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Abstract 

This thesis aims to compare strengths and weaknesses of AI and humans performing 

face identification tasks, and to use recent advances in machine-learning to develop new 

techniques for understanding face identity processing. By better understanding underlying 

processing differences between Deep Convolutional Neural Networks (DCNNs) and humans, 

it can help improve the ways in which AI technology is used to support human decision-

making and deepen understanding of face identity processing in humans and DCNNs.  In 

Chapter 2, I test how the accuracy of humans and DCNNs is affected by image quality and 

find that humans and DCNNs are affected differently. This has important applied 

implications, for example, when identifying faces from poor-quality imagery in police 

investigations, and also points to different processing strategies used by humans and 

DCNNs. Given these diverging processing strategies, in Chapter 3, I investigate the potential 

for human and DCNN decisions to be combined in face identification decisions. I find a large 

overall benefit of 'fusing' algorithm and human face identity judgments, and that this 

depends on the idiosyncratic accuracy and response patterns of the particular DCNNs and 

humans in question. This points to new optimal ways that individual humans and DCNNs can 

be aggregated to improve the accuracy of face identity decisions in applied settings.  

 

Building on my background in computer vision, in Chapters 4 and 5, I then aim to 

better understand face information sampling by humans using a novel combination of eye-

tracking and machine-learning approaches.  In chapter 4, I develop exploratory methods for 

studying individual differences in face information sampling strategies. This reveals 

differences in the way that 'super-recognisers' sample face information compared to typical 

viewers. I then use DCNNs to assess the computational value of the face information 

sampled by these two groups of human observers, finding that sampling by 'super-

recognisers' contains more computationally valuable face identity information. In Chapter 5, 

I develop a novel approach to measuring fixations to people in unconstrained natural 

settings by combining wearable eye-tracking technology with face and body detection 

algorithms. Together, these new approaches provide novel insight into individual 

differences in face information sampling, both when looking at faces in lab-based tasks 

performed on computer monitors and when looking at faces 'in the wild'. 
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Chapter 1 - General Introduction 

Understanding the signals emitted by faces is a vital task for humans. Extracting and 

interpreting cues relating to, for example, biological sex, emotional state, gaze direction, 

and identity is critical to recognising and interacting successfully with one another. Humans 

have therefore developed a functioning system tuned to understanding the visual cues 

emitted by the faces around us.  

This tuned system has led to the theoretical position that people are 'experts' in 

processing the signals emitted by faces (e.g. Carey, 1992). However, a significant exception 

to this is when people attempt to match the identity of unfamiliar face images. For 

processing face identity information, our expertise is reserved only for familiar people, as 

unfamiliar face matching is very challenging (see Young & Burton, 2018). And so, this lack of 

expertise in processing unfamiliar faces is problematic given the importance of this task in 

applied settings, for example, court proceedings and applied security settings. Numerous 

studies now show large proportions of errors, including in professional populations that 

perform the task in daily work (see White, Towler, & Kemp, 2021).  

Recent technological advancements mean that it is increasingly common to see 

these settings implement automatic systems for face recognition based on Artificial 

intelligence (AI) algorithms to replace - or support – human decisions. The new generation 

of Deep Convolutional Neural Networks (DCNNs) - effortlessly operating today - can now 

match pairs of unfamiliar face images by identity with similar accuracy to the best humans 

(e.g. Phillips et al., 2018). However, despite being powerful tools, such algorithms are still 

subject to errors in unfamiliar face matching, raising similar concerns compared to humans 

regarding their use in security settings. 

One of this thesis aims is to compare the accuracy of humans and DCNNs and the 

strengths and weaknesses of them performing similar tasks. By better understanding the 

underlying processing differences between humans and DCNNs processing faces, we argue 

that it can help improve how AI technology is used to support human decision-making, 

providing practical gains regarding the accuracy - and fairness - of face identification 

systems using these tools. In addition to this practical outcome, this aim can also help 

deepen the understanding of face identity processing in humans because DCNNs have 

recently received significant attention as potential candidates to model face identity 



15 

 

processing in humans. And so, comparing the underlying similarities of human and DCNN 

processing also tests how well the current generation of DCNN models human perceptual 

and cognitive processing. 

The second aim of this thesis is to use my engineering expertise for methodological 

gains. Given my background in Electrical and Computer Engineering, I explore the 

application of computer vision and machine learning approaches to improve current 

methods used to investigate the perceptual mechanisms underlying face perception. For 

instance, one of these methods is to use eye-tracking devices. Such devices offer 

exceptionally rich information regarding direct attention. However, because the data 

provided by such devices is so rich, it is an effort in the scientific community to analyse it 

and recognise visual patterns to – possibly - investigate individual differences. And so, 

towards the end of this thesis, I develop new techniques for analysing eye-tracking data that 

will enable an improved understanding of the mechanisms of attention of human 

participants performing computer-based and 'in the wild' studies of face perception.  

The following sections of the general introduction introduce the main background to 

my experimental work. First, I discuss how error-prone unfamiliar identity verification 

performance can be for humans and DCNNs before reviewing image manipulations that can 

further deteriorate performance. Second, I introduce potential routes for reducing such 

errors, focussing on the promise of 'fusion' approaches that combine independent decisions 

made by humans with high-face processing abilities and state-of-the-art DCNNs. These 

fusion effects rest on divergence in cognitive processing between humans and DCNNs, so it 

is important to understand individual differences in cognitive mechanisms behind face 

identity decisions. Third, I present evidence that the ocular strategy of humans sampling 

information from faces changes with their face-processing abilities, enabling a better 

understanding of the mechanisms behind individual differences and how these differ from 

DCNN processing. Finally, I  will outline the experimental chapters and how these relate to 

the aims of this thesis. 
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Human performance in face identity processing tasks 

Most people can effortlessly recognise and match the faces of familiar individuals. 

For example, when matching familiar face images by identity, people typically achieve 

ceiling-level accuracy even when images have poor lighting, different angles of view, poor 

image quality, and 'disguises' (i.e. hats, glasses, and beards)(Burton, Wilson, Cowan, & 

Bruce, 1999; Hancock, Bruce, & Burton, 2000). However, when performing these same tasks 

with unfamiliar faces, performance decreases significantly. Even in a simple matching task, 

where participants must decide if two face images presented side-by-side are of the same 

person or different people, the observed accuracy is around 80% (Burton et al., 2010).  

 Figure 1.1 shows a pairwise face-matching decision from a standardised test of 

unfamiliar face-matching ability created by Burton and colleagues (2010), the Glasgow Face 

Matching Task (GFMT). These images are taken using two different good-quality cameras in 

a controlled environment minutes apart in time. Therefore, in this task, the face images are 

aligned, with no discrepancies in lighting conditions, angles of view, quality or age-related 

appearance. And yet people are highly susceptible to errors on this task. Half of the 

participants get this particular pair of Figure 1.1 wrong, and the average person makes 20% 

of mistakes considering the entire test of 40 image trials. In more challenging tests, using 

not necessarily perfect images, the overall accuracy can drop up to 40% (e.g. Davis & 

Valentine, 2009; Henderson, Bruce, & Burton, 2001; Phillips, Yates, et al., 2018). Notably, 

this reduction in accuracy automatically questions the validity of using humans to perform 

such tasks in security settings where the task is to compare -for example- the identities of 

unfamiliar people captured by surveillance CCTV footage.   
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Figure 1.1. Example of a face-matching trial of the GFMT (Burton et al., 2010). Do these two images 
show the same person or different people? Around half of the people incorrectly respond that these 

images are of the same individual.  

 

How face images affect unfamiliar face matching performance in applied settings 

Face images vary in a range of factors. Some of these could be related to imaging 

conditions, for example, the quality of the image, illumination, angles of view, etc. Others 

are related to the face itself, for example, appearance changes due to aging, make-up, facial 

hair etc. Combined, these sources of variation can cause the task of unfamiliar face 

matching in realistic conditions to be far more complicated than the example shown in 

Figure 1.1.  

Jenkins and colleagues (2011) demonstrated this by creating a task where 

participants sorted a set of 40 'ambient' images by identity. In this task, they gave 

participants 40 pictures containing realistic variations in illumination, angles of view, quality, 

appearance, etc. When the identities were of unfamiliar individuals, the average participant 

sorted the 40 images into seven identity piles, despite the correct answer being that there 

were just two identities equally distributed in the set. However, participants could easily 

find the two identities when the images were of familiar individuals. This result 

demonstrates that our ability to recognise unfamiliar individuals is susceptible to natural 

changes in appearance and external factors (i.e. image quality, angles of view, illumination, 

etc.)(Jenkins, White, Van Montfort, & Burton, 2011).  

The quality of an image is another essential factor in provoking different outcomes 

regarding face identity decisions. This factor has applied importance in security and forensic 

settings where it is often necessary to compare the identity of a suspect depicted on a high-

quality mugshot photograph against those taken by – for example – CCTV surveillance 
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systems. Even high-quality modern CCTV cameras are known to introduce distortions, 

artefacts, and unusual viewing angles due to being positioned far away (i.e. on rooftops and 

ceilings) from the subject of interest (see Seckiner et al., 2018 for a review). This disparity in 

the nature of mugshot versus CCTV photographs is an important issue because the distinct 

sources, combined with the unfamiliarity of the suspect, can further induce more errors, 

which could lead to the arrest of an innocent person.  

Image quality has significantly impacted face-matching performance within lab-

based performance testing. For example, in developing the Glasgow Face Matching Test 2 

(GFMT2), White and colleagues (2022) included variations in head angle, expression and 

subject-to-camera distance. Notably, these sources of image variance were not present in 

the original GFMT. So the GFMT2 was designed to be more challenging than its predecessor 

and more representative of the difficulties encountered in applied face-matching tasks. 

When one of the face images in a pair was pictured at a distance, thereby reducing the 

image quality (see Figure 1.2), participants were 10% less accurate on average compared to 

when two images were of similar quality.  

 

Figure 1.2. Example of a face-matching trial of the GFMT2 (White et al., 2022). Do these two images 
show the same person or different people? Despite the task being similar to the one shown in Figure 
1.1, the discrepancies in image quality make the task more challenging, but also more representative 

of the difficulty of face-matching decisions in important applied settings. 
 

In applied tasks, for example identifying culprits from CCTV, the task of unfamiliar 

face matching is highly error-prone. In studies using realistic CCTV quality images, and 

where there are changes in appearance of individuals between CCTV and mugshot images, 

errors can be from 25% to almost 50% (e.g. Davis & Valentine, 2009; Henderson, Bruce, & 

Burton, 2001). In a study by Davis and Valentine (2009), participants had to match the 
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identity of people present in a room against old video footage (i.e. 1-year-old) taken from a 

middle-range distance. This study shows that 25% of decisions were errors. Interestingly, 

adding disguises to the videos (i.e. hats, glasses, etc.) increased identification errors from 

25% to 48%. As another example, in more straightforward tasks (i.e. a 1-to-1 matching task), 

Henderson and colleagues (2001) show that 55% of their participants wrongfully decided 

that the video footage of a robber did not match his good-quality photograph. Crucially, 

even though these values reveal some significance, it is important to notice that the entire 

forensic task in real-world situations requires a sequence of distinct actions that aid the 

investigation beyond matching one identity to another. To illustrate, we could consider 

details such as the location, timing, a person's walking style, individuals who witnessed the 

event, and other forensic methods to guide these choices. Still, because identity-matching is 

an important aspect of the overall task, it is critical to improve the mechanisms for decisions 

in this area. 

 

Individual differences in identity processing 

The previous section showed that variation in unfamiliar face-matching performance 

is affected by factors relating to the stimulus. But it is important to address that factors 

relating to the observer can also affect the outcome of the decision. As an example, 

researchers show that working under time pressure (Fysh & Bindemann, 2017), sleep 

restriction (Beattie, Walsh, McLaren, Biello, & White, 2016), and high anxiety levels 

(Attwood, Penton-Voak, Burton & Munafò, 2013) can also significantly affect the outcome 

of facial identification decisions.  

But while these factors relate to transient variations in participants' mental states, 

viewers also vary in their intrinsic ability levels. It is now well known that face identity 

processing ability differs substantially in the population (see White & Burton, 2022 for a 

review). And while people generally show poor performance in unfamiliar face-processing 

tasks, there is also an extensive range of variation in this task inter and intra-individuals for 

face processing paradigms (see Bobak et al., 2023 for review). Interestingly, however, 

studies also show that this ability is consistent over time, showing high test re-test 

correlations (e.g. Sutherland et al., 2020; Germine et al., 2015, Balsdon et al., 2018; White et 

al., 2021) and generalisation across different types of face identity processing tasks (e.g. 
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McCaffery, Robertson, Young, & Burton, 2018). In addition, this ability appears to be 

hereditary (Wilmer et al., 2010; Zhu et al., 2010; Shakeshaft & Plomin, 2015). This ability 

spectrum ranges from those who show severe impairments in recognising or matching faces 

(e.g. Duchaine, Wendt, New, & Kulomäki, 2003) - sometimes not even recognising 

themselves in a mirror – to those with outstanding face identity processing performance in 

multiple standard deviations above the mean (e.g. see Dunn, Summersby, Towler, Davis, & 

White, 2020).  

The literature distinguishes these individuals possessing different face-processing 

performances into three primary performance groups, from lower to extreme face-

processing abilities: Prosopagnosics, Typical viewers (i.e. average population), and Super-

recognisers. People at the lower end of the performance spectrum include individuals 

diagnosed with Prosopagnosia (Greek: prosōpon, face; agnōsia, ignorance). Prosopagnosia is 

a neuropsychological disorder that could be acquired by trauma (Acquired Prosopagnosia, 

see Damasio, Damasio, & Van Hoesen, 1982) or due to intrinsic hereditary and natural 

developmental factors (Developmental Prosopagnosia, see Behrmann & Avidan, 2005). 

Impaired face processing in prosopagnosia is not due to impairment in broader intellectual 

or low-level visual functions (Susilo & Duchaine, 2013).  

In contrast, the other extreme side of the ability spectrum comprises individuals 

possessing outstanding performance in both unfamiliar recognition and matching tasks, 

called super-recognisers (Russell et al., 2009). Super-recognisers can outperform groups of 

typical viewers in face-processing tasks despite the cognitive and perceptual underpinnings 

that explain their superiority remaining unclear. Still, super-recognisers are said to be a 

solution to real-life applied settings involving processing facial identities. Being used by, for 

example, police forces in the UK (see Robertson, Noyes, Dowsett, Jenkins, & Burton, 2016) 

or other countries1. 

Individual differences in face processing ability are robust to changes in task format. 

For instance, unfamiliar face-matching demands comparing the identity information 

between two different face images without requiring any memory component. On the other 

hand, face-memory tasks demand memorising identities to be posteriorly recognised. It is 

plausible to assume that these apparently different tasks rely on different mechanisms. 

 
1 https://www.superrecognisers.com/post/new-super-recogniser-contract-with-europe-s-largest-police-
force-bundespolizei-signed-in-greenwich  

https://www.superrecognisers.com/post/new-super-recogniser-contract-with-europe-s-largest-police-force-bundespolizei-signed-in-greenwich
https://www.superrecognisers.com/post/new-super-recogniser-contract-with-europe-s-largest-police-force-bundespolizei-signed-in-greenwich
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However, studies report high correlations between face memory and matching abilities in 

the range of 0.5 to 0.7 (Verhallen et al., 2017; Balsdon, Summersby, Kemp, & White, 2018; 

McCaffery, Robertson, Young, & Burton, 2018), showing that there is a generalizable 

component of face identity processing tasks.  

In addition to this ‘convergent validity’ of face identity processing tasks (see Wilmer 

et al. 2012), studies also show that face processing performance shows weak associations 

with other visual processing tasks (e.g. general object recognition). To illustrate, studies 

report that face-recognition ability, measured by the Cambridge Face Memory Test 

(CFMT)(Duchaine & Nakayama, 2006), shows weak correlations with unfamiliar abstract art 

recognition (r=0.26, Wilmer et al., 2010; r=0.26, Wilmer et al., 2012) and car recognition 

(r=0.29, Shakeshaft & Plomin, 2015; r=0.37, Dennett et al., 2012). In addition, other studies 

report that face-matching ability, measured by the GFMT, shows weak correlations with 

fingerprint matching (r=0.18), firearm matching (r=0.20), and artificial ‘potato print’ 

matching (r=0.41)(see Growns, Dunn, Mattijssen, Quigley-McBride, & Towler, 2022). While 

demonstrations of convergent validity show face identity processing ability is generalizable 

across task format, weak associations with object memory show ‘divergent validity’, in that 

face processing appears as its own, somewhat isolated, ability (see also Richler et al., 2019; 

and White & Burton, 2022 for a review). 

 

Improving human performance 

It is well established that standard participant cohorts of university students perform 

poorly on unfamiliar face-matching tasks. More concerningly, professional staff who 

perform unfamiliar face-matching in their daily work show comparably poor levels of 

accuracy (see White, Towler, & Kemp, 2021 for a review). It is, therefore, natural to ask 

whether anything can be done to improve the accuracy of face-matching decisions in 

applied settings, especially in high-stakes security and forensic tasks. One possible – and 

relatively straightforward - solution relies on the scientific study of individual differences in 

face identity processing ability, which has been reviewed in the previous section. That is, 

selecting people that score highly on face identity processing tests has been proposed as a 

possible solution to this problem (e.g. White, Kemp, Jenkins, Matheson, & Burton, 2014; 

Bobak, Dowsett, & Bate, 2016). 
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Due to their natural and stable face-processing ability, super-recognisers have 

increasingly received more interest in policing and national security surveillance tasks as a 

pragmatic solution to avoid errors related to identity recognition. As an example, the 

London Metropolitan Police have been selecting individuals based on their face-processing 

abilities to be part of their team (Davis, Forrest, Treml, & Jansari, 2018; Davis, Lander, Evans, 

& Jansari, 2016; Robertson, Noyes, Dowsett, Jenkins,& Burton, 2016), as well as other police 

forces outside the UK (e.g. German Federal Police1)(see Ramon, Bobak, & White, 2019). 

However, despite the use of super-recognisers for such roles in security and forensic 

settings,  studies supporting this solution primarily focus on correlations between 

performances on laboratory-based tests (e.g. Bobak, Bennetts, Parris, Jansari, & Bate, 2016; 

Balsdon, Summersby, Kemp, & White, 2018). Whether these tests are able to predict 

accuracy in everyday police work is not tested (see Ramon, Bobak, & White, 2019). 

An alternative solution is to apply training procedures to improve face-processing 

abilities. It is typical in professional organisations that require staff to make face identity 

decisions – for example, passport issuance officers (White et al., 2014) – to provide training. 

But is this training effective in improving unfamiliar face-matching accuracy? To answer this 

question, Towler and colleagues (2019) systematically investigated the content of eleven 

different professional training courses. They also tested the effectiveness of four of these 

courses by comparing face identification accuracy in large groups of participants before and 

after they had completed the training. They report that short courses, such as the ones 

frequently used by government agencies, do not improve facial identification accuracy. On 

the other hand, they provide evidence that a more prolonged course (i.e. a 3-day training 

course) significantly improved the facial identification performance of participants, but only 

on some of the tests. Thus, it is still unclear if training courses can directly improve facial 

recognition performance, and where it is effective it is likely to rely on the length of training 

processes (Towler et al., 2019).  

Relatedly, recent studies have shown that forensic examiners (i.e. professionals who 

perform the investigation in identification procedures) outperform standard accuracy on 

unfamiliar face identification tasks (see White, Towler, & Kemp, 2021 for a review). Forensic 

examiners are trained personnel who aid in providing evidence in court proceedings (e.g. 

Jain, Klare, & Park, 2012; Dessimoz & Champod, 2008; Jain & Ross, 2015). Studies show that 

forensic examiners exceed the normative levels of face identification performance 
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compared to typical viewers or students (White, Phillips, Hahn, Hill, & O'Toole, 2015) and 

show comparable accuracy to super recognisers in unfamiliar face matching tasks (Phillips et 

al., 2018). One possible explanation for their high accuracy of unfamiliar face matching is 

due to the training they receive in close feature-based comparison of face images 2. 

However, this argument conflicts with previous studies investigating the effectiveness of 

training procedures (e.g. Towler et al., 2019). Alternatively, examiners may possess 

inherently higher face identity processing ability, and they gravitate to the examiner roles 

through ‘self-selection’. However, this is not consistent with apparent qualitative 

differences in the way that examiners perform the task, which dissociates them from typical 

viewers and super-recognisers (see White et al., 2015). It appears likely then that a 

combination of training, prolonged practice, mentorship and experience lead to superior 

abilities of examiners, but the underpinnings of such improvement remain unclear (see also 

Towler, Kemp, & White, 2021).  

 

Technological alternatives  

Another approach to overcoming humans' error-prone unfamiliar facial identification 

ability is to replace human decisions with automatic systems. Recent advances in 

technology, such as the multi-layer architecture of Deep Convolutional Neural Networks 

(DCNNs), mean that artificial systems can now achieve accurate face identification across a 

wide range of image variations (e.g. expression, illumination, angle of view, etc.). Recent 

DCNNs, when properly trained for identity recognition, can achieve comparable 

performance to the most accurate human participants: super-recognisers and forensic facial 

examiners (see Grother, Ngan & Hanaoka, 2019; Phillips et al., 2018). DCNNs are trained via 

backpropagation to associate face images with identity labels. The robustness of DCNNs 

producing accurate identity recognition even with diverse image variation is a notable 

property of their performance compared to previous generations of face recognition 

algorithms. This is most likely due to the massive databases of images captured in 

unconstrained environments that are used to train these neural networks (Phillips, 2017; 

O'Toole et al., 2018).  

 
2 Facial Identification Scientific Working Group. 2011. Guidelines and recommendations for facial comparison 
training to competency. See www.fiswg.org/document/. 

http://www.fiswg.org/document/
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A schematic illustration of the computational process involved in matching face 

images using a DCNN is shown in Figure 1.3. DCNNs represent the identity of a face image as 

a relatively compact numerical description – i.e. a feature vector – that can be used as a 

quick tool to compare the identity information of two previously unseen faces (Figure 1.3, 

top panel). Feature vectors are derived through a hierarchical process of progressive 

abstraction from the original pixel content of the image via convolution and pooling 

operations (Figure 1.3, top left). Weightings of neurons in the network are adjusted during 

training, where millions of images are fed to the network, which learns to associate these 

images with identity labels via backpropagation. Feature vectors of trained networks can 

then be used to verify the identity of unfamiliar faces by projecting the vectors of two 

images into the multidimensional 'face space' defined by the feature vectors and measuring 

the distance between them in the space (Figure 1.3, top right).  

 
Figure 1.3. Schematic diagram showing how DCNNs process face identity. See text for details. 

 

 In an appropriately trained model, similar identities are clustered more closely 

together in face space, and different identities are physically further apart. At the bottom 

panel of Figure 1.3, we show the hypothetical distribution of Euclidean distances between 
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images of non-matching identities in red and matching identities in green. By applying a 

simple threshold between these distributions, the algorithm can decide if the images are of 

the same person or different people. However, despite DCNNs showing the potential to 

discriminate any two faces from matching or non-matching identities (see bottom left panel 

of Figure 1.3), in realistic scenarios, DCNNs produce errors observed as overlaps between 

such distributions, resulting in a range of similarity scores for which the DCNN can not make 

a definitive identity judgment (see bottom right panel of Figure 1.3). And so, while DCNNs 

perform very accurately – as well as the best performing human participants (Phillips et al. 

2018) – they continue to make errors on challenging tasks.  

There are other reasons why entrusting face identification decisions to DCNNs 

without human supervision can be problematic. For example, DCNNs are trained using face 

databases varying in demographic composition (e.g. in age, biological sex, ethnicity, etc.). 

Because DCNNs optimisation is essentially a 'statistical fit' to any given database, the 

relative accuracy of algorithms with particular demographics is sensitive to the demographic 

composition of the training databases  (Vera-Rodriguez et al., 2019). This effect, notably, has 

caused biases in facial recognition DCNNs whereby they show lower accuracy for minorities 

compared to majorities, raising possible ethical issues (e.g. different races: Cavazos, Phillips, 

Castillo, O'Toole, 2020). Furthermore, it is important to address that the ethical dilemmas 

stemming from discriminatory patterns when AI is used within decision-making paradigms 

have ignited extensive discussions among the scientific community (see Birhane, 2021 for a 

review).  

Another potential problem with DCNNs is their apparent sensitivity to variations in 

image quality since their training input is typically composed of high-quality images  

(Vogelsang et al., 2018). This problem has a significant impact because a contentious use-

case of this technology is in police investigation, where images of poor quality (e.g. CCTV 

images) are commonplace. Early work showed DCNNs have lower object classification 

accuracy for lower-quality images (e.g. Dodge & Karam, 2016). It is perhaps not surprising 

then that using such technology for surveillance, without any level of human supervision, 

has caused the arrest of innocent people (e.g. see Williams, 2020, for a report where a man 

was wrongfully arrested purely because of algorithms' decisions). 
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Human-AI hybrid approaches 

As outlined in the previous section, current facial recognition technology is not 

currently accurate enough to operate completely independently of human oversight in most 

applied settings. In fact, this problem is acknowledged in government policy across an 

extensive range of domains where AI is being used to make government decisions, as 

legislation in many countries requires human oversight of algorithmic decisions (e.g. Green, 

2022). But again, as we have already seen, human performance on these tasks is also error-

prone, leading to a circular problem.  

Because AI cannot operate completely independently for identity verification in 

security proceedings, it is necessary to have human reviewers. However, studies have 

shown that human review is – itself - error-prone, with both standard participant groups 

and people who review FR technology in their daily work showing 50% error rates (White, 

Dunn, Schmid, & Kemp, 2015). One solution to this problem is to utilise people with higher 

accuracy than standard participant groups in this role, such as super-recogniser and forensic 

facial examiners. Moreover, a crucial requirement arises for a complete absence of decision 

sharing between humans and DCNNs. This is due to the observed inclination of humans to 

disregard their decisions and completely bypass the algorithm's decisions when provided 

access to its similarity scores - or binary judgments (e.g. Fysh & Bindemann, 2018; Howard, 

Rabbitt, & Sirotin, 2020; Carragher & Hancock, 2023). 

Recent research points to an alternative way that human and DCNN decisions can be 

combined to improve accuracy in applied settings. Studies have investigated the benefit of 

'fusing' independent judgments made by humans and DCNNs. Phillips and colleagues (2018) 

illustrated that making a pairwise combination between independent judgements made by 

human forensic facial examination experts and state-of-the-art algorithms (i.e. DCNNs) 

improved the quality of face identification decisions to ceiling levels. Importantly, this 

accuracy was higher than either humans or algorithms could achieve alone or in human-

human or DCNN-DCNN pairs (see also Knoche and Rigoll, 2023).  

Prior work has shown that aggregating (i.e. averaging) decisions made by groups of 

individual human participants can significantly improve the accuracy of decisions compared 

to when using individual participants alone (White et al., 2013; Jeckeln et al., 2018). This 

effect leading to improved performance by aggregating responses is commonly known as 



27 

 

the 'Wisdom of Crowd'. But the additional boost of teaming DCNNs and humans together in 

these joint decisions is potentially even more interesting. One proposal is that this result is 

due to the increased diversity in the cognitive strategies employed by humans and DCNNs 

compared to two human participants (Towler et al., under review; Hong & Page, 2004). And 

so assuming that DCNNs and human high-performers use different processes to reach face 

identity decisions, the wisdom of the crowd effect caused by combining humans and DCNNs 

could lead to even more accurate facial identification decisions (see Kittler, Hatef, Duin & 

Matas, 1998; O'Toole, Abdi, Jiang, & Phillips, 2007; White, Burton, Kemp & Jenkins, 2013; Hu 

et al., 2017; Jeckeln et al., 2018).  

Analysing the wisdom of crowd effects produced by combining humans and DCNNs 

can help understand the similarity/differences between underlying cognitive processes in 

humans and algorithms (O'Toole, Abdi, Jiang, & Phillips, 2007). In turn, a better 

understanding of how their processing diverges can identify opportunities to improve such 

human-AI hybrid systems. In addition, because we know there are significant differences in 

how individual humans process faces – and the accuracy they attain – there is a 

considerable knowledge gap in understanding how best to merge individual humans with 

DCNNs' decisions. Furthermore, there are still gaps in the literature regarding how to 

establish a proper ’cognitive’ measurement between humans and DCNNs and how they 

process faces (but see Hill, Roodenrys, & Clifford, 2019). As I will describe in the next 

section, this research agenda can also benefit theoretical understanding. 

 

Using DCNNs as a model of human processing: comparing man vs machine 

 There are commonalities and differences between the cognitive processes that 

DCNNs and humans engage in when processing faces—showing that aggregating DCNNs and 

human inputs illustrate differences in their cognitive processes. But at this point, there is 

only an emerging theoretical understanding of these differences and how they affect the 

performance of human-AI systems.  

  One way to compare face processing in humans and DCNNs is by examining how 

changes in input affect their relative performances. For example, a standard result in the 

study of face identity processing in humans is that people are better at recognizing faces 

from their own ethnic group. This is known as the other-race effect (see Meissner & 
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Brigham, 2001), and pre-DCNN face recognition algorithms were also shown to display this 

effect (Furl, Phillips, & O'Toole, 2002). In the study by Furl and colleagues (2002), face 

recognition algorithms developed in Western countries were more accurate at identifying 

Western faces relative to East Asian faces and the opposite pattern was found for 

algorithms developed in East Asia. Similar demographic biases are known to exist in DCNNs 

(Grother, Ngan, & Hanaoka, 2019; Cavazos, Phillips, Castillo, & O’Toole, 2020), possibly 

being caused by ‘unbalanced’ training databases (i.e. not containing compared number of 

images per race, gender, etc.) (Vera-Rodriguez at al., 2019).  

Another standard effect in psychology that has recently been replicated in DCNNs is 

the ‘caricature effect’, where caricature images are recognised faster than standard images 

(see Rhodes, Brennan, & Carey, 1987). An interesting study by Hill and colleagues (2018) 

shows that DCNNs accuracy increased when matching caricatures compared to standard 

face images. This improvement might be because DCNNs represent the identity information 

of caricatures as more distinct than others, reducing the probability of confusion with 

another identity (Hill et al., 2018). Critically, these pieces of evidence point to the possibility 

that the 'face-space' encoded in DCNNs is similar to the latent face space used in human 

judgments (see Valentine, 1991). 

Another approach for understanding similarities between humans and DCNNs' face-

space is directly correlating their ratings of similarity between two face images. Towler and 

colleagues (under review) show item-level correlations between face similarity ratings by 

super-recognisers (SR), forensic examiners (FE) and 7 DCNNs performing a face identity 

matching task. Average item-level correlations of similarity ratings were relatively medium 

for the two human expert groups  (matching face image pairs ρ= 0.25; non-matching pairs 

ρ= 0.37). The seven DCNNs, on the other hand, showed high agreement in similarity ratings 

(ρ= 0.60). Most importantly, DCNNs and humans showed disagreement (i.e. negative 

correlation) on ranking the similarities between face pairs when faces were of different 

people (matching face image pairs ρ= 0.27; non-matching pairs ρ= -0.19). This shows a 

potential divergence in how humans and algorithms assess similarities between different 

faces. In addition, it may suggest that the face-space of humans and DCNNs are structured 

differently.  

This result contrasts with other recent studies showing stronger correlations 

between DCNN and human face similarity ratings. In one study by Grossman and colleagues 
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(2019). Their study correlated the similarities between human intracranial EEG signals and 

multiple layers of a DCNN (VGG-16: Simonyan and Zisserman, 2014) while processing faces. 

They show that the geometrical distances measured by iEEG signals strongly correlated (e.g. 

ρ > 0.6) with the geometrical distances between activations in some of the middle layers of 

the DCNN when observing two different images (Grossman et al., 2019). This result shows 

remarkable similarities between a possible face-space configuration of humans and DCNNs, 

providing evidence that they might structure their facial identity representation similarly. 

Other studies using human similarity ratings have found similar results (Jozwik et al., 2022). 

The extent of divergence between human and DCNN face processing, therefore, remains 

unresolved.  

In this thesis, I will investigate the effect of decrements in image quality on humans 

and DCNNs, to ascertain whether this degrades human and algorithm performance similarly. 

As discussed, separate studies have shown humans and algorithms suffer from decrements 

when image quality is reduced, but we do not know of any study that directly compares this 

effect. This comparison will provide practical guidance on the use of DCNNs and humans in 

tasks where image quality is poor, and also provide a converging line of evidence to inform 

whether DCNNs and humans use similar face identity processing. 

 

Using Eye-tracking to understand processing differences underlying face identity processing 

in humans 

While one focus of this thesis is on understanding the processing differences 

between DCNNs and humans, another aim is to improve understanding of the processing 

differences between individual humans that give rise to large individual differences in 

behaviour. An essential focus of prior work on this topic has been to understand how face 

perception relies on the 'holistic' processing of faces as unitary gestalts rather than feature-

by-feature part-based analyses (Farah, Wilson, Drain & Tanaka, 1998; Richler & Gauthier, 

2014). The gestalt view proposes that the mechanism to process faces somehow 

compresses all facial features and their information in a single 'holistic' variable to represent 

someone's identity.  

Initial work aiming to understand the underlying processing differences that give rise 

to individual differences in ability has focused on the dichotomy between holistic and 'part-
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based' processing. The literature suggests three main image manipulations to illustrate that 

faces are perceived holistically: The Composite Face Effect (Young, Hellawell, & Hay, 1987); 

The Face Inversion Effect (Yin, 1969); and the Part-Whole effect (Tanaka & Farah, 1993). To 

create composite faces, researchers mix the top half of a face with the bottom half of a 

different face, creating a 'new' identity based on two distinct individuals. When these face 

halves are aligned, the manipulation disrupts participants' ability to recognise the identity of 

the face halves. When the halves are not aligned, participants are able to recognise the 

source identities (see Young, Hellawell, & Hay, 1987). The disruption in identity recognition 

caused by aligned face halves shows that faces are perceived holistically and not as a sum of 

decomposable facial features.  

The Face Inversion effect refers to the greater impairments in identity recognition 

when faces are turned upside down compared to traditional when other classes of objects 

are turned upside down (Yin, 1969). This is thought to result from inversion forcing a more 

'part-based' approach due to disruption in holistic processing (Carey & Diamond, 1977). 

Lastly, the part-whole effect (Tanaka & Farah, 1993) shows improved memory for single face 

features (e.g. the eyes) when presented in the context of a full face compared to when 

presented alone (Tanaka & Farah, 1993). This reduction in performance is also argued to 

illustrate that facial features are represented in the context of the whole face rather than as 

isolated 'part-based' facial features. 

However, despite these findings suggesting that a 'holistic' representation enables 

identity processing, studies found that the holistic processing measures themselves do not 

predict individual differences in identity processing ability. For example, Rezlescu and 

colleagues (2017) measured the associations between face recognition ability and the 

aforementioned holistic processing measures. Their work shows that only the inversion 

effect could predict face processing ability. In addition, they report that the measures used 

for holistic processing do not correlate with themselves. This result is interesting because it 

shows that, despite measuring what seems to be a common holistic processing mechanism, 

the measures may, in fact, be measuring different processes (see also Sunday, Richler, & 

Gauthier, 2017). 

Another, arguably more direct method for measuring the qualitative aspects 

underlying face processing ability is to measure individual observers' eye movements when 

they perform face identity processing tasks. Some studies using eye-tracking devices found 
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that the central area of the face (i.e. the nose) is the more functional area to fixate for 

identity recognition (e.g. Hsiao & Cottrell, 2008). This appears to show that humans can 

focus on a single position and still extract enough identity information for accurate 

recognition. The argument is that focusing on the face centre would allow them to extract 

all facial features by using the surrounding areas of their fixation, corroborating the holistic 

approach for face processing. However, in another study by Henderson and colleagues 

(2005), researchers compared the accuracy of participants recognising faces under two 

conditions, where they could freely investigate facial features or keep their fixation steady. 

Their result shows that recognition accuracy was 28% higher for the condition where 

participants freely moved their eyes. And so, while holistic processing may be important in 

face identification, it is clear that visual exploration of facial features is also important for 

recognition. 

Human eye movement patterns when processing faces varies depending on an 

individual's face-processing ability. Recent studies have found that super-recognisers tend 

to significantly sample more information from the central area of the face (Bobak et al., 

2017; Bennetts, Mole & Bate, 2017) compared to typical viewers when observing scenes. 

This result corroborates the idea that how humans sample information from faces might 

reflect traces of individual differences in face-processing ability. That is, the results from 

Bobak and colleagues (2017) illustrate that super-recognisers might show improved holistic 

processing compared to typical viewers due to their higher sampling from the face centre. 

However, this result contrasts with other evidence showing that super-recognisers require 

less visual information to keep accurate than typical viewers (Royer, Blais, Gosselin, Duncan 

& Fiset, 2015). Using the Bubbles technique (Gosselin & Schyns, 2001), researchers can 

control the amount of facial information participants can observe in a given image through 

transparent 'bubbles' of various aperture sizes. When processing faces through such a 

technique, Royer and colleagues (2015) provide evidence that super recognisers require less 

information (i.e. fewer bubbles) compared to typical viewers to keep accurate recognition 

(Royer, Blais, Gosselin, Duncan & Fiset, 2015). And so, studies remain a somewhat mixed 

picture of the fundamental differences in information sampling that underpin differences in 

face identification ability.  

In this thesis, we propose investigating the differences in eye-movement strategies 

leading to superior performance in face recognition and matching tasks. In addition, such 



32 

 

understanding of information used for face processing could be used to -for example- 

improve face recognition technology or even training procedures to improve the quality of 

decisions in security settings.  

 

Lab-based eye tracking research and ecological validity reflecting human face processing 

Another aim of this thesis is to broaden the study of human eye-tracking studies by 

incorporating recent advances in computer vision with wearable eye-trackers. Decades of 

research have studied socially-directed attention by analysing people's eye movements as 

they view images of faces – or people - presented on computer screens (e.g. the classic 

study of Yarbus (1967)). However, one big issue related to research on this topic is that 

photographs of social scenes - inevitably - do not represent the multidimensional and 

dynamic reality of our social experiences. Some studies found different fixation patterns 

when participants engaged in real face-to-face interactions compared to a similar task but in 

screen-based stimuli (e.g. Nasiopoulos, Risko & Kingstone, 2015). Thus, this difference in 

ocular patterns provoked by different social contexts indicates that computerised laboratory 

tasks might be inadequate to capture real-world social attention (see also Kingstone, 2009). 

 Taking social attention research out of the lab may also benefit understanding 

individual differences in face processing. Recent lab-based eye-tracking studies have shown 

large individual differences in how people attend to social scenes shown on screens. These 

studies also point to a genetic basis underlying people's social attention (Constantino et al., 

2017; Kennedy et al., 2017). Other studies have found significant and stable individual 

differences in people's face-processing abilities (White & Burton, 2022), and -as previously 

discussed- such results are associated with different patterns of eye movements to faces 

and people in lab-based tasks (Bobak et al., 2017). Whether these patterns hold up in 

natural settings – where 'social stimuli' are real people – remains unclear.  

