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Abstract

Species distribution models are useful tools for relating the locations of species in

a given region to environmental factors. This thesis will focus on the modelling

of presence-only data, in which information is available about where species are

reported present but not where species are reported absent. The aims of this thesis

are to use theoretical tools from statistics to improve modern presence-only methods

of analysis.

This thesis establishes that MAXENT, a popular method in ecology based on

maximum entropy, is equivalent to Poisson point process modelling, a widely-used

statistical method for analysing spatial point patterns only recently applied to

species distribution modelling. This equivalence result significantly unifies the presence-

only analysis literature and has important ramifications for MAXENT and point

process models. Despite its good predictive performance, MAXENT has shortcom-

ings in interpretation and implementation that can now be overcome. In particular,

MAXENT users can inherit from point process models some well-developed tools

for addressing model adequacy and the ability to model point interactions.

MAXENT’s use of a LASSO penalty is known to improve predictive performance.

However, the default penalty chosen by MAXENT software is ad hoc. Another focus

of this thesis is implementing LASSO for point process models, which has rarely been

done previously.

This thesis provides an asymptotic result for applying a LASSO penalty to point

process models such that consistent estimates of model parameters and predictions

can be achieved. A new consistent criterion for choosing the LASSO penalty (“MSI”)

is consequently developed as an alternative to the default MAXENT penalty which
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has better properties. MSI is found to be competitive with traditional methods of

choosing the LASSO penalty and generally superior to the MAXENT penalty in a

broad comparison using real and simulated species data.

This extension of point process models regularised with a LASSO penalty (“PPM-

LASSO”) therefore represents a significant advance of current species distribution

modelling methods by combining the statistical foundations of point process models

and the strong predictive performance of MAXENT via LASSO penalisation. I have

developed the freely-available ppmlasso package for R so that PPM-LASSO models

may now be fitted by users.
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Chapter 1

Introduction

Species distribution modelling (SDM), where the goal is to relate the distribution of

a species’ habitat to the environment (Figure 1.1), is a high-impact topic in ecology.

ISI’s Essential Science Indicators for July 2012 identifies SDM as one of the top five

ranked research fronts in ecology and the environmental sciences. Indeed, leading

articles published in 2006 (Phillips et al., 2006; Elith et al., 2006) have been cited

over 2,000 times.

One reason for such high interest is that SDM aims to answer important bio-

logical and environmental questions. Species distribution models (SDMs) are useful

in explaining what environmental factors influence the distribution of a particular

species and hence can inform conservation efforts and studies of impacts of activities

on habitats (Franklin, 2009). SDMs also facilitate prediction of species distributions

or habitat suitability over an entire region (Elith & Leathwick, 2009), which can be

useful for discovering unsampled areas that may be favourable for a species or pre-

dicting the advance of invasive species. Finally, SDM can be used for projection as

it aims to address topical questions such as the potential effects of climate change

on species distributions (Thullier et al., 2008), although using SDM for this purpose

has its limitations (Franklin, 2009).

Rapid progress in this field has been facilitated by recent significant technologi-

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Species distribution modelling concept. SDMs relate the presence of

a species (Corymbia eximia, left) to the environment (annual rainfall, middle) to

predict the distribution of the species (right).

cal advances in remote sensing, GIS (O’Sullivan & Unwin, 2010), statistical software

and computational power, enabling models to be built at increasingly fine resolutions

and increasingly large spatial scales. Coinciding with this technological explosion

has been the increasing availability of species data, in the form of digital records of

species locations. The species data used for this thesis are 85,877 records of plant

species locations in the Sydney-Newcastle region of New South Wales, Australia.

These actually form a subset of over 1,400,000 records from the Office of Environ-

ment and Heritage (NSW Office of Environment and Heritage, 2012) across the

same region. Such massive data sets are likewise available elsewhere in the world

(Kadmon et al., 2004; Elith et al., 2006; Franklin, 2009), so it is now relatively easy

to find data for a wide range of species and regions.

Ideally, a SDM could be constructed using systematically collected presence-

absence data so that logistic regression (McCullagh & Nelder, 1989) and its exten-

sions (Hastie & Tibshirani, 1990; Schapire, 2003) may be used. But often, the best
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available data are a list of locations where a species has been observed, with no

corresponding information about where a species is absent. This type of data is

known as “presence-only” data (Pearce & Boyce, 2006) and can be found in muse-

ums, atlases, and herbaria. SDM methods for such presence-only data will be the

focus of this thesis.

An example used throughout the thesis is the location of 302 observed presences

of the eucalypt Corymbia eximia in the Blue Mountains region near Sydney (Fig-

ure 1.1). In its most basic form, a SDM relates the presence locations (left panel) to

the environment (e.g. annual rainfall, middle panel) in order to make a map of the

predicted species distribution throughout a study region (right panel). Although

this appears to be a simple goal, there are a number of questions about how the

SDM should be constructed. Which SDM method should be used, and what are the

ramifications of this choice? Which variables should be included, and how should

they be chosen?

The question of which SDM method should be chosen is not straightforward. The

increased access to both environmental and species data as well as the widespread

utility of SDM has led to the development of a large number of presence-only SDM

methods, as reviewed in Section 2.1. These methods differ in response, the type of

variables included, incorporation of points representing absences or the background

of the study region, and methods of fitting. As discussed in Section 2.2, it is unclear

for most methods how the predictions should be interpreted, how points representing

absences or the background should be chosen, and how to address data challenges

such as spatial autocorrelation and observer bias inherent in presence-only data. A

particular focus of the thesis is point process models (PPMs, Warton & Shepherd,

2010), a method of analysing point pattern data capable of addressing these issues,

examined in detail in Chapter 3.

The question of which variables should be included in an SDM (“variable selec-

tion”) is likewise complex. A number of strategies have been developed (Chapter 4)
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including implementation of a LASSO penalty (Tibshirani, 1996), which is a key fo-

cus of the thesis. Based on the choice of SDM method and how to perform variable

selection, the model for a species can vary significantly in its complexity, form, and

interpretation of its predicted distribution.

There is a clear need for a synthesis of SDM methods informed by their capacity

to address the challenges described above. Some recent papers (Elith & Leathwick,

2009; Aarts et al., 2012) have called for greater unification and synthesis of the

SDM literature. To that end, Warton & Shepherd (2010) linked Poisson point

process models with pseudo-absence regression, one of the most popular methods in

practice (also see Baddeley et al. (2010)). Aarts et al. (2012) linked different classes

of SDM through the likelihood of an inhomogeneous Poisson point process. This

thesis provides further synthesis of the SDM literature.

The aim of this thesis is to improve modern presence-only methods of analy-

sis by using theoretical tools from statistics. The principal outcome of this aim

is an equivalence result between Poisson point process models and MAXENT, a

popular presence-only SDM method. Leveraging off of this equivalence allows both

Poisson point process models and MAXENT to be improved in practice. A partic-

ular extension is PPM-LASSO, an approach which takes cues from MAXENT on

how to effectively apply a LASSO penalty, and extends them to a point process

model framework. This extension addresses all of the difficulties that currently face

presence-only methods and thereby yields advantages in interpretation, predictive

performance and model fitting.

To that end, I prove the equivalence of Poisson point process models with MAX-

ENT in Chapter 5. This work has been accepted for publication in Biometrics

(Renner & Warton, 2013). In Chapter 6 I establish a novel and important asymp-

totic result for Poisson point process models that informs the choice of the method

for determining the LASSO penalty. I then develop a novel criterion using this re-

sult. In Chapter 7, I compare the performance of both existing methods and this
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new criterion. Chapter 8 details software I developed for fitting point process models

with a LASSO penalty that will be included in the forthcoming ppmlasso package

in R (R Development Core Team, 2010).
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Chapter 2

Current Presence-Only Species

Distribution Modelling Methods

As mentioned in Chapter 1, there has been a recent proliferation of SDM methods.

In this Chapter I will review the most common presence-only SDM methods in use

today (Section 2.1) and discuss some of the current challenges in their interpretation

and implementation (Section 2.2).

2.1 Review of Presence-Only SDM Methods

This thesis focusses on presence-only SDM methods. Let yP = {y1, . . . , ym} be the

vector of m presence-only locations for a particular species over some region A and

x(y)′ = {1, x1(y), . . . , xp(y)}′ be the vector containing an intercept term and the

values of p environmental variables corresponding to location y ∈ A. The goal of

SDM is to link the location of species presences yP to the environment x(y), using

one of a few methods.

9



10 CHAPTER 2. CURRENT PRESENCE-ONLY SDM METHODS

2.1.1 Methods Which Only Use Presence-Only Locations

Some of the earliest methods used for modelling presence-only data were BIOCLIM

(Busby, 1991), HABITAT (Walker & Cocks, 1991), and DOMAIN (Carpenter et al.,

1993). These “envelope” (Elith & Leathwick, 2007) or “profile” (Pearce & Boyce,

2006) methods exclusively use the environmental data XP at presence-only locations

yP to determine the environmental regions (or “envelopes”) amenable to the species,

where XP is an m × (p + 1) matrix whose ith row is x(yi) for yi ∈ yP . BIOCLIM

identifies the biotic range of presences for each environmental variable and proposes a

bioclimate as a union of these ranges. To incorporate the effect of interactions among

variables, HABITAT restricts the bioclimate to a convex hull of XP . Because both

BIOCLIM and HABITAT exclude sites with environmental conditions very near but

just outside the extremes measured at presence locations, Carpenter et al. (1993)

proposed DOMAIN, which assigns a similarity score to sites y ∈ A based on the

distance between their environmental conditions x(y) and those of known presence

locations XP .

These methods do not output probabilities of species occurrence but rather de-

grees of classification within a climatic envelope. While some argue that they can

be appropriate when data are scarce (Pearce & Boyce, 2006), profile methods have

fallen in popularity due to weak predictive performance in comparison with newer

methods (Elith et al., 2006).

2.1.2 Methods Which Use Background Points

Most modern SDM methods contrast presence-only locations yP with points chosen

to represent the background of the study region (“pseudo-absences” or “background

points”) in order to model relative likelihood of species presence. Let y0 be a

vector of n − m background points and let z = {z1, . . . , zn}, where zi = I(i ∈

{1, . . . ,m}) and I(·) is the indicator function. zi therefore indicates whether location
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i is a presence-location or a background point. Let X = (X′P ,X
′
0)′, where X0 is an

(n−m)× (p+ 1) matrix whose ith row is x(yi) for yi ∈ y0.

Ecological niche factor analysis (ENFA, Hirzel et al., 2002) uses an approach

similar to principal components analysis, first determining the “marginality factor”

which transverses the centroid of environmental space for presence locations (xP ,

say) and for background sites (x0, say), and sequentially adding orthogonal “spe-

cialisation factors” to maximise the ratio of residual variance between presence sites

and background sites (Engler et al., 2004). Similar to the profile techniques above,

ENFA does not output a probability but rather a habitat suitability index of sites

based on their similarity to known presence sites. It is susceptible to optimistic

prediction of species distributions (Pearce & Boyce, 2006).

Pseudo-absence regression approaches are fitted by regressing z against X. Some

common implementations of the pseudo-absence approach are:

• Logistic regression, a type of generalised linear model (GLM, McCullagh &

Nelder, 1989) which uses a binomial response with logistic link.

• Generalised additive models (GAMs, Hastie & Tibshirani, 1990), which allow

for non-linear effects of environmental variables through the implementation

of nonparametric smoothers. The added flexibility of GAMs is both attrac-

tive and considered ecologically realistic (Elith & Leathwick, 2009), although

they do not model interactions among environmental variables unless explicitly

included in addition to smoothers.

• Multivariate adaptive regression splines (MARS, Elith & Leathwick, 2007),

which fit piecewise linear splines to data using least squares and hence also can

model complex relationships. MARS are faster to compute than GAMs (Elith

& Leathwick, 2007; Franklin, 2009), and have been extended to modelling com-

munities of species which has resulted in good predictive performance (Elith

et al., 2006).
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Some other methods which use pseudo-absences have emerged from the machine

learning and data-mining communities (Elith & Leathwick, 2009):

• Decision trees, which seek to divide the environmental space into distinct in-

tervals over which species response is roughly homogeneous (Franklin, 2009).

• Boosted regression trees (BRTs, Elith et al., 2008) and random forests (Breiman,

2001), which generate an “ensemble” of trees and average the results.

• Genetic algorithms for rule-set production (GARP, Stockwell, 1999), which

stochastically generate presence and background locations that are contrasted

to develop rules that evolve over the span of many iterations. Results are

typically averaged over many such rule sets.

Despite the apparent difference in approach, many machine learning methods can be

posed in terms of classical regression (Hastie et al., 2009). For example, BRTs can

be considered additive regression models with each term corresponding to a single

tree (Elith et al., 2008). Ensemble approaches such as BRTs, random forests, and

GARP generally have advantages in predictive performance and stability over single

implementations (Franklin, 2009).

All of these pseudo-absence regression approaches suffer from problems in model

specification, interpretation and implementation (Warton & Shepherd, 2010) as a

consequence of the reliance on pseudo-absences, detailed in Section 2.2.

A quite different approach to specifying a presence-only SDM is to use a Poisson

PPM (Warton & Shepherd, 2010; Chakraborty et al., 2011; Aarts et al., 2012),

which relates the number and location of presences yP to x(y), y ∈ A. A key

distinction of Poisson PPMs is that rather than merely modelling the probability of

species occurrence, they directly model the intensity of species presence at sites, a

formulation which leads to a number of attractive features. They address a number

of key challenges in presence-only data analysis discussed in Section 2.2. While the
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model is posed in a different way to pseudo-absence approaches, it can be related

to them through reexpression as a regression of z on X with weighted observations,

as in Chapter 3. Poisson PPMs are a major focus of this thesis and are discussed in

detail in Chapter 3.

A related and popular method is MAXENT (Phillips et al., 2006), which is the

second important method considered in this thesis (Chapter 5). Rather than using

the presence-only locations yP directly, MAXENT divides the study region into n

grid cells and estimates the probability πi that if there is a single presence, it is

located in the ith grid cell. It calculates the probability by maximising entropy

subject to
∑n

i=1 πi = 1 and an additional constraint on the set of environmental

variables. The idea to split the study region into square grid cells was first imple-

mented by Agterberg (1974) in a logistic regression model of mineral deposits due to

the suggestion of Tukey (1972), and eventually was applied in GIS (Bonham-Carter,

1994). Full details of the MAXENT procedure are provided in Chapter 5, where I

establish the equivalence of MAXENT and Poisson regression, which enables a link

to Poisson PPMs. MAXENT has been shown to have good predictive performance

(Elith et al., 2006), which may explain its popularity. However, it has a number

of shortcomings in interpretation and implementation, discussed in Section 2.2 and

Chapter 5.

2.2 Current Challenges for Presence-Only Anal-

ysis

There are a number of challenges in implementing and interpreting presence-only

SDM methods.
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2.2.1 Problems of Interpretation and Implementation

A key question for SDM methods that contrast presence locations with pseudo-

absences or background points (Table 2.1) is how many of these generated absences

should be chosen and where they should be. Some papers call for a fixed number

(Chefaoui & Lobo, 2008; Hernandez et al., 2008) or ratio (Hengl et al., 2010; Lobo

et al., 2010) of pseudo-absences. Other have raised concern about the perceived

dependence between pseudo-absences and known presence locations (Phillips et al.,

2009; Hengl et al., 2010; Lobo et al., 2010). The choice of pseudo-absences is also

important because it has an impact on model predictions. The location of pseudo-

absences can lead to categorically different predicted species distributions (Lobo

et al., 2010), and doubling the number of pseudo-absences will cause the scale of

pseudo-probabilities to be roughly halved. Therefore, models that predict pseudo-

probability can be said to be “scale-dependent”.

Related to this question is the choice of spatial resolution used for analysis. For

example, MAXENT splits up the study region into square grid cells, and hence

the question becomes what the size of the grid cells should be. As
∑n

i=1 πi = 1, the

scale of these probabilities depends on the choice of grid cell size, and hence they are

also scale-dependent. In addition to the difficulty in comparing models fitted with

different numbers of pseudo-absences or grid cells, scale-dependent methods have

other limitations – they can not be used to model species abundance as currently

implemented, and as demonstrated in Chapter 5, they can not be used to determine

the appropriate spatial resolution to be used for analysis.

Warton & Shepherd (2010) clarified the role of pseudo-absences for Poisson PPMs

as quadrature points for approximating the integral in the likelihood function (Equa-

tion 3.7 in Chapter 3) and hence they should be chosen in such a way to provide a

reasonable approximation, e.g. along a regular grid at increasingly fine spatial reso-

lutions until the likelihood converges. This strategy permits the choice of the number

and location of pseudo-absences as well as the spatial resolution used for analysis
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Table 2.1: Properties and challenges of current SDM methods. Methods for which

the scale of model predictions depends on choice of spatial resolution are scale de-

pendent, and hence can not be used to model species abundance. Strictly speaking,

many of these methods are algorithms rather than models, but it is commonplace

in the SDM literature to refer to such methods as models.

Pseudo- Scale

SDM Method Absences Model Prediction Dependence

BIOCLIM No Envelope N/A

HABITAT No Envelope N/A

DOMAIN No Similarity Score N/A

ENFA Yes Suitability Index No

Pseudo-Absence Regression Yes Pseudo-Probability Yes

GAM (Binomial) Yes Pseudo-Probability Yes

MARS (Binomial) Yes Pseudo-Probability Yes

Poisson PPM Yes Intensity No

MAXENT Yes Probability Yes

BRT (Binomial) Yes Pseudo-Probability Yes

GARP Yes Pseudo-Probability Yes

to be entirely determined by the data, which is not possible with scale-dependent

methods.

Another notable challenge faced by current SDM methods is the interpretation

of model predictions. Because there is no reliable absence data, most methods

do not output probabilities of species presence or occupancy but rather relative

likelihoods of habitat suitability (Pearce & Boyce, 2006; Elith & Leathwick, 2007;

Franklin, 2009; Aarts et al., 2012). Methods that do attempt to interpret output

as probabilities still suffer a lack of clarity due to scale dependence. While a nat-

ural interpretation of probability would be the likelihood of species presence, both

pseudo-probability and MAXENT’s πi are in essence also merely suitability indices.
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2.2.2 Challenges Posed by the Data

Other challenges in presence-only analysis arise from the nature of the data. One

such issue for presence-only data is observer bias. As presence-only data is by nature

opportunistic, it reflects not only the distribution of the species in question but also

the distribution of the observers (Phillips et al., 2009). Subsequently, there is usually

a greater concentration of observations in areas that are easier to access (e.g. areas

that are in the vicinity of urban areas, roads and national parks). This bias can

degrade the predictive ability of models that do not account for it, particularly

when the environmental variables considered in the model differ between areas of

easy access and remote areas (Kadmon et al., 2004). Dorazio (2012) showed that

coefficient estimates of a SDM are consistent as long as species detection probability

is not correlated with the environmental variables used, although this can be difficult

to establish.

Spatial autocorrelation, in which there is some dependence among the presence-

only locations yP , can likewise have an impact on SDM, but it is often ignored

(Franklin, 2009). Such dependence may arise in presence-only data because obser-

vations may come from the same observer sighting a species multiple times in a

small area and knowledge about where a species is known to be found may influence

the sampling effort (Chakraborty et al., 2010). Spatial autocorrelation is an impor-

tant issue because most SDM methods optimise a function of the joint density of

presence-only locations and assume that this joint density can be expressed as the

product of marginal densities at each point.

In the thesis, I address the potential for observer bias by introducing variables

related to site accessibility, and I address spatial autocorrelation by considering

models that account for point interactions, as in Chapter 3.



Chapter 3

Point Process Models

In Chapter 2, I reviewed a number of current SDM methods and outlined a number of

obstacles in their interpretation and implementation. Poisson PPMs have numerous

benefits that address these obstacles and therefore form a major focus of this thesis.

In Sections 3.1 and 3.2 I describe Poisson PPMs and related models that account

for interpoint interaction. In Section 3.3, I demonstrate diagnostic tools that may

be used to check assumptions of PPMs.

3.1 Poisson Point Process Models

As the responses of interest in SDM are the number and location of species presences

in some physical space, it is natural to view the distribution as a spatial point pattern

(Cressie, 1993; Diggle, 2003). Models of spatial point patterns look to describe the

entire spatial configuration of these points, such that it is possible to estimate µ, the

intensity or limiting expected number of points per unit area throughout the region

of interest A:

µ(y) = lim
|dy|→0

{
E[M(dy)]

|dy|

}
, (3.1)

where |dy| is the area of region dy, an arbitrarily small region in the neighbourhood

of y which contains M(dy) presences. These models can have a number of different

17
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forms given various assumptions about dependence among points and the environ-

ment itself (Cressie, 1993; Diggle, 2003; Baddeley & Turner, 2005; Chakraborty

et al., 2011). Some point processes do not have an intensity function, but such

processes are not considered in this thesis.

The simplest representation of a spatial point pattern is a homogeneous Poisson

point process, which assumes that (1) the number of presences m in the whole region

A is the observed realisation of a Poisson random variable M and (2) that these

presences yP are uniformly and independently distributed over A (Cressie, 1993;

Diggle, 2003). This means that the intensity function µ is constant throughout

A. Such processes are also said to be stationary and exhibit “complete spatial

randomness”.

