(I − 1

τ

Y∞X∞)−1

]

+ τd. (5.22)

5.4 Controller Design and Selection

The application of minimax LQG control theory starts with the formulation of

the uncertain system model. In order to design the minimax LQG controller, it is

necessary to specify the uncertainty first. As discussed earlier, the main uncertainties

considered in the design are (a) spill over dynamics at high frequencies due to the

higher order modes of the system, (b) the uncertainty due to the changes in plant

transfer functions due to changes in temperature. The uncertainty modelling along

with the selection of the weighing transfer function is presented in earlier. The
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Figure 5.7: Wτ versus τ .

true transfer function of the system is expresses by (5.2) and the weighting transfer

function is expressed by (5.7).

The uncertainty presented in the design is stochastic uncertainty and in a stochas-

tic uncertain system Gaussian white noise acts on the same channel as the control

input. In the theory of uncertain stochastic systems, the design of the minimax

LQG controller is based on the assumption D2D
′
2 > 0 [72–76]. Therefore, in order

to satisfy the design requirements of the LQG theory, a small measurement noise is

added with the system.

As discussed in previous section, the design parameters R and G of (5.8) play a

major role in the performance and robustness of the proposed controller. A large

value of R increases the performance of the proposed controller. However, a very

large value of R would result in controller having a very large bandwidth. A very

large bandwidth of the controller limits the implementation of the controller in the

rapid prototyping system dSPACE. Therefore, there is a trade-off in selection of R

to achieve the desired performance of the controller and the implementation of the

controller in dSPACE. The design parameter G determines the size of the control

input to the plant. After some trial and error method we select R = 1000 I, where
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Figure 5.8: Measured uncontrolled open-loop (blue and red solid line) and controlled
closed-loop (black solid line) magnitude frequency responses.

I is an identity matrix of order 9× 9, G=0.5.

The LQG controller is synthesized first by selecting the constant τ > 0 to min-

imize the quantity defined in (5.22). A plot of Wτ versus τ is given in Fig. 5.7.

We select the τ = 2.1 in the design process. This value of τ is used to construct a

controller using the formula (5.21). The transfer function of the controller obtained

in the design process is as follows:

−3.905×104s8+4.449×109s7+5.025×1013s6+4.821×1017s5+3.226×1021s4+1.465×1025s3+4.468×1028s2+8.268×1031s+4.568×1034

s9+8.686×104s8+2.324×109s7+3.542×1013s6+3.365×1017s5+2.504×1021s4+1.251×1025s3+4.245×1028s2+9.378×1031s+1.084×1035

(5.23)

5.5 Performance of the Controller

The performance of the proposed controller is first measured by examining the

closed-loop frequency response of the system. A comparison of the open- and closed-

loop magnitude frequency responses is presented in Fig. 5.8. The comparison of the
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Figure 5.9: Bode diagram of the minimax LQG controller for damping.

measured open- and closed-loop magnitude frequency responses show that, the pro-

posed controller is able to flatten the first resonant mode of the scanner by providing

18 dB of damping. The controller also reduce the second resonant peak by 10 dB of

the scanner.

The magnitude Bode diagram of the controller transfer function presented in

Fig. 5.9 shows that the controller provides high gain near the resonant frequency

of the scanner. The gain of the controller at low and high frequencies is low which

results in large gain and phase margins. The measured magnitude Bode diagram

and Nyquist plot of the measured open loop-gain presented in Fig. 5.10 and Fig. 5.11

shows that, the closed-loop system is stable and the controller achieves large gain

and phase margins.

The time domain performance of the proposed controller is considered by apply-

ing triangular signals of different frequencies (50 Hz, 100 Hz, 150 Hz, 200 Hz) to the

X-axis of the scanner in the open- and closed-loop cases and the corresponding X

sensor outputs are recorded. Fig. 5.12 shows the outputs from the X sensor in the

open- and closed-loop cases for different frequencies obtained by using the controller
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Figure 5.10: Bode diagram of the identified loop-gain.

in the X-axis of the scanner. This comparison shows that the open-loop sensor

output signal becomes distorted as the scanning frequency increases, whereas, the

closed-loop sensor outputs are less distorted as compared to the open-loop sensor

outputs.

A further examination of the time domain performance of the controller is con-

sidered by applying square wave signals of 1 Hz, 10 Hz, 50 Hz, and 100 Hz to the

X-axis of the scanner. The X sensor outputs in the open- and closed-loop cases

for different frequencies of the pulse signals are given in Fig. 5.13 which show that

the designed controller achieved a significant amount of damping. This increase in

damping results in less vibratory sensor outputs in closed-loop as compared to the

open-loop case.

The design of the minimax LQG controller presented above was designed for

damping the resonant mode of the scanner. In the following we present design of

integral minimax LQG controller for tracking control of the PTS.
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Figure 5.11: Nyquist diagram of the identified loop-gain for positive frequencies.

5.6 Integral Minimax LQG Control Theory

Consider the uncertain stochastic system given in Fig. 5.14 defined by the following

stochastic state equations of the form

ẋ = Ax+B1u+ b2ξ +B2W,

z = C1x+D1u,

y = C2x+D2ξ +D2W. (5.24)

In Fig. 5.14, I(s) is the transfer function of an integral controller, y = C2x,

xi = I(s)y =
∫

ydt and ẋi = y = C2x.

Consider

x̃ =

[

x

xi

]

=

[

x
∫

ydt

]

(5.25)
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Figure 5.12: Measured open-loop (blue solid line) and closed-loop (red solid line) sensor
output signals with a triangular wave reference input using minimax LQG controller.

ỹ =

[

y

xi

]

= D2(ξ +W ) (5.26)

˙̃x(t) =

[

ẋ(t)

ẋi(t)

]

=

[

A 0

C2 0

][

x(t)

xi(t)

]

+

[

B1

0

]

u+

[

B2 0 0

0 0 0

]

(ξ +W ); (5.27)

Z =
[

C1 0
]

x̃+D1u; (5.28)

ỹ =

[

C2 0

0 I

]

x̃+

[

0 ǫ1 0

0 0 ǫ2

]

(ξ +W ). (5.29)

Let,
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Figure 5.13: Measured open-loop (blue solid line) and closed-loop (red solid line) re-
sponses with a square wave reference input using minimax LQG controller.

An =

[

A 0

C2 0

]

, B1n =

[

B1

0

]

, B2n =

[

B2 0 0

0 0 0

]

, C1n =
[

C1 0
]

, D1n = D1, C2n =

[

C2 0

0 I

]

, D2n =

[

0 ǫ1 0

0 0 ǫ2

]

.

