
Analyses and Optimisations for Pipelined MPSoCs

Author:
Javaid, Haris

Publication Date:
2012

DOI:
https://doi.org/10.26190/unsworks/16134

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/52629 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/16134
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/52629
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Analyses And Optimisations for Pipelined

MPSoCs

by

Haris Javaid

A Thesis

Submitted in Accordance with the Requirements

for the Degree of

Doctor of Philosophy

School of Computer Science and Engineering

The University of New South Wales

August 2012

c�Copyright by Haris Javaid 2013

All Rights Reserved

ii

Statement of Originality

‘I hereby declare that this submission is my own work and to the best of my knowl-

edge contains no materials previously published or written by another person, nor

material which, to a substantial extent, has been accepted for the award of any other

degree or diploma at UNSW or any other educational institution, except where due

acknowledgement is made in the thesis. Any contribution made to the research by

others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged

in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project’s design and

conception or in style, presentation and linguistic expression is acknowledged.’

Signed ..

Date ...

iii

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive

and to make available my thesis or dissertation in whole or part in the University

libraries in all forms of media, now or here after known, subject to the provisions of

the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also

retain the right to use, in future works (such as articles or books), all or part of this

thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in

Dissertation Abstract International (this is applicable to doctoral theses only).

I have either used no substantial portions of copyright material in my thesis or I

have obtained permission to use copyright material; where permission has not been

granted I have applied/will apply for a partial restriction of the digital copy of my

thesis or dissertation.’

Signed ..

Date ...

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred and

if there are any minor variations in formatting, they are the result of the conversion

to digital format’.

Signed ..

Date ...

iv

Thesis Publications

• H. Javaid, D. Witono and S. Parameswaran. Multi-Mode Pipelined MPSoCs

for Streaming Applications. In Asia and Pacific Design Automation Confer-

ence, ASPDAC, 2013.

• H. Javaid, M. Shafique, J. Henkel and S. Parameswaran. System-level Dy-

namic Power Management for Adaptive Pipelined MPSoCs for Multimedia.

In International Conference on Computer Aided Design, ICCAD, 2011.

• H. Javaid, M. Shafique, S. Parameswaran and J. Henkel. Low-Power Adap-

tive Pipelined MPSoCs for Multimedia: An H.264 Video Encoder Case Study.

In Design Automation Conference, DAC, 2011. Winner of HiPEAC Ex-

cellence Award.

• H. Javaid, A. Ignjatovic and S. Parameswaran. Fidelity Metrics for Estima-

tion Models. In International Conference on Computer Aided Design, ICCAD,

2010. Nominated for Best Paper Award.

• H. Javaid, X. He, A. Ignjatovic and S. Parameswaran. Optimal Synthe-

sis of Latency and Throughput Constrained Pipelined MPSoCs. In Inter-

national Conference on Hardware Software Codesign and System Synthesis,

CODES+ISSS, 2010.

• H. Javaid, A. Janapsatya, M. S. Haque and S. Parameswaran. Rapid Run-

time Estimation Methods for Pipelined MPSoCs. In Design, Automation and

Test in Europe, DATE, 2010.

v

Other Publications

• S. M. Min, H. Javaid and S. Parameswaran. XDRA: Exploration and Op-

timisation of Last-Level Cache for Energy Reduction in DDR DRAMs. In

Design Automation Conference, DAC, 2013.

• S. M. Min,H. Javaid and S. Parameswaran. RExCache: Rapid Exploration of

Unified Last-level Cache. In Asia and Pacific Design Automation Conference,

ASPDAC, 2013.

• C. H. Doan, H. Javaid and S. Parameswaran. Multi-ASIP Based Parallel

and Scalable Implementation of Motion Estimation Kernel for High Definition

Videos. In IEEE Symposium on Embedded Systems for Real-time Multimedia,

ESTIMedia, 2011.

• H. Javaid and S. Parameswaran. Rapid Design Space Exploration of Ap-

plication Specific Heterogeneous Pipelined Multiprocessor Systems. In IEEE

Transaction on Computer Aided Design, TCAD, 2010.

• H. Javaid and S. Parameswaran. A Design Flow for Application Specific Het-

erogeneous Pipelined Multiprocessor Systems. In Design Automation Confer-

ence, DAC, 2009.

• H. Javaid and S. Parameswaran. Synthesis of Heterogeneous Pipelined Multi-

processor Systems Using ILP : JPEG Case Study. In International Conference

on Hardware Software Codesign and System Synthesis, CODES+ISSS, 2008.

vi

Acknowledgements

I would never have been able to reach this far without the support of the individuals

mentioned here. Its time to recall and acknowledge all of them, and to share the

enjoyment, frustration and satisfaction I felt during the course of my PhD degree.

First and foremost, I thank Almighty Allah for His blessings and support to give

me enough power to go through the tough times of research. Without His kind

blessings, I would not have been able to produce this piece of work.

I would like to extend my gratitude to my supervisor, Prof. Sri Parameswaran,

for his endless support and guidance throughout my candidature. Without his

insightful guidance and advice about my research, I would not have been able to

write this thesis. I greatly appreciate all the support he has provided me, without

which the accomplishments I see today would not have been possible. I would also

like to thank my joint-supervisor, Dr. Aleksander Ignjatovic, for his support and

discussions on mathematical issues related to my research. I would always remember

the funny jokes, which he used to share with his students.

Many thanks to the academic giants for reviewing my research throughout my

candidature: Dr. Oliver Diesel, Dr. Jingling Xue and Dr. Annie Guo. Their

comments and feedbacks always guided my research into the right direction. I would

also like to thank the University of New South Wales and the School of Computer

Science and Engineering for all the funding throughout my PhD degree.

I would extend my thanks to all the researchers around the world, who provided

valuable feedback on my papers. I would also like to thank all the attendees of my

talks at international conferences for their valuable remarks and comments, which

always helped me to refine my research. I also thank my thesis examiners for their

time reading my thesis, and making suggestions that improved the clarity of my

thesis.

I have been fortunate enough to work along the best people during my candi-

dature. I would like to thank Dr. Muhammad Shafique for his priceless guidance

vii

and discussions on multimedia architectures; Dr. Andhi Janapsatya for his criticism

on my research; Dr. Jorgen Peddersen for proof reading my papers; Dr. Roshan

Ragel for his reviews and comments; Dr. Jude Angelo Ambrose for helping me with

almost everything; Dr. Krutartha Patel for his initial help to settle down and then,

detailed discussions on various aspects throughout my research; Dr. Tom Lee for his

priceless feedbacks on mathematical issues of my research, and being a good coffee

partner. Special thanks to Dr. Xin He for being a good friend in slow and boring

moments of research, by motivating me and providing valuable feedback. Special

thanks to Dr. Shihabul Haque, Dr. Seng Lin Shee, James Wong, Ankit Gupta,

Daniel Witono and Bruno Zatt for helping with the cache simulations, benchmarks,

implementation of multi-mode pipelined MPSoCs and analysis data for the motion

estimation sub-kernel. Many thanks to other members of the Embedded Systems

Lab, namely Su, Liang, Michael, Haseeb, Lawrence, Tuo, Babak, Joseph and Naveen

for their companionship and fun moments.

This section would not be complete without my friends in Sydney, who provided

a constant source of entertainment in boring moments. I would always look up to

those dinners and late night card playing moments. I would also like to use this

opportunity to thank my undergraduate friends for proof reading my papers, and

all the other friends back in Faisalabad for constant motivation during my degree.

Last but not least, I would like to thank my parents, my lovely wife and my

brother, sister-in-law and sister for all the prayers, encouragement and motivation

to reach this far. Without their endless support, I would not have been writing this

section.

My humble apologies to anyone whose name I might have not mentioned here,

but from the core of my heart I am obliged for your support. To all, whom I have

mentioned and whom I forgot to mention, I would like to dedicate this work.

viii

Abstract

Heterogeneous MultiProcessor System on Chips (MPSoCs) are viable implementa-

tion platforms for multimedia. However, optimisation of such platforms for perfor-

mance, area footprint and energy consumption is a challenge. This thesis explores

the paradigm of pipelined MPSoCs, and introduces design-time and run-time op-

timisations, in the form of an optimisation framework. This is the first time a

framework has been proposed for optimisation of both the area footprint and en-

ergy consumption of a pipelined MPSoC.

In a pipelined MPSoC, processors are organised into pipeline stages and are

connected through First In First Out (FIFO) buffers. Application Specific Instruc-

tion set Processors (ASIPs) are used so that their customisation can be exploited

to optimise the area footprint of a pipelined MPSoC. Each processor has a num-

ber of configurations, which are made up of differing custom instructions and cache

configurations, and thus enable performance-area trade-off.

This thesis proposes analytical models and estimation methods to aid quick

design space exploration of pipelined MPSoCs, when there are billions of design

points. Three analytical models are proposed to estimate the execution time, latency

and throughput of a pipelined MPSoC, and two estimation methods are proposed

to reduce the number of slow, full-system, cycle-accurate simulations. Researchers

have used absolute accuracy and graphical fidelity to evaluate estimation models.

Since there does not exist any metric to quantify fidelity, this thesis also proposes

fidelity metrics to enable evaluation of estimation models in terms of not only the

absolute accuracy, but also the fidelity.

For design space exploration, two algorithms are proposed to select one config-

uration per processor so as to minimise the area footprint of a pipelined MPSoC

under a latency or a throughput constraint. Experiments with a number of pipelined

MPSoCs, executing JPEG encoder, JPEG decoder, MP3 encoder and H.264 encoder

applications, showed that the analytical models and the estimation methods had a

ix

maximum absolute error of 18.67% and a minimum fidelity of 0.88. The proposed

analytical models and estimation methods resulted in simulation times of only sev-

eral hours for design spaces containing up to 1018 design points. The proposed

exploration algorithms explored such large design spaces for Pareto fronts in less

than seven minutes.

Next, this thesis proposes a novel adaptive pipelined MPSoC architecture, where

idle processors are transitioned into low-power states at run-time to reduce energy

consumption. Two run-time managers are proposed for the adaptive pipelined MP-

SoC. Firstly, a run-time processor manager is proposed to manage the idle processors

by either clock-gating or power-gating them. Secondly, a run-time power manager

is proposed to select the most beneficial low-power state for an idle processor. Ex-

periments with an H.264 video encoder, designed for HD720p at 30 fps, showed that

the processor manager provided an energy reduction of up to 34% and 39% when

clock-gating and power-gating was used respectively with a minimum throughput

of 28.75 fps (which is within the specifications), compared to a pipelined MPSoC

without run-time adaptability. Compared to the use of only the processor manager,

the power manager reduced up to a further 40% energy consumption with only an

additional 0.5% degradation of the throughput.

Lastly, this thesis proposes multi-mode pipelined MPSoCs, where multiple pipelined

MPSoCs designed separately are merged into a single pipelined MPSoC with modes.

A multi-mode pipelined MPSoC enables further reduction of the area footprint by

sharing the processors and FIFO buffers. Three merging heuristics are proposed to

find the maximal overlap between the individual pipelined MPSoCs, where the opti-

mality of the heuristics is traded-off with their running times. The results indicated

significant area footprint reduction – up to 62% processor area, 57% FIFO area and

59% processor/FIFO ports – when compared to individual pipelined MPSoCs.

x

Contents

Statement of Originality . iii

Copyright Statement . iv

Authenticity Statement . iv

Thesis Publications . v

Other Publications . vi

Acknowledgements . vii

Abstract . ix

Table of Contents . x

List of Tables . xvi

List of Figures . xix

1 Introduction 1

1.1 Multimedia Applications . 3

1.2 Multimedia Architectures . 4

1.2.1 Application Specific Integrated Circuits (ASICs) 4

1.2.2 General Purpose Processors (GPPs) 5

1.2.3 Digital Signal Processors (DSPs) 5

1.2.4 Application Specific Instruction set Processors (ASIPs) 6

1.2.5 MultiProcessor System on Chips (MPSoCs) 8

1.3 Challenges in Multimedia Heterogeneous MPSoCs 13

1.4 Research Aims and Thesis Contribution 16

1.5 Thesis Outline . 22

xi

1.6 Summary . 23

2 Literature Survey 25

2.1 Homogeneous MPSoCs . 25

2.2 Heterogeneous MPSoCs . 28

2.3 Design Space Exploration . 34

2.3.1 Exact Approaches . 34

2.3.2 Heuristic Approaches . 39

2.3.3 (Semi-) Automated Frameworks 48

2.4 Run-time Adaptability . 55

2.5 Summary . 61

3 Research Methodology 63

3.1 Application Model and Pipelined MPSoCs 63

3.2 Shortcomings of Prior Research . 68

3.3 An Optimisation Framework for Pipelined MPSoCs 72

3.4 Summary . 77

4 Fidelity Metrics for Estimation Models 79

4.1 Motivational Example . 80

4.2 Use of Fidelity in Prior Research . 81

4.3 Preliminaries . 83

4.3.1 Spearman’s Rank Correlation Coefficient 83

4.3.2 Kendall’s Tau Correlation Coefficient 84

4.4 Standard Fidelity Metrics . 85

4.4.1 FMρ . 85

4.4.2 FMτ . 87

4.5 Weighted Fidelity Metrics . 87

4.5.1 A Pareto Front based Weight Function 88

4.5.2 WFMρ . 90

xii

4.5.3 WFMτ . 91

4.6 Generalisation of Fidelity Metrics . 92

4.7 Analysis of Fidelity Metrics . 93

4.8 Application of Fidelity Metrics . 95

4.9 Experimental Evaluation . 97

4.10 Summary . 101

5 Performance Estimation of Pipelined MPSoCs 103

5.1 Pipelined MPSoC’s Analytical Models 106

5.2 Estimation Methods . 113

5.2.1 PS Method (Pipelined MPSoC Simulation) 113

5.2.2 PSP Method (Pipelined MPSoC Simulation and Processor

Analytical Model) . 114

5.3 Experimental Methodology . 118

5.4 Results and Analyses . 121

5.4.1 Processor’s Analytical Model 121

5.4.2 Pipelined MPSoC’s Analytical Models and Estimation Methods122

5.4.3 Simulation Time of Estimation Methods 125

5.4.4 Comparison to Prior Research 127

5.5 Summary . 128

6 Design Space Exploration of Pipelined MPSoCs 131

6.1 Problem Statement . 133

6.2 Optimisation Under a Latency Constraint 134

6.2.1 Variables . 135

6.2.2 Objective Function . 135

6.2.3 Constraints . 135

6.3 Optimisation Under a Throughput Constraint 138

6.4 Discussion . 139

6.5 Experimental Methodology . 140

xiii

6.6 Results and Analyses . 140

6.6.1 Pareto Fronts . 140

6.6.2 Exploration Time . 143

6.6.3 JPEG Encoder Case Study . 144

6.7 Summary . 145

7 Adaptive Pipelined MPSoCs 147

7.1 Motivational Example . 147

7.2 Adaptive Pipelined MPSoC Architecture 150

7.3 A Design Flow . 154

7.4 Problem Statement . 155

7.5 Leveraging Application Knowledge 156

7.5.1 An H.264 Video Encoder Example 156

7.6 Processor Management Heuristics . 159

7.6.1 Application Execution Based Heuristic (Exe Heuristic) 161

7.6.2 Application Knowledge Based Heuristic (Know Heuristic) . . . 163

7.6.3 System-level Overview . 167

7.7 HD720p H.264 Video Encoder Case Study 169

7.7.1 Implementation Details . 170

7.7.2 Results and Analyses . 173

7.7.3 Discussion . 182

7.8 Summary . 183

8 Power Management in Adaptive Pipelined MPSoCs 185

8.1 Motivational Example . 186

8.2 Power Manager . 188

8.2.1 Analytical Analysis . 190

8.2.2 Leveraging Application Knowledge 193

8.3 Problem Statement . 194

8.4 Power Management Heuristics . 194

xiv

8.4.1 Application Execution Based Heuristic (Exe Heuristic) 195

8.4.2 Application Knowledge Based Heuristics (Know Heuristics) . . 197

8.4.3 System-level Overview . 203

8.5 HD720p H.264 Video Encoder Case Study 203

8.5.1 Implementation Details . 205

8.5.2 Results and Analyses . 206

8.6 Summary . 212

9 Multi-mode Pipelined MPSoCs 213

9.1 Multi-mode Pipelined MPSoCs . 216

9.2 A Design Flow . 219

9.3 Problem Statement . 220

9.4 Merging Heuristics . 222

9.4.1 MaxS (Maximum Stages) . 222

9.4.2 MaxN (Maximum Nodes) . 225

9.4.3 MaxC (Maximum Weight Clique) 226

9.5 Experimental Methodology . 228

9.6 Results and Analyses . 230

9.7 Discussion . 233

9.8 Summary . 233

10 Conclusions and Future Work 235

Bibliography 241

xv

List of Tables

4.1 Comparison of three estimation models. 86

4.2 Complexity of computing the fidelity metrics. 95

4.3 Fidelity metrics for SP estimation model. 98

5.1 Processor configurations. 120

5.2 Detailed analysis of processor analytical model. 123

5.3 Detailed analysis of pipelined MPSoC’s analytical models and esti-

mation methods. 124

5.4 Simulation time of estimation methods. 126

5.5 Analysis of execution time analytical model proposed in prior research.127

6.1 Exploration time to obtain Pareto fronts. 143

6.2 Comparison of JPEGEnc1 and JPEGEnc2. 144

7.1 Hardware-related details of the adaptive pipelined MPSoC for ‘pedes-

trian’ video sequence. 173

7.2 Comparison of Exe and Know heuristics. 180

8.1 Typical power states of a processor. 186

8.2 Minimum number of iterations required for the power states described

in Table 8.1. 192

8.3 Power states of the processors in the adaptive pipelined MPSoC. . . . 205

8.4 Percentage error in the selection of power states by the power man-

agement heuristics when compared to the optimal scenario. 209

xvii

9.1 Benchmark characteristics. 229

9.2 Comparison of MaxS, MaxN and MaxC heuristics. 231

xviii

List of Figures

1.1 Industry’s move towards multiprocessor systems. 9

1.2 Share of SoCs, microcontrollers and DSPs in revenue of embedded

systems’ market. 10

1.3 Design trends of MPSoCs. 11

1.4 Comparison of multimedia architectures. 12

1.5 A typical pipelined MPSoC. 17

2.1 TILEPro64 architecture. 27

2.2 OMAP44x architecture. 31

2.3 Daedalus framework. 53

3.1 Graphs of typical multimedia applications. 64

3.2 Pipelined MPSoCs for multimedia applications of Figure 3.1. 66

3.3 An optimisation framework for pipelined MPSoCs. 73

4.1 Importance of fidelity in design space exploration. 80

4.2 Pareto front of an actual design space. 89

4.3 Comparison of absolute accuracy and fidelity of MP1 and MP2 esti-

mation models. 100

5.1 Execution of a pipelined MPSoC. 107

5.2 An example of PS method. 113

5.3 Analysis of processor analytical model. 122

xix

6.1 Pareto fronts of JPEGEnc1. 141

6.2 Pareto fronts of JPEGEnc2. 141

6.3 Pareto fronts of JPEGDec. 141

6.4 Pareto fronts of MP3Enc. 142

6.5 Pareto fronts of H.264Enc. 142

7.1 Number of SADs computed during different iterations of the motion

estimation sub-kernel. 148

7.2 Adaptive pipelined MPSoC’s architecture. 151

7.3 A design flow for adaptive pipelined MPSoCs. 154

7.4 Probability density function of number of SADs for low- and high-

motion macroblocks. 158

7.5 A system-level implementation overview of adaptive pipelined MPSoCs.168

7.6 Details of an H.264 video encoder application. 171

7.7 Adaptability and throughput for the ‘pedestrian’ video sequence. . . . 175

7.8 Adaptability and throughput for the ‘sky’ video sequence. 176

7.9 Adaptability and throughput for the ‘station’ video sequence. 177

7.10 Adaptability and throughput for the ‘sunflower’ video sequence. . . . 178

7.11 Adaptability and throughput for the ‘tractor’ video sequence. 179

7.12 Energy reduction of an adaptive pipelined MPSoC compared to a

worst-case pipelined MPSoC. 182

7.13 Switching count of APs in the adaptive pipelined MPSoC. 183

8.1 Activity of one of the APs in the motion estimation stage of the H.264

video encoder. 187

8.2 Adaptive pipelined MPSoC’s architecture with run-time managers. . . 189

8.3 An example illustrating the working of the Exe heuristic. 197

8.4 An example of populating idlePeriods table. 199

8.5 A system-level implementation overview of run-time managers in adap-

tive pipelined MPSoCs. 204

xx

8.6 Power states of AP0 and AP15 for the ‘pedestrian’ video sequence. . 207

8.7 Relative energy reduction of the power management heuristics in the

power manager compared to the processor manager. 211

9.1 A typical multimedia platform where multimedia accelerators are im-

plemented as pipelined MPSoCs. 213

9.2 Merging two application graphs to derive a multi-mode pipelined MP-

SoC. 218

9.3 An example illustrating the working of the merging heuristics. 223

9.4 Reduction in area footprint of multi-mode pipelined MPSoCs. 232

xxi

Chapter 1

Introduction

Day to day computing has moved from mainframe to personal to ubiquitous comput-

ing over the last several decades [1]. Ubiquitous computing is almost imperceptible

and yet is everywhere around us, enabled by the proliferation of embedded systems.

An embedded system is a hardware-software computer system, designed to perform

specific tasks (unlike a general-purpose system) and is typically embedded within

a larger system or device. Common examples of embedded systems include digi-

tal watches, traffic controllers, mobile phones, music/video players, tablets, health

monitors and modern cars.

The evolution of embedded systems has been rapid and their market is growing

at a staggering rate. In a report published by the International Data Corporation

in 2011 [2], 5.4 billion embedded systems were shipped in 2010 and 8.8 billion are

expected in 2015. Furthermore, 7.5 billion embedded processors were used in 2010

and 14.5 billion will most likely be required in 2015. Embedded systems’ market

includes a diverse set of industries spanning automotive, communication, consumer,

energy, healthcare, industrial and transportation. The communication and consumer

industries accounted for 48% of the revenue of the embedded systems’ market in

2010 [2], signifying user demands and expectations on consumer devices such as

mobile phones, personal digital assistants, digital cameras, digital TVs and gaming

consoles.

1

2 CHAPTER 1. INTRODUCTION

Multimedia is a combination of diverse content forms such as text, audio, video,

image and animation to provide information or entertainment to users. It is at the

backbone of consumer products and is considered the fastest growing class of em-

bedded applications [3]. Users expect multimedia content to be accessible virtually

from everywhere through portable devices. For example, a mobile phone is expected

to record high definition video and then upload it to a social networking website.

Another example is that users expect set-top boxes to provide digital television,

internet access, gaming experience, in-home entertainment and home automation.

The number of mobile phones has increased from 12.4 million to approximately 4.6

billion, and internet users have grown from 3 million to almost a quarter of the

earth’s population during the last two decades [4]. Therefore, analysis, design and

implementation of advanced and complex multimedia embedded devices has become

an active research area in both academia and industry.

This thesis explores implementation of multimedia applications on a pipelined

MultiProcessor System on Chip (MPSoC) where the processors are divided into

stages, and are connected in a pipeline. Application Specific Instruction set Pro-

cessors (ASIPs) are used so that their customisation can be used to balance the

workload across stages of the pipelined MPSoC, improving the utilisation of the

processors for high performance, reduced area footprint and low power consump-

tion. The aim of this thesis is to optimise such a pipelined MPSoC for area footprint

and energy consumption under performance constraints by utilising design-time and

run-time optimisations. This chapter of the thesis entails an overview of trends and

challenges in multimedia applications and embedded architectures, starting from

low resolution video processing on uniprocessor systems to high definition video

processing on (heterogeneous) multiprocessor systems. The chapter concludes with

the research aims and contributions of the thesis.

1.1. MULTIMEDIA APPLICATIONS 3

1.1 Multimedia Applications

Multimedia has widespread application in embedded devices [5] in the form of:

• Digital Audio: audio recording, audio playback, voice calls/conferencing, etc.

• Digital Image: photography, image processing, image pre-/post-processing,

etc.

• Digital Video: video calls/conferencing, video recording, video playback, dig-

ital TV, etc.

• Display: brightness and contrast adjustment, up-/down-scaling, etc.

• Games: game processing, rendering, shading, etc.

Multimedia applications have seen a radical increase in their complexity over the

last two decades, driven by user expectations on better quality/experience, interac-

tive displays, high definition content, 3D content, longer playback time, etc. Video

resolutions have increased from Quarter Common Interface Format (QCIF, 176 ×

144 pixels) to Standard Definition (SD, 720 × 480 pixels) to High Definition (HD,

1920 × 1080 pixels). These resolutions are expected to further increase to Ultra

High Definition TV and Realistic TV, resulting in approximately 1000× increase

in resolution complexity [5,6] relative to MPEG-4 QCIF. Although high resolutions

are targeted for high-end devices, recent prototypes from Nokia have demonstrated

3D video decoding on tablets [7, 8]. In addition to video resolution, video codec

complexity has dramatically increased to improve compression efficiency. Since the

introduction of MPEG-1, video coding standards have evolved to H.264 [9] and

Multiview Video Coding [10]. H.264 doubles the compression efficiency compared

to previous standards [11] at the cost of 10× additional computational complex-

ity [12]. A recent study by Meehan et al. [6] anticipated that the overall complexity

of video coding standards will double every two years. Besides, multimedia appli-

cations are expected to support different video formats and multiple video coding

4 CHAPTER 1. INTRODUCTION

standards due to extreme competition in consumer devices’ market.

High-end applications like user interfaces, video conferencing/calls, video record-

ing and internet video streaming require better video quality, higher video resolutions

and lower compression rates, and hence consume significant amounts of energy due

to their high computational complexity. These applications are executed on portable

devices like personal navigation devices, personal multimedia players, mobile inter-

net devices and netbooks that are powered by batteries. As a result, embedded

multimedia devices are anticipated to perform more than 100 Giga operations per

second with power budgets of approximately 200 mW [6, 13]. Therefore, as multi-

media moves towards 3D content at higher resolutions with multiple standards to

live up to user demands and expectations, embedded multimedia hardware needs

to be a flexible, computationally capable platform while being low power to run off

a standard mobile battery. The next section describes the evolution of multimedia

architectures.

1.2 Multimedia Architectures

Hardware architectures for multimedia have evolved significantly over the years,

starting from Application Specific Integrated Circuits to Digital Signal Processors to

Application Specific Instruction set Processors to Multiprocessor System on Chips.

1.2.1 Application Specific Integrated Circuits (ASICs)

ASICs are integrated circuits designed and optimised for a specific application. ASIC

designs are described in a Hardware Description Language (HDL) like VHDL and

Verilog, which can then be simulated and synthesised by Electronic Design Au-

tomation (EDA) tools such as Mentor Graphics’ ModelSim [14], Synopsys’ Design

Compiler [15] and Cadence’s Virtuoso Platform [16]. ASICs provide high perfor-

mance under tight area footprint and energy consumption budgets because of the

highly optimised hardware. However, they provide a pure hardware solution which

1.2. MULTIMEDIA ARCHITECTURES 5

involves high design effort and lacks flexibility, and thus are increasingly becom-

ing unattractive. Inflexibility and non-programmability of ASICs mean that they

cannot be used for applications other than the ones for which they were initially de-

signed. Therefore, ASICs need to be redesigned to support product upgrades which

not only lengthens time-to-design and time-to-market of the product but also incurs

significant Non-Recurring Engineering (NRE) costs. NRE costs are growing steadily

with continuous technology scaling [4] which will make design reuse necessary, an

attribute lacking in ASICs. Furthermore, support of multiple applications in a single

ASIC will incur high design efforts due to the amplified design complexity. There-

fore, programmable platforms turn out to be an attractive option for multimedia

devices.

1.2.2 General Purpose Processors (GPPs)

GPPs offer a pure software solution that facilitates short time-to-design and time-to-

market through code reuse, and allow easy product upgrades and fixes. Furthermore,

programmability of GPPs helps longer time-in-market, and thus reduces NRE costs.

Since GPPs cannot be optimised for specific applications, they offer far less perfor-

mance and consume far more energy than ASICs. The quantitative analysis in [17]

reported a difference of at least five orders of magnitude in energy efficiency1 and

area efficiency2 between ASICs and GPPs.

1.2.3 Digital Signal Processors (DSPs)

DSPs, replacing GPPs, are domain-specific processors customised to efficiently ex-

ecute applications from a certain domain. DSPs provide better energy and area

efficiencies than GPPs [4,5,18] due to domain-specific instructions, multiple domain-

specific functional units and exploitation of instruction- and data-level parallelisms.

1measured in mW/Million Operations Per Second
2measured in Million Operations Per Second/mm2

6 CHAPTER 1. INTRODUCTION

A typical DSP designed for multimedia applications will contain Multiply Accu-

mulate (MAC), Fast Fourier Transform (FFT), Fused Multiply Add (FMA), etc.

domain-specific functional units and associated instructions [19]. The Very Long

Instruction Word (VLIW) technique allows a DSP to execute several operations in

parallel, and the compiler is responsible for encapsulation of multiple operations in a

single instruction. On the other hand, the Single Instruction Multiple Data (SIMD)

technique allows an instruction to execute an operation on multiple data in paral-

lel. VLIW and SIMD allow DSPs to exploit instruction- and data-level parallelism

available in multimedia applications [3, 20].

Commercial DSPs for multimedia include Texas Instruments’ C6000 series and

DaVinci [19], FreeScale’s StarCore [21], Analog Devices’ SHARC, SigmaDSP and

ADSP series [22], and NXP Semiconductor’s TriMedia [23]. DSPs are also used

as coprocessors with GPPs where GPPs offload domain-specific, computationally

intensive functions to DSPs. For example, ConnX Vectra DSP coprocessor [24] is

used with Tensilica’s Xtensa processors [25] to perform fixed-point arithmetic for

wireless communication applications. DSPs significantly improve energy and area

efficiencies of GPPs while still being flexible and programmable. However, they

do not provide the best energy efficiency because they exploit a limited amount of

parallelism and their performance is constrained by memory bandwidth [26–29].

1.2.4 Application Specific Instruction set Processors (ASIPs)

ASIPs [30,31] emerged as an attractive platform to ASICs, GPPs and DSPs. ASIPs

are highly customised processors with domain-specific hardware accelerators. These

hardware accelerators are integrated with the processor pipeline and are accessible

through custom instructions. Therefore, ASIPs provide better energy and area effi-

ciencies than DSPs and GPPs [27,32,33] while retaining flexibility and programma-

bility to support product upgrades and fixes with short time-to-design and time-to-

market. The programmability feature (such as pipeline control, register file, etc.) of

1.2. MULTIMEDIA ARCHITECTURES 7

ASIPs results in a larger area footprint than ASICs, however technology scaling has

subdued this shortcoming of ASIPs by making billions of transistors available on a

single chip [34].

ASIPs provide numerous customisations, categorised into custom instructions,

inclusion/exclusion of optimised domain-specific blocks, and parametrisable op-

tions [4, 35]. Custom instructions typically exploit the techniques of SIMD, VLIW

and fused operations. Examples of optimised domain-specific blocks include multi-

pliers, MAC units, Floating Point (FP) units and DSP coprocessors. Parametrisable

options include pipeline depth, register file size, number of load-store units, local

memory interface width, instruction and data caches, etc. An ASIP can be extremely

tailored to an application due to the availability of such a diverse set of customisa-

tions, and hence provides the best tradeoff between area efficiency, energy efficiency,

flexibility and programmability for multimedia applications [36–39]. Several com-

mercial ASIP platforms are available from Tensilica [25], ARC International [40],

CoWare [41], MIPS [42] and Target Compiler Technologies [43].

The design effort of an ASIP is extremely large because it not only involves design

and verification of ASIP architecture but also the construction of the associated

software tools such as assembler, compiler, debugger and instruction set simulator.

However, several high-level ASIP frameworks have been developed over recent years

to lower the design and verification efforts, and hence shorten time-to-design and

time-to-market. These frameworks can be categorised as (inspired from [4]):

• Specification based frameworks [41, 43–45]: These frameworks let a designer

develop an ASIP from scratch through specification of its Instruction Set Ar-

chitecture (ISA) in an Architecture Description Language (ADL). Automatic

generators are then used to create both the hardware model of the ASIP in

HDL and corresponding software tool-chain.

• Base processor based frameworks [25, 40, 46]: These frameworks allow design-

ers to develop an ASIP from a pre-designed and pre-verified configurable base

8 CHAPTER 1. INTRODUCTION

processor. Designers can add functional units and custom instructions, and

parametrise hardware blocks. Like specification based frameworks, the hard-

ware model and associated tool-chain is automatically generated. Further-

more, analysis tools are provided to automatically analyse applications and

generate domain-specific hardware accelerators and associated custom instruc-

tions [47].

Recently, ASIPs have been coupled with Field Programmable Gate Array (FPGA)

technology to create so-called reconfigurable processors. Like ASIPs, reconfigurable

processors contain custom instructions; however, the corresponding hardware ac-

celerators are implemented in the reconfigurable region which is integrated with

the processor pipeline. The reconfigurable region is time-multiplexed among hard-

ware accelerators to reduce area footprint when an ASIP does not use most of its

custom instructions simultaneously. Reconfigurable processors further enhance the

flexibility and programmability of ASIPs where both the hardware (through FPGA

reconfiguration) and software (through code modification) can be modified. How-

ever, this increased flexibility comes at the cost of increased area footprint and

power consumption of the FPGA fabric and its reconfiguration. Some examples of

reconfigurable processors include MOLEN [48], WARP [49], RISPP [50], NIOS [51],

eMIPS [52] and Stretch series [53], with detailed surveys in [54, 55].

1.2.5 MultiProcessor System on Chips (MPSoCs)

From GPPs to ASIPs, performance improvements were mostly due to exploitation

of instruction- and data-level parallelisms, higher clock frequencies and technology

scaling. Instruction- and data-level parallelisms did not scale well with the increase

in complexity of multimedia applications, and hence single ASIP systems could not

handle complexity of current multimedia [57–59]. Higher frequencies significantly

increased dynamic power consumption while technology scaling increased leakage

1.2. MULTIMEDIA ARCHITECTURES 9

!

"

"!

"!!

"#!!!

"!#!!!

"!!#!!!

"#!!!#!!!

"!#!!!#!!!

"$%! "$%& "$'! "$'& "$$! "$$& (!!! (!!& (!"!

)*+,-.-/0*-12!!!3 45067189::;12<=>3

?0@:*12A3 ?:*BC4506712DE?3

Figure 1.1: Industry’s move towards multiprocessor systems. Courtesy of Herb
Sutter, sourced from [56].

power consumption due to smaller transistor dimensions and reduced threshold volt-

ages, increasing power densities and thus hitting the power wall [60–62]. Figure 1.1

illustrates that uniprocessor systems’ clock frequencies (marked as “clock speed”)

and instruction-level parallelism capabilities (marked as “perf/clock (ILP)”) have

levelled off in the recent years. Therefore, rather than using a single complex, power

inefficient processor, academia and industry went to explore the area of multiple,

small, power efficient processors [62–64].

Continuous technology scaling (that is, 90 nm to 65 nm to 45 nm) has made

billion of transistors available on a single chip to be exploited by System-on-Chip

(SoC) technology to place multiple components on a single chip. A recent report

from the International Data Corporation [2] noticed that SoCs will constitute the

largest portion of embedded systems’ market revenues, as shown in Figure 1.2. The

SoC technology has evolved over the years to fabricate MultiProcessor System on

10 CHAPTER 1. INTRODUCTION
B
i
l
l
i
o
n

D
o
l
l
a
r
s

SoCs Microcontrollers DSPs

Figure 1.2: Share of SoCs, microcontrollers and DSPs in revenue of embedded sys-
tems’ market. Sourced from [2].

Chip (MPSoC) by putting together multiple processing elements, memory hierar-

chy, I/O components and an on-chip interconnect. Recent consumer products are

believed to have up to ten processing elements in the form of MPSoCs [65]; for ex-

ample, Apple’s iPhone 5 has two processors while Samsung’s Galaxy S III has four

processors in the main (control) MPSoC. Futurists are expecting consumer prod-

ucts to contain MPSoCs with hundred processing elements in near future [62–64].

The International Technology Roadmap for Semiconductors (ITRS) has envisioned

MPSoCs to contain even thousand processing elements by 2020, as depicted in Fig-

ure 1.3. Therefore, MPSoCs have become a mainstream embedded platform for

current multimedia applications [66]. In general, MPSoCs:

• can execute multiple applications with higher performance through exploita-

tion of Task-Level Parallelism (TLP);

• can consume less power by switching off idle processing elements;

• can be more reliable by sparing some processing elements for redundancy; and,

• can be scalable by the addition of more processing elements.

1.2. MULTIMEDIA ARCHITECTURES 11

Figure 1.3: Design trends of MPSoCs. Sourced from [67].

MPSoCs are broadly categorised as homogeneous or heterogeneous. Homoge-

neous MPSoCs are Symmetric MultiProcessing (SMP) systems where identical pro-

cessing elements are used. For example, ARM’s MPCore [68] contains four iden-

tical ARM11 processors with same Instruction Set Architecture (ISA), connected

to a shared memory. Other notable examples are Stanford’s Imagine [69], Tilera’s

TilePro64 [70] and Intel’s Single-chip Cloud Computer (SCC) [71]. These MPSoCs

typically contain a fast, efficient interconnect and an operating system to manage

application tasks and processors. Homogeneous MPSoCs are scalable, have larger

area footprint and higher power consumption; hence, are more suitable for general-

purpose systems rather than embedded systems [72].

Heterogeneous MPSoCs are Asymmetric MultiProcessing (AMP) systems made

12 CHAPTER 1. INTRODUCTION

Flexibility, 1/time-to-market, …

E
f
f
ic
ie
n
c
y
:

M
ip
s
/
$
,

M
H
z
/
m
W
,

M
ip
s
/
a
r
e
a
,

… “Hardware Solution”

“Software

Solution”

DSPs

- Programmable

- VLIW, SIMD ISAs GPPs

- Programmable

ASIPs

- Programmable

- Custom instructions

- Parameterisable

ASICs

- Non-programmable

- Highly specialised

Heterogeneous MPSoCs

- ASIC + ASIP + DSP + GPP

- Optimised for specific applications

Figure 1.4: Comparison of multimedia architectures (inspired from [5]).

up of architecturally different processing elements such as programmable proces-

sors (GPPs), application-specific processing elements (ASIPs, ASICs) and domain-

specific (co) processors (DSPs), typically connected through a custom-designed in-

terconnect. In such an architecture, processing elements are matched to the re-

quirements of application’s task(s), and hence heterogeneous MPSoCs provide high

performance under tight area and power budgets. Several researches have shown

that heterogeneous MPSoCs outperform their homogeneous counterparts [73–75],

especially in multimedia [57, 58, 76, 77]. Commercially available heterogeneous MP-

SoCs for multimedia include Sony, Toshiba and IBM’s CELL [78], Intel’s IXP [79],

NXP Semiconductor’s Nexperia [80], Texas Instrument’s OMAP [81] and STMicro-

electronic’s Nomadik [82].

Multimedia architectures have come a long way from ASICs to heterogeneous

MPSoCs, and a figurative comparison is provided in Figure 1.4. Heterogeneous

MPSoCs have become an attractive platform for multimedia applications because:

• Multimedia applications are heterogeneous in nature, that is, the type of

computation, access patterns, memory bandwidth and workload profiles vary

across tasks of a single application. For example, motion estimation in H.264

1.3. CHALLENGES IN MULTIMEDIA HETEROGENEOUS MPSOCS 13

performs correlation on macroblocks and is highly data-dependent. On the

other hand, discrete cosine transform performs large number of multiplications

and additions with regular access pattern. Therefore, heterogeneous MPSoCs

use customised processing elements to match the computational requirements

of individual tasks.

• Customised processing elements typically result in lower area footprint and

lower power consumption. Further power reductions can be achieved by switch-

ing off the idle processing elements through clock-gating, power-gating and Dy-

namic Voltage and Frequency Scaling (DVFS). Hence, heterogeneous MPSoCs

can deliver the required performance under tight area and power budgets.

• Increasing complexities of multimedia applications (HD video, 3D video, etc.)

can be addressed with the further addition of customised processing elements

in the heterogeneous MPSoC.

• Heterogeneous MPSoCs built from domain-specific and application-specific

processors (DSPs and ASIPs) can support multiple multimedia standards on

the same platform through software, while still being able to deliver required

performance under area and power budgets due to optimised processors.

• Domain-specific and application-specific processors based heterogeneous MP-

SoCs can also support multimedia features’ fixes and updates, multimedia

standard’s upgrade and product upgrade through software modifications.

1.3 Challenges in Multimedia Heterogeneous MP-

SoCs

The advantages of heterogeneous MPSoCs come at a cost. Most importantly, their

design becomes very complex due to the presence of a large number of architectural

and programming options. Consumer market factors such as quick deployment, low

14 CHAPTER 1. INTRODUCTION

prices, etc. put further pressure on the design of heterogeneous MPSoCs. This sec-

tion describes these challenges and the motivation behind this thesis.

Time-to-design and time-to-market. Consumer demands have forced

semiconductor companies to regularly introduce and upgrade their products. For

example, mobile phone companies have to release new models with innovative func-

tionalities (such as face detection, higher pixel cameras, etc.) every six months or

so to sustain their customer base. Not only this, companies have to release several

variants of a mobile phone to capture diverse user expectations, and hence survive

the competition. These market factors have resulted in shorter time-to-design and

time-to-market for heterogeneous MPSoCs, indicating the need for comprehensive

design automation frameworks.

Product prices. Design of complex heterogeneous MPSoCs under short

time-to-design and time-to-market constraints requires a company to invest in large,

talented design teams. However, such investments mean that prices of products will

increase which is unacceptable in consumer markets as users always prefer to buy

state-of-the-art technology at the cheapest price. Design automation techniques can

automatically run cumbersome phases of the design cycle with little or no interven-

tion from a designer, and hence shortens time-to-design and time-to-market, which

reduces product prices. Flake et al. [83] reports that a company with comprehensive

design automation framework(s) is more likely to compete in consumer market by

providing cheap yet innovative products.

Design complexity. The design space of heterogeneous MPSoCs explodes

due to the presence of diverse options such as processing elements, memory hierar-

chies, communication infrastructure and application/programming models. For ex-

ample, should a heterogeneous MPSoC use ASIPs or DSPs or both, and how many of

each type? In communication infrastructure, for example, a designer needs to choose

1.3. CHALLENGES IN MULTIMEDIA HETEROGENEOUS MPSOCS 15

from point-to-point buffers, shared memory buffers and their sizes, and Network-on-

Chip (NoC). Choices in memory hierarchy include number of cache levels, configu-

ration of caches and sizes of local and shared memories. Last but not least, should

the heterogeneous MPSoC use the Kahn Process Network (KPN) [84], Synchronous

Data Flow (SDF) [85] or stream model [86] for applications and OpenMP or Mes-

sage Passing Interface (MPI) as its programming model? Exploration of such a

diverse design space cannot be done manually, and hence requires cleverly designed

exploration techniques. Furthermore, design space exploration should be fast and

implementable as part of the design automation framework(s).

Flexibility and scalability. The heterogeneous MPSoC should be flexi-

ble enough to allow implementation of multiple multimedia standards so that several

variants of a product can be quickly deployed. Furthermore, it should allow quick

product fixes and upgrades after deployment. These requirements indicate the use

of programmable processing elements like DSPs and ASIPs as the building blocks

of a heterogeneous MPSoC. Design-time scalability implies that the MPSoC should

allow easy addition of components in future to handle increasing complexity of next

generation multimedia without major redesign effort.

Performance, area and energy constraints. Multimedia applica-

tions often have performance constraints such as 30 fps for a video encoder that have

to be met by heterogeneous MPSoCs. In addition, these MPSoCs are deployed in

embedded devices running off standard batteries, and hence favour smallest possible

area footprint and lowest possible power consumption. Design space exploration, as

explained above, has to be performed to choose the right number and types of pro-

cessing elements, cache configurations, memory sizes, type of low-power technique,

etc. under performance, area and power constraints.

Adaptability. Computational requirements of a multimedia content changes

16 CHAPTER 1. INTRODUCTION

with time, requiring multimedia applications and architectures to adapt accordingly

at run-time. For example, a video encoder might be inputted with a video that

contains low motion and then high motion. High-motion video frames require sig-

nificantly more computation than low-motion video frames. Hence, a heterogeneous

MPSoC should adapt its resource (processing elements, memory, etc.) utilisation at

run-time based on current workload rather than operating under worst-case (that is,

all the resources are active) at all times. Such an adaptation is necessary for ultra

low-power operation of heterogeneous MPSoCs to increase battery lives in portable

devices. Run-time management techniques should be used to manage resources in

a heterogeneous MPSoC so that it always operates with the lowest possible power

consumption.

1.4 Research Aims and Thesis Contribution

This thesis aims to address the above mentioned challenges, that can be condensed

into the following three research problems:

• Selection of a suitable multimedia heterogeneous MPSoC platform;

• Design space exploration of the selected platform as part of design automation;

and,

• Support for run-time adaptability in the selected platform.

Selection of an implementation platform is typical of platform-based design

methodology [87] to keep the design complexity and design space of MPSoCs tractable.

This thesis uses the paradigm of pipelined MPSoCs as the multimedia platform. A

pipelined MPSoC is a system where processors are connected in a pipeline [88–92].

It is divided into several stages where each stage contains one or more processors.

Communication between the stages typically occurs through point-to-point FIFO

buffers. Each processor has separate instruction and data caches that are connected

1.4. RESEARCH AIMS AND THESIS CONTRIBUTION 17

P2.1

P3.1

P1.1

P2.2

S1

S2

S3

P4.1S4

Figure 1.5: A typical pipelined MPSoC. Memories are not shown for the sake of
simplicity.

to its local memory. In addition to local memories, shared memory could be used

where common data need to be shared among processors within a stage or across

different stages. Figure 1.5 shows a typical four stage pipelined MPSoC. Pipelined

MPSoCs have emerged as an attractive platform for multimedia [88–92] and offer

several advantages that are summarised below:

• The data-flow nature of multimedia applications favours the topology of pipelined

MPSoCs [93–96]. Multimedia applications are characterised by several sub-

kernels which are executed repeatedly on an input data stream. For example,

an MP3 encoder contains the following sub-kernels: Reading input file (R);

Polyphase Filtering (PF); Transform and Quantisation (TQ); and, Entropy

Coding and Writing output file (EC/W). These sub-kernels can be mapped

to the four stages of the pipelined MPSoC shown in Figure 1.5. While pro-

cessor P2.1 will be in its i-th iteration, processor P1.1 will be in its (i+1)-th

iteration, thereby allowing pipelined execution of the sub-kernels. Thus, these

sub-kernels operate on different data units of the input stream and the in-

coming data streams through the stages of the pipelined MPSoC, enabling

18 CHAPTER 1. INTRODUCTION

pipelined execution for high performance.

• Application Specific Instruction set Processors (ASIPs) are used as the pro-

cessing elements which allow extreme customisation to match processors to

sub-kernels, and thus deliver high performance with smaller area footprint and

lower power consumption. A number of researches have illustrated the use-

fulness of ASIPs in multimedia MPSoCs [58, 65, 77, 97, 98]. ASIPs come with

high-level frameworks that enable (semi-) automatic customisation [31, 47],

reducing time-to-design and time-to-market of pipelined MPSoCs. Further-

more, ASIPs make pipelined MPSoCs flexible and scalable to support product

upgrades through software.

• The point-to-point FIFO buffers allow communication at a much higher band-

width compared to a shared bus and provide blocking read and write opera-

tions to allow synchronisation between processors. In addition, where FIFO

buffers might have unacceptable area footprint, shared memories could be used

for data communication [59].

The selection of pipelined MPSoCs as the multimedia platform limits the de-

sign space to be tractable, yet provides a high performance, flexible, explorable

and customisable platform. Each processor in the pipelined MPSoC has a number

of configurations resulting from customisable options such as custom instructions,

cache configurations, etc. A design point of a pipelined MPSoC is then one of the

combinations of these processor configurations. The goal is to select one configu-

ration for each processor in the pipelined MPSoC to have the optimal combination

of processor configurations – the optimal design point – for a given objective func-

tion such as minimum area or maximum throughput. The aim of this thesis is to

optimise a pipelined MPSoC with such a design space for area footprint and energy

consumption under performance constraints3.

3Note that partitioning and mapping of a multimedia application on a pipelined MPSoC is done
either manually or semi-automatically [99–103].

1.4. RESEARCH AIMS AND THESIS CONTRIBUTION 19

This thesis proposes design-time and run-time optimisations targeted at different

objective functions. At first, a pipelined MPSoC is optimised for area footprint

under either a latency constraint or a throughput constraint by selection of the most

suitable processor configurations during its design space exploration. Then, such a

design-time optimised pipelined MPSoC is augmented with run-time adaptability to

deactivate idle processors at run-time to reduce energy consumption. Here, the fact

that not all the processors will be utilised at all times under a dynamic workload

is exploited by the proposed run-time management techniques. Finally, pipelined

MPSoCs optimised for different multimedia applications are combined into a single

multi-mode pipelined MPSoC for further reduction of area footprint. In particular,

this thesis has the following contributions:

1. Design space exploration of pipelined MPSoCs. For a pipelined MPSoC

with 5 processors where each processor has 100 configurations, 1010 combina-

tions of processor configurations are possible. To explore such a large design

space, quick availability/evaluation of performance of design points and clever

algorithms are required as full-system, cycle-accurate simulation and exhaus-

tive search of all the design points is not feasible.

• Analytical models are proposed to estimate execution time, latency and

throughput of a pipelined MPSoC’s design point using latencies of indi-

vidual processor configurations are proposed, avoiding slow, full-system,

cycle-accurate simulations of all the design points. For effective use of

these analytical models, latencies of individual processor configurations

should be available. Two estimation methods are proposed to gather la-

tencies of processor configurations with minimal number of simulations.

The first method simulates all the individual processor configurations

once, while the second method simulates only a subset of processor con-

figurations and then uses a processor analytical model to estimate the

latencies of the processor configurations.

20 CHAPTER 1. INTRODUCTION

• Two algorithms are proposed to explore the design space of a pipelined

MPSoC for area footprint optimisation. The first algorithm minimises

area footprint under a latency constraint by exploiting latency analytical

model in an Integer Linear Programming (ILP) formulation. The second

algorithm minimises area footprint under a throughput constraint by ex-

ploiting the throughput analytical model. Combined use of analytical

models, estimation methods, and exploration algorithms enabled quick

exploration of design spaces containing up to 1018 design points.

2. Adaptive pipelined MPSoCs. Area footprint optimised pipelined MPSoCs

lack adaptability to dynamic workload of multimedia applications, and hence

will keep all the processors active at all times, resulting in increased energy

consumption.

• An adaptive pipelined MPSoC architecture is proposed to enable run-time

adaptability. Each stage with significant run-time variations in workload

is implemented using Main Processors and Auxiliary Processors, where

the main processor uses differing number of auxiliary processors consid-

ering run-time workload variations. Such an architecture allows the main

processor of a stage to manage its auxiliary processors, independent of

other stages, enabling the use of scalable, distributed run-time managers.

• A run-time processor manager is proposed to predict the idle auxiliary

processors of a main processor at run-time. The processor management

heuristic uses a combination of the application’s execution and knowledge

(algorithmic and data properties), and information from off-line profiling

and statistical analysis to proactively predict the number of auxiliary

processors that should be used. The idle auxiliary processors are either

clock- or power-gated to reduce energy consumption.

• A run-time power manager (built on top of the processor manager) is pro-

posed where auxiliary processors have multiple power states, trading-off

1.4. RESEARCH AIMS AND THESIS CONTRIBUTION 21

overhead of the transition to power states with their possible energy re-

ductions rather than just using clock-gating or power-gating. The power

management heuristic forecasts at run-time, the idle duration of an idle

auxiliary processor using the application’s knowledge (algorithmic and

data properties) so that the most suitable power state can be selected us-

ing the information from off-line analytical analysis of the power states.

Experiments illustrated that adaptive pipelined MPSoC with processor

manager saved up to 39% energy consumption compared to a pipelined

MPSoC without run-time adaptability. Furthermore, use of the power

manager (with the processor manager) reduced up to a further 40% en-

ergy consumption compared to the use of only the processor manager.

3. Multi-mode pipelined MPSoCs. The area footprint and energy consump-

tion optimisations targeted a single pipelined MPSoC executing one multi-

media application. To further reduce area footprint, processors and FIFO

buffers of multiple pipelined MPSoCs, designed for multiple multimedia appli-

cations, are shared when their use is mutually exclusive by creating a multi-

mode pipelined MPSoC. Pipelined MPSoCs are represented as graphs to cap-

ture the number of processors, and number, size and connection of the FIFO

buffers. Three heuristics are proposed to find maximal overlap between the

graphs where two of them greedily find the overlap while the third one, based

on maximum weight clique approach, finds an optimal overlap at the cost of

higher running time. The results indicate significant area saving (up to 62%

processor area, 57% FIFO area and 44 processor/FIFO ports) with minuscule

degradation of system throughput (up to 2%) and latency (up to 2%), and

an increase in energy consumption (up to 3%) when compared to individual

pipelined MPSoCs.

22 CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

The remainder of the thesis is outlined as follows. Chapter 2 provides the necessary

literature survey of notable homogeneous and heterogeneous MPSoCs. The litera-

ture survey also reports various design space exploration and run-time adaptability

techniques for heterogeneous MPSoCs in general and pipelined MPSoCs in particu-

lar. Chapter 3 details how the research reported in the thesis addressed some of the

shortcomings of prior research and presents an insight into its evolution by providing

a philosophical overview.

Chapter 4 proposes fidelity metrics to evaluate fidelity (correlation between the

ordering of the actual values and estimated values) of estimation models in general.

One of the fidelity metrics is then used to evaluate the estimation models proposed

in Chapter 5 for execution time, latency and throughput of a pipelined MPSoC.

Chapter 5 also introduces two estimation methods to reduce the number of full-

system cycle-accurate simulations of a pipelined MPSoC to aid quick design space

exploration. Chapter 6 builds upon the analytical models and estimation methods

by proposing algorithms for area footprint minimisation of a pipelined MPSoC under

a latency or a throughput constraint.

The adaptive pipelined MPSoC architecture is described in Chapter 7, in addi-

tion to a run-time processor manager and its heuristics. Chapter 8 describes the

run-time power manager and its heuristics. These chapters also present a system-

level overview and implementation of an adaptive pipelined MPSoC for an H.264

video encoder.

Chapter 9 presents the case for multi-mode pipelined MPSoC, followed by the

heuristics for merging of individual pipelined MPSoCs. The final chapter, Chap-

ter 10, summarises the research conducted during the course of this thesis. Chap-

ter 10 also presents the author’s proposals for future work.

1.6. SUMMARY 23

1.6 Summary

This chapter introduced multimedia applications and their architectures currently

in use in academia and industry. The challenges in design of heterogeneous MPSoCs

for multimedia were discussed to motivate the need for selection of a multimedia

platform and its optimisation for reduced area footprint and reduced energy con-

sumption using design space exploration and run-time adaptability. Lastly, the

chapter stated the contributions of the thesis.

