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Abstract 

Thick anatase films were fabricated on graphite substrates using a method of anodic aqueous 

electrophoretic-deposition using oxalic acid as a dispersant. Thick films were subsequently fired in air 

and in nitrogen at a range of temperatures. The morphology and phase composition were assessed and 

the photocatalytic performance was examined by the inactivation of Escherichia coli in water. It was 

found that the transformation of anatase to rutile is enhanced by the presence of a graphite substrate 

through reduction effects. The use of a nitrogen atmosphere allows higher firing temperatures, results 

in less cracking of the films and yields superior bactericidal performance in comparison with firing in 

air. The beneficial effects of a nitrogen firing atmosphere on the photocatalytic performance of the 

material are likely to be a result of the diffusion of nitrogen and carbon into the TiO2 lattice and the 

consequent creation of new valence band states.   
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1. Introduction 

 

The development of novel approaches to water purification is of increasing importance as population 

growth and climate change place a growing strain on water resources 
1, 2

. Photocatalysis is an 

attractive approach to water treatment as this technique does not involve the consumption of chemical 

reagents, enables the removal of a variety of pollutants, is effective across a wide range of pollutant 

concentration levels and can be achieved using solar irradiation as the sole energy input 
3-5

.  

Owing to the distinct levels of its valence and conduction bands, TiO2 has emerged as the leading 

material in photocatalytic applications 
6, 7

. TiO2 photocatalysis takes place through the photo-

generation of an electron-hole pair, an exciton, by irradiation exceeding the band gap of the material. 

This leads to the generation of surface adsorbed radicals and subsequent oxidation of organic 

pollutants on TiO2 surfaces 
8
. The two phases of titanium dioxide most commonly used in 

photocatalysis are anatase and rutile. Despite the slightly larger band gap of anatase (~3.2eV vs. 

~3.0eV), this phase is widely considered to exhibit superior photocatalytic activity as a result of 

greater levels of surface adsorbed radicals 
9-12

. It has been frequently reported that mixed-phase TiO2 

exhibiting low levels of rutile alongside anatase exhibits enhanced performance through reduced 

electron-hole recombination 
13-17

. 

As photocatalyzed destruction of pollutants takes place at close proximity to TiO2 surfaces, a high 

surface area is advantageous for effective rates of pollutant removal 
18

. For this reason studies of 

water purification by TiO2 photocatalysts are often carried out using aqueous suspensions of powder 

19, 20
. The disadvantage of using TiO2 in the form of a powder suspended in the treated water is the 

required catalyst recovery processes, for this reason the immobilisation of TiO2 is frequently carried 

out 
21-24

.  

Electrophoretic deposition (EPD) is a practical method for immobilising TiO2 photocatalysts as it 

enables rapid sample fabrication from suspensions of low solids loading 
25-27

. The current work 

examines the effects of firing conditions on the microstructure and performance of thick films 



prepared by anodic electrophoretic deposition of anatase TiO2 onto graphite substrates. As carbon has 

been reported to enhance the anatase to rutile phase transformation and lower the band gap in TiO2
28-

30
, this method of fabrication may improve photocatalytic performance by yielding bi-phasic TiO2 at 

lower temperatures and through carbon doping of the photocatalyst layer.   

 

2. Experimental Procedure 

 

2.1.  EPD 

Thick TiO2 films were prepared through anodic EPD from acidic aqueous suspensions adjusted to 

pH~ 3 using oxalic acid. As reported elsewhere, the use of oxalic acid imparts a negative zeta 

potential to TiO2 particles in suspension and thus facilitates anodic EPD from acidic aqueous 

suspensions with lower levels of water electrolysis 
31

. Using a solids loading of 1%, a deposition 

voltage of 10 V and a deposition time of 10 min, TiO2 anatase powder (>99%, Merck Chemicals) with 

a BET evaluated surface area of ~10 m
2
g

-1
, was deposited on 25 x 25 x 2 mm graphite substrates 

(GrafTech International, Ohio, USA).  The average density of 8 thick films prepared was evaluated to 

be  64.5 gm
-2

 with a standard deviation of 12.2 gm
-2

  and from cross sectional examination the 

thickness was found to be ~80 µm.  