For the augmented plant as outlined in (5.27)-(5.29), the integral minimax LQG

controller is designed by defining a quadratic cost function of the form

J = lim
T→+∞

E
1

2T

∫ T

0

(x(t)′Rx(t) + f(y)TQIf(y) + u(t)′Gu(t))dt (5.30)

where f(y) =
∫ T

0
y(τ)dτ , R ≥ 0, QI ≥ 0, and G > 0 are weighting matrices

associated with the state, the integral state, and the control input respectively.

Here, y(t) is the output of the plant with zero input. The design of the integral
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Figure 5.14: Block diagram of uncertain stochastic uncertain system.

minimax LQG controller is carried out by solving following two algebraic Riccati

equations:

(An − B2nD
′
2n(D2nD

′
2n)

−1C2n)Y∞ + Y∞(An − B2nD
′
2n(D2nD

′
2n)

−1C2n)
′

−Y∞(C ′
2n(D2nD

′
2n)

−1C2n− 1

τ
Rτ )Y∞

+B2n(I −D′
2n(D2nD

′
2n)

−1D2n)B
′
2n = 0 (5.31)

X∞(An −B1nG
−1
τ γ′) + (An −B1nG

−1
τ γ′

τ )
′X∞ +

(Rτ − γτG
−1
τ γ′

τ )−X∞(B1nG
−1
τ B′

1n −
1

τ
B2nB

′
2n)X∞ = 0 (5.32)

where, the solutions are required to satisfy following conditions:



Section 5.6 Integral Minimax LQG Control Theory 96

X∞ > 0 (5.33)

Y∞ > 0 (5.34)

I − 1

τ
X∞Y∞ > 0 (5.35)

and

Rτ − γ′
τG

−1
τ γτ ≥ 0. (5.36)

Here,

Rτ := R + τC ′
1nC1n,

Gτ := G+ τD′
1nD1n,

γτ = τC ′
1nD1n.

Now the integral minimax LQG optimal controller can be defined by the following

equation:

ˆ̇x = (An −B1nG
−1
τ γ′

τ −
(

B1nG
−1
τ B′

1n −
1

τ
B2nB

′
2n

)

X∞)ˆ̇x

+

(

I − 1

τ
X∞Y∞

)−1

(Y∞C ′
2n +B2nD

′
2n)(D2nD

′
2n)

−1

×
(

y − (C2n +
1

τ
D2nB

′
2nX∞)ˆ̇x

)

ut = −G−1
τ (B′

1nX∞ + γ′
τ )ˆ̇x (5.37)

where, for each value of the parameter τ > 0, the corresponding upper bound on

the cost functional is
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Figure 5.15: Wτ versus τ for designing integral minimax LQG controller.

Wτ =
1

2
tr

[

Y∞Rτ + (Y∞C2n′ +B2nD
′
2n)(D2nD

′
2n)

−1

×(C2nY∞ +D2nB
′
2n)X∞(I − 1

τ
Y∞X∞)−1

]

+ τd (5.38)

As discussed earlier the design parameters R and G have major role on the

performance and robustness of the proposed controller. A large value of R increase

the performance of the proposed controller. The design parameter G defines the

amount of control input to the plant. A high value of G may lead to a controller

with a large gain which may cause saturation problem in the actuator. We select
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, G=.5, D2n =

[

0 .005 0

0 0 .00011

]

.

A plot of Wτ versus τ for integral minimax LQG controller is given in Fig.

5.15. We select τ = 0.6 in the design process. This value of τ is used to construct

a controller using the formula (5.37). Using the above selected parameters, the
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Figure 5.17: Setup to measure the closed-loop response.

integral minimax LQG synthesis methodology leads to a 11th-order controller. The

digital implementation of such high order controller would require a long sampling

interval which would degrade the performance of control system. Model order is

reduced using MATLAB. The obtained 7th-order controller was re-tuned to achieve

best matching between the high and low order controller. Fig. 5.16 shows the Bode

plots of the full-order controller and reduced order controller.

5.7 Performance of the Integral Minimax LQG Controller

The proposed integral minimax LQG controller is implemented on a PTS to evaluate

the performance of the controller in the frequency domain. Fig. 5.17 shows the setup

to measure the frequency response of the closed-loop system where r is the reference

signal, y is the output from the sensor and e is the error between the command signal

and output signal. A comparison of the open- and closed-loop magnitude frequency

responses of Gm(s) is shown in Fig. 5.18. The comparison shows that, the proposed

controller is able to achieve a closed-loop bandwidth near to the first resonance

frequency of the scanner. The controller is also able to damp both resonant modes

of the scanner. The damping achieved by the proposed controller in closed-loop is

15 dB.

The time domain performance of the integral minimax LQG controller is pre-

sented by tracking triangular reference signals of different frequencies. Fig. 5.19

shows the outputs from the X sensor in open-loop at different scanning rates for an

8 µm × 8 µm scanning area. The scanning was performed at 50 Hz, 100 Hz and
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Figure 5.18: Open- and closed-loop magnitude frequency response using integral mini-
max LQG controller in the X-axis of the scanner. The solid line (–) represents the open-
loop magnitude frequency response and the dashed line (- -) represents the closed-loop
magnitude frequency response.

200 Hz. The open-loop X sensor output shows that the open-loop sensor output are

distorted with the increase of scanning frequency. The closed-loop X sensor out-

puts given in Fig. 5.20 show less distortion as compared to the open-loop X sensor

outputs.

In order to show the improvement achieved by the proposed controller as com-

pared to an integral controller we have designed an integral controller for the PTS.

Fig 5.21 shows the closed-loop system to implement the integral controller where

G(s) is the transfer function of the plant, C(s) = K
s
is the transfer function of the

integral controller and K is the gain of the controller. The closed-loop magnitude

frequency responses between the PTS and integral controller for different gains of the

integral controller is presented in Fig. 5.22. The closed-loop magnitude frequency

responses given in Fig. 5.22 are obtained for K = 1000, 1200, 1400, 2000 and 2500.

The closed-loop system using the integral controller contains a lightly damped

resonance mode. The bandwidth achieved by the integral controller with the gain

K = 1000 for the PTS is 120 Hz. This is four times smaller than the bandwidth

achieved by the integral minimax LQG controller. The higher gain of the integral
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Figure 5.19: Open-loop X-sensor output for 8 µm × 8 µm scanning area at (a) 50 Hz,
(b) 100 Hz, (c) 200 Hz.
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Figure 5.20: Closed-loop X-sensor output for 8 µm × 8 µm scanning area at (a) 50 Hz,
(b) 100 Hz, (c) 200 Hz using integral minimax LQG controller.
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Figure 5.21: Closed-loop system for the implementation of the integral controller.
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Figure 5.22: Performance of integral controller for different gains of the integral con-
troller.
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Figure 5.23: Tracking error at (a) 50 Hz, (b) 100 Hz, (c) 200 Hz. The solid line (–) is
the tracking error obtained by using the integral minimax LQG controller and the dashed
line (- -) is the tracking error obtained by using the integral controller.
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controller increases the magnitude of the closed-loop gain at intermediate frequency

range and resonance frequency range. This increase of gain is objectionable because

this results in poor tracking performance of the integral controller.