Chapter 2

Literature Survey

Many researchers have looked at design space exploration and run-time adaptability

of MPSoCs. This chapter provides the necessary literature survey, starting with

homogeneous and heterogeneous MPSoCs. Focus is then directed to design space

exploration techniques such as linear programming and heuristics. The chapter

concludes with run-time resource and power management techniques for MPSoCs.

2.1 Homogeneous MPSoCs

Homogeneous MPSoCs, also referred to as chip multiprocessors, use the paradigm

of Symmetric MultiProcessing (SMP) and employ identical processors with same

Instruction Set Architecture (ISA). Multimedia applications, such as JPEG, MP3,

and H.264, contain common sub-kernels like Fast Fourier Transform (FFT) and

Discrete Cosine Transform (DCT). Therefore, researchers have exploited these com-

monalities to include support for such sub-kernels in homogeneous MPSoCs for

performance/energy efficient implementation of multimedia applications.

Stanford’s Imagine [69, 104] is a programmable stream processor with 48 Arith-

metic Logic Units (ALUs) consisting of floating-point adders, multipliers and divide

square-root units. These ALUs are arranged into eight clusters which are interfaced

with a local register file and a stream register file to provide the memory bandwidth

25

26 CHAPTER 2. LITERATURE SURVEY

required of multimedia applications. The eight clusters work in a SIMD manner

with six-way VLIW instructions per cluster. Imagine has been illustrated to achieve

32 GOPS and 16 GOPS for single precision (matrix multiplication, etc.) and 16-bit

fixed-point (2D DCT, etc.) applications respectively, running at a frequency of 400

MHz. Although Imagine is a stream processor, it can be classified as a homoge-

neous MPSoC due to the replication of identical clusters. Imagine is programmed

in a stream model where applications are represented as a set of sub-kernels that

consume and produce data streams. KernelC and StreamC programming languages

were developed for easy programming of Imagine.

The RAW [105] processor from MIT is another example of a homogeneous MP-

SoC. It contains sixteen identical, programmable tiles where each tile has an in-order,

single issue, eight stage pipeline, MIPS-like processor, local data and instruction

caches, and static and dynamic routers. These tiles are arranged in a 4 × 4 grid and

are connected through a Network-on-Chip (NoC) which is designed to run at high

frequencies and to be scalable to even a thousand tiles. RAW has been shown to

achieve from a 2× to a 100× performance improvement depending on the amount

of data- and instruction-, and pipeline-level (stream-level) parallelisms [106]. Like

Imagine, a compiler was developed to exploit these parallelisms. Later on, a back-

end for StreamIt [86] (a stream programming language) compiler was developed for

RAW [94,106].

TILEPro64 [70], much like RAW, features an 8 × 8 grid with 64 tiles where each

tile contains a three-way VLIW processor supporting SIMD instructions on 32-, 16-

and 8-bit data. In addition, each tile has on-chip separate L1 instruction and data

caches, unified L2 cache, and a switch that connects the tile to a power-efficient

mesh network. Idle tiles can be put into a low-power state to reduce energy con-

sumption. TILEPro64 also features Tilera’s dynamic distributed cache technology

which provides a 2× improvement in cache coherence performance over traditional

coherence protocols. Software tools are provided for application analysis and compi-

lation, although a designer has to manually partition the application. TILEPro has

2.1. HOMOGENEOUS MPSOCS 27

Figure 2.1: TILEPro64 Architecture. Sourced from [70].

been shown to achieve more than 400 BOPS which translates to 15 Gbps of SNORT

processing, 20 Gbps of nProbe processing and H.264 encoding of 10 HD (1080p)

video streams at 30 fps [70, 107]. Several variants of the architecture are available

from Tilera where the number of tiles range from 16 to 100. Figure 2.1 illustrates

the architecture with 64 tiles.

Intel recently developed a research prototype of a tiled, homogeneous MPSoC,

which was named Single-chip Cloud Computer (SCC) [71]. The SCC consists of

24 tiles organised into a 4 × 6 grid. A tile contains a pair of Pentium proces-

sors, each with independent, separate L1 instruction and data caches and a unified

L2 cache. In addition, each tile contains a message passing buffer and a router

for efficient inter-processor communication, but without the support for built-in

(hardware) cache coherency. The most notable feature of SCC is the availability

of multiple voltage and frequency domains for implementation of Dynamic Voltage

and Frequency Scaling (DVFS) technique for low power consumption. SCC is still

a research platform and several researches have being conducted recently to study

28 CHAPTER 2. LITERATURE SURVEY

performance and power management [108,109], programming models [110,111], and

other related issues in large MPSoCs (many-core platforms).

Since homogeneous MPSoCs replicate identical tiles, they are scalable and easy

to program. However, they also have a larger area footprint and higher power con-

sumption because no single type of tile or processor can be well suited to every

multimedia application [73]. Therefore, heterogeneous MPSoCs exploit customisa-

tion of processing elements and are more suitable for embedded devices because of

stringent area footprint and power consumption constraints [72].

2.2 Heterogeneous MPSoCs

Numerous heterogeneous MPSoCs have been proposed because the domain of mul-

timedia consists of a diverse set of applications. For example, the architectural

requirements of networking applications are considerably different from those of au-

dio/video applications. This section provides a brief overview of some of the popular

heterogeneous MPSoCs designed for multimedia.

The C-5 network processor [112] is one of the early examples of heterogeneous

MPSoCs, designed for packet processing applications in networking. It consists of

an executive processor, a fabric processor and sixteen channel processors, with ad-

ditional specialised buffer management, queue management and table lookup units.

The executive processor (a RISC based GPP) serves as the central system manager

and provides the standard system interfaces. The fabric processor extends the in-

terfacing capability of C-5 by providing a high-speed network interface port. The

main crux of C-5 lies in the channel processors, grouped into clusters of four, that

receive, process and transmit network data. The specialised units perform manage-

ment tasks so that the processors can work together efficiently. The C-5 network

processor can process up to 15 million packets per second [112].

2.2. HETEROGENEOUS MPSOCS 29

Intel’s IXP [79] network processor contains Intel’s XScale processor for general-

purpose processing and two Network Processing Elements (NPEs) for packet pro-

cessing. Each NPE contains eight micro-engines that are specialised functional units

and act as hardware accelerators. The NPE is equipped with separate instruction

and data memories, and hardware based multi-threading for high performance. In

addition, IXP contains hardware accelerators for popular cryptography algorithms

to provide security features. Cisco’s Silicon Packet Processor (SPP) [113] and Quan-

tumFlow processor [114] used in its CRS-1 and CRS-2 routers are other examples of

heterogeneous MPSoCs. SPP and QuantumFlow employ 188 and 40 multi-threaded

Xtensa LX processors [25], which are extremely customised for network data pro-

cessing.

The Viper [115] from Philips is an early example of a video MPSoC. It consists of

two main processors (a MIPS based GPP and a Timedia VLIW DSP [23]), various

audio/video hardware blocks (accelerators) and a number of standard interfaces.

The GPP runs an operating system and acts as a master to Trimedia DSP and

audio/video hardware accelerators to process HD resolution videos. Later, a con-

figurable heterogeneous MPSoC platform named Eclipse was proposed by Philips

where the number and types of domain-specific hardware blocks, bus widths, mem-

ory sizes and other parameters can be set by a designer. The aim was to provide a

platform that can be tuned to an application without major architectural redesign

effort. Eclipse contains a GPP-DSP (RISC-VLIW) based main processor that acts

as the master to a number of weakly programmable, multitasking, domain-specific

hardware blocks, referred to as coprocessors. For example, an instance of Eclipse

may use Discrete Cosine Transform (DCT) and Motion Estimation (ME) coproces-

sors only for an MPEG decoder. Eclipse uses the Kahn Processor Network (KPN) as

the application model and provides task scheduling and communication synchroni-

sation methods for efficient utilisation of the coprocessors. Eclipse, when configured

for video decoding, consumed less than 240 mW for simultaneous real-time decod-

ing of two HD MPEG streams. NXP Semiconductor’s Nexperia [80] architecture is

30 CHAPTER 2. LITERATURE SURVEY

based on Viper and Eclipse.

STMicroelectronic’s Nomadik [82] is another heterogeneous MPSoC that was

designed for mobile phones. It contains a master processor (an ARM based GPP)

in addition to two slave DSPs: one for audio and the other for video. These DSPs

act as hardware accelerators for audio and video applications. The video DSP itself

is a heterogeneous MPSoC, consisting of a DSP and several hardware accelerators

like an image pre-/post-processor and a video encoder/decoder. The audio DSP

uses a single DSP because audio applications require relatively smaller amounts of

computational power. The Nomadik processor has been succeeded by the NovaThor

platform [116] which contains an ARM Cortex-A9 MPCore processor [117], two

DSPs and an ARM Mali GPU [118] with NEON SIMD engine [119] for low-power,

flexible multimedia processing up to HD resolution.

The CELL [78] is a heterogeneous MPSoC with two types of processing elements.

The Power Processor Element (PPE) runs an operating system to provide services

such as memory management and thread scheduling. The Synergistic Processor

Elements (SPEs), on the other hand, are extremely specialised units that are based

on VLIW and SIMD concepts and function as hardware accelerators. The CELL

processor can exploit instruction-, data-, task- and memory-level parallelisms with a

combination of a PPE, SPEs and Direct Memory Access (DMA) engines to provide a

high performance, low-power implementation platform for multimedia applications.

NVIDIA’s Tegra [120] is an example of one of the recent heterogeneous MPSoCs

for multimedia in mobile phones. It consists of seven types of processing units for

audio, video, image, graphics and general-purpose processing. More specifically,

Tegra includes an ARM Cortex-A9 MPCore for general-purpose applications, an

ARM7 processor for computationally less intensive and system management tasks,

an ultra low-power Graphics Processing Unit (GPU), an audio processor, an Image

Signal Processor (ISP), an HD video decoding processor and an HD video encoding

processor. Tegra also includes a system-level power management module that shuts

down idle processing units. Inclusion of such a diverse set of processing units and

2.2. HETEROGENEOUS MPSOCS 31

Figure 2.2: OMAP44x Architecture. Sourced from [81].

the power management unit allows Tegra to deliver high performance with ultra

low power consumption. OMAP [81], shown in Figure 2.2, is another recent hetero-

geneous MPSoC platform from Texas Instrument. Like Tegra, it combines several

types of specialised processing units for specific tasks. It contains a Cortex-A9 MP-

Core, an Image Video Audio (IVA) hardware accelerator, an ISP, a PowerVR pro-

cessor [121] based graphics accelerator, and a display sub-system. The IVA itself is

a heterogeneous MPSoC with a power-optimised, multi-mode hardware accelerator

and a DSP processor. OMAP is also equipped with Texas Instrument’s SmartReflex

power and performance management technology which includes adaptive techniques

for run-time control of frequency, voltage and power to deliver required performance

with ultra low power consumption.

There have also been non-commercial efforts in the field of heterogeneous MP-

SoCs for multimedia. Strik et al. [122] proposed a real-time video and graphics

system composed of a control processing sub-system (host), signal processing sub-

system and a memory sub-system. They used a reconfigurable NoC in the MPSoC

to enable concurrent processing of 25 video streams in real-time. The heterogeneous

MPSoC for HDTV proposed in [123] uses five processors communicating through

FIFO buffers and shared memories. The proposed MPSoC was shown to deliver the

required performance through a combination of application partitioning, customised

32 CHAPTER 2. LITERATURE SURVEY

VLIW DSPs and a custom two level scratchpad based memory hierarchy.

Wu et al. [124] proposed MediaDSP, a scalable architecture consisting of two

types of processors, domain-specific hardware accelerators, a banked memory hier-

archy, an on-chip crossbar network and DMA engines. The authors demonstrated

research prototypes of a single-issue DSP with an ALU and a MAC unit, and a mi-

crocode based dual-issue four-way SIMD DSP. The scalability of MediaDSP comes

from the on-chip network that can organise the processors in various topologies

such as a pipeline configuration or a master-slave configuration. MediaDSP exploits

data-, instruction-, memory- and task-level parallelisms and targets audio, video,

gaming, user interface and computer vision applications.

Tumeo et al. [125] proposed a master-slave heterogeneous MPSoC consisting of

two PowerPC processors [126], four Microblaze processors [46] and DMA engines.

Each processor is connected to a local memory in addition to a shared memory.

The processors synchronise with each other using interrupts. A software layer con-

taining a microkernel is executed on the master processor to enable pipelined ex-

ecution of multimedia applications. In addition, the microkernel is responsible for

the transfer of data between the processors. The heterogeneity comes from different

configurations of the processors which are selected by the designer according to the

application to be executed on the MPSoC. Another master-slave architecture is the

ePUMA [127] where the master is a GPP with a DMA engine, and is connected to

eight SIMD DSP slaves with a ring bus in a star topology.

Most of the heterogeneous MPSoCs mentioned so far use master-slave configu-

ration where a GPP is used as the master and a mix of ASICs, ASIPs and DSPs

is used as slaves. Several researches have explored the pipeline configuration where

processing elements are connected in a pipeline (chain). Park et al. [95] proposed

a Polymorphic Pipeline Array (PPA) as an accelerator for multimedia applications,

inspired from Coarse Grained Reconfigurable Arrays (CGRAs), but with both static

and dynamic configurability. The PPA consists of an array of identical Processing

Elements (PEs) that are tightly connected using a mesh-style interconnect, and a

2.2. HETEROGENEOUS MPSOCS 33

shared memory. A processor in PPA is made up of four PEs where the processor has

an Instruction Set Architecture (ISA) and executes its own instruction stream. The

heterogeneity is added by coalescing processors to create larger logical processors at

run-time with the support of virtualised execution. Experiments with three multi-

media applications showed that PPA can deliver required performance; however, it

was less energy efficient (performance/power) than an ASIP – Tensilica’s Diamond

processor [128].

Shee et al. [57,58] performed a detailed comparison of master-slave configuration

with pipeline configuration (will be referred to as pipelined MPSoCs for the rest of

the thesis) through a case study on a JPEG encoder, which is a typical multime-

dia application. The empirical data clearly suggested that pipelined MPSoCs are

more suitable for multimedia applications as they provided up to a 2× performance

improvement over master-slave MPSoCs. Shee et al. further illustrated that bal-

ancing workload across stages of the pipelined MPSoC with the use of ASIPs (that

is, adding heterogeneity through customisation of the processors) can result in a

4.7× performance improvement with a 3.1× area increase compared to a 3.8× per-

formance improvement and a 7× area increase of a homogeneous pipelined MPSoC.

A recent paper by Hameed et al. [77] further analysed pipelined MPSoCs through

a case study on an H.264 encoder for HD720p video resolution. They illustrated

that extreme customisation of ASIPs can match performance of the pipelined MP-

SoC to that of an ASIC, but with 3× energy consumption, which is the cost of

reduced time-to-design, reduced time-to-market, flexibility and programmability of

the pipelined MPSoC.

Pipelined MPSoCs exploit both data- and instruction-level parallelisms, which

are abundant in multimedia applications, by using ASIPs with SIMD and VLIW

techniques. More importantly, pipelined MPSoCs not only exploit task-level paral-

lelism with the use of multiple ASIPs, but also pipeline-level (stream-level) paral-

lelism of multimedia applications by arranging those ASIPs in stages of a pipeline.

Therefore, pipelined MPSoCs have emerged as a viable implementation platform

34 CHAPTER 2. LITERATURE SURVEY

for multimedia applications [88–92]. Note that these pipelined MPSoCs can be

used as standalone multimedia systems or as multimedia accelerators in commer-

cial platforms. For example, a chip may contain multiple pipelined MPSoCs for

video encoders and decoders; or OMAP, Tegra and other similar platforms may

use pipelined MPSoCs to implement video encoder and decoder accelerators. Typ-

ically, pipelined MPSoCs will be used as multimedia accelerators because they are

customised for specific multimedia applications.

2.3 Design Space Exploration

It is obvious that design and optimisation of heterogeneous MPSoCs is difficult due

to the availability of a multitude of options such as application partitioning, MPSoC

architecture, processor types and memory hierarchy. Therefore, there is a need for

well-structured, systematic approaches to explore the design space resulting from

these options. Often design space exploration is performed with multiple objectives

and constraints, and the aim of quickly finding one or multiple (near-) optimal

design points. This section provides an overview of typical design space exploration

techniques used for heterogeneous MPSoCs, including pipelined MPSoCs.

2.3.1 Exact Approaches

Exact approaches in design space exploration search for the optimal design point

and are typically based on Linear Programming (LP) [129]. In LP, variables that

can take binary (0 or 1), integer or real values are used to represent parameters of

the design space. The objective function is specified as a linear function of those

variables while the constraints are described as a set of linear equalities and/or

inequalities in the variables. These equations are then solved to find the values of

the variables which are interpreted to get the final design point.

Batista et al. [130] formulated the problem of mapping and scheduling tasks of

an application, which is represented as a task graph, onto a heterogeneous MPSoC

2.3. DESIGN SPACE EXPLORATION 35

with task-specific processors connected through a shared bus as a Mixed Integer Lin-

ear Programming (MILP) problem. The MILP model allowed pipelined execution

of tasks, with minimisation of initiation interval (period), latency and/or MPSoC

hardware cost as objective functions. A technique was also proposed to calculate

upper and lower bounds on initiation interval to prune the design space which im-

proved the MILP solver’s time to search the optimal mapping and schedule of the

tasks. Schwiegershausen et al. [131] also used MILP to explore the design space

of a heterogeneous MPSoC with domain-specific blocks and processors. However,

their objective function comprised of a weighted sum of period, latency and MPSoC

area footprint (processors and busses) to prioritise the optimisation process based

on the individual weights. The proposed MILP was tested by mapping H.261 video

encoder on a heterogeneous MPSoC with four types of processors.

The problem of mapping the Kahn Process Network (KPN) representation of

an application onto a heterogeneous MPSoC was formulated as a MILP problem

in [132]. Their heterogeneous MPSoC used ASICs, GPPs or DSPs as compute

units, and single and multiple buses, and crossbar switches as interconnection com-

ponents. The aim of the MILP model was to map processes in KPN to suitable

compute units and channels between processes to either local or shared memories,

and selection of interconnection components to minimise MPSoC’s hardware cost

(cost of compute units, memories and interconnection components) under perfor-

mance and bandwidth constraints. Kuang et al. [133] also targeted a heterogeneous

MPSoC with ASICs, GPPs and DSPs, and a communication network; however, their

aim was to simultaneously map and schedule application tasks to allow pipelined

execution on the MPSoC. The authors proposed an ILP model to minimise MPSoC’s

area footprint under a throughput constraint.

Suhendra et al. [134] studied the problem of task mapping and scheduling in

a heterogeneous MPSoC where each processor had a local scratchpad memory.

Scratchpad memories are typically deployed in embedded devices due to their smaller

area footprint, lower energy consumption and better timing predictability over

36 CHAPTER 2. LITERATURE SURVEY

caches [135]. An ILP formulation was proposed with the objective function of max-

imising application performance under an area constraint for the scratchpad mem-

ories. The ILP modelled mapping, scheduling and pipelined execution of tasks, and

sizes of scratchpad memories and allocation of variables to them. Experiments with

several multimedia applications showed that simultaneous optimisation of scratch-

pad memory sizes and task mapping/scheduling can improve performance by up to

80% compared to the case when these optimisations are done separately.

Several works have also looked at the transformation of the application task

graph during the mapping and scheduling problem. Ostler et al. [136] targeted

mapping of application task graphs onto the Intel’s IXP network processor [79]

where each processing element is multi-threaded and has access to scratchpad, local

and shared memories. Therefore, during the mapping problem, they considered

merging and replication of tasks in addition to allocation of data to one of the

memory types. An ILP formulation was proposed with the objective function of

maximising the application throughput. Experiments with networking applications

showed that task graph transformations coupled with data mapping can result in

up to an 8× performance improvement. The work in [137] considered a similar

problem with some extensions and proposed an ILP formulation. They considered

pipelined scheduling of tasks, and multi-bank register files rather than scratchpad

memories as one of the memory types. Furthermore, their objective function was

to minimise a weighted sum of throughput and latency because both of these are

important for real-time multimedia applications. Yang et al. [138] also used ILP

to formulate the problem of task mapping and scheduling with the consideration of

data-level parallelism where appropriate tasks were duplicated. Their objective was

to minimise the number of processors under task deadlines.

Reliability has become an important concern in design of MPSoCs. Tosun et

al. [139] studied task mapping and scheduling considering fallibility (opposite to re-

liability) of the underlying heterogeneous MPSoC. They considered several objective

2.3. DESIGN SPACE EXPLORATION 37

functions and constraints such as maximising performance under energy consump-

tion and fallibility constraints, minimising energy consumption under performance

and fallibility constraints, and minimising fallibility under performance and energy

consumption constraints. Dynamic Voltage Scaling (DVS) and task duplication

were used to reduce energy consumption and fallibility of an application. A more

comprehensive exploration approach, based on MILP, was proposed in [140] where

the authors considered task mapping and pipelined scheduling, heterogeneous pro-

cessing elements (differing error rates, clock frequencies and power consumptions),

communication overheads and mutual exclusion from locks/critical sections. Their

objective was to minimise energy consumption under performance and reliability

constraints.

In contrast to the above mentioned works, the authors of [141] formulated the

problem of mapping and pipelined scheduling of tasks on a message-oriented, dis-

tributed memory, shared bus heterogeneous MPSoC with special consideration to

communication costs as an ILP problem and a Constraint Programming (CP) prob-

lem respectively. They showed that solving mapping and scheduling problems as a

pure ILP or as a pure CP is much slower than the combined use of ILP and CP.

LP has also been used for the exploration of FPGA based (soft) MPSoCs. Wu et

al. [142] proposed an ILP formulation to obtain the MPSoC architecture with map-

ping and scheduling of the tasks. In their work, the MPSoC design space consisted of

heterogenous processors, memory configurations, point-to-point FIFO buffers, pri-

vate busses and shared busses. The ILP model aimed for minimisation of FPGA

area footprint under a performance constraint. This work was extended in [143] to

consider instruction and data memory sizes as well because Block RAM (BRAM) in

FPGAs is a limited resource that needs to be used judiciously. Furthermore, the ILP

model in [143] allows multiple objective functions targeting FPGA area footprint

and memory size, and application execution time.

Parallel compilation of applications on MPSoCs has also been achieved using LP.

An Integer Linear Programming (ILP) based compilation approach to parallelise

38 CHAPTER 2. LITERATURE SURVEY

loops in array-intensive applications on a shared memory, shared bus, homogeneous

MPSoC was proposed in [144]. Their ILP model searches for the number of proces-

sors required to execute a loop with objective functions and constraints involving

execution time and/or energy consumption. The ILP also models the overhead in-

volved in activating and deactivating processors at run-time as the number of proces-

sors changes from one loop to another during the execution of the application. Choi

et al. [145] used ILP for compilation of streaming (multimedia) applications, which

is represented as a graph, on a heterogeneous MPSoC with master-slave configura-

tion. The ILP model was aimed at mapping and scheduling of tasks on processors,

allocation of variables to local memory and generation of DMA transfers between

processors with the objective function of minimising initiation interval (period) un-

der memory and timing constraints. Choi et al. also proposed an ILP formulation

to minimise the number of processors under memory and timing constraints. Since

they considered a large design space, several heuristics were used with ILP to keep

exploration tractable and to obtain near-optimal design point quickly. The proposed

compilation approach was implemented in SUIF compiler framework [146] and was

tested with the compilation of Software Defined Radio (SDR) application on the

CELL [78] MPSoC.

Design space exploration of pipelined MPSoCs have also been performed using

ILP. Jin et al. [147] explored mapping of a multimedia application’s task graph on an

FPGA based homogeneous MPSoC using an ILP formulation. They used buses and

point-to-point FIFO buffers for communication between the processors. The aim

of the ILP model was to maximise the throughput of the application with a fixed

number of processors. This work was improved by Cong et al. in [148] by exploring

not only the mapping but also partitioning of the task graph to find the minimum

number of processors rather than fixing the number of processors in the MPSoC.

Cong et al. developed several exact graph algorithms (without any variants of LP)

based on labelling, clustering and packing techniques to minimise latency and the

number of processors under a throughput constraint. Since multimedia applications

2.3. DESIGN SPACE EXPLORATION 39

exhibit run-time variations in execution time due to data-dependent behaviour, their

application model associated probabilities with execution times of the tasks.

A case study on exploration of heterogeneous pipelined MPSoCs was performed

in [149] with the JPEG encoder application. The pipelined MPSoC was built with

ASIPs, and JPEG encoder’s tasks were manually allocated to those ASIPs. In their

work, each ASIP had hundreds of processor configurations, trading-off performance

with area footprint. An ILP formulation was proposed to select one configuration

per ASIP with the objective of minimising pipelined MPSoC’s area footprint un-

der an execution time constraint. Since the design space was very large, a pruning

algorithm was also proposed to ignore design points violating the execution time

constraint so that the search time of the ILP solver can be reduced without af-

fecting its optimality. Later the authors extended this work in [92] with a reduced

ILP formulation where the number of variables in the ILP was reduced by relax-

ing the constraints. The reduced ILP model resulted in better search times for the

ILP solver, but at the cost of near-optimal solutions due to the relaxed constraints.

The execution time used in [92,149] was the total execution time, and hence not the

latency or throughput of the multimedia application executing on the pipelined MP-

SoC. Exploration and optimisation of a pipelined MPSoC under an execution time

constraint is beneficial when large audio, image or video files are encoded/decoded;

however, real-time pipelined MPSoCs need to be optimised under latency and/or

throughput constraints.

2.3.2 Heuristic Approaches

Linear programming based approaches are exhaustive in the worst case and can be

slow for complex heterogeneous MPSoCs. Therefore, researchers have developed

several heuristic approaches so as to rapidly and efficiently explore the design space

at hand. Heuristic approaches do not guarantee an optimal solution; however, use

of cleverly designed algorithms can provide remarkable improvements in exploration

40 CHAPTER 2. LITERATURE SURVEY

time with near-optimal solutions.

Banerjee et al. [150] considered mapping and pipelined scheduling of a multi-

media application, which is represented as a Directed Acyclic Graph (DAG), onto

a heterogeneous MPSoC with ASICs and DSPs. A two level hierarchal heuristic

approach was proposed where a coarse-grained solution, in the number of pipeline

stages in the MPSoC, was obtained by partitioning the DAG using the ratio cut

partitioning technique. This initial solution was then refined through successive

application of either architecture based partitioning or repartitioning, and retim-

ing techniques. The heuristic approach was terminated once no more throughput

improvement was observed. Experiments with typical multimedia applications illus-

trated that pipelined scheduling using heterogeneous processing elements improved

throughput by several times over homogeneous processing elements.

Bakshi et al. [151, 152] also considered partitioning and pipelined scheduling of

a task graph onto a heterogeneous MPSoC. Their heuristic approach maps all the

tasks on processors first and then moves those that violate the throughput constraint

to ASICs to obtain an initial mapping. Then, pipelined scheduling is performed

to determine the number of pipeline stages based on a list scheduling algorithm.

Unlike [151,152], Jeon et al. [153] proposed to perform pipelining before partitioning

and mapping of tasks on the heterogeneous MPSoC. In addition, they considered

hardware sharing during mapping, and proposed an iterative heuristic approach to

successively find more parallelism, while reducing area footprint through hardware

sharing under a performance constraint.

The work in [154] considered a pipelined scheduling problem similar to [150], but

with task duplication. The number of processors in the MPSoC was fixed beforehand

and their objective function was to minimise latency rather than the throughput. A

five step heuristic approach was proposed where the first three steps obtain an initial

number of pipeline stages by clustering the application DAG. The fourth step then

duplicates tasks to reduce latency if some of the processors are still free. However,

if the number of clusters is more than the number of processors in the MPSoC, then

2.3. DESIGN SPACE EXPLORATION 41

cluster compaction is performed. The final step produces the pipelined schedule of

the DAG.

Benoit et al. [155–159] proposed several heuristics for mapping and pipelined

scheduling of linear application DAGs (containing only a single path) onto a hetero-

geneous MPSoC with a fixed number of homogeneous processors. The heterogeneity

in the MPSoC was manifested by differing frequencies of processors and bandwidths

of interprocessor links. The mapping and scheduling problem was formulated as

an interval mapping problem where intervals, consisting of consecutive tasks, were

scheduled on the processors to allow pipelined execution. Three heuristics were

proposed to maximise the throughput [155] while a dynamic programming based

algorithm was proposed to minimise the latency [156]. Several other heuristics were

also proposed to minimise throughput under a latency constraint and to minimise

latency under a throughput constraint, allowing bi-objective optimisations to find

Pareto-optimal mappings and schedules of linear DAGs [157, 158]. The heuristics

consisted of two steps: firstly, assign all the tasks to the fastest processor; and

secondly, greedily split the largest interval to improve throughput or latency. The

heuristics iteratively applied the second step and differed in the function chosen to

split the interval. Benoit et al. [159] also proposed an ILP formulation to find op-

timal mapping and schedule for evaluation of the solutions found by the proposed

heuristics.

Ko et al. [160] studied pipelined scheduling of multimedia applications with the

focus on exploration of various pipeline configurations under latency and throughput

constraints. They proposed Pipeline Decomposition Tree (PDT) data structure to be

used in conjunction with scheduling and clustering techniques to analyse alternative

pipelines. They also considered heterogeneous data-level parallelism where data

with differing sizes is processed by multiple invocations of the same task in parallel.

Unlike [160], the work in [161] evaluated different mappings of a task graph on a

fixed MPSoC architecture using variants of list scheduling algorithm including As

Soon As Possible (ASAP), As Late As Possible (ALAP), Earliest Deadline First

42 CHAPTER 2. LITERATURE SURVEY

(EDF) and Least Laxity (LL).

Mapping and scheduling in the context of a streaming language, StreamIt [86],

has also been explored in several works. Carpenter et al. [162] proposed an iterative

heuristic for partitioning a task graph and allocation of the tasks to processors in

a heterogeneous MPSoC. Like [150, 154], an initial partitioning of the task graph

was obtained which was then successively refined using merging of tasks, movement

of bottleneck tasks, creation of new convex and connected tasks, and reallocation

of tasks. Hashemi et al. [102, 163] proposed exact and approximate algorithms for

mapping of task graphs onto homogeneous [102] and heterogeneous [163] MPSoCs

containing only two processors. In [102], they also proposed a heuristic for MPSoCs

with more than two homogeneous processors. Their algorithms are based on graph

transformations to cut the task graph so that the throughput is maximised, consid-

ering interprocessor communication costs and memory sizes. Experiments with a

number of StreamIt benchmarks were conducted to compare the proposed mapping

techniques to StreamIt’s built-in mapper [94].

Stuijk et al. [164] studied resource allocation problem under a throughput con-

straint in a tiled heterogeneous MPSoC when multiple multimedia applications,

represented as SDFs, need to be mapped on a fixed number of tiles. The proposed

heuristic sorts the tasks based on their impact on the throughput, and then greedily

assigns tasks one at a time to balance the workload across all the tiles. Once a

mapping is available, if it is possible, the tasks are moved around tiles to further

balance the workload.

Several researchers have also looked at energy- and memory-aware mapping and

scheduling of tasks on heterogeneous MPSoCs. Kim et al. [165] explored hetero-

geneous scheduling policies while minimising energy consumption through power

management (that is, turn off a processor when it is idle to reduce energy consump-

tion). Their heuristic approach generates a set of initial mappings of the application

task graph onto the processors. Then, for each of those initial solutions, the heuristic

explores scheduling policies per processor with their power management to produce

2.3. DESIGN SPACE EXPLORATION 43

Pareto-optimal design points representing energy consumption and area footprint

trade-off. Yang et al. [166] proposed an approximation algorithm to partition and

map a task graph onto a heterogeneous MPSoC where each processor employed

Dynamic Voltage Scaling (DVS) to control its energy consumption. The objective

was to minimise the energy consumption (both dynamic and leakage) of the MP-

SoC. This work was extended in [167] for a heterogeneous MPSoC with an arbitrary

number of processors. Some of the other works on energy-efficient task graph parti-

tioning and mapping have been reported in [168–172]. Unlike the above mentioned

works, Ozturk et al. [173] proposed a compiler based approach to exploit data- and

task-level parallelisms of multimedia applications in a heterogeneous MPSoC with

DVFS for minimisation of energy consumption.

Bathen et al. [174, 175] explored memory-aware pipelined scheduling of multi-

media applications on a homogeneous MPSoC, where the processors were equipped

with scratchpad memories and were connected to a shared memory through a shared

bus. They considered data allocation during the mapping and pipelined scheduling

of tasks with the objective of minimising data transfers and power consumption.

Salamy et al. [176, 177] explored the problem of mapping and pipelined scheduling

of tasks and partitioning the available scratchpad memory among the processors

simultaneously with the objective of maximising throughput. They compared their

heuristic approach with an ILP formulation proposed in [134], and the results in-

dicated that the heuristic solutions were off by a maximum of 13% from optimal

solutions.

In contrast to deterministic heuristic approaches described above, researchers

have also applied random heuristic approaches comprising of Tabu Search (TS) [178],

Simulated Annealing (SA) [179], Genetic Algorithm (GA) [180] and Evolutionary

Algorithm (EA; parent class of GA) [181] to design space exploration and optimisa-

tion of MPSoCs. Ercan et al. [182] compared TS, SA and GA with list scheduling

heuristics through the minimisation of throughput and deduced that solutions found

by these random heuristics were better than those found by deterministic heuristics.

44 CHAPTER 2. LITERATURE SURVEY

However, in [182], the mapping and scheduling of tasks were done on a homogeneous

MPSoC. Tumeo et al. [183,184] and Branca et al. [185] proposed TS, SA, GA, Ant

Colony Optimisation (ACO) and Bayesian Optimisation Algorithm (BOA) based

heuristics to map multimedia applications with pipelined execution on the hetero-

geneous MPSoC proposed in [125]. The BOA based heuristic outperformed others,

but with a higher running time. Yang et al. [186] studied the classical problem of

mapping and scheduling a task graph on a heterogeneous MPSoC with the consider-

ation of data-, task- and pipeline-level parallelisms. They used a Quantum-inspired

Evolutionary Algorithm (QEA) to either maximise throughput or minimise MPSoC

area footprint (processors and pipeline buffers) under task deadlines. The solutions

from QEA were compared to the optimal solutions from ILP.

Multiple objective functions and constraints are often imposed during design

space exploration of heterogeneous MPSoCs, resulting in a need for multi-objective

optimisation of these MPSoCs. EAs have emerged as an attractive heuristic ap-

proach to multi-objective optimisation because they are able to quickly find near-

Pareto-optimal fronts of large design spaces. Application of EAs to multi-objective

optimisation of MPSoCs include classical task graph mapping and scheduling prob-

lems [187, 188], exploration of application mapping [189], and simultaneous optimi-

sation of data allocation to memories and bus architecture [190].

Heterogeneous MPSoCs built from ASIPs exploit customisation to balance the

execution time across all the processors. For example, processors executing compu-

tationally intensive tasks (over-utilised processors) can be augmented with custom

instructions, hardware accelerators, special register files and the like, while func-

tional units can be removed and cache sizes reduced in processors with less intensive

tasks (under-utilised processors) so as to balance the execution time across all the

processors while reducing area footprint. Customisation of ASIPs adds another di-

mension to the design space; therefore, several researchers have studied design space

exploration of ASIP based MPSoCs in particular.

Givargis et al. [191] proposed a generic system-level design space exploration

2.3. DESIGN SPACE EXPLORATION 45

heuristic for an MPSoC, consisting of parameterisable components such as ASIPs

to find Pareto-optimal fronts. Their idea was to build a parameter interdependency

graph to capture the interactions between all the parameters in the MPSoC. For

example, cache size and cache line size depend on each other but the voltage lev-

els of a processor do not depend on its cache configuration. Their heuristic first

finds Pareto-optimal design points in graph clusters (local Pareto-optimal front),

which are then used to find Pareto-optimal design points of the MPSoC (global

Pareto-optimal front). Experiments with several multimedia applications showed

that the proposed two phase, iterative exploration heuristic significantly reduced

the exploration time.

In contrast to [191], Sun et al. [76] studied customisation of ASIPs in hetero-

geneous MPSoCs in particular. They motivated the need for selection of custom

instructions simultaneously with mapping and pipelined scheduling of an applica-

tion’s tasks on a multi-ASIP MPSoC. Their aim was to minimise the execution time

of the application on an MPSoC with a fixed number of processors while the area

footprint of custom instructions did not exceed the given constraint. The authors

proposed an iterative heuristic approach that initially assigns and schedules tasks on

the processors. Then, the processors on the critical path are augmented with custom

instructions to reduce execution time while the area footprint of the processors on

non-critical paths is reduced by relaxation of the already added custom instructions.

Experiments with several multimedia applications showed that customised MPSoCs

built with ASIPs outperformed their homogeneous counterparts in performance by

up to 2.9×.

Exploitation of task- and pipeline-level parallelisms of multimedia applications

by ASIP based pipelined MPSoCs has also been explored. Karkowski et al. [93]

exploited pipeline-level parallelism by mapping one of the main loops of an applica-

tion onto a pipeline of ASIPs. Multimedia applications, written in C language, were

parsed to derive a graph where vertices represented statements and edges represented

46 CHAPTER 2. LITERATURE SURVEY

data dependencies. A sub-graph representing a particular main loop of the applica-

tion was then selected to be compacted by merging some of the vertices (that is, ver-

tices representing combinable statements). The reduced sub-graph was mapped on a

pipeline with fixed number of ASIPs using modulo scheduling and first-fit decreasing

algorithms. Experiments with a frequency tracking system showed that the pipeline

of ASIPs can provide high throughput, but the computational workload need to

be evenly distributed among the pipeline stages. The authors attempted workload

balancing through balanced partitioning of the reduced sub-graph. Karkowski et al.

extended this work in [192] where data- and pipeline-level parallelisms were consid-

ered together, in addition to arbitrary number of ASIPs in the pipelined MPSoC. A

design space exploration algorithm was proposed to generate Pareto-optimal front

representing performance-area tradeoff with varying number of ASIPs. However,

their work did not consider the selection of custom instructions for the ASIPs.

Shee et al. [91] explored the design space of a pipelined MPSoC where each

processor had a number of configurations with performance-area tradeoffs. These

processor configurations included differing custom instructions and cache configu-

rations. The authors proposed a heuristic to select one configuration per processor

with the objective of maximising pipelined MPSoC’s execution time improvement

per area increase ratio compared to a uniprocessor system. Their heuristic employs

an analytical model to estimate the execution time of the pipelined MPSoC for a

given set of processor configurations and a pruning technique. The heuristic first

selects the configuration with maximum performance per area ratio for the criti-

cal processor, and then relaxes the configurations of other processors based on the

critical processor’s configuration to reduce the MPSoC’s area footprint. Shee et al.

did not consider performance constraints that are typical of real-time multimedia

applications.

Unlike [91], Javaid et al. [92,193] considered area minimisation of pipelined MP-

SoCs as the objective function under an execution time constraint. They proposed a

safe pruning algorithm and a heuristic that employed a more accurate execution time

2.3. DESIGN SPACE EXPLORATION 47

analytical model of the pipelined MPSoC. The proposed pruning algorithm exploits

the execution time constraint to filter processor configurations that can never result

in execution time less than the given constraint. Therefore, only those processor

configurations are deleted that can not constitute the optimal design point. Their

heuristic also exploits the execution time constraint to calculate an upper bound

on the latencies of processors, and then selects minimum area configurations that

satisfy the calculated bound. The proposed heuristic approach was compared to an

ILP formulation, and experiments with several multimedia applications showed that

the heuristic was off by a maximum of 4% from optimal solutions. Exploration of

a pipelined MPSoC under an execution time constraint is beneficial when large au-

dio, image or video files are encoded/decoded; however, real-time pipelined MPSoCs

need to be optimised under latency and throughput constraints.

The works in [91, 92, 193] assumed a particular mapping of multimedia appli-

cation’s tasks on the ASIPs and then generated processor configurations (custom

instructions and cache configurations) according to the mapped tasks. On the other

hand, Chen et al. [194] explored simultaneous mapping and custom instruction selec-

tion with variable number of ASIPs in the pipelined MPSoC. In addition, their aim

was to minimise the MPSoC’s area footprint under a throughput constraint. They

proposed a dynamic programming algorithm and compared it to an ILP formulation.

The throughput of a multimedia application may vary because of the data-dependent

nature of such applications. Therefore, Bordoli et al. [195] considered variations in

processor latencies during the selection of custom instructions. They proposed a

heuristic based on the branch and bound technique to select custom instructions for

processors with the objective of minimum variation in throughput under an area

footprint constraint for the custom instructions. Like [91, 92, 193], they assumed

that the application was mapped to the pipelined MPSoC beforehand.

48 CHAPTER 2. LITERATURE SURVEY

2.3.3 (Semi-) Automated Frameworks

Design space exploration approaches described above are often deployed as part of

(semi-) automated frameworks to ease whole or part of an MPSoC’s design process.

This section provides a review of some of the design flows and design automation

frameworks.

In [196], a programmer-driven, semi-automatic framework was proposed to gen-

erate different parallel specifications of an application from its sequential C code.

The authors proposed six different code transformations: loop splitting; cumulative

access type analysis; partitioning vector dependants; breaking composite structures;

synchronising dependant variables; and, variable re-scoping. These code transfor-

mations are implemented using automated phases, but the decision to apply them

is left to the programmer. The MPA framework [197] also generates parallel code

from a sequential C code. A programmer marks the sections of the C code that need

to be parallelised, and the analysis of parallel sections and code generation phases

are automated.

Tournavitis et al. [198] proposed a profile-driven parallelisation framework where

dynamic data flow analysis rather than mere static analysis was used to extract par-

allel loops from sequential C code. They also relied on the programmer to decide the

loops that should be parallelised at the end. Ceng et al. [199] proposed MAPS frame-

work to extract coarse-grained parallelism from sequential C code by transforming it

to a weighted statement control flow graph, which is annotated with profiling infor-

mation to enable both static and dynamic analyses. This graph is then processed by

a heuristic to cluster so-called coupled blocks to automatically generate parallel code

where the granularity of the parallelisation is controlled by the programmer. This

work was later improved in [200] to better guide a programmer on the granularity of

the parallel tasks. Cordes et al. [100, 201] proposed an integer linear programming

based framework to extract task- and pipeline-level parallelisms by representing a

sequential C code in a hierarchal task graph. The granularity of the parallelisation

2.3. DESIGN SPACE EXPLORATION 49

is automatically controlled by the costs of task creation and communication between

the tasks, which are provided by the programmer.

The frameworks described above focussed on parallelisation of applications for

MPSoCs. There have been other frameworks that focused on system-level design

automation to rapidly explore computation and communication elements in a hetero-

geneous MPSoC. A Simulink and SystemC based framework for hardware-software

co-design of heterogeneous MPSoCs was proposed in [202,203]. The proposed frame-

work allows a designer to input application and MPSoC architecture at a high level

of abstraction in Simulink, which is then refined to an implementation in SystemC.

A Simulink Combined Algorithm/Architecture Model (CAAM) is used to capture

the abstract algorithmic flow of application and the abstract hardware components

of the MPSoC. From CAAM, a hardware generator produces MPSoC architecture

at three abstraction levels: virtual architecture; transaction-accurate architecture;

and, virtual prototype, which trade-off simulation speed with accuracy. A multi-

threaded code generator then generates codes of the abstract application tasks, with

some memory optimisations, for the processing elements in different abstractions of

the MPSoC. Differing MPSoC architectures and an application’s parallel specifica-

tions can be inputted manually, but evaluated quickly because of the automated

refinement steps from application specification to MPSoC implementation.

Lyonnard et al. [204] proposed a framework where generic heterogeneous MP-

SoC templates with parametrisable components were used to describe an MPSoC

architecture. They focused on communication coprocessors to connect heteroge-

neous processors and automated the generation of such coprocessors from processor

and communication protocol libraries. Their framework allows a designer to ex-

plore different implementations of communication coprocessors. Wolf et al. [205]

proposed an interface-centric framework for design and programming of MPSoCs.

A Task Transaction Level (TTL) interface was proposed to describe both applica-

tions and MPSoCs at a high abstraction level. The TTL supports different types of

communication primitives with differing implementations to trade-off performance

50 CHAPTER 2. LITERATURE SURVEY

with programming simplicity. The authors proposed several source code transfor-

mations for effective use of TTL, and automated the transformation phases for quick

implementation of an application on an MPSoC architecture.

The works in [206–208] proposed frameworks for the automated exploration of

on-chip communication architecture and memory in MPSoCs. Lahiri et al. [206]

proposed several algorithms to generate an optimised on-chip communication archi-

tecture in the presence of differing network topologies and communication protocols.

Their framework decides the mapping of communication components of the MPSoC

to channels in the communication architecture template, and the protocols to be

used for each of those channels. The framework in [207] automatically builds a vir-

tual architecture of an MPSoC with differing communication architectures provided

in a library by the designer for quick simulation and performance evaluation. All

the communication architectures are then explored exhaustively to select the one

with the best performance. Pasricha et al. [208] proposed a framework for simulta-

neous exploration and optimisation of the communication architecture and memory

in an MPSoC. Their framework would output a bus-matrix type of communication

architecture with the minimum number of busses under performance and memory

area constraints. In particular, the framework determines bus topology, arbitration

schemes, bus speeds and buffer sizes simultaneously with mapping of the data to

memories and number, size, ports and type of each memory.

Some frameworks for automated exploration of ASIP based MPSoCs have also

been proposed. Wieferink et al. [209] proposed a framework for simultaneous ex-

ploration of ASIP and communication architectures in an MPSoC. Their framework

uses LISA Architectural Description Language (ADL) [210] for the description of

ASIP architectures and SystemC Transaction Level Modelling (TLM) to capture

communication architectures. The automatically generated ASIP simulators are in-

terfaced with TLM communication models in the framework to allow exploration at

different abstraction levels, with automated refinement from one abstraction level

to the other. An ad hoc, iterative exploration approach, driven by the designer, is

2.3. DESIGN SPACE EXPLORATION 51

employed to successively improve the ASIP and communication architecture.

Angiolini et al. [211] proposed a framework for exploration of ASIPs, caches,

memories and communication architectures in an MPSoC. Their framework inte-

grates a commercial ASIP platform (LISATek [41]) with an academic MPSoC en-

vironment (MPARM [212]) because both these tools are based on SystemC and

MPARM supports plug-and-play functionality. LISATek allows exploration of ASIPs

while MPARM allows exploration of memory hierarchies such as scratchpad memo-

ries and caches, and communication architectures like shared busses, crossbars and

NoCs. Their framework left design space exploration methodology to be imple-

mented by the designer.

Another ASIP based MPSoC exploration framework was proposed in [65], built

around Tensilica’s Xtensa [25] processors. The MPSoC is described in XML to be

used by automated tools to generate simulation models for the hardware components

of the MPSoC, and separate executables for each processor from the C codes. The

framework then allows simulation of the MPSoC at either the cycle-accurate or

functional level, while trading-off simulation speed with accuracy. A designer can

explore MPSoCs with different number and types of processors, buffer sizes and

so on within several hours, although the MPSoC architectures need to be inputted

manually.

The frameworks described above focused on automation of some of the design

phases of a heterogeneous MPSoC. The following paragraphs review more complete,

state-of-the-art frameworks for heterogeneous MPSoCs [213]. Metropolis [214] pro-

vides a modelling and simulation environment based on the Platform Based Design

(PBD) paradigm [87]. The PBD simplifies system-level design by constraining the

MPSoC to a fixed architectural template so that the design problem reduces to map-

ping of an application onto the MPSoC template. Metropolis uses a meta-model

language to capture application functionality and the MPSoC platform. The meta-

model employs an event-based execution model where processes communicate with

each other through channels. For a given application and architectural template,

52 CHAPTER 2. LITERATURE SURVEY

synthesis is performed by mapping the application onto the MPSoC where differ-

ent phases of the synthesis such as parsing of meta-models, generation of SystemC

simulation models, scheduling and so on are automated.

Koski [215] provides a framework for the following: modelling of an application;

automated MPSoC design space exploration; and, automated synthesis, program-

ming and prototyping on FPGA of the selected MPSoC design. An application

is described in a UML model for mapping onto a bus-based MPSoC architecture,

which is constructed from a library of components. The UML interface transforms

the application and MPSoC descriptions to an abstract level for fast exploration. A

two step MPSoC architecture exploration approach is employed where the designer

can specify performance, area and power constraints. Once an MPSoC design is

selected, generation of code for application tasks, RTL description of components,

and integration of RTOS are automated for implementation on an FPGA.

PeaCE [216] is an extension of Ptolemy II [217], and provides a hardware-software

co-design framework from functional simulation to MPSoC prototyping. PeaCE uses

extended synchronous data flow graphs and finite state machines to model data flow

and control flow of multimedia applications. The MPSoC architecture consists of a

number of processors and synthesise-able IP cores, which are connected through a

communication architecture. A two step design space exploration is used. The first

step explores the selection of processing elements and mapping of application tasks

on those elements. The second step involves the exploration of the communication

architecture such as bus and memory allocation. After design space exploration, the

chosen MPSoC designs can be prototyped on an FPGA. Another enhancement to

PeaCE, named HOPES [218], was proposed to ease the programming of MPSoCs.

HOPES introduces the Common Intermediate Code (CIC) model to capture both

the application and the MPSoC architecture. The CIC model can be either writ-

ten manually or generated automatically from PeaCE models. The CIC translator

in HOPES transforms the model to optimised software codes for processors and

interface code for IP cores with the scheduling of application tasks.

2.3. DESIGN SPACE EXPLORATION 53

Figure 2.3: Daedalus framework. Sourced from [219].

Daedalus [219,220], as shown in Figure 2.3, provides a highly automated frame-

work for system-level exploration, synthesis, programming and prototyping of MP-

SoCs by combining KPNgen [99], Sesame [221] and ESPAM [222] tools. Daedalus

uses the Kahn Process Network (KPN) as the model of computation and compos-

able, heterogeneous MPSoCs (created from a library of components) where the pro-

cessing elements communicate through distributed memories as the implementation

platform. The KPN of an application is either derived manually or automatically

by utilising KPNgen if the application’s sequential C code is specified as a so-called

static affine nested loop program. KPNgen can also use automated source level

transformations to produce different KPNs of an application. The generated KPNs

are then used by Sesame to perform design space exploration of mapping KPNs,

scheduling processes of KPNs, and communication and computation components in

the MPSoC platforms. Sesame trades-off simulation speed with accuracy by the

use of either high- or low-level architectural models. A set of promising KPNs and

54 CHAPTER 2. LITERATURE SURVEY

MPSoC platforms from Sesame can be passed to ESPAM for prototyping on an

FPGA. ESPAM automatically generates C code of the processes in the KPN and

synthesise-able VHDL of the MPSoC platform from RTL models in the component

library. Daedalus allows quick exploration of differing application mappings and

schedules, and differing MPSoC platforms because of the automated design trajec-

tory from application specification to implementation. Recently, DaedalusRT has

been proposed in [223] for mapping and scheduling of multiple multimedia applica-

tions with hard real-time throughput constraints.

SCE [224] is another framework for automated implementation of an applica-

tion on a heterogeneous MPSoC. Unlike previous frameworks, SCE is based on

SpecC [225] system-level design language and provides an interactive, user-driven

GUI. In SCE, an application is described as a hierarchical state machine while the

MPSoC platform is built from a library of components. SCE employs a Specify-

Explore-Refine approach to implement the specified application onto a predefined

MPSoC platform using a predefined mapping. The “explore” step consists of four

types of explorations: architectural (selection of processing elements and memories,

mapping of application tasks and data); scheduling of application tasks on selected

processing elements; communication architecture (selection of buses, communication

elements and their connectivity); and, mapping of channels onto the communication

architecture. SCE uses a plug-in approach for inclusion of user-defined exploration

and optimisation algorithms. In the last step, SCE automatically refines the selected

design point from the “explore” step by generating RTL models of the hardware

components and executables of the application’s tasks.

SystemCoDesigner [226] provides a framework to automatically map and sched-

ule multimedia applications onto a heterogeneous MPSoC where applications con-

sist of actors, which communicate through channels. After the specification of the

application and MPSoC template in SystemC by the designer, the SystemCoDe-

signer generates hardware accelerators for the actors and adds those accelerators

to a component library made up of processors, IP cores, buses and memories. For

2.4. RUN-TIME ADAPTABILITY 55

quick evaluation of differing implementations of the MPSoC template, SystemCoDe-

signer translates the MPSoC into a so-called virtual architecture. Unlike previous

frameworks, for design space exploration, SystemCoDesigner transforms the input

SystemC model into a pseudo-Boolean formula and uses multi-objective evolution-

ary algorithms. The Pareto-optimal designs from the exploration phase can be

automatically prototyped on an FPGA.

2.4 Run-time Adaptability

The optimisation and exploration frameworks described above are typically used at

design-time to optimise heterogeneous MPSoCs under worst-case parameters so that

these MPSoCs, when deployed, can deliver the performance required of them at all

times. Design-time optimised MPSoCs lack adaptability, and thus result in ineffi-

cient resource utilisation and increased energy consumption under a dynamic envi-

ronment. In a dynamic environment, run-time adaptability is an attractive option

to improve the resource utilisation and energy efficiency of heterogenous MPSoCs.

There is a plethora of work on run-time adaptability in MPSoCs; however, this

section provides an overview of only some of the run-time management techniques1.

Most of the run-time management techniques adapt the MPSoC under dynamic

workload by exploiting task migration, mapping and scheduling to increase utili-

sation of the processors. In addition, these techniques use Dynamic Voltage and

Frequency Scaling (DVFS) or multiple power states to reduce energy consumption

by reducing frequency-voltage levels of under-utilised processors and/or by transi-

tioning idle processors to sleep states.

Schranzhofer et al. [228] addressed the problem of selection of processing ele-

ments in a heterogeneous MPSoC, and the mapping of multiple applications onto

1Dynamically reconfigurable systems use partial reconfiguration characteristic of FPGAs to
adapt their hardware to application demands at run-time. Since this thesis targets heterogenous
MPSoCs with non-reconfigurable hardware, literature on dynamic reconfigurable systems is not
covered here. However, interested readers are directed to [227], where the authors report some of
the recent adaptive, reconfigurable systems and their run-time management techniques.

56 CHAPTER 2. LITERATURE SURVEY

the selected processing elements under different application scenarios (representing

dynamic workload). Their objective was to minimise the average power consumption

of the heterogeneous MPSoC by improving the utilisation of processing elements.

They proposed a two-step solution: firstly, an approach to select processing ele-

ments and to compute a static schedule of the tasks was introduced; and secondly, a

set of promising static schedules for all the application scenarios was computed off-

line and stored in the MPSoC to be used by the run-time manager during differing

application scenarios.