Because the aim of SDM is to relate the location of species presences to the

environment, it is natural to extend the framework of the homogeneous Poisson point

process so that the intensity µ varies spatially according to the environment (and

hence the process is non-stationary). Consequently, in an inhomogeneous Poisson

point process, intensity is indexed by location as in (3.1) and presence locations yP

are assumed to be distributed independently conditional on the environment.

The conditions of both a homogeneous and an inhomogeneous Poisson point

process can then be given as in Table 3.1. More specifically, the first condition for

an inhomogeneous Poisson point process describes the probability structure for the

number of points m:

P (M = m) =
e−µA(µA)m

m!
, m = 0, 1, 2, . . . , (3.2)

Table 3.1: Assumptions of homogeneous and inhomogeneous Poisson point pro-

cesses.

Homogeneous Inhomogeneous

Number of points M Poisson(µ|A|) Poisson(µA), where µA =
∫
A µ(y)dy

Distribution of points Independent Uniform on A Independent with density ∝ µ(y)
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where µA is the expected number of presence points in A. The second condition for

an inhomogeneous Poisson point process implies that given a point, the density of

its location y is:

f(y) =
µ(y)

µA
, y ∈ A.

Hence, conditional on M = m, the joint density of the m points y1, . . . , ym is:

f(y1, . . . , ym|M = m) =

∏m
i=1 µ(yi)

(µA)m
. (3.3)

Estimating the intensity µ(y) in a statistical model allows an analyst to describe

the relationship with the environment. In a Poisson PPM, intensity is often modelled

as a log-linear function of environmental covariates:

lnµ(yi) = x′iβ, (3.4)

where β = {β1, . . . , βp} is a vector that contains the parameters corresponding to

the p environmental covariates xi. An advantage of Poisson PPMs is that because

the intensity µ is modelled on a per-area basis, it is invariant to the choice of spatial

resolution. This scale-invariance enables a method for choosing the appropriate

spatial resolution for analysis illustrated in Chapter 5 that is unavailable to scale-

dependent methods of Chapter 2.

The form of the likelihood equation can be derived from (3.2) and (3.3):

L(β;yP ) = m!f(y1, . . . , ym|M = m)P (M = m) (3.5)

= m!

∏m
i=1 µ(yi)

(µA)m
e−µA(µA)m

m!

= e−µA
m∏
i=1

µ(yi). (3.6)

The m! factor in (3.5) is included because I consider the m points of yP to be

unordered and thus there are m! arrangements of the m points. An expression of

the form of (3.5) is sometimes called a Janossy density (Daley & Vere-Jones, 1988).

The log-likelihood is found by taking the logarithm of (3.6):
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l(β;yP ) =
m∑
i=1

lnµ(yi)− µA. (3.7)

Poisson PPMs are usually fitted by maximising this log-likelihood function (Cressie,

1993).

µA is defined as an integral that is usually intractable and therefore must be

approximated. For presence-absence data, (3.7) can be approximated by the like-

lihood of a logistic regression model applied to grid cells (Brillinger, 1978; Besag

et al., 1982). A less biased approach is to use binary regression with a complemen-

tary log-log link instead of typical logit link, with an offset equal to the logarithm of

the grid cell area (Baddeley et al., 2010). Numerical integration techniques (Davis

& Rabinowitz, 1984) can likewise be applied in approximating µA:

µA ≈
n∑
i=1

wiµ(yi), (3.8)

where w = {w1, . . . , wn} are quadrature weights and y0 = {ym+1, . . . , yn} are

quadrature points. A natural way to choose quadrature points is to break the

region A into a regular grid and insert a quadrature point at the centre of each cell.

Each cell can then be assigned a quadrature weight which equals its area divided by

the number of locations in {yP ,y0} contained in the cell.

Substituting (3.8) into (3.7) yields:

l(β;yP ) ≈ lppm(β;yP ,y0,w) =
m∑
i=1

lnµ(yi)−
n∑
i=1

wiµ(yi). (3.9)

Berman & Turner (1992) showed that (3.9) can be written as a weighted Poisson

likelihood:

lppm(β;yP ,y0,w) =
n∑
i=1

wi[zw,i ln{µ(yi)} − µ(yi)], (3.10)

where zw,i = I(i∈1,...,m)
wi

, and I(·) is the indicator function. This construction of the

likelihood (3.10) allows PPMs to be posed as Poisson GLMs. Hence PPMs can be

fitted using any standard GLM software (R Development Core Team, 2010), as with

the R package spatstat (Baddeley & Turner, 2005).
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An alternative representation of the point process likelihood is to use I(i ∈

1, . . . ,m) as the response and lnwi as an offset term. This would produce a likelihood

expression proportional to (3.9), but without the need for a non-integer response.

Assunção & Guttorp (1999) proposed an M -estimator as an alternative to max-

imum likelihood estimation for Poisson point processes that is robust to contam-

ination (e.g. resulting from species misspecification), but the M -estimator is not

considered here.

3.2 Processes with Point Interactions

Poisson point processes are defined in part by the assumption of independence of

point locations. Hence these processes do not accommodate modelling the distri-

bution of species for which point locations exhibit some form of dependence. Two

common approaches to modelling processes with point interactions are Cox processes

and Gibbs processes.

3.2.1 Cox Processes

Cox processes (also known as doubly stochastic Poisson processes) are a flexible class

of spatial point process in which the intensity µ(y) is a realisation of some stochastic

process ξ(y). In the context of SDM, the assumption is that this stochastic process

governs the spatial pattern of factors that influence the distribution of point locations

(Diggle, 2003), such as environmental variables and sampling effort, and hence it

accounts for spatial correlation in the response. Conditional on ξ(y) = µ(y), M is

an inhomogeneous Poisson point process with intensity µ(y) (Cressie, 1993). Hence

a Cox process can be modelled as a log-linear function of environmental variables

plus ξ:

lnµ(y) = x(y)′β + ξ(y). (3.11)
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The goal is to maximise the likelihood, which does not have a closed form in general

since it must be marginal with respect to the unobserved random ξ. Hence MCMC

sampling is often used to estimate the posterior distribution (Møller et al., 1998;

Brix & Møller, 2001), but other methods, such as composite likelihood estimation

(Guan, 2006) and integrated nested Laplace approximation (Beguin et al., 2012),

may also be used.

Some recent applications of Cox processes in SDM include log-Gaussian Cox pro-

cesses (Møller et al., 1998), their extension to inhomogeneous processes and multi

type point pattern time series (Brix & Møller, 2001), and the development of esti-

mating functions for inference of inhomogeneous cluster processes (Waagepetersen,

2007) and estimating functions for inhomogeneous cluster processes where covariate

data is missing (Waagepetersen, 2008).

Recently, hierarchical Cox processes have been applied for presence-only SDM

(Chakraborty et al., 2011) at the grid cell level. Their hierarchical framework con-

sidered three surfaces – (1) the potential intensity surface which is of interest, (2)

the availability surface which takes into account the impact of anthropogenic land

transformation, and (3) the sampling effort surface. The stochastic process ξ in

(3.11) was assumed to be a zero-mean Gaussian process.

3.2.2 Gibbs Processes

In this thesis I will model point interactions via finite Gibbs processes.

Gibbs processes are a broad class of spatial process that can be used to model a

spatial pattern of m locations yP = {y1, . . . , ym}. The probability that there are m

locations in a Gibbs process is (Cressie, 1993):

P (M = m) =

 e−µA , m = 0

e−µA
m!

∫
y∈A µ(y1, . . . , ym)dy1 . . . dym, m ≥ 1,

where µ(y1, . . . , ym) is the joint intensity of points located in yP . The conditional
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density is proportional to µ(y1, . . . , ym) (Cressie, 1993) and for m ≥ 1 can thus be

written:

f(y1, . . . , ym|M = m) =
µ(y1, . . . , ym)∫

y∈A µ(y1, . . . , ym)dy1 . . . dym
.

Hence the joint (Janossy) density for m ≥ 1 is:

f(y1, . . . , ym,m) = m!f(y1, . . . , ym|M = m)P (M = m)

= m!
µ(y1, . . . , ym)∫

y∈A µ(y1, . . . , ym)dy1 . . . dym

e−µA

m!

∫
y∈A

µ(y1, . . . , ym)dy1 . . . dym

= e−µAµ(y1, . . . , ym). (3.12)

Note that both homogeneous and inhomogeneous Poisson point processes are exam-

ples of Gibbs processes. In an inhomogeneous Poisson point process, µ(y1, . . . , ym) =∏m
i=1 µ(yi), and plugging this into (3.12) yields (3.6).

Point interactions can be introduced by writing the conditional density as:

f(y1, . . . , ym|M = m) = α
m∏
i=1

[κ(yi)]ρ(yP ),

where α is a normalisation constant, κ is an intensity parameter for the environ-

mental variables and ρ is some function of interactions between points.

The simplest Gibbs interaction processes use interactions between distinct pairs

of points and hence have the form:

f(y1, . . . , ym|M = m) = α

m∏
i=1

κ(yi)
∏
i<j

ρ(yi, yj).

The form of ρ determines how pairwise interactions affect the density. For example,

in a Strauss process (Strauss, 1975),

ρ(yi, yj) =

 1, ‖yi − yj‖ > r

γ, ‖yi − yj‖ ≤ r.

While theoretically a Strauss process can model both point repulsion (γ < 1) or

clustering (γ > 1), it is not integrable for γ > 1 (Kelly & Ripley, 1976) and hence

can only reliably model point inhibition.
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Area-interaction processes (Widom & Rowlinson, 1970; Baddeley & van Lieshout,

1995), however, can accommodate both clustering and repulsion among points.

Area-interaction processes use interactions among all points within a distance of

2r instead of pairwise interactions. They have a conditional density that can be

written as follows:

f(y1, . . . , ym|M = m) = α
m∏
i=1

[κ(yi)]η
−U(yP ), (3.13)

where η > 0 and U(yP ) is the area of the region within A formed by the union of

discs of radius r around each of the m points y1, . . . , ym ∈ yP (Figure 3.1). Note

that for point locations y ∈ yP within a distance of r of the boundary of the study

region A, the disc around y will extend outside of A, and hence U(y) < πr2. An

equivalent “canonical scale-free form” of (3.13) used in spatstat that is easier to

interpret is achieved by transforming κ and η:

f(y1, . . . , ym|M = m) = α
m∏
i=1

[θ(yi)]ν
−C(yP ),

where θ(yi) = κ(yi)η
−πr2 , ν = ηπr

2
and C(yP ) = U(yP )/

∑m
i=1 U(yi)−m.

Gibbs processes are typically analyzed using the conditional intensity (Papan-

gelou, 1974; Baddeley & Turner, 2005). The conditional intensity µ(y,yP ) at a

location y given a configuration of locations yP is:

µ(y,yP ) =
f(yP ∪ y|M = m)

f(yP |M = m)
. (3.14)

The conditional intensity essentially gives the conditional probability that a Gibbs

Process Y has a point at y given the rest of the process coincides yP .

For an inhomogeneous Poisson point process,

µ(y,yP ) =

∏m
i=1 µ(yi)µ(y)/(µA)m∏m

i=1 µ(yi)/(µA)m

= µ(y).

The fact that µ(y,yP ) does not depend on yP illustrates the independence of point

locations for an inhomogeneous Poisson point process.
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For an area-interaction process in canonical scale-free form,

µ(y,yP ) =
α
∏m

i=1 θ(yi)θ(y)ν−C(yP∪y)

α
∏m

i=1 θ(yi)ν
−C(yP )

= θ(y)ν−{C(yP∪y)−C(yP )}. (3.15)

Closer inspection of the exponent in (3.15) reveals a nice interpretation:

−{C(yP ∪ y)− C(yP )} = −
[
U(yP ∪ y)

πr2
− (m+ 1)−

{
U(yP )

πr2
−m

}]
= −

[
U(yP ∪ y)− U(yP )

πr2
− 1

]
= 1− U(yP ∪ y)− U(yP )

πr2

= t(y).

The quantity t(y) is the proportion of the area of the disc of radius r centred around

y that overlaps with the discs of radius r centred around the other points in yP

(Figure 3.1). This means that adding a point y to the pattern contributes a factor

of θ(y)νt(y) to the conditional intensity, and the conditional intensity can be simply

represented as:

µ(y,yP ) = θ(y)νt(y). (3.16)

The value of ν describes the behaviour of point interactions – processes with ν < 1

exhibit inhibition between points, while processes with ν > 1 exhibit clustering of

points. Note that ν = 1 reduces the area-interaction process to an inhomogeneous

Poisson point process.

An area-interaction model fits the conditional intensity (3.16) at y as a log-

linear function of environmental variables x(y) and point interaction t(y) (Baddeley

& Turner, 2005):

lnµ(y,yP ) = x(y)′ψ + t(y) ln ν, (3.17)

where ψ is a vector of parameters corresponding to the explanatory variables in x(y).

Note that (3.17) can be represented as log-linear in (x(y), t(y)) with coefficients

stored in β = (ψ, ln ν).
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Figure 3.1: Calculating the point interaction for a given point y. First, discs of

given radius r are drawn around all points y1, . . . , ym ∈ yP , including y. U(yP ) is

the area of the union of all discs. The point interaction at y is the proportion of the

(blue) disc around y that intersects the (red) discs around the other points in yP .

Because α is not of closed-form (Baddeley & van Lieshout, 1995), it is difficult

to fit area-interaction models by maximum likelihood. Besag (1977) introduced the

pseudolikehood PL as an alternative to the likelihood function for point processes:

lnPL(β;yP ) =
m∑
i=1

lnµ(yi;yP )−
∫
y∈A

µ(y,yP )dy. (3.18)

Note that this is identical to the likelihood of an inhomogeneous Poisson PPM

(3.7) if the intensity µ(y) is replaced with the conditional intensity µ(y,yP ). The

derivative of (3.18) is an unbiased estimating function (Besag, 1977), and maximum

pseudolikelihood estimates are consistent (Jensen & Møller, 1991) and asymptoti-

cally Normal (Jensen & Künsch, 1994), at least for pairwise interaction models.

For models with a log-linear conditional intensity such as area-interaction models,

the integral in (3.18) is approximated using the Berman-Turner device as for Poisson

PPMs (Baddeley & Turner, 2000), enabling area-interaction models to be fitted

using standard GLM software (Baddeley & Turner, 2006). This can be done with

the spatstat package in R. Given that area-interaction models have the same form
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and are fitted in the same way, they can also be fitted as Poisson PPMs with an extra

covariate for point interactions. In Chapter 8, I describe the forthcoming ppmlasso

package which can fit area-interaction models with a LASSO penalty.

Out of the suite of potential models that account for interpoint interaction, I have

chosen to use area-interaction models as they can model processes with clustering

or repulsion (Baddeley & van Lieshout, 1995) and they have interactions of order m

which can capture the potential causes for interpoint dependence more realistically

than pairwise interaction models (e.g. multiple presence locations observed by the

same individual or varying sampling effort). There is no ecological reason why

the potential interaction between observations should be restricted to pairs as for

example in a Strauss process.

3.3 Goodness of Fit

A key benefit of applying PPMs to SDM is that the modelling framework facilitates

the use of a number of goodness-of-fit techniques (Cressie, 1993; Baddeley et al.,

2005) to investigate whether the fitted model is appropriate. In particular, it is

possible to check the assumption of independence among points (Table 3.1) and to

diagnose spatial and environmental effects.

3.3.1 K-Function

One function commonly used for investigating departures from the assumption of

independence among points is the K-function (Ripley, 1977). For a homogeneous

Poisson point process with intensity µ, the K-function is defined as:

KH(r) =
E[M0(r)]

µ
,

where E[M0(r)] is the expected number of further events located within a circle of

radius r from a given event. Baddeley & Turner (2000) defined the K-function for
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inhomogeneous Poisson point processes as follows:

K(r) =
1

|A|
E
∑

yi∈Y ∩A

∑
yj∈Y \yi

I(‖yi − yj‖ ≤ r)

µ(yi)µ(yj)
, (3.19)

where ‖yi − yj‖ is the Euclidean distance between yi and yj. The presence of the

intensity at both yi and yj in the denominator of (3.19) demonstrates that the

K-function is related to the second-order intensity of the process (Ripley, 1976).

An unbiased estimator of the K-function (Baddeley & Turner, 2000) is given by:

K̂(r) =
1

|A|
∑

yi∈Y ∩A

∑
yj∈Y ∩A\yi

wi,jI(‖yi − yj‖ ≤ r)

µ(yi)µ(yj)
, (3.20)

where wi,j is an edge correction factor (Ripley, 1977) equal to the reciprocal of the

proportion of the circumference of a circle centred at yi with radius yj that is within

the study area A. This eliminates negative bias incurred at points that lie near the

boundary of A for which there could be unobserved points within a distance of r

but outside of A.

As the intensity µ is unknown, it must be estimated using the data in order

to determine K̂(r). For SDM, this is achieved by fitting a Poisson PPM to the

data as a function of environmental covariates, and substituting the fitted intensity

µ̂ in the demoninator of (3.20). This extra level of uncertainty from estimating

µ can make it difficult to distinguish variation in the intensity surface due to the

environment from variation due to dependence among species locations (Baddeley

& Turner, 2000; Diggle, 2003).

Because the sampling distribution of K̂ is intractable, goodness-of-fit tests using

the K-function are performed in practice by comparing the observed value of K̂(r)

to values K̂sim(r) calculated from simulations of an inhomogeneous Poisson point

process with true intensity surface equal to the observed intensity surface. It is

possible to construct a C% simulation envelope (Diggle, 2003) by determining the

(1−C)/2th and 1−(1−C)/2th quantiles of the s simulations for varying values of the

distance r. Figure 3.2 illustrates 95% simulation envelopes for the distribution of the
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Figure 3.2: Assessing goodness-of-fit for a Poisson point process using 95% simu-

lation envelopes of K̂(r) for three Sydney eucalypts. The observed function K̂(r)

falls within the simulation envelope for Angophora crassifolia, suggesting that the

assumption of independent events conditional on the environment is reasonable.

However, the observed K̂(r) deviates above and below the envelope for Corymbia

eximia and Callistemon linearis, respectively. This suggests additional clustering

for C. eximia at radii r < 5 and inhibition of C. linearis for all r ≤ 25.

locations of three eucalypts in the Blue Mountains Region near Sydney (NSW Office

of Environment and Heritage, 2012). For Angophora crassifolia, the assumption of

independent points conditional on the environment appears to be reasonable, as

the observed K̂(r) falls within the simulation envelope at all radii r. However,

K̂(r) deviates above the envelope for small radii r for Corymbia eximia, suggesting

additional clustering than what is expected for an inhomogeneous Poisson point

process. K̂(r) for Callistemon linearis falls below the envelope for all radii r ≤ 25,

suggesting repulsion among points or a “regular” process. Consequently, applying

a model to C. eximia and C. linearis that accounts for dependence among points

such as an area-interaction model may be appropriate.

Although the K-function provides a picture of the second-order properties of

a spatial point process, these second-order properties do not completely charac-

terise the process (Baddeley & Turner, 2000). Non-Poisson point processes with

the same K-function as either a homogeneous or inhomogeneous point process can

be constructed (Baddeley & Silverman, 1984; Baddeley & Turner, 2000). Conse-
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quently, K-functions should only be used to reject assumptions of independence

among points, not fail to reject them.

3.3.2 Residuals

Baddeley et al. (2005) developed residuals and residual plots to assess goodness

of fit by using the conditional intensity µ(y,yP ) (3.14). For a model fitted with

parameters β̂ and conditional intensity µ̂(y,yP ), the residuals are defined over some

region B ∈ A as:

R(B, ĥ, β̂) =
∑

yi∈yP∩B

ĥ(yi,yP\{yi})−
∫
B

ĥ(y,yP )µ̂(y,yP )dy,

where ĥ(y,yP ) is a non-negative function. The sum of residuals has expected value

zero as a consequence of the Georgii-Nguyen-Zessin (GNZ) formula (Georgii, 1976;

Xanh & Zessin, 1979):

E

[∑
yi∈yP

h(yi,yP\{yi})

]
= E

[∫
B

h(y,yP )µ(y,yP )dy

]
. (3.21)

Different choices of the function h(y,yP ) lead to different forms of residual, as

shown in Table 3.2.

Plots of these residuals can identify extreme values and departures in spatial

trend from the fitted model. For example, Figure 3.3 shows smoothed Pearson

residuals for a Poisson PPM fitted to Corymbia eximia presences. The presence of

a pattern in which residuals are most positive toward the central coast part of the

Table 3.2: Different forms of residuals for checking goodness of fit.

Residual h(y,yP )

Raw 1

Inverse µ 1/µ(y,yP )

Pearson 1/
√
µ(y,yP )

Pseudoscore ∂
∂β

lnµ(y,yP )
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Figure 3.3: Spatial plot (left) and quantile plot (right) of smoothed Pearson residuals

for a Poisson PPM. The existence of a trend in the spatial plot suggests that the

fitted Poisson PPM is inappropriate. The significant departure from the straight

line in the form of heavy tails for the data quantiles suggests that presence locations

are clustered.

study region (near Sydney) while most negative along the northern coast suggests

a spatial trend uncaptured by the fitted Poisson PPM.

