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Abstract

In this thesis we develop unsupervised and on-line learning algorithms

for codebook based visual recognition tasks. First, we study the Prob-

abilistic Latent Semantic Analysis (PLSA), which is one instance of

codebook based recognition models. It has been successfully applied

to visual recognition tasks, such as image categorization, action recog-

nition, etc. However it has been learned mainly in batch mode, and

therefore it cannot handle the data that arrives sequentially. We pro-

pose a novel on-line learning algorithm for learning the parameters of

the PLSA under that situation. Our contributions are two-fold: (i)

an on-line learning algorithm that learns the parameters of the PLSA

model from incoming data; (ii) a codebook adaptation algorithm that

can capture the full characteristics of all features during the learn-

ing. Experimental results demonstrate that the proposed algorithm

can handle sequentially arriving data that the batch PLSA learning

cannot cope with.

We then look at the Implicit Shape Model (ISM) for object detec-

tion. ISM is a codebook based model in which object information is

retained in codebooks. Existing ISM based methods require manual

labeling of training data. We propose an algorithm that can label the

training data automatically. We also propose a method for identify-

ing moving edges in video frames so that object hypotheses can be

generated only from the moving edges. We compare the proposed al-

gorithm with a background subtraction based moving object detection

algorithm. The experimental results demonstrate that the proposed

algorithm achieves comparable performance to the background sub-

traction based counterpart, and it even outperforms the counterpart

in complex situations.



We then extend the aforementioned batch algorithm for on-line learn-

ing. We propose an on-line training data collection algorithm and also

an on-line codebook based object detector. We evaluate the algorithm

on three video datasets. The experimental results demonstrate that

our algorithm outperforms the state-of-the-art on-line conservative

learning algorithm.
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Chapter 1

Introduction

1.1 Background

This thesis deals with computer based visual recognition problems. Generally

speaking, visual recognition is the process of assigning labels to images and videos,

according to some rules. For human beings, visual recognition is usually effortless

and robust in different environments, regardless of lighting conditions and view-

point variations. The performance of computers on visual recognition tasks is

still far behind that of human beings. As a result, visual recognition still remains

an active area for computer vision research.

There have already been some computer-based visual recognition applications,

and they are listed as follows:

• Intelligent Video Surveillance - Many buildings have been equipped with

close-circuit TV cameras to ensure the security inside premises. Manual

scrutinizing of videos is tedious and inefficient. Intelligent video surveillance

systems, which detects abnormal activities in the videos, are employed to

assist human operators for video scrutiny.

• Content based Image Search - The Internet has become a huge repository

of images. This has led to the demand for intelligent web search engines for

images. Traditional image search is based on keywords, where the similarity

1



1.1 Background

of images are determined by their labels. A more natural way of image

search is based on image content. Given a query image, content based

image search engine can return visually similar images to the exemplar.

One example is Google’s Picasa Digital Image Organizer, which provides

a built-in function that associates faces with identities from version 3.5

onwards. Using a face image as the query image, the database returns

photos associated with that face.

• Face Detection - An face detection system is an application that detects

human faces from given images or videos. It is perhaps the most popular

computer vision application in our daily life. For example, Canon digital

cameras usually come with a built-in face detect function to assist users to

capture better photos.

• Computer Aided Diagnosis - Medical imaging techniques, such as X-radiation

(X-RAY) and Magnetic Resonance Image (MRI), are playing a more and

more important role in medical examinations. Medical images contain a

great deal of information which should be analyzed comprehensively within

a short time. To achieve fast and reliable analysis, Computer Aided Di-

agnosis (CAD) systems are employed to assist doctors in interpreting the

medical images. They can help to identify possible diseases by highlighting

conspicuous regions in the images.

Computer based visual recognition is a difficult problem, due to the following

challenges:

• Illumination difference - Given the same scene, images captured under dif-

ferent illumination conditions can exhibit great difference. Computers re-

quire advanced recognition algorithms to accomplish visual recognition un-

der different lighting conditions.

• Background clutter - In most image collections, objects are not segmented

from the background. Cluttered background can add to the difficulty of

recognizing objects inside images.

2



1.1 Background

• Occlusions - Due to viewpoint variations, part of the same object can be

covered by another object. With partially available appearance information,

computers require sophisticated recognition algorithms to identify the same

object.

Successful visual recognition approaches are expected to handle these aforemen-

tioned issues.

It is important to note that the visual recognition is a multi-facet problem.

Given images and videos, we might be interested in the scene category to which

an image belong; we might want to know if there is a certain event occurring in

surveillance videos; we might even want to localize pedestrians in the videos. To

confine the scope of our thesis, related terminologies are explained as follows:

• Class and Category - Both words are used interchangeably. In this the-

sis, they are referred to as sets of visually consistent data. For example,

the “beach” image class includes images that capture beach scenes; the

“running” action video category includes the videos that exhibit running

activities.

• Categorization - It is the task of determining which category the data be-

longs to, from pre-defined categories. For example, action categorization

determines the action category of a given video clip.

• Detection - It is the task of specifying the locations of target objects inside

images or videos. For example, pedestrian detection entails the task of

localizing pedestrians inside images or videos.

• Localization - the same as detection.

The focus of this thesis is image/video categorization, and object detection from

videos.

3



1.2 Task Definition

1.2 Task Definition

1.2.1 Codebook based Visual Recognition

Codebook based recognition is one of the widely used recognition methods for

visual recognition. The idea of codebook learning can be explained using the

following text reading example. Given a text document, our understanding of it

relies on the interpretation of its words (See Figure 1.1). The meaning of each

word can be obtained from a dictionary. With the help of the dictionary, we can

understand any given document based on our understanding of its words. In this

example, the dictionary serves as a bridge that connects our high-level document

understanding and low-level word interpretations.

Analogously, computers can accomplish the task of visual recognition in a sim-

ilar way. In order to let computers understand images/videos, a visual dictionary

can be constructed (See Figure 1.2 and 1.3). The constructed visual dictionary

retains our knowledge, which can help computers understand the content of im-

ages/videos. This kind of visual dictionary is usually termed as a “codebook” in

computer vision. Codebooks are constructed by applying some “coding” rules to

features extracted from images/videos. The coding rules are essentially cluster-

ing algorithms, which range from the traditional k-means clustering Sivic et al.

(2005) to randomized tree based methods Moosmann et al. (2006) recently. A

codebook is comprised of the cluster centers. Using the codebook, imaging data

can be converted into an intermediate representation, upon which sophisticated

models can be designed for recognition.

Codebook based recognition methods have been demonstrated effective for

visual recognition problems Sivic et al. (2005), Csurka et al. (2004), Moosmann

et al. (2006). In this thesis, we will focus on three instances of codebook based

recognition methods.

1.2.2 On-line and Unsupervised Learning

Using a codebook, we can obtain an intermediate representation for raw data. For

recognition purpose, different statistical models can be learned upon the inter-
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Figure 1.1: With the help of a dictionary, we can classify the given document on our

understanding of the words in the document.

Figure 1.2: With the help of a codebook, computers can classify scene images into

different categories.

mediate representation. The purpose of model learning is to produce a mapping

which maps the representation into semantic classes.

Traditional model learning is often done in off-line mode. In off-line learning,

the entire training set is given in advance and the model is learned in a batch

mode. The pitfalls of off-line learning include the following issues : (i) all training

data must be available so that they can be accessed at the same time; (ii) once a

5
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1.2 Task Definition

Figure 1.3: With the help of a codebook, computers can detect objects in videos.

model is learned, it cannot adapt to new data. Before the advance of the Internet,

it is expensive to obtain a large amount of training data. However, a huge amount

of images and videos can be easily obtained nowadays. There is a heavy memory

consumption for such gigantic amount of data if the learning is conducted in off-

line mode. Furthermore, training data might even arrive sequentially like daily

news data. Under this circumstance, not all training data is available at the same

time. To cope with these new challenges, on-line learning is called for. Unlike the

off-line learning, on-line learning keeps adjusting the existing model using new

data. Its memory requirement can be lowered since only part of training data is

needed at each learning epoch. Moreover, it also enables the model adaptation

to new data. As a result, developing on-line learning algorithms for recognition

is our first focus in this thesis.

Traditional learning for visual recognition is supervised learning, in which

manual labeling of training data is required. Supervised approaches can achieve

high recognition accuracies when there is enough labeled training data. This is

especially true for many object detection applications in computer vision. How-

ever, labeled data is hard to obtain for many problems, whereas unlabeled data

can usually be obtained free of cost. As a result, investigating methods for unsu-

pervised learning using a large amount of unlabeled data is becoming more and

more important. Hence, developing unsupervised learning methods for visual

recognition is another focus of this thesis.
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1.3 Contributions

In this thesis, we develop on-line and unsupervised learning algorithms for code-

book based visual recognition. Our contributions are introduced in the following

sections.

1.3.1 On-line Learning for codebook based Visual

Categorization

In this thesis, firstly, we develop an on-line learning algorithm for codebook based

image/video categorization. The codebook based learning model we look at is the

Probabilistic Latent Semantic Analysis (PLSA). The PLSA is a latent topic model

which originates from the text mining community. It is originally proposed for

document categorization. However it has been successfully applied to some visual

recognition tasks, such as image and video classification. For visual recognition,

the learning of the PLSA requires a codebook, which is usually formed by running

the k-means clustering on extracted feature descriptors.

The PLSA models have been learned mainly in batch mode, which requires

that all training data should be accessed at the same time. Such batch learning

has an excessive memory requirement when dealing with large datasets. Fur-

thermore, it cannot handle the data that arrives sequentially. To tackle these

disadvantages of batch learning, we propose an on-line learning algorithm for

the PLSA. Our proposed learning algorithm can learn the PLSA model from se-

quentially arriving data. Our contributions are two-fold: (i) an on-line learning

algorithm that learns the parameters of the PLSA model from incoming data; (ii)

a codebook adaptation algorithm that can capture the full characteristics of all

features during the learning. Experimental results demonstrate that the proposed

algorithm can handle sequentially arriving data.
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1.3.2 Unsupervised Learning for codebook based

Visual Detection

Our second contribution is an unsupervised learning algorithm for codebook based

moving object detection from videos. The codebook based object model we study

is the Implicit Shape Model Leibe et al. (2008). The Implicit Shape Model (ISM)

is a part-based model for object detection. At the learning stage, local features are

extracted from training data. A codebook of local features is then constructed

by clustering all the extracted features. Semantic information is also kept in

the codebook. At runtime, local features are extracted from images, and then

used to match against the codewords. The codewords then cast votes for object

hypotheses.

The ISM has been shown effective for object detection, however manual la-

beling of training data is required for the model. In this thesis, we propose an

unsupervised learning method using Multiple Instance Learning to replace the

manual labeling of learning. Moreover, we also propose an moving edge detection

scheme to reduce the hypothesis searching at runtime. We evaluate the proposed

algorithms on three video datasets, and experimental results demonstrate the

efficacy of our proposed methods.

1.3.3 Unsupervised On-line Learning for codebook based

Visual Detection

The last contribution of our thesis is an unsupervised on-line learning algorithm

for codebook based moving object detection. The codebook based object model

we look at is also the Implicit Shape Model Leibe et al. (2008). But we use

another type of codebook, which possesses a tree-like structure.

This on-line algorithm is an extension to the aforementioned unsupervised

object detection method which learns an ISM model in off-line mode. Once

the learning accomplishes, the model is fixed and no adaptation to new data

can be made. However it is important to adapt the object model to emerging

objects, especially in video surveillance. Our contribution includes an on-line

training data collection algorithm and also an on-line codebook based object
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detector. We evaluate the proposed algorithm on three video datasets. The

experimental results shows that the proposed algorithm outperforms the state-

of-the-art unsupervised on-line detection algorithm.

In addition to the work presented in the thesis, I also work on some other

research projects. The list of all the related publications during my PhD study

can be found in the Appendix.

1.4 Thesis Structure

The structure of this thesis is summarized as follows: in Chapter 2 we introduce a

general learning framework for visual recognition, which includes feature extrac-

tion, data representation and modeling learning. We also review the literature

for visual recognition in Chapter 2. It is noted that Chapter 2 only covers a high

level overview of the literature. Details of the related work is presented in each

chapter.

In Chapter 3 we detail our proposed on-line PLSA algorithm for visual cate-

gorization. We compare our on-line PLSA with the conventional PLSA and also

the QB-PLSA. Finally we review the performance improvements of our on-line

PLSA on the task of scene and action categorization.

In Chapter 4 we present our unsupervised learning method for object detec-

tion. We discuss the advantage of the proposed algorithm over the existing state

of the art. A series of experiments is conducted to demonstrate the performance

of the proposed framework. We extend this algorithm in Chapter 5 to enable its

on-line adaptation for object detection. Experiments are also conducted to show

the performance of the on-line learning algorithm.

Finally in Chapter 6, we draw conclusions upon our contributions, and discuss

about the future work.
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Chapter 2

Literature Review

This thesis investigates on-line and unsupervised learning for visual recognition

problems. Visual recognition is essentially a pattern recognition problem. In this

chapter we first introduce a pattern recognition framework. We then review the

literature for visual recognition, especially on the tasks of object, scene and action

recognition.

2.1 A Recognition Framework

2.1.1 An Overview

Visual recognition is essentially a pattern recognition problem, whose goal is to

label unseen imaging data based on observations from existing data. Generally,

a recognition system usually comprises three major components, namely feature

extraction, data modeling and model learning Duda et al. (2001).

As the first step, the feature extraction characterizes raw data with measure-

ments that have high intra-class similarity and low inter-class similarity. The data

modeling describes the relationship between observed and unseen data based on

the extracted features. Different models contain different settings, whose param-

eters can be learned through the model learning. Details of each components are

discussed in the following sections.
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2.1.2 Feature Extraction

Feature extraction can be divided into two steps, namely feature detection and

features description. Specifically, the feature detection identifies the distinctive-

ness of data, whereas the feature description describes the distinctiveness of data.

The final output of feature extraction is a set of feature descriptors used for high-

level processing. Different combination of feature detector and descriptors can

impact recognition performance Mikolajczyk & Schmid (2005).

2.1.2.1 Feature Detectors

In this section we review the literature on low-level image feature detection.

Edges Edges are boundaries between two regions in images. More formally,

edges are points in an image with discontinuities of image brightness. These

points usually possess strong gradient magnitudes due to sharp changes in the

brightness. As a result, edge detection algorithms usually rely on the computation

of image gradients.

The approaches for edge detection can be divided into first-order and second-

order methods. They differ in the way they compute edge responses. The

first-order methods compute the edge responses using first-order derivatives such

as gradient magnitude. It then searches for local maximas from the responses.

Canny edge detection Canny (1987) can be considered as a first-order method.

On the other hand, the second-order method searches for zero-crossing in second-

order image derivatives. The Marr-Hildreth Brinks (2008) algorithm is one

of those second-order methods for edge detection. Both methods require post-

processing after the computation of edge responses.

Interest Points Interest points are distinctive points in images or videos,

whose local neighborhood is rich in information. The term “corner” and “in-

terest point” are used interchangeably in the literature. A corner point only

means an intersection of edges. However an interest point can be a corner, and

it can also be an isolated point with local intensity extrema.
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There has been extensive research on interest point detection in the literature.

The Moravec interest operator Moravec (1979) is one of the pioneer work on

interest point detection. The response of each point is measured by the similarity

between the patch centered at each point to patches nearby. The similarity is

measured by the sum of squared differences (SSD) between the two patches.

The response is anisotropic since the similarity is only calculated in the eight

principle directions. As a result, the operator is rotationally invariant. To improve

the Morave operator, Harris and Stephens propose the Harris operator Harris &

Stephens (1988) which considers the differential of SSD with respect to directions

directly. The Harris operator is simple and effective for interest point detection,

and therefore it is still very popular in image processing. It has been extended

for multi-scale interest point detection in Mikolajczyk & Schmid (2004). The

multi-scale Harris operator can detect interest points invariant to translations,

rotations and uniform rescaling in spatial domain.

To tackle the perspective distortions to images, the affine invariant interest

point detector is proposed Mikolajczyk & Schmid (2004). Recently Lowe pro-

posed the Scale Invariant Feature Transform (SIFT) detector Lowe (2004), which

detects interest points invariant to image translation, scaling and robust to local

geometric distortion.

Blobs Blobs are the image regions that have different appearance from their

neighborhood; they can be brighter or darker than the surrounding regions.

Blob detectors can be categorized into the following two categories: (i) meth-

ods based on differential expressions; and (ii) methods based on local intensity

extrema. Different operators are employed to the scale-space representation of

images Lindeberg (1993); operators include the Laplacian operator and the Differ-

ence of Gaussians operators. On the other hand, intensity-based methods measure

how stable a region is along the intensity dimension. The Maximally Stable Ex-

tremal Regions (MSER) detector Matas et al. (2004) is one of the intensity-based

methods. It attempts to locate connected components in a thresholded image us-

ing a set of thresholds. The detected region is invariant to affine transformation

of image intensities.
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2.1.2.2 Feature Descriptors

Gradient based Descriptors Gradient based descriptors describe the gradi-

ent distribution of the region centered at the interest point. Scale Invariant Fea-

ture Transform (SIFT) descriptor is one of the popular descriptors for gradient

description Lowe (2004). It computes the orientation histogram using magnitude

and orientation values of the region centered at the interest point. The magnitude

values are then weighted by a Gaussian function. The obtained histograms are

then normalized to unit lengths to enhance the invariance to local affine distor-

tions. The original SIFT descriptor yields a 128-dimensional descriptor. Various

refinements have been proposed to improve this basic scheme. Ke et al. employ

the Principal Component Analysis to normalize the gradient patch, which yields

a 36-dimensional PCA-SIFT descriptor Ke & Sukthankar (2004). PCA-SIFT is

faster for matching due to its low dimensional nature. However it is shown less

distinctive than the original SIFT descriptor in Mikolajczyk & Schmid (2005).

Mikolajczyk et al. propose another variant of SIFT called GLOH (Gradient Lo-

cation and Orientation Histogram). The GLOH descriptor is shown to be more

distinctive than the SIFT descriptor with the same number of dimensions Miko-

lajczyk & Schmid (2005), but it is computationally more expensive. To maintain

the discriminative power of the SIFT descriptor and lower its computational cost,

the SURF (Speeded Up Robust Features) descriptor is proposed in Bay et al.

(2006). The computation of the SURF descriptor is claimed to be faster than

the SIFT descriptor by its authors. They also claim that the SURF descriptor is

more robust against different image distortion than the SIFT descriptor.

Shape based Descriptors Shape based descriptors are used for measuring

similarity between shapes. The descriptor is one of shape based descriptors Be-

longie et al. (2002). This descriptor is computed at points along object contours.

The key idea is to describe the distribution of relative position of points along

the contour. The distribution is described by a local histogram of edge points in

a radius-angle polar grid. It is employed for digit recognition, object recognition,

and also trademark retrieval.
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An issue of the shape context descriptor is that similar contours have very

different histograms when contours are close to the bin boundaries. This can

result in large distance between two similar shapes if L2-norm or χ2 distance is

used. The Earth Moving Distance (EMD) Rubner et al. (1998) can be used to

alleviate this problem. However it is computationally more expensive. Wang et

al. propose an improved shape context descriptor to tackle this problem Wang

et al. (2007). The idea is to overlap spans of adjacent angular bins so that the

edge points in the overlapped regions are counted in both of the adjacent bins.

As a result, two contours close to the original bin boundary will have similar

histograms.

2.1.3 Data Modeling

The goal of data modeling is to relate observed data and unseen data. Depending

on modeling schemes, the models can be divided into two categories, namely the

generative models and the discriminative models.

2.1.3.1 Generative Models

Generative models are a class of models used for modeling the joint probability

distribution of the observed variable y and unobserved variable x, i.e., p(x, y). A

generative model can be used to generate samples for any variables in the model.

The parameters of the generative models are often estimated using maximum

data likelihood method. Examples of the generative models include the Proba-

bilistic Latent Semantic Analysis (PLSA) Hofmann (1999), the Latent Dirichlet

Allocation (LDA) Blei et al. (2003), and also the Hidden Markov Model (HMM)

Juang & Rabiner (1991).

2.1.3.2 Discriminative Models

In contrast to the generative models, the discriminative models are used to model

the conditional probability distribution of p(y|x). Unlike the generative models,

discriminative models cannot generate samples for variables since there is no

description of its underlying distribution. Examples of discriminative models
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include the Support Vector Machine (SVM) Steinwart & Christmann (2008),

the Boosting Freund & Schapire (1995), and also the Conditional Random Field

Lafferty et al. (2001).

2.1.4 Model Learning

Once a model is determined, different style of machine learning algorithms can

be employed to learn the model parameters.

2.1.4.1 Off-line and On-line Learning

Machine learning algorithms can be categorized based on how the learning occurs

over time. Off-line learning, which is also called batch learning, requires that all

input data are available at the time of learning. On the other hand, on-line

learning does not have such requirement. The input data to the on-line learning

can arrive continuously and sequentially. As a result, the model can adapt to

incoming data during the learning life.

2.1.4.2 Supervised Learning

Machine learning algorithms can be categorized based on the levels of supervision.

The supervised learning is the predominant kind of machine learning method.

The input to the supervised learning consists of input data, and also the true

interpretation of the data (the label of the data). The goal of supervised learning

is to deduce a function which maps the input data to the interpretation defined

by a supervisor.