Fig. 5.23 shows a comparison of the tracking errors by using the integral controller

and integral minimax LQG controller. The gain of the integral controller is chosen

as K = 2500 in this case. The comparison shows that the error using the integral

minimax LQG controller is low as compared to the integral controller. This shows

the merit of the proposed integral minimax LQG controller for triangular reference

tracking.

5.8 Chapter Summary

In this chapter a minimax LQG controller is designed and implemented to improve

the high speed performance of a PTS. The design of the controller is done to damp

the resonant mode of the scanner and to improve the tracking performance of the

PTS. The controller presented in this chapter is able to achieve a bandwidth near

to the first resonance frequency of the scanner. The high closed-loop bandwidth

of the system ensures the improvement for the fast nanopositioning performance of

the scanner. Experimental results show that compared to an integral controller, the

proposed controller is able to achieve four times the bandwidth than that of the

integral controller.

The design of the controller shown in this chapter is presented for the SISO case.

This SISO controller design approach does not guarantee the reduction of the cross

coupling between the axes of the PTS. In the next chapter we will present the design

of multi-variable controllers to account the effect of cross coupling between the axes

of the scanner.



Chapter 6

Damping, Tracking and Cross Coupling

Reduction of Piezoelectric Tube Scanners

Most nanopositioners used in SPMs are not independent SISO systems. They are

multiple-input multiple-output (MIMO) systems. There exists a strong cross cou-

pling effect between the axes of the scanner. The displacement of each axis of the

PTS is not independent of the input from the other axis. Due to the cross coupling

effect, a signal applied to one of the axes of PTSs results in displacements in both

axes of scanners. This results in poor precision positioning of the PTS. The con-

troller which is designed to improve the precision positioning of the PTS should also

be able to reduce this cross couple effect between the axes of the PTS.

This chapter presents a design and experimental implementation of multivariable

controller for the PTS to compensate for the damping, to improve tracking and to

reduce the cross coupling effect between the axes of the scanner. The design of the

controller is presented using a MIMO framework. A reference model matching ap-

proach is used to design the controller. This chapter also compares the performance

of the proposed controller with the performance of the integral controller in terms

of reducing the cross coupling effect between the axes of the PTS.

The rest of the chapter is organised as follows. The first section of this chapter

presents a brief introduction and motivation for the design of a multi-variable NI

controller for the PTS. The system identification process is discussed in Section 6.2.

Section 6.3 presents details of the controller design for damping and cross coupling

reduction. The performance of the controller for damping and cross coupling re-

duction is presented in Section 6.4 and the advantage and novelty of the proposed

controller as compared to the state of the art is presented Section 6.5.The design

and performance of the double resonant controller for damping, tracking and cross

coupling reduction of the PTS is presented in Section 6.6. The chapter is concluded

with a summary in Section 6.7.
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6.1 Introduction

The motivation to design NI damping controllers for nanopositioners include their

low order transfer function matrices, simplicity, ease of implementation, high band-

width and robustness against the changes in resonance frequencies of the system.

Previous approaches associated with the design of NI damping controllers [6,18,51]

for the PTS are based on a SISO approach, i.e., the axes of the PTS are considered

as independent SISO systems.

A SISO NI controller such as an integral resonant controller (IRC) may reduce

the cross coupling effect to some extent at low frequencies but cannot solve the

problem of image rotation as shown in Chapter 2. A SISO NI controller [15] that

achieves a bandwidth near to the first resonance frequency of a scanner cannot

guarantee a reduction of the cross coupling effect in the design process as the SISO

controller design has no provision to attenuate the cross coupling effect [78]. The

use of a MIMO controller design for PTSs is of interest because of their ability to

consider both the bandwidth and cross coupling effect in the design process.

In this chapter, we first propose the design of multivariable NI controller to damp

the resonant mode of PTS and to reduce the cross coupling effect between the axes

of the scanner using a combination of a resonant controller and an integral resonant

controller. Next we propose another design of a multivariable controller using double

resonant controller for damping, tracking and cross coupling reduction of the PTS.

6.2 System Identification

Details of the identification of the dynamics of the PTS was presented in Chapter 3.

In this chapter we will directly use the identified transfer function matrices of the

PTS for the SISO and MIMO cases. The identified transfer function of the PTS in

the X-axis is as follows:

Gxx(s) =
Dx(s)

Vx(s)
=

−186.6s2 + 1.348× 106s− 2.412× 1010

s3 + 1755s2 + 3.452× 107s+ 4.459× 1010
(6.1)

where Dx(s) is the Laplace transform of the output voltage from the X sensor and

Vx(s) is the Laplace transform of the input voltage to the HVA driving the X-axis

of the piezo.

Fig. 6.1 compares the measured frequency response and the frequency response

of the identified model Gxx(s) of the PTS in the X-axis.
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Figure 6.1: The measured and the identified model frequency response of Gxx(s). The
dashed line (- -) represents the identified model response and the solid line (–) represents
the measured frequency response.

The transfer function matrix of the MIMO positioning system of the PTS is

described by the following equation:

[

Dx(s)

Dy(s)

]

= G(s)

[

Vx(s)

Vy(s)

]

(6.2)

where, G(s) =

[

Gxx(s) Gxy(s)

Gyx(s) Gyy(s)

]

.

The above transfer function matrix in (6.2) has a state space form which is given

below:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (6.3)
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Figure 6.2: Open-loop frequency responses relating to the inputs [Vx, Vy]
T and the out-

puts [Dx,Dy]
T . The solid line (–) represents the measured frequency responses and the

dashed line (- -) represents the identified model frequency responses of (6.2). (a) Frequency
response of Gxx(s), (b) frequency response of Gyx(s), (c) frequency response of Gxy(s),
and (d) frequency response of Gyy(s).

where u is a vector of the inputs to the HVA and y is a vector of the outputs from

the position sensors.