An alternative to K-functions for identifying the presence of point interactions

is to construct a quantile plot of the smoothed residuals versus their expected values

under the fitted model obtained through simulation. Departures from a straight line

indicate that point interactions are not properly modelled. For example the Poisson

PPM fitted to the C. eximia presence data, Figure 3.3 deviates significantly from a

straight line. The heavy tails for the data quantiles imply the existence of clustering

among presence locations.

Given that the K-envelope (Figure 3.2) suggests clustering of points within a

radius of 5 km for C. eximia, an area-interaction model with radius of 5 km is a
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Figure 3.4: Spatial plot (left) and quantile plot (right) of the smoothed Pearson

residuals for the area-interaction model with radius 5 km. There still exists a spatial

trend, although it is different to that of Figure 3.3. The data quantiles fall along

a straight line well within the 2.5th and 97.5th quantiles of simulations, suggesting

that the model has adequately captured the structure of point clustering.

natural choice for an alternative model. Figure 3.4 shows the spatial and quantile

plots of the smoothed Pearson residuals for this model. There is still a spatial trend

evident, although the area underestimated by the model has shifted to the southern

coast. However, the quantile plot suggests agreement between the residuals from

the data and simulated residuals, and hence that the area-interaction model with

radius 5 km adequately captures the structure of point clustering.

It is also possible to test for the dependence of a point process on a spatial

covariate using both parametric (Berman, 1986; Lawson, 1988; Waller et al., 1992)

and non-parametric methods (Guan, 2008; Baddeley et al., 2012), and hence identify

potentially missing spatial variables in the model. In spatstat, this can be done

by plotting them against cumulative residuals, although that is not explored here.
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There are functions in spatstat for both fitting and performing these diagnostic

checks on a large suite of Gibbs processes (Baddeley & Turner, 2005).

3.4 Summary

PPMs are a natural approach to presence-only modelling with strong theoretical

foundations and readily available software for fitting and model checking. It is

therefore surprising that while point pattern methods have been used in ecology

for a long time (Cressie, 1993), PPMs have only recently been proposed for SDM

(Warton & Shepherd, 2010; Chakraborty et al., 2011).

Due to their advantages in interpretation, validation and ease of implementation,

PPMs form a major component of the PPM-LASSO method advanced in this thesis,

in which they are fitted with a LASSO penalty. In Chapter 5, I establish the

equivalence of Poisson PPMs and MAXENT and further derive and illustrate the

comparative advantages of point process models, while in Chapter 8, I describe the

ppmlasso package for R that I have developed to fit PPMs with a LASSO penalty.
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Chapter 4

LASSO and Its Extensions

4.1 Introduction

In surveys of predictive performance of SDM methods (e.g. Elith et al., 2006), one

way in which some high-performing methods differ from other methods is that they

are applied with regularisation tools aimed at reducing model complexity. For exam-

ple, MAXENT software by default uses a LASSO penalty, which shrinks parameter

estimates β̂ toward zero. In this Chapter I will review LASSO and related methods.

There are a number of benefits in shrinking parameter estimates toward zero:

• Predictive Ability: Unconstrained models are susceptible to overfitting, i.e

they fit the data in the model well but may not predict the response for

new data well. Shrinking parameter estimates introduces bias but decreases

variance of β̂ (Hastie et al., 2009). If the decrease in variance is greater than

the increase in bias, the mean squared error of β̂ will be lower. Finding a

balance in the “bias-variance tradeoff” is key to a model that fits the data

reasonably well and has good predictive performance.

• Numerical Stability: The number of available variables p may exceed the

number of observations m, in which case some sort of regression shrinkage is

35
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required to find a unique solution.

• Interpretation: Some shrinkage procedures may perform variable selection

by shrinking some parameter estimates to zero. Reducing the number of can-

didate variables helps to explain which biological factors are important in

determining a species’ distribution.

In Section 4.2, I describe a number of shrinkage procedures, including LASSO,

which is a key component of this thesis. Sections 4.3 and 4.4 provides further details

of how to fit models with a LASSO penalty and how to choose the LASSO penalty.

4.2 Regularisation Methods

Shrinkage procedures optimise some objective function subject to a constraint on

the size of parameter estimates. In the case of GLMs, shrinkage procedures thereby

maximise the constrained likelihood with penalty function p(β):

β̂ = argmax l(β) s.t. p(β) ≤ C, (4.1)

where C is a constant. The form of p(β) determines the shape of the constraint

region (Figure 4.1), and is usually chosen to force the solution β̂ to be within some

neighbourhood of the origin. The choice of C controls the degree to which β̂ is

shrunk toward the origin.

An equivalent formulation of the optimisation problem given by (4.1) is found

by applying the Lagrangian function with Lagrangian multiplier λ (Osborne et al.,

2000b):

β̂ = argmax[l(β)− λp(β)].

Table 4.1 shows the most common shrinkage methods and their respective penal-

ties p(β). The LASSO (γ = 1) and ridge (γ = 2) penalties are special cases of what

are known as bridge penalties (Frank & Friedman, 1993), which have the form



4.2. REGULARISATION METHODS 37

Table 4.1: Penalty terms for various shrinkage methods.

Shrinkage Method Penalty Term

LASSO λ
∑p

j=1 |βj|

Ridge λ
∑p

j=1 β
2
j

Fused LASSO λ1

∑p
j=1 |βj|+ λ2

∑p
j=2 |βj − βj−1|

Group LASSO λ
∑J

j=1(β′jKβj)
1/2 for positive definite K

Adaptive LASSO λ
∑p

j=1wj|βj|

Elastic Net λ1

∑p
j=1 |βj|+ λ2

∑p
j=1 β

2
j

p(β) =
∑p

j=1 |βj|γ. Bridge penalties with γ ≥ 1 have convex constraint regions and

hence are easier to fit (Hastie et al., 2009). Note that a classical approach to vari-

able selection (e.g. all-subsets selection) can be thought of as a bridge-type penalty

method with γ = 0.

Ridge regression (Hoerl & Kennard, 1970) applies an L2 penalty on parameter

coefficients, in effect shrinking them toward zero at a rate proportional to their

magnitude. It is particularly effective in shrinking parameters of variables that

are highly correlated with other variables (Hesterberg et al., 2008). The form of

the penalty is such that parameter estimates may be fitted even when the design

matrix X is not full rank (Hastie et al., 2009) but the shape of the constraint region

precludes any of the coefficients from being shrunk exactly to zero (Hesterberg et al.,

2008; Hastie et al., 2009).

LASSO (Tibshirani, 1996) is very popular, with the original article cited over

1,500 times in 2012 alone according to Google Scholar. One reason for the ubiquity

of the LASSO is that it performs model fitting and variable selection simultaneously

(Hastie et al., 2009). For SDM, this is attractive because applying a LASSO penalty

both fits a model to the environmental data and can eliminate environmental vari-

ables that are not informative in determining the species’ distribution.

A number of extensions to the LASSO have arisen to improve it for particular

types of data or to address some of its weaknesses. For example, the fused LASSO
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(Tibshirani et al., 2005) and group LASSO (Yuan & Lin, 2006) are useful to en-

courage neighbouring coefficients and groups of coefficients to be shrunk together,

respectively.

One of the most popular extensions is adaptive LASSO (Zou, 2006), which adds

an initial weight wj to the penalty term for each coefficient βj in order to shrink

more important variables less, and hence reduce the bias incurred from shrinkage.

Given an initial solution β̂init, the adaptive weight for the jth variable is wj =

1/|β̂init,j|γ. Typically, these weights are chosen to be the reciprocal of either the

unpenalised solution (wj = 1/|β̂GLM,j|) or the penalised solution that optimises one

of the more common criteria like BIC (Schwarz, 1978) (wj = 1/|β̂BIC,j|). This

strategy is consistent in variable selection (Zou, 2006), which is not necessarily the

case with LASSO, as discussed in Section 4.5.

The elastic net (Zou & Hastie, 2005) affixes both a LASSO and a ridge penalty

to the objective function, which produces sparse solutions that are often superior to

LASSO for correlated variables and hence can distinguish unknown grouping within

the variable structure.

Figure 4.1 shows the geometry of the constraint region for ridge regression,

LASSO, adaptive LASSO and elastic net in the simple case of two parameters β1

and β2. As the unpenalised solution β̂GLM falls outside each constraint region, each

method shrinks parameter estimates toward zero. The LASSO, adaptive LASSO and

elastic net regions have sharp corners, encouraging but not guaranteeing sparsity,

while the ridge regression constraint region does not and hence will not eliminate

any variables from the model. Note that the diamond shape of the adaptive LASSO

is stretched in the direction of the parameter estimate of higher magnitude.
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Figure 4.1: Constraint regions for different forms of penalty. The unpenalised solu-

tion occurs at β̂GLM = (0.8, 1.5). For each type of penalty, the solution occurs at the

point where contours of the likelihood surface first intersect the constraint region.

For LASSO, |β1| + |β2| = 1. For ridge regression, β2
1 + β2

2 = 1. For the elastic net,

α(|β1| + |β2|) + (1 − α)(β2
1 + β2

2) = 1. For adaptive LASSO, w1|β1| + w2|β2| = 1,

where w1 = 1/β̂GLM,1 and w2 = 1/β̂GLM,2.

4.3 Fitting Models with a LASSO Penalty

Because it has been used successfully in SDM and remains very popular, I will focus

on the LASSO in this thesis. When applying a LASSO penalty to a GLM, the

parameter estimates β̂ are found by maximising the constrained likelihood:

β̂ = argmax l(β) s.t.

p∑
j=1

|βj| ≤ C,

where C is a constant, or equivalently,

β̂ = argmax l(β)− λ
p∑
j=1

|βj|. (4.2)

The form of the constraint means the Karush-Kuhn-Tucker conditions (Osborne
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Figure 4.2: Geometry of the LASSO solution. For a GLM, the LASSO solution

β̂ (N) is found by maximising the constrained likelihood (4.2). The constrained

likelihood (dashed curve) is equal to the likelihood (solid curve) plus the penalty

(dotted line). Geometrically, the LASSO solution β̂j is found by moving down the

likelihood curve from the unpenalised estimate β̂GLM,j (•) toward the origin until the

derivative of the likelihood s(β̂j) becomes equal to the absolute value of the penalty

|λ| (4.3). In (a), this means that at β̂, the gain from reducing the penalty when

moving toward zero no longer exceeds the loss in likelihood. If |s(βj)| < λ for all βj

between 0 and β̂GLM,j (•), β̂j is set to 0 (4.4), as in case (b). Beyond 0, the penalty

starts decreasing as well as l(β), which is clearly sub-optimal.

et al., 2000a) ensure that:

s(β̂j) = λ sign(β̂j), β̂j 6= 0 (4.3)

|s(β̂j)| ≤ λ, β̂j = 0, (4.4)

where s(βj) = ∂l(β)/∂βj is the jth score function. Figure 4.2 illustrates how the

LASSO solution β̂ is therefore derived.

A number of algorithms have been developed to fit models regularised with a

LASSO penalty. Because of its intuition in relation to the geometry depicted in

Figure 4.2, I will focus mostly on the coordinate descent algorithm of Osborne
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et al. (2000b) developed for linear models. In a linear model, the goal is to minimise

residual sum of squares r′r, where r = y−Xβ. The Osborne algorithm is essentially

as follows:

1. Propose Update: Let σ denote the active set, i.e. the indices of the nonzero

coefficients. At the ith iteration, propose an update β̂
i

σ to the current estimate

β̂
i−1

σ based on a local linearisation of r′r about β = β̂
i−1

σ . Essentially, this

moves all nonzero coefficients toward zero in a direction determined by their

respective score functions, as in Figure 4.2.

2. Delete Variables: If sign(β̂
i

σ) = sign(β̂
i−1

σ ), proceed to Step 3. Otherwise,

calculate the direction of the update β̂
∆

σ = β̂
i

σ − β̂
i−1

σ . Determine the first

coefficient k to change sign, and calculate ρ = |β̂i−1
k /β̂∆

k | such that β̂i−1
k +ρβ̂∆

k =

0. Set β̂
i

σ = β̂
i−1

σ + ρβ̂
∆

σ . Delete k from the active set σ. Return to Step 1.

3. Add Variables: Calculate the score functions s(β̂
i
) = X′(y − Xβ̂

i
). If

|s(β̂
i

k)| > λ for any k 6∈ σ, add the most violated coefficient argmaxk 6∈σ |s(β̂
i

k)|

to the active set and return to Step 1.

It is important that variables are deleted and added one at a time to avoid infinite

loops. Although the Osborne algorithm was originally posed for linear models, I have

adapted it for fitting PPMs in the ppmlasso package in R, described in Chapter 8.

An alternative to the Osborne algorithm is a modification of the least angle re-

gression (LARS) algorithm (Efron et al., 2004), which can fit an entire regularisation

path of LASSO-penalised models at the computational cost of a single least-squares

fit. The LARS algorithm builds the solution from the intercept model by finding the

variable that is most correlated with the current residuals and moving in its direction

until another variable has equal correlation, at which point the algorithm moves in a

direction equiangular between the two included variables, proceeding in this manner

until the unpenalised solution. Park & Hastie (2007) extended the LARS algorithm

to determine a regularisation path of LASSO-penalised GLM estimates, but these
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estimates are only approximations for values of λ that do not coincide with change

points in the active set σ.

4.4 Choosing the LASSO Penalty

A key question with fitting models penalised by LASSO is determining how large

the penalty λ should be. The value of λ controls the complexity of the fitted model

(4.2) and an appropriate choice can yield advantages in predictive performance.

Tibshirani (1996) proposed generalised cross validation (Craven & Wahba, 1979)

and Stein’s unbiased risk estimator as criteria for choosing the LASSO penalty,

while Fu (2005) proposed non-linear GCV as an extension of GCV for use in GLMs.

A common approach is to choose the LASSO penalty by optimising AIC (Akaike,

1974) or BIC. Zou et al. (2007) established that the number of nonzero parameters is

an unbiased estimate of the degrees of freedom of the LASSO, which has been used

to calculate AIC and BIC. BIC is known to produce parameter estimates that are

consistent in estimation, while AIC and GCV tend to overfit (Zhang et al., 2010).

However, AIC is asymptotically loss-efficient, while BIC is not (Zhang et al., 2010).

The question of which methods perform best for choosing the LASSO penalty in

PPMs is explored in detail in Chapter 7.

Some desirable properties of any estimate β̂ are that it be consistent in esti-

mation, which implies that β̂ converges to the vector of true parameter values β∗

as sample size grows large, and consistent in variable selection, which implies that

the subset of nonzero variables converges to the true subset of nonzero variables

as the sample size grows large. The choice of LASSO penalty λ impacts whether

consistency in estimation is achieved – Knight & Fu (2000) showed that LASSO

estimates are
√
n-consistent as n → ∞ under mild regularity conditions for linear

models if λ has order O(
√
n). However, there is a further nontrivial condition involv-

ing correlation among variables that is necessary for the LASSO to be consistent in
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variable selection (Zhao & Yu, 2006; Zou, 2006; Yuan & Lin, 2007). This point will

be elaborated in detail in Chapter 6. Indeed, the motivation for the development of

adaptive LASSO was that it is consistent in both estimation and variable selection

if the adaptive weights are generated from a
√
n-consistent estimate (Zou, 2006).

4.5 Summary

LASSO is a useful tool for regularisation that can improve models in the ways

outlined in Section 4.1. As shown in this Chapter, the statistics literature has

provided a number of algorithms for fitting models with a LASSO penalty as well

as theory and methods concerning the choice of the LASSO penalty λ, which I

use in this thesis to improve the way current SDM methods are implemented. In

Chapter 5, I show that MAXENT can be further improved by using different choices

of the LASSO penalty than what is currently used based on developments in the

statistics literature.
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New Results for Presence-Only Analysis



Chapter 5

Equivalence of MAXENT and

Poisson Point Process Models

5.1 Introduction

Recall from Chapter 2 that MAXENT (Phillips et al., 2006), based on a maximum

entropy approach, is a particularly popular method of presence-only analsysis, hav-

ing been cited 606 times in 2012 according to Google Scholar. Its rise in popularity

has been meteoric, having only been introduced to ecology seven years ago, although

the concept of maximum entropy modelling has been around for a long time (Jaynes,

1957). One motivation for MAXENT is that it is said to make no additional as-

sumptions to what is known from the data (Phillips et al., 2006). A comprehensive

study of current SDM methods found MAXENT to outperform nearly all other

methods (Elith et al., 2006), and this may explain its prevalence in the literature.

The maximum entropy approach has been used elsewhere in ecology, e.g. to predict

biodiversity using species traits (Shipley et al., 2006), to predict species-area rela-

tionships at large spatial resolutions from small census plots (Harte et al., 2009),

and to infer the strength of interspecies interactions in tropical forests (Volkov et al.,

2009).

45
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Nevertheless, MAXENT has a number of shortcomings, some of which are de-

scribed in Section 2.2 and illustrated later in Sections 5.3 and 5.4. In particular, it

is unclear what diagnostic tools may be used to assess whether the fitted model is

reasonable. Moreover, MAXENT analyses data after first aggregating it into pres-

ence/absence grid cells (as in Figure 5.1), and it is currently unclear what spatial res-

olution should be used when constructing these grid cells. Further, as in Section 2.2

some key components of the output such as the intercept and fitted probabilities are

dependent on this choice of spatial resolution and hence are scale-dependent. Given

this dependence, analyses performed using MAXENT at different spatial resolu-

tions may not be logically compatible, as in the case of logistic regression (Baddeley

et al., 2010). Moreover, while probabilities of species occurrence can be obtained

for presence-only data, the fitted probabilities of MAXENT form a habitat suitabil-

ity index of relative probabilities (Royle et al., 2012). These drawbacks illustrate

that MAXENT has not been described with strong statistical foundations. Elith

et al. (2011) attempted to explain MAXENT in statistical terms by establishing

that MAXENT minimises the relative entropy between the distribution estimated

from the presence-only data and the distribution estimated from the background,

but it is currently unclear how MAXENT relates to other SDM methods.

In this Chapter I show that MAXENT is mathematically equivalent to Poisson

regression (McCullagh & Nelder, 1989) and related to a Poisson PPM (Chapter 3).

Relationships between maximum likelihood and maximum entropy have been known

for a long time – this relationship was explored for exponential families in the late

1950s (Kullback, 1959), while an equivalence for contingency tables was established

in 1963 (Good, 1963), and maximum entropy was later linked to the maximum

likelihood of a Gibbs distribution (Della Pietra et al., 1997). Nonetheless, the direct

link I make between MAXENT and Poisson PPMs is new.

Warton & Shepherd (2010) introduced Poisson PPMs as a way to address “prob-

lems of model specification, interpretation, and implementation” inherent in pseudo-
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Figure 5.1: Comparison of point process and MAXENT framework for Corymbia

eximia. A point process model (left) analyses presence points yP = {y1, . . . , ym};

MAXENT (right) analyses presence/absence in grid cells {g1, . . . , gn}, with n = 258

here. A key issue with MAXENT is determining how many grid cells n to use for

analysis.

absence regression, another popular SDM method. This Chapter achieves a similar

goal in relation to MAXENT – all of the problems described in Sections 5.3 and 5.4

can be addressed by reframing the problem using a Poisson PPM. Section 5.2 demon-

strates the equivalence of Poisson PPMs and MAXENT. Section 5.3 demonstrates

by example how this equivalence can improve on current practice in MAXENT mod-

elling. Finally, Section 5.4 demonstrates that these proposed improvements can led

to more accurate predictions of a species’ actual distribution. The contents of this

Chapter have been published in Biometrics (Renner & Warton, 2013).
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5.2 Equivalence of MAXENT and Poisson point

process models

Rather than using the presence-only locations yP = {y1, . . . , ym}, the MAXENT

procedure analyses data by splitting the study region A into n grid cells with

centres at the locations in g = {g1, . . . , gn}. A binary response vector z(n)(g) =

{z(n)(g1), . . . , z(n)(gn)} is formed where z(n)(gi) = 1/m(n) if the ith grid cell contains

at least one presence location and 0 otherwise, and m(n) is the count of grid cells

that contain at least one presence location. Without loss of generality, I partition

{g1, . . . , gn} as {gP ,g0}, where gP = {g1, . . . , g
(n)
m } are the m(n) presence cells. I

index z and m with the superscript (n) to emphasise that these quantities depend

on the spatial resolution (and hence the number of grid cells n) used in analysis.

The goal in MAXENT is to model π(gi), the probability that if there is one pres-

ence then it is located in the ith grid cell as a function of p environmental variables

x(gi). π(g) = {π(g1), . . . , π(gn)} is estimated to maximise the entropy (Jaynes,

1957) H{π(g)} = −
∑n

i=1 π(gi) ln π(gi), subject to two types of constraint:

n∑
i=1

π(gi)xj(gi) =
1

m(n)

m(n)∑
i=1

xj(gi), ∀j, (5.1)

n∑
i=1

π(gi) = 1. (5.2)

(5.1) ensures that the predicted mean of each environmental variable equals its

observed mean for the presence data while (5.2) ensures that the probabilities add

to one.

In this Chapter, I assume the existence of a unique maximum of the objective

function (entropy and likelihood for MAXENT and Poisson regression, respectively).

