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Abstract

Advanced Dynamics of Optically Trapped Nanowire Waveguides

by Wen Jun Toe

In this thesis I describe a number of studies to examine some high order effects of

advanced trapping dynamics beyond the standard single gradient force optical trap. Our

interests lay primarily on low symmetry particles, specifically on high refractive index,

high aspect ratio nanowires. We examine higher order dynamics due to coupling between

rotational and translational degrees of freedom when a single high aspect ratio nanowire

is trapped. We also study the coupling of the trapping laser into the waveguiding modes

of the trapped nanowire, as well as the coupling interactions between multiple trapped

nanowires.

On single optically trapped nanowires, we show calculations beyond the standard

power spectral analysis to demonstrate the emergence of resonance behaviour in over-

damped systems due to the coupling between rotational and translational degrees of

freedom. We also experimentally demonstrate the effects of such coupling which shows

up in the form of resonance peaks in the power spectrum when single nanowires are

trapped in optical tweezers.

Next we examine the coupling of light into the waveguide modes of high refractive

index nanowires by calculating the field profiles, dispersion and group velocity. We

then investigate the optical coupling between multiple high refractive index nanowires

in close proximity. In particular, we calculate the field profiles, dispersion and optical

force of coupled nanowire waveguides with the Coupled Mode Theory and Perturbation

Theory. The optical forces between coupled waveguides is also calculated and compared

to results obtained from Maxwell’s Stress Tensor calculations.

In the final results chapter, we explore various experimental approaches to ex-

perimentally measure the coupled nanowire system that was calculated in the previous

chapter. We propose time-shared optical tweezers with interferometric particle tracking

as a means of physically measuring the coupling between nanowires and investigate the

feasibility of this measurement technique for our system.

In summary, we conducted theoretical analysis and experiments that aid in the

further understanding of the advanced dynamics of high refractive index, high aspect

ratio nanowires within the optical trapping domain.
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Chapter 1: Introduction

1.1 Brief history of optomechanics

Optomechanics is the study of the interaction between electromagnetic radiation and

mechanical systems via radiation pressure. The understanding of these interactions is of

fundamental interest in science with a long-standing history. The first observation of the

manifestation of radiation pressure was made by Johannes Kepler in 1691, where he put

forward the concept to explain the observation that a tail of a comet always points away

from the Sun. It wasn’t until 1862 before James Clerk Maxwell showed theoretically

that electromagnetic radiation carries momentum and thus exerts a pressure upon any

surface exposed to it, resulting in radiation pressure which is the key to opto-mechanical

interactions.

The road towards experimental demonstration of radiation pressure is less straight

forward, the most notable failure being the Crookes radiometer invented in 1873 by the

chemist, Sir William Crookes. The radiometer is made of a rotor with several vertical

lightweight metal vanes, polished white on one side and black on the other. The vanes

are spaced equally around the axis on a low friction spindle within a glass bulb from

which much of the air has been removed to form a partial vacuum. When exposed to

light, the vanes turn with no other source of power except for the light incident upon

it, and was thus believed to be a demonstration of radiation pressure. This explanation

proved to be incorrect however, as it was later discovered that the rotation was caused

by a temperature gradient causing pressure differences between the vanes, rather than

simple radiation pressure [1].

The search for experimental verification of radiation pressure carried on until 1901,

when Ernest Fox Nichols and Gordon Ferrie Hull constructed the Nichols radiometer,

which consists of two glass vanes suspended on a very fine glass fibre [2, 3]. Convection

effects were minimised by coating one side of the vanes with a highly reflective silver

mirror to reduce absorption and to reduce the air pressure within the radiometer [2]. The

apparatus was able to measure radiation pressures as small as 10−4 dyne to within about

0.6% agreement with values predicted by Maxwell. Further experiments by Richard Beth
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1.1: Brief history of optomechanics

in 1936 measured the torque exerted by the change in angular momentum in circularly

polarised light [4].

The invention of the laser in the 1950’s revolutionised the field of optomechanics

due to its capability of generating high intensities of light. In particular, this led to the

emergence of optical trapping in 1969 when Arthur Ashkin first observed the acceleration

of freely suspended particles by forces of radiation pressure from a laser [5]. One of the

more surprising discoveries from this study was that particles were drawn towards the

centre of the propagation axis of the laser, rather than away from it, effectively achieving

particle confinement in two dimensions. Ashkin then used two counter propagating

beams and managed to demonstrate the first instance of a three dimensional optical

trap. A variation of this was the optical levitation trap, where gravity was used in place

of a second laser beam to confine the particle in the axial direction [6].

The single-beam gradient force radiation pressure particle trap more commonly

known today as the optical tweezers wasn’t invented until 1985 [1]. Ashkin recognised

the role of gradient forces in optical traps, and designed the optical tweezers with a large

numerical aperture objective lens such that a large intensity gradient in the axial direc-

tion can be achieved to generate a large enough gradient force to counteract scattering

forces. With this setup, Ashkin successfully demonstrated stable 3-dimentional optical

trapping of dielectric spheres with diameters ranging from 10 µm down to 25 nm. Since

its invention, the gradient force optical tweezers has had profound impact in various

fields of research, including colloidal hydrodynamics [7–13], molecular biology [14–16]

and nanotechnology [17–32]. One of the most notable achievements of optical tweezers in

biology is the precise position detection over time and the measurement of pico-Newton

forces in the action of single molecule motors such as Kinesin [15] and Myosin [16].

The invention of the optical tweezers also brought about broader researches into

fields related to optical forces. An example of this is the discovery and demonstration

of optical binding by Michael Burns in 1989 [33]. Optical binding is a phenomenon

where intense light field induces significant forces between microscopic particles due to

the interaction between a particle and the scattered light fields from nearby particles.

In Burns’ experiment, microbeads pushed against the surface of the sample cell due
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to radiation pressure from a laser source reorganised themselves into ordered structures

forming two-dimensional ‘optical crystals’ [34]. Tatarkova and colleagues further showed

the optical binding of multiple colloidal particles in a one-dimensional array far from

any surface using counter propagating Gaussian optical traps [35]. In this study, up to

seven 3 µm spheres arranged themselves within the counter propagating trap forming

a linear array with constant interparticle spacing, thereby demonstrating the ability to

experimentally recreate optical binding and coupling between micro-particles.

1.2 Optical trapping of non-spherical particles

Optical trapping of spherical particles is very well understood and has been extensively

studied and documented in the literature, both experimentally and theoretically [1, 36–

39]. The same cannot be said for non-spherical particles due to the significant increase

in complexity exhibited by non-spherical particles compared to spherical particles, such

as the inclusion of angular degrees of freedom and the lack of analytical solutions [40].

These non-spherical particles include spheroidal and ellipsoidal particles [41, 42], nano

and micro rods [43–45], nanowires [29, 30, 45] as well as more complex structures such

as red blood cells [46, 47] and engineered micro structures [48–54].

Spheroidal particles are considered to be one of the simplest non-spherical parti-

cles, as it is formed by a slight deformation of a sphere [40, 41]. A prolate spheroid tends

to align its symmetry axis with the beam axis while an oblate spheroid orients itself so

that its symmetry axis is perpendicular to the beam axis, because in both cases the

overlap between the particles and the optical trap is maximised and potential energy is

minimised [41]. Cylinders and disks are symmetrically similar to spheroids, except with

right-angled edges. This leads to the observation of oblique trapping in cylinders, where

the symmetry axis is oriented neither parallel nor perpendicular to the beam axis, but

somewhere in between [55–57]. The advanced dynamics of non-spherical particle trap-

ping can have many applications. In one study by Phillip et al., it is found that some

desirable features of a force field that can be introduced by modifying the particle shape

or dielectric structure beyond that of a simple homogeneous sphere [51]. In particular,
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1.2: Optical trapping of non-spherical particles

it is discovered that tapered cylinders have a ’force plateau’ in the restoring force, re-

sulting in a constant lateral force that serves to draw the particle into the beam when

displaced. Phillip et al. further demonstrated this effect by designing and fabricating a

passive force clamp based on a tapered cylinder which is capable of applying a constant

force over several micrometres [51].

One particular class of non-spherical elongated particles, namely high aspect ratio

(< 100) nanowires, is gaining increasing interest because of its high shape anisotropy

and unique physical properties. Numerous attempts have been made to understand the

trapping properties of high aspect ratio nanowires through simulations and numerical

calculations; these include Borghese et al.’s studies on the rotation and torque of optically

trapped nanowires by modelling them as linear chains composed of identical spheres

[58], as well as Cao et al.’s simulations on the equilibrium orientations of nanowires and

nanorods of various dimensions and aspect ratios [55]. Simpson and Hanna have also

calculated the trapping stability of nanowires [59] and microrods [44] due to variations

in size and refractive indices [44]. There have also been experimental studies into the

trapping dynamics of various kinds of nanowires, such as Irrera et al.’s study on silicon

nanowires [30], Neves et al.’s study on tilted polymer nanofibres [24], Marago et al.’s

work on carbon nanotubes [22], Pauzauskie et al.’s optical trapping and integration of

nanowire assemblies from various semiconducting material [26], as well as our own work

in the characterisation of optically trapped Indium Phosphide (InP) nanowires [29].

Understanding the trapping dynamics of optically trapped nanowires is highly

beneficial and has many potential applications because recent developments in fabrica-

tion technologies have enabled the fabrication of high quality semiconductor nanowires,

which have shown great promise in various electronics and photonics applications includ-

ing optical waveguides [60], field effect transistors [61], single electron transistors [62],

nanolasers [63], photodetectors [64] and integrated microprocessors [65, 66]. In fact,

there has been developments in microscopy, photonics and chemistry based on the opti-

cal trapping of semiconductor nanowires. For example, Pauzauskie et al. has optically

trapped nanowires of various semiconductor material and cross-sectional geometries and

then manipulated them to construct nanowire junctions and assemblies [26] while Smith
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Figure 1.1: (a) Schematic of inverted optical scanning configuration. (b) AFM
topographic image of thermally evaporated pattern of gold stripes on a glass cov-
erslip. (c) AFM line scan from region indicated in (b). (d) Optical transmission
profile captured by scanning a single KNbO3 nanowire over the metallic surface
structure. The nanowire used to create the transmission line scan was measured
by AFM to have these dimensions: width=122 nm, length=1.4 mm and height=53
nm. Figure from [27]. Reprinted by permission from Macmillan Publishers Ltd:
Nature [27], copyright 2007.

et al. demonstrated the generation of singlet oxygen from optically trapped silicon

and gold nanowires using near infrared wavelengths, which has potential applications in

photodynamic therapy [67]. Furthermore, by examining the Brownian motion of silicon

nanowires within optical traps Roder et al. managed to examine photothermal heating

effects on these nanowires [68]. In scanning probe microscopy, optically trapped high

aspect ratio nanowires have been used as scanning probes due to the ability of achieving

very fine tips with a small spatial footprint and a smaller force constant. Nakayama

et al. used optically trapped Potassium Niobate (KNbO3) nanowire as a tunable light
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emitting probe to image a test pattern consisting a series of 200-nm-wide, 50-nm-thick

gold lines spaced between 200 nm and 1000 nm apart (Figure 1.1) [27]. Marago et al.

managed to show that optically trapped single-wall carbon nanotubes can achieve force

sensitivities down to femtonewtons in the axial direction [22].

1.3 Optical binding and interactions

Optical binding is another avenue where optomechanics is applied. Optical binding forces

arise from the scattering of light between several objects [69]. This phenomena was first

observed in a line shaped optical trap created using a cylindrical lens [33], and has since

been studied theoretically [70, 71] and demonstrated in other forms of optical traps such

as counter propagating traps [35, 72] and evanescent field traps [73]. The optical binding

energy landscape between two particles is known to be a series of roughly equally spaced

energy minima at particle-particle separations approximately equal to integer multiples

of the wavelength of the interacting light [74], and particle-pairs have been shown to

maintain discrete interparticle separations by staying in the nearest energy minimum or

’hopping’ into other energy minima [33, 35, 75]. This effect has been shown to occur

in both the direction of light propagation i.e. longitudinal optical binding [35], and the

direction perpendicular to light propagation i.e. transverse optical binding [76].

Optical binding forces have a wide range of applications, from forming the basis

for self-assembly to precision particle sorting and transport [77]. Grzegorczyk et al.

recently demonstrated the assembly of an optical mirror with only a single layer of 3

µm spherical polystyrene particles [78]. On a separate study, Grzegorczyk et al. also

demonstrated the passive guiding and sorting of small particles based on the equilibrium

between optical scattering and binding forces [77]. Optical binding forces also leads to

the formation of optical matter, a contactless but rigid particle formation held together

by optical binding forces. Yan et al. showed the self assembly of silver nanoparticles into

dimers, chains and closed-packed ’photonic clusters’ induced by optical binding forces

[79].
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1.4 Objectives and outline

In this thesis I aim to examine some advanced trapping dynamics beyond the standard

single gradient force optical trap, particularly on the trapping dynamics of single and

multiple high refractive index, high aspect ratio nanowires. In Chapter 3 we examine

higher order dynamics due to coupling between rotational and translational degrees of

freedom when a single high aspect ratio nanowire is trapped. In Chapter 4 we study

the coupling of the trapping laser into the waveguiding modes of the trapped nanowire,

as well as the coupling interactions between multiple trapped nanowires. Finally in

Chapter 5 we discuss various experimental approaches and propose a novel technique to

experimentally measure these dynamics due to coupling interactions.
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Chapter 2: Construction of the Research Optical Tweezers

2.1 Introduction

A key component in this research is the optical tweezers used throughout the duration of

this study. While there are a number of good papers in the literature which describe in

detail the various components of an optical tweezers setup [1–4], I will use this chapter to

reiterate or highlight a few key points in the design consideration of the optical tweezers

used in our studies. I will also introduce some aspects of the optical tweezers which are

unique to our setup. The construction and modification of this optical tweezers is an

ongoing process, with new components or modifications constantly added to suit different

experiments. In terms of trapping, our tweezers is capable of manual and electronic beam

steering, both holographic and time-shared trap multiplexing, as well as the trapping

of nanoparticles and nanowires. As for measurements, our tweezers can perform video

tracking from bright and dark field illumination, fast particle tracking via back focal

plane interferometry, and photoluminescence spectroscopy. In this chapter I will address

the different components of the tweezers setup which enables these various capabilities

and provide detailed information including the operating principles, construction and

calibration of each one of them.

2.2 Basic optical tweezers

An optical tweezers is an optical trap created by a tightly focused laser beam using

a high numerical aperture (NA) microscope objective lens. It functions by trapping a

particle at the centre of the tightly focused beam [1, 5]. A particle near the optical

trap is acted upon by two forces, namely the scattering force which pushes the particle

away from the focal region and the gradient force which pulls the particle towards the

region [1, 3]. These forces result from the transfer of momentum from the scattering

and refraction of incident photons [1, 3]. An optical trap is stable in three dimensions

when the scattering force and the gradient force counteract and balance each other. As a

classic example, the source of these gradient forces and scattering forces can be modelled

using dielectric spheres and ray optics, as shown in the Figure 2.1 below.

The simplest optical tweezers can be built by simply passing a laser through a

beam expander and a high NA objective lens. A high NA objective (NA > 1.2) is chosen

due to its ability to generate a tight diffraction limited focal spot thus maximizing the

intensity gradient at the focus. This creates a gradient force large enough to counter

the scattering force thereby creating a stable trap in 3D. A beam expander is used to
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2.2: Basic optical tweezers

Figure 2.1: Ray optics diagram showing the refraction of light rays through a
dielectric sphere with refractive index greater than the surrounding medium. (Top
left figure) The centre of the sphere is slightly displaced below the paraxial focus
further away from the microscope objective (O denotes the centre of the sphere).
Consider ray ‘a’, its change in direction from refraction imparts a force Fa in the
dielectric sphere. The same happens for ray ‘b’, and every other ray in between.
The net result is a net force F, pointing towards the paraxial focus, shown as a
bold arrow in the diagram. (Top right figure) The centre of the sphere is displaced
slightly above the paraxial focus closer to the microscope objective, and the net
force is pointing towards the paraxial focus and away from the objective. (Bottom
figure) The light rays are refracted through a dielectric sphere slightly displaced in
the lateral direction from the paraxial focus. The net force (shown in bold) points
in the direction opposing the direction of displacement towards the paraxial focus
[6].
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expand the laser beam to overfill the back aperture of the objective lens to increase the

ratio of gradient to scattering force, which results in higher trapping efficiency [1, 6].

In our setup, the optical trap is generated using a diode pumped Nd:YAG laser

at 1064nm and 3W maximum power (Laser Quantum Ventus 1064). It is chosen for

its pointing stability and low absorption by biological materials in the infrared, with

enough optical power to generate a stable trap. The beam is passed through a high pass

filter at 800 nm to remove the pump source laser and a half wave plate to orient the

polarisation in the preferred direction for the following optics. A telescope system of

two lenses is used as a beam expander while a 100x oil immersion microscope objective

lens with a numerical aperture (NA) of 1.25 (Nikon E Plan Achromat 100x 1.25NA) is

used to focus the laser into an optical trap. The focal lengths of the lenses and their

placements are chosen for the right magnification to expand the beam to just overfill

the back aperture of the objective. For example, the diameter of the diode laser output

is 3 mm while the back aperture of the objective lens is 8 mm, so a magnification factor

of 3 is required to achieve a beam diameter which will overfill the back aperture. To

achieve this we pick two lenses with focal length f and 3f respectively and place them

a distance of 4f apart, shown in Figure 2.2 below.

Figure 2.2: Telescope setup of beam expanding optics for achieving a magnifica-
tion of 3. To achieve this we pick two lenses with focal length f and 3f respectively
and place them a distance of 4f apart.

2.3 Sample mount and sample preparation

Our samples are contained within water in a sealed chamber formed by a thin cover

slip (grade 0), a glass slide, and a annular sticky tape as shown in the figure below.

Water is chosen as a medium because it is a good representation of most biological

systems. To reduce imaging aberrations, immersion oil (n = 1.56) is used between the
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objective lens and the cover slip which minimizes refractive index mismatch between

layers. The sample slide containing the sample chamber is mounted onto a sample

stage with manual controls in all 3 directions and motorised controls in 2 directions

within the horizontal plane to enable navigation of the sample chamber relative to the

optical trap. In our setup, we use a Newport 562-XYZ ULTRAlign sample stage with

3 vernier micrometer actuators capable of 1 µm increments. These are mounted on two

Thorlabs MT1 Translation stages with Z812B motorised actuators capable of a minimum

incremental movement of 0.2 µm.

Figure 2.3: (Left) Top view of a sample slide containing a sample chamber formed
by a annular sticky tape and covered by a thin cover slip. (Right) Cross section of
the sample slide with oil immersion microscope objective.

2.4 Beam steering optics

The steering of the optical trap can be achieved by changing the angle of the laser

beam entering the back aperture of the objective lens which translates into a lateral

displacement of the focal point in the image plane. The simplest way to achieve this is

by placing a moving mirror in the Fourier plane of the sample i.e. the back focal plane,

as tilting the angle of the mirror placed on the back focal plane changes the angle of the

laser entering the objective but conserves the position of the beam on the back aperture

of the lens. Details about the principles behind this structure can be understood in

terms of Fourier Optics [7]. In our setup, manual beam steering capability is added on

to the optical tweezers by adding a relay telescope system which projects the back focal

plane of the microscope objective onto the moving mirror, shown in Figure 2.4. Using

the same mechanism, beam steering can be done using an acousto-optic deflector (AOD)

or a spatial light modulator (SLM), which will be discussed in later sections.
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Figure 2.4: The steering mirror placed in the back focal plane is capable of
translating the focal spot in the trapping plane without displacing the beam path
from the centre of the back aperture of the objective lens.

2.5 Acousto-Optic Deflectors (AOD)

The acousto-optic deflectors (AOD) serve a number of purposes on our optical tweezers

setup, namely trap attenuating, electronic beam steering and time-shared trap multi-

plexing [1, 8]. An AOD consists of a transparent paratellurite (TeO2) crystal attached

to a piezo-electric transducer which is able to generate a sound wave within the crystal

when driven by a radio frequency (RF) synthesizer. The compressive nature of sound

waves causes the molecules in the crystal to vibrate around their equilibrium position,

which in turn leads to a perturbation of the refractive index in local regions of the

crystal. As the sound wave propagates in the crystal, alternating regions of high and

low refractive indices are formed where the spacing between successive regions of high

(or low) refractive indices corresponds to the wavelength of the sound wave in the crys-

tal. When the angle between the incoming laser and the interface between high and

low refractive indices satisfies the Bragg condition for constructive interference, Bragg

diffraction occurs where most of the energy from the laser beam is diffracted away from

the initial beam by twice the Bragg angle. Furthermore, tuning the frequency input of

the RF synthesizer allows us to change the frequency of the sound wave generated in the

crystal. Since the velocity of sound is constant within the crystal, tuning the frequency

of the RF synthesizer changes the wavelength of the sound wave, thereby changing the

spacing of the diffraction grating and the diffraction angle of the incoming laser beam.
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Figure 2.5: The acousto-optic deflector (AOD) deflects the incoming beam by
Bragg diffraction. The deflection angle of the deflected beam depends on the
frequency of the acoustic wave within the acousto-optic crystal, because a change
in the frequency of the sound waves changes the spacing between successive high
and low refractive index layers within the crystal thereby changing the angle for
constructive interference.

2.5.1 Beam Steering and Trap Multiplexing by AOD

As explained in the previous section on beam steering, the displacement of the trap

within the trapping plane can be changed by changing the angle of the laser beam

entering the back aperture of the objective lens. Rather than using a moving mirror,

the same can be achieved electronically using the AOD by placing the AOD crystal on

the back focal plane (or any phase conjugated plane relative to the back focal plane) of

the objective lens. Tuning the input RF frequency into the crystal changes the spacing of

the generated grating which then changes the deflected angle of the laser passing through

the crystal. There are advantages in using non-mechanical beam steering methods, such

as the much higher scan rate achievable and the lack of inertia in moving parts [3, 9].