The identified values of the A, B, C,D matrices of the above state space model

from Chapter 3 are as follows:

A =





















−427.6 −5583.6 −1521.1 840.01 −874.82 1074

4963.2 −423.76 −1040.6 −1245.1 −1828.2 1693.9

959.85 1010.9 −690.68 5435.9 474.96 1528

−587.17 1161.8 −4395.2 −508.85 −2304.2 −2166.5

−102.38 609.98 458.09 1351.9 −946.65 149.69

251.11 −708.42 71.644 1020.2 −8.7797 −1686.1





















,
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Figure 6.3: Block diagram of the integral resonant control scheme. (a) illustrative
version, (b) simplified version.

B =





















1.6893 12.168

12.022 10.622

−0.42926 2.964

8.0813 −10.904

−17.019 1.1707

0.58665 18.898





















,

C =

[

9.0521 16.8150 −27.5329 20.7708 35.2925 2.4245

25.6510 19.0371 30.2869 −16.1956 6.4775 −58.5076

]

,

D =

[

0 0

0 0

]

.

The matching between the MIMO open-loop measured data and the identified

model (6.2) is shown in Fig. 6.2. It should be noted that the frequency responses

in the X- and Y-axis of the PTS are not symmetric. The asymmetric properties of

the materials from which the PTS is made and imperfections in the location of the

sensors relative to the electrodes can cause different output voltages in the axes of

the PTS.



Section 6.3 Controller Design 111

G(s)

C(s)

R(s)

+
+ -

Reference

Signal

Sensor

Output

Figure 6.4: Block diagram of closed-loop system with IRC C(s) and resonant controller
R(s).

6.3 Controller Design

The first control objectives of this chapter are to: (i) damp the first resonant mode

of the PTS in the lateral and longitudinal axes, (ii) increase the bandwidth close

to the first resonance frequency of the scanner, and (iii) reduce the cross coupling

effect between the axes of the scanner. In order to achieve the above mentioned

objectives, this chapter presents a design with a control architecture using two NI

damping controllers namely an IRC and a resonant controller.

An IRC is known for its robust performance. The IRC is designed based on

the pole-zero interlacing property of resonant systems such as for co-located smart

structures with force actuators and position sensors as outlined in [79]. An IRC is a

combined integral controller (K
s
) and a feed thorough term d with the plant as given

in Fig. 6.3(a), where G(s) is the transfer function of the plant. The feed through

term d is selected to achieve a zero-pole interlacing property instead of pole-zero

interlacing property of the system. The value of d is chosen low to achieve large

level of damping of the resonant mode of the system. A simplified block diagram

of the IRC C(s) with the plant transfer function G(s) is given in Fig. 6.3(b). The

transfer function of the IRC C(s) from Fig. 6.3(b) is:

C(s) =
K

s+Kd
(6.4)

Although IRCs are known for their robust performance, the bandwidth of the

closed-loop system using an IRC is limited due to their low pass nature at high

frequencies. The closed-loop system with the IRC of Fig. 6.3(a) starts to roll-off at

Kd + K. To see this, consider the following transfer function G(s) of a resonant

system:



Section 6.3 Controller Design 112

−4500−4000−3500−3000−2500−2000−1500−1000 −500 0 500
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

Real Axis

Im
ag

in
ar

y 
A

xi
s

(a)

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−8

−6

−4

−2

0

2

4

6

8
x 10

4

Real Axis

Im
ag

in
ar

y 
A

xi
s

(b)

−10000−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Real Axis

Im
ag

in
ar

y 
A

xi
s

(c)

Figure 6.5: Root locus plot of (a) (Gxx(s) + d) ∗ K
s
with d=1.3 for K > 0 and (b) root

locus plot of Gxx(s) ∗ K
s
for K < 0, and (c) root locus plot of Gxx(s) ∗ K

s
for K > 0.
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G(s) =
ω2
p

s2 + 2ξωps+ ω2
p

(6.5)

where ξ > 0 and ωp > 0 are the damping constant and the natural frequency,

respectively. Now the closed-loop transfer function for the negative feedback inter-

connection shown in Fig. 6.3(a) is:

S(s) =
C(s)G(s)

1 + C(s)G(s)
≈ K

s + (Kd+K)
. (6.6)

The optimal values of the parameters of the IRC obtained from the results of [6]

for the system (6.5) are d = −4ω2
p

3ω2
p
and K =

√
2ωp

d
. The bandwidth of system (6.6) is

Kd+K, i.e., the system (6.6) rolls-off at Kd+K which is equal to ωp

2
√
2
. If the first

resonance frequency of a resonant structure is 900 Hz, the closed-loop bandwidth

that can be achieved by using an IRC is only 318 Hz which is still not high enough

for fast nano-positioning.

Since the controller C(s) has a low gain near
√
2ωp due to the integral part we

need to have R(s) as given in Fig. 6.4 with C(s) such that it has a high gain near√
2ωp, if we need bandwidth to be close to ωp. The block R(s) given in Fig. 6.4 is

the transfer function of a resonant controller. A resonant controller is a high pass

NI controller, i.e., the phase of the transfer function of the resonant controller lies

between [−π, 0]. The transfer function of the resonant controller R(s) is as follows:

R(s) = −Kr

s2 + 2ξrωrs

s2 + 2ξrωrs+ ω2
r

(6.7)

where, Kr is the gain of the resonant controller, ξr is the damping constant and ωr

is the resonance frequency.

In the following, firstly, the design of an IRC and the combination of an IRC

with a resonant controller is presented for the SISO case and it is shown that, the

combined IRC with the resonant controller achieves a bandwidth three times larger

than the bandwidth achieved by the IRC only. Secondly, the design of a combined

IRC and resonant controller is presented for the MIMO case to achieve a bandwidth

close to the first resonance frequency of the scanner and attenuate the cross coupling

effect between the axes of the scanner. The advantage of the MIMO controller over

the SISO controller is illustrated by comparing scan images at different scanning

rates.
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6.3.1 Design of IRC and combined IRC with the resonant controller

The design of an IRC is based on the pole-zero interlacing property of the system.

The feed through term d shown in Fig. 6.3 is selected to achieve a zero-pole interlac-

ing property for the augmented plant G(s)+d. The root locus plot given in Fig. 6.5

shows that the closed-loop system between Gxx(s)+d and K
s
with d = 1.3 for K > 0

is always stable whereas the closed-loop system between Gxx(s) and K
s
for K < 0

and K > 0 is not always stable. The gain K for the IRC C(s) in Fig. 6.3(b) is

selected as 1.85× 104 from the root locus plot of Fig. 6.5(a).