 There is existing literature investigating social attention 'in the wild' while 

participants navigate real-world ambients wearing an eye-tracking device (e.g. Foulsham, 

2020; De Lillo et al., 2021). These devices enable researchers to study social attention to 

faces and person perception in situ. However, this requires experimenters to manually 

manipulate long video recordings and code what is being fixated for every video frame. As a 

result, even coding simple aspects of gaze fixations - such as counting person fixations vs 



33 

 

non-person fixations during any task -  would be highly time-consuming (see Hessels et al., 

2020). Thus, examining social attention in naturalistic environments using more extensive 

samples of participants is impractical at the resolution afforded by such devices. Therefore, 

in the final chapter of this thesis, we aim to develop an automated solution to investigate 

social attention 'in the wild' using wearable eye-tracking devices using automatic person and 

face detection artificial intelligence algorithms (OpenPose: Cao et al., 2019). 

 

Thesis aims 

Following this introduction, Chapters 2 and 3 will investigate the strengths and 

weaknesses of humans and artificial intelligence in applied settings in making decisions 

regarding identities. Chapters 4 and 5 then use artificial intelligence as tools to explore the 

underpinnings behind individual differences in face processing ability. Chapter 6 provides a 

general discussion of the findings. Importantly, all analysis code and data supporting our 

findings and conclusions are available from the authors. 

The aim of Chapter 2 is to provide insights into differences between humans and 

state-of-the-art facial recognition algorithms (i.e. DCNNs) processing images of unfamiliar 

individuals. In real-world tasks, the quality of images is uncontrolled, and in many important 

forensic and security uses of facial recognition technology, images are poor quality - for 

example - CCTV images. For this reason, understanding how humans and DCNNs face 

identity varied as a function of image quality is of practical importance. But while studies 

have looked at the impact of image quality on humans and DCNNs separately, their relative 

performance has not been directly compared. In Chapter 2, we conducted four studies 

comparing humans and nine different algorithms matching identities while manipulating 

image quality. This improves understanding of the strengths and weaknesses of humans and 

DCNNs in applied settings and points to cognitive processing differences between them. 

The aim of Chapter 3 is to improve the understanding of how independent face-

matching decisions made by humans and DCNNs can be optimally combined in hybrid 

human-AI facial recognition systems. The promise of using human-AI hybrid systems is 

shown by recent papers reporting response fusion approaches that improve conjoint 

human-AI face identity decisions (e.g. Phillips et al., 2018; Towler et al., under review). 

However, these studies only report findings using high-performing human participants 
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(super-recognisers and forensic facial examiners). And so, it is unclear whether combining 

DCNN and human decisions would operate as effectively when human participants are 

recruited from across the ability spectrum - as would be the case in most applied settings. 

Thus, in Chapter 3, we conduct computational studies to investigate how the relative 

accuracies of DCNNs and individual human participants affect the benefits of response 

fusion approaches. This provides a practical guide on how fusing human and DCNN decisions 

could operate optimally with humans and DCNNs of varying face identity processing 

abilities.  

Chapter 4 uses eye-tracking technology to understand better the information 

sampling strategies used by typical viewers and 'super-recognisers' when matching and 

recognising faces. Prior work has shown that super-recognisers use different facial 

information to code identity information depicted in face images compared to typical 

viewers (Bobak et al., 2017; Bennetts, Mole & Bate, 2017; Royer et al., 2015). Here I use new 

analysis and methodological approaches founded on my background in computer science to 

understand the information sampled by high-performing participants and its computational 

value for face identification.  

In Chapter 5, I again aim to make methodological advances in face perception 

research by incorporating state-of-the-art computer vision approaches. By combining face 

and body detection algorithms with wearable eye-tracking technology, I introduce a new 

automated method for measuring attention to faces and bodies when they navigate natural 

settings. This provides a new data source to compare with eye-tracking studies conducted 

while participants view faces on computer screens in lab-based tasks. Prior work has shown 

different patterns of attention to faces when comparing screen-based versus when viewing 

real faces with wearable eye-tracking technology (e.g. Nasiopoulos, Risko & Kingstone, 

2015; Kingstone, 2009), but these studies have been confined to relatively constrained 

experimental scenarios. In Chapter 5, we measure attention to people and faces as 

participants walk on the university campus and engage in social interactions, using 

innovative approaches to process eye-tracking data incorporating artificial intelligence and 

analytic geometry.  
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Chapter 2 - Comparing human and machine performance when matching images of 

different quality 

Introduction 

Humans recognise and match images of familiar people with very high levels of 

accuracy. Interestingly, when faces are unfamiliar, overall performance decreases drastically 

(e.g. Burton et al., 2010). Even in a straightforward perceptual face-matching task - where 

face pairs are presented side-by-side to viewers who are required to make a binary 

match/non-match response - some pairs are misclassified by more than 50% of participants. 

For example, see the image pair shown in Figure 2.1.  

 

Figure 2.1. Example of face matching pair used in the Glasgow Face Matching Task (GFMT) (Burton 
et al., 2010). The reader should judge if the face pair is of the same person or different people. 50% of 

participants incorrectly respond that the images are of two different people.  
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Average human accuracy on standardised unfamiliar face matching tests is around 

80% (e.g. Bindemann, Avetisyan, & Blackwell, 2010; Burton et al., 2010; Bindemann, 

Avetisyan, & Rakow, 2012; Burton, White, & McNeill, 2010; Megreya, Bindemann, & Havard, 

2011; Megreya, White, & Burton, 2011). Accuracy decreases further when matching lower-

quality images (Collishaw & Hole, 2000; Goffaux & Rossion, 2006; Cheung, Richler, Palmeri & 

Gauthier, 2008; White et al., 2021). For example, recent work by White and colleagues 

(2021) measured how human accuracy decreased when processing a face-matching task 

containing images taken at a distance on a video camera compared to a high-quality digital 

SLR camera at a close distance. Average accuracy with low-quality images was roughly 10% 

lower compared to when both were high-quality faces.  

This reduced accuracy for poor-quality images has important practical implications. 

CCTV system images record low-quality images characterised by low resolution, artefacts, 

unusual angles of view, poor lighting, and distortions (see Seckiner et al., 2018 for a review). 

As a result, the legal system often has to deal with situations where the evidence includes a 

facial image of poorer quality.  Some studies have assessed the accuracy of participants 

recognising -and matching- unfamiliar identities depicted as CCTV images and found very 

poor matching accuracy. For example, Burton and colleagues (1999) assessed the accuracy 

of a group of experienced police officers recognising unfamiliar identities from CCTV videos 

(i.e. poor-quality videos) in high-quality images. They found very poor accuracy in both 

students and experienced police officers when participants were unfamiliar with faces.   

Later, Davis and Valentine (2009) investigated the effect of matching unfamiliar faces 

in CCTV videos against a ‘live’ lineup of real individuals. In one experiment, participants had 

to match the identity of people present in a room against old video footage (i.e. 1-year-old) 

taken from a middle-range distance. This study shows that 25% of decisions were errors. 

Interestingly, adding disguises to the videos (i.e. hats, glasses, etc.) increased identification 

errors from 25% to 48%. In more straightforward tasks showing pairs of images 

simultaneously on a computer screen (i.e. a 1-to-1 matching task), Henderson and 

colleagues (2001) show that 55% of their participants wrongfully decided that the CCTV 

video footage of a robber did not match his good-quality photograph.  

It is possible that accuracy would be increased when CCTV videos are viewed rather 

than static video frames. However, the dynamic information contained in the video does not 

appear to impart any advantage compared to static stimuli (Liu, Seetzen, Burton, & 
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Chaudhuri, 2003). Moreover, studies suggest that even years of experience performing 

facial image comparison from CCTV footage does not protect from matching errors to low-

quality images (Lee et al., 2009; Norrell et al., 2015). However, a limitation of all of the 

studies previously mentioned is that they defined low image quality in qualitative rather 

than quantitative terms by manipulating quality. For example, Norrell and colleagues (2015) 

investigated the effects of Facial identity comparison between a high-quality ‘reference’ 

image against pictures taken from a CCTV camera using three different zooming settings – 

which they report as Quality 1, 2, and 3 - without any specification of intended levels of 

degradation of the image but its size in pixels. Therefore, these studies do not directly 

quantify the levels of image degradation and measure the effect on face-matching accuracy.  

Apart from the practical implications, understanding the impact of image quality on 

face matching is of theoretical interest because it reveals the relation between accuracy and 

spatial frequency content of images (Costen, Parker & Craw,1994; Costen, Parker & Craw, 

1996; Bindemann et al., 2013). Previous studies have measured the degree to which 

particular bands of spatial frequencies carry identity information. Importantly, to allow easy 

comparison between studies, they typically report these spatial frequencies in terms of 

cycles per face (cycles/face). Studies using low pass filters - such as Fast Fourier 

Transformations (FFT) and Gaussian filters – found that the face processing ability of 

humans is critically disrupted when presenting face images containing only information 

below eight cycles/face. There is no disruption when tuning the same filter to show only 

information below 16 cycles/face, indicating that the usable information for face recognition 

is probably within the range of 8-16 cycles/face (Costen, Parker & Craw, 1994; Costen, 

Parker & Craw, 1996). Subsequent work has narrowed this range to 8-13 cycles/face 

(Näsänen (1999); see Jeantet, Caharel, Schwan, Lighezzolo-Alnot, & Laprevote, 2018 for a 

review).  

The evidence of reduced accuracy in processing lower-quality face images (i.e. 

blurred images) suggests that encoding identity information can involve information 

encoded in the higher spatial frequencies, which are absent in these images. However, as 

people remain able to identify faces in images even with substantial blurring levels (i.e. 

more than eight cycles/face; Costen, Parker & Craw, 1994; Costen, Parker & Craw, 1996; 

Näsänen, 1999). This appears to suggest that identity information within faces is carried 
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both in the spatial relation between facial features (i.e. the face configuration; see Collishaw 

& Hole, 2000) and in feature details carried by higher spatial frequencies.   

A large body of evidence points to two 'channels' of information that can be 

employed in face processing – configural and featural information (see Collishaw & Hole, 

2000; Bartlett, Searcy, & Abdi, 2003). For example, studies show evidence for the 

importance of configural information includes that face recognition is impaired by: changing 

the distance between features (e.g. Sergent, 1984); mixing face halves of different people to 

create the illusion of a new 'composite' face (e.g. Young, Hellawell, & Hay, 1987); and 

blurring faces, to exclude fine-grained information using low-pass filters or pixelated 

versions of images (e.g. Bachman, 1991; Costen, Parker, & Craw, 1994; Costen, Parker, & 

Craw, 1996). However, on the other hand, studies that present scrambled faces that disrupt 

the spatial relationship between them show above-chance performance, suggesting some 

contribution of feature detail (e.g. Tanaka & Farah, 1993; Bruyer & Coget, 1987) 

corroborating evidence that fine-grained featural information also carries identity 

information (see Goffaux, Hault, Michel, Vuong, & Rossion, 2005).  

There is evidence that the relative contributions of configural and featural ‘channels’ 

of information vary as a function of the familiarity of faces, with a greater reliance on 

configural information for familiar face identity processing. For example, Burton and 

colleagues (1999) show that even when viewing familiar people in substantially blurred 

CCTV images, participants remained able to recognize them. In addition, Lobmaier and Mast 

(2007) show that participants could match sequentially presented images of unfamiliar faces 

by identity better when the features were scrambled compared to when they were blurred. 

They found the opposite pattern for familiar faces, suggesting that blurring images is 

especially detrimental to unfamiliar face matching, but less so when faces are familiar.  

Artificial Intelligence is now a feasible alternative to human processing in applied 

settings, and so the impact of blurring on algorithm performance is also important to 

quantify. Inspired by the human brain, the multi-layer architecture of modern 'Deep 

Convolutional Neural Network' algorithms (DCNNs) allows them to distinguish thousands of 

different identities, representing a multi-dimensional "face space" encoded in the top layers 

of the network (O'Toole et al., 2018). After sufficient training, these top layers are powerful 

enough to capture identity information across a vast range of image variations (e.g. 

expression, illumination, pose, etc.) in a relatively compact numerical representation 
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(Hancock et al., 1996; O'Toole et al., 1999; Hong et al.,2016; Parde et al., 2017) that can 

determine – with high accuracy - whether or not two images of previously unencountered 

faces are of the same individual (see Figure 2.2). Some of the latest versions of these 

algorithms can achieve higher performance than the general human population when 

matching unfamiliar faces (see Grother, Ngan & Hanaoka, 2019 for a review; but see Phillips 

et al., 2018 and Blauch, Behrmann, & Plaut, 2020 for human-machine comparison).  

 

 

Figure 2.2. Schematic diagram showing the basic architecture of a Deep Convolutional Neural 
Network (DCNN). Input images pass through convolutional, pooling, and fully connected layers to 

activate a layer of identity labels in the output layer. During learning, associations are formed 
between representations in earlier layers and output layers, but these output layers are disconnected 

from the network after training is complete. The fully connected layer is then used to compare the 
identity of any two input images of faces that are ‘unfamiliar’ to the network. The fully connected 

layer is, therefore, a numerical representation of a face (feature vector) that can be used to 
determine if two images are of the same person or different people. 

 

As with humans, one limitation of DCNNs is that they suffer considerably when 

presented with poor-quality images (e.g. see Dodge & Karam, 2016). For instance, Grother 

and colleagues (2019) reported that false-negative rates for modern vendor algorithms 

could be from 2 to 11 times higher when input images are from webcams or are 

unconstrained ("in the wild") images compared to high-quality "mugshot" frontal images. 

Some studies have employed visualisation techniques (e.g. t-SNE (Maaten & Hinton, 2008)) 

to understand how DCNNs aggregate identities. This approach suggests that poor-quality 

images are not represented in the same regions of face space as high-quality images of the 

same identity (O'Toole et al., 2018), thus, suggesting that the reduction in image quality also 

resulted in the loss of identity information in DCNNs. However, as these studies did not 

specifically manipulate image resolution in an unfamiliar face-matching task, the 

relationship between image resolution and face identification accuracy in DCNNs is not 

clear.   
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It is also unclear how the magnitude of image resolution-based declines in accuracy 

compares to that seen in humans. For example, is the performance advantage typically seen 

for DCNNS compared to human observers when tested with high-quality images maintained 

using reduced image quality?  Some recent work suggests that algorithms may be more 

susceptible to degraded image quality because their training database comprises only 

relatively high-quality images (Vogelsang et al., 2018; Jang & Tong, 2021). This training is in 

contrast to humans, who initially learn to recognise the faces of their family members in 

infancy at a time when their visual input is blurred due to a lack of visual acuity (see Dobson, 

Teller, & Belgum, 1978; Rennels & Davis, 2008). Interestingly, the authors of these papers 

speculate that some differences between humans and DCNNs could account for this early 

learning stage with poorer quality inputs seen in humans. Interestingly, despite this 

speculation regarding the impact of image quality on recognition in humans and DCNNs, 

there do not appear to be any published studies that directly compare DCNNs and Humans 

processing blurred images. 

This chapter investigates how the accuracy of face-matching decisions by humans 

and DCNNs is affected by changes in image quality. In applied face-matching tasks, for 

example, when using face images as forensic evidence, image quality can vary greatly from 

one face image to the next. And as aforementioned, both humans and DCNNs suffer 

considerably when presented with poor-quality images (e.g. see Dodge & Karam, 2016; 

White et al., 2021), but it is still unclear if they are affected to a similar degree. This question 

is of both theoretical and practical significance. Differences in the effects of image 

degradation on human and DCNN performance can point to differences in underlying 

processing. Such investigation could contribute to an emerging body of research that uses 

DCNNs as models of face processing in humans (e.g. Grossman et al., 2019) and also points 

to differences in the usability of humans and DCNNs providing identity verification for 

forensic analysis.   

 

 Experiment 1 

Experiment 1 was designed to understand how varying levels of image quality affect 

face-matching accuracy in humans and DCNNs. Both humans and DCNNs matched face pairs 

that varied in image quality. We also manipulated whether both images in a pair were the 

same or different quality. This second condition has practical significance, for example, 
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simulating a comparison of a low-quality CCTV image with a high-quality reference image of 

a suspect. In addition, it is important to address that all studies in this thesis received ethics 

approval by the Human Research Ethics Committee at the University of New  South Wales. 

All participants provided written informed consent prior to data collection. 

  

Method 

Participants 

A total of 513 UNSW undergraduate students participated in the online study in 

exchange for course credits. Participants completed a face-matching task using one of two 

image filters to manipulate image quality: Fast Fourier Transformation (FFT) and Gaussian 

Blur (see Stimuli section for details). For the FFT versions, a total of 162 university students 

(41 male, 121 female; Age M= 19.43, SD= 2.3) participated in the Same-Resolution 

condition, while 168 (62 male, 106 female; Age M= 19.50, SD= 3.42) participated in the 

Different-Resolution condition. For the Gaussian blur versions, 100 university students 

participated in the Same-Resolution condition (37 male, 63 female; Age M= 19.16, SD = 

2.11), and another group of 100 participated in the Different-Resolution condition (33 male, 

66 female, 1 preferred not to answer; Age M= 19.48, SD= 3.52). We used large participant 

samples because each participant completed a subset of the experiment trials, which 

included six different levels of image quality for each of the conditions.  

 

Deep Convolutional Neural Networks (DCNNs) 

We used nine different DCNNs in this study. We collected those DCNNs from 5 different 

architectures trained on various datasets and implemented them using Keras (Chollet et al., 

2015) or Pytorch (Paszke et al., 2019) in Python. See Table 1.1. All models were official 

models collected from the system developers (e.g. GitHub of the research in question). To 

ensure the replicability of our study, we used models from official sources so that other 

researchers could download the same DCNN parameters. DCNNs varied in architecture, 

training datasets, and deep learning libraries, thereby enabling the result of the study to be 

generalized across different DCNN systems. In addition, by using representative training 

sets, we aimed to provide a more realistic assessment of their capabilities in processing 
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facial data and making similarity judgments. We used an array of diverse DCNNs to draw a 

parallel to the experiences of the N individuals we tested, which originated from a variety of 

ethnical and geographical backgrounds. Notably, these varied experiences contribute to 

distinct perspectives among our human participants and DCNNs. This combination of 

multiple distinct viewpoints accentuates the depth and intricacy that form the foundation of 

our experimental approach. 

        

DCNN Architecture Dataset 
Python 

Library 

1 ResNet50 (He, Zhang, Ren & Sun,2016) 
VggFace2 (Cao et al., 

2018) 
Keras 

2 
ResNet34 (He, Zhang, Ren & Sun, 2016) 

(https://github.com/ageitgey/face_recognition) 

VggFace (Simonyan and 

Zisserman, 2014); Face 

Scrub dataset (Ng & 

Winkler, 2014) and 

images from the internet 

(King, 2009)  

Keras 

3 ResNet50  VggFace2  Pytorch 

4 ResNet50  

MS-Celeb-1M dataset 

(Guo et al., 2016) fine-

tuned on VggFace2 

Pytorch 

5 Se-ResNet50 (Hu, Shen, & Sun, 2018) VggFace2  Pytorch 

6 Se-ResNet50 
MS-Celeb-1M dataset 

fine-tuned on VggFace2 
Pytorch 

7 VGG16 (Simonyan and Zisserman, 2014) VggFace  Pytorch 

8 
FaceNet (Schroff, Kalenichenko, & Philbin, 

2015) 
VggFace2 Pytorch 

9 Facenet 
CASIA-WebFace (Yi, Lei, 

Liao & Li, 2014) 
Pytorch 

 

Table 1.1 Description of architectures, datasets, and Python libraries used in this study. We also 
enumerated DCNNs from 1 to 9. 
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Stimuli 

We created the face-matching tasks in this study using the Glasgow Unfamiliar Face 

Database (GUFD) (Burton et al.,2010). The GUFD contains images of 303 identities 

photographed from various angles using two high-quality cameras (C1 and C2). We selected 

two frontal images of each identity from the database – one captured using C1 and one 

from C2. We excluded identities that did not have suitable frontal images from both C1 and 

C2. This selection resulted in a set of 602 frontal face images of 301 identities.  

We used a DCNN to select 25 of the most challenging non-matching identity pairs. 

We achieved this by determining the 25 non-matching identity pairings rated as most similar 

by DCNN1 (see Table 1.1) amongst all identities in the database. Also, we employed DCNN1 

to select the 25 most difficult match pairs from the remaining identities not included in the 

non-match pairings. Before matching, we used a Multi-task Cascaded Convolutional Neural 

Network (MTCNN) (Zhang, Zhang, Li, & Qiao, 2016) to detect, extract, and align the face 

across images. For five identities, the MTCNN failed to detect a face in one of the images (C1 

or C2), so we excluded these five identities from the database, resulting in an image set of 

296 identities. Next, DCNN1 received resized face images (224x224 pixels) as input, 

producing 602 feature vectors. We used the Euclidean distance between these feature 

vectors to infer the similarities between each face and all other identities. We summarised 

this processing framework in Figure 2.3. 

 

 

Figure 2.3. Description of the framework used to calculate similarities between faces in the dataset. 
We pre-processed faces using MTCNN (Zhang, Zhang, Li, & Qiao, 2016), then aligned and cropped 



44 

 

the images, resulting in square 224x224 pixels "face-only" images. We then used this image as the 
input for DCNNs to compare the Euclidean distance of its feature vector with other images in the 

dataset. Image taken for illustration purposes.  

 

We created stimuli conditions using two distinct low-pass filters. We used both Fast 

Fourier Transformation (FFT) and Gaussian blurring filters to produce two different low-

quality versions of each image. Because FFT filtering produces known visible image 

distortions (known as the "ringing-effect", see Gibbs, 1898, and an example of the ringing 

effect in the middle left image of Figure 2.4), we also employed a Gaussian filter version of 

the same stimuli, as Gaussian filtering does not produce distortions in the image (see 

bottom left of Figure 2.4). We created image sets using each of these filters, each with a 

variety of filtering thresholds (see Figure 2.5). We created degraded images at the following 

spatial frequency cutoffs: 4; 6; 8; 10; 12 Cycles/Face. We selected these frequency bands 

based on a pilot study which showed that they were the bands for which performance 

varied between the ceiling and floor accuracy for DCNN1 (see Appendix A). 
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Figure 2.4. Example of low-pass filters on a 512x512 pixels image and periodograms 
containing spatial frequencies for each filter (set to 10 cycles/face). At the top, we show the 

original image. In the middle, we show the effect of the FFT low-pass filtering, which 
abruptly attenuates the information above the threshold, provoking the ringing effect (See 

Gibbs, 1898). At the bottom, we show the Gaussian low-pass filtering effect, which gradually 
attenuates the information above the threshold.  

 

 



46 

 

 

Figure 2.5. Simulation of distortions found in CCTV footage using FFT filtering. We show actual CCTV 
footage on the left, which contains distortions and low quality. On the right, we illustrate that FFT 

filtering could produce similar distortions when applied to a high-quality image of that identity 
compared to Gaussian filtering. We tuned the low-pass filters to 6 Cycles/face in this example. Photos 

from the case involving Christine Dacera (Wooley, 2021).  

 

We next produced the matching task stimuli in two distinct presentation conditions, 

called Same-Resolution and Different-Resolution. For the Same-Resolution condition, the 

pair of face images making up a trial were either high-quality 'original' images or showed a 

similar level of filtering using the same filter. In contrast, for the Different-Resolution 

condition, one of the two images was always the original unfiltered, while the other showed 

a filtered image. Figure 2.6 shows examples of image pairs from all experimental conditions.   

We prepared an identical set of stimuli for human participants and DCNNs, except 

that the images presented to DCNNs were 224x224 pixels and to human participants were 

512x512 pixels (filtering levels were proportional). We changed the image size for humans 

because the DCNN images were too small to put on a computer screen side by side. So, we 

used the 512x512 to ensure that humans could see all the images at the traditional 60cm 

distance to the monitor, covering around 13º of visual angle per image. We presented all 

face images in grayscale. 



47 

 

 

Figure 2.6. Examples of image manipulations on one of the face pairs used in this study. On stimuli 
Same-Resolution, we degraded both face images with a low-pass filter (FFT or Gaussian Blur). While 

on stimuli Different-Resolution, one image remained intact (Original image). 

 

Procedure 

Participants completed 50 trials (25 Match and 25 Non-Match), with each participant 

having a different random order of trials. We presented trials randomly to avoid similarity 

ratings being contextually derived immediate previous faces, aiming to reduce potential 

biases arising from serial dependence (see Liberman, Fischer & Whitney, 2014) and 

collecting more robust and unbiased data. We showed each trial in one of the six randomly 

selected spatial frequencies (4, 6, 8, 10, 12 cycles/face, and Original). Therefore, each 

participant saw a unique sequence of trials for the 50-item test. Also, It is important to note 

that because the allocation of trials to spatial frequency was random, some participants 
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might have seen only match (or non-match) trials at a particular spatial frequency, making it 

impossible to compute a given accuracy for that frequency. In these cases, we excluded that 

particular frequency for that participant (and related DCNNs), but this happened relatively 

rarely (i.e. ~2.5% of all frequency accuracies).  

Each of the 9 DCNNs also processed the unique set of trials seen by each human 

participant. For the FFT versions, each DCNN processed 162 sequences of Same-Resolution 

trials and 168 Different-Resolution trials. For the Gaussian blur versions, each DCNN 

processed 100 same-resolution and 100 different-resolution sequences of trials. We did this 

to generate a distribution of DCNN scores at each spatial frequency on the test, comparable 

to that of the human participants. 

Humans responded to the stimuli using a 5-point Likert scale (1: Sure Different, 2: 

Think Different, 3: Do Not Know, 4: Think Same, 5: Sure Same). We later enumerated these 

semantic values from 0 to 1 in steps of 0.25. Zero is equivalent to a 'Sure Different' response 

in these numerical responses, and one is equivalent to a "Sure Same" response. For DCNNs, 

we calculated similarity scores by inverse normalising the Euclidean Distances between two 

feature vectors. Therefore, for DCNNs, we would not see well-defined steps - as seen in 

humans - but a linear continuum ranging form 0 to 1. This continuum would represent the 

likelihood of the two identities being different (e.g. closer to 0) to the same (e.g. closer to 1). 

This normalisation process will still preserve the relative performance and discrimination 

thresholds, ensuring a fair comparison of models using features with different scales. And 

so, we used normalisation to enable visual inspection of human and algorithm data at the 

same range without affecting their individual outcomes (e.g. Phillips et al., 2018) 

We calculated participants' overall accuracy using two distinct methods. First, we 

calculated each participant's accuracy on the full test across all stimulus conditions, using 

the area under the ROC curve (AUC). We call this analysis 'Non-Yoked by Cycles' (Non-

Yoked) because it collapses the data across the different spatial frequency trials when 

computing AUC. In the second ‘Yoked by cycles’ method, we calculated AUC separately for 

each spatial frequency condition. Because the distribution of match and non-match 

similarity scores may vary in each of these conditions, these two methods were likely to 

produce different results. The reason we opted for the AUC (Area Under the Curve) as our 

method for calculating accuracy is because it has been used in human-machine performance 

comparison in prior work (e.g. Phillips et al., 2018; Phillips, 2017) and so provides continuity 
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with this work. It is also used as a standard way to assess accuracy when a continuous 

response scale is used and enables the accuracy of humans and machines to be directly 

compared, even where the response scales used by humans and machines may differ. 

Furthermore, the use of AUC to benchmark human and machine intelligence is not specific 

to the field of face identification but is common in other tasks (e.g. Jammal et al., 2020). 

 

Results 

This study had a factorial design with Participant Type (human and DCNNs) and 

Resolution (same and different resolutions) as between-subjects factors and Metric (yoked 

and non-yoked) as within-subjects factor. For the sake of clarity and brevity, only the results 

using the FFT filter are presented here. The results from the Gaussian filter - which 

produced similar results to the FFT – are presented in APPENDIX A. 

 

Analysis of accuracy 

First, we analysed data using a three-way ANOVA with three-way mixed ANOVA on 

the AUC data, with Participant Type (human and DCNNs) and Resolution (same and different 

resolutions) as between-subjects factors and Metric (yoked and non-yoked) as within-

subjects factor.  This analysis collapsed across the different levels of image resolution, 

although these are analysed separately in the following section. Figure 2.7 plots the 

accuracy results for the human participants and the average of the 9 DCNNs when 

attempting to match face pairs in the two conditions using the two methods used to 

measure accuracy. As described above, we employed two methods which we called Non-

Yoked and Yoked by cycles. The Non-Yoked metric considers accuracy as a whole for the 

stimulus set. The Yoked calculates accuracy separately for each spatial frequency condition, 

and we calculate the overall accuracy score as the average of these different values.  
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Figure 2.7. Graph showing the Resolution condition between Participant Type considering 
the two different Metrics to compute AUC. This graph shows the FFT version of the stimuli. 

The error bars show the 95% confidence interval. 
 

 We found that the main effect of Metric [F(1,1312)=22.73, p< 0.001, ⴄ2p= 0.02] and 

the 2-way interaction between Participant Type and Metric were significant 

[F(1,1312)=160.51, p<0.001, ⴄp
2= 0.11], reflecting that human performance was more 

similar across the two measures of performance than was that of the DCNNs, where 

accuracy was higher in the Yoked condition. This difference is informative to the processing 

differences between DCNNs and Humans and is analysed further below (see 'Analysis of 

similarity ratings'). However, given the three-way interaction between Resolution, 

Participant Type, and Metric was not significant [F(1,1312)=0.01, p= 0.920, ⴄ2p= 0.00], we 

next collapsed across the factor of Metric to examine the primary research question more 

closely – the differential effect of blurring on performance in humans and DCNNs.  
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Figure 2.8. Graphs showing the effect of Resolution conditions for the FTT  version of the 
study. Here, we calculated AUC as the average result between the Non-Yoked and Yoked 

metrics. The error bars show the 95% confidence interval. 
 

We show the accuracy results of collapsing across the Yoked and Non-Yoked factors 

in Figure 2.8. We performed a two-way ANOVA on the average accuracy (AUC) data, with 

Experimental Conditions (same and different-resolution) and Participant Type (human and 

dcnns) as between-subjects factors. This analysis showed significant main effects of 

Experimental Condition [F(1,656)=773, p< 0.001, ⴄ2p= 0.541], with higher accuracy overall 

for same-resolution image pairs, and Participant Type [F(1,656)=179, p< 0.001, ⴄ2p= 0.214], 

with overall higher performance for humans. However, these main effects were qualified by 

a significant 2-way interaction [F(1,656)=151, p< 0.001, ⴄ2p= 0.19], showing that DCNNs 

were poorer in the Different-Resolution compared to the same resolution condition [t(656)= 

-28.36, pbonferroni< 0.001, Cohen's d= -3.12]. Humans were relatively less affected by the 
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change in resolution between comparison images [t(656)= -10.96, pbonferroni< 0.001, Cohen's 

d= -1.2].   

 

Analysis of similarity ratings 

The ANOVA revealed that the impact of measuring performance using the yoked and 

non-yoked metrics was different for humans and DCNNs. For the DCNNs, the yoked metric 

gave higher performance estimates than the non-yoked metric, but the human performance 

was unaffected by the type of analysis. To examine the reason for this difference more 

closely, we examined the distributions of similarity scores generated by humans and DCNNs. 

Figure 2.9 shows the Similarity-Scores distributions of human participants and one of 

the DCNNs (DCNN 1) for the data from the FFT filtered images. For clarity, we plotted only 

the data from DCNN 1 here because all DCNNs showed a similar pattern of results. The data 

from the Gaussian filtered version is available in APPENDIX A. Data in Figure 2.9 shows the 

similarity score distributions separately for the Same (top panel) and Different-Resolution 

(bottom panel) tasks. Each panel shows similarity scores across the six spatial frequencies 

for humans (left) and DCNN1 (right) and the Yoked and Non-Yoked accuracy metrics results.  
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Figure 2.9. Distribution of Similarity-Scores across all participants and DCNN 1 in same (top 
row) and different-resolution (bottom row) conditions. The distributions on the left of each 

plot show match and non-match similarity scores for all spatial frequencies. The two 
rightmost distributions on each plot show accuracy (Area Under the ROC Curve – AUC), 

separately for the Yoked and Non-Yoked metrics. We show the Human data in the left plots 
and DCNN data on the right. An important difference between humans and DCNNs is that 
the human ratings tend towards the middle of the response scale as the images become of 

poorer quality (i.e. from right to left). For the DCNNs, poorer image quality causes ratings to 
tend towards one, or zero, depending on whether the image pairs were from the same 

image quality condition (top) or different image quality condition (bottom). The dotted lines 
connect the individual AUCs - plotted as a black square- calculated for each of the 6 spatial 

frequencies.  
 

Inspection of Figure 2.9 shows that human participants (i.e. graphs on the left) were 

likely to use the middle point of the Likert scale ("Do Not Know", or 0.50) when image 

quality was poor. For DCNNs, on the other hand, poor image quality caused all similarity 

ratings to tend toward one (in the Same-resolution condition) and zero (in the Different-

resolution condition) instead of adequately separating them into matching (i.e. towards 

one) and non-matching (i.e. towards zero) pairs. This fact explains why DCNNs accuracy was 

poorer in the Yoked versus Non-yoked analysis. Because DCNNs similarity ratings tend to 
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extremes for both match and non-match identity image pairs in more inferior resolutions, it 

has the effect of requiring a separate 'decision criterion' for each of the different image 

quality conditions. Human criteria were not affected by quality conditions because the same 

decision threshold could be used across conditions. That is, a single threshold near the 

scale's centre can achieve relatively optimal discrimination of same/different pairs across all 

the image quality conditions for humans due to the better calibration of match and non-

match responding.   

 

Analysis of feature similarity space in DCNNs 

 DCNNs describe each facial image as a numerical representation (feature vector), 

and we can investigate similarities between identities by comparing these descriptions. To 

explore the similarity space defined by these feature vectors, we used t-SNE (Maaten & 

Hinton, 2008) to visualise the similarity of feature vectors of DCNNs using every face present 

in the database (592 frontal faces, 296 identities) in each of the six filtering conditions (4, 6, 

8, 10, 12 cycles/face, and Original). The t-SNE technique projects an n-dimensional similarity 

space defied by the n features in the penultimate DCNN layers onto a 2-dimensional space 

while maintaining local structure. This technique allows us to visualise the within and 

between identity variations in our image set.  

We applied t-SNE (Maaten & Hinton, 2008) on DCNN 1 top-layer (2048 features) to 

visualise the similarity of every face in the database (592 frontal faces, 296 identities) in 

each of the six filtering conditions (4, 6, 8, 10, 12 cycles/face, and Original). As with the 

previous analysis, we show only the FFT filter dataset here, with the Gaussian filter dataset 

visualised in APPENDIX A.  

We show the t-SNE similarity space in Figure 2.10. In an ideal face recognition 

algorithm, all images would be clustered by identity, with 296 identity clusters containing all 

12 images (six image pairs) from the spatial frequency conditions. However, a visual 

inspection of Figure 2.10 shows a different pattern. While the images filtered at 8, 10, and 

12 cycles are typically clustered by identity, original images - as well as the 4 and 6 cycles 

filtered images- generally are not found in these identity clusters. Instead, these images 

form their own clusters by image condition rather than by identity. This effect can be seen 

by the emergence of clusters of red (6 cycles) and blue (4 cycles) dots to the left of the plot 
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and black dots (original) to the right of the plot. This result helps explain why, for DCNNs, 

the same and different resolution conditions showed significant differences in performance. 

The same-resolution condition was easier for DCNNs compared to the Different-resolution 

condition because the similarity of image pairs was mostly driven by image quality over the 

identity information.   

 

 

 

Figure 2.10. Two-dimensional visualisation of similarity space formed by 2048 
features at the penultimate layer of DCNN 1 top-layer, with each dot being a face image 

from the database used in Experiment 1. In total, we split 592 face images of 296 identities 
by the six filtering conditions (4, 6, 8, 10, 12 cycles/face, and Original). We show examples of 
identity clusters in the 'zoomed in' region at the top left of the plot. Clear clusters of original, 

4, and 6 cycles images show that similarity scores are often dominated by image quality 
rather than face identity.  See "APPENDIX A – t-SNE visualisation" for t-SNE using Gaussian 

filter. 
 

Discussion 

 In Experiment 1, we compared the accuracy of humans and previously trained 

DCNNs from the internet (see Table 1.1 for description) performing a face-matching test 
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under two conditions. We presented image pairs at the same or different resolutions. Our 

results show that the Different-Resolution condition was harder for both humans and 

DCNNs than the Same-Resolution one. However, we found that presenting the image pair at 

different resolutions had a greater impact on the performance of the DCNNs than it did for 

humans. This result is probably caused by better calibration of humans responding to the 

decision scale irrespective of image quality discrepancies, with the middle of the scale 

indicating uncertain judgements across all different levels of filtering. Thus, despite reducing 

image quality, humans used the response scale appropriately and consistently with matches 

above the midpoint and non-matches below the scale's midpoint.  

In contrast, the DCNNs did not show this same degree of calibration. To compare the 

performance of DCNNs and humans more, we included the Yoked performance metric. The 

Yoked metric calculated accuracy separately for each level of filtering, thus, maximising 

results within each quality level. However, even when analysed this way, the accuracy of 

DCNNs is still degraded to a greater extent than humans when images are of different 

quality. We could argue that this greater decline in accuracy observed in DCNNs was 

because they have a more significant disruption in identity information when the images 

differ in image quality compared to humans. This result further suggests that the 

mechanisms used by humans and DCNNs are qualitatively different.  

Research suggests a model in which humans process the high and low spatial 

frequency information in a face using two distinct cognitive channels (see Goffaux et al., 

2005). Notably, the stimuli conditions in this study (i.e. Same and Different-Resolution) 

contained a mix of high and low-quality images. Humans may use these distinct cognitive 

channels to extract and process the available information to match the identities depicted in 

faces, allowing responses that are robust to changes in image quality. Stimuli trials in the 

Same-Resolution condition showed similar spatial frequency information. So, the model 

suggests that humans activated these cognitive channels similarly for the two faces in this 

condition. This similar activation of channels is because the amount of information in the 

two faces was almost identical. On the other hand, stimuli trials in the Different-Resolution 

condition showed distinct spatial frequency information between face pairs. Thus, the 

model suggests that humans had to extract only the comparable information between the 

two faces to decide whether the identity depicted in the two images was of the same 

individual or different people. In contrast, the lower accuracy of DCNNs when images were 
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of varying quality (i.e. in the Different-Resolution) may occur because DCNNs show 

significant impairment in extracting the usable 'configural' information from the high-quality 

images compared to humans. Interestingly, when we provided similar information (i.e. in 

the Same-Resolution), DCNNs showed comparable performance to humans in the FFT 

version of the stimuli (See APPENDIX A for the Gaussian version). This result illustrates that 

DCNNs can still perform the task, but humans demonstrated a qualitative superiority in 

extracting comparable information to process identities across pairs of images presented in 

different resolutions. See Figure 2.11. 

  

 

Figure 2.11. Example of featural and configural information contained in a trial of the 
Different-Resolution condition. We observed significant reductions in accuracy for humans 
and DCNNs when processing trials of different than the same quality. Still, humans showed 

less impairment than DCNNs performing the task. We argue that the human advantage was 
because they could extract lower-quality configural information from high-quality images 

significantly better than DCNNs to process the stimuli. When showing images of comparable 
information (i.e. Same-Resolution condition), humans and DCNNs performed similarly. 

 

 Why are humans better able than DCNNs to extract information which is diagnostic 

of identity and stable across different resolutions? One possible explanation for this effect 

might be due to human development. Humans start to observe faces during the early stages 

of life and -importantly- with low visual acuity (see Rennels & Davis, 2008). This may provide 
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important experience in extracting identity-relevant information from low-quality images. 

On the other hand, DCNNS are trained primarily on high-quality images, and they do not 

have the same graded training experience as humans who are first exposed to low-quality 

images before seeing increasingly high-quality images as their visual system matures. 