2.2. Sintering 

Anatase films deposited on graphite substrates were fired in air using an electric muffle furnace in the 

range 500-700 ºC. Graphite substrates were completely burnt off at 700ºC when fired in air, while 

samples fired at lower temperatures exhibited poor adhesion and substrate deterioration. Samples fired 

in nitrogen were fabricated in a tube furnace at temperatures 500-900 ºC with high purity nitrogen 

flowing through the tube at 1 l min
-1

. Subsequent to firing, no substrate deterioration was observed in 

nitrogen fired samples and films showed good adhesion to substrates, although some loosely adhered 

particles were present.  



 

 

2.3. Microstructural analysis 

Scanning electron microscopy (SEM) and optical microscopy were employed to examine the 

microstructure of films synthesised in this work. SEM analysis was facilitated using a FEI Nova-230 

SEM. Phase identification by laser Raman microspectroscopy was facilitated using a Renishaw inVia 

Raman microscope with laser excitation at 514 nm wavelength.  Quantitative phase analysis by X-ray 

Diffraction was carried out using a Phillips MPD unit. Phase fractions were calculated from XRD 

peaks using the method of Spurr and Myers according to the following equation 
32

.  

           
  

  
     (1) 

In this equation XA is the phase fraction of anatase (assumed XA=1-XR) and IR and IA are respectively 

the intensity of the rutile (110) peak at 27. 35° 2θ and the anatase (101) peak at 25.18° 2θ. 

 

2.4. Bactericidal Activity 

Bactericidal activity of the samples fabricated in this work was assessed by the inactivation of 

Escherichia coli (E. coli) AN180 (School of Biotechnology and Biomolecular Sciences, UNSW, 

Australia) in aerated water, a common approach to evaluating the bactericidal activity of TiO2 

photocatalysts. A diagram of the bactericidal reactor is shown in Fig. 1.  

Bactericidal evaluation was carried out by adding 2 ml of overnight-incubated E. coli culture 

inTryptone Soy Broth (Oxoid, Basingstoke, UK) to 300 ml of autoclaved distilled water in which 

photocatalyst samples were placed. The system was irradiated by two 15W UV lamps with emission 

peaks at λ=350 nm. Using a Digitech QM1587 Light Meter, irradiance was evaluated to be 4.42 Wm-

1 at the photocatalyst surface.  



The destruction of bacteria was evaluated by determining the concentration of colony forming units 

(CFUs) in the treated water according to ASTM D5465. 1 ml aliquots of water were taken at fixed 

time intervals and serially diluted at 1:9 ratios in sterile 0.1% peptone water (Oxoid). Subsequently, 

0.1 ml aliquots of the appropriate dilutions were spread-plated on Tryptone Soy Agar (Oxoid) and the 

plates were incubated for 24 hours at 37 ºC. After incubation, colonies were enumerated and counts 

converted to log10 CFU/ml, representing the concentration of bacteria in the reactor water.  

 

 

Fig. 1. Diagram of bactericidal reactor   

 

2.5. Spectroscopy 

The radiative recombination of photogenerated electron-hole pairs in the different samples was 

studied by examining the intensities of photoluminescence (PL) emission spectra. This was carried 

out by gathering diffuse spectra in the range 350-900 nm (~3.5 – 1.4 eV) using a Kimmon 20 mW 325 

nm He-Cd laser in conjunction with a Renishaw inVia Raman microscope.  

UV-Visible absorbance spectra were gathered to examine the shift in the absorption edge and overall 

absorbance between the different samples. These spectra were gathered using a Perkin-Elmer 

Lambda-35 UV-Vis spectrometer with a Labsphere RSA-PE-20 integrating sphere of 50 mm 

diameter. Scans were carried out in the wavelength range 200-700 nm with a 2 nm slit width. 

 



3. Results 

 

3.1. Microstructure 

The prefiring microstructure of all thick films prepared in this work exhibited gas-bubble damage 

resulting from the parasitic process of water electrolysis as shown in Fig. 2. Holes resulting from 

bubble damaged ranged from ~5 to ~50 µm in size. Samples fired in air at 700ºC exhibited complete 

oxidation of the graphite substrate, leaving behind a fragile unsupported TiO2 film. Samples fired in 

air at 500 and 600 ºC exhibited substrate deterioration through partial oxidation, resulting in spalling 

and poor adhesion of deposited films.  Samples fired in nitrogen did not exhibit substrate deterioration 

and resulted in well adhered films showing less cracking as evident from the comparison of Fig. 3a 

and 3b. For samples fired at 600ºC the grain size consisted of anatase grains of ~150nm size, 

increasing with firing temperature, as Shown in Fig. 4. Films fired at 900 ºC showed large ~1µ 

coalesced grains of rutile. 