For beam steering in both x and y directions in the image plane, a set of two

AOD crystals are used such that they deflect the laser beam in orthogonal directions.
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To optimize the diffraction efficiency, the input beam is linearly polarized and the crystal

rotated to the Bragg angle with respect to the incident laser beam.

Figure 2.6: Two AOD crystals placed in the back focal plane is capable of trans-
lating the focal spot in the trapping plane without displacing the beam path from
the centre of the back aperture of the objective lens.

In our setup, we use two AOD’s (Gooch and Housego Model 45035-3-6.5DEG-

1.060XY) driven by two digital frequency synthesizers (Gooch and Housego (R)64020-

250-1ADMDFS-A) capable of a variable RF output up to 1W. The digital frequency

synthesizers take in digital input from a field programmable gate array (FPGA) (Na-

tional Instruments PCIe-7852R) card, which is programmed using LabView. The AOD’s

have an operating frequency between 25 and 45 MHz specified by the manufacturer, so

we pick 35 MHz to be the centre frequency and align the first order deflected beam at 35

MHz from both crystals down the centre of the optical path. The undeflected beams are

terminated by placing an aperture after the two AOD’s, as shown in Figure 2.6. Beam

steering is simply achieved by adjusting the input frequency to both crystals using the

digital frequency synthesizer.

The AOD’s can also be used to generate multiple traps from a single laser source

by time-sharing the optical trap [1, 9]. This is done by steering the trap between a

few locations at high frequency. If the switching of the trap is much faster than the

diffusion time of the trapped object, the trapped object effectively does not ’see’ this

switching, and the trapping power is simply averaged over the number of traps that

is being generated by time sharing. The rise time for these AOD’s is specified by the

manufacturer to be 4.5 µs, so we pick 50 µs as our switching time between traps so that

it is much larger than the rise time. For two traps this results in a switching rate of 10

kHz per trap with a duty cycle of 50%. A duty cycle of 50% means the trapping beam

acts on each particle 50% of the time, which is a result of sharing the trap between

two locations. We will examine the limits of time shared trap multiplexing in Chapter
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5.2.3, but for now it is sufficient to say that a switching frequency of 10 kHz between

two locations is sufficient to create two time-shared traps. It should also be noted that

the latching of both frequency synthesizers has to be synchronous. This means both

frequency synthesizers must be switched at the same time. Multiple traps can similarly

be generated by steering the trap through multiple locations provided enough trapping

laser power is provided and the condition of swithching faster than the diffusion time of

the trapped object is fulfiled. In our setup, we demonstrate up to four individual traps

generated by time sharing (Figure 2.7).

Figure 2.7: A photo captured from the video camera showing four time-shared
traps holding one 1 µm spheres in each trap.

2.5.2 Calibration of AOD input frequency against distance in the im-

age plane

As mentioned previously, the Gooch and Housego AOD which is used in our setup has

an operating frequency of 25 to 45 MHz. According to the manufacturer’s data sheet,

the difference in diffraction angle between these two limits of the operating frequency

is only 32 milliradians (mrad) for lasers at 1064 nm. Given our choice of the centre

frequency at 35 MHz, there will only be a maximum deflection angle of 16 mrad on

either side from the centre. At this small angle, the relationship between the change in
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frequency and the lateral displacement of the beam in the image plane is linear to a very

good approximation. This is quantified experimentally in the following paragraphs.

The procedure for calibrating the input frequency of the AOD against the absolute

displacement from the centre in the image plane is as follows. Firstly, a stage micrometer

is photographed using a camera with square pixels. The resulting image allows us to

find the number of pixels per µm (Figure 2.8). Then, images of two traps at different

frequencies (Figure 2.9) are captured and the number of pixels between the two traps

is measured. The number of pixels can then be converted into absolute distance and a

graph of distance versus frequency is plotted. From the slope of the graph we find the

displacement per frequency change. The same procedure is carried out for each of the

two AOD crystals to obtain the calibration factor for both x and y axes.

Figure 2.8: Image of stage micrometer on the image plane. The scale of the
micrometer is 0.01 mm, as indicated by the red arrow.

From the photo of the stage micrometer we find that the scale on the photographs is

10.33 pixels per µm, using an image processing software ImageJ. This is used to calculate

the absolute distance between two traps and a graph of distance versus frequency change

is plotted (Figure 2.10). Finally from the slope of the graphs we find that conversion

factor from changing frequency to distance in the image plane is 0.68 ± 0.01µm per

MHz in the x axis and 0.70 ± 0.01µm per MHz in the y axis. Since the AOD’s have

an operating frequency of 35± 10 MHz, this translates to roughly ±7 µm of maximum

displacement on the trapping plane on both axes from the centre of the trap.
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Figure 2.9: An image of two empty traps with the AOD set at 30 and 40 MHz
in the x axis. The number of pixels on the image between the centre of each trap
is measured.

Figure 2.10: Displacement on image plane versus frequency change of AOD input
frequency.
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2.5.3 Trap Power Attenuation by AOD

By changing the input voltage of the RF synthesizer, we tune the amplitude of the

RF signal generated for the AOD crystals. This changes the diffraction efficiency of

the AOD crystals, giving us a way of controlling the optical power of the laser output

from the AOD and by extension the strength of the optical trap. Changing the RF

input changes the diffraction efficiency because diffraction efficiency is related to the

difference in refractive index between the compressed and decompressed regions within

the AOD crystal. A larger RF input (below saturation) generates stronger compression

and decompression within the crystal, leading to a larger change in refractive index.

This in turn leads to a larger refractive index difference between the compressed and

decompressed regions, resulting in a higher diffraction efficiency. It should be noted

that the diffraction efficiency is not a linear function of the input voltage of the RF

synthesizer. Hence, a calibration curve is experimentally obtained to map input voltage

to the optical power of the trapping laser at the trap focus. The calibration curve in

Figure 2.11 shows the optical power at the exit aperture of the AOD (shown in blue).

The percentage optical loss from the remaining optics in the optical path is measured and

subtracted to obtain the optical power of the trapping laser at the trap focus (shown in

red). We note that power transmission through the oil immersion objective is measured

using the dual-objective method [10].
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Figure 2.11: Trapping power of a single trap at the trap focus versus input
voltage of DFS. The optical power at the exit aperture of the AOD is shown in
blue while the optical power of the trapping laser at the trap focus with all losses
taken into account is shown in red.

2.6 Spatial light modulator (SLM)

An additional piece of equipment added to our optical tweezers setup is the spatial

light modulator (SLM). The SLM works by modulating the phase of the input beam to

create the desired beam shape at the focus. This allows it to generate a variety of beam

profiles on the trapping focus such as a Bessel beam and a Laguerre-Gaussian beam

[11]. SLM’s were first used with optical tweezers as a method for non-mechanical optical

manipulation in 1999 [12, 13] and has since been used in holographic tweezers to steer

optical traps in 3D or to generate multiple traps [14–16]. The capabilities of an SLM is

not limited to only these applications; as SLM’s can display arbitrary phase patterns, it

is possible to use them to correct for aberrations in the optical trap [17–19].

However, there are some drawbacks in using a SLM as a mechanism for beam

steering and trap multiplexing compared to an AOD. Firstly, the SLM has a much lower

modulated efficiency at 30-50% [20] compared to the AOD which easily achieve 80%

efficiency in our setup. Second and more importantly, the refresh rate of an SLM is

typically only around 100 Hz, which is orders of magnitude lower than that of the AOD

which is in the order of tens of kHz.
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In our setup, an SLM is used for beam steering in the axial direction and for

aberration correction of the optical traps. Aberration correction is necessary as it is

known that the introduction of AOD’s into the system causes significant aberrations

from the non-flat wave front entering and exiting the AOD crystals, as well as the

refractive index mismatch between crystal and air [21]. Apart from that, the refractive

index mismatch between immersion oil, cover slip and water within trapping chamber

leads to some aberrations as well [22, 23]. The SLM used in our setup is the Hamamatsu

LCOS-SLM x10468-03 SLM, which is a phase only reflection SLM with dielectric mirror

for 1064 nm wavelength light. Just like the AOD’s, the SLM is placed in the Fourier

plane (or any equivalent conjugate planes) of the trapping plane. The incident light

is expanded to fully fill the entire SLM to maximise resolution, and linearly polarised

in the horizontal direction to match the orientation of the liquid crystals in the SLM

as specified by the manufacturer. To achieve a high modulation efficiency, the incident

angle upon the SLM has to be small (< 10◦); in our setup the incident beam is set at

7.5◦ from normal incidence. The first order deflection of the beam reflected off the SLM

is aligned down the optical path and used as the trapping beam while the zero-th order

reflected beam is terminated since it cannot be fully modulated.

Figure 2.12: The configuration of the spatial light modulator (SLM) in the optical
tweezers setup. The incident beam is expanded to fully fill the active area of the
SLM; the first order reflection is used as the trapping beam while the zero order
is terminated.
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2.6.1 Phase mask or hologram generation

To understand how a SLM shapes the beam at the focus of the objective lens i.e. the

optical trap, one must understand Fourier Optics, which I will not go into details here.

A phase only SLM, which is the type used in our setup shapes the wavefront of light by

changing the phase of the incident light. This is done by a phase mask or hologram on

the SLM.

2.6.2 Zernike polynomials for aberration corrections

The SLM in our setup is used for aberration corrections, and to describe the aberrations

we use a set of orthogonal Zernike’s circle polynomials [24]. By combining different

modes of these polynomials, any aberration can be described. The Zernike polynomials

are as follows

Z1 = 2r cos θ (2.1a)

Z2 = 2r sin θ (2.1b)

Z3 =
√

3
(
2r2 − 1

)
(2.1c)

Z4 =
√

6r2 cos 2θ (2.1d)

Z5 =
√

6r2 sin 2θ (2.1e)

Z6 =
√

8
(
3r3 − 2r

)
cos θ (2.1f)

Z7 =
√

8
(
3r3 − 2r

)
sin θ (2.1g)

Z8 =
√

5
(
6r4 − 6r2 + 1

)
(2.1h)

Z9 =
√

8r3 sin 3θ (2.1i)

Z10 =
√

8r3 cos 3θ (2.1j)

Z11 =
(
20r6 − 30r4 + 12r2 − 1

)
(2.1k)

Here Z1 and Z2 stand for tilting in x and y respectively which controls the lateral

displacement of the trap. Z3 represents defocusing, where a Fresnel lens is applied to

change the position of the trap focus axial direction. Z4 and Z5 describe the astigmatisms

in x and y. Z6 and Z7 are coma in x and y. Z8 and Z11 describe primary and secondary

spherical aberrations while Z9 and Z10 denote trefoils in x and y.
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To find the optimal aberration corrections for our system, we need to find the

correct amplitude for each Zernike Mode to be applied to our system to exactly cancel

existing aberrations. This is done by the following protocol. A red dyed labelled 1

µm microsphere is optically trapped using our optical tweezers. The laser from the

optical trap causes nonlinear excitation on the fluorescent dye on the microsphere, and

strong two-photon absorption and re-emission can be detected from the trapped sphere.

This emission is collected using an avalanche photodiode which is wired to a lock-in

amplifier to amplify the signal. Since two-photon absorption induced photoluminescence

has a quadratic dependence on the peak intensity of the excitation source, the higher

emission intensity correlates with a superior trapping spot with less aberration. Thus

by scanning each Zernike mode and collecting the resulting emission intensity from an

optically trapped red microsphere, we find the optimal amplitude for each Zernike mode

which results in the strongest optical trap (with least aberration).

Figure 2.13: The resulting kinoform that is used for aberration correction in our
optical tweezers.

Through optimising our system from aberrations, we found that the main con-

tribution of aberrations in our system are from spherical aberrations. This is expected
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as our system comprises of multiple interfaces where refractive index mismatch occurs,

namely the interface between objective lens, immersion oil, glass cover slip and deionised

water in which the optically trapped particles are suspended. Figure 2.13 shows the re-

sulting kinoform that we use for our experiments, while Figure 2.14 shows a comparison

between corrected and uncorrected beam profiles at the trapping focus.

Figure 2.14: Images of the beam focus (a) with and (b) without the Zernike
mask, measured by a CCD camera.

2.7 Vibration isolation

Without isolation from external vibration, the optical tweezers are susceptible to exter-

nal noise, especially when high precision measurements are made. Pneumatic isolation

mounts (Newport Pneumatic Isolation Mount Type XL-A) are used to isolate the optical

bench and our optical tweezers setup from external vibration. These mounts are capable

of damping vibrations above 10 Hz by more than 95%. Prior to the incorporation of

vibration isolation, we systematically measure 100 Hz spikes in our power spectra of

the trajectories of trapped particles that were independent of our experimental variables

(Figure 2.15). Upon incorporation of vibration isolation, cleaner power spectra without

spikes due to external vibration were obtained (Figure 2.15).
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Figure 2.15: Power spectra of an optically trapped 1 µm polystyrene sphere when
pneumatic isolation mounts are turned off (blue) and on (green). Low frequency
vibrations, particularly the spike at 100 Hz, are visibly removed when vibration
isolation is incorporated.

2.8 Particle tracking and measurements

There are currently two major techniques for tracking particle displacements within an

optical trap, namely interferometric particle tracking and video particle tracking [1, 3].

In this work we perform particle tracking primarily using interferometric methods due

to its superior bandwidth over video tracking, as well as its compatibility with multiple

time-shared traps as explained in Chapter 5.

2.8.1 Interferometric particle tracking

The displacement of a trapped particle within an optical trap can be accurately deter-

mined by back focal plane interferometry. This technique was first demonstrated for

optical tweezers by Gittes and Schmidt [25]. Back focal plane interferometry relies on

the interference between forward scattered laser light from the trapped particle and the

unscattered laser light. A detector, usually a quadrant photodiode (QPD) is placed in

the back focal plane of the condenser lens to record the intensity pattern caused by this

interference. The intensity of this interference pattern in the back focal plane does not
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depend on the absolute location of the trapped particle, only its displacement relative to

the centre of the optical trap. This pattern represents the angular intensity distribution

of the light that has passed through the focus and is described by Equation 2.2 [25]. For

a particle with radius a displaced by some distance x,

δI (x)

Itot
=

2k3α

πr2
e(−x2/w2

0) × sin (kx sin θ cosφ) e(−k2w2
0θ

2/4) (2.2)

where δI is the change in intensity at any point in the back focal plane (θ, φ) due

to a particle displacement x. Here w0 is the 1/e radius of the focus, k = 2πnm/λ = k0nm;

nm is the refractive index of the medium and λ is the wavelength of the trapping laser.

α is given as

α = a3n
2
r − 1

n2
r + 2

(2.3)

where nr = n/nm is the relative refractive index of the particle to the medium.

If a split photodiode is used to monitor the interference pattern in the back focal

plane, the detector response can be obtained by integrating Equation 2.2 over all points

on the back focal plane, giving Equation 2.4a

I+ − I−
I+ + I−

≈ 16√
π

kα

w2
0

G (x/w0) (2.4a)

G (u) = e(−2u2)
∫ u

0
e(v

2) dv (2.4b)

where I+ is the intensity hitting half of the split photodiode and I− is the intensity

hitting the other half of the split photodiode. For measuring displacements in both x and

y directions, a QPD which is essentially a split diode in two directions is used instead.

This is explained in Figure 2.16.

In our experimental setup, we use a 0.65 NA condenser lens (Olympus S Plan

Fluor 40x 0.65NA ELWD) to collect tracking signals, which is expanded by a telescope

relay to slightly overfill a Hamamatsu G6849 InGaAs QPD. The intensity incident upon

the QPD is proportional to the output voltage of the QPD, which is wired to an FPGA

card (National Instruments PCIe-7852R) for data acquisition.
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Figure 2.16: The configuration of the quadrant photodiode (QPD) in the
optical tweezers setup. The QPD has four quadrants a, b, c, and d with
output voltage Va, Vb, Vc and Vd. For particle displacements in the x di-
rection, I+ ∝ Va + Vc and I− ∝ Vb + Vd hence the detector response
for x displacements is [(Va + Vc)− (Vb + Vd)] / (Va + Vb + Vc + Vd). The detec-
tor response for y displacements can be worked out using a similar fashion,
[(Va + Vb)− (Vc + Vd)] / (Va + Vb + Vc + Vd).

2.8.2 Calibration of QPD response to particle displacement

To be able to measure the actual displacement of the particle from the trap centre using

the QPD, we have to calibrate the QPD response against particles located at known

distances from the trap centre. There are numerous calibration methods for calibrating

detector responses to displacements of trapped particles, and the most popular one is

the ’stuck-particle method’ where a bead is stuck on a nano-positioning stage which

is scanned through the optical tweezers [4]. As the nano-positioning stage has precise

control over displacements in 3-D, the voltage signal of the forward-scattered interference

patterns can be mapped onto a high precision position grid. There are a number of

disadvantages in this method. Firstly, it requires a ’sacrificial particle’ for the calibration

which is stuck and can no longer be used for measurements. This also means that
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the particle that is being measured is not necessarily the same particle that is being

calibrated, and will result in a slightly different detector response. This is problematic

when particle samples within a solution has a large size dispersion. A solution to this

problem is to calibrate the trap post-measurements, but this means post processing

of the data is necessary and real time results acquisition is not possible. Secondly, the

detector response from stuck particles may include scattering from the surface where the

particle is stuck onto leading to slightly inaccurate detector responses. Third and most

importantly, the stuck particle calibration method does not work for non-symmetric

particles, as there is no control over the orientation of the stuck particle to be the same

as its orientation while being trapped.

For our setup, we address some of the weaknesses of the stuck-particle calibration

method by a different calibration method utilizing the AOD. The explanation of our

calibration protocol will be done in reference to Figure 2.17 above. In order to calibrate

a trap centred at some point, call it Point O, we must first move the particle a known

distance away from Point O. This is done by moving the trap with the trapped particle

within it to the new position using the AOD, and refer to this position as Point A.

Since the AOD has been calibrated with respect to actual distance (see Section 2.5.2),

the distance between Point O and Point A, ∆x, is known exactly. Next, the laser is

switched back to the trap centre (Point O) and the scattered signal from the particle is

measured by the QPD. It is important to note that the beam at Point A is kept at a

much longer interval than the beam at Point O, such that the particle stays at Point A;

in our experiments, we keep the beam for 500 µs at Point A and 50 µs at Point O. It is

also critical that the QPD measurement is taken exactly when the beam is at Point O.

The QPD response is thus a measurement of the particle being displaced by ∆x from

a trap centered on Point O. This calibration procedure is repeated at least 2000 times

for each known displacement ∆x to improve accuracy, and the same is done for a few

different particle displacements to build up a detector response calibration curve (Figure

2.18).

From Figure 2.18a, we see that the detector response curve for a trapped 1 µm

polystyrene sphere demonstrate the distinct features of a typical detector response curves

[25, 26], as predicted by Equation 2.4a also shown in the Figure. This reaffirms the

validity of our calibration method. Since the normal displacement due to Brownian

motion of an optically trapped particle falls well within the linear region of the detector

response curve, we can directly map the detector response to particle displacement

through linear interpolation (Figure 2.18b). If the output voltages from each quadrant
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Figure 2.17: (a) The trap is calibrated by trapping the particle at Point A and
then measuring the scattering from the particle when the laser is at Point O. To
achieve this, the laser spends most of the time holding the particle at Point A (500
µs), and switches over to Point O in short intervals to take measurements (50 µs).
(b) The QPD readout form measuring at Point O in the top diagram mimics the
QPD readout from the scenario when a particle is displaced from the trap centre
of the calibrated trap. This therefore allows us to find the actual displacement of
the particle from the trap centre, ∆x by looking at the QPD readout.
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of the QPD are Va, Vb, Vc and Vd, then the x and y displacements of an optically trapped

particle are given as

∆x = Cx
(Va + Vc)− (Vb + Vd)

(Va + Vb + Vc + Vd)
(2.5a)

∆y = Cy
(Va + Vb)− (Vc + Vd)

(Va + Vb + Vc + Vd)
(2.5b)

where Cx and Cy are the calibration constants which are the gradients obtained

from the linear fits of the QPD detector response curves (Figure 2.18b).
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(a) QPD detector response curve of a trapped 1 µm spheres over ±1 µm from
the trap centre, denoted by the black crosses. The red curve is a scaled plot
of Equation 2.4a.

(b) Linear region of the QPD detector response curve with a linear fit.

Figure 2.18: QPD detector response curve of a trapped 1 µm spheres.
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2.9 Trapping and tracking of a particle using optical tweez-

ers

Figure 2.19 shows the schematic of our optical tweezers setup that is used for all exper-

imental work presented in this thesis.

Figure 2.19: A schematic diagram of the optical tweezers setup used in this study.

The trapping and tracking of a particle using our optical tweezers setup can be

summarised as the following:

1. Optimise the trap from aberrations using the SLM (Section 2.6.2). This step is

only done every few months or when a full system realignment is necessary.

2. Calibrate the output power (Section 2.5.3) and displacement (Section 2.5.2) of the

AOD. This step is only necessary if the SLM is reconfigured.

3. Vibration isolation is turned on (Section 2.7).
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4. Samples are prepared and mounted onto the optical tweezers setup. Both the

manual and motorised stage controls can be used to browse within the sample

chamber to find suitable particles for optical trapping (Section 2.3).

5. Once a suitable particle is found, it is trapped using the trapping beam of the

optical tweezers (Section 2.2).

6. The QPD detector response for the trapped particle is calibrated (Section 2.8.2).

7. Once calibrated, the particle is tracked by back focal plane interferometry using

the QPD (Section 2.8.1).

For all of our experiments unless otherwise specified, the trapped particle is tracked

for 2 seconds with a sampling rate of 10 kHz and 5 sets of 2-second trajectories are

recorded. An example set of particle trajectory for an optically trapped 1 µm polystyrene

sphere is shown in Figure 2.20.

Figure 2.20: The trajectory of an optically trapped 1 µm polystyrene sphere.
The blue curve denotes displacements in the x direction while the green curve
denotes displacements in the y direction.
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3.1: Introduction

3.1 Introduction

There has been growing interest in the optical trapping of micron-sized objects as po-

tential probe tips in high-resolution scanning probe microscopy [1]. The appeal in using

optically trapped probe tips is the capability of achieving very fine tips with a small

spatial footprint and a smaller force constant. This potentially increases the maximum

achievable spatial resolution and sensitivity, which in turn enables the interrogation of

surfaces that are otherwise inaccessible to conventional scanning probe techniques [2–4].