Since the overhead of run-time management techniques has to be low, like [228],

Couvreur et al. [229] also proposed a two step approach. A multi-objective design

space exploration is performed to obtain the Pareto-optimal design points, which

are stored in the MPSoC for use at run-time. Then, one of the Pareto-optimal

design points is selected by the run-time manager, considering run-time resource

utilisation of the MPSoC. The objective of their design space exploration was to

minimise energy consumption of the MPSoC under a performance constraint, where

memory usage, processor frequencies, communication bandwidth, and the like con-

stituted MPSoC’s resources. In addition, the authors used differing parallelisations

of the application based upon workload variations as the dynamic factor. Other

similar works where design-time decisions are coupled with run-time management

techniques are reported in [230].

In situations where the dynamic nature of the system cannot be modelled at

design-time (such as the variations in workload due to input data), more advanced

run-time management techniques are deployed. These techniques are based upon

design-time analytical analyses, run-time monitoring and run-time prediction of the

MPSoC’s resource utilisation, power consumption, and the like. In [231], a run-

time heuristic to select frequency-voltage levels for components in a Globally Asyn-

chronous Locally Synchronous (GALS) system with frequency-voltage islands was

proposed. The proposed heuristic predicts the execution cycles for the next epoch

based upon the predicted and run-time monitored, actual execution cycles of the

2.4. RUN-TIME ADAPTABILITY 57

previous epochs. Then, the predicted execution cycles are used to select an appro-

priate frequency-voltage level for a component.

Isci et al. [232] proposed a global power manager to apply DVFS in an MP-

SoC, where its workload changes at run-time. Like [231], they proposed a heuristic

which monitors performance and power of the MPSoC during an epoch, and then

uses the measured values to predict the performance and power for the next epoch.

The heuristic uses the predictions to select frequency-voltage level that will max-

imise performance under a power budget. Puschini et al. [233] proposed a run-time

management technique, inspired from game theory, to decide the frequency-voltage

levels of processors in an MPSoC. The decisions are made locally for each of the

processors with the objective of latency minimisation under run-time varying energy

constraint or energy minimisation under run-time varying latency constraint.

Unlike the above mentioned works, Molnos et al. [234] proposed an OS-level

run-time technique to select frequency-voltage levels of processors in an MPSoC.

Their heuristic conservatively exploits the slack that occurs at run-time (due to the

dynamic workload) by allocating that slack to a ready task, and then by lowering the

ready task’s frequency-voltage level. The heuristic determines the slack at run-time

by monitoring the execution of the tasks, and minimises the energy consumption

under a performance constraint.

Huang et al. [235] proposed a run-time task mapping and scheduling technique

to maximise resource utilisation of an MPSoC under a performance constraint. A

four step heuristic was proposed: firstly, the application deadline (performance con-

straint) is translated to individual task deadlines with the objective of maximal

scheduling; secondly, adaptive task mapping and clustering is performed with the

objective of maximising resource utilisation and minimising communication costs

respectively, considering the run-time feedback from the MPSoC; thirdly, local

scheduling of tasks on each of the processors; and lastly, bandwidth allocation in the

NoC. Their adaptive task mapping was shown to outperform traditional task map-

ping, which did not consider run-time feedback from the MPSoC about its resource

58 CHAPTER 2. LITERATURE SURVEY

utilisation.

In [236], the problem of task mapping and scheduling of an application graph

exhibiting dynamic workload on an MPSoC with DVFS was addressed. The dy-

namic workload of an application is due to the conditional branches in the graph as

some of the tasks may not be executed at run-time. The branches are associated

with probabilities which are populated at run-time by monitoring branch selections.

Based on the captured history of the branches, a run-time heuristic schedules the

tasks and selects frequency-voltage levels for the processors. The heuristic is called

every time a branch probability changes by more than a predetermined threshold.

Huang et al. [237] addressed the problem of selecting power states of a device

(such as an MPSoC) in the presence of dynamic event streams in order to minimise

its average power consumption. They used real-time calculus to model the event

streams and hence to predict the future arrival of events. Based on a combination

of past and predicted events, decisions are made on the power state of the device.

A power state is used only when the device is predicted to be idle for a long enough

period to amortise the overhead of transitioning to that particular power state.

Unlike the above mentioned works which primarily focused on maximising re-

source utilisation or minimising energy consumption, Coskun et al. [238] proposed

a proactive, run-time thermal management technique for MPSoCs. They used the

autoregressive moving average model for prediction of future temperature, based

on the temperature measurements of the past. In addition, they applied sequential

probability ratio test to predict when the predictions of moving average predictor will

significantly drift from actual measurements so that the predictor can be adapted in

advance. Experiments were conducted with task migration and the Dynamic Voltage

Scaling (DVS) enabled run-time thermal management to illustrate that the proposed

proactive technique significantly reduced the frequency of hotspots compared to re-

active techniques. On the other hand, Ebi et al. [239] used an agent based run-time

thermal management technique to proactively avoid potential hotspots that may

develop in future.

2.4. RUN-TIME ADAPTABILITY 59

Machine learning has also been used in prior research to learn at run-time from

the history of an application’s execution so as to enable future predictions. Ge et

al. [240] applied machine learning to thermal management while Tan et al. [241]

applied it to power management in MPSoCs. Several techniques have also been

proposed for run-time management of communication in NoC based MPSoCs. The

authors of [242] studied the problem of task mapping of an application at run-time

with the objective of minimisation of NoC congestion. They proposed several heuris-

tics based on first-free neighbour, nearest-neighbour, communication path load, etc.

and compared their effectiveness in improvement in channel load, packet latency

and execution time. Al Faruque et al. [243] proposed a distributed, agent based

run-time task mapping technique for a similar problem. Ogras et al. [244] proposed

a proactive congestion control technique for NoC based MPSoCs with a given appli-

cation(s) mapping. They leveraged application knowledge to characterise network

traffic, and then built a state space based router model. The router model predicts

its availability at a given time in future, which is then used to control generation of

network packets, and hence the network traffic.

The authors of [245] studied the problem of run-time mapping of applications

on a NoC based MPSoC with multiple voltage-frequency islands. Their objective

was to minimise total communication energy under a performance constraint. Their

proposed heuristics find a near convex region for an application, and then map each

task of the application to computation and communication resources in that region.

The heuristics are implemented in a centralised manager, which allows applications

to arrive and leave the MPSoC dynamically. This work is extended in [246] where

information related to user behaviour is exploited during task mapping to better

adapt to the dynamic environment. The authors divided the overall problem of

task mapping into four subproblems and proposed two approaches (consisting of

several heuristics) to solve those subproblems. Additionally, they employed a ma-

chine learning based technique to learn user behaviour at run-time for selection of

the most promising approach.

60 CHAPTER 2. LITERATURE SURVEY

Run-time adaptability has also been used in pipelined MPSoCs to adapt them

under dynamic workload. In pipelined MPSoCs, the variations in workload are typ-

ically due to the data-dependent behaviour of multimedia applications, resulting in

an unbalancing of the pipeline stages at run-time. Therefore, the authors of [88–90]

introduced per processor DVFS to reduce frequency-voltage level when a processor

is under-utilised and to increase frequency-voltage level when a processor exceeds

the throughput constraint. Consequently, the stages are balanced at run-time under

workload variations by making their latencies almost the same, and close to the

pipelined MPSoC’s throughput constraint.

Guo et al. [88] proposed a feedback controller based centralised run-time man-

ager. The run-time manager uses one detector per FIFO buffer in the pipelined

MPSoC to monitor its utilisation by its producer and consumer processors. The

voltage level is changed when the difference in utilisation of a FIFO buffer’s pro-

ducer and consumer is more than a threshold, indicating that the two processors are

unbalanced. The feedback controller is triggered every time a task is executed.

Like [88], in [89, 90], a feedback controller, based upon the occupancy levels of

the FIFO buffers, was proposed to select frequency-voltage levels of the processors.

However, the authors of [89,90] proposed distributed, more fine-grained, both linear

and non-linear controllers where the feedback control policy is executed in each of

the processors of the pipelined MPSoC. The proposed controller can be triggered

either after a fixed time interval or adaptively based on the occupancy level of the

FIFO buffer. Every time a controller is triggered, it measures the current occupancy

level of the FIFO buffer and compares it to the desired and previous occupancy

levels of the FIFO buffer. If the error in occupancy level is within a threshold,

then the frequency-voltage level is unchanged. On the other hand, if the error in

occupancy level is negative (that is, the FIFO buffer is being filled slowly), then

the frequency-voltage level is increased. Otherwise, the frequency-voltage level is

decreased. Although feedback controllers provide run-time adaptability in pipelined

MPSoCs, they are reactive in nature rather than proactive as they do not utilise any

2.5. SUMMARY 61

form of prediction. Therefore, the controller only acts when a performance penalty

has occurred, instead of forecasting such a penalty and acting in advance. Proactive

techniques are typically required when the workload variations are sudden, due to

input data dependence, which is the case with multimedia applications.

2.5 Summary

This chapter opened with a survey of homogeneous and heterogenous MPSoCs used

for multimedia. The chapter then focused on design space exploration of hetero-

geneous MPSoCs. Both exact and heuristic approaches typically utilised during

design space exploration were discussed. An overview of several (semi-) automated

frameworks that can ease and speed up the design and prototyping of heterogeneous

MPSoC was also provided. Finally, the chapter focussed on run-time adaptability

in heterogeneous MPSoCs under dynamic environments. In summary, the chapter

provided the necessary survey of the existing design-time and run-time optimisation

techniques for heterogeneous MPSoCs in general and pipelined MPSoCs in particu-

lar.

Chapter 3

Research Methodology

This chapter provides a philosophical overview of the research conducted during

the course of this thesis. Firstly, the application model and pipelined MPSoCs

considered in this thesis are described. Then, shortcomings of prior research on

pipelined MPSoCs are discussed in order to provide an idea of how this thesis fills in

some of the gaps in prior research. In addition, this chapter rationalises the design-

time and run-time optimisations proposed for pipelined MPSoCs in this thesis.

3.1 Application Model and Pipelined MPSoCs

Multimedia applications are characterised by several sub-kernels which are executed

repeatedly on an input data stream. For example, the JPEG decoder application

contains the following sub-kernels: Entropy Decoding (ED); Inverse Transformation

and Quantisation (ITQ); and, Colour Conversion (CC). These sub-kernels are in-

dependent of each other and hence can operate on different data units at the same

time, enabling their execution on pipelined MPSoCs. The number of invocations

of all the sub-kernels is the same and equal to the number of data units in the

input. Hence, the number of iterations of the application is equal to the number

of times each sub-kernel is invoked. Figure 3.1 illustrates task graphs of several

multimedia applications where nodes and edges represent the sub-kernels and the

63

64 CHAPTER 3. RESEARCH METHODOLOGY

R/

CC

EC/

W

LF

ITQ

TQ

IP/

MC

ME

R: Read Input File W: Write Output File

CC: Colour Conversion LS: Level Shifting T: Transformation

Q: Quantisation EC: Entropy Coding ED: Entropy Decoding

ITQ: Inverse TQ PF: Polyphase Filtering ME: Motion Estimation

IP: Intra Prediction MC: Motion Compensation LF: Loop Filter

R/

CC

W

EC

Q

T

LS

R/

CC

W

EC

TQ

LS

R/

ED

CC/

W

ITQ

/LS

R

EC/

W

TQ

PF

S1

S2

S3

S4

S5

S6

JPEG

Enc1

JPEG

Enc2

JPEG

Dec

MP3

Enc

H.264

Enc

Figure 3.1: Graphs of typical multimedia applications.

3.1. APPLICATION MODEL AND PIPELINED MPSOCS 65

data dependencies respectively.

In a pipelined MPSoC, processors are organised in stages where the stages are

connected in a pipeline. Communication between the stages typically occurs through

FIFO buffers. These FIFO buffers allow communication at a much higher bandwidth

compared to a shared bus and provide blocking read and write operations to allow

synchronisation between the processors running at different frequencies. Each pro-

cessor is an Application Specific Instruction set Processor (ASIP) with separate

instruction and data caches that are connected to its local memory. In addition to

local memories, shared memory could be used where common data need to be shared

within a stage and/or among different stages. The nodes and edges of a multimedia

application’s task graph are assigned to one or more processors and FIFO buffers in

the pipelined MPSoC. For example, the sub-kernels of JPEGEnc1 have been one-to-

one mapped onto a pipelined MPSoC shown in Figure 3.2. While the processor P2.1

is in i-th iteration, P1.1 will be in its (i+1)-th iteration, thereby allowing pipelined

execution of the sub-kernels. In other words, the input data streams through the

pipelined MPSoC before being written by the last stage. Note that an iteration of

the pipelined MPSoC refers to the processing of one data unit by all sub-kernels,

and the number of iterations of a pipelined MPSoC is the number of iterations of

the application executing on it. Figure 3.2 also shows pipelined MPSoCs for other

applications where some of the FIFO buffers and memories have been omitted for

the sake of simplicity. Note that the TQ sub-kernel of JPEGEnc2 is implemented

on three processors, which will work in parallel to achieve the required performance.

The backward edges in an application graph introduce data dependencies that

can hamper pipelined execution of the sub-kernels. This is because the stage which

requires data from a backward edge (consumer stage) might have to wait due to a

stage further in the pipeline (producer stage). For example, stage 2 (ME) of the

H.264Enc requires data from stage 6 (LF) in Figure 3.1. The dependency distance

of an edge is the dependence distance in number of iterations between the consumer

66 CHAPTER 3. RESEARCH METHODOLOGY

P3.1

P4.1

P2.1

P3.3

S1

S2

S3

P5.1

S4

P2.1

P3.1

P1.1

P2.2

P4.1

P1.1

P3.2

S5

S6

P2.1

P3.1

P1.1

P2.3

P4.1

P2.2

P5.1

P6.1

P5.2

P2.1

P3.1

P1.1

P2.3P2.2

JPEGEnc2

MP3Enc

H.264Enc

JPEGDec

P4.1

P2.1

P5.1

P1.1

P3.1

P6.1

JPEG

Enc1

Figure 3.2: Pipelined MPSoCs for multimedia applications of Figure 3.1. Some
FIFO buffers and memories are not shown for the sake of simplicity.

3.1. APPLICATION MODEL AND PIPELINED MPSOCS 67

and the producer stages. Consider that the i-th iteration of stage 2 needs the out-

put of (i-7)-th iteration of stage 6, then the dependency distance of the backward

edge is seven. To avoid unnecessary waiting due to a backward edge in a balanced

pipelined MPSoC, the dependency distance of the backward edge should be ≥ the

number of stages included in it. This condition ensures that the data is always

available to the consumer stage on or before time. For example, when stage 2 of

H.264 encoder is in its i-th iteration, then stage 6 would be in its (i-4)-th itera-

tion. Consider the dependency distance of seven for the backward edge, then the

output of (i-7)-th iteration of stage 6 will already be available and hence stage 2

will not wait unnecessarily and the pipelined execution will continue. Alternatively,

the dependency distance of 7 is ≥ 5, which is the number of stages in the backward

edge (that is, stages 2, 3, 4, 5 and 6). Unnecessary waiting due to the backward

edges voids the usefulness of pipelined execution; therefore, applications that violate

the dependency distance condition for backward edges will not benefit from their

implementations on pipelined MPSoCs. Interestingly, typical multimedia applica-

tions do fulfil the dependency distance condition for backward edges. Consider that

the H.264 encoder is executed at the macroblock-level (which is typical of real-time

implementations of H.264 video encoder/decoder [247]), the ME stage of the H.264

encoder will require the macroblocks of the previously reconstructed frame(s) that

would have already been produced by the LF stage.

In a pipelined MPSoC, each processor is customised according to the sub-kernel(s)

assigned to it to balance the stages for improved performance, reduced area foot-

print and low power consumption. One can add custom instructions for processors

with computationally intensive sub-kernels while reducing unnecessary logic from

processors with computationally light sub-kernels. Hence, at the system-level, the

variants in the pipelined MPSoC are the processor configurations resulting from

customisable options – custom instructions and cache sizes – that are generated for

each of the processors according to the assigned sub-kernels. The pipelined MPSoC

will be implemented with one of the combination of processor configurations – one

68 CHAPTER 3. RESEARCH METHODOLOGY

of the design points of the pipelined MPSoC. The goal is to select one configura-

tion for each processor in the pipelined MPSoC to have the optimal combination

of processor configurations – the optimal design point – for a given objective func-

tion such as minimum area or maximum throughput. The selection of a pipelined

MPSoC’s design point is done during design space exploration by the evaluation of

the design points’ performance metrics, coupled with exploration algorithms. For

a pipelined MPSoC with 5 processors where each processor has 100 configurations,

1010 combinations of processor configurations are possible, requiring quick explo-

ration methodologies.

3.2 Shortcomings of Prior Research

To enable quick exploration of a pipelined MPSoC’s design space, a quick method-

ology to obtain performance metrics of all the design points is required. Since

there can be billions of design points, a simulation only methodology is not fea-

sible. A few works on performance estimation of pipelined MPSoCs used full-

system, cycle-accurate simulations and an analytical model for only the execu-

tion time [91, 93, 149, 193]. The works in [91, 93] proposed less accurate models,

while [149, 193] did not evaluate the accuracy of their models. Chapter 5 addresses

these issues by introducing analytical models for three performance metrics – exe-

cution time, latency and throughput – of a pipelined MPSoC and evaluates their

absolute accuracy and fidelity1. Throughput and latency are typical performance

metrics for real-time pipelined MPSoCs. Two estimation methods are also proposed

in Chapter 5 to reduce the number of full-system, cycle-accurate simulations of the

pipelined MPSoC to aid quick exploration.

Once the performance metrics of design points are available (or can be com-

puted quickly), the next step is to use exploration algorithms to search for the

optimal design point. Jin et al. [147] addressed the problem of maximising the

1Chapter 4 proposes fidelity metrics for estimation models.

3.2. SHORTCOMINGS OF PRIOR RESEARCH 69

throughput of a multimedia application on a pipelined MPSoC with fixed number

of processors. Cong et al. [148] proposed exact algorithms to minimise latency and

number of processors in a pipelined MPSoC under a throughput constraint. Both

these works [147,148] did not consider processor customisation, and thus dealt with

homogeneous pipelined MPSoCs only.

The works in [91, 92, 149, 193] addressed the problem of processor customisa-

tion (selection of custom instructions or selection of processor configurations) in a

pipelined MPSoC. Shee et al. [91] proposed a heuristic to maximise pipelined MP-

SoC’s execution time improvement per area increase ratio compared to a unipro-

cessor system. Thus, Shee et al. did not consider performance constraints that are

typical of real-time multimedia applications. The authors of [92, 149, 193] proposed

Integer Linear Programming (ILP) formulations and heuristics for minimisation of

a pipelined MPSoC’s area footprint under an execution time constraint where exe-

cution time did not mean the latency or throughput of a pipelined MPSoC. Optimi-

sation of a pipelined MPSoC under an execution time constraint is beneficial when

large audio, image or video files are encoded/decoded; however, real-time pipelined

MPSoCs need to be optimised under latency and/or throughput constraints. Chap-

ter 6 addresses these issues by proposing two algorithms for area footprint optimisa-

tion of a pipelined MPSoC under a latency or a throughput constraint respectively.

To speed up the exploration process, these algorithms utilise the performance ana-

lytical models and estimation methods proposed in Chapter 5. Two works inspired

from the proposals of Chapter 6 have been published recently [194, 195]. Bordoli

et al. [195] considered variations in processor latencies during customisation of the

processors. Their objective was to minimise variation in throughput under an area

footprint constraint. Chen et al. [194] explored simultaneous mapping and proces-

sor customisation with variable number of processors in the pipelined MPSoC. Their

aim was to minimise MPSoC’s area under a throughput constraint.

The pipelined MPSoCs optimised at design-time use worst-case parameters to

70 CHAPTER 3. RESEARCH METHODOLOGY

ensure that the performance required of them is delivered at all times when de-

ployed. As such, worst-case pipelined MPSoCs lack run-time adaptability, and thus

may result in inefficient resource utilisation and increased energy consumption un-

der a dynamic workload. Hence, to enable low-power operation under a dynamic

workload, run-time adaptability must be introduced in pipelined MPSoCs.

The works in [88–90] considered run-time adaptability in pipelined MPSoCs.

Guo et al. [88] proposed a dynamic voltage scaling approach to reduce the voltage

to processors with low workload, while [89, 90] showed the application of Dynamic

Voltage and Frequency Scaling (DVFS) in pipelined MPSoCs. All these works used a

feedback controller to monitor the occupancy level of the FIFO buffers to determine

when to increase or decrease the frequency-voltage levels of a processor. Although

feedback controllers provide run-time adaptability in pipelined MPSoCs, they are

reactive in nature rather than proactive as they do not utilise any form of predic-

tion. Therefore, the controller only acts when a performance penalty has occurred

instead of forecasting such a penalty and acting in advance. Proactive techniques

are typically required when the variations in workload are sudden due to input data

dependence, which is the case with multimedia applications. Chapters 7 and 8 ad-

dress run-time adaptability issues in pipelined MPSoCs. Chapter 7 introduces an

adaptive pipelined MPSoC architecture with a processor manager to predict idle

processors in the pipelined MPSoC at run-time. The processor manager not only

utilises the application’s execution history, but also the application’s knowledge to

predict the upcoming workload. An application’s knowledge should be used in work-

load prediction because an application knows (or may know) by far the most about

its future workload [248]. The idle processors are either clock- or power-gated to

illustrate the energy efficiency of adaptive pipelined MPSoCs compared to worst-

case pipelined MPSoCs. Thus, Chapter 7 proposes proactive rather than reactive

run-time processor management techniques for adaptive pipelined MPSoCs.

Practically, provision of the DVFS circuitry for MPSoCs with more than two

processors is very expensive [249]. Furthermore, the large overhead of the DVFS

3.2. SHORTCOMINGS OF PRIOR RESEARCH 71

control circuitry limits its use to systems requiring only coarse-grained run-time

management [250]. The shrinkage of the dynamic range of frequency-voltage oper-

ational points due to downward scaling of supply voltage has also limited the use

of DVFS, and has given rise to the use of clock-gating, power-gating and multiple

power states. Therefore, Chapter 7 used either clock- or power-gating to deactivate

idle processors in an adaptive pipelined MPSoC. Chapter 8 extends this work for

multiple power states, where the challenge is to also predict the upcoming idle period

of an idle processor to select the most energy saving power state. Like Chapter 7,

Chapter 8 also proposes proactive run-time techniques utilising the application’s

knowledge, but for power management of adaptive pipelined MPSoCs.

A pipelined MPSoC will typically be used as a multimedia accelerator in a mul-

timedia platform (such as OMAP [81], Tegra [120], etc.) because it is extremely

customised for a specific multimedia application. So far, both worst-case (non-

adaptive) and adaptive pipelined MPSoCs have been designed for only one multime-

dia application, requiring the deployment of individual accelerators for multimedia

applications. Due to the area constraints in portable media devices, it is desirable

to use a multi-mode accelerator rather than individual accelerators when their use

is mutually exclusive. Chapter 9 makes the first attempt at multi-mode pipelined

MPSoCs for multiple, mutually exclusive applications to function as multi-mode

multimedia accelerators where each mode refers to the execution of one application.

The idea of merging individual application graphs into a single application graph at

design-time is exploited for realisation of a multi-mode pipelined MPSoC.

72 CHAPTER 3. RESEARCH METHODOLOGY

3.3 An Optimisation Framework for Pipelined MP-

SoCs

The aim of this thesis is to optimise pipelined MPSoCs by reducing their area

footprint and lowering their power consumption under real-time performance con-

straints. The author proposes design-time and run-time optimisations, which are

targeted at different objective functions. At first, a pipelined MPSoC is optimised for

area footprint under either a latency constraint or a throughput constraint. Then,

such a design-time optimised pipelined MPSoC is augmented with run-time adapt-

ability for low-power operation under a dynamic workload. Finally, the pipelined

MPSoCs optimised for different multimedia applications are combined into a single

multi-mode pipelined MPSoC for further reduction of the area footprint. Figure 3.3

presents a philosophical overview of how the research reported in different chapters

of this thesis is connected, and can be used to optimise pipelined MPSoCs in the

form of an optimisation framework.

The first phase of the framework involves analysis and profiling of the multime-

dia application to decide the initial architecture of the pipelined MPSoC (number

of processors, and number, size and connection of the FIFO buffers). The analysis

involves extraction of the sub-kernels if the application is specified as a C/C++

code, which can be done manually or semi-automatically [99,100]. Alternatively, an

application can be specified in a stream language such as StreamIt [86] to explicitly

represent the sub-kernels. Once the sub-kernels are available, profiling is performed

to analyse the computational ratios of the sub-kernels so that they can be merged

and/or split if required. This process is typically referred to as an application-

level balancing [101–103] and is done to ensure that the sub-kernels contain rea-

sonable amount of computation to be mapped to individual processors. After such

an application-level balancing, code segments of the sub-kernels are produced, in

addition to the application graph where nodes represent sub-kernels and edges rep-

resent data dependencies. The initial pipelined MPSoC is then derived by mapping

3.3. AN OPTIMISATION FRAMEWORK FOR PIPELINED MPSOCS 73

Area footprint optimisation for multiple pipelined MPSoCs Phase 4

Run-time adaptability for energy reduction

Phase 3

Area footprint optimisation for a single pipelined MPSoC Phase 2

Manually or semi-automatically done by the designer Phase 1

Sub-kernel extraction

Profiling

Application-level balancing

ASIP

Generator

Custom

Instructions

Chapter 5: Quick Performance

Estimation

Cycle-accurate simulation

Trace-based simulation

Analytical models

Instruction and

Data Cache

Configurations

Chapter 6: Latency/Throughput

Constrained Exploration

Integer linear programming

Exploration algorithms

Chapter 7: Processor manager

for Adaptive Pipelined MPSoC

Selection of main and

auxiliary processors

Pre-processing stage

Run-time processor

management heuristics

Application

Sub-kernels

Pipelined MPSoC

Architecture

Application

Graph

Profiling and

Statistical Analysis

Application

sub-kernels

Worst-case

Pipelined MPSoC

Adaptive Pipelined

MPSoC with Processor

and Power Managers

Chapter 8: Power Manager for

Adaptive Pipelined MPSoC

Analytical analysis

Pre-processing stage

Run-time power

management heuristics

Power States

of Processors

Chapter 9: Multi-mode Pipelined

MPSoCs

Merging of graphs

Merging of sub-kernels

Merging of processors by

union of custom instructions

and cache configurations

Application Graphs

Representing Worst-case

and Adaptive Pipelined

MPSoCs’ Architectures

Multi-mode Pipelined

MPSoC

Multimedia

Application

Processor

Configurations

Legend: Data Process

Figure 3.3: An optimisation framework for pipelined MPSoCs.

74 CHAPTER 3. RESEARCH METHODOLOGY

sub-kernels and edges of the application graph to one or more processors and FIFO

buffers respectively. Note that the first phase of the framework is done manually or

semi-automatically by the designer, and is not the focus of this thesis.

The second phase of the framework optimises the area footprint of the initial

pipelined MPSoC under a throughput or a latency constraint by customising the

processors. This phase takes the code segments of the sub-kernels and the pipelined

MPSoC architecture as the input from the last phase (the application graph is

used in the fourth phase). Initially, for each of the processors in the pipelined

MPSoC, processor configurations trading-off performance and area footprint are

created by combining the custom instructions (generated using an ASIP generator

which analyses the code segments of the sub-kernels) with cache configurations.

The combinations of these processor configurations make up the design points of

the pipelined MPSoC’s design space. The goal is to quickly explore the design space

(by utilising quick performance evaluation of design points and fast exploration

algorithms) to select one configuration for each processor so that the area of the

pipelined MPSoC is minimised under a latency or a throughput constraint.

Chapter 5 proposes analytical models to estimate the execution time, latency

and throughput of a pipelined MPSoC’s design point using latencies of individual

processor configurations, and thus avoiding slow, full-system, cycle accurate simula-

tions of all the design points. For effective use of these analytical models, latencies of

individual processor configurations should be available. To this end, two estimation

methods – PS and PSP – are proposed to gather latencies of processor configurations

with the minimal number of simulations. The PS method simulates all the proces-

sor configurations once, while the PSP method simulates only a subset of processor

configurations and then uses a processor analytical model to estimate the latencies

of the processor configurations.

Measurement of fidelity of an estimation model, defined as the correlation be-

tween the actual and estimated values, is important from the perspective of design

space exploration. However, there did not exist any metric to measure the fidelity of

3.3. AN OPTIMISATION FRAMEWORK FOR PIPELINED MPSOCS 75

an estimation model. Hence, the author proposes four fidelity metrics for estimation

models based on correlation coefficients from statistics in Chapter 4. One of these fi-

delity metrics is then used in Chapter 5 to measure the fidelity of pipelined MPSoC’s

analytical models and estimation methods. Experiments with a number of pipelined

MPSoCs executing typical multimedia applications (JPEG encoder/decoder, MP3

encoder and H.264 encoder) showed that the analytical models with PS and PSP

methods had maximum absolute errors of 12.95% and 18.67% respectively, and

minimum fidelities of 0.93 and 0.88 respectively. The design spaces of the pipelined

MPSoCs ranged from 1012 to 1018 design points, and hence simulation of all de-

sign points will take years and is infeasible. Compared to the PS method, the PSP

method reduced simulation time from days to several hours because it reduced the

number of simulations from hundreds to only tens.

Chapter 6 builds upon Chapter 5 by utilising the analytical models in the explo-

ration algorithms for quick design space exploration. It proposes an Integer Linear

Programming (ILP) based algorithm for area footprint optimisation under a latency

constraint, and an algorithm for area footprint optimisation under a throughput con-

straint. The proposed exploration algorithms were evaluated on the five pipelined

MPSoCs created in Chapter 5, again with design spaces up to 1018 design points.

The time to find the Pareto front of each pipelined MPSoC with respect to latency or

throughput was less than seven minutes, illustrating the applicability of the proposed

design space exploration method. At the end of the second phase, implementation

of the pipelined MPSoC in terms of the processor configurations is available. Note

that a designer will typically optimise the pipelined MPSoC using worst-case laten-

cies of the processor configurations (that is, processor latencies will be gathered by

providing worst-case representative input data to the pipelined MPSoCs) so that it

can deliver the throughput required of it at all times when deployed.

Once a pipelined MPSoC optimised for area footprint is available, the third

phase of the framework optimises it for low power consumption with the addition

of run-time adaptability. This phase takes the pipelined MPSoC optimised for area

76 CHAPTER 3. RESEARCH METHODOLOGY

footprint using worst-case parameters and the application sub-kernels from the last

phases. Initially, off-line profiling and statistical analysis of the application sub-

kernels is conducted by executing the worst-case pipelined MPSoC with differing

input data to record possible run-time workload variations such as average workload,

standard deviation of the workload, etc. The author then exploits the fact that all

the processors will not be active at all times due to dynamic workload and hence

can be managed at run-time to reduce energy consumption.

Chapter 7 proposes an adaptive pipelined MPSoC architecture, capable of adapt-

ing itself to run-time variations in workload. In an adaptive pipelined MPSoC, stages

with significant run-time variations in workload are implemented using Main Pro-

cessors and Auxiliary Processors, where the main processor uses differing number of

auxiliary processors, considering run-time workload variations. A main processor is

equipped with a run-time processor management technique which uses a combina-

tion of the application’s execution and knowledge (algorithmic and data properties)

and information from off-line profiling and statistical analysis to proactively pre-

dict the number of auxiliary processors that should be used. The idle auxiliary

processors are either clock- or power-gated to reduce energy consumption. Experi-

ments with an H.264 video encoder, designed for HD720p at 30 fps, showed that an

adaptive pipelined MPSoC provided an energy reduction of up to 34% and 39% for

clock- and power-gating based deactivation of auxiliary processors respectively with

a minimum throughput of 28.75 fps compared to a worst-case pipelined MPSoC.

Chapter 8 builds upon the processor manager of Chapter 7 by proposing a power

manager where auxiliary processors have multiple power states, trading-off overhead

of the transition to power states with their possible energy reductions. In the pres-

ence of multiple low-power states, the challenge is to predict the duration of the idle

period so that the most beneficial power state can be selected for an idle auxiliary

processor. Five heuristics are proposed as part of the power manager to forecast at

run-time the duration of upcoming idle period of an auxiliary processor using either

the application’s execution history or the application’s knowledge. Then, based on

3.4. SUMMARY 77

the predicted duration of the idle period, the most suitable power state is selected.

Compared to the use of processor manager with only clock-gating or only power-

gating in an adaptive pipelined MPSoC executing H.264 video encoder (HD720p at

30 fps), the power manager reduced up to a further 40% energy consumption with

only an additional 0.5% degradation of the throughput.

The second and third phases of the framework optimise a single pipelined MPSoC

for the area footprint and energy consumption. To further reduce area footprint,

processors and FIFO buffers of multiple pipelined MPSoCs, designed for multiple

multimedia applications, are shared when their use is mutually exclusive by creating

a multi-mode pipelined MPSoC. The third phase uses the application graphs as the

representation of the pipelined MPSoCs’ architectures (number of processors, and

number, size and connection of the FIFO buffers). Chapter 9 proposes to merge

application graphs into a single graph by finding a maximal overlap between the

graphs so that the multi-mode pipelined MPSoC derived from the merged graph

contains minimal resources. The results indicate significant area footprint reduction

(up to 62% processor area, 57% FIFO area and 44 processor/FIFO ports) with

minuscule degradation of system throughput (up to 2%) and latency (up to 2%),

and an increase in energy per iteration (up to 3%) when compared to individual

pipelined MPSoCs. Chapter 9 makes the first attempt at multi-mode pipelined

MPSoCs.

3.4 Summary

This chapter pointed out shortcomings of the prior research done on pipelined MP-

SoCs, and then explained how the research reported in this thesis addresses some

of those shortcomings. The chapter then introduced an optimisation framework,

where the connection between the research reported in the rest of the chapters of

this thesis was illustrated to justify the author’s proposals.

Chapter 4

Fidelity Metrics for Estimation

Models

In design space exploration, estimation models and exploration algorithms are used

to quickly search the design space for some global minima or maxima. To ensure

that exploration algorithms provide optimal or near-optimal solutions, there is an

expectation that the underlying estimation models are as accurate as possible. How-

ever, estimation models can be just as valid, if they exhibit good fidelity. In fact

the authors of [251,252] stated that the fidelity of an estimation model is more im-

portant than its absolute accuracy. In absolute accuracy, each estimated value is

compared to its corresponding actual value to calculate the absolute error. This is

done for all the estimated values to calculate the average absolute error incurred by

an estimation model to evaluate its suitability. On the other hand, fidelity measures

the correlation between the ordering of the actual values and the ordering of the

estimated values. A high correlation means the estimation model has a high fidelity

relative to the actual values. Fidelity measures how well the estimated values track

the actual values across different design points, which is important in design space

exploration.

79

80 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Design Points

Actual Model 1 (Good)

Model 2 (Bad) Model 3 (Good)

Figure 4.1: Importance of fidelity in design space exploration.

4.1 Motivational Example

Figure 4.1 shows an example of a design space, where the y-axis represents the

latency of a system measured in clock cycles, while the x-axis shows differing design

points. For each design point, the estimated latencies obtained from three different

models are plotted along with the actual latency. At first sight, model 1 seems to be a

bad choice because of its high absolute error; however, the ordering of the estimated

points is the same as the ordering of the actual points, leading to high fidelity. Thus,

model 1 will suffice for the purpose of design space exploration because an algorithm

searching for the minimum latency design will choose the first design point which is

also the minimum latency design using the actual points. Analysing model 2 with

respect to fidelity reveals an erratic ordering of the estimated points compared to

the actual points because the estimated points are higher than the actual points in

some cases (point 1, 3, etc.), and lower in other cases (point 2, 5, etc.). Thus, even

with a very low absolute error, model 2 has low fidelity, which will result in the

incorrect selection of the second design point as the minimum latency design.

A striking and interesting behaviour is exhibited by model 3. The absolute error

4.2. USE OF FIDELITY IN PRIOR RESEARCH 81

of the estimated points increases for model 3; however, a smart insight suggests that

the estimated points are in negative correlation with respect to the actual points,

unlike model 1 which exhibited a positive correlation. Thus, an algorithm searching

for a maximum latency design using model 3’s estimated latencies will choose the

same point as an algorithm searching for minimum latency design using the actual

points. Hence, model 3 is as good as model 1 from the perspective of design space

exploration even though both the models (1 and 3) have very high absolute errors

compared to model 2. To conclude, use of only absolute accuracy can result in over-

designed estimation models, leading to the fact that the measurement of fidelity of

an estimation model is important and necessary from the perspective of exploration

algorithms.

In this chapter, the author proposes four fidelity metrics to quantify the ordering

of the estimated values with respect to the ordering of actual values. These metrics

are based on Spearman’s rank correlation coefficient [253], ρ, introduced in 1904 by

Charles Spearman, and Kendall’s tau correlation coefficient [254], τ , introduced in

1938 by Maurice Kendall.

4.2 Use of Fidelity in Prior Research

Typically, designers use absolute accuracy to evaluate an estimation model, and

ignore fidelity. In some cases, designers use a few design points or a graphical

representation to visualise the correlation between the actual and estimated val-

ues [251, 252, 255, 256]. The authors of [251] proposed a system-level performance

estimation methodology; [252] presented a performance estimation methodology for

component-based embedded systems; [255] proposed an analytical estimation model

for computation of delay under the transmission line model; and, [256] introduced

a novel substrate noise estimation technique to guide the floor-planning and layout

optimisation. All these works plotted a few design points with their actual and esti-

mated values to observe fidelity. The authors in [251] and [252] also emphasised the

82 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

fact that relative ordering of the design points is more important than the absolute

accuracy for design space exploration. However, none of these works introduced any

metrics to calculate the fidelity of estimation models.

Faria et al. [257] proposed a system-level performance evaluation methodology

for network processors where the fidelity of the proposed model was measured as the

ratio of the absolute accuracies. Eyerman et al. [258] used a similar concept where

the relative error between two design points was measured by the difference of the

ratios of estimated and actual values of the two points. None of these works [257,258]

have used a correlation-based method, such as Spearman’s ρ and Kendall’s τ , to

measure the fidelity of an estimation model in general. Spearman’s ρ was used

in [259] to evaluate the relative accuracy of statistical simulation with respect to

cycle-accurate simulation. Although the authors of [259] used Spearman’s ρ, their

work was specific to evaluation of the efficacy of statistical simulation, instead of a

general adoption of Spearman’s ρ as a fidelity metric.

In this chapter, the author adopted both Spearman’s ρ and Kendall’s τ as fidelity

metrics, by showing how these correlation-based coefficients can be used to measure

fidelity of estimation models from any domain. Spearman’s ρ and Kendall’s τ have

been widely used in the information retrieval domain [260, 261] to compare the

rankings of information retrieved through different methods. However, for the first

time, the author shows their applicability to the areas of design space exploration and

design automation in the form of fidelity metrics. In design space exploration, finding

Pareto front (or a point lying on the Pareto front) is the most important objective.

Thus, to make Spearman’s ρ and Kendall’s τ more useful for measuring the fidelity of

estimation models used in design space exploration, they are augmented to include

the effect of Pareto front of a design space. Finally, the author generalises the

proposed fidelity metrics for use in n-dimensional design spaces. The designers

can use the proposed metrics to measure the fidelity for better evaluation of the

estimation models being used in design automation. Note that the calculation of

fidelity metrics requires both the estimated and the actual values. Calculation of

4.3. PRELIMINARIES 83

absolute error too requires the availability of estimated and actual values. The

fidelity metrics and absolute error are calculated for representative benchmarks and

extrapolated for use in real designs.

4.3 Preliminaries

In this section, Spearman’s rank correlation coefficient [253] and Kendall’s tau cor-

relation coefficient [254], the two most widely used rank correlation coefficients from

the statistics domain are described.

4.3.1 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient, denoted as ρ, works on the principle of

calculating the difference between the ranks of two data sets, X and Y. The raw

values in X and Y, that is Xi and Yi are converted into ranks Xr
i and Y r

i , through

sorting the data sets X and Y in increasing order. Sum of the squared differences

between the ranks of each pair (Xi, Yi), that is,
�

(Xr
i − Y r

i)
2 is calculated, which is

then divided by the maximum possible sum of the squared rank differences between

X and Y . The maximum possible sum of the squared rank differences occurs when

the ordering of the points in X is opposite to the ordering of the points in Y, that

is, the ranks in Xr are in increasing order while the ranks in Y r are in decreasing

order. Thus, ρ is defined as:

ρ = 1− 2×
�n

i=1 r
2
i

n(n2−1)
3

(4.1)

where ri = (Xr
i − Y r

i) and n is the total number of points in each data set (both

X and Y must have same number of points). The denominator n(n2−1)
3 gives the

maximum possible sum of the squared rank differences. Spearman’s ρ always lies in

the range −1 ≤ ρ ≤ 1 where a value of 1 signifies a perfect agreement between X and

84 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

Y (correctly ordered), while a value of -1 signifies a perfect disagreement between

the two sets (oppositely ordered).

4.3.2 Kendall’s Tau Correlation Coefficient

Kendall’s tau correlation coefficient, denoted as τ , is based on the number of con-

cordant and discordant pairs present in Y compared to X. A pair in X is defined

as the combination of two points from X, (Xi, Xj) such that i < j. A pair in

Y, (Yi, Yj), is concordant with respect to the corresponding pair in X, (Xi, Xj), if

sgn(Xj −Xi) = sgn(Yj −Yi) and discordant if sgn(Xj −Xi) = −sgn(Yj −Yi) where

the sgn function is defined as:

sgn(x) =






−1 : x < 0

0 : x = 0

1 : x > 0

Thus, τ is defined as:

τ =
nc − nd

1
2n(n− 1)

(4.2)

where nc is the number of concordant pairs, nd is the number of discordant

pairs, and n refers to the total number of points in each data set. The denominator

1
2n(n − 1) gives the total number of pairs, resulting in a range of −1 ≤ τ ≤ 1. If

all the pairs in Y are concordant with the corresponding pairs in X, meaning the

points in Y are in the same order as the points in X, then nc =
1
2n(n−1) and nd = 0

making τ = 1. Similarly, if all the pairs in Y are discordant, meaning the points in

Y are in opposite order compared to the points in X, then nc = 0 and nd =
1
2n(n−1)

making τ = −1.

4.4. STANDARD FIDELITY METRICS 85

4.4 Standard Fidelity Metrics

As stated earlier, fidelity correlates the ordering of the estimated values to the

ordering of the actual values. In this section, the use of Spearman’s ρ and Kendall’s

τ as the basis of fidelity metrics is demonstrated. For the sake of simplicity, the

discussion in this section assumes a typical 2-dimensional design space, where each

design point is associated with a 2-tuple number (Pf,Ar) – Pf and Ar represent

the performance and area values respectively. In such a design space, each actual

design point P a
i has a corresponding estimated design point P e

i . The set of all the

actual design points is referred to as P a while P e refers to the set of estimated

design points. In the discussion here, only performance values are estimated, which

means that the area values of both P a
i and P e

i are the same, that is, actual area

values are used with both actual and estimated performance values. For example,

Table 4.1 shows the actual and estimated performance values for six design points.

The first column shows the actual performance values, while the next three columns

show the estimated performance values obtained from three different estimation

models. The last row shows the average absolute error of all the estimation models.

The average absolute error is calculated by averaging the absolute error for the six

design points, where the absolute error for the first point of estimation model 1 is

20,000−16,380
16,380 × 100 = 22.1%. Furthermore, the actual values are assigned ranks in

increasing order starting from 1 as shown in the parentheses in the first column. The

estimated values are also sorted in increasing order and assigned ranks, which are

shown for the three estimation models in parentheses in columns 2, 3 and 4. These

values will be used as an example to illustrate the computation of the proposed

fidelity metrics.

4.4.1 FMρ

FMρ is equal to Spearman’s ρ explained in Section 4.3.1 where the performance

values of P a form the data set X while the performance values of P e form the Y

86 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

Actual Values Model 1 Model 2 Model 3

16,380 (1) 20,000 (1) 18,800 (5) 8,000 (6)

16,900 (2) 20,600 (2) 16,550 (1) 7,500 (5)

18,100 (3) 21,800 (3) 18,700 (4) 6,800 (4)

18,800 (4) 22,600 (4) 18,650 (3) 6,300 (3)

19,500 (5) 23,000 (5) 18,600 (2) 5,500 (2)

20,100 (6) 24,000 (6) 20,200 (6) 5,000 (1)

Abs. Error (Avg.) 21.33% 4.34% 63.67%

Table 4.1: Comparison of three estimation models.

data set. Since the area value of P a
i and corresponding P e

i is the same, only the

fidelity of the performance estimation model is calculated. The fidelity is calculated

on the given X and Y sets using Equation 4.1. For example, in Table 4.1, for the

estimation model 2, column 1 becomes the X data set while column 3 becomes the Y

data set. Given these X and Y sets,
�

r2i = 28 while n = 6, resulting in FMρ = 0.2.

Since estimation models 1 and 3 provide FMρ = 1 and FMρ = −1 respectively,

estimation model 2 is inferior to both model 1 and 3 with respect to fidelity, even

though the estimation model 2 has the lowest absolute error. It should also be

noted that a negative correlation, as in the case of estimation model 3, could have

easily been overlooked by a designer due to estimation model 3’s unreasonable, high

absolute error. However, a fidelity metric will be able to detect both positive and

negative correlations, leading to better evaluation of estimation models in terms of

fidelity.

FMρ provides a good measure of the fidelity of an estimation model. However,

FMρ does not consider the number of points that have been displaced in Y relative

to X (the number of points whose corresponding ranks are different). Thus, for an

estimation model where more than 90% of the points have a rank difference, but the

difference in each rank is minor, the value of ρ will still be close to 1 due to a large

value in the denominator. This discrepancy is reflected by the use of Kendall’s τ

correlation coefficient.

4.5. WEIGHTED FIDELITY METRICS 87

4.4.2 FMτ

FMτ , as the name suggests, is the adoption of Kendall’s τ , explained in Section 4.3.2,

as the fidelity metric by utilising the performance values of P a and P e to form data

sets X and Y respectively. The fidelity is then calculated on these X and Y sets

using Equation 4.2. For the estimation model 2 in Table 4.1, again the data set X

is obtained from column 1 and the data set Y is obtained from column 3. For these

X and Y sets, nc = 8 and nd = 7, resulting in FMτ = 0.067. This again shows that

the estimation model 2 is inferior to estimation model 1 (FMτ = 1) and model 3

(FMτ = −1).

FMτ inherently takes into account the effect of the number of points that have

been displaced in Y relative to X. An ordering of the estimated performance values

where more than 90% of the points have been displaced, but the displacement for

each point is minuscule, will result in an increased number of discordant pairs and a

decreased number of concordant pairs, affecting the value of FMτ to a larger extent

compared to FMρ. For estimation model 2 in Table 4.1, 5 out of 6 points have been

displaced (except the 6th point), resulting in a lower value for FMτ compared to

FMρ. Usually, Kendall’s τ is lower than Spearman’s ρ [262].

4.5 Weighted Fidelity Metrics

Both FMρ and FMτ are the result of the direct adoption of Spearman’s ρ and

Kendall’s τ as fidelity metrics. However, FMρ assigns the same weight to all the

points with a rank difference, while FMτ assigns the same weight to all the concor-

dant and discordant pairs. When exploring a design space, typically the goal is to

perform multi-objective optimisation which directly translates to finding the Pareto

front or a point lying on the Pareto front of the design space. Intuitively, one can

argue that an estimation model providing more design points that are close to the

Pareto front in the correct order is better than a model providing more correctly-

ordered design points far from the Pareto front. Such effects of Pareto front can

88 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

be considered by assigning a weight to each point based upon its distance from the

Pareto front; that is, a point closer to Pareto front is assigned a weight higher than

the one far from the Pareto front. This also allows the extension of the standard

fidelity metrics (FMρ and FMτ) which measure the fidelity for single-objective ex-

ploration algorithms to target the measurement of fidelity from the multi-objective

algorithms’ perspective.

4.5.1 A Pareto Front based Weight Function

A Pareto front is the set of dominant points from the design space and reflects the

trend of the design space [263]. The calculation of the Pareto front of a design space

is usually referred to as the maximal vector computation problem [263]. There are

numerous ways to obtain the Pareto front of an n-dimensional design space, a survey

of which is provided in [263]. The proposals in this chapter is not limited to any

particular method of finding the Pareto front.

Let us assume the availability of the Pareto front of a typical 2-dimensional

design space, shown in Figure 4.2, where the circles represent the actual design

points, P a
i s, while the squares connected through straight lines show the Pareto

front of the design space. The Euclidean distance of each actual design point is

calculated from all the lines in the Pareto front separately, and the minimum of

all these distances is obtained. For example, in Figure 4.2, the distance of one of

the design points is calculated separately for each of the 22 lines present in the

Pareto front (the Pareto front consists of 23 points), and the minimum of all these

22 distances is obtained, represented as d1 in the figure. Similarly, the distance of

another point, further away from the Pareto front, is marked as d2 in the figure.

In this way, the minimum distance of each P a
i is calculated to be used in a weight

function. However, it should be noted that calculation of the distance as described

above may not be suitable for a weight function if the unit of measurements on both

the axes differ by significant amounts. For example, if the performance is measured

4.5. WEIGHTED FIDELITY METRICS 89

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

600 800 1000 1200

P
e
r
f
o
r
m
a
n
c
e

(
C
l
o
c
k

C
y
c
l
e
s
)

M
i
l
l
i
o
n
s

Area (Gates)
Thousands

d1
d
2

Figure 4.2: Pareto front of an actual design space.

in seconds and the area is measured in gates, then the variations on the y-axis may

be very minute compared to the variations on the x-axis. Thus, the distance of all

the points may be very close to each other, giving almost identical weights to all

the points. To avoid such problems, the x and y values of the distance of each point

are divided by the maximum range of values on x-axis and y-axis respectively. This

normalises the x and y values of the distance to a range of 0 to 1, giving a range of

0 to
√
2 for the distance of each point. One may argue that the set of Pareto points

be curve-fitted and then the distance of each actual point be calculated from the

fitted curve. In such a case, it is possible that the fitted curve may not pass through

all the Pareto points, and thus will not reflect the actual Pareto front of the design

space.

Once the distance of each actual point, P a
i , has been calculated, a weight func-

tion can be used to assign different weights to different points depending on their

calculated distances. The following weight function is used:

90 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

W =
1

1 + s× dk
(4.3)

where s and k are constants, and are used to vary the amount of weight, and

d is the minimum distance of the point from the Pareto front. A point with d =

0, that is a point on the Pareto front, will be given a weight of 1, which is the

maximum possible weight. Points not on the Pareto front are assigned weights less

than 1, decreasing the weights as the points move further away from the Pareto

front. The values of s and k determine the decreasing nature of the weight function,

and determine the suppression applied to points while moving away from the Pareto

front. The author explored different values of s and k and found that s = 1000

and k = 1 provide a reasonable weight function. Thus, all the results presented in

Section 4.9 use

W =
1

1 + 1000d
(4.4)

as the weight function for the calculation of weighted fidelity metrics (explained

later). If required, exploration of s and k can be performed by a designer in order

to choose different values.

4.5.2 WFMρ

The procedure to calculate WFMρ is very similar to the one shown for FMρ. For

WFMρ, first the Pareto front of the design space consisting of actual design points

is obtained (using any of the algorithms from [263]). Once the Pareto front is

available, each actual design point is assigned a weight according to its distance

from the Pareto front (the distance is calculated as explained in Section 4.5.1) using

Equation 4.3. As was the case with FMρ, the performance values in the set of actual

4.5. WEIGHTED FIDELITY METRICS 91

design points, P a, form the data set X, while the performance values of P e form

the data set Y. These X and Y sets are converted into ranks, Xr
i and Y r

i , and then

Equation 4.5 is used to calculate the value of WFMρ:

WFMρ = 1− 2×
�n

i=1Wir2i�n
j=1 Wj(n+ 1− 2j)2

(4.5)

where Wi is the weight of the ith point, ri = (Xr
i −Y r

i), and n is the total number

of points. The denominator gives the weighted sum of the squared rank differences

such that the Y data set is ranked in decreasing order. WFMρ ≤ 1 where a value

of 1 means perfect ordering of Y with respect to X, while a value of -1 means the

points in Y are in opposite order to X. The value of WFMρ can go below -1 in some

cases because normalisation of WFMρ in the range -1 to 1 is very difficult due to

the presence of a product term (Wir2i) in the numerator. As most of the estimation

models are developed intuitively, the value of WFMρ will typically be positive for

any useful model, and Equation 4.5 will suffice for the purpose of measuring fidelity1.

More points in the wrong order closer to the Pareto front will decrease the value of

WFMρ, while more correctly-ordered points closer to the Pareto front will increase

its value. In addition, WFMρ = FMρ when s = 0 in Equation 4.3.

4.5.3 WFMτ

The weighted version of Kendall’s τ , WFMτ , is based on a similar idea to WFMρ.

The Pareto front of the actual design space is obtained and weights assigned to

each actual point using Equation 4.3. Then the performance values of actual design

points form the X data set with the performance values of estimated design points

forming the Y data set. The concordant and discordant pairs are computed in the

same way as as they were computed for FMτ in Section 4.3.2. WFMτ is then

1Note that the fidelity of -1 can be just as good as 1 for the purpose of design space exploration.
However, typical estimation models exhibit positive fidelity.

92 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

calculated as:

WFMτ =

�nc

i=1Wc,i −
�nd

j=1 Wd,j

�n(n−1)
2

k=1 Wk

(4.6)

where Wc,i is the weight of the ith concordant pair, Wd,j is the weight of the jth

discordant pair, and Wk is the weight of the kth pair irrespective of being concordant

or discordant. nc and nd refer to the total number of concordant pairs and discordant

pairs respectively, while n is the total number of points in each data set. A pair is

decided as concordant or discordant based on the two points which make up that

pair. Thus, Wk of a pair is calculated as the minimum of the weights of the points

that make up that pair. Unlike WFMρ, the denominator in Equation 4.6 is the

sum of the weights of all the pairs, resulting in a range of −1 ≤ WFMτ ≤ 1 for

WFMτ . More discordant pairs closer to the Pareto front will reduce the value of

WFMτ , while more concordant pairs closer to Pareto front will increase its value.

In addition, WFMτ = FMτ when s = 0 in Equation 4.3.

Comparing weighted metrics (WFMρ and WFMτ) to the standard ones (FMρ

and FMτ), area values of the actual points in P a (same as the area values of esti-

mated points in P e) are now used to compute the Pareto front of the design space.

The weights assigned to each point depend on the Pareto front, and thus area values

are used indirectly for the calculation of WFMρ and WFMτ , which is not the case

with FMρ and FMτ .

4.6 Generalisation of Fidelity Metrics

Thus far, the assumption has been that the design space under consideration is a

2-dimensional design space. The author further assumed that only the performance

values were estimated in the performance-area design space. Now, the fidelity met-

rics are generalised to n dimensions.

4.7. ANALYSIS OF FIDELITY METRICS 93

There is no limitation on the number of dimensions of the design space for

the calculation of the fidelity metrics. An n-dimensional design space can just be

considered as well. However, this will require the computation of the Pareto front

of an n-dimensional design space for which algorithms exist [263]. In addition, the

range of d in Equation 4.3 will be 0 < d <
√
n for an n-dimensional design space.