The task of supervised learning is to predict the function outputs given any

valid input data after learning from examples. Depending on the nature of the

output data, supervised learning can be further classified as the regressions where

outputs are continuous values, or classifications where outputs are discrete values.
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2.1.4.3 Unsupervised Learning

Unlike the supervised learning, unsupervised learning works on the data without

labels. The task of unsupervised learning is to determine the underlying structure

of input data, and how they are organized. One kind of unsupervised learning is

clustering, whose goal is to identify similar patterns inside the input data.

2.1.4.4 Semi-supervised Learning

Semi-supervised learning is a class of machine learning techniques whose input

contains both labeled and unlabeled data for training. The input usually com-

prises a small amount of labeled data, and also a large amount of unlabeled data.

Semi-supervised learning bridges the gap between supervised learning (with fully

labeled data) and unsupervised learning (without any labeled data). It is of great

practical significance to the problems where a fully labeled input data set is very

expensive to obtain. It is shown to improve learning performance by jointly using

unlabeled and labeled data Balcan et al. (2005).

2.2 Visual Recognition

In this section we review the literature on visual recognition. Visual recognition is

often referred to as the task of categorizing images/videos into different categories.

Historically, the work on visual recognition has been concentrated on objects,

scenes and actions, due to respective practical importance. As such, related work

is reviewed on these categories.

2.2.1 Object Recognition

Object recognition implies identifying objects inside given images. Specifically it

involves detecting the existences of objects and localizing possible objects inside

given images. Object recognition has been an active computer vision research area

for decades, and it still remains a challenging area. An effective solution must be

able to cope with several factors including background clutters and occlusions.
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Numerous techniques have been proposed in the literature, which can be divided

into global methods and local methods.

2.2.1.1 Global Methods

Global methods are characterized by the global representations of objects. On

the basis of the global representation, object localization is achieved by scanning

sliding windows on different locations. The global methods usually cast the object

recognition problem into a binary classification problem. During training, an

object classifier is constructed by learning the global statistics of robust image

features from training images. At runtime, the learned classifier is applied over

different locations and scales to predict the presence of objects in sub-windows.

Different image features have been combined with this sliding window approach.

For example, Dalai et al. combine the Histogram of Oriented Gradients (HoG)

features with the linear SVM for pedestrian detection in images Dalal & Triggs

(2005). Viola and Jones combine the Haar Wavelet with the

To speed up the hypotheses search, Lampert et al. propose an Efficient Sub-

window Search (ESS) algorithm to perform object localization Lampert et al.

(2008). The intuition of the ESS is that it is unnecessary to evaluate the quality

function for all subwindows if only the best few subwindows are required; hence

the search should be targeted directly to the subwindows that have the high-

est score by ignoring the rest of the searching space. The ESS is based on the

branch-and-bound framework, which hierarchically splits the searching space into

disjoint subsets while keeping the upper bounds of quality functions for subsets.

As a result, large parts of the searching space can be discarded early if their upper

bounds are lower than a guaranteed score. Experimental results on a number of

datasets demonstrate its improvements on speed for object detection Lampert

et al. (2008).

Despite of its achievements, a major drawback of the ESS is that its time

complexity varies widely from O(n2) to O(n4) for a n × n image. When an

object is not in the image, the optimal subwindow score is low and the ESS may

takes up to O(n4) number of iterations to converge. To address this problem,

An et al. propose two subwindow searching methods (I-ESS and A-ESS) based
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Figure 2.1: The cascade classification structure Viola & Jones (2002). A series of

classifiers are applied to every subwindow. The classifier at each stage attempts to

reject some number of subwindows. After several stages of processing, the number of

subwindows would be radically reduced.

on the linear Kadane’s Algorithm for 1D maximum subarray search in An et al.

(2009). Experimental results show that I-ESS and A-ESS perform significantly

faster than the ESS by reducing the worst case time complexity to O(n3) and

O(n2) respectively.

The aforementioned branch-and-bound based algorithms have significantly

improved localization speed. However for multi-class localization problems, they

may rely on the linear scan of all the object models, which can be costly when

there is an excessive number of object models. To improve the efficiency of large-

scale object recognition, Yeh et al. propose an efficient method for concurrent

object localization and recognition based on branch-and-bound Yeh et al. (2009).

A data-dependent region hypothesis sampling scheme is proposed to efficiently

select promising candidate regions. Experimental results show its superior per-

formance in accuracy and speed compared to the ESS.

Different from the branch-and-bound framework, Viola and Jones propose a

cascaded classification for efficient object localization in Viola & Jones (2002).

Their method takes the advantages of the fact that an overwhelming majority
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of the subwindows are negative. As show in Figure 2.1, a series of classifiers

are applied to every subwindow. The classifier at each stage attempts to reject

some number of subwindows. After several stages of processing, the number of

subwindows would be greatly reduced. Essentially, the cascade attempts to reject

as many negative subwindows as possible. A positive subwindow will trigger

all the classifiers in the cascade. The training of the cascade classification is

similar to that of a decision tree. The classifier at each stage depends on the

training data passing through all the previous stages; hence deeper classifiers in

the cascade face more difficult training samples. Experimental results on face

detection demonstrate that a cascade of classifiers achieves similar performance

compared to the monolithic classifiers, but the cascaded classifier is 10 times

faster than the monolithic classifier.

The cascade structure has been shown to be effective in speeding up the object

detection process. However, the fundamental problem of the cascade structure

is that, the information obtained from each cascade stage will not be passed to

next stage, and therefore historical information about the selected subwindows

will not be used in subsequent stages. To address this problem, Bourdev and

Brandt propose the soft cascade structure Bourdev & Brandt (2005), which is

a generalization of the cascade structure. Their idea is to generalize each stage

to be a scalar-valued decision function which is proportional to how well a given

subwindow passes previous stages. As a result, the information obtained at early

stages can be retained for later stages. Similarly, Dundar and Bi propose a new

design of the cascade structure so that the classifiers at all the stages can be

optimized for the final objective function Dundar & Bi (2007). As depicted in

Figure 2.2, their cascade structure can optimize all the classifiers jointly using

information from different stages.

Though the sliding window approach can be sped up using the cascade struc-

tures, its recognition can be affected by background clutters and occlusions. To

alleviate the effect of background clutters and occlusions, local part based meth-

ods are proposed.
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Figure 2.2: The joint cascade classification structure Dundar & Bi (2007). All the

classifiers are jointly optimized.

2.2.1.2 Local Methods

Unlike global methods, local methods represent an object as a collection of parts.

For example, parts of a human body, such as head, torso and legs, can be modeled

separately. Part detectors can be constructed by learning feature statistics for

different parts. The responses of part detectors are then integrated to form object

hypotheses.

Numerous part based models have been proposed in the literature. Schnei-

derman and Kanade present an object detector that employs multiple classifiers

for face detection in Schneiderman & Kanade (2004). In their approach, each

classifier is based on the statistics of localized parts. Each part captures various

combinations of locality in space, frequency and orientation. Similarly, Fischler

and Elschlager introduce a pictural structure model for object recognition in

Fischler & Elschlager (1973). Intuitively, it models an object as a collection of

parts with connections between certain pairs of parts. Their pictural structure is

quite general in the sense that different schemes can be employed to model the

part connections. A natural way to model the part connections is an undirected

graph based representation. On the basis of the undirected graph representa-
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Figure 2.3: The pictural structure Fischler & Elschlager (1973) for a human face,

where the springs stand for the connections between different parts.

tion, Fischler and Elschlager define the object localization problem as a energy

minimization problem. However energy minimization problems are hard to solve

efficiently, and it is often desirable to find more than a single ( minimum energy

) solution to object localization. To address these limitations, Felzenszwalb and

Huttenlocher propose an efficient algorithm for solving the pictorial structure

energy minimization problem in Felzenszwalb & Huttenlocher (2005), based on

Viterbi algorithm Rabiner & Juang (1993). They employ statistical sampling

techniques for locating multiple hypotheses for object localization. Experiments

are conducted on the task of face and human detection in images.

Both the part based models in Schneiderman & Kanade (2004) and Fischler

& Elschlager (1973) exploit the pairwise relationship between parts. Besides the

pairwise relationship, the hierarchical relationship between parts is also useful for

object modeling. Zhu and Yuille describe a hierarchical compositional model for

deformable object detection in Zhu & Yuille (2006). Objects are represented by

a hierarchical tree where the tree root corresponds to the complete object and

the subtrees correspond to simpler features. Their hierarchical tree structure for

the horse class can be found in Figure 2.4. This approach is tested on cat and

horse detection in images. It is shown to perform well even in the presence of

background clutter and occlusions. Despite of its good performance, the hierar-

chical model is inherently limited to only a moderate number of object classes.
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Figure 2.4: The hierarchical tree structure of a horse Zhu & Yuille (2006).

In order to pursuit a more general structural object model, Fidler et al. present

a generic hierarchical object structure model in Fidler et al. (2006). By exploit-

ing the statistical properties of the highly structured visual world, their model

can overcome the computational complexity that encompasses a large number of

different object categories.

The aforementioned models design specific parts for different objects, however

there is another type of part based methods that possesses more generalization.

They usually require a codebook of local features, which can be formed by ap-

plying clustering algorithms on extracted training features. A codebook consists

of a set of codewords, each of which corresponds to a cluster center. Addition-

ally, the spatial occurrence distribution with respect to the object center for each

codeword is also recorded. The Generalized Hough Transform Ballard (1981)

is employed in recognition. Each local feature from testing images are matched

against the codewords, and valid matches cast probabilistic votes for object cen-

ter hypotheses. These codebook based learning and recognition procedures are

depicted in Figure 2.5. Leibe et al. present the Implicit Shape Model(ISM) for

pedestrian detection in Leibe et al. (2005). The Implicit Shape Model, which is an

instantiation of the codebook learning, captures object shape information based

on salient image fragments. Under a similar framework, Opelt et al. develop
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(a) The codebook learning procedure

(b) The codebook recognition procedure

Figure 2.5: The codebook learning and recognition procedure Leibe et al. (2005).

the Boundary-Fragment-Model (BFM) that detects objects using discriminative

boundary fragments in Opelt et al. (2006).

Traditional codebook based methods cast weighted votes for possible object

center hypotheses. These weights are usually learned in a generative framework,

in the sense that only positive training samples are provided. Maji and Ma-

lik present a discriminative framework for the weight learning in Maji & Malik

(2009), where both positive and negative training samples are required. They

show that weights can be learned in a max-margin framework that directly opti-

mizes the classification performance. Similarly, the codebook is generated using

the k-means clustering. Using the codebook, the discriminative training takes into
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account of both the codeword appearance and its spatial occurrence distribution

with respect to the object center. Combined with a SVM based verification step,

this max-margin codebook based method achieves significant improvement over

the original codebook based method on car and horse detection. Though their

method is based on discriminative training, it still relies on a generative codebook

formed by the k-means clustering. Gall and Lempitsky propose a more discrimi-

native approach for codebook learning in Gall & Lempitsky (2009). Their method

employs a discriminative codebook, which is a random forest that maps image

patches to weighted votes on object center hypotheses. Given both positive and

negative training images, a class-specific random forest is learned for each class.

For recognition, each class-specific random forest is applied to patches in testing

images to cast votes for object center hypotheses. Similarly, Okada describes a

discriminative method for codebook learning in Okada (2009). The Extremely

Randomized Trees Geurts et al. (2006) are used as a discriminative codebook

in his method. Both tree based codebook learning methods have been shown

to outperform the traditional codebook based methods on some object detection

tasks.

2.2.1.3 Hybrid Methods

Global methods focus on global appearance, but they can be affected by occlusion

and background clutter. On the other hand, local part based methods perform

well against occlusions, but they lack global structures. Global and part based

methods are complements to each other. Hybrid methods are proposed to take

advantages of both methods. For example, Felzenszwalb et al. presents a de-

formable part model for object detection in Felzenszwalb et al. (2008). The idea

is to maintain both global and part models for recognition. Their model consists

of a coarse global template covering the entire object and a set of higher resolution

part templates. The templates are represented using the histogram of gradient

(HOG) features Dalai et al. (2005). For recognition, a HOG feature pyramid is

created by computing the HOG features of each level of a standard image pyra-

mid. Object detection is based on the sliding window scanning, where the global

template is used for matching at coarse scale while the part templates are used
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Figure 2.6: The HOG pyramid and the object hypotheses defined by the global tem-

plate (near the top of pyramid) and the part-templates (near the bottom of the pyramid)

Felzenszwalb et al. (2008).

for matching at finer scales. The hypotheses generation for pedestrian detection

is shown in Figure 2.6. Their proposed method is demonstrated to perform well

on rigid and highly deformable objects due to its hybrid nature.

Though the deformable part-model Felzenszwalb et al. (2008) is getting in-

creasingly popular, its sliding window scanning based object detection is still

computational expensive. To speed up object detection, a cascade object detec-

tion framework is proposed for the deformable part model in Felzenszwalb et al.

(2010). The idea is to prune away partial hypotheses using thresholds on their

scores. The notion of probably approximately admissible (PAA) thresholds are

introduced to pick up thresholds that lead to low errors of hypotheses pruning.

Experimental results show that the cascade framework can speed up object de-

tection by more than an order of magnitudes without sacrificing the performance.
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2.2.1.4 Motion based Methods

Motion based methods refer to the motion segmentation methods that detect

moving objects in videos. Generally speaking, they assume that a compact region

with different motion from the background is most likely to be a moving object.

Motion based methods usually work by clustering moving pixels into layers with

consistent motions. Khan and Shah propose a maximum a posterior (MAP)

probability framework that uses multiple cues, such as spatial location, color and

motion for segmentation in Khan & Shah (2001). In their framework weights are

assigned to color and motion terms, which are adjusted per pixel. Wang and Ji

presents a Dynamic Conditional Random Field (DCRF) model to integrate spatial

and temporal constraints for object segmentation in Wang & Ji (2005). Their

segmentation method employs both intensity and motion cues, and it combines

dynamic information and spatial interaction of observed data. Similarly, Han et

al. employ the Markov Random Field (MRF) model which integrates the color

attributes and the spatial relationship between neighboring pixels for motion

segmentation Han et al. (2006).

The aforementioned approaches rely on a persistent or slowly changing back-

ground, and cannot handle the background motions. Bugeau and Pérez propose a

method to segment moving objects in dynamic scenes in Bugeau & Pérez (2007).

In their method, grid points are grouped into clusters using the Mean Shift al-

gorithm D. Comaniciu (2002). Object segmentations are achieved by associating

objects to different clusters under a MAP-MRF framework. Experiment results

show that their proposed method can handle camera motion and different back-

ground motions. On the other hand, existing object segmentation methods also

rely on sufficient object motion, and they cannot work well with sparse and in-

sufficient motions. Liu and Gleicher present an algorithm to learn object color

and locality cues from the sparse motion information in Liu & Gleicher (2009).

Their method works by estimating moving sub-objects using motion cues first.

Color Gaussian Mixture Models are learned from the sub-objects as appearance

models. The locations of these sub-objects are propagated to neighboring frames

as locality cues. Finally object segmentation is achieved by combining the learned

color and locality cues with motions cues in a MRF framework. Experiments on
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videos with a variety of objects and camera motions demonstrate the effectiveness

of their algorithm.

2.2.1.5 Context based Methods

The aforementioned approaches take advantages of appearance and motion cues

for object recognition. However they ignore the contextual cues, which plays an

important role in the biological vision. Psychophysics studies have shown that the

analysis of contextual relationships between visual concepts play an important

role in human vision Biederman et al. (1982). As a result, detection of a concept of

interest can be facilitated by the presence of other concepts which might not even

be of interest. This has led to efforts to account for context based recognition.

Various types of contextual cues have been investigated to improve object

recognition tasks. Most are local context that considers information from the

vicinities of objects, such as pixels, regions and objects. Pixel context captures

the low-level feature interactions between spatially adjacent objects Shotton et al.

(2008). Region context captures the interactions between regions surround ob-

jects Galleguillos et al. (2008). Finally object context describes the information

between objects Parikh et al. (2008). Quite often, labels are assigned to different

type of neighborhoods, and their label agreements are maximized based on the

contextual information. In addition to using single context cue, Galleguillos et al .

develop a multiple kernel learning algorithm to combine multiple context cues.

Pixel, region and object context cues are integrated to form a unified similarity

metric which is optimized for nearest neighbor classification Galleguillos et al.

(2010). Similarly, Choi et al . present a context model that exploits the hierar-

chical context information from over 100 object categories in Choi et al. (2010).

The empirical study of context in object detection Divvala et al. (2009) shows

those frameworks that incorporate contextual information can be more effective

for object detection tasks.
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2.2.2 Scene Recognition

Scene recognition is the task of classifying scene images into semantic categories.

It is not an easy task due to several factors, such as appearance variations, view-

point variations, and illumination changes. Depending on the image represen-

tations, the work in the literature can be divided into two categories. The first

category relies on low-level image representations, while the second one relies on

intermediate-level image representations.

2.2.2.1 Low-level Image Modeling

This approach assumes that scene images can be discriminated based on the

color/texture properties. For instance, a beach scene usually presents an impor-

tant amount of blue (sea) and white (sky) color, whereas the presence of highly

textured areas (trees) denotes a forest scene. Specifically, low-level image fea-

tures (e.g. color/texture) are used to describe images. Different classifiers are

employed to map low-level representations to high-level semantic labels. Differ-

ent representations are reviewed in the following sections.

Global representations Global representations use low-level features com-

puted from the whole image. Based on the global representation, Vailaya et al.

demonstrate that low-level features can successfully discriminate different scene

images in Vailaya et al. (1998). They investigate color histogram, color coherence

vector, DCT coefficient, edge direction histogram, and edge coherence vector for

global representations. A weighted k-NN classifier is employed for the classifica-

tion. Experimental results show that edge-direction based features have the most

discrimination power for scene recognition. It achieves an accuracy of 93.9% in

an database containing 2,716 images.

Sub-region based representations Sub-region based representation uses low-

level features extracted from sub-regions of images. Each image is firstly split into

multiple sub-regions, from which features are extracted. Each sub-region is clas-

sified by classifiers, and the whole image is categorized based on the individual

classification results for each sub-region.
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Such representation stems from the work of Szummer and Picard in Szummer

& Picard (1998), whose goal is to classify indoor and outdoor images. Each image

is partitioned into 16 sub-regions, and then Ohta-space color histograms and

MSAR texture features are extracted from each sub-region. The k-NN classifier

is employed to classify each sub-regions using a histogram intersection measure,

which computes the amount of overlap between corresponding bins in two given

N-dimensional histograms X and Y :

dist(X, Y ) =

N∑

i=1

(X(i)−min(X(i), Y (i))). (2.1)

Finally image classification is achieved by the majority voting of the sub-region

classification results. A performance of 90.3% is achieved for indoor/outdoor im-

age classificaiton. A similar approach can be found in the work of Serrano et

al. Serrano et al. (2004), where color and texture features are also extracted

from sub-regions. However each sub-region is separately classified by the SVM.

In comparison with the k-NN classifier, the SVM generates numerical confidence

measure for each sub-region which can be combined numerically for final classi-

fication.

Despite of the good performance of low-level image representation, such rep-

resentation ignores higher-level image information which could be very valuable

in determining scene types. For example, semantic concepts such as sky, water,

and snow, can be very helpful to the semantic understanding of scene images. As

a result, researchers direct their attention on exploiting the semantic concepts.

2.2.2.2 Semantic Image Modeling

Low-level image features have been shown to be useful in discriminating images

from different scenes. However Serrano et al. show that semantic concepts such

as the presence of sky, sea, etc. can be used to improve scene classification

performance obtained by using low-level features alone Serrano et al. (2004). In

comparison with the low-level features, semantic concepts provide higher-level

semantic understanding of images.

Related work in the literature can be grouped into the following four types.

The first type uses semantic objects to represent the semantic information, in the
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sense that each image is described by the occurrences of the semantic objects.

Object detection is an indispensable step in this method. The second type em-

ploys more general intermediate representations to avoid object detection. Specif-

ically, each image is described using a distribution of visual codewords, which is

produced during training time. The third type describes different scenes using

semantic properties, which encode the spatial structure of the scene. The last

type describes each scene using scene prototypes which are defined by several

parts under mutual geometric constraints. Each part corresponds to a region of

interest. Each type of approach is reviewed in the following sections.

Semantic Objects In this method, scene information is collected from mean-

ingful semantic concept objects, which are discovered by object detection al-

gorithms. Different strategies have been proposed for detecting the semantic

objects.

Fan et al. employ concept-sensitive salient objects to annotate images at

the content level Fan et al. (2005). The concept-sensitive salient objects are

detected using a set of detection functions, which are learned from the labeled

image regions by using the SVM classifiers. For scene recognition, the finite mix-

ture models are used to model the class distributions of relevant semantic objects.

Specifically, a mixture model P (X,Cj|κ, ωcj , θcj ) can be learned for each semantic

category Cj , where θ = {κ, ωcj , θcj , j = 1, ..., Nc} is the set of the mixture param-

eters for Nc semantic scene categories. Given a test image I and the detected

concept-sensitive salient objects {S1, S2, ..., Sn}, we can compute the posterior

probability:

p(Cj|X, I, θ) =
p(X,Cj|κ, ωcj , θcj , p(Cj))∑Nc

i=1 p(X,Ci|κ, ωci, θci, p(Ci))
, (2.2)

where X corresponds to the visual features used for representing the salient ob-

jects, and P (Cj) corresponds to the prior probability of scene category Cj in the

database. The test image I is assigned one scene category based on the maximum

posterior probability.