Furthermore, the advancement in two-photon polymerization technology has led to the

ability to fabricate complex 3 dimensional objects that can be tailored to meet specific

dimensions which optimizes the probing capability of such optically trapped scanning

probes [2, 3, 5, 6]. Examples of this are the probes designed and fabricated by Phillips

et al. [3, 5–7] which consist of conical handles where optical forces are applied, and

spherical markers as tracking points, shown in Figure 3.1 below. Some of these probes

are capable of achieving a lateral resolution of 200 nm (due to the tip diameter) and a

depth resolution of about 10 nm [6] as shown in Figure 3.2.

Another class of potential candidates for optically trapped scanning probes are

semiconductor nanowires. The development of nanoscale fabrication technology has en-

abled the production of high quality nanoscale structures; advanced fabrication methods

allow the composition and dimensions of these nanostructures to be controlled with very

high purity and accuracy [8–11]. Among the various types of nanostructures, semicon-

ductor nanowires have attracted considerable interest due to its potential in nano-scale

electronic and photonic applications, including optical waveguides [12], field effect tran-

sistors [13], single electron transistors [14], nanolasers [15], photodetectors [16] and in-

tegrated microprocessors [17, 18]. Nanowires have also been optically manipulated to

assemble more complex nanostructures [19, 20].

In addition to having diameters as small as 50nm, nanowires typically have an

aspect ratio well above 50 making them excellent candidates as scanning probe tips.

On top of that, semiconductor nanowires are typically composed of optically active

materials that exhibit room temperature photoluminescence as well as strong second

harmonic generation [15, 21]. These additional functionalities open up new possibilities

in terms of probing methods, such as the use of guided light within a nanowire to probe

surface features [1]. Indium phosphide (InP) nanowires are chosen for this study due

to their excellent optical and electrical properties. InP nanowires have been shown to

have photoluminescence and photodetection capabilities [16]. They have also been used
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Figure 3.1: Probes consisting of conical sections through which the object
is trapped and spheres to provide tracking points for high-speed video stereo-
microscopy. The three-dimensional coordinates of each sphere can be recovered to
an accuracy of ≤ 5nm at rates of up to 1 kHz, from which the position and orien-
tation of the extended particle can be determined. Image adopted from Simpson
et al [7]. Reprinted from [7], copyright 2013, with permission from Elsevier.

as single electron transistors [14]. Our group has also demonstrated second harmonic

generation (SHG) of 532nm photons from a 1064nm pump source via a single optically

trapped nanowire [21]. Due to these qualities, it is therefore desirable to fully characterise

and thoroughly understand the trapping behaviour of single InP nanowires.

In this chapter, I aim to study the behaviour of a single InP nanowire within an

optical trap. This is an important step before we examine the interaction of multiple

trapped nanowires. In this chapter I will discuss the trapping and tracking of single InP

nanowires. The trap stiffness of optically trapped InP nanowires will be measured, and

the dependence on nanowire length and trapping power is examined. Finally, I will also

examine some dynamic behaviour in the optical trapping of these nanowires that arises

due to their shape asymmetry.

50



3.2: Theoretical considerations of the optical trapping of nanowires

Figure 3.2: (a) Scanning electron microscope (SEM) image of two newly fab-
ricated probes still attached to the substrate. (b) SEM image of a single probe
dislodged from the substrate and lying on its side. (c) Close-up SEM image of the
probe tip from the probe in (b). (d) Optical image of a probe as it is scanned
along the side of a calibration sample. Circles indicate the location of the optical
traps; crosses mark the tracked points of the probe. (e) Surface topography of the
side of the calibration sample recorded with this probe. (f) SEM image showing
the side of the calibration sample that was scanned with the probe. (g) Same data
as in (e, viewed as a three-dimensional reconstruction for comparison with (f). All
figures adopted from Phillips et al [6]. Reprinted by permission from Macmillan
Publishers Ltd: Nature Photonics [6], copyright 2014.

3.2 Theoretical considerations of the optical trapping of

nanowires

Optically trapped microscopic objects emulate the motion of an over-damped harmonic

oscillator driven by stochastic thermal fluctuations. Such motion can be described by

diffusive Brownian motion modulated by translational restoring forces, as described by

Einstein-Ornstein-Uhlenbeck theory [22]. For small displacements, the restoring force

acting on an optically trapped object is proportional to its displacement from the trap-

ping centre. For a trapped particle within an aqueous medium, the system can be

described as a highly overdamped harmonic oscillator for the three translation coordi-

nates [23, 24]. Using the Einstein-Ornstein-Uhlenbeck theory of Brownian motion, the

motion of the trapped particle can be described by a Langevin equation in the following

form [25]:

m
∂2x

∂t2
+ γ0

∂x

∂t
+ κx = (2kBTγ0)1/2 η (t) (3.1)
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Where m is the mass of the particle, x(t) is the trajectory of the particle, κ is

the trap stiffness, γ0 is the Stoke’s drag of the particle, T is the temperature, and η (t)

denotes the stochastic process of the Brownian motion of the trapped particle, with

〈η (t)〉 = 0 and 〈η (t) η (t′)〉 = δ (t− t′). In Equation 3.1, the first term on the left is the

inertial term, the second is the viscous damping or Stokes drag, and the third term is

the optical restoring force. The term on right-hand side denotes the Brownian forces at

absolute temperature T. As the characteristic time for momentum relaxation through

viscous damping, tp ≡ m/γ0 is very small (i.e., low Reynolds number environment) the

inertial term may be neglected.

Following from Berg-Sorensen and Flyvbjerg [22], the above equation may be

approximated by

∂x

∂t
+ 2πfcx = (2D)1/2 η (t) (3.2)

Where we have defined the corner frequency, fc ≡ κ/2πγ0, and D = kBT/γ0

is the Einstein equation for diffusion of particles through a fluid medium. By taking

the Fourier transformation of 3.2 we find that the power spectrum, S, is given by the

Lorentzian equation

S ≡
〈
|x̃|2

T

〉
=

D/2π2

f2
c + f2

(3.3)

Where |x̃| is the Fourier transform of x(t). Hence we can obtain the value of fc by

fitting a Lorentzian to our experimental data, and then calculate the trap stiffness κ.

In the case of optically trapped nanowires, the elongated shape introduces two

additional angular degrees of freedom, rotation and tilt. The stochastic motion of

the nanowires within an optical trap can therefore be described by a set of uncoupled

Langevin equations in terms of translational xi and angular θj coordinates [26] (with

the inertial terms removed due to reasons explained above):

∂txi (t) = −ωixi (t) + ξi (t) (3.4a)

∂tθj (t) = −Ωjθj (t) + ξj (t) (3.4b)
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3.3: InP nanowire trapping experiments

Where ωi = κi/γi and Ωj = τj/γj are relaxation constants related to the force and

torque constants and drag coefficients. ξi (t) represents the noise term with zero mean

and variance, 〈ξi (t) ξi (t+ τ)〉 = 2kBTγiη (τ). The trap stiffness and torque constants

for each degree of freedom can be extracted by performing a power spectrum analysis

on the Langevin equations.

Note that in order to accurately predict the trap stiffness parameter, we need to

know the form of drag coefficient for the objects of interest. For spherical particles such

as colloidal microspheres this is a well-known analytical expression; however for more

complex shapes, such as elongated cylinders, no analytical expression is available. Here

we model the nanowires as rigid cylinders and compute the Stokes’ drag for cylindrical

objects based on computational models developed by Tirado and Torre [27, 28]. The vis-

cous drag of cylindrical objects, γi is described by an anisotropic hydrodynamic mobility

tensor [26, 28].

γ⊥ =
4πη0L

ln (L/2a) + δ⊥
(3.5a)

γ‖ =
2πη0L

ln (L/2a) + δ‖
(3.5b)

γθ =
πη0L

3

3 (ln (L/2a) + δθ)
(3.5c)

Where γ⊥ and γ‖ are the drag coefficients perpendicular and parallel to the sym-

metry axis of the cylinder, while γθ is the rotational drag coefficient for reorientation

of the cylinder. η0 is the viscosity of water while δ⊥, δ‖ and δθ are correction factors

accounting for the ends of the cylinder which depends on the aspect ratio of the cylin-

der, L/2a, and was calculated by Tirado [27]. A power spectrum analysis of this system

yields a characteristic Lorentzian dependence for each degree of freedom with corner fre-

quencies given by fci = κi/2πγi, from which the trap stiffness for each degree of freedom

κi can be extracted.

This simple approximation provides an accurate description for a large class of

optical trapping experiments, such as the case in nanowires when the coupling between

rotational and translational motions are weak, or when the rotational motions are heavily

suppressed. The above approximation breaks down however, when there are significant

angular motions strongly coupled to translational motions, as shown in some of our

experiments in a later section in this chapter.
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3.3 InP nanowire trapping experiments

3.3.1 InP nanowire preparation

InP nanowires used in the following studies were epitaxially grown on an InP (111)B

substrate by metal organic chemical vapour deposition (MOCVD) [9]. The semiconduc-

tor substrates were initially immersed in poly-L-lysine solution and treated with gold

colloid solution containing gold nanoparticles of 30 nm in diameter. The nanowires were

then grown in the MOCVD reactor using trimethylindium (TMIn) and phosphine (PH3)

precursors, with the gold nanoparticles acting as seeds for the growth via the vapour

liquid solid (VLS) mechanism [9, 29]. During growth, pressure was kept at 100 mbar

while the temperature was set at 490 ◦C, the V/III ratio was set at 44, and the growth

time was approximately 20 min. These growth conditions produced nanowires of very

uniform cylindrical geometry of dimensions 30±6 nm in diameter and up to 15 µm in

length. The nanowires had a predominantly wurtzite (WZ) crystal structure, which was

confirmed by high-resolution transmission electron and scanning electron microscopy

measurements [9].

Individual InP nanowires were transferred into liquid medium and onto a sample

slide that can be mounted on the optical tweezers setup by the following procedures: a 3

mm by 3 mm InP substrate (only approximate, as substrate is cleaved along its crystal

planes) with grown nanowires is added into a 10 ml vial with 1 ml of deionised water.

The surface of the substrate containing nanowires is placed facing upwards in the vial

so that the nanowires may freely diffuse into the solution during sonication. The vial

is sealed and sonicated in a water bath for 2 minutes. The resulting solution is diluted

10 to 50 times depending on the yield of the nanowires from sonication. This set of

procedures produces a solution containing nanowires with lengths up to 15 µm.

For optical trapping experiments, the diluted solution containing nanowires is then

prepared onto a sample slide as described in the sample preparation section of Chapter 2

Section 2.3 and mounted onto the optical tweezers setup shown in Figure 2.3. It should

be noted that the resulting solution from sonication will also contain some contaminants

due to broken nanowires or broken bits of substrate. If the concentration of contaminants

is too high in a sample, further dilution is necessary.
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3.3: InP nanowire trapping experiments

3.3.2 Trapping a single InP nanowire

Once the sample slide containing the nanowires is mounted onto the sample stage, we

navigate through the sample to look for nanowires to trap by raster scanning the sample

chamber using motorised sample stage controls. Trapping of nanowires is slightly more

difficult than trapping spheres, as the non-spherical shape of the nanowires means that

the initial orientation of the nanowire is critical to successfully capture it.

Figure 3.3: A photograph of the image plane showing a trapped nanowire in
the optical tweezers (indicated by the red arrow). The nanowire is aligned to the
optical axis, which is perpendicular to the image plane. (Insert) A photograph
of an untrapped nanowire on its side. The black scale bar indicates 5 µm. Both
pictures are at the same scale.

Through our trapping experiments we found that we are able to trap nanowires

between 3 µm and 15 µm. When trapped, these nanowires align themselves to the optical

axis of the trap which is perpendicular to the image plane, as can be seen in Figure 3.3.

Hence in order to trap a nanowire, it must be slightly tilted towards the vertical direction

while the optical trap is positioned above for it to enter the trap smoothly into the stable

trapping position, as shown in Figure 3.5. If the nanowire enters the trap horizontally
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such as that shown in Figure 3.4, a large cross sectional area of the nanowire will be

exposed to the laser beam resulting in a large scattering force pushing the nanowire

away from the trap along the beam propagation direction.

3.3.3 Calibration of detector response of a trapped nanowire

Tracking of the optically trapped nanowire is done using back focal plane interferometry

with a quadrant photodiode (QPD) as described in the methods chapter. This method is

chosen over video tracking methods for its unparalleled temporal and spatial resolution.

The calibration procedure and the measurement of a detector response curve are also

the same as that for spheres as described in Section 2.8.2 in Chapter 2.

Figure 3.6 is a set of detector response curves for nanowires of different lengths

which exhibit a form characteristic of trapped spherical objects [30] and includes a linear

region near the trapping origin and a strongly nonlinear region at larger displacement,

thus validating the applicability of this method of tracking to our system. From the

curves it can be seen that the detector response is linear with respect to the displacement

of the nanowires from the centre of the trap up to ±200 nm; typical Brownian fluctuation

of the nanowires within the trap is an order of magnitude smaller than these limits.

The relative invariance of the detector response curves between different lengths of

nanowire can be attributed to the fact that the scattering cross section of the nanowires

with the same diameter within the optical trap remains constant irrespective of the

lengths of the nanowires. This is because the lengths of these nanowires extend beyond

the depth of focus of the optical trap, resulting in the same interaction volume with the

optical trap regardless of nanowire length. This will be examined further in Section 3.4,

on the length dependence of trap stiffness of nanowires. It should also be noted that

the calibration is only valid for conditions where the nanowire maintains its orientation

with the long axis directed along the propagation direction, which is the case for high

refractive index nanowires of length greatly exceeding the focal depth of the tweezers.
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3.3: InP nanowire trapping experiments

Figure 3.4: Failed attempt to trap a nanowire. (Left) If the wire is not tilted
enough when the trap is moved over it, the nanowire will experience an attractive
potential towards the trap centre. (Right) It will then experience a huge acceler-
ation as it passes through the depth of focus of the laser and is therefore ‘kicked’
away from the trap.

Figure 3.5: Successful trapping of nanowires using optical tweezers. (Left) The
trap is moved above a slightly tilted nanowire. The attractive potential of the trap
will pull the wire towards it, and at the same time align the nanowire vertically.
(Right) The nanowire is trapped in the optical trap. The depth of focus is where
the tweezers is ‘holding’ the nanowire.
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Figure 3.6: QPD response for the lateral displacement of nine nanowires of dif-
ferent lengths within an optical trap. The curves have a linear response for small
perturbations and a strongly nonlinear response for larger displacements. All but
two of the nanowires has almost identical calibration curves; this suggest that the
two nanowires have a different interaction volume with the optical trap compared
to the other nanowires, probably because they have different diameters (see Section
3.4).

3.3.4 Length measurements of nanowires

The lengths of individual optically trapped nanowires are of interest in various length

dependence studies. As such, the lengths of the same nanowires that we have tracked

have to be measured and matched to the tracking data that were taken. This is done by

pushing a previously tracked nanowire against the cover slip of the sample chamber using

the optical tweezers until the nanowire is flat on the image plane, and then capturing

an image of it as shown in Figure 3.7 . The apparent lengths of the nanowires in the

pictures are then measured in units of pixels using image processing software. Multiple

photographs are captured for each nanowire to make repeated measurements. Finally the

apparent lengths of the nanowires are converted into actual lengths using the conversion

factor obtained from the image of a stage micrometer as described in Chapter 2 Section

2.5.2 (Figure 2.8).
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Here I will show an example of measuring the length of a typical nanowire. All

nanowire lengths in experimental results presented in this thesis are measured using the

same method unless otherwise stated. From Figure 3.7 we found that the length of the

nanowire is 150.8 pixels. Using the conversion factor 10.33 pixels per µm obtained from

the stage micrometer (Section 2.5.2), we find the length of the nanowire, L.

L =
150.8 pixels

10.33 pixels/µm
= 14.6± 0.3µm (3.6)

The error of these measurements comes mainly from how accurately one can pin-

point the ends of the nanowires, which is a consequence of the resolution of the camera.

From the pictures, the edges of the nanowires are blurry up to 3 pixels, which give an

error of ±0.3 µm.

Figure 3.7: A photograph of a nanowire pushed against the cover slip of the
sample slide. We know we are imaging the cover slip plane because we can see the
scattering of the trapping laser off the cover slip. We then measure the length of
the nanowire from the picture in pixels and convert it to real length. The black
scale bar indicates 5 µm.
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3.3.5 Trap stiffness of optically trapped nanowires

Here I show an example of how the trap stiffness of a nanowire is measured and calcu-

lated. The trajectory of the trapped nanowire is measured using a QPD as described in

Chapter 2 Section 2.9. To briefly recap, a nanowire is trapped and a detector response

curve is measured. The nanowire is then tracked for 2 seconds with a sampling rate

of 10 kHz. 5 sets of 2-second trajectories are recorded. After that, the nanowire is

pushed to the cover slip of the sample chamber and a photo is taken so that the length

of the nanowire can be measured. A power spectrum analysis [22] is performed on all

the measured trajectories and averaged. The averaged power spectrum is then fitted to

the equation

S ≡
〈
|x̃|2

T

〉
=

D/2π2

f2
c + f2

(3.7)

Figure 3.8 shows the power spectrum of a nanowire of length 4.8 µm. The dashed

line represents the fit using Equation 3.7. The deviation of the experimental data from

the fit at higher frequencies is due to the finite sampling rate of the detector. From the

fit, we found the corner frequency, fc to be 894±9 Hz with 94 mW of trapping power.

We can then use this to calculate the trap stiffness using the equation

κi = 2πγ⊥fc (3.8)

where γ⊥ =
4πη0L

ln (L/2a) + δ⊥
is the Stoke’s drag for nanowires perpendicular to the

trap axis

Hence, the trap stiffness of this nanowire with 94 mW of trapping power is found

to be κ = 55.7 ± 2.4 pN/µm. Normalizing with respect to power gives us a normalized

trap stiffness of 0.60 ± 0.10 pNµm−1mW−1.
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3.4: Length dependence of nanowire trapping

Figure 3.8: The power spectrum of a 4.8 µm nanowire in the trapped with 94
mW of optical power. The solid line represents experimental data while the dashed
line corresponds to a Lorentzian curve which is fit to the data points. From the
graph it can be seen that the equation fits the experimental data from 10 Hz to
2 kHz. The discrepancies at frequencies greater than 2 kHz are artefacts in the
experimental data due to a finite sampling rate. This is a known effect as discussed
in Berg-Sørensen and Flyvbjergs’ work [22].

3.4 Length dependence of nanowire trapping

In this section I will talk about our study on how the trapping properties of optically

trapped nanowires depend on their lengths. To do this study, we trap and measure the

trap stiffness of nanowires as well as their lengths as explained in the previous section,

and repeat for as many nanowires as can be found in the sample chamber. The results

are shown in Figure 3.9.

From the plots of trap stiffness versus nanowire length we can see that the trap

stiffness values falls into two distinct bands of different values. The average value for

the points in the lower band is 0.71 ± 0.24 pNµm−1mW−1, while the average of the

points in the upper band is 2.02 ± 0.20 pNµm−1mW−1. Furthermore, we see that

within each band the trap stiffness of the nanowires is independent of the length of the

nanowires. Recall that κi = 2πγ⊥fc and γ⊥ = 4πη0L/ ln (L/2a) + δ⊥ , it follows that if

κi is independent of length, fc must be inversely proportional to length. This is exactly
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Figure 3.9: Plot of normalized trap stiffness versus nanowire length. We can see
clearly that the trap stiffness values falls into two distinct bands. The red lines
are the average values of the data points in the corresponding bands. The four
points on the upper band corresponds to the nanowires with larger slopes in the
calibration curves shown in Figure 3.11.

what we obtain from the experimental measurement of the corner frequency, fc as shown

in Figure 3.10 below.

Intuitively, one would expect that for a given trapping laser power, the trap stiff-

ness of the optical trap would depend on the length of the trapped nanowires. However,

the observed length independence may be rationalized by considering the depth of focus

of the optical tweezers. As the length of the nanowires extends far beyond the depth of

focus of the microscope objective (∼1.0 µm), but with the gradient forces only dominate

within the depth of focus, any extension on the nanowire length which protrudes several

wavelengths from the focus in the axial direction will have a minimal contribution to

increases in trapping forces.

To understand why there are two distinct bands of trap stiffness values, we went

back and examined the detector response curves for these nanowires shown in Figure

3.11. From the plot, we see that the curves are linear over ±80 nm from the trap

centre as expected. The curves can also be resolved into two discrete groups of similar
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3.4: Length dependence of nanowire trapping

Figure 3.10: The plot of corner frequency per trapping versus nanowire length.
The dots represent the data points and the solid line is an inverse fit.

gradients with an average gradient of 1.2 ± 0.2 nm−1 and 0.3 ± 0.1 nm−1 respectively.

These groupings appear to be independent of the lengths of the nanowires. One possible

explanation of this grouping is that different numbers of nanowires are simultaneously

trapped in the optical tweezers, causing a different interaction volume with the optical

trap leading to a different detector response. Furthermore, the detector response curves

which fall into the group of a larger gradient correspond to the nanowires with trap

stiffness on the upper band in Figure 3.9.

Thus we conclude that the bands in trap stiffness values are due to a different

number of nanowires within the optical trap. When there is more than one nanowire in

the optical trap, the interaction volume with the optical trap increases causing a larger

gradient in the detector response curve and larger trap stiffness. However, within each

band of constant trap stiffness the interaction volume between the nanowire and the

optical trap remains constant regardless of nanowire length; hence the detector response

curves and trap stiffness are independent from the lengths of the nanowires.
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Figure 3.11: Calibration curves of a set of nanowires of different length. We can
see clearly that the slopes of the calibration curves falls into to distinct groups of
different slopes.