Typically, designers use various estimation models for estimating different di-

mensions of their design space. For example, in a typical performance-area design

space, one can use two estimation models to estimate performance and area sepa-

rately. In this case, the fidelity of the performance estimation model and the area

estimation model should be calculated separately. The fidelity of performance esti-

mation model is calculated by considering the performance estimation values with

actual area values for both actual and estimated design points. The fidelity of the

area estimation model is calculated by considering the area estimation values with

actual performance values for both actual and estimated design points. Since the

Pareto front is obtained from the design space consisting of actual design points, it

should be noted that the weight of each actual design point will be the same when

calculating the fidelity metrics for either the performance estimation model or the

area estimation model. As such, only the ranks and the number of concordant and

discordant pairs will change depending on which estimation model’s (area or perfor-

mance) fidelity is being computed. Thus, the fidelity of each estimation model used

in obtaining an n-dimensional design space can be calculated separately. It should

be noted that a design space from any domain can be considered and is not limited

to just performance-energy-area design spaces.

4.7 Analysis of Fidelity Metrics

So far, four fidelity metrics have been introduced: FMρ, WFMρ, FMτ , and WFMτ .

One may wonder which of these metrics a designer should use. The answer to this

question is not simple, and thus some insight is presented here. Since FMρ, WFMρ,

94 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

FMτ , and WFMτ depend on Spearman’s ρ and Kendall’s τ , the discussion on which

one to use translates down to the pros and cons of Spearman’s ρ and Kendall’s τ .

Firstly, let us examine the four fidelity metrics from the perspective of their

interpretations. A detailed survey of operational interpretations of Spearman’s ρ

and Kendall’s τ is presented in [264]. According to [264], the question of which

correlation coefficient to use is unimportant as both Spearman’s ρ and Kendall’s τ

are usually very close and will lead to the same conclusion. However, what is more

important is the intuitive interpretation of these correlation coefficients. Spearman’s

ρ measures the amount of variation as a ratio, which is then scaled, and hence does

not provide any intuitive interpretation. The interpretations of Spearman’s ρ are

very complex, and a summary is provided in [264]. On the other hand, in Kendall’s

τ , the ratio of the number of concordant pairs to the total number of pairs is a

measure of the probability that a given pair will be concordant. Similarly, the ratio

of the number of discordant pairs to the total number of pairs reflects the probability

of a given pair being discordant. Thus, a positive difference between these two

probabilities, as in Kendall’s τ (Section 4.3.2), means that it is more likely to have

a concordant pair than a discordant pair. Likewise, a negative difference means a

better chance of having a discordant pair than a concordant pair. Thus, Kendall’s

τ is more intuitive in terms of its interpretation. Therefore, if an insight is required

in terms of the probabilistic interpretation of the fidelity values, then Kendall’s τ

based fidelity metrics (FMτ and WFMτ) should be used.

When it comes to the comparison of weighted metrics (WFMρ and WFMτ) to

the standard ones (FMρ and FMτ), it is intuitive to use weighted metrics. This is

because comparison of the values of weighted metrics with the values of standard

ones will provide an insight on whether more wrongly-ordered or correctly-ordered

design points are closer to the Pareto front. For example, a lower value of WFMρ

(or WFMτ) with respect to FMρ (or FMτ) suggests that there are more wrongly-

ordered design points close to the Pareto front, leading to the fact that the chances

of misguidance of exploration algorithms in the vicinity of Pareto front are high. On

4.8. APPLICATION OF FIDELITY METRICS 95

Fidelity Metric Complexity

FMρ O(nlogn)

WFMρ* O(n2)

FMτ O(n2)

WFMτ* O(n2)

Table 4.2: Complexity of computing the fidelity metrics (∗excluding the complexity
to compute the Pareto front).

the other hand, a higher value of WFMρ (or WFMτ) with respect to FMρ (or FMτ) is

considered beneficial as it suggests presence of more correctly-ordered design points

in the vicinity of the Pareto front.

Now, let us look at the complexity of computing the four fidelity metrics. For

FMρ and WFMρ, the design points are assigned ranks, which is done by sorting the

design points’ values. Here, the author assumes that an O(nlogn) sorting algorithm

is used. After sorting, the difference in rank is calculated for each design point, which

has a complexity of O(n). Thus, the complexity of computing FMρ is O(nlogn).

For WFMρ, the complexity of computing the Pareto front depends on the algorithm

used [263], and hence is not considered here. Once the Pareto front is available, the

minimum distance d of each point from the Pareto front is calculated, which can

be computed in O(n2). Therefore, the complexity of computing WFMρ is O(n2). A

similar analysis reveals a complexity of O(n2) for both FMτ and WFMτ because the

complexity of analysing all the combinations of n design points, that is n(n−1)
2 , to

compute the number of concordant and discordant pairs is O(n2). These findings are

summarised in Table 4.2 and suggests that one may opt to use FMρ as the fidelity

metric due to its lower computational complexity.

4.8 Application of Fidelity Metrics

From the above discussion, one can conclude that both FMτ and WFMτ should be

used as fidelity metrics due to the added advantage of their intuitive probabilistic

96 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

interpretations. However, FMρ offers lower computational complexity compared to

FMτ , which leads to a trade-off between Spearman’s ρ and Kendall’s τ based fidelity

metrics. The aim of this chapter was to propose possible fidelity metrics that can

be used to measure the fidelity of an estimation model and gain an insight, rather

than comparing the proposed metrics to decide on the best one. It should also be

noted that the fidelity metrics are not proposed as a replacement to measuring the

absolute accuracy of an estimation model.

Design space exploration can be categorised into two cases: firstly, the min-

imisation of an objective function with absolute constraint(s); and secondly, the

minimisation of an objective function without any absolute constraint(s). Consider

a typical performance-area design space where both performance and area values are

estimated. An example of the first case can be the area minimisation of a SoC given

its execution time is less than 1ms, while the minimisation of just the area of an

SoC without any constraints on its execution time is an example of the second case.

In the first case, where an absolute constraint (execution time less than 1ms) is part

of the design space exploration, absolute accuracy of the performance estimation

model must also be considered in addition to its fidelity for proper guidance of the

exploration algorithms, where a performance estimation model with high absolute

accuracy and high fidelity will be the best choice. Furthermore, a high fidelity area

estimation model will just be sufficient, as there is no absolute constraint enforced

on the area of the SoC. In the second case, an area estimation model with just high

fidelity is acceptable, as high fidelity model is necessary for proper guidance of the

design space exploration algorithms. Thus, the designer does not need to improve

the area estimation model’s absolute accuracy. In addition, the performance esti-

mation model does not affect design space exploration as it is not part of either the

objective function or the absolute constraint(s). From this discussion, in the first

case, it is important to measure the fidelity of both the area estimation model and

the performance estimation model, in addition to only the absolute accuracy of the

performance estimation model. On the other hand, in the second case, measuring

4.9. EXPERIMENTAL EVALUATION 97

only the fidelity of the area estimation model is necessary. Thus, in both cases,

measurement of fidelity of an estimation model is essential, with absolute accuracy

only helping in the first case, necessitating the provision of fidelity metrics.

4.9 Experimental Evaluation

To evaluate the proposed fidelity metrics, two estimation models are chosen: a single

processor performance estimation model and a multiprocessor performance estima-

tion model. The details of these estimation models are in Chapter 5, Sections 5.1

and 5.2; however, they will be referred to as SP (Single Processor) and MP (Multi-

Processor) estimation models here. 2-dimensional, performance-area design spaces

are created where the performance values are estimated using SP and MP models,

without any estimation of area footprint. This means that the actual area values

are used for both actual and estimated design points. As stated in Section 4.5.1,

W = 1
1+1000d is used as the weight function for the calculation ofWFMρ andWFMτ .

Table 4.3 reports the fidelity metrics for the SP model when JPEG encoder and

decoder applications are executed on differing configurations of sixteen processors.

The second and third columns report the average and maximum absolute errors,

which are computed by comparing the estimated performance (calculated using the

SP model) with the actual performance (obtained using cycle-accurate simulation)

of all the configurations of a processor. For example, the SP model has an average

absolute error of 0.15% with a maximum absolute error of 0.50% across all the

configurations of P2 (row 3). The values of fidelity metrics are reported in columns

4 – 7. All the fidelity metrics (FMρ, WFMρ, FMτ and WFMτ) are above 0.80

among all the sixteen processors. It is interesting to note that P6, with a maximum

absolute error of only 3.17%, has the lowest fidelity (FMτ = 0.828) amongst all

the processors. On the other hand, P15 has the worst maximum absolute error of

17.07% amongst all the processors, yet its fidelity is better than P6. Thus, it can

be concluded that lower absolute errors does not necessarily mean better fidelity,

98 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

Processor Avg.(%) Max.(%) FMρ WFMρ FMτ WFMτ

P1 1.19 2.94 0.979 0.991 0.896 0.928

P2 0.15 0.50 1.000 1.000 1.000 1.000

P3 1.38 15.65 0.988 0.991 0.906 0.912

P4 2.45 2.56 0.995 0.993 0.874 0.882

P5 0.37 1.74 0.999 0.999 0.990 0.989

P6 0.72 3.17 0.954 0.990 0.828 0.922

P7 1.40 3.11 0.985 0.994 0.913 0.946

P8 0.16 0.96 1.000 1.000 1.000 1.000

P9 1.32 4.36 0.989 0.978 0.882 0.903

P10 1.29 8.66 0.979 0.992 0.926 0.945

P11 0.36 1.41 0.991 0.998 0.928 0.974

P12 6.65 13.92 0.983 0.991 0.901 0.920

P13 7.02 15.37 0.970 0.993 0.867 0.909

P14 7.41 16.10 0.984 0.955 0.893 0.893

P15 8.21 17.07 0.978 0.974 0.886 0.884

P16 1.37 4.71 0.994 0.995 0.941 0.942

Table 4.3: Fidelity metrics for SP estimation model.

illustrating the significance of measuring the fidelity of estimation models. Another

interesting result is the value of 1 for all the fidelity metrics for P2 and P8. Thus, for

P2 and P8, the exploration algorithms will find the same global minima or maxima as

from actual performance values. For some processors, for example P14, the values of

weighted metrics are lower than the standard ones, suggesting that wrongly-ordered

points are closer to the Pareto front than the correctly-ordered points. For other

processors, for example P6, comparison of WFMτ = 0.922 to FMτ = 0.828 suggests

that more correctly-ordered points are closer to the Pareto front, and thus the SP

model will allow an exploration algorithm to make better choices in the vicinity

of the Pareto front. Using the proposed fidelity metrics, designers can observe the

usefulness of their estimation models in terms of how well the exploration algorithms

will be guided by those models.

4.9. EXPERIMENTAL EVALUATION 99

The second set of experiments involved the MP model and the results are re-

ported in Figure 4.3. Here, the JPEG encoder and decoder applications were ex-

ecuted on three pipelined MPSoCs. In addition, the MP model has two variants,

named MP1 and MP2. The major columns in the table report absolute accuracy

and fidelity for the MP1 and MP2 models (in the two sub-columns respectively).

A graphical comparison of the absolute accuracy and fidelity of the MP1 and

MP2 models is illustrated in Figure 4.3, where the results for the three systems are

separated by dotted, vertical lines and are marked S1, S2 and S3. For the MP2

model, in the worst case, the absolute error has increased to 13.21% from 5.91%

(of the MP1 model), which is reported in Figure 4.3(a). The worst fidelity of the

MP2 model for S1, S2 and S3 is 0.881, 0.833 and 0.893 respectively compared to

0.93, 0.996 and 0.991 of the MP1 model, as reported in Figure 4.3(b). These results

indicate that the MP2 model is not as good as the MP1 model. However, this is a

subjective issue and the selection of an estimation model based on a fidelity threshold

is left to designer. Thus, one may choose 0.85 as the fidelity threshold, opting not to

use the MP2 model or to further improve it. Therefore, the proposed fidelity metrics

can be used by designers to compare differing estimation models in terms of fidelity,

and choose the one best suited to their design space exploration. It is interesting to

note that S3, which has the worst average and maximum absolute errors, strikingly

exhibited the best fidelity among the three systems (row 3 compared to row 1 and

2 in the table of Figure 4.3). It should also be noted that all the weighted metrics

are above 0.843 suggesting that the estimated values from MP2 model are better

ordered closer to the Pareto front. This illustrates another use of the proposed

fidelity metrics as designers can gain insight into the efficacy of estimation models

closer to the Pareto front of a design space.

100 CHAPTER 4. FIDELITY METRICS FOR ESTIMATION MODELS

S
y
stem

A
v
g
.
E
rro

r
(%

)
M

a
x
.
E
rro

r
(%

)
F
M

ρ
W

F
M

ρ
F
M

τ
W

F
M

τ

M
P
1

M
P
2

M
P
1

M
P
2

M
P
1

M
P
2

M
P
1

M
P
2

M
P
1

M
P
2

M
P
1

M
P
2

S
1

2.28
5.00

5.91
9.11

0.992
0.958

0.996
0.977

0.930
0.843

0.948
0.881

S
2

0.69
5.91

2.16
11.41

1.000
0.941

1.000
0.973

0.996
0.833

0.996
0.843

S
3

0.21
5.08

1.29
13.21

1.000
0.987

1.000
0.991

0.992
0.916

0.991
0.893

0 2 4 6 8

1
0

1
2

1
4

MP1

MP2

MP1

MP2

MP1

MP2

Percentage

A
v
g
.

E
r
r
o
r

M
a
x
.

E
r
r
o
r

S
1

S
2

S
3

(a)

0
.
8

0
.
8
5

0
.
9

0
.
9
5 1

MP1

MP2

MP1

MP2

MP1

MP2

F
M
ρ

W
F
M
ρ

F
M
τ

W
F
M
τ

S
1

S
2

S
3

(b
)

F
igu

re
4.3:

C
om

p
arison

of
(a)

A
b
solu

te
accu

racy
(b
)
F
id
elity

of
M
P
1
an

d
M
P
2
estim

ation
m
od

els.

4.10. SUMMARY 101

4.10 Summary

In this chapter, it is shown that fidelity (defined as correlation between the ordering

of actual and estimated design points) of an estimation model is important especially

from the perspective of design space exploration algorithms. Four fidelity metrics

were proposed, based on Spearman’s rank correlation coefficient and Kendall’s tau

correlation coefficient, to measure the fidelity of estimation models. These fidelity

metrics can help designers to compare estimation models and gain an insight into

their efficacy closer to the Pareto front of a design space. The author will use one of

these metrics to measure fidelity of the analytical models of the pipelined MPSoC

proposed in the next chapter.

Chapter 5

Performance Estimation of

Pipelined MPSoCs

Estimation through analytical models enables quick evaluation of design points and

hence speeds up the design space exploration process. It is particularly so in the

design of MPSoCs where large design spaces arise from the presence of various archi-

tectural parameters such as processor types, cache sizes and hardware accelerators.

This chapter focuses on analytical models and estimation methods for three perfor-

mance metrics – execution time, latency and throughput – of pipelined MPSoCs to

speed up their design space exploration process. The variants in the pipelined MP-

SoC are the processor configurations resulting from customizable options – custom

instructions and cache sizes. The selection of a combination of processor configura-

tions – pipelined MPSoC’s design point – is done during design space exploration

through the evaluation of the design points’ performance metrics, which are typi-

cally obtained through full-system, cycle-accurate simulations. Since there can be

billions of design points, a simulation only methodology is not feasible.

The analytical models proposed in this chapter use latencies of individual pro-

cessor configurations to estimate the performance of a pipelined MPSoC’s design

point, and hence avoid the use of slow, full-system, cycle-accurate simulations for

103

104 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

all the design points. The analytical models are further augmented with two es-

timation methods – PS and PSP – to gather latencies of processor configurations

with minimal number of simulations. The PS method simulates all the processor

configurations once. On the other hand, the PSP method simulates a subset of pro-

cessor configurations and then uses an analytical model of the processor to estimate

latencies of processor configurations.

Prior research on pipelined MPSoCs’ performance estimation used full-system,

cycle-accurate simulations and an analytical model for only the execution time of

the pipelined MPSoC [91,93,149,193]. The works in [91,93] proposed less accurate

models (see Section 5.4.4), while [149, 193] did not evaluate the accuracy of their

models. In contrast, this chapter introduces analytical models for three performance

metrics – execution time, latency and throughput – and evaluates their absolute

accuracy and fidelity. Furthermore, two estimation methods are proposed to reduce

the number of full-system, cycle-accurate simulations of the pipelined MPSoC.

Performance estimation of processors is typically done either through processor

simulation or processor modelling. In the simulation domain, cycle-accurate simu-

lators such as Xtensa Instruction Set Simulator (ISS) [25], PTLSim [265], RealView

ARMulator ISS [266], etc. are available for various architectures. However, such sim-

ulators are slow and produce large amounts of output, and hence are not suitable

for exploration of billions of design points. Processor modelling involves analytical

models to capture a processor’s micro-architecture and cache hierarchy timing to es-

timate the execution time of the application executing on it. Analytical models are

less expensive to run compared to cycle-accurate simulators; however, they trade-off

simulation speed with accuracy. The authors of [267] proposed a MonteCarlo based

model for predicting the performance of Itanium-2 processor. The model broke down

the execution time of a processor in net time to execute instructions and the stalls

due to data dependencies and cache misses.

Processor configurations typically differ by the additional custom instructions

and special hardware units (Instruction Set Architecture (ISA)), and the size, line

105

size and associativity of instruction and data caches (cache configuration). A pro-

cessor configuration is then a combination of an ISA and a cache configuration. Typ-

ically, there are far more cache configurations than the ISAs [91, 92]. Trace-based

cache simulation [268–270] is an attractive alternative to cycle-accurate simulation

of all the processor configurations. Trace-based cache simulation captures cache hit

and miss statistics of all the cache configurations which are then used with an ana-

lytical model to estimate a processor configuration’s execution time. Although a fast

method, cache statistics do not contain sufficient timing information for absolutely

accurate estimation. Singleton et al. [271] exploited cache statistics to estimate the

execution time of the tasks executing on a processor. These estimated values were

used in Dynamic Voltage and Frequency Scaling (DVFS) techniques to reduce the

energy consumption of the processor. In contrast, the author uses cache statistics

to estimate the latencies of sub-kernels on different processor configurations in a

pipelined MPSoC.

Lee et al. [272] and Joseph et al. [273] proposed a linear regression based model

using a wide range of predictors to estimate the execution time and power con-

sumption of a processor. The authors of [274] modeled an out-of-order superscalar

processor at a very detailed micro-architectural level by considering the effects on the

Clock cycle Per Instruction (CPI) of the ISA, branch miss-prediction, the commit

and reorder buffer, and instruction and data cache misses. The works in [272–274]

are orthogonal to the author’s processor analytical model proposed in this chapter,

thus their proposals can be used to further refine and improve the proposed model at

the cost of more complex analysis of the processor micro-architecture. The proces-

sor analytical model proposed in this chapter is targeted at maximally reducing the

number of simulations due to cache configurations for a given ISA. Hence, the aim

is to gather latencies of processor configurations with reasonable accuracy without

the need for a complex, highly accurate model that will slow down the exploration

of billions of design points.

106 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

5.1 Pipelined MPSoC’s Analytical Models

The execution time of a pipelined MPSoC is defined as the total time taken by

the multimedia application to process all the input data units. The latency of a

pipelined MPSoC is the time taken to process one data unit during the steady state,

which equals the time interval between the reading of the data unit by the first

stage and the corresponding output by the last stage. Throughput of a pipelined

MPSoC, on the other hand, is the number of data units produced per unit time

by the last stage during steady state. The notion of “steady state” of a pipelined

MPSoC excludes the time required to fill the pipelined MPSoC, that is, the time

until the first output of the pipelined MPSoC.

Figure 5.1(a) shows a pipelined MPSoC with three stages, where each stage con-

tains one processor. Each processor is annotated with a 3-tuple number, depicting

the number of iterations of the sub-kernel executing on it, the computation latency

of each iteration, and the number of words transferred in each iteration. For exam-

ple, (7, 250, 64) means the sub-kernel is executed seven times, while computation

latency of each iteration is 250 clock cycles and 64 words are transferred in each

iteration. Since the last processor is writing out to file, 0 words will be transferred.

Consider that there are no stalls between the processors, and a word transfer takes a

single clock cycle, then the latency of the first processor for each iteration will be 250

+ 64 = 314 clock cycles. Likewise, the latency of the second and third processors

will be 878 and 564 clock cycles respectively, which are marked in Figure 5.1(a).

A processor is considered critical in a pipelined MPSoC if its latency is the

maximum from amongst all the processors. In the running example, processor 2 is

the critical processor and will be the bottleneck of the system. Here, the author

assumes that the intermediate FIFO buffers are able to accommodate the output of

at least one iteration. For example, 64 words are transferred between processor 1

and 2, and thus the size of the FIFO buffer should be at least 64 words. Otherwise,

processor 2 (which is the critical processor) will be stalled due to the limited data

5.1. PIPELINED MPSOC’S ANALYTICAL MODELS 107

!
"

!
#

!
$

%
&
'
(#
)
*
'
(
+
,
-%
&
'
(&
)
*
'
(
+
,
-

%
&
'
()
*
*
'
(
*
-

.
&
.

$
"
,

)
+
,

R
a
is
in
g

t
h
e

f
ig
u
r
e

(a
)

!

!
"

!
#

!
$

"

"

"

#
$

%

&
$
"
%

"
"
'
#

"
(
)
!

#
!
$
%

$
)
"
#

%
$
'
&

)

)

!
(

(

(
&
#
%

!
"
%
!

)
#
!
*

#
%

"
"
'
#

(

#
&
(
&

#
'
%
*

$
*
#
!

$

%
!

)
$

#

T

=

1
/
8
7
8

L

=

3

x

8
7
8

+

5
6
4

=

3
,
1
9
8

E
=

3
1
4

+

8
7
8

+

5
6
4

+

(
7
-
1
)
x

8
7
8

=

7
,
0
2
4

(b
)

F
ig
u
re

5.
1:

E
xe
cu
ti
on

of
a
p
ip
el
in
ed

M
P
S
oC

.

108 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

space in the FIFO buffer. The critical processor should not be stalled due to non-

critical processors because such stalling will compromise the performance of the

pipelined MPSoC. Thus, the author believes that it is reasonable to assume the

availability of sufficiently-sized FIFO buffers, and hence, in the rest of the article, it

is assumed that each FIFO buffer is able to accommodate the output of one iteration.

Figure 5.1(b) illustrates the execution of the pipelined MPSoC shown in Fig-

ure 5.1(a) for 7 iterations. The first iteration of each processor corresponds to the

filling of the pipeline. In this example, output from the first iteration of processor

1 will be available after 314 clock cycles, followed by the first output of the second

processor at 1,192 clock cycles. While processor 2 is in its first iteration, processor

1 can finish its second and third iterations. However, the output of the first pro-

cessor’s third iteration cannot be written to the FIFO buffer, because the buffer is

still holding the output of the second iteration. Thus, the first processor is stalled

until the second processor reads from the FIFO buffer (until 1,192 clock cycles),

which is marked with a red-coloured, unnumbered rectangle in Figure 5.1(b). At

1,192 clock cycles, processor 3 starts its first iteration, and the first output from the

pipelined MPSoC is available at 1,756 clock cycles. At the same time as the start of

processor 3’s first iteration, that is, at 1,192 clock cycles, processor 2 will start its

second iteration, emptying the FIFO buffer between processor 1 and 2. Thus, the

first processor will start its fourth iteration after the third iteration writes output

to the FIFO buffer, delaying the execution of the fourth iteration slightly. For the

sake of simplicity, such delays are ignored in Figure 5.1(b). After the first output

from the pipelined MPSoC at 1,756 clock cycles, the third processor waits for pro-

cessor 2’s second iteration’s output. Thus, after the first output from the pipelined

MPSoC which corresponds to the filling of the pipeline, subsequent outputs are

available every 878 clock cycles which is the critical processor’s latency (processor

2). Following this line of reasoning, second and third outputs from the pipelined

MPSoC will be available at 1,756 + 878 = 2,634 and 2,634 + 878 = 3,512 clock

cycles respectively, as marked in Figure 5.1(b). From this observation, the execution

5.1. PIPELINED MPSOC’S ANALYTICAL MODELS 109

time of the pipelined MPSoC will be 1,756 + (7-1) × 878 = 7,024 clock cycles. This

concept can be generalised as follows to estimate the execution time of a pipelined

MPSoC:

E = I(s1) +
M�

i=1

L1(si) + (I− 1)× L(sc) + F(sM)

where,

• I: Returns the time spent in the initial non-kernel operations of a stage, that

is, the time spent until the start of the kernel operation.

• F: Returns the time spent in the final non-kernel operations of a stage, that

is, the time spent after the end of the kernel operation.

• L1: Returns the latency of the first iteration of a stage.

• L: Returns the latency of a stage that is averaged over all the iterations except

the first one. Note that in a stage with more than one processor, the maximum

latency from amongst all the processors in that stage is returned. The I, F and

L1 functions described above handle stages with multiple processors similar to

the L function.

• si and sc: The i-th and the critical stage of the pipelined MPSoC respectively.

• I: The number of iterations of the pipelined MPSoC.

• M: The total number of stages in the pipelined MPSoC.

The above model considers the following factors which contribute to the execu-

tion time of a pipelined MPSoC:

• Initialisation time of the first stage – I(s1);

• Time to fill the empty pipeline (time to enter steady state) –
�M

i=1 L1(si);

110 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

• Time spent by the critical stage in steady state – (I− 1)× L(sc); and,

• Finalisation time of the last stage – F(sM).

The reason for using L1 instead of L for the time to enter steady state is that there

will be more cache misses in the first iteration compared to the second one due to

cold cache start.

The throughput of a pipelined MPSoC depends on the latency of the critical

processor. More formally,

T =
1

L(sc)

In the running example, T = 1/878 data units/clock cycle, which is also marked in

Figure 5.1(b).

The calculation of latency of a pipelined MPSoC is not as simple as the cal-

culation of throughput. In the running example, the pipelined MPSoC enters into

the steady state when the first processor starts its fourth iteration, as each proces-

sor’s execution sequence repeats itself afterwards. For example, the first processor

starts its iteration which is then followed by a stall period, similar to the third

processor’s execution sequence, though with different latencies and stalling periods.

In the steady state, three factors contribute to the latency of a pipelined MPSoC.

Firstly, the number of clock cycles spent in a processor’s execution sequence, which

includes execution of one iteration and the following stall period, becomes equal

to the latency of the critical processor if that processor appears before the critical

processor in the pipelined MPSoC. For example, iteration 4 of processor 1 and the

corresponding stall period overlaps with the second iteration of processor 2, taking

the same number of clock cycles as the critical processor’s latency. Thus, given

this first observation, it will take 878 + 878 = 1,756 clock cycles for a data unit to

appear at the output of processor 2. In general terms, it will take ic × L(sc) clock

cycles where ic is the index of the critical stage, starting from 1. The second factor

which contributes to the latency of a pipelined MPSoC depends on the number of

5.1. PIPELINED MPSOC’S ANALYTICAL MODELS 111

FIFO buffers present in the pipelined MPSoC on the critical path, that is, between

the first and the critical processor. This is because processors appearing before the

critical one can start their iterations earlier and hence will be processing data units

further in the data stream compared to the critical processor. For example, the

fourth iteration of processor 1 starts at the same time as the second iteration of pro-

cessor 2, which means that the fourth data unit cannot be processed by processor

2 until the second and third data units are cleared. Since it is assumed that the

FIFO buffers can accommodate the output of one iteration, the delay introduced

due to the early start of the first processor is equal to the number of FIFO buffers

present between the first and critical processors, multiplied by the critical latency.

For example, there is one buffer between the first and second processors, meaning

that there will be a delay of one extra iteration of the critical processor for a data

unit to reach the critical processor, after being processed by the first processor. This

is also illustrated in Figure 5.1(b), where the output of the fourth iteration of pro-

cessor 1 waits for the third iteration of processor 2, adding 878 clock cycles to the

latency of the pipelined MPSoC. Thus, using the first and second observations, it

will take 1,756 + 878 = 2,634 clock cycles for a data unit to appear at the output of

processor 2. In general terms, according to the first and second observations, it will

take ic ×L(sc) + (ic − 1)×L(sc) = (2× ic − 1)×L(sc) clock cycles, as there will be

ic − 1 FIFO buffers present between the critical processor and the first processor1.

Once the latency of a data unit to appear at the output of the critical processor is

estimated, the rest of the time is contributed by all the processors appearing after

the critical processor, being the third factor. For example, the output of the fourth

iteration of processor 2 is available at 3,826 clock cycles from the start time, and is

then processed by the third processor to produce the fourth output at 4,390 clock

cycles, where the latency of the fourth data unit will be 4,390 - 1,192 = 3 × 878 +

1Note that in real-time, the input data to first processor will be available at the rate equal to
throughput of the pipelined MPSoC. In such a scenario, number of FIFO buffers between the first
processor and critical processor will not affect the latency of the pipelined MPSoC because the
input data will not be available to the first processor in advance. Hence, the second factor will not
contribute to the latency of a real-time pipelined MPSoC.

112 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

564 = 3,198 clock cycles. To summarize, the latency of a pipelined MPSoC can be

estimated as follows:

L = (2× ic − 1)× L(sc) +
M�

i=ic+1

L(si)

The timing analysis presented here ignored the variations in performance that

may occur due to the reading and writing of a FIFO buffer simultaneously, since

such variations are small in practice. A more accurate analysis could have been con-

ducted, but would have further complicated the execution time and latency models

with little additional benefit. Note that these analytical models are applicable to

pipelined MPSoCs that implement applications with backward edges given those

edges fulfil the dependency distance condition. As such, the processors will not

wait unnecessarily and pipelined execution will continue normally, and hence no

additional factors need to be considered in the analytical models.

The latency and throughput of multimedia applications can be estimated by

representing the applications as Synchronous Data Flow (SDF) graphs. Since SDFs

allow generic backward edges, Maximum Cycle Mean (MCM), Max-Plus algebra and

state-space exploration based techniques are used to compute latency and through-

put [275]. These techniques are slow [276] and are not feasible when billions of

design points of a pipelined MPSoC need to be evaluated. Unlike SDFs, in this

chapter, the application model is restricted by the dependency distance condition

for backward edges, yet allowing enough flexibility for modelling of real-world mul-

timedia applications. Exploitation of the dependency distance condition results in

analytical models of the pipelined MPSoC that are linear equations in latencies of

processors, and thus avoids the computation of maximum cycles and state-space

exploration, making them suitable for rapid exploration of large design spaces. The

author does not know any work that reports exploration of billions of design points

for a multimedia application using SDFs.

5.2. ESTIMATION METHODS 113

5.2 Estimation Methods

The execution time, latency and throughput of a pipelined MPSoC’s design point

can be estimated using the analytical models, if the latencies of those particular

processor configurations are known. Hence, there is no need for full-system, cycle-

accurate simulations of all the design points because the latencies of individual

processor configurations can be captured. In this section, two methods are proposed

to estimate the latencies of individual processor configurations with minimal number

of simulations.

5.2.1 PS Method (Pipelined MPSoC Simulation)

In the simulation of a pipelined MPSoC with sufficiently sized FIFO buffers, the

stalls of non-critical processors are hidden in the latency of the critical processor

(see Figure 5.1(b)). This observation leads to the fact that simulation of a pipelined

MPSoC with one combination of processor configurations can be used to record

Pipelined MPSoC’s

Simulation

P1’s

Configuration

P2’s

Configuration

P3’s

Configuration

1 1 1 1

2 2 2 2

!

!

!

!

9 9 9 9

10 10 10 10

11 10 11 11

!

!

!

!

20 10 20 15

 Figure 5.2: An example of PS method where the three processors of pipelined MP-
SoC in Figure 5.1(a) have 10, 20 and 15 configurations respectively.

114 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

the net computation and net communication latencies of individual processor con-

figurations used in that particular simulation. Hence, in PS method, a pipelined

MPSoC is simulated with the first available configuration of each processor. Then,

the next available configuration of each processor is used. Figure 5.2 illustrates the

PS method for the pipelined MPSoC of Figure 5.1(a) where the three processors

have 10, 20 and 15 configurations respectively. The PS method allows simulation of

each processor configuration at least once and hence captures the net computation

and communication latencies of all the processor configurations. For the running

example, 20 simulations will be required which is equal to the maximum number of

processor configurations from amongst all the processors in the pipelined MPSoC.

Note that a naive method will simulate all the possible combinations of processor

configurations, that is, 10 × 20 × 15 = 3,000 simulations. Once the latencies of

processor configurations are available, the analytical models of the pipelined MPSoC

are used to estimate the performance of any of its design point (any combination of

processor configurations).

5.2.2 PSP Method (Pipelined MPSoC Simulation and Pro-

cessor Analytical Model)

Although the PS method dramatically reduces the number of simulations, it will

be slow when one of the processors in the pipelined MPSoC has hundreds of con-

figurations which is the typical case (see Section 5.3). The author exploits the fact

that a processor configuration is a combination of an ISA and a cache configura-

tion. Hence, in the PSP method, a subset of processor configurations (instead of all

the processor configurations) is simulated to gather architectural parameters of the

ISAs and cache statistics (cache hit and miss counts) to build a processor analyti-

cal model, which is then used to estimate the latencies of the rest of the processor

configurations. Since the ISAs are far less than the cache configurations, only a

5.2. ESTIMATION METHODS 115

small subset of processor configurations need to be simulated to capture ISAs’ ar-

chitectural parameters. Note that the processor analytical model proposed here

shares fundamental concepts with [267,271–274]; however, those concepts have been

extended to estimate latencies of processor configurations in a pipelined MPSoC.

The execution time, te, of a sub-kernel on a processor can be broken down into

two parts: the time to fetch the instructions and data, tf ; and the net time to

execute the fetched instructions, tne. The fetching time of instructions and data

depends on the memory hierarchy of the processor. The time to execute the fetched

instructions depends on the underlying micro-architecture, data dependencies and

the total number of instructions in the program. A typical processor with classical

5-stage pipeline, in-order issue, separate L1 instruction and data caches, and a

single memory for both instructions and data (local memory of each processor in

the pipelined MPSoC) is assumed. A write-through cache policy is also assumed.

The following terminology is introduced to explain the processor analytical model:

• LIH : Instruction cache hit latency.

• LIM : Instruction memory read latency.

• LDMR: Data memory read latency. Since instructions and data are in the

same memory, LIM = LDMR.

• LDMW : Data memory write latency.

• CIH : Instruction cache hit count.

• CIM : Instruction cache miss count.

• CDMR: Data cache read miss count.

• CDMW : Data cache write miss count.

• NI : Total number of instructions.

116 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

The following analytical model estimates the latency of a sub-kernel on a pro-

cessor:

te = tf + tne

= LIH × CIH + (1 + LIM)× CIM

+(1 + LDMR)× CDMR + (1 + LDMW)× CDMW

+NCPI×NI

The first four factors provide an estimate of the memory fetch time for both

instructions and data. In a typical 5-stage pipeline of a processor, instructions

are fetched in stage 1 (Instruction Fetch stage) while data fetches are processed

in stage 4 (Memory stage), thereby overlapping instruction and data fetches. The

two factors – (1 + LIM) × CIM and LIH × CIH – account for instruction fetches in

case of both instruction cache hits and misses. The instruction cache miss latency,

LIM , is incremented by one to account for the clock cycle needed to check whether

cache access was a hit or a miss. The data hits are ignored because they will be

overlapped with the instruction hits or misses due to the pipeline in the processor.

However, data misses may not be perfectly overlapped with instruction hits and

misses, and hence are taken into consideration. To make the model more accurate,

read and write data misses are included separately – (1 + LDMR) × CDMR and

(1 + LDMW)× CDMW .

Once the time for instructions and data fetches is estimated, the rest of the time

is due to the execution of the fetched instructions. The last factor estimates the net

execution time by multiplying the Net Clock cycles Per Instruction (NCPI) with

the total number of instructions. Note that the NCPI is not the actual CPI of the

processor; the last factor estimates the net time to execute the instructions once they

have been fetched with their corresponding data. Hence, the NCPI captures various

micro-architectural events such as the overlapping of data misses with instruction

hits and misses, and stalls due to the data dependencies. The value of NCPI remains

5.2. ESTIMATION METHODS 117

fairly constant across different cache configurations of a given ISA executing a given

sub-kernel because the effect of cache configurations is taken into account by the

cache statistics (instruction and data caches’ hit and miss counts). The fluctuations

in the value of NCPI across the same ISA but with different cache configurations

are due to overlapped fetches of instructions and data, and stalls resulting from the

data dependencies. To accurately model such micro-architectural events, one needs

to perform cycle-accurate simulation or use data-flow analysis techniques. Such

events are condensed into the NCPI parameter to keep the processor analytical

model simple (though the model has illustrated reasonable absolute accuracy and

fidelity, see Section 5.4).

To find the value of NCPI, the analytical model is rearranged as:

NCPI =
te − tf
NI

The author proposes to run cycle-accurate simulations of a few processor configura-

tions (explained later in this section) that contain the same ISA but different cache

configurations to record both the actual latencies and cache statistics. Using the

recorded values, the average NCPI value of that particular ISA is calculated. The

average NCPI value is then used to estimate the latencies of the same ISA with the

rest of the cache configurations using cache statistics of those configurations. Cache

statistics are captured using trace-based cache simulators [268–270] which are much

faster than full-system, cycle-accurate simulators.

The choice of cache configurations that need to be simulated for an ISA will affect

the accuracy of the analytical model. In this chapter, identical instruction and data

caches starting from the first cache configuration until the last one are simulated.

Such a policy captures the effects of all the individual instruction and data cache

configurations and is based on the analysis presented in [272] where the authors

empirically show that an application’s performance on baseline configurations is

the most significant predictor of its performance on other configurations. Consider

118 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

that a processor has one ISA, and its instruction and data cache sizes are changed

from 1 KB to 32 KB, then there will be 1 × 6 × 6 = 36 processor configurations.

The author simulates the ISA with both 1 KB instruction and data caches, 2 KB

instruction and data caches and so on until 32 KB instruction and data caches,

resulting in simulations of only 6 processor configurations. The values recorded

from these 6 simulations are used to compute the average NCPI for the ISA. The

latencies of this ISA and the rest of the 30 cache configurations (rest of the 30

processor configurations) are then estimated by utilising the average NCPI value

and the cache statistics of those 30 configurations (obtained from a trace-based

cache simulator) in the analytical model. In case of more than one ISA for the

processor, a similar process is applied to other ISAs.

Unlike the PS method where all the 36 processor configurations are simulated,

the PSP method simulates only 6 processor configurations, which further reduces

the number of cycle-accurate simulations. Note that the PSP method will be less

accurate compared to the PS method as it uses a processor analytical model to

estimate the latencies of the processor configurations instead of relying on pure cycle-

accurate simulations. Once the latencies of processor configurations are available,

the analytical models of the pipelined MPSoC are used to estimate the performance

of any of its design point (any combination of processor configurations).

5.3 Experimental Methodology

Five pipelined MPSoCs were created for the multimedia applications of Figure 3.1

using a commercial design environment from Tensilica. The Xtensa LX2 [25] proces-

sor provides an Application Specific Instruction set Processor (ASIP) platform for

creation of processor configurations, and comes with Xtensa RB-2007.1 toolset that

includes a C/C++ compiler, an Instruction Set Simulator (ISS), Xtensa PRocessor

Extension Synthesis (XPRES) and XTensa Modeling Protocol (XTMP).

XPRES analyses the C code and automatically generates application specific

5.3. EXPERIMENTAL METHODOLOGY 119

custom instructions, which may consist of a combination of fused operations, FLIX

instructions [277], specialised operations [278] and vector operations. XPRES can

also generate different sets of custom instructions, reflecting different ISAs. These

custom instructions are output in the Tensilica Instruction Extension (TIE) lan-

guage, and are compiled through the TIE compiler for seamless integration because

the C/C++ compiler will automatically exploit the new instructions without the

need for modification of the code.

XTMP is a multi-processor simulation environment which enables instantiation

of multiple processors, connecting them via FIFO buffers to realise pipelined MP-

SoCs. The FIFO buffers provide blocking pop and push functions to read from and

write to the buffer. A pop from an empty buffer and a push to a full buffer stalls

the processor. During the simulation of a pipelined MPSoC, such stalls are recorded

to calculate the net computation and net communication latencies of the processor

configurations used in that particular simulation. XTMP uses ISS, Xtensa LX2’s

cycle-accurate simulator, to generate cycle-accurate performance measures of the

pipelined MPSoC.

The trace-based cache simulator proposed in [268] was used. For a given trace,

their simulator outputs cache statistics (hit and miss counts) for all the instruction

and data cache configurations. Cache parameters include cache size, line size and

associativity.

The pipelined MPSoCs were created by assigning each sub-kernel of a multime-

dia application to one or more processors as illustrated in Figure 3.2. For example,

the ME sub-kernel of H.264Enc in Figure 3.1 is assigned to three processors. Af-

ter the allocation of sub-kernels to processors, differing sets of custom instructions

(differing ISAs) are generated for the processors using XPRES. Each set of custom

instructions (each ISA) is combined with differing cache configurations to create pro-

cessor configurations where both instruction and data caches’ sizes are changed from

1 KB to 32 KB. These cache configurations were chosen to generate reasonable a

120 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

S
ta
g
e

J
P
E
G
E
n
c1

J
P
E
G
E
n
c2

J
P
E
G
D
ec

M
P
3
E
n
c

H
.2
6
4
E
n
c

1
4×

36
5×

36
8×

36
7×

36
6×

36

2
4×

36
5×

36
8×

36
8×

36
8×

36
7×

36
7×

36
6×

36
4×

36
4×

36

3
11×

36
7×

36
7×

36
7×

36
7×

36
9×

36
5×

36

4
4×

36
7×

36
-

9×
36

5×
36

5
7×

36
4×

36
-

-
7×

36

6
4×

36
-

-
-

5×
36

D
esig

n
S
p
a
ce

4.2
×

10
13

2.35
×

10
16

1.73
×

10
12

1.92
×

10
12

1.42
×

10
18

T
ab

le
5.1:

P
rocessor

con
fi
gu

ration
s
(IS

A
s
×

cach
e
con

fi
gu

ration
s).

5.4. RESULTS AND ANALYSES 121

number of processor configurations and are not a limitation – cache line size and as-

sociativity could also have been changed to further increase the number of processor

configurations. Table 5.1 reports the number of configurations for all the processors

in the pipelined MPSoCs. Columns 2 – 6 report the names of the pipelined MPSoCs

while rows 2 – 7 report the number of processor configurations in a particular stage.

For example, the processor in stage 2 (greyed row) of JPEGEnc1 has 4× 36 = 144

configurations, where 4 is the number of ISAs and 36 is the number of cache con-

figurations. Since ME sub-kernel of H.264Enc is assigned to 3 processors, the entry

for stage 2 of H.264Enc contains the number of processor configurations for the 3

processors, which are separated by the spaces. Note that processor configurations

were not generated for the EC/W sub-kernel of the H.264Enc because the design

space was already very large. JPEGDec has only three stages, and thus stages 4 –

6 contain no data. The last row shows the total number of possible combinations

of processor configurations – the total number of design points – for each of the

pipelined MPSoCs where the design spaces range from 1012 to 1018 design points.

All experiments were conducted on a quad core machine running at 2.15 GHz

with 8Gb RAM.

5.4 Results and Analyses

5.4.1 Processor’s Analytical Model

Firstly, the evaluation of the processor analytical model is presented. Figure 5.3

illustrates the ratio of estimated latencies to actual latencies (plotted on y-axis) for

all the configurations of the processors (plotted on x-axis) in the first stages of the

pipelined MPSoCs. If the ratio is 1, then the estimate is entirely accurate. The plots

in Figure 5.3 illustrate that the values are close to 1 which means that the latency

estimates are reasonably accurate. Other processors in all the pipelined MPSoCs

revealed similar findings.

122 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

!"#

$

$"#

! $!!

%&'(')*$

! $!! ! $!! +!! ! $!! +!! ! $!! +!!

&,-*.//-,01-)2345,673-)/

!
"
#
$
%
&
#
'
(
)
*
+
#
,
&
-

.
&
#
'
/
+
$
'
"

%&'(')*+ %&'(8.* 9&:')* ;"+<=')*

Figure 5.3: Analysis of processor analytical model for the first stage’s processor of
each pipelined MPSoC.

A detailed analysis of the processor analytical model is reported in Table 5.2.

The third and fourth columns report the absolute accuracy and fidelity2 where

both absolute error and fidelity are computed by comparing the actual latencies

from cycle-accurate simulations of processor configurations to the estimated laten-

cies from the processor analytical model. Note that P3.2 of JPEGEnc2 in Table 5.2

refers to the second processor in the third stage of the pipelined MPSoC. The em-

pirical data in Table 5.2 reports the worst average and worst maximum absolute

errors of 7.15% and 15.02%, and minimum fidelity of 0.90 across all the processor

configurations as highlighted in the table. These results show that the processor

analytical model is reasonably accurate and hence is suitable for quick and early

design space exploration of pipelined MPSoCs.

5.4.2 Pipelined MPSoC’s Analytical Models and Estima-

tion Methods

Table 5.3 reports detailed analysis of pipelined MPSoC’s execution time, latency and

throughput analytical models, and PS and PSP estimation methods. The second,

third and fourth major columns report the results for execution time, latency and

throughput analytical models. Minor columns in each of these major columns report

absolute accuracy and fidelity of both PS and PSP methods. For the execution time

2FMρ metric from Chapter 4 is used to compute fidelity due to its lower computational com-
plexity.

5.4. RESULTS AND ANALYSES 123

Pipelined Processor Absolute Error (%) Fidelity

MPSoC Average Maximum

JPEGEnc1

P1.1 0.46 1.36 0.98

P2.1 0.15 0.50 1.00

P3.1 0.23 3.06 0.99

P4.1 0.70 0.73 1.00

P5.1 0.37 1.74 1.00

P6.1 0.48 2.15 0.96

JPEGEnc2

P1.1 0.46 1.20 0.99

P2.1 0.16 0.96 1.00

P3.1 0.80 3.53 0.99

P3.2 0.83 4.00 0.98

P3.3 0.83 4.00 0.98

P4.1 0.58 3.17 0.98

P5.1 0.34 1.38 0.99

JPEGDec

P1.1 3.83 9.94 0.98

P2.1 6.05 14.79 0.97

P2.2 7.15 13.91 0.98

P2.3 6.09 14.23 0.98

P3.1 0.71 3.07 0.99

MP3Enc

P1.1 5.56 15.02 0.95

P2.1 3.07 8.07 0.96

P2.2 2.80 9.13 0.96

P3.1 2.39 11.49 0.95

P4.1 0.86 4.23 0.98

H.264Enc

P1.1 3.10 5.96 0.93

P2.1 4.96 9.04 0.91

P2.2 2.67 6.58 0.92

P2.3 2.79 6.50 0.92

P3.1 5.83 10.04 0.90

P4.1 1.23 3.17 0.96

P5.1 1.21 3.20 0.96

P6.1 3.53 7.07 0.94

Table 5.2: Detailed analysis of processor analytical model.

124 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

E
x
ecu

tio
n

T
im

e
L
a
ten

cy
T
h
ro

u
g
h
p
u
t

P
ip
elin

ed
A
b
so

lu
te

E
rro

r
(%

)
F
id
elity

A
b
so

lu
te

E
rro

r
(%

)
F
id
elity

A
b
so

lu
te

E
rro

r
(%

)
F
id
elity

M
P
S
o
C

A
v
era

g
e

M
a
x
im

u
m

A
v
era

g
e

M
a
x
im

u
m

A
v
era

g
e

M
a
x
im

u
m

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

P
S

P
S
P

J
P
E
G
E
n
c1

2.28
5.00

5.91
9.11

0.99
0.96

0.88
1.87

3.78
8.59

0.98
0.94

1.71
6.28

5.87
10.75

0.99
0.94

J
P
E
G
E
n
c2

0.69
5.91

2.16
11.41

0.99
0.94

0.61
2.50

3.89
7.10

0.99
0.92

0.07
6.91

1.45
13.06

1.00
0.94

J
P
E
G
D
ec

0.21
5.08

1.29
13.21

0.99
0.98

1.73
6.31

5.33
15.66

0.98
0.88

0.28
6.76

1.90
18.67

0.99
0.98

M
P
3
E
n
c

3.83
2.56

6.89
10.54

1.00
0.94

1.03
2.28

5.30
11.28

1.00
0.94

2.38
3.79

4.10
15.82

0.99
0.93

H
.2
6
4
E
n
c

1.47
3.11

2.72
8.33

0.99
0.93

6.28
6.83

12.95
17.56

0.93
0.93

6.96
7.56

7.41
13.36

0.99
0.93

T
ab

le
5.3:

D
etailed

an
alysis

of
p
ip
elin

ed
M
P
S
oC

’s
execu

tion
tim

e,
laten

cy
an

d
th
rou

gh
p
u
t
an

alytical
m
od

els,
an

d
P
S
an

d
P
S
P
estim

ation
m
eth

od
s.

5.4. RESULTS AND ANALYSES 125

analytical model, the PS method has worst average and worst maximum absolute

errors of 3.83% (MP3Enc) and 6.89% (MP3Enc) respectively across all the pipelined

MPSoCs. In the PSP method, worst average and worst maximum absolute errors

increased to 5.91% (MP3Enc) and 13.21% (JPEGDec) respectively. The minimum

fidelity of the execution time analytical model dropped from 0.99 (JPEGEnc1) in

the PS method to 0.93 (H.264Enc) in the PSP method. Similar results were found

for both latency and throughput analytical models, which are reported in Table 5.3.

To summarise, among the three analytical models and all the pipelined MP-

SoCs, the worst average and worst maximum absolute errors of the PS method

are 6.96% (H.264Enc, throughput analytical model) and 12.95% (H.264Enc, latency

analytical model) with a minimum fidelity of 0.93 (H.264Enc, latency analytical

model), as highlighted in Table 5.3. On the other hand, the PSP method has the

worst average and worst maximum absolute errors of 7.56% (H.264Enc, through-

put analytical model) and 18.67% (JPEGDec, throughput analytical model) with

a minimum fidelity of 0.88 (JPEGDec, latency analytical model). The drop in ac-

curacy and fidelity of the PSP method compared to the PS method is because it

uses fewer cycle-accurate simulations and a processor analytical model instead of

relying on pure cycle-accurate simulations as used in the PS method. Overall, the

evaluation results indicate that execution time, latency and throughput analytical

models, and the PS and PSP methods are reasonably accurate, and hence suitable

for early design space exploration of pipelined MPSoCs.

5.4.3 Simulation Time of Estimation Methods

The advantage of the PSP method over the PS method is the reduction in simulation

time due to the reduced number of cycle-accurate simulations, reported in Table 5.4.

The second column reports the total number of design points. The time to simulate

a design point depends on the pipelined MPSoC, and in our experiments simula-

tion time of a design point varied from a few minutes to tens of minutes. Hence,

126 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

simulation of the whole design space will take years and is not feasible.

The third and fourth major columns report the total number and time of simu-

lations done in the PS and PSP methods. The PS method simulates each pipelined

MPSoC for the maximum number of processor configurations from amongst all the

processors in that pipelined MPSoC. Thus, 396 (11 × 36), 252 (7 × 36), 288 (8 ×

36), 324 (9 × 36) and 252 (7 × 36) simulations were run for JPEGEnc1, JPEGEnc2,

JPEGDec, MP3Enc and H.264Enc respectively.

Since there are billions of design points for each pipelined MPSoC, the absolute

accuracy and fidelity of execution time, latency and throughput analytical models

reported in Section 5.4.2 were computed using a few hundred design points. The

author used the same design points that are simulated in the PS method because

it ensures that all the individual processor configurations in a pipelined MPSoC are

simulated at least once, and hence a reasonable evaluation can be conducted. More

design points could have been used at the cost of increased simulation time.

The PSP method simulates a subset of processor configurations to reduce sim-

ulation time. Recall from Section 5.2.2 that each ISA of a processor is simulated

with identical instruction and data cache configurations to estimate the value of

NCPI parameter. Since the cache sizes are changed from 1 KB to 32 KB, there are

6 identical instruction and data cache configurations – 1 KB instruction and data

caches, 2 KB instruction and data caches and so on until 32 KB instruction and data

caches. Hence, only 6 cycle-accurate simulations are run to estimate the value of

Pipelined Design Space #Simulations Simulation Time

MPSoC PS PSP PS PSP

JPEGEnc1 4.2× 1013 396 66 19 hrs 2 hrs

JPEGEnc2 2.35× 1016 252 42 15 hrs 1.5 hrs

JPEGDec 1.73× 1012 288 48 13 hrs 2 hrs

MP3Enc 1.68× 1012 252 42 2 days 16 hrs

H.264Enc 1.42× 1018 252 42 5 days 21 hrs

Table 5.4: Simulation time of estimation methods.

5.4. RESULTS AND ANALYSES 127

NCPI of an ISA of a processor. The latencies of the rest of the combinations of cache

configurations and the ISA are estimated using the processor analytical model. For

example, the processor in the third stage of JPEGEnc1 has 11 ISAs and 36 cache

configurations for each of those ISAs (from Table 5.1). Each ISA is simulated with

6 cache configurations, resulting in 11 × 6 = 66 simulations, which is maximum

amongst all the other processors of JPEGEnc1. Hence, only 66 simulations are used

by the PSP method for JPEGEnc1 compared to 396 simulations in the PS method.

Compared to the PS method, the PSP method reduced simulation time (reported

in the last major column of Table 5.4) from days to several hours because it reduced

the number of simulations from hundreds to only tens.

5.4.4 Comparison to Prior Research

Shee et al. [91] also proposed an execution time analytical model for pipelined MP-

SoCs. Their model uses initialisation time of the first stage, time spent in critical

stage and finalisation time of the last stage, ignoring the time to fill empty pipelined

MPSoC (which can be computed from the latencies of first iteration, and is included

in the author’s execution time analytical model). In other words, their model focuses

more on the steady state of a pipelined MPSoC. Table 5.5 reports the absolute accu-

racy and fidelity of their model when used with the PS and PSP estimation methods.

Execution Time [91]

Pipelined Absolute Error (%) Fidelity

MPSoCs Average Maximum

PS PSP PS PSP PS PSP

JPEGEnc1 2.87 4.49 6.52 8.51 0.99 0.96

JPEGEnc2 1.10 5.59 2.59 10.97 0.99 0.94

JPEGDec 0.27 5.02 1.44 13.04 0.99 0.98

MP3Enc 19.89 15.55 23.19 22.75 0.99 0.94

H.264Enc 2.21 3.52 3.95 9.48 0.99 0.93

Table 5.5: Analysis of execution time analytical model proposed in [91].

