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Abstract

Insurance claims can have very long durations, from the date they are

made known to the insurance company to the date the liability is set-

tled. These reported but not yet finalised claims form a considerable

part of the insurance liabilities of an insurance company, that is, the

monies it need to set aside to pay for claims it is liable for. Tradition-

ally, such analyses are undertaken on an aggregate basis, that is, the

ultimate cost of a group of claims is projected in aggregate rather than

finding the expected ultimate cost based on analysing and projecting

individual claims.

This thesis is concerned with modelling the claims development be-

haviour of individual long tailed claims, in particular, the New South

Wales Compulsory Third Party insurance claims. These claims are

compensation claims for bodily injuries caused by traffic accidents and

can take many years to finalise, during which time they can undergo

many revisions of the claims cost before finalisation. The model de-

veloped herein (the “Claims Development Process” model) is an indi-

vidual claims reserving model, as it is concerned with individual claim

trajectories and their ultimate costs. Individual Claims Reserving tech-

niques are a relatively new area in actuarial science, with only an in-

creasing presence in the statistical and actuarial literature over the last

ten years.

Larsen [2007] denotes a claims process with Zi = (Ji, Xi,J+1, Xi,J+2, ..., Xi,J+Di
, Gi).

That is, the claim can be represented by Ji, the reporting delay, its es-



timate, Xi’s, observed at some regular time interval from the time it is

reported to the time it is finalised, Di, and a set of claim characteristics,

Gi. Our framework makes some alterations to that of Larsen’s. Firstly,

we have allowed the claim characteristics to change throughout the du-

ration of the claim; and secondly, we have changed the time scale from

one based on calender time to one that is based on activity. This new

time scale ticks over, or changes in value, whenever new information

arrives regarding the claim causing the insurance company to revise

the claims estimate; that is, this new time scale is a counter of how

many revisions a claim has had. Under these changes, we rewrite the

claim process as Zi = (Xi,j=0, Xi,1, ..., Xi,m, Gi,j=0, Gi,1, ..., Gi,m), where

j is a counter for the number of revisions the claim has had.

While it may be possible to model the Xi’s in a multivariate framework

with an appropriate dependence structure, we have instead chosen to

decompose the overall claim process into simpler components with a

conditional hierarchical structure. The claim process is decomposed

into the delay (time between revisions), settlement (whether the cur-

rent revision would be the final revision), direction (the direction of

the revision) and size (the magnitude of the revision) component pro-

cesses. The decomposition allows the complicated claims process to

be represented with four simpler processes, turning each claim trajec-

tory into four short time series. Each process is defined in terms of

previous outcomes of itself and the other processes, giving a sequential

conditional structure to the model.

Time series models with Generalised Linear Auto-Regression and Mov-

ing Average (GLARMA) structure are used to analyse the component

series. While these trajectories are short, we still found significant se-

rial dependence structure in the data. The results of these models are



discussed; while some of the results conform to our intuition regarding

the claim development behaviours, others have been surprising.

We use the CDP framework to project individual ultimate claims costs

using numerical methods. Comparisons are made to actual claim set-

tlement to show the accuracy of the individual claim projections. We

also aggregated the individual claims and investigated the usefulness

of the method as a new valuation technique that insurance companies

can use to project their claims liabilities.

We developed and investigated some important extensions to the basic

CDP framework. They include making an allowance for “censoring”,

where not all claims are observed to finalisation; incorporating random

effects, to allow for claimants’ differing attitudes towards the process

of making a claim.

The thesis finishes with discussions on the contributions this method

makes to the area of individual claims reserving techniques, as well

as further research that can be undertaken. While the application of

the new models and methods presented here are to CTP insurance

claims they could also be applied in other situations such as workers’

compensation, general liabilities and professional indemnity claims.
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Chapter 1

Introduction

1.1 Introduction

The underlying aim of this research is to contribute to the development of the ana-

lytical methods used for individual claims reserving. Individual claims reserving is

an area that has enjoyed rapid development in recent years. This thesis focuses on

long tailed insurance products, the claims of which can take more than ten years

to settle.

In the insurance industry, the analytical modelling of long tailed insurance

products is typically less sophisticated than their short tailed counterparts. How-

ever, long tailed products are intrinsically more risky to an insurer as well as,

potentially, providing greater returns. Long tailed products refer to insurance

products such as general liability insurance policies or injury compensation insur-

ance policies. The statement regarding the general lack of analytical sophistication

is true for both pricing, determining the premiums different policyholders should

pay, and reserving, determining the pool of money insurance companies need to

set aside to pay for claims.

The “reserves” of an insurance company refers to the claims liabilities the

insurer has at a particular point in time. That is the value placed on the future

payments the insurer needs to make for the claims that it knows about, claims that

1
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have occurred but it may not yet know about and claims that have not occurred

but for which the insurer will be liable. The reserves for long tailed insurance

products account for a large portion of the total reserves to a insurer. Due to

the long tailed nature of the claims the liabilities can accumulate over time as

opposed to short tailed products, where the claims are paid out relatively quickly.

Because of this, insurers are exposed to the soundness of its reserving of its long

tailed insurance liabilities. The collapse of one of Australia’s largest financial

institutions, HIH, comes to mind to demonstrate the need for robust reserving,

amongst other factors.

The lack of sophistication in the research for long tailed products is typically

a result of the following perceptions. Firstly, long tailed insurance products usu-

ally have fewer claims compared to their short tailed counterparts and this is seen

as an impediment to complicated modelling. For example, in New South Wales

(NSW) Australia, there are around 25,000 bodily injuries caused by motor vehicle

accidents compared to around 500,000 damaged vehicles annually. In terms of

volumes of data for statistical analysis, long tailed vehicle injury claims are small

compared to short tailed vehicle damage claims. Secondly and more importantly,

the analysis of long tailed insurance products is typically hampered by the consid-

erable reporting delays. This makes the analysis of claims frequency difficult. For

example, injuries sustained in a motor vehicle accident may not be obvious and

only years later the injured party recognises the injury was due to the vehicular

accident and lodges a claim. Any attempt to analysis claims occurrences would be

based on censored (that is, incomplete) data. Thirdly, another censoring issue also

hampers claim size analysis. As long tailed claims can take a considerable amount

of time to settle; an extreme example would be that an injured child may need

to be observed until high school age to establish the possibility of brain damage.

This censoring issue is a key feature in long tailed claims data, where complete

data, when all claims are settled, take a long time to emerge. To analyse complete
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claims data would mean the analysis would be carried out long after the time that

the accidents occurred, which may render the results obsolete.

The current industry practice is to undertake any analysis of long tailed prod-

ucts at an aggregated level and even then the analysis is typically not sophisticated.

When information pertaining to individual claims or individual policies is disre-

garded, important trends or changes in claims behaviour may not be observed.

This research aims to develop a framework that can be applied to the analysis

of long tailed insurance claims. In particular, methodologies that enable a more

structured analysis of the evolution of individual claims information are explored.

This research explicitly allows the modelling and projection of individual claim

trajectories; addressing the censoring issue mentioned previously. The estimate

of ultimate claim cost at the individual level serves two purposes: firstly, when

aggregated over all active claims, an estimate of the claim liabilities can be obtained

in the traditional sense of reserving, and secondly, this would also implicitly aid

the pricing of long tail insurance product by addressing the issue of censored data

points as outlined above. These methods are applied to the NSW Compulsory

Third Party (CTP) Insurance data and this dataset is used extensively throughout

this thesis.

The focus of this research is on the development of reported claims through the

analysis of their claim characteristics. As such, the methodologies are not appli-

cable to the analysis of IBNR claims cost. Where necessary, we have adopted an

existing aggregated claims model for the valuation of “incurred but not reported”

(IBNR) claims. Hence, this research would not be able to be applied to Asbestos

claims from a Workers’ Compensation portfolio even though they are considered

long tailed. This is because the focus of Asbestos claims is on the reporting delays

of the IBNR claims.
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1.2 General Insurance and Risk Transfer

General insurance (GI) is a social service that is used to transfer economic or

financial risk from one party (the policyholder) to another party (the insurer).

The maturity of an economy’s insurance industry has been seen as an indicator

of economic maturity and stability. That is, a sophisticated social being, be it

an individual or an organisation, would utilise risk transfer products to manage

financial uncertainties.

The underlying principle behind a general insurance product is that rational

economic entities are, in the economic sense, risk averse (Hart et al. [1996]). When

risk averse entities are faced with two options with the same expected value but

where one provides a certain outcome (for example an expenditure or a cost) and

the other option provides an uncertain outcome, they would choose the former

option. Using motor vehicle insurance as an example, rational people might prefer

paying a fixed cost (the insurance premium) as opposed to having an uncertain

outcome (a significant loss should their vehicle be involved in an accident). In fact,

risk averse economic entities are even willing to pay a little more to receive that

certainty. Extending the example, the policyholder of the motor vehicle insurance

policy is most likely to have paid more in insurance policy premiums than the

claim payments the insurers have paid to him over a long period of time. Yet, the

policyholder is willing to pay more than the expected loss to have the certainty

so that they will not be financially disadvantaged if his vehicle was involved in an

accident. This extra money the policyholder pays is known as a “premium” which

forms the profit margin of the insurance company.

The general insurance company, on the other hand, accepts such “risks” from

multiple individuals and through the “Law of Large Numbers” achieves a more

certain outcome by aggregating uncertain outcomes. While the damage of a motor

vehicle may represent a loss detrimental to the financial situation of an individual,

by pooling a number of these risks together, the insurer is able to estimate its
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claims payment with reasonable certainty. Hence, the profit to the insurer lies in

the extra premium the individuals are willing to pay to avoid the financial risk.

A general insurance policy is a contract between the insurer and the policy-

holder and this contract sets out the circumstances under which the insurer will

pay the policyholder and how much the payment will be. The contract covers a

period of time, usually a year, during which the insurance company is exposed

to the risk of a claim payment arising from an accident. The policyholder would

generally pay the insurer up front for the insurance cover. There are considerable

risks involved for both the insurer and the policyholder. The risk for the insurer

is not to have charged an adequate premium for the policy and is therefore unable

to make a profit. The risk for the policyholder is that the insurer is not financially

robust enough to be able to pay claims as required.

1.3 The Tasks of the Actuary

Actuaries are defined as managers of financial risk and uncertainty (Hart et al.

[1996]). Actuaries perform two vital tasks for the insurer.

Firstly, the actuary needs to price the insurance product, that is, to determine

an appropriate amount the insurer should charge for an insurance product that

would cover the claim payments, the expenses the insurer incurs, as well as a profit

to the shareholders of the insurance company for the risk they have borne. Pricing

of GI products can take various approaches. The main “actuarial” approaches are:

cost pricing, market pricing and pricing based on profit optimisation. Cost pricing

is concerned with finding out exactly what a particular policy costs the insurance

company to underwrite and the actual premium charged is that cost plus a profit

margin. Market pricing, however, is centred around establishing customer profiles

such that each policy is priced at what the customers are prepared to pay. The

optimisation approach brings cost and customer behaviour together in a model

that tries to maximise profit (or perhaps some other target measurement) over a
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set time frame.

Secondly, the actuary needs to reserve for the claim liabilities. Since the poli-

cyholder pays the premiums up front and expects to be indemnified should they

suffer a loss, the insurance company needs to set a portion of the up front premi-

ums aside to pay for claims that have not yet arisen. Due to the uncertain nature

of when a claim may arise and the magnitude of the claim payment, the actuary

analyses available past data and determines an appropriate amount for the insurer

to set aside. This function of keeping an insurer financial sound by having enough

funds set aside to cover future claims liability is mandated by law and heavily

regulated in most developed financial markets.

1.4 Pricing and Reserving of Long Tailed Insur-

ance Products

General insurance products are typically separated into short tailed business and

long tailed business and the distinction between them is significant. Short tailed

products tend to cover the material damage of properties where the economic loss

of the policyholder is easily identifiable; for example, a damaged bumper bar due to

a vehicle accident or lost luggage during a flight. To an experienced loss adjuster,

the cost of rectifying the damages is clear cut and the claim is often settled quickly.

On the other hand, liability based claims, such as bodily injuries caused by a

faulty product, are labelled as long tailed as they have a tendency to be finalised

long after the actual event that lead to the claim. In fact, as discussed earlier,

some claims may not even be known for decades after the actual event.

Reserving for long tailed products, due to its importance to the financial stabil-

ity of an insurer, has received considerable input from researchers. Sophisticated

methods have been developed for various specific situations and specific long-tailed

products. This is not true for their short-tailed counterparts, as reserving for short
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tailed products is mostly straightforward. In contrast, reserving for long tailed

products is a much trickier endeavour.

The main issue with long tailed claims is that during the lengthy period prior to

settlement the circumstances of the claim can change considerably. For example,

injuries can worsen, or liability can become denied or accepted based on litigation

outcomes. As a result, the ultimate claim costs may bear no resemblance to the

initial claim estimate. It is therefore up to the actuary to evaluate the information

on hand and make an assessment of the value of the reserves required to pay for

claims.

The more widely used reserving methods are discussed in detail in Chapter 4.

The pricing of long tailed products has always been more problematic for actu-

aries; and the level of rigour applied lags behind that of the short tailed products.

This is due to a few reasons discussed below.

The claims data for long tailed insurance products is sparse compared to that

of short tailed products. Take the example of motor vehicles in NSW; while com-

prehensive motor vehicle insurance has had a claim frequency of around 10% over

the last ten years, Compulsory Third Party (CTP) bodily injury insurance has a

claim frequency of 0.2%. In this case the volume of claims in a long tailed product

is one-fiftieth of that a short tailed product, significantly reducing the volume of

data available for analysing the often complex relationship between claim costs

and risk factors.

Normally, claims are assumed to have independent errors; however, this may

not be the case for long tailed claims. Bodily injury compensation insurance

products (such as CTP claims or Workers’ Compensation) are typically regulated

and subject to various laws and legislations. That is, there are exogenous factors

that may affect multiple claims simultaneously. For example, a precedent set in

the court system which allows more generous compensation for a particular type

of injury may affect the claims cost of other claims that are of a similar nature.
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In this case, the assumption of independent errors may not be valid.

These features of long tailed insurance products have typically limited the

pricing of these products to analysing the overall profitability of the product using

valuation techniques. That is, the overall profitability of the product is examined

by projecting the claims reserves “to ultimate” and comparing that to the premium

received when the product is sold. If the premium is greater than the estimated

claims costs plus other costs to operate the insurance operation then the product

is profitable. The pricing exercise may be as simple as adjusting the premiums of

the product at an overall level up or down so the desired level of profitability is

achieved.

When pricing is carried out at an overall level, the profitability of individual

segments of the portfolio cannot be guaranteed. As such, some policyholders may

be losers and other policyholder may be winners under this overall pricing method-

ology. That is, there are cross-subsidies within the product; some policyholders

are overcharged to pay for other policyholders that are undercharged. This makes

the insurer vulnerable to anti-selection, if its competitors are more sophisticated

in their pricing then the relatively better risks would leave the insurer and the

relatively worse risks would stay.

In order to be able to price individual policies at a sub-product level, the

projection of the claims reserve also needs to be at a sub-product level. While the

claim projection for reserving is adequate at a portfolio level as reserving is mainly

concerned with the overall financial strength of the insurer, claims projection for

pricing purposes needs to be applied at a more granular level, preferably at an

individual claim level. This is the issue on which this thesis focusses.

1.5 Aims of This Research

This research aims to examine methodologies in modelling long tail claim data

and especially how claims develop over time. We have observed that notwith-
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standing the sparse data and the variability of the costs of long tailed claims,

claims development of long tail claims still follows particular patterns based on

claims characteristics.

We have firstly decomposed the complex claim development process that marks

the entire development of the claim cost variable into its simpler components -

the delay between the claims cost estimate being revised, whether at the current

claims revision the claim is finalised, whether the current claims update results in

a positive revision or negative revision and the magnitude of the revision. Various

modelling methodologies are then applied to the component processes.

While understanding how claims develop and the patterns they exhibit is in-

teresting and useful in itself, the natural extension is for reserving purposes. The

estimated ultimate claim sizes of all open claims are the goal in reserving, that is,

the future costs of all claims. The usefulness of the research extends further. By

having estimated ultimate claim sizes at an individual claims level, this research

also aids the pricing of long tailed products by removing one of the key barriers -

censoring. This will allow more sophisticated pricing mythologies to be applied to

the long tailed products, although pricing itself is not the focus of this thesis.

Actual data modelling is carried out on the NSW CTP dataset as maintained

by the Motor Accidents Authority (MAA). We have used twelve years of complete

data from 2001 to 2012 that records all claims in the NSW CTP scheme. The

intention is to use nine years of data as a modelling dataset and three years as a

hold out sample to check the predictive accuracy of the various models developed,

assuming no change in the underlying processes and factors during this period.

1.6 Structure of This Thesis

This chapter provides an introduction to the research and articulates what it is

trying to achieve in the field of individual claims reserving techniques. Chapters 2

and 3 provide a detailed discussion on the motivating dataset - NSW CTP claims.
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The CTP insurance products is discussed and an overview of the NSW CTP scheme

is provided in Chapter 2. Chapter 3 details the dataset the NSW Government

regulator maintains for analytical purposes, the Personal Injury Register (PIR).

This dataset is used throughout this thesis.

Chapter 4 applies a selection of actuarial reserving techniques (both aggregate

models and individual claims models) currently used in practice to demonstrate

the process of actuarial valuations of NSW CTP claims. Chapter 5 reviews the

current literature in the area of individual claims reserving.

Chapter 6 details the framework for modelling claim development proposed in

this research - the Claim Development Process framework. The models are then

applied to the NSW CTP dataset and the results are provided and discussed in

Chapter 7.

Chapter 8 uses a simulation approach to demonstrate how the models can be

used to project the ultimate claim sizes for open claims. Chapter 9 extends the

projection to be used as a tool for actuarial valuations. The results are compared

with those from the panel current actuarial techniques.

Chapter 10 extends the model framework to incorporate random effects to allow

for between claimant variations.

Chapter 11 concludes the thesis with possible further research directions.

Further analysis was carried out intending to incorporate spatial analysis into

the CDP framework. However, this proved to be difficult due to the complexity

of the likelihood functions to allow for spatial parameters. The spatial analysis

based on the NSW CTP dataset can be found in Appendix H .

A glossary of actuarial acronyms and jargon is provided in Appendix A.



Chapter 2

CTP Insurance and NSW CTP

Data

2.1 Introduction

In this research, the various modelling techniques have been applied to the NSW

CTP data. This is a dataset that is compiled and maintained by the NSW CTP

insurance regulator, as mandated by legislation, to aid analyses and policy making

in relation to the NSW CTP scheme. In this chapter, CTP insurance and, in

particular, the NSW CTP scheme are discussed in detail, then the Personal Injury

Register and the data used for this research are discussed. This provides the

necessary background information to the data that have motivated the model

framework developed in Chapter 6. The discussion contained in this chapter also

aids the interpretation of the modelling results.

2.2 Compulsory Third Party Insurance

Compulsory Third Party (CTP) Insurance in Australia refers to an insurance

product that provides compensation to bodily injuries caused by motor vehicle

accidents. It is a compulsory insurance mandated by law (along with Workers

11
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Compensation Insurance) and regulated by government bodies. The insurance

compensates the injured party, the claimant, with treatment expenses, loss of in-

come and other damages due to the injuries sustained. CTP in Australia is unique

in that it is sold separately to motor vehicle property damage policies, such as,

Comprehensive Motor Vehicle Insurance. In other parts of the world the property

damage and bodily injuries components are sold together as a packaged vehicle

insurance product. The rationale to separate the two components into different

policies is mainly the government’s need to regulate the CTP product while want-

ing market forces to make the property damage component more efficient in an

economic sense. The former is seen as a social necessity - the economic stress to

care for a serious injury would create too much of a burden for both the claimant

and the driver-at-fault. As such, the state governments of Australia have man-

dated the need for a CTP policy for every vehicle on the road, as a contingency in

the event of an accident to protect the injured parties.

In Australia, while all states mandate CTP as a part of the vehicle registration

process only three states (NSW, QLD and ACT) are privately underwritten. This

means in these three states, the CTP policies are underwritten by private insurers;

while the other states, the governments act as the insurer. Regardless of whether

it is a privately underwritten or government administered scheme, actuaries are

involved in both the pricing and valuation of the product. However, with a pri-

vately underwritten scheme the governments, or their agencies, need to regulate

the insurers appropriately: it cannot allow the insurers to collude and extract a

super profit from the policyholders (due to the compulsory nature of the product);

at the same time, it cannot allow any of the insurers to significantly under-charge

such that its financial health, and its ability to pay claim, is jeopardised. In NSW,

the Motor Accidents Authority (MAA) is legislated as the regulator of the NSW

CTP Scheme.

CTP schemes can be either “at-fault” or “no fault”. An at-fault scheme requires
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the establishment of two parties in every accident - the injured party and the party

at-fault. Once these two parties are established, the compensation of the injured

party will be liable by the insurer of the party at-fault. Sometimes, the party

at-fault can be hard to establish and legal actions are taken to establish the causal

relationship of the injury. Hence, a significant portion of total costs of an at-fault

CTP scheme is legal fees. On the other hand, a no fault scheme does not try to

establish the party at-fault; basically all injuries due to motor vehicles are covered

by the scheme. A no fault scheme can sometimes allow the injured party to resolve

the claim faster due to the lack of need to establish who is at fault. This can also

in turn reduce legal expenses. One key difference, however, is that in an at-fault

scheme the driver at-fault is typically not covered by the CTP insurance and may

sustain significant hardship if the injury is severe.

Usually, a government backed CTP scheme where the government charges the

motorist a premium for the insurance and in turn pays for all of the claims would

be a no-fault scheme as the government is the only insurer and would be paying

for all claims regardless of who is at fault. A scheme where private insurers are

the providers of the risk transfer service would typically be at-fault based; this

allows the insurers to “select” better drivers to reduce claims costs. In New South

Wales, a primarily at-fault scheme is employed (The Government of New South

Wales [1999]). However, it can be argued that with the recent legislative changes

discussed below the NSW scheme is gradually heading in the direction of a no-fault

scheme.

In 2007, the Long Term Care and Support (LTCS) scheme was legislated in

NSW where the long term care and treatment costs of catastrophic injuries will be

managed by a central government agency. While the rationale is that the claimant

does not have the expertise to manage the long term cost of the medical treatment

and care of a catastrophic injury, it would be better for a centralised government

agency to perform such duties especially with better bargaining power with the
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medical service providers. However, one important aspect of this scheme is that

the admission is “no fault” based. That is, even drivers who are at-fault in an

accident that leaves them catastrophically injured can receive care and support,

which would otherwise be prohibitively expensive. Previously, under MACA 1999,

drivers at-fault were not covered by CTP and would suffer great hardship when

severely injured from the accident they were at fault for.

Also in 2007, the amended legislation (The Government of New South Wales

[2007]) changed the definition of “Section 49” claims. Section 49 claims are very

“minor” claims that do not need a police report and do not need to establish

who is at fault. Prior to October 2008, anyone who was involved in an accident

could fill out an Accident Notification Form (ANF) and receive medical treatment

(usually precautionary treatment such as X-rays) up to $500. These minor claims

are also referred to simply as “ANF’s”. A “full claim” on the other hand, required

the formal lodgement of claim documentation, including police reports and other

supporting evidence. Full claims are also referred to as “Section 74” claims. Under

the 2007 Amendment, the injury party can now receive up to $5,000 of medical

treatment as well as compensation for time unable to work due to the injuries.

The rationale is to allow injured people to be able to access medical benefits

quickly, without the need to formally lodge a full claim (an S74 claim) which will

require fault to be established. The lodgement of a full claim can sometimes be

a lengthy process which may cause some of the minor injuries to worsen if not

treated promptly.

In 2013, the NSW State Government tried to introduce a “no-fault” scheme in

NSW with the Motor Accidents Injuries Amendment Bill 2013 (The Government

of New South Wales [2013]) but it was later withdrawn due to the Government

unable to win support for the bill. At the time of writing, the NSW CTP scheme

remains to be at-fault based with a no fault scheme for catastrophic injuries.
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2.3 Brief History of NSW CTP

The NSW State Government first legislated that CTP insurance to be compulsory

in 1942’s Motor Vehicles (Third Party Insurance) Act. This was prompted by

the severe financial hardship that accidents placed both the driver and injured

person in. However, throughout the 1950’s and 1960’s a significant gap emerged

from compensation amounts between Workers’ Compensation Insurance injuries

and CTP Insurance injuries. Following the high claim inflation during the 1970’s

the government had to act to contain the rising cost of CTP insurances.

The Motor Vehicles (Third Party Insurance) Amendment Act 1984 introduced

some limits on damages in certain cases and allowed 5% discounting rather than

3%; however, this did not contain claims cost effectively. In 1988, the Transport

Accidents Compensation Act legislated the TransCover scheme which placed limits

on compensation in various situations. However, these restrictions also made it an

unpopular scheme.

A change of government in 1988 brought about the Motor Accidents Act 1989,

which can be considered as a major reform to the CTP industry. Firstly, indexed

limits were placed on general damages (compensation for pain and suffering) and

exclusions were made on general damages in small claims. Secondly, the industry

was also opened up to private insurers, and the Motor Accidents Authority (MAA)

was set up to regulate the insurers.

Many insurers jumped at the opportunity; however, the “tail” of CTP insurance

was longer than some of the insurers anticipated. They did not expect that the

cost of a claim could change dramatically (usually upwards) even many years after

the date of the accident. This “escalation” of claims cost brought along with

corresponding increases in insurance premiums. The government tried to step in

and contain, unsuccessfully, the spiralling cost of CTP policies in 1995.

In 1999 the Motor Accidents Compensation Act (MACA) 1999 was introduced

with the following changes to improve the scheme overall, not just from a cost
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perspective.

• Earlier notification of accident and treatment - by completing an Accident

Notification Form (ANF), claimants are entitled to up to $500 of treatment

they feel necessary.

• Earlier settlement of claims - clear timeframes for lodging claims and for

insurers to respond to claims.

• Dispute resolution - the Claims Assessment and Resolution Service (CARS)

was setup to resolve disputes in a non-adversarial environment. Claimants

who disputes CARS assessment can appeal in court; however, they are not

allowed to submit further evidence.

• Independent medical costs assessment - the Medical Assessment Service

(MAS) was set up to determine the cost of treatment, rehabilitation and

future care a claimant requires by an independent team of medical profes-

sionals. Their assessment is binding on the parties, CARS and the court

system.

• Removal of non-economic loss from small claims - this is done through a

whole person impairment threshold (10%) above which the claimant can

claim for non economic loss.

• Regulation of fees and costs - this is done to cap the costs paid to legal and

other professionals for their services.

Since then several amendments to the Act and other relevant Acts have been

introduced. The most notable being the Long Term Care and Support (LTCS)

Scheme. This enforced catastrophically injured persons from motor vehicle acci-

dents to be collectively looked after by the State Government on a no-fault basis.

Firstly, lump sum payments are no longer made to catastrophically injured per-

sons due to their lack of investment strategies and wealth planning and the money
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simply ran out too quickly. Secondly, the benefits have been extended to at-fault

parties to promote social welfare as it was deemed too costly for the family of the

injured party if they received no support in the treatment and subsequent care of

these persons.

Considerable amendment to the MACA has occurred in 2010 and this is partly

why the modelling data was chosen to be 2001 to 2009. The change in question

is that from 2010, a considerable number of smaller claims will no longer be full

CTP claims, that is, they would be ANFs (The Government of New South Wales

[2010]). The intention is for the minor injuries (such as minor bruising) to not clog

up the CTP scheme resources and allow the more serious claims to proceed more

quickly. As such, the claims arising under the new legislation will not be examined

in this research. The other reason for only modelling claims from 2001 to 2009 is

that the claim development during 2010 to 2012 have been reserved for validation

of our models. That is, our models allow us to form a view on how the claims that

are still open at the end of 2009 would develop in the future. We intend to use the

actual developments of the claims during 2010 to 2012 as a way to validate our

projections.

However, the non-inclusion of the new legislative framework does not invalidate

our models and conclusions. If the aim was to understand how the claims under the

new legislative environment would behave our modelling data can be “processed”

to represent the new environment by removing the data relating to claims that

are under $5,000 in size. A second and perhaps more interesting question is to

use the framework developed in this thesis to answer how does the change in

legislation alter claims development behaviour. We believe this question may be

harder to answer. From prior experience, legislative changes takes a number of

years to stabilise as all parties, claimants, regulator, insurers and lawyers, take

some time to understand and adjust to these changes. Three years of data post

change for a long tailed portfolio like CTP may not be enough to establish these
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new behaviours.

2.4 Market and Insurers

In NSW, private insurance companies are allowed to participate in the NSW CTP

scheme by obtaining a license. There were close to 20 licenses issued since the

industry was deregulated. However, a series of claim cost escalations led to con-

solidation in the market, there is now only 5 insurance companies with 7 licensed

brands, they are as follows. Their respective market shares during 2011/2012 are

contained in brackets (Motor Accidents Authority [2012]).

• AAMI (Suncorp) (8.8%)

• Allianz (12.6%)

• CIC (Allianz) (4.2%)

• GIO (Suncorp) (12.7%)

• NRMA (37.8%)

• QBE (16.8%)

• Zurich (7.1%)

The market can be classified as an oligopoly, in which “game theory” (Kon-

stantinidis et al. [2007]) dominates the way prices are determined. This refers to

insurer’s desire to find out what the competitors are charging and then charge

slightly less than the best competitor in profitable segments of the market and

charge slightly more than the worst competitor in unprofitable segments. That

is, each insurer would try to anticipate the premium levels of their competitors

and make their decisions based on that. The employment of two or more licenses

allows some insurers to segment the market and allows different brands to charge

different premiums due to the different price elasticities of the segmented markets.
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The NSW CTP Scheme has a “file and write” system where each insurer notifies

the MAA on the premium rating structure up to three months in advance and

once approved by the MAA the insurer can start issuing CTP insurance at the

filed premium levels.

The CTP insurance in NSW is still largely community rating based; that is,

every driver enjoys a relatively similar premium. Evidence suggest young male

drivers can be sometimes three times more costly to insure compared to the over-

all average. However, the MAA will only allow approximately a 50% loading to be

applied to the average premium on any one policy to address the issue of affordabil-

ity (Motor Accidents Authority [2014a] and Motor Accidents Authority [2014b]).

This heavy cross subsidy makes insurers purposefully avoid young drivers. How-

ever, being a compulsory insurance product, insurers cannot refuse to insure a

driver. The main method in which insurers try to target different subset of the

driving population is to design advertisement campaigns that attracts the 30 to

60 year old policyholders but not the very young drivers. The fact that insurers

cannot charge the correct premium for some segment of the market means that

the game theory and premium positioning for various segments of the market is

very important in the setting of premiums. This aspect of the NSW CTP market

is discussed in detail in Konstantinidis et al. [2007].

2.5 CTP Claims

When a motor vehicle accident occurs in NSW any injured persons may be eli-

gible for compensation under the NSW CTP scheme for losses relating to their

injuries, although the driver at-fault will have significant limitations to the enti-

tled compensation. Such losses can be medical examinations, medical treatments,

economic loss for not being able to work, medical aids or modifications performed

to car or home or legal costs involved.

Since the police must be notified of all accidents resulting in bodily injury,



20 CTP Claims

each CTP claim must be accompanied by a police report detailing the accident

and this allows the insurer to establish the party at-fault. The insurer of the at-

fault vehicle is usually appointed as the managing insurer and will manage the

claims of all injured persons from the accident. That is, this insurer is liable for

all the claimants and their compensations. Each injured person of that accident

has his or her own “file” and is allocated with a claim number.

When a party at-fault is difficult to establish or multiple parties contributed

to the cause of the accident then the liability is said to be shared between the

insurers of the vehicles in a determined ratio. In this case a managing insurer

will be selected between these insurers and will make all the decisions about these

claims; the other insurers need to share the cost in the determined ratio. When

there is no party at-fault (accident caused by natural perils, etc) or the at-fault

party cannot be found, then the claim is referred to as a “nominal defendant”

claim, an insurer is appointed at random to manage the claims from that accident.

However, all insurers in the NSW CTP scheme share the claims cost of such claims

proportional to their market share.

Subsequent to the establishment of the claim file claim managers will look after

the claim until the claim is finalised. This process is somewhat similar to other

bodily injury claims (such as Workers Compensation Insurance or Public Liability

insurance), where the claims manager may undertake the following actions.

• Gather information by talking to the claimant or the legal representative of

the claimant.

• Monitor the injuries and conditions of the claimant through medical reports

and work with various medical professionals to seek treatment and rehabili-

tation of the claimant.

• Make payments for expenditures of the claimant in terms of medical and

other expenses.
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• Work with the claimant or his or her legal representation to determine an

ultimate compensation amount to settle the claim.

• If the claim progresses further, such as through CARS or the court system,

then the claim manager may be required to prepare evidence and work with

the legal counsels of the insurer.

Upon setting up the claim file, the claims manager makes an initial estimate of

the cost of the claims from the information available. This cost would then vary up

or down as the claims manager receives new information; this process is typically

known as claims development. At the settlement of the claim, all of the cost of

the claim would be paid out, either to the claimant or to the various professionals

through the claim process, the claim will then be closed.

Since CTP insurance is heavily regulated and is a commoditised product, in

that all insurers are essentially offering the same product as dictated by the gov-

ernment regulator, the claims cost for similar claims between different insurers are

likely to be similar. However, different insurers do employ different claims settle-

ment strategies to obtain a comparative advantage in reducing claims costs. Such

strategies may include the following.

• Active claims management, which refers to the claims manager contacting

lawyers and medical professionals over the phone rather than waiting for a

response by traditional mail correspondence.

• Early settlement of claims, that is, settling claims earlier on, prior to the

claimants’ medical conditions deteriorating.

• Bulk conferencing, claims manager makes a trip to rural areas and personally

visit lawyers looking after claims in one particular area. The claims manager

presses the lawyers to settle claims while he or she is “on-site”.

Due to the strategies involved, the claims development pattern may be different

across different insurers.
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2.6 Personal Injury Register Database

The MAAmaintains the Personal Injury Register (PIR), a database of all claimants

since the enactment of Motor Accidents Act 1989. It is required by the law that all

insurers submit their claims data to this centralised database. A comprehensive

set of claims information is to be submitted by the insurers on a quarterly basis.

This information is combined across all insurers in the industry and available to

each insurer a few weeks later with the data fields that may be used to identify

the claimant, driver and managing insurer blanked out. The main purposes of the

PIR are to:

• monitor the CTP scheme

• calculate premium levels and premium rating factors

• investigate the occurrence of fraud, and

• assist the MAA in deciding funding initiatives to reduce road accidents

When the insurers submit their information, a very stringent process of data

validation is carried out. Each accident will be cross matched to a police accident

report and an accident ID will be allocated. Each claimant will be given a claimant

ID and linked to the accident. The “role” of each claimant is also recorded, for

example, the driver at-fault or a pedestrian. This allows various quantitative

studies, such as vehicle safety or road safety, to be undertaken. All the payments

the insurer makes in regards to a claim is also carefully broken down into types

of compensations, also known as, “Heads of Damage” or HoD. Such a breakdown

can then gauge the effectiveness of various legislation in controlling the cost of

providing CTP insurance.

The database is then made available to the insurers. Each insurer can obtain

two sets of tables, their own claims (with claim identifiers to match with their own

claim reference number) and the complete claims, with the managing insurer field
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masked. The two files when used together allow the insurers to directly compare

their claims experience with that of the industry. The quarterly extract that the

insurer can obtain is a subset of the complete database, and contains the following

tables.

• Claims record information - this table includes information such as date of

accident, litigation status, severity and nature of injury, claim status, etc at

the date of data extraction. Historically, the first five injuries are recorded in

this database; or if more than five are presented at the same time, then the

most severe five injuries are chosen. The injury coding used in the earlier

years is AIS (Abbreviated Injury Scale) 1985 Update. More recently the

injury coding adopted is the AIS 2005 update. However, a mapping between

the two updates is available and we can convert between the two coding

systems reliably.

• Payment information - this table includes information on payments made

during each quarter since the lodgement of the claim. The type of payment

(such as medical treatment or legal costs) is also included.

• Case estimation information - this table includes information on what the

managing insurer thinks is the amount left to be paid regarding a claim at

the end of each of the quarters since the lodgement of the claim.

Notice that in each extract any one claim can only appear once in the quali-

tative claims information table yet can appear multiple times in the payment and

case estimation files. A few randomly selected sample records of this database are

provided in Tables 2.1 to 2.3.
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Table 2.1: Sample of Claims Record Information Table
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Table 2.3: Sample of Case Estimation Information Table
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Table 2.1 is known as a “Claim Header” file and provides the basic information

regarding the claim, such as, “date of the accident”, “age of claimant - time of

accident”, “legal representation”, etc. Some of the variables are static (e.g., age

of claimant at the time of the accident) or dynamic (e.g., legal representation

status). Table 2.2 is a “Payment Transaction” file and shows the date and amount

of each payment made and also the nature of the payment. Table 2.3 is a “Balance

Outstanding” file that shows the balance outstanding (or case estimate) of the

claim at the end of each quarter. The variables contained in Tables 2.1 to 2.3 and

their descriptions are provided in Appendix C.1.

2.7 Data Used for this Research and Issues with

the PIR

Complete claims data has been collected and maintained since 1989. The data

that the MAA collects is suitable for the analysis of claims development as every

quarter a snapshot of all the claims in the system is collected from the insurers and

then made available to the insurers for analytical purposes. Hence, by appending

these quarterly data together a complete history of the claims is compiled and their

development can be analysed. As noted above, while the historical payments and

case estimates information for each claim are available in every extract, the other

claims information is available as a snapshot. The concatenation of the historical

claims data would provide a complete history of even the qualitative information.

This will be discussed later on, but the qualitative information can be loosely

termed as static or dynamic. A complete history of claim characteristics would

allow the understanding of how the changes in these dynamic variables impact the

claim development behaviours.

Since the implementation of the Motor Accidents Compensation Act in 1999

(MACA 1999) more than 14 years of data is available at the time of writing. A
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Figure 2.1: Time Period of Data Used

twelve year data period, 2001 to 2012, has been adopted for this research. The

data is split into a modelling dataset and a validation dataset as represented in

Figure 2.1. The data contains all full claims (ANFs are excluded) occurring from

1 January 2001 to 31 December 2009; the modelling dataset observes them until

31 December 2009 while the validation dataset observes these claims (which may

contain claims lodged after 31 December 2009 arising from accidents that occurred

prior) for a further three years.

The validation data allows comparison between the projected claims paths and

claims costs to the actual realisations in the three year period. This use of the val-

idation data serves two purposes. Firstly it enables an examination of the efficacy

of the individual claims modelling approach when used as a valuation method,

that is, compare between the total claims cost resulting from the predictive mod-

elling and the actual observed claims costs in the validation dataset (see Chapter

8). Secondly, based on such comparisons, calibration can be performed to improve

future predictions.
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The choice of the data period was made after careful consideration of the

following factors.

Firstly, The first 15 months of MACA data was not used as MACA started

1 October 1999. It is felt the behaviour of the scheme would be erratic under

the new legislation and that it would take the participants (claimants, regulators,

lawyers, insurers, etc.) some time to understand and get used to the new rules and

features of the scheme. During this period, we observed claim frequency reduced

sharply and feel the claims occurring from 2001 would be more stable and more

reflective of the claims to be expected under the new scheme.

Secondly, under MACA Amendment 2007, effective from 1 October 2008 there

has been a major change to the claim profile. After this date, minor claims (also

known as ANFs) were extended from $500 to $5,000. Under the MACA Amend-

ment 2007, claims of less than $5,000 would be greatly reduced as the lodgement

of a full CTP claim is considerably more time consuming than the lodgement of

an ANF. However, due to the unadvertised nature of this change, up until the end

of 2009, very few ANFs were of a size greater than $500. That is, if the claimant’s

costs were greater than $500, a full claim were still lodged. Hence, the end of 2009

were chosen as a cut off point where the behaviour of the smaller claims (less than

$5,000) were quite different before and after this date.

Thirdly, the split of 12 years of data into 9 years of modelling data and 3 years

of validation data allows a significant portion of available data to be used for model

development and model fitting while the three years of validation data allow the

claims enough time to develop in order to gauge the accuracy of the claim size

projections of the individual claim models.

Fourthly, ANFs have been excluded from our analyses. Since ANFs were de-

signed to reimburse the injured’s parties out of pocket expenses (up to a limit

of $500) their claim sizes are almost certain when the ANFs are lodged. That

is, there is almost no development in the sizes of ANFs. Also while numerous in
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number, the ANFs are of minor sizes and the insurers do not have a great deal of

interest in them as their financial impact is minor. ANFs may make up around

20% of the total number of reported CTP matters (claims and ANFs in total) but

only represent around 0.5% of the cost.

While the NSW CTP data is generally complete and relatively free of problems,

we have identified several issues that can be dealt with straightforwardly.

• Injury Coding Change - Prior to September 2008, all injury coding was

carried out on the AIS85 coding format; however, from September 2008,

coding was done using AIS05 for new claims or claims that has had a revision

(where MAA required the insurer to change the coding to the new format).

The Abbreviated Injury Scale (both the 1985 and 2005 revisions) used the

first four digits to denote the location and type of the injury and the last

digit as an injury severity measure. Due to the coding change, only the

location of the injury and the injury severity will be used in the modelling.

While most of the injuries have their severities maintained from AIS85 to

AIS05, some of injuries did have their severities revised. In particular stress

related injuries which could have been rated as a severity 1, 2, 3 or 4 have

been revised down to severity 1 injuries. There is no way to re-map them

as we would not know whether the change is a genuine change or a change

due to the coding change. Fortunately, this only applied to a very small

percentages of the claims.

• Missing Variables - in the earlier stages of the PIR database, some data fields

were collected but not provided by the insurers. For example, “Employment

Status” was not available until 2002. However, the missing variables in the

earlier extracts are typically static variables, and these blank fields were able

to be “back filled” with the later extracts.
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2.8 Usage of PIR

The NSW CTP PIR dataset is used extensively throughout this research. In

Chapter 4, it is used to demonstrate the current mainstream actuarial valuation

techniques as methods for projection the ultimate claim sizes on an aggregate basis.

In Chapter 6, the individual claim characteristics are discussed and the framework

for the Claim Development Processes (CDP) are developed. Chapter 7 applies the

claim development processes modelling framework to the PIR and the results are

discussed. Chapter 8 applies the CDP as a predictive modelling tool and predicts

the ultimate claim sizes of the open claims at the end of the modelling dataset;

comparisons are made to the traditional methods.

The MAA has kindly granted permission for the PIR to be used in this research.
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Chapter 3

Detailed Description of the Data

3.1 Introduction

This chapter provides a detailed summary of the motivating dataset, the NSW

CTP data. While the rationale underlying the construction of the Personal Injury

Register (PIR) was discussed and an overview on the data structure was provided

in the last chapter, this chapter aims to provide visual and numerical summaries

of this dataset. This furthers the discussion regarding the features of the dataset

and aids the development of the model framework in later chapters.

3.2 Actuarial Triangles

In this section, the actuarial concept of a “triangle” is introduced as well as a

general discussion of data used in this section. As noted earlier, the NSW CTP

data used in this research contains all claims from the accident periods 2001HY1

(1st half year of 2001) to 2009HY2 observed until the end of 2012. However, this

dataset is split into a modeling dataset where the censoring date is at the end of

2009 and a validation dataset where the censoring date is at the end of 2012.

The data is then arranged in the format of a triangle. Table 3.1 shows the

number of claims lodged with the insurers for the CTP dataset.

33
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Table 3.1: Reported Claims Numbers - Nk,j

The data are tallied by accident year (vertical axis) and development time

(horizontal axis). Each cell represents the number of claims reported, Nk,j, for

a combination of k, accident period, and j, development period. For example,

N1,0 = 2343 means for accident half-year “2001HY1” there were 2,343 claims

reported as at the end of the accident period; N1,8 = 6218 means after 8 half

years of development, there were 6,218 claims reported for that accident half-year.

The increase of the data along the horizontal direction is a result of reporting

delay, that is, claims from accident period k may not be reported until some time

later. Since at any point in time, the older accident periods would have had a

longer period of time to develop relative to the newer accident periods and this

gives actuarial data the “triangle” shape. Each diagonal in the triangle represents

one half year of development of the reported claim numbers for all the accident

half-years to date.

This reported claim numbers data triangle also highlights the issue of censoring.

For example, for accident period “2001HY1” new claims continued to be lodged

8 years after the date of the accident, since N1,16 = 6284 and N1,15 = 6282. For

long tailed insurance products like CTP, it can take a long time for claims to

be reported and even longer for claims to be finalised. Unless examining accident

periods from a significant period of time ago (e.g., 20-30 years ago), the data would
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be censored as claims would still be open and their final outcomes uncertain.