3.5 Stable axial trapping position

Unlike spherical objects, the elongated axial dimension of nanowires leads to some in-

teresting trapping properties. Cao et al. [31] numerically calculated the preferred ori-

entation of optically trapped micro cylinders and nanowires with a range of different

radii and lengths, for both linearly and circularly polarised traps (Figure 3.12). Elon-

gated objects of lengths smaller than the depth of focus of the trapping objective tend

to align along the polarization of the optical field due to higher polarizability along the

symmetry axis [31], while longer nanowires tend to align to the optical axis to maximize

the overlap between the trapped particle and the incident field for minimizing potential

energy [31, 32]. The preferred trapping orientations lead to a restricted range of possible

trapping scenarios, beyond which stable trapping is not possible.

Additionally, simulations [3, 7] and experiments [3] done by Simpson et al. show

that optically trapped cylinders with zero tapering are very weakly confined along the

axis of the cylinder except for the two ends of the cylinder, as indicated by the red solid
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3.5: Stable axial trapping position

Figure 3.12: Orientations landscapes of nanowires and micro cylinders in (a)
linearly polarized and (b) circularly polarized beams. The coordinate system is
Cartesian coordinate system centred at cylinder position. The rectangular shapes
in (a) show the orientations of cylinders in each region. Four regimes in the orien-
tation landscapes are the untrapped region, vertical region, horizontal region, and
the intermediate region between the vertical and horizontal regions. The red circles
mark the longest nanowire or micro cylinder trapped horizontally for each diame-
ter. The blue asterisks represent the shortest nanowire or micro cylinder trapped
vertically for each diameter. The green points indicate the longest nanowire or
micro cylinder for each diameter that can be trapped (vertically). Figure adopted
from Cao et al [31].

curves in Figure 3.14. The rise in axial force at two points along the curve indicated

by the maxima (and minima in the opposite direction) is due to the tips of the cylinder

intersecting the high intensity part of the trapping beam. However, the addition of a

tapering angle on the cylinders introduces an axial force that tends to drive the equilib-

rium trapping point towards the base of the conical cylinder (where the radius is larger)

[3, 7] as shown in Figure 3.13. The effects of a range of tapering angle on the axial force

is also calculated by Simpson et al. [7] and shown in Figure 3.14.

Based on previous study done by our group, the equilibrium trapping position of

indium phosphide (InP) nanowires have been determined to be near one end, with the

major segment of the length sitting below the trap far from their centre of mass [33].

This is measured by the micro-photoluminescence (µ-PL) mapping of the axial profile

of the nanowire. A trapped nanowire is axially scanned across a fixed 514nm excitation

source and the resulting PL is collected by a spectrometer and CCD camera. When the

tip of the nanowire is scanned past the excitation source, the PL intensity decreases and

eventually drops to zero when the nanowire tip is beyond the excitation source (Figure

3.15).
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Figure 3.13: The trapping geometry of a vertically trapped cylinder with taper-
ing. Figure adopted from Simpson et al [7]. Reprinted from [7], copyright 2013,
with permission from Elsevier.

This allows us to work out the distance between the equilibrium trapping point and

the tips of the nanowire. Furthermore, we also found that optically trapped nanowires

are aligned closely to the optical axis of the tweezers and experience small perturba-

tions from the equilibrium point. These experimental results from the measurement of

our indium phosphide (InP) nanowires are qualitatively consistent with the theoretical

predictions discussed above, despite differences in a few modelling parameters such as

refractive index and taper angle. We believe the fact that these nanowires being trapped

vertically near one of the tips will have implications on the resonant behaviour addressed

in the next section.
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3.5: Stable axial trapping position

Figure 3.14: The variation in axial force, Fz with vertical position, z for tapers
with different opening angle, θ, and two refractive indices. The relative refractive
index for (a) and (b) are 1.1 and 1.2 respectively. Figure adopted from Simpson
et al [7]. Reprinted from [7], copyright 2013, with permission from Elsevier.

Figure 3.15: (a) The micro-photoluminescence intensity distribution from a
trapped nanowire along the axial direction. The origin of the x-axis is defined
by the fixed position of the focus of the 514nm excitation laser. Positive values
indicate the length of nanowire from the excitation laser focus in the direction of
propagation of the trapping laser. (b) Bright field image of the nanowire.
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3.6 Resonant behaviour of optically trapped nanowires

Whilst the simple approximation of treating any optically trapped object as a simple

overdamped harmonic oscillator provides an accurate description for a large class of op-

tical trapping experiments, it also masks a more complex optical potential that includes

both conservative and non-conservative components. The introduction of more complex

hydrodynamic interactions, trap geometry, and particle geometry leads to new dynamic

behaviour. For example, spherical objects can exhibit resonance behaviour when the

trap is underdamped [34–36] with emergence of a resonant peak as the trapping condi-

tions transition from over- to underdamped oscillations [35]. In terms of trap geometry,

rotation of the trapped particle may also be caused by manipulating the angular mo-

mentum of the trapping laser such as the use of the Laguerre-Gaussian beam [37, 38].

As for particle geometry, it has been shown that birefringence in particle shape, form or

composition leads to optical torque driven rotation [39, 40]. It has also been shown that

a combination of two or more of the above factors will lead to anomalous trapping dy-

namics as well, such as Arita’s [41] demonstration of rotational motion (up to 5MHz) of a

trapped birefringent particle in an underdamped environment using circularly polarized

light, where rotational and translation modes become coupled.

Objects with high aspect ratios (>100:1) such as nanowires represent a specific

case of complex particle geometry amongst optically trapped objects. There have been a

number of optical trapping experiments [1, 42] and calculations [31, 42–44] on high aspect

ratio elongated objects. It is established that an elongated object within an optical field

is sensitive to the polarization and intensity gradient of the incident optical field [31, 32,

45]. In the context of Brownian dynamics, the asymmetry of elongated objects leads to

complex dynamical behaviour: in additional to three translational degrees of freedom, a

trapped nanowire or nanorod may also undergo angular fluctuations [26]. The rotational

dynamics may be sufficiently weak to lead to uncoupled Brownian motion, however

under certain conditions coupling between degrees of freedom may lead to anomalous

behaviour. For instance, Simpson and Hanna showed through calculations the emergence

of cyclic motion due to the non-conservative nature of optical forces when non-spherical

particles are trapped within a linearly polarized Gaussian beam trap [45]. This is seen

experimentally in Pauzauskie’s demonstration of oscillations in optically trapped SnO2

ribbons [19] and Neves’s demonstration of low frequency rotation at high tilt angle of

trapped polymer nanofibres in linearly polarized Gaussian beam optical traps [42].

68



3.6: Resonant behaviour of optically trapped nanowires

Our interests lie in experimental investigations of optically trapped InP nanowires,

which are weakly tapered cylindrical nanowires of uniform composition and refractive

index profile, held in a linearly polarized, gradient force optical tweezers. Detailed

description of the measurement procedures are previously presented in Chapter 2 Section

2.9. To briefly recap, a nanowire is trapped and a detector response curve is measured.

The nanowire is then tracked for 2 seconds with a sampling rate of 10 kHz. 5 sets of

2-second trajectories are recorded. After that, the nanowire is pushed to the cover slip

of the sample chamber and a photo is taken so that the length of the nanowire can

be measured. The power spectrum of the trajectory of a nanowire exhibiting resonant

behaviour is shown by the blue curve in Figure 3.16. On the same plot is a power

spectrum of a nanowire without a pronounced resonant behaviour and a fit to Equation

3.7 for comparison.

Figure 3.16: The blue curve represents the power spectrum of a trapped nanowire
showing resonant oscillations, the green curve shows the power spectrum of the
same trapped nanowire without resonance and the red curve is a Lorentzian fit
to the green curve. The resonance peak is only observed when the nanowire is
trapped at 50 µm from the cover slip, while trapping at distances greater or less
than 50 µm only result in power spectrum curves without resonance peaks.

In particular, a broad resonant peak in the power spectrum is observed at around

500 Hz, and only persists as the nanowire is trapped at a critical distance of about 50 µm

from the cover slip. We note that the trapped nanowire is observed on the video camera
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(see section 3.3.2 above in this chapter) throughout the duration of measurement and

is observed to remain vertically trapped with minimal tilt throughout the measurement

duration. The effect of changing trap height on the resonance peak will be examined

in the next section. This resonance behaviour is also reflected in the autocorrelation

function of the nanowire trajectory, where a fluctuation between positive and negative

correlation can be seen in Figure 3.17. Also shown in Figure 3.17 is the autocorrelation

function of the same nanowire when the resonance behaviour is suppressed; the resulting

curve is an exponential decay as expected.

Figure 3.17: Autocorrelation function of the same nanowire presented in Figure
3.16.

The emergence of this resonant peak cannot be accounted for in the conventional

power spectrum analysis method for optical tweezers, hence a more detailed analysis is

required to understand our results. Furthermore, our system is unique in comparison to

Pauzauskie’s [19] and Neves’s [42] demonstration of nanofibre rotations because in our

system a linearly polarised Gaussian beam is used to generate oscillating behaviour of up

to hundreds of Hz, while the tilt angle of the oscillating nanowire remained small. The

refractive index of our InP nanowires are also much greater than the refractive index of

the nanofibres used in either case.
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3.6: Resonant behaviour of optically trapped nanowires

Although the shape of the curves is quite characteristic of underdamped motion

as seen in Di Leonardo’s experiments involving the trapping of aerosols [35], we rule out

the underdamped Langevin equation and any theories involving inertial effects because

our experiments are performed in a low Reynolds number environment where inertial

effects are heavily suppressed.

Figure 3.18: Mappings of focal intensity above the coverslip surface via a 1.4NA
oil immersion objective and immersion media with different refractive indices. In
all cases, there exist regions of local intensity maxima where optical trapping can
occur. Figure adopted from [46]. Reprinted with permission from [46], copyright
2013 American Chemical Society.

Recently, Kyrsting et al. mapped the 3D focal intensity of optical tweezers and

found that spherical aberrations due to refractive index mismatch between immersion

oil and trapping medium affects the focal intensity distribution, which leads to regions

of local maxima outside the main focal point where trapping can occur [46] (Figure

3.18). The nanowire experiencing Kramer’s hopping between these regions of high laser

intensity might lead to resonant behaviours. For this to be true, we would expect

the position distribution of the nanowire within the trap to be clustered into multiple

discrete regions where the laser intensity is a local maxima and the nanowire can be

stably trapped. However, this possible explanation is shown to be false on the basis

of one smooth Gaussian distribution over all translational displacements of the trapped

nanowire, shown in Figure 3.19.
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(a) 3-D plot

(b) xy projection

Figure 3.19: (a) A 3-D plot and (b) an xy projection of the trajectory of an op-
tically trapped nanowire with resonant (blue) and no resonant (green) behaviours.
From the plots it can be seen that the distribution of the trapped particle varies
smoothly indicating a single trapping site. It should also be noted that the nanowire
fluctuates in larger amplitudes when it is under resonance.
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3.7 Winding number analysis

To further understand the resonant behaviour observed in optically trapped nanowires,

we perform a winding number analysis on the trajectory of these nanowires.

3.7.1 Introduction to the winding number analysis

The winding number, ω of a closed-loop trajectory is the number of counter-clockwise

turns the path travels around a reference point on a plane. From a mathematical

stand point, if the trajectory is defined by a parametric equation in polar coordinates,

(r (t) , θ (t)) for 0 ≤ t ≤ 1, then the winding number, ω is an integer number given as

ω =
θ (1)− θ (0)

2π
(3.9)

This is because the angular coordinate, θ (t), must differ by an integer multiple of

2π between t = 0 and t = 1 if the trajectory is closed.

Experimentally, given a set of measured coordinates {xi, yi} where i = 0, 1, . . . N

for N measurement points, the easiest way to obtain the winding number (around the

origin) is by considering the crossings of the positive x axis. If the trajectory crosses the

x axis from negative y to positive y then add one to the winding number; if it crosses

from positive y to negative y then take one away from the winding number. Given

a set of data points, the first order interpolation of the trajectory is found by simply

joining the points with straight lines. Then, we need to find the point of intersection

between the x axis and the trajectory. Given any two points (xi, yi), and (xi+1, yi+1),

the equation of the line joining the points is

y = yi +
(yi+1 − yi)
(xi+1 − xi)

(x− xi) (3.10)

Hence, the line will intersect the x axis at

x∗i = xi −
(xi+1 − xi)
(yi+1 − yi)

(yi) (3.11)

To avoid the case when yi+1 − yi = 0, we multiply through by (yi+1 − yi)2 to

obtain
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x∗i (yi+1 − yi)2 = xi (yi+1 − yi)2 − (xi+1 − xi) (yi+1 − yi) (yi) (3.12)

Where if x∗i > 0, then x∗i (yi+1 − yi)2 > 0 as well.

A pseudo code for calculating the winding number can be written as shown above

while an example trajectory is plotted in Figure 3.20 below, where the starting point is

circled in red. In this example, the trajectory crosses the positive x axis twice in the

counter-clockwise direction so the winding number is 2.
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3.7: Winding number analysis

Figure 3.20: Example trajectory with a winding number of 2. From the plot we
can see that the trajectory (starting from the point circled red) crosses the positive
x axis twice in the counter clockwise direction.

3.7.2 Application of the winding number analysis on optically trapped

nanowire trajectory

The winding number analysis is applied to the same set of trajectory data of nanowires

presented in Figure 3.16, 3.17, and 3.19 and the resulting plot is shown in Figure 3.21.

From the plot, it can be seen that although there are some fluctuations in the winding

number, the net effect is an increase in the number of turns in one direction over time.

An explanation for these results is that the net increase in winding number implies that

there is a bias towards cyclic motion, while fluctuations in the winding number indicate

that this cyclic motion is modulated by Brownian fluctuations. The winding number

has a larger rate of increase in the case when a resonant peak is observed, implying a

higher number of turns and stronger rotational motion.
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Figure 3.21: The winding number of the same set of trajectory data of nanowires
presented in Figure 3.16,3.17, and 3.19. The nanowire with a resonance peak in
the power spectrum shows a larger rate of increase in winding number compared to
the nanowire without a resonance peak. The increasing winding number for both
cases implies that the nanowire is undergoing cyclic motion within the trap, while
a larger increase in winding number for the nanowire under resonance indicates
that the cyclic motion occurs in a higher frequency than when it is non-resonant.

3.8 Height dependence of nanowire resonance

For this study, a nanowire of 5 µm is trapped at 10 µm away from the coverslip and

the trajectory measured using a QPD as explained in Section 3.3.5. We then measured

the trajectory of the same nanowire at up to 80 µm from the cover slip in steps of 10

µm. We then move the nanowire back to 50 µm in steps of 10 µm, and measured the

trajectory at every 10 µm decrease. We then perform a power spectrum analysis and

winding number analysis on all trajectory data and the results are presented in Figure

3.23 and Figure 3.22 below.

From Figure 3.23 we can see that a resonance peak at 350 Hz is visible in all 3

axes at trapping height 50 µm and 60 µm, but vanishes when the nanowire is trapped

at heights far above or below 50 µm. We note that changing the height of the trap will
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3.8: Height dependence of nanowire resonance

Figure 3.22: The winding number of the trajectories data of a nanowire trapped
at 10 µm - 80 µm away from the cover slip. The winding number has the largest
amplitude when the nanowire is trapped at 50 µm when the resonance peak is the
greatest.

induce spherical aberrations and accentuate other aberrations already present within

the trap. Increased aberrations will change the relative contributions from gradient and

scattering forces for a given fixed input power, and we hypothesise that this is the origin

of the height dependence of the resonance. However, the emergence of the resonant

peak itself cannot be accounted for in the conventional power spectrum analysis method

for optical tweezers, and to understand this phenomenon we develop a more detailed

analysis in the next section (Section 3.9).
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3.9: Expansion of the power spectral analysis method

Figure 3.23: Power spectra of the trajectories of a nanowire trapped at 10 µm
- 80 µm away from the cover slip in the (a) x -axis, (b) y-axis and (c) z -axis. A
resonance peak at 350 Hz is visible in all 3 axes at trapping height 50 µm and
60 µm. When the nanowire is trapped at heights far above or below 50 µm, the
resonance peak vanishes.

3.9 Expansion of the power spectral analysis method

Simpson and Hanna predicted the emergence of cyclic motion in optically trapped rods

due to the interaction of non-conservative optical scattering forces which induces cou-

pling between translations perpendicular to the long axis and rotation about axes per-

pendicular to both the long axis and translation direction [45]. In this study, it is shown

that the occurrence of non-conservative motion depends on the symmetry of the stiffness

matrix K ; if K is non-symmetric, the motion is non-conservative and there will be a

bias toward cyclic motion between coupled coordinates. This is a shape induced effect

which is only observable in low symmetry particles.

Recall from Section 3.2 we have treated the translational and rotational degrees

of freedom separately, but this is insufficient for our system as it does not predict the

resonance peaks that we measured. In order to account for the emergence of the resonant

peak observed in our experiments we consider a more general form of the equations of

motion which include cross-coupling terms and a non-symmetric stiffness matrix, K.
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The dynamical equations in an over-damped environment can be written as a single 5-

coordinate vector equation in terms of the generalized forces (neglecting rotation around

the z -axis due to symmetry):

− Γ~̇q + ~ζ (t)−K~q = ~0 (3.13)

Where ~q = (x, θy, y, θx, z) are the generalised coordinates, Γ is the hydrodynamic

drag matrix, ~ζ (t) is the generalised noise term with 〈ζi(t)ζi(t+ τ)〉 = 2kbTγiη(τ) where

γi is given in Equation 3.5 and K is the trap stiffness matrix given by:

K =



Kx,x Kx,θy 0 0 0

Kθy ,x Kθy ,θy 0 0 0

0 0 Ky,y Ky,θx 0

0 0 Kθx,y Kθx,θx 0

0 0 0 0 Kz,z


(3.14)

In this construction, we only include off diagonal terms that couple between trans-

lation and rotation within a plane, i.e. a translation in x will induce a rotation in the xz

plane. This is justified as the non-conservative forces driving the coupling are principally

directed along the z -axis and thus should induce rotation around the orthogonal axis.

The above-mentioned approximations leads to two coupled equations of motion that

retain the non-conservative effects, and that can be treated independently. An analysis

of the two-coordinate stochastic equations leads to a power spectral density for each

coupled coordinate (e.g. i = x, θy) that has the form [47]

Si (ω) =
ηiω

2 + αi

2π
(

(ω2 − ε)2 + (µω)2
) (3.15)

where µ and ε are the respective trace and determinant of the matrix M = Γ−1K,

and ηi is associated with the noise strength. The term αx = ηxm
2
θyθy

+ ηθym
2
xθy

is

related to the cross-coupling matrix elements in M . In interpreting the solution in terms

of the experimental system we note that if the coupling relates to the non-conservative

scattering force, the off-axis components of the stiffness matrix should be non-symmetric,

e.g. Kθy ,x 6= Kx,θy . The form of the power spectral density is similar to that of an

underdamped harmonic oscillator, such as is observed in aerosol tweezing experiments
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3.9: Expansion of the power spectral analysis method

[35, 36]. This is to be expected as both represent coupled first order differential equations;

in the case of the underdamped oscillator coupling is between restoring and inertial

terms, whilst in the present case it is between translation and rotation.

Figure 3.24: The blue curve represents the power spectrum of a trapped nanowire
showing resonant oscillations while the dark green curve shows the power spectrum
of the same trapped nanowire with no apparent resonance. Both the light blue and
light green curves are fits using the generalised power spectral density equation,
Equation 3.15. The fit on the data with no apparent resonance indicates a strongly
suppressed peak at a similar frequency.

A fit of the power spectrum presenting the resonant peak in Figure 3.24 using

Equation 3.15 (blue curves) shows excellent agreement with the experimental data pre-

sented in Figure 3.16. In fitting the data we apply an additional offset to account for

detector noise. Indeed a fit of the data taken at the lower trapping height also reveals a

strongly suppressed peak at a similar frequency (green curves).

The main features of the fitting function include the resonance peak frequency

squared (ε) and peak frequency width (µ), the low frequency plateau given by α/2πε2,

and a peak amplitude, (ηε2 + α)/2πµ2ε2. From the fits, we extract µ = 366 ± 5 Hz,

ε = (1.46 ± 0.25) × 105 Hz2 and the peak frequency is fpeak =
√
ε = 382 ± 5 Hz
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for the case when the resonance peak is strongly present. On inspecting the fitting

parameters between the different trapping heights we make the important empirical

observation that a non-zero resonance peak is only observed under conditions where one

of the cross-coupling terms is negative. Such a scenario is ensured in this system as the

trapping point is far from the centre of rotation - the action of rotation under Brownian

motion induces a translation at the trapping point which is in the opposite direction to

the associated restoring force.

3.10 Power dependence of nanowire resonance

We further investigated the power dependence of the resonance effect on trapped nanowires

by tuning the trapping power of our optical trap. A 4.6 µm nanowire is trapped at a

height of 50 µm from the cover slip so that the resonance peak is maximised. Then,

the trajectory of the trapped nanowire is measured as described in Section 3.3.5. The

trapping power is adjusted by tuning the voltage amplitude of the RF signal fed into

the acousto-optic deflectors. The actual power in milliwatts at the trapping focus is ob-

tained via the power calibration curve shown in Figure 2.11 (Chapter 2 Section 2.5.3).

For each trapping power, the trajectory of the trapped nanowire is measured followed by

a power spectrum analysis, and then fitted with Equation 3.15. Resulting power spectra

and the associated fits are shown in Figure 3.25; again we note exceptional agreements

between experimental results and the model.

Qualitatively we see that the peak position of the resonance is blue shifted from

200 Hz to 1800 Hz with increasing trapping power together with a reduction of the

amplitude of the fluctuations. The parameters associated with the fits are given in

Figure 3.26. We observe that ε increases quadratically with trapping power, whilst µ

increases linearly. As the trap stiffness is proportional to trapping power and µ = tr(M)

is proportional to the trap stiffness because M = Γ−1K, we should expect a linear

increase in this parameter. Similarly, ε is the determinant of M and should therefore be

proportional to the square of the matrix elements, and hence proportional to the square

of the power. Since the peak frequency fpeak =
√
ε, we expect it to increase linearly

with trapping power as can be seen in Figure 3.27.