Although it is impossible to design detectors for all the objects in a scene,

Luo et al. argue that the use of a small number of semantic object detectors can

still achieve decent performance, if complemented with low-level features Luo
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et al. (2005). They propose a framework in Luo et al. (2005), where semantic ob-

jects and low-level features are combined to form a rich description of scenes. The

proposed framework integrates low-level and intermediate-level semantic informa-

tion. The integration is achieved by a Bayesian Network (BN), which is a directed

acyclic graph that encodes the dependence relationship between different nodes

(variables). Using the BN, the joint probability distribution of variables can be

efficiently computed for scene classification. Their method is quantitatively eval-

uated using low-level features (Ohta color space histograms and MSAR texture

features), together with semantic features (sky and grass objects). Experimental

results show that recognition performance can be improved with incorporated

semantic features.

A Bayesian framework is also proposed in Aksoy et al. (2003), where semantic

objects are prototype regions obtained by automatic image segmentations. A

visual grammar is proposed to model the interactions between the prototype

regions based on their spatial relationships. The visual grammar can help to

distinguish two scenes with similar regions but different spatial arrangements.

Experimental results show that the visual grammar bridges the gap between

semantic objects and user semantics, by creating higher level representations that

cannot be described by regions. Another image segmentation based approach is

proposed in Fredembach et al. (2004), where eigenregions that encompass area,

location and shape properties of image regions are used as semantic objects.

Eigenregions are demonstrated to improve image classification performance.

The latest development of this approach focuses on multi-scale image process-

ing. Tanaka et al. propose a multi-level resolution semantic concept representa-

tion for scene recognition in Tanaka et al. (2010). In their approach, an image is

segmented into different level of resolutions, and a semantic model is constructed

in each level to form the final global representation. The sizes of local regions

are dynamically adjusted for different scenes. Experimental results demonstrate

that their method can achieve significant improvement compared to single-level

semantic concept modeling.

Semantic Concepts In comparison with the methods using semantic objects,

this type of methods provides a more general representation. They describe each

31



2.2 Visual Recognition

image based on the Bag-of-Words representation. The Bag-of-Words model Sivic

et al. (2005) originates from the text mining community, where each document

is represented by a frequency vector of words. The counterpart for the “word”

in the model is the “codeword” in images. To form the codewords for images,

clustering algorithms are employed to cluster extracted local feature into clusters,

whose centers are considered as the codewords. The collection of codewords are

usually referred to as the codebook. On the basis of the codebook, each local

feature is quantized to the most similar codeword using similarity measure.

Using the Bag-of-Words representation, some Bayesian models from text min-

ing area have been successfully applied to scene recognition. For example, the

Probabilistic Latent Semantic Analysis (PLSA) Hofmann (2001), and the La-

tent Dirichlet Analysis (LDA) M. Blei et al. (2003) have been used for modeling

scene categories. Both the PLSA and the LDA employ latent topic variables

for the intermediate representations of scene images. Given a set of images

D = {d1, d2, ..., dN}, a codebook W = {w1, w2, ..., wV } formed by running the

k-means clustering algorithm on the extracted features from D, the PLSA as-

sociates di and wj via a hidden topic zk; the joint probability of p(di, zk, wj) is

assumed to have the following form:

p(di, zk, wj) = p(wj|zk)p(zk|di)p(di), (2.3)

where p(wj|zk) represents the probability of the codeword wj occurring in the

hidden topic zk, p(zk|di) is the probability of the topic zk occurring in di, and

p(di) can be considered as the prior probability of di. The graphical representation

of the PLSA is shown in Figure 2.7(a), where N is the number of images and Ni is

the number of visual feature descriptors in di. Similar to the PLSA, the LDA also

treats each image as a mixture of various topics, where each topic is characterized

by a distribution over visual words. In contrast to the PLSA, the LDA models

the topic distributions P (z|d) as latent random variables with Dirichlet priors.

The Dirichlet prior allows the LDA to assign probabilities to unseen data with

fewer parameters, and thus overfitting can be reduced. It is noted that, the PLSA

model is equivalent to the LDA model under a uniform Dirichlet prior distribution

Girolami & Kabán (2003). As shown in Figure 2.7(b), the LDA has two hyper

parameters α and β, where α is the parameter of the Dirichlet prior for the topic
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(a) The PLSA model

(b) The LDA model

Figure 2.7: The PLSA Hofmann (2001) and LDA model M. Blei et al. (2003). Filled

circles indicate observed random variables and the unfilled are unobserved. N is the

number of images and Ni is the number of local features in di.

distribution θ, and β is the parameter for the multinomial word distribution

P (w|z, β). Given the hyper parameters α and β, the joint distribution on topics

z and words w in di can be written as:

p(θi, z,w|α, β) = p(θi|α)

Ni∏

j=1

p(zj|θi)p(wj|zj, β), (2.4)

where Ni is the number of visual feature descriptors in di, p(θi|α) is a Dirich-

let distribution characterized by α, and p(wj|zj, β) is a multinomial distribution

conditioned on zj, characterized by β.

Quelhas et al. provide an approach that combines the PLSA and supervised

classification for scene recognition in Quelhas et al. (2005). In their approach,

each image is represented by an occurrence vector of codewords based on the

Bag-of-Words representation. The occurrence vector is then fed into the PLSA

to generate a more compact representation, which is used for scene recognition

with the SVM. Experimental results demonstrate that the PLSA based represen-

tation is not only discriminative for accurate classification, but also significantly
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Figure 2.8: The Spatial Pyramid representation Lazebnik et al. (2006).

more robust when less training data is available. Similarly, Bosch et al. com-

bines the PLSA based representation and a k-NN classifier for scene recognition

in Bosch et al. (2006). The difference between these methods are as follows: (i)

the number of scenes : 3 in Quelhas et al. (2005), while 13 in Bosch et al. (2006);

(ii) the sampling of features : in Quelhas et al. (2005) feature descriptors are

computed on sparse interest points, whereas in Bosch et al. (2006) descriptors

are computed from dense regular grids. Importantly, dense sampling is demon-

strated to outperform sparse sampling on natural image classification in Bosch

et al. (2006). Fei-Fei and Perona Fei-Fei & Perona (2005) propose two variations

of the LDA for unsupervised scene recognition. In their framework, scene cat-

egories are represented by intermediate-level “themes”, which are learned from

given local regions automatically. Experiments are conducted on a dataset con-

taining 13 scene categories. Although the Bag-of-Words based methods have

been shown to be effective, they neglect the contextual information such as the

spatial structural information between local features, which could be useful for

scene recognition. One remedy is to augment the basic Bag-of-Words framework

with pairwise relationship between neighboring features. Sivic et al. extend the

Bag-of-Words representation to include “doublets” which encode the spatially co-

occurrence relationship between local features in Sivic et al. (2005). The extension

is demonstrated to give a cleaner image segmentation, however no classification
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results are reported. Lazebnik et al. propose a simple and computational effi-

cient approach called “Spatial Pyramid” which is based on aggregating statistics

of local features over fixed subregions in Lazebnik et al. (2006). As illustrated

in Figure 2.8, their method works by dividing an image into increasingly fine

sub-regions, inside which histograms of local features are computed. In this way,

the spatial information is incorporated into the orderless Bag-of-Words repre-

sentation. Finally scene recognition is achieved by the SVM using the pyramid

matching kernel:

κL(X, Y ) =
1

2L
I (H

(0)
X , H

(0)
Y ) +

L∑

l=1

1

2L−l+1
I (H

(l)
X , H

(l)
Y ), (2.5)

where X and Y are two sets of d-dimensional vectors, L is the maximum level

of grid resolution, H
(l)
X and H

(l)
Y are the histograms of X and Y at level l, and

I (H
(l)
X , H

(l)
Y ) measures the histogram intersection Swain & Ballard (1991) between

H
(l)
X and H

(l)
Y . This method achieves high accuracy (81.4%) on a dataset of 15

natural scene categories.

Similar to the spatial pyramid, Lu and Ip propose the spatial mismatch kernel

(SMK) for use with the SVM to categorize images Lu & Ip (2009). Their proposed

kernel can capture the spatial structures of images. In their method, images

are divided into equivalent blocks on a regular grid. Such blocks are used to

generate 2D sequences. By decomposing each 2D sequence into two parallel 1D

sequences (i.e. the row-wise and column-wise ones), the spatial mismatch kernel

can measure the similarity of the 2D sequences. Experiments on the natural image

databases demonstrate that the proposed method outperforms other methods

using the Bag-of-Words framework and the SVM.

Semantic Properties The third type of semantic modeling exploits the se-

mantic properties of scenes. It concentrates on holistic descriptions of scene

structures. As a result, neither segmentation nor feature extraction is required.

One example is the “spatial envelop” proposed by Oliva and Torralba in Oliva

& Torralba (2001). A spatial envelop is a very low dimensional representation of

the scene, and it consists of a set of perceptual dimensions, including naturalness,

openness, roughness, expansion, and ruggedness. These perceptual dimensions
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Figure 2.9: Example of a scene prototype Quattoni & Torralba (2009). (a) Scene

prototypes with candidate ROI. (b) Illustration of the visual words and the regions

used to compute histograms. (c) Search window to detect the ROI in a new image.

represent the dominant spatial structure of a scene, and they can be reliably es-

timated using spectral and coarsely localized information. The spatial envelop

provides a meaningful representation of complex environmental scenes, and it also

provides an efficient way for context modeling.

Semantic Prototypes Finally the last type of semantic modeling describes

each scene using prototypes. Quattoni and Torralba propose the scene proto-

types for indoor scene recognition in Quattoni & Torralba (2009). Each scene

prototype is defined by parts under mutual geometric constraints, where each

part corresponds to a region of interest (ROI). Inside each prototype, each part

is allowed to move on a small window and their displacements are independent of

each other. Each ROI is represented by a spatial pyramid of visual words. Figure

2.9 shows an example of the scene prototypes. The idea of using scene prototypes

to model indoor scenes is due to the fact that some indoor scenes can be well char-

acterized using global spatial properties, while others are better characterized by

the objects they contain. The scene prototype can exploit both local and global

discriminative information. Experiments show that better performance of indoor

scene recognition can be achieved by combining local and global information.
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2.2.3 Action Recognition

Human action recognition from video sequences has a wide range of applications,

such as human computer interaction, surveillance and security, and sports anal-

ysis. The term “action” and “activity” have been used interchangeably in the

literature. Generally speaking, the word “action” represents simple motion pat-

terns which last for a short duration of time, while the word “activity” refers to

the complex sequences of motion patterns which usually have longer temporal

durations. However, there is no strict difference between them, and therefore we

use the word “action” to refer to both motion patterns in this thesis. Numerous

techniques have been proposed for action recognition in the literature, and they

are reviewed in the following sections.

2.2.3.1 Motion based Methods

Motion is used as a strong cue for action recognition, as retinal image motion

plays an important role in our visual motion perception experience Johansson

(1975).

Initially motion characteristics are studied for action recognition. For exam-

ple, Cutler and Davis employ time-frequency analysis to detect and characterize

periodic motions for simple event detection Cutler & Davis (2000). Little and

Boyd study the periodic structure of optical flows for gait recognition Little &

Boyd (1998).

In addition to the motion characteristics, the spatial-temporal behaviors of

the motion in video sequences are also studied. Davis and Bobick propose the

“temporal templates” to capture both the shape cue of human movements in the

space-time domain Davis & Bobick (1997). The temporal template is essentially

a static vector-image where the vector value at each point keeps the motion

information at the corresponding spatial location in the sequence of movements.

Shechtman and Irani propose a space-time behavior based measure to detect the

similarity between different actions Shechtman & Irani (2005). Their proposed

similarity measure extends the notion of 2-dimensional image correlation to the

3-dimensional space-time volume, and it enables the correlation between dynamic

behavior and actions. Similarly, human actions are interpreted as 3-dimensional
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shapes induced by the silhouettes in the space-time volume in Gorelick et al.

(2007).

2.2.3.2 Temporal Model based Methods

The motion based methods are shown to perform well on simple action recog-

nition. However sophisticated models are needed in order to cope with complex

actions.

The Hidden Markov Model (HMM) Juang & Rabiner (1991) is employed by

early researchers to describe complex actions. The HMM models can deal with

time-sequential data, and they exhibit time-scale invariability as well as learning

capability. Yamato et al. use a HMM model to recognize human actions from

videos Yamato et al. (1992). As a precessing step, each set of sequential images is

converted into a symbol sequence by vector quantization of the extracted image

features. A HMM is fitted to each category of human actions. Action recognition

is achieved by determining the best matched HMM model. Similarly, Feng and

Perona Feng & Perona (2002) construct the HMM models from vector-quantized

movelets, which capture the motion from the main body parts. In addition to

the traditional HMM model, several extensions are proposed for the analysis of

human behaviors. For example, a layered HMM is proposed to represent office

activities in Oliver et al. (2004). In comparison with the single-layer structure,

multiple-layer structure enables multiple-layer analysis.

Although the HMM models appear to be robust against temporal segmenta-

tion of observations, they suffer from excessive parameters when applied to rea-

soning about long and complex human activities with insufficient training data.

As a result, complex Bayesian models with fewer parameters are proposed to

model human activities. Recently, Xiang and Gong Oliver et al. (2004) employ

dynamic Bayesian networks to model complex activities of multiple objects in

cluttered scenes. Specifically, an activity of multiple objects is represented using

scene events, and their behaviors are analyzed using the correlations among dif-

ferent events. Oliver et al. propose a dynamic Bayesian network that integrates

temporal, contextual, and ordering constraints with low-level visual detection

results to recognize complex and long-term activities Oliver et al. (2004).
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Recently the practice that describes temporal dependencies using causality has

attracted the attention of researchers. It is natural to use causality to describe

the dependencies. Some attempts have been made to develop causality models

for video analysis. Prabhakar et al. present a data-driven approach to analyze

causality in Prabhakar et al. (2010). There are two stages in their approach. The

first stage encodes a sequence as a multivariate point-process over visual events,

which are the occurrences of visual words. The second stage groups co-occurring

codewords into independent causal sets by analyzing causal relationship between

point-processes. The causal sets usually correspond to salient groupings of events.

Experiment results demonstrate a significant improvement in performance across

videos for social games and quasi-periodic events by their method. Similarly,

Ni et al. propose to encode group-activities using three types of causalities,

namely self-causality, pair-causality, and group-causality in Ni et al. (2009). They

characterize the local interactions within, between, and among trajectories of

different humans respectively. Experiment results show the promising results on

group activity recognition using local causalities.

2.2.3.3 Interest Point based Methods

Interest point based action recognition is getting increasing popular due to its

simplicity and effectiveness. This method represents video sequences using lo-

cal interest points. Given a video sequence, spatio-temporal interest points are

detected and robust feature descriptors are used to describe the interest points.

The feature descriptors are usually vector-quantized into a set of codewords to

form the video representation. The obtained representations are then fed into

classifiers for recognition.

Numerous spatio-temporal features are proposed and combined with different

classifiers for recognition. Laptev and Lindeberg extend the Harris interest points

in the spatial domain to spatio-temporal domain Laptev & Lindeberg (2003).

Their proposed detector can locate local structures that possess large variations

in both space and time. Combined with this space-time features, Schuldt et al.

train a SVM to classify human actions. Dollár et al. propose a spatio-temporal

interest point detector based on a set of linear filters Dollar et al. (2005a), and
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use these features with k-NN classifier for human action recognition. Ke et al.

combine the spatio-temporal volumetric features with a cascade of classifiers for

event detection Ke et al. (2005).

Given the spatio-temporal features, k-means clustering algorithm is usually

employed to produce a set of codewords. Typically, the k-means algorithm groups

features based on their similarity with a predefined cluster number. Liu et al.

propose an approach that is able to automatically discover the optimal number

of codewords by the Maximization of Mutual Information (MMI). Specifically,

the MMI clustering further compresses the codewords generated by the k-means

clustering to produce fewer but more meaningful codewords. Experimental results

show that the codebook produced by the MMI clustering achieves much better

performance than the k-means based codebook for action recognition Liu & Shah

(2008).

All the aforementioned methods use histogram based representations, which

discard the temporal ordering information, This ordering information, however,

could contain important information about the action itself. For example, both

disciplines of hurdle race and long jump consist of motion features for “running”

and “jumping”. To discriminate these two disciplines, the temporal ordering

information is very important. To exploit such ordering, Nowozin et al. propose

a sequential representation which retains this temporal order in Nowozin et al.

(2007). For each interest point found, their method keeps the spatio-temporal

coordinates as well as the descriptor. The descriptors are clustered to produce a

codebook of prototypes. Using the codebook, each video is represented as a set

of words of the form (x; y; t;w), where (x; y; t) is the spatio-temporal coordinates

and w is the codebook index.

In addition to exploiting the temporal ordering information, Bregonzio et

al. propose a method that exploits the global spatio-temporal distribution of

interest points Bregonzio et al. (2009). Their idea is to extract holistic features

from clouds of interest points accumulated over multiple temporal scales followed

by an automatic spatio-temporal feature selection. A feature selection method

measures the relevance of each feature according to how much its value varies

within each action class and across different classes. Specifically, a feature is

considered informative if its value has little variations for actions of the same
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class but significant variations for actions of different classes. Experiment results

demonstrate that the explicit modeling of global spatial and temporal distribution

of interest points is highly discriminative and more robust for recognizing actions

under occlusion.

2.2.3.4 Topic Model based Methods

Driven by the success of latent topic models on scene recognition, researchers

have also applied topic models to the task of action recognition. Following the

Bag-of-Words paradigm, spatio-temporal features are extracted from video se-

quences, and quantized into a set of codewords. Similar to the interest point

based method, each sequence is then represented as a histogram of codeword

occurrences. The obtained histograms are fed into the topic models for action

recognition. For example, Bissacco et al. apply the Latent Dirichlet Allocation

(LDA) to detect humans and estimate poses from single images in Bissacco et al.

(2007). The LDA is used to model the distinctive intermediate themes for hu-

man poses. The codewords in their approach are generated from the histogram

of oriented gradient features. Niebles et al. demonstrate the unsupervised learn-

ing of human action categories using the PLSA and the LDA in Niebles et al.

(2008). The features used in their method are the spatio-temporal interest points

detected in video sequences. Although the PLSA and the LDA can discover dif-

ferent topics correspond to different actions, they fail to take into consideration of

the contextual relationship between features. To model such information, Wong

et al. propose an extension to the PLSA for capturing both semantic (the content

of interest points) and structural (geometric information between interest points)

information for action recognition and localization Wong et al. (2007). Recently

Wang and Mori propose two new topic models for human action recognition in

Wang & Mori (2009). Different from the PLSA and the LDA, the latent topics in

their models correspond to class labels, and therefore some of the latent variables

become observable in their models. In comparison with the PLSA and the LDA,

the training of their model is much easier due to the decoupling of model pa-

rameters. Furthermore, their models alleviate the problem of setting appropriate
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number of latent topics. Action recognition results demonstrate that their models

achieves comparable or significantly better results than the existing models.
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Chapter 3

On-line Learning for Codebook

based Visual Recognition

3.1 Introduction

As our first technical chapter, we look at the codebook based visual recognition

task. Visual recognition is the task of assigning images/videos into different

semantic categories. Codebook based visual recognition is based on the Bag-of-

Words representation, which represents a document as a bag of words. In text

mining area, statistical models have been developed based on the Bag-of-Words

representation, and they have achieved notable success on document classification.

These models have been successfully applied to visual recognition by computer

vision researchers. We investigate one of these models, and propose an extension

for its on-line learning.

The model we investigate is the Probabilistic Latent Semantic Analysis (PLSA)

Hofmann (2001). The PLSA, which is a hierarchical graphical model, associates

documents and words via latent “topic” variables. In the PLSA, each document

is represented as a mixture model of “topics”, and words in the document are

considered as samples from the mixture components. Using these mixture com-

ponents, a document can be reduced to a probability distribution of a fixed set

of topics, which can be considered as a “reduced” description for the document.
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Similarly, the Latent Dirichlet Allocation (LDA) M. Blei et al. (2003) also views

each document as a mixture of topics. However the LDA assumes that each topic

variable has a Dirichlet prior distribution, which could result in more reasonable

mixtures of topics for a document. In comparison with the LDA, the PLSA is a

simpler, and it is equivalent to the LDA under a uniform Dirichlet prior distribu-

tion Girolami & Kabán (2003). As a result, we choose the PLSA as the subject

of our investigation.

The PLSA has been successfully employed on tasks of object categorization

Sivic et al. (2005), scene recognition Bosch et al. (2008), and also action recogni-

tion Carlos Niebles et al. (2008), Savarese et al. (2008). However, the PLSA has

the following disadvantages. Firstly, the conventional learning for the PLSA is

batch (off-line) learning, and hence it cannot handle data that arrives sequentially

or data that has excessive memory requirements. Secondly, the PLSA relies on a

codebook of words for the Bag-of-Words representation. For visual recognition,

the k-means clustering algorithm is usually employed to produce a codebook of

visual words Sivic et al. (2005), Carlos Niebles et al. (2008), Bosch et al. (2008).