The data is also represented in two colours: the black numbers in the table

represent the data used for modelling and the red numbers represent the data

used for validation. The validation data represent an additional three years (six

development periods) of observation for all accident periods. For example, accident

period 2009HY2 only has one development period in the modelling data but has

six development periods in the validation data. On the other hand, accident

period 2001HY1 has 17 development periods observed in the modelling data and 6

more development periods observed in the validation data; that is, 23 observations

tabulated in total.

Tables 3.2 to Table 3.4 show the data for incurred claims cost, Xk,j, payments

to date, Pk,j, and case estimates, CEk,j used in this section. A more detailed

discussion on notation is provided in Section 4.3. The layout of these summaries

is the same as for Table 3.1. It is worth noting that the values in each cell may

relate to different numbers of claims that have been reported up to that point in

time, corresponding to the Nk,j in the Table 3.1.
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Table 3.2: Incurred Claims Cost ($m) - Xk,j
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Table 3.3: Payments Made ($m) - Pk,j
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Table 3.4: Case Estimates ($m) - CEk,j

3.3 Sample Claim Paths

Tables 3.5 and 3.6 and Figures 3.1 and 3.2 present two “sample paths” of claim

development. The tables show the concatenated quarterly data and the figures

provide a simple visualisation of the data. “Incurred” in the following tables and

figures refers to incurred claims cost and is the estimate of the final claims cost at

that point in time.
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Table 3.5: Sample Claims Data 1

Figure 3.1: Sample Claim Development 1

For the claim shown in Table 3.5 and Figure 3.1, the accident occurred in

Q4 (fourth quarter) 2001 but a claim was not lodged until Q3 2002. It then

laid dormant for another six quarters; during this period the insurer believed the

claim was finalized for $0, or a nil claim. At the end of 2003, the claim was “re-

opened” and more information about the claim was known (including that the

claimant obtained legal representation and some information regarding the injury)

and immediately the estimate increased to around $10,000. About a year later, the
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liability status was changed from “Rejected” to “Accepted” and a further sizeable

increase in the estimated claims cost was made. More than another year elapsed

and the injury seemed to have worsened from affecting one body region to affecting

two body regions. The claim was settled soon after with a saving, almost five years

after the claim occurred.

The claim shown in Table 3.6 and Figure 3.2, however, has had very frequent

revisions, almost quarterly. Yet, the main characteristics of the claim did not

change throughout much of the life of the claim. Five years after the accident

occurred, the claimant obtained legal representation and the claim size was revised

upwards sharply. It seems the lawyer took a more active management of the claims

and the claim was soon settled, at an amount, not too different to the estimate

the insurer had prior to the lawyer was appointed.
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Table 3.6: Sample Claims Data 2
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Figure 3.2: Sample Claim Development 2

The sample data and sample paths should provide a more tangible feel of

the data that is been used throughout this research. In total, there are around

100,000 such claims to be analysed, each with their own trajectory and associated

claim characteristics that varies over time. This NSW CTP dataset is a very

complicated dataset. Further data processing is required in subsequent chapters

and is documented as required.

3.4 Claim Development: Real Time vs. Number

of Revisions

One of the features of the model proposed in this research is that the “duration”

of a claim is not time elapsed on a real time scale, but on the number of revisions

made to claims cost. This is somewhat analogous to the concept of “operational

time”, that is, it is an activity based concept of time rather than calender time

based. For a more detailed discussion on operational time as a measurement of
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time passage refer to Taylor [1981].

Using the number of revisions as a measurement of time, impacts on the speed

of claim management can be normalised. For example, in the NSW CTP scheme,

the number of claims have reduced significantly since 1999, probably due both

the introduction of the then new legislation MACA and advancement in vehicle

safety technology such as stability control and air bag technologies. Amongst other

causes, the reduction in the number of claims may have resulted in claims being

attended to more promptly as the overall volume of claims has reduced. From the

data, it is observed that the delays between revisions are shortening for the more

recent years. This can be observed in the Table 3.7. It seems from the 2005 accident

year onwards, the average duration between claim revisions has shortened across

all revisions. As the delay between revisions shorten, it is reasonable to expect the

development pattern would also hasten, such that most of the claims development

would happen more promptly than before. Using an “activity” based time scale

such as number of claim cost revisions would be able to better account for the

more rapid claim revisions.

��������

�		�
������� � � � � � � � � � ��

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Table 3.7: Average Delay per Revision

Secondly, using number of revisions as a time scale leads to more stable devel-

opment patterns. In Tables 3.8 and 3.9, we compare the development ratios of the

claims cost between the usage of development year and the usage of number of

revisions as measurements of time. The former (Table 3.8) compares the incurred

claims cost in one year to the previous year and the latter (Table 3.9) compares

the claims incurred cost at one revision to that of the previous revision. The vari-
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ability of the development factors, as measured by their standard deviation, is also

shown.
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Table 3.8: Development Factors by Development Year
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Table 3.9: Development Factors by Number of Revisions

While the standard deviations of the development ratios based on number of

revisions seem to be smaller, the differences are minor. However, there is a subtle

difference in the way the development ratios are devised. While the number of

revisions based development ratios only includes claims that have had a change,

the calender year based ratios would include all claims regardless whether they

have had a claim revision or not. Hence, the ratios may be diluted and appear

more stable than they really are. Consequently, it can be argued that the number

of revisions as a time measure provides more stable development patterns in the

NSW CTP portfolio.
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Chapter 4

Current Approaches to

Projecting Ultimate Claims Cost

4.1 Introduction

This chapter examines the current actuarial methods used in the projection of the

ultimate claim costs for long tailed insurance products. The ultimate claim costs

are of paramount interest to the insurer, both to assess to eventual profit or loss

arising from a cohort of policies as well as to manage the cashflows required for

claim payments.

Over time, actuaries have developed numerous methods for the projection of

the ultimate claims cost for insurance products. Collectively, these methods are

known as actuarial valuation techniques (Hart et al. [1996] and Taylor [2000]).

Valuations are a legislated requirement for the management of insurance companies

in developed countries. Several of the more well known and widely used techniques

are discussed here. We have applied them to the NSW CTP dataset to demonstrate

the methods as well as to evaluate their forecasting efficacy.

These methods can be categorised as either aggregate models or individual

claims models (Kaas et al. [1988] and Taylor et al. [2008]). The former projects the

ultimate claims cost for a portfolio of claims based on the underlying assumption

43
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that the development pattern for a sizeable pool of claims would be stable and

historical patterns can be used to predict how claims would develop in the future.

The latter attempts to provide an ultimate claims cost for each claim, and when

summed over all claims in a portfolio, can also provide the ultimate claims cost

for a portfolio of claims.

Aggregate models are much simpler to apply and explain to the management

of insurance companies and, as a result, these models have become the current

mainstream valuation techniques. With an overarching objective of maintaining

their financial health insurance companies are more interested in whether they

have set aside enough monies, as a total pool of funds, to pay for future claims

rather than any particular individual claim. Hence, the valuation is primarily

designed to ensure this total pool of funds is adequate.

However, the ability to produce claim cost estimates on an individual claim

basis has certain merits. First of all, the insurance company may wish to analyse

those claims that are ultimately settled for considerably higher than their current

estimates; interesting insights may be learned as to why these claims cost more

than originally expected, or this type of analysis may lead to fraud detection. Sec-

ondly, knowing the claims cost at an individual level may enable claims manager to

deliver a better outcome, for example, by referring claims with very high projected

claims cost to the appropriately experienced claim manager earlier on. Currently,

the field of individual claim valuation models is in its infancy - a few models have

been outlined but detailed implementation is difficult and results, as well as the

processes in obtaining the results, are at times difficult to explain to the various

stakeholders. This thesis contributes to this area by proposing a framework to

model the process by which the claim estimates change over the duration of the

claims.

Also, traditional actuarial methods only produce point estimates of the ulti-

mate claims cost. These methods do not inherently produce any measurement of
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variability of the mean or “central estimate”. With the professional and regulatory

requirement for an actuary to examine claims cost variability (Institute of Actu-

aries of Australia [2013] and Australia Prudential Regulation Authority [2013])

as a part of the valuation process, a separate process based on the chain ladder

framework (Wüthrich et al. [2009b] , England and Verrall [1999] and Pinheiro

et al. [2003]) is typically used for the analysis of volatility regardless of the method

adopted for the central point estimate. These analyses of volatility generally are

not consistent with the actuarial methods themselves.

This chapter examines two mainstream aggregate actuarial valuation models

and two individual claims valuation models. The aggregate models examined are

the Incurred Chain-ladder Development (ICD) model and the Payments per Claim

Finalised (PPCF) model. The ICD model is likely to be the most general model

in its applicability and most widely used actuarial valuation method; the PPCF

method is designed specifically for CTP portfolios. A third method, the Projected

Case Estimate method while also popular with CTP portfolios is not discussed

further in this chapter; further discussion is provided in Appendix B.2.

The individual claims valuation models discussed in this chapter are Gener-

alised Linear Model (GLM) and Statistical Case Estimation (SCE). While the

former are widely used in various fields as the de facto multivariate statistical tool

to understand the relationship between the dependent and explanatory variables,

its application in claims reserving, especially long tailed claims, is still relatively

rare. Despite that, GLMs are the primary individual claim reserving tool currently

used by actuaries for CTP reserving and is discussed in some detail in this chapter.

SCE was introduced by Taylor and Campbell [2002] and it has been designed for

claims with regular payments based on a set of defined claim “states”. While used

for CTP claims, this method is less useful for NSW CTP data, as the bulk of the

claims payments are made in lump sums at finalisation.

Applications of the methods to the CTP modelling data (2001 to 2009) are
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shown and discussions on the pros and cons of each method are presented. The

performance of each method is also assessed using the validation data (2010 to

2012). The overall effectiveness and shortcomings of these conventional methods

are then discussed.

4.2 Actuarial Modelling of Long Tailed Claims

Traditionally, CTP claims are generally modelled at an aggregate level. As a part

of the valuation process, the ultimate cost of a cohort of open claims is projected

using historical claim development patterns. When the projected claims cost of

the active claims is added to the known costs of the closed claims, the total claims

cost of these claims can be determined. The issue with this approach is that claim

cost is determined at an aggregate level and does not shed light on the relative

costs of the insurer providing the product to different customers.

The preference to model claims on an individual basis, especially utilising the

risk characteristics of the policyholder as explanatory variables, is recognised by

the actuarial profession, claims managers and management of insurance compa-

nies. This detailed modelling approach by relating claims behaviour to policy

characteristics has been used extensively for insurance products with a relatively

high claims frequency such as home insurance or motor vehicle property damage

insurance. However, its application to low claim frequency insurance products

such as CTP insurance is less straight forward.

Taylor et al. [2008] has labelled these models “individual claims models” in the

context of claims reserving, as opposed to aggregate level models. However, these

models have their place in a pricing context as well, as they can be easily adapted

to modelling how risk characteristics correlate with claims cost.

In the same paper (Taylor et al. [2008]), the authors laid the foundation work

for the development in this area. Individual claims models were differentiated

from aggregate claim models, and various types of covariates have been defined:
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“Static covariates”, “Dynamic covariates”, “Time covariates” and “Unpredictable

dynamic covariates”. The last type is noted to be the most interesting but also

the most difficult to model. To utilise in a predictive sense, to project the claim

to its ultimate cost, there also needs to be a method of projecting the values of

these unpredictable dynamic covariates to their ultimate values as well.

4.3 Notation Used in this Chapter

For this chapter, the following common notation is used. Let k denote the acci-

dent period in which the claim occurred; generally the accident period would be

expressed in years or half years for long tailed insurance products. Half yearly

accident periods are used in this chapter; this aligns with the financial reporting

needs of the insurer, which is typically carried out on a half yearly basis.

Let Xk,i,j be the reported incurred cost of the ith claim from accident period k

at development time j, where j is defined as number of periods after the accident

period k. Since not all claims occurring in accident period k would be reported

during that period, rk,i is used to denote the reporting delay of the ith claim after

the end of the accident period k. Consequently, Xk,i,j ≥ 0 for j ≥ rk,i and also

define Xk,i = Xk,i,∞ as the ultimate claims cost for the ith claim and is the variable

of interest in this research.

Theoretically, development time periods do not need to be the same lengths

as accident periods, e.g., development half-years can be used with accident years,

however, it is more common to have them of the same length to make calculations

slightly simpler. Using the same time intervals will also yield the “triangle” shaped

data when claim numbers or claim incurred are tabulated by accidents periods and

development periods.

We define the CTP data as with the following notation.

• k = 1, 2, 3, ..., 18 where k is measured in half years from the start of 2001,
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for example k = 1 refers to accident period 2001HY1, or the first half year

of 2001

• j = 0, 2, 3, ...18− k since when k = 1 the maximum value j can take is 17

• r = 0, 1, 2, ...18− k

• i = 1, 2, ..., Nk where Nk is the number of claims occurred during accident

period k

Since most of these actuarial techniques are aggregate methods and do not

need to identify individual claims, the subscript i has been dropped to denote a

summation over i. In particular, let Xk,j be the total reported incurred cost from

all claims from accident period k at development period j. Hence,

Xk,j =

Nk,j
∑

i=1

Xk,i,j (4.1)

where Nk,j is the number of claims reported at time j for accident period k.

Similarly, Let Pk,i,j and CEk,i,j denote, respectively, the amount of the claims

cost that has been paid and the amount that is still outstanding from the ith

claim of accident period k at development time j. Note that Xk,i,j = Pk,i,j +

CEk,i,j. Similar to Xk,j, let Pk,j and CEk,j respectively be the total payments and

outstanding amounts from all claims from accident period k at development time

j.

We also define two time variables that will ease the notation. LetD be an upper

bound for j, the development period, such that at development D, all claims from

any accident periods are reported and settled. Secondly, let T be the development

period that the data becomes censored; the censoring time for the modelling data

is at the end of 2009 and the censoring time for the validation data is the end of

2012. Without mentioning it explicitly, T is taken to correspond to the censoring

time for the modelling data, or in this case T = 18 − k, for k = 1, 2, ..., 18. T is

the upper bound for j for each accident period, denoting the development period
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at which the claims become censored. For example, k = 1 corresponds to T = 17,

that is, there are 17 half years of development after the accident period when the

claims from this accident period becomes censored.

4.4 Chain-ladder Model

4.4.1 Incurred Chain Ladder

The Incurred Chain-ladder Development (ICD) Model is one of the earliest devel-

oped claim reserving methods and it is still widely used today (Hart et al. [1996]).

This method has stood the test of time because it is simple to apply, easy to un-

derstand and explain and there is considerable scope to overlay the model with

judgement, based on experience and knowledge.

Basically, the model hypothesises a fixed relationship between Xk,j’s for consec-

utive j’s for all k’s. Simply put, the reported claims cost from each accident year

would “grow” similarly from one development period to the next period. Such

development comes from two sources, IBNR (incurred but not reported) claims

and IBNER (incurred but not enough reported) costs. The former refers to claims

that have happened but are not yet known to the insurers and when they become

known, the incurred costs for that accident period would grow; the latter refers to

the change in claims cost over time, usually when new information becomes known

about the claim and typically these changes are positive.

Let λk,j be the ICD factor from development period j − 1 to j for accident

period k, defined as

λk,j =
Xk,j

Xk,j−1
(4.2)

While we have used development periods of half years, in theory, the develop-

ment periods can be of any lengths of time; but in practice, half years or quarters

are used most frequently to meet the reporting requirements of insurers. For short
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tailed products, the insurer may wish to use quarterly or even monthly models, to

capture any “seasonal” patterns the claims development may have. However, for

long tailed claims, it is unclear whether modelling claims cost development more

frequently than half yearly or quarterly would materially improve accuracy. Half

year development periods have been used here to match the half yearly accident

periods.

The ICD model postulates that the observed λk,j’s are identically and indepen-

dently distributed for all k with mean λj and some unknown variance function.

These true λ parameters can be estimated in the following fashion,

λ̂j =

∑18−j
k=1 Xk,j

∑18−j
k=1 Xk,j−1

(4.3)

The upper bound of the summation is 18 − j for development period j; with a

higher j, there are fewer accident periods that can be used to estimate λj . England

and Verrall [2002] discusses the statistical properties of the ICD model in great

detail and the reader is referred to their paper for further information.

Once the λj’s are estimated, the projected ultimate claims cost for each accident

period are calculated as

X̂k = Xk,T

D
∏

j=T+1

λ̂j (4.4)

where Xk,T is the known incurred cost for accident period k as at the censoring date

and λ̂j ’s estimated from the data. The user can reasonably limit the calculation of

the λj at a j when all the claims are reported and settled for an accident period,

this is denoted by D in the equation above. This may be two years for most short

tailed products while this may be ten or more for long tailed bodily injury products

like CTP.

One disadvantage of this model is the fact that incurred claims costs are made

up of payments and case estimates. While the former is factual and evidence based
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the latter is driven by claim management behaviour, which may change over time

to adapt to the changing environment. This means, the λ’s may change over time.

For example, in the aim of having the most reliable estimates available, the claims

manager learns from previous deviations and consciously corrects them, in this

case, the ICD factors would change over time.

To overcome this disadvantage the ICD model does allow a significant level of

control for the user to apply knowledge and experience through the selection of

the λ’s to be something other than the weighted average of the complete history.

For example, it is common practice for actuaries to only use the most recent two

years of data to calculate λ̂j, that is,

λ̂j =

∑18−j
k=max(1,15−j)Xk,j

∑18−j
k=max(1,15−j)Xk,j−1

(4.5)

The summation range allows only 4 elements are summed, representing 2 years of

data. The user can even select ICD factors completely ignoring the data based on

other knowledge.

The ICD model is extremely easy to apply in practice. Appendix B.1 shows

the ICD method applied to the NSW CTP data. The results of the modelling is

show in Table 4.1.

While the accuracy of the various actuarial projection methods are compared

later on, a few observations are made here. The total estimated claims cost using

modelling data alone for the nine accident years is $9,023m for the industry. The

projected ultimate claims cost for the NSW CTP scheme ranges between around

$420m to $600m per half year, hitting a low in 2002 and then steadily increasing

until the 2009 accident periods. The increase in the claims cost would be needed

to be passed onto the policyholders in the form of higher CTP premiums. By

incorporating three extra years of development in the form of the validation data,

we assume the projected ultimate claims cost is more accurate. The total projected

cost over the 9 accident years is around $9,045m. The change is only $23m at the
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Table 4.1: Summary of ICD Projection

total level, showing the ICD model provides very stable projection numbers.

4.4.2 Claim Number Chain Ladder

Table 4.1 also contains projected number of claims for each accident period. The

projection method for the claims numbers is also the Chain Ladder method. Due

to the statutory limitation of 12 months on reporting delays, with the exception

of certain circumstances, the claims numbers are easier to project. The projection

of the claim numbers are not shown here. However, the methodology is exactly

the same as discussed above, replacing Xk,j with Nk,j.

4.4.3 Projected Case Estimation Method

A related model to the ICD model is the Projected Case Estimates (PCE) model

(Hart et al. [1996]). This model is designed to remedy two shortcomings of the

ICD model.

Firstly, the development factors in the ICD model are derived from cumulative

incurred costs, which incorporate both open and closed claims. Since closed claims
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can no longer change, they would dilute the development of the claims that are

still open. The PCE method “removes” claims after they are finalised and the

model only reflects the development of the open claims.

Secondly, the ICD model requires a separate, and often inconsistent, projection

of claims payments. The PCE model incorporates the payments as a part of the

analysis and projects payments at each future period as well as producing payments

that are consistent with the incurred cost projection.

However, due to the model’s similarity to ICD model the modelling process for

PCE is not discussed further in this chapter. The reader is referred to Appendix

B.2 for further details.

4.5 Payments per Claim Finalised in Operational

Time

More recently, a group of methods loosely named “Payments per Claims methods”

have come into popularity (Hart et al. [1996]). The assumption behind these

methods is that claims sharing some kind of common trait would be similar in cost

and the aim is to find that trait. For example, in householder property damage

claims, when damage occurs the bigger claims tend to be reported promptly and

the smaller and less obvious damages tend to be overlooked initially and reported

later. Hence, a pattern can be established between claim size and reporting delay,

which is measured from the date of the accident to the date that the claim is

reported.

For CTP claims, a big determinant of claim size is the settlement delay. Many

factors are correlated to that, either as a cause or as a result. A key determinant

of claim size is the injury severity, that is, the more serious injuries need more time

to stabilise and establish the extent of the damage and the course of treatment

and rehabilitation. Secondly, the claimants with legal representation may be more
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litigious and may go through the court systems and possibly even appeals, which

takes time and are more costly to the insurer. Thirdly, due to the phenomenon

of claims inflation, the longer a claim stay opens, even though the circumstances

may not have changed, it may cost more when it is eventually finalised.

Further, most CTP claims are paid in a lump sum payment at the time of

claim finalisation. Although some ongoing treatment costs are paid for prior to

the settlement of the claim, by far the majority of the total claims costs, including

past and future economic loss, future treatment and care costs, compensation for

pain and suffering, are paid after the terms of the settlement are agreed upon

by the claimant and the insurer. Consequently, a connection can be established

between the time taken to finalise the claim and the claim size, in particular, a

“Payment per Claim Finalised” (PPCF) model is suitable for a CTP portfolio.

For the NSW CTP scheme, however, a further complication needs to be con-

sidered. In a previous section, it has been discussed that the finalisations in the

scheme are becoming faster, that is, a claim that used to take three years to finalise

and have a particular claim size may now only take two years to settle and have

the same claim size. This means, over time, claim sizes at the same settlement

delay may not be comparable, rather, the comparison needs to occur at points of

time where the speed of settling claims is normalised. The concept of “operational

time” has been developed. Operational times are points in real time where the

same “proportion” of claims are finalised. For example, an operational time of

10% means the point of time when 10% of the claims for a particular accident

period have been finalised. This means comparison of claims at the same opera-

tional time would occur between similar claims, as opposed to comparisons on a

real time scale which may be misleading.

Before we apply the PPCF in operational time (PPCF(OT)) model to the NSW

CTP data, we need to define some additional notation as well as discuss a further

complication we face in the PPCF(OT) model.
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Let j′ now denote operational time in deciles, that is j′ ∈ (10, 20, ..., 100).

j′ = 10 refers to the first 10% of the claims that settled in a particular accident

period. Numerically, we stratify the projected ultimate number of claims N̂k into

ten equally sized cells. When we sort those claims already finalised by the order

of their date of finalisation, we can allocate claims into the ten cells.

Let Xk,i,j′ be the claim size of the ith claim from accident period k and finalised

with operational time decile j′. The underlying assumption of the PPCF(OT)

model is that claims finalised at similar durations (shares the same j′) have similar

claim sizes, even if from different accident periods. If this assumption is invalid

then the PPCF(OT) model would not be appropriate.

However, this relationship we observe from the finalised claim sizes between

claims from the same j′ but from different k is complicated by claim inflation.

Claim inflation is defined as the underlying rate of increase in the claim sizes over

time and may stem from higher wages used in the calculation for compensation,

increases in the cost of medical treatment, increases in the legal expenses, etc.

Claims inflation would confuse the relationship we are trying to establish between

the finalised claim sizes and we will neutralise the impact of inflation by expressing

all payments in the dollar values at the censoring date. This way, the trend in

the claim sizes are expressed in a common denomination and trends can be better

established. We do this by indexing the claim costs at 4.3% p.a. from the date

of settlement to the censoring date. The 4.3% used for the inflation of payment is

the average wage inflation (for fulltime jobs without overtime earnings) observed

in NSW for the period from 2001 to 2012, (Australian Bureau of Statistics [2014]).

Note explicit inflation assumption is not needed for the ICD or PCE models, the

ICD and CED factors implicitly allow for claims inflation when examining the

amount of growth from one development period to the next.

Similar to the previous techniques, the details of applying the PPCF in OT

can be found in the Appendix B.3. Projection was carried out modelling data
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alone as well as for modelling and validation data combined. The comparison is

show in Table 4.2, we can see the PPCF(OT) method has also been quite stable,

showing relatively small changes in the projected ultimate claims costs across the

nine accident years, where the ultimate cost was assessed at 2009 ($8,999m) or at

2012 ($8,959m).
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Table 4.2: Example of PPCF(OT) Model - Summary

4.6 Generalised Linear Modelling

Using GLMs to model claim sizes from an insurance portfolio has became standard

practice for over 20 years since the publication of McCullagh and Nelder [1989].

However, its popularity has been generally limited to the pricing of short tailed

portfolios, where the insurance premium is modelled based on policy characteristics

such as age, gender, value of vehicle, etc. GLMs are extremely powerful in finding

the relationships between the claim cost and these insurance “rating factors”.
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4.6.1 GLM Modelling

While the use of GLMs in long tailed reserving is well documented in the literature

(Taylor and McGuire [2004] and England and Verrall [2001]) and can be regarded

as one of the first individual claim prediction models, it is still not widely adopted

in practice. One of the main reasons is that while long tail claims can be related

to claim characteristics, their claim characteristics change over time. For example,

the GLM may find litigated claims tend to be very costly; however, litigation is a

claim characteristic that may not be present when the claim is first reported and,

instead, is developed as the claim evolves over its duration. When a valuation is

carried out using GLMs at a particular censoring date, the claims to be “modelled”

may include those recently reported and have not had a chance to be litigated yet.

Hence, by modelling claims using only these pre-mature claim characteristics, the

result would be biased Mulquiney and Actuaries [2004].

Another issue is the timing of the claims when they are incorporated into the

GLM model. For any insurance product claims settled at various durations due to

the varying complexities of the claim; this is more so for long tailed products. For

NSW CTP, claims can settle as fast as within the first quarter after the accident or

remain open after 10 years. The issue is at what duration are these claims incorpo-

rated into the GLM model. The preferred choice is when claims are finalised since

the relationship of the ultimate claim cost and the claim characteristics at finali-

sation is the strongest. The length of time before a claim is settled is used as an

explanatory factor as seen in the case of the PPCF method. This is demonstrated

in Taylor and McGuire [2004] and Mulquiney and Actuaries [2004]; however, such

a model is difficult to use for reserving as the ultimate claim characteristics are

unknown at the reserving date as the open claims at that point of time becomes

censored. The other option is to model all claims at a common duration such as

at the time of report or at the end of the quarter or half year in which the claim

was reported. GLM models based on claim characteristics at a common date can
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be used for reserving purposes since the ultimate size of a claim can be estimated

once the common duration is reached. The downside to this approach is that the

model is not as predictive, in the sense of explaining the variation in the ultimate

claim sizes, as compared to the model based on ultimate claim characteristics.

The two modelling approaches are compared below to demonstrate the issues

as well as forming a valuation estimate using the GLM approach. The theoretical

framework of GLMs is not discussed here; for further details the reader is referred

to McCullagh and Nelder [1989] and McGuire and Actuaries [2007]. The general

structure of the two GLMs compared is listed below,

• ultimate claim sizes, Xi’s, are assumed to have a gamma error distribution.

Since insurance claims tend to become more expensive over time (inflation),

the claim sizes have been inflated to the valuation date of December 2009

using 4.3% p.a., as discussed in Section 4.5. This is common practice to

eliminate the impact of inflation when analysing claim behaviours,

• a log link function is used such that logµi ∝ βZi, where µi is the mean

parameter of Xi, β is the vector of coefficients and Zi is a vector representing

the claim characteristics,

• the dispersion parameter c is estimated from the data.

The variables used as explanatory factors are discussed below. They are chosen

based on prior knowledge regarding the biggest drivers of claims cost in CTP

claims.

• Gender - Male or Female

• Injury Severity - the maximum severity of the injuries sustained by the

claimant, 0, 1, 2, ...., 6. 6 represents to a fatal injury and 0 represents

an unknown injury. Many claims have an injury severity of 0 when they

are first reported; however, they usually take on a different value as more

information is received regarding the injury.
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• Legal Representation - Y or N, whether the claimant has appointed a lawyer

to act on his or her behalf

• Employment Status - Employed (by an employer or self employed) or Other

(e.g. student or unemployed)

• Liability - Full, Partial or Other (which includes unknown or rejected liability

statuses)

• Accident year - 2001, 2002, ..., 2009, the year the accident occurred

• Litigation level - Not litigated, Supreme Court, Local Court or CARS (CARS

is a arbitration system where compensation is calculated by a team of spe-

cialist medical staff)

• Operational Time - Proportion of claims finalised chronologically prior to

this claim, in bands of 5 percent

GLM Model 1 uses ultimate claim characteristics (the observed values of the

explanatory variables when the claims were finalised). The model adopted in this

section is simpler than the one shown in McGuire and Actuaries [2007] but it is

still adequate to illustrate the modelling technique in this context. GLM Model

2, uses claim characteristics at the end of the quarter that it is notified in; and

because of this, operational time is not included in this model. However, we have

included the initial estimate of the claim size when the claim is reported in the

model. Out of the 84,260 claims that has been lodged with the insurers at the end

of 2009, 57,468 non-nil claims has been finalised and included in the GLM models.

The results of the two GLMs fitted are presented in the following table.

Table 4.3 shows model parameters, estimated coefficients and their standard

errors for the two models. Model 1 has considerably more terms and the coefficients

make intuitive sense and are discussed briefly below.
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Table 4.3: GLM Model Results
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• The coefficients for accident years increases representing increasing claim

costs overtime.

• The coefficients for operational times increases representing the sharp in-

crease in the claim sizes for those claims taking longer to settle.

• Claims with rejected liability are on average smaller than those with liability

fully or partially accepted.

• Claims with more severe injuries at finalisations cost considerably more than

claims with a 0 or 1 maximum injury severity. Claims not legally represented

is also considerable cheaper to settle.

• Claim sizes relating to female claimants are slightly, but statistically signifi-

cantly, cheaper.

• Claims deemed to not have an economic loss component to the compensation

are also considerably cheaper than those with an economic loss component.

Model 2 is more difficult to interpret. Firstly, it is a predictive model and hence

accident years and operational times variables are not available to be used. The

former is due to the fact that the model needs to be able to estimate the ultimate

sizes of new claims arising from future accident years and the latter is due to the

fact that finalisation time is unknown at the time the claim is reported. With

the inclusion of the initial claim cost estimate in the model the coefficients of the

other variables becomes how “conservative” the initial estimate is compared to

the ultimate size. For example, the coefficients for injury severity suggests that for

severe injuries the initial estimate is on average optimistic and the final claim sizes

is relatively 21% higher; for moderate injuries the initial estimate is on average

conservative and the final claim size is relatively 13% lower.

While Model 1 is insightful into the drivers of claims cost at an individual claims

level, it does not lend itself to reserves projection. For example, Model 1 showed



62 Generalised Linear Modelling

that for minor claims without legal representation, with a regression coefficient

of −1.35, are around a quarter (e−1.35) of the size of those that are represented;

however, that is the claim characteristic at claim settlement. At some censoring

date prior to that, an ultimately represented claim may still be unrepresented and

by using a finalised claim model to predict the ultimate cost of censored claims

will bias the prediction.

One approach is to create transition probabilities for legal representation vari-

able. In the example above, if the probability for a claim becoming represented

eventually is 20% then an expectation of the ultimate claim size can be the

weighted average across all the possible values the claim characteristics can as-

sume. However, this approach becomes complicated if a large number of those

dynamic claim characteristics is considered.

A further issue is the usage of operational time Model 1. The results of GLM

Model 1 suggest operational time is one of the key variables in determining ul-

timate claim sizes but this is a variable not available until the claim is actually

finalised. Due the claim characteristics at settlement, which are unknown prior to

settlement, are such strong drivers of ultimate claim size, we believe extensions to

the GLM framework, such as hierarchical model structures, would not be effective

in resolving this issue.

4.6.2 Prediction using GLMs

By using claim characteristics a common historical point of time, GLM Model 2

can be used for claim projections as these claim characteristics are available for

all reported claims, including the open claims which is of the main interest for

valuations. All the open claims at the end of December 2009 (modelling data)

have had their ultimate claim sizes predicted using Model 2 and aggregated. The

results are shown in the table below.
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Table 4.4: Projections of Open Claims using GLM Model 2

In total 20,541 claims were projected costing $2,982m. However, since the claim

sizes were inflated to December 2009 values when fitted to the GLM, the predicted

claims costs are also in December 2009 values. An inflation factor of 4.3% p.a. is

applied to these values to reflect the actual costs of these claims when they are

ultimate settled in the future. The rationale behind this selection is discussed in

Section 4.5.

A key consideration when using GLMs (and other individual claim size reserv-

ing models) is the fact that these models can only project open claims. That is,

the output of these models provide the user with the claim development on known

claims - IBNER. Another method is needed to calculate claims that have occurred

but yet unknown to the insurer - IBNR. For the purposes of calculating IBNR we

have combined the IBNR claim count from the Chain Ladder projection with the

yet-to-finalise claim sizes from the PPCF method.
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Table 4.5: Calculating the Cost of IBNR Claims

Table 4.5 shows the cost of IBNR claims as at December 2009. The second

column contains the expected IBNR claim numbers from the Chain Ladder model

from Section 4.4. They are multiplied by the average outstanding claim sizes from

the PPCF model. But since these claim sizes are also in December 2009 values, the

4.3% inflation factor has been applied to achieve the future value of these claims

when they are finalised. The value of IBNR claims as at December 2009 is $671m.

The following table brings together the cost of claims already finalised, the

projected cost of open claims using GLM Model 2 and the cost of IBNR claims

from aggregate actuarial methods. The total cost using the GLM approach for the

accident years 2001 to 2009 is around $8,640m.
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Table 4.6: Total Estimate Claims Cost using GLM

Similar to the previous aggregate methods, the modelling process is repeated

using data to up December 2012, that is, including the validation data. The results

of both projections are summarised in the table below. With the data up to 2012,

the GLM method is producing a total cost of the 9 accidents years as $8,611m,

very similar to the estimate using data up to 2009.
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Table 4.7: Summary of GLM Projection

While the above discusses the goodness of fit of the GLM model as a valuation

tool at an overall level, it does not provide an indication on the goodness of fit

at an individual claims level. This is discussed further in Section 8.5, where the

GLM’s accuracy of projecting ultimate claim sizes at an individual claims level is

compared to that of the Claim Development Process, the framework proposed in

this thesis.

4.7 Statistical Case Estimation

Statistical Case Estimate (SCE) is an individual claims reserving technique that

is designed to model insurance payments related to bodily injury claims (Brookes

and Prevett [2004] and Prevett and Gifford [2007]). It is based on a statistical

model that finds the relationship between the claim characteristics and the periodic

payments in a compensation claim. For example, an injured worker may receive

two types of payments - wage replacement due to his inability to work and medical

costs to treat his injuries. The wage replacement component may be modelled
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based on the state of the claimant (“injured”) and his pre-injury earnings; while

the medical costs may be modelled on the state of the claimant, age, gender and

location of the claimant and the severity of the injury.

One key differentiating feature of the SCE is the prediction of dynamic vari-

ables. For workers compensation claims, the state of the claimant (such as “Un-

dergoing Treatment”, “Cannot Work”, “Returned to Work at Reduced Capacity”,

etc) is a key explanatory variable. Transition models, such as transitional matrices,

are used to project these dynamic variables on a periodic basis. Detailed discus-

sions on the projection of dynamic variables are provided in Section 8.2.1. As a

result, the projection of periodic cashflows and ultimate claims costs are carried

out stochastically using simulation approaches.

Since SCE is a model for expected periodic payments for a claim, it is more

suited for Workers Compensation products that have ongoing payments. It is not

suitable for NSW CTP since most of the claims payments are lump sum payments

made at the time the claim is finalised. However, it may be used to model the

claimants that enter the previously mentioned LTCS scheme. Under this scheme, a

centralised government agency (the LTCSA) cares for all catastrophically injured

claimants and meets their ongoing medical and care costs. The SCE would be

suited to model the claim payments to these long term claimants by modelling

their claim characteristics.

As the SCE is designed for claims with periodic payments; it is not appro-

priate for the projection of the claims with lump sum payments and, hence, this

technique is not applied to the NSW CTP data. However, the results of the SCE

modelling carried out by Prevett and Gifford [2007] on the long-term claimants in

the Victorian CTP scheme is discussed.

The SCE has been applied to the Transport Accident Commission’s (TAC)

Community Support Division claims by Prevett and Gifford, who presented the

findings at the 2007 IAAust Accident Compensation Seminar. The Community
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Support Division operates much like the LTCS scheme of NSW in that the TAC

centrally cares for the long term claimants who has sustain extremely severe in-

juries. The costs of these claimants are mainly therapy and care costs.

The model incorporated 1 dynamic variable and 7 static variables. The dy-

namic variable is the state of the claimant with 5 levels, they are

i) Active High - High levels of therapy and care costs (costs > 25,000 in the

preceding 12 months)

ii) Active Low - low levels of therapy and care cost (500 < costs < 25,000 in

the preceding 12 months)

iii) Inactive (Therapy) - no care costs and low level of therapy costs (therapy

costs > 50 in the preceding 12 months)

iv) Inactive - No care costs or undergoing therapy (total costs < 500 in the

preceding 12 months)

v) Death (not described further in the paper)

The 7 static variables relates to the level of injury and baseline factors when

the claimant enters the long term care scheme, they are

i) Injury class (e.g., Quad C5, Acquired Brain Injury - Lv1, etc.)

ii) Functional code (e.g., minimum function, dependent in most tasks)

iii) Mobility Code (e.g., no use of arms/legs, some use of arms/legs, etc.)

iv) Functional Independence Measure (FIM)

v) Functional Assessment Measure (FAM)

vi) Age at injury

vii) Gender
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Using the previous notation but changing the development period to 1 year

rather than half years and further define CSi,j to be the claim status for the ith

claim at development period j then

X̂i = P (i, T ) +
D
∑

j=T+1

∑

CSi,j

(IPi,j|CSi,j)× P (CSi,j|CSi,j−1) (4.6)

where P (i, T ) is the cumulative payments made at T and IPi,j|CSi,j is the incre-

mental payment made in the period j − 1 to j given claimant is in state CSi,j. T

and D take the meanings that have been defined in Section 4.3.

If the elements of IPi,j|CSi,j and P (CSi,j|CSi,j−1) are simple then X̂i may be

evaluated in closed form; otherwise numerical methods need to be used.

In their modelling, the authors used GLMs to evaluate both terms and simu-

lation methods were used for the projection, that is, by simulating a large number

of potential claim trajectories and averaging them to provide an estimate of X̂i.

The authors have not provided the complete results of the GLM models or

outstanding claims cost projections. The GLM model results for the “Active High”

state are reproduced in Tables 4.8 and 4.9 for completeness. Note, the results are

for long-term claimants in the Victorian CTP Scheme and the reader is referred

to Prevett and Gifford [2007] for further details.
Table 2 � Parameter Estimates for Transition Model from Active High to Active High 

Variable Function

Parameter 

Estimate

Log Odds 

Ratio

Signifcance 

(Pr > ChiSq)

Intercept 2.1888 <.0001

Development year min((max(devyear-1,0)),7-1) 0.1704 118.6% <.0001

Current age min((max(currage-10,0)),25-10) 0.065 106.7% <.0001

Injury class Non Catastro -2.7655 6.3% <.0001

Injury class Other Sev ABI -2.4875 8.3% <.0001

Injury class Paraplegia - 100% disrptn of funct -1.9375 14.4% <.0001

Injury class Sev ABI - 2, Mobility code gt 4 -0.8117 44.4% 0.0169

Injury class Sev ABI - 3, Mobility code gt 5 -1.5747 20.7% <.0001

Injury class Sev ABI - 3, Mobility code le 5 -1.0048 36.6% 0.0008

Injury class Sev ABI - 4, Other mobility code -2.0766 12.5% <.0001

Injury class Base 0 100.0% .

Table 4.8: Example of SCE - GLM Results of Transition from Active High to
Active High (Prevett and Gifford [2007])
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Table 5 � Parameter Estimates for Active High Payment Amount Model 

Variable Function

Parameter 

Estimate

Multiple 

Effect

Significance 

(Pr > ChiSq)

Intercept 10.4165 33,406 <.0001

Injury class Paraplegia - 100% disrptn of funct, Sev ABI - 4, 

Full use of arms & legs, Other Head - Other 

functional code

-0.2037 82% <.0001

Injury class Quad - C1 - C4 0.7103 203% <.0001

Injury class Quad - C7 - C8 -0.2904 75% 0.0004

Injury class Sev ABI - 1, Sev ABI - 2, Mobility code gt 4 0.2832 133% <.0001

Injury class Sev ABI - 2, Mobility code le 4, Quad - C5 0.4984 165% <.0001

Injury class Sev ABI - 3, Mobility code gt 5 -0.1391 87% 0.0003

Injury class Sev ABI - 4, Other mobility code -0.4327 65% <.0001

Injury class Sev ABI - 5, Full use of arms & legs -0.7126 49% <.0001

Injury class Other 0 100% .

Current Age Linear from 0 to 15 0.0498 105% <.0001

Current Age Linear from 40 to 60 -0.0098 99% <.0001

Current Age Linear from 60 to 70 -0.0215 98% <.0001

Impairment % < 50% -0.1517 86% <.0001

Impairment % > 50% 0 100% .

Some of the insights from this model include: Table 4.9: Example of SCE - GLM Results of Payments of Active High State
(Prevett and Gifford [2007])

The main advantage of the SCE is naturally the ability to associate periodic

claim payments to claim characteristics and not just based solely on historical ob-

served claim patterns. The observation of the strong link between claim payments

and claim state allows very accurate prediction of claims payments by projecting

the possible future states the claimant is in at future points of time. However, in

this example the probability of transition between states is very low where over

90% of the claims do not change states from year to year. With this in mind,

building a complicated model for the transition between claim states may not add

commensurate value to the model.

4.8 Comparison of the Various Methods

Table 4.10 compares the various methods with a particular focus on whether they

account for the features of the CTP data as discussed in the previous chapter.
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Table 4.10: Comparison of the Current Methods to the Proposed Framework

While the aggregate methods (ICD and PPCF) can produce a valuation result

they are not able to capture the more complicated features that are present in the

CTP data, such as, the various claim characteristics that are recorded, the serial

dependence structure and interim claim developments.

The last column in the above table shows the ability of the Claims Development

Processes discussed in this thesis to allow for the various features observed in the

CTP data. This may allow the practitioner to choose the appropriate technique

under various circumstances.

4.9 Variability of the Central Estimate

The previous sections applied the various current mainstream actuarial techniques

to the NSW CTP data; however, most of the models only produce central esti-

mates, or point estimates, of the reserves. As discussed in Section 4.1, it is also

important for actuaries to understand the variability of the estimates of the claim

liabilities.

From Table 4.10, only the ICD and the SCE models have inherent measures

of uncertainty. In the latter case, the Statistical Case Estimation model is essen-

tially a numerical estimation method based on Monte-Carlo simulation; hence, by

repeating the simulation a large number of iterations, an empirical distribution of

the possible outcomes can be compiled and its variability measured.
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For the ICD model, a suite of techniques have been developed to measure

the variability of the valuation results produced. Hertig [1985] detailed a method

to estimate the variability by assuming the ICD factors (λj’s) follow lognormal

distributions which are fitted using the data. The variability in the ultimate claims

cost for each accident period can then be estimated, which when aggregated result

in an estimate of the total variability of the claims reserve. Mack [1993] extended

this without assuming the λj ’s follow a lognormal distribution which improves the

useability of the method. There have been other methods of estimating variability

including Bayesian and Bootstrapping methods, further details can be found in

Taylor [2000] and Wüthrich et al. [2009b].

It is the current practice that, even when other valuation methods are used to

produce the central estimate of the claim liabilities, for example, the PPCF(OT)

model, the variability of the estimate is still based on the ICD model. This creates

internal inconsistencies between the estimate of the mean and the estimate of

its variability. This is particular the case for NSW CTP as the development

pattern seems to be changing, increasing the variability of the ICD factors. The

PPCF(OT) is designed to allow for the changing speed of claim finalisation and

this is incorporated in the central estimate the method produces; however, the ICD

model does not allow for the underlying change in claims management behaviour

and this would artificially increase the estimated variability of the central estimate.

The CDP framework proposed in this thesis also uses Monte-Carlo simulation

(see Chapter 8) similar to the SCE. Consequently, variability of the projection

results can be readily calculated. Further details are contained in Section 9.5.



Chapter 5

Literature Review - Individual

Claim Modelling

5.1 Individual Claim Modelling

The current practice in modelling CTP claims on an individual basis is still largely

based on the Generalised Linear Models (GLM) framework. It is a well understood

and proven tool in many general insurance contexts. The idea of using GLMs to

model individual claims in the CTP insurance context is introduced by Taylor and

McGuire [2004] where GLMs are used as an alternative claims reserving method

when the more traditional methods may not appropriate. The traditional methods

all assume stability in the claim behaviour which may not be true if the claim profile

under consideration is changing. For example, the “tried and trusted” chain ladder

models are not appropriate for CTP data at times when the incurred development

pattern is unstable and exhibiting a trend. In these long tailed portfolios, the

actuaries are typically required to make subjective changes to the ICD pattern to

achieve a reasonable answer.