Porosity was evident in films fired at all temperatures, a feature likely to be beneficial for 

photocatalytic applications through the increase in available surface area.  

 



Fig. 2. Typical microstructure showing gas-bubble damage on the surface of a thick film fired in nitrogen at 600ºC. 

  

Fig. 3. EPD films fired at 600 ºC (a) in nitrogen (b) in air 

 

a  

                            

 

 



 

Fig. 4. Microstructure of film fired in nitrogen at (a) 600ºC (b) 800ºC and  (c) 900ºC  

 

 

3.2. Phase composition 

XRD and Raman patterns, shown in Fig. 5. And Fig. 6. respectively, show the presence of rutile in 

EPD films fired in nitrogen at 800ºC with near complete transformation to rutile at 900ºC. No 

significant effect of firing atmosphere on phase transformation was observed as all samples fired in air 

showed only the anatase phase of TiO2. Unsupported anatase exhibited greater thermal stability and 

showed only anatase peaks after firing at 800ºC in air and nitrogen.  

 



 

Fig. 5. XRD patterns of samples fired in nitrogen. A, R and G represent anatase, rutile and graphite respectively 

 



 

Fig. 6. Raman spectra of EPD films fired in nitrogen with anatase (A) and rutile (R) peaks marked 

XRD patterns were interpreted to calculate phase fractions using the method of Spurr and 

Myers. The quantitative analysis of phase composition is shown in Fig. 7. The enhanced 

anatase to rutile transformation in graphite-supported thick films is evident from the larger 

rutile fraction in these samples in comparison with isothermally fired unsupported powder. 



 

Fig.7. Quantitative analysis of phase composition in graphite supported TiO2 thick films and unsupported TiO2 

3.3. Bactericidal Activity 

 The changes in the concentration of E. coli AN180 CFUs under UV illumination are shown in Fig. 8. 

An uncoated graphite substrate was used to evaluate the baseline inactivation of bacteria under UV 

illumination in the absence of a photocatalyst and it can be seen that only a minor decrease in CFU 

concentration takes place under such conditions.  

Samples fired in nitrogen exhibited superior bactericidal activity than samples fired in air. Nitrogen 

fired TiO2 thick films facilitated a > 90% inactivation rate within 20 minutes of UV irradiation while 

air fired samples did not achieve similar results. The effects of firing temperature on bactericidal 

activity are not unequivocal from the results, however it appears that sample fired at lower 

temperature exhibits a higher initial rate of bacteria inactivation.   

Complete sterilisation of the water was not achieved within the timeframe of the experiments, rather 

the microbial concentration reached a sustainable level at which the rate of bacteria inactivation was 

offset by their natural multiplication. 



 

Fig. 8. Concentration of E. coli AN180 CFUs as a function of time in bactericidal experiments using TiO2 thick films 

 

3.4. Spectroscopy 

Photoluminescence emission spectra gathered at room temperature from different films are shown in 

Fig. 9. The emission peak at ~2.3 eV is consistent with the reported PL spectra of anatase 
33-35

. Thick 

films fired in nitrogen at 600 ° C exhibit higher levels of PL emission which decrease with increasing 

firing temperature. Consistent with reported data, the decrease in PL emission is particularly 

significant as the anatase to rutile transformation takes place 
34, 35

. A sample fired in air exhibited 

lower PL emission in comparison with sample isothermally fired in nitrogen. This may be a result of 

lower charge carrier recombination (owing to lower excitation levels or improved electron-hole 

separation) or a consequence of increased scattering of the 325nm UV laser used for photoexcitation.  



 

Fig. 9. Photoluminescence emission spectra of samples excited by 325 nm irradiation 

 

UV-Visible absorption spectra are shown in Fig. 10. An absorption edge at around 380-390 nm 

corresponds to the band gap of anatase TiO2 of ~3.2 eV. It can be observed that samples fired in 

nitrogen exhibit higher overall absorption and a more moderate slope at the absorption edge.  These 

results cannot be interpreted to determine the photocatalytic performance of the material as increased 

absorption does not necessarily imply increased photogeneration of electron-hole pairs. Furthermore 

the differing levels of exposure of the graphite substrates bring about a shift in the absorption levels of 

the films. The step at 326 nm is a result of the irradiation lamp changeover at this wavelength. 