The identified closed-loop frequency responses of Gxx(s) given in Fig. 6.6 are

obtained by implementing the SISO IRC for K = i × 1.85 × 104 where i=1 to

5 and d = 1.3. The closed-loop system between the IRC and Gxx(s) rolls-off at

100 Hz and achieves 7 dB of damping of the first resonant mode of the scanner.

The early roll-off strategy of the closed-loop system using the IRC before the open-

loop system rolls-off results in a low closed-loop bandwidth which in turns limit

the use of IRC for fast nanoscale positioning. The reason for the low closed-loop

bandwidth using IRC controller is the low gain of the IRC at high frequencies. In

order to provide gain to the IRC at high frequencies, a high pass negative-imaginary

controller, namely a resonant controller is included with the IRC to improve the fast

nanoscale positioning performance of the IRC.

The resonant controller is chosen such that the closed-loop system starts roll-off

at first resonance frequency of the scanner. An optimization is performed to follow a

reference transfer function model. A desired closed-loop transfer function is selected

according to the aim of the design process, i.e., to achieve a desired bandwidth. The

open-loop system Gxx(s) starts roll-off after the first resonance frequency at 918 Hz.

The aim of the design process is to achieve a closed-loop system which rolls-off at

918 Hz. A closed-loop bandwidth higher than the first resonance frequency of the

open-loop system would require high control input energy for which the optimization

process might not converge.

The transfer function of the desired closed-loop system for the SISO design is

chosen as

T (s) =
1

τs + 1
(6.8)

where τ is selected to achieve the desired bandwidth. In the present SISO design

τ is chosen as 1
918Hz

. A first order model is not a target of the design process, the
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target is to achieve the characteristics of the desired first order model, i.e., we want

a closed-loop system with a constant gain to the first resonance frequency of the

scanner. Each parameter of the resonant controller is chosen by minimizing the

H2 norm of the difference between the desired and the actual closed-loop transfer

function. The transfer function of the actual closed-loop system of Fig. 6.4 is

Tcl(s) =
G(s)(C(s) +R(s))

1 +G(s)(C(s) +R(s))
.

The H2 norm of the error transfer function between the desired and the actual

closed-loop transfer function is ‖E(s)‖2 = ‖T (s) − Tcl(s)‖2. An optimization op-

eration by using fminsearch command from the MATLAB is carried out to obtain

the values of the resonant controller parameters by minimizing ‖E(s)‖2. A finite

value of ‖E(s)‖2 guarantees the stability of the closed-loop system [78,80]. The re-

sultant values of the resonant controller parameters obtained from the optimization

process for the X-axis controller design are Kr = −1.3, ξr = 0.6, ωr = 5600. In

the optimization process choosing the initial values of the controller parameters is

important for the convergence of the optimization process. In the design the initial

values of the resonant controller are selected as Kr = 1.0, ξr = .7, ωr = 6000.

The performance of the closed-loop system using a SISO combined IRC and

resonant controller for the X-axis of the scanner is shown by frequency responses as

given in Fig. 6.7. The closed-loop frequency response given in Fig. 6.7 using the

proposed combined IRC and resonant controller starts to roll-off at 900 Hz which

is three times larger than achieved by the IRC only. This signifies the advantage

of the combined IRC and resonant controller over the IRC only for fast nanoscale

positioning.

Although the closed-loop system using the combined SISO IRC and resonant

controller starts roll-off at 900 Hz, it does not guarantee the reduction of the cross

coupling effect between the axes of the scanner. In order to guarantee the reduction

of the cross coupling effect between the axes of the scanner in addition to high

bandwidth, the following section presents the design of a MIMO controller:

6.3.2 Design of the MIMO controller

The transfer functions matrices of the IRC and the resonant controller for MIMO

cases are as follows:
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Figure 6.8: Comparison of the open-loop and closed-loop frequency response (FR) re-
lating to the inputs [Vx, Vy]

T and the outputs [Dx,Dy]
T . The solid line (–) represents

the measured open-loop FR and the dashed line (- -) represents closed-loop FR obtained
by implementing proposed combined SISO resonant and IRC and the dashed dot line (-
.) represents closed-loop FR obtained by implementing proposed combined MIMO reso-
nant and IRC. (a) Frequency response of Gxx(s), (b) frequency response of Gyx(s), (c)
frequency response of Gxy(s), and (d) frequency response of Gyy(s).
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C(s) =
K

s+Kd
Σm×m (6.9)

R(s) = −Kr

s(s+ 2ξrωr)

s2 + 2ξrωr + ω2
r

Γm×m (6.10)

where Σm×m and Γm×m are both matrix of order m×m; m is the number of inputs

and outputs of the system.

The MIMO controller is designed to achieve a closed-loop system which rolls-off

at first resonance frequency of the scanner and to attenuate the cross coupling effect

between the axes of the scanner. The transfer function of the desired closed-loop

MIMO system is

T (s) =
1

τs+ 1

[

1 0

0 1

]

.

Similar to the SISO design, the value of τ chosen for the MIMO design is 1
918Hz

.

The bandwidth of the desired MIMO transfer function is 918 Hz and has no cross

coupling between the axes. An optimization process as discussed in the design of

SISO controller is carried out to obtain the MIMO controller parameter values. The

values of the parameters obtained from the optimization process are as follows: Kr =

−0.5, ξr = 0.602, ωr = 5890, K = −2500, Kd = 500, Σm×m =

[

0.501 0.201

0.00194 1.309

]

,

Γm×m =

[

1.986 0.005

0.0049 0.512

]

.

6.4 Performance of the Controllers

A comparison of performance between the SISO and MIMO controller is shown

by comparing the measured closed-loop frequency responses and scanned images

obtained by using the SISO and MIMO controller. In a similar way as discussed in

the design of the combined SISO IRC and resonant controller for the X-axis of the

scanner, a combined SISO IRC and resonant controller for the Y-axis is designed and

implemented on the scanner. The comparison of the measured closed-loop frequency

responses given in Fig. 6.8 shows that the designed SISO and MIMO controller are

able to flatten the frequency responses by damping the first resonant mode of the

scanner. The closed-loop bandwidths in the X- and Y-axis are increased by 900 Hz

both for the SISO and MIMO cases. Although the closed-loop bandwidth achieved
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Figure 6.9: Scanned images at 15.62 Hz obtained by using (a) open-loop, (b) built-in PI
controller of the AFM, (c) proposed combined SISO IRC and resonant controller and (d)
proposed combined MIMO IRC and resonant controller.