128 CHAPTER 5. PERFORMANCE ESTIMATION OF PIPELINED MPSOCS

Their execution time estimation is quite similar to the author’s estimation (second

major column of Table 5.3) except for MP3Enc. In the MP3Enc pipelined MPSoC,

first iteration latencies have high magnitudes and the number of iterations is small

which means that time to fill empty pipelined MPSoC is significant and cannot

be ignored. That is why Shee’s model exhibited high absolute errors for MP3Enc,

which are highlighted in Table 5.5. In some cases (the PSP method for JPEGEnc1,

JPEGEnc2 and MP3Enc), there are slight unexpected decreases in both average and

maximum absolute errors of Shee’s model compared to the author’s model. This is

because only a few hundred design points (design points that are simulated in the PS

method) were used for calculation of absolute accuracy due to slow cycle-accurate

simulations and huge design spaces. Use of only a few hundred design points also

explains the decrease in both average and maximum absolute errors of the PSP

method compared to PS method for MP3Enc in Table 5.5 in contrast to an obvious

increase for the rest of the pipelined MPSoCs. Note that Shee’s model exhibited the

same fidelity as the author’s model.

5.5 Summary

In this chapter, three analytical models and two estimation methods are proposed

to aid quick design space exploration of pipelined MPSoCs. The pipelined MPSoC

execution time, latency and throughput analytical models are linear in latencies

of the individual processors. Hence, two estimation methods – PS and PSP – are

proposed to quickly gather latencies of processor configurations with reduced number

of slow, full-system, cycle-accurate simulations. The PS method simulates all the

processor configurations once. On the other hand, the PSP method simulates a

subset of processor configurations and then uses an analytical model of the processor

to estimate latencies of processor configurations.

Experiments with five pipelined MPSoCs executing typical multimedia applica-

tions showed that the PS method had worst average and worst maximum absolute

5.5. SUMMARY 129

errors of 6.96% and 12.95% with a minimum fidelity of 0.93. On the other hand,

the PSP method had worst average and worst maximum absolute errors of 7.56%

and 18.67% with a minimum fidelity of 0.88. For design spaces ranging from 1012

to 1018 design points, the simulation time is reduced by several orders of magnitude

– from days in the PS method to several hours in the PSP method. These results

indicate that the proposed models and estimation methods are reasonably accurate,

and hence suitable for rapid design space exploration of pipelined MPSoCs. The

next chapter uses these analytical models to quickly explore a pipelined MPSoC’s

design space to optimise its area footprint under a performance constraint.

Chapter 6

Design Space Exploration of

Pipelined MPSoCs

A pipelined MPSoC’s stages need to be balanced for maximal utilisation of the pro-

cessors to achieve high throughput with reduced area footprint and reduced power

consumption. This chapter addresses the problem of optimising a pipelined MP-

SoC’s area footprint. Like Chapter 5, each processor in the pipelined MPSoC has

a number of configurations that trade-off performance with area footprint. Thus,

a design point is one combination of processor configurations and the design space

consists of all the combinations of processor configurations. The aim of this chapter

is to quickly search the design space for the optimal design point (minimum area

footprint) under either a latency or a throughput constraint because such constraints

are often imposed on real-time multimedia applications. An Integer Linear Program-

ming (ILP) formulation for area footprint optimisation under a latency constraint

and an algorithm for area footprint optimisation under a throughput constraint are

proposed.

Integer Linear Programming (ILP) is a widely used optimisation technique for

heterogeneous MPSoCs, and has already been employed in several works [132, 133,

142, 143] (see Chapter 2, Section 2.3.1 for more references and details on ILP).

131

132 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

However, those works focused on architectures other than the pipelined MPSoC. Jin

et al. [147] addressed the problem of maximising the throughput of a multimedia

application on a pipelined MPSoC with a fixed number of processors. Cong et

al. [148] proposed exact algorithms to minimise latency and the number of processors

in a pipelined MPSoC under a throughput constraint. Both these works [147,148] did

not consider processor customisation, and thus dealt with homogeneous pipelined

MPSoCs only.

The works in [91, 92, 149, 193–195] addressed the problem of processor customi-

sation (selection of custom instructions or selection of processor configurations) in

a pipelined MPSoC. Shee et al. [91] proposed a heuristic to maximise pipelined

MPSoC’s execution time improvement per area increase ratio compared to a sin-

gle processor system. Thus, Shee et al. did not consider performance constraints

that are typical of real-time multimedia applications. The authors of [92, 149, 193]

proposed ILP formulations and heuristics for minimisation of a pipelined MPSoC’s

area footprint under an execution time constraint where execution time did not

mean the latency or throughput of a pipelined MPSoC. Optimisation of a pipelined

MPSoC under an execution time constraint is beneficial when large audio, image or

video files are encoded/decoded; however, real-time pipelined MPSoCs need to be

optimised under latency and/or throughput constraints as proposed in this chap-

ter. Two works inspired from the proposals of this chapter have been published

recently [194, 195]. Bordoli et al. [195] considered variations in processor latencies

during customisation of the processors. Their objective was to minimise variation

in throughput under an area footprint constraint. Chen et al. [194] explored simul-

taneous mapping and processor customisation with variable number of processors in

the pipelined MPSoC. Their aim was to minimise MPSoC’s area under a throughput

constraint, but a latency constraint was not considered.

6.1. PROBLEM STATEMENT 133

6.1 Problem Statement

A pipelined MPSoC where the application sub-kernels have already been mapped

onto the processors is represented as a directed graph, PM :

PM = (P, F)

Each node in the set P is a processor, denoted as:

P = {m.n : 1 ≤ m ≤ M, 1 ≤ n ≤ Nm}

where M is the number of stages in the pipelined MPSoC and Nm is the number of

processors in the m-th stage. The processor m.n is the n-th processor in the m-th

stage of the pipelined MPSoC. Each edge in the set F is a FIFO buffer, denoted as:

F = {(m.n : i.j) : 1 ≤ m, i ≤ M, 1 ≤ n ≤ Nm, 1 ≤ j ≤ Ni}

For example, the FIFO buffer between processors 2.1 and 3.1 in a pipelined MPSoC

will be denoted as 2.1:3.1. The latency and throughout of a pipelined MPSoC are

denoted as L and T , and are calculated using the analytical models proposed in

Chapter 5, Section 5.1. The area of the pipelined MPSoC is the summation of the

area of all the processors and FIFOs, calculated as:

A =
M�

m=1

Nm�

n=1

�
A(m.n) +

M�

i=1

Ni�

j=1

A(m.n : i.j)

�

where the function A returns the area of the processors and FIFO buffers.

The processors in the pipelined MPSoC have a number of configurations, trading-

off their latency with area footprint. The configurations of a processor m.n are

134 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

denoted as:

C = {m.no : 1 ≤ m ≤ M, 1 ≤ n ≤ Nm, 1 ≤ o ≤ Om,n}

where Om,n is the total number of configurations available for the processor m.n. For

example, the second configuration of processor 2.1 is denoted as 2.12. Each processor

configuration m.no is annotated with a 2-tuple number denoting the latency of

executing the assigned sub-kernel(s) on that particular configuration and the area of

that particular configuration. The latency of a processor configuration includes both

the net computation and net communication latencies as explained in Chapter 5,

Section 5.2.1. The functions L and A return the latency and area of a processor

configuration.

Given the above definitions, the optimisation problem can be stated as: For a

pipelined MPSoC where each processor has a number of configurations, the goal is to

select one configuration for each processor so that the area footprint of the pipelined

MPSoC is minimum and its latency (or throughput) satisfies the latency (or through-

put) constraint Lc (or Tc), provided by the designer. Typically, latency constraint is

provided as an upper bound, while the throughput constraint is specified as a lower

bound. Here, the author assumes the throughput constraint to be an upper bound

as well, that is, a constraint on the latency of the critical processor in the pipelined

MPSoC (which can be calculated by inverting the throughput constraint provided

by the designer). Thus, both latency and throughput constraints (Lc and Tc) are

assumed to be in clock cycles. The following two sections describe the techniques

proposed to optimise the area footprint under a latency or a throughput constraint.

6.2 Optimisation Under a Latency Constraint

The processor configuration selection problem under a latency constraint is formu-

lated as a binary ILP problem in the following way:

6.2. OPTIMISATION UNDER A LATENCY CONSTRAINT 135

6.2.1 Variables

Binary variables are used to determine the selection of processor configurations:

• xm,n,o variables are used to select one configuration per processor. A variable

xm,n,o equals 1 if the configuration o of processor m.n is selected, otherwise

equals 0.

• sm,n,o variables are used to select one configuration per pipeline stage. A stage

with more than one processor will have one configuration selected for each of

the processors; however, only one of those (the one with maximum latency)

configurations can be selected as the stage configuration for calculation of the

pipelined MPSoC’s latency. A variable sm,n,o equals 1 if the configuration o

of processor m.n is also selected as the configuration of stage m, otherwise

equals 0. These variables are only used for stages that contain more than one

processor because configuration of a stage with only one processor will be the

configuration selected for the only processor in that stage.

6.2.2 Objective Function

The objective function of the optimisation problem is to minimise the pipelined

MPSoC’s area footprint, which can be written as:

Minimise
M�

m=1

Ni�

n=1

Om,n�

o=1

A(m.no)xm,n,o

Note that the area of the FIFO buffers is ignored here because their area is constant

for a given pipelined MPSoC and hence does not affect the optimisation problem.

6.2.3 Constraints

Various constraints applicable to the processor configuration selection problem are

listed below:

136 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

1. Only one configuration can be selected for a processor:

Om,n�

o=1

xm,n,o = 1 ∀ m,n

2. For stages with more than one processor, only one processor configuration can

be selected as the stage configuration:

Nm�

n=1

Om,n�

o=1

sm,n,o = 1 ∀ m where Nm > 1

3. The configuration of a stage with more than one processor must be one of the

processor configurations selected using xm,n,o variables:

sm,n,o − xm,n,o ≤ 0 ∀ m,n,o where Nm > 1

4. Of the selected processor configurations in a stage with more than one pro-

cessor, the configuration with maximum latency must be selected as the stage

configuration. The following constraint compares the latencies of the n-th and

j-th processors in the m-th stage:

max
1≤o≤Om,n

{L(m.no)} ×



1−
Om,j�

o=1

sm,j,o



+

Om,j�

m=1

L(m.jo)sm,j,o ≥
Om,n�

o=1

L(m.no)xm,n,o

∀ n,j where 1 ≤ n, j ≤ Nm, j �= n and Nm > 1

There will be Nm − 1 such constraints for each processor in stage m as it has

to be compared with every other processor in that stage. Thus, in total there

will be Nm(Nm − 1) such constraints for stage m to ensure that the stage

configuration is the one with maximum latency.

5. The latency of the pipelined MPSoC (calculated using Equation 5.1 proposed

in Chapter 5, Section 5.1) must be less than or equal to the latency constraint

6.2. OPTIMISATION UNDER A LATENCY CONSTRAINT 137

Lc. Since any processor can be critical in the pipelined MPSoC, the direct

use of the pipelined MPSoC’s latency analytical model results in a non-linear

constraint due to the product factor. The author linearises such a constraint

by considering one of the processors critical at a time, leading to the following

constraint:

(2×mc − 1)×
Nmc�

n=1

Omc,n�

o=1

L(mc.no)smc,n,o +
M�

m=mc+1

Nm�

n=1

Om,n�

o=1

L(m.no)sm,n,o ≤ Lc

wheremc refers to the stage of the processor currently being considered critical.

For stages with only one processor (that is, Nm = 1), sm,n,o variables are

replaced by xm,n,o in the above constraint because sm,n,o variables are only

used for stages with more than one processor (that is, Nm > 1). The following

constraint is also added to make sure that the configurations selected for non-

critical processors have lower latencies than the critical processor’s latency,

where the critical processor is referred to as mc.nc:

Om,n�

o=1

L(m.no)xm,n,o ≤
Omc.nc�

o=1

L(mc.nco)xmc,nc,o ∀ m,n and (m,n) �= (mc, nc)

Since the binary ILP formulation described above considers only one of the

processors to be critical, one instance of such a formulation provides solution for

that particular critical processor only, and thus not the whole optimisation prob-

lem. Therefore,
�M

m=1 Nm instances of the binary ILP formulation are run, where

these instances successively consider each processor as the critical processor in the

pipelined MPSoC. Then, the solution with minimum area footprint from amongst

the solutions of all the binary ILP instances is selected. Algorithmically, the op-

timisation approach is shown in Algorithm 1. The two for-loops starting at lines

2 and 3 traverse all the processors in the pipelined MPSoC, calling the function

SolveILP (m,n, Lc) with processor m.n to be considered as the critical processor

138 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

Algorithm 1: Optimisation Under a Latency Constraint

1 OptimalSol = NULL;

// One by one consider each processor as critical in the

pipelined MPSoC

2 for m=1 to M do
3 for n=1 to Nm do
4 CurrentSol = SolveILP(m,n, Lc);
5 if CurrentSol’s area footprint < OptimalSol’s area footprint then
6 OptimalSol = CurrentSol;

7 return OptimalSol;

(mc = m and nc = n in constraint 5 of the binary ILP formulation). The out-

put of the algorithm is a set of processor configurations with one configuration per

processor. Since binary ILP is used, the selected design point will be optimal.

Although the binary ILP formulation needs to be run multiple times, the number

of processors in a pipelined MPSoC is typically in the order of tens. Thus, the

running time of Algorithm 1 will be reasonable (refer to Section 6.6). Alternatively,

the optimisation problem could have been formulated as a non-linear problem, which

is beyond the scope of this thesis.

6.3 Optimisation Under a Throughput Constraint

Optimisation of a pipelined MPSoC’s area footprint under a throughput constraint

is not as complex as its latency constrained optimisation. The algorithm is shown in

Algorithm 2. Intuitively, a throughput constraint Tc on a pipelined MPSoC means

that none of the processors in the pipelined MPSoC can have latency greater than

Tc. Thus, the algorithm traverses all the configurations of all the processors (lines 1

– 5), and deletes any configuration with latency greater than Tc. After this pruning

phase, the algorithm selects the configuration with the minimum area footprint for

a processor from its remaining configurations, repeating the process for all the pro-

cessors in the pipelined MPSoC. Such a selection results in minimum area footprint

6.4. DISCUSSION 139

Algorithm 2: Optimisation Under a Throughput Constraint

// Prune processor configurations with latency greater than

Tc

1 for m=1 to M do
2 for n=1 to Nm do
3 for o=1 to Om,n do
4 if L(m.no) > Tc then
5 Delete processor configuration m.no

// select minimum area footprint configurations

6 for m=1 to M do
7 for n=1 to Nm do
8 Select configuration with minimum area for processor m.n from

the remaining configurations

of the pipelined MPSoC because its area footprint is a linear summation of the area

of individual processors. Thus, Algorithm 2 outputs one configuration per processor

where the selected design point is optimal. The algorithm traverses all the processor

configurations only once, resulting in a complexity of O(
�M

m=1

�Nm

n=1Om,n).

6.4 Discussion

The pipelined MPSoC used in this thesis does not restrict processors to run at the

same frequencies. If the processors are running at different frequencies, then their

latencies in clock cycles cannot be just added to compute the latency of the pipelined

MPSoC. In such a scenario, the latency of a processor in clock cycles should be con-

verted to actual time, by dividing it by the frequency of that processor. Furthermore,

the latency constraint should be provided as actual time rather than clock cycles.

However, these steps will not change the binary ILP formulation and Algorithm 1.

Likewise, for area footprint optimisation under a throughput constraint, both the

processor latencies and throughput constraint should be converted to actual time.

This will again not change Algorithm 2. Hence, these simple modifications can

140 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

extend the proposed optimisation methods to pipelined MPSoCs with processors

running at different frequencies.

6.5 Experimental Methodology

Design spaces of five pipelined MPSoCs, created in Chapter 5, were explored using

the proposed optimisation methodologies. The number of configurations for each

processor and the total design points are reported in Table 5.1 where the design

spaces ranged from 1012 to 1018 design points. The latencies of the processor config-

urations were gathered using the PS method described in Chapter 5, Section 5.2.1.

The area of each processor configuration was measured in the number of gates and

included the area of the base processor, custom instructions, and instruction and

data caches.

A commercial programming solver, CPLEX [279], was used to solve the binary

ILP formulation. CPLEX reads an input file in LP format and outputs the values

of variables in a text file. The proposed algorithms were programmed in Perl and

integrated with Tensilica’s design environment to automate the exploration process.

All the experiments were conducted on a 2.15 GHz quad core machine with 8GB

RAM.

6.6 Results and Analyses

6.6.1 Pareto Fronts

Figures 6.1 – 6.5 show the results of design space exploration of the pipelined MP-

SoCs for both latency and throughput. For the sake of simplicity, the values on axes

are omitted. The subfigures 6.1(a) – 6.5(a) show the Pareto front of each pipelined

MPSoC, where the latency is plotted on the y-axis while the area is plotted on the

x-axis. These Pareto fronts were obtained by specifying different latency constraints,

6.6. RESULTS AND ANALYSES 141

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(a)

1
/
T
h
r
o
u
g
h
p
u
t

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(b)

Figure 6.1: Pareto fronts of JPEGEnc1: (a) Latency and (b) Throughput against
area footprint.

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(a)

1
/
T
h
r
o
u
g
h
p
u
t

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(b)

Figure 6.2: Pareto fronts of JPEGEnc2: (a) Latency and (b) Throughput against
area footprint.

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(a)

1
/
T
h
r
o
u
g
h
p
u
t

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(b)

Figure 6.3: Pareto fronts of JPEGDec: (a) Latency and (b) Throughput against
area footprint.

142 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(a)

1
/
T
h
r
o
u
g
h
p
u
t

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(b)

Figure 6.4: Pareto fronts of MP3Enc: (a) Latency and (b) Throughput against area
footprint.

L
a
t
e
n
c
y

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(a)

1
/
T
h
r
o
u
h
g
p
u
t

(
C
l
o
c
k

C
y
c
l
e
s
)

Area (Gates)

(b)

Figure 6.5: Pareto fronts of H.264Enc: (a) Latency and (b) Throughput against
area footprint.

spanning the whole design space, and obtaining the optimal design point for each

of the individual latency constraints. For example, the JPEGEnc1 design space was

explored by providing latency constraints from 16,000 to 41,000 clock cycles in steps

of 500 clock cycles. The design spaces of other pipelined MPSoCs were explored

similarly, though with different ranges and steps. The subfigures 6.1(b) – 6.5(b)

show the Pareto fronts for all the pipelined MPSoCs with respect to 1/Throughput,

which translates to the latency of the critical processor in the pipelined MPSoC.

A decrease in 1/Throughput of a pipelined MPSoC means a tighter bound on the

critical latency, which will require more resources, and thus will increase the area

6.6. RESULTS AND ANALYSES 143

footprint of a pipelined MPSoC as depicted in the Pareto fronts.

6.6.2 Exploration Time

An important concern while exploring the design space is the time taken to ob-

tain the Pareto front. Table 6.1 reports the time to find the Pareto front of each

pipelined MPSoC for both latency and throughput. The second and third columns,

titled latency and throughput, refer to area footprint optimisation under a latency

constraint and a throughput constraint using Algorithms 1 and 2 respectively. Since

Algorithm 1 uses binary ILP to find the optimal design point, its exploration time

will be higher than that of Algorithm 2. The maximum time to find the Pareto front

with respect to latency was less than seven minutes, which occurred for H.264Enc.

With respect to throughput, the maximum time to find the Pareto front was 14

seconds, occurring for H.264Enc again.

Note that the reported exploration times depend on the number of latency con-

straints used while exploring the design space, in addition to the complexity of Algo-

rithm 1 (which depends on the complexity of binary ILP) when a latency constraint

is used or the complexity of Algorithm 2 when a throughput constraint is used. In

these experiments, a minimum of 36 and a maximum of 82 latency constraints were

used for design space exploration of the pipelined MPSoCs. For throughput con-

strained design space exploration, at least 44 throughput constraints were used for

each pipelined MPSoC, with a maximum of 240 for H.264Enc. This shows that the

proposed optimisation methods can handle exploration of reasonably large design

Pipelined MPSoC Latency Throughput

JPEGEnc1 39 secs 2 secs

JPEGEnc2 81 secs 3 secs

JPEGDec 218 secs 3 secs

MP3Enc 226 secs 2 secs

H.264Enc 409 secs 14 secs

Table 6.1: Exploration time to obtain Pareto fronts.

144 CHAPTER 6. DESIGN SPACE EXPLORATION OF PIPELINED MPSOCS

Pipelined Latency Constrained Throughput Constrained

MPSoC Lc A Tc A

JPEGEnc1 36,000 700,104 5,800 678,953

JPEGEnc2 36,000 660,286 5,800 662,334

Table 6.2: Comparison of JPEGEnc1 and JPEGEnc2.

spaces (with 1012 to 1018 design points), finding the Pareto front in a few minutes

for both latency and throughput. Once these Pareto fronts are available, designers

can trade-off the latency or the throughput with the area footprint by choosing an

appropriate set of processor configurations for a pipelined MPSoC.

6.6.3 JPEG Encoder Case Study

The JPEG encoder application in Figure 3.1 was partitioned in two differing ways

to compare alternative implementations of it on pipelined MPSoCs. Table 6.2 shows

the comparison of JPEGEnc1 with JPEGEnc2. The second and third major columns

refer to the optimal design point obtained under a latency and a throughput con-

straint respectively where the constraints are in clock cycles. The term A stands

for the area footprint of the selected design point, measured in number of gates.

Comparing JPEGEnc1 with JPEGEnc2, for the same latency constraint, the area

of JPEGEnc2 (660,286 gates) is smaller than the area of JPEGEnc1 (700,104 gates),

resulting in a 5.68% reduction. Similarly, for the same throughput constraint, JPE-

GEnc2 had an area reduction of 2.44%. This is because the three processors in

the third stage process Y, Cb and Cr components of a macroblock in parallel, and

thus increase the performance of the pipelined MPSoC. Therefore, simpler proces-

sor configurations in JPEGEnc2 can be used to achieve the same latency or the

same throughput as of JPEGEnc1, resulting in lower area footprint of JPEGEnc2.

Since the exploration time of the proposed optimisation methods is in minutes, a

designer can quickly compare and evaluate different pipelined MPSoCs for the same

6.7. SUMMARY 145

application. However, application partitioning and mapping need to be done ei-

ther manually or semi-automatically using one of the several techniques discussed

in Chapters 2 and 3.

6.7 Summary

In this chapter, the author proposed two methods to quickly search an optimal

design point (minimum area footprint) of a pipelined MPSoC where its design space

consisted of differing combinations of processor configurations. Since latency and

throughput requirements of multimedia applications put constraints on the design

of pipelined MPSoCs, area footprint optimisation was done under these constraints.

For five pipelined MPSoCs, the exploration time to find Pareto fronts of each of those

pipelined MPSoCs was less than seven minutes when their design spaces contained at

least 1012 design points. This illustrates the applicability of the proposed methods

to quickly optimise area footprint of latency or throughput constrained pipelined

MPSoCs.

Chapter 7

Adaptive Pipelined MPSoCs

Multimedia applications exhibit variations in computational workload of their sub-

kernels due to the adaptive nature of algorithms and input data. For example,

the workload of the motion estimation sub-kernel in H.264 video encoder varies

depending on the amount of motion in the incoming video frames. Therefore, to

guarantee throughput at all times, pipelined MPSoCs have to be designed with

worst-case parameters. For example, the optimisation methods proposed in Chap-

ter 6 for design-time balancing of pipelined MPSoCs will use worst-case latencies of

the processor configurations (that is, processor latencies are gathered by providing

worst-case representative input data to the pipelined MPSoCs). Since worst-case

pipelined MPSoCs lack adaptability to run-time variations in their computational

workload, they suffer from inefficient resource utilisation and may result in high

energy consumption under a dynamic workload. Let us examine the limitations of

a worst-case pipelined MPSoC through a case study of the motion estimation in the

H.264 video encoder.

7.1 Motivational Example

Motion estimation in the H.264 encoder is one of the most computationally intensive

sub-kernels. Motion estimation is performed on each macroblock of the incoming

147

148 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

0

100

200

300

400

500

0 50 100 150 200

#

S
A
D
s

Iteration

During low workload periods, idle processors can

be deactivated to reduce energy consumption

Figure 7.1: Number of SADs computed during different iterations of the motion
estimation sub-kernel.

frame, where the Sum of Absolute Differences (SAD) is used to compare the current

macroblock with the reference macroblocks to find the best possible match. The

number of SADs that need to be computed for a macroblock heavily depends on

the motion contained in that particular macroblock. A macroblock containing fast

moving objects will require more SADs compared to a macroblock of slow moving

objects. Figure 7.1 shows the number of SADs that were computed for the first 200

macroblocks of the second frame (the first frame does not require motion estimation)

of the ‘pedestrian’ video sequence [280]. It is obvious that the workload of the motion

estimation sub-kernel varies significantly at run-time – the number of computed

SADs can go as high as 500 and as low as 10 with an average and standard deviation

of 154 and 153 SADs respectively.

Consider the motion estimation stage of a worst-case pipelined MPSoC which

contains 17 processors in parallel to process HD720p video. In addition, consider

that each processor can compute 30 SADs within the throughput constraint. Thus,

in total the motion estimation stage is capable of computing 17 × 30 = 510 SADs

7.1. MOTIVATIONAL EXAMPLE 149

which is enough to sustain throughput at all times (worst case is 500 SADs). Dur-

ing low workload periods (marked in Figure 7.1), only one processor is doing useful

work because these periods require computation of less than 30 SADs (which can be

handled by a single processor). Thus, during the marked low workload periods, the

other 16 processors will be idle, resulting in inefficient utilisation of resources and

increased energy consumption of the pipelined MPSoC. In contrast, in an adaptive

pipelined MPSoC, a resource-aware approach would have shared the idle processors

with other stages at run-time, while an energy-aware approach would have deacti-

vated the idle processors at run-time to reduce energy consumption.

In summary, design-time balanced, worst-case pipelined MPSoCs do provide high

performance but at the cost of inefficient resource utilisation and increased energy

consumption. Hence, worst-case pipelined MPSoCs do not provide a resource- or

energy-aware platform for advanced multimedia applications such as H.264/AVC [9],

AVS [281], VC1 [282] which exhibit huge variations in their workload at run-time

due to the adaptive nature of their algorithms and input data. As a result, applica-

bility of worst-case pipelined MPSoCs as a platform for multimedia applications in

portable devices is limited because of the area footprint and energy constraints in

such devices.

In this chapter, a worst-case pipelined MPSoC is augmented with a run-time

management (balancing) technique so that it can adapt itself to run-time vary-

ing workloads. To this end, an adaptive pipelined MPSoC architecture is proposed

where stages with significant run-time variations in workload are implemented using

Main Processors and Auxiliary Processors. The main processor uses differing num-

ber of auxiliary processors considering run-time workload variations. The run-time

management technique uses a combination of the application’s execution and knowl-

edge (algorithmic and data properties) to predict the upcoming workload (number

of auxiliary processors for a main processor). To reduce energy consumption of the

adaptive pipelined MPSoC, the idle auxiliary processors are either clock-gated or

power-gated.

150 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

The works in [88–90] considered adaptability in pipelined MPSoCs. Guo et

al. [88] proposed a dynamic voltage scaling approach to reduce the voltage to pro-

cessors with low workload, while [89,90] showed the application of Dynamic Voltage

and Frequency Scaling (DVFS) in pipelined MPSoCs. All these works used a feed-

back controller to monitor the occupancy level of the queues to determine when

to increase or decrease the frequency-voltage levels of a processor. Thus, these

works used the execution history of the application and were reactive in nature.

The run-time management techniques proposed in this chapter not only utilise the

application’s execution history, but also the application’s knowledge to proactively

predict the upcoming workload. An application’s knowledge should be used in work-

load prediction because an application knows (or may know) by far the most about

its future workload [248]. However, unlike [248] where just algorithmic properties

in a uniprocessor system were employed, more diverse application knowledge (algo-

rithmic and data properties) are considered in a pipelined MPSoC in this chapter.

From a practical perspective, the provision of DVFS circuitry for MPSoCs with

more than two processors is very expensive [249]. Furthermore, the large overhead

of DVFS control circuitry limits its use to systems requiring only coarse-grained run-

time management [250]. The shrinkage of the dynamic range of voltage-frequency

operational points due to downward scaling of supply voltage has also limited DVFS

use, and has given rise to the use of clock-gating, power-gating and multiple power

states. Therefore, the adaptive pipelined MPSoC architecture proposed in this chap-

ter allows a main processor to manage its auxiliary processors by either clock- or

power-gating them. Chapter 8 extends this work for multiple power states.

7.2 Adaptive Pipelined MPSoC Architecture

Figure 7.2 shows a typical pipelined MPSoC, comprised of various pipeline stages.

Adaptability is introduced in such a pipelined MPSoC by the use of Main Proces-

sors (MPs) and Auxiliary Processors (APs). Thus, each processor in the pipelined

7.2. ADAPTIVE PIPELINED MPSOC ARCHITECTURE 151

MP1

MP2 AP2.1AP2.2

MP3

AP

4.2.1

AP

4.1.1

MP5

MP4.1 MP4.2

S1

S5

S4

S3

S2

MP6

S6

Run-time Processor

Manager

Determines the idle

APs

Clock-gates or

power-gates idle

APs

Figure 7.2: Adaptive pipelined MPSoC’s architecture.

152 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

MPSoC is either an MP or an AP. A processor is categorised as an MP if its sub-

kernel(s) is (are) executed for every iteration of the multimedia application, that is

it is always active. On the other hand, an AP is a processor whose mapped sub-

kernel(s) will be executed for a maximum of the total number of the application’s

iterations, that is, it can be idle during some iterations. Adaptability in stages with

significant run-time variation in their workloads is realised by implementing those

stages using a combination of MPs and APs, where a pool of APs is connected to

an MP using FIFOs. In addition, MPs and their APs can have access to a shared

memory if common data needs to be shared between them.

An example of an adaptive stage is S4 in Figure 7.2 which contains two MPs

(MP4.1 and MP4.2) that will be active at all times. These MPs will use their

corresponding APs (AP4.1.1 and AP4.2.1) only when the workload increases beyond

their capacities. In other words, MPs handle the nominal workload while APs

handle the extra workload by working in parallel with their corresponding MPs.

If all the APs of an adaptive pipelined MPSoC are considered to be MPs, then it

will become a worst-case pipelined MPSoC, where all the processors will be always

active (thus only the existence of MPs). It should also be noted that stages with

almost constant workload do not need APs and are only implemented with MPs;

for example, stage S3 in Figure 7.2. Thus, an adaptive pipelined MPSoC provides

an effective implementation platform for advanced multimedia applications which

contain stages with both almost constant workload (such as DCT) and run-time

varying workload (such as motion estimation).

The proposed adaptive pipelined MPSoC is a hybrid system due to the co-

existence of MPs and APs, and its adaptability can be exploited in several ways.

For example, a resource-aware run-time manager could be deployed to allocate the

idle APs of one stage to another stage that is currently experiencing high workload,

7.2. ADAPTIVE PIPELINED MPSOC ARCHITECTURE 153

resulting in efficient resource utilisation1. Another example is to deploy an energy-

aware run-time manager where the APs are deactivated during idle iterations to

reduce the energy consumption. This chapter focuses on the later by proposing a

run-time processor manager, considering the support for clock- and power-gating

(two well-known power reduction techniques) based deactivation of idle APs.

The architecture of the adaptive pipelined MPSoC allows for both a centralised

and a distributed run-time manager. However, a distributed processor manager is

proposed in this chapter where an MP adapts to its varying workload by activat-

ing/deactivating its APs, independent of other MPs. Such a distributed approach

has the advantage of scalability over a centralised processor manager. Furthermore,

each stage can tweak the run-time management heuristics (see Section 7.6) according

to its own workload profile. Therefore, highly customised, per-stage run-time man-

agers can be deployed in the adaptive pipelined MPSoC to lower their performance

and energy overheads.

Figure 7.2 zooms in on one of the MPs to illustrate that each MP with a pool of

APs has a run-time processor manager. This processor manager determines the idle

APs of an MP by considering the workload at run-time for every iteration of the

application. For example, if the run-time manager determines AP14 and AP15 to

be idle for an MP with 16 APs, then AP14 and AP15 will either be clock- or power-

gated to reduce energy consumption. In this chapter, either the idle AP is only

clock-gated or only power-gated without the provision for selective use of clock- and

power-gating. Chapter 8 will extend this work for selective use of different power

reduction techniques through the use of multiple power states.

1Resource sharing would require connection of an AP with multiple MPs. Since resource sharing
is not considered in this thesis, each AP is connected to only one MP, though multiple APs can be
connected to a single MP.

154 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

7.3 A Design Flow

The design flow to create an adaptive pipelined MPSoC is shown in Figure 7.3. The

sub-kernels of a multimedia application are mapped to the processors of a pipelined

MPSoC. The pipelined MPSoC is then passed through a customisation phase, where

each processor is customised according to the sub-kernel(s) mapped on it to balance

the stages of the pipelined MPSoC. Further details can be found in Chapters 3 and 6.

The customised pipelined MPSoC is created using worst-case parameters so that it

can deliver the required throughput at all times.

A worst-case pipelined MPSoC is transformed into an adaptive pipelined MPSoC

by the addition of a run-time manager. Firstly, the worst-case pipelined MPSoC is

profiled with various data inputs to gather statistical information such as minimum,

maximum and average workload. For example, in the motivational example of Sec-

tion 7.1 where 17 processors were used in the motion estimation stage, a minimum

and a maximum of 10 and 500 SADs are computed respectively with a standard

deviation of 153 SADs. In addition, the throughput constraint of the multimedia

application is used to compute the period of each pipeline stage (that is, the maxi-

mum number of clock cycles for an iteration), and is referred to as Tc. The profiling

Worst-case Pipelined

MPSoC

All the processors are

customised by selection of

processor configurations

Adaptive Pipelined

MPSoC

Selection of MPs and APs

for each pipeline stage

Mapping and Design Space Exploration

Profiling & Off-line

Statistical Analysis

Statistical Information:

Min, Max, Average Workload; etc.

Architectural Information:

Max APs; etc.

Application Information:

Throughput; etc.

Multimedia

Application’s

Sub-kernels

Design-time

Determine idle

APs that should be

deactivated using

clock- or power-

gating considering

run-time variation

in workload

Run-time

Figure 7.3: A design flow for adaptive pipelined MPSoCs.

7.4. PROBLEM STATEMENT 155

information also records the amount of workload a processor can handle within Tc

clock cycles. For example, a processor in motion estimation stage can compute 30

SADs in Tc clock cycles. Using the profiling and statistical information, the number

of MPs and APs is decided for each stage of the worst-case pipelined MPSoC. For

the running example, motion estimation stage can be implemented with one MP

and 16 APs because the minimum workload of 10 SADs can be handled by one pro-

cessor. A similar procedure is also used for the other stages of the pipelined MPSoC

where run-time adaptation is required. In summary, statistical information from the

profiling is used to decide the number of MPs and APs for each stage of the adaptive

pipelined MPSoC. Then, the information gathered off-line (statistical, architectural

and application) is used by the run-time manager in addition to run-time monitoring

of the workload to activate and deactivate APs at run-time.

7.4 Problem Statement

Given an adaptive pipelined MPSoC and the off-line gathered information, the goal

is to determine “when” and “how many” APs to activate and deactivate at run-time

for each MP under run-time variations in workload so that the required throughput is

delivered with minimal degradation and maximal reduction in energy consumption.

The challenge is to predict the correct number of APs for an iteration because

the use of an incorrect number of APs will either result in loss of throughput (when

less than required APs will be used) or an increase in energy consumption (when

more than the required number of APs will be used which could otherwise have

been deactivated). A feedback based approach, particularly the one that is only

based on the application’s execution history, suffers from slow response because the

run-time manager cannot detect workload variation until the current iteration has

finished, and thus may result in significant loss of throughput (see Section 7.7.2). In

other words, feedback based approaches are reactive in nature rather than proactive.

Additionally, multiple activations/deactivations of an AP within the same iteration

156 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

may lead to an increase in energy consumption rather than its reduction due to the

overhead of activation and deactivation. Thus, a sophisticated run-time manager is

required to decide the number of APs that should be activated for an MP, considering

more than just the application’s execution history. Furthermore, such a run-time

manager should have low performance and energy overheads.

The next two sections explain how application knowledge can be leveraged to

predict the workload of (some of the stages of) a multimedia application, and how

that prediction, in addition to the application’s execution history, can be used by

an MP to manage its APs.

7.5 Leveraging Application Knowledge

In multimedia applications, much information is available from the application and

input data, such as texture, brightness, size and homogeneity of the macroblocks or

frames in an H.264 video encoder/decoder [283]. Typically, a pre-processing stage

is employed in multimedia applications to analyse such information [283]. The pre-

processing stage processes the input data to extract useful information for the video

processing system in advance for run-time adaptation [284]. In this chapter, the

author uses such information at system-level in the run-time processor manager to

decide the number of APs for an MP.

7.5.1 An H.264 Video Encoder Example

In this section, one piece of information available at the pre-processing stage to the

motion estimation sub-kernel in an H.264 video encoder is elaborated. Consider

the pre-processing stage categorises the macroblocks of a frame as either low or high

motion macroblocks. Low motion macroblocks typically contain slow moving objects

and are homogeneous while high motion macroblocks are textured and contain fast

moving objects. Depending on the texture/variance of the current macroblock (mbi)

and the predicted SADs of the neighbouring macroblocks, the workload in number

7.5. LEVERAGING APPLICATION KNOWLEDGE 157

of SADs for the current macroblock can be predicted as follows:

if V ar(mbi) < V arth and SAD(mbi) < SADth then

mbi is a low motion macroblock

else

mbi is a high motion macroblock

where

V ar(mbi) =
1

256

256�

j=1

(Pj − AvgBrightness(mbi))
2

AvgBrightness(mbi) =
1

256

256�

j=1

Pj + 128

SAD(mbi) = median{SAD(mbright), SAD(mbtop), SAD(mbtopRight)}

The V arth and SADth are threshold values for the variance and number of SADs,

and are typically obtained through regression analysis [283]. The term Pj refers to

the j-th pixel of a macroblock.

The number of SADs for low- and high-motion macroblocks are obtained through

the Probability Density Function (PDF), which are shown for two test video se-

quences (“station” and “tractor”) in Figure 7.4. Based on the category of the

current macroblock (low- or high-motion), the correct distribution is used to obtain

the zone of high probability (a probability of 84% for Gaussian distributions) [285].

For example, the two vertical (dotted-blue) lines in the “station” graph is the range

for the number of SADs for low motion macroblocks, while the range represented

by the two vertical (dotted-red) lines in the “tractor” graph is for the high-motion

macroblocks. From Figure 7.4, the range for low- and high-motion macroblocks will

be [0, 150] and [150, 600] number of SADs. It should be noted that the prediction

is fuzzy as it is in the form of a range.

158 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

!

!"" #"" $"" %"" &"" !"" #"" $"" %"" &""

'()*'+(

"

",$

!,"

!,$

-,"

-,$

#,"

#,$

.,"

.,$

/!"
!"

"

",$

!,"

!,$

-,"

-,$

#,"

#,$

.,"

.,$

/!"
!"

!"#$!"#$

0')'1+2

3+(4516578+'1+249:0

3+(4;+<78+'1+249:0

Figure 7.4: Probability density function of number of SADs for low- and high-motion
macroblocks (MBs).

For each range of the workload, an off-line analysis is performed to obtain the

number of processors that can handle that much workload. For example, the ranges

of [0, 150] and [150, 600] number of SADs can be converted to [0, 5] and [6, 20]

number of processors respectively if the off-line analysis revealed that each processor

can handle 30 SADs within one iteration.

In summary, the workload ranges are computed off-line and stored in the pre-

processing stage in the form of a lookup table to reduce the run-time overhead.

At run-time, the pre-processing stage first categorises the current macroblock (by

analysing its variance and number of SADs of neighbouring macroblocks), and then

uses its category to obtain the corresponding workload range from the lookup table.

Hence, the pre-processing stage can predict the workload of current iteration (an

iteration processes a macroblock) in the form of a range (in number of processors)

for the motion estimation stage of the H.264 video encoder.

7.6. PROCESSOR MANAGEMENT HEURISTICS 159

7.6 Processor Management Heuristics

This section describes two heuristics to manage APs at run-time: the first heuristic is

based on only the application’s execution history, while the second heuristic is based

on both the application’s execution and knowledge. For the sake of simplicity, the

heuristics are explained from the perspective of one MP; however they are equally

applicable to other MPs of the adaptive pipelined MPSoC. The heuristics exploit

the fact that an MP cannot exceed Tc clock cycles (throughput constraint) during

an iteration in order to guarantee the required throughput. Therefore, at some

time instants during the current iteration, the heuristics check whether there is a

possibility of violating the Tc constraint. Then, according to the predicted workload

(based on either the application’s execution or a combination of the application’s

execution and knowledge) APs are either activated or deactivated. The following

terms are introduced to explain the heuristics:

• Wa[i]: Actual workload of the i-th iteration, equal to the number of APs that

are active at the end of the i-th iteration. For the current iteration, Wa[i]

holds the number of currently active APs.

• Wp[i]: Predicted workload for the i-th iteration in number of required APs

from the pre-processing stage.

• CC[i]: Clock cycles spent by MP in its i-th iteration which are monitored at

run-time.

• APM : The total number of APs for an MP where APs are denoted as AP0,

AP1, ... APM-1.

• obsW (observation window): The number of consecutive, previous iterations

used at run-time for observation of the application’s execution.

• calW (calculation window): The number of consecutive, previous iterations

used at run-time for calculation of the average workload in those iterations.

160 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

Function isLowWorkload

// Called during k-th iteration to check whether it will

have low workload or not based on previous iterations in

the observation window (obsW)

1 for o=0; o<obsW; o++ do
2 if CC[k-1-o] > Tc/2 then
3 return not low workload iteration

4 return low workload iteration

Function isHighWorkload

// Called during k-th iteration to check whether it will

have high workload or not based on previous iterations in

the observation window (obsW)

1 for o=0; o<obsW; o++ do
2 if CC[k-1-o] > Tc then
3 return high workload iteration

4 return not high workload iteration

The calW is restricted to be less than or equal to obsW which means that the

calculation window is a subset of observation window.

The heuristics use two functions – isLowWorkload and isHighWorkload – to de-

termine whether the current iteration will have low workload or high workload,

based upon the application’s execution history. If the clock cycles (CC[i]) of any

one of the previous iterations in the observation window (obsW) exceeded Tc, then

the current iteration is considered to be a high workload iteration. This is because

the violation of throughput constraint in the near past suggests that the chances of

exceeding Tc during current iteration are high. If the clock cycles of all the previous

iterations in the observation window were less than Tc/2, then the current iteration

is considered to be a low workload iteration. This is because low workload iterations

in the near past suggest that there are more chances of current iteration being a low

workload iteration.

7.6. PROCESSOR MANAGEMENT HEURISTICS 161

7.6.1 Application Execution Based Heuristic (Exe Heuris-

tic)

The Exe heuristic monitors the workload of previous iterations (in observation and

calculation windows) to keep a record of the average workload (in number of APs)

of those iterations. The average workload is then used as the predicted workload of

the current iteration, that is, the number of APs that will be required during the

current iteration. The heuristic is shown in Algorithm 3.

The getAPsFromExecution function computes the average number of APs that

should have been active in the previous iterations where the number of the iterations

to consider is equal to the length of the calculation window (calW). The factor

(CC[k − 1 − c] × (Wa[k − 1 − c] + 1)) computes the workload of the (k-1-c)-th

iteration in clock cycles where the addition of one in Wa[k − 1 − c] is due to the

presence of the MP. The number of APs that should have been active in (k-1-c)-th

iteration are then calculated by dividing the workload in clock cycles by Tc. For

example, if the last iteration used 3,000 clock cycles (CC[k − 1] = 3,000) and three

APs were active (Wa[k−1] = 3) under a throughput constraint of 9,000 clock cycles

(Tc = 9,000) and calculation window of one iteration (calW = 1), then the average

Algorithm 3: Exe Heuristic (for the sake of simplicity, boundary cases
are not reported here)

// Called at the start of k-th iteration to decide the

number of APs

1 Wp[k] = getAPsFromExecution();
2 if isHighWorkload() then
3 if Wp[k] > Wa[k] then
4 addAPs = Wp[k]−Wa[k];
5 ACTIVATE addAPs many more APs

6 if isLowWorkload() then
7 if Wp[k] < Wa[k] then
8 subAPs = Wa[k]−Wp[k];
9 DEACTIVATE subAPs many APs

162 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

Function getAPsFromExecution

// Called during the k-th iteration to obtain the average

number of active APs from previous iterations in the

calculation window (calW)

1 APsFromExecution = 0;
2 for c=0; c<calW; c++ do

3 APsFromExecution += � (CC[k−1−c]×(Wa[k−1−c]+1))
Tc

�;
4 return APsFromExecution/calW;

workload in numbers of APs is one (�3,000×(3+1)
9,000 � = 1). Note that Wa[k−1−c] alone

is not used because it is not the true workload of an iteration. For example, in the

running example, three APs were active in the last iteration; however, only one of

them should have been active which is the true workload of the last iteration. At

the end (line 4), getAPsFromExecution function returns the average workload of the

iterations in the calculation window in the number of APs.

The Exe heuristic uses the output of the getAPsFromExecution function as

the predicted workload for the current iteration (line 1). Afterwards, it checks

whether the current iteration will have a high (line 2) or low (line 7) workload

based on the clock cycles of the previous iterations in the observation window using

isHighWorkload and isLowWorkload functions respectively. If the current iteration

is considered to be a high workload iteration and the predicted workload is higher

than the current workload (line 3) then addAPs (equal to the difference between

predicted and current workloads) many extra APs are activated (lines 4 – 5). On

the other hand, if the current iteration is a low workload iteration and the predicted

workload is less than the current workload (line 7), then subAPs (equal to the differ-

ence between predicted and current workloads) many APs are deactivated (lines 8

– 9). Note that boundary cases to ensure the number of active APs does not exceed

APM and some optimisation steps are skipped for the sake of simplicity.

The Exe heuristic keeps the minimum amount of information so that its run-time

overhead is low. Furthermore, the average workload for a given iteration is updated

7.6. PROCESSOR MANAGEMENT HEURISTICS 163

at run-time based on the execution history of the calculation window. However,

the Exe heuristic will have a slow response during sudden changes in workload,

resulting in significant loss of throughput (see Section 7.7.2). The Exe heuristic

portrays typical feedback controller based techniques that have been used in earlier

works [88–90], and hence is a representative of those techniques in the adaptive

pipelined MPSoC proposed here.

7.6.2 Application Knowledge Based Heuristic (Know Heuris-

tic)

As explained in Section 7.5, a pre-processing stage is available which can predict the

workload range of each iteration in the number of APs using the application knowl-

edge. The Know heuristic combines such prediction with statistical information

gathered off-line and the application’s execution monitored at run-time to better

manage APs with quick response. The following terms are used in addition to the

ones described in Section 7.6:

• WSD: Standard deviation of the MP’s workload in the number of APs, avail-

able from off-line statistical analysis.

• APT : Minimum number of APs that should be activated or deactivated at an

instant during the current iteration, which is computed off-line. The value of

APT affects the response time of the MP, that is, how quickly an MP adapts

to the variation in its workload. For example, a high value of APT will enable

a quick response by activating a large number of APs, reducing the impact

on the throughput. However, a very high value (close to APM) will result

in most of the APs being active at all times, reducing the amount of energy

reduction. Therefore, the author computes APT such that the MP can respond

to a variation of WSD
2 (half of the workload’s standard deviation) within Tc

clock cycles to allow a reasonable trade-off between throughput degradation

and energy reduction. Consider that the APs are activated when the current

164 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

iteration’s clock cycles have reached Tc/2 and 3Tc/4 (which will be further

explained later), then:

WSD

2
=

APT

2
+

APT

4

APT =
2WSD

3

The factors APT
2 and APT

4 refer to the workload that can be distributed to APs

at Tc/2 and 3Tc/4 time instants respectively. Thus, if APT = 2WSD
3 many

APs are activated at Tc/2 and 3Tc/4 time instants, then WSD
2 workload can be

handled by those APs without exceeding Tc clock cycles. Further variations in

the workload are addressed by the workload predictions from the application’s

knowledge.

• getAPsFromKnowledge: This function returns the minimum of the workload

range predicted for the current iteration by the pre-processing stage. Recall

from Section 7.5 that the pre-processing stage categorised each macroblock as

either low- or high-motion macroblock and the corresponding workload ranges

in the number of APs were [0, 5] and [6, 20], then getAPsFromKnowledge will

return 0 and 6 for low- and high-motion macroblocks (iterations) respectively.

• APD: The maximum difference between the minimums of consecutive work-

load ranges. For example, APD = 6 for the two workload ranges of [0, 5] and

[6, 20].

The Know heuristics has two parts which are triggered at different time instants

during the current iteration, which isshown in Algorithm 4. The first part (lines

1 – 11) is triggered at the start of each iteration to decide the number of APs in

advance to maximally minimise the penalty on throughput. The minimum number

of APs predicted for the current iteration are obtained using the getAPsFromKnowl-

edge function (line 1). If the predicted workload is more than the current workload,

then addAPs many extra APs are activated (lines 2 – 4). On the other hand, if

7.6. PROCESSOR MANAGEMENT HEURISTICS 165

Algorithm 4: Know Heuristic (for the sake of simplicity, boundary
cases are not reported here)

// Called at the start of k-th iteration to decide the

number of APs

1 Wp[k] = getAPsFromKnowledge();
2 if Wp[k] > Wa[k] then
3 addAPs = Wp[k]−Wa[k];
4 ACTIVATE addAPs many more APs

5 else
6 if isLowWorkload() then
7 Wp[k] = max { Wp[k], getAPsFromExecution() };
8 if Wp[k] < Wa[k] then
9 subAPs = Wa[k]−Wp[k];

10 subAPs = min { subAPs, APT };
11 DEACTIVATE subAPs many APs

// Called at Tc/2, 3Tc/4 and Tc time instants during k-th

iteration to activate more APs

12 if CC[k] == Tc/2 � CC[k] == 3Tc/4 then
13 if isHighWorkload() then
14 addAPs = getAPsFromExecution() - Wa[k];
15 addAPs = max { addAPs, APT };
16 ACTIVATE addAPs many more APs

17 else if CC[k] == Tc then
18 addAPs = APD;
19 ACTIVATE addAPs many more APs

the predicted workload is less than the current workload, then some or all the APs

are deactivated. The number of APs to deactivate are computed by utilising not

only the predicted workload, but also the execution history and off-line statistical

information. Thus, the first step is to check whether the current iteration is con-

sidered a low workload iteration or not based on execution history (line 6). If so,

then the predicted workload is adjusted by taking the maximum among the applica-

tion’s knowledge and execution based predictions (line 7). If the adjusted predicted

workload is less than the current workload (which means that both the application’s

knowledge and execution history suggested use of less number of APs), then subAPs

166 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

many APs are deactivated (lines 8 – 11). The minimum operation in line 10 ensures

that not more than APT many APs are deactivated so that the MP can respond

back quickly when there is a sudden increase in the workload, incorporating the

information from the off-line statistical analysis.

Although the first part of the Know heuristic activates or deactivates APs in ad-

vance for minimum degradation of throughput and maximum reduction of energy,

the throughput constraint can still be violated because both the application’s knowl-

edge and execution based predictions are fuzzy. Therefore, the second part of the

Know heuristic is triggered at Tc/2, 3Tc/4 and Tc instants to check the possibility

of violating the throughput constraint. When triggered at Tc/2 and 3Tc/4 instants

(lines 12 – 16), it checks whether the current iteration is considered a high workload

iteration or not. If so, then addAP many extra APs are activated. The value of

addAPs is computed from the application’s execution history and APT (lines 14 –

15) because the application’s knowledge based prediction has already been utilised

at the start of the current iteration. It is possible that the variation in workload is

too high and even after previous activations of the APs, the clock cycles of current

iteration have reached Tc. At this instant, APD many extra APs are activated to

ensure that the remaining workload is handled within the next Tc clock cycles, intro-

ducing a worst-case penalty of Tc clock cycles. This is because if, for example, the

current iteration is predicted to have a [0, 6] workload range, then it could not have

required activation of more than APD = 6 APs. Otherwise, the current iteration

would have been categorised to have a [6, 20] workload range by the pre-processing

stage (considering there are only two categorisations as described in Section 7.5).

Note that boundary cases, to ensure number of active APs does not exceed APM ,

and some optimisation steps are skipped for the sake of simplicity.

The Know heuristic ensures that the APs are not activated and deactivated mul-

tiple times within the current iteration which otherwise would incur significant over-

head of activation and deactivation. The first part of the heuristic only deactivates

APs if the current iteration is considered a low workload iteration (line 6) which is

7.6. PROCESSOR MANAGEMENT HEURISTICS 167

mutually exclusive to the activation condition in the second part (line 13), avoiding

unnecessary activation and deactivation of APs. Furthermore, the deactivated APs

will remain deactivated until Tc clock cycles in the current iteration.

These run-time processor management heuristics are executed on MPs with a

pool of APs; however, the values of WSD, APM , APT , APD, obsW and calW will

vary from one MP to another depending upon their workload profiles. Note that

the length of the observation and calculation windows (obsW and calW) will affect

the outcome of the heuristics; however, the reason for the use of variable window

lengths is that a designer can tweak the heuristics for different stages of the adaptive

pipelined MPSoC based on their workload profiles. The proposed run-time manage-

ment heuristics do not use any complex computations and hence their overhead is

small (see Section 7.7.2).

7.6.3 System-level Overview

The system-level implementation of the proposed adaptive pipelined MPSoC with

the processor manager, executing a multimedia application such as H.264 video

encoder, is shown in Figure 7.5. A multimedia application is implemented as a

combination of pre-processing and multimedia systems. The pre-processing system

extracts the features of incoming frames to provide useful information to the mul-

timedia system for run-time adaptations. For example, a pre-processing stage can

categorise macroblocks according to the motion contained in them as described in

Section 7.5. The multimedia system implements the video codec on an adaptive

pipelined MPSoC. A processor manager is implemented for each of the MPs with a

pool of APs. More specifically, the processor manager uses either the Exe heuristic

or the Know heuristic to deactivate the idle APs at run-time.

Statistical, architectural and application information obtained through profiling

and off-line statistical analysis is used to guide the two systems at run-time. For

example, the workload ranges (number of SADs for the motion estimation stage)

168 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

P
r
e
-
p
r
o
c
e
s
s
i
n
g

S
y
s
t
e
m

1
.
C
a
t
e
g
o
r
is
a
t
io
n
:

e
.
g
.
,

b
a
s
e
d

o
n

m
o
t
io
n

(
S
e
c
t
io
n

7
.
5
)

2
.
W
o
r
k
lo
a
d

p
r
e
d
ic
t
io
n
:
e
.
g
.
,
N
o
.

o
f

S
A
D
s
,

N
o
.

o
f

A
P
s

(
S
e
c
t
io
n

7
.
5
)

M
u
l
t
i
m
e
d
i
a
S
y
s
t
e
m

H
.
2
6
4
;

M
P
E
G
-
4
;

e
t
c
.

F
r
a
m
e
-
l
e
v
e
l
o
r

M
a
c
r
o
b
l
o
c
k
-
l
e
v
e
l

P
r
o
f
i
l
i
n
g

&

O
f
f
-
l
i
n
e

A
n
a
l
y
s
i
s

A
p
p
l
i
c
a
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n
:

T
h
r
o
u
g
h
p
u
t
;

e
t
c
.