Although it is not possible to provide the role of visual development in the results observed 

here,  it is important to note that this is the first study to systematically compare humans 

and DCNNs processing faces of varying image quality. And so, limitations might arise when 

attempting such direct comparison, as the algorithms and humans operate with 

undoubtedly distinct training sets. As a result, it is still unclear whether the difference 

between humans and DCNNs is due to image quality differences or impairments in 

collecting valuable identity information within the face images. Unfortunately, addressing 

this matter comprehensively is beyond the scope of this thesis. 

 We used t-SNE (Maaten & Hinton, 2008) to visualise the structure in which DCNNs 

store identity information throughout the whole spatial frequency spectrum used in 

Experiment 1. The t-SNE plot presents similar DCNN descriptions of face images close to 

each other. However, the degradation of image quality caused the DCNNs to group images 

by a combination of identity and image resolution rather than by identity alone. We observe 

this effect in highly blurred images (e.g. 4 or 6 cycles/face). In these cases, the t-SNE 

compression shows that DCNNs perceived these highly filtered images as a distinct class of 

objects, detached from their original identity.  

The t-SNE representation helps us understand why comparing facial images in 

different resolutions was particularly problematic for DCNNs – showing that the similarity of 

feature representations was often dominated by the effect of image quality, rather than the 

effect of face identity. This result is consistent with the findings of O'Toole et al. (2018), who 

depicted the structure of a DCNN space for a database of images scraped from the internet. 

Their results show low-quality images (due to poor resolution, occlusion, and blurring) 

located in a cluster in the centre of space. This result suggests that a significant factor 

determining the similarity of identities in DCNNs is the amount of quality signal contained in 

the image, which conflates with the identity signal itself.  

To check that this pattern of results wasn't specific to the choice of filter adopted, 

we replicated the entire study using two different filters, FFT and Gaussian. To enhance 

readability, we have only presented the FFT data analysis in this chapter's main text. The 
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data from the Gaussian study are available in APPENDIX A. Inspection of that data reveals a 

very similar pattern of results to that reported here. Overall, the matching performance for 

the FFT-filtered images was less than the Gaussian-filtered images for both humans and 

DCNNs, but this may be because the FFT version added artifacts - such as "ringing" - in the 

image, which may have obstructed visual facial features. However, the pattern of results 

was similar for the two filters, suggesting that this may hold for other forms of image 

degradation, such as in authentic CCTV images.  

 Our results may have some practical significance. Although both humans and DCNNs 

were negatively affected by image quality degradations, humans outperformed DCNNs 

when comparing pairs of images of different quality. There are several essential settings 

where face comparisons often include images of varying quality—for example, comparing 

CCTV recordings against a reference face (e.g. passport images). Our results expand the 

practical understanding of using DCNNs in this type of scenario because we show that the 

sensitivity of DCNNs when attempting to verify identity information is somewhat 

proportional to the relative quality of its input images. However, we offer a solution to 

minimise the decrement in performance in DCNNs. In forensic settings, DCNNs compare 

facial images using a similarity score scale. And therefore, these systems probably use a 

particular position (e.g. a threshold) in this scale to determine the DCNN's agreement 

regarding an individual's identity. Here, by showing that the Yoked metric led to 

improvements in decisions, we argue that a possible solution to minimise errors is to define 

multiple thresholds to make facial verification decisions. Notably, such thresholds would 

change depending on the quality of the images.  

It is essential to address that we might have overestimated the power of the DCNNs 

in this study. The databases used to train the DCNNs employed in this study mostly 

contained high-quality images (e.g. VggFace2 (Cao et al., 2018), CASIA-WebFace (Yi, Lei, 

Liao, & Li, 2014), etc.). So, the performance of the DCNNs when matching lower-quality 

images might have been improved if we first used techniques to enhance image quality. 

Furthermore, it is unclear how the DCNNs would perform if they were trained on a more 

varied image set or if training mimicked the developmental processes in childhood, where 

image quality was initially low but improved over time (Dobson, Teller, & Belgum, 1978; 

Vogelsang et al., 2018; Jang & Tong, 2021;). Future work should expand our comparison 

analysis between humans and DCNNs by once improving the quality of images before the 
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examination (see for review Liu, Pedersen, & Wang, 2022) and by using promising DCNNs 

that comprehend lower-quality images (see Zangeneh, Rahmati, & Mohsenzadeh, 2020). In 

addition, one aspect that warrants closer examination is the understanding of the use of 

Likert-scales and Euclidean Distance by both humans and DCNNs - as our full understanding 

of how they represent responses remains incomplete. And so, future studies should focus 

on elucidating how similar these scales are and how they contribute to the similarities 

observed between the two distinct entities. 

Nevertheless, we show decrements in image quality negatively impact both humans 

and current DCNNs. In forensic settings, humans often employ DCNNs to help guide their 

decision-making. And despite humans and DCNNs being error-prone in performing facial 

identification, previous research has also shown an exciting solution to improve false 

allegations in forensic settings. This body of research shows that combining (i.e. fusing) 

decisions made by the best human operators alongside DCNNs matching identities in faces 

could improve accuracy to reach ceiling levels (e.g., Phillips et al., 2018; White, Dunn, 

Schmid & Kemp, 2015). Indeed, our results outline the potential for fusing decisions made 

by humans and DCNNs. Previous research shows that groups of individuals with different 

strategies for solving problems are better than a single source (Kittler, Hatef, Duin & Matas, 

1998; Hong & Page, 2004; O'Toole, Abdi, Jiang & Phillips, 2007; White, Burton, Kemp & 

Jenkins, 2013; Hu et al., 2017; Jeckeln et al., 2018). And so, it is plausible to interpret that 

grouping human responses with DCNNs' would theoretically benefit the overall accuracy 

due to qualitative differences between their judgment about identities in faces. However, it 

is still unclear how to properly use the information provided by humans and DCNNs to use 

them best. Thus, the next chapter of this thesis will focus on finding the best practices to 

improve decisions made by simulating such forensic "teaming" between humans and 

DCNNs. 

 

Conclusion 

Here, the stimulus presented reinforces that there are important differences in the 

performance of humans and algorithms when making face-matching decisions. Humans 

showed substantial advantages relative to DCNNs in processing image pairs that differed in 

quality. As a result, this work raises a new argument showing that humans share distinct but 
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complementary processes (i.e. different strengths) compared to algorithms processing faces 

of diverse image qualities. 
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Chapter 3 - Optimising human and AI teaming by being sensitive to individual differences 

Introduction 

In many applied settings, it is necessary to establish the identity of an unknown 

person, such as when identifying travellers at border crossings and establishing the identity 

of a fugitive in a criminal investigation. These important identification decisions must be 

made with extremely high accuracy because errors can seriously affect people’s lives and 

public safety. Organisations will typically have human staff make these face identification 

decisions with the assistance of face recognition technology (built using artificial 

intelligence, e.g. DCNNs). This is commonly referred to as “human-AI teaming”, or “human-

AI fusion”. 

The work of Phillips and colleagues (2018) showed that combining facial 

identification decisions made by humans and DCNNs can improve the accuracy of the 

decisions up to ceiling levels. In a face-matching task where two images were shown 

simultaneously on a screen, human experts (facial forensic examiners) made identity 

judgments using a 7-point Likert scale (-3 = Very confident different people; +3 = Very 

confident same people). When averaging these ratings with similarity scores produced by 

leading DCNNs (~95% accuracy) and a forensic examiner (~93% accuracy on average), the 

combination resulted in facial identification decisions reaching 100% (median of 

distribution). And so, their work provides a practical and significant method to illustrate that 

humans and DCNNs can be powerful tools for making facial identification decisions when 

working together.  

However, such a human-AI combination can also decrease the quality of decisions. 

That is, they also show that using the same forensic examiners combined with DCNNs of 

poorer quality (~67% accuracy) can reduce the overall decisions to 91%. Thus, forensic 

examiners alone would be a better choice in this case - as their accuracy alone was higher 

than the human-AI. Although both humans and DCNNs are capable of high performance, 

they still make errors. There is, therefore, a practical need to devise methods that optimise 

how humans and AI work together to identify faces.  

One potential option to improve the accuracy of human-AI teaming is to improve the 

accuracy of the humans. In typical participant samples, the distributed range of measured 

face processing ability goes from individuals with an extremely poor ability (i.e. individuals 

diagnosed with developmental – or acquired -  prosopagnosia (for reviews, see Bate & 
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Bennetts, 2014; DeGutis, Cohan, & Nakayama, 2014), to individuals on the other side of the 

spectrum (i.e. super-recognisers (see Russell, Duchaine & Nakayama, 2009; Bobak et al., 

2016; Ramon, Bobak & White, 2019). In addition, research suggests that ability is highly 

stable over time (Sutherland et al., 2020; Germine et al., 2015), with test re-test correlations 

above 0.7 (Balsdon et al., 2018; White et al., 2021), and highly heritable (Wilmer et al., 2010, 

Zhu et al., 2010; Shakeshaft & Plomin, 2015). And so, a possible approach to improving 

human accuracy would be to select individuals on the basis of this skill, but there is no 

principled basis on which to select individuals that are sufficiently skilled to form an AI-

human team.  

Alternative approaches include training individuals to maximise their identification 

performance. However, these attempts were rarely successful for individuals diagnosed 

with prosopagnosia (DeGutis, Cohan & Nakayama, 2014; DeGutis et al., 2013; Ellis & Young, 

1988; Brunsdon, Coltheart, Nickels, & Joy, 2006; see Towler et al., 2021 for a review). While 

some simple approaches, such as providing accuracy feedback (White et al., 2014), might 

slightly improve someone’s facial processing, this improvement is only found for 

participants initially showing poorer skills. Despite numerous training courses developed to 

improve identity verification abilities (see Moreton, Havard, Strathie, & Pike, 2021), a 

comprehensive evaluation of their outcomes showed they could not significantly improve 

face-matching accuracy (Towler et al., 2019). 

Another potential solution to improve the accuracy of human-AI teaming is to 

remove the human from the decision so that the algorithm makes identity verifications 

alone. Current DCNN technology possesses a robust designed architecture that can 

recognise thousands of learned identities with outstanding performance (e.g. Cao et al., 

2018; He, Zhang, Ren & Sun, 2016; Schroff, Kalenichenko, & Philbin, 2015). However, today, 

despite DCNNs being accurate and significantly fast (i.e. seconds to make a final decision), 

their accuracy in performing unfamiliar identity verifications is comparable to super-

recognisers’ (Grother et al., 2019). 

But entrusting algorithms completely with face identification decisions is 

problematic. For example, as shown in the previous Chapter 2 of this thesis, algorithms are 

susceptible to image quality issues, leading to potential errors. It is perhaps not surprising 

then that when algorithm accuracy has been evaluated ‘in the wild’ – i.e. in operational 

settings -  official reports find poor facial recognition performance or many false positives. 
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For example: (i) the Welsh police tried implementing algorithms to compare the identities of 

170,000 people against a database of custody images during a football match. During this 

implementation, the algorithm found 2,470 possible matches, but 92% of those identities 

(2,297) were false positives (Press Association, 2018); (ii) In the United States, an algorithm 

used by police departments compared 28 images of members of Congress against a 

database of 25,000 mugshots. In this operation, the algorithm detected 28 possible matches 

(5% error rate). Interestingly, most of these misidentifications were from Latino and African-

American members (Singer, 2018); (iii) also in the United States, an algorithm implemented 

to compare surveillance CCTV footage against a database of ID photographs mistakenly 

identified a man as a criminal. Such an accusation - being trusted by the police - led this man 

to be imprisoned for nearly 30 hours (Williams, 2020). Such examples demonstrate that 

facial recognition technology cannot be used for facial verification without some level of 

human oversight.  

Human oversight of automatic facial identification decisions is not always effective. 

In security settings, an important use of face recognition software is to allow a larger 

volume of identity verifications, given their speed and accuracy. Such a service allows these 

settings to use face recognition software to quickly scan a facial probe image and compare 

its identity against vast face databases to find similar-looking individuals. This search process 

is known as one-to-many (i.e. 1-to-n), and its output is a list of similar-looking candidates 

(Jain, Klare, & Park, 2012; Grother, Ngan, Hanaoka, 2014; Jain & Ross, 2015). However, as 

White and colleagues (2015) demonstrated, using such auxiliary tools to find possible 

candidates is problematic as humans are still required to make the final decision regarding 

the target’s identity. In their study, they compared groups of untrained and trained 

individuals when asked to find a target identity amongst an algorithm’s list of eight potential 

candidates. They reported that trained staff members (i.e. passport issuance staff, who 

make an average of 60 facial identification decisions using face recognition software per 

day) were no better than untrained individuals when locating targets. And the untrained 

group made over 50% of target identification errors. Interestingly, they also tested a select 

group of specialist facial examiners performing the same task and found that they 

performed 20% better than the other groups (White, Dunn, Schmid, & Kemp, 2015). So, 

adding humans to oversee DCNNs is arguably ineffective in reducing error rates in facial 

identifications.  
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In addition, when the task is to compare identity pairs (i.e. a 1-to-1 verification), 

studies show that when humans have access to the algorithm’s decisions regarding their 

similarities, humans have a significant tendency to bypass its decision. That is, not capturing 

errors made by the algorithm (e.g. Fysh & Bindemann, 2018; Howard, Rabbitt, & Sirotin, 

2020). For example, Howard and colleagues (2020) created an expanded version of the 

GFMT (Burton et al., 2010). For processing such a task, participants should decide the 

similarities of identity pairs - sequentially presented on a screen – by ranking their identity 

similarities on a 7-point Likert scale. However, in some conditions of their task, they added a 

background colour to the stimuli, indicating whether an ‘algorithm’ - or a human - 

previously decided that such an identity pair was from different or the same identities. Their 

results show a significant shift in human responses to accept the previous decisions, being 

them from humans or algorithms. Thus, such results further illustrate that a potential 

sequential human oversight regarding AI’s facial identification decisions will likely not 

improve the quality of decisions. 

Where human-AI teaming works well appear when they perform the task 

independently but equally contribute to an overall decision. Laboratory studies show that 

the ‘wisdom-of-crowds’ significantly improve face-matching accuracy. For example, when 

humans perform independent decisions comparing the identities of individuals (e.g. on a 5-

point Likert scale), studies show that the optimal outcome is likely to be found in the 

average of multiple decisions (Dowsett & Burton, 2015; Jeckeln et al., 2018). Such a method 

for aggregating responses is called ‘wisdom-of-crowd’. Ultimately, when there is more 

diversity in the strategies employed by the decision-makers, averaging their decisions (e.g. 

fusing responses) results in even more accurate predictions to match identities (see Kittler, 

Hatef, Duin & Matas, 1998; White, Burton, Kemp & Jenkins, 2013; Hu et al., 2017; Jeckeln et 

al., 2018). Interestingly, applying the same concept of diversified independent sources by 

pairing humans and AI can significantly improve the quality of the identity verification 

decisions (see Phillips et al., 2018, Towler et al., under review), producing better outcomes 

when compared to the two individual decision-makers alone.  

The work of Phillips and colleagues (2018) provides evidence regarding humans-AI 

fusion improving face identification decisions. However, because they did not investigate 

the relations between the decisions made by humans and DCNNs, it raises questions 

regarding the underpinnings of such improvements. For example: Can individual differences 
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explain the size of such fusion effects? Or even, will decision differences between humans 

and DCNNs improve fusion effects even more? These questions are a critical implication of 

their study because unfamiliar face recognition is responsible for large individual differences 

in humans. And so, one possible route for studying the behavioural outcomes of fusion 

effects is to study its interaction with individuals situated in different places of the ability 

spectrum. Such a study will not only allow us to clarify how the face-processing ability of 

individuals would interact with DCNNs but also help us to find best practices to improve - 

and possibly predict - the quality of forensic identifications. 

To our knowledge, no research has investigated the relationship between the face 

recognition abilities of individual humans and DCNNs - and how much this impacts the 

benefit of fusing their face identity processing decisions. In addition to showing that face 

processing ability has significant individual differences (Duchaine & Nakayama, 2006; 

Burton, White & McNeil, 2010; Phillips et al., 2018; for review, see White & Burton, 2022), 

the accuracy of individual DCNN algorithms also vary substantially from one algorithm to the 

next (Phillips et al., 2018; Towler et al., under review; Grother, Ngan & Hanaoka, 2019). And 

so, it is important to know how the relative levels of accuracy of both DCNNs and humans 

affect their combined accuracy. Therefore, we designed the study presented in Chapter 3 to 

understand better how individual differences in human face-matching accuracy can affect 

the size of fusion effects. This study aims to optimise processes for combining humans and 

AI to improve face-matching decisions in forensic scenarios. 

 

Computational study 1 

 
This study aims to better understand how humans and DCNNs can best complement 

each other to improve the quality of face-matching decisions. We used the data obtained 

from Experiment 1, where both humans and DCNNs showed variable accuracy on the task. 

Because perfect accuracy was rare, given the varying image quality of the dataset, fusing the 

decisions of humans and DCNNs from this task can show the degree of improvement when 

performing a difficult test. Because there were large variations in accuracy across individual 

humans and individual DCNNs, this also provides a suitable dataset for examining how best 

to combine individual humans with individual algorithms in an AI-human team.  
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Method 

Participants 

Participants were the same as in Experiment 1, where 513 student participants’ 

performed the Same and Different-Resolution conditions in the Fast Fourier Transformation 

(FFT) and Gaussian Blur versions (see Chapter 2). 

 

Stimuli 

 
 We used the same stimuli described in Experiment 1 (see Chapter 2). As a reminder, 

we produced the matching task stimuli in two distinct presentation conditions: Same-

Resolution and Different-Resolution. In the Same-Resolution condition, participants and 

DCNNs processed 50 face pairs. We degraded the two face images of each trial using a low-

pass filter set to 6 different randomly assigned cut-off frequencies. In the Different-

Resolution condition, one facial image remained original while the filter degraded the other. 

We had two versions of these stimuli, one using an FFT filter and the other using a Gaussian 

Blur filter. We used both the FFT and Gaussian versions as stimuli for this investigation. 

However, their outcomes were analysed separately to keep consistency regarding the 

previous experiment.  

 

Procedure 

In Experiment 1, human participants responded to 50 face-matching trials using a 5-

point Likert scale (1: Sure Different, 2: Think Different, 3: Do Not Know, 4: Think Same, 5: 

Sure Same). To analyse the data, we rescaled these responses from 0 (Sure Different) to 1 

(Sure Same). For the DCNNs, we inverse-normalised the Euclidean Distance between the 

penultimate (top) layers (feature vectors) for each stimuli pair. As a result, both human and 

DCNNs’ similarity scores were in the same range from 0 to 1, where 0 is equivalent to a 

‘Sure Different’ response and 1 a ‘Sure Same’ response. Importantly, humans and DCNNs 

processed trials independently. This way, humans could not be influenced by DCNNs during 

the experiment.  
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Because the similarity scores of humans and DCNNs were in the same range (i.e. 

scale), we could combine them into one “fused” similarity score. Phillips and colleagues 

(2018) suggest fusing the responses of humans and DCNNs by averaging trial responses. And 

so, we replicated this same analysis in this study.  

Importantly, in the previous Chapter 2, we found that DCNNs had substantial 

differences in the distribution of similarity scores for different image qualities compared to 

humans. Humans tended to calibrate their responses similarly across image quality 

conditions because they centred their overall score on the scale’s midpoint, but this was not 

the case for DCNNs. DCNNs showed very different response distributions across the 

different image quality conditions. Therefore, to address this difference between humans 

and DCNNs in the current study, we processed DCNNs’ similarity scores using two separate 

methods: (i) normalising all similarity scores together, combining all image quality 

conditions (or ‘Direct Fusion’); (ii) normalising separately for each image quality band (or 

‘Quality-sensitive fusion’). Normalising separately for each image quality condition would 

likely improve fusion scores because it would force the average of all quality conditions to 

be similar on the scale. However, although this approach may not always be practicable in 

applied settings as it would require an extra step to rank the quality of an image, we present 

both types in our analysis. Figure 3.1 illustrates these different fusion approaches.  
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Figure 3.1. Schematics for the two metrics measuring fusing decisions made by humans and DCNNs 
processing faces. Humans and DCNNs processed 50 face-matching trials independently. Later on, we 
transformed the responses of humans and DCNNs for them to be in the same range (from 0 to 1). The 

fusion is the average trial response from humans and a DCNN.  

 
 

After normalisation, we fused the decisions of individual DCNNs with individual 

humans. Our objective with the fusion was to investigate how the decisions of DCNNs and 

humans combine and improve the quality of the decision regarding someone’s identity. And 

so, to fuse their decisions, we collected the similarity scores made by individual humans and 

a DCNN performing the same stimuli and averaged their responses. Here, we fused human 

responses with all nine individual DCNNs in the study (see Chapter 2 for the description of 

DCNNs). In addition, we created a tenth DCNN, made by combining (i.e. fusing) all the nine 

individual DCNNs together. We called this fused DCNN ‘Average DCNN’. The fusing process 

of humans and DCNNs created a new set of 10 ‘fused’ responses. We used these new 



70 

 

responses to verify if the fusion improved the decision quality compared to the ones made 

by humans or DCNNs alone.  

We predict that fusing humans and DCNNs will produce more accurate decisions 

compared to individual decisions. To make this comparison, we calculated AUCs using the 

similarity scores from each of the three decision-makers (i.e. humans, DCNNs, fusion) as a 

measure of decision quality. And so, the difference between these computed AUCs will 

allow us to investigate the effects of fusion in the human-DCNN teaming for the 10 DCNNs. 

We replicated this process using the Direct and Quality Sensitive fusion metrics (see Figure 

3.1). 

Because we predict that the differences in how humans and DCNNs rank similarities 

will also lead to differences in their fusion outcomes, we measured their agreement 

between the decisions. For instance, studies show that diversity in the strategies employed 

by the decision-makers would improve the overall quality of the decision when matching 

faces (e.g. White, Burton, Kemp & Jenkins, 2013). And so, to investigate the monotonic 

agreement between humans and DCNNs, we calculated the Spearman’s rho between their 

similarity scores as the agreement measure. Investigating how the agreement between 

humans and DCNNs can interact with fusion improvements is of great importance because it 

might give us an additional tool to predict the effects of this fusion posteriorly.  

To improve readability, we present the detailed data analysis using the FFT version 

of the stimuli below. For analysis using Gaussian filter - which produced similar results to the 

FFT - see APPENDIX B. 

 

Results 

Human-DCNN fusion improvements correlate with human performance 

We first verified if fusing human decisions with DCNNs could boost accuracy relative 

to the DCNN accuracy alone. For that, we calculated the Spearman’s rho (ρ) between the 

AUC boost caused by the fusion (AUCBoost = AUCFusion – AUCDCNN) and the accuracy of the 

individual human that was used in the fusion (AUCHuman). We calculated these correlations 

for the two stimuli conditions (Same-Resolution and Different-Resolution) using the two 

fusion methods (Direct fusion and Quality Sensitive fusion). Here, we report our results in 

terms of the fusion between humans and the Average DCNN mainly to improve readability, 
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as its consolidated results suffice to represent the consistent findings across all DCNNs (for 

description, see Table 1.1, page 41 of this thesis document). Still, when necessary, we show 

a systematic comparison across each individual DCNN for comprehensive overview of the 

whole data. We found that for the Same-Resolution condition, both the Direct [ρ(160)= 

0.56, p< 0.001] and Quality Sensitive [ρ(160)= 0.79, p< 0.001] fusion methods showed 

significant correlations with human performance. We found a similar pattern for the 

Different-Resolution condition. That is, both the Direct [ρ(166)= 0.74, p< 0.001] and Quality 

Sensitive [ρ(166)= 0.79, p< 0.001] fusion methods showed significant correlations with 

human performance. Moreover, all the other 9 DCNNs in this study showed a similar pattern 

of results when replicating the same analysis, which shows that the better individual human 

performers are, the greater the boost they can provide to DCNN performance after fusion 

(see Table 3.1). 

 

Table 3.1. Table showing Spearman’s correlations between AUC boost caused by the fusion (AUCBoost 
= AUCFusion – AUCDCNN) and the accuracy of the individual human that was used in the fusion 

(AUCHuman). In Table 3.1, we show these correlations for the two stimuli conditions (Same-Resolution 
and Different-Resolution) using the two fusion methods (Direct fusion and Quality Sensitive fusion). 

 

In addition, we noted that the quantity of humans that could boost the DCNN 

accuracy (AUCBoost > 0) relates to the DCNN used. For example, using the Direct fusion 

method in the Same-Resolution condition, we found that ~89% of our human participants 

could positively boost the Average DCNN’s performance.  However, a systematic view 

looking at individual DCNNs showed substantial variation in this figure, for example, only 

~37% of the participants boosted DCNN2’s performance. This effect is likely due to the fact 

that some DCNNs performed the task better than others (e.g. Average DCNN: M=80.28%, 

SD= 6.89%; DCNN2: M=93.14%, SD= 2.29%; t(160)=21.84, p<0.001).  
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Our finding that human performance can boost DCNNs’ decisions has practical 

significance because it shows a valuable way to use humans and DCNNs to achieve optimal 

performance (see Chapter 2). In this initial investigation, we observed a linear relationship 

between the fusion effect and the face-processing ability of humans. Because human ability 

is stable across the whole performance spectrum (e.g. see White et al., 2021), this may 

point to a principled way of selecting humans to form an AI-human ‘team’ given a particular 

DCNN in question. We examine this possibility in the next section using a more formal 

analysis.  

 

Human-DCNN fusion is improved when human performance is within 10% of DCNNs’ 

performance 

We aimed to understand how best to select humans for AI-human teams given a 

particular level of discrepancy between DCNN and human accuracy. To do this, we 

calculated the Spearman’s rho (ρ) between the AUC boost caused by the fusion (AUCBoost = 

AUCFusion – AUCDCNN) and the difference between human-DCNN performance (AUCDifference = 

AUCHuman – AUCDCNN). Figure 3.2 shows scatterplots of these correlations for the two fusion 

methods (left: Direct fusion; right: Quality Sensitive fusion) for both the Same-Resolution 

condition (top panel) and Different-Resolution condition (bottom panel). For the Same-

Resolution condition, both the Direct [ρ(160)= 0.92, p< 0.001] and Quality Sensitive [ρ(160)= 

0.91, p< 0.001] fusion methods showed significant positive correlations with the 

performance difference between humans and DCNNs. The Different-Resolution condition 

showed similar high correlations, both the Direct [ρ(166)= 0.92, p< 0.001] and Quality 

Sensitive [ρ(166)= 0.95, p< 0.001].  
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Figure 3.2. Correlation between the difference between human and average DCNN 
performance (AUC) with their fusion boost in performance using the two fusion metrics. At the top 

panel, we show the results for the Same-Resolution. At the bottom panel, we show the results for the 
Different-Resolution condition. Note that we calculate the boost in performance by subtracting the 
resulting DCNN AUC from the Fusion AUC. Refer to the main text for details regarding the dashed 

lines. 

 

These significant positive correlations reiterate the previous finding that high-

performing humans boost DCNN decisions. However, they also provide the opportunity to 

specify the level of human accuracy that is required to provide benefit to a DCNN via 

human-AI teaming. The dashed black lines in Figure 3.2 signify the lowest human accuracy 

required to boost DCNN performance, i.e. bisecting lines in the vertical axis exactly where 
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the fusion improvements were zero (AUCBoost= 0). Using the trend line which models our 

fusion analyses, the projection of such black lines on the horizontal axis shows that humans 

are valuable for the fusion when their performance is no worse than ~8% lower than the 

DCNN’s absolute performance on average. This result provides a numerical starting value for 

principled decisions on which humans should be allocated to which DCNNs in human-AI 

teams. However, DCNN performance varies widely from one algorithm to the next, and so 

next, we verified the stability of this result for all DCNNs. 

Figure 3.3 shows the minimum human-DCNN accuracy discrepancy necessary for 

fusion to be beneficial to DCNN accuracy, separately for each individual DCNN. For the 

same-resolution condition, we found that, on average, participants should be no more than 

below ~-10% of the DCNNs’ accuracy to provide a fusion improvement. This value was 

remarkably consistent across all the DCNNs tested. For the Different-Resolution condition, 

the average maximum discrepancy was within ~6% on the DCNN, but this was far more 

variable depending on the individual DCNN that we tested. This variance appeared to be 

caused by three particular DCNNs (DCNN 7, 8, and 9), while the other 6 DCNNs all showed 

the same 10% result as in the Same-resolution condition. These 3 DCNNs were also the 

worst performing, perhaps suggesting that floor effects in DCNN accuracy were responsible 

for the discrepant results.  
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Figure 3.3. The predicted accuracy that humans need to show to improve DCNNs by fusing their 
decisions when processing face identification. In the top panel, we show the predicted accuracy for 

the Same-Resolution condition. In the bottom panel, we show the results for the Different-Resolution. 
For each panel, we show the results for the Direct fusion on the left and the results for the Quality 

Sensitive fusion method on the right. 

 
 

Disagreements between humans and DCNN improve fusion performance 

Fusion effects arise because uncorrelated errors are cancelled out through response 

averaging. Therefore we aimed to understand whether performance improvements found in 

the fusion are related to the level of agreement between humans and DCNNs, as this could 

be exploited when forming AI-human teams in future. As a reminder, human participants 
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and DCNNs responded to the same stimuli, and we transformed their responses to a scale 

from 0 to 1 (see Methods). This scale allowed us to calculate the 1-to-1 agreement 

(Spearman’s correlation) between humans’ and DCNNs’ responses when processing the 

stimuli. We predict that further improvements in the fusion effects are related to lower 

agreement between humans and DCNNs due to more diversity in their responding which 

would decrease the correlation of errors (see Kittler, Hatef, Duin & Matas, 1998; White, 

Burton, Kemp & Jenkins, 2013; Hu et al., 2017; Jeckeln et al., 2018).  

 

To examine whether AI-human disagreement was responsible for an additive boost 

in accuracy in AI-human teams, we first isolated the unexplained variance in the linear 

models shown in Figure 3.2. As shown in Figure 3.4 (left panels), the AUC difference 

between individual humans and DCNNs explained the vast majority of variance in the extent 

to which AI-human teaming boosted accuracy relative to the DCNN alone. However, as 

shown on the plots on the right, residual variance in these linear models was meaningfully 

predicted by the degree of agreement between DCNN and human responding.  
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Figure 3.4. Combining humans with DCNNs’ has a larger effect when DCNNs and humans disagree on 
face similarity judgments. On the left of each panel, graphs show the correlation between human 

and average DCNN performance (AUC) with the boost in performance in the Quality Sensitive fusion 
metrics. On the right, we show the correlation between the residuals of the linear models on the left 
with the agreement (Spearman’s rho) between humans and DCNNs. For both Same-resolution (top 

panels) and Different-resolution (bottom panels) image pairs, the boost to DCNN accuracy caused by 
AI-human response fusion was negatively correlated with the level of agreement.  

 

To carry out the analysis shown in Figure 3.4, we replicated the Quality Sensitive 

fusion correlation analysis from Figure 3.2 (AUCDifference versus AUCBoost), as shown on the left 

for each panel in Figure 3.4. We used linear trending regression as a model to predict the 

minimum accuracy where humans start to improve DCNNs due to fusion. This regression 

allowed us to determine the exact position where the model predicts the humans that 

would improve the fusion, dividing the data into expected positive (green circles) and 

negative (red crosses) changes in performance. In addition, because some humans 

produced fusion effects above - or below – the boost predicted by the model based on 



78 

 

accuracy difference alone, we calculated the residuals (i.e. the vertical distance) between 

each data coordinate against the model.  

The graphs on the right side of Figure 3.4 show correlations between the 1-to-1 

agreement of humans and the average DCNN against the found residuals in the Quality 

Sensitive fusion. We found that the overall correlation between the calculated residual 

values and agreement (Spearman’s rho) between human-DCNN decisions was negative and 

significant for both the Same-Resolution [ρ(160)= -0.34, p< 0.001] and Different Resolution 

[ρ(166)= -0.40, p< 0.001] conditions. We also separated this analysis into humans who 

showed positive and negative boosts predicted by the linear model. This analysis showed 

that humans that improve DCNNs (i.e. green circles in Figure 3.4) showed larger fusion 

effects for the Same-Resolution [ρ(160)= -0.59, p< 0.001] and Different-Resolution [ρ(166)= -

0.52, p< 0.001] conditions in comparison to humans that would impair DCNNs (i.e. red 

crosses in Figure 3.4) in the Same-Resolution [ρ(160)= -0.42, p< 0.001] and Different-

Resolution [ρ(166)= -0.26, p=0.080]. Ultimately, these results show that humans who 

possess higher face processing abilities and rank their decisions differently than DCNNs (i.e. 

a lower correlation between their 1-to-1 decisions) will improve DCNNs’ decisions above the 

model. This provides a principled basis to make decisions about which humans are suited to 

be paired with a specific algorithm. 

 

Discussion 

In Chapter 3, we re-analysed data from university students and various DCNNs 

performing challenging face-matching tasks reported in Chapter 2. This computational study 

aimed to examine the potential for fusing humans and DCNNs to improve the quality of 

identity verification decisions. We averaged human responses with DCNNs’ in face-matching 

tasks to examine how fused responses improved identity verification decisions compared to 

the ones made by humans or DCNNs alone. Fusion showed substantial performance 

improvements for some individuals when paired with some algorithms. However, the extent 

of the boost provided by humans was highly contingent on the relative accuracy of the 

individual DCNNs and humans in question. 

Understanding that humans can increase the accuracy of DCNNs’ decisions is 

significant because it shows that humans remain a valuable tool for increasing identity 

verification decisions – algorithms alone are not a complete solution. As mentioned 
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previously, it is increasingly common for security settings to use automatic recognition 

systems to perform identity verifications in images taken ‘in the wild’. However, as shown in 

the previous chapter of this thesis (Chapter 2), humans and DCNNs show severe -but 

different- impairments when processing identity verification in such images.  

Perhaps unsurprisingly, we found a positive linear relationship between human 

performance and enhancements in DCNNs’ performance. This result illustrates that humans 

with higher accuracy in face-matching tests can substantially improve DCNNs’ decisions. 

More interestingly, we were able to identify the level of human accuracy that is necessary to 

provide a boost to DCNN via response fusion. Using linear regression, we found that humans 

start to improve DCNNs’ decisions if their accuracy is - at a maximum – around 10% lower 

than the DCNNs’ overall accuracy when performing the same stimuli. Curiously, we found 

that this maximum discrepancy value was very similar across all different DCNNs and 

stimuli. This robustness across DCNNs allows us to develop a simple model to predict the 

improvement caused by human-DCNN fusion. Given the linear trend, we found that humans 

with similar accuracy to the DCNNs (AUCdifference=0) produced fused identity verification 

decisions 5% higher than when alone. 

Our findings might explain why the work of Phillips and colleagues (2018) achieved 

ceiling performance when combining forensic examiners - or super-recognisers - with a 

state-of-the-art DCNN. For example, the DCNN they used showed ~95% accuracy on their 

test, and the forensic examiners also showed an average of ~93%. Using our results and our 

practical model, we would predict that fusing a human with similar performance to this 

DCNN would improve the accuracy of the DCNN by around ~5%, which would make the 

DCNN achieve ceiling performance.  

By showing that human-DCNN fusion effects are proportional to the difference 

between the facial identification ability of humans and the accuracy of DCNNs, this provides 

a new benchmark for deciding which humans should be permitted to be part of human-AI 

teaming in facial recognition. Rather than using arbitrary cut-offs for selecting high-

performing humans in face identification tasks (e.g. > +2SD of the mean, see Ramon, Bobak 

& White, 2019), these results suggest a new principled way of setting these selection 

cutoffs. Namely, if an individual human performer is able to achieve within 10% of the 

algorithm accuracy on a face-matching task that is representative of the task performed in 
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applied settings – or, ideally, above - then they are qualified to contribute face-matching 

decisions that are combined in the AI-human team. 

Interestingly, we also found that the extent to which human responding diverged 

from DCNNs is also relevant to the improvement that their decisions can bring to a human-

AI team. In the context of our study on identity processing, the Likert-type scale allowed 

participants to express their responses along a spectrum, ranging from strong agreement to 

strong disagreement, accommodating the nuances and individual differences in how they 

perceive and process identity-related information. Moreover, use of Spearman’s rho 

allowed us to assess the relationship between human similarity judgments and Euclidean 

distance computed by facial recognition algorithms (as in previous research: e.g., O’Toole, 

An, Dunlop, Natu, & Phillips, 2012) without making assumptions about the scaling of this 

relationship beyond the idea of monotonicity (i.e., that a decrease in Euclidean distance will 

correspond to an increase in rated similarity, which seems a reasonable assumption). We 

found that humans who showed less agreement with DCNNs (lower Spearman’s 

correlations) contributed more to the fusion effect. This result is interesting because it 

illustrates that if fusions are to be applied in real applications, forensic examiners and super-

recognisers should work alongside specific DCNNs. That is, a recent body of work from 

Towler and colleagues (2021) suggests that forensic examiners and super-recognisers use 

the response scale differently and yet achieve similar accuracy levels (Towler et al., 2021). 

And so, when applied in real-world settings, the DCNN should - ideally - most disagree with 

their human pair on ranking identity verification decisions. And so, forensic organisations 

should count on a body of different DCNNs (i.e. with different architectures, training 

databases, etc.) and a body of human operators (i.e. super-recognisers, forensic examiners, 

etc.) to provide rich and diversified solutions. This way, such organisations can determine 

human operators to work alongside DCNNs specifically ‘tuned’ to improve their decisions 

even more. Or even, perhaps, train individuals to rank similarities differently than DCNNs to 

most benefit fusion effects in face identity decisions. To this end, it will be important to 

establish in more detail how the Euclidean Distance used by DCNNs relates to the similarity 

data from the Likert-scale used by humans (beyond the mere assumption of monotonicity). 

As aforementioned, the appropriate use and interpretation of Likert-type scales—in 

general—in humans is still a subject of ongoing investigation in the research community. 
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Establishing the nature of this relationship in the context of the current research would 

further strengthen the validity of our study. 

 All the fusion results reported here showed no significant differences between the 

two metrics for fusion or the filters used to manipulate the quality of the images. This 

finding is interesting because, despite the considerable difference between the two 

approaches to calculate DCNNs’ similarity scores (i.e. Direct and Quality-Sensitive fusion), 

the two approaches both produced robust fusion effects. That is, the human-DCNN fusion 

model was strikingly similar unregarding the metric to calculate DCNNs’ similarity scores. 