I will show that the MAXENT procedure is equivalent to log-linear Poisson regres-

sion when applied to grid cell data z(n)(g). That is, I model the mean of z(n)(gi) as

a log-linear model:

lnµi = x(gi)
′β. (5.3)
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The parameters β are estimated to maximise the likelihood function (McCullagh &

Nelder, 1989):

l{β; z(n)(g)} =
n∑
i=1

z(n)(gi) lnµ(gi)−
n∑
i=1

µ(gi)−
n∑
i=1

ln{z(n)(gi)!}. (5.4)

On face value, this analysis appears to be based on a nonsensical model for the

data, as it implicitly assumes that a set of non-integer values comes from a Poisson

distribution. However, I will show firstly that this is precisely what MAXENT does

and later that this can be motivated as a PPM, which can be fitted for a non-integer

response using the result of Berman & Turner (1992).

Theorem 5.1. The MAXENT procedure and log-linear Poisson regression are equiv-

alent. That is,

1. They fit the same model:

lnπ(gi) = lnµ(gi) = x(gi)
′β.

2. They estimate parameters to maximise the same function up to a constant:

Λ{β; z(n)(g)} = l{β; z(n)(g)}+ C,

where C is a constant and Λ{β; z(n)(g)} is the Lagrangian function to maximise en-

tropy H{π(g)} subject to the constraints stated in equations (5.1-5.2) above. Hence

the maximum entropy estimate β̂MAXENT equals the maximum likelihood estimate

from Poisson regression β̂GLM.

Proof. 1. I maximise the entropy H{π(g)} = −
∑n

i=1 π(gi) ln π(gi) subject to the

given constraints by rephrasing the task as a minimisation problem and constructing

the Lagrangian function with multipliers γ = {γ0, γ1, . . . , γp}:

Λλ{π(g),γ; z(n)(g)} =

n∑
i=1

π(gi) ln π(gi) +

p∑
j=1

γj

{
n∑
i=1

π(gi)xj(gi)− xj(g)

}
+ γ0

{
n∑
i=1

π(gi)− 1

}
. (5.5)

Differentiating Λλ{π(g),γ; z(n)(g)} with respect to π(gi) yields:

∂Λλ{π(g),γ; z(n)(g)}
∂π(gi)

=
π(gi)

π(gi)
+ ln π(gi) +

p∑
j=1

γjxj(gi) + γ0.
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Setting the right hand side to zero and solving for π(gi) leads to the following

expression for ln π̂(gi):

ln π̂(gi) = −1−
p∑
j=1

γjxj(gi)− γ0. (5.6)

This solution can easily be shown to be the global minimiser of Λλ{π(g),γ; z(n)(g)}.

This model has the same form as the log-linear model used in Poisson regression

(5.3), where γj = −βj − I(j = 0) and I(·) is the indicator function.

2. Plugging (5.6) back into (5.5) yields:

Λλ{π̂(g),γ; z(n)(g)} = −
n∑
i=1

π̂(gi)−
p∑
j=1

γjxj(g)− γ0.

Because xj(g) =
∑n

i=1 z
(n)(gi)xj(gi) and γ0 =

∑n
i=1 z

(n)(gi) γ0,

Λλ{π̂(g),γ; z(n)(g)} = −
n∑
i=1

π̂(gi) +
n∑
i=1

z(n)(gi)

{
−

p∑
j=1

γjxj(gi)− γ0

}
,

= −
n∑
i=1

π̂(gi) +
n∑
i=1

z(n)(gi) ln π̂(gi) +
n∑
i=1

z(n)(gi), (5.7)

= Λ{β; z(n)(g)}, say.

Since γj = −βj− I(j = 0), I have reparameterised Λλ{π̂,γ; z(n)(g)} as a function of

β as Λ{β; z(n)(g)}. Note that the expression for Λ{β; z(n)(g)} in (5.7) differs from

the Poisson log-likelihood (5.4) only by a term C that is constant with respect to β.

Convex duality (Boyd & Vandenberghe, 2004) suggests that the dual function

(5.7) provides a lower bound for (5.5). Because entropy is strictly convex, Slater’s

condition ensures that the solution found by maximising (5.7) is indeed equivalent

to the solution of the minimisation problem (5.5). Consequently,

β̂GLM = arg max
β

[l{β; z(n)(g)}],

= arg max
β

[Λ{β; z(n)(g)}+ C],

= β̂MAXENT,

where C is a constant with respect to β.

Part 1 of Theorem 5.1 (that MAXENT fits a log-linear model) is well-known (e.g.

Dutta, 1966), but Part 2 (the link to Poisson regression) is new. This link to Poisson
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Figure 5.2: Numerical equivalence of MAXENT and GLM. Parameter coefficients

as calculated by MAXENT’s software (Version 3.3.3e) and using GLM for various

values of the LASSO penalty λ (left) and for different tolerance levels (right). Re-

sults are numerically equivalent (hence overlapping) for most λ and tolerance levels.

Coefficients calculated by the GLM code converged at a higher tolerance, and could

be computed much faster (Table 5.2).

likelihood was enabled by specifying the MAXENT model in a slightly different way

to what is conventional in the maximum entropy literature. It is typical to exclude

the intercept term from the model and introduce a normalisation constant in its place

after optimisation to ensure that the sum of π is one. Instead, I included an intercept

term and the constraint given by (5.2) in the optimisation problem, which was key to

the derivation. Hence I have shown that some maximum entropy problems, including

MAXENT, can be solved using standard generalised linear modelling software via

Poisson regression. I demonstrate this result numerically in Figure 5.2. Further,

this enables a link with Poisson PPMs below.

Recall from Chapter 3 that a Poisson PPM analyses m presence-only locations

yP = {y1, . . . , ym} as a point process in which the locations of the m points are

assumed to be independent. Unlike MAXENT, which only models probability π(gi)
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per grid cell, a Poisson PPM directly models the intensity µ(y) per unit area (Cressie,

1993) for any location y ∈ A. As in Chapter 3, intensity is modelled as a log-linear

function of p explanatory variables: ln{µ(y)} = x(y)′β. Analysis on a per area basis

rather than a per grid cell basis is a key distinction between a PPM and MAXENT.

Recall the log-likelihood of a Poisson PPM (Equation 3.7) can be approximated

as a weighted Poisson likelihood (Equation 3.10). As in Chapter 3, quadrature

points can be chosen by dividing the region A into a regular grid and inserting a

quadrature point at the centre of each cell, meaning that y0 = g0.

I find a relation in Theorem 5.2 below between MAXENT and the above formu-

lation for Poisson PPMs by analysing data at grid cell locations {gP ,g0} instead of

{yP ,y0}. That is, I use in analysis the same quadrature points y0 = g0, but use

the locations of the m(n) presence grid cells gP in place of the m actual presence

locations in yP . This results in some loss of information, discussed in Section 5.3.

Theorem 5.2. Consider a Poisson PPM fitted to grid cell data z(n)(g), with pa-

rameter estimates fitted by maximum likelihood stored in β̂PPM. Then:

β̂MAXENT = β̂PPM + JC ,

where JC = {lnC, 0, . . . , 0} is a vector of length p+ 1, and C = |A|/(m(n)n).

In other words, the MAXENT and PPM solutions for grid cell data are propor-

tional, and estimates of slope parameters are identical.

Proof. β̂MAXENT solves ∂Λ{β;z(n)(g)}
∂βj

= 0:

∂Λ{β; z(n)(g)}
∂βj

=
n∑
i=1

{
I(i ∈ {1, . . . ,m(n)})

m(n)π(gi)
xj(gi) π(gi)− xj(gi) π(gi)

}
,

0 =
1

m(n)

n∑
i=1

xj(gi)
{
I(i ∈ {1, . . . ,m(n)})−m(n)π̂(gi)

}
. (5.8)

β̂PPM solves ∂lPPM(β;yP ,y0,w)
∂βj

= 0:

∂lPPM(β;yP ,y0,w)

∂βj
=

n∑
i=1

wi

{
zw,iµ(yi)xj(yi)

µ(yi)
− µ(yi)xj(yi)

}
.
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For grid cell data, wi = |A|/n, so β̂PPM solves:

0 =
n∑
i=1

xj(gi)

{
I(i ∈ {1, . . . ,m(n)})− |A|

n
µ̂(gi)

}
. (5.9)

(5.8) and (5.9) are related by the identity π̂(gi) = |A|
m(n)n

µ̂(gi).

Taking logarithms of both sides yields:

x(gi)
′β̂MAXENT = x(gi)

′β̂PPM + ln |A| − lnn− lnm(n).

Hence β̂MAXENT = β̂PPM + JC , where C = |A|
m(n)n

.

Fithian & Hastie (in review) have independently shown that MAXENT and a

Poisson PPM determine the same solution, in a preprint available on ArXiv.

Corollary 5.3. For a given presence-only dataset yP , consider a set of vectors of

grid cell data constructed at increasingly fine spatial resolutions ( e.g by recursively

partitioning {z(n)(g);n = 1, 2, 22, 23, . . . }). As n → ∞, the MAXENT solution for

z(n)(g) becomes proportional to the Poisson PPM solution for yP . That is:

β̂MAXENT − JC → β̂,

where JC is defined in Theorem 5.2.

The proof follows by noting that as n→∞, the number and location of presence

points in gP approaches those in yP and the quadrature approximation (Equation

3.10) approaches the exact solution (Equation 3.7).

This result is similar to Theorem 3.2 of Warton & Shepherd (2010) who showed

that when fitting a Poisson PPM with constant quadrature weights C, ignoring

these weights changes the solution by the factor C. MAXENT can be represented

as a Poisson PPM ignoring quadrature weights, so a similar result applies. These

quadrature weights are the mechanism that ensures that analysis is performed on

an area basis instead of a grid cell basis (Warton & Shepherd, 2010). Hence while

Poisson PPM and MAXENT solutions are qualitatively identical, analysing data on
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a grid cell basis instead of an area basis induces scale dependence in MAXENT: as

n → ∞, π(gi) → 0. Hence the maps in Figure 5.3 look the same, but only for the

Poisson PPMs is the scale unchanged by changing spatial resolution.

5.3 Model Application

I will now demonstrate the application of a PPM to the presence-only locations of

Corymbia eximia introduced in Chapter 1, illustrating many features currently un-

available to MAXENT. Software for the below analyses including example data is

available in the R package ppmlasso, described in Chapter 8. The analysis will con-

sist of four steps: (1) determine the appropriate spatial resolution for analysis, (2)

assess whether a Poisson PPM is appropriate, (3) estimate the LASSO parameter for

regularisation, and (4) compare results with a MAXENT model. A LASSO penalty

is included because MAXENT applies one by default. I use four environmental

variables as in Warton & Shepherd (2010) – minimum and maximum temperature,

number of fires since 1943, and annual rainfall. Likelihood of observing a pres-

ence point depends not just on the spatial distribution of the species, but also on

the spatial distribution of observers, which is strongly affected by site accessibility.

Hence I include two variables to measure site accessibility – distance from main

roads and distance from urban areas. Intensity of C. eximia was modelled as a

quadratic function of the six available variables, including interactions between the

four environmental variables and between the two accessibility variables (but as-

suming additivity between environmental and accessibility variables). So long as all

six of these variables are independent of variables associated with species detection

probability, parameter estimates from a Poisson PPM will be consistently estimated

(Dorazio, 2012).

Prior to applying the LASSO to PPMs, variables were standardised to have mean

zero and variance one as in Tibshirani (1996), such that the LASSO penalty was ap-
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Figure 5.3: Predicted intensity maps. Predicted intensities for Corymbia eximia

using presence-only data generated by two different methods at the 800m resolu-

tion (top) and the 400m resolution (bottom). The maps have the same pattern at

each resolution, but the predicted values are scale-dependent for MAXENT while

remaining constant for the Poisson PPM.
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plied to standardised coefficients. In MAXENT, variables instead were standardised

to have minimum zero and maximum one.

5.3.1 Choosing the appropriate spatial resolution

NSW Office of Environment and Heritage (2010) provides environmental data over

the study region at the 100m resolution. However, performing an analysis at such

a fine resolution is computationally expensive and may not be necessary. Using a

Poisson PPM specification facilitates the use of a numerical integration framework

for choosing an appropriate spatial resolution for a particular species. Because the

absence grid cells g0 are used as quadrature points, the question of what spatial

resolution needs to be used can be rephrased as a question of how many quadrature

points are needed to obtain a sufficiently accurate estimate of the log-likelihood

(Equation 3.7).

Following Warton & Shepherd (2010), quadrature points are added at increas-

ingly fine resolutions until the log-likelihood has converged. For Corymbia eximia,

the likelihood appears to converge at a spatial resolution of 800m (Figure 5.4a),

suggesting that model output will not appreciably change at finer spatial resolu-

tions. However, the entropy of analogous MAXENT models does not converge due

to the scale dependence of π(g) and hence MAXENT is not informative about which

spatial resolution to use for analysis. The scale dependence of MAXENT can be

adjusted for (using “gain”, defined as lnn− entropy) in part, but not completely,

since the loss of information incurred by absorbing the m presence locations into a

smaller number m(n) of presence grid cells varies with the choice of spatial resolution.

Hence the gain will not converge until m(n) converges.
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Figure 5.4: Model checking for the Corymbia eximia analysis: (a) Spatial resolution

can be chosen for a PPM from a plot of maximised log-likelihood at differing spatial

resolutions. Convergence is achieved at the 800m resolution for the Poisson PPM,

suggesting this is the optimal spatial resolution at which to perform analysis. There

is no convergence for the entropy used by MAXENT. We can attempt to address

this by analysing “gain” (defined as lnn - entropy), but gain (rescaled) does not

converge until the number of presence cells m(n) converges. (b) Inhomogeneous K-

function, with simulation envelope, for a Poisson PPM (left) and an area-interaction

model with radius 5 km (right). The deviation from the envelope for the Poisson

PPM suggests additional clustering unaccounted for in the model.



58 CHAPTER 5. EQUIVALENCE OF MAXENT AND POISSON PPMS

5.3.2 Is a Poisson PPM appropriate?

An underlying assumption of a Poisson PPM (and by equivalence, MAXENT) is that

the point locations are independent, conditional on model covariates (Table 3.1).

This may not be appropriate for Corymbia eximia. While MAXENT offers no

method for checking this assumption, the diagnostic tools of Chapter 3 (Cressie,

1993; Baddeley et al., 2005) may be applied to assess adequacy of a Poisson PPM.

In Figure 5.4b, it can be seen that for C. eximia, a Poisson PPM may not be

suitable for the data, as the observed estimate of the inhomogeneous K-function

K̂(r) falls well outside a 95% envelope formed by simulating 1000 realisations from

a Poisson PPM with intensity function as estimated from the C. eximia data. As

in Chapter 3, the deviation above the envelope suggests that the presence locations

of C. eximia are more clustered than would be expected for a true Poisson PPM.

Instead, Figure 5.4b demonstrates that an area-interaction model with radius 5 km

is more appropriate.

5.3.3 Choosing the LASSO parameter

MAXENT is often fitted using a LASSO penalty (Chapter 4) to control for over-

fitting. However, rather than using the data-driven approaches of Chapter 4 to

choose the value of the LASSO parameter λ, MAXENT software used an ad hoc

value of 9
70

for Corymbia eximia, which was chosen without any consideration for

predictive performance of the model at hand but rather based entirely on the num-

ber of presence cells (90), as per (Phillips & Dud́ık, 2008). As an alternative to the

default MAXENT penalty, I used a simple line search algorithm to find the value

that minimised non-linear GCV (Fu, 2005), which returned a value of 4.907.
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Figure 5.5: Predicted species distribution maps for an area-interaction model (left)

and MAXENT (right).

5.3.4 Results

The coefficients for both the PPM and the MAXENT model (Table 5.1) are quali-

tatively different due largely to the different LASSO parameters. Of the 19 model

coefficients, only 11 are non-zero in the PPM, as opposed to 17 for MAXENT. More-

over, the harsher LASSO penalty of the PPM ensures that each of the estimated

coefficients are smaller than the corresponding coefficients of the MAXENT model.

Otherwise, the models are broadly similar and hence the maps produced by both

models identify the same geographic hot spots for Corymbia eximia (Figure 5.5).

5.3.5 Summary

Analysing the Corymbia eximia data has illustrated advantages of the Poisson PPM

approach in choosing the spatial resolution, assessing model adequacy, and choosing
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Table 5.1: Model coefficients for a PPM (area-interaction with radius 5 km) and

MAXENT model. The variables included are number of fires since 1943 (FC), min-

imum and maximum annual temperature (MNT and MXT), annual rainfall (Rain),

distance from main roads (D.Main) and distance from urban areas (D.Urb). Both

models were built at the 800m spatial resolution. The LASSO parameters for each

model are 4.907 and 9/70, respectively.

Coefficient PPM MAXENT model

Intercept -10.545 56.457

FC 0.275 2.898

FC2 -0.321 -6.789

MNT 1.268 8.386

FC∗MNT 0.200 8.399

MNT2 -1.158 -24.593

MXT 0 34.394

FC∗MXT 0.322 5.897

MNT∗MXT -0.077 15.140

MXT2 -1.281 -73.619

Rain 0 0

FC∗Rain -0.035 -14.104

MNT∗Rain 0.539 27.071

MXT∗Rain 0 -114.774

Rain2 -0.824 -105.588

D.Main -0.469 -3.511

D.Main2 -0.118 -2.538

D.Urb -0.547 -5.310

D.Main∗D.Urb 0 0.495

D.Urb2 0 0

Point Interaction 0.176 NA
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Table 5.2: Current problems with MAXENT and their proposed solutions available

through reexpression as a Poisson PPM.

MAXENT problem Poisson PPM solution

Predicted probabilities are scale-dependent Predicted intensities are scale-invariant

How to determine spatial resolution? Increase until log-likelihood converges

How to assess model adequacy? Goodness-of-fit procedures (Chapter 3)

How to choose LASSO parameter? Data-driven methods (Chapter 7)

Available in MAXENT software only Standard GLM software (Chapter 8)

130 seconds to fit models in Figure 5.5 12 seconds to fit models in Figure 5.5

the LASSO parameter. These are summarised in Table 5.2. Another potential

advantage is in assessing model uncertainty – a point process framework can be

used to put standard errors on model coefficients and predictions, although when

using the LASSO in estimation (Fan & Li, 2005) there are some difficulties (Kyung

et al., 2010). A final advantage worthy of mention is in computation time: Figure 5.5

took 12 seconds to produce for the PPM, but 130 seconds using MAXENT software

(Table 5.2).

5.4 Improvements in Predictive Performance

I will now compare the predictive performance of the point process approach de-

scribed in Section 5.3 to MAXENT in order to assess whether the performance of

the model has been improved by the proposed refinements (in particular, modelling

point interactions and data-driven estimation of the LASSO penalty parameter).

The approach I took was to model Corymbia eximia presence-only data and predict

to new areas, assessing predictive performance using a separate presence-absence

dataset from 8678 systematically collected transects (NSW Office of Environment

and Heritage, 2010), as in Elith et al. (2006). This presence-absence dataset may
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Table 5.3: Predictive performance (measured as average area under the ROC curve

for 20 different 5-fold spatial cross-validation schemes) of different presence-only

models for C. eximia when predicting to a separate presence-absence dataset. Note

that the point process approach proposed in Section 5.3 has the highest predictive

performance.

Model LASSO Penalty Criteria AUC Standard Error

Poisson PPM No penalty 0.7555 0.0070

MAXENT ad hoc MAXENT 0.8508 0.0060

Poisson PPM Non-Linear GCV 0.8813 0.0051

Area-interaction Non-Linear GCV 0.9066 0.0036

be considered a “gold standard”, where observers have gone to each of the 8678

sites and specifically noted presences of C. eximia. I applied a spatial 5-fold cross-

validation in which sites were assigned to 30 square 64 × 64 km spatial blocks that

were randomly assigned to test and training samples. I employed this procedure

to minimise the influence of spatial autocorrelation, which was not considered by

MAXENT.

I evaluated the performance of MAXENT and various models from the point

process approach by comparing predicted intensities at the systematically collected

transects against observed presence/absence, using area under a ROC curve (Hastie

et al., 2009). Table 5.3 reveals that choosing the LASSO parameter to minimise the

non-linear GCV performed better than using MAXENT’s default method for C. ex-

imia for both PPMs. Hence, while MAXENT achieves high predictive performance

relative to other SDM methods (Elith et al., 2006), there is the potential to improve

it further by using the data to inform the choice of the LASSO parameter.
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5.5 Discussion

Some recent papers (Elith & Leathwick, 2009; Aarts et al., 2012) have called for

greater unification and synthesis of the literature on SDM. To that end, I have

demonstrated equivalence of MAXENT and a Poisson PPM. Warton & Shepherd

(2010) showed the equivalence of Poisson PPMs and pseudo-absence regression,

which aside from MAXENT is the most commonly used approach to presence-only

modelling at the moment. Hence this work represents a significant unification of

the literature, using Poisson PPMs to link the two most widely used presence-only

methods, MAXENT and pseudo-absence regression. This work has significant prac-

tical ramifications, given that MAXENT (Table 5.2) and pseudo-absence regression

(Warton & Shepherd, 2010) have shortcomings stemming largely from the frame-

work used for modelling, which can be resolved by using a Poisson PPM instead.