An optimal codebook can be constructed by taking into account of all training

features. However, it would be infeasible to apply the same algorithm on large

datasets with excessive features. In practice, only a subset of the features is

chosen for the clustering, and it results in a suboptimal codebook. In order to

address the aforementioned problems, we propose an on-line learning algorithm

for learning the PLSA from sequentially arriving data. Our contributions are two-

fold: (i) an on-line learning algorithm that learns parameters of the PLSA model

from sequentially incoming data; (ii) a codebook adaptation algorithm that can

capture the full characteristics of all features during the on-line learning.

We apply the proposed algorithms to two visual recognition tasks, namely,

scene and action recognition. The task of scene recognition is the categorization

of scene images. Most work in the literature can be classified into one of the two

following approaches. The first approach considers low-level feature based image

representations Vailaya et al. (2001), Wu & Rehg (2008), Gupta et al. (2009),

whereas the second one relies on intermediate semantic representations Vogel &

Schiele (2004), Fei-Fei & Perona (2005), Bosch et al. (2008), Quattoni & Torralb

(2009), Li et al. (2009). Among the work from the second category, some models
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learn semantic concepts in a supervised manner Vogel & Schiele (2004), Quattoni

& Torralb (2009), while the others learn without supervision Fei-Fei & Perona

(2005), Bosch et al. (2008), Li et al. (2009). The PLSA based scene recognition

belongs to the second category, and it has been shown by Bosch et al., Bosch

et al. (2008) to outperform previous models Vogel & Schiele (2004), Fei-Fei &

Perona (2005). Action recognition is an important task in video surveillance.

Numerous techniques have been proposed for action recognition in the literature.

Early researchers study the motion characteristics for action recognition Cutler

& Davis (2000), Little & Boyd (1998). The spatial-temporal motion behavior is

also studied Davis & Bobick (1997), Shechtman & Irani (2005). These motion

based methods are shown to perform well on simple action recognition. However

temporal models are needed in order to cope with complex actions. Different

models are proposed, such as the Hidden Markov Model (HMM) Oliver et al.

(2004), the dynamic Bayesian networks Oliver et al. (2004), and the causality

models Ni et al. (2009), Prabhakar et al. (2010). In addition to the temporal

models, action recognition can also be realized using the interest point based

methods. In these methods, salient features are extracted from video sequences,

which are then clustered into codewords. By quantizing features into codewords,

each sequence is represented as a histogram of codeword occurrences which is fed

into classifiers for recognition. Numerous spatio-temporal features are proposed

and combined with different classifiers for recognition Laptev & Lindeberg (2003),

Ke et al. (2005), Bregonzio et al. (2009). Similar to these methods, topic model

based methods also use the histogram representation for videos. However the

histograms are fed into topic models, such as the LDA, the PLSA, etc. The

PLSA has been employed for action recognition using spatial-temporal interest

points Dollar et al. (2005b), and it has been shown to perform well on this task

Carlos Niebles et al. (2008). The experimental results of our proposed algorithm

show that the proposed algorithm can handle sequentially arriving datasets that

the batch PLSA learning cannot cope with. They also show that the performance

of our proposed method is comparable with that of the batch PLSA learning on

visual recognition.

The rest of this chapter is organized as follows: Section 3.2 reviews the batch

learning algorithm for the PLSA. Our proposed on-line PLSA is explained in
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Section 3.3. The experimental results are presented in Section 3.4. Finally our

conclusions are summarized in Section 3.5.

3.2 Batch PLSA

The PLSA was originally proposed for text modeling, in which words are con-

sidered as the elementary building blocks for documents. Rather than modeling

documents as sets of words, the PLSA models each document as a mixture of

latent topics, and each topic is characterized by a distribution over words. In

the context of visual recognition, visual features are considered as words. It is

important to note that the PLSA actually allows us to explicitly represent each

document using intermediate semantic concepts (latent topics). Since the number

of latent topics is usually much smaller than that of visual words, such modeling

would result in a compact and low-dimensional representation for documents.

Denote zk ∈ Z = {z1, z2, ..., zK} as a latent topic variable that associates

words and documents, and X as the training co-occurrence matrix consists of co-

occurrence counting of (di, wj), collected fromN visual documentsD = {d1, d2, ..., dN},

based on a codebook of V visual words W = {w1, w2, ..., wV }. The joint prob-

ability of the visual document di, the hidden topic zk and the visual word wj is

assumed to have the following form Hofmann (2001):

p(di, zk, wj) = p(wj|zk)p(zk|di)p(di), (3.1)

where p(wj |zk) represents the probability of the word wj occurring in the hidden

topic zk, p(zk|di) is the probability of the topic zk occurring in the document di,

and p(di) can be considered as the prior probability of di. The joint probability

of observation pair (di, wj) can be generated by marginalizing over all the topic

variables zk:

p(di, wj) = p(di)
∑

k

p(zk|di)p(wj|zk). (3.2)

Let n(di, wj) be the number of occurrences of the word wj in the document di, and

all of them constitute the co-occurrence matrix X . The prior probability p(di) can

be computed as p(di) ∝
∑

j n(di, wj). The parameters of the PLSA then contain
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multinomial distributions over K latent variables, and such that
∑V

j=1 p(wj|zk) =

1 and
∑K

k=1 p(zk|di) = 1. We represent these KV + KN probabilities using

θ = {{p(wj|zk)}j,k, {p(zk|di)}k,i}. The log likelihood of X given θ can be written

as

L(X|θ) =
N∑

i=1

V∑

j=1

n(di, wj) log p(di, wj). (3.3)

A maximum likelihood estimation of θ is obtained by maximizing the log likeli-

hood using an Expectation Maximization (EM) algorithm Dempster et al. (1977).

Starting from an initial estimate of θ, the expectation (E) step of the algorithm

computes the following expectation function

Q(θ̂|θ) = Ez[logP (X,Z|θ̂)|X, θ]

∝
N∑

i=1

V∑

j=1

n(di, wj)
K∑

k=1

p(zk|di, wj) log[p(zk|di)p(wi|zk)].

The maximization (M) step then calculates the new estimate θ̂ by maximizing

the expectation function Q(θ̂|θ) computed at E-step. The EM algorithm alter-

nates between both steps until the log likelihood converges. It is shown in Hof-

mann (2001) that, the E step is equivalent to computing the posterior probability

p(zk|di, wj), given the estimated p(wj|zk), p(zk|di):

p(zk|di, wj) =
p(wj|zk)p(zk|di)∑K

l=1 p(wj|zl)p(zl|di)
. (3.4)

Using the computed p(zk|di, wj) from the E-step, the M step corresponds to the

following updates:

p(wj|zk)
new =

∑N

i=1 n(di, wj)p(zk|di, wj)∑V

m=1

∑N

i=1 n(di, wm)p(zk|di, wm)
, (3.5)

p(zk|di)
new =

∑V

j=1 n(di, wj)p(zk|di, wj)
∑K

l=1

∑V

j=1 n(di, wj)p(zl|di, wj)
. (3.6)

In (3.6), the denominator can also be written as n(di), i.e., the total number of

words occurring in di.

During the inference(testing) stage, given a testing image/video dtest, the

topic-based intermediate representation p(zk|dtest) are computed by using the
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“fold-in” heuristic described in Hofmann (2001). The heuristic employs the EM

algorithm in the same way as in the learning, while fixing the values of coefficients

p(wj |zk) obtained from the training stage.

3.3 On-line PLSA

3.3.1 Notations and Conventions

We are to present our algorithm for the PLSA under the setting of on-line

learning, where training data is assumed to arrive at successive time slices.

Denote D(t) = {d
(t)
1 , d

(t)
2 , ..., d

(t)
Nt
} as the data stream arriving at time t. and

F (t) = {f
(t)
1 , f

(t)
2 , ..., f

(t)
Nft
} as the feature descriptors from D(t). Let W (t) =

{w1, w2, ..., wVt
} be the codebook of visual words at different time slice t, X(t)

be the co-occurrence matrix at time t.

3.3.2 On-line Codebook Adaptation for the PLSA

The goal of our algorithm is to learn the parameters of the PLSA model

from data streams. To learn a PLSA model for visual recognition, a codebook of

visual words is required. The k-means clustering algorithm is usually employed

to produce the codebook using all the features in a training set. Niebles et al.

show that a bigger sized codebook often results in a higher recognition accuracy

Carlos Niebles et al. (2008). The size of the codebook is usually proportional

to the number of features. However in practice, due to memory limitations,

only a limited number of features are considered for the codebook construction

when dealing with a large dataset. The produced codebook is not necessarily

optimal as it only considers a subset of features. In order to construct a codebook

that captures the full characteristics of all features, we present here an codebook

adaptation algorithm for the codebook construction.

Given a feature vector f
(t)
n , and the corresponding codeword wk, denote δ as

the difference vector between f
(t)
n and wk, i.e., δ = f

(t)
n − wk. We simply assume

that each dimension of δ follows an i.i.d. zero mean Gaussian distribution, and

hence the squared Euclidean distance between f
(t)
n and wk can be approximately
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Algorithm 1 On-line Codebook Adaptation
1: INPUTS:

2: F (t) = {f
(t)
1 , f

(t)
2 , ..., f

(t)
Nft
} - feature vectors in the data stream at time (t).

3: W (t−1) = {w′
1, w

′
2, ..., w

′
Vt−1
} - the codebook from time (t− 1).

4: Σ(t−1) = {(µ′
1, σ

′
1), (µ

′
2, σ

′
2), ..., (µ

′
Vt−1

, σ′
Vt−1

)} -distance statistics for W (t−1).

5: Σ̄ = {(µ̄, σ̄2)} - the mean distance statistics computed from the initial set.

6: β - the learning factor.

7: OUTPUTS:

8: W (t) = {w1, w2, ..., wVt} - updated codebook for time (t).

9: Σ(t) = {(µ1, σ1), (µ2, σ2)..., (µVt , σVt)} - the distance statistics for W (t).

10:

11: FOR each time slice t ≥ 1

12: Vt ← Vt−1.

13: FOR each feature f
(t)
n

14: Choose a codeword wk, where k = argmini(
‖f

(t)
n −wi‖

2
2

σ2
i

).

15: d← ‖f
(t)
n − wk‖

2
2.

16: IF d ≤ µk + 2.5σk

17: µk ← µk + β(d− µk).

18: σ2
k ← σ2

k + β(d − µk)(d− µk).

19: wk ← wk + β(f
(t)
n − wk. )

20: ELSE

21: Vt ← Vt + 1, wVt ← f
(t)
n , µVt ← µ̄, σ2

Vt
← σ̄2.

22: END IF

23: END FOR

24: END FOR

modeled as a Gaussian distribution Papoulis & Pillai (2002). The statistics µk

and σk are the mean and standard deviation for the squared distances between

wk and all the features assigned to wk.

The codebook adaptation algorithm is presented in Algorithm 1. As shown
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in Algorithm 1, the inputs include the current feature set F (t), the previous

codebook W (t−1), and also the distance statistics Σ(t−1) for W (t−1). The Σ(t−1)

consists of corresponding means and variances for the squared distances between

the features and corresponding codewords. During the adaptation process, each

feature chooses one codeword to update. For each feature vector f
(t)
n , we select the

codeword wk that has the minimum of
‖f

(t)
n −wk‖

2
2

σ2
k

. Let d be the squared distance

between f
(t)
n and wk. If the difference between d and µk is within 2.5 σk, both wk

and (µk, σk) will be updated using f
(t)
n . The updating factor β is set to be a flat

rate (e.g., β = 0.05). If no match is found between f
(t)
n and all the codewords,

a new codeword is then initiated using f
(t)
n . The related distance statistics are

initiated using µ̄, and σ̄2, which are the corresponding mean values computed

from the initial training set.

3.3.3 On-line EM for PLSA Learning

The learning of the PLSA model in Section 3.2 employs the batch EM for param-

eter estimation. However, the batch EM is not applicable to data that arrives

sequentially. To enable the learning of the PLSA under this situation, we propose

an on-line learning algorithm for the PLSA. The idea of the proposed algorithm

is to update the model parameter θ using D(t) received at each time slice. For

a better understanding of the algorithm, we begin the on-line learning using the

notations for batch learning in Section 3.2.

To enable the on-line learning for the PLSA, we firstly define two statistics

〈n(d, wj)〉zk and 〈n(d, w)〉zk as follows:

〈n(d, wj)〉zk =
N∑

i=1

n(di, wj)p(zk|di, wj), j ∈ {1, 2, ..., V }, k ∈ {1, 2, ..., K}.

(3.7)

〈n(d, w)〉zk =

V∑

j=1

N∑

i=1

n(di, wj)p(zk|di, wj), k ∈ {1, 2, ..., K}. (3.8)

Based on the above definitions, (3.5) in the M-step can be re-formulated as:

p(wj|zk) =

∑N

i=1 n(di, wj)p(zk|di, wj)∑V

m=1

∑N

i=1 n(di, wm)p(zk|di, wm)
=
〈n(d, wj)〉zk
〈n(d, w)〉zk

. (3.9)
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The main idea of our proposed on-line EM is to replace the values of 〈n(d, wj)〉zk
and 〈n(d, w)〉zk with weighted mean values. We define the weighted mean for

〈n(d, w)〉zk at time t as follows:

〈n(d, w)〉(t)zk
= η(t)

t∑

τ=1

((
t∏

s=τ+1

λ(s))
Nτ∑

i=1

V∑

j=1

n(d
(τ)
i , wj)p

(τ)(zk|d
(τ)
i , wj)) (3.10)

where

η(t) = (
t∑

τ=1

t∏

s=τ+1

λ(s))−1, (3.11)

and p(t)(zk|d
(t)
i , wj) represents the posterior probability computed using visual

document stream D(t) and W . In (3.11), the parameter λ(s) (0 ≤ λ(s) ≤ 1, s =

1, 2, 3, ...) is a time-dependent decaying factor that determines the contribution

of the data stream at each time slice.

The 〈n(d, w)〉
(t)
zk in (3.10) can be expanded as follows:

〈n(d, w)〉(t)zk
= η(t)λ(t)

t∑

τ=1

(

t−1∏

s=τ+1

λ(s))

Nτ∑

i=1

V∑

j=1

n(d
(τ)
i , wj)p

(τ)(zk = c|d
(τ)
i , wj)

= η(t)λ(t)
t−1∑

τ=1

(
t−1∏

s=τ+1

λ(s))
Nτ∑

i=1

V∑

j=1

n(d
(τ)
i , wj)p

(τ)(zk = c|d
(τ)
i , wj)

+ η(t)λ(t)(
t−1∏

s=t+1

λ(s))
Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj). (3.12)

We have

η(t)λ(t)(

t−1∏

s=t+1

λ(s))

Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj)

= η(t)(
t∏

s=t+1

λ(s))
Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj)

= η(t)
Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj) (3.13)

due to the fact that:
t∏

s=t+1

λ(s) = 1. (3.14)
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Combining (3.12) and (3.13), we can rewrite 〈n(d, w)〉
(t)
zk as:

〈n(d, w)〉(t)zk
= η(t)λ(t)

t−1∑

τ=1

(

t−1∏

s=τ+1

λ(s))

Nτ∑

i=1

V∑

j=1

n(d
(τ)
i , wj)p

(τ)(zk = c|d
(τ)
i , wj)

+ η(t)
Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj). (3.15)

Considering the fact that

〈n(d, w)〉(t−1)
zk

= η(t− 1)

t−1∑

τ=1

(

t−1∏

s=τ+1

λ(s))

Nτ∑

i=1

V∑

j=1

n(d
(τ)
i , wj)p

(τ)(zk = c|d
(τ)
i , wj)

(3.16)

based on (3.10), we simplify (3.15) as

〈n(d, w)〉(t)zk
=

η(t)

η(t− 1)
λ(t)〈n(d, w)〉(t−1)

zk
+ η(t)

Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj)

= 〈n(d, wj)〉
(t−1)
zk

+ η(t){

Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk = c|d
(t)
i , wj)

+ (
λ(t)

η(t− 1)
−

1

η(t)
)〈n(d, w)〉(t−1)

zk
}. (3.17)

Based on (3.11), we have

η(t) = (

t∑

τ=1

t∏

s=τ+1

λ(s))−1 = (1 + λ(t)

t−1∑

τ=1

t−1∏

s=τ+1

λ(s))−1

= (1 + λ(t)(η(t− 1))−1)−1

=
η(t− 1)

λ(t) + η(t− 1)
, (3.18)

which can be rewritten as:

1

η(t)
=

λ(t)

η(t− 1)
+ 1. (3.19)

Substituting (3.19) into (3.17), we can get

〈n(d, w)〉(t)zk
= (1− η(t))〈n(d, w)〉(t−1)

zk
+ η(t)[

Nt∑

i=1

V∑

j=1

n(d
(t)
i , wj)p

(t)(zk|d
(t)
i , wj)].

(3.20)
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Similarly, 〈n(d, wj)〉
(t)
zk can also be simplified as:

〈n(d, wj)〉
(t)
zk

= (1− η(t))〈n(d, wj)〉
(t−1)
zk

+ η(t)[

Nt∑

i=1

n(d
(t)
i , wj)p

(t)(zk|d
(t)
i , wj)].

(3.21)

Using (3.20), and (3.21), the on-line estimation for p(wj|zk) at time t can be

written as follows:

p(t)(wj |zk) =
〈n(d, wj)〉

(t)
zk

〈n(d, w)〉
(t)
zk

. (3.22)

We can see from (3.20) and (3.21) that the values of 〈n(d, w)〉
(t)
zk and 〈n(d, wj)〉

(t)
zk

are obtained by combining previous values 〈n(d, w)〉
(t−1)
zk and n(d, wj)〉

(t−1)
zk with

current data D(t) using different weights respectively. The weights are controlled

by the normalization coefficient η(t) (1/t ≤ η(t) ≤ 1) which is used as a learning

rate. Sato et al. point out in Sato (2000) that the on-line EM is a stochastic

approximation. To guarantee the estimate to converge to a local maximum of

the likelihood function of the data, η(t) must satisfy the following conditions:

lim
t→∞

η(t) = 0,

∞∑

t=1

η(t) =∞,

∞∑

t=1

η2(t) <∞. (3.23)

We employ the (1/t)-schedule as it is designed to match these conditions. Under

this schedule, η(t) is set to be 1/t, which means each stream is weighted equally,

i.e., λ(s) = 1. To combine this on-line algorithm with the codebook adaptation

in Section 3.3.2, η(t) is set to 1 for any newly created codeword wj, since there

is no past experience for the new codeword to learn from.

The workflow of the on-line learning algorithm with codebook adaptation is

depicted in Figure 3.1, and its detailed algorithm can be found in Algorithm 2.

The initial parameter estimates 〈n(d, wj)〉
(0)
zk , 〈n(d, w)〉

(0)
zk , are estimated from an

initial training set D(0) using standard EM of PLSA. During on-line learning, our

algorithm performs codebook adaptation using F (t) from data stream D(t) at each

time slice t, and then conducts the on-line learning based on the updated code-

book W (t). As a result, the proposed algorithm can automatically and adaptively

learn from data streams.
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Figure 3.1: The workflow of the proposed algorithm. The initial training employs the

batch PLSA, whereas the on-line training applies the proposed on-line learning.

3.3.4 Comparison with the QB-PLSA

Previous work on the on-line learning of the PLSA and other latent models can

be found in text mining area Chou & Chen (2008), AlSumait et al. (2008), Chien

& Wu (2008). However, all these algorithms are proposed for text mining only,

and there is no visual codebook and its adaptation involved. The most related

work to our algorithm is the QB-PLSA proposed by Chien et al. in Chou & Chen

(2008). In this section we compare the proposed algorithm with the QB-PLSA.

The QB-PLSA essentially models the priors of the PLSA parameters using

Dirichlet distributions. In the QB-PLSA, the on-line learning is achieved by

using the Quasi Bayesian estimation Hamilton (1991). Following the notations

in Section 3.1 and 3.3, we denote Dt = {D
(1), D(2), ..., D(t)} as the training data
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Algorithm 2 On-line EM Algorithm for PLSA Learning
1: INITIAL STAGE

2: Estimate 〈n(d,w)〉
(0)
zk , 〈n(d,wj)〉

(0)
zk from the initial training set.

3: Construct the initial codebook W (0) using F (0) from the initial training set.

4: ON-LINE LEARNING STAGE

5: FOR each image stream at time slice t

6: Codebook Adaptation:

7: Compute W (t) using F (t) and W (t−1) based on Algorithm 1.

8: Compute X(t) = {n(d
(t)
i , wj)} with W (t) and F (t).

9: On-line EM Parameter Estimation:

10: Initialize p(t)(wj |zk), p
(t)(zk|d

(t)
i ) based on W (t).

11: FOR each EM iteration n

12: E-step:

13: Compute p(t)(zk|d
(t)
i , wj) using p(t)(wj |zk) and p(t)(zk|d

(t)
i ) with (3.4).

14: M-step:

15: Compute 〈n(d,w)〉
(t)
zk using X(t), 〈n(d,w)〉

(t−1)
zk , & p(t)(zk|d

(t)
i , wj) with (3.20).

16: Compute 〈n(d,wj)〉
(t)
zk using X(t), 〈n(d,wj)〉

(t−1)
zk , & p(t)(zk|d

(t)
i , wj) with (3.21).