by the SISO controller and MIMO controller is nearly same, the advantages of

using the MIMO controller over the SISO controller can be seen by observing the

closed-loop cross coupling effect of Fig. 6.8. The amount of reduction of the cross

coupling effect between the axes of the scanner by using the MIMO controller at each

frequency is higher except at some frequencies as compared to the SISO controller.
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Figure 6.10: Scanned images at 31.25 Hz obtained by using (a) open-loop, (b) built-in
PI controller of the AFM, (c) proposed combined SISO IRC and resonant controller and
(d) proposed combined MIMO IRC and resonant controller.
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Figure 6.11: Scanned images at 62.5 Hz obtained by using (a) open-loop, (b) built-in PI
controller of the AFM, (c) proposed combined SISO IRC and resonant controller and (d)
proposed combined MIMO IRC and resonant controller.
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Figure 6.12: Scanned images at 125 Hz obtained by using (a) open-loop, (b) built-in PI
controller of the AFM, (c) proposed combined SISO IRC and resonant controller and (d)
proposed combined MIMO IRC and resonant controller.
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The effect of having the large cross coupling effect between the axes of the scanner

is shown by comparing scanned images obtained by using open-loop, the in-built PI

controller of the AFM, the proposed SISO and MIMO controllers. Experimental

images presented in Fig. 6.9 to Fig. 6.12 are obtained by using open-loop, the

in-built PI controller of the AFM, the proposed SISO and MIMO controllers at

different scanning rates. In the imaging process the grating used for scanning consists

of number of squares. Each square has a length of 1.5 µm and the space between

successive squares is also 1.5 µm. The imaging using the SISO and MIMO controllers

was done for an 8 µm×8 µm area scanning. An 8 µm×8 µm area should consist nine

squares.

It can be seen that, the scanned image at 125 Hz (see Fig. 6.12(c)) obtained by

using SISO controller has twenty squares for the 8 µm×8 µm area scanning. This is

due to the additional cross coupling effect between the scanner, whereas the scanned

image at 125 Hz (see Fig. 6.12(d)) obtained by using the MIMO controller has twelve

squares for an 8 µm×8 µm area scanning which are due to the low cross coupling

effect between the axes of the scanner. This is certainly a great advantage of using

MIMO controller as compared to the SISO controller.

Another important observation in the scanned images obtained by using the

SISO controller is the rotation of the images. This image rotation also exists in

the scanned images obtained in open-loop although the amount of rotation in the

scanned images using the SISO controller is lowered as compared to the scanned

images obtained by using the open-loop. The closed-loop scanned images obtained

by using the MIMO controller have less rotation due to the small cross coupling

effect between the axes of the scanner. This shows another advantage of using the

MIMO controller over the SISO controller for nanopositioning of the piezoelectric

tube scanner. Also, the squares in the scanned images obtained by using the SISO

controller are not regular in shape and the squares get small at the edges at high

scanning frequency, whereas the squares in the scanned images obtained by using

the MIMO controller are more regular in shape as compared to the SISO controller.

The scanned images obtained by using the built-in PI controller of the AFM are

less rotated. The squares are not regular in shape, i.e., the blocks are stretched

to the left at each scanning frequency. The PI controller is designed to track the

reference signal. When the PI controller achieves accurate tracking, that forces the

system to decouple. Indeed, the reference signals in the axes of the scanner are
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decoupled, which means that the responses due to the reference signals are also

decoupled.

It is also desired that the controller performance should be same for all scanning

frequencies, i.e, the error between two scanned images for two different scanning

frequencies should be minimum. In order to compare the performance between the

SISO and MIMO controller in image scanning at low scanning frequencies we show

a comparison of error images in Fig. 6.13.

The error images are obtained by subtracting two scanned images. The reference

images used for the SISO and MIMO cases are the scanned image obtained at 15.62

Hz. The error image shown in the left of Fig. 6.13(a) is obtained by subtracting

Fig. 6.9(c) and 6.10(c) and the error image shown in the right of Fig. 6.13(a) is

obtained by subtracting Fig. 6.9(c) and 6.11(c). The error image shown in the left

of Fig. 6.13(b) is obtained by subtracting Fig. 6.9(d) and 6.10(d) and the error

image shown in the right of Fig. 6.13(b) is obtained by subtracting Fig. 6.9(d) and

6.11(d). The error images given in Fig. 6.13 show that the error images for the SISO

case have large error as compared to the MIMO case which signifies the advantage

of using MIMO controller over the SISO controller for low scanning speed as well.

Although the controller is designed to roll-off at the first resonance frequency,

the performance of the piezoelectric tube scanner is usually limited to one percent

of the first resonance frequency of the scanner [6, 15]. This is because the X-axis

of the scanner has to track triangular signals. The triangular signal contains all

odd harmonics of its fundamental frequency. The images at high scanning rate

are distorted due to the high order harmonics of the triangular signal. Also the

resonance of the cantilever beam comes into play during the scanning process. Due

to the resonant nature of the cantilever beam, the images obtained at high scanning

rates are also distorted.

The comparison between the SISO and MIMO controller using the calibration

grid for the Z profile of the sample about the center of the X-axis of the AFM images

is presented in Fig. 6.14. Though the Z profiles of the sample for the SISO and

MIMO cases are nearly same at low scanning speeds, the Z profile of the sample

obtained using the SISO controller deteriorates at high scanning speeds as compared

to the MIMO controller.

The resonance frequency of the PTS changes with the change in loads on the

scanner during the service. The maximum resonance frequency occurs while there
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Figure 6.13: Error images obtained by using the combined SISO resonant and IRC
(left) and the combined MIMO resonant and IRC (right). Error image (a) (left) obtained
by subtracting Fig. 6.9(c) and 6.10(c), (right) obtained by subtracting Fig. 6.9(c) and
6.11(c) and (b) (left) obtained by subtracting Fig. 6.9(d) and 6.10(d), (right) obtained by
subtracting Fig. 6.9(d) and 6.11(d)
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Figure 6.14: Cross-section (solid line –) and reference (dash line - -) curves of the AFM
images of the Z-direction calibration grid of the sample obtained by using (right) proposed
combined SISO resonant and IRC and obtained by using (left) proposed combined MIMO
resonant and IRC at (a) 15.62 Hz, (b) 15.62 Hz, (c) 31.25 Hz, (d) 31.25 Hz, (e) 62.50 Hz,
(f) 62.50 Hz, (g) 125 Hz, (h) 125 Hz.
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Figure 6.15: Open-loop (dashed-line) and closed-loop (solid-line) magnitude frequency
response (MFR) from the reference input voltage in the X-axis of the scanner to the
measured X sensor voltage for different loads on the scanner. The same color represents
the corresponding open- and closed-loop MFR.

is no load on the scanner. Controllers design for high speed nano-positioning must

be able to maintain the closed-loop stability against the changes in the resonance

frequency. In order to show the performance of the proposed controller in terms of

load change on the scanner a comparison of the open- and closed-loop magnitude

frequency responses (MFRs) is given in Fig. 6.15 for different loads on the scanner.