From Figure 3.26(b) we see that the noise strength parameter η is roughly constant

at across all trapping powers, which indicates that there is no obvious heating across

the different trapping powers. Finally, we note that whilst the trapping power dictates
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Figure 3.25: Power spectra of nanowires at different trapping powers, trapped
at 50 µm height from the cover slip. Each power spectrum is fitted with the
generalised power spectral density equation (Equation 3.15) and the peak frequency
extracted and then plotted in Figure 3.27.

the relative strengths of the trap stiffness (conservative) and radiation pressure (non-

conservative), it should not modify the ratio of the two competing forces under conditions

where the harmonic approximation for the trap stiffness is valid.

In addition to the characteristic power spectrum described above, another im-

portant property of this system is its penchant to produce a continuous cycling of the

position/orientation under steady state conditions. In order to discern the presence of

cyclic motion a winding number analysis of the nanowire trajectories is performed. In

our case the winding events are denoted when the nanowire trajectory moves around

the centre of the trap in either a clockwise (negative) or anticlockwise (positive) motion.

In an unbiased system the rates of cycling in either direction is balanced leading to an

average of zero winding. The results presented for different powers in Figure 3.28(a),
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Figure 3.26: Fitting parameters of the power spectral density data presented in
Figure 3.25. (a) ε increase quadratically and µ linearly with trapping power, which
corresponds to linear increase in both the peak frequency and width. (b) The noise
strength, η, shows no clear dependence on trapping power indicating a constant
temperature, whilst α increases quadratic with trapping power. All dependencies
are consistent with a trap stiffness that is linearly proportional to the trapping
intensity in the presence of asymmetric coupling.

indicate that nanowires do indeed have a tendency to persistently cycle around a cen-

tral point within the trap in a particular sense; short timescale fluctuations correspond

to Brownian fluctuations in the trend. The winding behaviour is persistent over many

seconds and is reproducible for each individually trapped wire. The sense of the cycling

tends to be in a particular sense, suggesting an underlying bias within the trapping

geometry, however winding in the opposite sense is also observed for some trapping

events. We find that for different powers the rate of winding increases before plateauing

at higher powers above 60 mW; this is clearly observed in a plot of the gradient of the

winding number with trapping power, shown in Figure 3.28(b).

The winding property is dissipative in nature and is sustained only by the action of
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3.10: Power dependence of nanowire resonance

Figure 3.27: The peak frequency and peak width for each trapping power is
extracted from the fits in Figure 3.25. From the plots it can be seen that peak
frequency and peak width increases linearly with trapping power.

the non-conservative scattering forces. We may understand the process most intuitively

by considering the following: when the nanowire is tilted with respect to the direction

of the scattering force (along the z -axis) it will experience a greater pushing force. If

the nanowire position lies below the focus it will be pushed through the focus to a

position that is balanced by the axial restoring force. The additional lift force will only

be alleviated when the tilt is reduced leading to a rotation back to the equilibrium

position. The nanowire is then free to drop below the equilibrium position along the

z -axis.

We also examined the effects of trapping power on the translational distribution

of the trapped nanowire, which is plotted in Figure 3.29, and projected onto orthogonal

planes in Figure 3.30a, 3.30b, and 3.30c. In the plots, the trapping laser is directed

towards the z direction while the trapping laser is linearly polarised in the x direction.

From the plots, we see that the trajectory of the nanowire in the translational direction is

more strongly confined as the trapping power is increased. However, the opposite appears

to be true for motions in the axial direction – as trapping power is increased, motions

in the axial directions appear to spread further from the centre of the trap. We believe

this is also a manifestation of the winding effects mentioned before. As trapping power
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Figure 3.28: (a) A winding number plot of the nanowire motion for different
trapping powers. Small timescale fluctuations in the winding decorate a clear
monotonic increase with time, indicating persistent cycling in one direction. (b)
The rate of winding, given by the gradient of the winding plots, is observed to
increase approximately trapping power for lower powers and plateau at higher
powers. The winding also takes on a distinctly non-linear trend at very high
trapping frequencies.
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Figure 3.29: Translational distribution of a trapped nanowire under two different
trapping powers – 10.4mW (blue) and 84.5mW (green). Results show stronger
confinement in the horizonal plane and weaker confinement in the axial direction
as trapping power is increased.

increase, the non-conservative scattering forces also increase; the nanowire experiences

greater pushing and restoring forces in the axial direction resulting in a greater amplitude

of the cyclic motion.
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(a) xy projection (b) xz projection

(c) yz projection

Figure 3.30: Projection of the translational distribution of a trapped nanowire
shown in Figure 3.29 on to the xy, xz and yz planes.

3.11 Length dependence of resonance peaks

In this section I will present our study on how the resonant behaviour of optically trapped

nanowires depends on their lengths. To do this study, we measure the trajectory and

power spectrum of nanowires as they are trapped at a height of 50 µm from the cover

slip so that the resonance peak is maximised, as explained in the previous section. We

also measure their lengths and repeat for as many nanowires as can be found in the

sample chamber. The tabulated results are shown in Figure 3.31.

Results show that resonance frequency decrease linearly with length. Although our

model does not explicitly account for this behaviour, we believe this is a manifestation

of the (approximately) linearly increasing hydrodynamic drag of nanowires, γ⊥ with

increasing length.
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Figure 3.31: Length dependence of the resonance peak in the power spectrum of
optically trapped nanowires under resonance.

3.12 Conclusion

In summary, we have characterised the trapping properties of single trapped InP nanowires.

We have shown in Section 3.4 that the trap stiffness of optically trapped nanowires is

independent of the length of the nanowires. We have also examined higher order dy-

namics due to coupling between rotational and translational degrees of freedom when a

single high aspect ratio nanowire is trapped. Section 3.9 and 3.10 provided clear exper-

imental and theoretical evidence for the influence of non-conservative coupling between

translation and rotational modes in optically trapped nanowires beyond the standard

single trapped spherical particle picture. We see experimentally that this leads to a

distinct resonance peak in the power spectrum and an accompanying winding of the

particle trajectories, which suggests that the trapped nanowires undergo cyclic motion.

This model system provides exciting new opportunities to study complex dynamic be-

haviour involving non-conservative forces and may lead to exciting new insights into

analogous biophysical systems. Further investigations into the dependence of this effect

on polarization and nanowire dimensions will be carried out to better understand this

phenomenon, but these are beyond the scope of this work.
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Chapter 4: Waveguiding Properties and Coupling of Indium Phosphide (InP)
Nanowire Waveguides

4.1 Introduction

Amidst huge advances in nanotechnology and optomechanics, there has been growing

interest in the use of nanophotonic waveguides as optical force mechanical actuators [1–

3]. Extensive studies have been made on optomechanical systems, such as the coupling

between a high-Q optical microresonator and a silica waveguide [4], the optical forces

between a silicon nanowire waveguide and a substrate [5], and the interaction forces

between optically coupled waveguides [6–8]. Optomechanics offer a wide range of benefits

over conventional methods, most notably the ability to operate with high frequency and

fidelity in the nanoscale. Optical forces are widely used to precisely control or measure

the position of nanometre sized particles [2], as well as to study pico newton forces in

molecular motors and DNA dynamics [9]. For example, optical forces has been used to

measure the force and velocity of kinesin and myosin molecules by attaching them to

mechanical handles [10–13]. In scanning probe microscopy, optomechanical probes can

attain force sensitivities of several orders of magnitude greater than conventional AFM.

Phillips et al. demonstrated optically trapped probes that are capable of achieving a

lateral resolution of 200 nm (due to the tip diameter) and a depth resolution of about

10 nm [14]. Doolin et al. developed optomechanical cantilevers with noise floors as low

as 2 fm Hz−1/2 and 130 aN Hz−1/2 force sensitivity at vacuum in room temperature,

which is orders of magnitude smaller than conventional mechanical cantilevers used in

AFM’s [15].

In cases when the light interacting with one particle interacts with a second parti-

cle, this can give rise to interparticle forces mediated by light i.e. optical binding. One

particular optical binding study relevant to our research is Simpson et al.’s simulation

of optical binding between arrays of non-spherical particles [16]. In this study, it is pre-

dicted that optically bound rod like structures such as nanowires not only demonstrate

discrete separations such as that observed in spherical particles, they also tend to acquire

a parallel, side-by-side orientation such as that of the rungs of a ladder. In our study

we aim to study the interactions between two optically trapped InP nanowires aligned

parallel to each other. Since the optical forces involved in trapping these nanowires are

relatively weak, this presents an excellent opportunity for us to observe the possible

optical binding forces between InP nanowires within optical traps.

Optical coupling between waveguides has been well understood since the advent

of optical fibres, but it has since been applied in the nanoscale by Huang et al. [17].
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Furthermore, Pernice et al. has done theoretical investigations and numerical mod-

elling of the optical forces generated between coupled nanowire waveguides [5, 18, 19].

The frequency dependence of optical forces between coupled waveguides has also been

calculated [20]. On the other hand, Povinelli et al. have shown the effects of forces

between two optically coupled silicon nanowire waveguides [6, 7]. In this study, both

nanowire waveguides are fixed at both ends to the substrate with a free standing section

in the middle which is displaced by optical coupling forces when light is passed through

the nanowires. Roels et al. further showed that the optical interaction forces between

coupled waveguides can be tuned by controlling the relative phase of the optical fields

injected into the waveguides [8].

In contrast to previous studies, our system will consist of two optically trapped

InP nanowire waveguides suspended in deionised water by optical tweezers. This setup

is unique because the nanowires are not physically fixed, but simply held in optical

tweezers with relatively low rigidity or trap stiffness, which is ideal for measuring any

existing coupling forces in the order of the trap stiffness. Our system also offers the

flexibility of varying the equilibrium separation of the two nanowires by displacing the

optical trap.

In order to predict the behaviour of coupled InP nanowire waveguides in the system

we propose, we must first quantify the wave guiding properties of single InP nanowires

in our system of optical trapping within deionised water as the surrounding medium.

Single nanowires as waveguides are interesting in itself, particularly because of its excel-

lent optical and electrical properties on top of its compact size. Consequently, nanowire

waveguides have great potential in nano-scale electronic and photonic applications, in-

cluding optical waveguides [21], field effect transistors [22], single electron transistors

[23], nanolasers [24], photodetectors [25] and integrated microprocessors [26, 27], as

well as probe tips in high-resolution optical scanning probe microscopy [28]. Although

nanowire waveguides have been studied extensively, most studies in the literature pri-

marily focus on silicon and silica nanowires [4–8, 18, 19, 21]. In our studies, we are

interested in using Indium Phosphide (InP) nanowires as waveguides due to their excel-

lent optical and electrical properties. In particular, InP nanowires have been shown to

demonstrate second harmonic generation (SHG) of 532 nm light when pumped with a

1064 nm source, and have a strong photoluminescence (PL) at 890 nm when pumped

with an external source [29]. As such, we will focus most of our analysis of the waveg-

uiding properties of the nanowires at 890 nm wavelength.
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Nanowire Waveguides

In this chapter, we will first examine the waveguiding properties of a single trapped

InP nanowire in deionised water as the medium. We will calculate the field intensity

profile, Poynting vector, dispersion relation, group velocities of guided modes and how

all these quantities vary with different nanowire radii. A firm understanding of these

variables is essential for the calculation of coupled nanowire waveguides, which we will

examine next. The coupling constant, beat length, field profiles and optical forces will

be calculated and related back to experimentally measurable quantities.

4.2 Waveguiding properties of single InP nanowire waveg-

uides

We start by considering Maxwell’s equations shown in Equation 4.1.

∇×E = i (µ0/ε0)1/2 kH; ∇×H = J− i (µ0/ε0)1/2 kn2E (4.1a)

∇ ·
(
n2E

)
= σ/ε0; ∇ ·H = 0 (4.1b)

where E is the electric field, H is the magnetic field, J is the current density, k is

the wave vector in free space, n is the refractive index, σ is the electric charge density

and ε0, µ0 are permittivity and permeability of free space respectively.

If the electric and magnetic waves are separable (as shown in Equation 4.2) and

source free i.e. J = 0, Maxwell’s equations can be rewritten as the homogeneous vector

wave equations (Equation 4.3) with propagation constant β [30].

E = (et + ezẑ) eiβz; H = (ht + hzẑ) eiβz (4.2)

{
∇2 + n2k2 − β2

}
e = − (∇+ iβẑ) et · ∇ lnn2 (4.3a){

∇2 + n2k2 − β2
}

h = {(∇+ iβẑ)× h} × ∇ lnn2 (4.3b)

The above equations apply for any waveguide with arbitrary shape and refractive

index. For a circularly symmetric waveguide with step profile index such as that for
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our InP nanowires, these equations (Equation 4.3) can be solved analytically with the

following assumptions:

1. Circular cross section with radius a, radius big enough (>5 nm) such that permit-

tivity and permeability still apply.

2. Length long enough to establish spatial steady state.

3. Uniform diameter.

4. Smooth sidewall.

5. Wire is non-dissipative and source free.

6. Wire with refractive index nc in a uniform medium with refractive indices nm, so

can be described as follows.

n (r) =

{
nc, 0 < r < a

nm, a ≤ r <∞
(4.4)

A representative nanowire waveguide is illustrated in Figure 4.1. The shaded

region represents the core, surrounded by the cladding which is assumed to be unbounded

in extent as described by Equation 4.4. We choose cartesian axes such that the z axis

coincides with the long axis of the nanowire waveguide.

Under the conditions listed above, the vector wave equation (Equation 4.3) can

be reduced to the scalar wave equation shown in Equation 4.5 below at all points except

the boundaries between core and cladding. This is because at all points except the

boundaries, the refractive index n(r) is constant and ∇ lnn2 = 0. To obtain the full

solution, we solve the scalar wave equation for the core and the cladding separately and

use the boundary conditions to determine the field amplitudes [30].

{
∇2 + n2k2 − β2

}
e = 0 (4.5a){

∇2 + n2k2 − β2
}

h = 0 (4.5b)

Where k = 2π/λ and β is the propagation constant.

Following the calculations shown by Tong et al. [21], the eigenvalue equations of

the scalar wave equation for the fundamental modes (HE11 modes) is given as
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Figure 4.1: Nomenclature and coordinates for describing our nanowire waveguide.
The shaded region represents the core with refractive index nc, and is surrounded
by the cladding which is assumed to be an unbounded medium with refractive
index nm.

{
J ′1 (U)

UJ1 (U)
+

K ′1 (W )

WK1 (W )

}{
J ′1 (U)

UJ1 (U)
+

n2
mK

′
1 (W )

n2
cWK1 (W )

}
=

(
β

knc

)2( V

UW

)4

(4.6)

Where Ji is the Bessel function of the first kind, Ki is the modified Bessel function

of the second kind, U = a
(
k2n2

c − β2
)1/2

is the core parameter, W = a
(
β2 − k2n2

m

)1/2
is the cladding parameter, and V = ka

(
n2
c − n2

m

)1/2
is the waveguide parameter.

The electromagnetic fields of the fundamental modes can be expressed as [21, 30]

Ψ = (E,H) (4.7a)

E (r, φ, z) =
(
err̂ + eφφ̂+ ez ẑ

)
eiβze−iωt (4.7b)

H (r, φ, z) =
(
hrr̂ + hφφ̂+ hz ẑ

)
eiβze−iωt (4.7c)

Inside the nanowire where 0 < r < a,

er = −a1J0 (UR) + a2J2 (UR)

J1 (U)
sin (φ) (4.8a)
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eφ = −a1J0 (UR)− a2J2 (UR)

J1 (U)
cos (φ) (4.8b)

ez =
−iU
aβ

J1 (UR)

J1 (U)
sin (φ) (4.8c)

hr =

(
ε0
µ0

)1/2 kn2
c

β

a3J0 (UR)− a4J2 (UR)

J1 (U)
cos (φ) (4.9a)

hφ = −
(
ε0
µ0

)1/2 kn2
c

β

a3J0 (UR) + a4J2 (UR)

J1 (U)
sin (φ) (4.9b)

hz = −i
(
ε0
µ0

)1/2 F2U

ka

J1 (UR)

J1 (U)
cos (φ) (4.9c)

Outside the nanowire where a ≤ r <∞,

er = − U
W

a1K0 (WR)− a2K2 (WR)

K1 (W )
sin (φ) (4.10a)

eφ = − U
W

a1K0 (WR) + a2K2 (WR)

K1 (W )
cos (φ) (4.10b)

ez =
−iU
aβ

K1 (WR)

K1 (W )
sin (φ) (4.10c)

hr =

(
ε0
µ0

)1/2 kn2
c

β

U

W

a5K0 (WR)− a6K2 (WR)

K1 (W )
cos (φ) (4.11a)

hφ = −
(
ε0
µ0

)1/2 kn2
c

β

U

W

a5K0 (WR) + a6K2 (WR)

K1 (W )
sin (φ) (4.11b)

hz = −i
(
ε0
µ0

)1/2 F2U

ka

K1 (WR)

K1 (W )
cos (φ) (4.11c)

where

R =
r

a
(4.12a)

∆ =
1

2

(
1− n2

m

n2
c

)
(4.12b)

a1 =
F2 − 1

2
; a2 =

F2 + 1

2
; a3 =

F1 − 1

2
; a4 =

F1 + 1

2
; a5 =

F1 − 1 + 2∆

2
; a6 =

F1 + 1− 2∆

2
(4.12c)
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F1 =

(
UW

V

)2

[b1 + (1− 2∆) b2] ;F2 =

(
V

UW

)2 1

b1 + b2
(4.12d)

b1 =
1

2U

{
J0 (U)

J1 (U)
− J2 (U)

J1 (U)

}
; b2 = − 1

2W

{
K0 (W )

K1 (W )
− K2 (W )

K1 (W )

}
; (4.12e)

Using these equations we calculate the normalised electric field components for InP

nanowires applicable to our experimental setup. In our optical trapping experiments,

InP nanowires (nc = 3.457) are submerged in deionised water (nm = 1.33). We are

interested in waveguiding modes for λ = 890 nm because it is the peak wavelength of

the photoluminescence of these InP nanowires. The fundamental modes in cylindrical

coordinates are shown in Figure 4.2. From the figures it can be seen that InP nanowires

with a radius larger than 100 nm have a tight field confinement, while for nanowires

with radius 75 nm and less there are significant field amplitudes extending outside the

nanowire.

Figure 4.3 shows the fundamental mode for 150 nm diameter InP nanowires

from our calculation, while Figure 4.4 shows results from finite-difference time-domain

(FDTD) simulations. The entire simulation volume is covered by a coarse mesh and a

fine mesh in the proximity of the nanowire. The fine mesh has a mesh size of 2.5 nm

covering a region of 300 nm × 300 nm × 5.2 µm, which covers the entire nanowire that is

in the centre of this fine mesh region. Comparison between our results and FDTD simu-

lations shows good agreement at almost all points, except for points near the boundary.

We believe this is an artefact due to the discretization of the parameters used to run

the FDTD simulations, especially at the interface between the nanowire core and the

surrounding medium where there is a discontinuity.

From Figures 4.3 and 4.4, we see that there are significant evanescent waves out-

side the nanowire waveguide, which has many potential applications. We note that the

field is not circularly symmetric due to polarisation. In the context of particle trapping

and optomechanics, evanescent waves have been shown to generate significant gradient

forces on nearby particles and is able to form an optical trap [32, 33]. Early evanes-

cent field optical traps are generated by total internal reflection in prisms [33, 34], but

later experiments involving evanescent field trapping also expanded to evanescent fields

around fibre cores from optical fibres [31, 35–38]. A few notable studies include Frawley

et al.’s demonstration of selective particle trapping and optical binding in the evanes-

cent field of an optical nanofiber [31] and Skelton et al.’s experimental realisation of

evanescent wave trapping and transport of micro and nano particles along tapered op-

tical fibres of sub-micron diameters [38]. In Frawley’s study, 3.13 µm SiO2 spheres are
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Figure 4.2: Radial, azimuthal and longitudinal components (er, eφ, ez) of HE11

modes of InP nanowires in deionised water at λ = 890 nm for different nanowire
radii, shown in cylindrical coordinates. Amplitudes are normalised such that er(r =
0) = 1 and eφ(r = 0) = 1. The magnetic field components, h can be obtained
similarly and is not shown here.
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Figure 4.3: Electric field intensity of the fundamental mode at λ = 890 nm in a
150 nm diameter InP nanowire (nc = 3.457) with water as surrounding medium
(nm = 1.33).

trapped in the evanescent field of 1064 nm wavelength light propagating down a 550 nm

nanofiber (Figure 4.5), while interacting with other trapped spheres along the length

of the fibre (Figure 4.6). As for Skelton’s experiment, microparticles are observed to

be trapped against the fibre by the optical gradient force of the evanescent field, and

propelled along it by the scattering force in the same direction as the mode propagates

[38].

Despite all the potential trapping applications by evanescent fields, it remains less

efficient compared to optical tweezers because evanescent fields are inherently lossy and

generally only a fraction of optical power is coupled into evanescent modes. However, if

evanescent field interactions are used in conjunction with conventional optical trapping,

this can provide numerous advantages and it is the basis of our studies of coupled

nanowire waveguides. We believe that the strong evanescent fields exhibited by single

trapped InP nanowires are essential for the interaction and possible binding between

multiple InP nanowires via evanescent field coupling, which will be examined in Section
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Figure 4.4: FDTD results of the electric field intensity in a 150 nm diameter
InP nanowire for the same parameters presented in Figure 4.3. Figures credit: Dr.
Dhruv Saxena. 105
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Figure 4.5: (a) Gradient forces, Fg and scattering forces, Fs on nearby particles
in the nanofiber evanescent field. (b) Magnitude of gradient and scattering forces
on two 3.13 µm particles in the evanescent field of a 550 nm nanofiber. Figure
adapted from [31].

Figure 4.6: Experimental observation of SiO2 particle chains trapped in the
evanescent field of nanofibre. From top to bottom, the number of trapped particles
increase from one to seven particles; the nterparticle distance, d changes as new
particle are added due to optical binding between trapped particles. Figure adapted
from [31].
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4.5 of this chapter.
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4.3 Poynting vectors for InP nanowire waveguides

Apart from optical trapping, evanescent waves have also been used in sensing applica-

tions [39–41] and in these applications knowledge about the power distribution around

the waveguide is critical. For our studies, we require the Poynting vector to calculate the

power flow through the system in order to calculate the forces due to optical coupling

for a given optical power.