17: Compute p(t)(wj|zk) using 〈n(d,w)〉
(t)
zk and 〈n(d,wj)〉

(t)
zk with (3.22).

18: Compute p(t)(zk|d
(t)
i ) using X(t) and p(t)(zk|d

(t)
i , wj) with (3.6).

19: Check convergence:

20: compute L(n)(X(t)|θ) using p(t)(wj |zk) and p(t)(zk|d
(t)
i ) with (3.3).

21: IF new likelihood L(n) satisfies convergence condition |L
(n)−L(n−1)

L(n−1) | < ǫ

22: Terminate EM iteration.

23: END IF

24: END FOR

25: END FOR

received up to time t. According to the QB estimate, we have

θ
(t)
QB = argmax

θ

P (θ|Dt)

= argmax
θ

P (D(t)|θ)P (θ|Dt−1)

∼= argmax
θ

P (D(t)|θ)g(θ|ϕ(t−1)),

(3.24)
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where the posterior probability P (θ|Dt−1) is approximated by the closest tractable

prior probability distribution g(θ|ϕ(t−1)). The prior distribution g(θ|ϕ(t−1)) mod-

els the randomness of the parameter θ, with the hyper parameters ϕ(t−1) which

evolve from historical data. It can be observed from ( 3.24 ) that the QB estimate

provides a method for learning the parameters of the PLSA in an on-line manner.

At time t, we can use the dataD(t) to update the parameter θ and the prior distri-

bution g(θ|ϕ(t−1)), and D(t) can be released after the update. The introduction of

the prior distribution for θ plays an important role in the QB-PLSA. In Bayesian

inference, conjugate prior is usually chosen for reproducible prior and posterior

distribution pairs. Due to the multinomial nature of the PLSA parameters, the

Dirichlet distribution is chosen to model the prior of θ. Given the assumption that

all parameters are independent, the prior distribution for the θ can be expressed

as:

g(θ|ϕ(t−1)) ∝
K∏

k=1

[
V∏

k=1

P (wj|zk)
α
(t−1)
j,k

−1
Nt∏

i=1

P (zk|di)
β
(t−1)
k,i

−1], (3.25)

where ϕ(t−1) = {{α
(t−1)
j,k }j,k, {β

(t−1)
k,i }k,i} are the hyper parameters of the Dirichlet

distribution. At time t, given ϕ(t−1), θ(t) can be estimated by maximizing the

logarithm of posterior probability, which can be written as:

θ
(t)
QB
∼= argmax

θ

P (D(t)|θ)g(θ|ϕ(t−1))

= argmax
θ

[logP (D(t)|θ) + log g(θ|ϕ(t−1))].
(3.26)

As a result, the extended expectation function can be expressed as follows:

R(θ̂(t)|θ(t)) ∝

Nt∑

i=1

V∑

j=1

n(di, wj)

K∑

k=1

p(t)(zk|di, wj) log[p
(t)(zk|di)p

(t)(wi|zk)]

+
V∑

j=1

K∑

k=1

(α
(t−1)
j,k − 1) log p(t)(wj|zk)

+
Nt∑

i=1

K∑

k=1

(β
(t−1)
k,i − 1) log p(t)(zk|di).

(3.27)

Following the EM algorithm, we calculate the extended expectation function

R(θ̂(t)|θ(t)) in the E-step, and we maximize it with respect to θ in the M-step. In

the implementation, the E-step computes the posterior probability p(t)(zk|di, wj),
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given the estimated p(t)(wj|zk), p
(t)(zk|di), while the M-step corresponds to the

following updates:

p(t)(wj |zk)
new =

∑Nt

i=1 n(di, wj)p
(t)(zk|di, wj) + (α

(t−1)
j,k − 1)

∑V

m=1[
∑Nt

i=1 n(di, wm)p(t)(zk|di, wm) + (α
(t−1)
j,m − 1)]

, (3.28)

p(t)(zk|di)
new =

∑V

j=1 n(di, wj)p
(t)(zk|di, wj) + (β

(t−1)
k,i − 1)

n(di) +
∑K

l=1(β
(t−1)
l,i − 1)

. (3.29)

The final estimates for p(t)(wj |zk) and p(t)(zk|di) can be obtained once the EM

converges to a local optimum. In addition to the parameter updates, the QB-

PLSA is also geared with the hyper parameter updates. The exponential of the

extended expectation function can be written as a new Dirichlet distribution:

exp{R(θ̂(t)|θ(t))} ∝

K∑

k=1

[

V∑

j=1

p(t)(wj |zk)
(α

(t−1)
j,k

−1)
Nt∑

i=1

p(t)(zk|di)
(β

(t−1)
k,i

−1)]. (3.30)

The update equations for the hyper parameters at time t can then be produced

as follows:

α
(t)
j,k =

Nt∑

i=1

n(di, wj)p
(t)(zk|di, wj) + α

(t−1)
j,k , (3.31)

β
(t)
k,i =

V∑

j=1

n(di, wj)p
(t)(zk|di, wj) + β

(t−1)
k,i . (3.32)

Both the proposed on-line PLSA and the QB-PLSA tackle the parameter up-

dates under the EM framework. The motivation of the QB-PLSA is to address

the parameter updates in a continuously changing word of documents Chien &

Wu (2008). By the introduction of prior distribution and its hyper parameter

updating scheme, the QB-PLSA can adapt the model in an on-line manner. De-

spite of the reported encouraging results, their method assumes some parametric

models which might limit their capability of modeling complicated dataset. In

contrast, our method is more flexible in the sense that it is data-driven and no

parametric assumptions are made.
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3.4 Experiments

We evaluate the performance of the proposed algorithm for both scene recogni-

tion and human action recognition. All the experiments are conducted on a PC

with an Intel 2.09 GHz Core Duo CPU and 1GB of RAM. We use the Matlab

implementation of PLSA code provided by Fergus et al. R. Fergus & Torralba

(2005). We compare the on-line learning and batch learning in the experiments.

It is noted that statistical significance testing is not conducted as no significant

testing was reported in related papers.

3.4.1 The Picasa Scene Data

To demonstrate the advantages of the proposed algorithm, we conduct our first

experiment using web images. We issue queries to the Google Picasa Web Album

using the provided API Google (2009), and receive the images sequentially. All

the collected images are resized to 320-by-256 pixels.

We repeat the experiments for 5 runs, and the average recognition performance

is used for comparison. At each run, we firstly collect 238 images as the initial

training set, and also 238 images as the testing set. We then collect different

number streams of images for the on-line learning. We use 2, 3, and 4 streams.

We collected 4743 images from 7 different scene categories in total at each run.

Samples of the images can be found in Figure 3.2.

For feature extraction, we use the SIFT descriptor Lowe (2004) as the local

feature descriptor. Feature points are densely sampled on regular grids from each

image, and 80 SIFT descriptors are extracted per image. We adopt the scene

recognition approach using the PLSA and a k-NN classifier proposed in Bosch

et al. (2008) in the experiments. For the PLSA parameters, the codebook size

is set to 1300, and the number of topics is fixed to 25. The parameter k for the

k-NN classification is set to 17.

For the batch learning, we intend to learn a batch model using all the images

from both the initial set and the on-line training set, which is 4505 in total. Let

|D|, |W |, and |Z| be the number of images, the codebook size, and the number

of topics. The memory requirement for our Matlab based implementation is
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3.4 Experiments

Figure 3.2: Sample images from the Picasa scene dataset.

64 ∗ |D||W ||Z| bytes (In this experiment, |D|, |W |, and |Z| are 4505, 1300, and

25 respectively). This memory requirement exceeds the Matlab memory capacity

on our computer, and therefore the conventional batch PLSA learning cannot

be performed on our system. Compared with the batch learning algorithm, the

proposed algorithm has the advantages of lower memory consumption since only

a subset of the training data is processed at each time.

At each run of the on-line learning, an initial model is learned using the batch

learning algorithm on the initial training set. An initial codebook is also obtained

by clustering all the features from the initial set. We then update the initial

model using image streams. After each update, the topic vectors for the images

from both the initial set and the testing set are re-computed using the updated

model. The category of each testing image is determined by a k-NN search in
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Figure 3.3: The performance of on-line learning algorithm based on the Google Picasa

Web Album.

the initial set. To see the effect of the codebook adaptation, the experiments

are conducted using the on-line learning algorithms with and without codebook

adaptation respectively. Figure 3.3 reveals the overall trend of recognition rates

throughout the on-line learning. It can be seen from Figure 3.3 that, the codebook

adaptation helps to improve the recognition performance under different stream

size settings. Table 3.1 summarizes the experimental results, and the highest

accuracy of 67.20% is obtained by the algorithm with codebook adaptation.
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Table 3.1: Summary of performance on the Picasa scene dataset. Results are reported

as the average accuracies of 5 runs.

#streams 2 3 4

Without codebook adaptation 64.37% 64.00% 64.02%

With codebook adaptation 65.54% 65.42% 67.20%

Batch Learning N/A

3.4.2 The OT Scene Dataset

In our second experiment, we compare the proposed algorithm with the conven-

tional batch PLSA, and also the QB-PLSA proposed in Chien &Wu (2008), using

the OT scene dataset Oliva & Torralba (2001). The OT dataset contains 2688

images from 8 different scene categories, and they are 360 coasts, 328 forest, 260

highway, 308 inside of cities, 374 mountain, 410 open country, 292 streets, and

356 tall buildings. The average size of each image is 256-by-256 pixels. Sample

images can be found in Figure 3.4.

For feature extraction, the SIFT descriptor Lowe (2004) is employed as the

local feature descriptor. We again use the scene recognition approach using the

PLSA and a k-NN classifier in this experiment, by following the settings detailed

in Horster et al. (2008). The number of topics for the PLSA is set to 25, and

the codebook size is set to 650. We optimize the k for the k-NN classifier in the

experiments.

The experiments are repeated for 5 runs, and the average recognition per-

formance is used for comparison. At each run, the dataset is randomly divided

into 538 initial training images, 1612 on-line training images, and also 538 test-

ing images. No labeling information is used in the random division. The on-line

training set is further divided into 3 streams to test the on-line learning.

At each run of the batch learning, a PLSA model is learned using all the

images from both the initial set and the on-line training set, and tested using

the testing set. The average performance is used for comparison. Figure 3.5(a)

depicts the average recognition rate for different k’s of the k-NN algorithm on

the testing set. It can be seen from the figure that, the best recognition rate
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Figure 3.4: Sample images from the OT scene dataset.

of 69.52% for the batch-learned PLSA is obtained when k = 19. This figure is

consistent with the testing accuracy reported in Horster et al. (2008), based on

the similar settings. As a result, k = 19 for the k-NN algorithm will serve in the

following sections as a baseline for the evaluation of the proposed algorithm.

At each run of the on-line learning, we compare the proposed algorithm with

the QB-PLSA. The QB-PLSA is proposed for text mining, and there is no code-

book adaptation involved. To enable the QB-PLSA for scene recognition, the

initial codebook generated from the initial training set is used as the visual code-
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Table 3.2: Summary of performance on the OT scene dataset. Results are reported

as the average accuracies of 5 runs.

Algorithms Accuracies

QB-PLSA 65.95%

Proposed 68.00%

Batch Learning 69.53%

book for the QB-PLSA. In comparison with the QB-PLSA, the proposed algo-

rithm employs the codebook adaptation to capture the feature characteristics in

new data; it is more flexible as there is no assumption made on the distributions

of the PLSA parameters. The average recognition performances for both on-line

algorithms are demonstrated in Figure 3.5(b). It can be observed from Figure

3.5(b) that, the proposed algorithm achieves better recognition performance than

the QB-PLSA throughout the entire learning.
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Figure 3.5: The recognition performance on the OT scene dataset. (a) The average

recognition rates for different k’s of the k-NN algorithm on the testing set, based on

the batch-trained PLSA model. (b) The performance of both the proposed algorithm

and the QB-PLSA.

Table 3.2 summarizes the recognition accuracies of all the learning algorithms,

and it shows that the performance of the proposed algorithm is comparable with

that of the batch-learned PLSA model.
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Figure 3.6: Sample frames from the KTH action dataset.

3.4.3 The KTH Action Dataset

In our last experiment, we use the KTH human action dataset Schuldt et al.

(2004) for evaluation. The KTH dataset is a single-view video dataset in human

actions, which consists of 598 action videos. Six categories of human actions can

be found in this dataset, and they are boxing, jogging, running, walking, hand

waving and hand clapping. Each action is performed several times by 25 subjects

in different environments with scale changes. There are only a single action in

each video. Sample frames can be found in Figure 3.6.

For feature extraction, we choose the separable linear filter in Dollar et al.

(2005b) for space-time interest point extraction in videos. The parameters of

the separable linear filter are set to σ=2, and τ=2.5. Each extracted space-time

patch is described as a concatenated vector of its brightness gradient. Then all

the descriptors are projected to 100 dimensions using the PCA. The codebook

size is set to 1000 for the KTH dataset.

The experiments are conducted based on the leave-one-out testing paradigm

(LOO). Since the KTH dataset contains a large number of features, only a sub-
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set of features are chosen to construct the batch codebook Carlos Niebles et al.

(2008), and we construct the codebook by using videos of only three subjects.

After the codebook construction, a PLSA model is learned from the videos of 24

subjects using the batch learning algorithm, and is tested against the videos of

the remaining subject. We repeat the LOO batch learning for 25 runs.

At each LOO run of the on-line learning, all the videos of one subject are used

as the initial training set. The initial training set is used to construct the initial

codebook, and also used to train the initial model, using the batch PLSA learning

algorithm. Remaining training videos form the on-line learning set for adapting

the model. The on-line training set is randomly split into different number of

video streams without using any labeling information, and we use 2, 3, and 4

video streams in the experiments. After learning from each video stream, the

adapted model is tested against the testing videos. We evaluate both on-line

learning algorithms with and without codebook adaptation.

A confusion matrix is computed for each testing, and the recognition accura-

cies for the trained model are reported as the mean values of diagonal elements

from the average confusion table of 25 runs. The performances of the proposed

algorithm under different streams settings are depicted in Figure 3.7. Figure 3.7

also shows the codebook adaptation helps to improve the recognition performance

for the on-line learning. Table 3.3 summarizes the performance of batch learning

and on-line learning. It can be observed from the table that our batch-trained

PLSA achieves the average accuracy of 80.17%, which is consistent with that

reported in Carlos Niebles et al. (2008). The table reveals that the performance

of the proposed algorithm is comparable with that of the conventional batch

algorithm on this dataset.

Finally we compare the proposed algorithm with the QB-PLSA, with 7 video

streams. This time we use the adapted codebook for the QB-PLSA at each

stream.The accuracies of both algorithms on each of the video streams are de-

picted in Figure 3.8. The figure shows that the proposed algorithm also outper-

forms the QB-PLSA on the KTH dataset. The summary of final performance

for the QB-PLSA, the proposed algorithm and the batch PLSA is summarized in

Table 3.4.
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Figure 3.7: The performance of on-line learning algorithm based on the KTH dataset.

Table 3.3: Summary of performance on the KTH action dataset. Results are reported

as the averages of 25 runs.

#streams 2 3 4

Without codebook adaptation 77.70% 77.36% 77.20%

With codebook adaptation 81.00% 79.06% 79.33%

Batch Learning 80.17%

3.5 Conclusions

In this chapter, we have proposed an on-line learning algorithm for PLSA based

visual recognition. The proposed algorithm can automatically and adaptively
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Figure 3.8: The performance of both the proposed algorithm and QB-PLSA on the

KTH dataset.

Table 3.4: Summary of final performance on the KTH dataset. Results are reported

as the average accuracies of 25 runs.

Algorithms Accuracies

The QB-PLSA 77.61%

The Proposed Algorithm 79.61%

Batch Learning 80.17%

learn the parameters of the PLSA model during on-line learning. We evaluate

the proposed algorithm using datasets for scene recognition and human action

recognition. Experimental results demonstrate that the proposed algorithm can

handle the data that the batch PLSA learning cannot deal with, and its perfor-

mance is comparable with that of the batch PLSA learning on visual recognition.
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Chapter 4

Unsupervised Learning for

Codebook based Visual Detection

4.1 Introduction

In this chapter we study the codebook based object detection task. We focus on

the special case of moving object detection. The detection of moving objects in

videos, especially pedestrians, is an essential and important task in many vision

applications, such as video compression, video surveillance, and content based

video retrieval.

Numerous approaches have been proposed in the literature for object detec-

tion. Traditionally global methods are used. They learn the global statistics

of robust image features for objects. The examples for features include the his-

togram of oriented gradients (HoG) Dalal & Triggs (2005), the Haar Wavelets

Viola & Jones (2001), and the edge templates Gavrila (2000). At runtime, the

learned detector examines image features over locations and scales to predict the

presence of objects in subwindows. Though global methods has been demon-

strated effective in many cases, it can be affected by background clutters and

occlusions. To cope with occlusions, part based methods Andriluka et al. (2008),

Fergus et al. (2007) are proposed to model each individual object as a collection of

different parts. Specifically, parts can be modeled either generatively Andriluka
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et al. (2008), Bouchard et al. (2005), Leibe et al. (2008), or discriminatively Mi-

cilotta et al. (2005). At runtime, part responses are consolidated to form object

hypotheses. Part based approaches have been demonstrated to possess consider-

able tolerance to partial occlusions. Global and part based methods complement

each other. As such, hybrid methods are proposed to take advantages of both

methods. For example, Felzenszwalb et al. present a deformable part model for

object detection in Felzenszwalb et al. (2008), which consists of a coarse global

template and finer part templates. In addition to appearance information, mo-

tion information is also useful in object detection. Motion based methods usually

work by clustering moving pixels into layers with consistent motions, and different

models are employed to aid the clustering, such as the Dynamic Conditional Ran-

dom Field (DCRF) model Wang & Ji (2005), the Markov Random Field (MRF)

model Han et al. (2006), etc. The aforementioned approaches take advantages

of appearance and motion cues for object recognition. However they ignore con-

textual cues, which play an important role in biological vision. Psychophysics

studies have shown that the analysis of contextual relationships between visual

concepts play an important role in human vision Biederman et al. (1982). As a

result, the detection of a concept of interest can be facilitated by the presence

of other concepts which might not even be of interest. This has led to the effort

to account for context based recognition Shotton et al. (2008), Galleguillos et al.

(2008), Divvala et al. (2009), Choi et al. (2010).

The Implicit Shape Model (ISM) Leibe et al. (2008) is a part based model

for object detection. It is a codebook based model as information collected from

local parts is retained in codebooks. At the learning stage, local features are ex-

tracted from training images. A codebook of local features is then constructed by

clustering the extracted features. At runtime, local features are extracted from

images, and then they are used to match against the codewords in the codebook.

The codebook instances would cast votes for valid matches. Object hypotheses

are obtained by aggregating the votes. The ISM based object detection has been

shown effective on various tasks. For example, Leibe et al. Leibe et al. (2005)

employ an appearance based feature for pedestrian detection, and experimental

results show that this technique is able to detect pedestrians under crowded sit-

uations. A shape based feature is used for pedestrian detection under a similar
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framework in Rodriguez & Shah (2007). In this chapter we propose a unsu-

pervised learning algorithm that extends the ISM for automatic moving object

detection. Our contributions are two-fold: Firstly, existing ISM based methods

require the manual labeling of training samples. We propose two novel automatic

training sample selection algorithms to replace the manual labeling. Secondly,

we propose a method for identifying moving edges in video frames so that object

hypotheses can be generated from the moving edges. In comparison with exist-

ing ISM based object detection methods Rodriguez & Shah (2007), Leibe et al.

(2008), our method reduces the searching space for hypotheses generation.

The rest of this chapter is organized as follows: related work is reviewed in

Section 4.2, and the proposed method is described in Section 4.3. The experi-

mental results are presented in Section 4.4, followed by the conclusions in Section

4.5.

4.2 Related Work

Several approaches have been proposed to tackle the manual labeling of training

data. One idea is to generate a large amount of training data from a small

labeled set. One example is the co-training method Balcan et al. (2005) proposed

by Balcan et al.. Given a small hand labeled set, the co-training trains a pair of

classifiers on two independent “views” (features) of the data. It then produces

additional training data from the unlabeled data based on the concord between

the two classifiers. Although it is required that the “views” should be statistically

independent for the co-training to achieve the best result, it still achieves good

results when the independence assumption does not hold Levin et al. (2003). The

co-training has been employed to boost ensemble classifiers for the classification

of moving blobs into vehicles and pedestrians in Javed et al. (2005). Alternatively,

Wu et al. use a small labeled set to train a labeler. The labeler, which has high

precision, segments and labels objects from unlabeled data automatically Wu &

Nevatia (2007).

These aforementioned approaches require a hand labeled set for initialization.

To overcome the limitation of hand labeling, the idea of automatic labeling is

70



4.3 Our Work

proposed. For example, Nair et al design a simple and heuristic labeler based

on the background subtraction Nair & Clark (2004). Specifically, foreground

blobs with approximately correct aspect ratios and sizes are labeled as ’objects’,

whereas image regions contain no foreground are labeled as ’non-objects’. To

make the background subtraction based automatic labeling more robust, Roth et

al. use a PCA based subspace representation for appearance and shape to build

a reconstructive model Roth et al. (2005). The reconstructive model is then used

to verify the foreground blobs produced by the background subtraction.