Others have made further connections between PPMs and alternative approaches

to analysis – Aarts et al. (2012) and Baddeley et al. (2012) made a connection to

the estimation of “resource selection functions” via presence-absence analysis, and

Dorazio (2012) to case-augmented binary regression. PPMs are a natural framework

for analysing presence-only data and it is interesting that a variety of different meth-

ods of analysis can all be connected to them in some way, and in many instances,

improved through this connection.

A key distinction between PPMs and MAXENT is that in the former µ(y) is

modelled on a per area basis whereas for the latter, π(gi) is modelled per grid cell –

the per area analysis is thus invariant under choice of spatial resolution while the per

grid cell analysis is not (because increasing spatial resolution increases the number

of grid cells). This is related to the distinction between probability and frequency

models (Aarts et al., 2012). It is this distinction that enables the likelihood con-

vergence for a Poisson PPM (Figure 5.4a) and hence a data-driven choice of spatial

resolution. However, MAXENT is proportional to a Poisson PPM (Theorem 5.2),

which suggests that it can achieve the same qualitative answer but with the disad-
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vantage of scale dependence of the predicted probabilities and an arbitrary choice

of spatial resolution.

One important disadvantage of MAXENT is that in its current form, it does not

estimate the intercept consistently (Elith et al., 2011). The intercept term diverges

to −∞ as spatial resolution increases. Theorem 5.2 gives the form of the term

causing this divergence. Such discrepancies between models fitted to grid cell data

at different spatial resolutions have been described extensively for logistic regression

in Baddeley et al. (2010). This means that MAXENT as currently posed cannot

predict species intensity for any subset of the study region A in the way that PPMs

can.

The ability to use data to estimate spatial resolution (Figure 5.4a) is of interest

for a couple of reasons. First, the resolution of the process is largely a function of bi-

ological factors and measurement error, and estimating this resolution is informative

about the spatial scale at which such processes are operating. Second, the resolution

of the process is of interest for computational reasons, because data are becoming

available at increasingly fine resolutions - I originally had access to 8,620,092 points

at the 100m resolution, but even finer resolutions are now available - and analysis

at such fine resolutions can be very computationally intensive. Colleagues analysing

this type of data in biology departments have constructed their own parallel com-

puting arrays to analyse this type of data for multiple species at fine resolutions.

Hence it is of considerable practical interest to know whether such a fine resolution

is required, and in this case, it clearly was not required as I only needed 134,716

quadrature points and was able to analyse data in seconds on a desktop computer

(Table 5.2), with negligible loss of information.

An alternative approach to using all grid cells in MAXENT analysis is to ran-

domly select empty grid cells as “background points” for analysis, as in Bonham-

Carter (1994). This obviates any computational need to coarsen resolution for anal-

ysis. The default approach that has been advocated (Phillips & Dud́ık, 2008) and



5.5. DISCUSSION 65

implemented in MAXENT software is to use 10,000 random background points,

which for my data was clearly insufficient (Figure 5.4), equivalent to using a reso-

lution of nearly 3 km. I advise that as a matter of routine, presence-only analysts

should use their data to identify a spatial resolution appropriate for analysis, or

equivalently, to identify the number of “background points” to use in analysis.

In Section 5.4 I demonstrated that PPMs achieve a higher predictive perfor-

mance for Corymbia eximia by choosing the LASSO penalty parameter to minimise

non-linear GCV. However, this may not be true of all species. In Chapter 7, I inves-

tigate the question of how predictive performance and variable selection varies with

different methods of choosing the LASSO parameter across multiple species using

two real data sets and simulation.
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Chapter 6

LASSO Asymptotics for Poisson
Point Process Models

6.1 Introduction

In Chapter 5, I established the equivalence of MAXENT and Poisson PPMs. There-

fore, any advantage in predictive performance inherent in MAXENT is not due

to a fundamental difference with GLM methods. One area in which the two ap-

proaches differ is in the incorporation of a LASSO penalty. Applying a LASSO

penalty shrinks parameter estimates toward zero, thereby reducing their variance.

A judicious choice of the LASSO penalty can therefore improve predictive ability.

Given that applying a LASSO penalty controls the complexity of the model and

impacts its predictive performance, it is clearly of interest to explore how to choose

the penalty.

The LASSO penalty applied by MAXENT is a function of the number of pres-

ences. However, the precise function is ad hoc, so an alternative may have superior

properties.

Knight & Fu (2000) examined the behaviour of LASSO-type estimators for linear

models of sample size n and established that applying a LASSO penalty of order

O(
√
n) results in parameter estimates that are

√
n-consistent. In this Chapter I

extend this result to the setting of Poisson PPMs, which to my knowledge has

67
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not been investigated previously. This is not a trivial exercise because while in a

typical study of asymptotic behaviour there is a fixed sample size n that is allowed

to grow large, there is no fixed n in a Poisson PPM. Instead, the natural measure

is the number of presences m, but it is a random quantity. I resolve this issue by

exploring the asymptotic behaviour of the LASSO estimator as the expected number

of presences µA approaches infinity. In Section 6.3 I show that for a set ofm presence-

only locations yP , applying a LASSO penalty of order O(
√
m) will yield parameter

estimates that are
√
m-consistent for a Poisson PPM. It is a slight abuse of notation

to discuss
√
m-consistency, because as above m is a random quantity and it is µA

which is sent to ∞ via the intercept. However, m/µA →P 1 so asymptotic results

for m and µA are interchangeable.

The
√
m-consistent result of this Chapter provides a means of choosing λ in

such a way that β̂ has desirable properties. The motivation for the focus on
√
m-

consistency is that this ensures that the tradeoff between bias and variance in pa-

rameter estimates is managed in such a way that both vanish at the same rate

asymptotically.

I begin with an asymptotic result for Poisson GLMs in Section 6.2, which serves

as an intermediate step to the asymptotic result for Poisson PPMs established in

Section 6.3. The result of Section 6.3 motivates a new criterion for choosing the

LASSO penalty in Section 6.4 that is
√
m-consistent in estimation. A discussion

follows in Section 6.5.

6.2 Asymptotic Behaviour of Poisson GLM LASSO

In this Section I will provide asymptotic results for a Poisson GLM as the sample

size n goes to infinity. This is a straightforward extension of the results of Knight &

Fu (2000), who established a result for linear models. This GLM result will provide

a framework to be used for examining the asymptotic behaviour of Poisson PPMs in
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Section 6.3. This result is very similar to the asymptotic result of adaptive LASSO

fitted to GLMs given in Zou (2006).

In this Section I assume that z = {z1, . . . , zn} is a set of count data which can

be modelled as a function of p explanatory variables X = (x1, . . . ,xp). Consider a

Poisson GLM, which has mean function:

E(zi) = µi = exiβ.

Hence the mean µi can be modelled as a loglinear function of environmental covari-

ates xi:

lnµi = xiβ.

This model can be fitted with a LASSO penalty by maximising the constrained

likelihood:

l(β; z) = −
n∑
i=1

µi +
n∑
i=1

zi lnµi − λn
p∑
j=1

|βj|. (6.1)

I denote the LASSO penalty parameter by λn in this Section to emphasise that it

will be chosen as a function of n. Denote by β̂n the vector of parameter values that

maximises (6.1) and β∗ the vector of true parameter values.

To investigate the consistency of the LASSO estimate β̂n, I will assume that

n→∞ in such a way that:

Cn =
1

n

n∑
i=1

µixix
′
i → C, (6.2)

where C is a nonnegative definite matrix,

1

n
max
1≤i≤n

µix
′
ixi → 0, and (6.3)

1

n
l′′′(β) →P K (6.4)

for β in the neighbourhood of β∗, where the elements of K are finite.

Conditions (6.2) and (6.3) are similar to those in Knight & Fu (2000) – the only

difference here is the inclusion of µi. This follows from the natural extension to

GLMs, as µi emerges from differentiating the log-likelihood (6.1). Condition (6.4),
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however, is similar to that of Zou (2006) and is necessary for the third derivative

term in a Taylor expansion of the likelihood to vanish asymptotically. Note that Cn

is the Fisher information of β∗.

The following theorem shows that
√
n-consistency is achievable for a Poisson

GLM with the right choice of λn when conditions (6.2), (6.3), and (6.4) hold.

Theorem 6.1. Assume that regularity conditions (6.2), (6.3), and (6.4) hold. If

λn/
√
n→ λ0 ≥ 0 and C is nonsingular, then

√
n(β̂n − β∗)→d argmax(v),

where

v(u) = u′T− 1

2
u′Cu− λ0

p∑
j=1

[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)],

T has a N(0,C) distribution, and u =
√
n(β − β∗).

Proof :

Let vn(u) = l(β∗ + u/
√
n) − l(β∗) − λn

∑p
j=1[|βj + uj/

√
n| − |βj|]. As l(β∗) is a

constant with respect to β, vn(u) will be maximised when β = β̂n. Rephrasing the

result in terms of u, vn(u) is maximised when u = û =
√
n(β̂n − β∗).

To determine the limiting distribution of vn(u), consider a Taylor expansion of

l(β) about β = β∗:

l(β) ≈ l(β∗) + l′(β∗)(β − β∗) +
1

2
(β − β∗)′l′′(β∗)(β − β∗) +Op(n

−1/2).

The Op(n
−1/2) term follows from (6.4). Hence,

l(β)− l(β∗) ≈ l′(β∗)(β − β∗) +
1

2
(β − β∗)′l′′(β∗)(β − β∗) +Op(n

−1/2)

= l(1)
n (u) + l(2)

n (u) +Op(n
−1/2),

where

l(1)
n (u) =

n∑
i=1

(yi − µi)x′i
u′√
n

(6.5)

l(2)
n (u) = − 1

2n
u′

n∑
i=1

(µixix
′
i)u.
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From (6.2) and (6.3), the Central Limit Theorem can be applied to (6.5). Hence

l
(1)
n (u)→d u

′T.

By (6.2), l
(2)
n (u)→ −1/2u′Cu.

As in Knight & Fu (2000),

λn
∑p

j=1[|βj + uj/
√
n| − |βj|]→ λ0

∑p
j=1[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)].

Hence by Slutsky’s Theorem, vn(u) →d v(u). As in Knight & Fu (2000), vn is

convex and v has a unique maximum, so

argmax(vn) =
√
n(β̂n − β∗)→d argmax(v).

6.3 Asymptotic Behaviour of Poisson PPM LASSO

I now focus on the key result of this Chapter, the asymptotic behaviour of a Poisson

PPM as the expected number of presence locations µA goes to infinity.

In this Section I assume that y = {yP ,y0} is modelled as a Poisson PPM whose

intensity µi = aexiβ is a log-linear function of environmental covariates xi (Equation

3.4) with coefficients stored in β = {β0, β1, . . . , βp}. Denote by β∗ the vector of true

parameter values.

For the asymptotic result that follows, I assume a → ∞, which ensures that

µA → ∞ in such a way that µi → ∞ uniformly while β∗ remains fixed. Geometri-

cally, the spatial pattern of the intensity surface remains the same but the scale of

the intensity increases to ∞ such that realisations of the point process generate an

increasingly large number of points yP placed in A.

To fit a Poisson PPM with a LASSO penalty, once again the constrained likeli-

hood is maximised:

l(β;yP ) =
m∑
i=1

lnµ(yi)− µA − λm
p∑
j=1

|βj|. (6.6)

I denote the LASSO penalty parameter by λm in this Section to emphasise that it
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will be chosen as a function of m. Denote by β̂m the vector of parameter values

that maximises (6.6).

To show that β̂m is
√
m-consistent, I will assume similar regularity conditions

to those in Section 6.2:

Cm =
1

µA

∫
y∈A

µ(y)xix
′
idy → C, (6.7)

where C is a nonnegative definite matrix,

1

µA
max
y∈A

ex(y)βx(y)′x(y) → 0, and (6.8)

1

m
l′′′(β) →P K (6.9)

for β in the neighbourhood of β∗, where the elements of K are finite.

The following theorem shows that
√
m-consistency can be achieved with the

proper choice of λm.

Theorem 6.2. Assume that regularity conditions (6.7), (6.8), and (6.9) hold. If

λm/
√
m→ λ0 ≥ 0 and C is nonsingular, then

√
m(β̂m − β∗)→d argmax(v),

where

v(u) = u′T− 1

2
u′Cu− λ0

p∑
j=1

[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)],

T has a N(0,C) distribution, and u =
√
m(β − β∗).

Proof :

Let vm(u) = l(β∗ + u/
√
m) − l(β∗) − λm

∑p
j=1[|βj + uj/

√
m| − |βj|]. From the

same argument as given in the proof of Theorem 6.1, vm(u) is maximised when

u = û =
√
m(β̂m − β∗).

To determine the limiting distribution of vm(u), consider a Taylor expansion of

l(β) about β = β∗:

l(β) ≈ l(β∗) + l′(β∗)(β − β∗) +
1

2
(β − β∗)′l′′(β∗)(β − β∗) +Op(m

−1/2).
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The Op(m
−1/2) term follows from (6.9). Hence,

l(β̂m)− l(β∗) ≈ l′(β∗)(β − β∗) +
1

2
(β − β∗)′l′′(β∗)(β − β∗) +Op(m

−1/2)

= l(1)
m (u) + l(2)

m (u) +Op(m
−1/2),

where

l(1)
m (u) =

u′√
m

(
m∑
i=1

xi −
∫
y∈A

x(y)µ(y)dy

)
(6.10)

l(2)
m (u) = − 1

2m
u′
∫
y∈A

µ(y)x(y)′x(y)dy u.

By (6.7), l
(2)
m (u)→ −1/2u′Cu.

I will find the limit of (6.10) by splitting the region A into increasingly fine

grid cells and expressing the integral as the limit of a Reimann sum of the volume

under the intensity surface in each cell. Let z = {z1, . . . , zn} for n grid cells, where

zi = I(i ∈ {1, . . . ,m}). zi is therefore an indicator of whether cell i is one of the m

presence-only locations. Let wi = |A|/n be the area of each cell and a/n→ k, where

0 < k < ∞. Letting a and n grow to ∞ at the same rate is the key innovation, as

it permits the Central Limit Theorem to be applied as in the proof of Theorem 6.1.

l(1)
m (u) =

u′√
m

(
n∑
i=1

xizi − lim
n→∞

n∑
i=1

xiµiwi

)

=
u′√
m

(
lim
n→∞

n∑
i=1

xi(zi − µiwi)

)

=
u′√
m

(
lim
n→∞

n∑
i=1

xi(zi −
a

n
|A|exiβ)

)

=
u′
√
µA

√
µA√
m

(
lim
n→∞

n∑
i=1

xi(zi −
a

n
|A|exiβ)

)

→P
u′
√
µA

(
lim
n→∞

n∑
i=1

xi(zi − k|A|exiβ)

)
→d u′T. (6.11)

(6.11) follows from the Central Limit Theorem. The zi in different grid cells are

independent with mean µiwi. Hence by the Central Limit Theorem for weighted
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sums (Fisher, 1992),

1√∑n
i=1 µiwixix

′
i

n∑
i=1

xi (zi − µiwi) →d N(0, I)

1
√
µA

lim
n→∞

n∑
i=1

xi (zi − µiwi) →d T.

As in Knight & Fu (2000),

λm
∑p

j=1[|βj + uj/
√
m| − |βj|]→ λ0

∑p
j=1[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)].

Hence by Slutsky’s Theorem, vm(u) →d v(u). As in Knight & Fu (2000), vm is

convex and v has a unique maximum, so

argmax(vm) =
√
m(β̂m − β∗)→d argmax(v).

6.4 New method of choosing the LASSO penalty:

MSI

The asymptotic result in Theorem 6.2 provides a guideline for developing LASSO

penalty criteria that are
√
m-consistent. Hence I propose the MSI penalty for choos-

ing the LASSO penalty, which is based on the smallest penalty that will fully shrink

to the intercept model, λmax:

λMSI =
λmax√
m
. (6.12)

The name MSI is proposed since λmax is equal to the Maximum value of the Score

functions of the Intercept model. One noteworthy quality of the MSI penalty is that

when m = 1, λMSI will shrink all coefficients to zero. This is appealing because there

is insufficient information to construct a reasonable SDM with only one presence

location.

I will now show that λMSI = O(
√
m).
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The score functions are found by differentiating the unconstrained log-likelihood

(Equation 3.7) with respect to β:

s(β;yP ) =
∂l(β;yP )

∂β

=
m∑
i=1

1

µi

∂µi
∂β
−
∫
y∈A

∂µ(y)

∂β
dy

=
m∑
i=1

1

µi
µixi −

∫
y∈A

µ(y)x(y)dy

=
m∑
i=1

xi −
∫
y∈A

µ(y)x(y)dy.

Let β̂0 = (β0, 0, . . . , 0) be the parameters of the intercept model and µ̂0 = m/|A|

be the corresponding intensity. Let β∗ and µ∗ be the true parameter values and

intensity surface, respectively. Then, the score functions of the intercept model are:

s(β̂0;yP ) =
m∑
i=1

xi −
∫
y∈A

µ̂0(y)x(y)dy

→d

∫
y∈A

µ∗(y)x(y)dy −
∫
y∈A

µ0(y)x(y)dy (6.13)

= µA

∫
y∈A

x(y)

[
µ∗(y)

µA
− µ0(y)

µA

]
dy, (6.14)

where µ0 = µA/|A|. (6.13) follows from the GNZ formula (Equation 3.21). Because

all terms in the integrand of (6.14) are constant with respect to a, the integral has

order O(1).

Consequently, the expression in (6.14) has order O(m), and:

λMSI =
maxj s(β̂0;yP )√

m
(6.15)

= O(
√
m).

6.5 Discussion

In this Chapter, I have established an asymptotic result for choosing the LASSO

penalty for Poisson PPMs. While Theorem 6.2 establishes that choosing λm =
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O(
√
m) leads to a β̂m that is consistent in estimation, it does not guarantee that

β̂m is consistent in variable selection. In order for β̂m to be consistent in variable

selection, a further restriction known as the Strong Irrepresentable Condition (Zhao

& Yu, 2006) must be imposed on Cm (Zhao & Yu, 2006; Zou, 2006; Yuan & Lin,

2007). Assume that q of the p environmental variables have nonzero coefficients

and that the matrix of environmental variables X and coefficient vector β are ar-

ranged such that X = (X(1),X(2)) and β = {β(1),β(2)}, where β(1) and β(2) contain

coefficients that are nonzero and zero, respectively, and X(1) and X(2) contain the

associated environmental variables. Then Cm can be represented as follows:

Cm =

 C11
m C12

m

C21
m C22

m

 .

In order for the LASSO estimate β̂m to be consistent in variable selection, there must

be a positive constant vector ε such that |C21
m (C11

m )−1sign(β(1))| ≤ 1−ε. Essentially,

this puts a limit on the correlation between variables with nonzero coefficients and

variables with zero coefficients. In theory, designing the matrix X to be orthogonal

would ensure that the Strong Irrepresentable Condition holds. In SDM, however,

this may cause the variables to lose interpretation.

However, Zou (2006) motivated the adaptive LASSO as an alternative to LASSO

because it can be both consistent in estimation and variable selection. Theorem 6.1,

which is very similar to the asymptotic results of Zou (2006), was used as an interme-

diate step to Theorem 6.2. Therefore, I expect that it would be possible to likewise

extend the asymptotic behaviour of GLMs fitted with adaptive LASSO penalties to

the setting of Poisson PPMs by phrasing the question in terms of m instead of n.

I developed MSI as an alternative to MAXENT’s default penalty with Theo-

rem 6.2 as the motivation, and in Section 6.4 I showed that the MSI penalty is

therefore consistent in estimation. MAXENT software by default uses a penalty

that can be understood to have the form mf(m), where f(m) is an ad hoc decreas-

ing piecewise linear sequence of penalties (Phillips & Dud́ık, 2008). As a result, the
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Figure 6.1: Comparison of MAXENT and MSI penalties. The MAXENT penalty

does not increase smoothly as the number of presences m increases, while the MSI

penalty increases smoothly at a rate of
√
m. The numerator of the MSI penalty is

the maximum score function of the intercept model (6.15).

default MAXENT penalty does not increase smoothly as m increases, and in fact

at times it decreases (Figure 6.1). For m ≥ 100, the MAXENT penalty increases

at a rate of m instead of
√
m, and therefore does not have order O(

√
m). Hence

LASSO estimates chosen by the MAXENT penalty do not satisfy the conditions of

Theorem 6.2 required for
√
m-consistency.

While this Chapter provides a theoretical comparison of the MAXENT and MSI

penalties, in Chapter 7, I compare them from a data and simulation perspective.
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New Presence-Only Methods
and Their Evaluation



Chapter 7

LASSO Penalty Choice for Species

Distribution Models

7.1 Introduction

In Chapter 6, I considered the question of how to choose the LASSO penalty in Pois-

son PPMs from a theoretical perspective. In this Chapter I address the question

from the perspective of real data and simulation by comparing predictive perfor-

mance and variable selection across many different methods.

Most criteria, including those mentioned in Chapter 4, require a sequence of

models with different LASSO penalties (a “regularisation path”) to be calculated to

find the optimal point of the bias-variance tradeoff (Figure 7.1). MAXENT, on the

other hand, proposes an ad hoc value for the penalty based solely on the number of

presence cells and the type of variables included (Phillips & Dud́ık, 2008). These

values were determined by optimising the predictive performance of a number of

data sets (Phillips & Dud́ık, 2008) and assuming that the results applied universally.