Taylor and McGuire [2004] undertook a theoretical introduction of the GLM

and proceeded to construct a model based on finalised claims only. A model based

on operational time, seasonal effects and finalisation quarter was constructed; in-

73
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teraction effects between the other covariates with operational time were also ex-

plored. Operational time denotes the order a claim was settled in, for example, if a

claim was within the first 10% of claims to be settled then the operational time for

that claim is in the 0% to 10% band. In this case, as well as the common practice,

operational time has been measured in 10% bands. Operational time was deemed

to be a major explanatory variable of claims due to the strong correlation between

claim size and time required to settle. A seasonal effect was used as claims that

occurred in the March quarter seemed to have a different experience, perhaps due

to the holiday period. After the model was built, the paper did not detail how to

use the GLM model to calculate reserving results. However, while the GLM allows

the user to understand the drivers of claims cost at the individual level, consid-

erable complexity is added to the valuation process. This would be equally true

for all individual claims models, including the CDP model presented in this thesis,

the amount of manual adjustments needed for the chain ladder would be inconse-

quential when compared to the effort needed to build and validate an individual

claims model.

McGuire and Actuaries [2007] extends Taylor and McGuire [2004] by demon-

strating how a GLM model can be used to incorporate legislative effects (namely

the transition between MAA 1989 and MACA 1999) in the modelling of claim

sizes. However, that paper also focuses on modelling finalised claims only. While

such models extend the understanding of the drivers of finalised claim sizes, they

do not lend themselves to be used for predictive modelling. That is, if operational

time (or time of finalisation) is used in the GLM, then some method of predicting

the time of finalisation for each claim would also be needed. This in itself would be

a complicated endevour. Secondly, for a long tailed insurance class such as CTP,

finalised claims represent only a portion of the total reported claims; and typically

there is an over representation of smaller claims in the finalised pool of claims be-

cause they would be easier and quicker to settle. It is felt that modelling finalised
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claims only may not yield a conclusive view on the impact of injury severities as

the dataset has an over representation of the less severe injuries.

Ayuso and Santolino [2008] presents a rather simple approach in estimating

individual claim size. All claims were divided by injury severity and stage of

reporting (initial, final or forensic report) and an average claim size were calculated

assuming a lognormal distribution. The projected ultimate claim size of a claim is

thus the relevant average claim size of the stratification the claim belongs to. To

some extent, this model is similar to the PPCF (OT) model outlined in Section 4.5

with injury severity and stage of reporting acting as claim stratification criteria

and a claim size is chosen for every stratification.

5.2 Statistical Case Estimation

Taylor and Campbell [2002] introduced the use of statistical case estimate (SCE)

in the context of Workers Compensation insurance. They state that SCE have

their greatest value in Workers Compensation, but may also have applications

in other lines of business. The idea presented is that while a loss adjustor can

place a “case estimate” based on the actual observation of the claim and personal

experience, an actuary can place a “statistical case estimate” based on as many

claim characteristics as available.

The SCE is most relevant in Workers Compensation, because this product

provides a stream of regular income for injured workers. Also the level of the

cashflow is heavily correlated with “the state” the claimant is in. In the typical

Workers Compensation scenario, the states the injured worker can be in include

“Injured - in receipt of compensation”, “In Rehab - in receipt of compensation

and medical expenses” and “Back to work - no compensation”. Then the various

claims characteristics such as pre-injury earning, time elapsed since injury, age and

nature of injury are used to predict the likelihood of the injured worker moving

between the various states. A Monte-Carlo approach can be used to calculate the
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likely cost for each worker. SCE, in essence, is to use the claimant characteristics

to predict the elements of their transition matrix.

The Statistical Case Estimation method relies on the cashflow paid to the

claimant to be highly correlated with the “state” the claimant is in; this makes SCE

most applicable to income replacement products, such as workers compensation

or salary continuance insurances. For other insurance products, it is more difficult

to classify claims into a discrete number of “states” and have the ultimate claim

outcome closely related to these claim states.

In 2004 Brookes and Prevett [2004] presented a paper where the practical

application of the SCE to the NSW WorkCover Workers Compensation scheme

was documented. They found that the method required 13 individual models to be

built, one for each type of payment (such as treatment costs, income compensation,

death benefits, etc). For each model, a choice of CART, MARS (Hastie et al.

[2009]) and GLM was considered and the best model chosen, with different models

chosen for different situations. They found SCE can forecast total cashflow quite

well for up to 3 years and that one of the main advantages SCE has over traditional

actuarial methods is that the reserves are available on an individual claims basis.

As discussed previously in 4.7, Prevett and Gifford [2007] applied the SCE to

a group of claims in a CTP portfolio in 2007. The CTP portfolio is the Victo-

rian CTP Scheme where Transport Accidents Commission, a government agency,

operates a no-fault scheme. SCE is relevant and applicable in this case because

payments are made on an ongoing basis rather than as lump sums as occurs in

NSW or QLD. The claims of particular interest to the authors are the long term

claimants, where a large part of the total claims cost is paid over a period of time

at somewhat regular intervals. They find that SCE can explain up to 90% of claim

size variation in the training dataset but only 32% of the variation in the valida-

tion dataset. One interesting point that the authors made was that the “stochastic

dynamic variable” offered the greatest amount of information in regards to claim
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size, yet at the same time, most difficult to work with. The authors condensed a

few of the most important dynamic variables into a single dimensional dynamic

variable and built a transition model to predict the status of the claimant at each

period.

In 2011 Greenfield et al. [2011] applied the principles of the SCE to New

Zealand’s welfare system. In its main model, the “Key Tier 1 Benefits” model,

welfare recipient can be in one of five “states”:

i) in receipt of Unemployment benefits

ii) in receipt of Sickness benefits

iii) in receipt of Domestic Purpose benefits (e.g., Sole Parents benefits)

iv) in receipt of Invalids’ benefits

v) not in receipt of Key Tier 1 benefits

The first four are income replacement welfare benefits and recipients can only

receive one of the four. The last state is a “Working” state and hence not in receipt

of any of the Tier 1 Key benefits. The main model puts value on the future cost of

Key Tier 1 welfare payments at an individual recipient level by modelling the like-

lihood of each individual moving between the five states, using the characteristics

of each individual, e.g., age, gender, number of children, previous bouts on social

welfare, etc. SCE is suited for the valuation of welfare payments as the payment

sizes are highly correlated to the state the individual is in (there are specified pay-

ment rates for each benefit) and the probability of becoming unemployed or on

disability benefits are predictable with the individual characteristics.

5.3 Claims Development Based Models

The research in this thesis would fall under a development based model, that

is, the process of interest is how each individual claim changes its characteristics
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and incurred claims cost throughout its life. While most of the aggregate based

reserving models such as the Incurred Cost Development (ICD) or Projected Case

Estimation (PCE) models are development based, most of the individual claim

based models are end result focused. That is, the modelling results are concerned

about the ultimate cost of the claim, rather than modelling the changes a claim

undergoes to reach that ultimate cost.

Wüthrich et al. [2009a] looks at claims development from a different angle.

Insurers would need to set monies aside to pay for the ultimate cost of the claims

from the policies they have insured. The pool of money set aside is called the

claims liability. When the information changes through the course of the next

accounting period, and the view of the ultimate cost changes, then based on the

new information, the claims liability can be more or less than those set aside at the

previous accounting period. Of course, this has a profit impact and may threaten

the solvency of the insurance company if they need to contribute significantly more

to the claims liability pool of funds.

Beside claims movement, there is another source of movements within a pool of

claims, namely, the introduction of new claims. This can happen when the claim

is reported late even thought it has already happened; they are known as Incurred

But Not Reported (IBNR) claims. Schiegl [2010] approaches this by introducing

a 3-D triangle, where accident period, reporting periods and development periods

form the three axes of the claims “pyramid”. Using this approach the modelling

of claims development (IBNER) and IBNR can be separated.

Taylor et al. [2008] also discusses another class of models where the variable

to be modelled is not the size of a finalised claim but the ultimate size to case

estimate ratio at a particular stage of development. These types of model have

been label as individual claims model conditioned on case estimates. These models

would utilise the extra information contained in the case estimates of the claims

and the ultimate size to case estimate ratio is also less volatile for companies with
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mature claims management departments.

5.4 An Individual Claims Reserving Model by

Larsen (2007)

Throughout the author’s literature review, “An Individual Claims Reserving Model”

by Larsen [2007] is found to be the most similar to the author’s research in terms

of objectives and shares some of the modelling methodologies adopted. Despite

the similarities, there are fundamental differences between the two approaches

regarding model specification.

Larsen’s ultimate aim is to project the claims liabilities reserve of an insurance

company. While not explicitly mentioned, the framework is able to model IBNR

(incurred but not reported) and IBNER (reported but not settled, hence, subject

to further development) as well as Future Claims Liability (claims that have not

yet occurred, but once they occur, the insurer is liable for). To this extent, the

research in this thesis only concentrates on the modelling of IBNER claims, or

the development of claims cost with the arrival of new information regarding the

claim.

Larsen segments all claims into (i,m, j, g) categories, where i is the accident

year, m is the season/quarter within the accident year, j is the reporting delay

and g is a vector denoting baseline claim variables, such as business type or claim

type. He defines Zı, the complete claims process for claim ı, as a Marked Poisson

Process, formulated by, dropping the subscripts i and m,

Zı = (J, Yt=J , Yt=J+1, ..., Yt=D, Ut=J , Ut=J+1, ..., Ut=D, G) (5.1)

where Yt is the incremental claim size development that occurred at time t. J

is defined as the reporting delay or the time elapsed between the event that give
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rise to the claim and the time the claim was lodged with the insurance company;

as such, the first observed Yt is YJ . Ut marks the claims open/closed status as a

binary variable, G is a set of claim characteristics and D is an arbitrary future

time chosen such that all claims have been settled. When segmented by (i,m, j, g),

the Zıs are independent and identically distributed.

For the purposes of reserving, the outstanding claims reserve required in excess

of incurred to date claims cost, at time V is

RV =
∑

i≤V,V <k≤D

Yk (5.2)

If the above summation is broken up into two segments over j, one with j ≤ V − i

and the other with j > V − i then IBNER and IBNR are accounted for more

explicitly.

Since Larsen assumes Zı’s are independent and identically distributed with re-

spect to (i,m, j, g), he considers the processes that stratifies claims to (i,m, j, g)

categories. With similar rationale as the CDP model developed in this thesis to

decompose a complex process into simpler component process, Larsen decomposes

the complete process into four component processes. The four decomposed pro-

cesses are

i) The process by which claim ı arises in accident year i and season m - the

number of claims from accident year i and season m is assumed to have a

Poisson distribution with intensity w = wiσm, where wi is the claim intensity

for accident year i and σm is the seasonal adjustment factor for season m.

ii) The process by which claim ı will adopt characters g - the probability that a

claim would have characteristics, G = g, follows P (Gı = g|i,m) = ei,m,g/ei,mf(i,m, g),

where ei,m is the exposure (number of accident policies) in accident year i and

season m and ei,m,g denotes the exposure with characteristics G = g. That

is, the probability of a claim with claim characteristics g is proportional to
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the relative number of active policies having these characteristics. f(i,m, g)

is a claim frequency “adjustment factor” for policies with characteristics g

as some policies are more likely to give rise to claims than other policies with

different characteristics.

iii) The process by which claim ı will have a reporting delay of j - given character-

istic g, the reporting pattern follows a function of j and g and is independent

of the accident year i, i.e., P (J = j|G = g, i,m) = r′(j, g) where r′() is a

non-negative function.

iv) Given (i,m, j, g), the incremental amounts, (YJ , YJ+1, ..., YD) are assumed to

follow a Markov process with respect to Sk−1, defined as Sk−1 = Yk−1+Yk−2+

... + Yj. With this assumption, P (Yk|Yk−1, Yk−2, ..., Yj) = P (Yk|Sk−1) and

consequently P (YJ , YJ+1, ..., YD) = P (YD|SD−1)P (YD−1|SD−2)...P (YJ+1|SJ).

This allows the Yk’s to be modelled independently.

Larsen further suggests that this specification can easily be modelled using the

GLM framework. By combining items i to iii, the result is that the number of

claims in the segment (i,m, j, g) follows a Poisson distribution with mean

λi,m,j,g = ei,m,g/ei,mwiσmf(i,m, g)r′(j, g) (5.3)

In this parameterisation, and using appropriate functional forms of f and r′ the

parameters are easily estimated using the GLM framework with a log link, exposure

as an offset and Poisson error structure.

Tackling item iv, the conditional distributions of the Yk’s, are more complex.

Larsen again proposes a “divide-and-conquer” approach for the modelling of the

incremental changes, where different models are adopted for Yk’s under different

circumstances (determined by four binary processes). While Larsen primarily uses

regression models with a gamma error structure to model the Yk’s, he has found

the very large incremental changes follow a distribution with thicker tails and the
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Pareto distribution is adopted.

Four binary processes are used to determine the circumstances and their prob-

abilities are defined as

• pY=0 = P (Yk = 0|Yk ≤ 0, Sk−1)

• pY >0 = P (Yk > 0|Sk−1)

• pY >L = P (Yk > L|Yk > 0, Sk−1)

• pS>0 = P (Sk > 0|Sk−1) = P (−Yk < Sk|Yk ≤ 0, Sk−1)

Using the above binary process, Larsen defined the situations that the process

may experience at each time period and how the resulting change is modelled,

i) No movement at time k, P (Yk = 0|Sk−1) = pY=0(1−pY >0). Note, two binary

probabilities are used here, as the former denotes no movement and the latter

denotes positive movement.

ii) A small positive movement at time k, P (0 ≤ Yk < L|Sk−1) = pY >0(1−pY>L),

the distribution of Yk is proposed to be a gamma distribution.

iii) A large positive movement at time k, P (Yk ≥ L|Sk−1) = pY >0pY >L, the

distribution of Yk is proposed to be a generalised Pareto distribution.

iv) A negative movement at time k not enough to make it a nil claim, P (0 ≤

−Yk < Sk−1|Sk−1) = (1 − pY=0)(1 − pY >0)pS>0, the distribution of (Yk +

Sk−1)/Sk−1 is proposed to be a gamma distribution.

v) A negative movement at time k enough to make it a nil claim, P (Yk =

−Sk−1|Sk−1) = (1− pY=0)(1− pY >0)(1− pS>0).

Larsen models the probabilities of the four binary processes (pY=0, pY >0, pY >L, pS>0)

with logistic regressions. The form of a negative movement, using the ratio of the

change (Yk + Sk−1)/Sk−1 rather than the absolute value of the change, is adopted

to ensure the magnitude of the change is less than Sk−1.
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Larson proceeds to apply the framework on a Marine Insurance portfolio; while

some sensible results were produce, Larsen did not carry out a validation of these

results.

The CDP model framework proposed in this thesis bears some similarities to

Larsen’s approach to modelling individual claims but differs in several key aspects.

Firstly, our starting point is to understand claims development rather than

strictly reserving. While the individual ultimate claim size projections, when ag-

gregated, will result in the outstanding claims of all reported claims; the valuation

of IBNR is not considered in this thesis. Larsen models IBNR claims by firstly

generate the number of claims reported after the valuation date using Equation

(5.3) and then generate the Zı for each and every IBNR claim.

Secondly, the time scale adopted in this research is the arrival of new informa-

tion necessitating a change in the claims cost. Hence, nil changes are not modelled,

instead, a delay process is used to count the number of time periods between the

arrival of new information.

Thirdly, a binary process is used for the finalisation of the claim, i.e., to deter-

mine when the claim ceases further development. It is unclear from Larsen’s paper

how the Ut variables are used or modelled, and it seems all the Yt’s are modelled

until time D rather than stopping once the claim is finalised.

Fourthly, since the CDP model uses past observed processes outcomes explicitly

in the parameterisations, it is classified as an observation driven model. Larsen

uses only the latest total incurred in his modelling of claim movements. The results

of applying our CDP model to CTP data have shown how the claim moved in the

past can influence how it will move in the future, and including past observation

values may bring additional explanatory powers to the model.
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5.5 Observation Driven Models

The inspiration of this research is based on the author’s past research in the area of

Observation Driven Models, Wang [2004]. In Cox et al. [1981] observation driven

models were differentiated from parameter driven models - while the state equa-

tions for both classes of models are the same, the past observations explicitly enter

the equations of the former. The observation driven models have the advantage

of having likelihoods that are conditionally specified and hence easily calculated.

However, stability of the model through time can be a problem for long series. In

the CTP case, the series are quite short and stability is not at issue.

Davis et al. [2003] provides an in depth discussion on the two types of models

for the Poisson count model, and provides the underlying mathematics of the

observation driven case as well as a discussion of the properties of the model.

Rydberg and Shephard [2003] applied the model to trade-by-trade share prices

using a Generalized Linear Autoregressive Moving Average (GLARMA) model.

The stock prices were first decomposed into three time series: the A series denoting

the activity of the share price (where price moved at a trade), the D series denoting

the direction of the movement and the S series denoting the size of the movement.

The decomposition is beneficial as a complicated time-price process is decomposed

into three sequentially conditioned models. These component models are relatively

simple processes - two binary processes and a positive integer process, the latter

is assumed to be a negative binomial.

Of particular interest is also the time scale used for these models. Traditionally,

a process is observed at equally spaced time and an observation is recorded. This

is certainly true for the actuarial modelling described in the next sections, whether

the data is recorded monthly, quarterly or half-yearly. However, the observation

driven models adopt an activity based time scale, that is, an observation of the

process is recorded when something happens. In the example of Rydberg and

Shephard [2003] each observation of the share price is made only when a trade of
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the stock occurs. Equally spaced observations of the share price are not made, for

example, based on the most recent trade at the time of the observation. This is

relevant to this research due to the fact that each change in the claims data can be

thought of as the arrival of additional new information regarding the claim, and

this can drive the incurred cost of the claim up or down. However, to be useful in

the financial industry, the time of the changes are also of importance, as financial

accounts need to be prepared half yearly or, at the minimum, yearly.

The CDP model presented in the next chapter uses the “decomposition” ap-

proach of Rydberg and Shephard [2003] but there are some important differences.

Rydberg and Shephard [2003] are concerned with modelling a single, usually, long

time series (i.e., with 100’s or 1000’s of events). For our application, there are

around 100,000 very short “time series” (trajectories of the claims developments)

that are to be modelled as an ensemble. Hence, issues of model stability through

time, while a definite concern for Rydberg and Shephard’s application, is not a

concern for us.

As in Rydberg and Shephard [2003], the CDP model uses prior observations in

each component process as regressors in future mean equations and it decomposes

a complex process into a collection of time evolving conditional distributions which

collectively model the current state of the claim given past history of the claim

and any covariates associated with each claim. The CDP framework is described

in detail in Chapter 6.
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Chapter 6

The Claim Development Process

6.1 Introduction

The CDP model extends the framework of Larsen [2007] in a number of new direc-

tions. Firstly, with the exception of claim size Xj,i and settlement indicator Uj,i,

Larsen only considers “static” information as per the definition adopted by Taylor

et al. [2008] which does not change throughout the duration of the claim. The

CDP model, however, introduces dynamic covariate information in the modelling

where these variables do change over the life time of the claim. Examples of dy-

namic covariates in the NSW CTP data include “legal representation”, the level

of rehabilitation deemed necessary for the claimant by the medical professionals

and the severity of the injuries.

To allow for time varying information, the information set, Gj,i, is now indexed

by claim i and time j, and the mark used in Larsen [2007] is generalised to the

following form

Zi = (XJ,i, XJ+1,i, XJ+2,i, ..., XD,i, GJ,i, GJ+1,i, GJ+2,i, ..., GD,i) (6.1)

where Gj,i is a set containing the information of the claim i up to time j, including

the settlement indicator. As Gj,i contains both dynamic and static information,

87
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the Gi as Larsen defined it can now be considered as a subset of Gj,i. In addition,

Ti and Ji are now also incorporated into it, as the accident year and reporting delay

can be interpreted as a part of the information set that describes the claim even

though they do not change during the lifetime of the claim. While Larsen used

incremental claim cost movements, YJ+k,i, we have adopted the incurred claims

cost, XJ+k,i, in the above formulation. This two formulations are equivalent with

the substitution XJ+k,i =
∑J+k

j=J Yj,i.

Secondly, both the Larsen approach and the Statistical Case Estimation method

discussed previously assume the claim process is a Markov process. In the case

of Larsen, Xj,i is used for the projection of Yj+1,i and previous claim size values

of Xj−1,i, Xj−2,i, ... are not considered. In the case of SCE, the current state of

the worker (“Active-High”,“Active-Low”, “Inactive”, etc) along with other claims

information defines the future behaviour of the claim. This research, however,

incorporates the past values of the processes; that is, the behaviour of the claim

development processes is conditioned on all available past data. This is discussed

further below.

Thirdly, the CDP model proposes the usage of another time scale. Most of

the current methodologies discussed in Chapter 4 and the literature reviewed in

Chapter 5 adopt a calender time based time scale. However, for long tailed claims,

the claim cost estimates are revised when new information is received regarding

the claim. The speeding up or slowing down of claims managers’ activities can

influence the speed at which new information is received. The time scale used in

this research is a counter of the number of times the claim has undergone a claim

cost estimate revision. This time scale is “activity” based and can be thought as

analogous to the operational time that has been discussed previously.

Fourthly, the CDP model takes inspiration from Rydberg and Shephard [2003],

and developed in Wang [2004] to decompose a complex process into simpler com-

ponent processes to ease the modelling complexity. This is a “divide-and-conquer”
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approach. This is further discussed in Section 6.3.

In this chapter the Claim Development Process model framework is discussed

in detail. The key differences to the model developed by Larsen [2007] and the

rationale behind them are discussed in this section. The next section provides

an overview of the notation used in this and subsequent chapters. This is then

followed by an in-depth discussion of the overall Claim Development Process, as

well as the rationale to decompose it into component processes. Each component

process is then discussed in turn as well as the modelling techniques adopted in

the application of the CDP to the NSW CTP data.

6.2 Notation

The notation for this section differs slightly to Chapter 4 as we move away from the

traditional reserving setting. The accident year variable k and development year

j are no longer critical in the modelling of claims cost. In fact, this section argues

that the number of revisions made to the claims estimate, driven by the arrival

of new information regarding a claim, is a better time scale than the traditional

development period. Hence, from this chapter onwards, the subscript j takes the

definition of a different time scale - the number of revisions a claims has had rather

than the calender time period represented by development period.

Let Tj,i for j = 0, 1, 2, ..., mi be the (calender) time of the jth revision of the

ith claim; where T0, i is the time when the claim is reported and mi is the total

number of revisions for claim i. Also, let Ti denote the date of the accident on

which the claim arose and further t0,i = T0,i−Ti is the reporting delay - the period

of time after the accident before the claim is reported to the insurer. t0,i is taken

as covariate in the CDP model as this is a piece of information known when the

claim is reported at T0,i. More generally, tj,i = Tj,i − Tj−1,i is the length of time

elapsed since the last revision until the jth revision.

Using j in the same fashion, define Xj,i for j = 0, 1, ..., mi to be the incurred
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cost for claim i at its jth revision. Consistent with the notation used in Chapter

4, incurred cost, or claim size, refers to the amounts that has already been paid on

the claim plus an estimate by the claims manager of future payments to be made.

X0,i takes the similar meaning of the claim size when the claim is reported, at T0,i,

and let Xmi,i, or simply Xi, be the ultimate claim size for claim i. The process

Xj,i is non-negative and maps the claim cost over its life.

Let n be the number of claims in the portfolio, hence, i = 1, 2, ..., n.

We also define some notation to deal with the censored nature of long tailed

insurance claims data. Let T ′ be the calender time of the censoring time, for

insurance liability valuations, this is the valuation date, e.g., 31 December 2009

in the case of our modelling data. Let j′i be the largest j for the ith claim such

that Tj,i is less than T ′, in other words, the revision immediately preceding the

censoring date, T ′. Therefore, Xj′,i is the incurred cost of claim i at censoring date

T ′; and
∑

i Xj′,i is the total incurred cost of all the claims as at the censor date T ′.

In particular, an insurance company would be most interested to know the value

of the difference
∑

i Xi −
∑

i Xj′,i, which is by how much of the ultimate claims

cost of a group of claims exceeds the currently incurred claims cost.

6.3 Decomposition into Component Processes

Using the notation introduced in Section 6.2 and allowing for the changes outlined

in Section 6.1 in Equation (5.1), the complete claims process for all revisions to

finalisation appear as

Zi = (X0,i, X1,i, ..., Xm,i, T0,i, T1,i, ..., Tm,i, G0,i, G1,i, ..., Gm,i) (6.2)

Equation (5.1) and Equation (6.2) above contain the same amount of informa-

tion since the Uj,i, claim settlement information, is embedded in the time of the

last revision, Tm,i; that is, Uj,i = 0 for T < Tm,i.
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Omitting the claims information set, Gi, the complete claims incurred cost

process for the ith claim, is now contained in the pair (Xj,i, Tj,i) for j = 0, 1, ..., mi.

While the former marks the claims cost at each revision the latter marks the times

that the revisions occurred.

The joint distribution of the pair of processes (Xj,i, Tj,i) would be difficult to

model. Instead, we have decomposed Xj,i into two component processes using the

equation Xj,i = Xj−1,i ∗ e(2Dj,i−1)Yj,i , where Dj,i denotes the direction of the jth

claim revision and Yj,i is the magnitude of the jth revision. We also introduced the

Sj,i process that monitors the open/finalised status of the claim and tj,i denoting

the delay from the j − 1th revision to the jth revision. These four processes are

more formally defined as,

• The Delay Component (t1,i, t2,i, ..., tm,i) - this component process measures

the time between consecutive changes to the incurred cost, Tj,i − Tj−1,i, and

provides a time dimension to the incurred costs values. This process takes

on strictly positive values and its unit of measurement depends on how the

data is constructed.

• The Claim Status Component (S1,i, S2,i, ..., Sm,i) - this component process

measures whether the current revision would be the final revision. The pro-

cess will take on values of either 0 or 1. If a value of 1 is observed then

the claim process terminates and the current change would be the last, i.e.,

min j such that Sj,i = 1 and mi = j.

• The Direction Component (D1,i, D2,i, ..., Dm,i) - this component process mea-

sures whether the current change is a positive change or a negative change.

The process can take on values of either 0 or 1, such that, Dj,i = 1 if

Xj,i > Xj−1,i and Dj,i = 0 if Xj,i < Xj−1,i. Under the definition of a revision

used in the CDP framework Xj,i cannot equal to Xj−1,i.

• The Size Component (Y1,i, Y2,i, ..., Ym,i) - this component process, defined
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as | log Xj,i

Xj−1,i
| measures the magnitude of the current claim revision. The

process can only be positive real numbers.

Using the above decomposition, the joint processes (Xj,i, Tj,i) can now be ex-

pressed as (tj,i, Sj,i, Dj,i, Yj,i) and the claim process Zi defined by Larsen in Equa-

tion (5.1) can be expressed as

Zi = (X0,i, t1,i, ..., tm,i, D1,i, ..., Dm,i, Y1,i, ..., Ym,i, S1,i, ..., Sm,i, G0,i, G1,i, ..., Gm,i)

(6.3)

where j = 0 denotes the time the claim is reported to the insurer and m, serving

as a similar function to D used by Larsen, denotes the last revision to the claim

such that Sm,i = 1, that is the ith claim is finalised on the mth revision.

The four component processes observed (tj,i, Sj,i, Dj,i, Yj,i) can be interpreted as

one joint event and may be modelled together with a joint distribution and Gj,i is a

set of exogenous claim information available at the jth revision. However, dealing

with joint distributions would add significant complexity to the model. Condi-

tioning is introduced between the processes and covariates, effectively creating a

hierarchy of the order in which the component processes occur. The conditioning

is explicitly specified in the following fashion.

The hierarchical order of the claim processes is:

i) The delay component, this process “starts” straight after the last revision and

its value will determine when on a real time scale when is the next revision

taking place. This process is conditioned on only the prior information.

ii) The claim status component, it is assumed that this process denotes whether

a claim is finalised at the current revision. This process is conditioned on

prior information and the current value of the delay process.

iii) Once the claim status is determined, the next component is the direction of

the revision. This process is conditioned on prior information as well as the

current values of the delay and claim status processes.
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iv) Lastly, the claim size component; this process is conditioned on past history

as well as the current values of the preceding processes.

The above hierarchy was developed after discussions with CTP claim man-

agers. An understanding was gained on the string of events that occurs requiring

the claims manager to make a revision to the claim estimate. Typically, informa-

tion that causes the claim estimate to be updated comes to the claim manager

from the claimant or their lawyer. Then the claims manager assesses if the infor-

mation would allow the claim to be settled. The claims manager will then proceed

to evaluate the information as favourable or unfavorable to their company and the

magnitude of the adjustment required to be made to the claim estimate. The pro-

cess is adequately reflected in the hierarchical structure imposed in the framework

above.

Defining Fj,i as the past values of all the component process variables (tj,i,Sj,i,Dj,i

and Yj,i) up to the ith revision, then the joint processes (tj,i, Sj,i, Dj,i, Yj,i) can be

expressed as four conditionally independent processes,

i) tj,i|Fj−1,i

ii) Sj,i|Fj−1,i, tj,i

iii) Dj,i|Fj−1,i, tj,i, Sj,i

iv) Yj,i|Fj−1,i, tj,i, Sj,i, Dj,i

such that

P (tj,i = t, Sj,i = s,Dj,i = d, Yj,i = y|Fj−1,i)

=P (tj,i = t|Fj−1,i)P (Sj,i = s|Fj−1,i, tj,i)P (Dj,i = d|Fj−1,i, tj,i, Sj,i)

P (Yj,i = y|Fj−1,i, tj,i, Sj,i, Dj,i)

(6.4)

Introducing the other claims characteristics, let Gj,i be the history of all the

other covariates, both dynamic and static, up to the jth revision. Then specifically,
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i) tj,i is now conditioned on Fj−1,i and Gj−1,i

ii) Sj,i is now conditioned on tj,i, Fj−1,i and Gj,i

iii) Dj,i is now conditioned on Sj,i, tj,i, Fj−1,i and Gj,i

iv) Yj,i is now conditioned on Dj,i, Sj,i, tj,i, Fj−1,i and Gj,i.

Note, only the delay process will be reliant on the Gj−1,i filter, as it will be

conditioned only on the information available at the previous change. However,

for the other component processes, the new information, Gj,i, is assumed to have

become available at that point in time.

Hence forth, we will drop the conditioning in the notation to make it more

concise, but the conditioning apply in all further discussion of the component

processes. The complete claim process is now specified by {tj,i, Sj,i, Dj,i, Yj,i, Gj,i

for j = 1, 2, ...., mi}. Revision j = 0 is taken to mean reporting of the claim,

which is assumed be to exogenous to the claim revisions processes. We have taken

the initial claims estimate, X0, and the claim reporting delay, t0, as exogenous to

the CDP and are variables contained in the claim characteristics, Gj,i, as static

covariates.

6.3.1 Likelihoods and Conditional Distributions

The likelihood for the claim development process would be very complex without

the conditional hierarchy specified earlier. Using the conditioning specified above,

the likelihood of the complete system of processes can be constructed in a sequen-

tial and time recursive fashion using products of conditional distributions. The

sequence of events in the CDP framework is,

i) exogenous information is received regarding the claim when it is first re-

ported, this is the information contained in G0,i, in which, X0,i is also known.
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ii) next item in the process is the time elapsed until the 1st revision, that is,

t1,i; at which time, new information G1,i becomes available.

iii) with this new information, the remaining three claims development pro-

cesses is determined in succession - S1,i, whether the new information allows

the claim to be finalised; D1,i, where the information is favourable or un-

favourable; and Y1,i, how much impact is the new information has on the

claims estimate. Each of the three variables are conditioned on the informa-

tion available to that point (Section 6.3)

iv) steps ii and iii are then repeated iteratively until the mith revision, at which

time, Gm,i does allow the claim to be finalised.

Hence, the likelihood for the jth revision of the ith claim can be expressed as

(dropping Fj−1,i from the conditioning,

Lj,i = P (tj,i|Gj−1,i)P (Sj,i|Gj−1, i, tj,i)P (Dj|Gj−1, tj,i, Sj,i)f(yj,i|Gj−1,i, tj,i, Sj,i, Dj,i)

(6.5)

and that the complete likelihood for the ith claim is

Li =

mi
∏

j=1

(P (tj,i|Gj−1,i)P (Sj,i|Gj−1, i, tj,i)P (Dj|Gj−1, tj,i, Sj,i)f(yj,i|Gj−1,i, tj,i, Sj,i, Dj,i))

(6.6)

where mi is the revision the claim is finalised on, that is, Smi,i = 1.

With the conditional distributions defined above, the likelihood for the ith

claim can be segregated as

Li =

mi
∏

j=1

(P (tj,i|Gj−1,i))

mi
∏

j=1

(P (Sj,i|Gj−1, i, tj,i))

mi
∏

j=1

(P (Dj|Gj−1, tj,i, Sj,i))

mi
∏

j=1

(f(yj,i|Gj−1,i, tj,i, Sj,i, Dj,i))

(6.7)
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That is, the four components are conditionally independent and can be modelled

separately.

This is the “divide-and-conquer” approach we have adopted in the modelling

of the complete claim development process - by decomposing it into simpler com-

ponent processes and model each with relatively simpler models.

6.4 Modelling Individual Component Processes

A brief discussion on the overall model framework for the component processes is

provided here and Sections 6.4.1 to 6.4.4 contain the full details for each component

process.

The intention of this research is to model each component process with GLARMA

type models. These models are discussed further in Davis et al. [2005], Rydberg

and Shephard [2003] and Dunsmuir et al. [2014b]. In the case of NSW CTP claims

the trajectories are not very long (90% of the claims are settled with in 5 revisions

and 95% of the claims are settled within 10 revisions); hence, the NSW CTP data

is more akin to longitudinal data as opposed to time series data (long series of

relatively few variables) that GLARMA models are traditionally applied to.

Under the GLARMA model framework, a linear predictor of the form

ηj,i = ZT
j,iβ +Wj,i (6.8)

is used, where Wj,i =
∑p

k=1 φkWj−k,i +
∑q

k=1 θkej−k,i. ηj,i is linked to the natural

parameters of the discrete or continuous density selected for each of the component

processes and ej,i’s are the Pearson residuals for the selected density. For example,

for a negative binomial distribution (chosen for the delay process), ηj,i = log µj,i,

where µj,i is the mean of the distribution and ej =
tj,i−µj,i√
µj,i+µ2

j,i/α
. Z is the collection

of covariates we use to model the “linear” component of ηj,i and are different for

each component process and incorporates current and past values of the other
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component processes based on the hierarchy defined above.

While the GLARMA framework allows the investigation of any lag structure

appropriate, we have chosen to only fit an autoregressive (AR) structure with a

lag of 1 (i.e., p = 1) for the NSW CTP data. That is Wj = φ1ej−1,i + φ2
1ej−2,i + ...

and the serial dependence structure gives an exponentially weighted smoothing of

past Pearson residuals.

We felt this is appropriate because of two considerations. Firstly, while consid-

ered “long tailed” claims, the trajectories in the CTP dataset are still relatively

short - most claims are settled within 5 revisions. These short trajectories do not

allow the fitting of more complicated lag structure.

Secondly, we have tested more complicated lag structures using subsets of the

CTP claims that have had longer trajectories. However, we have typically found

that using lags greater than 1 led to problems with convergence and even when

convergence occurred the coefficients at higher lags were typically not significant.

In Chapter 7, the component models fitted are limited to a GLARMA structure

limited to lag 1 in the AR component.

Zj,i is a component process specific vector of the variables of interest at revision

j for the ith claim. Note that due to the hierarchical nature of the processes, the

Zj,i vectors are different for different component processes and may include lagged

values of the other component processes as well as current values of the other

component process that are “earlier” in the hierarchy.

Three types of variables are used in Zj,i in addition to an initial column of

1’s . These are slightly different from the three categories defined by Taylor and

McGuire [2004].

i) Process variables themselves, that is, the values of the four claims develop-

ment processes. By incorporating past values of these processes (the F filter)

into the modelling of the current values, time series elements are introduced.

ii) Static variables, or baseline variables, do not change throughout the duration
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of the claim. These variables may include age of claimant at date of accident,

gender, location of the claimant, etc.

iii) Dynamic variables, those that change during the evolution of the claim.

This can be further divided into those that change deterministically (such

as number of revisions, which increase incrementally) or those that change

unpredictably. The changes in the latter are the most interesting in deter-

mining the outcome of the process variables. The dynamic variables include

Liability Status, Injuries type and Injury Severities, Legal Representation,

etc.

We examine each component process in turn, select an appropriate distribution

with reference to the empirical distributions from the NSW CTP dataset and,

based on this, define the relevant likelihood functions.

6.4.1 The Delay Component

The delay component process measures the time between consecutive changes in

the claims estimate. This can also be interpreted as the interval of time that

takes new information to arrive such that the claims manager needs to revise the

previous claims estimate. Making a previously allowed for payment on the claim

does not qualify to be a change in the claims estimate.

The preferred format of the delays between revisions would be the number of

days and the exponential distribution is expected to fit the delay distribution well.

The exponential distribution would also simplify the algebra involved.

For the NSW CTP PIR, however, claims information is provided as quarterly

“snapshots” that contains the claims information as at that point in time. This

means changes to claims information and claim size estimates can only be observed

from quarter to quarter. Using the PIR, we can only ascertain whether a claim

revision has been made sometime in the quarter and not any more accurately

than that. It is possible for the managing insurer to have made a number of
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Figure 6.1: Distributions for Delay Process

changes within the same quarter, we would not be able to observe this using the

PIR. The resulting implication is that when there is more than one change to the

claims information and claim size estimate made between the quarterly extracts

the changes are essentially rolled up and observed as one change.

This limitation in the data also means the delay process for the NSW CTP

scheme is a discrete random variable, taking on values of 1, 2, 3, ... quarters. The

geometric and negative binomial distributions are logical candidates from the pool

of discrete distributions. On the other hand, “discretised” continuous distributions

may also be possible candidates; this, however, is not ideal as these distribution

would be difficult to work with. Figure 6.1 compares the empirical distribution of

delays observed from the NSW CTP data to several fitted distributions.

From the Figure 6.1, the negative binomial and discretised gamma distributions

appears to fit best and are equally good at representing the empirical distribution.

The other distributions underestimated the volume of observations at the two ends

of the distribution, that is, the extremely short and extremely long delays. We

have not carried out any goodness of fit tests on the various fitted distribution

as we are trying to visually gauge which distributions show a good representation
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of the data. The underlying data is an aggregation of a large number of individ-

ual variables each with a different mean and variance; the relationship between

the claim characteristics and these parameters will be modelled and discussed in

Chapter 7.

For the purposes of modelling the NSW CTP data, the negative binomial

distribution is adopted for the delay process and is measured in quarters. For

other applications other distributions may be more appropriate to be used in the

general CDP framework.

For the negative binomial distribution, the following specification is adopted

P (tj,i = t|Fj−1,i, Gj−1,i) =
Γ(α + t− 1)

Γ(α)Γ(t)

( α

µj,i + α

)α( µj,i

µj,i + α

)t−1

(6.9)

where t = 1, 2, 3, ...,α > 0 and µj = E[tj,i − 1] . Note this is a “shifted” negative

binomial distribution as t starts at 1, the minimum delay in quarters. Under this

specification, the mean parameter µ is specified explicitly in the probability density

function which aids the modelling. It is also noted that when α approaches ∞ the

negative binomial distribution approaches a Poisson distribution. That is, the α

parameter can be considered as an over-dispersion parameter.

For the negative binomial distribution, the state equation for the GLARMA

model is

logµj,i = ZT
µ,j,iβµ +Wj,i (6.10)

where Wj,i = φ1,µej−1,i + φ2
1,µej−2,i + ... and

ej,i =
(tj,i − 1)− µj,i
√

µj,i + µ2
j,i/α

(6.11)

The log-likelihood function of the negative binomial function and its first and

second derivatives can be found in Appendix F.1 as well as in Wang [2004]. The

log-likelihood function and its derivatives are needed in the maximum likelihood
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estimation (MLE) of the parameters in Chapter 7. Note the likelihood and its

derivatives are expressed using the “standard” negative binomial and a “shifting”

transformation is carried out for model fitting, that is, tj,i − 1 was fitted rather

than tj,i.

6.4.2 The Claim Status Component

This process models whether the claim is settled at a particular revision. Since the

claim status can either be “Open” or “Settled” (complications of reopened claims

are ignored), a Bernoulli process would be the natural selection. Let Sj,i be the

claim status process for the ith claim on its jth revision, for j = 1, 2, ...; then

Sj,i =











1 if the jth revision is the last

0 if the jth revision is not the last
(6.12)

and

P (Sj,i = 1|Fj−1,i, Gj,i, tj,i) = qj,i (6.13)

Based on this formulation, Sj,i can be determined based on all the information

available at time Tj−1,i , the new claims information as contained in filter Gj,i and

the delay that has taken place since the previous revision, tj,i.

With the finalisation process variable, Sj,i, being a Bernoulli process, this can

be used to infer the expected number of revisions. If all qj,i are the same for all

i and all j, then the marginal distribution of the number of revisions the claims

experiences before finalisation would follow a geometric distribution. However,

since qj,i may be different for different is and js, the actual observed distribution

of the number of revisions prior to finalisation is expected to have higher variability

than the geometric distribution. Figure 6.2 shows such a comparison for the NSW

CTP data across all claims.

The fitted geometric distribution compares well to the actual the number of
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Figure 6.2: Observed Number of Revisions at Settlement vs. Fitted Geometric
Distribution

revisions made at the settlement of a claim. As expected, there seems be a higher

proportion of claims finalised with a delay of 1; this increases the variability of the

observed distribution. This under-fitting of claims settled after 1 revision is due to

the mixing of claims with different qj,i and this results in the observed distribution

having a greater variability than the standard geometric distribution. Since the

number of revisions is used as an explanatory variable in the model fitting (Chapter

7), this under-fitting should not be a concern.

For the binomial distribution, the state equation for the GLARMA model is

logit(qj,i) = ZT
q,j,iβq +Wj,i (6.14)

where Wj,i = φ1,qej−1,i + φ2
1,qej−2,i + ... and

ej,i =
Sj,i − qj,i

√

qj,i(1− qj,i)
(6.15)

The log-likelihood function of the binomial distribution can be found in Dun-
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smuir and Scott [2015] as well as in Wang [2004]. The log-likelihood function and

its derivatives are needed in the maximum likelihood estimation (MLE) of the

parameters in Chapter 7.

6.4.3 The Direction of Change Component

This process records whether a change is an upward change (on the receipt of

unfavourable information, for the insurer) or a downward change (on the receipt of

favourable information). Similar to the claim status process, the revision direction

process is also binary, taking values up or down. Let Dj,i be a Bernoulli variable

such that

Dj,i =











1 if the jth revision is a positive change

0 if the jth revision is a negative change
(6.16)

and let

P (Dj,i = 1|Fj−1,i, Gj,i, tj,i, Sj,i) = pj,i (6.17)

Once again, Bernoulli seems to be the only logical choice for the direction of

change process. However, one may ask why modelling direction of change and

size of change separately and not model the change using a distribution on the

real number scale. This further decomposition is partly driven by the aim to

further simplify the distribution and also partly due to the behaviour of the claims

managers. The claim managers seem to over-react to negative information so that

an excessive claims estimate is built up over time. This usually leads to a reduction

in the claim size at finalisation. By separating the claim direction from the claim

size process; and allowing the claim size process to be conditioned on both claims

finalisation and direction process, a more robust claims revision size processes can

be modelled. This approach allows an asymmetry in the claim sizes for upward

and downward revisions, as well as for final and prior revisions, to be reflected

through the mean parameter. This is discussed further in Section 6.4.4.

Figure 6.3 shows the empirical proportions of upward revisions, P (Dj,i = 1), by
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the number of revisions j, separately for the final revision and all prior revisions.

The key observation is that the final revisions are far more likely to be downwards

(suggesting the claim estimates prior to the settlement of the claim tend to be

conservative) and the revisions prior to settlement are more likely to be upwards

(incremental news received regarding the claims tend to be unfavourable news).