In the nanowires considered in our experiments, the average energy flow in the

radial and azimuthal directions are negligible so only the axial component of the Poynting

vector, Sz needs to be considered [21]

Inside the nanowire where 0 < r < a,

Sz =
1

2

(
ε0

µ0

)1/2 k0n
2
c

βJ2
1 (U)

[
a1a3J

2
0 (UR) + a2a4J

2
2 (UR)

+
1− F1F2

2
J0 (UR) J2 (UR) cos (2φ)

]
(4.13)

Outside the nanowire where a ≤ r <∞,

Sz =
1

2

(
ε0

µ0

)1/2 k0n
2
c

βK2
1 (W )

U2

W 2

[
a1a5K

2
0 (WR) + a2a6K

2
2 (WR)

− 1− 2∆− F1F2

2
K0 (WR)K2 (WR) cos (2φ)

]
(4.14)

where the coordinates, R and various coefficients (∆, a1, a2, a3, a4, a5, a6, F1, F2)

are defined in equation 4.12.

The profile of the Poynting vector for 150 nm diameter InP nanowires at 890

nm is shown in Figure 4.7. The mesh profile represents the propagating fields inside the

nanowire, while the gradient profile represents the evanescent fields outside the nanowire

in water. It can be seen from the plot that there are large evanescent fields up to two

radii away from the centre of the nanowire, and extends up to 500 nm away. Compared

to the Poynting vector for 300 nm diameter nanowires shown in Figure 4.8, we see that

in this case most of the optical power is transmitted within the waveguide with little

evanescent fields that become insignificant beyond 50 nm from the edge of the nanowire.

108



4.3: Poynting vectors for InP nanowire waveguides

Figure 4.7: Poynting vectors of 150 nm nanowires in the axial direction. Also
shown are the projections onto the xz and yz planes. From the figures it can be
seen that the evanescence fields are significant within twice the radii outside the
nanowire, and extend out to 500 nm.
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Figure 4.8: Poynting vectors of 300 nm nanowires in the axial direction. Also
shown are the projections onto the xz and yz planes. From the figures it can be
seen that the evanescence fields are weak and become insignificant beyond 50 nm
from the nanowire.
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4.4 Dispersion and group velocity of InP nanowire waveg-

uides

The dispersion and group velocity, vg of optical waveguides are important quantities in

many applications; for our studies, the dispersion and group velocity of the guided mode

is used to calculate the optical forces on coupled waveguides later in Section 4.12. By

definition, the group velocity is the speed at which the power of a mode is transmitted

along an optical waveguide [30]. The group velocity for the jth mode is given as

vgj =
dω

dβj
=
−2πc

λ2

dλ

dβj
(4.15)

where ω is the angluar frequency, λ is the free space wavelength and βj is the

propagation constant of the j th mode [30].

Figure 4.9: Dispersion relation of the fundamental mode in InP nanowire waveg-
uides, normalised to nanowire radii, a. The dashed lines indicate the light cone for
a plane wave in the surrounding medium i.e. deionised water.
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Once again, for our studies we are interested in the waveguiding properties of

optically trapped InP nanowires in deionised water. By numerically solving the scalar

wave equation (Equation 4.6) for all wavelengths, we obtain the propagation constants

and establish the dispersion relation for our InP nanowire waveguides, shown in Figure

4.9. We then calculated the group velocity for single mode InP nanowires of diameters

150 nm, 160 nm, 200 nm and 300 nm with the results shown in Figure 4.10 (shown as

radii a = 75 nm, 80 nm, 100 nm, 150 nm).

Figure 4.10: Group velocity of the fundamental mode in InP nanowires of radius,
a = 75 nm, 80 nm, 100 nm, and 150 nm, shown as fractions of c. Two dashed
horizontal lines mark the group velocity of plane waves in the surrounding medium,
c/nm and in bulk InP, c/nc. The red vertical line marks λ = 890 nm.

From Figure 4.10 it can be seen that for a given nanowire diameter, vg approaches

the plane wave velocity in the surrounding medium c/nm (i.e. water) as the wavelength

increases to values much larger than the diameter of the nanowire. On the other hand,

vg approaches c/nc when the wavelength is very small, with a minimum value smaller

than c/nc. We also see that for a fixed wavelength, vg falls from c/nm with decreasing

nanowire diameter until it reaches a minimum value smaller than c/nc before approach-

ing c/nc again as the diameter is further reduced.
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4.5 Coupling between two InP nanowire waveguides

Consider two identical parallel nanowire waveguides separated by a distance d, illustrated

in Figure 4.11. If the waveguides are optically well separated i.e. the contribution from

one waveguide to the field at the centre of the second waveguide is small, and if they are

also weakly guiding then the fields of the composite waveguide are well approximated by

a superposition of the fields or each waveguide in isolation [30]. Since the two waveguides

are identical, the symmetry of the system requires that the two fundamental solutions

Ψ+ and Ψ− of the scalar wave equation are given by

Ψ+ = Ψ̄1 + Ψ̄2 (4.16a)

Ψ− = Ψ̄1 − Ψ̄2 (4.16b)

where Ψ̄1 and Ψ̄2 are fundamental solutions for each waveguide in isolation.

Figure 4.11: Nomenclature and coordinates for describing our system of two
coupled nanowire waveguides.

113



Chapter 4: Waveguiding Properties and Coupling of Indium Phosphide (InP)
Nanowire Waveguides

4.5.1 Conditions for weak coupling

There has been extensive studies in the literature on the Coupled Mode Theory (CMT)

for optical waveguides [42–52], which is generally only applicable to weakly coupling,

weakly guiding waveguide pairs. Weak coupling implies the evanescent fields from one

waveguide do not contribute significantly to the fields within the core of the second cou-

pled waveguide as within the framework of the CMT, the fields from the first waveguide

is not subjected to the boundary conditions at the core-cladding interface of the second

waveguide [46] thus leading to a deviation from the full analytical result.

Generally, weak coupling applies when the separation between waveguides d is

much larger than the radii of each individual waveguide a [46, 52], d � a. We extend

that condition based on our system that since our InP nanowire waveguides have very

weak guided modes in the core i.e. the field intensity is low inside the core (as seen

in Section 4.2), the weak coupling condition is still applicable and the CMT remains a

good approximation at separations larger than but comparable to the radius.

4.6 Coupling constant of coupled InP nanowire waveg-

uides

For weakly coupled nanowire waveguides, we can consider one nanowire as a perturbation

introduced onto the other nanowire. Thus, the propagation constants β+ and β− of the

two fundamental solutions Ψ+ and Ψ− can be well approximated as a perturbation of

the propagation constant of a single nanowire in isolation, β [30, 46].

β± = β ± C (4.17)

Where C is the perturbation factor also known as the coupling constant given as

C = k

{∫
A∞

(n (r)− n̄c1) Ψ̄1Ψ̄2 dA

/∫
A∞

Ψ̄2
1 dA

}
(4.18)

Here n̄c1 is the refractive index of the first nanowire before perturbation and Ψ̄1,

Ψ̄2 are the solutions to the scalar wave equation of the nanowires before perturbation

[30].
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For two identical step index nanowires with radius a and refractive index n (r) as

described in equation 4.18, C can be reduced into the following form [30]

C =
(2∆)1/2

a

U2

V 3

K0 (Wd/a)

K2
1 (W )

(4.19)

The coupling constants for two identical InP nanowires at 890 nm wavelength for

a range of nanowire radius, a and core to core separation, d is calculated and plotted

in Figure 4.12 and Figure 4.13 below. It should be noted that in Figure 4.13, the white

region in the upper left corner represents core-to-core separations less than the sum of

radii of both nanowires i.e. the nanowires are intersecting, which is not allowed since

our nanowires are hard solids.

Figure 4.12: Coupling constants of two identical InP nanowires at 890 nm wave-
length as a function of nanowire radius and nanowire separation.

From Figure 4.12, we see that for a fixed core-to-core separation the coupling

constant reaches a local maxima when the radii a of the nanowires are between 70 and

100 nm, and reaches another maxima when the edges of the nanowires are touching.

115



Chapter 4: Waveguiding Properties and Coupling of Indium Phosphide (InP)
Nanowire Waveguides

Figure 4.13: Coupling constants of two identical InP nanowires at 890 nm wave-
length as a function of nanowire radius and nanowire separation, as in Figure 4.12
but also includes data for separations d < 300 nm. We model our nanowires as
hard solids and do not intersect, so d cannot be less than twice the radius a which
is depicted as the white region in the plot.

Furthermore, the coupling constant decreases with increasing separation, and the rate

of decrease is higher when the radii of the nanowires are larger. From Figure 4.13

we see that the absolute maximum coupling constant is achieved if we use 100 nm

radii nanowires and take the separation of these nanowires to the limit where they are

touching. On the other hand, we see from Figure 4.12 that nanowires of around 75 nm

appears to be better at retaining a significant coupling constant for larger separations

between 300 and 500 nm. These observations can be explained by considering the mode

profile of the guided modes of individual nanowires as presented in Section 4.2.

The coupling efficiency of light from one waveguide to another is a compromise

between the strength of the propagation mode within the waveguide and the evanescence

modes outside the waveguide. When the diameter of the waveguide is large, the guided

mode is well confined within the waveguide while the evanescent field is small and

decays rapidly over a short distance away from the edge of the waveguide resulting a
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rapid decline in coupling efficiency as the separation between nanowires is increased.

On the opposing limit when the diameter of the waveguide is small, the guided mode is

weak and the evanescent field from a nearby waveguide does not couple into the guided

mode efficiently.

4.7 Mode profiles of coupled InP nanowire waveguides

As mentioned in Section 4.5, the solutions of the fundamental modes for two identical

coupled waveguides can be calculated from the solutions for each waveguide in isolation.

Ψ+ = Ψ̄1 + Ψ̄2 (4.20a)

Ψ− = Ψ̄1 − Ψ̄2 (4.20b)

where Ψ̄1 and Ψ̄2 are fundamental solutions for each waveguide in isolation, given

by Equations 4.7 to 4.11 in Section 4.2.

Using these equations on a set of common axes, we calculated the fundamental

mode profiles of two identical waveguides for the propagation of λ = 890 nm for our

InP nanowire waveguides under a few different nanowire radius and separation. Recall

that the refractive indices of the nanowires are nc = 3.457, and the system is submerged

in water as the surrounding medium, nm = 1.33. For each set of nanowire radii a and

separation d, we calculate and plot the mode profile for the symmetric and antisymmetric

modes. The results are shown in the following figures.

We also compared the electric field intensity E2 for a composite waveguide system

consisting of two 150 nm diameter nanowires separated by 300 nm from our calculations

with FDTD simulations, shown in Figure 4.22. The mesh size for the FDTD simulations

is 2.5 nm which covers the entire cross section of both nanowires. From the figures we

can see that there is good agreement between our calculations and simulated results.
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(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.14: Electric field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 150 nm diameter InP nanowires separated by 500 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.

(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.15: Magnetic field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 150 nm diameter InP nanowires separated by 500 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.
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(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.16: Electric field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 150 nm diameter InP nanowires separated by 300 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.

(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.17: Magnetic field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 150 nm diameter InP nanowires separated by 300 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.
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(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.18: Electric field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 200 nm diameter InP nanowires separated by 500 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.

(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.19: Magnetic field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 200 nm diameter InP nanowires separated by 500 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.
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(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.20: Electric field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 200 nm diameter InP nanowires separated by 300 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.

(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.21: Electric field of the symmetric and anti-symmetric modes at λ =
890 nm in a pair of coupled 200 nm diameter InP nanowires separated by 300 nm
from core to core, with water as the surrounding medium. The black dashed lines
indicate the nanowire perimeters.
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(a) Our calculations

(b) FDTD simulation results

Figure 4.22: Comparison between analytical calculations and FDTD simulations
of the electric field intensity in a pair of coupled 200 nm diameter InP nanowires at
λ = 890 nm, separated by 300 nm from core to core with water as the surrounding
medium. From the figures we can see that there is good agreement between the
two results.
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4.8 Optical force calculations from Maxwell’s Stress Ten-

sor

In our system of two nanowire waveguides, we are interested in calculating the force

experienced by one of the nanowires due to the presence of the other nanowire. One

approach is by considering the pertubation in the eigenmode frequency of the waveguide

due to changes in the separation between the individual nanowire waveguides, which

will be discussed later in Section 4.12. The other approach to calculating the optical

forces can be achieved by considering Maxwell’s Equations.

Knowledge about the electromagnetic fields of the two-nanowire system as shown

in Section 4.7 allows us to calculate the total force due to electromagnetic fields using

Maxwell’s Stress Tensor. From the Lorentz force law,

F =

∫
V
ρ (E + v ×B) d3r (4.21)

=

∫
V

(ρE + J×B) d3r (4.22)

where v is the velocity of the charge element. The terms in the integral can be

expressed entirely using Maxwell’s equations [53]:

ρ = ε0∇ ·E (4.23a)

J =
1

µ0
∇×B− ε0

∂E

∂t
(4.23b)

Substituting Equations 4.23b into Equation 4.22 and rearranging [53], the force

becomes

F =

∫
S

←→
T · da− ε0µ0

∂

∂t

∫
V

Sd3r (4.24)

where V is the volume containing the electromagnetic fields, S is any surface that

encloses only the charges and currents within V, and
←→
T is the Maxwell’s Stress Tensor

with components defined by
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Tij ≡ ε0
(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
(4.25)

The full derivation of Equation 4.24 from Equations 4.22 and 4.23b is shown in

Appendix A.

In our system of two nanowire waveguides, the force experienced by one of the

nanowires can be calculated from the perturbation of the electromagnetic fields due to

the presence of the second nanowire using Maxwell’s Stress Tensor. Since our nanowire

waveguides are illuminated by a continuous wave laser, we can assume that the power

flowing through the system is constant over time, so ∂S/∂t = 0 and

F =

∫
S

←→
T · da (4.26)

In other words, the force experienced by a nanowire is given by the sum of the

force density over the surface area of the nanowire. To calculate the force, recall from

Figure 4.11 that our nanowires are approximated as cylinders. The surface element da

of the curved surface of a cylinder is given as

da = a dφ dz r̂ (4.27a)

r̂ = cosφ x̂ + sinφ ŷ (4.27b)

Due to the symmetry of the system, we only expect the force to be non zero in

the direction of separation which is in the x direction, hence we only need to consider(←→
T · da

)
x

(←→
T · da

)
x

= Txxdax + Txyday + Txzdaz (4.28)

= Txx a dφ dz cosφ+ Txy a dφ dz sinφ (4.29)

Hence, the force on a nanowire due to the presence of the second nanowire is given

by
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F = Fx =

∫∫
S

(Txx cosφ+ Txy sinφ) a dφ dz (4.30)

= a

∫ 2π

0
(Txx cosφ+ Txy sinφ) dφ

∫ L

0
dz (4.31)

∴ F = aL

∫ 2π

0
(Txx cosφ+ Txy sinφ) dφ (4.32)

Using Equation 4.32 and the electromagnetic fields calculated in Section 4.7, we

calculated the optical forces between 75 nm, 100 nm and 150 nm radius InP nanowire

waveguides for a range of waveguide separations. The results are normalised with respect

to power by integrating the Poynting vector (Section 4.3) to obtain the normalisation

constant. The results are presented in Figure 4.23 in force per µm length of nanowire

waveguide per mW of optical power coupled into the system.

Figure 4.23: Optical forces per length from symmetric (+) and antisymmetric
(−) modes of coupled 75 nm, 100 nm and 150 nm InP nanowires as a function
of separation d, per mW of optical power coupled into the waveguides. From the
figure we see that for all nanowire radii, symmetric modes lead to negative forces
which are attractive while anti-symmetric modes lead to positive forces which are
repulsive.
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4.9 Power transfer between coupled nanowires and beat

length

The power flow through each nanowire waveguide P1(z) and P2(z) can be obtained by

integrating the intensity of the field over the cross section of the nanowire. To achieve

this we first consider the magnitude of the total transverse electric field E at any point,

given by [30]

E = b+Ψ+e
(iβ+z) + b−Ψ−e

(iβ−z) (4.33)

Where b± are modal amplitudes, Ψ± = Ψ̄1± Ψ̄2 are fundamental solutions to the

two coupled waveguide system and β± = β±C are the propagation constants associated

with the fundamental solutions (given in Equation 4.17). We also make the assumption

that only the first nanowire is illuminated at the endface z = 0, so E2(z = 0) = 0.

Since the waveguides are weakly coupling, in the proximity close to the second

nanowire the contribution from the first nanowire is small i.e. Ψ̄1 ≈ 0. So Ψ+ ≈
−Ψ− ≈ Ψ̄2. Also at z = 0, b+ ≈ b−. If we substitute all of the above into Equation

4.33, E2 around the second nanowire becomes

E2 = b+Ψ̄2e
(i(β+C)z) − b+Ψ̄2e

(i(β−C)z) (4.34a)

= b+Ψ̄2e
(iβz)

(
eiCz − e−iCz

)
(4.34b)

Similarly around the first nanowire Ψ̄2 ≈ 0, therefore Ψ+ ≈ Ψ− ≈ Ψ̄1 and E1

becomes

E1 = b+Ψ̄1e
(iβz)

(
eiCz + e−iCz

)
(4.35)

Applying Euler’s formula on Equations 4.35 and 4.34 gives

E1 = 2b+Ψ̄1e
(iβz) cos (Cz) (4.36a)

E2 = 2ib+Ψ̄2e
(iβz) sin (Cz) (4.36b)
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From Equation 4.36 we can then integrate the field intensity for each nanowire

waveguide and obtain the power flow along the two nanowire configuration. Assuming

no net power loss, the power is given as the following

P1 (z) = P cos2 (Cz) (4.37a)

P2 (z) = P sin2 (Cz) (4.37b)

Where P1(z) is the power in one nanowire, P2(z) is the power along the second

nanowire and C is the coupling constant.

A useful quantity from an experimental stand point is the beat length L0 of coupled

nanowire waveguides, which is defined as the length along the waveguide where there is

total transfer of power from one waveguide to the other and back [30]. Hence, the beat

length L0 is given as

L0 =
2π

C
(4.38)

In Figure 4.24, the beat length is plotted as a function of the radius of the

nanowires and the separation between both nanowires. We require the lengths of the

nanowire waveguides to be greater than the beat length so that a large power transfer

between the two nanowires can occur, and the coupling effects can be observed experi-

mentally. It is evident from the figure that minimising the separation between adjacent

nanowire waveguides minimises the beat length and hence the distance for which full

power transfer occurs between two waveguides. Larger nanowire radii result in smaller

beat length when the separation is small (< 300 nm), but increases much more rapidly

with separation.

In terms of proximity sensing applications, nanowires of larger radii have greater

sensitivity while nanowires of 75 nm radius can be used to sense larger distances. Since

our nanowires are typically 10 µm in length, it can be seen from Figure 4.24 that if

the separation between nanowires is greater than 500 nm then the beat length becomes

much larger than the length of the nanowires and as a result very little power will be

coupled into the unilluminated nanowire.
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Figure 4.24: Beat length L0 as a function of nanowire radii a and core-to-core
separation d. In the bottom figure, the dark red region on the right side represents
beat lengths L0 > 50µm which is much larger than the lengths of the nanowires
used in our experiments.
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4.10 Group velocities of coupled nanowire waveguides

The group velocity, vg optical waveguides is a useful quantity in many applications. In

the context of this work, the group velocity is required for the calculation of the optical

forces on coupled waveguides from the eigenmode analysis shown in Section 4.12.

Recall in Section 4.4 we calculated the the group velocity vg of an isolated InP

nanowire waveguide submerged in deionised water.

vg (λ) =
−2πc

λ2

dλ

dβ
(4.39)

where λ is the free space wavelength and β is the propagation constant of a mode

in an isolated waveguide. In Section 4.6 we see that when two identical waveguides are

coupled, the fundamental mode of the resulting composite waveguide has two funda-

mental solutions with propagation constants β+ and β− given by β± = β ± C where C

is the coupling constant. This allows us to calculate the group velocity of the symmetric

and anti-symmetric fundamental modes of the coupled nanowire waveguides.

vg+ (λ) =
−2πc

λ2

dλ

dβ+
(4.40)

vg− (λ) =
−2πc

λ2

dλ

dβ−
(4.41)

An example of group velocities of the symmetric and anti-symmetric fundamental

modes for coupled 100nm radius InP nanowire waveguides at 300 nm separation are

plotted in Figure 4.25. Also shown in the plot is the group velocity of the nanowire in

isolation.
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Figure 4.25: Group velocity for the symmetric and antisymmetric modes of
coupled 100 nm InP nanowires separated at 300 nm, shown in red and green. Also
shown in blue is the group velocity for a single 100 nm InP nanowire waveguide.

4.11 Dispersion relation of coupled nanowire waveguides

It is useful to calculate the dispersion relation for coupled InP nanowire waveguides

because the changes in dispersion due to separation can be used to calculate the opti-

cal forces. Figures 4.26, 4.27, and 4.28 show the dispersion relation of the symmetric

(red curves) and anti-symmetric (green curves) modes for 100 nm radius InP nanowire

waveguides at core-to-core separations of 250 nm, 300 nm and 500 nm. Also shown in

the figures is the dispersion for an isolated InP nanowire waveguide (blue curves), and

the light cone for a plane wave in the surrounding medium i.e. deionised water (dashed

lines).
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4.11: Dispersion relation of coupled nanowire waveguides

Figure 4.26: Dispersion relation for the unperturbed (blue), symmetric (red) and
antisymmetric (green) modes of coupled 100 nm InP nanowires separated at 250
nm.

Figure 4.27: Dispersion relation for the unperturbed (blue), symmetric (red) and
antisymmetric (green) modes of coupled 100 nm InP nanowires separated at 300
nm.
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Figure 4.28: Dispersion relation for the unperturbed (blue), symmetric (red) and
antisymmetric (green) modes of coupled 100 nm InP nanowires separated at 500
nm.