 

Fig. 10. UV-Visible absorption of TiO2 thick films fired at different temperatures in air and nitrogen 

 

4. Discussion 
 

4.1. Effect of firing conditions on microstructure 

Graphite is generally reported to exhibit rapid oxidation in air around 700 °C 
36, 37

 and thus the 

oxidation of the substrates fired at 700°C in air in this work was anticipated. As would be expected, 

the oxidation of the graphite substrate for films fired in air has a detrimental effect on the structure 

and adhesion of the deposited thick film. This is evident from increased spalling and cracking, shown 

in Fig. 3, and the low resilience of the air-fired films to abrasion, suggesting firing in air is an 

unsuitable treatment for EPD films on graphite substrates, even at temperatures below the ignition 

temperature of graphite. In contrast, EPD thick films fired in nitrogen did not show oxidation damage 

and exhibited superior adhesion. As shown in Fig. 4, grain size increased with increasing firing 

temperature, with a significant growth occurring between 800-900°C, as the phase transformation to 



rutile reached near completion.  Significant grain growth is likely to be detrimental to the 

photocatalytic activity of the material due to a decrease in available surface area; however the partial 

transformation to rutile may be beneficial for the photocatalytic activity through improved charge 

carrier separation as reported elsewhere.  

4.2. Phase composition 

The anatase phase of the powder used in this work shows greater thermal stability to what is 

frequently reported in the literature. While anatase is typically reported to transform to rutile at 

temperatures between 600 and 700 ºC 
30, 38-41

, unsupported powder in this work remained entirely in 

the anatase phase after firing at 800ºC. Similar commercially available anatase has shown thermally 

stable anatase phase in other work 
42, 43

, this thermal stability is likely to be due to low levels of silica 

impurities in the raw material 
30

. The presence of the graphite substrate promotes the anatase to rutile 

transformation. This promotion of the phase transformation, illustrated in Fig. 5. And Fig. 7., is most 

likely due to the increase in oxygen vacancies in the anatase lattice as reported elsewhere 
30

. In a non-

oxidising atmosphere, the carbon in the graphite substrate may cause a partial reduction of the TiO2 

film giving rise to the formation of  oxygen vacancies and Ti
+3

 species, the presence of which 

enhances the anatase to rutile phase transformation by easing the atomic rearrangement involved in 

this transformation 
44

. 

 

 

4.3. Bactericidal activity 

From Fig. 8. it can be seen that samples fired in nitrogen exhibited superior photocatalytic 

performance in comparison with air fired material. Higher photocatalytic activity of TiO2 fired in 

nitrogen has been reported previously 
45

. A likely explanation of the enhanced photocatalytic 

performance observed in samples fired in nitrogen is that this treatment enables the diffusion of 

nitrogen atoms from the firing atmosphere and carbon atoms from the substrate, into the TiO2 lattice 



which facilitate an increase in exciton photo-generation. As reported elsewhere 
28, 29, 46

 , the 

substitution of oxygen with nitrogen and carbon atoms in TiO2 gives rise to new valence states and 

thus increases the optical response by a decrease in the band-gap of the material. It has also been 

reported that the substitution of carbon and nitrogen in place of oxygen in TiO2 reduces charge carrier 

recombination 
28

.    Conversely, in samples fired in air, bactericidal activity was low, showing only 

moderate activity relative to an uncoated graphite substrate. The lower photocatalytic activity of air 

fired samples may be a result of substrate oxidation which inhibited the diffusion of carbon into the 

TiO2 lattice and brought about deterioration in the quality of EPD films which resulted in a loss of 

photocatalyst in the bactericidal reactor.  

The effect of increasing firing temperature on the bactericidal activity is not unequivocally clear from 

the results shown in Fig. 8. It appears the material fired at a lower temperature brings about a more 

rapid initial bacterial inactivation, however the sample fired at 800°C exhibits a lower final CFU 

concentration. The differences in bactericidal performance between the two samples fired in nitrogen 

at different temperatures are not of a significant magnitude, and the ambiguity may result from the 

mixed effect of grain size and phase composition. The lower-temperature fired material exhibits 

higher surface area owing to the finer grain size visible in Fig. 4, however the material fired at 800°C 

shows a secondary rutile phase, potentially improving charge carrier separation and consequently 

improving photocatalytic activity 
13-17

.  Furthermore the material fired at 800°C may exhibit greater 

levels of carbon and nitrogen diffusion in the TiO2 lattice, giving rise to a lower band-gap. 