The default MAXENT penalty has yielded good predictive performance (Elith et al.,

2006), but there is reason to believe that even better performance is possible. In

Chapter 5, non-linear GCV outperformed MAXENT in predictive performance for

79
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Figure 7.1: Example regularisation path required for most criteria for choosing the

LASSO penalty λ. A sequence of models is fitted by varying λ, and the model which

optimises the given criterion is chosen. In contrast, MAXENT and MSI only require

a single model to be fitted at a value of λ chosen a priori, rather than estimation of

an entire regularisation path.

Corymbia eximia. In Chapter 6, I developed a new criterion, MSI, which is consistent

in estimation whereas MAXENT is not. Whether these advantages apply more

generally will be explored in this Chapter.

Others are also considering the performance of MAXENT’s default LASSO

penalty. Using simulations from a “true” model fitted by MAXENT, Warren &

Seifert (2011) showed that given a regularisation path of models, sample-size cor-

rected AIC and BIC are superior in variable selection than criteria based on max-

imising AUC. Using presence-only data, Gastón & Garćıa-Viñas (2011) compared

MAXENT’s default penalty with three versions of logistic regression and found that

penalised logistic regression has similar performance to MAXENT and that both

penalised logistic regression and MAXENT exhibited superior performance to un-
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penalised logistic regression and forward-stagewise logistic regression. Moreover,

they found that MAXENT’s default penalty had the greatest performance advan-

tage for small sample sizes. Anderson & Gonzalez (2011) segregated the training

and test data geographically to account for spatial autocorrelation and found that

the default MAXENT penalty achieved near-optimal predictive performance in pre-

dicting to the presence-only locations in the test set for small samples, but was

generally too small and hence prone to overfitting for larger sample sizes.

The study design I use in this Chapter differs from those mentioned in the

previous paragraph in numerous ways – I include additional methods of choosing

the LASSO penalty, an additional implementation of LASSO (adaptive LASSO),

models which account for interpoint dependence (area-interaction models), and an

approach to evaluating model performance using separate presence/absence data

that is robust to potential misspecification of point interactions. In each of these

ways, this Chapter approaches the problem of LASSO penalty choice in a different

way to what has been considered elsewhere in the ecology literature. In Section 7.2 I

describe the methods that will be compared in the study, and in Section 7.3 I describe

the data that is used in this aim. The metrics with which I compare performance

of the different methods and results are presented in Section 7.4. Finally, some

discussion follows in Section 7.5.

7.2 Methods of Choosing the LASSO Penalty

In this Section I describe the seven methods of choosing the LASSO penalty con-

sidered in this Chapter. These seven methods come from three different classes

of methods for choosing the LASSO penalty: information criterion methods, cross

validation methods and prevalence-based methods.

The information criterion methods evaluated are AIC (Akaike, 1974), BIC (Schwarz,

1978) and the Hannan-Quinn information criterion (HQC, Hannan & Quinn, 1979).
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These methods all share the same form based on the log-likelihood l(β;yP ) (Equa-

tion 3.7):

−2l(β;yP ) + Cv(β),

where v(β) is the effective degrees of freedom, estimated as the number of nonzero

coefficient estimates
∑p

j=1 I(|βj| > 0). These methods vary only in the choice of

constant C: C = 2, C = lnm, and C = 2 ln(lnm) for AIC, BIC, and HQC,

respectively.

The cross validation methods included are generalised cross validation (GCV,

Craven & Wahba, 1979) and non-linear GCV (NLGCV, Fu, 2005). These methods

are based on the deviance:

D(β;yP )

m(1− v(β)/m)2
,

where D(β;yP ) is the deviance of a Poisson PPM, m is the number of presence

locations and v(β) is the effective degrees of freedom.

For GCV, v(β) = (X′WX + λGβ)−1X′WX, where W = wµ for a vector

of quadrature weights w and Gβ = diag(1/|β|), replacing undefined elements of

the diagonal with 0 when βj = 0. For non-linear GCV, v(β) = pq(β), where

q(β) =
∑p

j=1 |βj|/
∑p

j=1 |β̂GLM,j|.

The prevalence-based methods included are MAXENT’s ad hoc method and MSI

(Equation 6.12). MAXENT software uses a decreasing piecewise linear function

f(m) to determine the penalty when linear, quadratic, and interaction terms are

used as in this Chapter:

f(m) =



−0.1m+ 2.6 : m ≤ 17

− 7
260
m+ 353

260
: 18 ≤ m ≤ 30

− 1
140
m+ 107

140
: 31 ≤ m ≤ 100

0.05 : m > 100.

From Chapter 5, the constrained entropy used by MAXENT Λ(β;yP ) (Equation
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5.7) can be related to the likelihood of a Poisson PPM l(β;yP ) as follows:

Λ(β;yP ) =
l(β;yP )

m
+ C,

where C is a constant with respect to β. Consequently,

Λ(β;yP )− f(m)

p∑
j=1

|βj| ∝ l(β;yP )−mf(m)

p∑
j=1

|βj|.

Hence for MAXENT, the default penalty is mf(m) in the context of Poisson PPMs,

as shown in Figure 6.1.

7.3 Data Sets and Evaluation of Performance

In this Section I describe the data sets and metrics used to compare the methods

for choosing the LASSO penalty.

To investigate the performance of the methods of choosing the LASSO penalty

presented in Section 7.2, I chose to analyse both real species data and simulated

data. The real species data, consisting of two pairs of data sets (a presence-only

data set and an independently collected presence-absence data set), allow me to

evaluate the predictive performance of these methods in practice. The simulations

allow me to evaluate the performance of these methods in selecting the right subset

of environmental variables and replicating the true intensity surface under a suite

of assumptions about model structure and species abundance.

7.3.1 Real Species Data

The two pairs of real species data sets analysed represent two different families of

plants in two different regions of New South Wales, Australia. The Blue Mountains

pair tracks locations of 181 eucalypt species within 100 km of the Blue Mountains

Region near Sydney (NSW Office of Environment and Heritage, 2012), whereas the

Hunter Valley pair tracks locations of 31 fern species within 20 km of the Hunter
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Valley (NSW Office of Environment and Heritage, 2012). In each pair there are two

data sets – the first (“presence-only”) consists only of reported presence locations

yP for the 181 eucalypt species (Blue Mountains) or 31 fern species (Hunter Valley),

while the second (“presence-absence”) consists of a systematic list of both presences

and absences for the corresponding species at each of 12,504 (Blue Mountains) or

3,340 (Hunter Valley) pre-determined sites.

All models built for these data sets use a combination of environmental variables

and variables measuring the accessibility of sites. For the Hunter Valley species,

the environmental variables included minimum and maximum annual temperature

(MNT and MXT) and annual rainfall (Rain). For the Blue Mountains species, a

fourth environmental variable included was the number of fires recorded since 1943

(FC). The site accessibility variables included for both data sets were distance from

main roads (D.Main) and distance from urban areas (D.Urb). I used a quadratic

function of all variables, including interactions between the environmental variables

and between the two accessibility variables as in Section 5.3. The functions I wrote

for this purpose are available in the ppmlasso package (Chapter 8) for R. Quadrature

points were chosen along a regular grid at the 1km × 1km spatial resolution following

the method of Warton & Shepherd (2010).

My approach was to model the occurrence of each of the 181 Blue Mountains

and 31 Hunter Valley species using the presence-only data and predict to new areas,

measuring predictive performance using the presence-absence data. In order to

construct “new areas” in which to predict, I applied a 5-fold spatial cross-validation

scheme as in Section 5.4 using the presence-only data as training data and the

presence-absence data as test data. Sites were grouped into square blocks that were

randomly assigned to training and test samples. This scheme was implemented

with blocks of size 64 × 64 km. If necessary, block length was repeatedly halved

until no more than half of the presence-only locations fell into a single group. I then

constructed a regularisation path of 202 models on the training blocks corresponding
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Figure 7.2: 5-fold spatial cross validation scheme used in analysis. Here, blocks in

cross validation groups 1-4 are used to build models and blocks in cross validation

group 5 are used to test models. Presence-only locations (N) and quadrature points

in cross validation groups 1-4 are used to build Poisson PPMs, which are then used

to predict species intensities at the known presence (•) and absence (×) locations

in cross-validation group 5.

to 200 LASSO penalties equally spaced on a logarithmic scale from e−10 to λmax as

well as the MAXENT and MSI penalties. The models corresponding to each of the

criteria were used to calculate predicted intensities in the test blocks. Figure 7.2

illustrates the spatial cross-validation scheme to split both data sets into training

and test blocks.

After applying this procedure to each cross validation group, I constructed a

ROC curve from the predicted intensities and observed presence or absence of the

species and measure the predictive performance by area under the curve (AUC). I

repeated the randomisation procedure for assigning the data to test and training

blocks 40 times.
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The combination of using separate data sets for training and testing as well as

applying spatial cross-validation represents a new approach to comparing methods

of choosing the LASSO penalty. The studies of Gastón & Garćıa-Viñas (2011) and

Anderson & Gonzalez (2011) applied a spatial cross-validation scheme, but only on

a single data set, while the study of Elith et al. (2006) used separate data sets for

training and testing but without any spatial cross-validation. The approach used in

this Chapter reflects the notion that while the presence-only and presence-absence

data sets were collected separately, this does not obviate the need to account for

spatial autocorrelation.

I implemented this procedure across a 2 × (1 + 3 × 7) design (Figure 7.3). I con-

sidered two classes of model to evaluate: Poisson PPMs and area-interaction models

with a species-specific interaction radius chosen to minimise the pseudolikelihood,

ranging from 1 km to 10 km by increments of 0.1 km. For each class of model, I

calculated the unpenalised model as well as regularisation paths from 3 implemen-

tations of LASSO – regular LASSO, adaptive LASSO with adaptive weights coming

from the coefficients of the unpenalised solution (Ad-Unp LASSO), and adaptive

LASSO with adaptive weights coming from the model coefficients determined by

the seven criteria discussed in Section 7.2 (Ad-Method LASSO). For LASSO and

Ad-Unp LASSO, I determined the models corresponding to each of the seven meth-

ods of Section 7.2. For Ad-Method LASSO, I determined the model that optimised

the same criterion used to calculate the adaptive weights. These models were then

used to calculate predicted intensities at the presence/absence locations in the test

blocks.

7.3.2 Simulations

The design of simulations (Figure 7.3) largely mimics that of the real species data.

Simulated presence locations were generated using realisations of either a Poisson

PPM or area-interaction model with radius 2 km and interaction parameter of 2
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Figure 7.3: 2 × (1 + 3 × 7) design of models fitted and compared. There were

two model types fitted: Poisson PPMs and area-interaction models. For both model

types, I calculated (1) the unpenalised model, (2) a LASSO regularisation path, (3)

an adaptive LASSO regularisation path using the unpenalised coefficients to deter-

mine initial weights (Ad-Unp LASSO), and (4) an adaptive LASSO regularisation

path using the coefficients of the seven methods of choosing the LASSO penalty to

determine initial weights (Ad-Method LASSO).

different strengths – weak (0.1
∑p

j=1 |βj|) and strong (0.5
∑p

j=1 |βj|). As the relative

performance of the various methods of choosing the LASSO penalty may vary with

true model complexity and magnitude of species prevalence, I generated 100 realisa-

tions across three levels of model sparsity and five levels of species abundance (Table

7.1) for each of six species using the rpoispp and rmh functions in the spatstat

package in R. I calculated the relevant environmental variables at the simulated pres-

ence locations using bilinear interpolation (see Appendix B) from a regular 100m ×

100m grid of environmental data.

Models corresponding to each method of choosing the LASSO penalty were com-
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Table 7.1: Design of Simulations. For each of six species, I simulated from a Poisson

PPM with one of three levels of sparsity (measured by the number of non-zero

variables k out of 19) and abundance (measured by µA). Combinations of abundance

and sparsity with check marks are presented in Figures 7.7-7.9.

Sparsity

Full (k = 19) Moderate (k = 12) Sparse (k = 6)

A
b
u
n
d
an

ce

Super Abundant (µA = 810) X X X

Abundant (µA = 270)

Moderate (µA = 90) X X X

Rare (µA = 30)

Super Rare (µA = 10) X X X

pared in (1) selection of the correct subset of environmental variables, (2) accuracy

of estimating regression coefficients, and (3) accuracy of predictions.

Variable selection performance was measured by counting both the number of

variables correctly included in the model with the correct sign and the number of

variables correctly shrunk to zero.

Accuracy in estimating regression coefficients (β̂) was determined by calculating

their mean squared error. Denote by β̂
(i)

the predicted coefficients for the ith

simulation and by β∗ the vector of true coefficients. Given that there were 100

simulations, mean squared error was calculated by:

MSE(β̂) =
1

100

100∑
i=1

(β̂
(i)
− β∗)′(X′WX)−1(β̂

(i)
− β∗), (7.1)

where W = diag(wµ∗) for a vector of quadrature weights w and a vector of true

intensities µ∗. This is a scaled mean squared error, where β̂ was rescaled by X′WX

to account for correlation and differences in variability across regression coefficients.

As usual, (7.1) can be decomposed into bias and variance components:

MSE(β̂) = bias2(β̂) + var(β̂),
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where

bias2(β̂) = (β̃ − β∗)′(X′WX)−1(β̃ − β∗),

var(β̂) =
1

100

100∑
i=1

(β̂
(i)
− β̃)′(X′WX)−1(β̂

(i)
− β̃),

and β̃ = 1
100

∑100
i=1 β̂

(i)
.

Predictive performance was measured using integrated mean squared error, de-

fined as:

IMSE(η̂) =

∫
y∈A

(η∗(y)− η̂(y))2dy,

where η̂(y) = ln µ̂(y) and η∗(y) is the true log intensity at location y. Given a set of

quadrature points y0 = {ym+1, . . . , yn} and quadrature weights w as in Chapter 3,

integrated mean squared error can be approximated as:

IMSE(η̂) ≈
n∑
i=1

wi(η∗,i − η̂i)2,

where η̂i and η∗,i are respectively the predicted and true log intensities at location yi.

Kullback-Leibler divergence and correlation between the true intensity and predicted

intensity were also calculated, but results are not presented because they are similar

to those of integrated mean squared error.

The true parameters used to simulate presence locations for each combination

of model sparsity and species abundance come from a regularisation path of Pois-

son PPMs for six eucalypt species in the Blue Mountains region – Acmena smithii,

Corymbia eximia, Eucalyptus canaliculata, Eucalyptus eugenioides Eucalyptus ru-

bida, and Homoranthus cernuus. These species were chosen as they occupy distinct

environmental and geographic regions within the study area. For each species, I

chose three models from the regularisation path to correspond to different model

sizes (labelled “Full”, “Moderate”, and “Sparse”) and adjusted the intercept to cor-

respond to one of five abundance levels (labelled “Super Abundant”, “Abundant”,

“Moderate”, “Rare”, and “Super Rare”) as in Table 7.1.
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Performing the calculations for this design was computationally intensive, requir-

ing over 2 months of computation time on computational clusters of Dell PowerEdge

M610 (Intel Xeon X5660, 2.80 GHz) processors.

7.4 Results

7.4.1 Blue Mountains and Hunter Results

The average area under the ROC curve (AUC) for the various criteria is presented

in Table 7.2. As some information criterion methods performed similarly and both

cross validation methods performed similarly, all subsequent results will include only

the unpenalised model, BIC, non-linear GCV, MAXENT, and MSI, with AUC as the

measure of predictive performance throughout. It appears that the ad hoc MAXENT

method performed poorly, with worse average AUC than the unpenalised model

and ahead of only GCV. Figure 7.4 illustrates the relationship between predictive

performance and prevalence as estimated from a generalised additive model (Wood,

2011). Both the Blue Mountains and Hunter datasets exhibited similar patterns.

MAXENT appeared to perform poorly for rare species but its performance generally

improved as prevalence increased. MSI and non-linear GCV performed well for

rare species, but due to high inter-species variability, it was difficult to ascertain

significant differences among methods other than MAXENT for rare species.

When considering models shrunk by adaptive LASSO, there was no appreciable

change in performance with the exception of MAXENT and non-linear GCV for

rare species, which performed better with the Ad-Unp implementation but worse
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Table 7.2: Average predictive performance (measured as average area under the

ROC curve for 40 different 5-fold spatial cross-validation schemes) and standard

error of different methods of choosing the LASSO penalty when predicting to a

separate presence-absence dataset.

LASSO Penalty Blue Mountains Hunter Valley

Criterion AUC S.E. AUC S.E.

Unpenalised 0.7356 0.0083 0.6492 0.0229

AIC 0.7393 0.0083 0.6530 0.0216

BIC 0.7467 0.0083 0.6600 0.0207

HQC 0.7407 0.0083 0.6580 0.0216

MAXENT 0.7276 0.0124 0.6288 0.0288

GCV 0.7199 0.0121 0.6258 0.0291

Non-Linear GCV 0.7686 0.0086 0.6832 0.0237

MSI 0.7799 0.0092 0.6753 0.0262
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Figure 7.4: Predictive performance of different optimisation criteria applied to Pois-

son PPMs for (left) 181 eucalypt species in the Blue Mountains region near Sydney

and (right) 31 fern species in the Hunter Valley. 95% confidence bands are shaded

around each curve.
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with the Ad-Method implementation (Figure 7.5). Applying an adaptive LASSO

penalty generally reduced the difference in performance among the various criteria.

To investigate whether fitting area-interaction models improves predictive per-

formance, I examined the inhomogeneous K-function of the 181 Blue Mountains

species, as in Section 3.3. Among the 181 Blue Mountains species, 113 exhibited at

least moderate deviation from the confidence bounds of 95% simulation envelopes

and hence I fitted area-interaction models to these species. Figure 7.6 illustrates

that there was no appreciable benefit in predictive performance when applying area-

interaction models at any level of prevalence or interaction radius, and in fact was

worse for MAXENT for moderately rare species. A notable difference is that the

unpenalised model performed relatively better – while the performance of methods

based on a LASSO penalty deteriorated as interaction radius grew larger, the unpe-

nalised model did not lose any ground. For large radii, the unpenalised model had

the highest average AUC, significantly better than MAXENT and BIC.

7.4.2 Simulation Results

The simulation results will be presented by examining (1) the selection of variables,

(2) mean square error, and (3) predictive performance of each method. Appendix A

also shows a comparison of the amount of shrinkage applied, as an alternative mea-

sure of overfitting or underfitting in comparison with Figures 7.7 and 7.8. Patterns

were similar for all six species, so results are only shown for Corymbia eximia.

Figure 7.7 consists of double-sided barplots for the unpenalised model, BIC, non-

linear GCV, MAXENT, and MSI. The top part of each bar represents the number of

parameters that should be in the model that were either falsely excluded or given the

wrong sign, while the bottom part of each bar represents the number of parameters

that were falsely included. Hence the overall size of the bar is the total number of

variables misclassified and the location of the bar indicates whether methods tended
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Figure 7.5: Predictive performance of different optimisation criteria applied to Pois-

son PPMs fitted with (top) Ad-Unp LASSO and (bottom) Ad-Method LASSO

penalties. Most methods had comparable performance to their normal LASSO

counterparts (Figure 7.4), with the exception of MAXENT and non-linear GCV

for rare species, which performed worse for Ad-Method LASSO but better for Ad-

Unp LASSO.
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Figure 7.6: Predictive performance of different optimisation criteria applied to area-

interaction models of 113 Blue Mountains species for which K-envelopes suggested

the presence of interpoint interactions. There was no appreciable benefit in perfor-

mance in fitting area-interaction models at either any level of prevalence (left) or

interaction radius (right). For MAXENT, performance was worse when fitting an

area-interaction model for moderately rare species. Performance of area-interaction

models appeared to get worse as the interaction radius increased.
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to overfit (bar is centred below zero) or underfit (bar is centred above zero).

The unpenalised model tended to overfit the data and hence falsely included the

most variables, while non-linear GCV and MAXENT for super rare species tended

to underfit and thus falsely exclude the most variables. BIC and MSI had the

best overall performance. As abundance increased, each method improved overall

variable selection regardless of model sparsity.

How variable selection impacted mean squared error (MSE) can be seen in Fig-

ure 7.8. The size of the bars correspond to the value of the MSE for each method.

Each bar consists of a lighter portion and a darker portion, representing the pro-

portion of MSE attributable to bias and variance, respectively. This was done to

illustrate how each method judges the bias-variance tradeoff.

Overall MSE appeared to decrease as abundance increased and models became

more sparse. Methods with high shrinkage such as non-linear GCV and MAXENT

for rare species exhibited high bias and low variance. High shrinkage is desirable

for rare species (where variance is high) and sparse models (where bias is low),

whereas low shrinkage is desirable for abundant species (where variance is low) and

full models (where bias can be high). BIC appeared to be severely punished with

high variance for gross overfitting in a few outlying simulations of super rare species.

Overall MSE was fairly similar across all methods, with the exception of BIC for

super rare species as previously noted.

To compare the performance of the different methods in estimating the true

intensity surface, I examine integrated mean square error in Figure 7.9.