Still, as predicted, the Quality Sensitive fusion showed significant performance improvement 

compared to the Direct fusion, illustrating that clustering images by distinct quality groups 

somewhat relate to the number of correct decisions made by DCNNs. The observed shift in 

performance, while maintaining consistent fusion patterns, presents a compelling 

opportunity to showcase how varied data processing approaches can lead to substantially 

different outcomes. Simultaneously, this outcome reinforces the robustness of our findings, 

as both fusion methods continue to yield significant benefits from incorporating human 

judgment. This is a valuable result because the clustering mechanism of the Quality 

Sensitive approach prevented DCNNs from being biased in accurately rating specific groups 

of image qualities. And so, the such approach presents an opportunity for researchers to 

overcome potential facial verification errors in groups that would offer bias in DCNNs (e.g. 

race (see Cavazos, Phillips, Castillo, & O’Toole, 2020)) and verify future improvements by 

performing human-DCNN fusion. Ultimately, our findings demonstrate that robustly trained 

DCNNs benefit from improved accuracy when integrated with human judgments - as long as 

humans perform at a similar or higher level than the DCNN. This outcome remains 

consistent regardless of which of the two metrics is used for human-DCNN fusion. Future 

studies should try replicate our findings with different metrics and, importantly, test it 

within and between different groups of participants. This approach would help us better 

capture the fusion effect in DCNNs and better understand how human decisions contribute 

to improving its performance. Moving forward, it is crucial to explore the impact of human 

judgments fused with poorly trained DCNNs and how various datasets sizes can influence 

human + AI combined performance. 
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Conclusion 

In this work, we demonstrate that combining diverse sources of decision-making can 

improve face-matching decisions. For that, we investigated multiple setups to understand 

how fusing independent decisions made by humans and DCNNs can lead to improvements 

in identity verification. This investigation shows that improvements caused by fusing 

humans and DCNNs processing the same stimuli have a robust relationship with the 

accuracy difference between them. We conclude that combining the decisions of humans 

with similar performance to DCNNs’ improves the accuracy of face-matching decisions. In 

addition, our results show that humans need to perform no worse than 10% lower than the 

DCNNs’ performance to start improving fused identity verification decisions. Also, we show 

a further accuracy increase proportionally related to differences in the strategies between 

humans and DCNNs performing the stimuli. Ultimately, Chapter 3 demonstrates a practical 

use of the differences between humans and DCNNs to improve face-matching decisions. 
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Chapter 4 - Face information use in humans, super recognisers, and DCNNs 

 

Introduction 

 
Previous chapters compared human and DCNN performance on face-matching tasks.  We 

also examined qualitative differences between DCNNs and humans and how these 

differences might be exploited to improve performance in human-AI hybrid systems. In 

Chapter 3, we explored item-level correlations between DCNN and human similarity scores 

to measure the similarity of face identity representations and the benefit of aggregating 

human and DCNN face similarity ratings via response ‘fusion’. In this fusion analysis, we 

found that fusing individual humans and DCNNs that were most uncorrelated in their face 

similarity ratings led to stronger fusion benefits. The implication is that we can exploit 

individual differences in humans and DCNNs to improve the conjoint performance of 

human-AI hybrid systems.  

However, the perceptual mechanisms underlying these individual differences in face-

matching ability still need to be better understood. Therefore, this chapter focuses on 

better understanding perceptual processing underpinning human and DCNN performance. 

Our specific aim was to develop novel approaches to eye-tracking analysis that allowed us to 

examine how human individuals and DCNNs use the visual information in faces to inform 

face identity decisions.  

 

Individual differences and face information use 

Most existing work examining underlying processing mechanisms responsible for 

individual differences in face perception has focused on the concept of ‘holistic’ face 

processing. This is inspired by previous group-level work, which shows that people tend to 

process faces as a whole (i.e. non-decomposable ‘gestalts’) rather than by sets of individual 

facial features (e.g. Farah, Wilson, Drain & Tanaka, 1998; Richler & Gauthier, 2014). The 
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literature suggests three key image manipulations that appear to demonstrate faces are 

perceived holistically: The Composite face effect (Young, Hellawell, & Hay, 1987); The 

inversion effect (Yin, 1969); and the Part-Whole effect (Tanaka & Farah, 1993).  

In the Composite Face Task (CFE), researchers align the top half of one face with the 

bottom half of a different face, creating a new ‘chimeric’ face identity based on two distinct 

individuals. This manipulation disrupts participants' ability to recognise the identities in the 

two face halves. When the face halves are misaligned, participants are then able to 

recognise the source identities accurately (see Young, Hellawell, & Hay, 1987). Thus, this 

disruption in identity recognition caused by the chimeric faces argues that identity 

information depicted in faces is perceived holistically and not as a sum of decomposable 

facial features.  

The Face Inversion Effect (FIE) is the demonstration that face recognition is more 

impaired by turning the stimulus upside down relative to the recognition of other classes of 

objects (Yin, 1969). The argument is that inverting faces forces a more piecemeal featural 

approach due to the disruption in the canonical upright orientation of a face. And so, 

because of this decrement in performance, the argument is that inverting faces disrupts 

holistic processing. Finally, the part-whole effect (Tanaka & Farah, 1993) shows that humans 

are significantly better able to recognise the identity source of single features (e.g. the eyes) 

when presented in the context of a full face compared to when presented alone (Tanaka & 

Farah, 1993). This performance enhancement illustrates that humans encode facial features 

in the context of a holistic representation of a full face. 

These findings might suggest that face identity processing is facilitated by a single 

‘holistic’ template used to represent someone’s identity. Some studies explored this 

hypothesis by studying the association between measures of holistic face processing and 

individual differences in identity processing ability. For example, some studies investigated 

the relationship between the Composite face effect with measures of face recognition 

ability (e.g. the classic CFMT (Duchaine & Nakayama, 2006)). These studies mainly found 

weak correlations between these two measures (e.g. Richler, Cheung, & Gauthier, 2011; 

Wang, Li, Fang, Tian, & Liu, 2011; DeGutis, Mercado, Wilmer, & Rosenblatt, 2013), and 

sometimes no correlation with CFMT (Verhallen et al., 2017; Konar, Bennet, & Sekuler, 

2009) or other face recognition tests (Richler, Cheung, & Gauthier, 2011; Rezlescu, Susilo, 

Wilmer, & Caramazza, 2017). In addition, the critical work of Rezlescu and colleagues (2017) 
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observed the links between face recognition ability with the three main holistic processing 

measures (see above). Their work shows that only the inversion effect could predict face 

processing ability. However, most importantly, they report that the three main measures of 

holistic processing do not correlate with themselves. This vital result shows that, despite 

measuring what seems to be similar processing mechanisms, these measures alone do not 

necessarily fully represent holistic processing and do not measure a stable, trait-like 

individual difference in face processing (see Sunday, Richler, & Gauthier, 2017). 

 Contrary to the hypothesis that more developed holistic processing mechanisms 

drive individual differences in identity processing, some recent work shows an association of 

individual differences with the processing of local part-based information. The ability of 

participants to perform face identity processing tasks from whole images is highly correlated 

with their ability to recognise individual and isolated facial features (Sunday, Richler, & 

Gauthier, 2017). Further, individuals with prosopagnosia show equivalent impairment when 

processing full or limited facial features suggesting that their impairment is not based on a 

holistic processing deficit (Tsantani & Cook, 2020). 

At the other end of the ability spectrum, super-recognisers require less part-based 

sampling of face information to maintain accurate recognition compared to typical viewers 

(Royer, Blais, Gosselin, Duncan & Fiset, 2015). This suggests that their ability enables them 

to recognize faces from isolated face parts better than typical viewers. Furthermore, image 

manipulations made to change the global shape of faces (e.g. caricatured faces) do not 

affect super-recognisers as much compared to other individuals (Kaufmann, Schulz, & 

Schweinberger, 2013) and manipulations in the spatial layout of facial features affect 

recognition performance in super recognisers less than typical viewers (Itz, Schweinberger, 

& Kaufmann, 2018). These pieces of evidence illustrate that holistic processing of face shape 

and feature configuration processing is less valuable in predicting individual ability than 

part-based processes (see also Itz, Golle, Luttmann, Schweinberger, & Kaufmann, 2017).  

 

Eye-tracking studies of information use 

 The research reviewed above underlines the currently limited value of holistic 

processing measures in explaining individual differences in face identity processing ability. 

Feature-based processes may therefore appear to be an important avenue for research 
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aiming to operationalize the processes responsible for differences in face recognition ability. 

These manipulations could be, for example, by using the classic bubbles technique (Gosselin 

& Schyns, 2001), where the researcher applies transparent spots to reveal only specific 

facial regions. Using such image manipulation, researchers found that the average 

population ranks the eye region as the most diagnostic region for successful identity 

recognition (Schyns, Bonnar & Gosselin, 2002), and avoidance of this region might relate to 

poorer face processing abilities (Caldara et al., 2005).  

One limitation of the bubbles approach is that it does not enable participants to 

freely inspect face images as they would usually, and so removes the ‘active’ component of 

vision. In this Chapter 4, I use eye-tracking technology to better understand the contribution 

of this active process of information gathering to individual differences in face-processing 

ability. Eye tracking devices date from more than two centuries ago (e.g. Huey, 1898), 

requiring attaching objects to the eyes of the participants while having their eyeballs 

anesthetised with a - for example- 3% solution of cocaine (see Delabarre, 1898). Today, this 

technology has evolved to a noninvasive video-based recording, where eye movements can 

effortlessly be recorded. Recently, this technology has expanded beyond monitoring eye 

movements when viewing computer monitors to wearable devices that track eye 

movements in natural settings (e.g. Kassner, Patera, & Bulling, 2014).  

Early eye-tracking studies examined participants' attention to scenes that included 

people and faces (Buswell, 1935; Yarbus, 1965). These demonstrated that people attend to 

informative regions of scenes, with faces consistently attracting the majority of participants' 

attention. More recent studies focusing on how individuals distribute their eye fixations on 

faces show that typical viewers explore the internal features of faces, particularly the 

mouth, nose, and eyes. This ‘T-shaped’ fixation pattern is characteristic of viewing across a 

number of studies (e.g. Henderson, Williams & Falk, 2005; Hsiao & Cottrell, 2008; Iskra & 

Tomc, 2016; Thomaz, Amaral, Giraldi, Gillies, & Rueckert, 2017; Varela, Ribeiro, Orona, & 

Thomaz, 2018).  

Other work has shown that the standard average gaze pattern found in face identity 

processing studies varies across individual participants. This variation also appears to vary as 

a function of face identity processing ability. For example,  people with developmental 

prosopagnosia attend more to external areas of the face, such as the hairline (Avidan & 

Behrmann, 2021; Stephan & Caine, 2009, but see Lê, Raufaste, Roussel, Puel & Démonet, 
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2003 for different scan paths between typical viewers and prosopagnosics). Bobak and 

colleagues (2017) showed images of scenes - containing people – to groups of 

prosopagnosics, typical viewers, and super-recognisers. Their result shows that 

prosopagnosics explored faces significantly less than typical viewers, and super recognisers 

explored the inner features of faces significantly more than typical viewers. Interestingly, 

time spent on the nose region of faces in scenes moderately correlated with face 

recognition performance (measured by CFMT (Duchaine & Nakayama, 2006)), showing that 

super recognisers show a preference to extract information from the centre of faces (see 

also Bennetts, Mole & Bate, 2017). Varela and colleagues (2018) show that during a face-

matching task (i.e. GFMT (Burton et al., 2010)), participants, on average, fixated more on the 

eye region. Still, those who performed more accurately tended to fixate more on the nose 

region (Varela et al., 2018). Together, these pieces of evidence paint a mixed picture of the 

relationship between individual face identity processing ability and eye-movement patterns.   

However, the association between greater fixations on the nose region and higher 

accuracy does appear consistent with other work. For example, Peterson and Eckstein 

(2012) demonstrate that the face centre is the ideal position for information extraction 

using a computational approach. They show that the face centre allows maximised amount 

of facial information extracted compared to other individual facial regions. Focusing on the 

face centre may therefore be related to holistic processing, allowing a single fixation to 

extract sufficient information for identification (see also Hsiao & Cottrell, 2008). However, it 

remains unclear whether the differences between the gaze patterns of super-recognisers 

and average participants represent more significant holistic processing in super-recognisers. 

In a study using a gaze-contingent eye-tracking paradigm where participants viewed faces 

through ‘spotlight’ apertures, Miellet and colleagues (2013) show that the preference for 

central fixations is observed even when participants could only see a small part of the face 

at one time. This suggests that central fixation does not necessarily denote holistic 

processing.  

 

Our approach 

 Eye-tracking has been a valuable tool for investigating information sampling in face 

processing. The high data collection, speed, and precision of such machines allow 
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researchers to examine how humans differ when performing, for example, a face-matching 

or recognition task. However, the work described above provides a somewhat mixed picture 

that does not reveal the fundamental differences in information sampling that underpin 

differences in face identification ability.  

 

Here, we develop novel approaches to eye-tracking analysis to deepen our 

understanding of the link between face information sampling and differences in face 

processing ability. Prior studies typically analyse the proportion of eye fixations inside 

delimited Regions-Of-Interest (ROI) (e.g. nose, mouth, etc.). As shown in Figure 4.1, using 

heatmaps enhances the resolution of the investigation by using all pixels of the image 

instead of a few delimited regions.  But heatmap analysis poses technical problems in 

making statistical comparisons (see Lao, Miellet, Pernet, Sokhn, & Caldara, 2017), and these 

same problems somewhat limit the use of heatmaps in exploratory studies of individual 

differences. In my master's work, I applied a data-driven approach to characterize how 

humans sample information from faces (Varela et al., 2018). Instead of counting the number 

of eye fixations by delimited regions and their respective dwell time, I used methods based 

on statistical learning to analyse heatmaps of fixations distributed continuously across the 

face. 
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Figure 4.1. Examples of the different approaches to investigating the eye strategy of humans 
by eye fixation coordinates. In this figure, two fixations are made to the eye region and one to the 

nose. We show the ROI on the left panel and the heatmap representation on the right. In this 
chapter, I develop a new approach to analysing heatmap data. 

 

Varela and colleagues (2018) key novelty was to use of a linear predictor 

(PCA+MLDA: Thomaz, Kitani & Gillies, 2006) to compress an array of salient map images into 

a single dimension. By using images large in resolution (e.g. multiple thousand pixels), it is 

often difficult for supervised learning algorithms to fit the given information – as, for 

example, the number of human datapoints in most scientific experiments using human data 

and images is lower than the resolution of the images. In their experiment, Varela et al’s 

(2018) approach compresses few-N salient map images of relatively large resolution (e.g. 

more than 10000 pixels) to a reduced numerical value for subsequently classifying face 

recognition ability using the MLDA. However, despite showing incredible classification 

accuracy in discriminating high versus low performers using this technique, their study was 

preliminary and did not visualise the dimension of variance in salient maps that explained 

inter-individual differences. Therefore, we aim to extend their approach and visualise what 

this dimension shows to provide clues as to the strategic differences in information 

sampling behaviour that give rise to individual differences in face identity processing ability. 

 

 

Chapter Objectives 

This chapter reports three experiments designed to investigate whether individual 

differences in face identity processing ability can be explained by differences in the 

information that is sampled from a face. The first experiment (Experiment 2) will analyse 

participants' fixation patterns while performing a face-matching task using PCA and MLDA 

analysis. This experiment will help us understand the facial features associated with higher 

accuracy when requiring no memory component. Experiments 3A and 3B then examine 

participants' fixation patterns using a similar approach but in a face recognition task, which 

relies on participants memorising and later recognising faces. Here, ‘super-recognisers’ – 

people with high levels of ability in face identification – are compared to typical viewers 

when performing a gaze-contingent ‘spotlight’ procedure where faces are viewed through 
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apertures centred on the fixation of the participant. This approach enables more precise 

control over the face information that is being viewed by participants on a given fixation, 

enabling the information sampled by super-recognisers and typical viewers to be compared.  

Finally, Experiment 4 will use a novel approach to quantify the computational value 

of face information sampled by human participants in Experiment 3. By providing DCNNs 

with the samples of information extracted by participants in Experiment 3, we will ask 

whether human-led information sampling leads to greater face identification in DCNNs 

compared with random samples of information. Some recent studies suggest that humans 

and DCNNs make use of similar facial features to humans making decisions regarding 

someone’s identity (Abudarham and Yovel, 2016), leading to the basic prediction that 

information sampled by humans would contain more identity information. We also ask 

whether the computational value of information Is sensitive to individual differences in 

viewers' face identity processing ability by comparing DCNN accuracy with face information 

sampled by super-recognisers and typical viewers’. If the information sampled by super-

recognisers contains more computationally useful face identity information, this would 

point to the importance of information sampling in explaining individual differences in face 

recognition ability. 

 

Experiment 2 

Experiment 2 investigates participants' fixation patterns while performing a self-

paced face-matching task. Two face images are presented side-by-side, and participants 

must make a binary decision regarding the identity of the two faces (i.e. same person or 

different people) (e.g. Burton et al., 2010). To our knowledge, there are a relatively small set 

of studies examining participants' fixation patterns while performing face-matching tasks 

(Havard, 2007; Varela et al., 2018; Özbek & Bindemann, 2011). Together these studies 

provide a mixed picture of information used in face-matching tasks. The studies of Varela 

and colleagues (2018) and Havard (2007) show that the eye region is the most observed 

amongst typical viewers. However, the eyes alone do not provide enough information for 

accurate matching (Havard, 2007), and better ability relates to more observation of the nose 

region (Varela et al., 2018).  
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Importantly, in these studies, participants had unrestricted time to make their 

decisions regarding the identity depicted on two facial images (see Megreya, Bindemann, 

Havard, & Burton, 2012 for a study containing more facial images per trial). Özbek and 

Bindemann (2011) examined the fixation patterns - and accuracy - of participants 

performing a matching task under random time restrictions (200, 500, 1000, or 2000ms). 

Their results show that the initial eye fixations landed mostly on the face centre (i.e. nose) in 

all restriction cases, suggesting either that the central region is optimal for visual efficiency 

when there is little opportunity to explore the face because it is the centre of mass of the 

object, or both (Özbek & Bindemann, 2011; but see Bindemann, 2010).  

Performance on unfamiliar face-matching tasks is thought to be more reliant on 

part-based processing when compared with face recognition tasks (Megreya & Burton, 

2006). If this is the case, we might predict that attention to features containing high levels of 

identity information would be fixated on these tasks. For example, some studies have 

shown greater face identity information contained in the eyes (Bate, Haslam, Tree & 

Hodgson, 2008; Schyns, Bonnar & Gosselin, 2002; Slessor, Riby & Finnerty, 2013), while 

others show strong identity cues in the ear region (Towler et al. 2017, 2021). Alternatively, 

concentrations of fixations on the nose could support high performance if holistic 

processing is associated with face identity processing skills (Bobak et al., 2017; Bennetts, 

Mole & Bate, 2017; see Wang et al., 2012). 

 In Experiment 2, our objectives are two-fold: (i) introduce novel computer vision and 

statistical learning techniques as an exploratory analysis to visualise - and comprehend - the 

fixation strategies inferring face processing ability; (ii) to visualise and investigate fixation 

patterns associated with high performance in face-matching tests. We collect the fixation 

patterns of a small cohort of university students performing a standard face-matching test 

using an eye tracker. This data is analysed using methods introduced by Varela and 

colleagues (2018), but here we will visualise the virtual dimensions found by the PCA and 

MLDA analysis. In addition, we will also analyse the data using the standard Region-of-

Interest approach to examine whether it provides complementary information to our new 

analysis method. 
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Methods 

Participants 

 A total of 44 university students participated in this study in exchange for university 

credits. We collected the data from 34 females and 10 males, whose average age was 19.15 

years (SD = 1.82). 

Stimuli 

 Participants performed the Glasgow Face Matching task (GFMT) (Burton et al., 2010) 

short version. The GFMT is a standard test for measuring face-matching ability. The GFMT is 

a challenging face-matching task containing 40 randomly presented face pair trials in 

grayscale. Of these images, 20 are from different people, and 20 are from the same person. 

Participants processed these face pairs making a binary decision regarding the identity of 

the two faces of the pair while the eye-tracking equipment measured their eye positions. 

Participants had no time constrain to process the face images. 

 

Procedure 

Participants completed the GFMT on a Laptop screen measuring 38 by 22 cm. We 

recorded participants’ eye gaze data with an SR-Research EyeLink Portable Duo (with a chin 

rest) tuned to sample data at 1000hz. We sat participants in front of the monitor and eye 

tracking device at a distance of 55 cm from the monitor so that the angular size of the 

screen was ~38° of visual angle (each face of the stimuli covered ~12° of visual angle, or 12 

cm). This device has an average gaze position error of about 0.25° and a spatial resolution of 

0.01°. Before data collection, we conducted a calibration procedure for eye fixation using a 

nine-point fixation procedure programmed in MATLAB,  repeating the process until reaching 

a satisfactory alignment. We only tracked participants' dominant eye data and presented 

the stimuli in MATLAB using the EyeLink toolbox (Cornelissen, Peters & Palmer, 2002).  
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Eye movement classification 

We classified eye gaze data into eye fixations and saccades. We classified saccades 

based on a velocity threshold above 30° of visual angle/sec. We coded adjacent samples 

below the velocity threshold as eye fixations and adjacent samples above the velocity 

threshold as saccades between fixations. We only used eye fixation data for this 

experiment. 

We cleaned eye fixations based on three parameters: (i) removed fixations shorter 

than 50ms; (ii)  removed fixations longer than three standard deviations from the mean 

fixation duration; (iii) removed fixations that landed outside of the face. Importantly, we 

aimed to remove trials with no valid fixations and remove the participant if we excluded 

more than 20% of their trials. We excluded only one trial of one participant due to no valid 

fixations.  

 

Analysis of fixation patterns 

We analysed the fixation data using two distinct approaches. First, we analyse 

fixation patterns as heatmap images using the PCA+MLDA approach introduced by Varela et 

al. (2018). Second, we analyse fixation patterns using a standard regions of interest (ROI) 

approach. This enables comparison with our novel PCA+MLDA visualisation approach to 

assess whether it provides reliable insight into the facial information supporting high 

accuracy in face identification tasks.  

 

Principal components analysis (PCA) of Heatmaps 

 We first transformed a set of fixation coordinates into a three-dimensional 

histogram (heatmap) image using iMap4 (Lao et al., 2017) in MATLAB. This procedure is 

important because iMap4 smooths the fixation data using Gaussian kernels, which could 

represent realistic attentional constraints in the surrounding areas adjacent to the fixation 

coordinate. This procedure transformed an array of fixation coordinates into a three-

dimensional image containing the same resolution as the stimuli. Each pixel of this heatmap 

image received a score proportional to the attention received. We processed the data of all 

participants and normalised each heatmap individually.  
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We compressed heatmaps of all participants using Principal Components Analysis 

(PCA). We used this exploratory procedure to visualise the main sources of variance in 

fixation heatmaps. The PCA transforms N three-dimensional heatmaps into m unique (m ≤ 

N) Principal Components (PCs, or eigenvectors), where each heatmap receives a projected 

loading score within each PC. These PCs are new uncorrelated variables constructed from 

linear combinations of the initial heatmaps, representing the fixation pattern differences in 

m possible directions ranked by the amount of explained information (i.e. variance or 

eigenvalues). For the purpose of our analysis, the PCA enabled us to visualise the main 

sources of variance that distinguish the viewing patterns of participants in our study.  

To conduct a PCA on heatmaps, we first resized the original heatmap images from 

1920x1080 to 250x175 pixels and converted each to a single-dimension vector (i.e. one 

heatmap = 1x43750 pixels). We reduced the image size for less computational effort. Then, 

we normalised these vectors and applied the PCA to the transformed Nxn matrix, where N 

represents the number of heatmaps, and n, the concatenated pixel information contained in 

the image (43750 pixels). We visualised these PCs as their dimension interacting with the 

average heatmap. To observe if variations in heatmaps captured by PCs were associated 

with face-processing ability, we correlated the loading scores of PCs with face-processing 

ability measured by the stimulus. 

In the analysis that follows, we performed PCA using both the participant-level 

average heatmaps and also the trial-level maps. This two-level approach was chosen given 

the exploratory nature of this research. Participant averages enabled us to focus on inter-

individual differences in face information use, whereas trial-level heatmaps enabled us to 

capture the intra-individual variation, i.e. the variation in individual participants' fixation 

patterns over different image pairs.   

 

Maximum uncertainty Linear Discriminant Analysis (MLDA)  of Heatmaps 

The PCA will significantly reduce the quantity of data to analyse in the experiment 

and enable us to visualize the main sources of variance. However, one of our objectives with 

this study is to visualise an optimal eigenvector that represents the main source of inter-

individual variation in heatmaps that explains face processing ability. For that, we applied a 

Maximum uncertainty Linear Discriminant Analysis (MLDA) (Thomaz, Kitani & Gillies, 2006) 
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to transform the Nxm matrix from the PCA to an Nx1. The MLDA essentially finds the 

optimal eigenvector within the data that best separate groups of individuals. Consistent 

with earlier work (Varela et al., 2018), we assigned the top 10 participants to the ‘Higher 

Ability’ group and the remainder to ‘Average Ability’. Visualising the dimension of variance 

in heatmaps that best discriminate these groups might clarify the information sampling 

strategies that result in accurate face processing. Figure 4.2 shows a schematic illustration 

of the computational framework used in the MLDA analysis.  

 

 

 

 
Figure 4.2. Schematic representation of the PCA+MLDA process used to identify face information 

associated with face processing ability. The PCA transforms the data into compact vectors, and the 
MLDA finds the optimal eigenvector for dividing groups of participants based on their face processing 

ability (see Thomaz, Kitani & Gillies, 2006). 
 

 
 

Regions-Of-Interest 

 To support the PCA+MLDA analysis, we also investigated the eye gaze patterns of 

participants distributed across Regions-Of-Interest (ROI). The ROI analysis is the most 

common method of eye gaze analysis found in the literature to investigate facial features 

(e.g. Bate, Haslam, Tree & Hodgson, 2008; Slessor, Riby & Finnerty, 2013; Bobak et al., 2017; 

Bennetts, Mole & Bate, 2017). This method allows insights from the visualisation generated 
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by the PCA - or MLDA- to be compared with an ROI analysis to establish this approach for 

the study of individual differences in face identity processing. 

To delimit facial regions, we first computed the average stimulus. The GFMT (Burton 

et al., 2010) is a face-matching task in which all 40 face pairs are vertically aligned and 

posted side by side on the computer screen. Therefore, we used the average image across 

all 40 trials as a model to delimit five facial ROIs for the two faces: Left eye, right eye, 

between eyes, nose, and Mouth (See Figure 4.3). We collected fixations that landed within 

these regions for both faces of the pair (e.g. fixations on the left eye are the sum of the 

fixation on the left eye for both faces). We report the proportion of fixations and dwell time 

within each ROI. 

 

 

Figure 4.3. Facial regions on top of the average stimulus. Here, we show the model for ROI that we 
created to investigate patterns of fixations in participants. We divided the two faces of the pair into 

five possible facial regions: Left eye (blue), right eye (red), between eyes (pink), nose (green), and 
Mouth (yellow). 
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Gini coefficient as a measure of gaze dispersal in heatmaps 

 The PCA+MLDA and the ROI analysis will give us cues regarding fixation patterns and 

localised facial regions participants attended to process the stimuli. However, these analysis 

methods will not directly measure the overall dispersion of participants’ fixation patterns. 

The literature mentions that face processing ability significantly correlates with time spent 

observing the central facial area (e.g. Bobak et al., 2017; Bennetts, Mole & Bate, 2017) and 

that super recognisers require less information for accurate recognition (Royer et al., 2015). 

Thus, it is possible that individuals with enhanced face processing would conduct less visual 

exploration of faces, so we also measured the amount of exploration our participants 

engaged in when performing the stimuli. 

 We used the Gini coefficient to measure the dispersal of fixation patterns (Lorenz, 

1905). The Gini coefficient represents inequality among values of a given distribution. 

Therefore, when applied to heatmaps, the Gini coefficient would quantify the amount of 

dispersion (i.e. exploration) that participants engaged when processing the stimuli. Higher 

Gini coefficients would represent concentrated fixation patterns, and lower Gini coefficients 

would represent highly dispersed fixation patterns.  

  

Results 

Overall Accuracy 

Forty-four participants completed the 40 pairwise face-matching decisions from the 

GFMT (Burton et al., 2010). The average score, measured by correct hits, was 78.7% (SD= 

11.51%) compared to the average accuracy of 81.2% (SD= 9.47%) in the original publication 

of the GFMT (see Burton et al., 2010). Differences between our results and the original 

normative accuracy were not significant [t(236)= 1.54, p=0.126]. To divide between groups 

of performance, we established that the 34 worst performers were part of the Average 

ability group (M=74.3%, SD=9%), and the top 10 were part of the Higher ability group 

(M=93.8%, SD=1.77%).  
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Comparison of heatmap and ROI approaches 

We show the proportion of fixations for each ROI and the average fixation pattern as 

a heatmap in Figure 4.4. On the left panel of Figure 4.4, we show the average proportion of 

time spent on all ROIs. According to the ROI data, participants spent 61.7% of their total 

fixations observing the face pair's five delimited inner facial features. Amongst these 

features, the nose was the most observed, followed by the eyes and mouth.  

 

 
Figure 4.4. Results for the average gaze of participants using the two analysis methods used in this 

study. We plot the participant-level ROI analysis on the left side of the panel, showing the proportion 
of time participants spent fixating on delimited ROIs. We show the resulting average heatmap from 

these fixations on the right side of the panel. 

 

On the right panel of Figure 4.4, we show the density of fixations by plotting the 

average fixations heatmap. Consistent with the ROI analysis, the average fixation heatmap 

reveals a higher density of fixations on the central area of the faces, spreading further to the 

eyes, between eyes, and mouth. The ROI analysis shows that, on average, 38.3% of 

participants’ fixations landed on different face elements other than the five ROIs (e.g. 

cheeks, hair, chin, etc.). And yet we do not observe clusters of fixations on the surrounding 

areas of the face in the heatmap analysis. One possible explanation for this effect is that 

these fixations landed on different external feature regions for particular trials, and because 

the heatmaps are averages across trials, this resulted in only the common fixations being 

visualised. Another explanation could be that the delimitations of ROIs were too narrow to 

collect all fixations landing in these areas, given the margin of uncertainty in the precise 

fixation locations. Therefore, a portion of ‘other feature’ fixations could have resulted from 
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fixations that landed near bounding areas outside ROIs. This underlines the importance of 

applying multiple analysis techniques to enable converging evidence on which stronger 

conclusions can be based.  

 

Inter-individual difference analysis of fixation patterns 

We performed a PCA on the participant-level heatmap data to explore the individual 

differences in how people disperse their gaze across face images and its relation to ability. In 

Figure 4.5, we ordered the first principal components (PCs) from top to bottom by the 

amount of variance explained by them (total variance = 64.8%). Visual analysis of Figure 4.5 

allows us to understand better what each principal component represents, and it appears 

that some PCs offer semantically explainable differences in fixation patterns across 

participants. For example, the first PC appears to represent an inter-individual difference 

whereby some participants attend to the left of the faces and others to the right. PCs 2 and 

3 both appear to show more focal attention on the central and nose regions on the left 

versus more diffuse attention across the upper facial features on the right.  
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Figure 4.5. Visualisation of the first five principal components in the heatmap analysis of Experiment 
2. This figure shows PCs obtained using the participant-level heatmap data and their corresponding 
explained variances. In the PCA, the average heatmap receives a loading score of zero for each PC, 

and a zero-mean normal distribution represents participants’ loading scores. Therefore, some 
participants received a negative loading score (i.e. to the left side of the average). And some received 

a positive loading score (i.e. to the right side of the average). Visual inspection allows some 
inferences about major sources of individual differences. For example, PC1 shows a facial side 

preference to which people attended to the face pair. PC2 shows that some people investigated the 
nose and mouth region while others attended more to the eyes.  

 

 

Next, we calculated the loading score for each participant on each of the 5 PCs in 

Figure 4.5. These five loading scores for each participant provide a profile that describes 

how their fixation patterns related to the overall variance in fixation patterns observed 

across all participants. Participants receiving a negative loading score for a given PC indicate 

a fixation pattern more characteristic of patterns to the left side of the average, and positive 

loading scores are more characteristic of patterns to the right side of the average.  

 Figure 4.5 visually describes the five first PCs for the participant-level heatmap data. 

However, one problem that arises from this visual analysis is that it relies solely on 

subjective interpretation. So, to support the PC investigation in Figure 4.5, we performed a 

correlational study of PC loading scores with ROI fixations. This comparison is shown in 

Table 4.1 and helps to corroborate the subjective approach.  

 



101 

 

 
 

Table 4.1. Correlational analysis of Principal Component loading scores with fixations in ROI. 
 

 

For example, PC 2 loading scores had significant negative correlations with nose and 

mouth fixations and a positive correlation with the right eye fixations. These significant 

results are somewhat correspondent with the subjective impression that this PC was 

indexing the degree of central processing. While some of the other patterns do not reach 

statistical significance, the correspondence nevertheless lends support to our subjective 

interpretation, with PC1, for example, positively correlating with right eye fixations (p = 

0.062) and negatively with left eye fixations (p = 0.11).  

 Previous studies have found associations between fixation patterns and face 

processing ability (e.g. Bobak et al., 2017; Bennetts, Mole & Bate, 2017, Varela et al., 2018). 

To examine this, here, we correlated the five first PC loading scores with face processing 

ability as measured by overall accuracy scores in the GFMT. We found that loading scores 

for PC1 [rho(42) = 0.3, p = 0.048, CI = [0.0034  0.5481]] and PC3 [rho(42) = 0.46, p = 0.002, CI 

= [0.1889 0.6659]] significantly correlated with performance. This result indicates that 

participants showing enhanced face-matching ability explore the right side of the face pair 

(i.e. positive loading score in PC1) and tended to distribute fixations more on the eye region 

of a face (i.e. positive loading score in PC3). We replicated this analysis for ROI fixation 

patterns and found that GFMT performance was associated with more fixations landing on 

the right eyes [rho(42)=0.32, p=0.036, CI = [0.0255 0.5634]]. Full statistics from these 

correlational analyses are shown in Table 4.2. 
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Correlation Matrix   
PCs vs GFMT Score  

Correlation Matrix 
ROIs vs GFMT Score 

    GFMT Score      GFMT Score 

PC1 
Spearman’s 
rho 

0.3 * 
 

Left eyes rho -0.1  

 p-value 0.048    
 p-value 0.523   

 CI  [0.0034  0.5481]    CI [-0.3854 0.2029]  

PC2 
Spearman’s 
rho 

0.16  
 

Right 
eyes 

rho 0.317 * 

 p-value 0.3    
 p-value 0.036   

 CI [-0.1437 0.4362]    CI [0.0222 0.5611]  

PC3 
Spearman’s 
rho 

0.46 ** 
 

Between 
eyes 

rho 0.054  

 p-value 0.002    
 p-value 0.73   

 CI [0.1889 0.6659]    CI [-0.2468 0.3453]  

PC4 
Spearman’s 
rho 

0.1  
 

Noses rho -0.15  

 p-value 0.539    
 p-value 0.326   

 CI [-0.2029 0.3854]    CI [-0.4278 0.1537]  

PC5 
Spearman’s 
rho 

-0.12  

 
Mouths rho 0.148  

  p-value 0.437    
 p-value 0.337   

 CI [-0.4025 0.1834]    CI [-0.1557 0.4262]  

     

Other 
features 

rho 0.04  

Note. * p < .05, ** p < .01, *** p < .001  p-value 0.799  

  CI [-0.2600 0.3329]  

 
Table 4.2. Tables showing how Principal Components (PCs) and fixations on ROIs correlated with 
face-matching ability measured by the stimuli (GFMT: Burton et al., 2010). We show Spearman’s 
correlation between the five first PCs against GFMT score on the left table. And show Spearman’s 

correlation between fixations in ROIs against GFMT score on the right table. 

 

Intra-individual difference analysis of fixation patterns 

 Although participant-level heatmaps allowed our inter-individual difference analysis 

to focus on information sampling between individuals, we also observed substantial 

variation between fixation heatmaps on individual trials for each participant. To further 

explore this, we examined each participant's intra-individual variation in fixation patterns. 

We show an example of inter-trial variability in Figure 4.6, with detailed results for this 

analysis in APPENDIX C.  
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In Figure 4.6, we plot PC1 loadings for the trial-level heatmap data separately for 

each participant. The stimuli had 40 trials, so stability in PC scores would convey stability in 

information sampled by eye fixations across trials. However, an inspection of Figure 4.6 

reveals that the information sampled varied substantially for each participant. Quantifying 

this variation, the average range of participants’ PC1 scores (range = max - min) was of 2.45 

standard deviations, although this variability did not appear to be related to participant 

ability (Average ability group = 2.39; Higher ability= 2.66; t(42)=-1.21, p=0.232). 

Nevertheless, this result is important because it reveals that participants show a high degree 

of flexibility in sampling facial information and, here, independent of face-matching ability. 

So while an average heatmap captures the consistency in participants' fixation patterns 

across trials, it removes an important source of variation in the information that is sampled 

in any given trial.  
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Figure 4.6. Intra-individual variation in loading scores across GFMT trials for Principal Component 1 
(left). Although only PC1 is shown here, intra-individual variation is similar in magnitude for all PCs.  
The boxplots show the interquartile range, and the whiskers show the max and minimum of each 

distribution. The red bars stand for participants in the Average ability group. The green bars stand for 
participants in the Higher ability group. Participants’ data are ordered from top to bottom based on 
the mean loading scores of each group but show striking intra-individual variation in all participants.  

 

 
 

Individual difference analysis of heatmaps using MLDA 

We used a Maximum uncertainty Linear Discriminant Analysis (MLDA: Thomaz, 

Kitani, & Gillies, 2006) to find the best eigenvector within the PCA space to discriminate 

between ‘high-performers’ and other participants. For that, we divided participants into two 

distinct categories of performance, called Average and Higher ability groups. We arbitrarily 

divided the group of participants into the bottom 34 performers (Average ability group: 

M=74.3%, SD=9%), and the top 10 performers (Higher ability group: M=93.8%, SD=1.77%). 

The MLDA, then, found the eigenvector that best separates the fixation patterns between 
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these two groups. The aim was to visualise the pattern of fixations that distinguish high 

performers from other participants.  

We visualise the discriminating MLDA eigenvector in the top panel of Figure 4.7 as a 

heatmap image. Subjectively interpreting this heatmap image reveals that participants of 

the enhanced performance group (i.e. greener regions in the heatmap) showed fixations 

predominantly on the right side of the faces, focusing on the eye region, which is consistent 

with the PCA analysis reported above3.  

 

 
3 I also computed MLDA eigenvectiors using trial-level heatmaps, but given high intra-

individual differences this produced a largely uninterpretable result, as shown in APPENDIX C. 
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Figure 4.7. MLDA eigenvector and the correlation of MLDA scores with face-matching performance. 
At the top, we illustrate the MLDA eigenvector as a heatmap image showing the regions that best 

differentiate the fixation patterns between two participant groups. Participants in the Average ability 
group fixated more on the red areas of the depicted heatmap. In contrast, participants in the Higher 
ability group fixated more on the green areas. At the bottom, we show the MLDA Score distribution 

among participants, the average score for each group (vertical dashed lines), and the correlation 
between MLDA scores against face-matching ability. 
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To further investigate the MLDA scores distribution, we performed a correlational 

analysis of participants’ MLDA scores against the five first PC loading scores. In this analysis, 

PC1 [rho(42)=0.59, p<0.001,CI = [0.3554 0.7547]] and PC3 [rho(42)=0.57, p<0.001, CI = 

[0.3287 0.7414]] loading scores significantly correlated with MLDA scores. This finding 

reiterates that the fixation pattern differences related to face-matching ability rely on the 

initial PCs (i.e. the most observable fixation pattern differences). We also investigated the 

relations between MLDA scores and ROI fixations and found that fixations on the right eyes 

[rho(42)=0.513, p<0.001, CI= [0.2549 0.7028]] significantly correlated with MLDA scores.  

 

Individual difference analysis of visual exploration (Gini coefficient) 

 We investigated whether the amount of exploration participants engaged correlated 

with performance. Visual exploration was measured using the Gini coefficient (Lorenz, 

1905), a widely used metric of data dispersal. Lower Gini coefficients represent greater data 

dispersal and, therefore, higher visual exploration in the present context. Table 4.3 shows 

correlations between participant-level heatmap Gini coefficients, face processing ability, 5 

PCs, MLDA scores, and the average time spent performing the stimuli. In this section, we 

only report the participant-level data, but trial-level analysis shows similar results (see 

APPENDIX C). 