A
r
c
h
i
t
e
c
t
u
r
a
l

I
n
f
o
r
m
a
t
i
o
n
:

M
a
x

A
P
s
;

e
t
c
.

S
t
a
t
i
s
t
i
c
a
l

I
n
f
o
r
m
a
t
i
o
n
:

M
in
,

M
a
x
,

A
v
e
r
a
g
e

W
o
r
k
lo
a
d
;

W
o
r
k
lo
a
d

R
a
n
g
e
s

f
r
o
m

P
D
F
s
;

e
t
c
.

P
r
o
c
e
s
s
o
r

M
a
n
a
g
e
r

1
.
E
x
e

h
e
u
r
is
t
ic

(
A
lg
o
r
it
h
m

3
)

2
.
K
n
o
w

h
e
u
r
is
t
ic

(
A
lg
o
r
it
h
m

4
)

M
P

M
P

M
P

M
P

A
P

M
a
c
r
o
b
l
o
c
k
-
l
e
v
e
l

V
id
e
o

f
r
a
m
e

F
igu

re
7.5:

A
system

-level
im

p
lem

entation
overview

of
ad

ap
tive

p
ip
elin

ed
M
P
S
oC

s.

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 169

are obtained through the statistical analysis which are then converted to equivalent

number of APs through profiling for workload prediction at run-time. Other infor-

mation such as the minimum, average and maximum workload is also provided. The

pre-processing system is expected to work at either the frame-level or macroblock-

level so that the workload predictions for all the macroblocks of a frame is available

to the multimedia system which is working at the macroblock-level. Thus, the pro-

posed run-time manager is applicable to all advanced macroblock based video coding

applications such as H.264, MPEG-4, AVS, and VC1.

The proposed adaptive pipelined MPSoC and processor manager is applicable to

all multimedia applications where a pre-processing stage can be deployed to guide

the run-time manager. If a pre-processing system is not available, then the pro-

cessor manager can use the application knowledge from the multimedia system (for

example, the actual number of SADs of the previous macroblocks) to predict the

future workload; however, such a prediction would be less accurate. The variables

in the run-time management heuristics (WSD, APM , APT , etc.) allow them to be

tweaked according to the workload profiles of a sub-kernel or stage of a multime-

dia application. It should be noted that the run-time processor manager proposed

here can be used in architectures other than the pipelined MPSoCs. For exam-

ple, in a master-slave architecture, the master processor will execute the processor

management heuristics to deactivate the idle slave processors.

7.7 HD720p H.264 Video Encoder Case Study

Implementation of an H.264 video encoder for HD720p resolution at 30 fps on an

adaptive pipelined MPSoC is presented in this section for comparison and evaluation

of the proposed heuristics.

170 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

7.7.1 Implementation Details

The adaptive pipelined MPSoC for H.264 video encoder was implemented using

Xtensa LX3 [25] family of processors, which come with the RC-2010.1 tool suite. Like

Chapter 5, the processors were customised automatically by utilising the XPRES

tool and the adaptive pipelined MPSoC was created in the XTMP environment. The

XTMP uses the XT-XENERGY tool to measure the power and energy of the proces-

sors in a multiprocessor environment. Hence, the author obtained the throughput

and energy of the adaptive pipelined MPSoC from the XTMP, where all the proces-

sors were running at 1 GHz and XT-XENERGY was configured for a given 45nm

technology.

The H.264 video encoder application graph from Chapter 3 is reproduced in

Figure 7.6 with additional details. Due to the feedback loop between the Loop Filter

(LF) and the Motion Estimation (ME) sub-kernels, execution of this task graph at

frame-level will introduce unacceptable delay between each iteration, and thus will

provide no useful benefit. Thus, the task graph is executed at macroblock-level

where each sub-kernel processes one macroblock in an iteration (which is typical of

real-time implementations of the H.264 encoder/decoder [247]). Furthermore, the

entropy coding processes macroblocks in parallel to the reconstruction path (ITQ

and LF) to increase the throughput of the system. The annotations around the

arrows show the amount of data (buffer sizes in adaptive pipelined MPSoC) in

bytes being transferred in each iteration. For example, the CC sub-kernel sends

the Y component of a 16×16 macroblock to ME sub-kernel, which is a transfer

of 256 bytes in each iteration. It should be noted that the CC and IP/MC sub-

kernels send data to IP/MC and ITQ sub-kernels respectively in advance (bypassing

the intermediate sub-kernels) to increase the throughput of the system. In this

task graph, ME, IP/MC and EC sub-kernels exhibit run-time variation in their

workloads, requiring a run-time processor manager for each of them. However, in this

case study, the author only deployed adaptability for the ME sub-kernel, providing

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 171

CC

EC

LF

ITQ

TQ

IP/

MC

ME

Encoded

Bitstream

256

384

8

768

384

784

384

784

256

CC: Colour Conversion ME: Motion Estimation

IP: Intra Prediction MC: Motion Compensation

TQ: Transform & Quantise ITQ: Inverse TQ

LF: Loop Filter EC: Entropy Coding

(bytes/MB)

384

384

Figure 7.6: Details of an H.264 video encoder application.

172 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

a proof of concept for the proposed run-time management heuristics. Thus, all the

sub-kernels in Figure 7.6 were mapped on MPs in the adaptive pipelined MPSoC,

except the ME stage where a combination of MPs and APs was used.

An H.264 encoder supporting HD720p at 30 fps needs to process 30 × 3600

= 108,000 macroblocks/sec. Since processors are running at 1 GHz, a macroblock

should be processed within 1×109

108,000 ≈ 9,260 clock cycles. Thus, Tc = 9,100 clock cy-

cles is used to have a conservative throughput constraint. The profiling and off-line

statistical analysis of the ME sub-kernel (with a fast motion estimator [286]) using

various input video sequences yielded 225 average number of SADs with a maximum

of 500 SADs and an average standard deviation of 200 SADs per macroblock. Fur-

thermore, the ME processor was able to compute only 30 SADs in Tc clock cycles.

The pre-processing stage provided workload prediction by categorising macroblocks

as either low-, medium- or high-motion macroblocks [284]. The workload range of

each category in the number of APs was computed using off-line analysis and was

saved in a lookup table for use at run-time. These ranges were [0, 4], [5, 10] and [11,

16] (number of APs) for low-, medium- and high-motion macroblocks respectively.

Using the above described information and setup:

• WSD = 200
30 = 6.67.

• APM = �500
30 � = 16 (17 processors including the MP).

• APT = 2WSD
3 = 2×6.67

3 ≈ 4.

• APD = 6.

Therefore, sixteen APs were connected to the MP in the ME stage of the adaptive

pipelined MPSoC. These APs could be either clock- or power-gated when idle. The

author assumed no overhead for clock-gating an AP as it can be done in a few

clock cycles. However, for power-gating an AP, an activation/deactivation time and

energy consumption of 100 ns (100 clock cycles at 1 GHz) and 250 nJ were assumed

respectively, which are typical of processor-level power-gating [287, 288]. Note that

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 173

Processor Area Power (mW)

(KGates) Dynamic Leakage

CC 92.44 43.24 6.80

ME 103.23 41.49 8.40

ME-AP0 – ME-AP15 103.23 ≈29.00 ≈6.51

IP/MC 103.65 40.37 7.69

TQ 91.56 48.42 6.50

ITQ 93.50 49.68 7.07

LF 87.76 41.68 6.48

EC 90.12 44.75 6.49

Table 7.1: Hardware-related details of the adaptive pipelined MPSoC for ‘pedestrian’
video sequence.

an AP is activated and then appropriate data is sent to it by the MP to overlap

the activation time with the communication time as the FIFOs between the MP

and APs are always active. The communication latency of sending data (at least

256 ns assuming a byte transfer takes at least 1 clock cycle @ 1 GHz) to APs after

activating them is larger than the activation overhead of power-gating (100 ns) and

hence did not affect the throughput of the pipelined MPSoC.

The MP monitored its execution in clock cycles per iteration using a built-in

timer module. The MP and APs executed the same code of ME sub-kernel except

that the MP also executed the two heuristics. The Exe heuristic used obsW = 8

and calW = 1, while the Know heuristic used obsW = 2 and calW = 1. This is

because the Exe heuristic needs longer windows of the application’s execution to

better capture the run-time variation in workload compared to the Know heuristic,

where the application’s knowledge compensates for the error in the workload profile

captured from smaller windows of execution.

7.7.2 Results and Analyses

The adaptive pipelined MPSoC was executed for five different HD720p (high defi-

nition) video sequences: pedestrian; sky; station; sunflower; and, tractor [280]. The

174 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

hardware-related details of the adaptive pipelined MPSoC are reported in Table 7.1,

where the second and third columns summarise the area and power consumption

of the MPs and APs for the ‘pedestrian’ video sequence. Other video sequences

exhibited similar trends, and thus are not reported here.

Figure 7.7(a) illustrates the adaptability of the ME stage at the iteration level

for the ‘pedestrian’ video sequence. The figure plots the true workload (number of

SADs computed in each iteration/30 because each processor can compute 30 SADs

in Tc clock cycles) and the number of active APs in each iteration (Wa[i]) for both

the Exe and Know heuristics in the first 100 iterations. Both the Exe and Know

heuristics adapt to the variation in workload; however, the Know heuristic adapts

better than the Exe heuristic. Firstly, the Know heuristic responds more quickly

to sudden variations in workload due its proactive nature resulting from the use

of the application’s knowledge as marked in Figure 7.7(a). Secondly, the Know

heuristic changes the number of active APs more often than the Exe heuristic to

better keep up with the true workload. The throughput of the ME stage is reported

in Figure 7.7(b) for the first 100 iterations where the y-axis plots the clock cycles

of each iteration including the overhead of the execution of the heuristics (CC[i]).

It is obvious that the Exe heuristic incurred a significant penalty (up to 55,000

clock cycles) when the workload changed suddenly and significantly. On the other

hand, the Know heuristic incurred a small penalty by activating a number of APs

in advance due to the workload prediction from the application’s knowledge. Thus,

the Exe heuristic will result in more degradation of the throughput compared to the

Know heuristic due to its reactive nature. Figures 7.7 – Figure 7.11 show similar

trends for the other video sequences as well.

Table 7.2 summarises the results of the comparison of the two heuristics. The

second column reports the average number of active APs which is less than APM

(16 in the experiments) for all the video sequences, indicating the possibility of

significant energy reduction. The third major column, termed ‘Tc Violation’, reports

the number of iterations (as a percentage of the total iterations) that took more than

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 175

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

#

A
c
t
i
v
e

A
P
s

Iteration

True Workload Exe Know

Know heuristic responds more

quickly than the Exe heuristic

(a) Adaptability

0

10

20

30

40

50

60

0 20 40 60 80 100

C
l
o
c
k

C
y
c
l
e
s

(
x
1
0
0
0
)

Iteration

Tc Exe Know

Little impact on throughput

by the Know heuristic

(b) Throughput

Figure 7.7: (a) Adaptability and (b) Throughput for the ‘pedestrian’ video sequence.

176 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

#

A
c
t
i
v
e

A
P
s

Iteration

True Workload Exe Know

(a) Adaptability

0

10

20

30

40

50

60

0 20 40 60 80 100

C
l
o
c
k

C
y
c
l
e
s

(
x
1
0
0
0
)

Iteration

Tc Exe Know

(b) Throughput

Figure 7.8: (a) Adaptability and (b) Throughput for the ‘sky’ video sequence.

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 177

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

#

A
c
t
i
v
e

A
P
s

Iteration

True Workload Exe Know

(a) Adaptability

0

10

20

30

40

50

60

0 20 40 60 80 100

C
l
o
c
k

C
y
c
l
e
s

(
x
1
0
0
0
)

Iteration

Tc Exe Know

(b) Throughput

Figure 7.9: (a) Adaptability and (b) Throughput for the ‘station’ video sequence.

178 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

#

A
c
t
i
v
e

A
P
s

Iteration

True Workload Exe Know

(a) Adaptability

0

10

20

30

40

50

60

0 20 40 60 80 100

C
l
o
c
k

C
y
c
l
e
s

(
x
1
0
0
0
)

Iteration

Tc Exe Know

(b) Throughput

Figure 7.10: (a) Adaptability and (b) Throughput for the ‘sunflower’ video sequence.

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 179

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

#

A
c
t
i
v
e

A
P
s

Iteration

True Workload Exe Know

(a) Adaptability

0

10

20

30

40

50

60

0 20 40 60 80 100

C
l
o
c
k

C
y
c
l
e
s

(
x
1
0
0
0
)

Iteration

Tc Exe Know

(b) Throughput

Figure 7.11: (a) Adaptability and (b) Throughput for the ‘tractor’ video sequence.

180 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

V
id
eo

A
v
g
.
A
ctiv

e
A
P
s

T
c
V
io
la
tio

n
(%

)
M

in
.
T
h
ro

u
g
h
p
u
t

A
v
g
.
T
h
ro

u
g
h
p
u
t

S
eq

u
en

ce
E
x
e

K
n
ow

E
x
e

K
n
ow

E
x
e

K
n
ow

E
x
e

K
n
ow

p
ed
estrian

13
10

3
11

24.17
fp
s

28.76
fp
s

25.42
fp
s

29.00
fp
s

sky
10

8
5

8
23.22

fp
s

28.76
fp
s

23.98
fp
s

29.10
fp
s

station
5

4
3

4
25.40

fp
s

29.67
fp
s

25.53
fp
s

29.72
fp
s

su
n
fl
ow

er
12

10
4

9
24.50

fp
s

28.79
fp
s

24.74
fp
s

28.94
fp
s

tractor
6

5
4

5
24.93

fp
s

29.53
fp
s

25.12
fp
s

29.56
fp
s

T
ab

le
7.2:

C
om

p
arison

of
E
xe

an
d
K
n
ow

h
eu
ristics.

7.7. HD720P H.264 VIDEO ENCODER CASE STUDY 181

Tc clock cycles, hence violating the throughput constraint. For example, 11% of the

iterations in the ‘pedestrian’ video sequence exceeded Tc clock cycles. The impact

of such violations on the throughput of the adaptive pipelined MPSoC is reported

in the fourth and fifth major columns. For example, the minimum and average

throughput for ‘pedestrian’ video sequence is 28.76 and 29.00 fps respectively, which

is the worst amongst all the video sequences. It is interesting to note that the Exe

heuristic uses more APs and incurs less number of throughput violations than the

Know heuristic, yet it degrades the throughput more than the Know heuristic. The

primary reason is that the Exe heuristic does not activate/deactivate APs at the right

instants during the execution of the application due its reactive nature. Therefore,

even with less number of throughput violations, each violation had a significant

throughput penalty. To summarise, the Know heuristic incurs minimal degradation

of the throughput due to a combination of run-time workload monitoring, workload

prediction and off-line statistical analysis.

Let us now have a look at the energy reduction due to the proposed processor

manager compared to a worst-case pipelined MPSoC where all the APs are always

active. Figure 7.12 summarises the findings. The light and dark bars refer to the

energy reduction using clock- and power-gating for deactivation of the idle APs re-

spectively. The results show an energy reduction of up to 35% and 39% with a

minimum of 14% and 9% for clock- and power-gating respectively, when the Know

heuristic is used. These energy reductions were computed from the total energy

consumption of the pipelined MPSoC (only the energy consumption of the proces-

sors was considered) rather than just the ME stage, including the energy overhead

of activation/deactivation of an idle AP and the run-time processor management

heuristics. Note that the Exe heuristic always saved less energy compared to the

Know heuristic. In summary, the adaptive pipelined MPSoC with the Know heuris-

tic delivered a minimum throughput of 28.75 fps with energy reduction of at least

9% using either clock- or power-gating when compared to a worst-case pipelined

182 CHAPTER 7. ADAPTIVE PIPELINED MPSOCS

0

5

10

15

20

25

30

35

40

45

E
n
e
r
g
y

R
e
d
u
c
t
i
o
n

(
%
)

Clock-gating Power-gating

Exe Know Exe Know Exe Know Exe Know Exe Know

pedestrian sky station sunflower tractor

Figure 7.12: Energy reduction of an adaptive pipelined MPSoC compared to a
worst-case pipelined MPSoC.

MPSoC. Furthermore, the overhead of the processor manager is reasonable, illus-

trated by the fact that the throughput is not significantly degraded and the energy

consumption of the adaptive pipelined MPSoC is reduced.

7.7.3 Discussion

Typically, power-gating results in more energy reduction than clock-gating as it

reduces leakage energy in addition to dynamic energy. However, in Figure 7.12,

for the ‘pedestrian’, ‘sky’ and ‘sunflower’ video sequences, energy reduction from

power-gating is lower than that of clock-gating. This is because power-gating in-

curs an overhead of activation/deactivation, which can increase significantly when

the number of AP activations/deactivations increase. Figure 7.13 reports the total

number of AP activations and deactivations (switching count) during the execution

of the adaptive pipelined MPSoC. The switching count is significantly higher for the

‘pedestrian’, ’sky’ and ‘sunflower’ sequences because these sequences exhibit high

run-time workload variations, resulting in less energy reduction for power-gating.

7.8. SUMMARY 183

0

2000

4000

6000

8000

10000

12000

14000

pedestrian sky station sunflower tractor

A
P
s
'
S
w
i
t
c
h
i
n
g

C
o
u
n
t

Figure 7.13: Switching count of APs in the adaptive pipelined MPSoC.

Therefore, the next chapter focuses on selection of an appropriate power reduction

technique at run-time by the use of multiple power states and a power manager

rather than blind use of either only clock-gating or only power-gating.

7.8 Summary

This chapter introduced an adaptive pipelined MPSoC architecture consisting of

main processors and auxiliary processors for run-time adaptation to varying work-

loads. In addition, a distributed run-time processor manager was proposed to de-

activate idle auxiliary processors, considering the variations in workload. By imple-

menting an advanced multimedia application, the H.264 encoder supporting HD720p

at 30 fps, the author illustrated that the adaptive pipelined MPSoC delivered a

minimum throughput of 28.75 fps with energy reductions of up to 34% and 39%

for clock- and power-gating based deactivation of auxiliary processors respectively.

These results show that adaptive pipelined MPSoCs provide an energy-efficient im-

plementation platform for multimedia applications with run-time varying workload

compared to worst-case pipelined MPSoCs.

Chapter 8

Power Management in Adaptive

Pipelined MPSoCs

System-level power management schemes are often deployed in MPSoCs to exploit

the idleness of processors at run-time for energy reduction by putting idle processors

in low-power states [289, 290]. These schemes decide “when” and “which” power

state should be selected for a processor to maximally reduce the energy consumption

of the MPSoC. The decision is a challenging one due to the latency and energy

overheads involved in a transition from one power state to another. The aim of this

chapter is to propose a power manager for an adaptive pipelined MPSoC to select

the most suitable power state for each of the idle auxiliary processors.

Most of the run-time power management schemes are categorised as predictive

schemes and stochastic techniques [289]. Predictive techniques typically exploit

temporal correlation between the past history of the workload and its near future to

predict the upcoming workloads. On the other hand, stochastic techniques model

the workload behaviour as a controlled Markov process, and then find the optimal

power management scheme based on the model. Predictive techniques suffer when

the workload varies suddenly and significantly [289], while stochastic approaches

suffer from the inaccuracies in the workload model and the complexity involved in

185

186 CHAPTER 8. POWER MANAGEMENT

Power Description Power Transition Wake-up
State Consumption Energy Latency

0 Active 1 0 0
1 CG 0.4 0.01 0.01
2 Partially PG 0.1 0.4 0.6
3 Fully PG 0.01 1 1

Table 8.1: Typical power states of a processor (CG and PG stand for Clock-Gated
and Power-Gated respectively). The values of power consumption, transition energy
and wake-up latency are normalised, and are inferred from [291].

solving the optimisation problem at run-time [290]. These issues primarily limit

the use of both the predictive and stochastic schemes to systems where either the

workload is very regular or the workload model is known a priori. Some advanced

history based heuristics and stochastic schemes have been shown to predict with high

accuracy in varying workloads; however, their computational complexity severely

limits their use [290] and may not be suitable for fine-grained run-time management

(which is required by real-time multimedia applications to avoid degradation of the

throughput). Hence, Liu et al. [248] proposed the use of application knowledge for

efficient run-time power management schemes because the application by far knows

(or may know) the most about its future workload. The experiments illustrated

application-aware power management outperforming OS-level and hardware-level

schemes. However, the work in [248] exploited only a limited application knowledge

(algorithmic properties such as the size and type of the frames) in a uniprocessor

system. In this chapter, the author leverages more diverse application knowledge

(algorithmic and input data properties) for run-time power management in adaptive

pipelined MPSoCs.

8.1 Motivational Example

Table 8.1 shows four typical states available for a processor (where CG and PG stand

for Clock-Gated and Power-Gated respectively). The values illustrate that the Power

State 3 (PS3) will result in the most energy saving; however, the amount saved will

8.1. MOTIVATIONAL EXAMPLE 187

0

1

0 200 400 600 800 1000

A
c
t
i
v
i
t
y

Iteration

PS1 PS2PS3 PS3

Figure 8.1: Activity of one of the APs in the motion estimation stage of the H.264
video encoder.

depend on the amount of time the processor will remain in PS3, and this saving

should amortise the energy overhead of the transition. Like Chapter 7, consider

an adaptive pipelined MPSoC where the motion estimation stage is implemented

with oneMain Processor (MP) and sixteen Auxiliary Processors (APs) (designed for

HD720p at 30 fps), where the APs can be deactivated using either only clock-gating

or only power-gating. These sixteen APs are not active at all times, and are used only

when the workload is beyond the capacity of the MP. Figure 8.1 shows the activity of

one of the APs in the motion estimation stage, where 1 and 0 mean the AP is active

and idle respectively. The figure shows that the idle periods (number of consecutive

idle iterations) of the AP varies significantly at run-time. Power-gating will not be

beneficial during short idle periods due to its relatively large wake-up overhead, while

clock-gating will not be beneficial during long idle periods as it only saves dynamic

power. Hence, both clock- and power-gating alone, as used in Chapter 7, do not

exploit the full potential of idle periods because they do not evaluate the suitability

of clock- and power-gating depending upon the duration of an idle period. On the

other hand, a run-time power manager with the provision of multiple power states

will provide a fine-grained power reduction knob as multiple power states [291] trade-

off wake-up latency and energy with the possible energy savings in an MPSoC. For

example, Figure 8.1 illustrates that the AP is transitioned to different power states

188 CHAPTER 8. POWER MANAGEMENT

(PS1, PS2 and PS3 from Table 8.1) depending on the duration of the idle periods

instead of always power-gating or clock-gating it, which will result in more reduction

in energy consumption of an adaptive pipelined MPSoC. However, the challenge is to

predict, with high accuracy and in the presence of run-time variations in workload,

the duration of an upcoming idle period for an AP so that the most beneficial power

state can be selected for it.

Therefore, this chapter builds upon the processor manager of the last chapter

(which determined idle APs during every iteration) to propose a power manager

for an adaptive pipelined MPSoC (to select the most suitable power state for each

of the idle APs). Firstly, an analytical analysis is conducted so as to calculate the

minimum number of iterations for a given power state to be energy-wise beneficial

for an AP. That is, the given power state will be energy-wise beneficial if the AP

stays in that power state for at least the minimum number of iterations of that

power state. Secondly, five heuristics are proposed as part of the power manager to

decide, at run-time, the most beneficial power state for an idle AP. These heuristics

attempt to forecast the duration of an upcoming idle period of an AP using either

the application’s execution history or knowledge. Then, based on the predicted

duration of the idle period, the most suitable power state is selected for an idle AP.

8.2 Power Manager

Figure 8.2 shows a typical adaptive pipelined MPSoC, which is comprised of vari-

ous pipeline stages. The adaptable stages are implemented with a combination of

MPs and APs while the non-adaptable stages are implemented with MPs only. This

makes adaptive pipelined MPSoCs an effective platform for advanced multimedia

applications which contain stages with both almost constant workload and run-time

varying workload. The architecture of the adaptive pipelined MPSoC allows for

both a centralised and a distributed power manager. Like the processor manager

in Chapter 7, a distributed power manager is proposed where an MP monitors and

8.2. POWER MANAGER 189

MP1

MP2 AP2.1AP2.2

MP3

AP

4.2.1

AP

4.1.1

MP5

MP4.1 MP4.2

S1

S5

S4

S3

S2

MP6

S6

Run-time Managers

Processor Manager

Determines the idle APs

Power Manager

Decides the power states

of all the idle APs

List of

idle APs

Figure 8.2: Adaptive pipelined MPSoC’s architecture with run-time managers.

190 CHAPTER 8. POWER MANAGEMENT

controls its own APs, independent of other MPs. Therefore, the power manager can

be tweaked for each stage of the adaptive pipelined MPSoC. For example, differing

stages can have differing power states for the APs depending on the type of proces-

sors used, in addition to different power management heuristics. Note that stages

with almost constant workload do not need any power manager; thus, avoiding

run-time overheads for such stages.

Figure 8.2 zooms in on one of the MPs to illustrate the two run-time managers,

which are used in an adaptive pipelined MPSoC. The first manager, named the

processor manager and described in detail in Chapter 7, decides “when” and “how

many” APs to activate and deactivate. The APs to be deactivated (that is, the idle

APs) are determined at the start of each iteration and remain deactivated until the

end of the current iteration (that is, for Tc clock cycles). The second manager, named

the power manager, then decides the power state of all the idle APs based upon the

durations of the idle periods predicted for them. For example, if the processor

manager reports AP14 and AP15 to be idle during the current iteration, then the

power manager will decide the power states of AP14 and AP15 to maximally reduce

the energy consumption of the adaptive pipelined MPSoC. This chapter uses the

Know heuristic (Algorithm 4) from Chapter 7 in the processor manager. Note that

an iteration of a processor refers to processing of one input data unit, where an

iteration is considered idle if the processor is inactive during it.

8.2.1 Analytical Analysis

The decision on the power state of an idle AP depends on the duration of its idle

period, that is, the number of consecutive idle iterations of the AP. In this sec-

tion, the author shows an analytical method to calculate the minimum number of

iterations for each power state so that if an AP is transitioned to a given power

state for at least the minimum number of iterations, then the transition would be

8.2. POWER MANAGER 191

energy-wise beneficial. For the purpose of analysis, the following terms are intro-

duced (some of the terms were introduced in Chapter 7 and are reproduced here for

ease of readability):

• N power states denoted as PS0, ...PSN−1 with power consumptions P0, ...PN−1

respectively, where Pi > Pj for i < j. Hence, PS0 would be the active state

while PSN−1 would be the most power saving state.

• Eov
i : Energy overhead of switching from PS0 to PSi and back to PS0. It is

assumed that state PSi directly transitions to PS0 without any transition to

intermediate states, which is similar to the assumption used in [290].

• T ov
i : Wake-up latency from PSi to PS0. An AP is activated and then the

data is sent to overlap the activation time with the communication time as

the FIFOs between the MP and the APs are always active. It is assumed that

the communication time is greater than the wake-up latency which is typically

the case with complex multimedia applications (see Section 8.5.1). Hence, T ov
i

will not be the deciding factor for the minimum number of idle iterations.

• Tc: The throughput constraint of the multimedia application. The duration

of an iteration will be Tc clock cycles for all the stages, and hence for all the

MPs and APs.

The reduction in energy consumption in a transition from PS0 to PSi should amor-

tise the overhead of the transition. The energy consumption of an AP for I iterations

in PSi would be:

Pi × Tc × I + Eov
i

The first factor computes the energy consumption of PSi for I iterations, while the

second factor is the overhead of the transition to PSi from PS0 and back to PS0.

To evaluate whether a transition to PSi (higher power state) or a transition to PSj

192 CHAPTER 8. POWER MANAGEMENT

Power State Ij,i Imin
j

0 - -
1 I1,0 = 1 1
2 I2,0 = 1, I2,1 = 2 2
3 I3,0 = 2, I3,1 = 3, I3,2 = 7 7

Table 8.2: Minimum number of iterations required for the power states described in
Table 8.1.

(lower power state) would be beneficial, the energy consumption in PSj including

the overhead should be less than the energy consumption in PSi:

Pj × Tc × I + Eov
j < Pi × Tc × I + Eov

i

I >
Eov

j − Eov
i

(Pi − Pj)× Tc

where 0 ≤ i < j < N . Hence, if the number of idle iterations is more than
Eov

j −Eov
i

(Pi−Pj)×Tc
,

then the transition to PSj (lower power state) would be beneficial, otherwise the

idle AP should be transitioned to PSi (higher power state). Thus,

Ij,i = �
Eov

j − Eov
i

(Pi − Pj)× Tc
�

is defined as the minimum number of iterations for PSj to be beneficial than PSi.

Consequently, a power state can be compared with all the high power states to

obtain the values of Ij,i. The minimum number of iterations for a power state PSj

would then be:

Imin
j = max{Ij,i : ∀ i and 0 ≤ i < j < N}

Let us go through the example power states of Table 8.1 to illustrate the calcu-

lation of Imin
j . The results are shown in Table 8.2. For each power state, the values

of Ij,i are computed assuming Tc = 1 sec. The value of I1,0 signifies the fact that an

AP should only be transitioned to PS1 from PS0 if the AP will be idle for at least

one iteration. It should be noted that a transition to PS2 from PS0 for one iteration

8.2. POWER MANAGER 193

will also be beneficial (I2,0 = 1); however, for PS2 to be beneficial than PS1, the AP

should be in PS2 for at least 2 iterations (I2,1 = 2). Thus, if an AP remains in PSj

for at least Imin
j number of iterations, it is ensured that the energy saving would be

more than the transition to any of the higher power states.

The minimum number of iterations for each power state is computed off-line and

then saved in the MP for use at run-time by its power management heuristic. The

power management heuristic will predict the number of idle iterations (let us say

Ipidle) for an AP at the start of an iteration, which will then be used to obtain the

most beneficial power state from the saved values of Imin
j . For example, for values

of 1, 5 and 8 for Ipidle, the AP will be transitioned to PS1, PS2 and PS3 respectively.

8.2.2 Leveraging Application Knowledge

Like Chapter 7, a pre-processing stage is employed to leverage application knowl-

edge. The pre-processing stage analyses the variance and brightness of macroblocks

of the incoming video frames to categorise them according to the motion contained

in them. The category of the macroblock is then used to select its workload range,

where workload ranges for different categories of macroblocks are computed off-line

and are saved in a lookup table for use at run-time. The selected workload range

is considered the predicted workload of the corresponding iteration of the motion

estimation stage in the adaptive pipelined MPSoC. For example, the pre-processing

stage may categorise macroblocks as either low- or high-motion macroblocks, and

the workload ranges for these two categories may be [0, 5] and [6, 20] number of

APs respectively. Note that the workload prediction is fuzzy as it is in the form of

a range. Also note that application knowledge can be exploited in other ways for

other stages of the adaptive pipelined MPSoC, if required.

194 CHAPTER 8. POWER MANAGEMENT

8.3 Problem Statement

Given the minimum number of iterations for each power state and the number of

idle APs for the current iteration, the goal is to select the most beneficial power state

for the idle APs so as to maximally reduce the energy consumption of the system

with minimal degradation of the throughput.

The challenge is to accurately predict the duration of an idle period for an AP

because an incorrect prediction of idle period’s duration may result in either less

energy reduction or even an increase in energy consumption. Consider the scenario

where the predicted duration is longer than the actual duration of the idle period.

Then, the idle AP may be transitioned to a lower power state (according to the

predicted duration); however, it will be activated before the end of the predicted

duration (due to shorter actual duration). At this instant, it is quite possible that

the energy overhead in transition has not yet been amortised by the energy saving

from the actual duration of the idle period, resulting in an increase rather than

reduction in energy consumption. On the other hand, if the predicted duration of

the idle period is shorter than the actual duration, then the maximum energy saving

will not be exploited as the idle AP might be transitioned to a higher power state.

Thus, a sophisticated run-time manager is required to decide the most beneficial

power state for an idle AP. In addition, such a run-time manager should have low

performance and energy overheads.

8.4 Power Management Heuristics

This section describes five heuristics for run-time management of the power states of

idle APs. The first heuristic uses only the application’s execution history. The other

four heuristics leverage the workload prediction from the application’s knowledge.

Note that the processor manager always decides the number of idle APs at the

start of an iteration. Thus, all the heuristics described below transition the APs

8.4. POWER MANAGEMENT HEURISTICS 195

to their corresponding power states at the start of the iteration. For the sake of

simplicity, the heuristics are explained from the perspective of one MP; however

they are equally applicable to other MPs of the adaptive pipelined MPSoC. The

following terms are introduced to explain the heuristics (some of the terms are

reproduced from Chapter 7 for ease of readability):

• Wa[i]: Actual workload of the i-th iteration, equal to the number of APs that

are active at the end of the i-th iteration. For the current iteration, Wa[i]

holds the number of currently active APs.

• APM : The total number of APs for an MP, where APs are denoted as AP0,

AP1, ... APM-1.

• idleAPs: The list of APs that will be idle during the current iteration, which

is provided by the run-time processor manager.

• Ipidle: The predicted duration of idle period (number of idle iterations) for an

AP.

• Imin
j : The minimum number of iterations for power state PSj as explained in

Section 8.2.1.

8.4.1 Application Execution Based Heuristic (Exe Heuris-

tic)

The Exe heuristic monitors the workload of the previous iterations to keep a record of

the average duration of an idle period (average number of idle iterations) of each AP

which is later used to predict the duration of an idle period for an AP. The algorithm

is shown in Algorithm 5. The algorithm keeps the total number of idle iterations

(totalIdleIterations array) and the total number of idle periods (idlePeriods array)

seen till the current iteration (k-th iteration in the Algorithm 5) for all the APs. The

application’s execution information is populated at the end of the current iteration

196 CHAPTER 8. POWER MANAGEMENT

Algorithm 5: Exe Heuristic

// Initialisation

1 for i = 0; i < APM ; i++ do
2 idlePeriods[i] = 0;
3 totalIdleIterations[i] = 0;

// Called at the start of k-th iteration to decide the

power states

4 for i ∈ idleAPs do

5 Ipidle = � totalIdleIterations[i]
idlePeriods[i] �;

6 for j = 1; j < N ; j++ do
7 if Ipidle < Imin

j then
8 break;

9 Transition ith idle AP to power state PSj−1

// Called at the end of k-th iteration to populate the

history information

10 if Wa[k] ≤ Wa[k − 1] then
11 for i = Wa[k]; i < APM ; i++ do
12 totalIdleIterations[i]++;

13 else
14 for i = Wa[k − 1]; i < Wa[k]; i++ do
15 idlePeriods[i]++;

16 for i = Wa[k]; i < APM ; i++ do
17 totalIdleIterations[i]++;

(lines 10 – 17), while this information is used at the start to choose the power state

for idle APs (lines 4 – 9). The predicted duration of idle period, Ipidle, is the average

number of idle iterations so far (line 5), and is used to select the most beneficial

power state using Imin
j (lines 6 – 9).

The application’s execution information is populated as follows. If the current

number of active APs (Wa[k]) is less than the previous iteration’s active APs (Wa[k−

1]), then the total number of idle iterations for all the inactive APs (including the

ones which were rendered idle in the current iteration) is incremented by one (lines

10 – 12). On the other hand, if Wa[k − 1] > Wa[k], then some of the APs were

8.4. POWER MANAGEMENT HEURISTICS 197

16 13 14 13 13 16

k-3 k-2 k-1 k k+1 k+2

AP15 200 201 202 203 204 204

AP14 150 151 152 153 154 154

AP13 120 121 121 122 123 123

AP15 25 25 25 25 25 26

AP14 28 28 28 28 28 29

AP13 20 20 21 21 21 22

totalIdle

Iterations

idle

Periods

Iteration

W
a
[k]

Figure 8.3: An example illustrating the working of the Exe heuristic.

activated in the current iteration, and for these APs the number of idle periods

(because the idle period of these APs has just finished) is incremented by one (lines

14 – 15). For the rest of the APs, the total number of idle iterations in incremented

by one (lines 16 – 17). An example illustrating the working of the algorithm is shown

in Figure 8.3, where APM = 16 and the calculation is shown for only the last three

APs. At iteration k-2, consider idleAPs = {13, 14, 15}. Then, the Exe heuristic

will put AP15 (Ipidle = �200/25� = 8) to PS3 (since 8 ≥ Imin
3 , see Table 8.2), while

AP14 (Ipidle = �151/28� = 5) and AP13 (Ipidle = �121/20� = 6) will be transitioned

to PS2.

It should be noted that the Exe heuristic keeps the minimum amount of infor-

mation so that its run-time overhead is low. Furthermore, the average duration of

idle period for each AP is updated at run-time based on the application’s execution;

however, the Exe heuristic will not be able to predict an idle period very accurately

due to sudden variations in workload (see Section 8.5.2).

8.4.2 Application Knowledge Based Heuristics (Know Heuris-

tics)

As explained in Section 8.2.2, a pre-processing stage is available which can predict

the workload of an iteration beforehand in the number of APs that will be required

during that iteration. In this section, the author shows how that prediction can

198 CHAPTER 8. POWER MANAGEMENT

be used to predict the duration of idle periods for APs, and then the author shows

how the predicted duration of an idle period is used by the heuristics to decide

the power states of idle APs. The following terms are used in addition to the ones

described in Section 8.4 (some of the terms are reproduced from Chapter 7 for ease

of readability):

• Wp[i]: Predicted workload for the i-th iteration in number of required APs

from the pre-processing stage.

• idlePeriods[k][i] : At i-th iteration, the duration of the idle period (number

of consecutive idle iterations) for the k-th AP. For example, idlePeriods[0][10]

= 3 means that the duration of the idle period starting at iteration 10 for

AP0 is 3 iterations. That is, starting at iteration 10, AP0 will remain idle

for 3 iterations until iteration 12. This table is populated using the workload

prediction from the pre-processing stage.

• MBN : The total number of macroblocks in a frame. Although this infor-

mation is specific to video encoder/decoder applications; however, it is used

for ease of understanding and is not a limitation of the proposed heuristics.

This information can be generalised as the maximum number of data units

(iterations) in a multimedia application that can be pre-processed in advance

for extraction of useful information and workload prediction for the run-time

managers.

The example in Figure 8.4 illustrates the computation of idlePeriods table for the

last four APs only where APM = 16. The idea is to look into the future iterations to

compute the duration of idle period of an AP, if it is deactivated at the start of the

current iteration. For example, at iteration i in Figure 8.4, if AP15 is deactivated,

then it will be idle for the next 5 iterations according to the workload prediction

because it will be activated again in iteration i+5 (when Wp[i+5] = 16). Hence,

the predicted duration of idle period for AP15 at iteration i will be 5. As another

8.4. POWER MANAGEMENT HEURISTICS 199

16 13 14 13 13 16

i i+1 i+2 i+3 i+4 i+5

AP15 5 4 3 2 1

AP14 5 4 3 2 1

AP13 2 1 3 2 1

AP12 1 1 1 1 1

idle

Periods

Iteration

W
p
[i]

Figure 8.4: An example of populating idlePeriods table.

example, AP12 will be idle for only 1 iteration as it will be used in iteration i+1

according to the predicted workload.

Algorithm 6: Populate idlePeriods Table (for the sake of sim-
plicity, boundary cases are not reported here)

1 for i = 0; i < MBN ; i++ do
2 if i == 0 then // First iteration
3 pHW = 0;
4 for ii=i+1; i < MBN ; ii++ do
5 for k = pHW ; k < Wp[ii]; k++ do
6 idlePeriods[k][i] = ii− i;

7 if Wp[ii] > pHW then
8 pHW = Wp[ii];
9 if Wp[ii] == APM then

10 break;

11 else
12 for k = Wp[i]; k < APM ; ii++ do
13 idlePeriods[k][i] = idlePeriods[k][i-1] - 1;

14 pHW = 0;
15 for ii=i+1; i < MBN ; ii++ do
16 for k = pHW ; k < Wp[ii]; k++ do
17 idlePeriods[k][i] = ii− i;

18 if Wp[ii] > pHW then
19 pHW = Wp[ii];
20 if Wp[ii] ≥ Wp[i] then
21 break;

200 CHAPTER 8. POWER MANAGEMENT

The algorithm to populate the entries of the idlePeriods table is shown in Al-

gorithm 6. It populates the entries for the i-th iteration (i-th column of the table)

based on the (i-1)-th iteration’s values and predicted workloads of future iterations.

The initialisation is done at the first iteration (line 2) where the first column of the

table is populated. Lines 4 – 10 look into the future iterations until the future work-

load equals the maximum number of APs (lines 9 – 10) to calculate the duration of

idle period for all the APs. The variable pWH in lines 7 – 8 tracks the number of

APs for which the duration of idle period has already been computed. For example,

the first run of the for-loop in lines 5 – 6 will compute the duration of idle period for

AP0 – AP12 (since i = 0, Wp[i+1] = 13). The second run of the same for-loop will

only compute the idle iterations for the rest of the APs, that is, AP13 and onwards.

The second part of the algorithm (lines 11 – 21) populates the rest of the columns

of the idlePeriods table. In this part, the duration of the idle period for some of the

APs can be inferred from the previous iteration’s values (lines 12 – 13). For other

APs, the algorithm looks into the predicted workloads of future iterations until the

future workload is the same or higher than the current iteration’s workload (lines 20 –

21) to compute the duration of idle period (lines 14 – 15). For example, in Figure 8.4,

the values for AP14 and AP15 at i+2 are computed by subtracting one from the

values of i+1 iteration; however, the values for AP12 and AP13 are computed from

future workloads. Handling of the boundary cases and some optimisation steps are

omitted for the sake of simplicity in Algorithm 6.

Once the idlePeriods table is available, the decision for the Know heuristic is

simplified. Consider that the Know heuristic has to decide the power state for AP0

at the start of the k-th iteration, then the value of idlePeriods[0][k] (which will be

the predicted duration of the idle period for AP0) will be used to decide the most

beneficial power state for AP0. Algorithmically, it is stated in Algorithm 7. As an

example, in Figure 8.4, if idleAPs = {14, 15} at i+2 iteration, then both AP14

(idlePeriods[14][i+2] = 3) and AP15 (idlePeriods[15][i+2] = 3) will be transitioned

to PS2 (see Table 8.2).

8.4. POWER MANAGEMENT HEURISTICS 201

Algorithm 7: Know Heuristic

// Called at the start of k-th iteration to decide

the power states

1 for i ∈ idleAPs do
2 Ipidle = idlePeriods[i][k];
3 for j = 1; j < N ; j++ do
4 if Ipidle < Imin

j then
5 break;

6 Transition ith idle AP to power state PSj−1

Recall from Section 8.2.2 that the workload prediction from the pre-processing

stage is fuzzy and is represented as a range. However, the algorithm to compute

the idlePeriods table assumes a single value for the predicted workload. Thus, four

different mapping functions to obtain a single value from the predicted workload’s

range are used, resulting in four versions of the Know heuristic. Consider that

Min(R), Max(R), Avg(R) functions return the minimum, maximum and average

values of a range R respectively. Consider Q ranges are available from the pre-

processing stage, which are numbered from 1 to Q where Max(RQ) ≤ APM . The

following text uses the ranges of [0, 5] and [6, 20] in the number of APs for low- (L)

and high-motion (H) macroblocks (from Section 8.2.2), and APM = 20 for exemplary

purposes.

1. MinKnow: Min(Ri) ∀ i is used to map ranges to single values. For example,

for a sequence of [L L H L] macroblocks, the predicted workloads would be [0

0 6 0]. The drawback of computing the idlePeriods table with Min(R) is that

the maximum value of the predicted workload will be Min(RM). This means

that all the APs from Min(RM) to APM -1 will always be considered inactive

according to the predicted workloads. For example, AP6 – AP19 will always

be idle and hence will always be transitioned to PS3 (the most power saving

state from Table 8.2).

2. MaxKnow: Max(Ri) ∀ i is used to map ranges to single values. For the same

202 CHAPTER 8. POWER MANAGEMENT

example of [L L H L] macroblocks, the predicted workloads would be [5 5 20

5]. Unlike MinKnow, MaxKnow introduces an error towards the other end of

the spectrum. Since the minimum value of the workloads will be Max(R1), the

first Max(R1) APs will be considered active during all the iterations according

to the workload prediction. For example, AP0 – AP4 will be active at all times

and hence will only be transitioned to PS1 (the least power saving state from

Table 8.2).

3. AvgKnow: Avg(Ri) ∀ i is used to map ranges to single values. For example,

the predicted workload for the sequence of [L L H L] macroblocks would be

[3 3 13 3]. In AvgKnow, all the APs from 0 to Avg(R1)-1 (AP0 – AP2) will

always be transitioned to PS1, while all the APs from Avg(RM) to APM -1

(AP13 – AP19) will always be switched to PS3.

4. FusedKnow: Min(R1), Avg(Ri), Max(RM) ∀ i, i �= 1, i �= M are used for the

ranges. FusedKnow fuses the minimum of the first range, the maximum of the

last range and the average of the intermediate ranges to compute the predicted

workloads. For example, the sequence of [L L H L] macroblocks would be

translated to [0 0 20 0]. FusedKnow will not suffer from the drawbacks of

MinKnow, MaxKnow and AvgKnow as it uses Min(R1) and Max(RM) for

the first and the last range respectively.

All these heuristics have to compute the idlePeriods table at run-time which

might introduce an unacceptable overhead. The authors solution to this problem

is to execute the table computation algorithm at the pre-processing stage. The

pre-processing stage will write the table into a shared memory from which Know

heuristic will read the values at run-time, keeping its overhead to a minimum. The

computation of the idlePeriods table in the pre-processing stage will not affect the

throughput of the video processing system as the pre-processing stage is not part of

the multimedia system (see Figure 8.5).

8.5. HD720P H.264 VIDEO ENCODER CASE STUDY 203

8.4.3 System-level Overview

The system-level implementation of the proposed adaptive pipelined MPSoC with

the run-time managers, executing a multimedia application such as H.264 video

encoder, is shown in Figure 8.5. Like Chapter 7, a multimedia application is im-

plemented as a combination of pre-processing and multimedia systems. The pre-

processing system extracts the features of incoming frames to provide useful infor-

mation to the multimedia system for run-time adaptation. For example, the pre-

processing stage can categorise the macroblocks according to the motion contained

in them, as described in Section 8.2.2. The pre-processing stage is also responsible

for the computation of the idlePeriods table using Algorithm 6. The multimedia

system implements the video codec on an adaptive pipelined MPSoC. Each MP

with a pool of APs implements run-time processor and run-time power managers.

More specifically, the processor manager uses either the Exe heuristic or the Know

heuristic from Chapter 7 to determine the idle APs at run-time. The power man-

ager uses either the Exe heuristic or the Know heuristic described in Sections 8.4.1

and 8.4.2 to decide the power states of idle APs at run-time. The pre-processing

system is expected to work at the frame-level so that the predicted workload of all

the macroblocks of a frame is available to the multimedia system which is working

at the macroblock-level.

8.5 HD720p H.264 Video Encoder Case Study

In this section, the applicability of the proposed run-time power manager is illus-

trated by implementing an H.264 video encoder on an adaptive pipelined MPSoC

supporting HD720p at 30 fps.

204 CHAPTER 8. POWER MANAGEMENT

P
r
e
-
p
r
o
c
e
s
s
i
n
g

S
y
s
t
e
m

1
.
C
a
t
e
g
o
r
is
a
t
io
n
:

e
.
g
.
,

b
a
s
e
d

o
n

m
o
t
io
n

(
S
e
c
t
io
n

7
.
5
)

2
.
W
o
r
k
lo
a
d

p
r
e
d
ic
t
io
n
:
e
.
g
.
,
N
o
.

o
f

S
A
D
s
,

N
o
.

o
f

A
P
s

(
S
e
c
t
io
n

7
.
5
)

3
.
P
o
p
u
la
t
e

id
le
P
e
r
io
d
s

t
a
b
le

(
A
lg
o
r
it
h
m

6
)

M
u
l
t
i
m
e
d
i
a
S
y
s
t
e
m

H
.
2
6
4
;

M
P
E
G
-
4
;

e
t
c
.

F
r
a
m
e
-
l
e
v
e
l

P
r
o
f
i
l
i
n
g

&

O
f
f
-
l
i
n
e

A
n
a
l
y
s
i
s

A
p
p
l
i
c
a
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n
:

T
h
r
o
u
g
h
p
u
t
;

e
t
c
.

A
r
c
h
i
t
e
c
t
u
r
a
l

I
n
f
o
r
m
a
t
i
o
n
:

M
a
x

A
P
s
;

P
o
w
e
r

S
t
a
t
e
s
;

e
t
c
.

S
t
a
t
i
s
t
i
c
a
l

I
n
f
o
r
m
a
t
i
o
n
:

M
in
,

M
a
x
,

A
v
e
r
a
g
e

W
o
r
k
lo
a
d
;

W
o
r
k
lo
a
d

R
a
n
g
e
s

f
r
o
m

P
D
F
s
;

e
t
c
.

R
u
n
-
t
i
m
e

M
a
n
a
g
e
r
s

1
.
P
r
o
c
e
s
s
o
r

m
a
n
a
g
e
r
:

E
x
e

o
r

K
n
o
w

h
e
u
r
is
t
ic

(
A
lg
o
r
it
h
m

3

o
r

4
)

2
.
P
o
w
e
r

m
a
n
a
g
e
r
:

E
x
e

o
r

K
n
o
w

h
e
u
r
is
t
ic

(
A
lg
o
r
it
h
m

5

o
r

7
)

M
P

M
P

M
P

M
P

A
P

M
a
c
r
o
b
l
o
c
k
-
l
e
v
e
l

V
id
e
o

f
r
a
m
e

F
igu

re
8.5:

A
system

-level
im

p
lem

entation
overview

of
ru
n
-tim

e
m
an

agers
in

ad
ap

tive
p
ip
elin

ed
M
P
S
oC

s.

8.5. HD720P H.264 VIDEO ENCODER CASE STUDY 205

8.5.1 Implementation Details

The adaptive pipelined MPSoC created for the H.264 video encoder in Chapter 7

is used in this chapter as well. For proof of concept, both the processor and power

managers were implemented for only the motion estimation stage. The motion

estimation stage contained one MP and sixteen APs, running at a frequency of

1 GHz. Energy consumption of the adaptive pipelined MPSoC was measured by

configuring the processors for a given 45nm technology.

The three power states shown in Table 8.3 were used for the APs. The values

of transition energy and wake-up latency were inferred from [287, 288], while the

values of Imin
j were computed according to the equations described in Section 8.2.1

with Pdyn = 28.5 mW, Pleak = 6.50 mW and Tc = 9,100 clock cycles (to support ≥

30 fps). The adaptive pipelined MPSoC was tested with several video sequences to

obtain average values of Pdyn and Pleak of an AP. In the adaptive pipelined MPSoC,

the latency of sending the data (at least 256 ns assuming a byte transfer takes at

least 1 clock cycle @ 1 GHz, see Chapter 7, Section 7.7.1) to APs after activating

them was larger than the wake-up latency of PS2 (100 ns) and hence did not affect

the throughput of the pipelined MPSoC.

Like Chapter 7, the pre-processing stage categorised all the macroblocks of a

frame into low-, medium- and high-motion macroblocks at run-time. The workload

of each category in the number of APs was computed using offline analysis and was

saved in a lookup table for use at run-time. The ranges (R1, R2 and R3) for predicted

workload of low-, medium- and high-motion macroblocks were [0, 4], [5, 10] and [11,

16] (number of APs) respectively. These ranges were also used by Algorithm 6 to

Power Power Transition Wake-up Imin
j

State Consumption Energy (nJ) Latency (ns)
0 Pdyn + Pleak 0 0 -
1 Pleak 1 3 1
2 ∼ 0 250 100 9

Table 8.3: Power states of the processors in the adaptive pipelined MPSoC.

206 CHAPTER 8. POWER MANAGEMENT

compute the idlePeriods table for the Know heuristic.

8.5.2 Results and Analyses

The proposed power manager was tested with five different HD720p video sequences:

pedestrian; sky; station; sunflower; and, tractor. Firstly, the capability of each

heuristic in choosing the correct power state for the idle APs is illustrated. Figure 8.6

shows part of the whole results where the power state of AP0 and AP15 is plotted

for the first 250 iterations for each of the five heuristics when the ‘pedestrian’ video

was inputted to the adaptive pipelined MPSoC. Several notable facts are illustrated

in the figure with labels A – E:

• Label A illustrates the scenario of incorrect power state transitions by the

Exe heuristic. The duration of the idle periods pointed by the first two arrows

is less than nine iterations. Hence, AP0 should have been transitioned to PS1;

however, the average duration of an idle period according to the current state of

the application’s execution information was more than nine iterations. Thus,

the Exe heuristic transitioned AP0 to PS2 which is not beneficial. The last

arrow points out the converse scenario. Due to the recent short idle periods,

the average duration of idle periods (from application’s execution) dropped

below nine, resulting in AP0’s transition to PS1 instead of PS2 (the correct

power state).

• Label B illustrates the drawback of the MaxKnow heuristic. Recall from Sec-

tion 8.4.2 that the MaxKnow heuristic considers the first Max(R1) APs (AP0 –

AP3 in the adaptive pipelined MPSoC) active during all the iterations. Thus,

it is always switching AP0 to PS1 (the least power saving state) irrespective

of the duration of the idle period.

• Label C illustrates the problem with the MinKnow heuristic. In the MinKnow

heuristic, AP11 – AP15 (Min(R3) to APM -1) will be considered inactive at all

8.5. HD720P H.264 VIDEO ENCODER CASE STUDY 207











Figure 8.6: Power states of AP0 and AP15 for the ‘pedestrian’ video sequence for
(a) Exe (b) MinKnow (c) MaxKnow (d) AvgKnow and (e) FusedKnow heuristics.

208 CHAPTER 8. POWER MANAGEMENT

times. Hence, AP15 is always transitioned to PS2 (the most power saving

state) according to the MinKnow heuristic.

• Label D shows the scenarios where the AvgKnow heuristic will take wrong

decisions on the power state of an AP. Since the AvgKnow heuristic uses

Avg(R) for converting the ranges to single values, it will always consider AP0

as active and AP15 as inactive resulting in their transitions to PS1 and PS2

respectively irrespective of the idle periods’ durations.

• Label E illustrates the scenario where the fuzzy workload prediction from the

pre-processing stage can be misleading. AP15 should have been transitioned

to PS2 as the duration of the idle period is more than nine iterations, instead

it was transitioned to PS1. Frequent wrong decisions on the appropriate power

state might result in increased energy consumption; however, it is shown later

that the number of wrong decisions from the FusedKnow heuristic is very low.

This can also be seen from the graphs where the FusedKnow chose the wrong

power state only once, that is, at Label E.

Figure 8.6 illustrates that FusedKnow performs the best in selecting the most ben-

eficial power state for the two APs. Other APs in the adaptive pipelined MPSoC

and other video sequences exhibited similar trends. Note that the use of only clock-

gating and only power-gating in the processor manager of Chapter 7 would have

always resulted in transition of both AP0 and AP15 to PS2 and PS1 respectively.