Figure 6.3: Proportion of Positive Revisions by Finalisation Status vs. Revision
Number

Similar to the Settlement component process, the state equation for the GLARMA

model is

logit(pj,i) = ZT
µ,j,iβp +Wj,i (6.18)

where Wj,i = φ1,pej−1,i + φ2
1,pej−2,i and

ej,i =
Dj,i − pj,i

√

pj,i(1− pj, i)
(6.19)

The log-likelihood function and its derivatives are needed in the maximum

likelihood estimation (MLE) of the parameters in Chapter 7.
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6.4.4 The Size of Change Component

This component process models the magnitude of the claim revision as the abso-

lute difference between the logs of the pre and post revision claim costs, Yj,i =

| log(Xj,i) − log(Xj−1,i)| =
∣

∣

∣
log

Xj,i

Xj−1,i

∣

∣

∣
. Such definition provides a magnitude of

change that is a strictly positive continuous variable. Another added advantage

of using this definition of size is that while CTP claim sizes, and incremental

changes in size can be very long tailed (right skewed) in absolute dollar terms, this

transforms reduces some of the skewness.

The NSW CTP data was examined to choose the most appropriate distribu-

tion to model the size of revision process, Yj,i. Figure 6.4 shows a histogram of

the observed magnitude of changes variable, Yj,i, superimposed with several dis-

tributions fitted to the data. With the exception of lognormal, which showed the

poorest fit, the other distributions all fitted the observed data well.

Figure 6.4: Observed Distribution of Size of Revision

In the above section, we saw that the revisions behave differently depending

on whether it is the final revision or intermediate revisions. Figure 6.5 shows

histograms of the observed size of changes stratified by Settlement flag and the
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Direction of the revision.

Figure 6.5: Observed Distribution of Size of Revision by Settlement and Direction

It can be seen from Figure 6.5 that negative revisions at finalisation (Panel C)

behave quite differently. These “savings at finalisation” changes are considerably

larger than other categories of revisions (Panels A, B and D). This difference

reflects the level of conservatism the claims managers have build into the claim size

estimates. It reveals claim managers typically reserve at a “worst-case” scenario

which, frequently, result in a considerable reduction of the claim size when the

claim is finalised. In fact, this “saving on finalisation” occurs for over 80% of the

claims;

As a result, in the analysis of size of revisions, we consider the two “kinds”

of revisions, “savings on finalisation” (revisions represented by Panel C) and the

other revisions (as represented by Panels A, B and D), separately to determine the

most appropriate distribution for their modelling. Figure 6.6 and Figure 6.7 show
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that the gamma, Weibull and generalised gamma distributions fit the size of change

process quite well and almost indistinguishably. For its versatility, the generalised

gamma distribution was proposed to model the Size component process, especially

since Figure 6.5 shows the distributions of size of revisions are different for various

subgroups of the dataset. Since the CDP framework attempts to model individual

claim trajectories, this flexibility would be a useful attribute to have in the model.

Figure 6.6: Observed vs Expected Magnitude of “Savings on Finalisation”

Figure 6.7: Observed vs Expected Magnitude of Other Revisions
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By using various parameters, the generalised gamma can achieve a wide range

of distributions.

However, the generalised gamma proved to be extremely difficult to achieve

convergence. More details are provided in Section 7.8. Modelling suggests that for

the NSW CTP data, the benefits of adopting the generalised gamma distribution is

minimal and the increased time required to fit the generalised gamma distribution

is significant. As a result, the modelling of the Size process in the research will

adopt a standard gamma distribution.

The standard gamma distribution has the following density function:

fλj,i,c(yj,i|Fj−1,i, Gj,i, tj,i, Sj,i, Dj,i) =
1

Γ(c)λj,i

( yj,i
λj,i

)c−1

e
−(

yj,i

λj,i
)

(6.20)

where λj,i is proportional to the mean of the variable Yj,i.

For the standard gamma distribution, the state equation for the GLARMA

model is

log λj,i = ZT
λ,j,iβλ +Wj,i (6.21)

where Wj,i = φ1,λej−1,i + φ2
1,λej−2,i + ... and

ej,i =
yj,i − cλj,i
√

cλ2
j,i

(6.22)

The log-likelihood function of the gamma function and the derivation of its first

and second derivatives can be found in Appendix F.3. The log-likelihood function

and its derivatives are needed in the maximum likelihood estimation (MLE) of the

parameters in Chapter 7.

6.4.5 The Claims Cost Process and Likelihood

Let Xi be the ultimate cost of a claim, then using the notations defined above

the ultimate claim cost can be expressed as the product of the revisions with the
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reported claim size.

Xi = X0,i

m
∏

j=1

e(2Dj,i−1)Yj,i (6.23)

Or, more appropriately for the purposes of ultimate claim size projection,

Xi = Xj′,i

m
∏

j=j′+1

e(2Dj,i−1)Yj,i (6.24)

where tj+1,i > T − T ′, that is, for open claims, the j′ + 1th revision takes place

after the censor time T . This is discussed in more detail in Section 6.5.

Using the above defined functional forms for the component processes, the log-

likelihood of the complete process is (assuming the gamma distribution is used for

the Size component)

ℓ(βµ, βq, βp, βλ, c, α, φ1,µ, φ1,q, φ1,p, φ1,λ) =

n
∑

i=1

mi
∑

j=1

(logP (tj,i)+logP (Sj,i)+logP (Dj,i)+log f(yj,i))

(6.25)

the conditioning has been dropped in the above equation to make it more concise.

The log-likelihood is segmented and the parameters are separately specified for

each component process.

ℓ(βµ, α, φ1,µ) =

n
∑

i=1

mi
∑

j=1

logP (tj,i)

ℓ(βq, φ1,q) =

n
∑

i=1

mi
∑

j=1

logP (Sj,i)

ℓ(βp, φ1,p) =

n
∑

i=1

mi
∑

j=1

logP (Dj,i)

ℓ(βλ, c, φ1,λ) =
n
∑

i=1

mi
∑

j=1

log f(yj,i) (6.26)

In the modelling of these component processes, we further define δ as the vector

of all the parameters of interest to be estimated using MLE. For example, for the

Delay component, δ = (βµ αφ1,µ)
T . This usage is consistent in all the R programs
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and likelihood derivations in Appendices G and F.

6.5 Censoring

One important consideration, especially for a long tailed product such as CTP, is

the censoring of claims development at the end of the data period. At time T ′,

there would be claims that have occurred and reported prior to time T ′ but still

not finalised, Tm,i > T ′. These “censored” claims at the end of the data period

will have a different form of likelihood to that shown in Equation (6.6).

L(βµ, βq, βp, βλ, c, α, φ1,µ, φ1,q, φ1,p, φ1,λ) =

j′
∏

j=1

P (tj)P (Sj)P (Dj)f(yj)P (tj′+1 > (T ′−Tj′))

(6.27)

And the corresponding log-likelihood is

ℓi(βµ, βq, βp, βλ, c, α, φ1,µ, φ1,q, φ1,p, φ1,λ) =[

j′
∑

j=1

(logP (tj,i) + logP (Sj,i) + logP (Dj,i) + log f(yj,i))]

+ logP (tj′+1 > (T ′ − Tj′))

(6.28)

In Section 6.3 we have defined P (tj) in terms of all information available as

at revision j − 1. Hence, the quantity logP (tj′+1 < (T ′ − Tj′)) can be defined

from the various process variables and covariates known at Tj′ , which occurred

prior to the censoring date of T ′. Also, due to the conditional hierarchy structure

defined for the components, this log-likelihood can be decomposed as above. That
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is, Equation (6.26) can be adapted to accommodate censored claims as

ℓ(βµ, α, φ1,µ) =

n
∑

i=1

[

min(mi,j
′)

∑

j=1

logP (tj,i)] + logP (tj′+1 > (T ′ − Tj′))

ℓ(βq, φ1,q) =

n
∑

i=1

min(mi,j′)
∑

j=1

logP (Sj,i)

ℓ(βp, φ1,p) =
n
∑

i=1

min(mi,j′)
∑

j=1

logP (Dj,i)

ℓ(βλ, c, φ1,λ) =
n
∑

i=1

min(mi,j′)
∑

j=1

log f(yj,i) (6.29)

That is, apart from the Delay component, the other components are not af-

fected by the issue of censoring. The adjustment required for the delay process is

that the likelihood needs to allow for the fact that after the last revision, revision

j′, there has not been further revisions as at the census date. Equivalently, the

delay of the next revision, revision j′+1, is longer than the length of time elapsed

since the last revision at the census date, tj′+1 > (T ′ − Tj′).

In Chapter 7, the fitting the model considers the impact of accounting for the

censoring issue. For the modelling of the censored claims, adjustments also need

to be made to the log-likelihood of the delay component as well as its derivatives.

These adjustments are detailed in Appendix F.2.

6.6 Model Fit and Inference

For inference, we assume, without proof, that the maximum likelihood estimates

δ̂ for large samples have an approximate normal distribution, with mean at the

true parameter, δ, and asymptotic covariance given by Ω =
(

− ∂2ℓ
∂δ∂δT

)−1

. That

is, δ̂ ∼ N(δ,Ω). Ω(δ) is estimated using Ω(δ̂) and the standard errors for δ̂ are

obtained from Ω̂− 1

2 in the usual fashion.

For model selection, we have used the Akaike Information Criterion (AIC) and
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Bayesian Information Criterion (BIC). These model metrics trade off model fit

(higher likelihood) while prevents overfitting by penalising the number of param-

eters used in the model. They are defined in Rice [2006] as

AIC = −2ℓ+ 2k

BIC = −2ℓ+ k ln(n) (6.30)

where k is the number of parameters in the model, n is the number of observations,

or revisions in the CDP framework and ℓ is the log-likelihood of the model of

interest (from Equation (6.29)).

Where applicable, we have used the likelihood ratio test (LRT) to compare the

goodness of fit of two models, where one is a nested model of the other. Model A

is a nested model of Model B if Model A is a “special case” of Model B in the sense

that Model A’s parameters are a constrained subset of Model B. The LRT statistic,

Λ = 2(ℓA − ℓB) follows a χ2 distribution with degrees of freedom as the difference

in the number of parameters of the models; i.e., Λ ∼ χ2(dim(δB)−dim(δA)), where

δA and δB are the models’ respective parameter vectors. If Λ is not in the critical

region, then Model A and Model are deemed to have a similar fit.

The NSW CTP dataset has a large number of short trajectories - there are

around 100,000 claims, with most claims finalises within 10 claim revisions; this

dataset can be classified as a “longitudinal dataset”. Justification for the use

of asymptotic normality in this case can be found in the extensive literature on

modelling longitudinal data such as Verbeke and Molenberghs [2009] and Diggle

et al. [2002].

6.7 Summary

This chapter lays the theoretical foundation of the Claim Development Process

framework. It introduces the overall claims development process (Xj , Tj) and



Chapter 6. The Claim Development Process 113

introduces a hierarchical conditional structure to enable its decomposition into

simpler component processes. The component processes are defined using the

GLARMA structure and the GLARMA models were briefly discussed. Each com-

ponent process were then discussed in detail and a distributional form is selected

for each component. The issue of censoring and its impact on the Delay component

is also raised and its resolution detailed.

While this thesis applies the CDP framework to NSW CTP data, it can be

applied to other insurance products with long tailed claims. The application is

split into three parts and discussed in the next three chapters. Firstly, in Chapter

7 the dataset is modelled to gain insights to how NSW CTP claims develop over

time. Although the insights discussed are specific to the NSW CTP data, similar

analysis is able to be undertaken for other portfolios as well. Secondly, in Chapter

8 the application of the claim development model as a mean of claims projection

is examined, the projected claim sizes from using the modelling dataset are then

compared to the actual claim sizes for those that were finalised within the valida-

tion dataset. Thirdly, in Chapter 9 the merits of using the Claims Development

Processes as a method for valuation is examined.
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Chapter 7

CDP Modelling Results

7.1 Introduction

This chapter details the implementation of the Claims Development Process model

using the NSW CTP data. A brief discussion is provided for the software developed

and used in the modelling process. The CTP data used for this section is briefly

reviewed again along with the processing required to enable the models to be

fit. Modelling results for each of the four component processes are tabulated and

discussed. This chapter provides new insights into the development behaviour of

NSW CTP claims that are not otherwise available with the previously discussed

valuation techniques.

7.2 Model Fitting

The NSW CTP data are fitted to the CDP Component models specified Sections

6.4.1 to 6.4.4. The parameters of each of the component models (β, φ1 and any

shape parameters - α and c) are estimated using maximum likelihood estimation.

As discussed in Section 6.3, the likelihoods of the four components can be separated

due to their conditionally independent model specification, this allows the four

component processes to be modelled separately. However, due to their longitudinal

115
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nature (multiple observations on the same claim over time) as discussed in Section

6.4, simple GLM software could not be used.

At the time of writing, Dunsmuir et al. [2014b] has recently released the

GLARMA package in R (Dunsmuir and Scott [2015]) which enables the mod-

elling of time series of count data in a GLARMA framework. Prior to this, for

the purposes of this thesis, R programs were developed to carry out the model

fitting of the CTP data. The model fitting follows the approach outlined in Davis

et al. [2003] as well as Wang [2004]. Using custom written programs also allows

the flexibility to fit more complicated models as discussed in the later chapters.

Maximum likelihood estimation of the model parameters was implemented us-

ing a Newton-Raphson iterative algorithm. Let δ be a vector of coefficients of

interest, which is made up of β, the vector of coefficients, φ1, the auto-regressive

coefficient at lag 1, and other distributional parameters, such as α and c. Further,

let ℓ be the log-likelihood of component process in question. Then the Newton-

Raphson method estimates δ iteratively using the following relationship. The kth

iterative estimate of δ is

δk = δk−1 − ℓ′′(δk−1)−1ℓ′(δk−1) (7.1)

where ℓ′(δk−1) and ℓ′′(δk−1) are the first and second derivative of ℓ with respect to

δ evaluated at δk−1. Due to the functional forms of the log-likelihood functions,

it can be quite difficult to obtain the first and second derivatives with respect to

the parameters. However, we have done that and implemented these recursively

in our R-code. The likelihoods have been discussed in Chapter 6.

Starting values adopted for the algorithm (δ0) adopted were as suggested in

Davis et al. [2003], where β0 are derived from a simple GLM fit (i.e., without the

ARMA structure) and φ0
1 was initialised at 0. Using this approach the Newton-

Raphson algorithm converges to the local maxima of the likelihood usually within

5 iterations. Some of the difficulties in model fitting are discussed in Section 7.12.
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Two R programs were used to fit each of the component models

i) a generic program that performs the calculation of the likelihood of a partic-

ular distribution and its derivatives for one claim. Programs for the Poisson

and binomial distributions were obtained from my supervisor. Programs for

the negative binomial distribution were developed for Wang [2004] and pro-

grams for the gamma and generalised gamma distributions have been written

for this thesis.

ii) a wrapper program that reads in the data, sets up the initial values of the δ

vector, accumulates the likelihoods and its derivatives for each claim and then

performs the Newton-Raphson algorithm iteratively to estimate the coeffi-

cients and parameters. The iterative process is terminated after convergence

is obtained for the parameters estimates, when the incremental movements

for all parameters is less than 10−6.

A further complication for the delay process arises due to the issue of censoring,

that is, claims not finalised at the end of the data period. Substantial modifica-

tions were applied to the negative binomial program to enable the model making

allowances for censored claims. This is further discussed in Section 7.5.

R programs used for this chapter are contained in Appendix G,

• Calculating the likelihood contributions from the gamma distribution - Ap-

pendix G.1

• Calculating the likelihood contributions from the negative binomial distri-

bution - Appendix G.2

• Calculating the likelihood contributions from the negative binomial distri-

bution with allowance for censoring - Appendix G.3

• Calculating the likelihood contributions from the binomial distribution - Ap-

pendix G.4
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• Example of a wrapper program - Appendix G.5.

For each component process, a “full” model is firstly fit with all the available

covariates for revisions up to December 2009. An iterative process is then under-

taken to eliminate successively the “weakest” covariate until an optimal model is

achieved. Significance of the parameters as well as the various model selection

criterion (AIC and BIC) are considered in choosing this optimal model. Once this

model is selected, it was also fitted to different cohorts of claims (according to

their year of accident) to examine the stability of the parameters across cohorts.

7.3 Data Preparation

The CTP data used in model fitting is briefly discussed again. Considerable pro-

cessing needs to be made to change the previously used quarterly extracts from a

time based dataset into an “revision” based dataset.

As before the data from accident years 2001 to 2009 have been used to produce

the modelling results contained in the following sections. The results serve dual

purposes - to understand the claims development behaviours and then use the

results to project how open claims at the censoring date (or valuation date) will

develop in the future.

For the claims that occurred during this period of time, their claim cost move-

ments have been observed for a period of 9 years from January 2001 to Decem-

ber 2009. For each time the claim incurred cost changes by either $100 or 1%,

whichever is greater, it is marked to have had a “change”. We have found changes

smaller than this threshold may not be associated with the arrival of new informa-

tion about the claim. Changes that are smaller than this threshold are also finan-

cially immaterial to a portfolio with annual claims cost of close around $1,000m.

These small changes are simply “rolled” into the next change.

The diagrams below show when “revisions” occur for the two claims used to
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demonstrate the format of the data from Chapter 3. The graphs are reproduced

below with black “j” counters now superimposed to denote when changes occur.

Typically, most changes to the claims incurred are recorded; however, the readers

may notice that for the second claim, a small adjustment to the claims cost in

2006 Q4 was too small and was under the threshold to be classified as a revision.

Figure 7.1: Sample 1 - Revision Based Observations



120 Data Preparation

Figure 7.2: Sample 2 - Revision Based Observations

Table 7.1 provides a small subset of the data that corresponds to the claims

shown. Only a subset of the covariates are shown, there are over 45 covariates

in the dataset. While not modelled in the CDP, X0,i, the initial estimate of the

claim size when the claim is reported is also shown in Table 7.1. For modelling

purposes, likelihoods are only calculated for actual claim revisions, that is, for

j = 1, 2, 3.... The inclusion of X0,i is to facilitate the calculation of Y1,i. Some

claims are reported without an initial claim estimate, i.e., X0,i = 0, this results

in the Y1,i to be undefined. For the purposes of modelling, whenever a claim is

reported at nil cost, a notional $1000 is inserted. This can be seen for Sample

Data 1 in Table 7.1.
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Table 7.1: Revision Based Dataset (Subset)

To simplify the modelling of the interval valued covariates that are thought,

a priori, to have a non-linear impact on the linear predictor, we have decided to

categorise these into bands and treat them as factor type variables, with separate

parameters for each category level.

i) Age of claimant has been banded into 0 to 9, 10 to 16, 17 to 25, 26 to 45, 46

to 65 and 66 and older.

ii) Injury severity score (ISS), this is a composite index constructed from the

injuries severities sustained by the claimant. By design, ISS is made to

be proportional to the probability of the claimant dying from the injuries

sustain. ISS has been banded into 0, 1, 2, 3 to 5, 6 to 10, 11 to 30 and 31 to

75.

iii) Maximum injury severity (or simply known as just severity) ranges from 1

(minor) to 5 (severe); it can also take on values of 0 (unknown) and 6 (death).

Severity has been used as a categorical variable in the model fitting.

The covariates are then encoded into a design matrix. Interval valued covariates

are included as-is, or log transformed if appropriate, while a categorical variable

with k categories require (k−1) columns in the design matrix to code the contrasts
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of each level from the intercept. The following table shows the size of the dataset

and the resultant design matrix. Table 7.2 shows the number of claims reported

by accident year, the number of revisions made to those claims, the number of

variables contained as well as the columns in the design matrix. In total 189,507

revisions data points were used; and the design matrix for each of the component

processes typically has around 20 million elements in it.
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Table 7.2: Dimensions of the Modelling Dataset and Design Matrix

7.4 Delay Component - Ignoring Censoring

The results of the model fitting of the Delay Component allows the user to un-

derstand what are the factors that influence the lengths of time between claim

revisions. As discussed above, two models were fit. Firstly a model using all the

covariates is fitted to the modelling data (revisions observed to December 2009)

and secondly an optimal model, where all the variables are significant and model

selection criteria of AIC and BIC are minimised.

The following tables (Table 7.3 and Table 7.4) show the results of the fitting of

the delay process. Both the parameter coefficients and their estimated standard

errors are shown, refer to Section 6.6 for further details. If the parameter is

significant (at the traditional 5% level, i.e., an absolute z-value above 1.96) then

the covariate coefficient is expressed in bold. As the standard errors are used

only to gauge the significance of the coefficients and the significant coefficients are
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highlighted with bold text, we have kept the parameters in the table to 2 decimal

places. This is done to reduce the cluttering of the tables when more decimal

places are presented. The results are split into two tables due to the large number

of covariates used in the modelling. The covariates are further split into various

sections based the “type” of the covariates. They are as follows.

• F - the F information set, the other component process variables from pre-

vious or current revisions as available based on the hierarchy specified in

Section 6.3. For example, for the delay component process only past values

of the other components are present in the modelling; while for the size com-

ponent process, present and past observations from all the other components

are present in the modelling.

• De - Determinist dynamic variables, these variables are dynamic, but behave

in a predictable fashion. Such as Xj,i can be calculated from Xj−1,i,Dj,i and

Yj,i.

• S - Static variable, these variables do not change throughout the duration of

the claim. For example, age of claimant at the date of the accident.

• D - Dynamic variables, these variables may change over the life time of the

claim and behave in an uncertain fashion.

It should be noted that all the dynamic variables used for the modelling of

the delay process are from the previous revision, i.e., as at j − 1. As discussed

previously, the information set available for the determination of the delay process

is as at Fj−1,i as the new information pertaining the current revision has not yet

arrived. See Section 6.3 for further details.
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Table 7.3: Delay Process - Coefficients1
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Table 7.4: Delay Process - Coefficients2

The log-likelihood of the model that uses all the covariates is -267,972 and that

of the model that only has significant variables is -267,984. We have carried out
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an LRT (see Section 6.6 for further details) to compare the model fit between the

model where all the variables are used and the model where only significant param-

eters are retained. The LRT statistic is 23.4 and the 5% critical region threshold

for a χ2 distribution with 16 degrees of freedom (the number of extra parameters

used) is 26.3. Hence, the model with only significant parameters represents a sim-

ilar fit with fewer parameters and this is also shown through the superior AIC and

BIC (see Section 6.6 for details).

The parameter estimates provide insights to the behaviour of the delay com-

ponent processes. Examining the Process (F) and Deterministic (De) variables,

the following observations are made. Conditional on all the variables in the final

model:

i) φ1 is positive at 0.25 and strongly significant, this suggests a larger than

predicted previous delay, tj−1, would have an impact to increase the current

delay.

ii) The direction of the previous revision, Dj−1, is positive and significant, sug-

gesting an upward increase at the last revision would prolong the time before

the next revision; while a downward revision would be more likely to reduce

it.

iii) The size of the previous change, Yj−1, is a key determinant of the current

delay, and this factor is extremely significant. Larger sized previous changes

would increase the current delay. This perhaps can be interpreted as a signif-

icant set of news regarding the claim, that caused a large claims revision, at

the prior change may lead to a longer period of observation before a further

revision. An interaction term between direction and size could also be used

in the model framework to test asymmetry of the impact from the size of the

previous change. While this may be of interest, we have only included main

effects in the model.
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iv) A large previous claims cost estimate (log transformed), log(Xj−1,i), leads to

a longer delay.

v) The counter of the number of revisions, j, is highly significant in predicting

the delays between revisions. The data suggest that given the other factors

are equal, subsequently revisions after the third gradually shortens.

Examining the “Static” explanatory variables, the following observations are

made.

i) The insurer variable shows some interesting results. The 6 largest insurers

were randomly allocated characters “A”, “B”, ..., “F” and the other insurers

were grouped together. Insurer A (the baseline) seems to have the shortest

intervals between delays as all the other coefficients are positive. It remains to

be seen whether Insurer A updates its claims cost estimates more frequently

and hence also makes more revisions before a claim is settled or that Insurer

A is simply more pro-active in their claims management.

ii) Another claims factor impacting the delay between revisions is the age of

the claimant. The pattern is generally consistent - younger claimants (10 -

16) have longer delays compared to older claimants. This again stands to

reason as many injuries in children may require more time to observe before

the claims are settled.

iii) The claim severity at the time the claim is reported as well as legal repre-

sentation at the time the claim is reported are significant factors although

the impact of each is modest.

The “Dynamic” variables by nature are the most interesting variables to exam-

ine, as they allow us to examine whether changes in claims behaviour are caused

by the changing circumstances of the claimant or more aligned with the baseline

characteristics (as implied by the model framework proposed by Larsen [2007]).
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Once again, for the modelling of the delay factor, all the covariates used are as at

the previous revision, j − 1.

i) The “Large Change” variable is constructed to represent whether the claim

at the previous revision is at a size that is more than 5 times the original

estimate. This variable may be a proxy to indicate whether a significant claim

estimate revision has already occurred, based on prior receipt of significant

information pertaining the claim. This factor has a significant impact of the

delay process; however, the impact is around -10%. That is, claims that

have undergone significant increases have slightly shorter delays compared

to those that have not had significant increases before.

ii) The injury severity based covariates are significant and seem to suggest the

claims with more severe injuries have shorter delays between revisions.

iii) Claim duration at previous revision (log transformed) is a significant co-

variate. It suggests more mature claims have shorter delays between claim

revisions.

iv) Once the claim enters the court or CARS system or meets the 10% Whole

Person Impairment threshold, the delay also seems to be shorter, suggesting

an acceleration of activities.

A second set of Delay models are constructed by fitting each accident year

separately. These are used to examine the stability of the coefficients for different

cohorts of claimants. We have carried out an LRT with the combined model and

the cohort based models. The LRT statistic is 22,508 and the 5% critical region

threshold for a χ2 distribution with 445 degrees of freedom (the number of extra

parameters used) is 495. Hence, the cohort based models represent a significantly

better fit to the data, consistent with the AIC and BIC measures. This suggests

there are changes to the parameters overtime or that there are material interaction

effects not picked up by our modelling.
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Table 7.6: Delay Process by Accident Year - Coefficients2

By examining the covariates for different cohorts of claims and appreciation on

the stability of the parameters can be gained.

i) The φ1 parameter is quite stable for different accident years

ii) The dispersion parameter α seems to increase for successive claim cohorts

suggesting the volatility reduces.

iii) Most variables lose their levels of significance (due to less claims in each

cohort) but the general pattern of the parameters is retained. These variables

include revision counter, injury severity, insurer, etc.
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iv) The claim duration variable and the litigation level (no litigation, court or

CARS) have been very stable across the various accident years.

7.5 Delay Component - Allowing for Censoring

In Section 6.5 we discussed the impact of censored claims. In terms of fitting the

model, all the finalised claims are modelled as above; however, each open claim will

have an adjustment made to the likelihood calculation. The adjustment captures

the probability that for a censored claim the next revision (revision j′+1) has not

occurred on or before the censoring time T ′. This adjustment allows for the fact

that tj′+1 > T ′ − Tj′.

If ℓO is the likelihood of an open claims and ℓT ′ is the likelihood of the ob-

served delays for revisions made prior to the censoring time of T ′ then ℓO =

ℓT ′ + logP (tj′+1 > T ′ − Tj′). ℓT ′ is also the complete likelihood for a claim that

has finalised prior to the censoring time.

The adjustments to the log-likelihood and its derivatives calculation for the

Newton-Raphson’s iterative method can be found in Appendix F.2. This is then

incorporated in the R code used to fit the model allowing for censoring, which is

shown in Appendix G.3. As elements of P (tj′+1 > T ′ − Tj′) are additive rather

than multiplicative, this makes the computation of its logarithm and derivatives

more difficult.

In Tables 7.7 and 7.8 we compare the model results for ignoring the issue of

censored claims and adjusting the likelihood for censored claims.
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Table 7.7: Delay Process - Censoring1
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It is observed that most coefficients are very similar after allowing for censored

claims. However, a few interesting observations are made below.

i) The α parameter is considerably smaller by allowing for censoring, that is, the

volatility of the delay process is higher. This stands to reason as censoring

would disproportionately “hide” delays that have taken longer than usual

compared to those shorter than usual.

ii) The impact of the previous direction, Dj−1,i, is now much greater, suggesting

a previous upward change has a stronger impact in the length the current de-

lay. This is an effect that would not have otherwise being measured properly

if censoring is not accounted for.

iii) There are some other minor differences in the dynamic covariates, however,

the differences are not great.

7.6 Settlement Component

This section reports the results of modelling the Settlement Component Process.

This process takes on the value of 1 if the claim is finalised at the current revision

or 0 if the claim remains open at the current revision. By definition, there is only

one single instance of Sj,i = 1 per claim, that is, when the claim is settled and

all preceding Sj,i takes on the value of 0. As such, the ARMA component of the

model is not fit.

Table 7.9 and Table 7.10 show the results of the model fitting of the settlement

process. Once again the results are split into two tables by the category of the

variables. A new set of dynamic variables have been used in the modelling of the

Settlement component process, when one of the dynamic variables changes, a set

of indicator variables are used to denote the change. For example, when an injury

severity worsens from severity 2 to a severity 3, both the current severity (3) and

the indicator variable of “injury severity worsened” are used in the model fit.
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We have carried out an LRT to compare the model fit between the model

where all the variables are used and the model where only significant parameters

are retained. The LRT statistic is 23.0 and the 5% critical region threshold for a

χ2 distribution with 17 degrees of freedom (the number of extra parameters used)

is 27.6. Hence, the model with only significant parameters represents a similar fit

with fewer parameters and this is also shown through the superior AIC and BIC,

as show in the tables below.
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The observations regarding the process variables are as follows.

i) The length of the current delay, tj,i, is a significant determinant. A longer

delay results in the claim being less likely to be finalised. This suggests that

for revisions that follow very closely with the previous revision, the likelihood

of the claim being settled is relatively higher.

ii) A large previous revision, Yj−1,i, reduces the chance of the claim being fi-

nalised at the current revision.

iii) A positive movement at the previous revision, Dj−1,i = 1, also reduces the

chance of the claim being finalised at the current revision. A previous positive

movement may mean the claim is still developing.

iv) A larger previous incurred claims cost estimate (log transformed), logXj−1,i,

leads to the odds of the claim finalising at the current revision being lower.

v) The number of changes a claim has underwent, j, is also significant, and

interesting. It seems the likelihood of the claim settled on the first revision

is very high (the baseline value). The likelihood of the claim settled on the

second revision drops sharply and then gradually increases as at j increases.

Claim settling at the first revision may imply light injuries or simple claims.

There is also likely to be a correlation with the current claim duration vari-

able (a dynamic variable), which is highly positive, meaning the more mature

the claim is, the more likely the claim is going to settle.

The “Static” or baseline covariates are discussed below.

i) Reporting delay (time between accident and claim lodgement), t0,i, is signif-

icant, the longer the reporting delay the less likely the claim is settled at a

given revision.

ii) Gender plays a small role in the probability of settlement. The small nega-

tive coefficient suggests Male claimants have a slightly lower probability of
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settlement at each revision.

iii) Employment status seems to have a significant impact, especially for the

value of “Self-employed” and “Unemployed”, where the likelihood of settle-

ment is reduced materially. This may suggest the employed claimants may

wish to settle the claim promptly to return to work.

iv) The insurer variable is again a key determinant in the likelihood of settle-

ment. Insurer A is relatively less likely to settle as compared with the other

insurers. All else being equal, Insurer E takes the lead as the insurer that is

most likely to settle at a given revision and insurer F is the least likely to

settle, the ratio of the odds is almost 4 times as great.

v) Age of the claimant and employments status do not offer a clear pattern apart

from the retired claimants (age 66 and above). This suggests their claim may

be simpler as there usually would not be a economic loss component.

The observations regarding the “Dynamic” variables are discussed below.

i) Claims have had major revisions (incurred more than 5 times the original

estimate) are more likely to settle. This makes intuitive sense as these claims

have already developed significant from their initial claims cost estimate.

ii) Claims with the Whole Person Impairment (a key criterion in receiving gen-

eral damages) determined, whether the threshold is met or not, are far more

likely to settle than if the WPI level remained unknown.

iii) The various injury related dynamic variables seem to suggest the claims with

serious injuries (and worsening injuries) seem to be more likely to settle. This

is against intuition as the claimant may be expected to see how the injury

worsens before agreeing to a claim settlement.

iv) The Legal Representation appointed is material and significant in its impact
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on the likelihood of finalisation. Represented claims are far less likely (37%)

to settle.

A second set of Settlement Component models are constructed by fitting each

accident year separately. These are used to examine the stability of the coefficients

for different cohorts of claimants. We have carried out an LRT with the combined

model and the cohort based models. The LRT statistic is 1802 and the 5% critical

region threshold for a χ2 distribution with 539 degrees of freedom (the number of

extra parameters used) is 594. Hence, the cohort based models represent a better

fit to the data, suggesting there are changes to the parameters over time.
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7.7 Direction Component

Table 7.13 and Table 7.14 show the results of the fitting of the direction process.

The results are split into two tables by the category of the variables due to the

number of variables used in the modelling rather than the tables representing

separate analyses.

We have carried out an LRT to compare the model fit between the model

where all the variables are used and the model where only significant parameters

are retained. The LRT statistic is 21.3 and the 5% critical region threshold for a

χ2 distribution with 14 degrees of freedom (the number of extra parameters used)

is 23.7. Hence, the model with only significant parameters represents a similar fit

with fewer parameters and this is also shown through the superior AIC and BIC.
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Examining the Process (F) and Determined (DE) variables, the following ob-

servations are drawn.

i) φ1 is slightly positive suggesting there is a small influenced from the direction

of the previous movement in the same movement direction.

ii) The settlement indicator, Sj,i, is the single most powerful variable for the

modelling of the direction of change. When the revision is the last, due to

an agreement reached between the various parties, the direction is extremely

likely to be negative. The odds is 14 times in the favour of a reduction in the

claim size. This is may be likely due to the conservative nature of the claims

managers, with many claims estimates set as the “worst case scenario” claim

size rather than a “best estimate” claim size.

iii) The length of the delay since the last revision, tj,i, is also a significant deter-

minant of the likely direction of the current revision. The longer the delay,

the more likely the change is an upward change.

iv) The previous incurred size (log-transformed), logXj−1,i, is significant which

suggests larger claims are less likely to finalise.

v) The number of revisions a claim has had, j, is also an significant, and con-

sistent, factor. The modelling suggests the later revisions will be more likely

to be upward revisions than the earlier revisions.

Examining the “Static” explanatory variables, the following observations are

drawn.

i) Reporting delay (log transform) is significant for the overall model, where a

longer delay contributes to the probability of a negative revision.

ii) The insurer variable once again shows some interesting results. Relative to

Insurer A, Insurers B,C and D seem to have relatively more positive changes
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and Insurer E and F seem to have relatively fewer upward revisions. This

may be an indicator of the conservatism exhibited by the claim management

team of the different insurers.

iii) Age of the claimant also exhibits some significant pattern in its impact on

the direction process. The younger age groups (< 25) are less likely to

exhibit positive movements as opposed to the working ages and close-to-

retirement claimants. This may be a case of the more conservative estimates

for the younger claimants since economic losses and long term medical care

costs may be significant. When the actual outcome turns out better than

assumed then a negative revision is likely.

iv) The region variable shows Metro claimants are more likely to have upwards

movements.

The “Dynamic” variables as contained in Table 7.14 are discussed below.

i) The “Large Change” variable has a negative coefficient of around -0.15 sug-

gesting then the claims costs is more likely to reduce if the claim has already

experienced a “Large Change”.

ii) Larger previous incurred costs also suggest the claims cost is more likely to

reduced rather than increase.

iii) Legally represented claims tend to have more upward changes; the impact of

this variable is relatively big (a coefficient of 0.81).

iv) Claims with economic loss component (correlated with the working ages

claimants from the “Static” variables) and the Back/Spinal injury indicator

(AIS codes starting with G) increase the likelihood of an upward revision

and the pattern is consistent over time.

v) The ISS, or the Injury Severity Score, a composite score designed to allow

for multiple injuries have a significant effect on the likelihood of an upward
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increase. That is, higher the ISS or the severity of the injuries sustained, the

more likely it is to have an upward revision.

vi) Claims with a Rejected Liability status or the claims that have become a

“rejected” claims at the current revisions are less likely to have an upward

movement in the estimated claim size. This stands to reason as the claims

cost for a claim that the insurer is not liable for can reduce sharply.

vii) The Rehab variable and the Number of Body Region Injured variable show

some weak pattern at the overall level.

A second set of Direction models are constructed by fitting each accident year

separately. These are used to examine the stability of the coefficients for different

cohorts of claimants. We have carried out an LRT with the combined model and

the cohort based models. The LRT statistic is 2342 and the 5% critical region

threshold for a χ2 distribution with 571 degrees of freedom (the number of extra

parameters used) is 628. Hence, the cohort based models represent a better fit to

the data, suggesting there are changes to the parameters over time.
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Table 7.16: Direction Process by Accident Year - Coefficients2

7.8 Size Component - Gamma vs. Generalised

Gamma

As discussed briefly in Section 6.4.4, the size process seems to be different depend-

ing on whether the revision is a final negative change (Sj,i = 1 and Dj,i = 0) or
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not. It was believed a generalised gamma distribution, which is a three-parameter

distribution, may be more flexible than the standard gamma distribution and may

prove to be a better fit to the data.

However, the generalised gamma distribution proved difficult to use in practice.

Firstly, convergence is notoriously difficult. Lawless (Lawless [2011]) in his text

book states that the generalised gamma distribution can appear to be similar for

wildly different parameters. Poor starting values for the Newton-Raphson method

would typically send the three parameters to positive infinity or negative infinity.

Secondly, for the ARMA component of the likelihood maximisation, the errors

terms of the structure (Y−E[Y ])
σY

needs to be differentiated and used as a part of

the derivatives of the log-likelihood. However, the generalised gamma distribution

proves difficult mathematically for this purpose.

We have used numerical derivatives (R Package numDeriv) to apply the model

using the generalised gamma distribution to examine whether the benefits of ap-

plying the generalised gamma distribution over a standard gamma distribution is

significant. Sample code to fit the generalised gamma distribution can be found

in Appendix G.7. Parallel computing (multi-thread processing) is used to speed

up the calculations of the likelihood derivative using numerical methods.

Table 7.17 shows the coefficients and standard errors of the parameters for

three models

i) Simple GLM without the ARMA component, this is the process of obtaining

the initials values for the GLARMA modelling. A gamma error distribution

with a log link function is used.

ii) GLARMA with a gamma distribution.

iii) GLARMA with a generalised gamma distribution. This model is fitted by

carrying out grid search for appropriate starting values of the intercept, c and

k parameters and then using numerical derivatives to achieve the Newton-

Raphson algorithm.
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Due to the dimensionality issue of using numerical derivatives only a subset of the

data (claims from Accident Year 2003) and subset of the covariates (23 out of 102)

are used for all three models.
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Table 7.17: Gamma vs. Generalised Gamma

It can be observed that the coefficients and the standard errors of the covariates

are very similar for the two GLARMA models. If the generalised gamma distribu-

tion based GLARMA model has c and k parameters such that their product is not

statistically different to the c in the gamma GLARMA model then the generalised

gamma and gamma distributions have very similar shape and there is very little

additional benefits in adopting a generalised gamma distribution. In this case

the product of the c and k parameters from the generalised gamma distribution

is 0.88 which is close to the c parameter of the gamma distribution (0.82), the

two error distributions are mathematically similar. As such, the standard gamma

distribution has been adopted in the modelling of the Size process.
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7.9 Size Component - Gamma Response

From the discussion in the previous section, the standard gamma distribution is

adopted for the modelling of the Size component process. The results from the

modelling of the Size process are contained in Tables 7.18 and 7.19. Due to the

hierarchical conditioning defined, the size process is the last to be modelled for

the current revision and the outcomes of the settlement and direction processes

are known. A “Saving on Finalisation” variable is defined to differentiate those

revisions that are the final change with a downward revision and the other changes.

We have carried out an LRT to compare the model fit between the model

where all the variables are used and the model where only significant parameters

are retained. The LRT statistic is 11.8 and the 5% critical region threshold for a

χ2 distribution with 12 degrees of freedom (the number of extra parameters used)

is 21.0. Hence, the model with only significant parameters represents a similar fit

with fewer parameters and this is also shown through the superior AIC and BIC.
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Table 7.18: Size Process - Coefficients1
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Table 7.19: Size Process - Coefficients2
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The following observations are made for the Process variables.

i) φ1 is 0.08 and suggests past larger movements would cause the current size

of change to be bigger.

ii) The coefficient of Direction variable, Dj,i, is positive but small, suggesting

positive movements are of a slightly bigger size.

iii) The coefficient for Settlement, Sj,i, is negative implying the final (upward)

change is relatively smaller than the other changes.

iv) The “Saving on Finalisation” (Sj,i = 1 and Dj,i = 0) coefficient value is

significant at 1.22 suggesting the final downward movement tends to be 3

times as big as other movements.

v) The lengths of the current and previous delay (log tj,i and log tj−1,i) are also

significant determinants of the size of the revision. The pattern is very clear

and consistent across the various accident periods. Longer delays correlate

with larger movements.

vi) The previous claim size variable (log-transformed) logXj−1,i is negative and

consistent for the various claim cohorts. This suggests larger previous claim

incurred costs lead to smaller sizes of the current revision.

vii) The number of revisions a claim has had, j, is also an significant, and con-

sistent, factor. The modelling suggests the initial changes tend to be larger

by around 20% but the subsequent changes are similar in size.

Examining the “Static” explanatory variables, the following observations are

made.

i) The coefficient for Reporting Delay is small and positive, suggesting claims

with longer reporting delay tend to have somewhat larger claim revisions.
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ii) Gender seems to have a small impact on the size of the revision; Male

claimants’ revisions are around 5% smaller than the Female counterpart.

iii) The insurer variable is a significant factor in the determination of the size of

the movements. As compared to Insurer A, insurers B, D and F have slightly

larger revisions.

The coefficients for the “Dynamic” variables as contained in Table 7.19 and

are briefly discussed below.

i) The “Large Change” variable has a small negative impact, implying the

sizes of revisions become smaller if the claims have already had significant

revisions.

ii) Claims with a Rejected Liability status has larger revisions as the claims cost

may reduce or increase sharply for rejected claims.

iii) The litigation levels are informative on the size of the revisions. Once the

claim is being litigated, the movements are considerably smaller. This may

due to the fact that at this late stage of the claim process the insurer has a

good idea on what are the demands are of the claimant and how much the

claims would cost.

iv) Some of the indicator variables denoting a change in the dynamic covariates,

such as, WPI threshold is met and rehab needs of the claimant increased,

increases the size of the claim revision.

A second set of Size Components models are constructed by fitting each acci-

dent year separately. These are used to examine the stability of the coefficients

for different cohorts of claimants. We have carried out an LRT with the combined

model and the cohort based models. The LRT statistic is 2948 and the 5% critical

region threshold for a χ2 distribution with 613 degrees of freedom (the number of
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extra parameters used) is 672. Hence, the cohort based models represent a better

fit to the data, suggesting there are changes to the parameters over time.
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7.10 Inferences by Combining All Four Compo-

nents Process

The above sections contain considerable information regarding the way NSW CTP

claims develop. It can be overwhelming trying to comprehend all the drivers of

the four component processes simultaneously. The fit of the modelling may also be

improved by incorporating interaction terms between the covariates or designing

splines to reflect the underlying shape of the relationship of the numerical variables.

However, the above modelling process does provide a method of testing in-

ferences regarding the claims development behaviour for the insurance company.

One key area of interest is to see how various claim managers handle claims dif-

ferently. Although there is no such information in the PIR database for the NSW

CTP claims information, the Insurer variable is used as demonstration of how the

difference claim management behaviour of the various insurers can be investigated.

Naturally, each insurer has different internal claims management policies try-

ing to achieve the best outcomes for the claimant and the insurer and these two

seemingly opposite goals may have overlapping areas. For instance, if the claims

managers can speed up the authorisation of advanced medical treatments, the in-

juries of the claimants may stabilise and improve sooner and cost the insurer less

money in the long run. The following table compares the various coefficients of the

four Claim Development Processes between Insurer A and Insurer D, the latter

chosen at random, to see if any inference can be drawn. Insurer A is the baseline

level in the models and hence has coefficients of 0; Insurer D’s coefficients as well

as their standard errors are shown to reflect the magnitude of the difference as

well as the level of uncertainty in the estimates.
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Table 7.22: Comparing Coefficients of Insurer Variable

From Table 7.22, it seems Insurer D, as compared to Insurer A, have longer

delay between claim revisions but at the same time, is less likely to finalise the

claim at a given revision. This may translate into Insurer D revising its claims

less frequently and taking a more relaxed approach to claims management. This

suggests the claims management style is quite different between the two insurers.

Secondly, Insurer D is more likely to have an upward revision. Thirdly, Insurer D’s

size of adjustments tend to be larger than those of Insurer A. All of the coefficients

are highly significant.

These kinds of analyses are extremely useful. By concentrating on one set of

variables of interest across the various processes at one time allows a study of

how the set of variables affect the claims development process overall. It offers

considerable insights to how the claim characteristics can influence how claims

may develop from its lodgement to its finalisation.