4.12 Optical forces from eigenmode analysis

Following from Povinelli’s analysis of optical forces [6, 54], we consider the system of

two parallel waveguides separated by distance d as described in Figure 4.11 earlier in

this chapter. Now, assume that energy Uω = N~ω is coupled into an eigenmode of the

system with frequency ω, where N is the number of photos and ~ω is the energy per

photon. An adiabatic change in the separation ∆d will shift the eigenmode frequency

by an amount ∆ω. Conservation of energy then implies that the mechanical force on

the waveguides is given by

F = −dUω
dd

(4.42)

with the convention that negative values correspond to attractive forces. Hence,

F = −dUω
dd

= −d (N~ω)

dd
= −N~

dω

dd
= − 1

ω

dω

dd
Uω (4.43)
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4.12: Optical forces from eigenmode analysis

Here
dω

dd
is just the rate of change in the dispersion over waveguide separation for

a fixed propagation constant. For the symmetric modes, we see in Figures 4.26, 4.27,

and 4.28 that for a fixed propagation constant (hence a fixed k) the eigenmode frequency

ω increases with increasing separation, hence
dω

dd
is positive and the force is attractive.

Similarly, the eigenmode frequency for anti-symmetric modes decreases with increasing

separation so
dω

dd
is negative and the force is repulsive.

To calculate the energy coupled into the eigenmode Uω we consider the power

transmitted through the coupled waveguides, which is simply given as P =
∑
j=ω

vgjUj/L

where vgj and Uj are the group velocity and energy of the j -th mode, while L is the

length of the waveguides; the power transmitted through the waveguides comes from

the energy of all modes that are coupled through the waveguides. If only a single mode

is coupled into the waveguides, then all the power transmitted through the waveguides

comes from the energy of that mode and P = vgUω/L [6]. Hence for single mode coupled

waveguides which is the case for our InP nanowire waveguides, the energy coupled into

the system is

Uω =
PL

vg
(4.44)

Hence, the optical forces due to coupling between two nanowire waveguides is

given as

F = − 1

ω

dω

dd

PL

vg
(4.45)

We calculated the optical forces between 75 nm, 100 nm and 150 nm radius InP

nanowire waveguides for a range of waveguide separations and the results are presented

in Figure 4.29. These results are presented in force per µm length of nanowire waveguide

per mW of optical power coupled into the waveguides. Figure 4.30 shows comparison of

forces calculated here with the forces calculated using Maxwell’s Stress Tensor (Section

4.8). Both methods show good agreement at large distances but deviates at smaller

distances. This is expected because the eigenmode analysis relies on the calculation of

the effective propagation constants β± (Section 4.6) using the perturbation theory where

the nanowire waveguides are assumed to be weakly coupling, which no longer applies at

small distances. However, the eigenmode analysis is useful at large separations because
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Figure 4.29: Optical forces per length from symmetric (+) and antisymmetric
(−) modes of coupled 75 nm, 100 nm and 150 nm InP nanowires as a function of
separation d, per mW of optical power is coupled into the waveguides. The dotted
lines indicate when the possible devations between our calculations and the actual
result can be significant.

it does not require the full evaluation of the electromagnetic field of the system which

can be difficult in some cases.

Based on these results, if we have a system of two coupled 100 nm radius InP

nanowire waveguides of 5 µm in length separated by 300 nm and 10 mW of power is

coupled into the waveguides, we expect optical forces of about 100 pN acting on the

waveguides. This is comparable in magnitude to the trap stiffness of optical tweezers

(Section 3.3.5) and is a good indication that it is measurable by optical trapping tech-

niques. In the next chapter I will discuss our attempts at experimentally measuring this

optical interaction between coupled InP nanowires.
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4.12: Optical forces from eigenmode analysis

(a) Optical forces of a = 75 nm nanowires

(b) Optical forces of a = 100 nm nanowires

Figure 4.30: Calculated optical forces for (a) 75 nm nanowire pairs and (b) 100
nm nanowire pairs. Dashed lines represent forces calculated using Maxwell’s Stress
Tensor while solid lines represent forces calculated with the eigenmode analysis.
Both methods show good agreement at large distances but deviates at smaller
distances. This is expected because at small distances the nanowire waveguides
are no longer weakly coupling.
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4.13 Conclusion

In this chapter we have studied the waveguiding properties of single and two coupled

InP nanowire waveguides. For single InP nanowire waveguides, we have calculated the

field profile and poynting vectors, and shown that the field intensity is weak in the core

of the nanowires and that significant evanescent fields extend outside the nanowire core.

We also calculated the dispersion and group velocity of guided modes in InP nanowire

waveguides. These are all critical parameters which have to be taken into account when

we examine the coupling between two nanowires.

In the case of two nanowire waveguides, we looked at the coupling effects between

waveguides. In particular, we calculated the coupling constant and the field profiles of

two coupled InP nanowire waveguides and the beat length. We found conditions for

which the beat length is comparable to the length of a typical nanowire waveguide,

which implies that the full transfer of power from one nanowire waveguide to the other

is possible in the context of experiments. On the other hand, the calculated field pro-

files enable us to calculate the forces between coupled nanowire waveguides using the

Maxwell’s Stress Tensor. We also studied the change in dispersion relation and calcu-

lated the optical forces between two waveguides via eigenmode analysis. Comparing

results from both methods, we found that the forces calculated with the eigenmode

analysis show a good agreement with values obtained from calculations using Maxwell’s

Stress Tensor. We found that the coupling forces due to optical coupling of the guided

modes are comparable in magnitude to the gradient forces of the optical tweezers that

hold the nanowires in place, which indirectly implies that optical tweezers is the ideal

tool for measuring such coupling interactions.
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Chapter 5: Measurement of Forces by Time Shared Optical Tweezers

5.1 Introduction

In Chapter 4 we calculated the coupling properties and resulting optical forces in two

coupled InP nanowire waveguides. In this chapter we propose experimental approaches

to physically recreate our hypothetical coupled nanowire waveguides system, and observe

the coupling interactions between the two nanowire waveguides. We note that in our

system of two nanowires suspended in water, hydrodynamic interactions may play a

crucial role on top of optical interactions between the nanowires.

The study of interaction forces between multiple particles requires the trapping

and tracking of each interacting particles individually. Optical tweezers is the ideal

tool for such studies due to its ability to isolate and track single particles. We will

examine the merits and limitations of various trap multiplexing techniques and multiple

particle trapping modalities currently within the literature. Current optical tweezers

multiplexing techniques such as holographic tweezers enable the trapping of multiple

particles quite easily and video methods enable the simultaneous tracking of multiple

trapped particles, but monitoring fast dynamics of multiple trapped particles remain a

challenge.

In this chapter we demonstrate a technique that do not suffer from the above

limitations to simultaneously trap and track multiple particles, and can be easily ex-

panded to more than two trapped particles. It is a generic tool that is suitable for

studying various kinds of interaction between multiple micro- and nano-sized objects in-

cluding electrical, optical and hydrodynamic coupling interactions. Taking into account

some necessary compromises, we propose the use of time sharing for trap multiplexing

combined with back focal plane interferometry for particle tracking. Using time-shared

traps, the tracking of each particle in each trap can be achieved by reading the quadrant

photo detector synchronously with the time sharing of the traps. We will then explore

the viability of this chosen method for our system by performing measurements on hy-

drodynamic interactions as it is built into the system and well characterised within the

literature.
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5.2 Trap multiplexing and multiple particle tracking methods

5.2.1 Orthogonally polarised dual beam optical tweezers

One of the earliest experiments to trap and track two particles is done by Meiners and

Quake [1], with the use of a dual beam optical tweezers setup. In this experiment, two

separate beams were sent into the high NA objective to generate two gradient force

optical trap. In order to track each particle individually, the two traps was orthogonally

polarised. The scattered signal collected by the condenser lens from both particles can

then be separated using a polarising beam splitter and fed into two separate quadrant

photodiodes allowing each particle to be tracked individually. With this technique Mein-

ers and Quake were able to measure the hydrodynamic cross correlation between two

optically trapped latex beads.

Figure 5.1: Schematic diagram of the apparatus used by Meiners and Quake
[1] to measure the cross-correlation of two optically trapped microspheres. Two
orthogonally polarised laser beams are focused into the sample cell, each trapping a
microsphere. The light scattered from the microspheres are collected with a second
objective lens and separated by a polarising beam splitter onto two QPD’s.

It is easy to see that this technique is only limited to a maximum of two par-

ticles. Apart from that, this technique assumes full conservation of polarisation after
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scattering which is not necessarily true. Partial depolarisation after scattering even on

homogeneous particles occurs due to the use of high numerical aperture (NA) optics in

optical tweezers [2, 3]. This is because for a linearly polarised beam refracting on the

surface of a lens, the electric field exhibits different parallel and perpendicular compo-

nents relative to the plane of incidence depending on the position on the lens. Since

the two components are refracted differently, the polarization of the total electric field

is rotated as described by the Fresnel equations. Mangeol et al. calculated the effects of

these partial depolarisation for different NA lenses, shown in Figure 5.2. In particular,

they found that there can be a polarisation rotation of up to 20 degrees for lenses with a

NA of 0.49 [2]. These depolarisation effects has been verified experimentally [2], and can

often reach up to 10% of the integrated intensity of the laser trap [3], causing significant

cross-talk and systematic errors in measurements.

(a) Incident electric field. (b) Calculated
transmitted electric field in the back focal
plane of the second lens.

(b)

(c) The rotation of polarization of the elec-
tric field exiting from the two lens system
on the y1 axis for y1 > 0

(d) The rotation of polarization of the electric field exiting from the two lens
system on the perimeter of NA = 0.20 (solid), NA = 0.30 (dotted), NA =
0.45 (dashed), and NA = 0.49 (dash-dotted).

Figure 5.2: Rotation of polarization of a Gaussian beam passing a system of two
identical lenses. The electric fields are limited to a 3.8 mm disk. Figure from [2].
Reprinted with permission from [2]. Copyright 2008, AIP Publishing LLC.
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Several methods has been suggested to address this problem, including polarisation

rectification by beam back propagation through the condenser and objective lenses [2],

frequency detuning of one of the traps [2], and advanced signal processing using Bayesian

inference [4]. But even with these implementations, orthogonally polarised multi-traps

cannot be used to track rotating particles or particles exhibiting birefringence [5], as

it is known that the scattering of polarised light off rotating or birefringent particles

changes the polarisation of the light [6]. All of these considerations has driven the need

for more novel methods of generating multiple optical traps. Current trap multiplexing

techniques can be divided into two main subclasses, namely spatially modulated trap

multiplexing e.g. holographic tweezers, and temporally modulated trap multiplexing

e.g. trap multiplexing by acousto-optics.

5.2.2 Trap multiplexing and tracking by holographic optical tweezers

Holographic optical tweezers is currently the most popular trap multiplexing method. It

has been widely used in various experiments, including the trapping of multiple particles

[7–10] and having multiple traps on a single object for orientation control [11, 12].

Holographic optical tweezers work by adding a phase diagram in the Fourier plane of

the focal point of the trapping laser. Details about holographic optical tweezers is

presented in Chapter 2 Section 2.6. A phase mask consisting of gratings of different

spacings will generate multiple trapping points in the focus of the objective lens.

Since holographic optical tweezers form all traps at the same time from a single

coherent laser source, the tacking signal from each individual trap may interfere with one

another. Furthermore since all tracking signals are collected by one condenser lens, the

decoupling of multiple tracking signals from holographically generated multiple optical

tweezers is one of the biggest challenges of using holographic optical tweezers to track

multiple particles. A common method of achieving this is by tracking each particle

graphically using a video camera and centroid finding algorithms [10, 13]. Polin et al.

trapped and tracked an array of 10 colloidal spheres dispersed in viscous fluid at a range

of interparticle separations from 2.6 to 3.7 µm. However, this experiment is only made

possible by the use of a water-glycerol mixture as the solvent to significantly slow down

the dynamics to a time scale accessible to the video camera [10].

The drawbacks of video tracking methods include limited spatial and temporal

resolutions. Typical frame rates of laboratory cameras can only reach up to 1 kHz

compared to the speed of a typical QPD which is capable of reading at hundreds of
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kHz. This makes video tracking methods ineffective in measuring features that manifest

in timescales less than a millisecond. Furthermore, video tracking relies on the direct

imaging of the trapped particles, which becomes more challenging as particle sizes ap-

proach the diffraction limit; advanced imaging techniques such as dark field imaging or

phase contrast microscopy may become necessary to resolve these low contrast particles.

These are added complications which ultimately limits the resolution of video tracking

techniques.

To address these limitations, there has been significant advances in video tracking

methods such as the development of ’smart cameras’ with integrated signal processing

and more sophisticated tracking algorithms [13–17]. In a study by Di Leonardo et al., a

high speed smart camera with integrated centroid tracking is used to track a ring of eight

2 µm spheres trapped in eight holographically generated optical tweezers [13]. Since only

the positional information is captured by this camera rather than the whole image, the

bandwidth is sufficiently high to monitor the dynamics of the trapped particles. On the

other hand, Conkey et al. integrated the double-helix point spread function (DH-PSF)

technique with holographic optical tweezers [17]. The DH-PSF works by generating

two lobes that trace out a double helix by rotating around the optical axis with image

defocus. As a particle moves away from focus in one direction, the lobes rotate clockwise

while as the particle moves in the opposite direction, the lobes rotate counter-clockwise.

The axial position can be determined through the rotation angle of the two lobes, while

the lateral position can be estimated by calculating the centroid of the two lobes. This

technique was shown to achieve high precision 3D position estimates of about 10 nm

laterally and 30 nm axially.

These developments in smart and high speed cameras achieving frame rates of

10s of kHz has greatly improved the temporal resolution of video tracking methods.

However, even the fastest high speed cameras with the most sophisticated tracking

algorithms are still inferior to QPD sensing methods in terms of spatial and temporal

resolution. Furthermore, such high speed cameras are extremely costly, and the hardware

requirements such as memory, bandwidth and processing power for the amount of data

generated further increase the cost of this method to the point where it is not feasible

in most cases.

A recent approach to high speed particle tracking using holographic optical tweez-

ers and interferometric techniques involving the use of spatial filtering [18]. In typical

interferometric detection schemes, the tracking signal is imaged onto the back focal plane

by a lens. If multiple traps exist on the trapping plane, the tracking signals from each
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Figure 5.3: Illustration of the spatial filtering method by Ott et al. Two indepen-
dent traps are created in the sample plane by two trapping beams. Trap 2 enters
the objective at an angle θ, which translates to a lateral distance d from Trap 1 at
the trapping plane. The transmitted light is collected by the microscope condenser.
A lens images the back focal plane of the condenser onto a quadrant photodiode
for detection of the position of the trapped particle. Blocking the laser beam of
Trap 2 by a pinhole located in a plane conjugate to the sample plane, allows for
the transmission of Trap 1 to the detector and effectively suppresses crosstalk from
Trap 2 [18]. Reprinted with permission from [18]. Copyright 2014, AIP Publishing
LLC.

individual particle becomes convoluted in the back focal plane and cannot be separated

by the photodiode detector. To overcome this, Ott et al. recognised that there exist a

phase conjugate plane of the trapping plane in between the QPD and the lens used to

image the trapping plane onto the back focal plane. On this intermediate plane which

is conjugate to the trapping plane, the trapping beams from multiple traps are spatially

well separated as long as they are also well separated in the trapping plane. By placing

a spatial filter on this image plane, the tracking signal from one trap can be selected

and measured by the QPD while signals from all other traps are blocked (illustrated

in Figure 5.3). With appropriately chosen pinhole size, Ott managed demonstrate the

removal of crosstalk down to less than 10 % at separations greater than 2 µm between

traps when 1 µm spherical particles are trapped, without distorting the tracking signal
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from individual particles [18].

Figure 5.4: Incorporation of beam splitters, additional pinholes and QPD’s to
track multiple particles in multiple optical tweezers. [19].

Ott et al. further demonstrated the expansion of this technique to simultaneously

track 3 optically trapped particles by the use of beam splitters and more QPD’s, as

illustrated in Figure 5.4 [19]. In fact, this technique can be expanded to any number

of traps provided the intensity of the signal is sufficiently strong to be split into the

number of channels desired and still be detectable after spatial filtering. Conversely, this

spatial filtering technique is less feasible when the scattering signal from the trapped

particle is weak to begin with, e.g. nanoparticles and nanowires. Moreover, meticulous

alignment requirements of the pinholes may reduce the robustness of this method in

highly dynamic trapping experiments and experiments involving low symmetry particles

such as nanowires.
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5.2.3 Fast tracking by time-shared trap multiplexing

In contrast to holographically generated multiple traps which is all created at once,

in time-shared optical tweezers the trap is only present in one spot at any particular

instant in time. Multiple traps are created when the single trap is scanned rapidly

between multiple locations where the traps are desired, at a rate fast enough such that

the trapped particles do not have time to diffuse away between visits by the laser [20].

Early forms of time-shared optical tweezers used two axis galvanometer-mounted mirrors

to carry out the fast scanning [21] but this was later replaced by non-mechanical beam

scanning methods, namely the acousto-optic deflector (AOD) [22, 23] which is still widely

used today.

Since time-shared optical tweezers only has one trap present in one spot at any

instant in time, it can be used in combination with interferometric techniques to track

multiple particles. AOD’s can easily scan the trapping laser between multiple trapping

sites at up to tens of kHz, while a typical quadrant photodiode (QPD) can track at

up to a few MHz; this puts an upper limit on the temporal resolution achievable by

this method, although it is still a few orders of magnitude greater than video tracking

methods. This high temporal resolution is desirable for probing the fast-dynamics of

interacting micro and nano particles, which can occur at nano-second time scales.

Ruh et al. demonstrated the used of time-shared optical tweezers with a single

QPD to track up to nine particles [24]. In this study, a single beam gradient force optical

trap is scanned through nine spots using AOD’s. The trap remained on each spot for

about 20 µs, and returned to the same spot after 180 µs (after spending 20 µs on each of

the other 8 spots). The detector is set to sample at 1 MHz, which amounts to about 20

data points on each one of the nine spots per trap scanning cycle. From these 20 data

points, half of them are discarded to remove the contributions from the peaks that arise

from beam steering via the AOD’s. The remaining points are then averaged and taken

as one positional reading of this particular trap. With this method, Ruh et al. was able

to extract the trajectory of all nine trapped beads of various sizes, and further used

these information to study the hydrodynamic interactions between the trapped particles

[24].
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Figure 5.5: (a) The single beam optical tweezers is scanned through 9 locations
sequentially by AOD’s to generate 9 time-shared optical traps. In each one of the
9 spots, the scattered and unscattered light is projected onto the QPD for a short
time (∼ 20µs). (b) Bright field image of four 1.16 µm and five 0.62 µm trapped
glass beads. The numbers close to each bead indicates the sequence of the scanning
of the time-shared optical trap [24].

5.3 Limits of tracking by time-shared optical tweezers

We believe that the use of interferometric particle tracking with time-shared optical

tweezers is the best option to be used to measure our InP nanowire system described

in Chapter 4. This is because only interferometric methods can achieve sufficiently

high data acquisition rates to monitor the fast dynamics of interacting nanowires in our

system.

In contrast to Ruh et al.’s method of extracting particle trajectory through post

processing the QPD readout, we incorporate interferometric sensing using a QPD with

time-shared optical tweezers by reading the QPD synchronously with the switching of the

trap between locations. The limitations of this method is quantified through calculations

presented below. Finally to test the viability of this approach, we tested our system by

measuring the hydrodynamic interaction between two 1 µm polystyrene spheres (Section

5.5) and two 100 nm gold nanoparticles (Section 5.6).

With the assumption that the sensing of the particle happens synchronously with

the switching between time-shared traps, in principle the number of particles that can be

simultaneously applied to this method of tracking is limited by the number of particles

that can be trapped simultaneously in time shared traps, which we will examine in the

following. For the trapped particle to be unaffected by the absence of the trap while

time sharing, we require the free diffusion of the particle in the absence of the trap
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(while time-shared) to be much smaller than the Brownian displacement of the trapped

particle within a single optical trap.

Mathematically, this limit can be written as

〈
∆x2

〉
diffusion

�
〈
∆x2

〉
trap

(5.1)

If we denote the period in which the time shared trap is present at a particular

trapping site as dt, then the period of time when the trap is absent in this same site is

∆t = (N–1)dt where N is the number of time shared traps. The switching frequency

of each trap, which is also synchronous to the sampling of the QPD for each trap is

therefore given as fAOD = fdetector = 1/N dt.

Free diffusion is given as
〈
∆x2

〉
diffusion

≈ 2D∆t where D = 2kBT/γ0 is the diffu-

sion constant, and only occurs when the trap is absent so

〈
∆x2

〉
diffusion

≈ 2D∆t (5.2a)

=
2kBT

γ0
(N − 1) dt (5.2b)

Using the equipartition theorem on optically trapped particles,

〈
∆x2

〉
trap
≈ kBT

κ
(5.3)

where κ is the trap stiffness of the optical trap.

Combining Equations 5.1, 5.2b and 5.3, the inequality becomes

(N − 1) dt� γ0

2κ
(5.4a)

N � γ0

2κdt
+ 1 (5.4b)

From Equation 5.4, we see that in order to increase the number of possible time

shared traps, the switching time between each time shared trap dt should be reduced.
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The reduction of dt ensures that the switching frequency of each time shared trap is

much higher than the roll-off frequency of the trapped particle frequency response, as

the particle motion is insensitive to external disturbances faster than this frequency [22].

However, N cannot be increased indefinitely by a reduction in dt due to limits in the

trap stiffness κ as we will examine in the following.

Given a fixed trap stiffness, κ in the single beam optical trap without time sharing

and N representing the number of time shared traps generated from that single trap,

the trap stiffness of each time shared trap becomes κ/N . As the number of time shared

traps increases, the trap stiffness in each individual trap diminishes due to the reduced

duty cycle in each trap, thus imposing a limit on the maximum number of traps possible

[22]. Thus,

κ

N
> κ0 (5.5a)

N <
κ

κ0
(5.5b)

where κ0 represents the minimum trap stiffness for which a particle can be stably

trapped. This means that in order to increase the number of time shared traps, the trap

stiffness, κ of the single trap before time sharing should be increased proportionally as

well.