First, Gini coefficients were significantly negatively correlated with face-matching 

ability, signalling that higher performance on the task was associated with greater dispersal 

of fixations (i.e. more visual exploration). Second, correlating the Gini coefficient scores with 

the PCA enabled us to examine which PCs were associated with greater exploration. PCs 3 

and 4 showed relatively high, suggesting that these sources of inter-individual differences in 

fixation patterns might index individual differences in visual exploration. Third, greater 

exploration also correlated with the MLDA eigenvector, strengthening our conclusion that 

greater exploration is associated with higher accuracy on the GFMT. Fourth, we found high 

correlations between the Gini coefficient scores and the time that participants took to study 

face pairs in the test [rho(42)= -0.785, p<0.001, CI= [-0.8774 -0.6364]]. This result shows that 

those who studied the image pairs for longer also explored more facial regions, which may 
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explain why we also found that study time predicted accuracy on the task [rho(42)= 0.439, 

p=0.003, CI= [0.1634 0.6510]]. 

 

Correlation Matrix Gini coefficient   

    Gini coefficient 

GFMT Score 
Spearman’s 
rho 

-0.425 ** 

  p-value 0.004   

 CI [-0.6410 -0.1466]  

PC1 
Spearman’s 
rho 

-0.151   

  p-value 0.328   

 CI [-0.4287 0.1527]  

PC2 
Spearman’s 
rho 

-0.137   

  p-value 0.373   

 CI [-0.4169 0.1667]  

PC3 
Spearman’s 
rho 

-0.558 *** 

  p-value < .001   

 CI [-0.7334 -0.3130]  

PC4 
Spearman’s 
rho 

-0.513 *** 

  p-value < .001   

 CI [-0.7028 -0.2549]  

PC5 
Spearman’s 
rho 

0.118   

  p-value 0.444   

 CI [-0.1854 0.4008]  

MLDA Spearman’s 
rho 

-0.331 * 
Score 

  p-value 0.029   

 CI [-0.5717 -0.0378]  

Average Spearman’s 
rho 

      -0.785 *** 
Time 

elapsed p-value <.001   

 CI [-0.8774 -0.6364]  

Note. * p < .05, ** p < .01, *** p < .001 
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Table 4.3. Correlation between participant-level Gini coefficients with GFMT Scores, Principal 
Component loading scores, MLDA scores, and time elapsed performing the stimuli. 

 

Discussion 

 In Experiment 2, we investigated participants' fixation patterns when performing a 

standardised face-matching test (GFMT: Burton et al., 2010). We first delimited facial 

regions of interest (ROI) to investigate fixation patterns: the central area of the face (e.g. 

nose, eyes, and mouth) and one more prominent region that accounted for the remaining 

facial features of the face (e.g. peripheral areas such as ears, cheeks, etc.). We 

complemented this ROI analysis by examining the PCA of participant heatmaps, an 

exploratory technique that allowed us to illustrate the major sources of variance in 

heatmaps across participants, and MLDA, which compressed all the data into the single 

dimension that optimally discriminated high performers from participants with lower levels 

of accuracy. Cross-correlating PCA with regions-of-Interest data and a measure of visual 

exploration (Gini coefficient) enabled us to describe the major sources of inter-individual 

variance in fixation patterns and how this related to accuracy on the task.  

This approach enabled us to explore our eye-tracking data, building a picture from 

converging sources of evidence to provide insight into the face information sampling 

strategies that might underpin individual differences in face identity processing ability. We 

found that higher performance on the GFMT was associated with two main differences in 

fixation patterns. First, greater attention to the eye region, particularly the right eye, as 

shown by both PCA (shown in PCA, MLDA and ROI analysis). Second, greater visual 

exploration of face information as evidenced by the Gini coefficient’s association with GFMT 

accuracy, PC3 and the MLDA. The latter result appeared to be moderated by the time that 

participants spent studying the images, suggesting that more careful visual analysis that 

spreads attention across facial features is beneficial to unfamiliar face-matching accuracy. 

ROI analysis showed that – on average - participants attended most of their fixations 

on the nose. Importantly, a greater focus on the nose region was not associated with 

accuracy. Given eye-tracking research suggesting that greater fixations on the nose might 

represent improved holistic processing (Bobak et al., 2017; Bennetts, Mole & Bate, 2017), 

and studies suggesting that holistic processing is associated with face recognition accuracy 

(Wang et al., 2012; Bobak et al., 2017), we expected a correlation between nose fixations 
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(i.e. central regions) and GFMT accuracy. However, these prior studies are mostly based on 

face recognition tasks. For unfamiliar face-matching tasks, like the GFMT, it has been 

suggested that a more piecemeal (i.e. feature-based) approach is associated with accuracy 

(Megreya & Burton, 2016; Towler et al., 2017).  

Our Gini coefficient results are also consistent with a feature-based approach 

underpinning face-matching ability. Comparing and exploring more features appears to 

predict high face-matching accuracy, which is somewhat contrary to the notion that holistic 

processing drives face identity processing ability,  at least for the pairwise face-matching 

task we studied here. The PCA and the MLDA eigenvectors showed fixation patterns 

covering larger facial areas were generally associated with higher accuracy on the task. 

Combined with the Gini coefficient, these results suggest that accuracy is proportional to 

the extent to which gaze patterns are distributed across the face images. We also found that 

distributed gaze patterns strongly related to the time participants spent performing the 

task, suggesting that high performers explored more facial areas for better decisions but at 

the cost of longer time processing trials. 

 Another salient result from the ROI analysis was that a large proportion (38.26%) of 

fixations fell outside the feature ROIs. This large value shows that the ROI approach is 

perhaps unable to capture the true complexity of gaze patterns in face-matching tasks. 

Similarly, the average heatmaps ‘wash out’ these potentially important sources of variance 

when generating average fixation patterns by combining data from individual trials. Notably, 

however, when we instead examined individual trials and the variability of gaze patterns 

here, we found very large intra-individual trial-to-trial variation in the distribution of 

fixations. This suggests that the role of visual exploration is an important component of 

performance on face-matching tasks that are typically overlooked in eye-tracking studies.  

To examine whether these observations are also found in other types of face identity 

processing tasks, we apply the analysis techniques developed here to understand fixation 

patterns in participants completing a standard face recognition memory task in the next 

experiments. As discussed here, it is possible that the association between accuracy and 

visual exploration in Experiment 2 was due to the type of simultaneous face-matching task 

participants were engaging in. All previous studies demonstrating a link between holistic 

processing and face identity processing ability have used memory-based recognition tasks 
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(e.g. DeGutis et al., 2013; Wang et al., 2012), and so in Experiment 3, we tested whether the 

pattern of results we found here would be replicated in a face memory paradigm.  

 

Experiments 3A & 3B 

In Experiments 3A and 3B, we applied analysis approaches described in Experiment 2 

to investigate participants' face information use during a face recognition memory test. 

Unlike face-matching tasks, where participants require no memory component, participants 

viewed faces in a learning phase where they were required to commit the faces to memory. 

Later, we showed these faces mixed with new faces, and participants had to decide whether 

or not they had viewed the face in the learning phase. Experiments 3A and 3B were part of a 

larger study (see Dunn et al., 2022), and my contribution to this study was to apply my 

exploratory PCA-based approach to the dataset to investigate whether fixation patterns can 

explain individual differences in face recognition ability. Here, I only present analyses led by 

me. 

In addition to using a recognition memory paradigm in Experiment 3, there were two 

main differences from the previous experiment. First, we measured participants’ face 

information sampling by restricting participants' viewing using a gaze-contingent aperture 

‘spotlight’ paradigm (see Papinutto, Lao, Ramon, Caldara, & Miellet, 2017). Second, we 

examined individual differences in face identification ability by recruiting groups of ‘super-

recognisers’ and comparing their performance and information use to typical viewers. 

Super-recognisers are people who show extremely high performance in face identity 

processing tasks, and they were selected in the following study from large-scale online 

testing.   

 

Experiment 3A 

 In this experiment, participants viewed faces in both natural viewing conditions and 

also in conditions where faces were viewed through gaze-contingent apertures centred on 

their fixations. These apertures varied in size and enabled us to test the extent to which face 

learning and recognition in super-recognisers depends on being able to sample global face 

information on each fixation. This research question was the primary focus of the paper 

from which the dataset reported here was collected (see Dunn et al., 2022). We conducted 
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the analysis presented here to examine the differences in fixation patterns between super-

recognisers and typical viewers. Although the effect of gaze-contingent aperture viewing on 

this was not of primary interest, it is included here for completeness.  

 

Methods 

Participants 

A total of 72 participants participated in this study, 28 typical viewers and 44 super-

recognisers. Super-recognisers were recruited based on their scores on three face 

identification tests before the study: (i) The Cambridge Face Memory Test Long-form 

(CFMT+: Russell et al., 2009); (ii) The Glasgow Face Matching Task (GFMT: Burton et al., 

2010); (iii) The UNSW Face Test (Dunn et al., 2020). All super-recognisers achieved +1.7SD 

above the average score in each of these three tests. This criterion to select super-

recognisers based on thresholds in several tests is strict (see Ramon, 2021). It has elicited 

groups with reliable outperformance of typical viewers in prior work (e.g. White, Wayne & 

Varela, 2022). For comparison, we recruited 28 ‘typical viewers’ who signed up in return for 

AUD 20.00 via a research participation website targeting the general public hosted by the 

School of Psychology at UNSW Sydney. 

After eye gaze data processing (see Apparatus and eye movement classification), we 

had to exclude the data from six super-recognisers and two typical viewers due to 

difficulties with the eye-tracker (N=2), incomplete data (N=3), and data loss (+20% of trials 

removed, N=3). In total, we analysed data from 26 typical viewers (15 females, ten males, 

and one non-binary) aged between 18 and 61 years old (M=27, SD=8.6) and 34 super-

recognisers (14 females, 20 males) aged between 26 and 51 years old (M=37.8, SD=7.4). 

 

Stimuli 

 Stimuli were images of 144 faces identities of different genders, ethnicities, ages, 

and facial expressions collected from the Lifespan Database of Adult Facial Images (Minear 

& Park, 2004). To ensure the faces showed the same size to participants, we aligned the 

faces by the eye and mouth. Using the eye tracker (see below), we created several spotlight 

aperture viewing conditions using the method described by Papinutto and colleagues 
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(2017), with each face viewed through one of five aperture sizes (5º, 10º, 15º, 20º, and 25º 

of visual angle) or a natural viewing condition (i.e. no aperture size). See APPENDIX C for 

more detailed information about the chosen aperture sizes. 

 

Apparatus and eye movement classification 

 We recorded participants’ eye gaze data with Tobii Pro Spectrum. Participants sat in 

front of the eye tracking device and used a chin rest so that the angular size of the stimuli 

was 16.5° of visual angle. This device has an average gaze position error of about 0.25° and a 

spatial resolution of 0.01°. Before data collection, we conducted a nine-point fixation 

calibration procedure and repeated the process until reaching the optimal criterion. We 

only tracked participants' dominant eye. We classified eye gaze data using the method 

described in Experiment 2. 

 

Procedure 

 After calibration, participants completed the face memory test. Faces were in six 

blocks, each containing a learning and recognition phase. In the learning phase, participants 

viewed 12 faces for 5 seconds each in one of the viewing conditions (five aperture sizes or 

Natural View, see Stimuli). A fixation cross appeared before each face's presentation to cue 

the screen centre, and faces were presented in random positions on the screen to avoid 

biasing their first fixations. The recognition phase immediately followed the learning phase, 

displaying a series of 24 faces (12 identities previously shown and 12 unfamiliar faces). 

Participants had to indicate whether the presented face was from a previously shown face 

via key press. In addition, participants that were typical viewers completed the CFMT+ 

(Russell et al., 2009) after the stimuli, whereas super-recognisers had already completed 

face tests as part of pre-screening (see Participants). 

 

Fixation Analysis: Heatmaps 

 We generated heatmaps and conducted a Principal Component Analysis (PCA) of 

participants’ average heatmaps using the same method as in Experiment 2. We used only 

the trial-level heatmaps in these analyses because of the introduction of stimulus viewing 
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conditions in Experiment 3. We first resized the original heatmap images from 891x656 to 

209x182 pixels and converted each to a single dimension vector (i.e. one heatmap = 

1x38038 pixels). We reduced the image size for less computational effort. Then, we 

normalised these vectors and applied the PCA on the transformed Nxn matrix, where N 

represents the number of heatmaps, and n, the resolution. We visualised these PCs as their 

dimension interacting with the average heatmap. We calculated the PCA for the learning 

and recognition phases separately. Because our data comprises two well-defined groups, we 

do not report correlation values for this experiment. Instead, we calculated linear mixed 

models to note differences between groups using the trial-level heatmaps.  

  

Exploration analysis: Gini coefficient 

 As in Experiment 2, we measured the overall dispersion of participants’ fixation 

patterns using the Gini coefficient (Lorenz, 1905). As a reminder, higher Gini coefficients 

represent more concentrated fixation patterns, and lower Gini coefficients represent more 

dispersed patterns.  

 

Results 

Overall accuracy 

Figure 4.7 shows the accuracy (A-prime; see Stanislaw & Todorov, 1992) of super-

recognisers and typical viewers across the viewing conditions. Although the viewing 

condition manipulation was not critical for this investigation, it is an important context for 

understanding the following analysis, so it is included here. Visual inspection of Figure 4.7 

suggests that super-recognisers were superior in all viewing conditions. To test this 

assumption, we ran a linear mixed model. For the model of accuracy, we set participants’ 

intercept as a random effect and group and aperture size as fixed effects. We found a 

significant main effect of group [b = 0.069, CI = [0.035, 0.102], t(58) = 4.05, 249 p < .001] and 

a non-significant interaction with aperture size [b= 0.017, CI=[-0.005,0.039], t(298)=1.52, 

p=0.129], showing that super-recognisers outperformed typical viewers irrespective of 

viewing condition. There was also a significant main effect of aperture size [b = 0.123, CI = 
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[0.112, 0.134], t(298) = 21.74, p < .001], whereby performance was generally poorer for 

smaller apertures.  

 

Figure 4.8. Results of the obtained accuracy (A prime) for typical viewers and super-recognisers 
across viewing conditions. We show the violin distributions for typical viewers in red and their 
respective averages in white; Super-recognisers’ distributions are in green and their respective 

averages in black. The boxes show interquartile range, and whiskers delimit the max and minimum 
for each distribution. 

 
 

Principal Component Analysis 

 

We performed separate PCAs for the learning and recognition phases to investigate 

the main source of variation in fixation patterns across participants. We conducted this at 

the trial level, using heatmaps from individual trials. We show the visual reconstruction of 

the first 5 PCs for the learning and recognition phases in Figure 4.9. As a reminder, the 

average heatmap is represented with a loading score of zero for each PC, and a zero-mean 

normal distribution represents participants’ loading scores across each component. 

Therefore, for every PC, some participants received a negative loading score (i.e. to the left 

side of the average), and some received a positive loading score (i.e. to the right side of the 

average).  

We divided Figure 4.9 into two separate panels to show the two distinct phases of 

the experiment. On the left of Figure 4.9, we plot the visual reconstruction of the 5 PCs from 
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the learning phase of the experiment and the recognition phase on the right. Importantly, 

we calculated each panel using different heatmaps - derived from each phase. Still, a visual 

inspection of Figure 4.9 reveals striking similarities between both panels. This consistency of 

PCs between phases could indicate that participants use similar approaches to sample 

information when learning or recognising faces. However, a visual inspection might not 

suffice such an assumption. To test this, we repeated the procedure reported in experiment 

2, using participants’ individual; heatmaps projected on the respective components as PC 

scores to investigate individual differences between groups of participants (super-

recognisers and typical viewers).  

 

 

Figure 4.9. PCA navigation for Learning (Left) and Recognition (Right) phases using all 
aperture conditions of the study. We show the five first Principal Components and their respective 

explained variance. 

 

We investigated whether PC1 could differentiate super recognisers from typical 

viewers by calculating PC1 loading scores for each group separately for the learning and 

recognition phases (see Figure 4.10). In both phases, PC 1 appears to differentiate 

participants from sampling more information from the eye region of the face to engaging in 

more central areas of the face, which is consistent with the trial-level PCA conducted in 

Experiment 2 (see Figure 4.6). In Figure 4.10A, we replicate the PC1 navigation illustrated 

above. The PC1 for both phases shows that some participants tended to fixate on the eye 

region of faces, receiving a negative PC1 loading score. In contrast, participants who 

received positive loading scores broadly distributed their fixations across the central facial 
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region. In Figure 4.10B, we show the score distribution between participant groups for the 

two phases of the experiment. 

 
Figure 4.10. Analysis of PC1 for the trial-level fixation heatmaps during face learning and recognition 
phases. (A) The interaction of the average fixation heatmap with calculated PC1 components for both 

phases. (B) Boxplots showing PC1 loading scores across aperture conditions. The boxes show the 
interquartile range, and the whiskers show the minimum and maximum of the distribution. 

 

We conducted a linear mixed model analysis with participants’ intercept as a random 

effect, and group, aperture size, and phase as fixed effects. Although aperture size had a 

significant effect on PC1 scores, the three-way interaction of group, phase and aperture 

condition was non-significant [b=-0.01, CI =[-0.07, 0.04], t(11516.6)= -0.46, p= 0.642]. 

Importantly, because the aperture viewing conditions were not of primary interest for the 

line of investigation in this thesis, I next conducted a separate analysis using only the study's 

natural viewing condition (i.e. non-aperture). The analysis using only the natural viewing 

condition will be more beneficial in examining whether patterns observed in Experiment 2 

were similar in this recognition memory task. The full 3-factor LMM is available in Appendix 

C – Experiment 3A. 
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Principal Component Analysis (Natural Viewing condition only) 

Separate PCAs were conducted for the learning and recognition phases using the 

gaze heatmaps derived from the Natural Viewing condition of the study. Visualisations of 

PC1 for natural viewing conditions only are shown in Figure 4.11. Visually comparing Fig 4.11 

to Figure 4.9, we observe some commonalities between the generated PCs for the aperture 

condition and natural viewing. For example, the first component (PC1). PC1 represents 

differences in participants' tendency to fixate on the eye region of faces versus more 

broadly distributing fixations across the central facial region. For the learning phase, PC1 

accounted for ~15% of the total variance and ~22% for the recognition phase. 

 

 

Figure 4.11. PCA navigation for Learning (Left) and Recognition (Right) phases using only the 
NV aperture condition of the study. 
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Figure 4.12. Analysis of PC1 for the trial-level fixation heatmaps during face learning (Top) and 
recognition (Bottom) phases considering only the Natural Viewing (NV) aperture condition. We show 

the interaction of the average fixation heatmap with calculated PC1 components for the two 
separate phases and boxplots, showing the range of PC1 loading scores for the NV aperture 
condition. The boxes show the interquartile range, and the whiskers show the minimum and 

maximum of the distribution. 

 

 

We used linear mixed model analysis to analyse the pattern of results in Figure 4.12, 

with participants’ intercept as a random effect and group (typical viewers, super-

recognisers) and study phase (learning, recognition) as fixed effects. The main effects of 

group [b = 0.09, CI = [-0.28, 0.47], t(58.1) = 0.492, p = 0.625], and phase [ b = -0.3, CI = [-0.09, 

0.04], t(1745.9) = -0.854, p = .393] were non-significant. However, we observed a significant 

interaction between phase and group [b = -0.3, CI = [-0.43, -0.17], t(1745.9) = -4.47, p < 

.001]. We visualised this interaction in Figure 4.13 for clarity and analysed simple main 

effects, which showed a larger difference between groups during face learning [b=0.245] 

than recognition [b=-0.057]. Post-hoc comparisons showed super-Recognisers had more 

positive PC1 values than typical viewers during learning (t(1802)=3.22, pbonferroni=0.008) but 



120 

 

not during recognition phase (t(1802)= 0.628, pbonferroni=1). This result shows that Super-

recognisers explored the face more than Typical Viewers during face learning but not during 

recognition. Therefore the tendency we observed in Experiment 2 for high performers to 

explore the face more in face-matching tests appears also to be true of high performers in 

recognition memory tests, but only when they initially learn the faces.  

  

Figure 4.13. Categorical plot showing the interaction of PC1 scores for the two groups of participants 
in the two phases of the study during the Natural Viewing aperture condition. Whiskers show a 95% 

confidence interval. 
 

Intra-individual difference analysis of fixation patterns (Natural Viewing condition only) 

The previous analysis categorised the relationship between PC1 scores and face 

processing ability. This analysis found that the most significant difference between super-

recognisers and typical viewers, measured by the first component, is when learning faces. 

However, as we discovered in Experiment 2, it is also important to measure the variability of 

fixation patterns (PC1 scores) for individual participants across the different trials. 
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Figure 4.14 shows the inter-trial variability of PC1 scores across all participants 

processing the Natural Viewing condition of the experiment. On the left panel, we show the 

results for the learning phase of the experiment, and on the right panel, the recognition 

phase. We also show results for typical viewers in red and super-recognisers in green. As 

with Experiment 2, a visual inspection of Figure 4.14 reveals an extensive range of PC1 

scores for the two groups processing the stimulus trials, suggesting again that participants 

were flexible in their strategies to sample information from faces. To again found evidence 

of wide variability in PC1 scores across trials, with an average range of participants’ PC1 

scores (range = max - min) in the learning phase of 2.17 standard deviations (Typical 

viewers= 2.19; Super-recognisers= 2.15; t(58)=0.217, p=.829), and in the recognition phase 

2.17 standard deviations (Typical viewers= 2.13; Super-recognisers= 2.20; t(58)=0.56, 

p=.578)4.  

 

 
4 We found a similar range for other PCs. For a similar analysis but considering all aperture 
conditions, see APPENDIX C - Experiment 3A. 
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4.14. Trial-level variability in PC1 loading scores across participants for the experiment's learning 
(left) and recognition (right) phases. Consistent with previous graphs, we show results for typical 

viewers in red and super-recognisers in green. This data only considers the natural viewing condition 
of the experiment. We ranked PC scores by their mean value for each panel separately, so a side-by-

side comparison does not measure the same participant. The boxes show the interquartile range, and 
the whiskers show the minimum and maximum of the distribution. 

 

 

Gaze dispersal Analysis (Natural Viewing Only) 

 The previous analysis indicated that super recognisers explored faces more during 

learning. However, because we based our understanding of PC1 on our visual interpretation 
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of the component, we conducted a more direct visual exploration by calculating the Gini 

coefficient for each trial-level heatmap (see Methods). As a reminder, lower Gini 

Coefficients denote greater gaze dispersal, an indication of more visual exploration.  

To make the analysis of Gini coefficients consistent with the PCA analysis - and to 

allow us to compare results with Experiment 2 - we only used the Natural viewing aperture 

condition of the study (for all aperture conditions, see APPENDIX C – Experiment 3A). We 

used a linear mixed model setting participants’ intercept as a random effect and group and 

phase as fixed effects, which revealed a significant main effect of phase [b=0.049, CI= 

[0.044, 0.054], t(1562)= 18.438, p< 0.001] and a non-significant main effect of group [b=-

0.004, CI= [-0.02, 0.012], t(43.8)= -0.49, p= 0.626].  

These main effects were qualified by a significant two-way interaction between 

group and phase [b= 0.025, CI= [0.014, 0.035], t(1562)= 4.67, p< 0.001]. Investigating this 

interaction further, simple effects reveal a larger difference between super recognisers and 

typical viewers during the learning phase [b=-0.016] than in the recognition phase 

[b=0.008].  Consistent with the PCA analysis, this shows that the differences in viewing 

behaviour between super-recognisers and typical viewers were most pronounced during 

face learning, with super-recognisers showing more visual exploration.  

 

Discussion 

In Experiment 3A, we investigated the fixation patterns of typical viewers and super-

recognisers processing a face-recognition task by applying the previously introduced PCA 

technique. We used the PCA to reduce our data to reveal core aspects of the nature of 

fixation patterns amongst our participant groups. By subdividing fixation patterns into 

principal components, we found that the first components significantly explained some 

differences between super-recognisers and typical viewers. This result is interesting because 

it shows that individual differences in face recognition ability could be related to major 

sources of variation in how people sample information from faces. This major source of 

variation (PC1) was that some participants focused more on the eye region while others 

distributed their gaze more widely, which was consistent with the trial-level analysis in 

Experiment 2.  
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Interestingly, the extent to which PC1 discriminated between typical viewers and 

super-recognisers depended on the phase of the experiment, with differences being 

observed more prominently during face learning. This result illustrates that super-

recognisers investigate more facial regions to extract more face information when learning 

new faces. The PCA using only the Natural View condition of the study revealed similar 

results compared to the complete data using all aperture viewing conditions, suggesting 

that the tendency to explore the face is also present when the entire face is in view. Analysis 

of the Gini coefficient strengthened this conclusion, with super recognisers showing greater 

dispersion throughout facial features during face learning.  

Relating this to the results of Experiment 2, we have accumulated evidence for the 

importance of visual exploration beyond the central and eye regions of the face in achieving 

high accuracy in face identity processing tasks. This was observed both when matching faces 

showed simultaneously on the screen (Experiment 2) and when studying faces in order to 

commit them to memory (Learning phase, Experiment 3). This perhaps suggests that high 

performers and super-recognisers were more efficient in extracting face identity 

information,  allowing them to extract more elaborate identity information.  

Therefore, understanding the differences between typical viewers and super-

recognisers on how they first encode face information might help us understand how super-

recognisers develop more robust memory representations of faces. Super-recognisers 

showed an advantage in processing the stimuli even when the amount of information 

available per fixation was minimal. This result is important because studies aiming to 

understand individual differences in face processing ability initially associated measures of 

holistic processing with face identification performance (DeGutis, Wilmer, Mercado, & 

Cohan, 2013). This association is still debatable because some studies reported evidence of 

enhanced holistic processing predicting individual differences (e.g. Wang et al., 2012), while 

recent studies have not (e.g. Sunday et al., 2017). Nevertheless, our results corroborate – 

and extend – the suggestion of a more local/featural processing in enhanced face processing 

ability (Royer et al., 2015; Tsantani et al., 2020). 

 These results also broaden the understanding of information used to identify faces 

(e.g. Chuk, Chan, & Hsiao, 2017; Royer et al., 2018; Schyns, Bonnar & Gosselin, 2002; Tardif 

et al., 2019). We show that single virtual components created by an orthogonal linear 

transformation (i.e. PCA) can identify differences between typical viewers and super-
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recognisers. Exploring these components further, our analysis of PC1 revealed that super-

recognisers fixated less on the eye region than typical viewers. Curiously, previous studies 

report the eye region as crucial for recognition (e.g. Bate, Haslam, Tree & Hodgson, 2008; 

Schyns, Bonnar & Gosselin, 2002; Slessor, Riby & Finnerty, 2013) and avoidance of the eye 

region often relates to poorer face recognition ability and even prosopagnosia (e.g. Caldara 

et al., 2005; Lê, Raufaste, Roussel, Puel & Démonet, 2003; Lê, Raufaste & Démonet, 2003; 

Stephan & Caine, 2009; Towler et al., 2016; Avidan & Behrmann, 2021). In addition, previous 

work of - for example - Tardiff and colleagues (2019) suggests that super recognisers 

processing is specially tuned to information in the eye region, at least when the 

presentation of faces was restricted by ‘bubbles’ apertures used in that study (see Schyns et 

al., 2002). 

It is still a topic of debate in the face-processing literature if the superiority of super-

recognisers is because they are an extreme version of a typical viewer or because their 

mechanisms of face-processing are completely distinct from typical viewers (Noyes et al., 

2017; Tardif et al., 2019). In other words, it is still unclear if the differences between super 

recognisers and typical viewers are quantitatively or qualitatively different. In Experiment 

3A, we compared the fixation patterns of 26 typical viewers and 34 super-recognisers. And 

so, due to the majority of super-recognisers used in this study, it raises the question if the 

primary components detected differences between the two groups because they are part of 

a continuum of processing differences or because they use qualitatively different processes. 

In Experiment 3B, we aim to answer this question by testing whether the dimensions 

explaining variance in typical viewers viewing behaviour can generalise to capture what 

super-recognisers are doing.  

 

Experiment 3B 

 In Experiment 3A, super-recognisers and typical viewers used different fixation 

patterns to learn faces. However, it is still unclear whether these differences reflected the 

qualitative differences between the two well-defined groups or whether they reflect 

underlying continuous variation across the face identity ability spectrum. In Experiment 3B, 

we aimed to address this question by recruiting a larger group of typical viewers - in relation 
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to super-recognisers - to examine whether the dimensions explaining their eye strategy 

were still similar when compared to the ones found in Experiment 3A.  

 

Methods 

Participants 

We recruited 43 typical viewers from UNSW Sydney and the University of 

Wollongong. Analysis was based on 42 typical viewers (35 females, 7 males, Mage = 21.2, 

SDage = 5.0) and 3 super-recognisers, with one typical viewer excluded due to excessive data 

loss. All participants had normal or corrected to normal vision. 

Stimuli 

We used the same Stimuli used in Experiment 3A. 
 

Apparatus and eye movement classification 

We recorded participants’ eye movements using the SR-Research EyeLink Portable 

Duo and classified fixations the same way as Experiments 2 and 3A.  

 

Results 

Overall Accuracy 

 We show the relation of accuracy (A prime scores) across all aperture size conditions 

in Figure 4.14. Visual inspection suggests a linear trend resulting in better accuracy for larger 

aperture sizes. To test this, we ran a linear mixed model. For the accuracy model, we set 

participants’ intercept as a random effect and CFMT+ and aperture size as fixed effects. We 

found a significant main effect of CFMT+ for A prime [b= 0.042, CI= [0.023, 0.060], t(43)= 

4.42, p< .001] and a significant main effect of aperture size [b= 0.091, CI= [0.08, 0.101], 

t(223)= 16.61, p< .001]. Consistent with Experiment 3A, the interaction of CFMT+ and 

Aperture size [b = -0.004, CI= [-0.015, 0.007], t(223)= -0.69, p = 0.492] was not significant. 
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Figure 4.14. Results of the obtained accuracy (A prime) for typical viewers and super-recognisers 
across viewing conditions. We show the violin distributions for typical viewers in red and their 

respective averages in white. And show individual super-recognisers in green. 
 

Principal Components Analysis 

As in Experiment 3A, we performed separate PCAs for the learning and recognition 

phases to investigate fixation patterns between participants. Similar to the previous 

analysis, we calculated two distinct PCAs, considering each phase's trial-level data (intra-

individual variation).  

The first five PCs emerging from the PCA of typical viewer data are shown in Figure 

4.15. Visually inspecting Figure 4.15, PCs calculated for the learning and recognition phases 

are very similar, and they are also very similar to components found in Experiment 3A. This 

visual similarity is important because it suggests that super recognisers do not differ 

qualitatively from typical viewers in sampling information from faces. Rather, their gaze 

behaviour is captured by components of variance that are present across typical viewers, 

pointing to the continuity of processing differences across the ability spectrum rather than 

distinct processing mechanisms in super-recognisers compared to typical viewers. 
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Figure 4.15. PCA navigation for Learning (Left) and Recognition (Right) phases using data 

from all aperture conditions. 

 

 We conducted further analysis of PCA loadings on the PCA in Figure 4.15 which was 

constructed using data from all aperture viewing conditions. However, as in Experiment 3A, 

the results of this analysis were similar to the analysis considering only the Natural Viewing 

condition. For simplicity and for consistency with Experiments 2 and 3A, we therefore only 

present analysis for the Natural Viewing condition below. For the full analysis, please refer 

to APPENDIX C – Experiment 3B.  

 

Principal Components Analysis (Natural Viewing only) 

 We replicated the PCA from the previous section only considering the experiment's 

Natural Viewing (NV) condition. We plot the reconstruction of the first five principal 

components in Figure 4.16. Interestingly, a visual inspection of Figure 4.16 shows striking 

similarities with the previously calculated in Figure 4.15. This consistency suggests that the 

strategies to process faces remained comparable across aperture viewing conditions.  
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Figure 4.16. PCA navigation for Learning (Left) and Recognition (Right) phases using 

data only from the Natural View (NV) aperture condition. 

 

First, we used linear mixed model analysis to analyse the pattern of results for PC1 

scores. For that, we set participants’ intercept as a random effect and CMFT+ scores and 

phase as fixed effects. We found that both main effects of phase [b = 0.006, CI = [-0.065, 

0.077], t(1562) = 0.17, p = 0.863] and CFMT+ [b = 0.006, CI = [-0.011, 0.022], t(43.2) = 0.65, p 

= 0.519] were not significant. In addition, we observed a non-significant interaction between 

phases and group [b = -0.003, CI = [-0.008, -0.002], t(1562) = -1.19, p = 0.235]. This non-

significant result shows that PC1 loading scores could not differentiate typical viewers based 

on their CFMT+ score. Still, in this analysis, the simple effects -using phase as a moderator- 

illustrate a larger difference during face learning [b=0.007] than recognition [b=0.003], 

showing higher PC1 scores for those with higher CFMT+ scores. And so, assuming that the 

two separate PC1 calculate the same component, these results show that, among typical 

viewers, those with higher scores tended to sample information from faces more during 

face learning avoiding the eye region, despite simple effects not being significant. We 

describe the model for other PCs in APPENDIX C – Experiment 3B. 

 

Intra-individual difference analysis of fixation patterns (Natural Viewing only) 

Similar to Experiment 3A, the previous analysis categorised the relationship between 

PC1 scores and face processing ability. This analysis showed no traces that high performers 

processed faces differently than low performers, measured by the first component. 

However, it is essential to address that participants of both groups could have received a 
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wide range of PC scores in the component. Therefore, to investigate stability in fixation 

patterns across participants (i.e. PC1 loading scores), we show their inter-trial differences in 

Figure 4.17.  

Figure 4.17 shows the inter-trial variability of PC1 scores across all participants 

processing the Natural Viewing condition of the experiment. On the left panel, we show the 

results for the learning phase of the experiment, and on the right panel, the recognition 

phase. We also show results for typical viewers in red and super-recognisers in green. 

However, in this analysis, our group of 3 super recognisers are coloured just for illustrative 

purposes. A visual inspection of Figure 4.17 reveals an extensive range of PC1 scores for 

participants processing the stimulus trials. And so, similar to Experiment 3A, this range 

illustrates that participants were flexible in their strategies to sample information from 

faces. To illustrate the order of magnitude of this flexibility (in PC1 scores), we found that 

the average range of participants’ PC1 scores (range = max - min) in the learning phase was 

of 2.27  standard deviations, and in the recognition phase was of 2.35 standard deviations. 

And so, this vast range of PC1 scores per participant possibly illustrates that individual trials 

influence participants to engage in particular fixation patterns for the NV condition. We 

found a similar range for other PCs. 
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4.17. Trial-level variability in PC1 loading scores across participants for the experiment's learning 
(left) and recognition (right) phases. Consistent with previous graphs, we show results for typical 

viewers in red and super-recognisers in green. This data only considers the natural viewing condition 
of the experiment. We ranked PC scores by their mean value for each panel separately, so a side-by-

side comparison does not measure the same participant necessarily. The boxes show the interquartile 
range, and the whiskers show the minimum and maximum of the distribution. 

 



132 

 

Gaze dispersal Analysis (Natural Viewing only) 

In Experiment 3A, we found significant differences between groups of participants 

when analysing their dispersal when learning and recognising faces. For that, we calculated 

the Gini coefficients for every heatmap generated by participants’ fixations (see Methods) 

as a metric of exploration. As a reminder, a lower Gini Coefficient would represent higher 

fixation activity (i.e. higher exploration). Here, we replicated the analysis considering the 

natural viewing aperture condition of Experiment 3B. For all aperture conditions, see 

APPENDIX C – Experiment 3B. 

We used a linear mixed model setting participants’ intercept as a random effect and 

group and phase as fixed effects. Linear mixed models reveal a significant main effect of 

phase [b=0.04, CI= [0.038, 0.044], t(1409.7)= 28.51, p< 0.001] and a not significant main 

effect of CFMT+ [b= -1.73e-4, CI= [-4.81e-4, 1.34e-4], t(43.8)= -1.10, p= 0.276]. However, we 

found that the two-way interaction between group and phase [b= 4.48e-4, CI= [9.82e-5, 

6.41e-4], t(1537.8)= 4.57, p< 0.001] was significant. Investigating this interaction further, 

simple effects of CFMT+ reveal a significant effect during the learning phase [b=-3.97e-4] 

and a not significant effect in the recognition phase [b=5.10e-5]. This analysis shows that 

participants explore more facial regions (i.e. lower Gini coefficient) when learning faces, and 

those with higher face processing ability explore significantly more. 

 

Discussion 

In Experiment 3B, we used a larger cohort of typical viewers to find similar results 

compared to experiment 3A. In experiment 3A, we used groups of super recognisers and 

typical viewers processing a face recognition task. Our objective with that study was to 

investigate different fixation patterns between groups by analysing fixation heatmaps. Using 

principal components, we found that the main sources of variation in these heatmaps 

successfully measured differences between groups of participants. However, it was still 

unclear if the calculated PCs reflected two distinct groups of participants with different 

fixation patterns or a continuum. Therefore, in Experiment 3B, we investigated a group of 

typical viewers to distinguish if super-recognisers could be an extreme version of typical 

viewers.  
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Measuring individual differences using the continuous variable of CFMT+ score, we 

found remarkable consistency with the results of previous experiments using binary super-

recogniser / typical viewer group membership. This consistency of results is significant 

because, first, it shows robustness in the linear trends seen by the PCA when investigating 

participants across different face processing ability spectrums. Second, it suggests that 

super-recognisers' mechanisms to process faces are not necessarily qualitatively different 

from typical viewers (see Noyes et al., 2017) because we generated similar principal 

components using typical viewers. And so, Experiment 3B widened previous studies which 

examined information use by high-performers in face identification tasks (Chuk, Chan, & 

Hsiao, 2017; Royer et al., 2018; Schyns, Bonnar & Gosselin, 2002; Tardif et al., 2019). That is, 

high-performers tend to sample more information when learning faces, and the primary 

source of variation suggests that they avoid the eye region when doing so. 

  

Experiment 4 

 Experiments 2 and 3 showed significant differences in fixation patterns between 

participants across the face-processing ability spectrum. In these experiments, we found 

that participants at the upper end of the face-processing ability spectrum showed enhanced 

face exploration compared to typical viewers. This shows that super-recognisers sampled 

more face information than typical viewers. Whether super-recognisers also sampled more 

useful identity information compared to typical viewers is unclear. Therefore, in experiment 

4, we aim to examine whether the quality of the identity information sampled from super 

recognisers differed from the information sampled from typical viewers. 

 Experiment 4 is a computational study designed to measure the quality of 

information sampled by participants during Experiment 3 and whether this alone can 

explain their superior face identity processing ability. Although Experiment 3 showed that 

super-recognisers and typical viewers sampled different face information, it is unclear 

whether differences in this sampled information are alone able to explain differences in 

their ability. To address this question in Experiment 4, we used Deep Convolutional Neural 

Networks (DCNNs) to quantify the identity information extracted by human observers in 

Experiment 3.  
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DCNNs provide stable computational metrics to measure similarities between face 

identities in images. Thus, despite showing cognitive differences compared to humans (see 

Chapters 2 and 3), DCNNs allow us to measure the amount of identity information 

contained in the sampled information by super-recognisers or typical viewers. The main 

question that arises is if the information sampled by super-recognisers contains more 

identity information than the information sampled by control participants. That is, will the 

information from super-recognisers lead to improve identification performance in DCNNs? If 

so, then super-recognisers may be better at face recognition simply because they extract 

more useful identity information via eye movements. If not, it would suggest that 

differences in super-recognisers' ability stem from the perceptual processing of the sampled 

information.   