It tells a broadly similar story to the real species data. The benefit of shrinkage

increased as abundance decreased. When shrinkage was desired, MSI was competi-

tive for all abundance levels as in the real species data, while MAXENT performed

relatively worse for rare species, although not to nearly the same extent as for the

real data as shown in Figure 7.4. Because MSI and MAXENT overshrank to the
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Figure 7.7: Variable selection of different methods of choosing the LASSO penalty.

Bars above 0 indicate the number of variables in the true model that are incorrectly

excluded or given the wrong sign. Bars below 0 indicate the number of variables

equal to 0 in the true model but incorrectly included.
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Figure 7.8: Mean Square Error of methods for choosing the LASSO penalty from

100 simulations at each of three different levels of model complexity (columns) and

prevalence (rows). The lighter parts of the bars represent bias and the darker parts

represent variance.
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Figure 7.9: Integrated mean square error boxplots of methods for choosing the

LASSO penalty from 100 simulations at each of three different levels of model com-

plexity (columns) and prevalence (rows).
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largest degree for full models (Figure 7.7), their predictive performance suffered for

moderately abundant and super abundant species. The main differences in results

from the real species data are that the relative predictive performance was better

for BIC and worse for non-linear GCV in the simulated data, which indicates that

the predictive cost of underfitting tended to outweigh the cost of overfitting.

Figure 7.10 compares the variable selection, MSE, and integrated mean squared

error for LASSO and both adaptive LASSO implementations (Ad-Unp LASSO and

Ad-Method LASSO). The plots correspond to moderate level sparsity and super

rare abundance, as the patterns did not vary appreciably across different levels

of sparsity and abundance. Applying adaptive LASSO does not generally change

whether methods overfit or underfit. Overall MSE was generally similar regardless

of the type of LASSO penalty applied, with the exception of MAXENT for Ad-

Unp. The Ad-Unp implementation of adaptive LASSO generally reduced bias and

increased variance. The reduction in bias seemed to allow MAXENT to close the

gap in performance with MSI for Ad-Unp LASSO. This improvement was likewise

apparent with the real species data (Figure 7.5, top row).

To examine the impact of incorrectly assuming independence among point lo-

cations in the existence of point interactions, I compared the performance of the

different methods for choosing the LASSO penalty when fitted using the correct

area-interaction model framework and the incorrect Poisson point process model

framework. Figures 7.11 and 7.12 illustrate this comparison when the true interac-

tion parameter was strong and weak, respectively. Because the pattern remained

the same across sparsity levels, these plots correspond to moderately sparse models.

The results were somewhat complex and depended on species prevalence and

the strength of the interaction parameter. When the true interaction parameter

was strong (Figure 7.11), penalisation did not generally improve predictive perfor-

mance, and in fact generally made it worse for rare species (Figure 7.11b). However,

correctly fitting an area-interaction model was beneficial when data were sufficient
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Figure 7.10: Comparison of methods for LASSO (left) and adaptive LASSO for super

rare species. Adaptive weights for each method were chosen using coefficients of the

unpenalised model (Ad-Unp LASSO, middle) or from LASSO estimates derived

from the other methods (Ad-Method LASSO, right). MSE is generally unchanged

by implementing an adaptive LASSO penalty, with the exception of MAXENT for

Ad-Unp LASSO. The Ad-Unp implementation generally reduced bias but increased

variance, allowing MAXENT to approach the predictive performance of MSI as

measured by IMSE.
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(Figure 7.11a).

When the true interaction parameter was weak (Figure 7.12), applying a LASSO

penalty sometimes improved predictive performance, particularly for rare species.

MSI had good performance regardless of prevalence. Unlike the real species data,

MAXENT also performed well for both abundant and rare species. Correctly fitting

an area-interaction model generally improved predictive performance, except in the

case of MAXENT and MSI for abundant species (Figure 7.12a).

For both interaction strengths, all methods shrank environmental coefficients

more when fitted as an area-interaction model than when fitted as a Poisson PPM

(see details in Appendix A). In effect, the inclusion of an interaction term absorbed

some of the signal from the environmental variables, thereby reducing their rela-

tive importance and making them more susceptible to elimination from the model

by imposing a LASSO penalty. Subsequently, there were more environmental vari-

ables falsely excluded and fewer environmental variables falsely included in an area-

interaction model.

7.5 Discussion

In this Chapter I have conducted a thorough comparison of methods of choosing the

LASSO penalty that includes new methods (MSI) as well as comparisons to other

LASSO implementations (adaptive LASSO) and models (area-interaction models)

previously unconsidered in ecology. The results showed that there are a number of

factors that influence the performance of various methods for choosing the LASSO

penalty. For rare species, MSI tended to perform best, but when sufficient data were

available, data-driven approaches like BIC and non-linear GCV were just as good

(Figure 7.9). MAXENT tended to have the worst performance of all methods for

rare species but had competitive performance for moderate and abundant species

(Figure 7.9). The poor performance for rare species is problematic as there are typ-
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Figure 7.11: Integrated mean squared error for data generated from a moderately

sparse area-interaction model with strong point interactions. A Poisson PPM and

area-interaction model are both fitted. Correctly fitting an area-interaction model

improved predictive performance for super abundant species (a), but not for super

rare species (b). Fitting a LASSO penalty did not improve predictive performance

for rare species (b) regardless of the method chosen.
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Figure 7.12: Integrated mean squared error for data generated from a moderately

sparse area-interaction model with weak point interactions. A Poisson PPM and

area-interaction model are both fitted. Fitting a LASSO penalty generally improved

predictive performance for (a) super abundant and (b) super rare species. Correctly

fitting an area-interaction model also generally improved predictive performance,

except for MAXENT and MSI for super abundant species.
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ically many rare species in a community leading to poorer performance (Figure 7.4

and bottom of Figure 7.9).

MSI was proposed as an alternative prevalence-based method to MAXENT.

It generally outperformed MAXENT with respect to predictive performance (Fig-

ure 7.4) and variable selection (Figure 7.7). The differences were more subtle for

simulations and were most notable for rare species, where MAXENT tended to un-

derfit (bottom row of Figure 7.7) and hence coefficients were highly biased (bottom

row of Figure 7.8) leading to slightly poorer predictive performance (bottom row of

Figure 7.9). Comparing MAXENT to MSI as in Figure 6.1, λ chosen by MAXENT

can often be expected to be too high for rare species. An additional difference that

may be considered is that while MAXENT only uses the number of presences to

determine the penalty, MSI uses the data in the form of λmax for an initial estimate

of sparsity. Despite the fact that λmax is a rather crude estimate of sparsity, MSI

was generally competitive with data-driven approaches which use sparsity directly

in finding an optimal point along the bias-variance tradeoff, although these data-

driven criteria were sometimes preferable for more abundant species, in particular,

in situations where little shrinkage was required (Figure 7.9 top-left).

The results were generally consistent with other studies of the performance of

the default MAXENT penalty. As also shown by Gastón & Garćıa-Viñas (2011)

and Anderson & Gonzalez (2011), penalising parameter coefficients improved pre-

dictive performance, particularly for moderate or small levels of prevalence and

sparsity (Figures 7.4 and 7.9). Moreover, the high predictive performance achieved

by MAXENT’s default penalty was matched and sometimes exceeded by other meth-

ods. Similar to the work of Warren & Seifert (2011), I found that the penalty for

underfitting was stronger than for overfitting in terms of predictive performance

(Figures 7.7 and 7.9). This is a well-known phenomenon (Hastie et al., 2009).

In addition to proposing MSI as a criterion for choosing the LASSO penalty,

there were three main points of difference in this Chapter from previous literature
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in ecology – implementing adaptive LASSO, including models that account for point

interaction, and accounting for spatial autocorrelation using a spatial cross valida-

tion scheme. I will discuss new insights from these extensions in turn.

Applying an adaptive LASSO penalty instead of a LASSO penalty did not gen-

erally result in any appreciable improvement in predictive performance for either the

real data (Figure 7.5) or simulations (Figure 7.10), with the exception of MAXENT

and non-linear GCV (to a lesser extent) for rare species when adaptive weights were

chosen from the unpenalised model. Although these methods still underfitted the

data (top row of Figure 7.10), there was a reduction in bias from overshrinking (mid-

dle row of Figure 7.10), resulting in a slight improvement in predictive performance

(bottom row of Figure 7.10).

Results for area-interaction models suggest that conventional thought on the ad-

vantages of implementing a LASSO penalty may not apply. When the interaction

parameter was strong and data were sparse, applying a LASSO penalty led to sub-

stantially poorer predictive performance (Figure 7.11b). This appeared to also be

the case in analysis of the Blue Mountains dataset, where predictive performance

deteriorated rapidly for all LASSO approaches under increasing interaction radius

(Figure 7.6, right). The inclusion of an interaction term itself shrank the coefficients

of the environmental variables, which is some cases obviated the need for a LASSO

penalty at all. On the other hand, when data were prevalent (Figure 7.11a) or when

interactions were weak (Figure 7.12), there were still gains to be made from using the

LASSO. Perhaps this issue could be resolved by using a different method to choose

the LASSO penalty which was more attentive to the presence of point interactions.

Traditional applications of cross validation are known to be prone to optimistic

estimates of performance when predicting in other locations (Wenger & Olden,

2011). Incorporating a spatial cross validation scheme in this Chapter, as opposed to

randomly selecting points for cross validation, therefore ensured that methods which

tended to overfit the data would be accordingly penalised. However, as MAXENT
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tended to underfit, the results of this Chapter would present the MAXENT penalty

in a more favourable light, if anything. Hence its poor performance, particularly for

rare species, illustrates the drawback of the ad hoc nature with which it was derived.



Chapter 8

The ppmlasso R package

In Chapter 5, I established the equivalence of MAXENT and Poisson PPMs and

demonstrated a number of advantages incurred from expressing the model as a

PPM. In Chapter 7, I found that applying a LASSO penalty can improve predictive

performance. While there are R packages available to fit PPMs (Baddeley & Turner,

2005) and packages available to fit models with a LASSO penalty (Friedman et al.,

2010), there are no packages that fit a regularisation path of PPMs with a LASSO

penalty. I have developed the ppmlasso package for this purpose, and in this Chapter

I describe its functions and features.

Starting with a list of locations of Corymbia eximia (sp.xy), a matrix of en-

vironmental data at the 500m × 500m resolution (backg), and a binary matrix of

locations throughout the study region indicating whether a location is available or

not (availability), I will demonstrate the functions of the ppmlasso package.

With these functions, it is possible to:

• Prepare data for model fitting given a geo-referenced grid of environmental

data and a list of species presence locations. This involves creating a regular

grid of quadrature points at the desired spatial resolution (sample.quad),

extracting environmental data to species presence locations (env.var), and

107
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constructing the design matrix and observation weights used in the model

(ppm.dat).

• Calculate point interactions for use in an area-interaction model

(point.interactions).

• Construct a regularisation path of Poisson PPMs or area-interaction models

and choose an optimal model based on the various criteria described in Chap-

ter 7 (ppmlasso).

Section 8.1 describes the main features of the ppmlasso function, while Sec-

tion 8.2 describes functions that are useful for reanalysis. Detailed descriptions of

the arguments and output of each function are presented in Appendix B.

8.1 Fitting a Regularisation Path of Point Pro-

cess Models: ppmlasso

The ppmlasso function fits a regularisation path of Poisson PPMs or area-interaction

models. Users can control the type of penalty (LASSO, adaptive LASSO or elastic

net), the number of fitted models in the regularisation path, and the criterion to be

method of choosing the LASSO penalty λ. It relies on the sample.quad, env.var,

ppm.dat, and (for area-interaction models) point.interactions functions to set

up the design matrix. These functions are described in detail in Section 8.2.

In Chapters 5 and 7, I fitted Poisson PPMs and area-interaction models to C.

eximia using minimum and maximum annual temperature (MNT and MXT), annual

rainfall (Rain), the number of fires recorded since 1943 (FC) as well as distance

from main roads (D.Main) and distance from urban areas (D.Urb) to account for

observer bias. The design matrix consisted of a quadratic function of all variables,

including interactions between the four environmental variables and between the
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two accessibility variables. To set up the design matrix and response vector, the

command was:

> ppm.form = Pres/wt ∼ cbind(poly(FC, MNT, MXT, Rain, degree = 2),

poly(D.Main, D.Urb, degree = 2)).

The command for fitting a regularisation path of 200 Poisson PPMs and choosing

the model that minimised non-linear GCV as in Chapter 5 was:

> species.fit = ppmlasso(ppm.form, sp.xy = sp.xy, env.grid = backg,

sp.scale = 0.8, criteria = "nlgcv").

ppmlasso can also fit regularisation paths of other types of model with the

inclusion of a few additional arguments:

• Area-interaction models: Set family = "area.inter" and provide an in-

teraction radius r (e.g. r = 5 for C. eximia).

• Adaptive LASSO: Provide the coefficients init.coef and exponent gamma

to calculate the adaptive weights (e.g. init.coef = species.fit$beta and

gamma = 1).

• Elastic Net: Provide alpha for an elastic net penalty of the form αλ
∑p

j=1 |βj|+

(1−α)λ
∑p

j=1(βj)
2. Note that the default of alpha = 1 fits a LASSO penalty,

while alpha = 0 fits a ridge regression penalty.

A description of all arguments of ppmlasso appears in Appendix B.

Table 8.1 contains the parameters of Poisson PPMs fitted with LASSO, adaptive

LASSO, and elastic net penalties as well as area-interaction models that minimise

non-linear GCV. Note that the coefficients tend to be smaller for the AI-LASSO

model - this is consistent with the results of Chapter 7 where I found that area-

interaction models tended to underfit.

Each model in the regularisation path is fitted by extending the Osborne descent

algorithm described in Section 4.3 to GLMs with penalised iteratively reweighted
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Table 8.1: Coefficients of the fitted models that minimise non-linear GCV. The

PPM-LASSO and AI-LASSO models were fitted with LASSO penalties to Poisson

PPMs and area-interaction models, respectively. The Adaptive model was fitted

with an adaptive LASSO penalty with adaptive weights wj = 1/|β̂NLGCV,j|. The

Elastic Net model was fitted with α = 0.7.

Parameter PPM-LASSO AI-LASSO Adaptive LASSO Elastic Net

Intercept -15.12 -9.72 -16.38 -14.62

FC 0.56 0.22 0.43 0.58

FC2 -0.41 -0.17 -0.34 -0.43

MNT 2.93 0.21 2.89 2.84

FC*MNT 0.02 -0.09 0 0

MNT2 -3.06 -0.22 -2.87 -3.29

MXT 5.62 0 8.41 4.52

FC*MXT 0.04 -0.03 0 0.12

MNT*MXT 0.44 -0.39 0 1.15

MXT2 -7.53 -0.12 -10.12 -7.13

Rain -0.27 -0.01 0 -1.00

FC*Rain -0.26 -0.20 -0.13 -0.20

MNT*Rain 1.18 0 0.81 1.92

MXT*Rain -6.90 0 -9.33 -6.75

Rain2 -3.68 0 -4.44 -3.80

D.Main -0.46 0 -0.58 -0.43

D.Main2 0.29 0.38 0.11 0.31

D.Urb -0.54 -0.15 -0.39 -0.58

D.Main*D.Urb -0.16 -0.12 0 -0.19

D.Urb2 0.18 0.14 0.08 0.19

Interaction NA 1.47 NA NA
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least squares. As in Section 4.3, let σ denote the indices of the nonzero parameters.

Given a current estimate β̂
i−1

σ with corresponding fitted intensities µ̂i−1, the pro-

posed update in Step 1 is β̂
i

σ = (X′σW
i−1Xσ)−1[X′σW

i−1{z− λsign(β̂
i−1

σ )}], where

for a Poisson GLM, Wi−1 = diag(wµ̂i−1), w is a vector of quadrature weights, and

z = ln µ̂i−1 + (y− µ̂i−1)/µ̂i−1. The rest of the algorithm proceeds in the same way,

with the score equations of Step 4 calculated as s(β̂
i
;yP ) = X′Wi(y − µ̂i)/µ̂i.

8.2 Functions for Reanalysis

In order to fit regularisation paths, ppmlasso calls on other functions to create a

set of quadrature points, extract environmental data to species locations, and set

up a data matrix with observation weights. For a path of area-interaction models,

point interactions are also calculated. These can be time-consuming processes, so for

analyses in which some of these steps are repeated (e.g. interpolating environmental

variables for building models of the same species at different spatial resolutions), it is

worthwhile to use these functions independently of ppmlasso. This way, their output

can be directly supplied to ppmlasso without the need to repeat these preliminary

steps.

8.2.1 Generating Quadrature Points: sample.quad

The sample.quad function creates a matrix of quadrature points and associated

environmental data for a user-defined spatial resolution. It requires only a geo-

referenced matrix of environmental grids. The sample.quad function exploits the

fact that environmental data usually come at locations along regular grids by quickly

subsetting the reference matrix selecting the rows that coincide with the nominated

spatial resolution. To generate a set of quadrature points quad.1 at a spatial res-

olution of 1 km × 1 km from the matrix backg and save the output as the file

"Quad1.RData", the command is:
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> quad.1 = sample.quad(env.grid = backg, sp.scale = 1, file = "Quad").

Supplying a vector of resolutions will generate matrices of quadrature points for

all elements of sp.scale:

> quad.1 = sample.quad(env.grid = backg, sp.scale = c(1, 2, 3, 4, 5),

file = "Quad").

8.2.2 Interpolating Environmental Data to Species Loca-

tions: env.var

Given a matrix of quadrature points and a list of species presences, the function

env.var extracts environmental data to presence locations using bilinear interpola-

tion. Details of how bilinear interpolation is implemented are in Appendix B.

To generate the environmental data species.env for the C. eximia presence

locations stored in the matrix sp.xy using a spatial resolution of 500m and quadra-

ture points stored in backg and save the output in the file "C Eximia Env.RData",

the command is:

> species.env = env.var(sp.xy, env.grid = backg, env.scale = 0.5,

file.name = "C Eximia Env").

8.2.3 Setting Up the Data for Model Fitting: ppm.dat

The ppm.dat function prepares the data for model fitting. In particular, the ppm.dat

function calculates observation weights (Chapter 3) and returns a matrix dat.ppm

ready for use in the ppmlasso function for fitting a regularisation path of Poisson

PPMs or area-interaction models.

To set up a design matrix species.ppm from species locations stored in sp.xy

at a spatial resolution of 1km using background grid of environmental data backg

and save into the file "C Eximia PPM.RData", the command is:
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> species.ppm = ppm.dat(sp.xy = sp.xy, env.grid = backg, sp.scale = 1,

file.name = "C Eximia PPM").

The above call of the ppm.dat function will apply the sample.quad and env.var

functions to generate quadrature points and interpolate environmental data. Alter-

natively, the user can input files containing both the species data and quadrature

points to obviate the need to call these functions:

> species.ppm = ppm.dat(sp.xy = "C Eximia", sp.scale = 1,

quad.file = "Quad", file.name = "C Eximia PPM").

8.2.4 Calculating Point Interactions: point.interactions

In order to fit an area-interaction model, point interactions must first be calculated

at both presence locations and quadrature points using the point.interactions

function. The point.interactions function requires only a data matrix generated

using the ppm.dat function and the radius r of interactions. For study regions that

have inaccessible areas (e.g. urban areas or ocean), the user may also supply a

binary matrix called availability which indicates whether locations are available

(availability = 1) or not (availability = 0). If not supplied, availability

is automatically generated at a spatial resolution equal to half of the radius r, with

all values set to 1. A detailed description of how point interactions are estimated is

in Appendix B.

To calculate point interactions of radius r = 5 km for C. eximia at the locations

in the matrix species.ppm using availability matrix availability, the command

is:

> species.int = point.interactions(species.ppm, 5, availability).

This function was used to calculate point interactions in Section 3.2 and Chap-

ters 5 and 7.
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8.2.5 Example Use of Functions for Reanalysis

Consider the four fitted regularisation paths of Section 8.1. Although each of these

paths used the same data, each call to ppmlasso in Section 8.1 used the species

locations sp.xy and grid of environmental data backg to generate the same matrix

data using the ppm.dat function. A more time-efficient strategy is to generate this

matrix first with a single call to the ppm.dat function and supply it to each call to

the ppmlasso function, as follows:

> species.ppm = ppm.dat(sp.xy = sp.xy, env.grid = backg,

sp.scale = 0.8, file.name = "C Eximia PPM").

> lasso.fit = ppmlasso(ppm.form, data = species.ppm, criteria = "nlgcv").

> ad.lasso.fit = ppmlasso(ppm.form, data = species.ppm, criteria = "nlgcv",

init.coef = lasso.fit$beta, gamma = 1).

> e.net.fit = ppmlasso(ppm.form, data = species.ppm, criteria = "nlgcv",

alpha = 0.7).

> ai.fit = ppmlasso(ppm.form, data = species.ppm, criteria = "nlgcv",

family = "area.inter", r = 5).

To generate the species.ppm matrix in the first line of code above required 3.75

minutes of computation time. Hence supplying species.ppm to the data argument

of the four ppmlasso function calls of Section 8.1, rather than calculating it for each

call, saved 11.25 minutes of computation time.

Computation gains can likewise be made in other instances of repeated analysis.