In general, the bactericidal activity observed in this work was notably low in comparison with results 

reported elsewhere 
19, 20, 47

, and no complete sterilisation was achieved. The comparatively low rates of 

E. coli inactivation evident from Fig. 8. are likely to be the result of small catalyst area in comparison 

with the reactor dimensions, low irradiance levels, the use of air sparging rather than pure oxygen 

sparging, and the surface area of the commercially available material used which is lower than 

catalysts used in other work. Irradiance levels in the reactor used in this work were measured at 4.42 

Wm
-1

 while the UV irradiance of sunlight is up to 50 Wm
-1 

 
48

.  This suggests that greater efficiencies 

can be achieved using natural solar irradiation rather than illumination by a UV lamp. The deposition 



of higher surface area TiO2 powder in conjunction with nitrogen firing may yield improved 

performance than the samples prepared in this work.  

4.4. Spectroscopy 

The photoluminescence spectra of thick films fired in nitrogen shown in Fig.9 exhibit a decrease in 

PL emission intensity with increasing firing temperature.  Increased PL emission in TiO2 results 

generally from increased radiative recombination of excitons 
49, 50

 and may indicate enhanced photo-

generation of these electron-hole pairs, a faster rate of their recombination or a combination of both of 

these phenomena 
51-53

. Intensity of PL emission may also vary as a result of surface properties and 

resultant variation in the scattering of the photoexciting UV 
53

. Consequently, similar to UV-Vis 

absorbance, PL emission intensity cannot be used to directly infer photocatalytic activity.  

The spectra in Fig. 9 show higher levels of PL emission from samples fired in N2 in comparison with 

a sample fired in air. An increase in PL emission in TiO2 fired in an oxygen deficient atmosphere has 

been previously reported as a result of increased oxygen vacancies
34

. Additionally, the PL spectra 

from the sample fired in air at 600 °C may be diffuse owing to increased surface roughness resulting 

from oxidation of the substrate and consequent deterioration of the thick TiO2 film.  

The similar levels photocatalyzed inactivation of E. coli exhibited by samples fired at 600 °C and 800 

°C in nitrogen suggest that the lower PL emission intensity of the sample fired at 800 °C in nitrogen 

can be attributed ,at least partly, to improved charge carrier separation in this sample resulting from a 

mixed anatase-rutile phase composition. If the lower PL emission intensity in the sample fired at 800 

°C was purely a result of lower levels of excitation, this material would exhibit markedly poorer 

photocatalytic activity in the inactivation of bacteria. Conversely if the lower PL emission intensity 

was solely the result of improved charge carrier separation, this material would be expected to exhibit 

noticeably higher activity. 

UV-Visible spectra shown in Fig. 10 show a more moderate slope at the adsorption edge in nitrogen 

doped samples with higher overall absorption. These spectra are consistent with the aforementioned 



formation of new valence states by nitrogen and/or carbon diffusion and the resultant increased 

optical response 
54

. A further increase in overall absorption and broadening of the UV-Vis absorption 

spectra can be seen as a result of rutile formation. This is consistent with reports that the formation of 

rutile at low levels is sufficient to shift the absorption edge of TiO2 to higher wavelengths
24

.    

 

 

5. Conclusions 
 

Porous thick films of TiO2 can be fabricated on graphite substrates by using a method of anodic 

aqueous EPD. When such fabrication methods are combined with firing in a nitrogen atmosphere 

a well adhered film exhibiting enhanced photocatalytic activity can be obtained.  

The anatase to rutile transformation is enhanced in thick films on graphite substrates as a result of 

increased levels of oxygen vacancies created by the diffusion of carbon atoms into the TiO2 

lattice. The diffusion of carbon and nitrogen into the TiO2 lattice may also explain the improved 

photocatalytic activity of material fired in nitrogen in comparison with air fired material. A mixed 

phase composition, achieved by firing at 800°C in nitrogen, further enhances photocatalytic 

activity through improved charge carrier separation. 
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