We set out to answer this question by combining gazemap datasets from 

Experiments 3A and 3B. Due to the constraints imposed by the COVID-19 pandemic, we 

opted to reuse data from Experiments 3a and 3b for this computational study. The 

pandemic's limitations on conducting new experiments made it more practical and efficient 

to leverage the existing data to address our research objectives. We use fixation coordinates 

from participants in this study to create a static representation of participants’ perceptual 

sampling while observing faces. Our idea is to create a face-matching task where one of the 

pair images will be a static representation of the perceptual sampling made by a human 

participant on a given trial from Experiment 3 (from either a typical viewer or super-

recogniser). The other image is a high-quality image showing the same person or different 

people. By measuring DCNN accuracy when matching these pairs, we provide a metric of 

the information value of identity information sampled from the face by the human 

participant.  

In addition to comparing the information sampled by the two groups of participants 

in this way, we will also compare these groups to randomised fixation coordinates. Adding a 

randomised group is crucial because it will enable us to understand if human-guided identity 

information is more valuable than randomised information in general. We would expect this 

to be the case given that appears to be some correspondence between features used by 

humans and DCNNs for face identification (e.g. Abudarham et al., 2019). But proving this is 

the case is also important to inform whether the use of ‘attention layers’ in DCNNs that 

emphasise information that is useful for human participants (e.g. see Lai et al. 2020; Rong et 
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al. 2021; Yang et al. 2022). Thus, Experiment 4 will allow us to observe how much human 

attention can benefit DCNN accuracy compared to randomised information and if super-

recognisers extract more valuable information than typical viewers.  

  

Methods 

Deep Convolutional Neural Networks (DCNNs) 

We used nine different DCNNs in this study to measure the computational value of 

face identity information sampled by participants. These DCNNs were based on 5 different 

architectures trained on various datasets and implemented them using Keras (Chollet et al., 

2015) or Pytorch (Paszke et al., 2019) in Python. Details of the training and architecture of 

these 9 DCNNs are shown in Table 4.4. All models were official models collected from the 

system developers (e.g. GitHub repository).  
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DCNN Architecture Dataset 
Python 

Library 

1 ResNet50 (He, Zhang, Ren & Sun,2016) 
VggFace2 (Cao et al., 

2018) 
Keras 

2 
ResNet34 (He, Zhang, Ren & Sun, 2016) 

(https://github.com/ageitgey/face_recognition) 

VggFace (Simonyan and 

Zisserman, 2014); Face 

Scrub dataset (Ng & 

Winkler, 2014) and 

images from the internet 

(King, 2009)  

Keras 

3 ResNet50  VggFace2  Pytorch 

4 ResNet50  

MS-Celeb-1M dataset 

(Guo et al., 2016) fine-

tuned on VggFace2 

Pytorch 

5 Se-ResNet50 (Hu, Shen, & Sun, 2018) VggFace2  Pytorch 

6 Se-ResNet50 
MS-Celeb-1M dataset 

fine-tuned on VggFace2 
Pytorch 

7 VGG16 (Simonyan and Zisserman, 2014) VggFace  Keras 

8 FaceNet (Schroff, Kalenichenko, & Philbin, 2015) VggFace2 Pytorch 

9 Facenet 
CASIA-WebFace (Yi, Lei, 

Liao & Li, 2014) 
Pytorch 

Table 4.4 Description of architectures, datasets, and Python libraries used in this study. We also 
enumerated DCNNs from 1 to 9. 

 

Stimuli 

 We used the fixation data from Experiment 3 to make images for the face-matching 

task in this study. In Experiment 3, we calculated the fixations of 68 typical viewers and 37 

super-recognisers processing a face recognition task. During the study, participants 
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processed 144 identities while their eye movements were being tracked, and we 

manipulated the amount of information participants could sample from every fixation 

through variable spotlight aperture sizes (See Experiment 3). Here, we aggregated the 

aperture sizes with collected fixations on the face images to create a static representation of 

their perceptual sampling. 

 To reconstruct participants' perceptual sampling processing faces, we first 

reconstructed the perceptual information they sampled on each fixation. For that, we used 

each fixation coordinate to create an image layer, showing the given spotlight aperture for 

the coordinate position. We repeated this process for all fixations. We then merged all the 

single apertured fixation layers into a single image, visualising all fixations combined.. 

However, to enhance the realism of human perceptual sampling, we incorporated a retinal 

filter (Targino Da Costa & Do, 2014) into our image reconstruction process. By convolving 

the resulting image with this mathematical filtering, we aimed to simulate the visual 

processing that occurs in the human retina, making our perceptual sampling more accurate 

and representative of human vision. It is important to note that the retinal filtering will 

modulate the perceptual efficiency (i.e. acuity) inversely proportional to the distance of the 

fixation position. For that, the work of Targino and Do (2014) shows a mathematical 

'foveation' model that aims to replicate human vision loss. Therefore, the retinal filtering 

proposed by Targino and Do (2014) in the fixation images will simulate their perceptual 

experience. We used the retinal filter parameters' distance to screen' set to 650mm and the 

loss parameter Δ = 25 to mimic human perceptual loss. The final 'foveated image' is a 

reconstruction of the total participants' information sampling while processing the stimuli. 

We show this process and a resultant image of Experiment 4 in Figure 4.18. 
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Figure 4.18. Illustration of how we created images used in Experiment 4. (A) Individual fixation 
coordinates were used to recreate a collection of image layers by convolving the viewed image region 

in the ‘spotlight’ aperture with a retinal filter centred at the point of fixation. (B) Image layers were 
then flattened to form a single image. (C) We applied a retinal filter (Targino Da Costa & Do, 2014) 

on the given fixations to exclude external information apart from the originally extracted by 
participants. 

  

In addition to human-generated foveated images, we created equivalent foveated 

images for participants containing fixations in random coordinates. Each foveated image 

generated by participants had a ‘yoked’ random-generated image. This yoked image was 

generated in the same way as the human-generated images, with the same number of 

fixations, but using random fixation coordinates set within the bound of the face region. We 

used these images as a baseline for our analysis to investigate if human fixation patterns 

produce more computationally valuable face identity information than random samples of 

information. That is, if the foveated images produced by human fixations result in higher 

accuracy compared to the randomly generated ones, this will illustrate that the information 

sampled by humans is tuned to computationally relevant facial information for DCNNS. We 

show an example of the resulting foveated images per aperture size for both human and 

Randomly generated fixations in Figure 4.19.  

 

Figure 4.19. Representative examples of foveated image per aperture size generated by human-
guided or randomly generated fixation positions. 

 

Altogether, the process of recreating participants and randomly generated foveated 

images resulted in a total of 22,108 images divided between 3 groups: Super-recognisers, 
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Typical viewers, and Random. We used these images to create 44,216 pairs of images for 

the face-matching task, with 22,108 match and 22,108 non-match pairs. For the match 

pairs, one image was a foveated image and the other a different high-quality image of the 

same identity. For the non-match trial pairs, one image was a foveated image, and the other 

was a high-quality image of someone from similar demographics (e.g. same age, sex, 

ethnicity, etc.) but not the same identity. We manually selected pairs of similar identities for 

the non-match trials. 

We used DCNN algorithms to generate similarity ratings for all the stimuli images. 

Thus, all stimuli images we used in Experiment 4 were 224x224 pixels containing an aligned 

face. To do this, we detected the facial regions of the stimuli images using a Multi-task 

Cascaded Convolutional Neural Network (MTCNN) (Zhang, Zhang, Li, & Qiao, 2016). The 

MTCNN detected, extracted, and aligned each face in the image set. We then resized all 

images to 224 × 224 pixels to serve as the DCNNs’ input (see Cao et al., 2018) and converted 

them to grayscale. 

 

Analysis 

 We examined the face-matching accuracy of DCNNs performing the stimuli 

described above. Similar to Chapters 2 and 3, we used the penultimate layer of DCNNs to 

generate a numerical description (i.e. a feature vector) for every image used in the stimuli. 

We calculated the Euclidean Distance between feature vectors to determine the similarities 

between image pairs. We used the inverse-normalised similarities as ‘similarity scores’ so 

that lower values signal different identity (i.e. non-match) pairs, and higher values signal the 

same identities (i.e. match). We report the accuracy of DCNNs as the Area Under the ROC 

Curve (AUC) computed from these similarity scores. We calculated a total of eighteen AUC 

scores for each DCNN algorithm used in this study. These AUC scores resulted from DCNNs 

analysing participant sources (typical viewers, super-recognisers or random) at each 

aperture size condition (12%, 24%, 36%, 48%, 60%, 100%).  

To analyse these AUC scores, we used Linear Mixed Models (LMM) with a quadratic 

fit (aperture size2) from the GAMLj module package in JAMOVI (version 2.2.5; The Jamovi 

project, 2021). We added aperture size (12%, 24%, 36%, 48%, 60%, 100%) and participant 

source (control, super-recogniser, and random) as predictors in the model. We used 
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Aperture size as a continuous variable and DCNNs as random effects. In addition, we ran a 

General Linear Model (GLM) with a quadratic fit (aperture size2) to investigate whether the 

randomly generated foveated images revealed different amounts of information compared 

to the human-generated ones. We used a quadratic fit in these analyses to avoid ceiling 

effects derived from the natural viewing condition. 

 

Results 

Overall Accuracy 

We show the accuracy of DCNNs processing the stimuli in Figure 4.20.  In Figure 4.20, 

we show the calculated AUC for all 9 DCNNs processing stimuli images separately for each of 

the six aperture conditions and colour coded the three participant sources. Unsurprisingly, 

inspection of Figure 4.20 shows that the constrained information caused by smaller 

apertures causes reduced accuracy of DCNNs for all participant sources. To analyse this 

effect, we used linear mixed model analysis. For the model of Accuracy (AUC), we set 

DCNNs’ intercept as a random effect and aperture size, aperture size2 (quadratic fit), and 

source (human or random) as fixed effects. The linear mixed model reveals a significant 

main effect of aperture size [F(1,147)= 770.91, b = 0.015, CI = [0.014, 0.016], t(149) = 27.23, 

p < .001] and aperture size2 [F(1,147)=388.67, b = -9.15e-5, CI = [-1.01e-4, -8.23e-5], t(149) = 

-19.32, p < .001], meaning that for larger aperture sizes DCNNs were better able to extract 

valuable identity information.  

More interestingly, we found a significant main effect of source (Typical Viewer, 

Super-Recogniser, or Random) [F(2,147)=21.77, p< .001], with fixed effects showing a 

significant difference between Random and Typical viewers [b = -0.05, CI = [-0.076, -0.028], 

t(147) = -4.26, p< .001] and Super-Recognisers and Typical Viewers [b = 0.027, CI = [0.003, 

0.052], t(147) = 2.23, p = 0.027]. This significant difference is interesting because it 

illustrates that DCNNs benefit from human-guided attention to faces, and super-recognisers' 

information is the most useful. We found no significant two-way interaction in this analysis. 

See APPENDIX C – Experiment 4 for the full model table. 
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Figure 4.20. Accuracy (AUC) of DCNNs performing the stimuli in the six aperture conditions for the 

three participant groups.  

 
 

Information available 

In the previous analysis, we found that super-recogniser-guided information 

provided more useful identity information for DCNNs. However, Experiment 3 found that 

super-recognisers showed enhanced exploration of faces compared to typical viewers. Thus, 

the enhanced exploration of super-recognisers might have caused the advantage of DCNNs 

in using their information. We then calculated the total information available for each image 

used in this study. For that, we replicated the foveation procedure (see Methods - Stimuli) 

but used a blank white image instead of a face image. After foveation, we calculated the 

proportion of revealed pixels as at least 80% white. We used this proportion (in percentage) 

as the amount of information available for each foveated image.  

We show the resulting information available for DCNNs processing the stimuli in 

Figure 4.21. Similar to the previous figure, we divided the resulting information separately 

for the six aperture conditions and colour-coded the three participant sources. Visual 

inspection of Figure 4.21 reveals that smaller aperture sizes -on average- limited the amount 

of information available, and Random-guided fixations produced more available information 

than human-guided ones. We investigated these assumptions using Generalised Mixed 
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Models. For the model of available information, we investigated the effect of participant 

source (Typical Viewer, Super-Recogniser, and Random) and Aperture size2 as factors of the 

model. Not surprisingly, generalised mixed models showed a significant main effect of using 

quadratic fit (aperture size2) [F(1,44209)= 51433, ⴄ2p = 0.538, b = -0.016, CI = [-0.017, -

0.016], t(44209) = -226.8, p < .001], showing higher information available for bigger 

apertures. In addition, this analysis revealed a significant main effect of Group (Super-

Recognisers, Typical Viewers, and Random)[F(2,44209)= 1840, ⴄ2p=0.077, p< .001], with 

fixed effects showing higher information available for Random-guided fixations compared to 

typical viewers [b =10.96, CI = [10.58, 11.35], t(44209) = 55.45, p < .001]. In addition, fixed 

effects also show that Super-Recognisers explored facial regions more than Typical Viewers 

[b= 3.29, CI= [2.856, 3.724], t(44209)= 14.87, p< .001]. The fixation patterns of humans 

revealed less visual information than that generated by random fixation positions, showing 

that the accuracy advantage for human-generated images was due to quality rather than 

quantity of face information. Still, the enhanced exploration of Super-Recognisers 

demonstrates that they investigate more areas possibly containing relevant identity 

information than typical viewers. See APPENDIX C – Experiment 4 for the full model tables. 

 
Figure 4.21. Image information available across aperture conditions for the three participant groups.  
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Discussion 

Experiment 4 was a computational study investigating the quality of face information 

extracted by super-recognisers and typical viewers compared to a baseline of random 

samples. We performed this experiment because, in the previous experiment (i.e. 

Experiment 3), we found significant differences between the fixation patterns of super-

recognisers and typical viewers investigating faces. Therefore, it was still unclear how much 

these fixation pattern differences would reflect in the quality of identity information 

extracted by participants. So we reconstructed the perceptual sampling experience of 

human participants (and a random baseline) using their fixation coordinates and retinal 

filters and used these images as input to DCNNs in an identity-matching task.   

We used 9 DCNNs to investigate the quality of identity information extracted by 

humans and randomly placed fixations in the foveated images. If DCNNs could correctly 

identify someone’s identity using the foveated stimuli images, this shows that the samples 

contained valuable identity information. This enables us to obtain an objective measure of 

the amount of computationally useful identity information contained in the perceptual 

sampling of our participants in Experiment 3.  

The first result was that the reconstructed images generated by human perceptual 

sampling provided better identity information than random samples of face information. 

This was despite random samples revealing more information. This shows that despite some 

differences between humans and DCNNs processing faces, as shown in previous chapters, 

there is an overlap in the information that humans and DCNNs use to identify faces (see Lai 

et al. 2020; Rong et al. 2021; Yang et al. 2022). The second result was that reconstructed 

images generated by super-recognisers samples produced significantly higher accuracy than 

typical viewers’. Therefore, we can conclude that super-recognisers extracted more valuable 

identity information compared to typical viewers. 

Our results show that the method developed for Experiment 4 revealed to be an 

interesting approach to quantifying identity information in diverse ‘foveated images’. In 

Experiment 4, we used the perceptual sampling provided by humans or randomised 

fixations and found that DCNNs improve their accuracy when humans produce such 

sampling. Thus, as aforementioned, such results would indicate –at least- commonalities in 

how DCNNs and humans process identity verification. However, future studies should 
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address the question regarding their similarities starting from the other direction. That is, 

because the method described here is a computational evaluation, researchers could first 

find the set of – for example – one or two optimal features that DCNNs most benefit from 

for identity verification and later compare if humans also agree with the decision. Such an 

approach would give us strong evidence to assess how DCNNs and humans engage similarly 

in processing faces and further respond if they share similar mechanisms in doing so. More, 

this presents a compelling opportunity for future research to delve into how these facial 

region similarities between DCNNs and human could be leveraged to enhance the fusion 

between their decisions (e.g. Chapter 3). By exploring how the convergence in decision-

making processes can be harnessed to improve the fusion model, researchers can unlock 

new possibilities for creating more accurate and efficient forensic systems that better use 

the strengths of both humans and computational algorithms processing identities. 

Furthermore, it is crucial to highlight that our research objective focused specifically on 

investigating facial areas, which led us to exclude entirely any fixations that landed outside 

of the facial region. This deliberate exclusion opens up an intriguing opportunity for future 

studies to explore the interaction between these disregarded fixations and facial recognition 

performance. Understanding how fixations outside the facial region may impact facial 

recognition processes could provide valuable insights into the broader context of visual 

perception and its implications for identity verification tasks. 

 

Chapter discussion 

In this chapter, we used eye-tracking devices to investigate how humans and DCNNs 

use featural information from faces while performing face-matching and recognition tasks. 

We divided this chapter into three main experiments (Experiments 2, 3, and 4). In 

Experiment 2, we investigated the use of featural information differences between human 

participants performing a face-matching task. In Experiment 3, the use of featural 

information differences between human participants performing a face recognition task. 

And in Experiment 4, we investigated if the information sampled from participants -during 

Experiment 3- were beneficial for DCNNs. We used this body of experiments to clarify how 

individual differences relate to the perception of identity information in faces. 
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In Experiment 2, we investigated participants' fixation patterns leading to improved 

face-matching performance while processing a face-matching task. In this experiment, we 

introduced the PCA+MLDA method to visualize the differences in fixation patterns between 

two groups of participants with distinct face-matching abilities (high and average ability). 

We also compared the results with conventional ways to investigate differences in fixation 

patterns. Using the conventional way to analyse fixation patterns, we found that greater 

attention to the right eyes (of both faces of the matching pair) predicted face-matching 

ability. Our proposed PCA and MLDA methods also highlighted the right eyes as a predictor 

of performance. However, the PCA and MLDA helped us enrich our understanding 

compared to conventional methods. This new method helped us visualise that face 

exploration and an overall tendency toward the right side of faces (i.e. not just eyes) 

predicted performance in face-matching tasks.  

In Experiment 3A, we investigated participants' fixation patterns leading to improved 

face recognition performance. We performed this investigation using the PCA method 

introduced in Experiment 2. The PCA significantly explained distinct fixation patterns 

between super-recognisers and typical viewers performing the task. Our visualisation 

method shows that super-recognisers explore more facial regions while avoiding the eye 

region. Typical viewers, on the other hand, showed less face exploration and more attention 

to the eye region. Interestingly, we found that these differences in sampling strategy are 

more prominent when participants learn the identity depicted in faces. This higher 

exploration found in super-recognisers raises the argument that they show more efficiency 

in absorbing face information as they had only 5 seconds to learn the identity of faces.  

The information sampled by super-recognisers when learning or recognising faces is 

not qualitatively different from typical viewers’ because we replicated the PCA model found 

in Experiment 3A using a cohort of majorly typical viewers in Experiment 3B. In Experiment 

3A, we used two well-established groups of typical viewers and super-recognisers. As 

aforementioned, such investigation using the PCA approach revealed substantial differences 

between the two groups in the fixation patterns when learning and recognising faces. These 

differences were apparent in the first principal components. However, it was still unclear if 

the PCA model reflected qualitative differences between the two groups or simply 

quantitative differences in the information sampling strategy that would be found in any 

cohort of humans. And so, our objective with Experiment 3B was to investigate the stability 
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of the calculated PCA model when using a cohort of majorly typical viewers. Our results 

show striking similarities between the PCA models from Experiments 3A and 3B. Thus, such 

robustness in the PCA model clarifies that the different strategies engaged by super-

recognisers when learning or recognising faces are not qualitatively different from the ones 

engaged by typical viewers.  

The results found in Experiments 2 and 3A/3B are not contradictory. Our analysis for 

both experiments suggested that the facial information sampled reflects individual 

differences in face processing ability. In Experiment 2 (i.e. a face-matching task), we found 

that those who attended more to the eye region possessed a higher ability. In contrast, 

Experiment 3 (i.e. a face recognition task) shows that those who avoided the eyes possessed 

a higher ability. It is important to address the fundamental differences in both experiments, 

as Experiment 2 required no memory component. Thus, the results found between them 

are not necessarily contradictory. First, it outlines that high-performers possess high levels 

of adaptability depending on the task they process. Second, in the two distinct experiments, 

we found that high-performers sample more facial information from the stimuli. And so, our 

investigation to verify the links between holistic processing and individual differences (e.g. 

Bobak et al., 2017) was not conclusive. Instead, our analysis revealed that high performance 

in face identity processing relates to the higher exploration of facial features and accurate 

changes in information sampling for adequate processing. 

In Experiment 4, we asked whether the information sampled from super-recognisers 

would contain more quality of identity information than information sampled from typical 

viewers and randomised information. For this analysis, we collected participants’ fixation 

patterns from Experiments 3A and 3B and simulated their perceptual sampling experience 

as a static foveated image. We also created a version of such foveated images using 

randomised fixation positions. In Experiment 4, we used DCNNs to measure the quality of 

identity information. We used DCNNs to generate similarity scores for foveated images 

paired against other images of the same person or different people. When using such 

similarity scores, a higher accuracy would directly reflect a higher quality of identity 

information. Ultimately, our results show that identity information required some level of 

organisation as randomised information provided lower accuracy for DCNNs. Interestingly, 

and similar to previous studies (e.g. Abudarham, Shkiller, & Yovel, 2019), DCNNs seem to 

use information similarly to humans coding for identity due to their superior precision when 
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using their sampling. Interestingly, super-recognisers provided the most useful identity 

information. This result extends the previous Experiments 2 and 3 because it shows that 

super-recognisers not only explore more facial areas but also attend to diverse areas 

containing valuable identity information for further recognition.  

It is still unclear if the information sampled by super-recognisers would reflect better 

face identification performance in – for example – typical viewers. In Experiment 4, we 

investigated the quality of identity information by using DCNNs and found that the 

perceptual sampling from super-recognisers resulted in better face identification 

performance. However, Experiment 4 was a computational study, so it is still unclear if 

humans would agree with such results using DCNNs. For instance, future studies should 

create pairwise matching or recognition tasks where human participants explore face 

identity information through the perceptual sampling of super-recognisers, typical viewers, 

and randomised fixations. Notably, such tasks would be created by using foveated images 

using the methods described in Experiment 4. Such investigation would reveal if humans can 

improve - or decrease - their face identity processing performance by different perceptual 

sampling information. 

Altogether, the three experiments in this chapter helped us visualise that super-

recognition might relate to extracting quantitatively more valuable information from faces. 

Our results demonstrate a more local/featural processing in enhanced face processing 

ability. Although past studies show that super-recognisers require less local information to 

achieve accurate recognition (Royer et al., 2015; Tsantani et al., 2020) and their superior 

ability often relates to enhanced holistic processing (e.g. Bobak et al., 2017; Bennetts, Mole 

& Bate, 2017). Here, we provide evidence that super-recognisers show efficiency and 

flexibility using diverse valuable local identity information from faces. Thus, our results 

suggest that they use this compendium of sampled local information to create a better 

representation of faces, opposite of previous work suggesting that individual differences in 

identity processing might be related to enhanced holistic processing. However, it is 

important to note that the stimuli processed by human participants throughout Chapter 3 

were cropped photographs of faces. Therefore, it remains unclear if such mechanisms for 

processing identity verification would reflect the same mechanisms found -for example- 

when individuals have an ‘in the wild’ face-to-face interaction with other individuals. That is, 

previous work suggests that the mechanisms when processing screen-based stimuli are 
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significantly different compared to when processing the same stimuli outside the computer 

(e.g. Nasiopoulos, Risko & Kingstone, 2015). And so, in Chapter 4 and 5 of this thesis, we will 

assess if the mechanisms of attention -measured by eye fixations and mobile eye trackers- 

would be similar compared to what we found here in Chsssssapter 3. 
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Chapter 5 - Using DCNNs to examine human face perception in the wild 

 
Throughout my thesis, I have applied computational methods borrowed from the 

field of computer vision to examine individual human and DCNN performance on face 

identification tasks. In the previous chapters of this thesis, we investigated humans 

processing facial images on computer screens in the lab. In chapter 5, I develop a new 

innovative technique for the analysis of wearable eye-tracking technology, which uses 

automatic person-detection software to measure social attention. This enables us to 

investigate human processing faces in outdoor and uncontrolled environments. This chapter 

is adapted from a full research paper, which has been accepted for publication in Nature 

Scientific Reports, and a pre-print is available online (Varela, Towler, Kemp, & White, 2022).  

 

Introduction 

One approach to studying person perception is to examine socially-directed 

attention by analysing people's eye movements as they view images of people presented on 

computer screens (e.g. Yarbus, 1967; Amso, Haas & Markant, 2014; Birminghan, Bischof & 

Kingstone, 2009; Bobak et al., 2017; Rösler, End & Gamer, 2017; Gregory, Bolderston & 

Antolin, 2019). However, photographs of social scenes do not represent the dynamic, 

multidimensional reality of our social experience. Indeed, participants fixate on faces less in 

face-to-face interactions than when watching video stimuli (Nasiopoulos, Risko & Kingstone, 

2015; Risko, Richardson & Kingstone, 2016; Laidlaw et al., 2011; Foulsham, Walker & 

Kingstone, 2011), indicating that contrived laboratory tasks are inadequate analogues of 

real-world social attention (Kingstone, 2009; see also Nasiopoulos, Risko & Kingstone, 2015; 

Risko, Richardson & Kingstone, 2016).  

Surprisingly little is known about how people direct their attention towards others in 

naturalistic social environments. Yet, this information provides valuable constraints to 

understanding the perceptual processes and mechanisms of attention. For example, 

researchers have captured the visual experience of babies and toddlers using wearable 

cameras, enabling researchers to better understand how perceptual expertise with faces 

develops. This work shows that faces are present in infants’ field of view roughly 25% of the 

time (e.g. Sugden & Moulson, 2019), with the vast majority of this exposure to familiar faces 

of primary caregivers. In contrast, faces make up a far smaller fraction of children’s visual 
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experience beyond their first birthday (~10%, e.g. Jayaraman et al. 2015; Fausey et al. 2016). 

The extent to which babies and children attend to these faces is less clear, but quantifying 

the frequency of faces in the field of vision, and the categories of faces making up this 

exposure, informs theories of perceptual expertise by grounding them in the information 

available in the visual environment (e.g. see Young & Burton, 2018).   

Studies of adults’ attention to people in natural settings are extremely rare, and 

almost all knowledge on this topic comes from tightly controlled laboratory-based research. 

This laboratory-based research shows, for example, that faces capture attention and are 

processed preferentially relative to non-face objects and bodies (Bindemann et al., 2005; 

Theeuwes & Van der Stigchel, 2006; Morrisey et al., 2019), and this leads to the view that 

this process operates automatically (see Palermo & Rhodes, 2007 for a review; Yan, Young & 

Andrews, 2017). However, it is not clear whether this holds for ambient environments 

populated with many competing stimuli – each with its unique affordance (Gibson, 1979) – 

and where the ‘social stimuli’ are real people, complete with legs, minds, and eyes of their 

own. 

These knowledge gaps have increased interest in methods that allow studies of 

person perception and social attention in complex environments. One approach has been to 

use virtual reality, with faces rendered on animated bodies in virtual worlds (Bindemann et 

al., 2021; Fysh et al., 2021; Bülthoff et al., 2019). Another has been to study social attention 

in ‘the wild’ by studying the eye movements of participants wearing eye-tracking devices 

that monitor their fixations as they navigate real-world ambient environments (see 

Foulsham, Walker & Kingstone, 2011; Foulsham, 2020; Tatler, Hanzen & Pelz, 2019 for 

recent reviews). Wearable eye-tracking offers the advantage of studying social attention 

and person perception in situ. However, it requires experimenters to view long video 

recordings and manually code what is being fixated in every frame of video recorded. Even 

coding simple aspects of gaze fixations, for example, counting person fixations vs non-

person fixations, is extremely time-consuming (Foulsham, Walker & Kingstone, 2011; 

Hessels et al., 2020; De Lillo et al.,  2021), making the examination of social attention in 

naturalistic environments impractical at the resolution afforded by lab-based eye-tracking 

studies (e.g. Bobak et al. 2019; Rice et al. 2013; Yarbus, 1967), and experimenters are 

limited to coarse analysis of fixation patterns. 
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Experiment 5 

In Experiment 5, we introduce a novel method that enables fine-grained 

investigations of naturalistic social attention for the first time. Our ‘dynamic regions of 

interest’ (dROI) approach automatically measures social attention in ambient environments 

frame-by-frame. We achieve this by co-registering eye-movement data from a wearable 

eye-tracker with body and face landmark positions extracted from video data using a state-

of-the-art computer vision algorithm (Cao et al., 2019). This method automatically encodes 

eye fixations directed towards people before mapping the locations of these fixations to 

landmarks on the face and body. Our approach overcomes many significant limitations of 

prior work on social attention in naturalistic environments, saving substantial research 

effort by avoiding the need for manual coding of fixations to pre-specified regions (e.g. Mele 

& Federici, 2012; Benjamins, Hessels & Hooge, 2018; Hessels et al. 2020; Haensel et al., 

2020; De Lillo et al., 2021). In addition to removing the burden of manual coding, our 

approach also increases temporal resolution and the volume of data, enabling new analytic 

approaches which open up new avenues to study person perception in unconstrained 

environments. 

Given this is the first piece of work to use this approach, we have addressed some 

preliminary research questions to demonstrate its diverse applications. First, we quantify 

the extent to which people attend to the bodies and faces of passersby and ask whether 

faces do actually ‘capture’ viewers’ attention as previously claimed. Second, we conducted 

an exploratory analysis to visualise the appearance of faces that participants chose to fixate 

on compared to those they did not.  

Third, we ask whether patterns of social attention ‘in the wild’ reflect stable 

individual differences in observers, both when participants were walking in a public space 

and when they were engaged in face-to-face social interaction. Recent eye-tracking studies 

have shown large individual differences in the way that people attend to social scenes 

shown on screens (Constantino et al., 2017; Kennedy et al., 2017), and abnormal social 

attention is associated with broader social deficits, for example, in Autism Spectrum 

Disorder (see Guillon et al. 2014). These studies also point to a genetic basis underlying 

people’s social attention (Constantino et al., 2017; Kennedy et al., 2017), but no study has 

measured individual differences in complex everyday environments. Similarly, studies have 
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found significant and stable individual differences in people’s face-processing abilities 

(White & Burton, under review), and these are associated with different patterns of eye 

movements to faces and people in lab-based tasks (Bobak et al. 2017; Dunn et al., 2022), 

but it is not clear whether these differences transfer outside of the lab to more naturalistic 

perceptual environments (see Ramon, Bobak & White, 2019).  

 

Methods  

Participants 

Thirty-three university students from UNSW Sydney completed the study in return for 

course credit (9 males, 24 females; Age M= 21.4, SD= 5.4). We excluded full data from two 

participants because of corrupt eye-tracking data. In addition, procedural issues meant that 

we deleted data from one segment of the navigation task (see below) for one participant, 

and we deleted data for the face-to-face task (see below) for three participants. This gave a 

total of 31 participants in the main navigation task analysis, 30 in the individual differences 

analysis of the navigation task and 28 in the face-to-face interaction analysis.  

Apparatus and eye movement classification 

We used a wearable eye-tracking device to record participants' eye gaze data as they 

completed the study (Pupil Labs Core: Kassner, Patera & Bulling, 2014). This device recorded 

videos of participants’ field of view and eye gaze coordinates. A set of three cameras 

achieve this recording, a frontal camera facing the environment and two cameras facing the 

eyes. The resolution of the frontal camera was 1920x1080 pixels at 60 frames per second, 

and the cameras facing the eyes were both of resolution 192x192 pixels at 120 frames per 

second. The wearable eye-tracker was connected via USB to a laptop (Dell XPS 13 7390 2-in-

1 placed inside a backpack worn by the participant. We used Pupil Capture to save video 

and eye gaze data, and Pupil Player to calculate fixations (Kassner, Patera & Bulling, 2014). 

 

Procedure  

We conducted the study during term time when the campus was busy. There were no 

COVID-19 cases in Sydney at the time and so people were not wearing facemasks. We fitted 
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the mobile eye-tracking device to participants (see Materials above). Participants then 

completed two tasks while the device recorded their eye gaze: a face-to-face interaction 

task, where they interacted with the experimenter for a brief period; and a navigation task, 

where they walked around the UNSW Sydney campus following a circular route.  

In the face-to-face interaction task, participants stood in an empty corridor, directly 

facing the experimenter at a distance of 1.5m (see Figure 5.5A). Participants listened to 

verbal instructions provided by the experimenter about the navigation task, explaining that 

this was a naturalistic study and that they should walk through campus as they would on a 

normal day. The experimenter explained the route they should take before asking 

participants if they understood and had any questions before beginning the task. The 

experimenter delivered these instructions by reciting a pre-defined script, and participants 

spent an average of 30 seconds listening and asking questions about the task. This recording 

was used in the analysis ‘Fixation patterns during face-to-face interaction associated with 

face recognition ability’. 

Participants then followed the experimenter to a separate room where a map and 

pictures of the walk were on the wall showing the study route. When participants indicated 

they were ready to begin, participants exited the room with the experimenter, and the 

Navigation task began. Participants navigated a pre-defined circular route via the main 

campus thoroughfares passing busy places (e.g. coffee shops, library, food court) through 

indoor and outdoor settings. Participants were always under the experimenter's 

supervision, who kept a ~2.5m distance behind participants. When participants arrived at 

the library, we asked them to stop walking and rest for a minute, which divided the study 

route into two segments. Segment 1 lasted approximately 12 minutes on average, and 

segment 2 approximately 4 minutes.  

After completing the wearable eye-tracking tasks, participants completed a standard 

measure of unfamiliar face memory ability, the Cambridge Face Memory Test extended 

version (CMFT+) (Russell, Duchaine & Nakayama, 2009) and a self-report measure of face 

recognition ability, the Prosopagnosia Index short version (PI-20: Shah et al., 2015). This 

CFMT+ asks for participants to learn and memorise the grayscale faces of 6 caucasian males 

to be recognised later in 102 three-alternative trials without any time limit. The CFMT+ is a 

challenging test because the learned faces change in angle of view and image quality in the 

trials. The PI-20 is composed of 20 questions such as “My face recognition ability is worse 
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than most people”, and participants must rank their responses from “Strongly agree” to 

“Strongly disagree”. Participants were also asked questions during the debriefing to gauge 

their awareness of the study's purpose. Only four participants mentioned attention to 

people or person perception as a potential research topic. 

 

Eye gaze data processing  

The eye-tracking device collected raw gaze data of participants. We transformed this 

data into fixations, saccades and blinks using open-source tools provided by the eye-tracking 

manufacturer (Pupil Capture and Pupil Player, see https://pupil-labs.com/products/core/). 

In all cases, we used the default settings. Fixations were output as coordinates labelled to 

specific pixels on the frontal camera frames. For analysis, we only considered frames with 

fixations.  

Our main methodological advance was to automatically detect the presence of 

people in the participant's field of view using open-source body and face detection tools 

(OpenPose: Cao et al., 2019). This tool detects people in video frames and automatically 

estimates up to 25 landmarks on the body and 70 on the face (if the person is sufficiently 

close to the viewer). Co-registering fixations with these landmarks enabled us to construct 

detailed maps of participants' attention to people. Interestingly, by using our approach, we 

could analyse a vast amount of fixation data without compromising the privacy or 

confidentiality of any given fixated person. This not only facilitated a comprehensive 

examination of the participants' visual behaviour but also ensured ethical considerations 

were upheld throughout our research. The individuals encountered during the experiment 

paradigm did not provide permission for their image use. However, their images were not 

used in paper figures, and their images were only used for a data processing pipeline that 

extracted locations of facial/body features but did not retain identifying information. 

We used two methods to measure participants’ attention to faces and people. In the 

first method (see Figures 5.1A and 5.4A), we registered fixations to the closest detected 

body or face landmark, considering only landmarks that OpenPose detected with a greater 

than 60% confidence. We chose a 60% confidence rate because our testing suggested this 

effectively excluded false positive ‘phantom’ bodies, which sometimes briefly appeared in 

the scene. We calculated the distance between fixation coordinates and landmark 
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coordinates for every frame containing both fixations and landmarks. Where the Euclidean 

distance between a fixation coordinate and the closest landmark was below a designated 

threshold, we registered a to that landmark. Thresholds varied depending on the spatial 

resolution of the landmark data being used (navigation task = 70 pixels; face-to-face 

interaction = 30 pixels). For the purpose of analysis in the navigation task, we clustered 25 

landmarks into two categories (face and body; see Figure 5.1A), and for the face-to-face 

interaction task, we clustered 70 facial landmarks into five categories (nose, left/right eye, 

mouth, and the exterior of the face; see Figure 5.5A).  

In the second method, we aimed to determine the precise location of fixations in a 

face to facilitate heatmap analysis in the face-to-face interaction (see top panel of Figure 

5.6A). We achieved this by computing the relative position of a given fixation coordinate 

amongst facial landmarks using Delaunay triangulations (Delaunay, 1934) followed by Affine 

transformations. This way, fixation coordinates that landed within a given computed 

landmark triangle can be projected on the relative triangle in the standard template. This 

method enabled us to aggregate fixation data to more precise locations on the face to 

create a heatmap for each participant during the task.  

 

Comparing automatic versus manual coding 

We compared estimates of the number of people present in a video frame made by 

OpenPose (Cao et al., 2018) and humans. Four lab volunteers manually counted the number 

of people in each of the 560 randomly selected video frames from the navigation task (see 

Figure D.6 in Supplementary Materials for an example of a video frame). We found a very 

strong positive correlation between manual and automatic people counting (r = 0.89, p < 

0.001, n = 560; see Figure D.7 in Supplementary Materials for scatterplot).  

 

Navigation task 

In the navigation task, we registered fixations as being to the head, body, or ‘not-

person’ fixations. Head and body fixations were registered when OpenPose had greater than 

60% confidence in either head or body regions and when a fixation was detected within 70 

pixels of a landmark. Not-person fixations were any fixations that did not meet these 
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criteria. Probabilities of fixations to each of these three dynamic regions of interest (dROI) 

were calculated only for frames where a fixation was recorded. These data were filtered 

based on OpenPose detection as described in the Results section.   

 

Face diet 

 To investigate the face diet of participants, we generated two average faces for 

fixated and not fixated faces (see Figure 5.4). First, we collected images of all faces 

OpenPose detected in each participant’s video recording and stratified these according to 

whether the participant had fixated on them. We then used a face recognition algorithm 

(ResNet50 (He, Zhang, Ren & Sun,2016) trained on the VGGFace2 Database (Cao et al., 

2018)) to find all instances of these fixated faces in participants’ recordings. We achieved 

that by estimating the number of identities using K-means clustering and the Elbow method 

to find the optimal number of identities amongst fixated and not fixated faces. We then 

averaged all the images of each person's face to create an average per face identity and 

then averaged fixated and non-fixated faces separately to create the images shown in Figure 

5.4.   

 

Face-to-Face interaction task 

 For the face-to-face interaction task, we processed gaze data using landmark and 

heatmap registration methods. Participant heatmaps were analysed using principal 

components analysis (PCA) to identify major components (PCs) in the inter-individual 

variation of heatmaps, returning a set of PCs ranked according to their explained variance 

(see Chapter 4; Varela et al., 2018). The raw input data for the PCA is shown in 

Supplementary Materials (Figure D.4). 