In this chapter, we propose an automatic training sample selection scheme for

ISM based object detection. Our algorithm is an unsupervised learning algorithm

and it does not require any hand labeled sets. We compare our training sample

labeling method with the background subtraction based method Nair & Clark

(2004), which only considers foreground blobs with consistent aspect ratios. Such

rigid requirement makes the latter conservative in data selection, and hence it

might result in a biased training set. Similarly, our method is also based on

the background subtraction. However our labeler is more flexible in the sense

that there is no rigid requirements of aspect ratios. On the basis of the Multiple

Instance Learning, our labeler can produce a training set with lower selection

bias.

4.3 Our Work

In this section we describe our algorithm for unsupervised moving object de-

tection. The proposed algorithm consists of training and testing components.

For training, our automatic labeler produces a training set, which consists of

foreground blobs from background subtraction. On the basis of the produced

training set, a codebook of object silhouettes can be constructed for object de-

tection. At runtime, moving edges are detected from video frames, and object

are recognized from the moving edges. Details of each component are explained

in the following sections.
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4.3.1 Model Learning

4.3.1.1 Automatic Training Data Collection

We present the design of our automatic labeler in this section. A labeler is

essentially an object detector, in the sense that it attempts to localize objects

using subwindows. Generally speaking, we need to consider two issues in the

design of a labeler, namely the errors and the bias. The errors can be further

divided into alignment errors and also labeling errors. An alignment error occurs

when the subwindow selected by a labeler contains an object with inaccurate size

of positions, whereas a labeling error occurs when the selected subwindow contains

no object. As for the bias, it determines the bias of the produced training set. A

labeler should try to avoid introducing any bias into the training set, otherwise

it may mislead object detection. For instance, if the labeler systematically fails

to collect certain types of training samples, the corresponding detector would not

be able to recognize the corresponding objects. We will demonstrate below how

our design copes with these two issues.

We intend to learn a shape based object detector, and therefore a set of

object silhouettes is required for training. The goal of our labeler is to produce

training sets automatically from given videos. Our labeler is based on background

subtraction. Given a training video, background subtraction produces foreground

blobs for moving objects. However background subtraction results are not always

perfect. They might contain background regions if the background subtraction

is not robust to shadows and occlusions. Imperfect background subtraction can

result in alignment errors and labeling errors.

To handle the errors, we introduce Multiple Instance Learning (MIL) into our

labeler design. In MIL, training data comes in the form of “bags” which consist

of instances. Instances can be labeled as either positive or negative, and the

labels of instances determine their bag label. A positive bag contains at least one

positive instance, whereas a negative bag contains no positive instances. For a

given bag, the labels of its instances are usually unknown although we are aware

of the bag label. The advantage of MIL lies in the fact that it can handle the

ambiguities in the labels of instances. In our problem, each foreground blob can

be modeled as a positive bag since we assume it contains at least one foreground
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object. The instances in the bag correspond to the foreground blobs of individual

objects.

Our automatic labeler is based on background subtraction. Background sub-

traction is a common approach to identifying moving objects. the idea is to

compare each video frame with a background model. Background modeling is

the essence of any background subtraction method. Median filtering is one of

the commonly used techniques for background modeling Cucchiara et al. (2003).

In this thesis, a buffer is kept to store previous L frames. Each pixel in the

background model is defined as the median at the same location of all frames in

the buffer. In this thesis we employ the median filtering to obtain a background

model and L is set to 10. The background remains fixed at run time.

Given one foreground blob from background subtraction, we apply the follow-

ing heuristic to segment object candidates from the foreground blob. As the first

step, a smoothed histogram of pixel number over the x-axis is computed. We can

locate the crests and troughs from the histogram. Assuming the tops of objects

correspond to the crests, we can segment each individual object candidate using

the crests and the troughs of the histogram. The size of each bounding box is

proportional to the size of the corresponding foreground object.

Figure 4.1 depicts one example for bag formation. Given a video frame in

Figure 4.1(a), a foreground blob is detected and it is shown in Figure 4.1(b).

The smoothed histogram in Figure 4.1(c) is computed based on the detected

foreground blob. Finally the formulated bag is shown in Figure 4.1(d), where

the blue rectangle indicates a positive bag, and the red rectangles indicate the

instances inside the bag. In addition to positive bags, we also create negative

bags in a similar way. Negative bags do not contain any foreground objects and

they are created from background regions. The instances of the negative bags

correspond to the cropped background regions.

Let B = {B+
1 , B

+
2 , ..., B

+
n , B

−
1 , ..., B

−
m} be the set of n positive bags and m

negative bags. Let B+
i = {x+

i1, x
+
i2, ..., x

+
iNi
} be the ith positive bag, and B−

j =

{x−
j1, x

−
j2, ..., x

−
jMj
} be the the jth negative bag. Denote X+ and X− be the sets

of positive and negative instances respectively. Essentially, our proposed labeler

attempts to select positive instances {x+
ij} for training an ISM. We propose two
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(a) (b)
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Figure 4.1: The formation of a positive bag: (a) a video frame; (b) a detected

foreground blob; (c) the smoothed histogram computed on the basis of (b); (d) the blue

rectangle indicates a bag, while the red rectangles indicate the instances inside the bag.

The blue rectangles are generated as the smallest rectangle that covers the foreground

blob, while the blue rectangles are generated using the proposed heuristic. To avoid

shadows, we set the height of bounding boxes to be 80% of that of the corresponding

foreground blobs.

methods for instance selections, namely the Noisy-OR model based selection and

the kernel density based estimation. Details of each method are presented below.

The Noisy-OR Model based Estimation As the labels of instances are

unknown, the goal of instance selection can be considered as selecting instances

that have high confidence of appearing in positive bags. We favor instances which
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have high probability appearing in positive bags and low probability in negative

bags. Given an instance xc, the probability can be estimated using the Noisy-OR

model Maron & Lozano-Pérez (1998):

p(xc|B
+
i ) ∝ {1−

∏

j

[1− p(xc|B
+
ij )]}, (4.1)

p(xc|B
−
j ) ∝

∏

j

[1− p(xc|B
−
ij )]. (4.2)

Different estimates for p(xc|B
+
ij ) and p(xc|B

−
ij ) can be designed. As we intend

to use object shape information for detection, we estimate both p(xc|B
+
ij ) and

p(xc|B
−
ij ) using the following shape similarity:

p(xc|B
+
ij ) ∝ exp(−(D(xc, x

+
ij))

2). (4.3)

We compute D(xc, x
+
jk) using the distance transformation Breu et al. (1995).

Given p(xc|B
+
i ) and p(xc|B

−
i ), the confidence Conf(xc) for xc can be then mea-

sured as:

Conf(xc) =
n∏

i=1

p(xc|B
+
i )

m∏

j=1

p(xc|B
−
j ). (4.4)

Instances with high confidence values will be selected.

The Kernel Density Based Estimation Though the Noisy-OR Model based

estimation is easy to implement, it does not compute the distributions for positive

and negative instances. Since both distributions can be very general, we propose

to use the Kernel Density Estimator (KDE) Duda et al. (2001) to model the

distributions.

According to the bag definition, each positive bag contains at least one positive

instance while no negative bag contains positive instances. As a result, we have

x+
ik ∈ X+ ∪ X− and x−

jk ∈ X−. The probability for a sample xc appearing in a

positive bag inside a positive bag B+
ij can be expressed in the following form:

pX(xc) = λpX+(xc) + (1− λ)pX−(xc), (4.5)

where pX+(xc) and pX−(xc) measure the probability of xc being a positive and a

negative instance respectively, and λ ∈ [0, 1] reflects the ratio between the number

of positive and negative instances inside B+
ij .
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Though we are given the positive bags, the labels of the instances are unknown.

As a result, pX+(xc) can not be evaluated directly. However we know that xc is

a positive instance, i.e., xc ∈ X+ if

pX+(xc) > pX−(xc). (4.6)

The following inequality can then be obtained, using (4.5) and (4.6).

pX(xc) > pX−(xc), if xc ∈ X+. (4.7)

Both pX(xc) and pX−(xc) can be estimated from the given positive and negative

bags:

pX(xc) ≈
1

n

n∑

i=1

Ni∑

k=1

1

h
K(

xc − x+
ik

h
)

∝
1

n

n∑

i=1

Ni∑

k=1

exp(−
(D(xc, x

+
ik))

2

h2
),

(4.8)

pX−(xc) ≈
1

m

m∑

j=1

Nj∑

k=1

1

h
K(

xc − x−
jk

h
)

∝
1

m

m∑

j=1

Nj∑

k=1

exp(−
(D(xc, x

+
jk))

2

h2
),

(4.9)

where K(.) is the kernel density estimation, h is the size of the parzen window

for the estimation, and D(xc, x
+
jk) is the similarity between xc and x+

jk, which can

again be measured using the distance transform. Finally the confidence measure

is defined as:

Conf(xc) =
pX(xc)

pX−(xc)
. (4.10)

Again the instances with high confidence values will be selected.

Our automatic labeler algorithm is summarized in Algorithm 3. In comparison

with the background subtraction based labeler Nair & Clark (2004), our labeler is

more flexible in the sense that our instance selection is not a model based method.

Our labeler can produce training sets with lower selection bias since there is no

rigid requirements on the foreground aspect ratios. For example, the foreground

blob in Figure 4.1(b) does not meet the aspect ratio requirement for a single
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Algorithm 3 Automatic Labeler by Instance Selection
INPUTS:

F = {F1, F2, ...FR} - The frames from a training video.

K - The number of instances to select from all the instances.

OUTPUTS:

A set of instances xij (object masks) for object detector training.

1: Form the set of positive and negative bags B using the proposed heuristic, from background

subtraction results.

2: Compute the confidence measures for all the instances xij .

3: Select the top K instances xij (object silhouettes) based on the confidence measures.

pedestrian due to the imperfect detection, and therefore it is not considered by

the background subtraction labeler. In contrast, our proposed labeler still takes

into account of that kind of foreground blobs. By considering the diversity of

foreground blobs, our produced training set may possess lower selection bias.

4.3.1.2 Codebook Learning

Given the training set produced by our automatic labeler, we can construct an

Implicit Shape Model for object detection. An Implicit Shape Model is essentially

a codebook of local features from the training set. The shape context descriptor

Belongie et al. (2002) is chosen as our local feature descriptor as we want to

capture object shape information. The number of radius bins and that of the

angular bins are set to 5 and 12 respectively. As a result, the dimension of each

shape context descriptor is 60.

The training samples are object masks. The shape context descriptors are

attached to sampled points along the mask silhouettes. To construct a codebook

of shapes, all the shape context descriptors are clustered into clusters using the

k-means algorithm, where the χ2 distance is chosen as the distance measure. For

two K-bin histograms g(k) and h(k), their χ2 distance is defined as:

χ2(g, h) =
1

2

K∑

i=1

[g(i)− h(i)]2

g(i) + h(i)
. (4.11)

The final cluster centroids correspond to the codewords in the codebook.
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Figure 4.2: The procedure for learning a codebook of object shapes. Specifically, step

1 corresponds to the point sampling from the object silhouette, step 2 corresponds to

the feature description using shape context descriptors. Step 3 and 4 correspond to the

clustering using the k-means clustering.

Furthermore, the spatial occurrence distribution of each codeword with re-

gard to object centers is also learned from the training data, for the purpose of

hypotheses generation. All the collected shape context descriptors are iteratively

compared with the codewords using the χ2 distance. The pair of each descriptor

and its most similar codeword is considered as a match. For each match, the

relative position of the sample point to the corresponding mask center is stored.

Additionally, a local patch of binary mask centered at the sampled point is also

stored for each matched codeword. This local patch will be used later for segmen-

tation purpose. The whole process of codebook learning is illustrated in Figure

4.2.
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4.3.2 Object Detection

4.3.2.1 Moving Edge Detection

Rodriguez et al. apply an ISM for detecting pedestrians in videos Rodriguez &

Shah (2007). To combine the ISM with motions, they apply the ISM on the

silhouettes of foreground blobs extracted by the background subtraction. The

background subtraction, however, might be unreliable and infeasible in busy ur-

ban areas. Instead of using background subtraction, we propose to apply the ISM

on moving edges, which can be extracted without background subtraction. The

method for moving edges are presented in the following sections.

Moving edges are obtained by comparing the edges identified in consecutive

frames from testing videos. Specifically, we apply the Canny edge detector Canny

(1986) to extract edges from each frame. Subsequently, we perform edge subtrac-

tion between edge maps from consecutive frames. For example, given the (i−1)th

edge map, we only keep the edge pixels that do not exist in the same locations

at the (i−1)th edge map.

Denote two consecutive edge maps as Ei={(xj , yj)} and Ei−1={(xk, yk)}. The

moving edge map Em is described as Em = Ei \ Ei−1. We also perform morpho-

logical operations to remove isolated pixels in Em.

4.3.2.2 Hypotheses Generation

To generate the hypotheses for moving objects at runtime, we apply the ISM to

the moving edges. We sample points from the detected moving edges, and then

attach shape context descriptors to the sampled points. The obtained descriptors

are used to match against the codewords, using the χ2 distance as the dissimilarity

measure. A match is said to be found if the distance is below a threshold. Once

a match is found, the corresponding codeword would cast votes for hypotheses

centers using the stored relative positional information, which is recorded during

the model learning in Section 4.3.1.2. Consistent hypotheses configurations can be

obtained by aggregating the votes using the generalized Hough Transform Leibe

et al. (2008), followed by figure ground segmentation. Details for hypotheses

generation are presented below.
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Vote Aggregation Denote fi as the shape context descriptor for the ith sam-

pled point from location lfi at the current frame. A set of valid interpretation

I = {I1, I2, ..., In} can be obtained by matching fi with the codebook, and each

interpretation Ij is weighted by p(Ij |fi, lfi). As a result, the chance of observing

object o at location x can be expressed as follows:

p(o, x|fi, lfi) =
∑

j

p(o, x|Ij, fi, lfi)p(Ij |fi, lfi). (4.12)

Since fi can be replaced by each valid interpretation Ij, p(o, x|fi, Ij , lfi) can be

simplified as p(o, x|Ij , lfi). Furthermore, the match between fi and the codebook

is independent of its location lfi, and therefore (4.12) can be simplified as:

p(o, x|fi, lfi) =
∑

j

p(o, x|Ij, fi, lfi)p(Ij |fi, lfi)

=
∑

j

p(x|o, Ij, lfi)p(o|Ij, lfi)p(Ij |fi)
(4.13)

where p(x|o, Ij, lfi) represents the generalized Hough vote for an object, p(o|Ij, lfi)

specifies the extent to which the shape interpretation matches the object silhou-

ette, and p(Ij |fi) reflects the similarity between the fi and Ij .

On the basis of the above derivation, the score of an object o detected at

location x can be computed by marginalizing all the fi that contributes to it, and

consequently we have the following marginalization:

p(o, x) =
∑

i

p(o, x|fi, lfi)p(fi, lfi), (4.14)

where p(fi, lfi) can be regarded as a function indicating whether or not a sample

point is selected from location lfi of the moving edges.

After calculating the scores for all hypotheses, the search for local maximas in

the voting space is conducted to find promising hypothesis locations. In order to

avoid the quantization artifacts, Mean-Shift algorithm Comaniciu & Meer (2002)

is employed for seeking local maximas in a continuous voting space.

Figure ground Segmentation Once we obtain the object hypotheses h =

(o, x), we can segment the figures out of the background under a probabilistic

80



4.4 Experiments

framework. In other words, we estimate the per-pixel probability of being fig-

ure or background. Following the same notation from the previous section, the

probability can be obtained by the following marginalization:

p(p = figure|o, x) =
∑

p∈(l)

p(p = figure|o, x, fi, lfi)p(fi, lfi|o, x), (4.15)

which can be expanded as

p(p = figure|o, x)

=
∑

p∈(l)

∑

j

p(p = figure|o, x, fi, Ii, lfi)p(fi, lfi|o, x)

=
∑

p∈(l)

∑

j

p(p = figure|o, x, Ii, lfi)p(fi, lfi|o, x),

(4.16)

where p(p = figure|o, x, Ij, lfi) can be interpreted as the support from the local

mask patch recorded in codeword Ii at the location lfi relative to the object center

x. And p(fi, lfi |o, x) can be expressed as

p(fi, lfi|o, x) =
p(o, x, |fi, lfi)p(fi|lfi)

p(o, x)
, (4.17)

where p(o, x, |fi, lfi) can be obtained from the vote aggregation.

Final segmentations can be computed based on the likelihood ratio between

figure and background. In our implementation, figure ground segmentation is

achieved by backtracking the matching results. In other words, the recorded

training image patches in the codebook are back-projected to the corresponding

image locations. The bounding box for each pedestrian hypothesis is generated

by aggregating all the foreground segmentations of the corresponding hypothesis.

4.4 Experiments

Experiment Setup We conduct the experiments using three datasets. They

contain videos from both outdoor and indoor surveillance. We use these videos

to evaluate individual algorithm components as well as the whole algorithm.

Three video datasets are used in our experiments, namely the PETS06 set,

the Visor set, and the iLIDS set. The PETS06 set PETS2006 (2006) contains
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pedestrian sequences recorded in a railway station which include different viewing

angles and a certain degrees of occlusions. We use both the side-view and front-

view sequences in the experiments. The Visor set Visor (2010) is developed by

the Imagelab group of the University of Modena and Reggio Emilia. It contains a

large set of multimedia data and annotations. Some outdoor surveillance videos

are selected for evaluation. The iLIDS set iLIDS (2007) is collected from the

Image library for intelligent detection systems (i-LIDS), which is a benchmark

for video analytics systems. The videos we choose contain pedestrian footages

recorded in a railway station by a front-mounted camera.

Evaluation Metric The output of our object detector is a set of bounding

boxes for pedestrian hypotheses. Each bounding box is a minimum bounding

box that confines the corresponding hypothesis. Ground truth bounding boxes

are manually defined for each video. We choose the bounding boxes for evaluation

because they can easily describe the precise locations of pedestrians. Furthermore,

it is easier to obtain the ground truth.

To evaluate the object hypotheses, we follow the evaluation criteria employed

in Leibe et al. (2008) that covers three categories, and they are relative distance,

cover, and overlap. The relative distance measures the distance between the

center of a bounding box and that of the ground truth. The cover and overlap

measure how much area of the ground truth bounding box is covered by a de-

tection hypothesis, and vice versa. A hypothesis is classified as a true positive if

the relative distance ≤ 0.5 and both cover and overlap are above 50%. Examples

of hypotheses can be found in the representative sample frames in the following

sections.

4.4.1 Moving Edge Based Object Detection

As our first experiment, we evaluate the proposed moving edge based object

detection approach using the PETS2006 benchmark dataset. The number of

pedestrians in each sequence can be found in Table 4.1. The number of frames

in each sequence ranges from 80 to 100. Each image frame is downsampled to

360 by 288 pixels. In this experiment, we manually create the training set which
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Table 4.1: #Pedestrians in different sequences

Sequences 1 2 3

Side-view 566 189 286

Front-view 148 283 461

contains 25 binary masks of pedestrian images in front view and side view. It

is noted that the training samples are independent of the testing images. Using

this training set, we train an ISM using pedestrian silhouettes. At runtime, the

ISM is applied to the moving edges extracted from the testing sequences.

Side-view Sequences For the side-view sequences, we compare the perfor-

mance of our approach with the ISM trained by Leibe et al. Leibe et al. (2008)
1. Both ISMs are trained using pedestrian silhouettes. The size of training sets

for both methods are presented in Table 4.2. It can be seen from Table 4.2 that

our training set is much smaller than theirs. At runtime, the ISM by Leibe et

al. generates the pedestrian hypotheses based on all the extracted edges from

each frame, however our hypotheses are generated on the moving edges only.

Obviously our searching space is smaller as we only consider the moving edges.

Table 4.2: The comparison of training set

Methods #Training Images #Codewords

poposed 25 700

Leibe et al. 210 7475

The Precision Recall curves are presented in Figure 4.3, and sample detec-

tion outputs are shown in Figure 4.4. We can see that the proposed moving

edge based object detection achieves better and comparable performance com-

pared to the traditional ISM Leibe et al. (2008). Our advantage lies in a smaller

searching space for hypotheses generation. As a result, our approach has lower

1Available from http://www.vision.ee.ethz.ch/bleibe/code/
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Figure 4.3: The RPC curves for both the side-view and front-view sequences.

The curves on the left are from side-view sequences, whereas the curves on the

right are from the front-view sequences.
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computational cost, i.e., the averaged processing time per frame needed by the

unoptimized Matlab implementation of our approach is 7.21 seconds, while the

C++ implementation of Leibe et al. (2008) requires 7.27 seconds.

Front-view Sequences In this experiment, we do not use the approach in

Leibe et al. (2008) for comparison as it is trained using side view images only.

The related Precision Recall curves are depicted in Figure 4.3, and sample outputs

are shown in Figure 4.5. We can see that the proposed approach is able to reliably

detect moving pedestrians. It is noted that the precision is relatively lower for

Sequence 3 due to the heavy occlusions between pedestrians.

4.4.2 Automatic Training Set Generation

In the previous experiment, we train object detectors using manual labeled sets.

In our second experiment, we will train object detectors using training sets pro-

duced by the automatic labeler. The purpose of this experiment is to compare

the two different instance selection schemes for automatic labeling, namely the

Noisy-OR model based selection and the Kernel Density based selection.