One major feature of this modelling framework is the adoption of the number

of revisions as a pseudo activity based “time scale” for the modelling of the claim

development. It is of interest, then, to examine whether the number of revisions in-

fluence the claims behaviour in a coherent manner. The coefficients of the revision

variable has been compiled and presented in Table 7.23 below.
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Table 7.23: Comparing Coefficients of Revision Variable
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The number of revision influences the Delay variable significantly, later revi-

sions have a shorter delay compared to the initial revisions. The second and third

subsequent revision has the longest delays and it shortens after that. Using the

first revision as a baseline, the subsequent revisions have lower probabilities of

finalising the claim; however, that probability improves slightly as the claim has

more revisions (j ≥ 6). Later revisions also tend to have a higher chance of being a

positive revision. For the size process, however, the data suggests the first revision

is on average about 20% larger than the subsequent revisions.

The next chapter will use the modelling results from this chapter to predict

the ultimate costs of individual claims. The output of this projection is the claims

reserve for all reported claims.

7.11 Stratified Modelling Results

In the previous sections GLARMA models were built to investigate the impacts of

the covariates on the component processes. However, any possible interactions be-

tween the various covariates were not investigated. The large number of covariates

possible makes fitting interactions terms a very time consuming process.

However, industry knowledge regarding the NSW CTP claims suggests the

claims behave differently based on injury severity. In this section, we devise sep-

arate models for the categories of “Minor”, “Moderate” and “Severe” claims. For

Minor claims, the claims data is further split into Legally Represented (Minor R)

and Not Represented (Minor NR). For the purposes of these definitions, all claims

reported with a maximum injury severity of “3” to “6” are Severe; those with a

maximum injury severity of “2” are Moderate and all other claims are “Minor”.

Note that minor claims do have the possibly of deteriorating into a more serious

injury; however, for the purposes of this modelling analyses, these claims remain

in their initial allocated category. Typically, Minor claims consists of around 70%

of the total number of claims; while Moderate claims and Severe claims make up
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20% and 10% of the claims respectively and are tabulated below.
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Table 7.24: Tabulation of Number of Claims and Revisions

The process adopted in fitting the models remain the same. A full model with

all covariates is fitted at first, then insignificant covariates are removed one by

one until all remaining covariates are significant and the model selection criteria

of AIC and BIC are optimised. The actual results of the models are contained in

Appendix E.

It is clear that claims with different severities have different drivers for their

claim development behaviours. Table 7.25 shows the log-likelihood of the fitted

models.
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Table 7.25: Tabulation of Log-likelihoods

Since, the model with all claims is “nested” within the aggregate of the strati-

fied models, likelihood ratio tests can be performed compare their model fit. The

LRTs are also shown in Table 7.25. In each case, the LRT statistic is significantly

large and with a corresponding p-value of zero for the null hypothesis that the two

models are similar in terms of model fit. These results suggest the model fit of

the stratified models are superior and claims do develop differently based on the

severity of the claimant’s injuries and whether the claimant is represented by a

lawyer.
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7.12 Model Convergence

While we have demonstrated that substantial and complex models can be fit using

maximum likelihood estimation method to large datasets based on the Newton-

Raphson algorithm, one of the key issues faced in this chapter was ensuring con-

vergence of the GLARMA models. The identifiability issue of the generalised

gamma and the gamma distribution was discussed above. Maximum likelihood

estimates of the dispersion parameter in the negative binomial distribution (α)

and the gamma distribution (c) were also difficult to get convergence for. The key

is to select a starting value for the Newton-Raphson iterations that are close to the

final parameter value. One strategy adopted is to hold the dispersion parameter

constant and let the program optimise the other parameters against the likelihood.

A “grid search” is perform to find the approximate value of the dispersion param-

eter that would maximise the likelihood. This value is then used as a starting

value.

Another consideration is whether the model likelihood converged to a global

maximum rather than a local maximum. While we cannot be sure the model

converged to a global maximum as it would be difficult to prove the likelihood

function is globally concave, we have carried a number of checks on the convergence

and feel comfortable that the convergence obtained is at a global maximum. These

checks include random starting values, stability in estimated parameters across

cohorts of claims and the Hessian matrix of the likelihood function is negative

definite (i.e., ∂2ℓ
∂δ∂δT

< 0) and we are able to estimate the standard errors of the

parameter estimates.

The Delay component model allowing for censoring also proved very difficult

to obtain converge. While the Delay process without allowing for Censoring may

converge after 5 iterations the equivalent model allowing for Censoring may take

over 50 iterations. Combined with the added complexity when Censoring is al-

lowed, the modelling takes considerably longer to fit. In this case, we have found
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optimising the dispersion parameter α and the other parameters in alternating

iterations (that is, on odd iterations hold α constant and optimise over the other

parameters and vice versa on even iterations) have reduced the iterations required

to achieve convergence.

Another issue faced is the computing time required, in particular, while using

numerical derivatives to obtain convergence fitting the generalised gamma dis-

tribution. While R is quite efficient and performs all calculations by first loading

datasets into the computer RAM, some models still took hours and even days to fit.

In this case, multi-core (or multi-cpu) computers can reduce the computing time

substantially by dividing the total datasets into smaller subsets and performing

the calculations on the smaller datasets in parallel and then compiling and results

and performing the likelihood optimisation calculations. Parallel processing was

used in the fitting of the size component model with the generalised gamma dis-

tribution; the numerical derivatives calculations (for the likelihood contributions)

used the snowfall package (Knaus [2013]) in R to speed up the calculations.

7.13 Conclusions

In this chapter, we have applied the CDP framework to the NSW CTP dataset.

The model parameters for each of the four component processes were estimated

using maximum likelihood estimation with Newton-Raphson’s iterative method.

Convergence was obtained for all the models even though this was more difficult

to obtain for some of the models (e.g., Delay component with censoring and Size

component process using the generalised gamma distribution) compared to the

others. We have shown that while the generalised gamma distribution is more

versatile in capturing different distribution “shapes” it did not improve model fit

meaningfully for the Size component process of the NSW CTP data to warrant

the increased computing time and problems with convergence.

The model parameters have been tabulated and discussed and offer consid-
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erable insights into the four component processes and, hence, the overall claim

development behaviours for NSW CTP claims. While the discussion in this chap-

ter focuses on the NSW CTP , the CDP framework is equally applicable to other

long tailed insurance products and would yield valuable insights into the claim

development behaviours of these products.

The next two chapters will use the modelling approach from Chapter 6 and the

results from this chapter to develop simpler models from which to project open

claims to their ultimate values.



168 Conclusions



Chapter 8

Individual Claims Projection

using CDP

8.1 Introduction

This chapter continues with the discussion of the uses of the Claims Development

Processes developed in Chapter 6. In Chapter 7 the model parameters of the

component processes provide insights to the claims development behaviour for

individual claims, as well as for groups of claims. This chapter explores the Claim

Development Process framework as a method for the projection of individual claim

trajectories. Chapter 9 discusses the viability of using the CDP as a technique for

actuarial valuations, that is, calculate the claims cost a insurer needs to pay in the

future for all claims aggregated.

The aim of this chapter is to adapt the results from the modelling carried out

in Chapter 7 and apply these in a prediction of ultimate sizes on an individual

claims basis. The many positive benefits from obtaining an estimated ultimate

claim size at an individual claim level has been discussed in Chapter 4.

The chapter starts by discussing the methodology of ultimate claims cost pro-

jection. Numerical methods, not unlike the SCE method discussed in Chapter 4,

are used for the projection. This chapter also validates the projection results using

169
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the modelling data with the actual claim outcomes in the validation dataset.

8.2 Projection

We have carried out the projection of individual ultimate claim sizes using nu-

merical methods, in particular, Monte Carlo simulation. While it may be possible

to algebraically evaluate Equation (6.24) the stochastic nature of the number of

revisions until finalisation makes the computation difficult. The contribution to

the expected value can only occur for the cases when mi is known and the con-

ditional hierarchical structure means the expectation needs to be evaluated in a

step-wise fashion for each successive value of j. That is, only when Sj = 1 can the

expected value contributions be calculated for the cases that the claim in question

has j revisions; for the cases Sj = 0, the process continues to evaluate the other

component processes.

The equation that needs to be evaluated to calculate the expected ultimate
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size of the ith claim is as follows (the subscript i has been dropped for clarity).

X̂ =Xj′/P (tj′+1 > T − T ′|Gj′)

∞
∑

k=T−T ′+1

P (tj′+1 = k|Gj′)×

(

P (Sj′+1 = 1|Gj′, tj′)

j′+1
∑

j=j′+1

1
∑

l=0

P (Dj = l|Gj−1, tj−1, Sj−1)

∫ ∞

0

j+1
∏

j=j′+1

e2(Dj−1)Yjf(Yj|Gj−1, tj−1, Sj−1, Dj−1)dYj

+ P (Sj′+1 = 0|Gj−1, tj−1)
∞
∑

k=1

P (tj+1 = k|Gj)×

(

P (Sj′+2 = 1|Gj′+1, tj′+1)

j′+2
∑

j=j′+1

1
∑

l=0

P (Dj = l|Gj−1, tj−1, Sj−1)

∫ ∞

0

j+2
∏

j=j′+1

e2(Dj−1)Yjf(Yj|Gj−1, tj−1, Sj−1, Dj−1)dYj

+ P (Sj′+2 = 0|Gj′+1, tj′+1)
∞
∑

k=1

P (tj+1 = k|Gj)×

(...)

)

)

(8.1)

where the various probability functions are defined in Chapter 6.

The above equation would be difficult to solve; however, the hierarchical struc-

ture set up for the component processes presents an easier alternative approach.

It allows a step-wise simulation of the claim development revision by revision until

the claim is settled; and for each revision the four component processes {tj,i, Dj,i,

Sj,i and Yj,i } are simulated in turn until the claim is settled, i.e., Sj,i = 1. The

projected ultimate claim size is then taken as the empirical mean of the ultimate

sizes of the simulated trajectories. This approach is relatively straightforward and

would allow practising actuaries to easily adapt this method for their own claims

projection. An added benefit of using the simulation approach is that it provides

an understanding of the variability of the projected ultimate claim sizes. That is,
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with a distribution of possible trajectories, prediction intervals can be constructed

on a claim by claim basis. This is explored in the next chapter.

Prior to outlining the simulation algorithm in detail, the issue of forecasting

“Dynamic Variables” is discussed in some detail.

8.2.1 Dynamic Variables

“Dynamic covariates” are claim characteristics that may change during the life

of an insurance claim and typically they change in a stochastic fashion. These

dynamic covariates are also some of the more powerful variables that explain claims

behaviour; for example, whether the claimant decides to litigate against the insurer

or whether the injuries of the claimant has worsened from the time the claims were

reported. For the purpose of developing the model framework in Chapter 6 and

model fitting in Chapter 7 we have treated these dynamic covariates as exogenous,

that is, they are determined outside the system of processes under considerable.

For the purposes of ultimate claim size projection, we are required to project

the future values of these dynamic covariates beyond the censoring date. There

are a number of approach that can be taken to project dynamic variables into the

future and a brief discussion on some of the approaches is provided below.

Firstly, we could treat all the dynamic covariates of interested as additional

component processes. For example, we can model the likelihood of the claimant

obtaining legal representation in the same fashion as we have modelled any of the

four component processes. That is, by conditioning on all past information Fj−1

and Gj−1 we can model P (legrepj = 1) in the same way as we have modelled

P (Dj = 1). This essentially “endogenises” the dynamic covariates into the model

framework. This approach, however, would make the modelling framework more

complex. Currently, the claims development processes have four component pro-

cesses; embedding the projection of dynamic variables into the model framework

adds as many extra component processes as the number of dynamic covariates
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being considered. Each dynamic covariate will need to be considered in terms of

the optimal response distribution and dependence structure as well as fitting the

models to the observed data as we did in Chapters 6 and 7.

Secondly, we can build binomial or multinomial logistic regression models that

explains the empirical transition probabilities of moving from one state to another

state (e.g., No Legal Representation to Legally Represented) based on other co-

variates. This is quite a popular techniques used in the actuarial industry. This

approach would be very similar to the first approach above, but without the vari-

ous serial dependence structures that have been used for the component processes.

For our projection purposes, this will still involve considerable work to develop

models for all the dynamic covariates. This method has been used in Statistical

Case Estimation (Greenfield et al. [2011] and Oryzak [2008]), where the claims

payments in a workers compensation claim is closely related to a “status” vari-

able that has values of “Working”,“Injured”,“In Treatment”, etc. and usually a

comprehensive GLM is built to explain the transition probabilities of the “status”

variable between its various states.

Thirdly, transition matrices can be used to explain the probabilities of mov-

ing from one state to another state, from example, from the state “Legrep = 0”

to “Legrep = 1” and vice versa. These transition matrices are assumed to be

independent of other covariates and adopts the Markov assumption, where the

probabilities of transitioning to future states are only dependent on the current

state.

In our projection of dynamical variables, we have adopted the third approach

with the following alterations. Firstly, we have not attempted to model all dy-

namic variables using transition matrices. We have selected the dynamic variables

with the most explanatory power (from the z-values of the parameters in the pre-

vious chapter) to be modelled using transition matrices. That is, for the purposes

of demonstrating how ultimate claim sizes are projected, we have adopted reduced
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models for the component processes. These models are fitted using a reduced set

of covariates - namely, all the process variables and static variables but a limited

number of dynamic covariates that we have selected based on their strength as ex-

planatory variables for the component process models. The model results of these

reduced models are shown in Appendix D. The retained and modelled dynamic

covariates are Liability Status, Maximum Injury Severity, WPI Threshold, Legal

Representation and Litigation Levels.

Secondly, it is observed that most of the transitions between the various levels

of the dynamic variables occur earlier on in the life of the claims, i.e., when j is

relatively small. We have tabulated the movements between the various values of

each dynamic covariate in the form of transition probabilities by values of j, that

is, the probability of a transition from the current state to another state at each

claim revision. We have examined the empirical transition probabilities for data

up to December 2009 and selected the following j-dependent transitions matrices

to be used for projection. The selections are made by grouping the claim revisions

which showed similar transition probabilities. The following tables (Table 8.1 to

Table 8.5) show the transition matrices derived from the observed data and used in

the ultimate size projection. These selected transition matrices do not necessarily

have the stationary Markov property; however, given the projected trajectories

are relatively short (most claims settle with in 10 revisions) this would not be a

critical issue.



Chapter 8. Individual Claims Projection using CDP 175

�����

��

��	
�������	��� ���� � � � �

�������� � ����� ���� ���� ����

�	���	� � ���� ����� ���� ����

 ������� � !��� ���� ����� ����

"�#��$%&'&�(& � )���� )��� �)��� �����

��*���

��

��	
�������	��� ���� � � � �

�������� � ����� ���� ���� ����

�	���	� � ���� ����� ���� ����

 ������� � +��� ���� �	��� ����

"�#��$%&'&�(& � �)��� !��� �!��� 
����

Table 8.1: Transition Matrices for Liability
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Table 8.2: Transition Matrices for Injury Severity
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Table 8.3: Transition Matrices for WPI
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Table 8.4: Transition Matrices for Legal Representation
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Table 8.5: Transition Matrices for Litigation Level

For example, there is a distinct behavioural pattern for the appointment of legal

representation at the first two revisions, j ≤ 2. It seems the bulk of the claimants
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who would ultimately appoint a lawyer to represent them would do so at the first

revision. Perhaps this group of claimants has a genuine need for representation,

whether it be language barrier or unfamiliarity with the legal framework of NSW

CTP scheme and would have done so at an early stage.

These transition matrices allow the simulation of the future states of these

dynamic variables by randomly sampling a U(0, 1) real number and then compare

it to the cumulative probabilities of the transition probabilities to determine the

state of the dynamic variable at the next revision. As the transition probabilities

are calculated from the data, which have around 200,000 transitions, the levels of

uncertainty of the transition probabilities are small. Uncertainty of the projected

outcomes, however, will be introduced as a part of the Monte-Carlo simulation

process.

As mentioned above, since transition matrices are constructed for a subset of

the available dynamic covariates, albeit the more powerful ones, new component

processes models are needed to be fit to the data. While the aim was to retain

and incorporate the more powerful of the dynamic covariates, the model fit of

these “reduced” models will nonetheless be inferior to those presented in Chapter

7. We felt this is appropriate in the context of ultimate claim size projection for

two reasons. Firstly, we have chosen to incorporate those dynamic variables that

are important to the component processes, this allows the focus of this chapter to

remain on the projection methodology without dwelling too long on dynamic co-

variate projection. Secondly, the majority of the dynamic variables that have been

dropped are injury related, such as, “Number of Body Regions Injured”,“Injury

Severity Score”,“Spinal Injuries”, etc. These covariates are likely to be correlated

and the transition matrices approach adopted may not adequately capture the re-

lationship between these covariates. For example, a claim may be simultaneously

sampled to have a “Yes” for Spinal Injury and a low score for Injury Severity Score,

an internal inconsistency. We have chosen to only model the “Maximum Injury
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Severity” dynamic variable, which is the industry de facto measurement of injury

severity for claim size modelling and it has proven to be a powerful covariate for

all the component processes.

The model parameters of these reduced projection component models, along

with the various selection criteria, can be found in Appendix D. Table 8.6 shows

a summary of the reduced models by comparing the number of covariates used,

log-likelihood and BIC between the full models and the reduced models used for

projection. Due to the large sample sizes, all the reduced models have likelihoods

that are significantly worse than the models fitted using all the covariates using

the likelihood ratio test. This is also observed through the substantial deterio-

rated BIC’s in Table 8.6. The deterioration in the Direction component model is

particularly significant; investigation reveals it is caused by the inability to use the

covariate “Payments exceeding 70% of Incurred at Previous Revision” which has

a large impact on the direction of the revision.
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Table 8.6: Summary of Reduced Models

8.2.2 Simulation Algorithm

This section describes the simulation algorithm used for the projection of the

ultimate claims cost using the claim cost development component processes.

The following processes are carried out for each claim that is open at the

censoring date. The claim development of revision j, where j = j′ + 1, j′ + 2, ...,

and j′ is the number of revisions each claim has had at the censoring date.

i) use Fj′,i and Gj′,i to determine the mean parameter of the delay process that

occurs some time after the censoring date, that is, tj′+1,i given tj′+1 > T−T ′.
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The parameters are µj′+1,i = e
βµZT

µ,j′+1,i and α. A random observation is

sampled from this truncated NegBin(µj′+1,i, α) distribution.

ii) new values are sampled for each of the four dynamic variables using the

above transition matrices. The new values are used to update the set of risk

characteristics from Gj′,i to Gj′+1,i.

iii) use Fj′,i, Gj′+1,i and tj′+1,i to determine the qj′+1,i parameter of the finalisa-

tion process, Sj′+1,i, where logit(qj,i) = βqZ
T
q,j,i. A random observation from

this Bernoulli(qj′+1,i) distribution is sampled.

iv) similarly use Fj′,i, Gj′+1,i, tj′+1,i and Sj′+1,i to determine the pj′+1,i param-

eter of the finalisation process, Dj′+1,i. A random observation from the

Bernoulli(pj′+1,i) distribution is sampled as the value for Dj′+1,i.

v) use Fj′,i, Gj′+1,i, tj′+1,i, Sj′+1,i and Dj′+1,i to determine the parameters of

the size of change process, Yj′+1,i. The parameters are λj′+1,i and c and a

random observation from the Gamma(λj′+1,i, c) is sampled as the value of

Yj′+1,i.

vi) the projected incurred claim size at revision j′ + 1 is then calculated as

Xj′+1,i = (Xj′,i)e
(2Dj′+1,i−1)Yj′+1,i

vii) with all four process values at revision j′+1 now sampled, Fj′,i is now updated

with the new component process values to Fj′+1,i.

viii) if Sj′+1,i = 0 then the process goes through the j′ + 2 revision. Fj′+1,i and

Gj′+1,i are used to determine the mean parameter of the delay component

process tj′+2,i. The parameters are µj′+2,i = e
βµZT

µ,j′+2,i and α. A random

observation is sampled from this NegBin(µj,i, α) distribution and steps (2)

to (6) are repeated with j = j′+2. if Sj′+1,i = 1 then Xj′+1,i is the projected

ultimate size for this trajectory. Its value is recorded.
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ix) this constitutes one simulation of the ith claim. This processes is repeated

for all open claims for the number of simulation required.

We have found a convergence of the mean of the projected ultimate claim sizes

for individual claims after around 200 simulations. Around 100 simulation paths

of all claims is needed for the total cost of all the open claims as at December

2009 to converge. An upper limit of 50 has also been placed on the number of

further revisions a claim can experience after the censoring date. With the average

revision taking three quarters, this limit represents the claim would remain open

for more than 30 years. this limit has been rarely reached in the simulation.

8.3 Sample Projection Path

This section provides some sample projection paths of two randomly selected

claims. These allow the reader to have a visual representation at how the pro-

jection takes place and also as a tool to see if the projected claim paths are well

behaved or not. These two claims were chosen at random, their projection paths

allow an investigation of the reasonableness of the individual projected claims tra-

jectories. If there are any trajectories that were exceptionally high or low then

this offers a chance for further investigation.

Figure 8.1 shows a few of the projected sample paths of a claim that occurred

in 2006 for a male claimant who was legally represented. The injury sustained is

severe, with an ISS of 14 at report which soon worsened to 27 at the time the

claim is censored at the end of 2009. The first part of the figure shows the claims

path prior to the censor date at the end of 2009 and the second part of the figure

shows 4 possible projection paths. These projection paths are briefly discussed.
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Figure 8.1: Sample Projection Path - Claim 1

Judging from these four projections, which is a extremely small sample for a

long tailed CTP claim, the claim is expected to settle after around 3 or 4 revisions

in around 3 years or so. A “saving” on finalisation is predicted in all cases. The

average of the four estimates of Xi is around the $350,000 mark, which represents

around 30% saving from the initial estimate of $490,000. The reason for projection

path number 4 to rise sharply at the end of 2014 is due to the fact that the

projection sampled an increase in the state of the ISS variable for the claim. The

ISS was increased from the “11 to 30” level to the “31 and above” level. The

change is the injury severity caused the claim estimate to be revised upwards with

a magnitude of around 40%.

Using the validation data, however, this claim has not had a revision in the three

years from the end of 2009 to the end of 2012, the claim estimate has remained

at $390,000 without any changes to the claims characteristics. Examining the

claims further, the claimant has actually suffered a brain injury. Brain injuries are

not modelled in this projection model (due to the added complexity of modelling
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the transitions of patients without brain injury developing a brain injury). From

Chapter 7, the brain injury flag as a positive coefficient in the delay model (+0.10)

and a negative coefficient in the settlement model (-0.40) suggesting brain injury

claims takes longer between revisions and are less likely to settle at any given

revision. Hence, brain injuries would take longer to settle than a comparable

claim with an injury concerning a different body region. These effects would

not be captured in this projection model as Brain Injury dynamic variable is not

modelled.

The simulation for this claim was allowed to run for 2,000 times and the results

are tallied in the chart below (Figure 8.2). This chart is essentially a heat map,

showing the occurrences of various combinations the ultimate claim size and the

delay until settlement. The simulation results were rounded, ultimate claim sizes

to the nearest $50,000 and time to settlement to the nearest 2 quarters.

Figure 8.2: Heat Map of Simulation Outcomes - Claim 1

The simulation suggests the more likely outcome of this claim is to be settled

within 15 quarters and also for a claim size less than $300,000. In fact, around 50%
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of the simulated scenarios fall into this quadrant. The average ultimate claims cost

of these 2,000 simulations is $377,000 and the average delay until settlement is 15

quarters. However, the simulation produces a wide range of possible ultimate sizes

and time to finalisation. This is unsurprising given the complexity and variability

of CTP claims.

Figure 8.3: Sample Projection Path - Claim 2

Figure 8.3 shows a few of the projected sample paths of a different claim, this

time the claim is less severe compared to the first claim. This is a claim that has

an unknown severity when reported in April 2009. It had an estimate of $23,000

which was quickly escalated to $32,000. The four sample paths show that this

claim is expected to be settled quickly and for a considerably saving compared

to the current estimate. However, a 2,000 simulation average actually suggest

this claim would increase to an ultimate claim size of $47,000. Coincidentally,

this claim was settled within the 3 year validation data period, for an amount of

$6,000. While the actual cost of $6,000 is lower than any of the four sample paths

presented, it was within the 95% prediction interval for this claim.
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8.4 Overall Projection Result

Using the modelling data, that is, claims occurred from 2001 to 2009, observed to

December 2009, there were 17,554 open non-nil claims. The total incurred costs

at the censoring date of 31 December 2009 was $4,305m and the total projected

ultimate claims cost is $4,273m. The projected ultimate cost of these open claims

are slightly lower than their incurred cost at the censoring date. Table 8.7 shows

the projection results by accident year.
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Table 8.7: Overall Projection Results

The projected claims cost for all accident years apart from the two most re-

cent years are projected to reduce from the incurred cost at the censoring date.

This most likely is a feature of the “saving on finalisation” behaviour observed in

the previous chapter. The two most recent accident years will however increase

considerably from the incurred cost at the censoring date.

The usage of these projection results as a mean of actuarial claims reserving

is left until the next chapter. The remainder of this chapter focuses on validating

the accuracy of the projection on an individual claims level.

8.5 Validation of Projected Ultimate Claim Size

In this section, the projected claim sizes from applying the Claim Development

Process framework to the modelling dataset are compared to the actual results
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from the validation dataset. Out of the 17,544 open claims as at December 2009,

14,134 (around 80%) were finalised over the next 3 years, that is, within the valida-

tion dataset. One way to validate the accuracy of the projection is to compared it

to the actual finalised claim size for those claims that did finalise. The comparison

is shown in Table 8.8.
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Table 8.8: Comparison of Projection Sizes vs. Actual Sizes

From Table 8.8 we can see for the claims that were finalised in the validation

data period, the projected results were considerably higher than the actual results.

This is especially so for the last 4 accident periods, where the projected results

were consistently 20% higher than the actual finalised claims costs for those claims

that did finalise from 2010 to 2012.

Another method to validate how predictive the projected ultimate claim sizes

are of actual ultimate sizes is to use a gains chart. The idea is to sort the claims

with the highest predicted claims cost to the lowest predicted claims cost and then

chart cumulative actual cost for these claims. A straight diagonal lines means

the projected claim sizes have no ability to predict actual claims cost while a line

further away from the diagonal lines means the projected claim sizes is a good

method to differentiate the smaller claims from larger claims. Gains charts only

form a view on the ability to differentiate the claims with higher actual cost from

those with lower actual cost. It does not consider any bias that may exist in the

projections.

Figure 8.4 graphs the gains curve for the Claims Development Processes (CDP)
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projection, the projection of the GLM method from Chapter 4 and the usage of

incurred cost at the censoring date as a predictor of claim size.

Figure 8.4: Gains Chart

From the diagram, it seems the CDP projections are not any better as a claims

cost differentiater compared to using the incurred cost as at the censoring date for

the open claims. This may be disheartening but there may be a few explanations

to this.

• The NSW CTP claim managers employed by the insurers are experienced

and very good at what they do in predicting the ultimate claim size. While

the CDP framework does not yield additional benefit for the ultimate claim

size prediction, it may work better in other portfolios.

• The cost of the settled claims within the validation period is dominated by

a small number of very large claims from the older accident periods. Due to

their maturity, the incurred cost is a good predictor of their ultimate claim

size. This in turn shrouds the ability of the method in differentiating the

claims cost of the relatively smaller and relatively newer claims.
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• The CDP models need to be improved further and that can improve its

predictive accuracy. This will be considered in a later section where the

complete dataset is stratified by Injury Severity and Legal Representation

and separate projection models are constructed.

The table below shows the correlation between each of the projection methods

above and the actual finalised claim sizes. The correlations correspond well with

the above gains chart, that the performances of using the CDP framework and the

Incurred Cost as predictors of ultimate claim sizes are similar; while using GLMs

lags behind.
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Table 8.9: Comparison of Correlation with Actual Sizes

8.6 Projection by Injury Severity

In the previous chapter, we investigated the claim behaviour of different cohorts

of claim, namely, stratifying using Injury Severity and Legal Representation at the

end of the quarter the claims are reported. It was observed the claim behaviours

were substantially different between the cohorts. In this section, we aim to carry

out the ultimate size projection by breaking the claims into the same cohorts. The

simulation methodology outlined in the previous chapters were repeated for each

of the claim cohorts.

Table 8.10 shows the results of the projection when the claims were stratified

and compared that to the projection results when all claims were combined. It can

be observed, the total projected size is around 10% lower when the claims were

stratified. In particular the Moderate and Severe injuries claims are projected

to have significant savings while the minor claims were not projected to have

material savings. That is, the projections are suggesting the claims managers are

more conservative in the estimation of claims with more serious injuries. The
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examination of the projection results as a mean for actuarial valuations is left to

the next chapter.
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Table 8.10: Stratified Projection Results

The key question that remains is whether modelling claims in cohorts allowing

for their specific claims development behaviour improved the predictive accuracy

of finalised claim sizes. Figure 8.5 shows the gains chart of the Stratified CDP

Projections compared with the other methods. While the stratified projection is

improved and now is higher than the Incurred gains curve at points, the two curves

are still indistinguishable. That is, to understand which claims will relatively cost

more or less, the incurred cost as at the censoring date is as good an indication as

any projection methods. The chart also includes a new gains curve, which is the

“Perfect Foresight” curve, that is, the ultimate claim sizes for these claims would

be known in advance. This curve is the maximum curve possible for the claims

that were finalised in the validation data period and form an upper bound to the

gains curves possible for any projection method.
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Figure 8.5: Gains Chart - Stratified by Injury Severity

8.7 Conclusion

In this chapter we have used a Monte-Carlo simulation approach to project open

claims to their expected ultimate claim size. We have done this as algebraic

calculation of the expected ultimate claim size is difficult.

Base on the findings from Chapter 7 that the “dynamic” covariates were very

important explanatory variables for the four component process, we constructed a

process of projecting future values of these dynamic covariates as well. This allows

the “modelled” dynamic covariates to be used in the Monte-Carlo simulation.

The projection results were compared with the actual finalised claim sizes from

the validation dataset, that is, data that was withheld from modelling for the

purpose of accessing the efficacy of the model’s predictiveness. We found that

using an overall model to project all the claims was not as accurate as using

separate models for different cohorts of claims. The categorisation of claims were

based on claimant injury severity and legal representation, which are industry
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standard in segment NSW CTP claims.

In Chapter 9, we consider the appropriateness of the CDP framework as a

valuation tool, including its ability to produce a consistent measure of variability

of the projection results.



Chapter 9

Claims Projection as a Valuation

Technique

9.1 Introduction

This chapter explores the Claim Development Process framework as a technique

for actuarial valuations. By aggregating the expected ultimate sizes for a group of

claims that are still outstanding at the censoring (or valuation) date, the future

claims payments expected from these open claims can be calculated. By modelling

the claim costs discussed in the previous chapters the insurer can understand the

aggregate claim cost in a quantitative fashion and thus better plan for it.

The chapter starts by presenting the results from aggregating the individual

claims results from Chapter 8. This chapter discusses some of the benefits when

using the CDP framework as a valuation tool as well as some of its issues. Then,

the results of the various valuation techniques discussed in Chapter 4 are then

compared to that of Claims Development Processes.

191
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9.2 Projection Results

Using the projection methodology described in Chapter 8 the results of the projec-

tion using the Claims Development Processes are tabulated below. Table 9.1 below

shows the results in the same format as those for the GLM analysis. Similar to

GLMs, the Claims Development Processes framework can only project open claims

and does not provide an estimate for IBNR claims. The valuation results shown

below incorporates the same IBNR estimate as adopted in the GLM methodology

section, contained in Table 4.5. We have made the assumption that using a differ-

ent methodology to analyse open claims would not impact the valuation of IBNR,

or unreported, claims.

Two sets of results are presented - those from the overall projection model

(Table 9.1) and those from the stratified models (Table 9.2) as discussed in the

previous chapter.
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Table 9.1: Projection Summary - Overall Model, CDP
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Table 9.2: Projection Summary - Stratified by Claim Cohorts, CDP
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It is noted the results of the single overall projection model, the estimated

claim cost for the 9 accident years is $9,052m which is similar to the aggregate

methods such as the ICD, PCE and PPCF methods. Using the stratified models,

which projects claims separately for Minor Represented, Minor Not Represented,

Moderate and Severe claims separately, the overall claim cost is $8,606m, and

this figure is similar to the GLM analysis. Intuitively, the stratified model pro-

jection results should be superior as it allows for the different claim development

behaviours specific to each cohort of claims. The section below will compared the

expected claim costs with the actual finalised claim cost during the validation data

period to ascertain which set of results is superior.

9.3 Actual vs. Expected

One way to validate the projection model results is carry out what actuaries would

call an “Actual versus Expected” (AvE) analysis. That is, from the 17,554 open

claims that were modelled in the simulation process and find out which claims

have been finalised during the three years covered by the validation data. For

those claims, the expected ultimate claim cost from the projection model results

can be compared to the actual costs these claims were finalised for. Out of the

17,544 claims that were open as at 31 December 2009, 14,134 were finalised as at

31 December 2012. Table 8.8 shows the AvE for the overall projection model and

is reproduced below.
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Table 9.3: Comparison of Projection Sizes vs. Actual Sizes

Table 8.8 showed the AvE for the stratified projection model results.
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Table 9.4: Comparison of Projection Sizes (Stratified) vs. Actual Sizes

It is clear that the stratified projection results are superior. The overall dif-

ference is considerably smaller at -4% compared to -14%. Also, the accident year

level differences are also smaller. However, the pattern of under-prediction and

over-prediction is still present; that is, the projection of the older accident peri-

ods continue to be lower than the actual costs these claims are finalised at and

vice-versa.

This is likely to be due to the “savings on finalisation” feature of the claims

development behaviour that has been observed in the past chapters. A poten-

tial reason why the earlier years have been under-projected is due to changing

behaviour - claims manager may have become more experienced and place less

conservatism in their estimates over time. This may be especially so for the more

severe claims, which are over-represented in the older accident years.
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Typically, the AvE analysis on projection results are done annually comparing

the actual claim sizes in the current year compared to the projection from the year

before. That is,

• At the end of 2010, compared the claims finalised in 2010 to the projected

claim sizes from a projection model built using data up to 2009;

• At the end of 2011, compared the claims finalised in 2011 to the projected

claim sizes from a projection model built using data up to 2010;

• At the end of 2012, compared the claims finalised in 2012 to the projected

claim sizes from a projection model built using data up to 2011;

This annual AvE allows the latest claims behaviour trends to be reflected

in the model parameters and hence the projection results. By comparing three

years of finalised claims places our projection results at a disadvantage. However,

there is an easy way to check whether the claims behaviour regarding “saving

on finalisation” has indeed changed during the validation period - leading to the

incurred costs no longer contain as much conservatism. For the Size component

model using data up to 2009, the fitted parameter for the “saving on finalisation”

variable was 1.22; the same fitted parameter when data using up to 2012 (an

additional three years of revisions) was 1.15. That is, the saving on finalisations

during the validation data period was not as large as those during the modelling

data period. This would be consistent with the observed AvE.

The table below compiles the projected claims cost of those claims that were

finalised between 2010 and 2012 and compares them to their actual settled claims

cost.
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Table 9.5: Comparison of AvE for the various methods

While the projected ultimate claim sizes from the CDP were the closest to the

actual claim sizes on an aggregate basis, it also displays adequate comparisons at

the accident year level. The other methods tended to severely under-project the

earlier accident years. From an AvE perspective, the CDP seems to perform the

closest to the actual results.

9.4 Comparison of Results Across Various Meth-

ods

Table 9.6 compares the four valuation techniques discussed in Chapter 4 (SCE was

not applied due to its inappropriateness for the NSW CTP claims) to the results

of the Claims Development Processes as a method for valuation.
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Table 9.6: Comparison of Various Valuation Techniques
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The following observations are made regarding the results of using the mod-

elling data alone.

• The aggregate methods are very similar to each other in terms of the pre-

dicted ultimate claims cost for the industry over this nine year accident

periods. All methods produced an total cost of around $9,000m. Even at

an individual accident year basis, the projected total is within $20m of each

other for most years (the difference is large for the 2009 accident year).

• The individual claims models are very similar to each other at around $8,600m.

The variations between the two methods at an accident year level are greater

than the aggregate methods, they can be up to $100m.

• Even with the addition of the validation data, the estimates of the ultimate

claims cost for each method have changed very little. The aggregate methods

are stubbornly staying at around $9,000m and the individual claims project

methods continue to remain at around $8,600m. At the time of writing it is

still uncertain which method is the closest to the true ultimate claims cost

for NSW CTP.

9.5 Benefits of Valuation based on Individual Claims

Projection

From the discussion in the previous section, the aggregate models seem to be ade-

quate as valuation techniques for the NSW CTP portfolio. The overall projection

results seem to be cross validated by all three methods giving similar answers and

the answer remained stable even after three extra years of information is incor-

porated. There are still considerable benefits however to be using an individual

claims model.



198 Benefits of Valuation based on Individual Claims Projection

The individual claims model (GLM, SCE or CDP) can provide considerable

information regarding the claims. For example

• Has the profile of claim characteristics changed over time?

• What is the cost differential of a legally represented claim versus a non-

represented claims? Is there any benefit in employing a (costly) strategy

to be more agreeable to the claimants’ demands so they do not employ a

lawyer?

• When incorporating claim manager identifiers, the behaviours of the claims

management can be linked to claim cost outcomes and perhaps “leakages”

can be identified. Leakages typically refer to a way of handling claims that

may elevate claims cost for the insurer.

Secondly, a claim by claim projection provides the insurer the ability to identify

costly claims. These may allow these claims to be managed by more experienced

claims managers to achieve a better claims outcome for both the claimant and the

insurer. Also, claims with the potential to “grow” the most from their initial esti-

mate (at the time of reporting) can also be identified. This allows some learning to

be propagated back to the claims team so they can better appreciate the potential

cost of these types of claims.

The insurer is typically not only concerned with the actuary’s best estimate at

the ultimate claims cost of a particular portfolio, it would also like to know what

is the variability of the actual outcome in relation to its mean. The Australian

Prudential Regulation Authority asks insurers to reserve for the outstanding claims

cost at the 75% percentile level out of a range of possible values the insurers has

identified. Using an individual claims model such as CDP framework the standard

deviation of the prediction can be readily measured.

Figure 9.1 is a histogram of the ultimate claims cost (for those claims that were

open as at the end of 2009) from the 200 simulation runs. We have superimposed
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a normal distribution as a benchmark only; the fit of the simulation output to the

normal distribution is adequate. The variability is actually surprisingly small, with

a coefficient of variation of just 1%. The parameter variation can also be easily

measured, if we assume the parameters follows a normal distribution with the fitted

mean and fitted standard error, a simulation approach, that simulates possible

claim trajectories, can also be used to measure the variation in the projected

claims cost. These variations are difficult to measure using an aggregate method.

Figure 9.1: Distribution of Projection Results

9.6 Using Projection Results for Valuation

In this section a novel way of using the results of the projections modelling to carry

out valuation is presented. For the purpose of claims reserve valuation, the insurer

is interested in the ultimate size of all outstanding claim and the likely time the

claims are to be settled. This information is used to enable financial performance

analysis as in how much money is need to set aside to pay for future claims costs
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at each future period of time.

From Figure 8.2 we saw that for each claim, the results of the simulation

can be expressed in a heat map format. This represents the distribution of the

combinations of ultimate size and time to settlement outcomes. While the insights

gained in Chapter 7 and the projection of individual claim paths earlier in this

chapter are extremely valuable, for the purposes of valuation the insurer needs

results fast.

Figure 9.2 portrays the same information as Figure 8.2; however, the y-axis has

been log transformed. From the diagram, the (log(Xi), Ti) outcome pair seems to

be a bivariate normal distribution.

Figure 9.2: Heat Map of Claim Outcomes

Figures 9.3 and 9.4 show that the marginal distributions of log(Xi) and Ti

for this claim indeed look adequately encapsulated by normal distributions. The

correlation between the two outcome variables of interest is -0.02.
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Figure 9.3: Marginal Distribution of log(X)

Figure 9.4: Marginal Distribution of T

This means for each claim, the range of likely outcomes can be represented by

five parameters. They are presented by µlog(X) , σlog(X) , µT , σT , ρ. These five

parameters contain all the information required to understand the outcomes for



202 Using Projection Results for Valuation

each open claim at the censoring date. Hence, by designing a model relating the

five parameters to the claim characteristics at the censoring time, the valuation

results can be computed quickly.
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Table 9.7: GLM of the 5 Parameters of Interest

GLM models were built for the 5 parameters and the model results are shown

in Table 9.7. The models suggest the parameters can be predicted with a very

high degree of accuracy. Use the claim characteristics as at censoring date the

total claims cost can be easily compiled.
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9.7 Issues

The Claims Development Process framework is not without its shortcomings.

While being a novel technique that can be used to understand claims develop-

ment behaviour and used for reserves valuation, it has some drawbacks.

Firstly, the time and effort employed in carrying out a valuation exercise using

the CDP is considerable for the first time. While the ICD can be employed to carry

out a valuation in a matter of days, including data extraction and preparation,

analysis and documentation. The CDP on the other hand may take a consider-

able amount of time to setup initially. This is especially so given the complicated

modelling involved; however, with modern multi-core/multi-thread processor com-

puters, the time required to fit the models and project ultimate claim costs can

be greatly reduced. This is possible as all claims are assumed independent and

their likelihoods can be separately calculated. However, if anything goes wrong

or the results are unexpected then considerable effort would be required to debug

the process and find where the issue is. It may also take some time to convince

the various stakeholders to adopt a new process, particularly one that involves

complex modelling.

Secondly, and more importantly, individual claims modelling does not predict

IBNR, or claims that have not reported yet. As these claims have not been re-

ported, there is not claims information to project the claims with. In the analyses

so far, an average claim size has been assumed based on the PPCF model, the same

size as other unsettled claims from the accident period. While this approach does

not fit in the CDP framework there is an alternative which allows the IBNR claims

to be incorporated in the CDP models. IBNR claims can be “bootstrapped” from

a pool of past IBNR claims. This method will allow the IBNR to be generated

with claim characteristics and be projected to their ultimate size using the CDP

framework.
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9.8 Conclusion

As a valuation tool, the CDP framework has a few advantages. The main ad-

vantage is that it provides overall results similar to the aggregate methods such

as the ICD and PPCF methods yet it also provides more granular results at an

individual claims basis. This allows the insurance company to analyse the results

in various perspectives to improve their claims management function or policy

selection functions.

We have also compared the results of the CDP projection with the traditional

actuarial methods. While the results are similar, at the time of writing we still

cannot say with certainty which method is the most accurate for accident years

2001 to 2009. This is because of the long tailed nature of CTP claims and a

considerable portion of the claims are still outstanding.

Some of the issues of using the CDP framework as a valuation method are also

outlined. The main disadvantage is the length of time it needs to produce valuation

results. However, in this chapter, a novel method was outlined to approximate the

projection results using a bivariate gaussian distribution. Another disadvantage,

which the CDP shares with other individual claims models, is that it does not

project IBNR claims. We have used the IBNR estimation from the PPCF method

for the purposes of presenting complete valuation results.



Chapter 10

Random Effects

10.1 Introduction

One of the difficulties discussed in Chapter 7 when applying the Claims Devel-

opment Processes is the great heterogeneity of the CTP claims. Claims can be

minor such as the cost of an X-ray taken “just-to-be-safe” or could be catastrophic

spinal injury. Claimants can also vary greatly in age, social-economic background

and ability to deal with the claim process themselves. The variability of claims

characteristics compounded with the relativity short “trajectories” (on average,

claims undergo 3 revisions before the claim is settled with 83% of claims finalised

within 5 revisions) poses a few problems for model fitting, such as variability of

coefficients as well as convergence of the estimates of the coefficients.

A few options exist in dealing with such variabilities. Firstly, the claims can

be stratified into more homogenous groups - such as by injury severity or date of

accident. Separate models may be fit to each of these groups and the parameters

may be compared and the more homogenous groups may aid the model building.

Secondly, the user may use industry knowledge and/or theory to identify variables

whose coefficients are likely to vary across individual claims and use a random

effects framework to capture such variation.

A random effects framework is the main focus of this chapter. The merits of

205
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a random effects model is discussed, in particular, considering the nature of the

CTP data. The delay component process is first considered for the application of

a random effects structure where we investigated the inclusion of both a random

intercept as well as a random covariate. This chapter concludes with a comparison

of the random effects model and the fixed effects model in the aspects of model fit

and the predictive accuracy on an individual claim basis.