 

Results  

Faces of passersby do not capture attention in live natural settings 

Thirty-three participants followed a circular route around a busy university campus 

wearing a mobile eye-tracking device. We show an example video frame illustrating the eye-
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tracking data provided by the eye-tracker and our detected dynamic regions of interest in 

Figure 5.1A (left panel). Our dynamic region of interest (dROI) analysis of social attention 

relied on automatic face and body detection algorithms developed by Cao and colleagues 

(OpenPose: Cao et al., 2019). We verified the accuracy of this algorithm on our video data 

by comparing its detections to manual coding of body presence by four human observers 

and found a high level of agreement (see Jongerius et al., 2021).  

 

 

Figure 5.1. Dynamic region of interest (dROI) analysis of social attention while navigating a university 
campus. (A) Using data from a wearable eye-tracker, we extracted body landmarks from videos using 
OpenPose (top left) and co-registered viewers’ fixations towards these landmarks (bottom left). The 

skeleton figure shows a participant’s relative proportion of fixations to each body landmark, 
indicated by the size of the marker (all individual participant maps are available in Supplementary 
Material, Figure D.1). (B) The left panel shows overall proportions of non-person, head and body 

fixations as a proportion of all fixations in the recordings. The right panel shows boxplots of 
proportions of non-person, head and body fixations only as a proportion of frames where the 

algorithm detected heads and bodies. See main text for analysis. 

 

To calculate the proportion of fixations participants made to faces and bodies, we 

co-registered fixation locations from the eye-tracker with landmarks on faces and bodies 

(Figure 5.1A, left; see Methods - Eye gaze processing). As a function of total fixations (Figure 

5.1B, left), 16% of fixations were directed to people, with just 4% directed at people’s heads 

(Body: M = 11.6%, SD = 8.3%; Head: M = 4.3%, SD = 3.8%). Restricting the analysis to only 

frames where faces and bodies were detected by the algorithm, we observed higher 

proportions of fixation towards people (50%), but fixations to heads remained relatively low 

at 14% of fixations (Body: M= 34.4%, SD= 14.9%; Head: M=14.4%, SD= 10.3%). The small 

proportion of fixations to faces may suggest that the widely reported finding that ‘faces 
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capture attention’ in lab-based studies (e.g. Vuilleumier, 2000; Bindemann et al., 2005; 

Theeuwes & Van der Stigchel, 2006; Gamer & Büchel, 2009; Ro, Russell & Lavie, 2001;  

Bobak et al., 2016; Rösler, End & Gamer, 2017; Gregory, Bolderston & Antolin, 2019) is not 

reflective of what occurs when we encounter unfamiliar people in public spaces. 

Previous lab-based studies have shown that frontal faces capture more attention 

than averted faces (e.g. Shirama, 2012; Palanica & Itier, 2015). In a final test of whether 

unfamiliar faces capture attention in naturalistic settings, we compared the proportions of 

fixations to people in frames where the algorithm detected full faces (i.e. all facial features) 

against when the algorithm detected partial faces (i.e. a subset of facial features). This 

provided a test of whether frontal faces are fixated more than averted faces in a live natural 

setting.  

Figure 5.2 shows that participants made more fixations to heads when full faces 

were visible compared to when faces were partially visible (Full = 15.1%, Partial = 12.3%, 

t(30) = 2.58, p = 0.015), but they also made more fixations to bodies when faces were fully 

visible (Full = 36.6%, Partial = 32.1%, t(30) = 2.58, p = 0.015; see Supplementary material for 

full ANOVA). This result suggests that participants were more likely to fixate on people when 

their faces were in full view but provides no evidence that faces captured this attention any 

more than other body regions.  
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Figure 5.2. Comparing social attention when faces are fully visible versus partially visible in a video 
frame. Partially visible faces were due to non-frontal head angle or occlusion (figure legend, top). 
Results show a greater probability of fixating on people (heads and bodies) when their faces were 

fully visible. See the main text for analysis and Supplementary Materials for full ANOVA. 

 

Overall, while in contrived lab-based tasks faces are attended to more (e.g. Bobak et 

al. 2017) and capture more attention (e.g. Theeuwes & Van der Stigchel, 2006) compared to 

other visual objects, using our technique to study social attention in a natural environment 

we did not find evidence that faces of passersby receive prioritised processing.   

 

Influence of social attention on ‘face diet’ 

Face ‘diet’ refers to the volume and composition of a person’s perceptual exposure 

to faces. This concept has theoretical influence because exposure to faces is argued to 

underpin people’s specialised expertise in processing faces (e.g. see Rhodes et al. 2005). 

Face diet tends to be made up of faces that are from similar demographic groups to our 

own, and so this concept has been used to explain the ‘other-race effect’ whereby people 

are better at recognising own-race faces than other-race faces (e.g. Crookes & McKone, 

2009; McKone et al., 2019). But face diet is typically conceived as passively ‘absorbed’, and 
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the influence of a person’s social attention on their face diet in natural settings is still 

unclear.  

In Figure 5.3, we show how combining automatic face detection with wearable eye-

tracking can be used to measure differences in participants’ face diets. Using our dROI 

approach, we extracted images of faces and feature locations from video frames – both for 

fixated and non-fixated faces. This approach enabled us to generate image averages of 

fixated and non-fixated faces via an image morphing procedure (see Methods – Data 

analysis). The average appearance of fixated and non-fixated faces in Figure 5.4A shows 

subtle differences in expression and skin tone, suggesting that face diet is – perhaps – 

shaped by social attention in systematic ways. Moreover, Figure 5.4B shows that most 

fixations to faces concentrate at the centre of the participants’ field of view. This result 

could mean that participants turned their heads to look at faces directly. Alternatively, 

participants may be more likely to look at people’s faces when they pass directly in front of 

them (see Solmon, Foulsham & Kingstone, 2017). 

 

Figure 5.3. Fixated and non-fixated faces detected in the video recordings can reveal the viewer’s 
‘face diet’. (A) Average images of faces that were not fixated (left) and fixated (right) across all 

participants. (B) Spatial distribution of nose location when faces are detected in the video by the 
algorithm (grey) and for faces that were fixated by the participant (red). Fixated faces tended to be 
central in participants' field of view, suggesting that participants mostly directed their attention to 

people by moving their heads. 
 

Individual differences in naturalistic social attention 

Computerised lab-based tests have established that individual differences in social 

attention are stable across test sessions, and these differences are associated with genetic 

variation (Constantino et al., 2017). We conducted a correlational analysis of social 

attention during the navigation task to verify whether stable individual differences in social 

attention are also found in live natural settings. To test this, we measured the correlation 
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between individuals’ tendency to fixate on people and faces in two distinct segments of the 

study route that were separated by a short rest break (see Methods).  

A scatterplot of participants’ proportion of fixations to people in the two route 

segments is shown in Figure 5.4. We found a significant correlation between proportions of 

fixations to people by individual participants across the two route segments (Spearman's 

rho = 0.58, p= 0.001, n = 30), showing the tendency of individual participants to direct 

attention towards others in natural settings was stable across repeated measurements, at 

least within this single natural experiment.  

 

 

  

Figure 5.4. Stable individual differences in social attention. Correlation between the proportion of 
fixations made by individual participants to people in route second segment as a function of the first 

segment. 

 

Because the university campus was busier for some participants than others, the 

correlation shown in Figure 5.4 could reflect the relationship between the number of people 

available in the scene and the participant’s proportion of fixations to people. We, therefore, 
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conducted another correlational analysis, but this time controlling for the influence of the 

average number of people encountered in video frames. We calculated the residual value 

for each participant from the linear regression model predicting the probability of fixating 

people from the average number of people detected in video frames, separately for the two 

route segments. We found a significant correlation between these residuals for the two 

route segments (Spearman's rho = 0.532, p= 0.002, n= 30), indicating that some participants 

tend to fixate more on people than others, regardless of the number of people present (see 

Supplementary Materials Figure D.2, ‘Individual differences analysis of residuals’).  

Having found reliable individual differences in participants’ tendency to fixate on 

people in their environment, we asked whether these differences were related to face 

identity processing ability measures. We found no significant correlation between the 

proportion of fixations to people and their score on an objective (CFMT+: Spearman's rho =-

0.166, p=0.371) or self-report measure of face recognition ability (PI-20: Spearman's rho 

=0.117, p=0.529) (see Methods – Materials). Because previous work has shown that people 

with high levels of face recognition ability focus more on faces in natural scenes (Bobak et 

al., 2017), we also repeated this analysis by examining the proportion of fixations to faces 

only, but again we found no association (CFMT+: Spearman's rho =-0.073, p=0.696; PI-20: 

Spearman's rho =-0.023, p=0.901). 

 

Fixation patterns during face-to-face interaction associated with face recognition ability 

We also recorded participants’ fixation patterns during a face-to-face conversation 

with the experimenter (see Methods – Data collection). This conversation occurred before 

the main navigation task, as participants listened to scripted task instructions for about 30 

seconds before asking any follow-up questions. Because participants were closer to the 

experimenter, it enabled the face detection algorithm to detect 70 facial landmarks (See 

Methods). An example of the video recording and the proportion of fixations to each facial 

landmark for one participant is shown in Figure 5.5A.  
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Figure 5.5. Dynamic region of interest analysis of face-to-face interaction. (A) We extracted facial 
landmarks from the video source using OpenPose (left), and these landmarks were used to register 

the viewers’ fixation positions on the face. The size of circles on the schematic face shows the 
average proportion of fixations participants made to each landmark (individual participant maps are 

available in Figure D.3 of Supplementary Materials); (B) Relative frequency of fixations to the 
experimenter’s face and body compared to the surrounding environment; (C) Relative frequency of 

fixations to facial regions colour coded by landmark in panel A. 

Unsurprisingly, participants spent far longer looking at the person when engaged in 

the conversation compared to the navigation task, with an average of 92.9% of fixations to 

people and 89.5% to faces (Figure 5.5B). The probability of fixations to different regions of 

the experimenter’s face is shown in Figure 5.5C, showing a focus on internal facial features, 

in line with screen-based eye-tracking studies (e.g. Yarbus, 1967; Arzipe et al. 2012; Blais et 

al. 2008). However, these regions are computed by the assignment of fixations to the 

closest landmark. This method is not precise because landmarks are not distributed evenly 
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across the face, and so we also used facial landmarks to triangulate precise fixation locations 

(see Methods – Eye gaze processing). This enabled us to compute heatmaps of participants’ 

gaze patterns, with the average heatmap shown in Figure 5.6A (see Supplementary 

Materials for individual heatmaps). This average heatmap shows a focus on eyes, nose and 

mouth in a ‘T’ shaped distribution, consistent with screen-based eye-tracking studies that 

almost always find a characteristic of fixations across the internal facial features (e.g. 

Yarbus, 1967; Arzipe et al. 2012; Blais et al. 2008). Interestingly, there is also a clear leftward 

bias observable in this figure. This bias is consistent with previous laboratory-based research 

investigating people looking at faces on screens to perceive identity (Wolff, 1933) and 

detect emotional expression (Heller & Levy, 1981; David, 1993; Ferber & Murray, 2005). 
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Figure 5.6. Heatmap analysis of face-to-face interaction. (A) Video and eye movement from the 
wearable eye-tracker (left) were registered using OpenPose facial landmarks and converted to 

locations on the standard face template using Delaunay triangulation and affine transformations 
(middle). This technique enabled face fixation data to be aggregated and recorded as heatmaps 

(right; see Supplementary Materials for individual participant heatmaps). (B) We analysed 
participant heatmaps using principal component analysis to explore the primary sources of variation 
in participants’ viewing patterns. Here, we show its interaction with the average heatmap in the five 
first principal components, which accounted for ~78% of the variance. The first principal component 
explained ~27% of the variance in viewing patterns and captured individual differences in focus on 

the eye versus mouth regions. (C) Fixations to eyes were associated with higher levels of face 
recognition ability as measured by the CFMT+. 

Previous work shows substantial variation in the gaze patterns of individual 

participants (e.g. Mehoudar et al., 2014; Arzipe et al., 2017;  Dunn et al., 2022). Following 

our recent eye-tracking work using static eye trackers (Varela et al., 2018; Dunn et al., 2022), 

we used principal component analysis (PCA) to explore the underlying dimensions of this 

individual variation in our participant heatmaps (see Methods – Data analysis). Figure 5.6B 
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visualises the first five principal components in participants’ average heatmaps during the 

face-to-face task. Visual inspection and follow-up analysis showed that the main source of 

variation (PC1) captured a shift in participants that focussed on the eye region to those that 

attended to the mouth (Correlation between PC1 and mouth landmark fixation count (n = 

28): Spearman's rho = 0.897, p < 0.001; Left eye: Spearman's rho = -0.724, p < 0.001; Right 

eye: Spearman's rho = -0.513, p = 0.005).  

Finally, we measured the association between participants' PC loadings and face 

recognition ability (CFMT+ score). PC1 showed a significant correlation with face recognition 

performance (Figure 5.6C, Spearman’s rho = -0.44, p = 0.019), with no significant 

correlations with face recognition performance for the other components (PC2 – PC5). 

 

Discussion 

Our primary research goal with Experiment 5 was to develop and validate a new 

research tool to study social attention ‘in the wild’. Measures of fixation proportions to 

people and bodies in a natural setting were broadly consistent with prior research using 

manual coding of video recordings from wearable eye-trackers (Hessels et al., 2020; DeLillo 

et al., 2021), and there was high agreement between our automated measures and manual 

experimenter coding (see Figure D.7). We found indexes of social attention to be reliable 

over repeated measurements. Together, we interpret this as evidence that dynamic region 

of interest (dROI) approaches are valid for studying social attention in natural settings.  

The dROI approach enabled us to ask some preliminary questions inspired by screen-

based studies of social attention. We first examined the extent to which faces automatically 

capture attention as participants navigated a busy public space. Contrary to conclusions 

based on lab-based experiments (e.g. Vuilleumier, 2000; Bindemann et al., 2005; Theeuwes 

& Van der Stigchel, 2006; Gamer & Büchel, 2009; Ro, Russell & Lavie, 2001;  Bobak et al., 

2017; Rösler, End & Gamer, 2017; Gregory, Bolderston & Antolin, 2019), we found very little 

evidence that faces capture attention in this situation. Fixations to faces – when faces were 

visible in the participants' field of view – made up a small proportion of total fixations (14%). 

Moreover, when comparing attention capture by faces and bodies that were fully visible 

and those that were only partially viewable, we found that this increased fixations to both 
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faces and bodies equivalently. This evidence does not support the idea that people 

automatically orient their attention to faces, at least for unfamiliar faces in a public space.  

As expected, we found that participants spent a far greater proportion of time 

looking at faces during one-to-one social interaction. Fixation patterns to faces are known to 

be highly context-dependent, for example, dependent on whether the face is moving 

(Buchan et al., 2007; Foulsham et al., 2010; Scott, Batten & Kuhn, 2019), speaking (Buchan 

et al., 2008; Võ et al., 2012) and the non-verbal behaviour of the viewed person (Võ et al., 

2012; see Hessels, 2020 for a review). This evidence suggests that the role of context is 

more important than the intrinsic properties of faces themselves in determining attention to 

faces, underlining the complexity of our visual experience with faces in daily life.  

Using automated face detection combined with eye-movement data enabled us to 

visualise the faces that people fixated on in our study, offering a window into participants’ 

perceptual experience of faces. Limits of the resolution of the video frame meant that we 

were only able to visualise a subset of the viewed faces, but we anticipate that 

improvements in wearable video cameras and eye-tracking technology can allow richer 

analysis in future work using this approach. In general, it is surprising how little information 

is available about the amount and quality of perceptual experience people have in a typical 

day. This information is important theoretically because our exposure to faces is the basis of 

our expertise in face processing relative to other classes of objects (see Young & Burton, 

2018). But quantitative and qualitative analyses of this exposure are very rare. Studies using 

head-worn cameras focus exclusively on infancy and childhood experience (e.g. Jayaraman 

et al., 2015; Fausey et al., 2016; Sugden & Moulson,  2019) – despite abilities in face 

recognition continuing to develop up to people’s mid-thirties (Germine et al. 2011; Dunn et 

al. 2020) – and these studies have not examined participants viewing behaviour. Future 

studies using the dROI approach can better understand how viewers sample visual 

information from people in their everyday lives.  

The dROI approach also has significant potential for understanding individual 

differences in social attention and face-processing ability. We found that individual 

differences in attention to people were stable across different study sections, consistent 

with studies using screen-based approaches where there appears to be a genetic basis to 

people’s social attention (Constantino et al., 2017; Kennedy et al., 2017). We also found that 

patterns of fixations in a face-to-face interaction were associated with face recognition 
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ability, adding to a growing list of studies that have found associations between face 

processing ability and face information sampling patterns (e.g. Dunn et al., 2022; Wilcockson 

et al., 2020; Varela et al., 2018; Bobak et al., 2017; Bird el al., 2011; Bal et al., 2010; Riby et 

al., 2009;  see Avidan & Behrmann, 2021 for a review). Across these studies, fixation 

patterns associated with high performance are not consistent. For example, we found that 

people with higher face recognition ability tended to make more fixations on the eyes, but 

while some screen-based studies found this pattern (Wilcockson et al., 2020; see also Tardif 

et al., 2019), others report no association (e.g. Arzipe et al. 2017), and others found the 

opposite result (e.g. Dunn et al., 2022). Again, one explanation of this inconsistent picture 

may be the important role of context in the information sampled from a face, pointing to 

the need for research that examines the relationship between face processing, social 

attention and social cognition in more diverse settings and situations.  

We are hopeful that the approach we have presented here can facilitate this type of 

naturalistic social perception research. The present study scarcely scratches the surface of 

what is possible. Future work could take on ambitious aims, for example, to capture a more 

complete picture of people's perceptual exposure to faces in their daily lives. Intuitively, this 

exposure contains rich diversity, such as the familiarity of people we encounter, the 

contexts and viewing conditions we encounter them in, and the nature of our social 

interactions. Characterising the multidimensional nature of this perceptual data and 

differences in how individuals sample it should be critical information to underpin the 

development of theory in this field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

https://www.sciencedirect.com/science/article/pii/S0278584622000136?casa_token=W73Wmfi057AAAAAA:r9ZNh2Dbc4Jz9yDK8z2yOn_Svooq55tL2SVZe0w9eRz9D0jDXhtGMIa6e4CN2N40V-3WXMRw#bb0030
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Chapter 6 - General Discussion 

Summary of research aims and findings 

This thesis investigated the strengths and weaknesses of humans and DCNNs 

performing face identification tasks. Unfamiliar face identification is a critical task in forensic 

scenarios, but achieving accurate performance is still challenging for both humans and 

DCNNs. Consequently, researchers have been developing mechanisms to improve facial 

identification decisions. So far, researchers suggest that using humans with high 

performance in facial identification decisions, state-of-the-art DCNNs, or even a 

combination of them might improve performance in facial identification decisions (e.g. 

Phillips et al., 2018). However, understanding the differences in the usability of these 

alternatives still needs to be clarified. And so, in this thesis, we investigated the potential 

use of humans and DCNNs performing such tasks and the different strengths and 

weaknesses they engage when coding facial identity information. We employed innovative 

tools using engineering approaches across seven studies reported in four experimental 

Chapters. In these studies, we found evidence that humans and DCNNs employ different 

strategies to achieve unfamiliar facial identification decisions. Interestingly, we also show 

that the significant differences within/between humans and DCNNs can be crucial for 

optimising identity verification. 

Chapter 2 sought to investigate if image quality in facial identification affected 

humans and DCNNs differently. As shown, security services often perform the task of 

identity comparison using -for example- a reference against images of the offender. 

However, such images may be of poor quality - with distortions and bad angles of view (e.g. 

taken from CCTV cameras). And so, in Chapter 2, we created an unfamiliar face-matching 

task aiming to understand how typical viewers (i.e. students) and 9 DCNNs would be 

affected by changes in image quality. This task contained a total of 50 trials, each containing 

two frontal face images. Humans and DCNNs were, required to decide whether the images 

were of the same person. They processed the stimuli under two conditions: Same-

Resolution and Different-Resolution. In the Same-Resolution condition, the two face images 

were similarly degraded by filtering (i.e. both had the 'same' resolution). In the Different-

Resolution condition, one image remained in perfect condition. In addition, we used two 

distinct low-pass filtering paradigms for manipulating image quality: Fast Fourier 
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Transformation and Gaussian filtering. Our results show a significant two-way interaction 

between humans and DCNNs performing the stimuli conditions. That is, DCNNs were more 

affected by the Different-Resolution condition compared to humans. This important 

interaction indicates that humans and DCNNs process identity information differently. 

Chapter 3 then investigated the basis of humans and DCNNs being used in a human-

AI teaming. The investigation led by us in the previous chapter showed that humans and 

DCNNs suffer considerably when processing facial identity verification when the source 

images are of poor quality. However, interestingly, previous research suggested that 

combining their independent decisions in a single Human-AI 'fused' response could 

potentially improve their overall performance in the task. Therefore, our objective was to 

investigate the underpinnings for such a combination to enhance unfamiliar facial 

identification decisions. For that, we examined multiple Human-AI setups to understand 

how fusing independent decisions made by humans and DCNNs can lead to improvements 

in identity verification. This investigation showed that improvements caused by fusing 

humans and DCNNs processing face identification decisions have a robust linear relationship 

with the accuracy difference between them. To illustrate, our results show that humans 

need to perform no worse than 10% lower than the DCNNs' performance to show 

improvements in their fused identity verification decisions compared to DCNNs alone. In 

addition, the linear model suggests that humans with similar performance compared to 

DCNNs', can improve the DCNN's performance by 5%. Interestingly, we show an additional 

accuracy increase proportionally related to disagreements in humans-DCNN decisions when 

performing face identification decisions. Ultimately, the optimal human-AI team comprises a 

human who performs at a similar level of accuracy to the DCNNs in facial identification 

decisions but ranks similarities differently than the DCNN. 

In Chapter 4, we aimed to understand how information sampling would predict 

individual differences in face-processing abilities. Past research modelling human face 

processing suggests that humans process faces 'holistically' rather than feature-by-feature 

(e.g. Farah, Wilson, Drain & Tanaka, 1998; Richler & Gauthier, 2014). Studies aiming to 

measure if individual differences in face processing are somewhat linked to improved 

holistic processing found weak to no correlation (e.g. Richler, Cheung, & Gauthier, 2011; 

Rezlescu, Susilo, Wilmer, Caramazza, 2017), while other studies found some association of 

individual differences with part-based processing (Sunday, Richler, & Gauthier, 2017). Such 
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mixed results show that the mechanisms that drive individual differences in face-processing 

ability remain unclear. And so, in Chapter 4, we developed computational methods for more 

direct investigation regarding the mechanisms leading to improved face processing ability. 

We investigated differences in information sampling of facial features that human 

participants engaged when matching and recognising faces. Our approach allowed the 

visualisation of eye-tracking data that described individual differences in face-matching and 

face-recognition abilities. We found that high-performers generally explored more facial 

regions than typical viewers when coding identity information, contrary to previous eye-

tracking studies showing that super-recogniser process faces holistically (e.g. Bobak et al., 

2017). Interestingly, a subsequent approach measuring the quality of identity information 

using DCNNs revealed that super-recognisers extract more high-value identity information 

from faces.  

In Chapter 5, our aim was to verify if the mechanisms of face processing found in 

laboratory screen-based stimuli were similar to the ones found in the wild. As we have 

shown throughout this thesis, most of the studies of face perception which investigate 

attention using eye trackers are screen-based studies (e.g. Yarbus, 1967; Amso, Haas & 

Markant, 2014; Birminghan, Bischof & Kingstone, 2009; Bobak et al., 2017; Rösler, End & 

Gamer, 2017; Gregory, Bolderston & Antolin, 2019). However, investigating attention to 

static images does not necessarily represent the dynamic and multidimensional reality of 

our social experience, as contrived laboratory tasks are inadequate analogues of real-world 

when investigating social attention (Kingstone, 2009; see also Nasiopoulos, Risko & 

Kingstone, 2015; Risko, Richardson & Kingstone, 2016). In addition, as we have illustrated, 

analysing attention 'in the wild' is not an easy task because the output of mobile eye 

trackers is rich in data information and therefore requires very labour-intensive manual 

coding of fixation positions to dynamic areas of interest. And so, in Chapter 5, we aimed to 

facilitate subsequent studies of social attention in the wild by developing a fully automatic 

methodological approach that enables fine-grained investigations of mobile eye-tracking 

data. By using - and validating - our approach in our study, we show strong evidence that 

static screen-based laboratory tasks do not reflect the mechanisms of attention found in the 

wild. As an example, contrary to conclusions based on screen-based experiments (e.g. 

Vuilleumier, 2000; Bindemann et al., 2005; Theeuwes & Van der Stigchel, 2006; Gamer & 

Büchel, 2009; Ro, Russell & Lavie, 2001;  Bobak et al., 2017; Rösler, End & Gamer, 2017; 
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Gregory, Bolderston & Antolin, 2019), we found very little evidence that faces capture 

attention when participants navigated public spaces. Interestingly, when engaging in face-

to-face interaction, participants spent a greater proportion of time looking at faces 

compared to when navigating the public space. Such results suggest that context is far more 

significant than the intrinsic properties of faces themselves in determining attention toward 

faces. 

 

Main Findings 

Face processing tasks are difficult for humans and DCNNs 

 Our results reiterate the common finding that unfamiliar face matching is 

challenging. Both human participants and DCNNs performed a series of unfamiliar face-

matching and face-recognition tasks. Starting from the theoretical perspective that people 

are 'experts' in processing the signals emitted by faces (e.g. Carey, 1992), our results are 

consistent with the extensive literature suggesting that this expertise is reserved only for 

familiar faces (e.g. Young & Burton, 2018). In this thesis, we simulated potential real-world 

situations where humans and DCNNs required to identify individuals depicted in images. We 

found that both humans and DCNNs can potentially misinterpret the identity signals emitted 

by faces. And so, given the importance of the task in applied settings, this misinterpretation 

is problematic as it could result in – for example- the arrest of an innocent person. 

 

Humans and DCNNs possess different strategies for processing identity information 

In Experiment 1, we showed that humans and DCNNs could suffer decrements in 

performance when processing unfamiliar face-matching tasks when images were of poor 

quality. Notably, this reduction in performance when processing images of poor quality can 

lead to profound outcomes regarding face identification in applied settings. In such settings, 

it is often common to compare mugshot images of suspects with images from -for example- 

CCTV footage. Importantly, as seen, such images can contain distortions and be presented in 

poor quality (see Seckiner et al., 2018).  
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Importantly, however, our investigation revealed that DCNNs suffered substantially 

more than humans when image pairs were of different qualities compared to when pairs 

were of similar quality. This implies that humans and DCNNs employ different strategies to 

achieve broadly similar levels of performance in face identification tasks. In terms of identity 

information contained within the images, our results indicate that humans possess a 

superior ability compared to DCNNs to extract the remaining configural information from 

poor-quality faces and compare this information to high-quality images. In addition, we 

tested such interaction using different low-pass filters to degrade the featural information 

of the images - and found a similar pattern of results but in different magnitudes. This 

evidence of robustness in our results is critical because it further suggests that the 

differences found between humans and DCNN processing images of varying quality will 

generalise to a variety of real-world scenarios. 

 Such differences in the cognitive process of humans and DCNNs processing faces can 

be advantageous when working together to improve the quality of the decision regarding 

someone's identity. Previous work has found that combining decisions made by DCNNs and 

humans can improve identity verification accuracy (e.g. Philips et al., 2018). More, increased 

diversity among decision-makers, when combined, further improves facial identity 

verification performance (White et al., 2013; Jeckeln et al., 2018). The fact that we have 

found processing differences with respect to how DCNNs are able to match faces differing in 

image quality could point to processing differences that could be exploited in future work. 

Because of this apparent difference in approach, teaming between humans and DCCNs 

should result in superior performance compared to either humans or DCNNs alone (see also 

Towler et al., under review; Hong & Page, 2004). From a theoretical perspective, this result 

also contradicts the idea that DCNNs could potentially be used to model face processing in 

humans (e.g. see Jozwik et al., 2022).  

 

Humans and DCNNs used in conjunction improve the quality of face verification decisions 

 We combined responses made by humans and DCNNs processing unfamiliar identity 

verifications and found that their combined decisions can be more accurate than those 

made by either humans or DCNNs alone. It is increasingly common in applied settings to use 

facial identification software as a solution to overcome error-prone human decisions in face 
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identity verification (e.g. White et al., 2015, Grother et al., 2019). However, as 

demonstrated in this thesis, using only DCNNs as a tool for identity verification tasks may 

not be optimal. As an alternative, studies have implemented combining (i.e. fusing) 

decisions made by humans and DCNNs and found significant performance improvements in 

facial identity verification (e.g. Phillips et al., 2018; Towler et al., under review). Still, despite 

showing possible improvements in face identification performance by fusing humans and 

DCNNs, the basis of this advantage is unclear. Understanding how humans can increase the 

accuracy of DCNNs' decisions in identity verification is significant because it shows that 

humans remain a valuable tool for such tasks in applied settings.  

We investigated multiple Human+DCNN scenarios to provide a clearer picture of the 

mechanisms behind their fusion and strategies in which they can provoke improvements in 

facial identification decisions. Such an extensive investigation demonstrates potential 

solutions for using humans to improve DCNNs' decisions performing facial identification 

decisions. We found that combining decisions made by humans with DCNNs of similar 

performance caused significant improvements in the overall quality of the face 

identification decisions. In addition, we found even further improvements when combining 

the responses of humans who somewhat disagree with their DCNN pair. Our results expand 

previous studies investigating fusion effects in humans+DCNNs because it gives a practical 

guide for when teaming will be beneficial in applied settings.  

 

Information sampling provides routes for expertise in face-processing tasks 

Information sampling explains individual differences in identity processing ability. So 

far, this thesis suggests that humans of superior performance can usefully contribute to the 

decision-making of DCNNs. It is well documented in the literature that human ability in 

identity processing is responsible for large individual differences (e.g. Dunn et al., 2020, 

Burton et al., 2010, Russell et al., 2009). Some studies suggest that a more holistic 

perception of facial features results in improved face processing abilities (e.g. Bobak et al., 

2017; Bennetts, Mole & Bate, 2017). However, such a result is unclear because: (i) in their 

studies, participants passively viewed images of faces instead of specifically being asked to 

code identity information; (ii) studies found that measures of holistic measures do not 

necessarily correlate with face processing abilities (e.g. Rezlescu et al., 2017).  
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To provide a clearer picture regarding individual differences in face identity 

processing, we developed innovative methodological approaches to directly investigate the 

mechanisms of attention of humans while processing face-matching and recognition tasks. 

We developed an approach to analyse and visualise the rich data from eye-tracking devices 

while our participants engaged in the different face identity verification tasks. As predicted, 

our approach illustrated significant information sampling differences between - and within – 

humans performing the stimuli, revealing critical information sampling characteristics that 

explained individual differences in identity processing.  

Overall, our results point out that improved face processing abilities relate to more 

exploration of facial features, directly contradicting the global 'holistic' idea of face 

processing in superior performance. In addition, to further test if holistic processing relates 

to face processing abilities, our gaze-contingent condition revealed that obstructing foveal 

information reduced overall performance. Still, those with superior performance 

maintained their status throughout all aperture conditions. Ultimately, our results suggest 

that improved performance is related to the improved exploration of facial features, 

showing a potential higher motivation and efficiency in super recognisers to use featural 

information to achieve superior identity recognition performance throughout all stimuli 

aperture conditions. 

 

Human-guided information sampling benefits DCNNs for facial identity information 

 Throughout our experimental designs, we found that superior facial identity 

recognition performance relates to the improved exploration of facial features. Such a result 

suggests that super-recognisers employ multiple high-quality sources of featural 

information to potentially create a more robust representation of identities for subsequent 

recognition. However, to our knowledge, no other studies compared the quality of face 

identity information sampling between humans of varied facial identity recognition abilities. 

And so, it was unclear if super-recognisers' information sampling would reflect more 

identity information than typical viewers. To investigate this, we developed a 

methodological approach using mathematically designed retinal filters (Targino Da Costa & 

Do, 2014) to create static face images representing the human participants' perceptual 
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sampling when coding for facial identity information. DCNNs then compared such images 

with others from the same or different identities to measure the quality of identity 

information sampled by human participants. Notably, as a reminder, we also created a 

condition containing randomised fixation positions for a more solid investigation. 

In general, our human/random facial information sampling investigation revealed 

that DCNNs could more easily detect identity information when using human-guided 

sampling. When processing a facial verification procedure using human-guided attention, 

DCNNs showed a significant performance improvement compared to the randomised 

condition. This result then indicates that the information humans judge to be critical for 

identity verification potentially corresponds to the same information DCNNs consider critical 

for coding identity information. And so, despite our previous results showing different 

strategies between humans and DCNNs when comparing images of different image 

qualities, there is an observable overlap in the featural information in high-quality images 

that they use for processing identity information (see Lai et al. 2020; Rong et al. 2021; Yang 

et al. 2022). In addition, our results show that the information sampled by super-recognisers 

produced significantly higher performance compared to typical viewers' and randomised 

information. This improvement in the performance of DCNNs using super-recognisers' 

perceptual sampling shows that higher facial identity verification ability relates to exploring 

not only a significantly higher number of facial features but also qualitative information 

resulting in a more robust representation of identities for subsequent verification.  

 

Social attention in the wild conflicts with screen-based research 

 As shown throughout this thesis, studies of adults' attention to people in natural 

settings are extremely rare, and almost all knowledge on this topic comes from tightly 

controlled laboratory-based research. This laboratory-based research shows, for example, 

that faces capture attention and are processed preferentially relative to non-face objects 

and bodies (e.g. Bindemann et al., 2005), supporting the view that face processing is 

automatic (Palermo & Rhodes, 2007). However, it was not known whether this would hold 

for ambient environments populated with many competing stimuli – each with its unique 

affordance (Gibson, 1979) – and where the 'social stimuli' are real people instead of 

manipulated photographs on computer screens. To test this, we developed a unique 
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method to investigate social attention in 'the wild' by studying the eye movements of 

participants wearing eye-tracking devices which monitor their fixations as they navigate 

real-world ambient environments. 

In this thesis, we introduced a novel method that automates fine-grained 

investigations of naturalistic social attention for the first time. Our 'dynamic regions of 

interest' (dROI) approach automatically measures social attention in ambient environments 

frame-by-frame. We achieved this by co-registering eye-movement data from a wearable 

eye-tracker with body and face landmark positions extracted from video data using a state-

of-the-art computer vision algorithm (Cao et al., 2019). This encodes eye fixations directed 

towards people and maps fixations to landmarks on the face and body. Our approach 

overcame many significant limitations of prior work on social attention in natural settings, 

saving substantial research effort by avoiding the need for manual coding of fixations to pre-

specified regions. In addition to removing the burden of manual coding, our approach also 

increased temporal resolution and the volume of data, enabling new analytic approaches 

which open up new avenues to study person perception 'in the wild'. 

Our methodological approach enabled us to ask some preliminary questions inspired 

by screen-based studies of social attention in natural settings. We examined the extent to 

which faces automatically captured attention as participants navigated a busy public space. 

Contrary to conclusions based on lab-based experiments (e.g. Bobak et al., 2017; Rösler, 

End, & Gamer, 2017; Gregory, Bolderston, & Antolin, 2019), we found no evidence that 

faces captured attention 'in the wild'. Curiously, we show that fixations to faces – when 

faces were visible in the participant's field of view – made up a small proportion of total 

fixations. Moreover, when comparing attention capture by faces - and bodies - that were 

fully visible and those that were only partially viewable, we found that this increased 

fixations to both faces and bodies equivalently. This evidence does not support the idea that 

people automatically orient their attention to faces, at least for unfamiliar faces in a public 

space. Still, our study also points to two additional directions for future research made 

possible by our methodological dROI approach. First, it reveals new possibilities for 

understanding individual differences in social attention and face-processing ability. 

Individual differences in attention to people were stable across different sections of the 

navigation route, consistent with screen-based eye-tracking studies that show -for example- 

a robust hereditary influence on patterns of attention to social scenes (e.g. Constantino et 
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al., 2017; Kennedy et al., 2017). Although the sample size in our study was not large enough 

to make strong inferences about whether these individual differences transfer to 

naturalistic settings, they still provided some assurance of measurement reliability at the 

individual level. 

In contrast, fixation patterns when engaging in a face-to-face interaction predicted 

face recognition ability. Interestingly, despite this task being a real-world interaction, our 

results corroborate with screen-based task studies' results. That is, we found that 

participants prioritised engaging in observing faces significantly more than other regions of 

the scene, and -most interestingly- their fixation patterns attending to facial regions 

predicted individual differences in face-processing ability. This result is interesting because it 

reveals potential routes for developing new theories regarding the underpinning of superior 

face recognition. For example, a larger proportion of fixations observing the eye region 

during the conversation predicted face recognition performance. It is known that the eyes 

convey cues for mental state. And so, perhaps individuals with higher facial recognition 

performance also seek out cues to the mental state of the subject. These are potential 

routes that future studies could address to robust our understanding regarding superior 

face processing abilities and individual differences reflected by fixation patterns in the wild. 

 

Practical Implications 

 Unfamiliar face identity verification is a critical task performed by applied security 

settings by humans and facial recognition technology. When performed by humans, this 

thesis shows large individual differences and proportions of errors in the decisions regarding 

identities depicted in images. This is consistent with previous work that shows a similar 

outcome in professionals who perform the task daily (see also White, Towler, & Kemp, 

2021). Thus, an interesting approach for overcoming humans' error-prone unfamiliar facial 

identification ability is to automatise decisions by using facial recognition technology. The 

multi-layer architecture of such technology, such as the ones found in Deep Convolutional 

Neural Networks (DCNNs), means that artificial systems can now achieve accurate face 

identification across a wide range of image variations. However, as shown, such technology 

is also error-prone when performing unfamiliar identity verification. In particular, prior 

research has identified ‘blindspots’ in the algorithm training, causing, for example, poorer 
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performance for certain demographics compared to others (e.g., ethnicity: see Cavazos, 

Phillips, Castillo, & O’Toole, 2020).  

In my thesis, I also found that algorithms have a ‘blindspot’ when matching images 

that vary in image quality (see also Vera-Rodriguez et al., 2019). Similarly to the differential 

accuracy found for different demographic groups (Grother et al., 2019), this is likely to be 

due to the composition of image sets used in DCNN training. Prior work has shown that 

training algorithms with blurred images can produce more robust performance when later 

matching blurred images (Vogelsang et al., 2018), and so one potential solution to this 

problem is to introduce blurred images into the algorithm training. This would be a 

worthwhile investigation in future work, given the practical importance of this type of low-

to-high quality image matching in applied settings.  

Another solution that this thesis has shown to be promising is to combine face 

identity decisions made by humans and DCNNs. Prior work has investigated the benefit of 

'fusing' independent judgments made by humans and DCNNs. Such studies found potential 

improvements – even reaching ceiling levels - in facial identification performance (e.g. 

Phillips et al., 2018; Towler et al., under review). In this thesis, we investigated the 

outcomes of such fusion further and found a model that explains the fusion effect of 

humans and DCNNs performing independent decisions regarding identity verification. Our 

results illustrate profound implications in applied settings because it provides guidelines 

regarding how and when to team humans and DCNNs to significantly reduce errors in facial 

identity verification. Given how critical the task is, we show that combining the decisions of 

humans and state-of-the-art DCNNs could potentially increase the quality of identity 

verification decisions compared to humans or DCNNs alone. 