Given a training sequence, training sets are produced using different selection

schemes. At runtime, the learned object detectors detect objects from the moving

edges. We use six sequences from the Visor Visor (2010) data set for evaluation,

whose lengths range from 400 to 500 frames. For each frame, 50 frames are

used for training, and the remaining frames are used for testing. Both selection

schemes select 10 instances from the training frames.

The Precision Recall curves are shown in Figure 4.6, and sample outputs are

demonstrated in Figure 4.7. It can be observed that the training sets produced

by both schemes result in detectors with similar performance, but the detector

trained using kernel density based selection scheme performs better on average.

As a result, we will use the kernel density selection scheme for training set gen-

eration in the following experiments.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Sample outputs from both approaches on the side-view sequences.

The outputs on the left are produced by the proposed approach, whereas outputs

on the right are produced by the method of Leibe et al. .
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(a) Front-view Sequence1 (b) Front-view Sequence 2

(c) Front-view Sequence 3

Figure 4.5: Detection results achieved by the proposed approach on the front-view

sequences.

4.4.3 Unsupervised Object Detection

As the last experiment, we compare the proposed unsupervised object detection

algorithm with the background subtraction based algorithm Nair & Clark (2004).

Two data sets are used for evaluation in this experiments, namely the PETS06

set, and the iLIDS iLIDS (2007) set. Given a video, our automatic labeler will

produce a training set for the object detector (ISM) using the first F frames,

where F is a predefined value. The learned object detector will then conduct

object detection on the remaining video frames. The object detection are also

based on the extracted moving edges.
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Figure 4.6: The performance comparison of two instance selection schemes on

the Visor dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Sample outputs from the detectors trained by different instance selection

schemes on the Visor dataset. The outputs on the left are produced by the Noisy-OR

model based selection scheme, whereas the outputs on the right are produced by the

Kernel density based selection scheme.
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The PETS06 Set We use four side-view sequences from the PETS06 set,

whose lengths range from 150 to 160 frames. The number of training frames F is

set to 50. The number of instances K to select from the training frames by our

proposed labeler is empirically set to 10.

The Precision Recall curves for the PETS06 sequences are depicted in Fig-

ure 4.8, and sample results are shown in Figure 4.9. It can be seen that the

proposed algorithm achieves comparable or better performance compared to the

background subtraction based algorithm on sequence 1, 2 and 4. This may due

to the fact that there is no occlusions in the training frames from sequences 1,2

and 4. In other words, the distributions for the foreground blobs in these se-

quences may be unimodal distributions. As a result, the training sets produced

by the background subtraction based labeler do not have high bias. On the other

hand, the performance of our algorithm is superior than that of its counterpart

on sequence 3. This should due to the heavy occlusions in sequence 3. In conse-

quence, the background subtraction based labeler produces a biased training set,

as it only considers foreground blobs that meet the aspect ratio of an individual

object. In contrast, our framework considers all kinds of foreground blobs, and

hence it works better under different situations.

The iLIDS set We extract three sequences from the PETS06 set, whose lengths

range from 150 to 160 frames. The number of training frames F is also set to 50.

The number of instances K to select from the training frames is empirically set

to 10.

The Precision Recall curves and sample outputs are presented in Figure 4.10,

and sample results are shown in Figure 4.11 respectively. Our proposed method

performs better than the background subtraction based method on this dataset.

The reason might due to the fact that there are occlusions in the training frames

of this dataset. As a result, background subtraction based method produces a

bias training set, whereas our method still work well with a lower bias.
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(b) Sequence 2
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(c) Sequence 3
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(d) Sequence 4

Figure 4.8: Object detection performance comparison on the PETS side-view

sequences.

4.5 Conclusions

In this chapter we have presented an unsupervised learning algorithm for moving

object detection, which is an extension to the Implicit Shape Model(ISM). Our

contributions are two-fold: (i) two Multiple Instance Learning based automatic

labeling algorithms for training set generation. (ii) an moving edge detection
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Sample outputs from both approaches on the PETS2006 dataset. The

outputs on the left are produced by the proposed approach, whereas the outputs on

the right are produced by the method in Nair & Clark (2004).
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(b) Sequence 2
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(c) Sequence 3

Figure 4.10: Object detection performance comparison on the iLIDS sequences.

scheme for object detection. In our algorithm, the automatic labeler produces

training sets for the ISM. A set of ISMs is then learned using the produced train-

ing sets. At runtime, moving edges are extracted from videos, and then object

detection is achieved by applying the ISM to the moving edges. In addition

to the experiments that evaluate different algorithm components, we also com-

pare the proposed algorithm with a background subtraction based moving object
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Sample outputs from both approaches on the iLIDS dataset. The

outputs on the left are produced by the proposed approach, whereas the outputs on

the right are produced by the method in Nair & Clark (2004). The red rectangles

indicate the region of interest for object detection.
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detection algorithm. The experimental results demonstrate that the proposed

algorithm achieves comparable performance compared to the background sub-

traction based counterpart, and it even outperforms the counterpart at complex

situations.
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Chapter 5

Unsupervised On-line Learning

for Codebook based

Visual Detection

5.1 Introduction

In this chapter we study again the codebook based object detection task. We also

focus on the case of moving object detection. In comparison with the previous

chapter, this chapter extends the previous chapter for on-line learning.

Moving object detection in videos is an important task in many computer

vision applications. Numerous approaches have been proposed in the literature

for object detection. Early researchers employ motion segmentation algorithms

to detect moving objects Stauffer & Grimson (1999), Khan & Shah (2001), Wang

& Ji (2005), Han et al. (2006). These algorithms assume that a compact region

with different motion from the background is most likely to be a moving object.

Moving pixels are clustered into layers with consistent motions. Without any

high-level object information, motion segmentation based methods can be af-

fected by background motions. To improve the performance, different supervised

object modeling methods are proposed. The idea is to incorporate high-level
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object information into low-level image models by human supervision. These su-

pervised methods can be divided into global methods and local methods. Global

methods construct global models for objects, and object detection is achieved by

examining image features over locations and scales Dalai et al. (2005), Munder &

Gavrila (2006). On the other hand, local methods model each individual object

as a set of parts Bouchard et al. (2005), Andriluka et al. (2008), Gall & Lempit-

sky (2009), Okada (2009). Specifically, parts can be modeled either generatively

Bouchard et al. (2005), Andriluka et al. (2008), Leibe et al. (2008), or discrim-

inatively Felzenszwalb et al. (2008), Okada (2009). At runtime, part responses

are consolidated to form the complete object hypothesis. Part based approaches

have been demonstrated to possess considerable tolerance to partial occlusions.

Among different part based object detectors, codebook based detector is a pop-

ular detector due to its simplicity and effectiveness.

All these supervised object models have been shown to perform well on object

detection tasks. However they have the following two drawbacks: 1) Manual

labeling. A detector usually benefits from a large training set as it provides more

diversity, but manual labeling of large training sets is time-consuming and tedious.

It is important to keep human effort to a practical level, so that the detection

algorithms can scale well for problems with larger amount of data. For example,

when training object detectors for a video surveillance network with different

views from numerous cameras, it is highly undesirable to obtain training data by

hand. 2) Off-line learning. All the learning is conducted in an off-line manner. As

a result, the detector remains fixed after the training, and hence it cannot adapt

to new data. However, in some detection tasks, on-line learning is more desirable

because it enables the detector to adapt to new environments. For example, an

adaptive object detector is favored in video surveillance networks, which assures

the portability of detectors from one scene to another.

In this chapter, we propose an unsupervised on-line detection framework that

overcomes the above drawbacks. Specifically, our contributions include an on-line

labeler and an on-line object detector. The proposed labeler enables the on-line

data collection. As for the on-line object detection, we propose a codebook based

object detector which can adapt its codebook in an on-line manner. As shown

in Figure 5.1, the training phase and the testing phase are not separated in this
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Figure 5.1: The flowchart of the proposed framework. Blue arrows indicate the training

phase, while red arrows imply the testing phase. Both phases are not separated.

framework. As a result, incoming video sequences serve for the purpose of both

training and testing.

The rest of this chapter is organized as follows: the related work to our frame-

work is reviewed in Section 5.3, and the proposed work is described in Section

5.3, followed by the experimental results in Section 5.4. Finally the conclusions

are summarized in Section 5.5.

5.2 Related Work

Motion plays an important role in moving object detection. Early researchers em-

ploy the background subtraction technique Stauffer & Grimson (1999), Elgammal

et al. (2000) to capture moving objects. Foreground pixels are determined by the

difference between the current scene and the background scene. Subsequently

connected foreground pixels are grouped into foreground blobs. The key issue of

this method is that it is completely low-level data driven, i.e., no high-level object

information is used. As a result, both the foreground detection and the motion

grouping are conducted in an ad-hoc manner that might not work well under com-

plex situations. We call such methods as the no-supervision-and-low-performance

methods. In comparison with the background subtraction, the strength of dif-
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ferent object models lies in the incorporated high-level object information by

human supervision. With the high-level object information, this method usually

outperforms the background subtraction on object detection. This kind of super-

vised methods can be considered as the with-supervision-and-good-performance

methods. By taking the advantages of the aforementioned methods, we propose

a no-supervision-good-performance method to bridge the gap between the no-

supervision-and-low-performance methods, and the with-supervision-and-good-

performance methods. The key is the removal of human supervision for detector

training. Several attempts have been made in the literature, and they can be

categorized into two classes, namely semi-supervised and unsupervised learning

methods. Both methods are reviewed in the following sections.

5.2.1 Semi-supervised Learning Methods

Semi-supervised learning methods are characterized by a small hand labeled set

for initialization. A large training set can be obtained by different techniques

using the small labeled set. One example of the semi-supervised learning is the

co-training method, whose details can be found in Section 4.2.

5.2.2 Unsupervised Learning Methods

In the semi-supervised learning methods, human supervision (labeling) is still re-

quired. To overcome this limitation, unsupervised learning methods are proposed.

Nair et al. employ a motion based object detector as the automatic labeler in Nair

& Clark (2004). The idea is to employ the background subtraction to automati-

cally label training examples for a pedestrian detector. Background subtraction,

as mentioned above, can be affected by shadows, reflections, and illumination

changes.

To improve the background subtraction labeler, Roth et al. use a PCA based

reconstructive model Roth et al. (2005), to verify the motion detection results

from background subtraction. The output of the background subtraction is used

to build a reconstructive representation incrementally. To further improve the
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robustness, multiple cues (shape and appearance) are used. By using the recon-

structive model, false detections such as shadows and backgrounds would be ex-

cluded from the training set. Such learning is very conservative since only highly

consistent motion blobs could be accepted by the model. Similarly, Ikizler-Cinbis

et al. select training samples using the following logistic regression model in

Ikizler-Cinbis et al. (2009):

p(y = ±, x, w) =
1

1 + exp(−y(wTx))
, (5.1)

where y is a class label, x is a feature vector concatenated with 1 for the bias term,

and w is a weight vector. Training samples are selected if p(y|x) > τI(τI ∈ [0, 1])

is satisfied, and τI is set to as high as possible (0.96) to avoid introducing false

positives for learning. The high threshold τI would result in a highly conservative

labeler. Both selection methods are considered as conservative learning as they

are both model based selections, and only the training samples that are highly

consistent with the models are selected. Though the conservative learning guar-

antees the correctness of training samples, it has a bias to select samples that fit

the model well.

Similar to the previous chapter, our labeler is also an unsupervised labeler,

which is based on the Multiple Instance Learning. The difference is that the

labeler can process on-line selection. In comparison with the conservative learning

methods, our labeler selects training samples using density estimation rather than

model fitting, and therefore the produced training set might has lower bias.

5.3 Our Work

In this section, we present the details of our unsupervised on-line learning algo-

rithm for codebook based moving object detection.

5.3.1 Task Description

Given a video sequence, our learning task is to train an object detector in an

unsupervised and on-line manner. The detector should output a bounding box

for each visible object in the region of interest.
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(a) (b)

Figure 5.2: The formation of a positive bag. (a) An image frame. (b) A detected

foreground and its bag formulation. The blue rectangle corresponds to the foreground

blob, while the red rectangles correspond to the instances inside the corresponding bag.

The blue rectangles are generated as the smallest rectangles that covers the foreground

blobs, while the blue rectangles are generated using the proposed heuristic.

5.3.2 The On-line Automatic Labeler

We intend to train a shape-based object detector, and therefore the output of

the labeler is a set of object silhouettes. Following our design in the previous

chapter, our on-line labeler is also based on background subtraction. Multiple

Instance Learning (MIL) is introduced to handle possible alignment and labeling

errors from background subtraction.

Assuming each foreground blob contains at least one foreground object, we

model each blob as a positive bag inside which each instance correspond to an

object candidate (See Figure 5.2). The object candidates are obtained by using

the heuristic detailed in Section 4.3.1.1. The negative bags are formed in a similar

way.

Let B = {B+
1 , B

+
2 , ..., B

+
n , B

−
1 , ..., B

−
m} be the set of n positive bags and m

negative bags. Let B+
i = {x+

i1, x
+
i2, ..., x

+
iNi
} be the ith positive bag, and B−

j =

{x−
j1, x

−
j2, ..., x

−
jMj
} be the the jth negative bag. Denote X+ and X− be the sets

of positive and negative instances respectively. Given B, we employ the kernel

density estimation to select instances. According to the MIL bag definition, each

101

Chapter5/Chapter5Figs/EPS/im-frame.eps
Chapter5/Chapter5Figs/EPS/fg-frame.eps
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positive bag contains at least one positive instance while no negative bag contains

positive instance. As a result, we have x+
ik ∈ X+ ∪ X− and x−

jk ∈ X−. For the

instance selection, we favor instances xc that have high confidence values:

Conf(xc) =
pX(xc)

pX−(xc)
, (5.2)

where pX(xc) and pX−(xc) can be estimated from the given positive and negative

bags:

pX(xc) ≈
1

n

n∑

i=1

Ni∑

k=1

1

h
K(

xc − x+
ik

h
)

∝
1

n

n∑

i=1

Ni∑

k=1

exp(−
(D(xc, x

+
ik))

2

h2
),

(5.3)

pX−(xc) ≈
1

m

m∑

j=1

Mj∑

k=1

1

h
K(

xc − x−
jk

h
)

∝
1

m

m∑

j=1

Mj∑

k=1

exp(−
(D(xc, x

+
jk))

2

h2
),

(5.4)

where K(.) is the kernel density estimation, h is the size of the parzen window

for the estimation, and D(xc, x
+
jk) is the similarity between xc and x+

jk. Details of

the derivation of pX(xc) and pX−(xc) can be found in Section 4.3.1.1.

The proposed kernel density estimation based instance selection scheme in

4.3.1.1 is a batch algorithm, which requires all data be available for selection.

However the on-line detection setting does not meet this requirement. To enable

on-line learning, one naive solution is separate a video sequence into segments, and

then apply the algorithm to each segment. Despite of its feasibility, this solution

ignores the relationship between different segments, and hence it is not optimal.

The key to the on-line learning is the modeling of data streams. Mixture models

have been employed to model the data streams for on-line learning Zhou et al.

(2003), Heinz & Seeger (2006), Stauffer & Grimson (2002). On the basis of the

mixture models, we propose an on-line algorithm to realize the on-line instance

selection. It is assumed that the distribution of positive instances is dynamic,

while the distribution of negative instances is stable. To model both distributions,
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we keep a set of key instances for positive and negative data respectively. Due to

the dynamic nature of the positive instance distribution, we only need to update

the set of key positive instances. Denote I+t = {x+
1 , x

+
2 , ..., x

+
p } as the key positive

instance set at time t, and I− = {x−
1 , x

−
2 , ..., x

(−)
q } be the key negative set. Both

sets can be initialized using the batch instance selection algorithm. We also

keep a set of weights for the positive key instances Wt = {w1, w2, ..., wp}. Given

the bag collection Bt = {B
+
t1, B

+
t2, ..., B

+
tn, B

−
t1, ..., B

−
tm} at time slice t, our on-line

learning algorithm consists of two steps, namely the instance selection and the

key instance update.

For the instance selection, we compute a confidence value for each xc ∈ Bi

using I+t and I−. The confidence value is defined as:

Conf(xc) =
pX(xc)

pX−(xc)
, (5.5)

where pX(xc) and pX−(xc) can be estimated using the I+t and I− :

pX(xc) ≈
1

p

p∑

i=1

wi

1

h
K(

xc − x+
i

h
)

∝
1

p

p∑

i=1

wi exp(−
(D(xc, x

+
i ))

2

h2
),

(5.6)

pX−(xc) ≈
1

q

q∑

j=1

1

h
K(

xc − x−
j

h
)

∝
1

q

q∑

j=1

exp(−
(D(xc, x

−
j ))

2

h2
).

(5.7)

where K(.) is the kernel density estimation, h is the size of the parzen window

for the estimation, and D(xc, x
+
i ) is the similarity between xc and x+

j , which can

be measured using distance transform. On the basis of the confidence values,

the top Ns instances are selected. We denote Ist = {xs
1, x

s
2, ..., x

s
Ns
} as the set of

selected instances.

In the key instance update step, every xs
i ∈ Ist is used to update the key

instances, which are the model components in our method. Usually the model

components in the mixture model are updated using a weighted mean. However,

the weighted mean is not applicable here as we will use the silhouette information
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to train object detectors. Computing the mean silhouette of two given silhou-

ettes is feasible but there can be shape distortions in the “mean” silhouettes. As

a result, we employ the k-medoid clustering to update the model components.

In contrast to the k-means clustering, the k-medoids algorithm chooses the ac-

tual data as centers rather than their mean values. The details of component

update, namely the key positive instance update, are presented as follows. For

every xs
i ∈ Ist , we select the key positive instances x+

j from I+t that satisfies

dist(xs
i , x

+
j ) < ǫdist, where ǫdist is a predefined value. The k-medoids clustering is

used to determine a center Ci from the selected x+
j and xs

i . The center Ci is then

added to I+t . If Ci already exists in I+t , its corresponding weight wi is updated as

wi+α, where α is the learning rate. On the other hand, if Ci is inserted as a new

key instance to I+t , the the key instance with the least weight will be discarded.

Eventually all the weights are normalized. The complete algorithm for on-line

instance selection is presented in Algorithm 4.

5.3.3 The Object Detector

Given the training set produced by the automatic labeler, we can construct differ-

ent kinds of object detector. The focus of this thesis is codebook based learning;

we therefore choose a codebook based object detector, namely the Implicit Shape

Model (ISM).

5.3.3.1 The Implicit Shape Model for Object Detection

The Implicit Shape Model Leibe et al. (2008) is a codebook based model since

information collected from local parts is retained in the form of codebooks. At

the learning stage, local features are extracted from training images. A codebook

of local features is then constructed by clustering all the extracted features. At

runtime, local features are extracted from the images, and then they are used to

match against the codewords. The codewords would cast votes for valid matches.

Object hypotheses are obtained by aggregating the votes. This voting method is

also called the Generalized Hough Transform.
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Algorithm 4 On-line Instance Selection
INPUTS:

I+t = {x+1 , x
+
2 , ..., x

+
Nk
} - the key positive instances.

W+
t = {w1, w2, ..., wNk

} - the weights of the key positive instances.

I− = {x−1 , x
−
2 , ..., x

−
Nk
} - the key negative instances.

Bt = {B1, B2, ..., BNt} - the bag collection at time slice t.

Ns - the number of instances to select from Bt.

ǫdist - a threshold on distance.

α - the learning rate for on-line learning.

OUTPUTS:

I+t+1 = {x
+
1 , x

+
2 , ..., x

+
Nk
} - the updated key positive instances.

W+
t+1 = {w1, w2, ..., wNk

} - the updated weights of the key positive instances.

Ist = {xs1, x
s
2, ..., x

s
Ns
} - the selected instances from Bt.

1: INSTANCE SELECTION

2: Compute the confidence value (5.5) for each xij ∈ Bi using I+t and I−.

3: Select the top Ns instances based on the confidence values, and keep them in Ist .

4: KEY INSTANCE UPDATING

5: FOR EACH xsi ∈ Ist

6: Select x+j from I+t that satisfies dist(xsi , x
+
j ) < ǫdist.

7: Determine a medoid Ci from { selected x+j , x
s
i }.

8: Insert Ci to I+t .

9: IF Ci exists in I+t

10: THEN set wi = wi + α.

11: ELSE set wi = α, and discard the key instance with the least weight.

12: END IF

13: END FOR

14: Normalize the updated W+
t to obtain W+

t+1.
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The codebooks for the Generalized Hough Transform are usually generated

using the unsupervised k-means clustering algorithm Leibe et al. (2008),Maji &

Malik (2009). We call them generative codebooks Okada (2009) as only positive

local features are used for training. Recently discriminative codebook generating

methods are proposed Gall & Lempitsky (2009), Okada (2009). The generated

codebooks are considered as discriminative codebooks as they are trained using

both the positive and the negative features. The discrimination between positive

and negative features enables the codebook to cast more reliable probabilistic

votes. In Gall & Lempitsky (2009), a Random Hough Forest is constructed using

positive and negative image patches, with an objective function that measures

the class and offset uncertainty. Similarly, a set of Extremely Randomized Trees

are constructed in Okada (2009), and the trees are grown using an objective

function that combines the discrimination and the regression. The discriminative

codebooks are shown to outperform the generative codebooks in the experiments.