10.2 Random Effects vs. Fixed Effects

There are numerous benefits by adopting a random effects model. Firstly, the

extent of the individual claim variations of the variables of interest may be inves-

tigated. By quantifying the individual effects, the random effects model may pro-

duce more accurate predictions. Secondly, by incorporating these random effects

the significance of the other regression variables may improve. Thirdly, insights

into which variable has claimant to claimant variability may be gained.

However, in relation to the CTP data, we consider a key issue - does the data

heterogeneity impacts the individual claim predictability when a global model is

used. The vast number of claims in addition to the short claim trajectory and sig-

nificant claim heterogeneity make the CTP dataset more similar to a longitudinal

dataset. In longitudinal data studies, random effects models play a key role to

reduce between sample variability to help with inference making.

The methodology adopted for the analysis of random effects in the GLARMA

framework is based on the research of Dunsmuir et al. [2014a] and Dunsmuir

[2015]. In these papers, the authors develop the modelling tools for panel data of

Poisson and binomial counts, in particular, using Adaptive Gaussian Quadratures

to approximate the first and second order derivatives of the log-likelihood function.

Their work has been extended to negative binomial and gamma responses in the

following sections.
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10.3 Delay Component Process

The Delay component process is a good candidate to consider random effects

for. Intuitively, the claimant can be considered as a random effect due to the

varying attitude of the individual towards the CTP claim process and the lawyer

can also be considered as a random effect affecting only those claimants with legal

representation. The former introduces a random intercept into the model, applying

to each and every claim in the portfolio, while the latter only introduces a random

effect only to the represented claims.

Rearranging Equation (6.9), and dropping the conditioning, we have the fol-

lowing

P (tj,i = t) =
Γ(α+ t− 1)

Γ(α)Γ(t)

(µj,i/α)
t−1

(1 + µj,i/α)t−1+α
(10.1)

where t = 1, 2, 3, ....

µj,i is the mean of the delay process and for the fixed effects only model is

defined as

log µj,i = ZT
j,iβ +Wj,i (10.2)

where Wj,i = φ1ej−1,i + φ2
1ej−2,i + ...

The overall likelihood function, using the subscript “FE” to denote the fixed

effects model, is

LFE =

n
∏

i=1

mi
∏

j=1

Lj,i

LFE =
n
∏

i=1

mi
∏

j=1

Γ(α + tj − 1)

Γ(α)Γ(tj)

(µj,i/α)
tj,i−1

(1 + µj,i/α)tj,i−1+α

(10.3)
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The corresponding log-likelihood function is

ℓFE(β, φ, α) =
n
∑

i=1

mi
∑

j=1

log

(

Γ(α+ tj − 1)

Γ(α)Γ(tj)

)

+
n
∑

i=1

mi
∑

j=1

((tj,i − 1)(logµj,i − logα)− (tj,i − 1 + α) log(1 + µj,i/α))

(10.4)

Now introduce the individual claimant random effect as a random intercept,

ui, to µj,i,

log µj,i = ZT
j,iβ + ui +Wj,i (10.5)

where ui
iid∼ N(0, σ2)

The likelihood and the log-likelihood of the delay component with a random

effects intercept are as follows.

LRE =

n
∏

i=1

∫

ui

mi
∏

j=1

Γ(α + tj − 1)

Γ(α)Γ(tj)

(µj,i/α)
tj,i−1

(1 + µj,i/α)tj,i−1+α
g(ui)dui (10.6)

where g(ui) is the normal density function for ui.

And

ℓRE(β, φ, α, σ) =

n
∑

i=1

log

∫

ui

mi
∏

j=1

Γ(α+ tj − 1)

Γ(α)Γ(tj)

(µj,i/α)
tj,i−1

(1 + µj,i/α)tj,i−1+α
g(ui)dui

=
n
∑

i=1

log

(

∫

ui

(

mi
∏

j=1

Γ(α + tj − 1)

Γ(α)Γ(tj)

(µj,i/α)
tj,i−1

(1 + µj,i/α)tj,i−1+α

)

1√
2πσ2

e−
u2i
2σ2 dui

)

(10.7)

The objective is to maximise the above log-likelihood function to estimate the

parameters of the model. However, to do that we need to evaluate the integral

in the above equation. In similar fashion to Dunsmuir [2015], we use the Laplace

Approximation and Adaptive Gaussian Quadrature methods to approximate the

integral in the above equation.
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The following algebraic derivations of the likelihood function approximations

and their derivatives are adapted from those found in Dunsmuir et al. [2014a] for

the negative binomial distribution.

Let ui = σzi where zi ∼ N(0, 1) and to simplify notation let h(α) =
Γ(α+tj−1)

Γ(α)Γ(tj )
,

the above integral can be rewritten as

∫

zi

(

mi
∏

j=1

h(α)
(µj,i/α)

tj,i−1

(1 + µj,i/α)tj,i−1+α

)

1√
2π

e−
z2i
2 dzi

=
1√
2π

∫

zi

(

mi
∏

j=1

exp (log h(α) + (tj,i − 1) log(µj,i/α)− (tj,i − 1 + α) log(1 + µj,i/α))

)

e−
z2i
2 dzi

=
1√
2π

∫

zi

exp

(

mi
∑

j=1

(log h(α) + (tj,i − 1) log(µj,i/α)− (tj,i − 1 + α) log(1 + µj,i/α))−
z2i
2

)

dzi

(10.8)

The integral above can be approximated using the Laplace Approximation

method. The idea behind this method is that for an integral that can be ex-

pressed as
∫

ef(z)dz and that f(z) is a concave function then the integrand can be

approximated using a second order Taylor expansion of f(z).

If f(z) is expanded around z′,

f(z) = f(z′) + f ′(z′)(z − z′)− 1

2
f ′′(z′)(z − z′)2 +O((z − z′)3) (10.9)

and if z∗ is the global maximum of the function f(z) and hence f ′(z∗) = 0 and

f ′′(z∗) < 0 then

f(z) ≈ f(z∗) +
1

2
|f ′′(z∗)|(z − z∗)2 (10.10)

This leads to

∫

ef(z)dz ≈
∫

ef(z
∗)− 1

2
|f ′′(z∗)|(z−z∗)2dz

= ef(z
∗)

∫

e−
1

2
|f ′′(z∗)|(z−z∗)2dz

(10.11)
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Noticing the integral above is in the form of a normal density, the above can

be written as the well known equation of the Laplace Approximation formula.

∫

ef(z)dz ≈
√

2π

|f ′′(z∗)| exp(f(z
∗)) (10.12)

where z∗ is the z that maximises f(z).

Now using the transformations ηj,i = log µj,i = ZT
j,iβ + σzi +Wj,i and α = e−d,

we define f(z) as follows

f(z) =

mi
∑

j=1

(

log h(d) + (tj,i − 1)(ηj,i + d)− (tj,i − 1 + e−d) log(1 + ed+ηj,i)
)

− z2i
2

(10.13)

The terms in the summation are actually the log-likelihood contribution of the

ith claim and jth revision, hence,

f(z) =

mi
∑

j=1

(ℓFE,j,i)−
z2i
2

(10.14)

Since f(z) is a function of a log-likelihood function, it is a concave function

with a defined global maxima and thus satisfies the requirement of the Laplace Ap-

proximation. Furthermore the first order and second order derivatives are derived

as

f ′(z) =

mi
∑

j=1

(

(tj,i − 1)σ − (tj,i − 1 + e−d)
ed+ηj,i

1 + ed+ηj,i
σ

)

− zi

=

mi
∑

j=1

(

dℓFE,j,i

dz

)

− zi

(10.15)

and

f ′′(z) =

mi
∑

j=1

−(tj,i − 1 + e−d)σ

(

ed+ηj,i

1 + ed+ηj,i
σ − e2(d+ηj,i)

(1 + ed+ηj,i)2
σ

)

− 1

=

mi
∑

j=1

(

d2ℓFE,j,i

dz2

)

− 1

(10.16)
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Since the objective is to find the z∗ such that f(z) is maximised, this problem is

similar to that of maximising the log-likelihood over the parameter space which was

carried in Chapter 7. A slight modification to the R code used allows the solution

to the z∗ to be readily calculated using the Newton-Raphson algorithm. This

allows us to approximate the RE log-likelihood using the Laplace Approximation

ℓRE(β, σ, φ, d) ≈
n
∑

i=1

log

(

1√
π2

√

2π

f ′′(z∗)
exp(f(z∗))

)

=

n
∑

i=1

log

(

exp(f(z∗))
√

f ′′(z∗)

) (10.17)

While the Laplace Approximation allows the approximation of the log-likelihood

of the random effects model, to maximise it for the estimation of the model pa-

rameters, the first and second order derivatives are needed. While the integrand

in the log-likelihood function is a concave function that satisfies the requirements

for the Laplace Approximation, the same cannot be said of the first and second

order derivatives.

We turn our attention to another approximation method described in Pinheiro

and Chao [2006], the Adaptive Gaussian Quadrature (AGQ). Where an integral

is approximated by evaluation the integral at a set of predetermined values (the

abscissas) using a particular density function (the kernel), then a weight average

of these values is used to approximate the integral.

Pinheiro and Chao [2006] show that when only one Gaussian Quadrature point

is used in the approximation then AGQ is equivalent to the Laplace Approxi-

mation. In the modelling of the CTP data in the later section, both Laplace

Approximation and AGQ are carried out, if only to serve as a check on the proper

function of the model fitting code.

From Equations (10.7) and (10.8), and using the definition of f(z) from Equa-
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tion (10.13),

ℓRE(β, σ, φ, d) =

n
∑

i=1

log

(

1√
2π

∫

zi

exp(f(z))dz

)

(10.18)

In Laplace Approximation, the above equation is evaluate at z∗, which is the

global maxima (or the mode) of f(z). For AGQ estimate, we evaluate the above

function using a number of quadrature points, determined by the convergence of

the likelihood.

For the purpose of model fitting we have followed the approach discussed in

Dunsmuir [2015]. The hermite quadrature points and the corresponding weights

are obtained from the statmod package in R (Smyth [2014]). The hermite quadra-

ture points and weights are for integration against the exp(−x2) kernel rather

than the standard normal density. Hence, a change of variable is required, where

ζ = x/
√
2 is the set of quadrature points centred around z∗ .

Using AGQ, with q number of quadrature points,

ℓRE(β, σ, φ, d) ≈
n
∑

i=1

log

( √
2√
2π

q
∑

k=1

√
σ exp(f(z∗ +

√
2σζk)) exp(ζ

2
k)wk

)

=

n
∑

i=1

log

(

q
∑

k=1

√
σ√
π
exp(ζ2k)wk exp(f(z

∗ +
√
2σζk))

) (10.19)

where z∗ has the same definition as under the Laplace Approximation approach.

Define z̃k = z∗ +
√
2σζk, the “adaptive” abscissas then the equation used for

the AGQ estimation is

ℓRE(β, σ, φ, d) ≈
n
∑

i=1

log

(

q
∑

k=1

√
σ√
π
exp(ζ2k)wk exp(

mi
∑

j=1

ℓ(z̃k)−
z̃2k
2
)

)

(10.20)

The derivatives of the log-likelihood is also numerically approximated using

AGQ. To simply notation, let δ denote the vector of parameters (β, σ, φ, d)T
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The first derivative of the log-likelihood can written as

∂

∂δ
ℓRE(δ) =

n
∑

i=1

1

Li(δ)

∫

z

∂

∂δ
ℓi(δ|z) exp(ℓi(δ|z))g(z)dz

=

n
∑

i=1

1

Li(δ)

1√
2π

∫

z

∂

∂δ
ℓi(δ|z) exp(f(z))dz

≈
n
∑

i=1

1

Li(δ)

(

q
∑

k=1

∂

∂δ
ℓi(δ|z̃k)

√
σ√
π
exp(ζ2k)wk exp(

mi
∑

j=1

ℓ(z̃k)−
z̃2k
2
)

)

(10.21)

where Li =
∫

z
exp(ℓi|z)g(z)dz.

The second derivative of the log-likelihood can written as

∂2

∂δ∂δT
ℓRE(δ) =

n
∑

i=1

1

Li(δ)

∫

z

∂

∂δ

∂

∂δT
ℓi(δ|z) exp(ℓi(δ|z))g(z)dz

+
n
∑

i=1

1

Li(δ)

∫

z

∂

∂δ
ℓi(δ|z)

∂

∂δT
ℓi(δ|z) exp(ℓi(δ|z))g(z)dz

−
n
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i=1

1

Li(δ)

∫

z

∂

∂δ
ℓi(δ|z) exp(ℓi(δ|z))g(z)dz

1

Li(δ)

∫

z

∂

∂δT
ℓi(δ|z) exp(ℓi(δ|z))g(z)dz

(10.22)

Using AGQ, the approximation equation is

∂2

∂δ∂δT
ℓRE(δ) ≈

n
∑

i=1

1

Li(δ)
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∂
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exp(ζ2k)wk exp(
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∑
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)
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+
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∑
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π
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)

)

(10.23)

We have adapted the wrapper program used to fit the models in Chapter 7 to
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allow random effects to be incorporated in the model fitting. We have maintained

the program for calculation of the likelihood and its derivatives contributions from

each claim and allowed for the AGQ approximation in the wrapper program to

minimise the amount of changes required. An example of a wrapper code to

allow for random effects can be found in G.6. Both the random effects models

(random intercept model and random “legal representation” model) and the fixed

effects model were fitted to the claims that arose from the 2003 accident year.

All the models fitted in this chapter used 7 quadrature points in the estimate of

the likelihood and its derivatives. We have found 5 quadrature points would be

adequate for most applications as the incremental differences in the likelihood and

its derivatives between 5 quadrature points and 7 quadrature points are less than

10−3.

Table 10.1 shows the results of adopting a random effects GLARMA model

for the delay process using a negative binomial response distribution. We have

ignored the issue of censoring as the combined complexity of RE and censoring

proved to be very challenging. Nevertheless, we can appreciate the impact of RE

on the model without making an allowance of censoring. Comparison are made

between the fixed effects only model, a Random Intercept model and a Random

Effect on Legally Represented claimants model.
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Table 10.1: Delay Results FE vs RE

Unfortunately, both random effects models have their respective σ parameters

approach 0 and the model approaches the fixed effects model. The coefficients

and log likelihood for both random effects models are the same as the fixed effects

model. This is not unexpected as the negative binomial is already accounting

for the extra dispersion that would be modelled through random effects models

through the α parameter. In fact, the negative binomial distribution can be con-

sidered as a mixture of Poisson distributions with varying mean parameters. The

next section attempts to model the Delay process using the Poisson distribution.
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10.4 Delay Process using a Poisson response dis-

tribution

The Poisson distribution is used in the GLARMA modelling of the delay process

with minimal changes in the R programs. The Poisson has the following likelihood

L =
n
∏

i=1

mi
∏

j=1

(µj,i)
tj,i−1e−µj,i

(tj,i − 1)!
(10.24)

and the corresponding log-likelihood function is

ℓ =

n
∑

i=1

mi
∑

j=1

((tj,i − 1)(log µj,i))− µj,i − log((tj,i − 1)!) (10.25)

Refer to Dunsmuir et al. [2014a] for further details.

Table 10.2 shows the results of adopting a random effects GLARMA model

for the delay process using a Poisson response distribution. Comparison are made

between the fixed effects only model, a Random Intercept model and a Random

Effect on Legally Represented claimants model. Two additional models were fit

- both random effects assumed independent and both random effects assumed

correlated. Further details on the bivariate random effects models in the GLARMA

framework can be found in Dunsmuir et al. [2014a].



Chapter 10. Random Effects 217

��������

�	�

� ��� �	�

� ��� �	�

� ��� �	�

� ��� �	�

� ���

��������� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

������������������	� ����� ���� ����� ���� ����� ���� ����� ���� ����� ����

 ��!�	"��#���$ ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

 ��!�	"���%���� ���& ���� ���� ���� ���� ���� ���� ���� ���� ����

Revision 1

Revision 2 ����� ���� ����' ���� ����� ���� ����' ���� ����' ����

Revision 3 ����& ���� ����' ���� ����� ���� ����� ���� ����� ����

Revision 4 ����( ���� ���'& ���� ���'� ���� ���'& ���� ���'� ����

Revision 5 ���&� ���� ���(& ���� ���(� ���� ���(& ���� ���(' ����

Revision 6 + ����� ���� ����� ���� ����( ���� ����� ���� ����� ����

No Litigation at j - 1

NSW Supreme Court at j - 1 ����� ���& ����& ���� ����& ���� ����( ���� ����& ����

NSW District Court at j - 1 ����� ���� ����' ���� ����� ���� ����� ���� ����� ����

NSW Local Court at j - 1 ����( ���' ����' ���& ����� ���& ����' ���& ����� ���&

Other Court at j - 1 ����& ���� ����� ���& ����� ���( ����� ���( ����� ���(

Accepted Liability  at j - 1

Partially Accepted Liability  at j - 1 ����� ���� ����� ���� ����� ���� ����� ���� ����� ����

Rejected Liabiliy  at j - 1 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Other  at j - 1 ���& ���� ���( ���� ���& ���� ���( ���� ���( ����

Insurer A

Insurer B ���� ���� ���' ���� ���� ���� ���� ���� ���' ����

Insurer C ���� ���� ���� ���� ���' ���� ���� ���� ���� ����

Insurer D ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Insurer E ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Insurer F ���� ���� ���� ���� ���' ���� ���' ���� ���' ����

Insurer Other ���� ���� ���' ���� ���' ���� ���' ���� ���� ����

���	������#���$�)�	�* ����( ���� ����� ���� ����� ���� ����� ���� ����� ����

���+��)���������* ���� ���� ���( ���� ���( ����

sigma (legrep) ���� ���� ���' ���� ���� ����

correl ����� ����

�%�,� ����� ���� ����� ���� ����� ���� ����� ���� ����� ����

�	����-���%		.

�������	�������.

���/�('��� ���/(&��'� ���/(����� ���/(���&� ���/&���(�

��������.������.	+�������0�1�.�

��� ���.	+����������

Table 10.2: Delay Results FE vs RE - Poisson

The Poisson distribution works well in the sense that all the parameters con-

verge to a finite value in most of the models. The random effects model are very

sensitive to starting values for the parameters. In the case of the “two random ef-

fects with correlation” model, convergence was difficult to achieve. We used a grid

search approach, where for fixed combinations of the elements of the RE covari-

ance matrix, we maximised the log-likelihood by carrying out the Newton-Raphson

method on the other parameters. The log-likelihoods are recorded and the values

of the covariance matrix that produced the largest log-likelihood was chosen as the

starting values for the Newton-Raphson algorithm for all the parameters.

Two observations can be made. Firstly, the random effects models fit better

than the fixed effects model. In fact, each successive, and more complicated,

model would reject the null hypothesis under a likelihood ratio test. Secondly, the

log-likelihood for all the models are smaller than that of the Fixed Effect model

using the negative binomial distribution. This may suggest the random effects
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framework are not as efficient in dealing with individual subject variability as the

negative binomial distribution without using random effects.

10.5 Prediction of the Delay Process with Ran-

dom Effects

One of the key benefits expected of in the usage of random effects models are

more accurate predictions on an individual claims basis. This section compares

the predictions of the Delay Component between fixed effects only and random

effects model. The Random Intercept (or the Claimant Effect) model using a

Poisson response is being used for this section. The parameters of this model can

be found in Table 10.2 above.

The predicted delay, µj,i can be calculated using Equation (10.5), however, it

requires the estimation of ui’s. We attempt to find the posterior mean of ui using

ũi =
1

P (ti)

∫

z

zP (ti|z)g(z)dz (10.26)

where ti is the set of observed times between revisions for the ith claim.

We once again use the Adaptive Gaussian Quadrature technique to estimate

the

ũi ≈
1

Li(δ)

(

q
∑

k=1

z̃k

√
σ√
π
exp(ζ2k)wk exp(

mi
∑

j=1

ℓ(z̃k)−
z̃2k
2
)

)

(10.27)

Once the individual ui’s are found, expected values of the individual delays

can be computed under the random effects framework. Figure 10.1 and Figure

10.2 show the comparison of the predictions from a fixed effects only model and a

Random Intercept model for two sample claims. The grey bars presents the actual

observed delays for each revision. The red lines maps the population average and

the green and purple lines map the expected value from fixed effects only and
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Random Intercept models, respectively. The fit is considerably better with the

inclusion of the random intercept terms, especially for Sample Claim 2.

Figure 10.1: Predictions using Random Intercept - Sample Claim 1

Figure 10.2: Predictions using Random Intercept - Sample Claim 2
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10.6 Results of Random Effects Modelling - Size

Process

The random effects model is also applied on the Size Process. Only minimal

changes is required to adapt the R program to fit a gamma response distribution

with RE terms. The results are shown in the table below. Only one random effect

has been fit in each of the RE models. A bivariate RE could not be fit to the Size

process as one of the σ’s would converge to zero. Again, 7 quadrature points have

been used in the model fitting.

Even though the random effects models are shown to be a better fit compared

to the Fixed Effect model, the improvement in the log-likelihood, while significant,

is not large. The results here confirm the initial belief that the delay process would

be the most appropriate for the incorporation of random effects.
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Table 10.3: Size Results FE vs RE
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10.7 Conclusion

In this chapter we investigated the potential to incorporate random effects into the

CDP framework. Due to the considerable complexity random effects add to the

calculation of the derivatives of the log-likelihood, we have used Adaptive Gaussian

Quadratures to estimate the derivatives.

We have applied the random effects model to the Delay component process

with a negative binomial distribution as both a random intercept (claimant effect)

and a random variable (lawyer effect, impacting only those claimants with legal

representation). We have found the random effects were not needed when using a

negative binomial distribution is used, it is suspected that the negative binomial

distribution can already account for over-dispersion through the α parameter.

We then adopted a Poisson distribution for the delay component and fitted

random effects models. The random effects parameters were significant when the

Poisson distribution were used and the model fit was improved. The predictions

(for delay) was compared across models with and without random effects and found

the RE model’s predictions were more accurate.
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Conclusions

11.1 Contributions to Individual Claims Mod-

elling

This thesis makes contributions to the field of individual claims modelling. This

area of actuarial science has received considerable attention in recent years. This

research builds upon and extends some of the ideas and modelling framework

establish by other researchers, in particular, that of Larsen [2007].

This thesis proposes a claims development framework that serves two main

purposes. Firstly, the model fitting and resulting parameters allow the insurance

companies to gain insights into the claims development processes of long tailed

insurance claims. These insights will allow insurance companies to better manage

claims and focus their attention on the types of claims that may deteriorate (worse

outcomes for both the insurance company and the injured party).

Secondly, the framework can be used to project the ultimate claims cost of

censored claims. Censoring occur due to the long tailed nature of the claims

combined with the insurance companies’ need to perform regular “valuations” of

their active claims. Given the complicated nature of the model framework may

prevent the insurance companies to perform valuations at an individual claims

223
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basis on a frequent basis, the ability to obtain an estimated ultimate claim size for

every claim certainly has its merits.

This research also considers the ideas of serial dependence and random effects

impacting on claims development. These areas are typically not accommodated

in traditional methods of individual claims modelling. The ideas presented in this

thesis may also be applied to non-valuation claims analysis; for example, in a rate

making framework.

11.2 Contributions to Statistical Analysis

This thesis also makes contributions to the statistical field of longitudinal data

analysis by using ideas with origins in time series and econometrics. GLARMA

based modelling that incorporates the GLM based of analysis for covariates with

the serial dependence structure of ARMA based models. While these types of

models have been applied widely to long time series of count data, this thesis

explores the application of this framework to a large number of shorter trajectories.

The application extends easily to other panel data problems. This research also

extends the application to continuous outcomes in the gamma and generalised

gamma distributions.

This thesis also explores the incorporation of random effects into the GLARMA

framework. Due to the complexity of calculating the derivatives of the log-likelihood

function and Pearson residuals with respect to δ, we have used Adaptive Gaus-

sian Quadratures to estimate the derivatives. Random effects have been applied to

GLARMA models with negative binomial, Poisson and gamma error distributions.

Censoring for complicated model structures have been examined in this thesis

as censoring is a feature common to long tail insurance claims. The adjustment

to the maximum likelihood estimation process to allow for censoring incorporates

additional complexity to the CDP framework. Furthermore, the projection of

censored trajectories is undertaken using Monte-Carlo simulations.
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Due to working with large datasets and complicated models, this thesis also

developed strategies to make model fitting more effective. For example, parallel

computing, strategies to aid convergence as well as using likelihood approxima-

tion techniques were adopted to speed up the fitting of the computation intensive

models.

11.3 Limitations of the approach

While there are numerous benefits to modelling claims on an individual level using

the Claims Development Process framework proposed in this research, there are

also a number of limitations.

Firstly, the models are complicated. While the Chain Ladder projection models

can be summarised using around ten to twenty ICD factors (one per development

period) the CDP utilises around 300 parameters across the four component models.

This complicated structure also makes the relationship of individual parameters

and the ultimate claims projection less transparent. This may appear to be a

“black box” to the average actuary in the sense that the impact of changes in

the parameters over time does not have an explicit and obvious relationship with

the ultimate claim sizes predicted. This may also create an issue with auditors

who needs to understand the workings of the model from a corporate governance

perspective.

Secondly, the modelling process is also very time consuming. Even with modern

computing hours, the time required for model fitting of the component models

as well as the projection methodologies outlined in this research is measured in

days. In contrast, the time required to apply the aggregated models would be

in hours or, in the case of the chain ladder models, possibly minutes. This may

be a hindrance to actuaries that may wish to adopt this projection method on a

frequent basis. However, we have proposed solutions to reduce the time required

to yield projection results using a Gaussian approximation; which can be used on
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a regular basis with periodic calibration based on the full projection model.

Thirdly, the depth of statistical knowledge as well as coding knowledge may

place this framework out of the reach of average general insurance actuaries. How-

ever, hopefully this thesis as well as continued research in the individual claims

modelling area will allow a general appreciation of the benefits of these models

and hasten the adoption of some of the techniques into practice.

11.4 Further areas of research

While the between claimant variability was examined and significant and informa-

tive results were obtained, the random effects framework have not been incorpo-

rated into ultimate claim size projection. This is partly a result of the computa-

tional intensiveness of the random effects model fitting; this makes the iterative

process of debugging the projection process prohibitively lengthy. A further area of

research would be to investigate coding algorithmic changes that allows the model

fitting of random effects, in particular, making the adaptive gaussian quadrature

fitting speedier. The model fitting in this research utilised multi-threaded process-

ing, but the time required is still lengthy.

One of the original objectives of the research was to incorporate spatial features

of CTP claims data into the modelling framework. While considerable investiga-

tion was undertaken to examine the spatial features of the data in Appendix H

these features have not been incorporated into CDP framework. A possible exten-

sion of the framework is to incorporate spatial features which may further explain

the between claimant variability as well as the serial dependance structure. A

potential approach would be to use a hierarchical structure and model the param-

eters of the component processes (coefficients and dispersion parameters) using

spatial modelling techniques. Using such a nested structure could allow for the

geographical variations with in the CTP data while preserving the CDP model

framework.



Chapter 11. Conclusions 227

Another intention of the research was to investigate legislative changes and

how such changes impact on the claim development behaviours observed. Such

time structured changes would be feasible to be investigated using the GLARMA

framework; and the results may be potentially interesting. During the data period,

there has been two major legislative changes - the introduction of LTCS and a

change to the ANF threshold. The former shifted the responsibility of ongoing

medical and care requirements for catastrophically injured claimants from the

claimant themselves to the government and the latter increased the threshold for

ANFs which are a simplified claims process aimed to speed up access to minor

medical procedures. Unfortunately, the LTCS only impacts a few hundred of

claims in the modelling dataset and the ANF change only occurred towards the

end of the data period. The timing and the impact of these changes made their

analysis difficult; however, it would be of interest to gauge the impact of these

legislative changes when the data matures for another few years.
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Appendix A

Acronyms and Glossary

AIS - Abbreviated Injury Score, main injury coding methodology used to describe

the injuries sustained from motor vehicle accidents for the NSW CTP scheme.

ANF - Accident Notification Form, a process to quickly claim for medical cost

post an accident by submitting a simple form. This is formally referred to s49

claims.

AvE - Actual versus Expected, an actuarial tools that compared actual outcome

with that of expected.

CARS - Claims Assessment and Resolution Service, a non-adversarial resolu-

tion to claim disputes that precedes any litigation through the court system.

CDP - Claim Development Processes, the modelling framework developed

throughout this thesis.

CTP - Compulsory Third Party, insurance product in Australia that is com-

pulsory by legislation for all vehicles to cover bodily injuries resulting from traffic

accidents

IBNER - Incurred But Not Enough Reported, claims has been reported to the

insurer, but the complete set of the claim circumstances are still not fully known.

IBNR - Incurred But Not Reported, claims that has happened but not yet

known to an insurer.

ICD - Incurred Cost Development, an actuarial projection method that uses
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historically observed claims cost development ratios to project future claims in-

curred cost.

ISS - Injury Severity Scale, a 0 - 75 scale used to index the overall severity of

the claimants injuries.

MAA - Motor Accidents Authority, the government regulator of NSW’s CTP

scheme

MAA 1989 - The previous CTP legislation that the MACA 1999 replace.

Claims cost, and premiums, spiral under this legislation.

MACA 1999 - Motor Accident and Compensation Act 1999, the current legis-

lation that regulates the NSW CTP scheme.

LTCS - Longterm Care and Support Act 2007, the legislation that mandates

catastrophically injured NSW CTP claimants be looked after centrally by the

LTCS scheme so the claimant does not need to manage the sizeable sum of money

that is needed to pay for future medical and care costs.

NEL - Non-economic Loss, the compensation for pain and suffering. NEL is

limited to the more severe claims post MACA 1999 to contain the sharp increases

in CTP premiums in the 1990’s.

PCE - Projected Case Estimate, an actuarial projection method that uses

historically observed case estimate development patterns to project future claims

cost.

PIR - Personal Injury Register, all insurers of the NSW CTP scheme are re-

quired by law to submit their claims information to the PIR on a quarterly basis.

s49 - Small claims as denoted by Section 49 of the Motor Accidents Compen-

sation Act 1999. Once an Accident Notification Form is filled, injured party can

claim up to $500 of damages without the need to demonstrate vehicle at-fault.

These small claims are also known as ANFs. The $500 limit was raised to $5000

under MACA Amendment 2009.

s74 - Full claims as denoted by Section 74 of the Motor Accidents Compensation
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Act 1999. Police reports needs to be submitted with the claim form so vehicle at-

fault can be established. The driver of the vehicle at-fault is not eligible to claim

an s74 claim.

SCE - Statistical Case Estimation, an actuarial model that predicts the ulti-

mate size of workers compensation claim by aggregating the likely payments made

to each individual claimant.

TAC - Transport Accident Commission, the equivalent of MAA for Victoria.

Since Victoria adopts a government underwritten no-fault scheme, TAC is also the

claims manager of CTP claims occurred in Victoria.

WPI - Whole person impairment, a medically determined index denoting the

severity of the injury. In the NSW CTP scheme, a WPI score of more than 10%

is required for the claimant to be eligible for compensation for non-economic loss

(also know as, general damages or pain and suffering).
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Appendix B

Traditional Actuarial Claim

Projection Methods

B.1 ICD

The following tables demonstrate the ICD modelling applied to the NSW CTP

dataset.
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Table B.1: Example of ICD Projection - Data

In Table B.1 the raw incurred cost triangle of the modelling data is presented

again. From this table, the observed individual ICD factors can derived as well

as the observed overall weighted average ICD factors and the observed weighted

average ICD factors for latest two years. A set of λ̂j has been selected, which is

the weight average of the latest two years in most cases. These are show in Table
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B.2.
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Table B.2: Example of ICD Projection - ICD Factors

Attention is drawn to the last λ selection in the table, it is the tail factor to

incorporate the development from j = 17 to j = D. Equation (4.4) may also be

written as

X̂k = Xk,T

(

18−T
∏

j=T+1

λ̂j

)

λ′ (B.1)

where λ′ =
∏D

j=18 λ̂j , a tail ICD factor. Since the data only reaches j = 17 it does

not offer an insight into how claims develop after this time. Hence, a somewhat

arbitrary “tail” development factor,
∏D

j=18 λ̂j = 1.005 has been adopted.

Table B.3 shows the projection of the ultimate claims cost by applying the λ̂j’s

consecutively. In particular the last column of Table B.3 is the series of X̂k for

each of the accident periods.
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Table B.3: Example of ICD Projection - Projection

The same steps are then repeated after adding in the validation data. The
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details of the projection have been omitted but follow the same format as the ICD

projection using only the modelling data. The results of this projection are then

compared to the results of the projection based on the modelling data along. The

comparison is shown in Table B.4.
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Table B.4: Example of ICD Projection using Validation Data

B.2 Projected Case Estimation Model

While the ICD model is very easy to use and under some circumstances produces

adequate results, actuaries soon developed other methods. One of them is the

Projected Case Estimate (PCE) method and it addresses two flaws of the ICD

model. These are discussed in turn.

Firstly, the ICD model only projects the ultimate claim size and not when

these claims will be paid at each point in time. For cashflow management and to

work out the time value of money (or discounting) aspect of the claim liabilities,

a separate analysis needs to be done. Such a cashflow analysis examines past

payment patterns and use that as a proxy for the future. But typically payment

patterns developed in isolation to incurred patterns can be misleading.
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The second flaw is that at a given point in time only a portion of the incurred

are related to open claims, or the claims that are subject to further development.

That is, for a given Xk,j, only the CEk,j portion (based on the estimation of claim

managers) is subject to future development and volatility; the paid portion (most

related to finalised claims) do not change in the future.

The PCE model addresses these two issues. It defines two sets of parameters -

the Payout (PO) factors and the Case Estimation Development (CED) factors as

opposed to the one set of ICD factors used in the ICD model. To ease notation,

we further define the incremental payment variable IPk,j = Pk,j − Pk,j−1

The CED factors (γ) and PO factors (φ) are defined as follows

γk,j =
CEk,j + IPk,j

CEk,j−1
(B.2)

and

φk,j =
IPk,j

CEk,j−1
(B.3)

And similarly to the ICD model, once the γ’s and φ’s are estimated, the fu-

ture payments and future case estimates can be successively and alternatingly

projected. The estimate of the parameters takes on a similar process as the ICD

model, either use the complete history, use the latest number of years or manually

select these factors by examining trends in the data or external knowledge. Actu-

aries in practice tend to use the a fixed number of the most recent years of data to

estimate a set of parameters more reflective of recent trends. We have once again

adopted selections that are weighted averages of the most recent two years.

γ̂j =

∑18−j
k=max(1,15−j) (CEk,j + IPk,j)
∑18−j

k=max(1,15−j) CEk,j−1

(B.4)

and

φ̂j =

∑18−j
k=max(1,15−j) IPk,j

∑18−j
k=max(1,15−j)CEk,j−1

(B.5)
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Once the set of γ̂j and φ̂j factors is selected the case estimate and payments

for a future development period, j ∈ (T + 1, D), are projected alternatingly and

successively as follows

ˆIP k,j = φ̂jĈEk,j−1 (B.6)

and

ĈEk,j = γ̂jĈEk,j−1 − ˆIP k,j (B.7)

starting from CEk,T which is the case estimate for accident period k as observed

at the censoring date.

Again, the whole projection approach is repeated after incorporating the vali-

dation data and the two rounds of projection are summarised in Table B.5.
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Table B.5: Example of PCE Projection - Summary

The PCE model projected the total cost over the nine accident years to be

$8,852m, slightly lower than the ICD model. However, using the updated data,

the projected ultimate cost has reduced by $136m. The change is of a larger

magnitude than the change witnessed in the ICD models.

The following tables demonstrate the basics of the PCE model by applying the
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methodology to the NSW CTP data. Tables B.6 and B.7 show the incremental

payments (IP) and case estimate (CE) data in the triangle format.
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Table B.6: Example of PCE Projection - IPk,j ($m)
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Table B.7: Example of PCE Projection - CEk,j ($m)

Tables B.8 and B.9 show the individual observed PO factors and CED factors,

respectively. In red, the selected factors are shown, which is the observed weighted

average of latest two years. Again, factors for j = 18 to j = D have been con-

densed into one factor and by necessity φD = γD to ensure all claims are paid at

development period D and there is no case estimates remaining.
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Table B.8: Example of PCE Projection - PO Factors
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Table B.9: Example of PCE Projection - CED factors

By utilising the successive and alternating projection outlined above, Tables

B.10 and B.11 show the projected case estimates and more importantly the pro-

jected incremental payments. The incremental payments by themselves reveal the

projected ultimate cost as well as the timing when the claim costs are expected to

be paid. The last column of Table B.11 is estimated claims cost for each accident

period, Xk, and is the sum of the IPj ’s.
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Table B.10: Example of PCE Projection - CE projection ($m)
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Table B.11: Example of PCE Projection - IP projection ($m)

B.3 Payments per Claim Finalised in Operational

Time

The following tables apply the PPCF in operational time (PPCF(OT)) model to

the NSW CTP data using the inflated payments.

Firstly, Table B.12 shows the number of claims finalised in each accident period

and operational time decile. We observe for accident periods up to around 2005

more than 90% of the claims have already been finalised. All the claims that

are still open from these accidents years are expected to be finalised in the last

decile of operational times. Conversely, accident period second half-year of 2009

(2009HY2) has just finalised a small portion of claims as at the censoring date.
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Table B.12: Example of PPCF(OT) Model - Finalised Claims in Optime

Table B.13 shows the inflation adjusted payments made in each of the opera-

tional time deciles, which correspond to the claims finalised in each cell show in

the table above.
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Table B.13: Example of PPCF(OT) Model - IP in Optime ($m)

Table B.14 shows the Payment per Claim Finalised by performing a division

of the claim payments made by number of claims finalised. It is clear that there is

a distinct trend in the claim sizes by operational time - that they increase sharply

with increases in the operational time. The claims in operational time 10 have an
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average size of around 2,000 to 3,000 while the claim in operational time decile 50

have an average size of around 50,000. Of course, the key is then to select a set of

PPCF assumptions for the future. Generally, a weighted average size of the latest

two years have been used and the selected value are shown in red.
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Table B.14: Example of PPCF(OT) Model - PPCF in Optime ($000)

The projection is rather easy from this point on. Table B.15 shows the number

of open claims from each accident period being notionally allocated to an opera-

tional time. Table B.16 then shows the expected payments to be made for each of

these operational time deciles that still contains open claims, by multiplying the

number of open claims at each operational time decile by the selected claim size.

Summing them along with payments already made provides the ultimate cost of

the claims for each accident period. The last column of the Table B.16 shows the

expected inflated cost of these payments; that is, inflating these payments from

the modelling date of December 2009 to the time they are expected to be paid

using 4.3% p.a..
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Table B.16: Example of PPCF(OT) Model - OS Claims in Optime ($m)
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Appendix C

NSW CTP Claims Database -

PIR

C.1 Information Contained in the PIR Database

The quarterly PIR extracts contains the following information. The PIR Coding

Manual (Motor Accidents Authority [2008]) provides more detailed descriptions

for each field.

C.2 Table - Accident Details

Managing Insurer The insurer that has been allocated to management all claims

for the accident. If a vehicle is at fault then that vehicle’s CTP insurer is

allocated to be the managing insurer.

Accident Number A unique identifier that has been assigned to the accident by

the MAA. Only accidents with CTP claims are assigned an accident number

Accident Date The date of the accident.

Postcode The postcode corresponding to the suburb in which the accident oc-

curred.

245



246 Table - Vehicle Details

C.3 Table - Vehicle Details

Accident Number Used to join the Accident Details table

Insurance Rating Category This is to identify the vehicle class (motor car,

goods moving vehicle, bus, etc) and the region (metro, country, etc)

Garage Postcode The postcode in which the vehicle is stored

Type of Ownership This can be either Private, Business or Government

C.4 Table - Claims Record

Observation Number Each claimant is assigned with a unique ID

Accident number Used to join the Accident Details table

Date of Birth Date of birth of this claimant

Gender Gender of this claimant

Employment Status Whether the claimant was employed, seeking work, no em-

ployed due to various reasons at the time of the accident.

Occupation Some broad division of employment into Managers, Professionals,

Clerks, etc. under the Australian Standard Classifications of Occupations

Economic Loss Whether the claim includes a component for economic loss

Weekly Earning The weekly earnings of the claimant at the time of the accident.

This field is subject to significant levels of missing values (for those that is

employed or self employed)

Prior Injury Whether the claimant has made a prior injury claim (CTP or Work-

ers Compensation)
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Claim Status Whether the claim is still active or has finalised

Date of ANF Date the claimant submitted an ANF

Date of Claim Date the claimant lodged a full claim

Date Finalised Date the ANF or claim has been finalised

Rehab Indicator An indicator variable denoting the likelihood the claimant re-

quires rehab

Litigation Whether court proceedings has commenced for this claim

Litigation Level The level of the court system the claim is at (Local, District or

Supreme).

Fatality Whether the claimant has died of the injuries sustained.

Date of Death The date the claimant died

Liability Status Whether the insurer has accepted the liability of the claim.

Legal Representation Whether the claimant has appoint a lawyer to act on

his/her behalf.

Shared Claim Whether the claim is shared between numerous insurers as the

at-fault party cannot be determined or the fault is shared between vehicles

Number of Vehicle Shared The number of vehicles sharing liability of the ac-

cident

Claim Disposal Which avenue did the claim settle in (CARS, Court, Out of

Court, etc)

Date of Referral to CARS The date the matter passed onto CARS.

CARS Outcome The decision of CARS, whether the claimant accepts the award

made by CARS, rejected or is progressing further



248 Table - Injury Coding

Date of CARS Outcome The date CARS made an assessment on the matter.

Impairment Threshold Whether the claimant has exceeded the 10% Whole

Body Impairment threshold in order for general damages to be awarded.

Date Settled The date that an agreement has been reached on the claim

C.5 Table - Injury Coding

Observation Number Used to join injuries to claimants

AIS Type Denote which Abbreviated Injury Scale system the injury code comes

from, either 85 or 05. In 2008, MAA adopted the AIS 2005 system; previously

the AIS 1985 has been used. For finalised claims, the AIS 85 codes are not

revised. For active claims, the injury codes will be revised once an update is

made to the claim.

Injury Code The 6 or 7 digit AIS code denote this particular injury. The first 5

or 6 digits denote the location and nature of the injury while the last digit

typically denote the severity of the injury.

This table has a many to one relationship to the claimant table, that is, one

claimant may sustain multiple injuries

C.6 Table - Quarterly Payment Summary

Observation Number Used to join payments to claimants.

Gross Payment The GST inclusive payment made in the quarter of the data

extract.

Amount Outstanding The insurer’s estimate of the payments to be made re-

garding this claim.
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GST Input Tax Credit Whether the claimant can claim the GST from the gov-

ernment, precluding the insurance company doing so.

C.7 Table - Detailed Payment Information

Observation Number Used to join payments to claimants.

Date of Payment The data the payment was made

Payment Type The nature of the payment made, whether it is for treatment or

legal expense, etc.

Gross Payment The GST inclusive amount of the payment made.
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Table D.1: Coefficients - Reduced Delay Component Model
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Table D.2: Coefficients - Reduced Settlement Component Model
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Table D.3: Coefficients - Reduced Direction Component Model
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Table D.4: Coefficients - Reduced Size Component Model
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Appendix E

Stratified Modelling Results

E.1 Delay Component by Injury Severity

The following tables show the modelled coefficients for the all-claims model and

also models stratified by injury severity for the Delay Component.
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Table E.1: Coefficients - Delay Component by Injury Severity 1
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Table E.2: Coefficients - Delay Component by Injury Severity 2

A few interesting observations can be made. Typically, the more severe claims

have fewer significant factors - the model for Severe claims is considerably simpler

than the other models. Factors such as Age, Insurer and Rehabilitation Needs be-

come less relevant for the more serious injuries. The significant variables common

to all injury severities are consistent in magnitude and pattern, such as Number

of Revisions and Year of Accident. In terms of the distribution, however, it seems
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the Severe claims’ time between revisions are less volatile (a higher value α).

E.2 Settlement Component by Injury Severity

The following tables show the modelled coefficients for the all-claims model and

also models stratified by injury severity for the Settlement Component.
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Table E.4: Coefficients - Settlement Component by Injury Severity 2

Similar to the delay process, the more severe claims can be modelled using

fewer covariates. It is also interesting to note that the Settlement probability at

the higher severities is not impacted by the type of injury as all injury-related
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covariances (Number of Regions Injured, Whiplash injury, Spinal injury, ISS, etc)

becomes insignificant. The insurer effect remains significant and the pattern of

coefficients remain consistent for all injury severities. The coefficients at the higher

Revisions are significantly higher and upon a previous negative change, the odds

of finalising at the current revisions are considerably increased.