To compare the accuracy of the heuristics, an “Optimal” scenario was created

by using the true workload of the motion estimation stage as the predicted work-

load, where the true workload was obtained from actual execution of the adaptive

pipelined MPSoC. The power states selected in the optimal scenario would be the

most beneficial states because the exact durations of idle periods are known from

the actual execution. The results are reported in Table 8.4. The values report the

number of wrong decisions taken by a heuristic as a percentage of the total deci-

sions taken by it. For example, the Exe heuristic took 15.35% wrong decisions in

8.5. HD720P H.264 VIDEO ENCODER CASE STUDY 209

Video Exe Min Max Avg Fused
Sequence Know Know Know Know
pedestrian 15.35 27 7.05 20.23 1.57

sky 52.13 20.94 14.5 21.10 1.64
station 47.28 18.03 25.52 21.64 2.53

sunflower 26.41 24.51 18.09 20.75 1.43
tractor 48.29 18.85 18.96 23.77 0.68

Table 8.4: Percentage error in the selection of power states by the power management
heuristics when compared to the optimal scenario.

the selection of the power states for the ‘pedestrian’ video sequence. The second

column shows that the error of the Exe heuristic is quite high which corroborates the

fact that the application’s execution based heuristics do not perform well in a widely

varying workload. Column 6, on the other hand, reports the error of the FusedKnow

heuristic which is always less than 3%. This shows that appropriate leveraging of

application knowledge can significantly improve the efficacy of the run-time power

management heuristics. Another interesting fact is that the FusedKnow heuristic

achieved such an accuracy using only fuzzy workload predictions (ranges of predicted

workloads). Availability of better predictions (for example, 10 ranges instead of 3)

would have further improved the accuracy of the FusedKnow heuristic.

Let us now examine the energy reduction achieved by the five power management

heuristics. The proposed heuristics were compared to the optimal scenario and

the use of only Clock-Gating (CG) and only Power-Gating (PG) in the processor

manager of Chapter 7. The relative energy reduction was measured to show the

improvement achieved by the utilisation of the proposed heuristics. The relative

energy reduction of a heuristic j was computed as:

Er
j −min{Er

i : ∀ i}
min{Er

i : ∀ i} (8.1)

where Er
j is the energy reduction of heuristic j over a worst-case pipelined MP-

SoC. A worst-case pipelined MPSoC does not adapt itself at run-time, and hence

all the processors in it are active at all times. The value of Er
j for a heuristic was

210 CHAPTER 8. POWER MANAGEMENT

computed by subtracting the energy consumption of the adaptive pipelined MP-

SoC (which included the energy consumption of all the processors in the adaptive

pipelined MPSoC, excluding the memories) when heuristic j was used from the

energy consumption of the worst-case pipelined MPSoC. Therefore, the computed

energy reduction included the run-time energy overhead of the heuristics as well.

Interestingly, either only CG or only PG in the processor manager had the lowest

energy saving for all the five video sequences, and thus the relative energy reduction

depicted how much more energy was saved using the power manager compared to

the use of the processor manager with naive power management.

Figure 8.7 reports the relative energy reduction achieved by the heuristics. For

example, CG (the third bar) saved 36% more energy than PG for the ‘pedestrian’

video sequence, while PG saved 11% more energy than CG for the ‘station’ video

sequence. It is obvious that the FusedKnow heuristic (the last bar) saves the most

energy from amongst all the heuristics as it is closest to the optimal (the first bar)

for all the video sequences. The FusedKnow heuristic was always within 1% of

the optimal result. This again shows the significance of proper leveraging of the

application’s knowledge at system-level for run-time power management. In terms

of run-time performance overhead, it was found that the power manager degraded

the throughput of the adaptive pipelined MPSoC by a maximum of 0.5% compared

to the use of only the processor manager. Hence, the effectiveness of the power

manager can be seen from the fact that the FusedKnow heuristic saved up to 40%

(‘pedestrian’ sequence) more energy than the processor manager with only an addi-

tional throughput degradation of 0.5%. This shows that adaptive pipelined MPSoCs

with run-time processor and power managers provide a low-power implementation

platform for multimedia applications.

8.5. HD720P H.264 VIDEO ENCODER CASE STUDY 211

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

p
e
d
e
s
t
r
ia
n

s
k
y

s
t
a
t
io
n

s
u
n
f
lo
w
e
r

t
r
a
c
t
o
r

Relative Energy Reduction (%)

O
p
t
im

a
l

P
G

C
G

E
x
e

M
in
K
n
o
w

M
a
x
K
n
o
w

A
v
g
K
n
o
w

F
u
s
e
d
K
n
o
w

F
ig
u
re

8.
7:

R
el
at
iv
e
en
er
gy

re
d
u
ct
io
n
of

th
e
p
ow

er
m
an

ag
em

en
t
h
eu
ri
st
ic
s
in

th
e
p
ow

er
m
an

ag
er

co
m
p
ar
ed

to
th
e
u
se

of
on

ly
P
ow

er
-G

at
in
g
(P

G
)
or

on
ly

C
lo
ck
-G

at
in
g
(C

G
)
in

th
e
p
ro
ce
ss
or

m
an

ag
er
.

212 CHAPTER 8. POWER MANAGEMENT

8.6 Summary

In this chapter, a run-time power manager was proposed for adaptive pipelined

MPSoCs. Five heuristics were proposed as part of the power manager to predict at

run-time the upcoming idle period of an auxiliary processor and then to decide the

most appropriate power state for it. These heuristics were guided by an analytical

analysis and the application’s execution or knowledge. A case study with an H.264

video encoder on an adaptive pipelined MPSoC showed that one of the application’s

knowledge based heuristics (FusedKnow) provided up to 40% more energy saving

with only a 0.5% degradation of the throughput compared to a processor manager

with naive power management (Chapter 7). These results show that the proposed

run-time power manager is a feasible option in adaptive pipelined MPSoCs for low-

power implementation of multimedia applications.

Chapter 9

Multi-mode Pipelined MPSoCs

A pipelined MPSoC will typically be used as a multimedia accelerator because it

is extremely customised for a specific multimedia application. Furthermore, it pro-

vides a programmable accelerator platform with reduced time-to-design and time-

to-market because of the design automation methodologies proposed in Chapter 6

and in [91,92].

Typical multimedia platforms (such as OMAP [81], Tegra [120], etc.) consist

of a single-/multi-processor host system and multiple multimedia engines as shown

in Figure 9.1. The multimedia engines function as hardware accelerators, and are

Multimedia Platform

Single-/Multi-processor

Host System

Graphics

Accelerator

I/O Components

Other Compnents

MA1

MA2

MA4

MA3

P2.1

P3.1

P1.1

P2.2

P4.1 MA: Multimedia Accelerator

Figure 9.1: A typical multimedia platform where multimedia accelerators are im-
plemented as pipelined MPSoCs.

213

214 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

considered to be implemented as pipelined MPSoCs (rather than ASICs) in this

chapter. The host system handles concurrent execution of general-purpose applica-

tions and off-loads multimedia applications to appropriate accelerators. It is often

the case that not all the accelerators will be used simultaneously. For example, a

user can either browse pictures or watch video in a smart phone, hence there is

no need for concurrent execution of JPEG and H.264 decoders. Furthermore, var-

ious other video decoders such as MPEG-4 and VC-1 will not be required at the

same time as H.264. Therefore, due to area constraints in portable media devices,

it is desirable to use a multi-mode accelerator rather than individual accelerators

when their use is mutually exclusive. If multiple applications need to be executed

simultaneously such as listening to music while browsing pictures, then JPEG and

MP3 decoders have to be implemented as two distinct accelerators. For example,

Tegra [120] has 5 distinct accelerators.

The aim of this chapter is to reduce area footprint of pipelined MPSoCs based

accelerators by combining mutually exclusive accelerators into a multi-mode ac-

celerator with performance and energy consumption comparable to its individual

counterparts. Therefore, multi-mode pipelined MPSoCs for multiple, mutually ex-

clusive applications are proposed to function as multi-mode multimedia accelerators

where each mode refers to the execution of one application. The author exploits the

idea of merging individual application graphs (representing worst-case and adaptive

pipelined MPSoCs) into a single application graph for realisation of a multi-mode

pipelined MPSoC.

Previous research has focused on resource sharing through merging of data-paths

to reduce cost, area and power consumption of digital circuits. Initially, a number of

works [292–294] formulated the problem of data-path merging as finding the max-

imum weight matching of a bipartite graph. However, bipartite matching based

approaches mainly consider nodes in a data-path and ignore the edges. Moreano et

al. [295] and Chong et al. [296] improved upon bipartite matching by formulating

data-path merging problem in reconfigurable architectures and custom floating-point

215

units as finding the maximum weight clique of a compatibility graph. Finally, Brisk

et al. [297] formulated data-path merging problem in custom instructions as a sub-

string/subsequence matching problem. However, their approach can only be applied

to acyclic data-paths. In this chapter, the author builds upon the maximum weight

clique approach to merge application graphs for a multi-mode pipelined MPSoC

because: 1) both the nodes and edges of application graphs need to be merged to

maximally reduce the number of processors and FIFO buffers and buffer sizes, and

2) multimedia application graphs can have cyclic dependencies.

Typical design of multi-mode systems [165, 298–301] is done in two steps: first,

selection of processing elements (from a given library) for application tasks; and

second, mapping and scheduling of the tasks on the selected processing elements

to minimize area, power, energy, etc. while ensuring designer constraints such as

task deadlines, reliability constraint, etc. The works in [165, 298–301] considered a

predefined MPSoC platform with fixed number and types of processing elements.

Hence, their problem was to select appropriate types of processing elements and

then schedule the tasks on the selected elements to meet given task deadlines. On

the other hand, in a multi-mode pipelined MPSoC, the number of processors is

variable and depends on the application graphs. Thus, the problem here is to merge

application graphs to maximally share processors and reduce area footprint. Like

the problem of selection of processing elements, and mapping and scheduling of

tasks, merging of application graphs is an NP-complete problem [302].

Merging of application graphs has been studied in [303–306]. The works in [303–

305] mapped multiple applications, represented as Synchronous Dataflow Graphs

(SDFs), on a tiled MPSoC architecture. They used a heuristic to merge multi-

ple uses-cases of applications to reduce the number of tiles and number of links

between the tiles. One of the heuristics proposed in this chapter (MaxN, see Sec-

tion 9.4.2) is similar to their heuristic; however, they did not consider the size of

buffers and different permutations of merging application graphs. Furthermore, two

other heuristics are proposed where one of them finds optimal merging. Wildermann

216 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

et al. [306] studied the mapping of multiple streaming applications on a tiled recon-

figurable architecture. They merged application graphs using the technique in [297],

and thus their work is limited to acyclic applications. Furthermore, their objective

was to minimise FPGA reconfiguration time rather than the area footprint. Hence,

unlike [303–306], three heuristics are proposed in this chapter to merge cyclic appli-

cation graphs, trading-off their running time with optimality of the merged graph (in

the context of pipelined MPSoCs). This is the first attempt at merging application

graphs for multi-mode pipelined MPSoCs.

9.1 Multi-mode Pipelined MPSoCs

A multi-mode pipelined MPSoC is defined to support multiple, mutually exclusive

applications by allowing several modes where each mode refers to the execution of

only one of the applications on it. Two approaches can be taken to design multi-

mode pipelined MPSoCs:

1. Individual pipelined MPSoCs designed separately for each application are

merged at hardware-/gate-level through sharing of similar processors/FIFOs.

Note that gate-level hardware sharing is often the norm for multi-mode ASICs,

but might be infeasible for multi-mode pipelined MPSoCs due to high design

complexity resulting from millions of gates in such pipelined MPSoCs.

2. An abstract, system-level representation of a pipelined MPSoC’s architecture

(number of processors, and number and connection of FIFO buffers) is de-

scribed in a directed graph. Then, directed graphs representing individual

pipelined MPSoCs are merged into a single graph by finding the maximal

overlap between them. The merging of these graphs reveals system-level shar-

ing of processors and FIFO buffers in the multi-mode pipelined MPSoC. This

approach is further explored in this chapter.

9.1. MULTI-MODE PIPELINED MPSOCS 217

The author uses application graphs to capture abstract, system-level representa-

tion of the pipelined MPSoCs. Since sub-kernels and edges in an application graph

are one-to-one mapped to processors and FIFO buffers in a pipelined MPSoC re-

spectively, an application graph inherently captures system-level representation of

the pipelined MPSoC as a directed graph. Note that if a sub-kernel and edge of

an application is mapped to multiple processors and FIFO buffers in the pipelined

MPSoC, then both the sub-kernel and edge are replicated in the application graph

accordingly to keep a one-to-one mapping between the application graph and the

pipelined MPSoC. Thus, in the rest of the chapter, an application graph repre-

sents the abstract, system-level architecture of the pipelined MPSoC on which it

will be executed. Note that the application graphs abstract the types of processors

(main processors, auxiliary processors, etc.), thus they can be used to merge both

worst-case and adaptive pipelined MPSoCs.

Figure 9.2 shows an example of how two application graphs, representatives

of individual pipelined MPSoCs, can be merged to derive a multi-mode pipelined

MPSoC. The notation m.nx inside each node represents the n-th sub-kernel in the

m-th stage of the x-th application. For example, 3.12 represents the 1st sub-kernel

in the third stage of the second application. The dotted lines illustrate one of the

possible overlaps between the two application graphs. Based on the marked overlap,

the combined application graph is shown in Figure 9.2(b) where the grey coloured

nodes represent the combined nodes of individual application graphs. The thick

arrows show the merged edges from the individual application graphs. If each node

and edge in the merged application graph is assigned to a processor and a FIFO

buffer respectively, then a multi-mode pipelined MPSoC can be realised as shown in

Figure 9.2(c). In mode 1, the first application will be executed using processors P2.1

. . . P5.1 with processor P1.1 being idle. Likewise, in mode 2, only processors P1.1

. . . P4.1 will be used to execute the second application. The multi-mode pipelined

MPSoC uses only six processors and six FIFO buffers compared to a total of ten

processors and ten FIFO buffers in individual pipelined MPSoCs.

218 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

3.1
1

4.1
1

1.1
1

2.1
1 2.2

1

3.1
1

4.1
2

1.1
1

2.1
2

2.1
1

3.1
2

2.2
1

3.2
2

1.1
2

4.1
1

P3.1

P4.1

P2.1

P3.2

P5.1

P1.1

4.1
2

1.1
2

2.1
2

3.1
2 3.2

2

(a)

(b)

(c)

Figure 9.2: Merging two application graphs to derive a multi-mode pipelined MP-
SoC: (a) Two application graphs (b) Merged application graph (c) Multi-mode
pipelined MPSoC.

The example above shows that multi-mode pipelined MPSoCs can reduce area

footprint significantly; however, there are several issues that need to be addressed

in driving a multi-mode pipelined MPSoC from the merged graph:

• The processors in individual pipelined MPSoCs contain custom instructions

and cache configurations according to the sub-kernels mapped on them; how-

ever, the customisation information has been abstracted in the application

graphs. Therefore, if two sub-kernels with differing custom instructions and

cache configurations are merged, then the processor executing those sub-

kernels in the multi-mode pipelined MPSoC will contain a union of all the

custom instructions and the cache configurations. For example, the processor

P2.1 will have the custom instructions for both 1.11 and 2.12 sub-kernels and

the larger of the two cache configurations.

• For processors executing sub-kernels from multiple applications, the individual

code segments of those sub-kernels are merged using a switch statement to

select between the appropriate sub-kernel through the mode.

9.2. A DESIGN FLOW 219

• In each mode, processors that do not belong to the currently executing applica-

tion are power-gated to avoid an unnecessary increase in energy consumption

of the application compared to its individual pipelined MPSoC counterpart.

The aim of this chapter is to design a multi-mode pipelined MPSoC (as defined

above) with a minimal number of processors and FIFO buffers (due to the cost of

wires and interconnects in ports) and buffer sizes for a set of applications by finding

the maximum overlap among the application graphs. To this end, the following are

assumed:

• Homogeneous multi-mode pipelined MPSoC for the purpose of merging ap-

plication graphs. That is, sub-kernels of all the applications are executed on

the same base processor. Heterogeneity is added after the merging process,

where customisation from the individual pipelined MPSoCs is added to the

multi-mode pipelined MPSoC (as explained above).

• The computation and communication ratios of the sub-kernels within each

application or across different applications will not affect the balancing of the

multi-mode pipelined MPSoC’s modes. This is because: (1) a multi-mode

pipelined MPSoC executes one application in a mode, and (2) the addition of

custom instructions and cache configuration to its processors after the merg-

ing process balances its stages for each of its modes (because the individual

pipelined MPSoCs were balanced through the same customisation of the pro-

cessors). Therefore, computation and activation ratios do not need to be

considered during the merging process.

9.2 A Design Flow

The design flow for creating a multi-mode pipelined MPSoC is as follows. The

input consists of application graphs and their individual pipelined MPSoC imple-

mentations (obtained using the methods in Chapter 6 and/or Chapter 8). Firstly,

220 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

application graphs are merged into a single application graph using one of the three

merging heuristics proposed in Section 9.4. Secondly, the multi-mode pipelined

MPSoC is derived from the merged application graph through one-to-one mapping.

That is, each sub-kernel and edge is mapped to a processor and a FIFO buffer respec-

tively. In the third step, the homogeneous multi-mode pipelined MPSoC (derived

from merged graph) is balanced for each of its modes by utilising the customisation

of the processors from individual pipelined MPSoCs. That is, if two sub-kernels

with differing custom instructions and cache configurations are merged, then the

processor executing those sub-kernels in the multi-mode pipelined MPSoC will con-

tain the union of all the custom instructions and the cache configurations from the

corresponding processors in the individual pipelined MPSoCs. Since the third step

does not affect the merging of the application graphs, it is not discussed further in

this chapter.

Note that multi-mode pipelined MPSoCs are used as accelerators and the ap-

plications are known apriori, thus they are optimised at design-time by merging

application graphs and customisation of the processors. Hence, the overhead of run-

time task mapping and merging techniques (which are used when the application

mix is unknown at design-time) is avoided. At run-time, the host system will con-

figure the multi-mode pipelined MPSoC in one of its modes to execute the desired

application.

9.3 Problem Statement

An application is represented as a directed graph, Gx:

Gx = (Vx, Ex) : 1 ≤ x ≤ X

9.3. PROBLEM STATEMENT 221

where X is the total number of applications. Each node in the set Vx is a sub-kernel,

denoted as:

Vx = {m.nx : 1 ≤ m ≤ Mx, 1 ≤ n ≤ Nm,x}

where Mx is the number of stages in the x-th application graph and Nx,m is the

number of sub-kernels in the m-th stage of the x-th application graph. Each edge in

an application graph denotes the data dependency between the sub-kernels and the

amount of data that will be transferred in one iteration:

Ex = {(m.n : i.jx) : 1 ≤ m, i ≤ Mx, 1 ≤ n ≤ Nm,x

1 ≤ j ≤ Ni,x}

For example, the edge between 2.11 and 3.11 in Figure 9.2 will be denoted as 2.1:3.11.

Each vertex vx ∈ Vx has a hardware implementation cost denoted as P (vx). Each

edge ex ∈ Ex is implemented as a FIFO buffer. The size of the buffer depends on

the capacity of the edge, denoted as C(ex), which is the amount of data transferred

in one iteration and is known a priori because multimedia applications send and

receive the same amount of data in each iteration. Hence, each edge ex ∈ Ex has

a hardware implementation cost F (ex) which depends on the size of the buffer and

the cost of the two ports used to connect it to the reading/writing processors.

The area of a pipelined MPSoC is the summation of the area of all the processors

and FIFO buffers. Since an application graph is one-to-one mapped to derive a

multi-mode pipelined MPSoC, its area is calculated as:

A(Gx) =
Mx�

m=1

Nm,x�

n=1



P (m.nx) +
Mx�

i=1

Ni,x�

j=1

F (m.n : i.jx)





Given X application graphs, the goal is to merge them into one application

graph, GMG, such that the area of the multi-mode pipelined MPSoC derived from

222 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

GMG is minimal. This is equivalent to maximally reducing the number of nodes

(cost of processors) and the number of edges (cost of processor/FIFO ports) and

their capacities (size of FIFO buffers) in GMG.

9.4 Merging Heuristics

In this section, three methods are described to solve the problem of merging X

application graphs. Two of these methods are based on greedy heuristics, MaxS

and MaxN, while the third one, MaxC, is based on maximum weight clique based

approach to find the optimal merging of the application graphs. Figure 9.3 shows

the working of the three heuristics on two application graphs, G1 and G2, and will

be used as an example in the rest of this section.

9.4.1 MaxS (Maximum Stages)

The MaxS heuristic, described in Algorithm 8, works on the principle of keeping

the applications’ topologies. It selects the maximum number of stages from all the

graphs as the stages of the merged graph, GMG (line 2). Then, within each of those

stages, it selects the maximum number of nodes from the corresponding stages of all

the graphs (line 4). Each node in the m-th stage of GMG is obtained by combining

the corresponding nodes from the m-th stage of all the graphs. For example, in

Figure 9.3(c), two nodes are added to GMG in the second and third stages because

both the second stage of G1 and the third stage of G2 contain two nodes each. The

first node in the second stage of GMG (2.11/2.12) is a combination of the first nodes

from the second stage of both G1 and G2 while the second node only contains 2.21

since there is only one node in the second stage of G2.

The second part of MaxS adds appropriate edges to GMG (lines 6 – 12). For

each edge ex in a graph Gx, a corresponding edge is added to GMG if it does not

exist in GMG. If the corresponding edge already exists in GMG, denoted as eMG,

then ex is combined with eMG. When two edges are merged, the higher of the two

9.4. MERGING HEURISTICS 223

M
e
r
g
e
d
 n
o
d
e

M
e
r
g
e
d

e
d
g
e

C
o
m
p
a
t
i
b
l
e
 m

e
r
g
i
n
g

E
d
g
e

m
e
r
g
i
n
g

N
o
d
e

m
e
r
g
i
n
g

(
a
)

(
b
)

(
c
)

(
d
)

(
e
)

(
f
)

3
.
1
1

1
.
1
1

2
.
1
1

2
.
2
1

4
.
1
2

2
.
1
2

3
.
1
2

3
.
2
2

1
.
1
2

3
.
1
1

4
.
1
2

1
.
1
2

1
.
1
1

2
.
1
2

2
.
1
1

3
.
1
2

2
.
1
1

3
.
1
2

(
c
)

(
e
)

4
.
1
2

3
.
2
2

2
.
2
1

1
.
1
1

1
.
1
2

1
.
1
1

1
.
1
2

1
.
1
1

1
.
1
2

2
.
1
1

2
.
1
2

3
.
1
1

3
.
1
2

1
.
1
:
2
.
1
1

1
.
1
:
2
.
1
2

4
.
1
2

1
.
1
1

1
.
1
2

2
.
1
1

2
.
1
2

2
.
2
1

3
.
1
2

3
.
1
1

3
.
2
2

1
.
1
:
2
.
2
1

1
.
1
:
2
.
1
1

1
.
1
:
2
.
1
2

1
.
1
:
2
.
2
1

2
.
1
:
3
.
2
2

2
.
1
:
3
.
1
1

3
.
1
:
4
.
1
2

2
.
1
:
3
.
1
1

1
.
1
:
2
.
1
2

1
.
1
:
2
.
1
1

2
.
1
:
3
.
1
2

1
.
1
:
2
.
1
1

1
.
1
:
2
.
1
2

3
.
1
1

4
.
1
2

1
.
1
1

2
.
1
2

2
.
2
1

3
.
2
2

2
.
1
1

3
.
1
2

1
.
1
1

1
.
1
2

1
.
1
1

4
.
1
2

2
.
1
1

1
.
1
2

2
.
2
:
3
.
1
1

3
.
2
:
4
.
1
2

F
ig
u
re

9.
3:

M
er
gi
n
g
tw

o
ap

p
li
ca
ti
on

gr
ap

h
s:

(a
)
G

1
(b
)
G

2
(c
)
G

M
G
fr
om

M
ax

S
(d
)
G

M
G
fr
om

M
ax

N
(e
)
G

M
G
fr
om

M
ax

C
(f
)
C
om

p
at
ib
il
it
y
gr
ap

h
,
G

c,
an

d
m
ax

im
u
m

w
ei
gh

t
cl
iq
u
e
so
lu
ti
on

.
F
or

th
e
sa
ke

of
si
m
p
li
ci
ty
,
ed
ge

ca
p
ac
it
ie
s
in

G
1
,
G

2

an
d
G

M
G
,
an

d
n
od

e
w
ei
gh

ts
in

G
c
ar
e
om

it
te
d
.

224 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

Algorithm 8: MaxS Heuristic

1 GMG = Ø;
2 maxStages = max{Mx : 1 ≤ x ≤ X};
// Adding nodes to GMG

3 for m=1; m ≤ maxStages; m++ do
4 Nm,MG = max{Nm,x : 1 ≤ x ≤ X};
5 A node in m-th stage of GMG is combination of

corresponding nodes from the m-th stage of all Gx

// Adding edges to GMG

6 for x=1; x ≤ X; x++ do
7 forall the ex ∈ Ex do
8 if ex does not exit in EMG then
9 Add ex to EMG

10 else
11 if C(eMG) < C(ex) then
12 C(eMG) = C(ex);

capacities is used (lines 11 – 12). For example, in Figure 9.3(c), the thick arrow

marked 1.1:2.11/1.1:2.12 represents a merged edge of G1 and G2 (the capacities are

omitted for the sake of simplicity). The heuristic does not use the lesser of the two

capacities for the merged edge because the throughput of one of the applications

will be degraded significantly (see Chapter 5).

Figure 9.3(c) shows the merged graph from MaxS where the grey coloured nodes

and thick arrows represent the overlap between the two application graphs. Thick

arrows along with solid and broken arrows highlight the topology of G1 and G2

within GMG respectively. The MaxS is a stark greedy heuristic yet it has reduced

the total number of nodes and edges from nine and nine in G1 and G2 to six and

seven respectively in GMG. The MaxS heuristic visits all the nodes and edges in all

Gx only once, and hence its complexity is O(
�

x |Vx|+ |Ex|).

9.4. MERGING HEURISTICS 225

9.4.2 MaxN (Maximum Nodes)

Unlike MaxS, the MaxN heuristic focuses on maximally reducing the number of

nodes in the merged graph. The algorithm is described in Algorithm 9 where the

fundamental operation is to merge two graphs at a time (lines 4 – 12). Line 4

initialises GMG with the graph that has the maximum number of nodes amongst

GMG and Gx. The reason is that the number of nodes in GMG should not be greater

than the maximum number of nodes from all the graphs.

Once GMG is initialised, the algorithm traverses all the nodes in Gx in a breadth-

first manner and combines its nodes with those of GMG in a breadth-first manner

as well (lines 5 – 6). For example, in Figure 9.3(d), 1.11, 2.11 and 2.21 are combined

with 1.12, 2.12 and 3.12 respectively. After merging nodes, appropriate edges are

added or merged by traversing all the edges in Gx (lines 7 – 12). Like MaxS, while

merging edges, the higher of the two capacities is used (lines 9 – 10). For example, in

Figure 9.3(d), the edge marked 1.1:2.11/1.1:2.12 is combined from G1 and G2 while

Algorithm 9: MaxN Heuristic

1 forall the permutations of merging all Gx do
2 GMG = G1;
3 for x=2; x ≤ X; x++ do
4 if

�
m Nm,x >

�
m Nm,MG then

5 Swap GMG with Gx

// Combining nodes and adding edges to GMG

6 while traversing vx ∈ Vx in breadth-first manner do
7 Combine vx with vMG ∈ VMG in breadth-first

manner
8 forall the ex ∈ Ex do
9 if ex does not exit in EMG then

10 Add ex to EMG

11 else
12 if C(eMG) < C(ex) then
13 C(eMG) = C(ex);

14 return GMG with minimum area

226 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

edge 1.1:2.21 is added from G1. The topology of G1 and G2 is illustrated with thick

and solid arrows, and thick and broken arrows respectively. The MaxN heuristic

has reduced the total number of nodes and edges from nine and nine in G1 and G2

to five and seven respectively in GMG.

After merging the first two graphs, further graphs are combined with the already

merged graph one by one (line 3). The amount of saving from MaxN depends on

the order of merging the graphs. Hence, all the permutations of merging all the

graphs are exhausted to select the merged graph with the minimum area (lines 1

and 13). For one merging of all Gx, MaxN visits the nodes and edges only once.

Since there are X! permutations of merging all Gx, the complexity of MaxN is

O(X!
�

x |Vx|+ |Ex|). This is reasonable as the number of applications is generally

small (that is, X < 10) and the merging will be used only once at design-time.

9.4.3 MaxC (Maximum Weight Clique)

Unlike MaxS and MaxN, MaxC targets maximal reduction of both the nodes and

edges in the merged graph. Reduction of the edges is important because addition

of an edge costs a FIFO buffer and two ports (one for the writing processor and

the other for the reading processor) which is expensive due to the extra memory

required and associated area overhead of wires and interconnects.

The MaxC heuristic, shown in Algorithm 10, formulates the merging problem as

a maximum weight clique problem. It consists of three parts: firstly, creating the

compatibility graph, Gc (line 3); secondly, finding the maximum weight clique (line

4); and finally, constructing the GMG (line 5). These operations are performed on

the first two graphs and then subsequent graphs are merged with GMG one by one

(line 2).

The compatibility graph, Gc = (Vc, Ec), is an undirected weighted graph that

represents which node and edge merging of two graphs are compatible with each

other. Each vertex vc ∈ Vc denotes either the merging of two nodes or two edges

9.4. MERGING HEURISTICS 227

Algorithm 10: MaxC Heuristic

1 GMG = G1;
2 for x=2; x ≤ X; x++ do
3 Build Gc for GMG and Gx

4 Find maximum weight clique of Gc

5 Reconstruct GMG

from Gx and Gy, and hence is annotated as (vx/vy) or (ex/ey). Each vc ∈ Vc has

a weight wc that corresponds to the area reduction achieved by that merging. The

weights of all the vertices (vx/vy) will be P (vx) since merging two nodes would save a

node in the merged graph and each node has the same weight (P (vx) = P (vy)). For

(ex/ey) vertices, the weights are calculated as min{C(ex), C(ey)} because the edge

with the higher capacity is used in the merged graph. An edge ec = (uc, vc) ∈ Ec

indicates that the two merging represented by vertices uc and vc are compatible with

each other. The edges are added according to the following rules:

• Vertices (vx/vy) and (v̇x/v̇y) are compatible if vx �= v̇x and vy �= v̇y. This

means that a node in Gx cannot be merged with two different nodes in Gy.

• Vertices (ex/ey) and (ėx/ėy) are compatible if ex �= ėx and ey �= ėy. This means

that an edge in Gx cannot be merged with two different edges in Gy.

• Vertices (vx/vy) and (ex/ey) are compatible if any of the following holds:

– src(ex) == vx && src(ey) == vy

– dst(ex) == vx && dst(ey) == vy

– src(ex) != vx && src(ey) != vy

– dst(ex) != vx && dst(ey) != vy

where src(ex) and dst(ex) returns the source and destination node of ex re-

spectively. This rule means that the edges in Gx and Gy are merged only if

their source and destination nodes are merged as well.

228 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

The compatibility graph for G1 and G2 is illustrated in Figure 9.3(f) where circles

and ovals represent possible node and edge merging respectively. For the sake of

simplicity, only interesting vertices are shown.

To find the maximum overlap between the graphs, the maximum weight clique

problem on the compatibility graph is solved. The maximum weight clique graph is

a subgraph of Gc where all the vertices are pairwise adjacent and their total weight

is maximum. Hence, the maximum weight clique graph will report the optimal node

and edge merging, resulting in a maximum reduction of nodes (cost of processors),

edges (cost of processor/FIFO ports) and edge capacities (size of FIFO buffers)

in the merged graph. In Figure 9.3(f), the thick lines and thick bordered circles

and ovals show the maximum weight clique graph for the running example (for

the sake of simplicity, vertices’ weights are omitted). Finding a maximum weight

clique of a graph is known to be an NP-complete problem [307] and can be solved

optimally using an exhaustive algorithm; however, the author used a polynomial-

time algorithm from Cliquer tool [308] in the experiments. The resulting maximum

weight clique is used to reconstruct GMG. Firstly, the merged nodes and edges in

GMG are obtained from the clique. Then, all the nodes and edges in individual

graphs that were not part of the clique are added to GMG. Figure 9.3(e) shows the

merged graph from MaxC which has only five nodes and five edges.

In MaxC, unlike MaxN, exhaustive permutations of merging allGx is not required

because the compatibility graph exhausts all possible merging of the two graphs.

Hence, MaxC results in optimal GMG; however, it will be exorbitantly slow for large

graphs since the merging problem is NP-complete.

9.5 Experimental Methodology

Several benchmarks, reported in Table 9.1, consisting of hand-partitioned applica-

tions, StreamIt applications [86] and synthetic applications were used to created

9.5. EXPERIMENTAL METHODOLOGY 229

Application #nodes #edges

JPEGenc 7 9

JPEGdec 5 6

MP3enc 5 5

FFT 12 12

BF 12 12

TDE 13 12

Syn1 14 15

Syn2 14 15

Syn3 17 20

Table 9.1: Benchmark characteristics.

multi-mode pipelined MPSoCs. Hand-partitioned applications contain JPEG en-

coder, JPEG decoder and MP3 encoder. From StreamIt benchmark suite, the author

chose Fast Fourier Transform (FFT), Beam Former (BF) and Time Delay Equalisa-

tion (TDE) applications. These are well-known streaming applications that appear

frequently in embedded domain [92, 102]. Synthetic applications were used to eval-

uate the scalability of the heuristics with the increase in number of nodes and edges

in application graphs.

The application graphs were merged using the three heuristics to derive a multi-

mode pipelined MPSoC. The multi-mode pipelined MPSoC was created using Tensil-

ica’s Xtensa LX3 [25] processors with FIFO buffers between the processors. XTMP,

ISS and XT-XENERGY tools were used to record the throughput, latency and en-

ergy consumption of the multi-mode pipelined MPSoC. For comparison of the three

heuristics, the pipelined MPSoCs were not customised as customisation does not

affect the merging of the application graphs. All the experiments were conducted

on a 2.15 GHz quad core machine with 8GB RAM.

230 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

9.6 Results and Analyses

The results of merging different applications is shown in Table 9.2. The first column

reports the merged applications. For example, the JPEGEnc/Dec/MP3Enc means

that JPEGEnc, JPEGDec and MP3Enc were combined. The second and sixth

minor columns, denoted as Ind., represent the traditional approach where individual

application graphs are separately mapped to pipelined MPSoCs. Hence, the number

of nodes and edges for Ind. would be the sum of the number of nodes and edges

in individual application graphs. For example, the number of nodes in Ind. for

JPEGEnc/Dec is 12 due to 7 and 5 nodes in JPEGEnc and JPEGDec respectively

(from Table 9.1). The rest of the minor columns report the number of nodes and

edges in merged graphs from MaxS, MaxN and MaxC. As expected, MaxC results in

the least number of nodes and edges in all the merged application graphs. In some

cases, MaxN results in higher number of edges than MaxS because it only focuses on

reducing the number of nodes. For example, in JPEGEnc/MP3Enc, MaxN produced

11 edges compared to 10 from MaxS. The optimality of MaxC comes at the expense

of higher running time which is reported in the fourth major column named Time.

MaxS and MaxN heuristics take a few seconds to run while MaxC’s running time is

several minutes. Three synthetic benchmarks are used to stress the heuristics, and

the results are reported in the last three rows. MaxC’s running time scales poorly

with the increase in number of nodes and edges as it did not finish in even 4 days

for Syn1/Syn3 and Syn2/Syn3. Hence, for large graphs, MaxS and MaxN should

be used instead.

Figure 9.4 shows the area saving for the first eight merged graphs from Table 9.2

(denoted (a) – (h)) compared to Ind. Synthetic benchmarks were not mapped to

multi-mode pipelined MPSoCs. For each merged graph, the area saving is bro-

ken down in processor (P) and FIFO (F) area saving (in gates), plotted on the

left y-axis as a percentage; and, the number of processor/FIFO ports (#P) saved,

plotted on the right y-axis. MaxN always saves the same amount of processor

9.6. RESULTS AND ANALYSES 231

M
er
g
e

#
n
o
d
es

#
ed

g
es

T
im

e

In
d
.

M
ax

S
M
ax

N
M
ax

C
In
d
.

M
ax

S
M
ax

N
M
ax

C
M
ax

S
M
ax

N
M
ax

C

JP
E
G
E
n
c/
D
ec

12
9

7
7

14
12

12
8

<
1s

<
1s

1m

JP
E
G
E
n
c/
M
P
3E

n
c

12
8

7
7

13
10

11
8

<
1s

<
1s

1m

JP
E
G
D
ec
/M

P
3E

n
c

10
6

5
5

11
7

8
6

<
1s

<
1s

1m

JP
E
G
E
n
c/
D
ec
/M

P
3E

n
c

17
9

7
7

19
12

13
8

1s
2s

3m

F
F
T
/B

F
24

14
12

12
24

16
14

13
1s

1s
5m

F
F
T
/T

D
E

26
18

13
13

25
18

22
14

1s
1s

5m

B
F
/T

D
E

26
17

13
13

25
17

20
14

1s
1s

5m

F
F
T
/B

F
/T

D
E

38
19

13
13

37
21

23
15

1s
2s

12
m

S
yn

1/
S
yn

2
28

18
14

14
30

24
29

20
1s

1s
16
h

S
yn

1/
S
yn

3
31

21
17

N
/A

35
25

32
N
/A

1s
1s

>
4d

S
yn

2/
S
yn

3
31

26
17

N
/A

35
23

31
N
/A

1s
1s

>
4d

T
ab

le
9.
2:

C
om

p
ar
is
on

of
M
ax

S
,
M
ax

N
an

d
M
ax

C
h
eu
ri
st
ic
s.

232 CHAPTER 9. MULTI-MODE PIPELINED MPSOCS

!

"

#!

#"

$!

$"

%!

%"

&!

&"

"!

!

#!

$!

%!

&!

"!

'!

(!

!
"
#
$
%
&
'
(
)
*
+
,
-
.
/

!
"
#
$
%
&
'
(
0
&
"
-
1
.
/

!"#$!"#$!"#%

!" #" !" #" !" #" !" #" !" #" !" #" !" #" !" #"

"$% "&'()**'& !$% !+!, #"$% #"'&-*

./0 .10 .(0 .20 .)0 .30 .40 .50

./0$6"78)9(:2)(.10$6"78)9(:;"<)9($$$$.(0$6"782)(:;"<)9($$$$.20$6"78)9(:2)(:;"<)9($

.)0$!!=:>!$$$$.30$!!=:=?7$$$$.40$>!:=?7$$$$.50$!!=:>!:=?7

Figure 9.4: Reduction in processor and FIFO area (left y-axis) and number of
processor/FIFO ports (right y-axis).

area as MaxC since it uses the maximum number of nodes from all the applica-

tion graphs. However, MaxC saves more FIFO area and processor/FIFO ports.

For example, in FFT/BF/TDE, MaxC saved 44 ports compared to 28 and 31 from

MaxN and MaxS which is significant considering the cost of wires and intercon-

nects in the ports. In summary, multi-mode pipelined MPSoCs saved up to 62%

processor area (FFT/BF/TDE), 57% FIFO area (JPEGEnc/Dec/MP3Enc) and 44

processor/FIFO ports (FFT/BF/TDE) compared to individual pipelined MPSoCs.

The author also compared the performance of the applications executing on the

multi-mode pipelined MPSoC with their individual counterparts. An average degra-

dation of 1% in throughput and 2% in latency with a standard deviation of 1% and

2% respectively was observed. The energy consumption per iteration of the multi-

mode pipelined MPSoC increased by a maximum of 3% due to the degradation in

throughput and latency. These results indicate that multi-mode pipelined MPSoCs

can be used as an execution platform for multiple, mutually exclusive multimedia ap-

plications. In addition, multi-mode pipelined MPSoCs can be designed by merging

application graphs using the proposed heuristics.

9.7. DISCUSSION 233

9.7 Discussion

Use of all the three heuristics for merging application graphs is not necessary. Ide-

ally, a designer should use MaxC to find an optimal merging. When MaxC takes an

exorbitant amount of time, the designer should utilise MaxS and MaxN to quickly

gain knowledge of a possible merging. MaxS performs poorly in reducing the pro-

cessor area (see Figure 9.4) compared to MaxN which provides the same amount

of processor area saving as MaxC. However, MaxS has a higher chance (six out of

eight times in Figure 9.4) of reducing processor/FIFO ports compared to MaxN since

it works at graph topology level, although this cannot be proved because proces-

sor/FIFO port reduction depends on graph topologies, and both MaxS and MaxN

are heuristics. A designer should first use MaxN to merge the application graphs,

and then use MaxS to gain an insight into reducing the number of processor/FIFO

ports. This is possible since both MaxS and MaxN are quite fast (see Table 9.2).

9.8 Summary

This chapter proposed multi-mode pipelined MPSoCs where one application is exe-

cuted in a given mode. The author proposed merging of the application graphs into

a single graph to design a multi-mode pipelined MPSoC. Application graphs are

merged using two greedy heuristics (MaxS and MaxN) and a maximum weight clique

based approach (MaxC) so that the number of nodes and edges with their capacities

is minimal in the merged graph. The results show that multi-mode pipelined MP-

SoCs derived from merged graphs using MaxC save up to 62% processor area, 57%

FIFO area and 44 processor/FIFO ports compared to individual pipelined MPSoCs.

In all the multi-mode pipelined MPSoCs, minuscule degradation in throughput and

latency and an increase in energy consumption per iteration was observed. These re-

sults indicate viability of multi-mode pipelined MPSoCs as multi-mode accelerators

in a multimedia platform.

Chapter 10

Conclusions and Future Work

This thesis explored implementation of multimedia applications on a pipelined Mul-

tiProcessor System on Chip (MPSoC) where the processors were divided into stages,

which are connected in a pipeline. Application Specific Instruction set Processors

(ASIPs) were used so that their customisation could be exploited to balance the

workload across stages of the pipelined MPSoC; therefore, improving utilisation of

the processors for high performance, reduced area footprint and low power consump-

tion. Thus, each processor in the pipelined MPSoC had a number of configurations

trading-off performance and area footprint, where one combination of processor con-

figurations made up one of the pipelined MPSoC’s design points. The aim of the

thesis was to optimise such a pipelined MPSoC for the area footprint and energy

consumption under performance constraints.

This thesis proposed design-time and run-time optimisations, which were tar-

geted at different objective functions. Firstly, a pipelined MPSoC was optimised for

the area footprint under either a latency constraint or a throughput constraint by

selection of the most suitable processor configurations during its design space explo-

ration. Then, such a design-time optimised pipelined MPSoC was augmented with

run-time adaptability to deactivate idle processors or transition them to low-power

states at run-time for low-power operation under a dynamic workload. Finally, the

pipelined MPSoCs that had been optimised for different multimedia applications

235

236 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

were combined into a single multi-mode pipelined MPSoC for further reduction

of the area footprint. The proposed design-time and run-time optimisations have

shown that pipelined MPSoCs can emerge as a viable implementation platform for

multimedia applications. The following paragraphs summarise the proposed opti-

misations and the corresponding results.

Chapters 4, 5 and 6 targeted quick design space exploration of pipelined MPSoCs

for area footprint optimisation. Measurement of fidelity of an estimation model,

defined as the correlation between the actual and estimated values, is important

from the perspective of design space exploration. However, there did not exist any

metric to measure the fidelity of an estimation model. Hence, four fidelity metrics

based on correlation coefficients from statistics were proposed in Chapter 4, where

one of these metrics was later used in Chapter 5 to measure the fidelity of estimation

models.

Chapter 5 proposed analytical models to estimate the execution time, latency and

throughput of a pipelined MPSoC’s design point using latencies of individual proces-

sor configurations, and thus avoiding slow, full-system, cycle accurate simulations of

all the design points. For effective use of these analytical models, latencies of indi-

vidual processor configurations were gathered with minimal number of simulations

by utilising two estimation methods – PS and PSP. The PS method simulated all

the processor configurations once, while the PSP method simulated only a subset of

processor configurations and then used a processor analytical model to estimate the

latencies of the processor configurations. Experiments with five pipelined MPSoCs

executing typical multimedia applications (JPEG encoder/decoder, MP3 encoder

and H.264 encoder) showed that the analytical models with PS and PSP methods

had maximum absolute errors of 12.95% and 18.67% respectively, and minimum fi-

delities of 0.93 and 0.88 respectively. Compared to the PS method, the PSP method

reduced simulation time from days to several hours for design spaces that ranged

from 1012 to 1018 design points.

Chapter 6 followed on from Chapter 5 by utilising the analytical models in the

237

exploration algorithms for quick design space exploration. An Integer Linear Pro-

gramming (ILP) based algorithm for area footprint optimisation under a latency

constraint, and an algorithm for area footprint optimisation under a throughput

constraint were proposed. The proposed exploration algorithms were evaluated us-

ing the five pipelined MPSoCs created in Chapter 5, which had design spaces up

to 1018 design points. The time to find the Pareto front of each pipelined MPSoC

with respect to latency or throughput was less than seven minutes, illustrating the

applicability of the proposed design space exploration methods.

Next, in Chapters 7 and 8, run-time optimisations were proposed to reduce en-

ergy consumption of a pipelined MPSoC. Chapter 7 proposed an adaptive pipelined

MPSoC architecture, capable of adapting itself to run-time variations in its work-

load. In an adaptive pipelined MPSoC, stages with significant run-time variations in

workload are implemented using Main Processors and Auxiliary Processors, where

the main processor used differing numbers of auxiliary processors, considering the

run-time workload variations. A main processor was equipped with a run-time pro-

cessor manager which used a combination of the application’s execution and knowl-

edge (algorithmic and data properties) and information from the off-line profiling

and statistical analysis to proactively predict the number of auxiliary processors

that should be used. The idle auxiliary processors were either clock- or power-gated

to reduce energy consumption. Experiments with an H.264 video encoder, designed

for HD720p at 30 fps, showed that an adaptive pipelined MPSoC provided an energy

reduction of up to 34% and 39% for clock- and power-gating based deactivation of

auxiliary processors respectively with a minimum throughput of 28.75 fps compared

to a worst-case pipelined MPSoC.

Chapter 8 proposed a power manager where auxiliary processors had multiple

power states, trading-off the overhead of the transition to power states with their

possible energy reductions. Five heuristics were proposed as part of the power man-

ager to forecast at run-time the duration of an upcoming idle period of an auxiliary

processor using either the application’s execution or the application’s knowledge.

238 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

Then, based on the predicted duration of the idle period, the most suitable power

state was selected. Compared to the use of the processor manager with only clock-

gating or only power-gating in an adaptive pipelined MPSoC executing H.264 video

encoder (HD720p at 30 fps), the power manager reduced up to 40% more energy

with only an additional 0.5% degradation of the throughput.

Finally, Chapter 9 proposed to create multi-mode pipelined MPSoCs by merg-

ing pipelined MPSoCs optimised for individual multimedia applications for further

reduction of area footprint. To this end, individual application graphs were merged

into a single graph by finding a maximal overlap between the graphs. Three heuris-

tics were proposed where two of them greedily merged application graphs, while the

third one found an optimal merging at the cost of higher running time. The results

indicated significant area savings (up to 62% processor area, 57% FIFO area and 44

processor/FIFO ports) with minuscule degradation of the system throughput (up

to 2%) and latency (up to 2%) and an increase in energy per iteration (up to 3%)

when compared to individual pipelined MPSoCs.

Future works on this thesis can be conducted in several directions. Design space

exploration of a pipelined MPSoC can consider differing communication architec-

tures in addition to differing processor configurations. For example, data transfers

in a pipelined MPSoC can be achieved using dedicated FIFO buffers (as was done

in this thesis), Direct Memory Access (DMA) engines or software managed FIFO

buffers in a shared memory. Such an exploration will not only optimise the com-

putational architecture (processors), but also the communication architecture of a

pipelined MPSoC, resulting in better area footprint optimisation.

A pipelined MPSoC can use reconfigurable processors as its building blocks

rather than Application Specific Instruction set Processors (ASIPs) to further reduce

the area footprint and improve system adaptability. Reconfigurable processors with

so-called reconfigurable regions can load custom instructions at run-time depending

upon the needs of the sub-kernel, and thus can time-multiplex the reconfigurable

regions for reduced area footprint. Furthermore, these reconfigurable regions can be

239

turned off to reduce energy consumption if none of the custom instructions are re-

quired. However, the introduction of reconfigurable processors in pipelined MPSoCs

will require run-time management techniques at the processor-level, in addition to

the system-level techniques proposed in this thesis. The adaptability feature of

reconfigurable processors can also be exploited in a multi-mode pipelined MPSoC

where the reconfigurable regions are loaded with the only custom instructions re-

quired of the currently executing application.

The adaptability of the adaptive pipelined MPSoC proposed in this thesis was

exploited to reduce energy consumption only. One of the future works can exploit

the adaptability of an adaptive pipelined MPSoC for resource management, where

auxiliary processors of one stage can be used as the auxiliary processors of an other

stage depending upon the workload of the stages. In other words, a pool of auxiliary

processors can be shared among multiple stages of the adaptive pipelined MPSoC,

where allocation of auxiliary processors to a particular stage is done at run-time by

the resource manager. This will require run-time resource management heuristics.

Lastly, an operating system can be designed for the pipelined MPSoC so as

to manage its applications, resources and power consumption at run-time. Such

an operating system can allow simultaneous execution of multiple applications by

context switching between them in a multi-mode pipelined MPSoC. To this end, an

efficient and fast context switch method will be required for not only the processors,

but also the FIFO buffers between the processors.

Bibliography

[1] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 3, pp. 3–11, July 1999.

[2] M. Morales, S. Rau, M. J. Palma, M. Venkatesan, F. Pulskamp, and A. Dugar,
“Worldwide intelligent systems 2011–2015 forecast: The next big opportu-
nity,” tech. rep., International Data Corporation, Sept. 2011.

[3] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and vliw architectures
for embedded multimedia benchmarks,” in MICRO 35: Proceedings of the
35th annual ACM/IEEE international symposium on Microarchitecture, (Los
Alamitos, CA, USA), pp. 283–293, IEEE Computer Society Press, 2002.

[4] K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Ap-
plication Profiling and Instruction-set Customization. Springer, 2011.

[5] M. Shafique, Architectures for Adaptive Low-Power Embedded Multimedia Sys-
tems. PhD thesis, Karlsruhe Institute of Technology, Germany, 2011.

[6] J. Meehan, S. Busch, J. Noel, and F. Noraz, “Multimedia ip architecture
trends in the mobile multimedia consumer device,” Image Commun., vol. 25,
pp. 317–324, June 2010.

[7] K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, and J. Lainema, “Mobile
3d video using mvc and n800 internet tablet,” in 3DTV Conference: The True
Vision - Capture, Transmission and Display of 3D Video, 2008, pp. 69 –72,
may 2008.

[8] Nokia, “Mobile 3d video.” Available at http://research.nokia.com/, 2012.

[9] International Telecommunucation Union, “Advanced video coding for generic
audiovisual services.” Recommendation H.264 and ISO/IEC 14496-10:2005,
2005.

[10] Joint Video Team of ISO/IEC MPEG and I.-T. VCEG, “Jvt-ab204: Joint
draft 8.0 on multiview video coding,” 2008.

241

242 BIBLIOGRAPHY

[11] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
h.264/avc video coding standard,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, pp. 560 –576, july 2003.

[12] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with h.264/avc: tools, perfor-
mance, and complexity,” Circuits and Systems Magazine, IEEE, vol. 4, pp. 7
– 28, quarter 2004.

[13] C. Van Berkel, “Multi-core for mobile phones,” in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., pp. 1260 –1265, april 2009.

[14] Mentor Graphics, “Modelsim.” Available at http://www.mentor.com.

[15] Synopsys, “Design compiler.” Available at http://www.synopsys.com.

[16] Cadence, “Virtuoso platform.” Available at http://www.cadence.com.

[17] T. von Sydow, B. Neumann, H. Blume, and T. G. Noll, “Quantitative anal-
ysis of embedded fpga-architectures for arithmetic,” in Application-specific
Systems, Architectures and Processors, 2006. ASAP ’06. International Con-
ference on, pp. 125 –131, sept. 2006.

[18] Y.-S. Huang and B.-C. Chieu, “Architecture for video coding on a processor
with an arm and dsp cores,” Multimedia Tools Appl., vol. 54, pp. 527–543,
Aug. 2011.

[19] Texas Instruments, “Texas instruments dsps.” Available at
http://www.ti.com.

[20] D. Talla, L. John, V. Lapinskii, and B. Evans, “Evaluating signal processing
and multimedia applications on simd, vliw and superscalar architectures,”
in Computer Design, 2000. Proceedings. 2000 International Conference on,
pp. 163 –172, 2000.

[21] Freescale, “Freescale dsps.” Available at http://www.freescale.com.

[22] Analog Devices, “Analog devices dsps.” Available at http://www.analog.com.

[23] NXP, “Nxp trimedia architecture.” Available at http://www.nxp.com, 2012.

[24] Tenslica, “Connx vectra lx dsp engine.” Available at
http://www.tensilica.com.

[25] Tensilica, “Xtensa Customizable Processor.” http://www.tensilica.com.

[26] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and
J. D. Owens, “Programmable stream processors,” Computer, vol. 36, pp. 54–
62, Aug. 2003.

BIBLIOGRAPHY 243

[27] G. G. Lee, Y.-K. Chen, M. Mattavelli, and E. S. Jang, “Algorithm/architecture
co-exploration of visual computing on emergent platforms: overview and
future prospects,” IEEE Trans. Cir. and Sys. for Video Technol., vol. 19,
pp. 1576–1587, Nov. 2009.

[28] G. R. Stewart, Implementing video compression algorithms on reconfigurable
devices. PhD thesis, University of Glassgow, 2009.

[29] S. Hu, Z. Zhang, M. Zhang, and T. Sheng, “Optimization of memory allocation
for h.264 video decoder on digital signal processors,” in Image and Signal
Processing, 2008. CISP ’08. Congress on, vol. 2, pp. 71 –75, may 2008.

[30] K. Keutzer, S. Malik, and A. Newton, “From asic to asip: the next design dis-
continuity,” in Computer Design: VLSI in Computers and Processors, 2002.
Proceedings. 2002 IEEE International Conference on, pp. 84 – 90, 2002.

[31] P. Ienne and R. Leupers, Customizable Embedded Processors: Design Tech-
nologies and Applications (Systems on Silicon). Morgan Kaufmann Publishers,
2006.

[32] C. Valderrama, L. Jojczyk, P. Possa, and J. Gazzano, “Fpga and asic con-
vergence,” in Programmable Logic (SPL), 2011 VII Southern Conference on,
pp. 269 –274, april 2011.

[33] Tensilica, “Xtensa lx benchmarks.” Available at http://www.tensilica.com.

[34] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar,
S. Siers, I. Stolero, and A. Subbiah, “A 22nm ia multi-cpu and gpu system-on-
chip,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2012 IEEE International, pp. 56 –57, feb. 2012.

[35] J. Henkel and S. Parameswaran, Designing Embedded Processors: A Low
Power Perspective. Springer, 2007.