When fitting models to multiple species at the same spatial resolution, the same

set of quadrature points needed for each species can be generated with a single call

to the sample.quad function. When fitting models to the same species at different

spatial resolutions (e.g. to create the likelihood plot in Figure 5.4a), the species

environmental data required at each resolution can be interpolated just once with

a single call to the env.var function. When fitting multiple area-interaction model

regularisation paths for the same species and spatial resolution, the vector of point
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interactions necessary for each path can be calculated through a single call to the

point.interactions function.

8.3 Conclusion

With the ppmlasso package, users can now fit PPMs that implement LASSO penal-

ties optimised by appropriate methods in a single function call. At the time of writ-

ing, the ppmlasso package contains functions that can reproduce all of the analysis

of the entire thesis with the exception of the simulations performed in Chapter 7

and the goodness-of-fit tests and plots in Chapters 3 and 5, which were performed

using spatstat. I aim to make the ppmlasso package dependent on spatstat so

that the fitted models may be diagnosed, plotted, and simulated without further

user manipulation.
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Chapter 9

Discussion

9.1 Summary

The work presented in this thesis stands at the intersection of statistics and ecology

and has used strengths of both fields to improve the way presence-only analysis is

done in practice. In Chapter 5 I linked MAXENT, one of the most popular methods

in use today for presence-only analysis in ecology, and Poisson PPMs (Chapter 3),

a method with a long history in statistics but only recently proposed for SDM.

This equivalence extends the benefits of PPMs to users of MAXENT, allowing them

to think more critically about the models they fit. The point process framework

facilitates the data-based method of choosing the spatial resolution and opens up

MAXENT to a suite of diagnostic tools (Cressie, 1993; Diggle, 2003; Baddeley &

Turner, 2005; Baddeley et al., 2005) to assess model assumptions.

The equivalence result also extends benefits to the way PPMs are currently fitted.

MAXENT implements a LASSO penalty (Chapter 4), which has been shown to

improve predictive performance. This motivates the use of shrinkage methods such

as LASSO with PPMs to improve their ability to predict to new data (Chapter 7). In

Chapter 6, I established an asymptotic result for Poisson PPMs that offers insight

into how the LASSO penalty could be chosen. I noted that MAXENT’s default
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penalty increases too quickly to satisfy the conditions of
√
m-consistency. This result

motivated the development of a novel criterion for determining the LASSO penalty,

MSI, which I demonstrated in Chapter 7 to be generally superior to MAXENT’s

default penalty in an extensive comparison with many assorted criteria. Data-driven

methods such as BIC and non-linear GCV performed well for more prevalent species.

Hence I have used the equivalence result of Chapter 5 to combine the advantages

inherent to Poisson PPMs and the application of a LASSO penalty to boost pre-

dictive performance. The outcome is PPM-LASSO, a presence-only SDM method

with rigorous statistical foundations and competitive predictive performance. I also

developed the ppmlasso package (Chapter 8) for R, which means that all of the

advantages of this cross-disciplinary work can be realised by practitioners.

One particular advantage of PPM-LASSO is that it is flexible and can adapt to

key properties of the data. Rather than coerce the data into a pre-determined set of

rules for fitting and regularising the model as in the case of MAXENT, PPM-LASSO

uses the data to inform the choice of model, spatial resolution, and LASSO penalty.

9.2 Future Extensions

This work has the potential to be extended in a number of ways.

Elith et al. (2006) found that methods that can be applied to multiple species si-

multaneously (“communities”) often performed better than when applied to species

individually, such as a community-level implementation of MARS (Elith & Leath-

wick, 2007). Hence, one opportunity is to extend PPM-LASSO to the community

level. Borrowing the strength of multiple species to inform the predicted distribution

of single species could further amplify the benefits of PPM-LASSO demonstrated in

this thesis, in particular in modelling observer bias, whose contributing factors are

likely to be similar across species.
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The asymptotic results established in Chapter 6 could be used to cultivate new

methods for choosing the LASSO penalty. The MSI penalty is one such example,

based on the maximum score of the intercept model. However, any criteria that is

of order O(
√
m) or smaller could be posed as an alternative. Indeed, MSI exhibits a

tendency to overshrink for moderate and abundant species. Perhaps a more modest

penalty of order O(
√
m) such as the mean score of the intercept model may yield

even better performance.

An additional extension is in considering how other classical fixed-n asymptotic

results extend to the PPM framework. For example, traditional criteria for choosing

the LASSO penalty such as BIC were developed for designs with a fixed sample size

n. As in Chapter 6, an asymptotic approach could be used to assess whether these

criteria should be modified for PPMs, and whether the “replace n with m” result of

Chapter 6 applies more generally.

The framework of the simulations performed in Chapter 7 could be used to

motivate and develop variable selection strategies for area-interaction models and

other Gibbs processes. The ppmlasso package is the first package that permits

regularisation of area-interaction models, and the simulation results presented in

Chapter 7 and Appendix A suggest that traditional methods of choosing the LASSO

penalty may be too harsh without some modification.

I have addressed the challenge of spatial autocorrelation using Gibbs processes,

and by implementing a spatial cross-validation scheme in model validation, but there

are other strategies. Hierarchical approaches such as Chakraborty et al. (2011) can

also be used to offset spatial autocorrelation. A comparison of various methods

of accounting for spatial autocorrelation could further improve the application of

PPM-LASSO.

It is commonplace in SDM to publish results demonstrated solely through anal-

ysis of real and/or simulated data (Anderson & Gonzalez, 2011; Gastón & Garćıa-

Viñas, 2011; Warren & Seifert, 2011). The work of this thesis, however, has been
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enabled through a close examination of theory underpinning the methods of analy-

sis in addition to analysis of real and simulated data. The methodological advances

presented in this thesis illustrate the merit of this approach. Such a process is not

only applicable to species distribution modelling, and indeed is a natural way to

drive methodological research in other contexts.



Appendix A

Extended Simulation Results of

Adaptive LASSO and

Area-Interaction Models

This Appendix provides further simulation results relevant to comparing methods

for choosing the LASSO penalty described in Chapter 7.

A.1 LASSO

Figure A.1 depicts the proportion of shrinkage applied by BIC, MAXENT, non-linear

GCV, and MSI at different levels of sparsity (columns) and abundance (rows). This

proportion q(β̂) is defined as in Section 7.2. Because the true coefficients β∗ are

known, q(β∗) provides a measure of how much shrinkage is ideal.

For full models whereby no variables should be shrunk to zero (left column), all

methods except BIC shrank too much for moderate and super rare abundances. As

abundance increases, non-linear GCV did not overshrink as much, while MAXENT

and MSI continued to shrink too much regardless of abundance. For moderate and

sparse models (middle and right columns), each method also applied less shrinkage as
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Figure A.1: Proportion of shrinkage of different methods of choosing the LASSO

penalty. MAXENT tended to overfit while non-linear GCV tended to oversrhink.

BIC and MSI generally applied an optimal amount of shrinkage, although MSI

overshrank somewhat for moderately sparse models.

abundance increased, with MAXENT and non-linear GCV generally overshrinking,

while BIC and MSI came closest to the true level of shrinkage required, although

MSI tended to overshrink somewhat for moderately sparse models.
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A.2 Area-Interaction Models

This Section contains results of simulations from an area-interaction model when

data were fitted using both Poisson PPMs and area-interaction models.

Figures A.2 and A.3 compare the selection of environmental variables when the

interaction parameter is strong and weak, respectively. Regardless of the strength

of the interaction coefficient or abundance level, area-interaction models tended to

falsely exclude more environmental variables and falsely include fewer environmental

variables, indicating higher shrinkage than Poisson PPMs. Rare species likewise

tended to falsely exclude more environmental variables and falsely include fewer

environmental variables than abundant species. In contrast to when the true model

is a Poisson PPM, non-linear GCV tended to shrink the least.

Figures A.4 and A.5 compare the bias, variance, and mean squared error for

when the interaction parameter is strong and weak, respectively. Fitting an area-

interaction model generally led to a reduction of overall mean squared error regard-

less of the method of choosing λ. This was generally achieved by a reduction in bias.

By not including an interaction coefficient, Poisson PPMs overly inflated coefficients

to account for the spatial trend due to point interactions.
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Figure A.2: Variable selection when a Poisson PPM and area-interaction model

are both fitted to data generated from a moderately sparse area-interaction model

with strong point interactions. Correctly fitting an area-interaction model tended to

reduce the amount of overfitting for (a) super abundant and (b) super rare species.
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Figure A.3: Variable selection when a Poisson PPM and area-interaction model

are both fitted to data generated from a moderately sparse area-interaction model

with weak point interactions. Correctly fitting an area-interaction model tended to

reduce the amount of overfitting for (a) super abundant and (b) super rare species.
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Figure A.4: Mean squared error when a Poisson PPM and area-interaction model

are both fitted to data generated from a moderately sparse area-interaction model

with strong point interactions. Correctly fitting an area-interaction model reduced

bias and therefore reduced overall MSE for (a) super abundant and (b) super rare

species.
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Figure A.5: Mean squared error when a Poisson PPM and area-interaction model

are both fitted to data generated from a moderately sparse area-interaction model

with weak point interactions. Correctly fitting an area-interaction model reduced

bias and therefore reduced overall MSE for (a) super abundant and (b) super rare

species.
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Appendix B

Details of ppmlasso package

functions

B.1 ppmlasso

B.1.1 Description

The ppmlasso function fits a regularisation path of Poisson PPMs or area-interaction

models using the single.lasso function with either a sequence of LASSO, adaptive

LASSO or elastic net penalties.

B.1.2 Usage

ppmlasso(formula, sp.xy, env.grid, sp.scale, data, lamb = NA, n.fits =

200, criteria = "bic", family = "poisson", r = NA, interactions = NA, ...)

B.1.3 Arguments

formula The formula of the fitted model. For a PPM, the correct form is Pres/wt

∼ variables.
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sp.xy A matrix of species locations yP containing at least one column representing

longitude and one column representing latitude. Environmental variables are

interpolated to the locations of sp.xy using the env.var function, unless the

data argument is supplied.

env.grid The geo-referenced matrix of environmental grids. This matrix is used to

generate quadrature points using the sample.quad function, interpolate envi-

ronmental data to the species locations of sp.xy using the env.var function,

and calculate observation weights using the ppm.dat function, unless the data

argument is supplied. This creates a data matrix data which provides the

variables for the formula argument.

sp.scale The spatial resolution at which to define the regular grid of quadrature

points. sample.quad will subsample from the rows of data that coincide with

a regular grid at a resolution of sp.scale.

data An optional data matrix generated from the ppm.dat function. Supplying a

matrix to data is an alternative way of providing the environmental variables

used in the formula argument, instead of specifying sp.xy and env.grid.

lamb A vector of penalty values that will be used to create the regularisation path.

If lamb = NA, ppmlasso automatically determines the penalty values from the

data and the n.fits argument.

n.fits The number of models fitted in the regularisation path. If lamb = NA, the

n.fits penalty values will be equally spaced on a logarithmic scale from e−10

to λmax, the smallest penalty that shrinks all parameter coefficients to zero.

criteria The penalisation criteria to be optimised by the regularisation path. The

options include "aic", "bic", "hqc", "gcv", "nlgcv" and "msi", all of which

are described in Chapter 7.
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family The family of models to be fitted – family = "poisson" for Poisson PPMs

or family = "area.inter" for area-interaction models.

r The radius of point interactions, required if family = "area.inter".

interactions A vector of point interactions calculated from the point.interactions

function necessary for fitting area-interaction models. If interactions = NA

and family = "area.inter", point interactions will be automatically calcu-

lated for radius r to the locations of data.

... Further arguments passed to the single.lasso, sample.quad, and

point.interactions functions.

B.1.4 Value

The output of ppmlasso is a list with the following components:

betas A matrix of fitted coefficients of the n.fits models.

lambdas A vector containing the n.fits penalty values.

likelihoods A vector containing the likelihood of n.fits fitted models.

pen.likelihoods A vector containing the penalised likelihood of n.fits fitted

models.

beta A vector containing the coefficients of the model that optimises the criteria

specified by the criteria argument.

lambda The penalty value of the model that optimises the criteria specified by the

criteria argument.

likelihood The likelihood of the model that optimises the criteria specified by the

criteria argument.
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mu A vector of fitted values from the model that optimises the criteria specified by

the criteria argument.

criteria.matrix A matrix with n.fits rows corresponding to the observed values

of AIC, BIC, HQC, GCV, and non-linear GCV.

family The family argument supplied to ppmlasso.

criteria The criteria argument supplied to ppmlasso.

B.2 single.lasso

B.2.1 Description

The single.lasso function fits a single LASSO-regularised model using the descent

algorithm of Osborne et al. (2000b) and passes information to the ppmlasso function.

B.2.2 Usage

single.lasso(max.it = 25, tol = 1.e-9, gamma = 0, init.coef = NA, alpha

= 1, mu.min = 1.e-16, mu.max = 1.e16, standardise = TRUE, ...)

B.2.3 Arguments

max.it The maximum number of iterations of the descent algorithm for fitting the

model.

tol The convergence threshold for the descent algorithm. The algorithm continues

for a maximum of max.it iterations until the difference in likelihood between

successive fits falls below tol.

gamma The exponent of the adaptive weights for the adaptive LASSO penalty. The

default value gamma = 0 corresponds to a normal LASSO penalty.
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init.coef The initial coefficients used for an adaptive LASSO penalty.

alpha The elastic net parameter. The form of the penalty is αλ
∑p

j=1 |βj| + (1 −

α)λ
∑p

j=1(βj)
2. The default value alpha = 1 corresponds to a LASSO penalty,

while alpha = 0 corresponds to a ridge regression penalty.

mu.min The threshold for small fitted values. Any fitted value less than the thresh-

old is set to mu.min.

mu.max The threshold for large fitted values. Any fitted value larger than the thresh-

old will be set to mu.max.

standardise A logical argument indicating whether the environmental variables

should be standardised to have mean 0 and variance 1.

... Other arguments inherited from ppmlasso.

B.2.4 Value

The output of single.lasso is a list with the same components as ppmlasso.

B.3 sample.quad

B.3.1 Description

The sample.quad function creates a matrix of quadrature points at a given spatial

resolution.

B.3.2 Usage

sample.quad(env.grid, sp.scale, coord = c("X", "Y"), file = "Quad")
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B.3.3 Arguments

env.grid The geo-referenced matrix of environmental grids, as in ppmlasso.

sp.scale The spatial resolution at which to sample quadrature points, as in ppmlasso.

coord A vector containing the names of the longitude and latitude coordinates.

file An optional argument containing the prefix of the name of the saved file. The

default is "Quad" so that a matrix generated at a spatial resolution of 1 would

be saved in the file "Quad1.RData". A file is saved for every resolution given

in sp.scale.

B.3.4 Value

The output of sample.quad is a matrix of quadrature points at the spatial resolution

supplied to sp.scale. If a vector of resolutions is supplied, the output is a list of

file names containing the saved matrices of quadrature points stored as dat.quad.

B.4 env.var

B.4.1 Description

The env.var function uses bilinear interpolation to extract environmental data from

a matrix of quadrature points to a list of species locations.

B.4.2 Usage

env.var(sp.xy, env.grid, env.scale, coord = c("X", "Y"), file.name = NA)



B.4. ENV.VAR 135

B.4.3 Arguments

sp.xy A matrix of species locations containing at least one column representing

longitude and one column representing latitude, as in ppmlasso.

env.grid The geo-referenced matrix of environmental grids, as in ppmlasso.

env.scale The spatial resolution used for interpolating environmental data. At a

given species location, the environmental data will be interpolated from the

four points that form a square of side length env.scale that contains the

location (Figure B.1).

coord A vector containing the names of the longitude and latitude coordinates, as

in sample.quad.

file.name An optional argument containing the name of the saved file. Setting

file.name = "Sp Env" will save a matrix sp.dat containing the species pres-

ence locations and the interpolated environmental data to the file "Sp Env.RData".

B.4.4 Details

At a given species location with coordinates (x, y), the interpolated value of the

environmental variable z is calculated as a weighted average of z at four reference

quadrature points (x(1), y(1)), (x(1), y(2)), (x(2), y(1)) and (x(2), y(2)) that form a square

of nominated side length env.scale surrounding (x, y) (Figure B.1). Each reference

weight is then calculated as the area of a rectangle with diagonal formed by the

reference point and the species location:

w(x(i), y(j)) = |(x(i) − x)(y(j) − y)|. (B.1)

Hence the interpolated value z(x, y) is:

z(x, y) =

∑2
i=1

∑2
j=1w(x(i), y(j))z(x(i), y(j))∑2
i=1

∑2
j=1w(x(i), y(j))

.



136 APPENDIX B. DETAILS OF PPMLASSO PACKAGE FUNCTIONS

●●

●

●

●

●

env.scale

en
v.

sc
al

e (x, y)

(x(1), y(1)) (x(2), y(1))

(x(1), y(2)) (x(2), y(2))

w(x(1), y(1))

w(x(1), y(2))

w(x(2), y(1))

w(x(2), y(2))

Figure B.1: Bilinear interpolation of environmental data at a species location with

coordinates (x, y) is a weighted average of the environmental variable at four refer-

ence quadrature points (x(1), y(1)), (x(1), y(2)), (x(2), y(1)) and (x(2), y(2)). The weight

of each reference point (Equation B.1) is equal to the area of a rectangle with diag-

onal formed by the reference point and the species location.

B.4.5 Value

The output of env.var is a matrix containing locations of species presences in the

first two columns and the interpolated environmental data in the remaining columns.

B.5 ppm.dat

B.5.1 Description

The ppm.dat function calculates observation weights and prepares a data matrix for

use in the ppmlasso function.
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B.5.2 Usage

ppm.dat(sp.xy, env.grid, sp.scale, coord = c("X", "Y"), quad.file = NA,

file.name = NA)

B.5.3 Arguments

sp.xy A matrix of species locations yP containing at least one column representing

longitude and one column representing latitude, as in ppmlasso.

env.grid The geo-referenced matrix of environmental grids, as in ppmlasso.

sp.scale The spatial resolution at which to sample quadrature points, as in ppmlasso.

coord A vector containing the names of the longitude and latitude coordinates, as

in sample.quad.

quad.file The name of a file containing the quadrature points created from the

sample.quad function. If quad.file = NA, the sample.quad function is called

to generate quadrature points at the nominated resolution of sp.scale from

the env.grid matrix.

file.name An optional argument containing the name of the saved file, as in

env.var.

B.5.4 Value

The output of ppm.dat is a matrix dat.ppm containing columns representing loca-

tions and their associated environmental data, a column Pres indicating whether a

location is a presence location (Pres = 1) or quadrature point (Pres = 0), and a

column wt of observation weights.
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B.6 point.interactions

B.6.1 Description

The point.interactions functions calculates point interactions necessary to fit a

regularisation path of area-interaction models.

B.6.2 Usage

point.interactions(dat.ppm, r, availability = NA)

B.6.3 Arguments

The r argument is the same as that in ppmlasso. The additional arguments are as

follows:

dat.ppm A design matrix generated using the ppm.dat function.

r The radius of point interactions, as in ppmlasso.

availability An optional binary matrix used in calculating point interactions in-

dicating whether locations are available (1) or not (0). If no such matrix is

provided, availability is automatically generated with all values set to 1

at a special resolution of half of r. This is useful for study regions that have

inaccessible areas due to the presence of water or urban areas.

B.6.4 Details

Theoretically, the point interaction t(y) is calculated as the proportion of available

area in a circular region Y of radius r centred at y that overlaps with circles of

radius r centred at the other presence locations yP\{y}, as in Section 3.2. The
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point.interactions function discretises the study region at the same spatial res-

olution as availability by defining the matrix occupied, a fine grid of locations

spanning the study region initialised to zero. The values of occupied within a dis-

tance of r of each presence location y ∈ yP are then augmented by 1, such that

occupied then contains the total number of presence locations with which each

grid location interacts. To prevent unavailable areas from being included in the

calculation of point interactions, the values of occupied at grid locations for which

availability = 0 are set to zero.

t(y) is then estimated as the proportion of available grid locations within Y that

overlap circular regions around other presence locations yP \ {y}:

t(y) =


∑
i∈Y I(occupied[i]>0 & availability[i]>0)∑

i∈Y I(availability[i]>0)
: y 6∈ yP∑

i∈Y I(occupied[i]>1 & availability[i]>0)∑
i∈Y I(availability[i]>0)

: y ∈ yP
(B.2)

Figure B.2 illustrates how the point interaction t(y) is estimated. Available land

area is depicted in dark green while ocean area is represented by blue, discretised into

available (orange and green dots) and unavailable (blue dots) grid locations. t(y)

is estimated according to (B.2) as the proportion of available grid locations within

Y (the black circle) that are occupied (orange): t(y) = 10/13. Finer resolutions of

the availability matrix will yield more precise estimates but at a cost of greater

computation time.

B.6.5 Value

The output of point.interactions is a vector of point interactions corresponding

to the locations contained in the dat.ppm argument.



Figure B.2: Calculating point interactions with the point.interactions function.

Land is represented by dark green and ocean is represented by blue. The point

interaction t(y) is the proportion of the land area within the black circle of radius

r centred at y that overlaps the orange circles of radius r around the presence lo-

cations. In ppmlasso, the region is discretised and t(y) is calculated according to

Equation B.2. t(y) is therefore estimated as the number of occupied and avail-

able grid locations (orange) within the black circle divided by the total number of

available grid locations (orange and green) within the black circle: t(y) = 10/13.
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