The closed-loop MFRs are taken by using the MIMO controller in the X-axis of

the scanner. As the load on the scanner increases the resonance frequency of the

scanner in the X-axis starts moving towards left, i.e., the resonance frequency of the

system decreases. In all cases the closed-loop system remain stable and provides a

bandwidth near to the first resonance frequency.

6.5 Discussion and Advantages of the Proposed Method

Over the Existing Approaches

The advantage of the proposed method over existing approaches is given in Table 6.1.

Previous approaches designed for high speed nanopositioning of piezo scanner given

in Table 6.1 are based on SISO approaches and though the SISO approaches are

high bandwidth and robust against the changes in resonance frequency of the plant,
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a reduction of the cross coupling effect in the axes of the scanner is not guaranteed

using the SISO approach. In this chapter the design of a MIMO controller by com-

bining two negative-imaginary damping controllers is presented which in addition

to high bandwidth and robustness against the changes in resonance frequency also

guarantees the reduction of the cross coupling effect between the axes of the scanner.

Table 6.1: Advantage of the proposed method over the existing approaches

Control Techniques Approach Advantage Limitation Year

Inversion based
feed-forward method [13]

SISO
(i) High bandwidth, (ii)

reduce nonlinearities, and
(iii) low noise

(i) Sensitive against the
changes in resonance

frequency

2007

Damping based controller
only [6]

SISO
(i) High bandwidth, (ii)

robust against the changes
in resonance frequency

(i) Does not guarantee the
reduction of the cross

coupling effect

2007

Model based vibration
suppression method [81]

SISO
(i) High bandwidth, (ii)

reduce the effects of
nonlinearities

(i) Depends on accurate
system model

2008

PI controller SISO
(i) Excellent low

frequency tracking
performance

(i) Low bandwidth, (ii)
sensitive against the
changes in resonance

frequency

2009

Damping based controller
with integral

action [15], [18]
SISO

(i) High bandwidth, (ii)
robust against the

changes in resonance
frequency, and (iii) reduce
the effect of nonlinearities

at low frequencies

(i) Does not guarantee the
reduction of the cross
coupling effect, (ii)
increase the effect of
nonlinearities at high

frequencies

2009-
2010

LQG and H∞

controller [46–50, 82]
SISO

(i) High bandwidth, (ii)
robust against the changes

in resonance frequency

(i) Does not guarantee the
reduction of the cross

coupling effect

2002-
2011

Damping based controller
with integral action [78]

MIMO

(i) Robust against the
changes in resonance

frequency, and (ii) reduce
the effect of nonlinearities
at low frequencies, (iii)

guarantee the reduction of
the cross coupling effect

(i) Low bandwidth 2012

Proposed method SISO and MIMO

(i) High bandwidth,
(ii) robust against the
changes in resonance
frequency, and (iii)

guarantees the
reduction of the cross

coupling effect

(i) Does not guarantee
the tracking of
reference signal

2014

As shown in Table 6.1 although the proposed multivariable IRC and resonant

controller reduce cross coupling effect between the axes of the scanner but it does

not guarantee the tracking of reference signal. In the following we propose another

design of double resonant controller and integral controller for damping, tracking

and cross coupling reduction of the PTS.

6.6 Double Resonant Controller Design

A block diagram of the closed-loop system using a double resonant controller is

presented in Fig. 6.16. Here, G(s) is the transfer function of the plant transfer

function, HFB(s) is the transfer function of the feedback resonant controller to

damp the resonant mode of the scanner, CFF (s) is the transfer function of the

integral controller and HFF (s) is the transfer function of the resonant controller to
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Figure 6.16: Block diagram of the closed-loop system for resonant mode damping, track-
ing and bandwidth improvement.

provide gain to the integral controller at high frequencies. The transfer functions

CFF (s), HFB(s) and HFB(s) are as follows:

CFF (s) =
ki
s

(6.11)

HFB(s) = kfb
s2 + 2ξfbωfbs

s2 + 2ξfbωfbs+ ω2
fb

(6.12)

HFF (s) = kff
s2 + 2ξffωffs

s2 + 2ξffωffs+ ω2
ff

(6.13)

A reference model matching approach as discussed earlier is used to design SISO

and MIMO double resonant controller for the PTS. The frequency domain perfor-

mance of the SISO and MIMO double controller is shown in Fig. 6.17. The MIMO

controller is able to reduce cross coupling effect more than the SISO controller at

low frequencies while keeping the same closed-loop bandwidth which demonstrates

the advantages of the MIMO controller over the SISO controller.

The reason of the large cross coupling effect between the axes of the scanner at

intermediate frequency using the SISO double resonant controller is the low gain of

the integral controller. However, the MIMO double resonant controller provides a

greater reduction of the cross coupling effects between the axes of the scanner at

intermediate frequencies as compared to the SISO double resonant controller.

The experimental results are directly related to the theoretical foundation. For

example, in the SISO design, the theoretical aim of the design process is to achieve

a closed-loop bandwidth near to the first resonance frequency of the scanner and

experimentally we have achieved that. Also for the MIMO design, theoretically the
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Figure 6.17: Comparison of the open- and closed-loop magnitude frequency responses
(MFRs) relating the inputs [Vx, Vy]

T and the outputs [Dx,Dy]
T obtained by using the

proposed SISO and MIMO double resonant controller of the scheme of Fig. 6.16. The solid
line (–) represents the open-loop system MFR, the dashed line (- -) represents closed-loop
MFR obtained by using the SISO double resonant controller, and the dashed dot line (-.)
represents closed-loop MFR obtained by using the MIMO double resonant controller.
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aim of the design process is to achieve a closed-loop bandwidth near to the first

resonance frequency and no cross coupling effect between the axes of the scanner.

Experimentally for the MIMO design, we have achieved a closed-loop bandwidth

near to the first resonance frequency of the scanner and a low cross coupling effect

between the axes of the scanner at low frequencies. This shows that the experimental

outcome and the theoretical design process are related to each other.

In order to show the performance of the proposed double controller in terms of

load changes on the scanner, a comparison of the open- and closed-loop magnitude

frequency responses (MFRs) are given in Fig. 6.18. The closed-loop MFRs are

taken by using the SISO and MIMO double resonant controller in the X-axis of

the scanner. As the load on the scanner increases, the resonance frequency of the

scanner in the X-axis starts moving towards left, i.e., the resonance frequency of the

system decreases. In all cases the closed-loop system remains stable and provides a

bandwidth near to the resonance frequency.