[36] S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, and E. Witte,
“Application-specific instruction-set processor for retinex-like image and video
processing,” Circuits and Systems II: Express Briefs, IEEE Transactions on,
vol. 54, pp. 596 –600, july 2007.

[37] S. D. Kim and M. H. Sunwoo, “Asip approach for implementation of
h.264/avc,” Journal of Signal Processing Systems, vol. 50, no. 1, pp. 53–67,
2008.

[38] J. Janhunen, O. Silven, M. Juntti, and M. Myllyla, “Software defined radio
implementation of k-best list sphere detector algorithm,” in Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, 2008. SAMOS 2008.
International Conference on, pp. 100 –107, july 2008.

244 BIBLIOGRAPHY

[39] A. Portero, G. Talavera, M. Moreno, J. Carrabina, and F. Catthoor, “Method-
ology for energy-flexibility space exploration and mapping of multimedia ap-
plications to single-processor platform styles,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 21, pp. 1027 –1039, aug. 2011.

[40] ARC, “Arc configurable processors.” Available at http://www.arc.com.

[41] CoWare, “Lisatek.” Available at: http://www.coware.com/.

[42] Mips Technologies, “Mips corextend processor.” Available at
http://www.mips.com.

[43] Target Compiler Technologies, “Ip designer.” Available at
http://www.retarget.com.

[44] Asip Solutions, “Asip meister.” Available at http://www.asip-solutions.com.

[45] University of California Irvine, “Expression adl.” Available at
http://www.ics.uci.edu/express/.

[46] Xilinx, “Microblaze soft core.” Available at http://www.xilinx.com.

[47] Tensilica, “XPRES Compiler.” Available at: http://www.tensilica.com/.

[48] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The molen polymorphic processor,” Computers, IEEE Trans-
actions on, vol. 53, pp. 1363 – 1375, nov. 2004.

[49] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” ACM Trans. Des.
Autom. Electron. Syst., vol. 11, pp. 659–681, June 2006.

[50] L. Bauer, M. Shafique, and J. Henkel, “Rispp: A run-time adaptive reconfig-
urable embedded processor,” in Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on, pp. 725 –726, 31 2009-sept. 2
2009.

[51] Altera, “Nios Processor.” Available at http://www.altera.com.

[52] Microsoft Research, “emips: A dynamically extensible processor.” Available
at http://research.microsoft.com/.

[53] Stretch, “Reconfigurable processors.” Available at
http//:www.stretchinc.com.

[54] H. Amano, “A survey on dynamically reconfigurable processors,” IEICE
Transactions, 2006.

BIBLIOGRAPHY 245

[55] H. P. Huynh and T. Mitra, “Runtime adaptive extensible embedded processors
– a survey,” in Proceedings of the 9th International Workshop on Embedded
Computer Systems: Architectures, Modeling, and Simulation, SAMOS ’09,
(Berlin, Heidelberg), pp. 215–225, Springer-Verlag, 2009.

[56] H. Sutter, “The free lunch is over.” Available at
http://www.gotw.ca/publications/concurrency-ddj.htm.

[57] S. L. Shee, A. Erdos, and S. Parameswaran, “Heterogeneous multiprocessor
implementations for jpeg:: a case study,” in CODES+ISSS ’06: Proceedings
of the 4th international conference on Hardware/software codesign and system
synthesis, (New York, NY, USA), pp. 217–222, ACM, 2006.

[58] S. L. Shee, A. Erdos, and S. Parameswaran, “Architectural exploration of het-
erogeneous multiprocessor systems for jpeg,” International Journal of Parallel
Programming, vol. 36, no. 1, pp. 140–162, 2008.

[59] H. C. Doan, H. Javaid, and S. Parameswaran, “Multi-asip based parallel
and scalable implementation of motion estimation kernel for high definition
videos,” in Embedded Systems for Real-Time Multimedia (ESTIMedia), 2011
9th IEEE Symposium on, pp. 56 –65, oct. 2011.

[60] F. J. Pollack, “New microarchitecture challenges in the coming generations of
cmos process technologies (keynote address)(abstract only),” in Proceedings of
the 32nd annual ACM/IEEE international symposium on Microarchitecture,
MICRO 32, (Washington, DC, USA), pp. 2–, IEEE Computer Society, 1999.

[61] W. Knight, “Two heads are better than one [dual-core processors],” IEE Re-
view, vol. 51, pp. 32 –35, sept. 2005.

[62] P. Gepner, D. Fraser, M. Kowalik, and R. Tylman, “New multi-core intel xeon
processors help design energy efficient solution for high performance comput-
ing,” in Computer Science and Information Technology, 2009. IMCSIT ’09.
International Multiconference on, pp. 567 –571, oct. 2009.

[63] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings
of the 44th annual Design Automation Conference, DAC ’07, (New York, NY,
USA), pp. 746–749, ACM, 2007.

[64] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A
view of the parallel computing landscape,” Commun. ACM, vol. 52, pp. 56–67,
Oct. 2009.

[65] G. Martin, “Multi-processor soc-based design methodologies using config-
urable and extensible processors,” J. Signal Process. Syst., vol. 53, no. 1-2,
pp. 113–127, 2008.

246 BIBLIOGRAPHY

[66] Y.-K. Chen, C. Chakrabarti, S. Bhattacharyya, and B. Bougard, “Signal pro-
cessing on platforms with multiple cores: Part 1 - overview and methodologies
[from the guest editors],” Signal Processing Magazine, IEEE, vol. 26, pp. 24
–25, november 2009.

[67] International Technology Roadmap for Semiconductors, “System drivers.”
Available at http://www.itrs.net, 2011.

[68] J. Goodacre and A. Sloss, “Parallelism and the arm instruction set architec-
ture,” Computer, vol. 38, pp. 42 – 50, july 2005.

[69] U. Kapasi, W. Dally, S. Rixner, J. Owens, and B. Khailany, “The imagine
stream processor,” in Computer Design: VLSI in Computers and Processors,
2002. Proceedings. 2002 IEEE International Conference on, pp. 282 – 288,
2002.

[70] Tilera, “Tilepro64 multicore processor product brief.” Available at
http://www.tilera.com.

[71] Intel, “Single-chip cloud computer.” Available at http://www.intel.com.

[72] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (mp-
soc) technology,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 27, pp. 1701 –1713, oct. 2008.

[73] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded workload
performance,” SIGARCH Comput. Archit. News, vol. 32, pp. 64–, Mar. 2004.

[74] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimization
for heterogeneous chip multiprocessors,” in Proceedings of the 15th interna-
tional conference on Parallel architectures and compilation techniques, PACT
’06, (New York, NY, USA), pp. 23–32, ACM, 2006.

[75] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41,
pp. 33 –38, july 2008.

[76] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of application-
specific heterogeneous multiprocessor architectures using extensible proces-
sors,” in VLSID ’05: Proceedings of the 18th International Conference on
VLSI Design held jointly with 4th International Conference on Embedded Sys-
tems Design, (Washington, DC, USA), pp. 551–556, IEEE Computer Society,
2005.

[77] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of

BIBLIOGRAPHY 247

ineffciency in general-purpose chips,” Commun. ACM, vol. 54, pp. 85–93, Oct.
2011.

[78] H. P. Hofstee, “Power efficient processor architecture and the cell processor,” in
Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture, pp. 258–262, IEEE Computer Society, 2005.

[79] Intel, “Ixp network processors.” Available at http://www.intel.com.

[80] Nxp Semiconductors, “Nexperia media processor.” Available at:
http://www.nxp.com.

[81] Texas Instruments, “Omap mobile processors.” Available at
http://www.ti.com/.

[82] STMicroelectronics, “Nomadik application processor.” Available at
http://www.st.com.

[83] P. Flake, S. Davidmann, and F. Schirrmeister, “System-level exploration tools
for mpsoc designs,” in DAC ’06: Proceedings of the 43rd annual Design Au-
tomation Conference, (New York, NY, USA), pp. 286–287, ACM, 2006.

[84] G. Kahn, “The semantics of a simple language for parallel programming,” In
Information Processing ’74: Proceedings of the IFIP Congress, pp. 471–475,
1974.

[85] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[86] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for
streaming applications,” in Proceedings of the 11th International Conference
on Compiler Construction, CC ’02, pp. 179–196, Springer-Verlag, 2002.

[87] A. Sangiovanni-Vincentelli, “Quo vadis, sld? reasoning about the trends and
challenges of system level design,” Proceedings of the IEEE, vol. 95, pp. 467
–506, march 2007.

[88] H. Guo and S. Parameswaran, “Balancing system level pipelines with stage
voltage scaling,” in Proceedings of the IEEE Computer Society Annual Sym-
posium on VLSI: New Frontiers in VLSI Design, ISVLSI ’05, 2005.

[89] S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, and L. Benini, “A control
theoretic approach to energy-efficient pipelined computation in mpsocs,” ACM
Trans. Embedded Comput. Syst., vol. 6, no. 4, 2007.

[90] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini, “A feedback-
based approach to dvfs in data-flow applications,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 28, no. 11, pp. 1691–1704, 2009.

248 BIBLIOGRAPHY

[91] S. L. Shee and S. Parameswaran, “Design methodology for pipelined hetero-
geneous multiprocessor system,” in DAC ’07: Proceedings of the 44th annual
conference on Design automation, pp. 811–816, 2007.

[92] H. Javaid, A. Ignjatovic, and S. Parameswaran, “Rapid design space explo-
ration of application specific heterogeneous pipelined multiprocessor systems,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 29, pp. 1777–1789, November
2010.

[93] I. Karkowski and H. Corporaal, “Design of heterogenous multi-processor em-
bedded systems: applying functional pipelining,” in PACT ’97: Proceedings of
the 1997 International Conference on Parallel Architectures and Compilation
Techniques, IEEE Computer Society, 1997.

[94] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs,” SIGPLAN Not., vol. 41,
pp. 151–162, Oct. 2006.

[95] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexible
multicore accelerator with virtualized execution for mobile multimedia appli-
cations,” in Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 42, (New York, NY, USA), pp. 370–380,
ACM, 2009.

[96] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt, “Feedback-directed
pipeline parallelism,” in Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, PACT ’10, (New York, NY,
USA), pp. 147–156, ACM, 2010.

[97] “4g applications, architectures, design methodology and tools for mpsoc,” in
DATE ’06: Proceedings of the conference on Design, automation and test in
Europe, (3001 Leuven, Belgium, Belgium), pp. 830–831, European Design and
Automation Association, 2006.

[98] G. Goossens, “Multi-asip socs - or how to design ultra-low power architectures
for wireless and multi-media systems,” in System-on-Chip, 2007 International
Symposium on, p. 1, nov. 2007.

[99] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved deriva-
tion of process networks,” EURASIP J. Embedded Syst., vol. 2007, pp. 19–19,
Jan. 2007.

[100] D. Cordes, A. Heinig, P. Marwedel, and A. Mallik, “Automatic extraction
of pipeline parallelism for embedded software using linear programming,” in
Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International
Conference on, pp. 699 –706, dec. 2011.

BIBLIOGRAPHY 249

[101] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream programs on
multicore platforms,” in Proceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’08, 2008.

[102] M. Hashemi and S. Ghiasi, “Throughput-driven synthesis of embedded soft-
ware for pipelined execution on multicore architectures,” ACM Trans. Embed.
Comput. Syst., vol. 8, pp. 11:1–11:35, February 2009.

[103] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz, “Orchestration by ap-
proximation: mapping stream programs onto multicore architectures,” in Pro-
ceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems, ASPLOS ’11, 2011.

[104] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the
imagine stream architecture,” in Proceedings of the 31st annual international
symposium on Computer architecture, ISCA ’04, (Washington, DC, USA),
pp. 14–, IEEE Computer Society, 2004.

[105] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnid-
man, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The raw mi-
croprocessor: a computational fabric for software circuits and general-purpose
programs,” Micro, IEEE, vol. 22, pp. 25 – 35, mar/apr 2002.

[106] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoff-
mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation of the raw micro-
processor: An exposed-wire-delay architecture for ilp and streams,” in ISCA
’04: Proceedings of the 31st annual international symposium on Computer
architecture, (Washington, DC, USA), p. 2, IEEE Computer Society, 2004.

[107] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-C. Miao,
C. Ramey, and D. Wentzlaff, “Tile processor: Embedded multicore for net-
working and multimedia,” in Hot Chips, 2007.

[108] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-core ia-32 processor
in 45 nm cmos using on-die message-passing and dvfs for performance and
power scaling,” Solid-State Circuits, IEEE Journal of, vol. 46, pp. 173 –183,
jan. 2011.

[109] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis and
benchmarking of the intel scc,” in Cluster Computing (CLUSTER), 2011 IEEE
International Conference on, pp. 139 –149, sept. 2011.

250 BIBLIOGRAPHY

[110] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core scc
processor: the programmer’s view,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, (Washington, DC, USA), pp. 1–11, IEEE Computer
Society, 2010.

[111] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and improve-
ments of programming models for the intel scc many-core processor,” in High
Performance Computing and Simulation (HPCS), 2011 International Confer-
ence on, pp. 525 –532, july 2011.

[112] Freescale, “C-5 network processor.” Available at http://www.freescale.com.

[113] W. Eatherton, “Silicon packet processor,” in Symposium on Architecures for
Networking and Communications Systems, 2005.

[114] Cisco, “The cisco quantumflow processor: Cisco’s next generation network
processor.” Available at http://www.cisco.com.

[115] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor soc for
advanced set-top box and digital tv systems,” Design Test of Computers,
IEEE, vol. 18, pp. 21 –31, sep-oct 2001.

[116] STMicroelectronics and Ericsson, “Novathor platform for smartphones and
tablets.” Available at http://www.stericsson.eom.

[117] ARM, “Arm processors.” Available at http://www.arm.com.

[118] ARM, “Mail multimedia hardware.” Available at http://www.arm.com.

[119] ARM, “Neon general-purpose simd enginer.” Available at
http://www.arm.com.

[120] NVIDIA, “Tegra multiprocessor architecture.” Available at
http://www.nvidia.com/.

[121] Imagination Technologies, “Powervr graphics.” Available at
http://www.imgtec.com.

[122] M. Strik, A. Timmer, J. van Meerbergen, and G.-J. van Rootselaar, “Hetero-
geneous multiprocessor for the management of real-time video and graphics
streams,” Solid-State Circuits, IEEE Journal of, vol. 35, no. 11, pp. 1722–1731,
Nov 2000.

BIBLIOGRAPHY 251

[123] A. Beric, R. Sethuraman, C. Pinto, H. Peters, G. Veldman, P. van de Haar,
and M. Duranton, “Heterogeneous multiprocessor for high definition video,”
Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers. In-
ternational Conference on, pp. 401–402, 7-11 Jan. 2006.

[124] D. Wu, P. Karlstorm, J. Eilert, A. Ehlair, and D. Liu, “Mediadsp: An appli-
cation specific heterogeneous multiprocessor soc,” in Proc. Swedish System-
on-Chip Conf. (SSoCC), 2006.

[125] A. Tumeo, M. Branca, L. Camerini, M. Ceriani, M. Monchiero, G. Palermo,
F. Ferrandi, and D. Sciuto, “Prototyping pipelined applications on a hetero-
geneous fpga multiprocessor virtual platform,” in ASP-DAC ’09: Proceedings
of the 2009 Asia and South Pacific Design Automation Conference, 2009.

[126] C. May, E. Silha, R. Simpson, H. Warren, and C. International Business Ma-
chines, Inc., eds., The PowerPC architecture: a specification for a new family
of RISC processors. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1994.

[127] E. Hansson, J. Sohl, C. Kessler, and D. Liu, “Case study of efficient parallel
memory access programming for the embedded heterogeneous multicore dsp
architecture epuma,” in Complex, Intelligent and Software Intensive Systems
(CISIS), 2011 International Conference on, pp. 624 –629, 30 2011-july 2 2011.

[128] Tensilica, “Diamond processor.” Available at http://www.tensilica.com.

[129] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stien, Introduction to
Algorithms. CRC Press, illustrated ed., 2002.

[130] J. DeSouza-Batista and A. Parker, “Optimal synthesis of application specific
heterogeneous pipelined multiprocessors,” Application Specific Array Proces-
sors, 1994. Proceedings., International Conference on, pp. 99–110, 22-24 Aug
1994.

[131] M. Schwiegershausen and P. Pirsch, “A formal approach for the optimization
of heterogeneous multiprocessors for complex image processing schemes,” in
EURO-DAC ’95/EURO-VHDL ’95: Proceedings of the conference on Euro-
pean design automation, (Los Alamitos, CA, USA), pp. 8–13, IEEE Computer
Society Press, 1995.

[132] B. K. Dwivedi, A. Kumar, and M. Balakrishnan, “Synthesis of application spe-
cific multiprocessor architectures for process networks,” in VLSID ’04: Pro-
ceedings of the 17th International Conference on VLSI Design, (Washington,
DC, USA), p. 780, IEEE Computer Society, 2004.

252 BIBLIOGRAPHY

[133] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao, “Partitioning and pipelined schedul-
ing of embedded system using integer linear programming,” in ICPADS ’05:
Proceedings of the 11th International Conference on Parallel and Distributed
Systems - Workshops (ICPADS’05), (Washington, DC, USA), pp. 37–41,
IEEE Computer Society, 2005.

[134] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory
optimization and task scheduling for mpsoc architectures,” in Proceedings of
the 2006 international conference on Compilers, architecture and synthesis for
embedded systems, CASES ’06, (New York, NY, USA), pp. 401–410, ACM,
2006.

[135] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in embed-
ded systems,” in Proceedings of the tenth international symposium on Hard-
ware/software codesign, CODES ’02, (New York, NY, USA), pp. 73–78, ACM,
2002.

[136] C. Ostler and K. Chatha, “An ilp formulation for system-level application
mapping on network processor architectures,” in Design, Automation Test in
Europe Conference Exhibition, 2007. DATE ’07, pp. 1 –6, april 2007.

[137] Y. Yi, W. Han, X. Zhao, A. Erdogan, and T. Arslan, “An ilp formulation
for task mapping and scheduling on multi-core architectures,” in Design, Au-
tomation Test in Europe Conference Exhibition, 2009. DATE ’09., pp. 33 –38,
april 2009.

[138] H. Yang and S. Ha, “Ilp based data parallel multi-task mapping/scheduling
technique for mpsoc,” in SoC Design Conference, 2008. ISOCC ’08. Interna-
tional, vol. 01, pp. I–134 –I–137, nov. 2008.

[139] T. Suleyman, M. Nazanin, T. K. Mahmut, and O. Ozcan, “An ilp formulation
for task scheduling on heterogeneous chip multiprocessors,” in ISCIS, pp. 267–
276, 2006.

[140] Y. Yetim, S. Malik, and M. Martonosi, “Eprof: An en-
ergy/performance/reliability optimization framework for streaming ap-
plications,” in Design Automation Conference (ASP-DAC), 2012 17th Asia
and South Pacific, pp. 769 –774, 2012.

[141] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and L. Benini, “A fast and
accurate technique for mapping parallel applications on stream-oriented mpsoc
platforms with communication awareness,” Int. J. Parallel Program., vol. 36,
pp. 3–36, Feb. 2008.

BIBLIOGRAPHY 253

[142] J. Wu, J. Williams, and N. Bergmann, “An ilp formulation for architectural
synthesis and application mapping on fpga-based hybrid multi-processor soc,”
in Field Programmable Logic and Applications, 2008. FPL 2008. International
Conference on, pp. 451 –454, sept. 2008.

[143] C.-L. Sotiropoulou and S. Nikolaidis, “Ilp formulation for hybrid fpga mpsocs
optimizing performance, area and memory usage,” in Electronics, Circuits and
Systems (ICECS), 2011 18th IEEE International Conference on, pp. 748 –751,
dec. 2011.

[144] I. Kadayif, M. Kandemir, and U. Sezer, “An integer linear programming based
approach for parallelizing applications in on-chip multiprocessors,” in Design
Automation Conference, 2002. Proceedings. 39th, pp. 703 – 708, 2002.

[145] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge, “Stream compilation
for real-time embedded multicore systems,” in Code Generation and Opti-
mization, 2009. CGO 2009. International Symposium on, pp. 210 –220, march
2009.

[146] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, and E. Bu,
“Maximizing multiprocessor performance with the suif compiler,” Computer,
vol. 29, pp. 84 –89, dec 1996.

[147] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated exploration
framework for fpga-based soft multiprocessor systems,” in CODES+ISSS ’05:
Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, (New York, NY, USA), pp. 273–
278, ACM, 2005.

[148] J. Cong, G. Han, and W. Jiang, “Synthesis of an application-specific soft
multiprocessor system,” in FPGA ’07: Proceedings of the 2007 ACM/SIGDA
15th international symposium on Field programmable gate arrays, (New York,
NY, USA), pp. 99–107, ACM, 2007.

[149] H. Javaid and S. Parameswaran, “Synthesis of heterogeneous pipelined mul-
tiprocessor systems using ilp: jpeg case study,” in CODES/ISSS ’08: Pro-
ceedings of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, (New York, NY, USA), pp. 1–6,
ACM, 2008.

[150] S. Banerjee, T. Hamada, P. Chau, and R. Fellman, “Macro pipelining based
scheduling on high performance heterogeneous multiprocessor systems,” Signal
Processing, IEEE Transactions on, vol. 43, no. 6, pp. 1468–1484, 1995.

[151] S. Bakshi and D. D. Gajski, “Component selection for high-performance
pipelines,” IEEE Trans. VLSI Syst., vol. 4, no. 2, pp. 181–194, 1996.

254 BIBLIOGRAPHY

[152] S. Bakshi and D. D. Gajski, “Partitioning and pipelining for performance-
constrained hardware/software systems,” IEEE Trans. VLSI Syst., vol. 7,
no. 4, pp. 419–432, 1999.

[153] J. Jeon and K. Choi, “Loop pipelining in hardware-software partitioning,” in
Asia and South Pacific Design Automation Conference, pp. 361–366, 1998.

[154] S. Ranaweera and D. Agrawal, “Scheduling of periodic time critical applica-
tions for pipelined execution on heterogeneous systems,” in Parallel Process-
ing, International Conference on, 2001., pp. 131 –138, sept. 2001.

[155] A. Benoit and Y. Robert, “Mapping pipeline skeletons onto heterogeneous
platforms,” Journal of Parallel and Distributed Computing, vol. 68, no. 6,
pp. 790 – 808, 2008.

[156] Y. R. Anne Benoit and E. Thierry, “On the complexity of mapping linear
chain applications onto heterogeneous platforms,” in Parallel Processing Let-
ters, 2009.

[157] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Multi-criteria scheduling of
pipeline workflows,” in Cluster Computing, 2007 IEEE International Con-
ference on, pp. 515 –524, sept. 2007.

[158] A. Benoit, H. Kosch, V. Rehn-Sonigo, and Y. Robert, “Bi-criteria pipeline
mappings for parallel image processing,” in ICCS ’08: Proceedings of the 8th
international conference on Computational Science, Part I, (Berlin, Heidel-
berg), pp. 215–225, Springer-Verlag, 2008.

[159] V. R.-S. Anne Benoit, Harald Kosch and Y. Robert, “Multi-criteria scheduling
of pipeline workflows (and application to the jpeg encoder),” in Internation
Journal of High Performance Computing Applications, 2009.

[160] D.-I. Ko and S. S. Bhattacharyya, “The pipeline decomposition tree:: an
analysis tool for multiprocessor implementation of image processing applica-
tions,” in CODES+ISSS ’06: Proceedings of the 4th international conference
on Hardware/software codesign and system synthesis, (New York, NY, USA),
pp. 52–57, ACM, 2006.

[161] B. Ristau, T. Limberg, and G. Fettweis, “A mapping framework for guided
design space exploration of heterogeneous mp-socs,” in DATE ’08: Proceedings
of the conference on Design, automation and test in Europe, (New York, NY,
USA), pp. 780–783, ACM, 2008.

[162] P. M. Carpenter, A. Ramirez, and E. Ayguade, “Mapping stream programs
onto heterogeneous multiprocessor systems,” in Proceedings of the 2009 in-
ternational conference on Compilers, architecture, and synthesis for embedded
systems, CASES ’09, (New York, NY, USA), pp. 57–66, ACM, 2009.

BIBLIOGRAPHY 255

[163] M. Hashemi and S. Ghiasi, “Versatile task assignment for heterogeneous soft
dual-processor platforms,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 29, pp. 414 –425, march 2010.

[164] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs,” in De-
sign Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pp. 777 –782,
june 2007.

[165] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian, “Energy-aware
cosynthesis of real-time multimedia applications on mpsocs using heteroge-
neous scheduling policies,” ACM Trans. Embed. Comput. Syst., vol. 7, pp. 9:1–
9:19, January 2008.

[166] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation scheme
for energy-efficient scheduling of real-time tasks in heterogeneous multiproces-
sor systems,” in Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’09, (3001 Leuven, Belgium, Belgium), pp. 694–699,
European Design and Automation Association, 2009.

[167] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization for peri-
odic real-time tasks on heterogeneous processing units,” in Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pp. 1 –12,
may 2009.

[168] G. Varatkar and R. Marculescu, “Communication-aware task scheduling and
voltage selection for total systems energy minimization,” in Proceedings of the
2003 IEEE/ACM international conference on Computer-aided design, ICCAD
’03, (Washington, DC, USA), pp. 510–, IEEE Computer Society, 2003.

[169] A. Rae and S. Parameswaran, “Voltage reduction of application-specific het-
erogeneous multiprocessor systems for power minimisation,” in Proceedings of
the 2000 Asia and South Pacific Design Automation Conference, ASP-DAC
’00, (New York, NY, USA), pp. 147–152, ACM, 2000.

[170] R. Xu, R. Melhem, and D. Mosse, “Energy-aware scheduling for streaming ap-
plications on chip multiprocessors,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pp. 25 –38, dec. 2007.

[171] L. K. Goh, B. Veeravalli, and S. Viswanathan, “Design of fast and efficient
energy-aware gradient-based scheduling algorithms heterogeneous embedded
multiprocessor systems,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 20, pp. 1 –12, jan. 2009.

256 BIBLIOGRAPHY

[172] B. Virlet, X. Zhou, J. P. Giacalone, B. Kuhn, M. J. Garzaran, and D. Padua,
“Scheduling of stream-based real-time applications for heterogeneous sys-
tems,” in Proceedings of the 2011 SIGPLAN/SIGBED conference on Lan-
guages, compilers and tools for embedded systems, LCTES ’11, (New York,
NY, USA), pp. 1–10, ACM, 2011.

[173] O. Ozturk, M. Kandemir, and G. Chen, “Compiler-directed energy reduction
for voltage islands,” Computers, IEEE Transactions on, vol. PP, no. 99, p. 1,
2011.

[174] L. Bathen, N. Dutt, and S. Pasricha, “A framework for memory-aware multi-
media application mapping on chip-multiprocessors,” in Embedded Systems for
Real-Time Multimedia, 2008. ESTImedia 2008. IEEE/ACM/IFIP Workshop
on, pp. 89 –94, oct. 2008.

[175] L. Bathen, Y. Ahn, N. Dutt, and S. Pasricha, “Inter-kernel data reuse and
pipelining on chip-multiprocessors for multimedia applications,” in Embedded
Systems for Real-Time Multimedia, 2009. ESTIMedia 2009. IEEE/ACM/IFIP
7th Workshop on, pp. 45 –54, oct. 2009.

[176] H. Salamy and J. Ramanujam, “A framework for task scheduling and memory
partitioning for multi-processor system-on-chip,” High Performance Embedded
Architectures and Compilers, vol. 5409, pp. 263–277, 2009.

[177] H. Salamy and J. Ramanujam, “An effective solution to task scheduling and
memory partitioning for multiprocessor system-on-chip,” Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, vol. 31, pp. 717
–725, may 2012.

[178] F. Glover, E. Taillard, and D. de Werra, “A user’s guide to tabu search,” Ann.
Oper. Res., vol. 41, pp. 3–28, May 1993.

[179] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,”
Journal of Statistical Physics, vol. 34, pp. 975–986, 1984.

[180] J. H. Holland, Adaptation in natural and artificial systems. Cambridge, MA,
USA: MIT Press, 1992.

[181] T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford, UK: Oxford University
Press, 1996.

[182] M. F. Ercan and C. OÄŸuz, “Performance of local search heuristics on schedul-
ing a class of pipelined multiprocessor tasks,” Computers and Electrical Engi-
neering, vol. 31, no. 8, pp. 537 – 555, 2005.

BIBLIOGRAPHY 257

[183] A. Tumeo, C. Pilato, F. Ferrandi, D. Sciuto, and P. Lanzi, “Ant colony op-
timization for mapping and scheduling in heterogeneous multiprocessor sys-
tems,” in Embedded Computer Systems: Architectures, Modeling, and Simu-
lation, 2008. SAMOS 2008. International Conference on, pp. 142 –149, july
2008.

[184] A. Tumeo, M. Branca, L. Camerini, C. Pilato, P. L. Lanzi, F. Ferrandi, and
D. Sciuto, “Mapping pipelined applications onto heterogeneous embedded sys-
tems: a bayesian optimization algorithm based approach,” in Proceedings of
the 7th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, CODES+ISSS ’09, (New York, NY, USA), pp. 443–452,
ACM, 2009.

[185] M. Branca, L. Camerini, F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and
A. Tumeo, “Evolutionary algorithms for the mapping of pipelined applications
onto heterogeneous embedded systems,” in Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, GECCO ’09, (New York,
NY, USA), pp. 1435–1442, ACM, 2009.

[186] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling tech-
nique for mpsoc,” in Design, Automation Test in Europe Conference Exhibi-
tion, 2009. DATE ’09., pp. 69 –74, april 2009.

[187] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using evolutionary
algorithms,” Design Automation for Embedded Systems, vol. 3, no. 1, pp. 23–
58, 1998.

[188] L. Pomante, “System-level design space exploration for dedicated heteroge-
neous multi-processor systems,” in Application-Specific Systems, Architectures
and Processors (ASAP), 2011 IEEE International Conference on, pp. 79 –86,
sept. 2011.

[189] C. Erbas, S. Cerav-Erbas, and A. Pimentel, “Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multiprocessor
system-on-chip design,” Evolutionary Computation, IEEE Transactions on,
vol. 10, pp. 358 – 374, june 2006.

[190] B. Meyer and D. Thomas, “Rethinking automated synthesis of mpsoc archi-
tectures,” in Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pp. 1–6, March 2007.

[191] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for pareto-
optimal configurations in parameterized system-on-a-chip,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 10, pp. 416 –422,
aug. 2002.

258 BIBLIOGRAPHY

[192] I. Karkowski and H. Corporaal, “Design space exploration algorithm for het-
erogeneous multi-processor embedded system design,” in DAC ’98: Proceed-
ings of the 35th annual Design Automation Conference, (New York, NY, USA),
pp. 82–87, ACM, 1998.

[193] H. Javaid and S. Parameswaran, “A design flow for application specific het-
erogeneous pipelined multiprocessor systems,” in DAC ’09: Proceedings of the
46th Annual Design Automation Conference, (New York, NY, USA), pp. 250–
253, ACM, 2009.

[194] L. Chen, N. Boichat, and T. Mitra, “Customized mpsoc synthesis for task
sequence,” in Proceedings of the 2011 IEEE 9th Symposium on Application
Specific Processors, SASP ’11, (Washington, DC, USA), pp. 16–21, IEEE
Computer Society, 2011.

[195] U. Bordoloi, H. P. Huynh, T. Mitra, and S. Chakraborty, “Design space ex-
ploration of instruction set customizable mpsocs for multimedia applications,”
in Embedded Computer Systems (SAMOS), 2010 International Conference on,
pp. 170 –177, july 2010.

[196] P. Chandraiah and R. Domer, “Code and data structure partitioning for
parallel and flexible mpsoc specification using designer-controlled recoding,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 27, pp. 1078 –1090, june 2008.

[197] J.-Y. Mignolet, R. Baert, T. Ashby, P. Avasare, H.-O. Jang, and J. C. Son,
“Mpa: Parallelizing an application onto a multicore platform made easy,”
Micro, IEEE, vol. 29, pp. 31 –39, may-june 2009.

[198] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a holistic
approach to auto-parallelization: integrating profile-driven parallelism detec-
tion and machine-learning based mapping,” in Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementation,
PLDI ’09, (New York, NY, USA), pp. 177–187, ACM, 2009.

[199] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda, “Maps: an integrated framework for
mpsoc application parallelization,” in DAC ’08: Proceedings of the 45th annual
Design Automation Conference, (New York, NY, USA), pp. 754–759, ACM,
2008.

[200] R. Leupers and J. Castrillon, “Mpsoc programming using the maps compiler,”
in Design Automation Conference (ASP-DAC), 2010 15th Asia and South
Pacific, pp. 897 –902, jan. 2010.

BIBLIOGRAPHY 259

[201] D. Cordes, P. Marwedel, and A. Mallik, “Automatic parallelization of embed-
ded software using hierarchical task graphs and integer linear programming,”
in Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, pp. 267 –276, oct. 2010.

[202] K. Huang, S.-i. Han, K. Popovici, L. Brisolara, X. Guerin, L. Li, X. Yan,
S.-l. Chae, L. Carro, and A. A. Jerraya, “Simulink-based mpsoc design flow:
case study of motion-jpeg and h.264,” in DAC ’07: Proceedings of the 44th
annual Design Automation Conference, (New York, NY, USA), pp. 39–42,
ACM, 2007.

[203] S.-I. Han, S.-I. Chae, L. Brisolara, L. Carro, K. Popovici, X. Guerin, A. A.
Jerraya, K. Huang, L. Li, and X. Yan, “Simulink-based heterogeneous multi-
processor soc design flow for mixed hardware/software refinement and simu-
lation,” Integration, the VLSI Journal, vol. 42, no. 2, pp. 227 – 245, 2009.

[204] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic generation
of application-specific architectures for heterogeneous multiprocessor system-
on-chip,” in DAC ’01: Proceedings of the 38th annual Design Automation
Conference, (New York, NY, USA), pp. 518–523, ACM, 2001.

[205] P. Van Der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink,
“Design and programming of embedded multiprocessors: an interface-centric
approach,” in CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis,
(New York, NY, USA), pp. 206–217, ACM, 2004.

[206] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for opti-
mizing on-chip communication architectures,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 23, pp. 952 – 961,
june 2004.

[207] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. Jerraya, “Flex-
ible mpsoc platform with fast interconnect exploration for optimal system
performance for a specific application,” in Design, Automation and Test in
Europe, 2006. DATE ’06. Proceedings, vol. 2, p. 6 pp., march 2006.

[208] S. Pasricha and N. D. Dutt, “A framework for cosynthesis of memory and com-
munication architectures for mpsoc,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, pp. 408 –420, march
2007.

[209] A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and
A. Nohl, “A system level processor/communication co-exploration methodol-
ogy for multi-processor system-on-chip platforms,” in DATE ’04: Proceedings

260 BIBLIOGRAPHY

of the conference on Design, automation and test in Europe, (Washington,
DC, USA), p. 21256, IEEE Computer Society, 2004.

[210] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, and H. Meyr, “A novel methodology for the design of
application-specific instruction-set processors (asips) using a machine descrip-
tion language,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 20, pp. 1338 –1354, nov 2001.

[211] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini, “An
integrated open framework for heterogeneous mpsoc design space exploration,”
in DATE ’06: Proceedings of the conference on Design, automation and test in
Europe, (3001 Leuven, Belgium, Belgium), pp. 1145–1150, European Design
and Automation Association, 2006.

[212] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing
on-chip communication in a mpsoc environment,” in DATE ’04: Proceedings
of the conference on Design, automation and test in Europe, (Washington,
DC, USA), p. 20752, IEEE Computer Society, 2004.

[213] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and J. Teich,
“Electronic system-level synthesis methodologies,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 28, pp. 1517 –
1530, oct. 2009.

[214] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: an integrated electronic system de-
sign environment,” Computer, vol. 36, pp. 45 – 52, april 2003.

[215] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D.
Hämäläinen, J. Riihimäki, and K. Kuusilinna, “Uml-based multiprocessor soc
design framework,” ACM Trans. Embed. Comput. Syst., vol. 5, pp. 281–320,
May 2006.

[216] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “Peace: A hardware-
software codesign environment for multimedia embedded systems,” ACM
Trans. Des. Autom. Electron. Syst., vol. 12, pp. 24:1–24:25, May 2008.

[217] University of California Berkeley, “Ptolemy project.” Available at
http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[218] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek, “A retargetable parallel-
programming framework for mpsoc,” ACM Trans. Des. Autom. Electron.
Syst., vol. 13, pp. 39:1–39:18, July 2008.

BIBLIOGRAPHY 261

[219] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere, “Daedalus: toward composable multimedia
mp-soc design,” in Proceedings of the 45th annual Design Automation Con-
ference, DAC ’08, (New York, NY, USA), pp. 574–579, ACM, 2008.

[220] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra,
and E. F. Deprettere, “A framework for rapid system-level exploration, syn-
thesis, and programming of multimedia mp-socs,” in CODES+ISSS ’07: Pro-
ceedings of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, (New York, NY, USA), pp. 9–14, ACM, 2007.

[221] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring
embedded system architectures at multiple abstraction levels,” Computers,
IEEE Transactions on, vol. 55, no. 2, pp. 99 – 112, 2006.

[222] H. Nikolov, T. Stefanov, and E. F. Deprettere, “Systematic and automated
multiprocessor system design, programming, and implementation,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 27, no. 3, pp. 542–555,
2008.

[223] M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov, “A methodology for
automated design of hard-real-time embedded streaming systems,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 941 –
946, march 2012.

[224] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. D. Gajski, “System-on-chip environment: a specc-based framework for
heterogeneous mpsoc design,” EURASIP J. Embedded Syst., vol. 2008, pp. 5:1–
5:13, Jan. 2008.

[225] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers, 2000.

[226] J. Keinert, M. Streub&uhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “Systemcodesigner—an automatic esl syn-
thesis approach by design space exploration and behavioral synthesis for
streaming applications,” ACM Trans. Des. Autom. Electron. Syst., vol. 14,
pp. 1:1–1:23, Jan. 2009.

[227] M. Platzner, J. Teich, and N. When, Dynamically Reconfigurable Systems.
Springer, 2010.

[228] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware mapping
of applications onto heterogeneous mpsoc platforms,” Industrial Informatics,
IEEE Transactions on, vol. 6, pp. 692 –707, nov. 2010.

262 BIBLIOGRAPHY

[229] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and
V. Zaccaria, “Linking run-time resource management of embedded multi-core
platforms with automated design-time exploration,” Computers Digital Tech-
niques, IET, vol. 5, pp. 123 –135, march 2011.

[230] C. Silvano, W. Fornaciari, and E. Villar, Multi-objective Design Space Explo-
ration of Multiprocessor SoC Architectures: The Multicube approach. Springer,
2011.

[231] K. Niyogi and D. Marculescu, “Speed and voltage selection for gals systems
based on voltage/frequency islands,” in Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, ASP-DAC ’05, (New York, NY, USA),
pp. 292–297, ACM, 2005.

[232] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: Maximiz-
ing performance for a given power budget,” in Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 39,
(Washington, DC, USA), pp. 347–358, IEEE Computer Society, 2006.

[233] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres, “Dynamic
and distributed frequency assignment for energy and latency constrained mp-
soc,” in Design, Automation Test in Europe Conference Exhibition, 2009.
DATE ’09., pp. 1564 –1567, april 2009.

[234] A. Molnos and K. Goossens, “Conservative dynamic energy management for
real-time dataflow applications mapped on multiple processors,” in Digital
System Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th Eu-
romicro Conference on, pp. 409 –418, aug. 2009.

[235] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime adap-
tive task allocation on heterogeneous mpsocs,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pp. 1 –6, march 2011.

[236] P. Malani, P. Mukre, Q. Qiu, and Q. Wu, “Adaptive scheduling and volt-
age scaling for multiprocessor real-time applications with non-deterministic
workload,” in Proceedings of the conference on Design, automation and test
in Europe, DATE ’08, (New York, NY, USA), pp. 652–657, ACM, 2008.

[237] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. Buttazzo, “Adaptive dy-
namic power management for hard real-time systems,” in Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE, pp. 23 –32, dec. 2009.

[238] A. Coskun, T. Rosing, and K. Gross, “Utilizing predictors for efficient thermal
management in multiprocessor socs,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 28, pp. 1503 –1516, oct.
2009.

BIBLIOGRAPHY 263

[239] T. Ebi, M. Faruque, and J. Henkel, “Tape: Thermal-aware agent-based power
econom multi/many-core architectures,” in Computer-Aided Design - Digest of
Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference
on, pp. 302 –309, nov. 2009.

[240] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia applica-
tions using machine learning,” in Proceedings of the 48th Design Automation
Conference, DAC ’11, (New York, NY, USA), pp. 95–100, ACM, 2011.

[241] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using rein-
forcement learning,” in Proceedings of the 2009 International Conference on
Computer-Aided Design, ICCAD ’09, (New York, NY, USA), pp. 461–467,
ACM, 2009.

[242] E. de Souza Carvalho, N. Calazans, and F. Moraes, “Dynamic task mapping
for mpsocs,” Design Test of Computers, IEEE, vol. 27, pp. 26 –35, sept.-oct.
2010.

[243] M. A. Al Faruque, R. Krist, and J. Henkel, “Adam: run-time agent-based
distributed application mapping for on-chip communication,” in Proceedings
of the 45th annual Design Automation Conference, DAC ’08, (New York, NY,
USA), pp. 760–765, ACM, 2008.

[244] U. Y. Ogras and R. Marculescu, “Analysis and optimization of prediction-
based flow control in networks-on-chip,” ACM Trans. Des. Autom. Electron.
Syst., vol. 13, pp. 11:1–11:28, Feb. 2008.

[245] C.-L. Chou, U. Ogras, and R. Marculescu, “Energy- and performance-aware
incremental mapping for networks on chip with multiple voltage levels,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 27, pp. 1866 –1879, oct. 2008.

[246] C.-L. Chou and R. Marculescu, “Run-time task allocation considering user
behavior in embedded multiprocessor networks-on-chip,” Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, vol. 29, pp. 78
–91, jan. 2010.

[247] T.-C. Chen, C.-J. Lian, and L.-G. Chen, “Hardware architecture design of an
h.264/avc video codec,” in Proceedings of the 2006 Asia and South Pacific
Design Automation Conference, ASP-DAC ’06, IEEE Press, 2006.

[248] X. Liu, P. J. Shenoy, and M. D. Corner, “Chameleon: Application-level power
management,” IEEE Trans. Mob. Comput., vol. 7, no. 8, pp. 995–1010, 2008.

264 BIBLIOGRAPHY

[249] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast,
per-core dvfs using on-chip switching regulators,” in High Performance Com-
puter Architecture, 2008. HPCA 2008. IEEE 14th International Symposium
on, pp. 123 –134, 2008.

[250] K. K. Rangan, G. yeon Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in International Symposium on
Computer Architecture, pp. 302–313, 2009.

[251] P.-K. Huang, M. Hashemi, and S. Ghiasi, “System-level performance esti-
mation for application-specific mpsoc interconnect synthesis,” in SASP ’08:
Proceedings of the 2008 Symposium on Application Specific Processors, (Wash-
ington, DC, USA), pp. 95–100, IEEE Computer Society, 2008.

[252] J. T. Russell and M. F. Jacome, “Architecture-level performance evaluation
of component-based embedded systems,” in DAC ’03: Proceedings of the 40th
annual Design Automation Conference, (New York, NY, USA), pp. 396–401,
ACM, 2003.

[253] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 15, no. 1, pp. 72–101, 1904.

[254] M. G. Kendall, Rank Correlation Methods. London: Griffin, 4th ed., 1970.

[255] T.-C. Chen, S.-R. Pan, and Y.-W. Chang, “Performance optimization by wire
and buffer sizing under the transmission line model,” in ICCD ’01: Proceedings
of the International Conference on Computer Design: VLSI in Computers &
Processors, (Washington, DC, USA), p. 192, IEEE Computer Society, 2001.

[256] M. Cho, H. Shin, and D. Z. Pan, “Fast substrate noise-aware floorplanning
with preference directed graph for mixed-signal socs,” in ASP-DAC ’06: Pro-
ceedings of the 2006 Asia and South Pacific Design Automation Conference,
(Piscataway, NJ, USA), pp. 765–770, IEEE Press, 2006.

[257] F. De Faria, M. Strum, and W. J. Chau, “A system-level performance evalua-
tion methodology for netwrok processors based on network calculus analytical
modeling,” in ISVLSI ’07: Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, pp. 265–272, IEEE Computer Society, 2007.

[258] S. Eyerman, L. Eeckhout, and K. De Bosschere, “Efficient design space explo-
ration of high performance embedded out-of-order processors,” in DATE ’06:
Proceedings of the conference on Design, automation and test in Europe, (3001
Leuven, Belgium, Belgium), pp. 351–356, European Design and Automation
Association, 2006.

BIBLIOGRAPHY 265

[259] A. Joshi, J. Yi, J. Bell, R.H., L. Eeckhout, L. John, and D. Lilja, “Evaluating
the efficacy of statistical simulation for design space exploration,” in Perfor-
mance Analysis of Systems and Software, 2006 IEEE International Symposium
on, pp. 70–79, March 2006.

[260] E. Yilmaz, J. A. Aslam, and S. Robertson, “A new rank correlation coefficient
for information retrieval,” in SIGIR ’08: Proceedings of the 31st annual inter-
national ACM SIGIR conference on Research and development in information
retrieval, (New York, NY, USA), pp. 587–594, ACM, 2008.

[261] B. Carterette, “On rank correlation and the distance between rankings,” in
SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pp. 436–443, 2009.

[262] G. A. Fredricks and R. B. Nelsen, “On the relationship between spearman’s
rho and kendall’s tau for pairs of continuous random variables,” Journal of
Statistical Planning and Inference, vol. 137, no. 7, pp. 2143 – 2150, 2007.

[263] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analyses for maximal
vector computation,” The VLDB Journal, vol. 16, no. 1, pp. 5–28, 2007.

[264] W. H. Kruskal, “Ordinal measures of association,” Journal of the American
Statistical Association, vol. 53, no. 284, pp. 814–861, 1958.

[265] M. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator,” in Performance Analysis of Systems & Software, 2007. ISPASS
2007. IEEE International Symposium on, pp. 23–34, April 2007.

[266] ARM, “RealView ARMulator ISS.” http://www.arm.com.

[267] R. Srinivasan, J. Cook, and O. Lubeck, “Performance modeling using monte
carlo simulation,” Computer Architecture Letters, vol. 5, pp. 38–41, Jan.-June
2006.

[268] M. S. Haque, J. Peddersen, A. Janapsatya, and S. Parameswaran, “Dew: A
fast level 1 cache simulation approach for embedded processors with fifo re-
placement policy,” in DATE ’10: Proceedings of the conference on Design,
automation and test in Europe, 2010.

[269] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor cache simulator.”
http://www.cs.wisc.edu/markhill/DineroIV/, 2004.

[270] N. Tojo, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Exact and fast l1 cache
simulation for embedded systems,” in ASP-DAC ’09: Proceedings of the 2009
Conference on Asia and South Pacific Design Automation, (Piscataway, NJ,
USA), pp. 817–822, IEEE Press, 2009.

266 BIBLIOGRAPHY

[271] L. Singleton, C. Poellabauer, and K. Schwan, “Monitoring of cache miss rates
for accurate dynamic voltage and frequency scaling,” in Proceedings of the
Multimedia Computing and Networking Conference (MMCN), 2005.

[272] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for
microarchitectural performance and power prediction,” in ASPLOS-XII: Pro-
ceedings of the 12th international conference on Architectural support for pro-
gramming languages and operating systems, (New York, NY, USA), pp. 185–
194, ACM, 2006.

[273] P. Joseph, K. Vaswani, and M. Thazhuthaveetil, “Construction and use
of linear regression models for processor performance analysis,” in High-
Performance Computer Architecture, 2006. The Twelfth International Sym-
posium on, pp. 99–108, 2006.

[274] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,”
SIGARCH Comput. Archit. News, vol. 32, no. 2, p. 338, 2004.

[275] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi, “Throughput analysis of synchronous data flow
graphs,” in Application of Concurrency to System Design, 2006. ACSD 2006.
Sixth International Conference on, pp. 25 –36, june 2006.

[276] A. Ghamarian, M. Geilen, T. Basten, and S. Stuijk, “Parametric throughput
analysis of synchronous data flow graphs,” in Design, Automation and Test in
Europe, 2008. DATE ’08, pp. 116 –121, march 2008.

[277] Tensilica, “Flix: Fast relief for performance-hungry embedded applications.”
Available at http://www.tensilica.com/.

[278] Tensilica, “XPRES Generated Specialized Operations.” Available at
http://www.tensilica.com/.

[279] IBM, “ILOG CPLEX Optimizer.” Available at: http://www-01.ibm.com/.

[280] “H.264 test video sequences.” Available at:
http://media.xiph.org/video/derf/.

[281] Audio Video Coding Standard Workgroup of China, “Audio video standard
(avs).” Available at: http://www.avs.org.cn/en/.

[282] H. Kalva and J.-B. Lee, “The vc-1 video coding standard,” Multimedia, IEEE,
vol. 14, pp. 88 –91, oct.-dec. 2007.

[283] M. Shafique, B. Molkenthin, and J. Henkel, “An hvs-based adaptive computa-
tional complexity reduction scheme for h.264/avc video encoder using prognos-
tic early mode exclusion,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pp. 1713 –1718, march 2010.

BIBLIOGRAPHY 267

[284] M. Shafique, L. Bauer, and J. Henkel, “enbudget: A run-time adaptive
predictive energy-budgeting scheme for energy-aware motion estimation in
h.264/mpeg-4 avc video encoder,” in DATE, pp. 1725–1730, 2010.

[285] B. Zatt, M. Shafique, S. Bampi, and J. Henkel, “An adaptive early skip mode
decision scheme for multiview video coding,” in Picture Coding Symposium,
2010.

[286] M. Shafique, L. Bauer, and J. Henkel, “3-tier dynamically adaptive power-
aware motion estimator for h.264/avc video encoding,” in ISLPED, pp. 147–
152, 2008.

[287] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power gating,”
Computer Architecture Letters, vol. 8, no. 2, pp. 48 –51, 2009.

[288] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A 90-nm low-power
fpga for battery-powered applications,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, no. 2, pp. 296 –300,
2007.

[289] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques
for system-level dynamic power management,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 8, pp. 299 –316, June 2000.

[290] S. Irani, S. Shukla, and R. Gupta, “Online strategies for dynamic power man-
agement in systems with multiple power-saving states,” ACM Trans. Embed.
Comput. Syst., vol. 2, pp. 325–346, August 2003.

[291] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester, “Power gating with
multiple sleep modes,” in Proceedings of the 7th International Symposium on
Quality Electronic Design, ISQED ’06, pp. 633–637, 2006.

[292] W. Geurts, Accelerator Data-Path Synthesis for High-Throughput Signal Pro-
cessing Applications. Kluwer Academic Publishers, 1997.

[293] N. Shirazi, W. Luk, and P. Cheung, “Automating production of run-time
reconfigurable designs,” in FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on, pp. 147 –156, apr 1998.

[294] Z. Huang and S. Malik, “Managing dynamic reconfiguration overhead in
systems-on-a-chip design using reconfigurable datapaths and optimized in-
terconnection networks,” in Design, Automation and Test in Europe, 2001.
Conference and Exhibition 2001. Proceedings, pp. 735 –740, 2001.

268 BIBLIOGRAPHY

[295] N. Moreano, E. Borin, C. de Souza, and G. Araujo, “Efficient datapath merg-
ing for partially reconfigurable architectures,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 24, pp. 969 – 980,
july 2005.

[296] Y. J. Chong and S. Parameswaran, “Custom floating-point unit generation
for embedded systems,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 28, pp. 638 –650, may 2009.

[297] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-efficient instruction set syn-
thesis for reconfigurable system-on-chip designs,” in Design Automation Con-
ference, 2004. Proceedings. 41st, pp. 395 –400, july 2004.

[298] H. Oh and S. Ha, “Hardware-software cosynthesis of multi-mode multi-task
embedded systems with real-time constraints,” in Proceedings of the tenth
international symposium on Hardware/software codesign, CODES ’02, 2002.

[299] V. Kianzad and S. Bhattacharyya, “Charmed: a multi-objective co-synthesis
framework for multi-mode embedded systems,” in Application-Specific Sys-
tems, Architectures and Processors, 2004. Proceedings. 15th IEEE Interna-
tional Conference on, pp. 28 – 40, sept. 2004.

[300] M. Schmitz, B. Al-Hashimi, and P. Eles, “Cosynthesis of energy-efficient multi-
mode embedded systems with consideration of mode-execution probabilities,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 24, no. 2, pp. 153 – 169, 2005.

[301] L. Huang and Q. Xu, “Energy-efficient task allocation and scheduling for
multi-mode mpsocs under lifetime reliability constraint,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2010, pp. 1584 –1589,
march 2010.

[302] N. Moreano, G. Araujo, and C. de Souza, “Cdfg merging for reconfigurable
architectures,” Tech. Rep. IC-03-18, Institute of Computing-UNICAMP, 2003.

[303] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal, “Multiproces-
sor systems synthesis for multiple use-cases of multiple applications on fpga,”
ACM Trans. Des. Autom. Electron. Syst., vol. 13, pp. 40:1–40:27, July 2008.

[304] A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal, “Ca-mpsoc:
An automated design flow for predictable multi-processor architectures for
multiple applications,” Journal of Systems Architecture, 2010.

[305] A. K. Singh, A. Kumar, and T. Srikanthan, “A hybrid strategy for mapping
multiple throughput-constrained applications on mpsocs,” in Proceedings of
the 14th international conference on Compilers, architectures and synthesis

BIBLIOGRAPHY 269

for embedded systems, CASES ’11, (New York, NY, USA), pp. 175–184, ACM,
2011.

[306] S. Wildermann, J. Angermeier, E. Sibirko, and J. Teich, “Placing multimode
streaming applications on dynamically partially reconfigurable architectures,”
Int. J. Reconfig. Comput., vol. 2012, pp. 9:9–9:9, Jan. 2012.

[307] E. Balas, V. Chvátal, and J. Nešetřil, “On the maximum weight clique prob-
lem,” Mathematics of Operations Research, vol. 12, no. 3, pp. pp. 522–535,
1987.

[308] “Cliquer.” Available at http://users.tkk.fi/ pat/cliquer.html.

	Title Page - Analyses And Optimisations for Pipelined MPSoCs
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures

	Chapter 1 - Introduction
	Chapter 2 - Literature Survey
	Chapter 3 - Research Methodology
	Chapter 4 - Fidelity Metrics for Estimation Models
	Chapter 5 - Performance Estimation of Pipelined MPSoCs
	Chapter 6 - Design Space Exploration of Pipelined MPSoCs
	Chapter 7 - Adaptive Pipelined MPSoCs
	Chapter 8 - Power Management in Adaptive Pipelined MPSoCs
	Chapter 9 - Multi-mode Pipelined MPSoCs
	Chapter 10 - Conclusions and Future Work
	Bibliography