Further constraints should be considered when the interaction between particles

is of interest. In the case of two hydrodynamically interacting particles, the drift of

each particle in the absence of the trap should not exceed the correlation distance be-

tween particles. The cross correlation between two identical particles at the fundamental

relaxation time, τ is given as [1]

〈x1 (τ)x2 (0)〉 ≈ −1

e

kBT

κ

3a

2d
(5.6)

where a is the radius of the particles, d is the distance between them and the

negative sign denotes anti-correlated motion. The magnitude of this correlation distance

should be less than the free diffusion in the absence of the trap, i.e.

1

e

kBT

κ

3a

2d
> 2D∆t (5.7)
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where τ is the fundamental relaxation time given by τ = γ0/κ [1]. Substituting

D = 2kBT/γ0 and τ = γ0/κ in to Equation 5.7 gives

∆t <
3

4e

γ0

κ

a

d
=

(
3

4e

a

d

)
τ (5.8)

Since (3/4e) < 1 and a/d ≤ 1, it is clear from this inequality that the scanning

rate should be sufficiently fast such that the period of time when the trap is absent in

a trapping site is shorter than the fundamental relaxation time.

The above findings indicate that as long as we can switch the AOD’s fast enough

and have sufficiently high trapping laser power to create a high enough trap stiffness,

there is no limit to the number of particles that can be trapped and tracked simulta-

neously by this method. However, the physical capabilities of our equipment imposes

a practical limit on this number. For example, the Gooch and Houesgo AOD’s used in

our experiments have a rise time of 4.5 s, which imposes an absolute limit on how small

dt can be.

5.4 Hydrodynamic coupling interactions

The diffusion behaviour of a many particle system can be described by the generalised

Langevin equations for many particles (neglecting inertial terms)

Ṙ = H (R) · F (5.9)

Here R represents the coordinates of N particles with components Rαi where

(i = 1, .., N, α = x, y, z) i.e. R = [R1,R2, ..RN ]; R1 = Rx1x̂ + Ry1ŷ + Rz1ẑ. F rep-

resents an external force and H is the mobility matrix which can be approximated by

the Oseen tensor given by [13]

Hαβ
ij =

1

γ0
δαβδij +

1

γ0
(1− δij)

3

4

a

rij

(
δαβ +

rαijr
β
ij

r2
ij

)
(5.10)

where γ0 is the drag coefficient and rαij = Rαj − Rαi is the separation between

particles. Here δ represents the Kronecker delta function.
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For optically trapped particles, we can separate the force term F in Equation 5.9

into a restoring force component −K ·R′ where K is the stiffness matrix, ζ represent

stochastic forces, and R′ = R − R0 is the displacement coordinates of particles from

their equilibrium positions R0

〈ζ (t)〉 = 0 (5.11a)〈
ζ (t) ζ

(
t′
)〉

= 2H−1
ij kBTδ

(
t− t′

)
(5.11b)

Equation 5.9 can then be rewritten as the following [13]:

Ṙ′ = H (R) ·
[
−K ·R′ + ζ

]
(5.12)

Now, if the displacement of each individual particle from its equilibrium is small

compared to the interparticle distances, then rαij = Rαj − Rαi ≈ Rα0j − Rα0i and H is

constant to a good approximation [1, 13].

Following calculations from Meiners’s study for two spherical particles [1], the

correlation functions is given as the following:

〈
Rα1 (t)Rβ1 (0)

〉
=
〈
Rα2 (t)Rβ2 (0)

〉
(5.13a)

= δαβ
kBT

2κα

(
e−t(1+εα)/τα + e−t(1−εα)/τα

)
(5.13b)〈

Rα1 (t)Rβ2 (0)
〉

=
〈
Rα2 (t)Rβ1 (0)

〉
(5.13c)

= δαβ
kBT

2κα

(
e−t(1+εα)/τα − e−t(1−εα)/τα

)
(5.13d)

where α, β = x, y, z represents the indices for each direction in 3D, κα is the trap

stiffness, τα = γ0/κα is the fundamental relaxation time and γ0 = 6πηa is the drag

coefficient of spherical particles with radius a within fluids with shear viscosity η. δ

represents the Kronecker delta function. The dimensionless parameter εα describes the

ratio between the mobility of the beads and the strength of the hydrodynamic coupling

between them, which amounts to εy = 3a/2d for motion in the longitudinal axis of the

156



5.5: Tracking of multiple polystyrene particles by time-shared traps

two particles and εx = εz = 3a/4d for the transverse axis where d = |r1,2| = |R2 −R1|
is the distance between the two particles [1].

If we take the derivative of the cross correlation function 〈Rα1 (t)Rα2 (0)〉, we find

a turning point at tmin = (τα/2εα) ln [(1 + εα) / (1− εα)] ≈ τα, which indicates that the

cross correlation curves exhibit a time-delayed anti-correlation with a minimum at tmin

[1]. The depth of the minimum is then given as

〈Rα1 (τα)Rα2 (0)〉 ≈ −1

e

kBT

κα
sinh (εα) (5.14a)

≈ −1

e

kBT

κα
εα (5.14b)

This quantity also represents the correlation distance, which provides a measure

of the strength of the hydrodynamic interactions. It is clear from Equation 5.14b that

the correlation distance scales inversely with inter particle separation d.

5.5 Tracking of multiple polystyrene particles by time-

shared traps

To test our particle tracking system, we trapped and tracked two 1 µm polystyrene

spheres as a test system to compare against known results [1, 24]. Our experimental

setup is described in detail in Chapter 2. As an overview, a 1064 nm Nd:YAG laser is

passed through a two-axis acousto-optic deflector (AOD), expanded to overfill a spatial

light modulator (SLM), and then contracted to just overfill the back aperture of a 100x

oil immersion microscope objective lens. Trapped particles are tracked using back focal

plane interferometry. The interference between the trapping laser and laser scattered by

the trapped particles is collected by a 0.65 NA condenser lens (Olympus S Plan Fluor

40x 0.65NA ELWD) and projected onto a quadrant photodiode (QPD) placed in the

back focal plane.

We switch the input frequency to the y-axis AOD between two values and keep

the input frequency of the x -axis AOD constant. The difference between the two input

frequency values is converted to real distance d in the trapping plane by the calibration

procedure presented in Chapter 3 Section 3.3.3. The y-axis AOD is switched every 50

µs, and the QPD is read synchronously. This creates two time-shared optical traps
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Figure 5.6: Nomenclature and coordinates for describing our system of two op-
tically trapped spheres.

where each trap is sampled at 10 kHz. Each trap is loaded with a single polystyrene

sphere with a diameter of 1.0±0.01 µm as illustrated in Figure 5.6. The concentration

of spheres in the sample is 0.1 ppm, which is low enough such that no additional spheres

are present within at least 20 µm of the traps (visually determined from the field of

view of the CCD camera) over the duration in which QPD measurements are taken.

The trajectories of both spheres are measured by reading the QPD synchronously with

the switching of the AOD. Data is collected at a sampling frequency of 10 kHz over a

total duration of 60 seconds (10 sets of 6-second measurements). This is repeated for 5

different inter-particle separations, d.

Correlation analysis is performed by numerically calculating the cross correlation

between the trajectories of the particles from both traps and the resulting curve is fit

with the cross correlation functions (Equations 5.15 and 5.16b).

In the longitudinal direction along the particle separation,

〈Ry1 (t)Ry2 (0)〉 =
kBT

2κy

(
e−t(1+εy)/τy − e−t(1−εy)/τy

)
(5.15)

and in the transverse directions,

〈Rx1 (t)Rx2 (0)〉 =
kBT

2κx

(
e−t(1+εx)/τx − e−t(1−εx)/τx

)
(5.16a)

〈Rz1 (t)Rz2 (0)〉 =
kBT

2κz

(
e−t(1+εz)/τz − e−t(1−εz)/τz

)
(5.16b)
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Figure 5.7: Cross correlation functions in the longitudinal y direction of two
optically trapped 1 µm polystyrene spheres at various inter-particle separations d
in the y-direction.

where εy = 3a/2d and εx = εz = 3a/4d. Here τα = γ0/κα is the fundamental

relaxation time and κα is the trap stiffness for the respective direction (α = x, y, z).

The results for cross correlation in the y direction (longitudinal), x and z directions

(transverse) with fitted curves are presented in Figure 5.7 and 5.8. It should be noted

that the vertical axis of the experimental data for the z direction is uncalibrated. From

the figures we see that the longitudinal cross correlation of the measured trajectories fits

well with theory. On the other hand, the transverse cross correlation of the experimental

data shows significant reductions in signal to noise ratio which is more pronounced

in cases where the inter particle separations are large. This is because hydrodynamic

interaction scales inversely with inter-particle separations, and is weaker in the transverse

directions compared to the longitudinal direction. Similar behaviours have also been

observed in Ruh et al.’s work [24].

From the fits we extracted the fundamental relaxation time in all 3 axes, τx, τy

and τz. From these we calculated the trap stiffness for each direction and found them to

be κx = 40± 2 pN/µm, κy = 78± 5 pN/µm and κz = 21± 1 pN/µm. We observe that

τz is significantly larger than τx and τy due to the weaker optical confinement along the
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(a) Cross correlation function in the transverse x -direction

(b) Cross correlation function in the transverse z -direction

Figure 5.8: Cross correlation functions in the transverse x and z directions of two
optically trapped 1 µm polystyrene spheres at various inter-particle separations d
in the y-direction.
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optical axis as a result of a weaker axial trap stiffness compared to the transverse trap

stiffness in the optical trap.

We also plot the depth of the minimum of the cross correlation curves against

a/d. A linear relationship is found as predicted by Equation 5.14b. These results are

in good agreement with literature [1], showing the applicability of our new technique of

measurements.

Figure 5.9: Depth of the minimum in the cross correlation functions versus ratio
of radius a and inter particle separation d. The fit shows a linear relation as
predicted by Equation 5.14b.

5.6 Tracking of multiple gold nanoparticles by time-shared

traps

We repeated the experiment in Section 5.5 on 100 nm spherical gold nano particles. The

same procedure as outlined in Section 5.5 is used. However, the measurement results we

obtained showed no correlation, as shown in Figure 5.10.
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Figure 5.10: Attempt at measuring cross correlations between two optically
trapped 100 nm spherical gold nanoparticles.

We believe this is due to the limitations in our instruments, as explained in Section

5.3 above. From Equation 5.8 we can calculate the sampling frequency of our optical

tweezers in order to detect hydrodynamic effects between two 100 nm nanoparticles

separated by 1 µm:
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∆t <

(
3

4e

a

d

)
τ

<

(
3

4e

a

d

)
6πηa

κ

<∼ 1.5µs

This means in order to be able to measure the hydrodynamic effects between

these nanoparticles, the time-sharing and sampling of the optical traps will have to

be less than 1.5 µs which is beyond the capabilities of our instruments. This is an

order of magnitude faster than the requirements for measuring 1 µm spheres because

the smaller nanoparticles have a smaller hydrodynamic drag γ0 = 6πηa and hence a

shorter relaxation time τ . Furthermore, for a fixed inter-particle separation a smaller

particle brings down the ratio between the mobility of the particles and the strength

of hydrodynamic coupling between them, which is directly proportional to the ratio

between particle size and separation, εy = 3a/2d as mentioned in Section 5.4. We are

also unable to bring the two nanoparticles any closer than 0.8 µm due to the diffraction

limited spot size of the trap focus, which is calculated to be 0.8 µm. Moreover, we also

observed Kremer’s hopping effects of the nanoparticles between the two optical traps at

separations up to 1.2 µm, which is beyond the scope of this work.

5.7 Applicability of time-shared optical tweezers in trap-

ping and tracking two interacting InP nanowires

From our measurements of single trapped InP nanowires we have discovered anomalous

trapping dynamics as presented in Chapter 3. In particular, we’ve observed resonant

behaviours in the form of resonance peaks using interferometric tracking methods with

photodiode detectors (Section 3.6); it should be noted that these peaks occur at hundreds

to two thousand Hz, which is beyond the temporal resolution of standard video tracking

methods. These effects could contribute significantly to the dynamics of two interacting

nanowires, and we believe fast particle tracking using interferometric techniques with

QPD’s is the most feasible way to probe these behaviours.

In Section 5.3 we explored the limits of tracking by time-shared optical tweezers.

We now show that the the system of two interacting InP nanowires discussed in Chapter
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4 Section 4.5 is within the constraints of this measurement technique. Applying Equation

5.4 to our system of two nanowires we have

γ⊥
2κdt

� 1 (5.17a)

∴ dt� 1

2

γ⊥
κ

(5.17b)

where we have taken N = 2 for two time-shared traps, dt is the switching interval

of the AOD’s, κ is the trap stiffness and γ⊥ is the drag coefficient of the nanowires given

by [25, 26]

γ⊥ =
4πη0L

ln (L/2a) + δ⊥
(5.18)

The inequality 5.17b also signifies that the duration when the trap is absent at a

trapping site should be less than half of the fundamental relaxation time of the nanowire

within the trap.

Based on our InP nanowire system in Chapter 4.5, with typical nanowire radii of

a = 100 nm, length L = 5 µm, and trap stiffness κ = 50 pN/µm, we require

dt� 1

2

γ⊥
κ

= 155µs (5.19)

Since our setup can achieve dt = 50µs, we believe that time-shared optical tweezers

is a possible way to study the system of two interacting InP nanowires discussed in

Chapter 4. Furthermore, if we look at the diffusion of nanowires in the absence of the

trap, we find that the mean squared displacement of these nanowires are
〈
∆x2

〉
diffusion

≈
50 nm2, which is well within the Brownian fluctuations of these nanowires within the

optical trap.

5.8 Conclusion

In order to experimentally realise the system that we simulated in the last chapter,

we require a method of optically trapping and tracking multiple particles. Optical
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tweezers is a viable option and in this chapter we explored various multi-particle trapping

and tracking methods using optical tweezers currently available in the literature. We

discounted the use of holographic optical tweezers due to its general incompatibility with

interferometric particle tracking methods, which is able to achieve much higher sampling

rates than video tracking methods commonly used with holographic tweezers. This is

because video tracking has a limited sampling rate which is not fast enough to resolve

the fast dynamics of interacting particles.

We then demonstrate a novel particle trapping and tracking method using time-

shared optical tweezers and explored the limitations of this approach. As a test sys-

tem we successfully measure the hydrodynamic coupling between two 1 µm polystyrene

spheres. However, measurements performed on 100 nm spherical gold nanoparticles re-

main unsuccessful due to the limitations in the switching and sampling frequency of our

apparatus. Finally, we show through calculations that the required conditions to study

the two parallel InP nanowires system that we have simulated in Chapter 4 are within

the limits of our time-shared optical tweezers.
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Chapter 6

Conclusion

In this final chapter I will summarise the important findings presented throughout this

thesis. Possible future work that leads on from this thesis will be discussed briefly as

well.

To summarise, we have examined some advanced trapping dynamics of single and

multiple high refractive index, high aspect ratio nanowires. In Chapter 3, the higher

order dynamics on an optically trapped InP nanowire due to coupling between rotational

and translational degrees of freedom is examined. We found that the influence of non-

conservative coupling between translation and rotational modes in optically trapped

nanowires leads to a distinct resonance peak in the power spectrum and an accompanying

winding of the particle trajectories, which suggests that the trapped nanowires undergo

cyclic motion. These complex dynamics are indeed richer than initially anticipated, and

leaves more to be understood than the current standard picture of an optically trapped

sphere.

In Chapter 4 we studied the coupling of the trapping laser into the waveguiding

modes of the trapped nanowire. We showed that the field intensity is weak in the

core of the nanowires and that significant evanescent fields extend outside the nanowire

core. In this chapter we also looked into the coupling interactions between multiple

trapped nanowires. We found that the beat length is comparable to the length of

a typical nanowire waveguide, which implies that the full transfer of power from one

nanowire waveguide to the other is possible. We also discovered that the coupling

forces due to optical coupling of the guided modes are comparable in magnitude to the

gradient forces of the optical tweezers that hold the nanowires in place. These findings,
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combined with the results from Chapter 3 suggest the occurrence of complex dynamics

when multiple nanowires interact. Although we have only examined one particular

type of interaction i.e. optical coupling, we acknowledge the existence of other forms of

coupling such as hydrodynamic coupling [1] and Casimir forces [2], which opens up many

questions for future research. These results also have profound implications on nanowire

applications involving interaction forces, such as the self-assembly of nano-structures or

the development of nano-sensors.

Finally in Chapter 5, in order to experimentally probe the coupling interactions

between multiple nanowires we demonstrated a novel particle trapping and tracking

method using time-shared optical tweezers and explored the limitations of this approach.

We show through calculations that the required conditions to study the two parallel

InP nanowires system that we have simulated in Chapter 4 are within the limits of

our time-shared optical tweezers. As a test to our system we successfully measured

the hydrodynamic coupling between two 1 µm polystyrene spheres. Future work include

improving this measurement technique and using it to conduct measurements on multiple

trapped nanowires to quantify interacting forces between coupled nanowires.
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Appendix A

Derivation of force in terms of

Maxwell’s Stress Tensor and

Poynting Vector

Here I will show the derivation of force expressed in terms of the Maxwell’s Stress

Tensor and Poynting Vector (Equation 4.24) from Maxwell’s Equations (Equations 4.22

and 4.23b) [1].

We start the derivation by the calculation of the total force due to electromagnetic

fields on the charges and currents within some volume V. From the Lorentz force law,

we have

F =

∫
V
ρ (E + v ×B) d3r (A.1)

=

∫
V

(ρE + J×B) d3r (A.2)

We can think of the integrand as a force density, or force per unit volume f :

f ≡ ρE + J×B (A.3)

This can be expressed entirely in terms of fields by using Maxwell’s equations:
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Vector

ρ = ε0∇ ·E (A.4)

J =
1

µ0
∇×B− ε0

∂E

∂t
(A.5)

Hence we get

f = (ε0∇ ·E) E +

[
1

µ0
∇×B− ε0

∂E

∂t

]
×B (A.6)

Now, from the product rule

∂

∂t
(E×B) =

∂E

∂t
×B + E× ∂B

∂t
(A.7)

and from Faraday’s law

∂B

∂t
= −∇×E (A.8)

Combining Equation A.7 and Equation A.8 we get

∂E

∂t
×B =

∂

∂t
(E×B)−E× ∂B

∂t
(A.9)

=
∂

∂t
(E×B) + E× (∇×E) (A.10)

We can insert this into Equation A.6. We also have to perform a mathematical

trick of adding on a term 1
µ0

(∇ ·B) B. This is always zero because ∇ ·B = 0, but it

gives the equation a symmetry that will be useful. We then obtain the force density:

f = ε0 (∇ ·E) E +
1

µ0
(∇ ·B) B +

1

µ0
(∇×B)×B− ε0

∂E

∂t
×B (A.11)

= ε0 (∇ ·E) E +
1

µ0
(∇ ·B) B +

1

µ0
(∇×B)×B− ε0

∂

∂t
(E×B)− ε0E× (∇×E)

(A.12)
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Now, we use another identity from vector calculus which says

∇ (A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇) B + (B · ∇) A (A.13)

If A = B = E, we get

∇
(
E2
)

= 2E× (∇×E) + 2 (E · ∇) E (A.14)

thus

E× (∇×E) =
1

2
∇
(
E2
)
− (E · ∇) E (A.15)

B× (∇×B) =
1

2
∇
(
B2
)
− (B · ∇) B (A.16)

Substituting these into Equation A.12 we obtain

f = ε0 (∇ ·E) E +
1

µ0
(∇ ·B) B− ε0

∂

∂t
(E×B)

− 1

µ0
B× (∇×B)− ε0E× (∇×E) (A.17)

= ε0 (∇ ·E) E +
1

µ0
(∇ ·B) B− ε0

∂

∂t
(E×B)

− 1

2
∇
(
ε0E

2 +
1

µ0
B2

)
+ ε0 (E · ∇) E +

1

µ0
(B · ∇) B (A.18)

= ε0 [(∇ ·E) E + (E · ∇) E] +
1

µ0
[(∇ ·B) B + (B · ∇) B]

− 1

2
∇
(
ε0E

2 +
1

µ0
B2

)
− ε0

∂

∂t
(E×B) (A.19)
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Here we introduce the Maxwell stress tensor
←→
T which is a 3× 3 matrix with

components defined by

Tij ≡ ε0
(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
(A.20)

Note that the tensor is symmetric: Tij = Tji. If we define the scalar product of

the tensor with an ordinary vector to be another vector:

[
a ·
←→
T
]
j

=
∑
i

aiTij (A.21)

where the subscript j indicates the jth component of the resulting vector, then

the divergence is

[
∇ ·
←→
T
]
j

=
∑
i

∂iTij (A.22)

Substituting in Equation A.20, we get

[
∇ ·
←→
T
]
j

= ε0
∑
i

(
(∂iEi)Ej + Ei (∂iEj)−

1

2
δij∂iE

2

)
+

1

µ0

∑
i

(
(∂iBi)Bj +Bi (∂iBj)−

1

2
δij∂iB

2

)
(A.23)

= ε0

(
(∇ ·E)Ej + (E · ∇)Ej −

1

2
∂jE

2

)
+

1

µ0

(
(∇ ·B)Bj + (B · ∇)Bj −

1

2
∂jB

2

)
(A.24)

Comparing this with Equation A.19, we see that we can write f in terms of
←→
T

and the Poynting vector as

f = ∇ ·
←→
T − ε0µ0

∂S

∂t
(A.25)
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The total force on the volume then becomes

F =

∫
V

fd3r (27) (A.26)

=

∫
V

(
∇ ·
←→
T − ε0µ0

∂S

∂t

)
d3r (28) (A.27)

From the Equation A.22 for the divergence, we can see that the vector result-

ing from the divergence has as its components the divergences of each column of
←→
T .

Therefore we can apply the divergence theorem to the first term in the integrand to get

F =

∫
S

←→
T · da− ε0µ0

∂

∂t

∫
V

Sd3r (A.28)

where S is any surface that encloses only the charges and currents within V.
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