E.3 Direction Component by Injury Severity

The following tables show the modelled coefficients for all claims model and also

models stratified by injury severity for the Direction Component.
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Table E.6: Coefficients - Direction Component by Injury Severity 2

Similar observations are made for the Direction Component as the previous

component models. However, one interesting observation is that Severe claims
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are less likely to have a positive movements when compared to the other injury

severities and that Insurer is not a significant covariates - this suggest that the

various insurers are equally conservative about serious claims and all take a more

conservative approach relative to the less serious injuries.

E.4 Size Component by Injury Severity

The following tables show the modelled coefficients for all claims model and also

models stratified by injury severity for the Size Component.
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Table E.8: Coefficients - Size Component by Injury Severity 2

The coefficients show that, at base levels, the size of the movements are mate-

rially bigger for the more serious injuries and that the movement sizes are more

volatile as observed though a smaller c parameter.



Appendix F

Log-Likelihoods and Their

Derivatives

F.1 Likelihoods for the Negative Binomial Re-

sponse Distribution

The Delay component process is modelled using a negative binomial distribution.

For this section, we transform tj to a standard negative binomial distribution,

i.e., lj = tj − 1, where lj = 0, 1, 2, .... This is done to retain the application

of the following derivation to other negative binomial distributions. While the

following derivation can be found in Wang [2004] for the analysis of stock data, it

is reproduced below. Subscript i has been dropped to simplify notation

P (lj|Fj−1) =
Γ(α + lj)

Γ(α)Γ(lj + 1)

( α

µj + α

)α( µj

µj + α

)lj
(F.1)

log(µj) = Wl,j = βλX
T
λ,j + Zl,j (F.2)

Zl,j =

p
∑

k=1

φkZj−k +

q
∑

k=1

θkej−k (F.3)
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and

ej =
lj − µj
√

µj +
µ2
j

α

(F.4)

Note Wj, Xj and Zj in this section take on different definition compared to

those in the main body of the thesis. The notation in the likelihood derivation

is consistent with the R programs. Wj in this section is the linear predictor, Xj

is the design matrix of explanatory variables, and Zj is the ARMA component of

the linear predictor. Other notations are consistent.

The log-likelihood contribution of the jth revision is therefore,

ℓl = log (Γ(α + lj))− log (Γ(α))− log (Γ(lj + 1)) + α log

(

α

µj + α

)

+ lj log

(

µj

µj + α

)

= log (Γ(α + lj))− log (Γ(α))− log (Γ(lj + 1)) + α logα + ljWl,j − (α+ lj) log(e
Wl,j + α)

(F.5)

The first order derivatives of ℓl with respect to δ is

∂ℓl
∂δ

=
∂ℓl
∂W

∂W

∂δ
+ u

∂ℓl
∂α

(F.6)

where

∂ℓY
∂W

=
α(lj − eWt,j)

eWt,j + α
(F.7)

and

∂ℓY
∂α

= ̥(α + lj)−̥(α) +
eWt,j − lj
eWt,j + α

+ log

(

α

eWt,j + α

)

(F.8)

where ̥ is the digamma function, or the second derivative of the log of the gamma

funcion.

The vector u takes the definition of a vector of 0’s except the last element,

which is a 1.
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The second order derivatives of ℓl with respect to δ is

∂2ℓl
∂δ2

=
∂ℓl
∂W

∂2W

∂δ2
+

∂2ℓl
∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u
∂2ℓl

∂W∂α

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ℓl

∂W∂α
uT + uuT ∂

2ℓl
∂α2

(F.9)

where

∂2ℓl
∂W 2

= −(lj + α)αeWl,j

(eWl,j + α)2
(F.10)

∂2ℓl
∂W∂α

=
(lj − eWl,j )eWl,j

(eWl,j + α)2
(F.11)

and

∂2ℓl
∂c2

=
ljα + e2Wl,j

α(eWl,j + α)2
+ trigamma(α + lj)− trigamma(α) (F.12)

where the trigamma function is the third derivative of the log of the gamma func-

tion.

In the above derivatives, the calculations of ∂W
∂δ

and ∂2W
∂δ2

are detailed in Davis

et al. [2003]. These calculations also require the derivatives of the Pearson residuals

ej ’s against the δ.

The first order derivatives of ej with respect to δ is

∂ej
∂δ

=
∂ej
∂W

∂W

∂δ
+ u

∂ej
∂α

(F.13)

where

∂ej
∂W

=
−eWl,j (αlj + eWl,j(α + 2lj))

2α
(

e
Wl,j (e

Wl,j+α)
α

)
3

2

(F.14)

and

∂ej
∂α

=
e2Wl,j(lj − eWl,j)

2
(

eWl,j + e
2Wl,j

α

)
3

2

α2

(F.15)
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The second order derivatives of ej with respect to δ is

∂2ej
∂δ2

=
∂ej
∂W

∂2W

∂δ2
+

∂2ej
∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u
∂2ej

∂W∂α

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ej

∂W∂α
uT + uuT ∂

2ej
∂α2

(F.16)

where

∂2ej
∂W 2

=
ljα

2 + eWl,jα(2lj − α) + 2e2Wl,j(2lj + α)

4(eWl,j + α)2
(

eWl,j

(

e
Wl,j+α

α

))
1

2

(F.17)

∂2ej
∂W∂α

=

(

eWl,j

(

e
Wl,j+α

α

))
1

2

(αlj − eWl,j(2lj + 3α))

4(eWl,j + α)3
(F.18)

and

∂2ej
∂α2

=

(

eWl,j

(

e
Wl,j+α

α

))
1

2

(eWl,j − lj)(e
Wl,j + 4α)

4α(eWl,j + α)3
(F.19)

F.2 Censoring - Delay Component Process

This section provides the adjustment required to allow to censored claim in the

Delay component process. While the above log-likelihood is correct for claims

observed to finalisation an adjustment needs to be made to allowed for those

claims censored by the end of the data period. The below adjustments to the

log-likelihood and also to its derivatives are required for the model fitting of the

Delay component adjusting for the censoring of claims.

From Equation (6.29), the log-likelihood for the Delay component is

ℓ(βµ, α) =
n
∑

i=1

[

min(m,j′)
∑

j=1

logP (tj,i) + logP (tj′+1 > (T ′ − Tj′))] (F.20)

Similarly to the previous section, the transformation lj = tj − 1 was carried

out.

Firstly, the log-likelihood is broken into those claims that have been finalised



Appendix F. Log-Likelihoods and Their Derivatives 273

and those claims that are still open.

ℓ(βµ, α) =
∑

j′=m

min(m,j′)
∑

j=1

logP (lj,i)

+
∑

j′<m

[

j′
∑

j=1

logP (lj,i) + logP (lj′+1 > (T ′ − Tj′ − 1))]

(F.21)

For the purposes of this section we will consider the latter part of the above

equation and use ℓC to denote the last term in the above equation, the log-

likelihood adjustments due to the censored claims.

ℓC(βµ, α) =
∑

j′<m

log (P (lj′+1 > (T ′ − Tj′ − 1)))

=
∑

j′<m

log



1−
T ′−Tj′−1
∑

k=0

P (lj′+1,i = k)





(F.22)

To simplify the notation, let A = 1−
∑v

k=0 P (l = k) where v = T ′ − Tj′ − 1.

The first order derivatives of A can be calculated as

∂ logA

∂δ
=

∂ logA

∂W

∂W

∂δ
+ u

∂ logA

∂α
(F.23)

∂ logA

∂W
=

1

A

∂A

∂W

=
1

A

(

−
v
∑

k=0

∂P (l = k)

∂W

)

=
1

A

(

−
v
∑

k=0

∂eℓk

∂W

)

=
1

A

(

−
v
∑

k=0

eℓk
∂ℓk
∂W

)

(F.24)

where ℓk is the log likelihood of the probability that the next revision has a delay

of k and ∂ℓk
∂W

is an quantity that is already calculated in the model fitting code.
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Similarly,

∂ logA

∂α
=

1

A

∂A

∂α

=
1

A

(

−
v
∑

k=0

∂P (l = k)

∂α

)

(F.25)

The second order derivatives can be calculated as

∂2 logA

∂δ2
=

∂ logA

∂W

∂2W

∂δ2
+

∂2 logA

∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u
∂2 logA

∂W∂α

∂W

∂δ
+

(

∂W

∂δ

)T
∂2 logA

∂W∂α
uT + uuT ∂

2 logA

∂α2

(F.26)

∂2 logA

∂W 2
= − 1

A2

(

∂A

∂W

)2

+
1

A

∂2A

∂W 2

= − 1

A2

(

−
v
∑

k=0

∂P (l = k)

∂W

)2

+
1

A

(

−
v
∑

k=0

∂2P (l = k)

∂W 2

) (F.27)

∂2 logA

∂W∂α
= − 1

A2

(

∂A

∂W

)(

∂A

∂α

)

+
1

A

∂2A

∂W∂α

= − 1

A2

(

−
v
∑

k=0

∂P (l = k)

∂W

)(

−
v
∑

k=0

∂P (l = k)

∂α

)

+
1

A

(

−
v
∑

k=0

∂2P (l = k)

∂W∂α

)

(F.28)

∂2 logA

∂α2
= − 1

A2

(

∂A

∂α

)2

+
1

A

∂2A

∂α2

= − 1

A2

(

−
v
∑

k=0

∂P (l = k)

∂α

)2

+
1

A

(

−
v
∑

k=0

∂2P (l = k)

∂α2

) (F.29)
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F.3 Likelihoods for Gamma Response Distribu-

tion

From Section 6.4 we have specified the size component to take a gamma distri-

bution with the follow parametrisation. The subscription i has been dropped to

simplify the notation while j refers to the ordinal number of revisions a claim has

had.

f(yj|Fj−1, Gj, tj , Sj, Dj) =
1

Γ(c)λj

( yj
λj

)c−1

e
−(

yj
λj

)
(F.30)

log(λj) = WY,j = βλX
T
λ,j + ZY,j (F.31)

ZY,j =

p
∑

k=1

φkZj−k +

q
∑

k=1

θkej−k (F.32)

and

ej =
yj − cλj
√

cλ2
j

= yjc
−1/2e−WY,j − c1/2

(F.33)

Similar to aboveWj, Xj and Zj take on different definition compared to those in

the main body of the thesis. The notation in the likelihood derivation is consistent

with the R programs. Wj in this section is the linear predictor, Xj is the design

matrix of explanatory variables, and Zj is the ARMA component of the linear

predictor. Other notations are consistent.

The log-likelihood contribution of the jth revision is therefore,

ℓY = − log Γ(c)− log λj + (c− 1)(log yj − log λj)− yj/λj

= − log Γ(c)−WY,j + (c− 1)(log yj −WY,j)− yje
−WY,j

(F.34)
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The first order derivatives of ℓY with respect to δ is

∂ℓY
∂δ

=
∂ℓY
∂W

∂W

∂δ
+ u

∂ℓY
∂c

(F.35)

where

∂ℓY
∂W

= −c + yje
−WY,j (F.36)

and

∂ℓY
∂c

= −̥(c) + log yj −WY,j (F.37)

The vector u takes the previous definition of a vector of 0’s except the last

element, which is a 1.

The second order derivatives of ℓY with respect to δ is

∂2ℓY
∂δ2

=
∂ℓY
∂W

∂2W

∂δ2
+

∂2ℓY
∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u
∂2ℓY
∂W∂c

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ℓY
∂W∂c

uT + uuT ∂
2ℓY
∂c2

(F.38)

where

∂2ℓY
∂W 2

= −yje
−WY,j (F.39)

∂2ℓY
∂W∂c

= −1 (F.40)

and

∂2ℓY
∂c2

= −trigamma(c) (F.41)

In the above derivatives, the calculations of ∂W
∂δ

and ∂2W
∂δ2

are detailed in Davis

et al. [2003]. These calculations also require the derivatives of the Pearson residuals

ejs against the δ.

The first order derivatives of ej with respect to δ is

∂ej
∂δ

=
∂ej
∂W

∂W

∂δ
+ u

∂ej
∂c

(F.42)
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where

∂ej
∂W

= −yjc
−1/2e−WY,j (F.43)

and

∂ej
∂c

= −1

2
yjc

−3/2e−WY,j − 1

2
c−1/2 (F.44)

The second order derivatives of ej with respect to δ is

∂2ej
∂δ2

=
∂ej
∂W

∂2W

∂δ2
+

∂2ej
∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u
∂2ej
∂W∂c

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ej
∂W∂c

uT + uuT ∂
2ej
∂c2

(F.45)

where

∂2ej
∂W 2

= yjc
−1/2e−WY,j (F.46)

∂2ej
∂W∂c

=
1

2
yjc

−3/2e−WY,j (F.47)

and

∂2ej
∂c2

=
3

4
yjc

−5/2e−WY,j +
1

4
c−3/2 (F.48)

F.4 Likelihoods for the Generalised Gamma Re-

sponse Distribution

We have also considered the generalised gamma as the response distribution for the

Size component process. While we have found the generalised gamma distribution

does not add material improvement to the fit of the data, we have provided the

log-likelihood and its derivatives below.

f(yj|Fj−1, Gj, tj, Sj , Dj) =
k

Γ(c)λj

( yj
λj

)ck−1

e
−(

yj

λj
)k

(F.49)
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where

log(λj) = WY,j = βλX
T
λ,j + ZY,j (F.50)

ZY,j =

p
∑

k=1

φkZj−k +

q
∑

k=1

θkej−k (F.51)

and

ej =
Yj − µj

√

λ2
jΓ(c+2/k)

Γ(c)
− µ2

j

(F.52)

where

µj =
λjΓ(c+ 1/k)

Γ(c)
(F.53)

The log-likelihood contribution of the jth revision is

ℓY = log k − log Γ(c)− log λj + (ck − 1)(log yj − log λj)−
( yj
λj

)k

= log k − log Γ(c)−WY,j + (ck − 1)(log yj −WY,j)− ykj e
−kWY,j

(F.54)

Similar to aboveWj, Xj and Zj take on different definition compared to those in

the main body of the thesis. The notation in the likelihood derivation is consistent

with the R programs. Wj in this section is the linear predictor, Xj is the design

matrix of explanatory variables, and Zj is the ARMA component of the linear

predictor. Other notations are consistent.

The first order derivatives of the log-likelihood with respect to δ is

∂ℓY
∂δ

=
∂ℓY
∂W

∂W

∂δ
+ u2

∂ℓY
∂c

+ u1
∂ℓY
∂k

(F.55)

where

∂ℓY
∂W

= −ck + kykj e
−kWY,j (F.56)

∂ℓY
∂c

= −̥(c) + k(log yj −WY,j) (F.57)
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and

∂ℓY
∂k

=
1

k
+ c(log yj −WY,j)− log(yje

−WY,j )ykj e
−kWY,j (F.58)

The vector u1 is defined as a vector of 0’s except the last element, which is a

1; and the vector u2 is defined as a vector of 0’s except the second last element,

which is a 1.

And the second order derivatives of the log-likelihood with respect to δ is

∂2ℓY
∂δ2

=
∂ℓY
∂W

∂2W

∂δ2
+

∂2ℓY
∂W 2

∂W

∂δ

(

∂W

∂δ

)T

+ u2
∂2ℓY
∂W∂c

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ℓY
∂W∂c

uT
2 + u2u

T
2

∂2ℓY
∂c2

+ u1
∂2ℓY
∂W∂k

∂W

∂δ
+

(

∂W

∂δ

)T
∂2ℓY
∂W∂k

uT
1 + u1u

T
1

∂2ℓY
∂k2

+ u1u
T
2

∂2ℓY
∂c∂k

+ u2u
T
1

∂2ℓY
∂c∂k

(F.59)

where

∂2ℓY
∂W 2

= −k2ykj e
−kWY,j (F.60)

∂2ℓY
∂W∂c

= −k (F.61)

∂2ℓY
∂W∂k

= −c+ ykj e
−kWY,j + k log(yje

−WY,j )ykj e
−kWY,j (F.62)

∂2ℓY
∂c2

= −trigamma(c) (F.63)

∂2ℓY
∂k2

= − 1

k2
− log2(yje

−WY,j )ykj e
−kWY,j (F.64)

and

∂2ℓY
∂c∂k

= log yj −WY,j (F.65)

Similarly to the gamma distribution derivations, the calculations of ∂W
∂δ

and
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∂2W
∂δ2

are detailed in Davis et al. [2003]. The derivatives of the Pearson residuals

ej ’s against the δ are also required here. To simplify notation, the subscript j has

also been dropped here.

e =
Y − λΓ(c+1/k)

Γ(c)
√

λ2Γ(c+2/k)
Γ(c)

− λ2Γ2(c+1/k)
Γ2(c)

=
Y Γ(c)− λΓ(c+ 1/k)

√

λ2Γ(c)Γ(c+ 2/k)− λ2Γ(c+ 1/k)Γ(c+ 1/k)

= (Y Γ(c)e−W − Γ(c+ 1/k))A

(F.66)

where A = (Γ(c)Γ(c+ 2/k)− Γ(c+ 1/k)Γ(c+ 1/k))−
1

2 .

Unlike the gamma distribution, the derivatives of the Pearson residuals proved

to be too difficult to derive. Due to this, we have proceeded to calculate the

derivatives in R using numerical derivatives, namely, the numDeriv package.
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R Code

G.1 Gamma Response Modelling Code

1 glarma . l l . gamma. c la im . o f f <− func t i on (Y, X, de l ta , r , phi . lags , theta

. lags , o f f s e t = 0)

2 {

3 #de f i n e parameters and v a r i a b l e s

4 n <− l ength (Y)

5 p <− l ength ( phi . l a g s )

6 q <− l ength ( theta . l a g s )

7 s <− r + p + q + 1

8 beta <− de l t a [ 1 : r ]

9 phi <− de l t a [ ( r + 1) : ( r + p) ]

10 theta <− de l t a [ ( r + p + 1) : ( r + p + q) ]

11 c <− de l t a [ s ]

12 u <− c ( rep (0 , s − 1) , 1)

13 mpq <− 0

14

15 i f ( ( p + q ) > 0) {

16 mpq <− max( phi . l a g s [ p ] , theta . l a g s [ q ] )

17 }

18

19 nmpq <− n + mpq

281
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20 e <− ar ray (0 , nmpq)

21 Z <− ar ray (0 , nmpq)

22 W <− ar ray (0 , nmpq)

23 lambda <− ar ray (0 , nmpq)

24 e . d <− ar ray (0 , c ( s , nmpq) )

25 Z . d <− ar ray (0 , c ( s , nmpq) )

26 W.d <− ar ray (0 , c ( s , nmpq) )

27 e . dd <− ar ray (0 , c ( s , s , nmpq) )

28 Z . dd <− ar ray (0 , c ( s , s , nmpq) )

29 W. dd <− ar ray (0 , c ( s , s , nmpq) )

30 eta <− X %∗% beta + o f f s e t

31

32 l l <− 0

33 l l . d <− matrix (0 , nco l = 1 , nrow = s )

34 l l . dd <− matrix (0 , nco l = s , nrow = s )

35

36 #se t up GLARMA s t r u c tu r e

37 f o r ( time in 1 : n ) {

38 tmpq <− time + mpq

39 i f (p > 0) {

40 Z . d [ ( r + 1) : ( r + p) , tmpq ] <− Z [ tmpq − phi . l a g s ] + e [ tmpq − phi

. l a g s ]

41 Z . dd [ ( r + 1) : ( r + p) , , tmpq ] <− t ( (Z . d + e . d ) [ , ( tmpq − phi .

l a g s ) ] )

42 Z . dd [ , ( r + 1) : ( r + p) , tmpq ] <− Z . dd [ , ( r + 1) : ( r + p) , tmpq ]

+ (Z . d + e . d ) [ , ( tmpq − phi . l a g s ) ]

43 f o r ( i in 1 : p ) {

44 Z [ tmpq ] <− Z [ tmpq ] + phi [ i ] ∗ (Z + e ) [ tmpq − phi . l a g s [ i ] ]

45 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + phi [ i ] ∗ (Z . d [ , tmpq − phi . l a g s [

i ] ] + e . d [ , tmpq − phi . l a g s [ i ] ] )

46 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + phi [ i ] ∗ (Z . dd [ , , tmpq

− phi . l a g s [ i ] ] + e . dd [ , , tmpq − phi . l a g s [ i ] ] )

47 }

48 }
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49

50 i f ( q > 0) {

51 Z . d [ ( r + p + 1) : ( r + p + q) , tmpq ] <− e [ tmpq − theta . l a g s ]

52 Z . dd [ ( r + p + 1) : ( r + p + q) , , tmpq ] <− Z . dd [ ( r + p + 1) : ( r +

p + q) , , tmpq ] + t ( e . d [ , tmpq − theta . l a g s ] )

53 Z . dd [ , ( r + p + 1) : ( r + p + q) , tmpq ] <− Z . dd [ , ( r + p + 1) : ( r

+ p + q) , tmpq ] + e . d [ , tmpq − theta . l a g s ]

54 f o r ( i in 1 : q ) {

55 Z [ tmpq ] <− Z [ tmpq ] + theta [ i ] ∗ e [ tmpq − theta . l a g s [ i ] ]

56 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + theta [ i ] ∗ e . d [ , tmpq − theta .

l a g s [ i ] ]

57 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + theta [ i ] ∗ e . dd [ , ,

tmpq − theta . l a g s [ i ] ]

58 }

59 }

60

61 W[ tmpq ] <− eta [ time ] + Z [ tmpq ]

62 W.d [ , tmpq ] <− matrix ( c (X[ time , ] , rep (0 , p + q + 1) ) , nco l = 1)

+ Z . d [ , tmpq ]

63 W.dd [ , , tmpq ] <− Z . dd [ , , tmpq ]

64

65 lambda [ tmpq ] <− exp (W[ tmpq ] )

66 lambdat<−lambda [ tmpq ]

67 Yt<−Y[ time ]

68

69 e .W<− −Yt ∗ cˆ(−1/ 2) ∗ lambdatˆ(−1)

70 e . c<− −1/2 ∗ Yt ∗ cˆ(−3/ 2) ∗ lambdatˆ(−1) − 1/2 ∗ cˆ(−1/ 2)

71 e .WW<− Yt ∗ cˆ(−1/ 2) ∗ lambdatˆ(−1)

72 e .cW<− 1/2 ∗ Yt ∗ cˆ(−3/ 2) ∗ lambdatˆ(−1)

73 e . cc<− 3/4 ∗ Yt ∗ cˆ(−5/ 2) ∗ lambdatˆ(−1) + 1/4 ∗ cˆ(−3/ 2)

74

75 e [ tmpq ]<− Yt∗cˆ(−1/ 2)∗ lambdatˆ(−1) − c ˆ(1/ 2)

76 e . d [ , tmpq ] <−e .W∗W.d [ , tmpq]+ e . c∗u
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77 e . dd [ , , tmpq ] <− ( e .W∗ W. dd [ , , tmpq]+ e .WW∗ W.d [ , tmpq ] %o

% W. d [ , tmpq]+e .cW∗ (W. d [ , tmpq]%o%u+u%o%W. d [ , tmpq ] )+e . cc∗u%o%

u)

78

79 #update l i k e l i h o o d and d e r i v a t i v e s .

80

81 i f ( time > 1) {

82 l l <− l l + −l o g (gamma( c ) ) − W[ tmpq ] + ( c−1)∗ ( l o g (Yt)−W[ tmpq ] )−Yt∗

lambdatˆ(−1)

83 l l .W<− −c + Yt ∗ lambdatˆ(−1)

84 l l . c<− −digamma( c ) + ( log (Yt) − W[ tmpq ] )

85 l l .WW<− −Yt ∗ lambdatˆ(−1)

86 l l . cc <− − trigamma ( c )

87 l l .cW <− −1

88

89 l l . d <− l l . d + l l .W∗W.d [ , tmpq]+ l l . c∗u

90

91 l l . dd <− l l . dd + ( l l .W ∗ W. dd [ , , tmpq ]

92 +( l l .WW ) ∗W.d [ , tmpq ] %o% W. d [ , tmpq ]

93 +( l l .cW) ∗ (W. d [ , tmpq ] %o% u + u%o%W. d [ , tmpq ] )

94 +( l l . cc ∗ u %o% u) )

95 }

96 }

97 l i s t ( d e l t a = de l ta , l l = l l , l l . d = l l . d , l l . dd = l l . dd)

98 }

G.2 Standard Negative Binomial Response Mod-

elling Code

1 glarma . l l . nb . c la im . o f f <− func t i on (Y, X, de l ta , r , phi . lags , theta .

lags , o f f s e t = 0)
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2 {

3 #de f i n e parameters and v a r i a b l e s

4 n <− l ength (Y)

5 p <− l ength ( phi . l a g s )

6 q <− l ength ( theta . l a g s )

7 s <− r + p + q + 1

8 beta <− de l t a [ 1 : r ]

9 phi <− de l t a [ ( r + 1) : ( r + p) ]

10 theta <− de l t a [ ( r + p + 1) : ( r + p + q) ]

11 alpha <− de l t a [ s ]

12 u <− c ( rep (0 , s − 1) , 1)

13 mpq <− 0

14

15 i f ( ( p + q ) > 0) {

16 mpq <− max( phi . l a g s [ p ] , theta . l a g s [ q ] )

17 }

18

19 nmpq <− n + mpq

20 e <− ar ray (0 , nmpq)

21 Z <− ar ray (0 , nmpq)

22 W <− ar ray (0 , nmpq)

23 mu <− ar ray (0 , nmpq)

24 e . d <− ar ray (0 , c ( s , nmpq) )

25 Z . d <− ar ray (0 , c ( s , nmpq) )

26 W.d <− ar ray (0 , c ( s , nmpq) )

27 e . dd <− ar ray (0 , c ( s , s , nmpq) )

28 Z . dd <− ar ray (0 , c ( s , s , nmpq) )

29 W. dd <− ar ray (0 , c ( s , s , nmpq) )

30 eta <− X %∗% beta + o f f s e t

31 l l <− 0

32 l l . d <− matrix (0 , nco l = 1 , nrow = s )

33 l l . dd <− matrix (0 , nco l = s , nrow = s )

34

35 #se t up GLARMA s t r u c tu r e
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36 f o r ( time in 1 : n ) {

37 tmpq <− time + mpq

38 i f (p > 0) {

39 Z . d [ ( r + 1) : ( r + p) , tmpq ] <− Z [ tmpq − phi . l a g s ] + e [ tmpq − phi

. l a g s ]

40 Z . dd [ ( r + 1) : ( r + p) , , tmpq ] <− t ( (Z . d + e . d ) [ , ( tmpq − phi .

l a g s ) ] )

41 Z . dd [ , ( r + 1) : ( r + p) , tmpq ] <− Z . dd [ , ( r + 1) : ( r + p) , tmpq ]

+ (Z . d + e . d ) [ , ( tmpq − phi . l a g s ) ]

42 f o r ( i in 1 : p ) {

43 Z [ tmpq ] <− Z [ tmpq ] + phi [ i ] ∗ (Z + e ) [ tmpq − phi . l a g s [ i ] ]

44 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + phi [ i ] ∗ (Z . d [ , tmpq − phi . l a g s [

i ] ] + e . d [ , tmpq − phi . l a g s [ i ] ] )

45 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + phi [ i ] ∗ (Z . dd [ , , tmpq

− phi . l a g s [ i ] ] + e . dd [ , , tmpq − phi . l a g s [ i ] ] )

46 }

47 }

48

49 i f ( q > 0) {

50 Z . d [ ( r + p + 1) : ( r + p + q) , tmpq ] <− e [ tmpq − theta . l a g s ]

51 Z . dd [ ( r + p + 1) : ( r + p + q) , , tmpq ] <− Z . dd [ ( r + p + 1) : ( r +

p + q) , , tmpq ] + t ( e . d [ , tmpq − theta . l a g s ] )

52 Z . dd [ , ( r + p + 1) : ( r + p + q) , tmpq ] <− Z . dd [ , ( r + p + 1) : ( r

+ p + q) , tmpq ] + e . d [ , tmpq − theta . l a g s ]

53 f o r ( i in 1 : q ) {

54 Z [ tmpq ] <− Z [ tmpq ] + theta [ i ] ∗ e [ tmpq − theta . l a g s [ i ] ]

55 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + theta [ i ] ∗ e . d [ , tmpq − theta .

l a g s [ i ] ]

56 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + theta [ i ] ∗ e . dd [ , ,

tmpq − theta . l a g s [ i ] ]

57 }

58 }

59

60 W[ tmpq ] <− eta [ time ] + Z [ tmpq ]
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61 W.d [ , tmpq ] <− matrix ( c (X[ time , ] , rep (0 , p + q + 1) ) , nco l = 1) +

Z . d [ , tmpq ]

62 W. dd [ , , tmpq ] <− Z . dd [ , , tmpq ]

63

64 mu[ tmpq ] <− exp (W[ tmpq ] )

65 mut<−mu[ tmpq ]

66 Yt<−Y[ time ]

67 g<−mut+alpha

68 var<−mut+mutˆ2/ alpha

69 h<−var

70

71 e .W<−(−mut∗ ( alpha ∗Yt+mut∗ ( alpha+2∗Yt) ) ) / (2 ∗alpha ∗var ˆ(3/ 2) )

72 e . a<− mutˆ2∗ (Yt−mut) / (2∗ alpha ˆ2∗var ˆ(3/ 2) )

73 e .WW<−(Yt ∗ alpha ˆ2 + mut ∗ alpha ∗ (2 ∗ Yt − alpha ) + 2 ∗ mutˆ2 ∗

(2 ∗ Yt + alpha ) ) / (4 ∗ (mut+alpha ) ˆ2 ∗ var ˆ(1/ 2) )

74 e .aW<−mutˆ3∗ ( alpha ∗Yt−mut∗ (2 ∗Yt+3∗alpha ) ) / (4 ∗alpha ˆ3∗var ˆ(5/ 2) )

75 e . aa<−mutˆ3∗ (mut−Yt) ∗ (mut+4∗ alpha ) / (4 ∗ alpha ˆ4∗var ˆ(5/ 2) )

76

77 e [ tmpq ]<−(Yt−mut) /var ˆ0 .5

78 e . d [ , tmpq ] <−e .W∗W.d [ , tmpq]+ e . a∗u

79 e . dd [ , , tmpq ] <− ( e .W∗ W. dd [ , , tmpq]+ e .WW∗ W.d [ , tmpq ] %o% W.

d [ , tmpq]+e .aW∗ (W. d [ , tmpq]%o%u+u%o%W. d [ , tmpq ] )+e . aa∗u%o%u)

80

81 #update l i k e l i h o o d and d e r i v a t i v e s .

82

83 i f ( time > 1) {

84 l l <− l l + log (gamma( alpha+Yt) / (gamma( alpha ) ∗gamma(Yt+1)) )+alpha ∗

l o g ( alpha /g )+Yt∗ l o g (mut/g )

85 l l .W<−alpha ∗ (Yt−mut) / (mut+alpha )

86 l l . a<−(digamma( alpha+Yt)−digamma( alpha )+ (mut−Yt) / (mut+alpha )+log (

alpha / (mut+alpha ) ) )

87 l l . d <− l l . d + l l .W∗W.d [ , tmpq]+ l l . a∗u

88 l l . dd <− l l . dd + ( alpha ∗ (Yt−mut) / (mut+alpha ) ∗W.dd [ , , tmpq]−
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89 +(alpha ∗mut∗ (Yt+alpha ) / (mut+alpha ) ˆ2)∗W.d [ , tmpq]%o%W. d [ ,

tmpq ]

90 +((Yt−mut) ∗mut/ (mut+alpha ) ˆ2)∗ (W. d [ , tmpq]%o%u + u%o%W. d [ ,

tmpq ] )

91 +(trigamma ( alpha+Yt)−trigamma ( alpha ) + (Yt∗ alpha + mutˆ2)/ (

alpha ∗g ˆ2) ) ∗u%o%u )

92 }

93 }

94

95 l i s t ( d e l t a = de l ta , l l = l l , l l . d = l l . d , l l . dd = l l . dd , mu = mu)

96 }

G.3 Negative Binomial Response with Allowance

for Censoring Modelling Code

1 glarma . l l . nb . c la im . o f f . cens <− func t i on (Y, X, de l ta , r , phi . lags ,

theta . lags , o f f s e t = 0 , c ens l ag )

2 {

3 #de f i n e parameters and v a r i a b l e s

4 n <− l ength (Y)

5 p <− l ength ( phi . l a g s )

6 q <− l ength ( theta . l a g s )

7 s <− r + p + q + 1

8 beta <− de l t a [ 1 : r ]

9 phi <− de l t a [ ( r + 1) : ( r + p) ]

10 theta <− de l t a [ ( r + p + 1) : ( r + p + q) ]

11 alpha <− de l t a [ s ]

12 u <− c ( rep (0 , s − 1) , 1)

13 mpq <− 0

14

15 i f ( ( p + q ) > 0) {
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16 mpq <− max( phi . l a g s [ p ] , theta . l a g s [ q ] )

17 }

18

19 nmpq <− n + mpq

20 e <− ar ray (0 , nmpq)

21 Z <− ar ray (0 , nmpq)

22 W <− ar ray (0 , nmpq)

23 mu <− ar ray (0 , nmpq)

24 e . d <− ar ray (0 , c ( s , nmpq) )

25 Z . d <− ar ray (0 , c ( s , nmpq) )

26 W.d <− ar ray (0 , c ( s , nmpq) )

27 e . dd <− ar ray (0 , c ( s , s , nmpq) )

28 Z . dd <− ar ray (0 , c ( s , s , nmpq) )

29 W. dd <− ar ray (0 , c ( s , s , nmpq) )

30 eta <− X %∗% beta + o f f s e t

31 l l <− 0

32 l l . d <− matrix (0 , nco l = 1 , nrow = s )

33 l l . dd <− matrix (0 , nco l = s , nrow = s )

34

35 #se t up GLARMA s t r u c tu r e

36 f o r ( time in 1 : n ) {

37 tmpq <− time + mpq

38 i f (p > 0) {

39 Z . d [ ( r + 1) : ( r + p) , tmpq ] <− Z [ tmpq − phi . l a g s ] + e [ tmpq − phi

. l a g s ]

40 Z . dd [ ( r + 1) : ( r + p) , , tmpq ] <− t ( (Z . d + e . d ) [ , ( tmpq − phi .

l a g s ) ] )

41 Z . dd [ , ( r + 1) : ( r + p) , tmpq ] <− Z . dd [ , ( r + 1) : ( r + p) , tmpq ]

+ (Z . d + e . d ) [ , ( tmpq − phi . l a g s ) ]

42 f o r ( i in 1 : p ) {

43 Z [ tmpq ] <− Z [ tmpq ] + phi [ i ] ∗ (Z + e ) [ tmpq − phi . l a g s [ i ] ]

44 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + phi [ i ] ∗ (Z . d [ , tmpq − phi . l a g s [

i ] ] + e . d [ , tmpq − phi . l a g s [ i ] ] )
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45 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + phi [ i ] ∗ (Z . dd [ , , tmpq

− phi . l a g s [ i ] ] + e . dd [ , , tmpq − phi . l a g s [ i ] ] )

46 }

47 }

48

49 i f ( q > 0) {

50 Z . d [ ( r + p + 1) : ( r + p + q) , tmpq ] <− e [ tmpq − theta . l a g s ]

51 Z . dd [ ( r + p + 1) : ( r + p + q) , , tmpq ] <− Z . dd [ ( r + p + 1) : ( r +

p + q) , , tmpq ] + t ( e . d [ , tmpq − theta . l a g s ] )

52 Z . dd [ , ( r + p + 1) : ( r + p + q) , tmpq ] <− Z . dd [ , ( r + p + 1) : ( r

+ p + q) , tmpq ] + e . d [ , tmpq − theta . l a g s ]

53 f o r ( i in 1 : q ) {

54 Z [ tmpq ] <− Z [ tmpq ] + theta [ i ] ∗ e [ tmpq − theta . l a g s [ i ] ]

55 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + theta [ i ] ∗ e . d [ , tmpq − theta .

l a g s [ i ] ]

56 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + theta [ i ] ∗ e . dd [ , ,

tmpq − theta . l a g s [ i ] ]

57 }

58 }

59

60 W[ tmpq ] <− eta [ time ] + Z [ tmpq ]

61 W.d [ , tmpq ] <− matrix ( c (X[ time , ] , rep (0 , p + q + 1) ) , nco l = 1) +

Z . d [ , tmpq ]

62 W. dd [ , , tmpq ] <− Z . dd [ , , tmpq ]

63

64 mu[ tmpq ] <− exp (W[ tmpq ] )

65 mut<−mu[ tmpq ]

66 Yt<−Y[ time ]

67 g<−mut+alpha

68 var<−mut+mutˆ2/ alpha

69 h<−var

70

71 e .W<−(−mut∗ ( alpha ∗Yt+mut∗ ( alpha+2∗Yt) ) ) / (2 ∗alpha ∗var ˆ(3/ 2) )

72 e . a<− mutˆ2∗ (Yt−mut) / (2∗ alpha ˆ2∗var ˆ(3/ 2) )
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73 e .WW<−(Yt ∗ alpha ˆ2 + mut ∗ alpha ∗ (2 ∗ Yt − alpha ) + 2 ∗ mutˆ2 ∗

(2 ∗ Yt + alpha ) ) / (4 ∗ (mut+alpha ) ˆ2 ∗ var ˆ(1/ 2) )

74 e .aW<−mutˆ3∗ ( alpha ∗Yt−mut∗ (2 ∗Yt+3∗alpha ) ) / (4 ∗alpha ˆ3∗var ˆ(5/ 2) )

75 e . aa<−mutˆ3∗ (mut−Yt) ∗ (mut+4∗ alpha ) / (4 ∗ alpha ˆ4∗var ˆ(5/ 2) )

76

77 e [ tmpq ]<−(Yt−mut) /var ˆ0 .5

78 e . d [ , tmpq ] <−e .W∗W.d [ , tmpq]+ e . a∗u

79 e . dd [ , , tmpq ] <− ( e .W∗ W. dd [ , , tmpq]+ e .WW∗ W.d [ , tmpq ] %o% W.

d [ , tmpq]+e .aW∗ (W. d [ , tmpq]%o%u+u%o%W. d [ , tmpq ] )+e . aa∗u%o%u)

80

81

82 #update l i k e l i h o o d and d e r i v a t i v e s .

83

84 i f ( time > 1) {

85

86 #i f not l a s t obs then car ry on as normal

87 i f ( time < n) {

88 l l <− l l + log (gamma( alpha+Yt) / (gamma( alpha ) ∗gamma(Yt+1)) )+alpha ∗

l o g ( alpha /g )+Yt∗ l o g (mut/g )

89 l l .W<−alpha ∗ (Yt−mut) / (mut+alpha )

90 l l . a<−(digamma( alpha+Yt)−digamma( alpha )+ (mut−Yt) / (mut+alpha )+log (

alpha / (mut+alpha ) ) )

91 l l . d <− l l . d + l l .W∗W.d [ , tmpq]+ l l . a∗u

92 l l . dd <− l l . dd + ( alpha ∗ (Yt−mut) / (mut+alpha ) ∗W.dd [ , , tmpq]−

93 +(alpha ∗mut∗ (Yt+alpha ) / (mut+alpha ) ˆ2)∗W.d [ , tmpq]%o%W. d [ ,

tmpq ]

94 +((Yt−mut) ∗mut/ (mut+alpha ) ˆ2)∗ (W. d [ , tmpq]%o%u + u%o%W. d [ ,

tmpq ] )

95 +(trigamma ( alpha+Yt)−trigamma ( alpha ) + (Yt∗ alpha + mutˆ2)/ (

alpha ∗g ˆ2) ) ∗u%o%u )

96 }

97

98 #i f l a s t obs then do censo r ing ca l c s , which c a l c u l a t e s

p r obab i l i t y o f not having had a r e v i s i o n s i n c e pr ev i ous
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r e v i s i o n to censo r ing time

99 e l s e {

100 cens . l l <− 0

101 cens . l l . d <− matrix (0 , nco l = 1 , nrow = s )

102 cens . l l . dd <− matrix (0 , nco l = s , nrow = s )

103

104 A <− 1

105 f o r ( k in 0 : c ens l ag ) { A <− A − (gamma( alpha+k ) / (gamma( alpha ) ∗

gamma(k+1)) ) ∗ exp ( alpha ∗ l o g ( alpha /g )+k∗ l o g (mut/g ) ) }

106

107 cens . l l <− l o g (A)

108 temp . logA .W <− 0

109 temp . logA . a <− 0

110 temp . logA .WW<− 0

111 temp . logA . aa <− 0

112 temp . logA .Wa <− 0

113

114 f o r ( k in 0 : c ens l ag ) {

115 k . l l <− l o g (gamma( alpha+k ) / (gamma( alpha ) ∗gamma(k+1)) )+alpha ∗

l o g ( alpha /g )+k∗ l o g (mut/g )

116 k . l l .W<−alpha ∗ (k−mut) / (mut+alpha )

117 k . l l . a<−(digamma( alpha+k )−digamma( alpha )+ (mut−k) / (mut+alpha )

+log ( alpha / (mut+alpha ) ) )

118 k . l l . d <− k . l l .W∗W.d [ , tmpq]+ k . l l . a∗u

119 k . l l .WW<− ( alpha ∗mut∗ (k+alpha ) / (mut+alpha ) ˆ2)

120 k . l l .Wa <− (k−mut) ∗mut/ (mut+alpha ) ˆ2

121 k . l l . aa <− ( trigamma ( alpha+k)−trigamma ( alpha ) + (k∗ alpha +

mutˆ2)/ ( alpha ∗g ˆ2) )

122 k . l l . dd <− ( k . l l .W ∗ W. dd [ , , tmpq ] + k . l l .WW∗W.d [ , tmpq]%o%

W. d [ , tmpq ]

123 +(k . l l .Wa) ∗ (W. d [ , tmpq]%o%u + u%o%W. d [ , tmpq ] )

124 +(k . l l . aa ) ∗u%o%u )

125

126 temp . logA .W <− temp . logA .W + (−exp (k . l l ) ∗k . l l .W)
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127 temp . logA . a <− temp . logA . a + (−exp (k . l l ) ∗k . l l . a )

128 temp . logA .WW<− temp . logA .WW+ (−exp (k . l l ) ∗k . l l .WW)

129 temp . logA . aa <− temp . logA . aa + (−exp (k . l l ) ∗k . l l . aa )

130 temp . logA .Wa <− temp . logA .Wa + (−exp (k . l l ) ∗k . l l .Wa)

131 }

132

133 cens . l l . d <− 1/A ∗ temp . logA .W ∗W.d [ , tmpq]+ 1/A ∗ temp . logA . a ∗u

134 cens . l l . dd <− (1 /A ∗ temp . logA .W) ∗ W. dd [ , , tmpq ] + (−1/Aˆ2 ∗ (

temp . logA .W) ˆ2 + 1/A ∗ temp . logA .WW ) ∗W. d [ , tmpq]%o%W. d [ ,

tmpq ]

135 +(−1/Aˆ2 ∗ temp . logA .W ∗ temp . logA . a + 1/A∗ temp .

logA .Wa ) ∗ (W. d [ , tmpq]%o%u + u%o%W. d [ , tmpq ] )

136 +(−1/Aˆ2 ∗ ( temp . logA . a ) ˆ2 + 1/A∗temp . logA . aa ) ∗u%o

%u

137

138 l l <− l l + cens . l l

139 l l . d <− l l . d + cens . l l . d

140 l l . dd <− l l . dd + cens . l l . dd

141 }

142 }

143 }

144 l i s t ( d e l t a = de l ta , l l = l l , l l . d = l l . d , l l . dd = l l . dd , mu = mu)

145 }

G.4 Binary Response Modelling Code

1 glarma . l l . b in . c la im . o f f<−func t i on (Y, X, de l ta , r , phi . lags , theta .

lags , o f f s e t = 0)

2 {

3 #de f i n e parameters and v a r i a b l e s

4 n <− l ength (Y)

5 p <− l ength ( phi . l a g s )
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6 q <− l ength ( theta . l a g s )

7 s <− r + p + q

8 beta <− de l t a [ 1 : r ]

9 phi <− de l t a [ ( r + 1) : ( r + p) ]

10 theta <− de l t a [ ( r + p + 1) : ( r + p + q) ]

11 mpq <− 0

12

13 i f ( ( p + q ) > 0) {

14 mpq <− max( phi . l a g s [ p ] , theta . l a g s [ q ] )

15 }

16

17 nmpq <− n + mpq

18 e <− ar ray (0 , nmpq)

19 Z <− ar ray (0 , nmpq)

20 W <− ar ray (0 , nmpq)

21 pt <− ar ray (0 , nmpq)

22 e . d <− ar ray (0 , c ( s , nmpq) )

23 Z . d <− ar ray (0 , c ( s , nmpq) )

24 W.d <− ar ray (0 , c ( s , nmpq) )

25 e . dd <− ar ray (0 , c ( s , s , nmpq) )

26 Z . dd <− ar ray (0 , c ( s , s , nmpq) )

27 W. dd <− ar ray (0 , c ( s , s , nmpq) )

28 eta <− X %∗% beta

29 l l <− 0

30 l l . d <− matrix (0 , nco l = 1 , nrow = s )

31 l l . dd <− matrix (0 , nco l = s , nrow = s )

32

33 #se t up GLARMA s t r u c tu r e

34 f o r ( time in 1 : n) {

35 tmpq <− time + mpq

36 i f (p > 0) {

37 Z . d [ ( r + 1) : ( r + p) , tmpq ] <− Z [ tmpq − phi . l a g s ] + e [ tmpq − phi

. l a g s ]
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38 Z . dd [ ( r + 1) : ( r + p) , , tmpq ] <− t ( (Z . d + e . d ) [ , ( tmpq − phi .

l a g s ) ] )

39 Z . dd [ , ( r + 1) : ( r + p) , tmpq ] <− Z . dd [ , ( r + 1) : ( r + p) , tmpq ]

+ (Z . d + e . d ) [ , ( tmpq − phi . l a g s ) ]

40 f o r ( i in 1 : p ) {

41 Z [ tmpq ] <− Z [ tmpq ] + phi [ i ] ∗ (Z + e ) [ tmpq − phi . l a g s [ i ] ]

42 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + phi [ i ] ∗ (Z . d [ , tmpq − phi . l a g s [

i ] ] + e . d [ , tmpq − phi . l a g s [ i ] ] )

43 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + phi [ i ] ∗ (Z . dd [ , , tmpq

− phi . l a g s [ i ] ] + e . dd [ , , tmpq − phi . l a g s [ i ] ] )

44 }

45 }

46 i f ( q > 0) {

47 Z . d [ ( r + p + 1) : ( r + p + q) , tmpq ] <− e [ tmpq − theta . l a g s ]

48 Z . dd [ ( r + p + 1) : ( r + p + q) , , tmpq ] <− Z . dd [ ( r + p + 1) : ( r +

p + q) , , tmpq ] + t ( e . d [ , tmpq − theta . l a g s ] )

49 Z . dd [ , ( r + p + 1) : ( r + p + q) , tmpq ] <− Z . dd [ , ( r + p + 1) : ( r

+ p + q) , tmpq ] + e . d [ , tmpq − theta . l a g s ]

50 f o r ( i in 1 : q ) {

51 Z [ tmpq ] <− Z [ tmpq ] + theta [ i ] ∗ e [ tmpq − theta . l a g s [ i ] ]

52 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + theta [ i ] ∗ e . d [ , tmpq − theta .

l a g s [ i ] ]

53 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + theta [ i ] ∗ e . dd [ , , tmpq

− theta . l a g s [ i ] ]

54 }

55 }

56 W[ tmpq ] <− eta [ time ] + Z [ tmpq ]

57 #pr in t ( eta [ time ] )

58 #pr in t (Z [ tmpq ] )

59 W.d [ , tmpq ] <− matrix ( c (X[ time , ] , rep (0 , p + q) ) , nco l = 1) + Z

. d [ , tmpq ]

60 W.dd [ , , tmpq ] <− Z . dd [ , , tmpq ]

61

62 pt [ tmpq ] <− exp (W[ tmpq ] ) / (1 + exp (W[ tmpq ] ) )
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63

64 e [ tmpq ] <− (Y[ time ] − pt [ tmpq ] ) / s q r t ( pt [ tmpq ] ∗(1−pt [ tmpq ] ) )

65 e . d [ , tmpq ]<−( (Y[ time ]−1)∗exp (0 . 5 ∗W[ tmpq ] ) /2 − Y[ time ] ∗exp ((−0.5)∗

W[ tmpq ] ) / 2)∗ W.d [ , tmpq ]

66 e . dd [ , , tmpq ]<−( (Y[ time ]−1)∗exp (0 . 5 ∗W[ tmpq ] ) /4 + Y[ time ] ∗exp

(−0.5∗W[ tmpq ] ) / 4)∗W. d [ , tmpq]%o%W. d [ , tmpq]+

67 ( (Y[ time ]−1)∗exp (0 . 5 ∗W[ tmpq ] ) /2− Y[ time ] ∗exp(−0.5∗W[ tmpq ] ) /

2)∗W. dd [ , , tmpq ]

68

69 #update l i k e l i h o o d and d e r i v a t i v e s .