As a result, we choose the discriminative codebook in this chapter. Given a set

of object silhouettes, we intend to construct a codebook of object silhouettes for

object detection.

5.3.3.2 Randomized Trees as the Codebook

We choose the Extremely Randomized Tress Geurts et al. (2006) as our discrimi-

native codebook. The randomized trees algorithm Geurts et al. (2006) constructs

an ensemble of decision or regression trees. Initially, all data is stored in the root

node. Starting from the root node, a number of splits are created by firstly choos-

ing random values from a range of chosen attribute. Each random value serves

as a threshold for separating the data. The binary split that achieves the best

decision or regression performance is selected to split the root node into two child

nodes. The same split process applies on each node recursively. The recursive

split stops when there is not enough data to split, or all the data in the current

node shares the same label.

The randomized trees are firstly proposed for classification, and Okada em-

ploys them as a codebook for the Hough voting in Okada (2009). For the voting,

each primitive image feature passes through each randomized tree until it reaches
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one of the leaf node. The leaf node contains measurements of discriminativeness

of the image feature (whether it belongs to an object or not). The response of

one image feature is an ensemble of the responses from all the trees. Using the

responses, each feature can cast probabilistic votes for object hypotheses. The

randomized tree construction algorithms in Geurts et al. (2006), Okada (2009)

work on the whole training sets. It is not appropriate to use them under our

settings, as we want to update the trees in an on-line fashion. Inspired by the

on-line random forest algorithm in Saffari et al. (2009), we propose an on-line

learning algorithm for constructing randomized trees here. It is noted that the

randomized trees are different from the random forest as there is no bootstrapping

involved in constructing the randomized trees Geurts et al. (2006).

We build each randomized tree as a decision tree, which contains decision

nodes and leaf nodes. Unlike the leaf node, each decision node retains no object

location but only a split condition s = {fd, θd}, where fd and θd are a randomly

chosen attribute from the image feature vector, and its threshold respectively.

The split s is the best split chosen from a set of random splits S = {s1, s2, ..., sN}

based on some quality measure. In this thesis, N is set to 10 and the information

gain is chosen as the quality measure. Denote M as the set of image features in

the current node. LetML andMR be the images features in the left child node and

right child node respectively, according to the split s. The information gain of split

s is IGs(M ) = |ML|
|M |

E(ML)+
|MR|
|M |

E(MR)−E(M ), where E(M ) = −
∑C

i=1 pi log(pi)

is the entropy for C classes.

When in off-line mode, all the data is available, and therefore a robust estimate

can be made at each decision node. In the on-line mode, however, the data is

gathered over time. As such, when to split depends on the following factors: i)

whether there is enough data for a robust estimate of statistics; ii) whether the

split is good enough in terms of the quality measure. Based on these factors,

two hyper parameters are introduced for the on-line learning of a random tree:

i) the minimum number of training data (i.e., shape context descriptors) γ to

gather before making a split; ii) the minimum information gain δ for a node to

split. As a result, a node can be split into two child nodes only if |M | > γ and

∃s ∈ S, IGs(M ) > δ. The values of γ and δ are set to 0.1 and 0.8 empirically.
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The on-line learning algorithm for the construction of the randomized trees

is presented in Algorithm 5. The input to algorithm is a training sample 〈 x, y

〉, which contains a feature descriptor x and its label y ∈ {1, 0}. Similar to the

previous chapter we use the shape context descriptor as the feature descriptor.

The positive features describe the sampled points from the selected instance Bij

from Algorithm 4, whereas the negative features describe the sample points from

the background edges. Positive samples also retain the offsets to the centroids of

an object, so that the constructed randomized tree can be used for probabilistic

voting, which is detailed in Section 5.3.3.3. When updating a tree, a training

sample firstly passes each randomized tree until it reaches the leaf node. After

appending a new feature to the leaf node, we calculate whether it is necessary to

split the current leaf. In the case of a split, the data retained in the old leaf node

will be propagated to its child nodes, and the old leaf node becomes a decision

node.

5.3.3.3 Object Detection using Randomized Trees

We begin the moving object detection with moving edge detection between ad-

jacent frames. We apply Canny edge detection Canny (1986) to obtain the edge

map for each frame. Moving edges are then extracted by comparing edges be-

tween adjacent frames. We then sample keypoints from the identified moving

edges, and attach a shape context descriptor to each sampled keypoints. Let

F = {f1, f2, ...fn} be the shape context descriptors obtained from the current

frame, F will be then fed into the randomized trees T = {t1, t2, ..., tn} to cast

probabilistic votes for an object o and its location x. The probabilistic vote

p(o, x|fi, T ) from feature fi can be decomposed as follows:

p(o, x|fi, T ) = p(o|fi, T )p(x|o, fi, T ). (5.8)

The first term p(o|fi, T ) is a probabilistic output from the ensemble of trees.

Denote Mfi,tj as the set of training features belong to the leaf node to which fi

reaches in tree tj . Let the number of training features in Mfi,tj be Nfi,tj = |Mfi,tj |,

and that of the positive features be Np
fi,tj

= |M p
fi,tj
|. The purity of the leaf node

can be defined as γfi,tj =
N

p
fi,tj

Nfi,tj

. We only consider the trees with leaf nodes whose
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Algorithm 5 On-line Extremely Randomized Trees
INPUTS:

〈 x, y 〉 - the feature descriptor x and its label y ∈ {1, 0}.

γ - the minimum number of training data to gather before making a split.

δ - the minimum information gain for a node to split.

T={t1, t2, ..., tn} - a set of Extremely Randomized Trees.

OUTPUTS:

T ′={t′1, t
′
2, ..., t

′
n} - the updated Extremely Randomized Trees.

1: FOR EACH Extremely Randomized Tree ti

2: lj ← locateLeaf(x, ti).

3: lj ← appendData( lj, 〈x, y〉).

4: IF |lj | > γ

5: S ← createSplts( lj).

6: IF ∃s ∈ S, IGs(lj) > δ

7: createLeftChild( lj , s).

8: createRightChild( lj , s).

9: END IF

10: END IF

11: END FOREACH

purity is higher than a predefined threshold. We denote the number of such trees

as No
fi
, and p(o|fi, T ) can be defined as p(o|fi, T ) =

No
fi

NT
, where NT is the number

of randomized trees.

The second term p(x|o, fi, T ) describes the distribution of possible object cen-

troid locations in regard to fi supposing fi being part of the object. The distri-

bution is estimated using a non-parametric density estimation using all the trees:

p(x|o, fi, T ) ∝

NT∑

j=1

{γfi,tj
∑

k∈M p
fi,tj

K(
x− xp

k(fi)

b(xp
k)

)}, (5.9)

where K(.) is a window function, b(.) is its bandwidth, and xp
k(fi) corresponds
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Algorithm 6 Unsupervised On-line Object Detection

1: INITIALIZATION

2: Initialize I+ and I− using the batch instance selection algorithm.

3: AUTOMATIC LABELING AND ON-LINE LEARNING

4: FOR EACH frame

5: Perform background subtraction, and group foreground pixels into blobs.

6: Apply Algorithm 4 to select foreground blobs and update I+.

7: Attach descriptors to sample edge points from instances and background.

8: Use the descriptors to update the randomized trees based on Algorithm 5.

9: END FOR

10: ON-LINE MOVING OBJECT DETECTION

11: FOR EACH frame

12: Identify moving edges.

13: Attach descriptors to the sample edge points from the moving edges.

14: Use the randomized trees to cast probabilistic votes based on the descriptors.

15: END FOR

to the object centroid location relative to the feature fi based on the positive

training feature xp
k.

The complete proposed unsupervised moving object detection algorithm is

summarized in Algorithm 6. The proposed algorithm updates the randomized

trees using collected training samples from every frame, and then the updated

trees are used to cast probabilistic votes for object hypotheses on the moving

edges.

5.4 Experiments

Experiment Setup We conduct the experiments using three datasets. They

contain videos from both outdoor and indoor surveillance. We use these videos

to evaluate individual algorithm components as well as the complete algorithm.
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Three video datasets are used in our experiments, namely the PETS06 set,

the Visor set, and the iLIDS set. The PETS06 set PETS2006 (2006) contains

pedestrian sequences recorded in a railway station which involves different viewing

angles and a certain degree of occlusions. We use both the side-view and front-

view sequences in the experiments. The Visor set Visor (2010) is developed by

the Imagelab group of the University of Modena and Reggio Emilia. It contains

a large set of multimedia data and the corresponding annotations. Some outdoor

surveillance videos are selected for evaluation. The iLIDS set iLIDS (2007) is from

the Image library for intelligent detection systems (i-LIDS), which is a benchmark

for video analytics systems. The videos we choose contain footages recorded in a

railway station by a front-mounted camera.

Evaluation Metric We follow the evaluation metric mentioned in Section 4.4.

5.4.1 Randomized Trees for Pedestrian Detection

The purpose of the first experiment is to verify the choice of Randomized Trees

for pedestrian detection. We compare the detection performance of Randomized

Trees and k-means codebook using the same training set.

We use six sequences from the Visor Visor (2010) data set for evaluation,

whose lengths range from 400 to 500 frames. For each frame, 50 frames are used

for training, and the remaining frames are used for testing. We use the batch

kernel density estimation based instance selection to select 10 silhouettes as the

training set. Given the same training set, we construct the Randomized Tree

based codebook and k-means clustering based codebook respectively.

The Precision Recall curves are shown in Figure 5.3, and sample outputs

are demonstrated in Figure 5.4. It can be observed that the Randomized Trees

achieve competitive performance than the k-means codebooks. In comparison

with the k-means codebook, randomized trees provide a more suitable structure

for on-line learning, which is shown in the following experiments.
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Figure 5.3: Performance comparison of Randomized Trees and k-means codebook on

the Visor dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Sample output from detector trained by different instance selection

schemes on the Visor dataset. The output on the left are produced by the Randomized

Tress, whereas the output on the right are produced in by the k-means codebook.

5.4.2 On-line Instance Selection for Pedestrian Detection

As our second experiment, we evaluate the proposed on-line automatic labeler.

Given the same video, two sets of training sets are produced by the batch and the
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on-line labeler respectively. Two sets of randomized trees are constructed using

these two training sets respectively. We then compare their detection performance

on the testing sequences.

We extract five sequences from the PETS06 PETS2006 (2006) data set for

evaluation, whose lengths range from 100 to 150 frames. We collect the training

data from the first sequence, and use the rest for testing. Figure 5.5 depicts
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Figure 5.5: Performance comparison of different instance selection methods.

the Precision Recall curves correspond to these two different methods. It can be
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observed from the curves that, the on-line instance selection achieves comparable

or even better results than the batch instance selection. It seems that the on-

line instance selection can capture more meaningful samples from a dynamic

distribution compared to the batch selection algorithm.

5.4.3 On-line Randomized Trees for Pedestrian Detection

As our third experiment, we evaluate the proposed on-line learning algorithm

for constructing the randomized trees. Given the same training set, two sets

of randomized trees are constructed using the on-line and the batch learning

algorithm Okada (2009) respectively. To show the advantages of on-line learning

with randomized trees over traditional codebook, a k-means codebook is also

trained using the on-line kmeans algorithm Bishop (2006). We then compare

their detection performance on the testing sequences. We use the five sequences

extracted from the PETS06 PETS2006 (2006) data set for evaluation, whose

lengths range from 100 to 150 frames. We collect the training data from the first

sequence, and use the rest for testing.

Figure 5.6 depicts the Precision Recall curves of the randomized trees. It can

be seen from the curves that, the on-line randomized trees achieve similar recall

and precision values compared with the batch randomized trees. This shows that

the randomized trees can be constructed in an on-line fashion, without sacrifice in

performance. Figure 5.7 shows the performance comparisons between the on-line

randomized trees and the on-line k-means clustering. It can be seen from the

figure that, the on-line randomized trees achieve higher recall than the on-line

codebook. This shows that on-line randomized trees possess better adaptation

than the on-line codebook. Essentially, on-line randomized trees obtain a better

split for the feature space. The reasons might due to the following factors: (i)

both positive and negative training samples are used for learning the on-line ran-

domized trees, while only positive samples are used to learn the on-line codebook;

(ii) the on-line update of the randomized trees employs an information gain based

measure, which is better than the approximate cluster center update used in the

on-line codebook updating. Sample results of both detectors can be found in

Figure 5.8.
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Figure 5.6: Performance comparison of randomized trees on the PETS06 dataset.
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Figure 5.7: Performance comparison of the on-line randomized Trees and the on-line

k-means codebook on the PETS06 dataset
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Figure 5.8: Sample output on the PETS06 dataset. The output on the left are

produced by the on-line randomized trees, whereas the output on the right are produced

by the on-line k-means codebook.
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5.4 Experiments

5.4.4 Unsupervised On-line Learning for Pedestrian De-

tection

In our last experiment, we compare our unsupervised on-line learning framework

with the state-of-the-art conservative learning framework Ikizler-Cinbis et al.

(2009). A conservative labeler which usually produces a biased training set,

whose bias is caused by rigid requirements and also high thresholds for selection.

We employ both frameworks to train pedestrian detectors in an on-line fash-

ion. Two sets of randomized trees are trained and updated using the produced

training set respectively. Due to the rigid requirements, the conservative labeler

only considers the foreground blobs whose aspect ratio are within some prede-

fined range. Our labeler does not have such requirements, and therefore it can

capture the multi-modal nature of the data.

We extract three sequences from the iLIDs dataset, and each of them con-

tains 1000 frames. Given one sequence, pedestrian detectors are automatically

trained by the proposed framework and the conservative learning framework. The

precision recall curves of both frameworks are presented in Figure 5.9, and the

sample results are shown in Figure 5.10. As shown in Figure 5.9, the proposed

framework outperforms the state-of-the-art conservative learning framework in

the sense that the former achieves higher accuracies and recalls. Most of the

sequences contain pedestrians that walk close to each other for some time, whose

corresponding foregrounds do not fit the aspect ratio for a single person. As

a result, the distributions of the silhouettes can be considered as multi-modal

distributions. Due to its conservativeness, the conservative learning ignores the

modal that corresponds to the case of two close pedestrians. On the other hand,

our labeler can still cope with foreground blobs that contains multiple persons.

As shown in the sample outputs, our proposed framework can successfully detect

each individual pedestrian. That is probably the reason why the conservative

learning fail to achieve high accuracy and recall.
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Figure 5.9: Performance comparison of the proposed framework and the conservative

learning framework.

5.5 Conclusions

We have presented a unsupervised on-line learning framework for object detec-

tion. We proposed an on-line instance selection algorithm based on Multiple

Instance Learning. On the basis of the selected instances, a set of Extremely

Randomized Trees can be constructed in an on-line manner. We have evaluated

the algorithms on three video datasets. The experimental results demonstrate

that our framework outperforms the state-of-the-art on-line conservative learning
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Sample output on the iLIDs dataset. The output on the left are produced

by the proposed framework, whereas the output on the right are produced by the state-

of-the-art conservative learning framework.

framework.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we have developed on-line and unsupervised learning algorithms

for codebook based visual recognition methods. The goal of these algorithms is

to reduce human effort when dealing with a large amount of data.

We focus on on-line learning in chapter 3, where we develop an on-line learning

algorithm for the Probabilistic Latent Semantic Analysis (PLSA) model. The

proposed algorithm enables the PLSA to deal with data that arrive sequentially.

We study the unsupervised learning in chapter 4, where we propose extensions

to the Implicit Shape Model (ISM). Our contributions include two automatic

training data selection methods, and also a moving edge detection method. The

proposed algorithms enable the ISM to detect moving objects without human

supervision. Finally we look at both unsupervised and on-line learning in chapter

5, where our contributions include an on-line training data selection scheme,

and the on-line Extremely Randomized Tree algorithm. These two algorithms

constitute a framework that can adaptively detect moving objects without human

supervision.
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6.2 Future Work

6.2 Future Work

In this section we present the details for the future work of the proposed algo-

rithms.

The on-line PLSA proposed in Chapter 3 can be improved in the following

ways. Firstly, our on-line PLSA assumes a static distribution for data, however

the data distribution can be dynamic. Enabling the PLSA to learn a dynamic

distribution for streaming data is a direction for future work. This might probably

require a different optimization algorithm rather than the on-line EM, since the

on-line EM is assumed to converge only under a static distribution. Though the

QB-PLSA has already been proposed for text mining, there is still room for a

more flexible PLSA algorithm in visual recognition. Secondly, the number of

topics for the PLSA is set prior to the learning. This variable is usually data

dependent, and therefore we should be able to learn it from the given data. A

more flexible on-line algorithm that can learn the topic number automatically is

another direction for future work. Thirdly, the learning of our on-line PLSA is

actually subbatch based learning. The reason for the subbatch learning probably

lies in the fact that the original EM algorithm derives a closed form estimation

for PLSA. The initialization for the EM plays an important role under the closed

form, and therefore a single data sample is not enough for getting a good estimate.

A more flexible on-line algorithm should process a data sample each time. To

enable the PLSA to process a data sample at a time, we might have to employ

a different optimization algorithm such as the gradient descent. A non-closed

form of parameter estimation should be derived based on the chosen optimization

algorithm. This is the most interesting research direction for future work.

The proposed algorithms in chapter 4 and 5 can be considered as similar

algorithms with different focus. Future work can be investigated in several ways.

Firstly, different combinations of feature descriptors and object detectors can be

employed under the proposed framework. Experimental evaluation on different

combinations of feature descriptors and object detectors is a immediate direction

for future work. Secondly, the training and the testing phase are independent

from each other in the sense that there is no feedback from the testing phase.

It is expected the feedback from the testing phase can be used to improve the
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6.2 Future Work

training data selection. Finally, the proposed framework can only distinguish

two object classes, namely foreground objects (pedestrians) and the background.

However there can be moving objects from different classes in a video. As a

result, a framework that can distinguish moving objects from multiple classes is

another research direction.
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Appendix A

List of Publications and Patents

A.1 Publications related to the thesis

• Jie Xu, Yang Wang, Getian Ye, Wei Wang, Jun Yang.(2010).

“On-line PLSA for Visual Recognition.” Asian Conference on Computer

Vision.

• Jie Xu, Yang Wang, Wei Wang, Jun Yang.(2010). “Unsupervised

Moving Object Detection with On-line Generalized Hough Transform.”

Asian Conference on Computer Vision.

• Jie Xu, Getian Ye, Gunawan Herman, Bang Zhang. (2008). “De-

tecting and recognizing moving pedestrians in video.” IEEE International

Workshop on Multimedia Signal Processing.

A.2 Other Publications

• Jie Xu, Yang Wang, Fang Chen, Ho Choi, Guanzhong Li, Siyuan

Chen, Sazzad Hussain.(2011). “Pupillary Response Based Cognitive

Workload Index under Luminance and Emotional Changes.” ACM CHI

Conference on Human Factors in Computing Systems.
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A.2 Other Publications

• Jun Yang, Yang Wang, Arcot Sowmya, Bang Zhang, Jie Xu and

Zhidong Li.(2010). “Spatial-Temporal Affinity Propagation for Feature

Clustering with Application to Traffic Video Analysis.” Asian Conference

on Computer Vision.

• Zhidong Li, Jie Xu, Yang Wang, Glenn Geers, Jun Yang.(2011).

“Saliency Detection Based on Proto-Object and Topic Model.” IEEE Work-

shop on Applications of Computer Vision.

• Zhidong Li, Yang Wang, Jing Chen, Jie Xu, and John Laird.(2010).

“Image Topic Discovery with Saliency Detection.” British Machine Vision

Conference.

• Bang Zhang, Getian Ye, Yang Wang, Wei Wang, Jie Xu, Gu-

nawan Herman and Jun Yang.(2010). “Multi-class Graph Boosting

with Subgraph Sharing for Object Recognition.” International Conference

on Pattern Recognition.

• Jun Yang, Yang Wang, Getian Ye, Arcot Sowmya, Bang Zhang

and Jie Xu.(2009). “Feature Clustering for Vehicle Detection and Track-

ing in Road Traffic Surveillance.” International Conference on Image Pro-

cessing.

• Jie Xu, Getian Ye, Yang Wang, Gunawan Herman, Bang Zhang.(2009).

“Incremental EM for Probabilistic Latent Semantic Analysis on Human Ac-

tion Recognition.” IEEE International Conference on Advanced Video and

Signal Based Surveillance.

• Bang Zhang, Getian Ye, Yang Wang, Wei Wang, Jie Xu, Gu-

nawan Herman and Jun Yang.(2009). “Informative Frequent Assem-

bled Feature for Face Detection.” IEEE International Conference on Image

Processing.

• Bang Zhang, Getian Ye, Yang Wang, Jie Xu, Gunawan Her-

man.(2009). “Finding Shareable Informative Patterns and Optimal Cod-

ing Matrix for Multiclass Boosting”, IEEE International Conference on

Computer Vision.
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A.3 Patents

• Jie Xu, Getian Ye, Gunawan Herman, Bang Zhang.(2008). “An

efficient approach to detecting pedestrians in video”, ACM International

Conference on Multimedia.

• Gunawan Herman, Getian Ye, Jie Xu, Bang Zhang.(2008). “Im-

proving object detection by removing noisy samples from training sets”,

ACM International Conference on Multimedia Information Retrieval.

A.3 Patents

• Getian Ye, Jie XU.(2008). “Traffic Information about Objects in a

Video.” Australian Provisional Patent. 2008903430.
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