The double resonant controllers designed for the SISO and MIMO cases are

implemented on the PTS of an AFM to measure the high speed imaging performance

of the AFM. The implementation of the proposed controller is done by replacing the

built-in controller of the AFM. The following shows a comparison of performance of

the proposed MIMO controller over the SISO controller for imaging:

6.6.1 Comparison of performances between the proposed SISO and

MIMO double resonant controller

The comparison of the scanned images using SISO and MIMO double resonant

controller are presented in Fig. 6.19 and Fig. 6.20. It can be seen that, the scanned

image at 125 Hz obtained by using SISO double resonant controller has a total of

twenty squares for an 8 µm×8 µm scanning area as shown in Fig. 6.19 (d). This

is due to the additional cross coupling effects between the axes of the scanner. The

scanned image at 125 Hz shown in Fig. 6.20 (d) obtained by using MIMO double

resonant controller has a total of nine squares for an 8 µm×8 µm scanning area

which demonstrates the low cross coupling effect between the axes of the scanner.

The comparison of the error images at low frequencies using SISO and MIMO

double resonant controller shown in Fig. 6.21 shows that the MIMO double resonant

controller performs better as compared to the SISO double resonant controller. Also,

a comparison of error signals between the input and output signals using the SISO

and the MIMO controller given in Fig.6.22 shows that, the magnitude of the error
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Figure 6.18: Open-loop (solid line) (a) and closed-loop (dashed line) magnitude fre-
quency responses (MFRs) of Gxx(s) using SISO (b) and MIMO (c) double resonant con-
troller for different loads on the scanner.
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Figure 6.19: Scanned images obtained by using the proposed SISO double resonant
controller at (a) 15.62 Hz, (b) 31.25 Hz, (c) 62.5 Hz, and (d) 125 Hz for 8 µm×8 µm area
scanning.
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Figure 6.20: Scanned images obtained by using the proposed MIMO double resonant
controller at (a) 15.62 Hz, (b) 31.25 Hz, (c) 62.5 Hz, and (d) 125 Hz for 8 µm×8 µm area
scanning.
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signals using the MIMO controller is lowered as compared to the SISO controller at

all scanning rates.

6.7 Chapter Summary

In this chapter, a damping based controller design framework using negative-imaginary

controllers is proposed for a PTS to damp the first resonant mode of the scanner, to

improve the tracking performance of the PTS and to attenuate the cross coupling

effect. The design of the controller is presented both in SISO and MIMO forms.

The controller presented in this chapter is able to achieve a bandwidth near to the

first resonance frequency of the scanner with a reduction of cross coupling effects.

Compared to an integral controller, the proposed controller is able to achieve five

times the bandwidth of the integral controller. Comparisons of the experimental im-

ages presented in this chapter obtained by using SISO and MIMO controllers show

that the MIMO controller provides two times better improvement in image quality

at high scanning rates as compared to the SISO controller.
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Figure 6.21: Comparison of error images obtained by using SISO and MIMO double
resonant controller. (a) (left) obtained by subtracting Fig. 6.19 (a) and 6.19 (b), (right)
obtained by subtracting Fig. 6.19 (a) and 6.19 (c); (b) (left) obtained by subtracting
Fig. 6.20 (a) and 6.20 (b), (right) obtained by subtracting Fig. 6.20 (a) and 6.20 (c).
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Figure 6.22: Comparison of errors signals between input and output signals the using
SISO and MIMO double resonant controller for (a) 15.62 Hz, (b) 31.25 Hz, (c) 62.5 Hz,
and (d) 125 Hz input signals. The solid line (–) represents the errors obtained using the
SISO controller and the dashed line (- -) represents the errors obtained using the MIMO
controller. A small phase shift is purposely added to clearly show the plots.



Chapter 7

Conclusions

In this thesis, we explored several ways to improve the performance of a PTS for

high speed nanopositioning. First we proposed a design of a resonant controller to

compensate for the induced vibration of the PTS by damping its resonant modes.

The design of the controller was presented based on a mixed NI and small-gain

approach. This approach allows us to have a large gain for the controller to achieve

a high level of damping of the first resonant mode of the scanner. Next, we designed

a passive damping controller for damping the resonant modes of the scanner as the

resonant controller is limited due to its high pass nature.

In order to design the passive damping controller for the PTS we proposed an

analytical framework which examines the finite-gain stability of the positive feed-

back interconnection between two linear time-invariant systems where one system

has mixed NI, passivity and small-gain properties and the other system has mixed

NI, negative-passivity and small-gain properties. The motivation to establish this

analytical framework is that the mixed NI and small-gain approach only allow a

low gain of the passive damping controller. This results in low level of damping of

the resonant mode of the scanner. Finally, the aim of designing a damping con-

troller was concluded by designing the final damping controller namely a minimax

LQG controller. The minimax LQG controller was designed with the aim to achieve

robust performance for damping the resonant mode of the scanner. Experimental

results using minimax LQG controller showed that the controller was able to achieve

the desired level of performance.

Secondly the motivation of this thesis also involved improving the tracking per-

formance of the PTS for precision positioning. Here, we designed a robust integral

miniamx LQG controller for tracking control of the PTS. The design of the con-

troller was carried out to provide robustness against the unmodelled dynamics of

the PTS. The implementation of the integral minimax LQG controller resulted in

a high closed-loop bandwidth of 800 Hz. This is four times better than that which

can be achieved by using an integral controller.

138



Section Conclusions 139

Finally, multi-variable controllers were designed to achieve damping, tracking

and cross coupling reduction in the PTS. Here, first we proposed multi-variable

NI controllers for damping and cross coupling reduction of the PTS and then we

showed a design of a double resonant controller along with an integral controller

for damping, tracking and cross coupling reduction in the PTS. Then experimental

results compared between the SISO and MIMO controllers. It was shown that the

MIMO controllers performed two times better as compared to the SISO controllers.

Future extensions of this thesis should include the incorporation of the z axis

dynamics in the design process. The identification and control of the z axis dy-

namics is a different control problem. Using a MIMO framework this effect can be

incorporated along with the x- and y-axis dynamics.

The performance of the proposed controllers were presented for the raster scan-

ning method. The application of these controllers to other scanning methods such

as spiral scanning, cycloid scanning can be a good area of research. The design of

the controllers were presented for damping, tracking and cross coupling reduction.

The performance of these controllers against the effect of non-linearities will be a

good extension of this research.

The analytical framework proposed in this thesis in Chapter 4 can be extended

in several ways. The analytical framework was presented for linear time invariant

continuous time systems. The first possible extension of this work can be done for

non-linear systems. This framework can also be extended for time variant systems.

A discrete time version of this framework is also another possible extension.
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