70

71 i f ( time > 1) {

72 l l <− l l + Y[ time ] ∗ W[ tmpq ] − l o g (1+exp (W[ tmpq ] ) )

73 l l . d <− l l . d + (Y[ time]−pt [ tmpq ] ) ∗W.d [ , tmpq ]

74 l l . dd <− l l . dd+(Y[ time]−pt [ tmpq ] ) ∗W. dd [ , , tmpq]− pt [ tmpq ] ∗(1−pt [

tmpq ] ) ∗ W.d [ , tmpq]%o%W. d [ , tmpq ]

75 }

76 }

77 l i s t ( d e l t a = de l ta , l l = l l , l l . d = l l . d , l l . dd = l l . dd)

78 }

G.5 Example of a Wrapper Program

1 l i b r a r y (MASS)

2 source ( ”glarma . l l . gamma. c la im . o f f . e x c l . f i r s t . r ” )

3

4 data01 <− read . t a b l e ( ” s i z e 0 9 f u l l . csv ” , sep = ” , ” , header=T)

5

6 k <− l ength ( data01 )

7 n <− l ength ( data01 [ , 1 4 ] )

8 ones <− rep (1 , n )

9 f indn <− data01 [ , 1 4 0 ]
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10

11 data<−as . matrix ( cbind ( data01 [ , 1 3 9 ] , data01 [ , 1 8 ] , data01 [ , 1 7 ] , ones , f indn

, data01 [ , c (

12 5 ,6 , 7 , 9 , 10 , 12 , 13 , 14 , 16 , 20 , 24 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 41 : 45 , 47 : 54 , 55 : 62 , 67 , 69 :

13 80 :82 , 84 : 87 , 89 : 91 , 93 : 98 , 100 : 104 , 105 , 107 : 111 , 112 , 114 : 117 , 119 : 122 , 126 , 129 : 138 )

] ) )

14

15 dataglm<−data [ data [ , 2 ] >0 , ]

16 Yglm<−dataglm [ , 3 ]

17 Xnum<−l ength ( dataglm [ 1 , ] )

18 Xglm<−dataglm [ , c ( 4 :Xnum) ]

19

20 i n i t . glm<−glm (Yglm ˜ −1 + Xglm , fami ly=Gamma( log ) )

21 summary( i n i t . glm)

22 numclaims <− l ength ( unique ( data [ , 1 ] ) )

23

24 beta <− i n i t . glm$ c o e f f i c i e n t s

25 phi . l a g s<−c (1 )

26 phi . i n i t<−c ( 0 . 0 8 )

27 theta . l a g s<−rep (0 , 0 )

28 theta . i n i t<−rep (0 , 0 )

29

30 c <− 0 .83

31 de l t a<−c ( beta , phi . i n i t , theta . i n i t , c )

32

33 f o r ( i t e r in 1 : 6 ) {

34

35 s = length ( d e l t a )

36

37 l l <− 0

38 l l . d <− matrix (0 , nco l = 1 , nrow = s )

39 l l . dd <− matrix (0 , nco l = s , nrow = s )

40
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41 f o r ( l in 1 : numclaims ) {

42

43 l e n i <− l ength ( data [ data [ ,1]== l , 3 ] )

44 i f ( l e n i > 1) {

45 da ta i <− matrix ( data [ data [ ,1]== l , ] , nrow=l e n i )

46 Y <− da ta i [ , 3 ] ;

47 X <− as . matrix ( da ta i [ , c ( 4 :Xnum) ] )

48

49 temp <− glarma . l l . gamma. c la im . o f f (Y,X, de l ta ,Xnum−3, phi . lags , theta

. l a g s )

50

51 #update l l , l l . d , l l . dd

52

53 l l <− l l + temp$ l l

54 l l . d <− l l . d + temp$ l l . d

55 l l . dd <− l l . dd + temp$ l l . dd

56

57 }

58 }

59 cov1 <− s o l v e ( − l l . dd )

60 s tep <− cov1 %∗% l l . d

61 se1 <− s q r t ( diag ( cov1 ) )

62 de l t a . o ld <− de l t a

63 de l t a <− de l t a . o ld + step

64

65 l i s t ( i t e r = i t e r , d e l t a . o ld = de l t a . old , d e l t a = de l ta , l l = l l , l l

. d = l l . d , l l . dd = l l . dd , cov1 = cov1 , se1 = se1 )

66 }

67 pr in t ( cbind ( c ( i n i t . glm$ c o e f f i c i e n t s , phi . i n i t , theta . i n i t , c ) , de l ta , se1 ,

s tep ) )
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G.6 Example of a Wrapper Program for Ran-

dom Effects

1

2 l i b r a r y (MASS)

3 l i b r a r y ( statmod )

4

5 source ( ”glarma . l l . gamma. c la im . o f f . e x c l . f i r s t . r ” )

6 data01 <− read . t a b l e ( ”\ s i z e 0 3 . csv ” , sep = ” , ” , header=T)

7

8 k <− l ength ( data01 )

9 n <− l ength ( data01 [ , 1 4 ] )

10 ones <− rep (1 , n )

11 f indn <− data01 [ , 1 4 0 ]

12

13 NGQ <− 5

14 d <− 1

15 s t a r t l <− 0 .2

16 L<−matrix ( c ( s t a r t l ) , byrow=F, nco l=d , nrow=d)

17 lambda <− L [L != 0 ]

18

19 data<−as . matrix ( cbind ( data01 [ , 1 4 5 ] , data01 [ , 1 8 ] , data01 [ , 1 7 ] , ones , f indn

, data01 [ , c (9 , 34 , 41 : 45 , 141 , 143 , 80 , 144 ) ] ) )

20

21 dataglm<−data [ data [ , 2 ] >0 , ]

22 Yglm<−dataglm [ , 3 ]

23 Xnum<−l ength ( dataglm [ 1 , ] )

24 Xglm<−dataglm [ , c ( 4 :Xnum) ]

25

26 i n i t . glm<−glm (Yglm ˜ −1 + Xglm , fami ly=Gamma( log ) )

27 summary( i n i t . glm)

28

29 numclaims <− l ength ( unique ( data [ , 1 ] ) )

30
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31

32 beta <− i n i t . glm$ c o e f f i c i e n t s

33 numbeta <− l ength ( beta )

34

35 phi . l a g s<−c (1 )

36 phi . i n i t<−c ( 0 . 0 5 )

37 theta . l a g s<−rep (0 , 0 )

38 theta . i n i t<−rep (0 , 0 )

39

40 c <− 0 .79

41 de l t a<−c ( beta , lambda , phi . i n i t , theta . i n i t , c )

42 s = length ( d e l t a )

43

44 f o r ( i t e r in 1 : 6 ) {

45

46 #i n i t i a l i s e l l , l l . d , l l . dd

47 c<−de l t a [ s ]

48 beta<−de l t a [ 1 : numbeta ]

49 lambda <− de l t a [ ( numbeta+1) : ( numbeta+1) ]

50 numphi <− l ength ( phi . l a g s )

51 phi <− de l t a [ ( numbeta+2) : ( numbeta+1+numphi ) ]

52 numtheta <− l ength ( theta . l a g s )

53 theta <− de l t a [ ( numbeta+2+numphi ) : ( numbeta+1+numphi + numtheta ) ]

54

55

56 #i n i t i a l i s e i t e r a t i o n v e c t o r s

57

58 Tl .RE. Lap <− 0

59 Tl .RE.AGQ <− 0

60 Tl . d<−matrix (0 , nco l = 1 , nrow = s )

61 Tl . dd<−matrix (0 , s , s )

62

63

64 f o r ( l in 1 : numclaims ) {



Appendix G. R Code 301

65 #pr in t ( l )

66 l e n i <− l ength ( data [ data [ ,1]== l , 3 ] )

67

68 i f ( l e n i > 1) {

69

70

71 #i n i t i a l i s e c la im j v e c t o r s

72

73 integrandLj<−rep (NA,NGQ)

74

75

76 da ta i <− matrix ( data [ data [ ,1]== l , ] , nrow=l e n i )

77 Y <− da ta i [ , 3 ] ;

78 X <− as . matrix ( da ta i [ , c ( 4 :Xnum) ] )

79

80 #se t up l ap l a c e data

81 o f f s e t = X %∗% beta

82

83 R <− X[ , 1 ]

84 RL <−R%∗%L

85

86 Zstar <− 0

87

88 f o r ( i t in 1 : 1 0 ) {

89

90 de l t a . lap<−c ( Zstar , phi , c )

91

92 temp <− glarma . l l . gamma. c la im . o f f (Y,RL, d e l t a . lap , 1 , phi . lags ,

theta . lags , o f f s e t )

93

94 Fz <− temp$ l l − 1/2∗ l o g (2 ∗ pi ) − Zstar ˆ2 /2

95 dFz<−temp$ l l . d [ 1 : d]−Zstar

96 d2Fz<−temp$ l l . dd [ 1 : d , 1 : d]−diag ( rep (1 , d ) )

97 Sigmastar<− s o l v e (−d2Fz )
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98 Zstar<−Zstar+Sigmastar%∗%dFz

99

100 }

101

102 Tl .RE. Lap <− Tl .RE. Lap + log ( s q r t (2 ∗ pi /−d2Fz ) ∗exp (Fz ) )

103

104 # AGQ

105

106 Q<−cho l ( Sigmastar )

107 detQ<−det (Q)

108

109 # Gauss Quad po in t s and we ights f o r 1 dimension .

110

111 GQ<−gauss . quad (NGQ, kind=”hermite ” )

112 zeta<−GQ$nodes

113 w<−GQ$weights

114

115 l j<−0

116 Lj<−0

117

118 l j . d<−matrix (0 , nco l = 1 , nrow = s )

119 l j . dd<−matrix (0 , s , s )

120

121 ndata<−l ength (Y)

122

123 z e taa r r ay<−matrix (NA, nco l=NGQˆd , nrow=d)

124 warray<−matrix (NA, nco l=NGQˆd , nrow=d)

125

126 f o r ( j in 1 : d ) {

127 z e taa r r ay [ j , ]<−rep ( rep ( zeta , each=NGQˆ(d−j ) ) ,NGQˆ( j −1))

128 warray [ j , ]<−rep ( rep (w, each=NGQˆ(d−j ) ) ,NGQˆ( j −1))

129

130 }

131
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132 f o r ( i in 1 :NGQˆd) {

133

134 # Generate the z g r id and we ights from GQ va lue s

135

136 z t i l d e <− Zstar + 2ˆ0 .5 ∗ t (Q)%∗%zetaa r r ay [ , i ]

137 weight <− detQ/pi ˆ(d/ 2)∗exp (sum( ze taa r r ay [ , i ] ˆ 2 ) ) ∗prod ( warray [ , i

] )

138

139 # co r r e l a t ed random e f f e c t s New Way

140

141 ZR<−kronecker ( t ( z t i l d e ) ,R)

142 XallZR<−cbind (X,ZR)

143

144 r = numbeta + 1

145 de l t a . agq <− c ( beta , lambda , phi , c )

146 z . glimarma<−glarma . l l . gamma. c la im . o f f (Y, XallZR , d e l t a . agq , r , phi .

lags , theta . lags , o f f s =0)

147

148 l z<−z . glimarma$ l l −sum( z t i l d e ˆ2)/2

149 l z . d<−z . glimarma$ l l . d

150 l z . dd<−z . glimarma$ l l . dd

151

152 integrandLj [ i ]<−exp ( l z ) ∗weight

153 Lj<−Lj+integrandLj [ i ]

154 l j . d<− l j . d+l z . d∗ integrandLj [ i ]

155 l j . dd<− l j . dd+l z . dd∗ integrandLj [ i ]+ l z . d%∗%t ( l z . d ) ∗ integrandLj [ i ]

156

157 }

158

159 l j <− l o g ( Lj )

160 l j . d<−(1 /Lj ) ∗ l j . d

161 l j . dd<−(1 /Lj ) ∗ l j . dd − l j . d%∗%t ( l j . d )

162

163 Tl .RE.AGQ <− Tl .RE.AGQ + l j
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164 Tl . d<−Tl . d + l j . d

165 Tl . dd<−Tl . dd + l j . dd

166

167 }

168

169 }

170

171 cov1 <− s o l v e ( − Tl . dd )

172 s tep <− cov1 %∗% Tl . d

173 se1 <− s q r t ( diag ( cov1 ) )

174 de l t a . o ld <− de l t a

175 de l t a <− de l t a . o ld + step

176 i f ( i t e r > 3) { de l t a [ s−2]<−max( de l t a [ s −2 ] ,0 .0001) }

177 e l s e { de l t a [ s−2]<−s t a r t l }

178 de l t a [ s ]<−max( de l t a [ s ] , 0 . 0 1 )

179

180 }

181

182 pr in t ( cbind ( c ( i n i t . glm$ c o e f f i c i e n t s , 0 . 1 , phi . i n i t , theta . i n i t , 1 ) , de l ta ,

se1 , s tep ) )

183 Tl .RE.AGQ

G.7 Fitting generalised gamma using numerical

methods

1 glarma . l l o n l y . ggamma . c la im . o f f <− func t i on (Y, X, de l ta , r , phi . lags ,

theta . lags , o f f s e t = 0)

2 {

3 n <− l ength (Y)

4 p <− l ength ( phi . l a g s )

5 q <− l ength ( theta . l a g s )
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6 s <− r + p + q + 2

7 beta <− de l t a [ 1 : r ]

8 phi <− de l t a [ ( r + 1) : ( r + p) ]

9 theta <− de l t a [ ( r + p + 1) : ( r + p + q) ]

10 c <− de l t a [ s−1]

11 k <− de l t a [ s ]

12 mpq <− 0

13

14 i f ( ( p + q ) > 0) {

15 mpq <− max( phi . l a g s [ p ] , theta . l a g s [ q ] )

16 }

17

18 nmpq <− n + mpq

19 e <− ar ray (0 , nmpq)

20 Z <− ar ray (0 , nmpq)

21 W <− ar ray (0 , nmpq)

22 lambda <− ar ray (0 , nmpq)

23 e . d <− ar ray (0 , c ( s , nmpq) )

24 Z . d <− ar ray (0 , c ( s , nmpq) )

25 W.d <− ar ray (0 , c ( s , nmpq) )

26 e . dd <− ar ray (0 , c ( s , s , nmpq) )

27 Z . dd <− ar ray (0 , c ( s , s , nmpq) )

28 W. dd <− ar ray (0 , c ( s , s , nmpq) )

29 eta <− X %∗% beta + o f f s e t

30

31 l l <− 0

32 l l . d <− matrix (0 , nco l = 1 , nrow = s )

33 l l . dd <− matrix (0 , nco l = s , nrow = s )

34

35 f o r ( time in 1 : n ) {

36 tmpq <− time + mpq

37 i f (p > 0) {

38 Z . d [ ( r + 1) : ( r + p) , tmpq ] <− Z [ tmpq − phi . l a g s ] + e [ tmpq −

phi . l a g s ]
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39 Z . dd [ ( r + 1) : ( r + p) , , tmpq ] <− t ( (Z . d + e . d ) [ , ( tmpq − phi .

l a g s ) ] )

40 Z . dd [ , ( r + 1) : ( r + p) , tmpq ] <− Z . dd [ , ( r + 1) : ( r + p) , tmpq ]

+ (Z . d + e . d ) [ , ( tmpq − phi . l a g s ) ]

41

42 f o r ( i in 1 : p ) {

43 Z [ tmpq ] <− Z [ tmpq ] + phi [ i ] ∗ (Z + e ) [ tmpq − phi . l a g s [ i ] ]

44 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + phi [ i ] ∗ (Z . d [ , tmpq − phi . l a g s [ i

] ] + e . d [ , tmpq − phi . l a g s [ i ] ] )

45 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + phi [ i ] ∗ (Z . dd [ , , tmpq −

phi . l a g s [ i ] ] + e . dd [ , , tmpq − phi . l a g s [ i ] ] )

46 }

47 }

48

49 i f ( q > 0) {

50 Z . d [ ( r + p + 1) : ( r + p + q) , tmpq ] <− e [ tmpq − theta . l a g s ]

51 Z . dd [ ( r + p + 1) : ( r + p + q) , , tmpq ] <− Z . dd [ ( r + p + 1) : ( r +

p + q) , , tmpq ] + t ( e . d [ , tmpq − theta . l a g s ] )

52 Z . dd [ , ( r + p + 1) : ( r + p + q) , tmpq ] <− Z . dd [ , ( r + p + 1) : ( r

+ p + q) , tmpq ] + e . d [ , tmpq − theta . l a g s ]

53 f o r ( i in 1 : q ) {

54 Z [ tmpq ] <− Z [ tmpq ] + theta [ i ] ∗ e [ tmpq − theta . l a g s [ i ] ]

55 Z . d [ , tmpq ] <− Z . d [ , tmpq ] + theta [ i ] ∗ e . d [ , tmpq − theta . l a g s

[ i ] ]

56 Z . dd [ , , tmpq ] <− Z . dd [ , , tmpq ] + theta [ i ] ∗ e . dd [ , , tmpq

− theta . l a g s [ i ] ]

57 }

58 }

59

60 W[ tmpq ] <− eta [ time ] + Z [ tmpq ]

61 W.d [ , tmpq ] <− matrix ( c (X[ time , ] , rep (0 , p + q + 1) ) , nco l = 1)

+ Z . d [ , tmpq ]

62 W.dd [ , , tmpq ] <− Z . dd [ , , tmpq ]

63
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64 lambda [ tmpq ] <− exp (W[ tmpq ] )

65 lambdat<−lambda [ tmpq ]

66 Yt<−Y[ time ]

67 mean <− lambdat∗gamma( c+1/k) /gamma( c )

68 var <− lambdatˆ2∗ ( (gamma( c + 2/k ) /gamma( c ) ) − ( gamma( c + 1/k)

/gamma( c ) ) ˆ2 )

69 e [ tmpq ]<− (Yt − mean)/var ˆ(1/ 2)

70

71 #update l i k e l i h o o d and d e r i v a t i v e s .

72 i f ( time > 1) {

73 l l <− l l + log (k ) − lgamma( c ) − W[ tmpq ] + ( c∗k − 1)∗ ( l o g (Yt)−W[ tmpq

] ) − (Yt∗ lambdatˆ(−1) ) ˆk

74 }

75 }

76 l i s t ( d e l t a = de l ta , l l = l l )

77 }

78

79 l i b r a r y (MASS)

80 l i b r a r y ( statmod )

81 l i b r a r y ( numDeriv )

82 l i b r a r y ( p a r a l l e l )

83 l i b r a r y ( snow)

84 l i b r a r y ( s now fa l l )

85

86 source ( ”glarma . l l . ggamma . c la im . o f f . e x c l . f i r s t . l l o n l y . r ” )

87 data01 <− read . t a b l e ( ” s i z e 0 3 . csv ” , sep = ” , ” , header=T)

88

89 k <− l ength ( data01 )

90 n <− l ength ( data01 [ , 1 4 ] )

91 ones <− rep (1 , n )

92 f indn <− data01 [ , 1 4 0 ]

93

94 data<−as . matrix ( cbind ( data01 [ , 1 4 5 ] , data01 [ , 1 8 ] , data01 [ , 1 7 ] , ones , f indn

, data01 [ , c (7 , 14 , 16 , 20 , 31 , 34 , 41 : 45 , 92 : 97 , 141 , 143 , 144 ) ] ) )
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95

96 dataglm<−data [ data [ , 2 ] >0 , ]

97 Yglm<−dataglm [ , 3 ]

98 Xnum<−l ength ( dataglm [ 1 , ] )

99 Xglm<−dataglm [ , c ( 4 :Xnum) ]

100

101 i n i t . glm<−glm (Yglm ˜ −1 + Xglm , fami ly=Gamma( log ) )

102 summary( i n i t . glm)

103

104 numclaims <− l ength ( unique ( data [ , 1 ] ) )

105 beta <− i n i t . glm$ c o e f f i c i e n t s

106 phi . l a g s<−c (1 )

107 phi . i n i t<−c ( 0 . 0 6 )

108 theta . l a g s<−rep (0 , 0 )

109 theta . i n i t<−rep (0 , 0 )

110 betaphi <− c ( beta , phi . i n i t )

111

112 c <− 0 .97

113 k <− 0 .89

114

115 S p l i t l l <− func t i on ( numspl it ) {

116

117 LLFunc <− func t i on ( betaphi ) {

118 de l t a<−c ( betaphi , c , k )

119 s = length ( d e l t a )

120

121 l l <− 0

122 l l . d <− matrix (0 , nco l = 1 , nrow = s )

123 l l . dd <− matrix (0 , nco l = s , nrow = s )

124

125 f o r ( l in (1400 ∗ ( numsplit−1)+1) : ( min(1400 ∗numsplit , numclaims ) ) ) {

126 l e n i <− l ength ( data [ data [ ,1]== l , 3 ] )

127

128 i f ( l e n i > 1) {
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129 da ta i <− matrix ( data [ data [ ,1]== l , ] , nrow=l e n i )

130 Y <− da ta i [ , 3 ] ;

131 X <− as . matrix ( da ta i [ , c ( 4 :Xnum) ] )

132 temp <− glarma . l l o n l y . ggamma . c la im . o f f (Y,X, de l ta ,Xnum−3, phi .

lags , theta . l a g s )

133 l l <− l l + temp$ l l

134 }

135 }

136 r e turn ( l l )

137 }

138

139 nd l l <− LLFunc( betaphi )

140 r e turn ( nd l l )

141 }

142

143 S p l i t l l d <− func t i on ( numspl it ) {

144

145 LLFunc <− func t i on ( betaphi ) {

146 de l t a<−c ( betaphi , c , k )

147 s = length ( d e l t a )

148

149 l l <− 0

150 l l . d <− matrix (0 , nco l = 1 , nrow = s )

151 l l . dd <− matrix (0 , nco l = s , nrow = s )

152

153 f o r ( l in (1400 ∗ ( numsplit−1)+1) : ( min(1400 ∗numsplit , numclaims ) ) ) {

154 l e n i <− l ength ( data [ data [ ,1]== l , 3 ] )

155

156 i f ( l e n i > 1) {

157 da ta i <− matrix ( data [ data [ ,1]== l , ] , nrow=l e n i )

158 Y <− da ta i [ , 3 ] ;

159 X <− as . matrix ( da ta i [ , c ( 4 :Xnum) ] )

160 temp <− glarma . l l o n l y . ggamma . c la im . o f f (Y,X, de l ta ,Xnum−3, phi .

lags , theta . l a g s )
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161 l l <− l l + temp$ l l

162 }

163 }

164 r e turn ( l l )

165 }

166 nd l l . d <− grad (LLFunc , betaphi )

167 r e turn ( nd l l . d )

168 }

169

170 S p l i t l l d d <− func t i on ( numspl it ) {

171

172 LLFunc <− func t i on ( betaphi ) {

173 de l t a<−c ( betaphi , c , k )

174 s = length ( d e l t a )

175

176 l l <− 0

177 l l . d <− matrix (0 , nco l = 1 , nrow = s )

178 l l . dd <− matrix (0 , nco l = s , nrow = s )

179

180 f o r ( l in (1400 ∗ ( numsplit−1)+1) : ( min(1400 ∗numsplit , numclaims ) ) ) {

181 l e n i <− l ength ( data [ data [ ,1]== l , 3 ] )

182

183 i f ( l e n i > 1) {

184 da ta i <− matrix ( data [ data [ ,1]== l , ] , nrow=l e n i )

185 Y <− da ta i [ , 3 ] ;

186 X <− as . matrix ( da ta i [ , c ( 4 :Xnum) ] )

187 temp <− glarma . l l o n l y . ggamma . c la im . o f f (Y,X, de l ta ,Xnum−3, phi .

lags , theta . l a g s )

188 l l <− l l + temp$ l l

189 }

190 }

191 r e turn ( l l )

192 }

193 nd l l . dd <− he s s i an (LLFunc , betaphi )
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194 r e turn ( nd l l . dd )

195 }

196

197 f o r ( i t e r in 1 : 3 ) {

198

199 #i n i t i a l i s e l l , l l . d , l l . dd

200

201 s f I n i t ( p a r a l l e l=TRUE, cpus=7, type=”SOCK” )

202 s fExpo r tAl l ( )

203 s fL i b r a r y ( numDeriv )

204 t e s t . l l <− s fLapply ( 1 : 7 , S p l i t l l )

205 t e s t . l l d <− s fLapply ( 1 : 7 , S p l i t l l d )

206 t e s t . l l dd <− s fLapply ( 1 : 7 , S p l i t l l d d )

207 s fS top ( )

208

209 sum( u n l i s t ( t e s t . l l ) )

210

211 sumll <− 0

212 sumlld <− ar ray (0 , 23 )

213 sumlldd <− ar ray (0 , c (23 , 23 ) )

214

215 f o r (m in 1 : 7 ) {

216 sumll <− sumll + un l i s t ( t e s t . l l [m] )

217 sumlld <− sumlld + un l i s t ( t e s t . l l d [m] )

218 sumlldd <− sumlldd + as . a r ray ( matrix ( u n l i s t ( t e s t . l l dd [m] ) , nco l

=23 ,byrow=TRUE) )

219 }

220 s tep<−s o l v e (−sumlldd , sumlld )

221 pr in t ( i t e r )

222 pr in t ( cbind ( c ( i n i t . glm$ c o e f f i c i e n t s , phi . i n i t , theta . i n i t ) , betaphi ,

s tep ) )

223 betaphi <− betaphi + step

224 }

225
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226 cov1 <− s o l v e ( − sumlldd )

227 se1 <− s q r t ( diag ( cov1 ) )

228 pr in t ( cbind ( c ( i n i t . glm$ c o e f f i c i e n t s , phi . i n i t , theta . i n i t ) , betaphi , se1 ,

s tep ) )
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Spatial Features

H.1 Introduction

This appendix chapter explores the spatial aspect of NSW CTP data. In the

context of valuation, perhaps the location aspect of the claims are less important,

as establishing the total liabilities of a portfolio is the main objective. However,

for long tailed products, valuation results flow directly into the pricing of the

insurance products. Hence, correctly allowing for the location aspect in a valuation

framework can enhance the pricing of the product.

Pricing is the other key aspect of an actuary’s work, it is establishing the

premium a policyholder needs to pay for the insurance product. In essence, the

price is comprised of the cost of the insurance claims, the expenses of the insurance

company as well as a profit margin for the insurance company. For long tailed

products, valuation work is directly linked to the calculation of the first component

- the cost of the insurance claims. Since the true cost of claims for a long tailed

product will not be known until years later, valuation type techniques are employed

to form an estimate of the ultimate claims cost.

One of the key objectives for a pricing project is to improve the granularity of

the pricing work. More granular analyses allow the development of a more refined

rating structure, and that is paramount in the selection of the “better” risks and

313



314 Data

leave the “worse” risks to the competitors. Take gender as an example, the insurer

can reap great rewards if it can establish females are better risks than males by a

magnitude of 10%, then offering a discount of slightly lower than 10%, say 8%, in a

market that the other insurers do not differentiate gender in their pricing. On the

other hand, if the competitors have developed a more sophisticated rating structure

then the insurer is exposed to “anti-selection” and may stand to lose considerable

money until its rating structure catches up to those of the competitors.

Location is an important rating factor in most insurance products. For home

and contents insurance, location is highly correlated with weather and damages due

to natural perils; for motor vehicle insurance, location through demographics infers

considerable information regarding the driving behaviours of the policyholder.

H.2 Data

For NSW CTP insurance, location is a prescribed rating factor. The regulator,

MAA, defines 5 regions,

• Metro - the Sydney Metropolitan Area

• Country - the rural areas in the state

• Outer Metro - the area immediately outside the Metro area

• Wollongong - the regional city of Wollongong and surrounding areas

• Newcastle - the regional city of Newcastle and surrounding areas.

the MAA also prescribe the premium “relativities” for these 5 regions, that is,

how much an insurer has to charge for a Metro policy relative to a Country policy.

The insurer is not allowed to incorporate further location based rating factors in

addition to the regions as defined by the MAA.

From the modelling of the claim development processes, region, as defined by

the MAA, has not been a significant variable in most of the processes. This is
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perhaps unsurprising as 60% of the vehicles and 65% of the CTP claimants are in

the “Metro” region and the other regions are quite small in comparison, and they

cover a vast areas of space.

For the purposes of this chapter, only the Sydney metro will be analysed.

Firstly, the geography and demographics are easier to discuss due to the smaller

region geographically and diverse demographics contained within. Secondly, the

area contains 75% of the claims cost arising from the NSW CTP Scheme. We

believe investigating the spatial elements within the Metro region would be of

more interest.

The PIR data uses “postcode” as the measurement for location and provides

three postcodes per claim,

i) Claimant Postcode - the location of the claimant’s usual residence

ii) Garaged Postcode - the location of the vehicle’s registered address, can be

used as a proxy for the location of the driver-at-fault

iii) Accident Postcode - the location of the accident

While postcodes generally encapsulate a large area, it should be adequate when

the area under analyses is limited to the metropolitan areas where population

density is relatively high and each postcode comprises of a relatively small area.

The figures below provide a general overview of the areas of Sydney and the

CTP claim rates. Figure H.1 shows the number of CTP “claims” per 1000 residents

by postcode over the accident years 2004 to 2008. The population data is drawn

from the 2006 Australian Census (Australian Bureau of Statistics [2006a]), and the

data chosen is the 5 accident years centred around 2006. The average number of

claims per 1000 residents across the whole state is around 1.2 claimants per 1,000

residents p.a.. The diagram shows much of the south side of the city (south of the

Parramatta River and Parramatta Road/Great Western Highway) has a higher

claimant per population rate.
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Figure H.1: Sydney Metro - Number of Claims per 1000 Population by Postcode

Figure H.2 shows the number of claims caused by 1000 vehicles garaged at

each postcode. The number of vehicles data is drawn from the 2006 Vehicles

Census (Australian Bureau of Statistics [2006b]) and once again is compared to

claims from the accident years 2004 to 2008. The average number of claims per

1,000 garaged vehicles across the state is around 2.0. The diagram shows a similar

pattern to Figure H.1, where the areas in the south reflect a higher number of

claims per vehicle garaged.
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Figure H.2: Sydney Metro - Number of Claims Caused by 1000 Vehicles Garaged
by Postcode

Clearly, there is a clear pattern in the claim incidence in the NSW CTP scheme

across the various postcodes in the Sydney Metro area. Attention is now turned

to the Claims Development Process framework and the following figures (Figure

H.3 to Figure H.7) map the average process variables by claimants’ postcode of

residence in the “Metropolitan” region as defined by the MAA (Motor Accidents

Authority [2008]).

Upon examining the mapped raw averages, i.e., not accounting for covariates,

the following observations are drawn.

• The area around “Richmond” in Sydney’s northwest is labelled as “Outer

Metro” region, creating a gap in the maps created. Other gaps include “The

Pond” which is a large new development, and new postcode, near Kellyville

and the University of NSW and Macquarie University.
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• There does not seem to be a clear pattern for the delay between revision

process variable, tj,i.

• A clear pattern in the overall probability of finalisation (
∑

Sj,i/
∑

j′) by

postcode. The city’s South and Southwest areas seem to have a lower prob-

ability of finalisation than the other areas; in other words, a larger number

of revisions is made to a claim before it finalises.

• There is also a clear pattern that is exhibited for the probability of an upward

revision, (
∑

Dj,i/
∑

j′). The pattern is similar to that of the probability of

settlement, that is, the South and Southwest stand out in having a higher

probability of an upward revision. However, as observed earlier Dj,i has

a strong correlation with Sj,i where the majority of final revision are also

downward revisions. Hence, if the South and Southwest have a lower proba-

bility of finalisation, the observed final revisions are fewer and this leads to

fewer downward revisions and the observed higher likelihood of an upward

revision.

• The two maps that represent the average revisions sizes, Figure H.6 for the

last and downward revision and Figure H.7 for the other revisions, show less

clear pattern. However, there is still a definite degree of spatial correlation

that is present in the maps.
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Figure H.3: Sydney Metro - Average Delay by Postcode
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Figure H.4: Sydney Metro - Average Probability of Finalisation by Postcode
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Figure H.5: Sydney Metro - Average Probability of Upward Revision by Postcode
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Figure H.6: Sydney Metro - Average Size of Last Downward Revision by Postcode
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Figure H.7: Sydney Metro - Average Size of Other Revisions by Postcode

The following sections examine the location based information contained in

the data. The modelling will concentrate on the settlement process as the data

suggest considerable location based information is contained in the data. Note,

the analyses contained in this chapter are purely for analytical and illustration

purposes of the methods. The results are for academic purposes only.
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H.3 Modelling Location Characteristics

The first method of allowing for location within the model framework is to use

location characteristics as covariates. This does not deviate or complicate the

framework developed in Chapters 6 and 7. It simply introduce more covariates

that describes the characteristics of the location the claimant resides. In this

section the following two characteristics are used.

i) Proportion of households that speak English only - this is used as a proxy

for how familiar with the NSW CTP Scheme. As described earlier, the Aus-

tralian Third Party Bodily Injury insurance product differs greatly to other

parts of the world. Hence, the Census information on how many persons

in an area speaks only English is used as a proxy as to how familiar is the

claimant with the CTP scheme and how likely the claimant is to act proac-

tively in settling the claim.

ii) Index of Socioeconomic Disadvantage - this variable, and other SEIFA in-

dices, is widely used and have been significant in other insurance products in

our experience. It can be a measure of income (important for the economic

loss component of CTP claim), vehicle ownership rates, vehicle utilisation

rates, etc.

The following two figures maps each of these variables across the Sydney Metro

region. While the map shows similar pattern, the correlation between the two

variables is actually quite low at -0.08. This can be loosely interpreted as a higher

proportion of a postcode comprises of English speaking only families leads to a

slightly smaller index of socioeconomic disadvantage (or more affluent area).
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Figure H.8: Sydney Metro - Proportion of Households Speaks English Only
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Figure H.9: Sydney Metro - Index of Socioeconomic Disadvantage, Deciles

Similar to the modelling from Chapter 7, two additional set of categorical

variables are added to the covariates, the first bands the proportion of English

speaking only families in a postcode, the seconds represents the pentiles of the

index of socioeconomic disadvantage. Table H.1 shows the modelled coefficients of

these location characteristics when applied to the settlement, Sj,i, process.
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Table H.1: Coefficients of the Socioeconomic Location Characteristics
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The proportion of English Speaking Only householders in a postcode turned out

not to be a significant explanatory factor in the modelling of settlement process;

however, the index of socioeconomic disadvantage turned out to be a significant

factor. The pattern for the latter is quite clear, the top 2 pentiles (or the 40%

of the most disadvantaged postcodes) are similar, the next 2 pentiles have a 10%

higher odds of finalising at a given revision and the bottom and the bottom pentile

has the highest likelihood of finalisation with a coefficient of 0.19.

The next two figures (Figure H.10 and Figure H.11) show the average residual

and the chi squared goodness fit test of the settlement process when no location

information is included and when the socioeconomic index of disadvantage is used.

Figure H.10 shows the model used in Chapter 6 still has considerable location based

information with in the residuals, when observed actual number of finalisations

is compared with the fitted number of finalisations. There are significant over-

prediction of the number of final revisions in the South and Southwest parts of

the city and under-prediction in the north and east parts. The bottom half of

the Figure shows a chi-square goodness-of-fit test in a chloropleth map form. The

darker reds shows a fitted value that deviates from the observed value significant

while the lighter shades the fitted value is close to the observed value.
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Figure H.10: No Location Information Used - Average Residual and Chisq Con-
tribution

Figure H.11 presents the same information for the model with the socioeco-

nomic index. While the colour patterns in the residual map is less obvious, there

is still consistent over-prediction in the southwest parts of the Sydney Metro re-

gion. The χ2 statistic for the model without location factors when summarised by

the 217 postcodes is 272, which has a p-value of 0.007 against the null hypothesis

that the model is a good fit by postcode. The χ2 statistic for the model using
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the index of disadvantage is 210, which has a p-value of 0.621 against the null

hypothesis of a good fit by postcode.

Figure H.11: Socioeconomic Characteristics - Average Residual and Chisq Contri-
bution

Another method to measure the extent of the spatial information contained in

the residuals is using a spatial correlogram. This is done through an iterative use

of Moran’s I, a measure of spatial covariance. Define distance intervals of equal
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length (0, 1d], (1d, 2d], (2d, 3d]... then define

I l =

∑

i

∑

j w
l
i,j(Yi − Ŷ )(Yj − Ŷ )

∑

i 6=j

∑

i(Yi − Ŷ )2
(H.1)

where l is the multiple of the distance interval, i and j are pairs of postcodes and

Yi is the variable of interest for postcode i. wl
i,j is the weights used and takes on

the value of 1 if the distance between i and j is between ((l−1)d, ld]. The distance

has been measured between the centroids of the postcodes using the Big Circle

Distance (gnomonic projection). Plotting I l against ld shows the autocorrelation

against distance between postcodes. If there are spatial correlation, one would

expect a significantly higher or lower correlation at shorter distance, which would

decay towards 0 as distance increases.

Figure H.12 and Figure H.13 show the spatial correlation for the residuals

from the model without location covariates and the model with the demographic

characteristics. For the model without incorporating location based variables,

there is a significant correlation between 5 and 15 km suggesting postcodes with

centroids within 15km are correlated with each other. Note, within the Sydney

Metro region, the pair of postcodes furthermost apart have a distance of 75km

between them. The shaded region represent the 95% confidence interval, generated

by simulation.
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Figure H.12: Spatial Correlogram - No Location Information Model

By incorporating the demographics, the spatial autocorrelation is reduced. The

spatial autocorrelation at all distances are now within the confidence interval;

however, most of them marginally so.
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Figure H.13: Spatial Correlogram - Demographic Characteristics Model

H.4 Modelling Zones as Covariate

Another method to model location is to divide the area into an appropriate number

of zones and use the zones directly in the modelling. The zoning adopted is the

Australian Post’s BSP zones (Barcoded Pre-sort). While this zoning is perhaps

of little relevance to the NSW CTP claims finalisation probabilities, the zones are

most readily available from the Australian Post website.

Within the Sydney Metro region there are 13 BSP Zones,

• Alexandria

• Burwood

• Frenchs Forest
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• Illawarra

• Ingleburn

• Leightonfield

• Nepean

• Parramatta

• Pymble

• Seven Hills

• St Leonards

• Sydney Streets

• Waterloo

When the BSP zones are used as a covariates in the modelling of the probability

of finalisation, it is a significant variable with coefficients having a range of 0.30,

that is, the some locations has a 30% higher odds of finalisation a claim at a given

revision compared to other locations. This is a wider spread compared to the

coefficients for the socioeconomic disadvantage pentiles, which was around 0.2.

Figure H.14 shows the average residual and the chi-squared test for using zones

directly in the model. The residual and the goodness of fit maps seem to be on

par with the model that used the socioeconomic index of disadvantage. However,

the χ2 test statistic is 184, suggesting an improved fit by postcode.
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Figure H.14: BSP Zones - Average Residual and Chisq Contribution

Figure H.15 below shows the spatial correlogram for using the BSP zones in the

modelling of the probability of settlement. All autocorrelations at various distances

are within the confidence interval. It would appear the zones have removed all the

spatial signals contained in the data.
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Figure H.15: Spatial Correlogram - BSP Zones Model

H.5 Spatial Smoothing

Kriging is a well known spatial modelling technique where interpolation between

data points occur using a gaussian process with an assumed prior covariance struc-

ture. If the normality assumption is suitable, Kriging has been show to produce

unbiased linear predictors. However, the normality assumption would not be ap-

propriate in this situation.

Unlike Kriging, Thin Plate Splines (TP Splines) smoothing method does not

require an assumed distribution. This makes TP splines a more versatile choice

in modelling spatial patterns within the data. The residuals from the Settlement

process model without any location factors were smoothed using TP splines and

the resultant smoothed contour is shown below. The smoothed contour suggest
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the probability can differ up to 5%. Which also represents a 30% difference in the

odds to finalise at a given revision.

Figure H.16: TP Splines - Fitted Values Contour

Figure H.17 shows the average residual and the chi-squared test for fitting TP

Splines to the residual of the no-location factor model. The residuals seems devoid

of any clear pattern to the eye. The χ2 statistic for a goodness of fit test using

TP splines is 140, suggesting it removes location based information better than

the other methods considered so far.
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Figure H.17: TP Splines - Average Residual and Chisq Contribution

The spatial correlogram is very similar to the model that used BSP directly.
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Figure H.18: Spatial Correlogram - TP Splines Model

While we have considered a few methods to allow for the spatial feature of

the data, we have not able to incorporate these methodologies into the GLARMA

structure in a unified framework. We have left such ambitions for potential future

research.
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