 The humans and DCNN components of a team must demonstrate similar unfamiliar 

identity processing abilities if we want the team to outperform either component alone. We 

investigated the effects of combining the decisions of humans with similar accuracy to 

DCNNs. We found substantial improvements in facial verification performance when both 

have similar accuracy - measured by the same test. Throughout this thesis, we showed 

pieces of evidence suggesting that it is necessary to select individuals based on face 

identification ability (i.e. super-recognisers) as potential solutions for performing unfamiliar 

facial identification procedures (e.g. Davis, Forrest, Treml, & Jansari, 2018; Davis, Lander, 

Evans, & Jansari, 2016; Robertson, Noyes, Dowsett, Jenkins,& Burton, 2016). However, our 
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results provoke profound implications because it provides a new benchmark to determine 

the baselines of human performance to work in applied settings alongside DCNNs. For 

example, instead of selecting individuals based on a threshold in the distribution of human 

performance on a given face processing test (e.g. the top 2% performers on the CFMT+: 

Russell et al., 2009), our results argue that the DCNNs' ability on the given practical test 

should be what determines the threshold for selecting humans. For example, we might 

require that humans are within 10% of the performance of the DCNN in order to start 

contributing to a teaming approach. More, it is important to address that the accuracy of 

facial recognition technology is evolving at rapid paces, and so applied settings should 

constantly check the unfamiliar face processing abilities of their staff for accurate fusion and 

decisions.  

Furthermore, researchers show that working under time pressure (Fysh & 

Bindemann, 2017), sleep restriction (Beattie, Walsh, McLaren, Biello, & White, 2016), and 

high anxiety levels (Attwood, Penton-Voak, Burton & Munafò, 2013) can significantly affect 

the outcome of human facial identification decisions. Thus, to properly work alongside a 

state-of-the-art DCNN, its human sidekick should always be at its peak performance (i.e. 

similar to DCNNs') for accurate facial verification decisions. Failure to ensure this will 

ultimately result in teams in which the human negatively impacts performance – 

contributing to errors rather than enhancing performance. 

 

Methodological Implications 

 This thesis investigated individual differences in humans processing a series of 

studies containing unfamiliar face identification. In some of our studies, eye-tracking devices 

were essential tools for achieving our research questions. However, such devices produce 

rich and complex data for analysis and visualisation. And so, our approach for analysing and 

visualising such data was due to the use of innovative paradigms using, for example, 

statistical learning (i.e. the PCA from Chapters 4 and 5) and machine learning tools (i.e. the 

dROI approach from Chapter 5). Not only, we also offer evidence that such new approaches 

would result in similar outcomes compared to the traditional methods for analysis, but with 

easier use for analysis and visualisation of results. And so, the methods developed here will 

be of great use for future research because it allows much greater realism in the 
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environments in which we test face recognition and will also allow easy replicability and 

usability for face perception moving forward. 

 

Theoretical implications 

 Attention to faces is context-dependent. Throughout this thesis, we investigated 

humans performing a series of tasks involving faces, such as face-matching and recognition 

tasks, navigating ambient environments, and engaging in face-to-face conversations. In such 

studies, our objectives were to investigate individual differences and the processes 

reflecting superior face-processing performance. Contrary to previous research suggesting 

that superior performance is reflected by the greater use of holistic facial information (e.g. 

Bobak et al., 2017), our results argue that performance in face-processing tasks relates to 

the exploration of facial features. However, a deeper investigation of such results revealed 

that each task produced a different outcome which explains superior facial processing 

performance.  

For example, on the one hand, in Chapter 4, we show that superior performance in 

face-matching tasks is explained by greater use of the eye region. On the other hand, 

superior performance in face-recognition tasks is explained by avoiding the eye region. 

Notably, these apparently contradictory results can be reconciled because the tasks are 

different. And so, our results argue that the critical role of context is at least as important as 

the intrinsic properties of faces themselves in determining facial features reflecting superior 

performance. In addition, we provide evidence that screen-based studies do not necessarily 

reflect the patterns of face processing found in the wild. Previous studies have already 

encountered that fixation patterns change when faces move (Buchan et al., 2007; Foulsham 

et al., 2010; Scott, Batten & Kuhn, 2019), speak (Buchan et al., 2008; Võ et al., 2012) and 

engage on non-verbal behaviour (Võ et al., 2012; see Hessels, 2020 for a review). Here, we 

expand our knowledge by showing that attention to faces reflecting individual differences is 

also flexible to the nature of the task. 

The flexibility in the attention of humans processing faces in divergent tasks shows a 

higher complexity for facial recognition technology to model human face processing. Given 

the incredible facial identity verification performance of facial recognition algorithms and 

their robustness across a wide range of image variations, an emerging body of research 
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suggests that DCNNs could be used as a model for comprehending the basis of face 

processing in humans (e.g. Dobs et al., 2022; Grossman et al., 2019; O'Toole et al., 2018; 

Kuzovkin et al., 2018; Ratan Murty et al., 2021; Tsantani et al., 2021). Similar to Chapter 2 of 

this thesis, these studies compare humans and DCNNs engaging in a face-processing-related 

task to infer commonalities or divergences in their responses to stimuli. However, the 

flexibility of humans in actively attending different regions of interest depending on the 

stimuli reveals that the face-processing model cannot be described as a single generalised 

model. Instead, it illustrates that the mechanisms of face processing in humans are highly 

complex and task-dependent. And so, despite DCNNs being as effective as humans – for 

example- performing identity recognition (Grother et al., 2019), our results demonstrate 

that similarities in their processes in the tasks arguably do not code for similar cognitive 

mechanisms.  

 

Conclusion 

This thesis contributes to understanding unfamiliar identity processing in humans 

and DCNNs. From this body of studies, we identified several factors resulting in expanding 

our current knowledge regarding individual differences in face-processing abilities. 

Analysing our results using innovative engineering approaches, we identified that humans 

possess a more flexible capacity for processing separable configural and featural facial 

identity information than DCNNs. Interestingly, despite being error-prone for identity 

processing, humans and DCNNs are plausible solutions to work together to perform the task 

in forensic settings. In addition, we show that individual differences in face processing can 

be explained by the information sampled when engaging in the task. However, we also 

show that the results found in the wild do not reflect patterns of results in contrived screen-

based stimuli. Ultimately, the findings of this thesis not only improve our theoretical 

understanding of the nature of face identity perception but also show that multidisciplinary 

methods can be developed - and used - in future research to explore face perception in 

humans. 
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APPENDIX A 

Method for pilot study to choose frequency bands in Chapter 2 

Figure A.1 shows how DCNN1 (see Table 1.1 of main text) could identify the 

matching C2 for each C1 image as the most similar identity in the dataset. Figure A.1 shows 

that using FFT filtering, the matching performance of the DCNN was perfect for images 

containing the information below 13 cycles/face or more. 

 

 

Figure A.1. Accuracy (% correct) of DCNN 1 finding match pairs in 29 manipulated versions of the 
database containing filtered images using high or low-pass filters on different cutoff frequencies. We 

used areas marked in red to create the stimuli. 

 

We created 29 different versions of the image set using a low-pass filter, each with a 

different cut off frequency between 2 and 30 cycles/face, and observed how accurate 

DCNN1 was for all versions. We used the FFT as an ideal low-pass filter to extract specific 

spatial frequencies from each image. 

 

Descriptive Table 

In Experiment 1, we collected data from human participants (Human) and the 

average DCNN (AverageAlgorithm) in two Experiments (Same-Resolution and Different-

Resolution) using two different Filters (FFT and Gaussian) and two other metrics of analysis, 

Yoked and Non-Yoked. Table A.1 shows the data we collected during the experiment. 
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

N  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  168  

            Yoked  168  

         Same-
Resolution 

 Non-Yoked  162  

            Yoked  162  

      Human  Different-
Resolution 

 Non-Yoked  168  

            Yoked  168  

         Same-
Resolution 

 Non-Yoked  162  

            Yoked  162  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  100  

            Yoked  100  

         Same-
Resolution 

 Non-Yoked  100  

            Yoked  100  

      Human  Different-
Resolution 

 Non-Yoked  100  

            Yoked  100  

         Same-
Resolution 

 Non-Yoked  100  

            Yoked  100  

Missing  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0  

            Yoked  0  

         Same-
Resolution 

 Non-Yoked  0  

            Yoked  0  

      Human  Different-
Resolution 

 Non-Yoked  0  

            Yoked  0  

         Same-
Resolution 

 Non-Yoked  0  

            Yoked  0  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0  

            Yoked  0  

         Same-
Resolution 

 Non-Yoked  0  
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

            Yoked  0  

      Human  Different-
Resolution 

 Non-Yoked  0  

            Yoked  0  

         Same-
Resolution 

 Non-Yoked  0  

            Yoked  0  

Mean  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.591  

            Yoked  0.660  

         Same-
Resolution 

 Non-Yoked  0.758  

            Yoked  0.826  

      Human  Different-
Resolution 

 Non-Yoked  0.747  

            Yoked  0.717  

         Same-
Resolution 

 Non-Yoked  0.812  

            Yoked  0.780  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.687  

            Yoked  0.736  

         Same-
Resolution 

 Non-Yoked  0.783  

            Yoked  0.848  

      Human  Different-
Resolution 

 Non-Yoked  0.879  

            Yoked  0.863  

         Same-
Resolution 

 Non-Yoked  0.888  

            Yoked  0.881  

Median  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.594  

            Yoked  0.663  

         Same-
Resolution 

 Non-Yoked  0.764  

            Yoked  0.826  

      Human  Different-
Resolution 

 Non-Yoked  0.759  

            Yoked  0.725  
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

         Same-
Resolution 

 Non-Yoked  0.832  

            Yoked  0.791  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.688  

            Yoked  0.734  

         Same-
Resolution 

 Non-Yoked  0.787  

            Yoked  0.851  

      Human  Different-
Resolution 

 Non-Yoked  0.893  

            Yoked  0.881  

         Same-
Resolution 

 Non-Yoked  0.908  

            Yoked  0.900  

Standard 
deviation 

 FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.0588  

            Yoked  0.0347  

         Same-
Resolution 

 Non-Yoked  0.0559  

            Yoked  0.0322  

      Human  Different-
Resolution 

 Non-Yoked  0.0866  

            Yoked  0.0904  

         Same-
Resolution 

 Non-Yoked  0.0870  

            Yoked  0.0916  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.0494  

            Yoked  0.0286  

         Same-
Resolution 

 Non-Yoked  0.0479  

            Yoked  0.0301  

      Human  Different-
Resolution 

 Non-Yoked  0.0751  

            Yoked  0.0835  

         Same-
Resolution 

 Non-Yoked  0.0855  

            Yoked  0.0896  

Minimum  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.434  
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

            Yoked  0.551  

         Same-
Resolution 

 Non-Yoked  0.548  

            Yoked  0.710  

      Human  Different-
Resolution 

 Non-Yoked  0.440  

            Yoked  0.451  

         Same-
Resolution 

 Non-Yoked  0.458  

            Yoked  0.462  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.579  

            Yoked  0.663  

         Same-
Resolution 

 Non-Yoked  0.636  

            Yoked  0.774  

      Human  Different-
Resolution 

 Non-Yoked  0.620  

            Yoked  0.557  

         Same-
Resolution 

 Non-Yoked  0.616  

            Yoked  0.590  

Maximum  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.728  

            Yoked  0.760  

         Same-
Resolution 

 Non-Yoked  0.871  

            Yoked  0.897  

      Human  Different-
Resolution 

 Non-Yoked  0.968  

            Yoked  0.974  

         Same-
Resolution 

 Non-Yoked  0.983  

            Yoked  0.959  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.794  

            Yoked  0.799  

         Same-
Resolution 

 Non-Yoked  0.869  

            Yoked  0.905  
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

      Human  Different-
Resolution 

 Non-Yoked  0.987  

            Yoked  0.982  

         Same-
Resolution 

 Non-Yoked  1.00  

            Yoked  1.00  

Skewness  FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  -0.0417  

            Yoked  -0.293  

         Same-
Resolution 

 Non-Yoked  -0.774  

            Yoked  -0.343  

      Human  Different-
Resolution 

 Non-Yoked  -0.257  

            Yoked  -0.236  

         Same-
Resolution 

 Non-Yoked  -1.54  

            Yoked  -1.17  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  -0.143  

            Yoked  -0.115  

         Same-
Resolution 

 Non-Yoked  -0.762  

            Yoked  -0.320  

      Human  Different-
Resolution 

 Non-Yoked  -1.18  

            Yoked  -1.26  

         Same-
Resolution 

 Non-Yoked  -1.23  

            Yoked  -1.23  

Std. error 
skewness 

 FFT  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.187  

            Yoked  0.187  

         Same-
Resolution 

 Non-Yoked  0.191  

            Yoked  0.191  

      Human  Different-
Resolution 

 Non-Yoked  0.187  

            Yoked  0.187  

         Same-
Resolution 

 Non-Yoked  0.191  
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Descriptives 

  Filter 
Human/Algorith

m 
Experiment Yoked/NonYoked AverageAUC 

            Yoked  0.191  

   Gaussian  AverageAlgorit
hm 

 Different-
Resolution 

 Non-Yoked  0.241  

            Yoked  0.241  

         Same-
Resolution 

 Non-Yoked  0.241  

            Yoked  0.241  

      Human  Different-
Resolution 

 Non-Yoked  0.241  

            Yoked  0.241  

         Same-
Resolution 

 Non-Yoked  0.241  

            Yoked  0.241  

Table A.1 – Description of data found in Experiment 1. 

 

ANOVA Table 

Table A.2 shows the FFT version three-way ANOVA to observe the impact of AUC on 

three different factors: Resolution condition (Same and Different-Resolution), Participant 

Type (human and DCNNs), and Metric (Yoked and Non-Yoked). Table A.3 shows the same 

analysis for the Gaussian version of the experiment. See Figure A.2. 
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ANOVA – AUC -  FFT VERSION 

  
Sum of 
Squares 

df 
Mean 

Square 
F p η²p 

Resolution  4.384  1  4.38364  867.01747  < .001  0.398  

ParticipantType  1.013  1  1.01321  200.39828  < .001  0.133  

Metric  0.115  1  0.11492  22.72985  < .001  0.017  

Resolution ✻ 
ParticipantType 

 0.859  1  0.85879  169.85486  < .001  0.115  

Resolution ✻ Metric  1.37e-4  1  1.37e-4  0.02711  0.869  0.000  

ParticipantType ✻ Metric  0.812  1  0.81152  160.50702  < .001  0.109  

Resolution ✻ 

ParticipantType ✻ Metric 
 5.04e-5  1  5.04e-5  0.00997  0.920  0.000  

Residuals  6.633  1312  0.00506           

Table A.2. FFT version three-way ANOVA used in Experiment 1. This analysis is to observe the impact 
of AUC on three different factors: Experimental condition (Same and Different-Resolution), 

Participant type (Human and DCNNs), and the metric (Yoked and Non-Yoked). 

ANOVA – AUC – Gaussian VERSION 

  
Sum of 
Squares 

df 
Mean 

Square 
F p η²p 

Resolution  0.69008  1  0.69008  160.472  < .001  0.168  

ParticipantType  2.61591  1  2.61591  608.311  < .001  0.434  

Metric  0.10446  1  0.10446  24.291  < .001  0.030  

Resolution ✻ 
ParticipantType 

 0.40688  1  0.40688  94.616  < .001  0.107  

Resolution ✻ Metric  0.00852  1  0.00852  1.981  0.160  0.002  

ParticipantType ✻ 
Metric 

 0.23159  1  0.23159  53.855  < .001  0.064  

Resolution ✻ 

ParticipantType ✻ 
Metric 

 8.21e-4  1  8.21e-4  0.191  0.662  0.000  

Residuals  3.40583  792  0.00430           

Table A.3. Gaussian version three-way ANOVA used in Experiment 1. This analysis is to observe 
the impact of AUC on three different factors: Experimental condition (Same and Different-
Resolution), Participant type (Human and DCNNs), and the metric (Yoked and Non-Yoked). 
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Figure A.2. Graph showing the Resolution condition between Participant Type considering the two 

different Metrics to compute AUC. This graph shows the FFT and Gaussian versions of the stimuli. The 
error bars show the 95% confidence interval. 

 

To exclude the effect of metrics, we averaged the Yoked and Non-Yoked AUC results 

within participants to evaluate the impact of experimental conditions (Same and Different-

Resolution) between participants in each filtering condition. See Figure 2.9. For that, we 

performed a two-way ANOVA to observe the effect of accuracy (average AUC) between two 

factors: Experimental condition (Same and Different-Resolution) and Participant type 

(Human and DCNNs). Table A.4 and A.5 show the ANOVA table for the FFT and Gaussian 

filter versions of Experiment 1. See Figure A.3. 
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ANOVA - AUC_AVERAGE – FFT VERSION 

  
Sum of 
Squares 

df 
Mean 

Square 
F p η²p 

Resolution  2.192  1  2.19182  773  < .001  0.541  

ParticipantType  0.507  1  0.50661  179  < .001  0.214  

Resolution ✻ 
ParticipantType 

 0.429  1  0.42939  151  < .001  0.188  

Residuals  1.860  656  0.00283           

Table A.4. ANOVA table showing the effect of accuracy (average AUC) between two factors: 
Experimental condition (Same and Different-Resolution) and Participant type (Human and DCNNs) in 

the FFT version of Experiment 1. 

ANOVA - AUC_AVERAGE – Gaussian VERSION 

  Sum of Squares df Mean Square F p 

Resolution  0.345  1  0.34504  155.2  < .001  

ParticipantType  1.308  1  1.30796  588.2  < .001  

Resolution ✻ ParticipantType  0.203  1  0.20344  91.5  < .001  

Residuals  0.881  396  0.00222        

 Table A.5. ANOVA table showing the effect of accuracy (average AUC) between two factors: 
Experimental condition (Same and Different-Resolution) and Participant type (Human and DCNNs) in 

the Gaussian version of Experiment 1. 
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Figure A.3. Graphs show the effect of Resolution conditions for the FTT and Gaussian study versions. 
Here, we calculated AUC as the average result between the Non-Yoked and Yoked metrics. 

 

Similarity Scores Distributions 

We evaluated the similarity scores between humans and DCNNs performing the 

Same and Different-Resolution conditions using two filters, FFT and Gaussian (see the main 

manuscript). Figure A.4 shows the evaluation of humans and DCNN1 performing the FFT 

version of the experiment, while Figure A.5 shows humans and DCNN1 performing the 

Gaussian version of the experiment. We did not show the results containing the other 

DCNNs because they show similar results. 
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Figure A.4. Distribution of Similarity-Scores across all participants and DCNN 1 in the two 
experimental conditions for the FFT version. The distributions show match and non-match decisions 

for all spatial frequencies and the Yoked and Non-Yoked metrics results. On the left, human 
participants tend to respond 0.5 - or 'Do not know'- when trials are too filtered (e.g. 4 cycles/face) in 
both experimental conditions. In contrast, we do not observe the same effect for DCNNs (on the right 

side of the panel). 
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Figure A.5. Distribution of Similarity-Scores across all participants and DCNN 1 in the two 
experimental conditions for the Gaussian version. The distributions show match and non-match 

decisions for all spatial frequencies and the Yoked and Non-Yoked metrics results. On the left, human 
participants tend to respond 0.5 - or 'Do not know'- when trials are too filtered (e.g. 4 cycles/face) in 
both experimental conditions. In contrast, we do not observe the same effect for DCNNs (on the right 

side of the panel). 

 

t-SNE visualisation 

Figures A.6 and A.7 show the t-SNE visualisation for DCNN1 (see Table 1.1 in the 

main manuscript) for the manipulations using the FFT filtering and Gaussian filter, 

respectively, using all database images for Experiment 1.  
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Figure A.6. Visualisation of t-SNE on DCNN 1 top-layer (2048 features) using every face present in the 
database used to create the stimuli (592 faces, 296 identities) in each of the six filtering conditions (4, 

6, 8, 10, 12 cycles/face, and Original) using FFT filtering. It is possible to observe that black 
dots(Original) are – mostly - detached from the rest, suggesting the loss of identity information due 
to filtering. Same-Resolution condition compared distances between some dots of the same colour, 

while Different-Resolution compared black dots with any other colour. 
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Figure A.7. Visualisation of t-SNE on DCNN 1 top-layer (2048 features) using every face present in the 
database used to create the stimuli (592 faces, 296 identities) in each of the six filtering conditions (4, 
6, 8, 10, 12 cycles/face, and Original) using Gaussian Blur filtering. It is possible to observe that black 
dots (Original) remained attached to the rest, and only some highly filtered images (i.e. 4 cycles/face) 

lost identity information due to filtering. Same-Resolution condition compared distances between 
some dots of the same colour, while Different-Resolution compared black dots with any other colour. 
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APPENDIX B 

Results for Gaussian Blur 

 We replicated the analysis of the main text for the Gaussian version of Experiment 2 

(see main text). Figure B.1 shows the correlation between human accuracy and the fusion 

improvements provoked in the average DCNN performance in the two stimuli conditions. 

We divided Figure B.1 into two panels. The top panel shows how the decisions made by 

humans and the average DCNN interacted to boost performance in the Same-Resolution 

condition in the two fusion methods (left: Direct fusion; right: Quality Sensitive fusion). In 

this panel, both the Direct [rho(98)= 0.55, p< 0.001] and Quality Sensitive [rho(98)= 0.72, p< 

0.001] fusion methods showed significant correlations with human performance. The 

bottom panel replicates the previous analysis but in the Different-Resolution condition, 

which shows similar correlations compared to the Same-Resolution. In this panel, both the 

Direct [rho(98)= 0.56, p< 0.001] and Quality Sensitive [rho(98)= 0.69, p< 0.001] fusion 

methods showed significant correlations with human performance. We found similar results 

for all DCNNs in this study.  
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Figure B.1. Correlation between human performance (AUC) with the boost in performance in the 
average DCNN using the two fusion metrics. At the top panel, we show the results for the Same-

Resolution, and at the bottom, the Different-Resolution condition. We calculate the boost in 
performance by subtracting the resulting Fusion AUC from the DCNN AUC. 

 

We aim to understand how close human performance should be compared to 

DCNNs’ to improve fusion decisions. Therefore, in Figure B.2, we correlate the differences in 

AUC found between humans and the average DCNN against the boost in performance 

caused by the fusion. We divided Figure B.2 into two panels. The top panel shows how the 

accuracy difference between humans and the average DCNN interacted to boost 

performance in the Same-Resolution condition in the two fusion methods (left: Direct 

fusion; right: Quality Sensitive fusion). In this panel, both the Direct [rho(98)= 0.92, p< 
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0.001] and Quality Sensitive [rho(98)= 0.88, p< 0.001] fusion methods showed significant 

correlations with human performance. The bottom panel replicates the previous analysis 

but in the Different-Resolution condition, which shows similar correlations compared to the 

Same-Resolution. In this panel, both the Direct [rho(167)= 0.96, p< 0.001] and Quality 

Sensitive [rho(98)= 0.95, p< 0.001] fusion methods showed significant correlations with 

human and DCNN performance. We found similar results for all DCNNs in this study. 

Therefore, this highly significant analysis illustrates a linear relationship between the 

accuracy of humans and DCNNs. Moreover, Figure B.2 shows that fusion results are better 

when the accuracy of humans and algorithms are -at least – similar. 

This highly significant correlation shown in Figure B.2 extends our previous finding 

that high-performance humans might boost DCNN decisions. Interestingly, the linear trend-

line that best fitted our fusion analyses in Figure B.2 predicts that the humans’ entry 

accuracy to start increasing the DCNN’s performance laid around -8% of the DCNN 

performance. This starting position was, considering all DCNNs, -9.5% for the Same-

Resolution and -7% for the Different-Resolution conditions. See Figure B.3 for the predicted 

position (i.e. AUC= 0) for all DCNNs.  
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Figure B.2. Correlation between the difference between human and average DCNN performance 
(AUC) with the boost in performance in the two fusion metrics. At the top panel, we show the results 

for the Same-Resolution, and at the bottom, the Different-Resolution condition. We calculate the 
boost in performance by subtracting the resulting Fusion AUC from the DCNN AUC. 
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Figure B.3. Graphs showing the predicted accuracy that humans should show to benefit the fusion 

concerning the DCNNs used in this study. 

 

Figure B.4 shows that the fusion of humans that disagree with DCNNs help to 

improve overall accuracy. We divided Figure B.4 into two panels. The top panel represents 

the findings for the Quality Sensitive fusion in the Same-Resolution, and the bottom panel, 

the Different-Resolution condition. We replicated the Quality Sensitive fusion correlation 

analysis from Figure B.2 on the left for each panel in Figure B.4. However, we used the linear 

trending regression to predict the accuracy position where humans start to benefit the 

fusion. This regression allowed us to determine the exact position where the model predicts 

the humans that would improve the fusion, dividing the data into expected positive (green 
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circles) and negative (red ‘x') boosts in performance. In addition, we calculated the residuals 

(i.e. the vertical distance) between each data coordinate against the predicted model. As 

aforementioned, we expect that higher agreement would lower the fusion effect. That is, a 

higher agreement should show lower residual values. The graphs on the right side of Figure 

B.4 show correlations between the agreement of humans and the average DCNN against the 

found residuals in the Quality Sensitive fusion. We found that the overall correlation was 

negative and significant for both the Same-Resolution [rho(98)= -0.43, p< 0.001] and 

Different Resolution [rho(98)= -0.60, p< 0.001] conditions. We later separated this analysis 

into humans who showed positive and negative boosts predicted by the linear model. This 

analysis showed that humans that positively boosted DCNNs showed larger fusion effects 

for the Same-Resolution [rho(98)= -0.71, p< 0.001] and Different-Resolution [rho(98)= -0.77, 

p< 0.001] conditions in comparison with humans that negatively boosted the DCNN in the 

Same-Resolution [rho(98)= -0.32, p< 0.001] and Different-Resolution [rho(98)= -0.61, p< 

0.001]. Therefore, this result suggests that humans who show higher accuracy and rank 

their decisions differently than DCNNs will benefit the fusion even more. 
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Figure B.4. The graphs show that humans who disagree with DCNNs' decisions improve fusion 
effects. At the top panel, we show the results for the Same-Resolution, and at the bottom, the 

Different-Resolution condition. On the left, the graphs show the correlation between human and 
average DCNN performance (AUC) with the boost in performance in the Quality Sensitive fusion 

metrics. On the right, we show the correlation between the residuals found in the graphs on the left 
with the agreement (Spearman's rho) between humans and DCNNs. 

 

 Figure B.5 illustrates the accuracy of the Direct fusion compared to humans and 

DCNNs, and it shows that the fusion effect is related to human accuracy. We divided Figure 

B.5 into two panels, where the top panel shows the results for the Same-Resolution and the 

bottom for the Different-Resolution conditions. Each panel shows the fusion effect of 

human participants and DCNNs in three different groups ranked by human performance: 

the top 50, all participants, and the bottom 50. Figure B.5 shows that fusing humans with 

DCNNs significantly improves - or decreases - DCNN's performance. Notably, the accuracy of 

the human participating in this fusion determines the outcome of this fusion. Figure B.6 

shows similar results for the Quality Sensitive fusion. However, because we manipulated 

similarity scores differently in this fusion, DCNNs showed improved accuracy compared to 

the Direct fusion. 
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Figure B.5. Graphs showing the accuracy of humans, DCNNs, and the Direct fusion. At the top, we 
show the results for the top 50, all, and bottom 50 participants ranked by human accuracy in the 
Same-Resolution condition. At the bottom, we replicate the results for the Different-Resolution 

condition. 

 



234 

 

 

 
Figure B.6. Graphs showing the accuracy of humans, DCNNs, and the Quality Sensitive fusion. At the 
top, we show the results for the top 50, all, and bottom 50 participants ranked by human accuracy in 

the Same-Resolution condition. At the bottom, we replicate the results for the Different-Resolution 
condition. 
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APPENDIX C 

Experiment 2 - Results for trial-level data 

 We performed a PCA on the trial-level heatmap data. In this analysis, the average 

heatmap receives a loading score of zero for each PC, and a zero-mean normal distribution 

represents participants’ loading scores for each trial. Therefore, for every PC, some trials 

received a negative loading score (i.e. to the left side of the average), and some received a 

positive loading score (i.e. to the right side of the average). We show the visual 

reconstruction of the first five Principal Components (PCs) and how manipulating loading 

scores within PCs visually interacted with the average fixation heatmap in Figure C.1.  

 

 
Figure C.1. Interaction of the average heatmap with the first five principal components. This figure 

shows PCs obtained using the trial-level heatmap data and their corresponding explained variances. 
In the PCA, the average heatmap receives a loading score of zero for each PC, and a zero-mean 

normal distribution represents participants’ loading scores. Therefore, some trials received a negative 
loading score (i.e. to the left side of the average). And some received a positive loading score (i.e. to 

the right side of the average). 

 
 

Figure C.1 visually described the five first PCs for the trial-level heatmap data, 

representing semantically explainable shifts in fixation patterns similar to those found in the 

main manuscript. So, to support the PC investigation in Figure C.1, we performed a 



236 

 

correlational study of PC loading scores with ROI fixations. See Table C.1. For correlations of 

PC loading scores and ROI fixations against face recognition ability, see Table C.2.  

 

 

Correlation Matrix - Principal Components and ROIs - Trial-level data 

    Left eyes Right eyes 
Between 

eyes 
Noses Mouths 

Other 
features 

PC1 
Spearman's 
rho 

-0.34 *** 0.009   -0.29 *** 0.691 *** 0.486 *** -0.17 *** 

 p-value < .001   0.702   < .001   < .001   < .001   < .001   

PC2 
Spearman's 
rho 

0.536 *** -0.55 *** 0.025   0.288 *** 0.15 *** -0.1 *** 

 p-value < .001   < .001   0.301   < .001   < .001   < .001   

PC3 
Spearman's 
rho 

0.347 *** 0.537 *** 0.717 *** 0.102 *** -0.18 *** -0.42 *** 

 p-value < .001   < .001   < .001   < .001   < .001   < .001   

PC4 
Spearman's 
rho 

-0.08 *** 0.144 *** -0.17 *** -0.21 *** 0.52 *** 0.246 *** 

 p-value < .001   < .001   < .001   < .001   < .001   < .001   

PC5 
Spearman's 
rho 

0.063 ** 0.089 *** -0.04   -0.15 *** -0.02   0.092 *** 

  p-value 0.008   < .001   0.139   < .001   0.507   < .001   

Note. * p < .05, ** p < .01, *** p < .001 

 
Table 4.1. Correlational analysis of Principal Component loading scores with fixations in ROI. 
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Correlation Matrix   
PCs vs GFMT Score 

 

 

Correlation Matrix   
ROIs vs GFMT Score 

    GFMT Score 
 

 

    GFMT Score 

PC1 
Spearman's 
rho 

0.049 * 
 

 
Left eyes 

Spearman's 
rho 

-0.014  

 p-value 0.041    
 p-value 0.567  

PC2 
Spearman's 
rho 

-0.159 *** 
 

 
Right eyes 

Spearman's 
rho 

0.317 *** 

 p-value < .001    
 p-value < .001  

PC3 
Spearman's 
rho 

0.219 *** 
 

 

Between 
eyes 

Spearman's 
rho 

0.089 *** 

 p-value < .001    
 p-value < .001  

PC4 
Spearman's 
rho 

0.268 *** 
 

 
Noses 

Spearman's 
rho 

-0.076 ** 

 p-value < .001    
 p-value 0.002  

PC5 
Spearman's 
rho 

0.056 * 
 

 
Mouths 

Spearman's 
rho 

0.107 *** 

  p-value 0.019     
 p-value < .001  

     

 

Other 
features 

Spearman's 
rho 

0.034  

Note. * p < .05, ** p < .01, *** p < .001     p-value 0.159   

 
Table C.2. Tables showing how Principal Components (PCs) and fixations on ROIs correlated with 
face-matching ability measured by the stimuli (GFMT: Burton et al., 2010). We show Spearman’s 
correlation between the five first PCs against GFMT score on the left table. And show Spearman’s 

correlation between fixations in ROIs against GFMT score on the right table. 

 
 

The MLDA assigned participants with MLDA Scores within its resulting eigenvector. 

The t-test [t(1757)= 36.22, p< 0.001, Cohen’s d= 2.06] shows that MLDA scores significantly 

separated the two groups of participants. We show the MLDA eigenvector at the top panel 

of Figure C.2 as a heatmap image. We could not subjectively interpret this heatmap image. 
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Figure C.2. MLDA eigenvector and the correlation of MLDA scores with face-matching performance. 

At the top, we illustrate the MLDA eigenvector - as a heatmap image. The MLDA eigenvector 
describes what best differentiates the fixation patterns between two categories of participants. At 

the bottom, we show the MLDA Score distribution amongst participants, the average score for each 
group (vertical dashed lines), and the correlation between MLDA scores against face-matching 

ability. 
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To further investigate the MLDA scores distribution, we performed a correlational 

analysis of participants’ MLDA scores against the five first PC loading scores and ROI 

fixations. See Table C.3.  

 

Correlation Matrix  Correlation Matrix 

    
MLDA 
Score  

    MLDA Score 

PC1 
Spearman's 
rho 

0.233 *** 
 

Left 
eyes 

Spearman's 
rho 

-0.05 * 

  p-value < .001    
 p-value 0.037   

PC2 
Spearman's 
rho 

-0.33 *** 
 

Right 
eyes 

Spearman's 
rho 

0.593 *** 

  p-value < .001    
 p-value < .001   

PC3 
Spearman's 
rho 

0.479 *** 
 

Between 
eyes 

Spearman's 
rho 

0.294 *** 

  p-value < .001    
 p-value < .001   

PC4 
Spearman's 
rho 

0.117 *** 
 

Noses 
Spearman's 
rho 

-0.014  

  p-value < .001    
 p-value 0.55   

PC5 
Spearman's 
rho 

-0  
 

Mouths 
Spearman's 
rho 

0.141 *** 

  p-value 0.881    
 p-value < .001   

    

 

Other 
features 

Spearman's 
rho 

-0.271 *** 

       p-value < .001   

Note. * p < .05, ** p < .01, *** p < .001 

     
Table C.3. Tables show how Principal Components (PCs) and fixations on ROIs correlated with MLDA 
Score. We show Spearman’s correlation between the five first PCs against MLDA Scores on the left 

table and fixations in ROIs against MLDA scores on the right table. 

 

The trial-level data allows us to investigate the fixation pattern’s stability of 

participants processing the stimuli. That is, we could use the PCA – or MLDA - to explain the 

different fixation patterns within participants. Figure C.3 shows the dispersion of PC1 

loading and MLDA scores across participants. Interestingly, visual inspection of Figure C.3 

shows substantial inter-trial variability. This variability could explain that participants do not 

possess a single fixation pattern strategy to process face-matching trials. We found a similar 

pattern of results for the remaining PCs. 
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Figure C.3. Intra-individual variation in loading scores across GFMT trials for Principal 
Component 1 (left) and MLDA scores (right). Although only PC1 is shown here, variation is similar in 
magnitude for all PCs.  The red bars stand for participants in the Average performance group. The 

green bars stand for participants in the Enhanced performance group. Participants’ data are ordered 
from top to bottom based on the mean loading scores of each group, but show extremely large intra-

individual variation in all participants.  
 

 

 

We investigated whether the amount of exploration participants engaged correlated 

with performance. For that, we calculated the Gini coefficient (Lorenz, 1905) for each trial-

level heatmap and correlated these coefficients with face processing ability, PCs, MLDA, and 

time elapsed per trial. As a reminder, lower Gini coefficients represent higher exploration. 

We found that this measure of exploration significantly correlated with PCs, MLDA Scores, 

and face-matching ability. See Table C.4.  
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Correlation Matrix Gini coefficient   

    Gini coefficient 

GFMT 
Score 

Spearman's 
rho 

-0.335 *** 

 p-value < .001   

PC1 
Spearman's 
rho 

-0.199 *** 

 p-value < .001   

PC2 
Spearman's 
rho 

-0.193 *** 

 p-value < .001   

PC3 
Spearman's 
rho 

-0.201 *** 

 p-value < .001   

PC4 
Spearman's 
rho 

-0.623 *** 

 p-value < .001   

PC5 
Spearman's 
rho 

-0.131 *** 

 p-value < .001   

MLDA 
Score 

Spearman's 
rho 

-0.228 *** 

 p-value < .001   

Time 
Elapsed 

Spearman's 
rho 

-0.502 *** 

 p-value <.001 
 

Note. * p < .05, ** p < .01, *** p < .001 

 
Table C.4. Correlation between trial-level Gini coefficients with GFMT Scores, Principal Component 

loading scores, MLDA Scores, and Time spent on each trial. 

 

 

 

Experiment 3A 

Aperture size determination 

We based on the work of Papinutto and colleagues (2017) to determine the aperture 

sizes we used in Experiment 3. In their work, they show a data-driven reconstruction of the 

Facespan based on the convolution of a retinal filter (Targino Da Costa & Do, 2014), 
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calculation of the SIMilarity index (Wang, Bovik, Sheikh & Simoncelli, 2004), and the pixel-

test (Cahuvin, Worsley, Schyns, Arguin & Gosselin, 2005; Random field Theory). Their 

analysis shows that a 17º Gaussian aperture corresponded to 7º (45%) of the total face 

information being available. Therefore, assuming linearity, the five apertures (5º, 10º, 15º, 

20º, and 25º) correspond to 2°,4°,6°,8°, and 10° of information available for every fixation. 

Here, we report these apertures regarding the percentage of face information available for 

each fixation, corresponding to 12%, 24%, 36%, 48%, and 60% of facial information available 

for every fixation. Natural view (NV) provided 100% of the face. See video demonstration at: 

https://osf.io/xtjzh/.   

 

PCA – Learning and Recognition phases 

We show the PCA navigation for the five first PCs in Figure C.4. In Figure C.4, we divided the 

PCA analysis into Learning and Recognition phases. Inspection of this Figure reveals that the 

first 5 PCs for each phase were similar as they visually represent similar changes in fixation 

patterns. 

 

https://osf.io/xtjzh/
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Figure C.4. PCA navigation for Learning and Recognition phases. 



244 

 

 We analysed PC loadings using a Linear Mixed Model. For this analysis, we used the 

function: Loading ~ 1 + group + phase + aperture size + group:phase + group:aperture size + 

phase:aperture seize + group:phase:aperture size + (1 | image) + (1 | participant). See 

Tables C.5 – C.9. 

 

Investigating PC1, we observed a significant interaction between phases and group 

[b = -.101, CI = [-.154, -.048], t(11511.6) = 3.72, p < .001]. This significant result shows that 

PC1 loading scores differentiate typical viewers’ fixation patterns from super recognisers’. In 

this analysis, the simple effects illustrate a larger difference between groups during face 

learning [b=0.225] than recognition [b=0.125]. Interestingly, the significant two-way 

interaction between group and aperture size [b=-0.05, CI =[-0.08,-0.03], t(10436.3)=-3.79, 

p<0.001], and between group and phase [b=-0.11, CI =[-0.15,-0.05], t(11511.6)=-3.72, 

p<0.001] reveal that super recognisers differed from typical viewers in the sampled 

information described by PC1 across aperture size and phase. However, the not significant 

three-way interaction of group, phase and aperture condition [b=-0.01, CI =[-0.07, 0.04], 

t(11516.6)= -0.46, p= 0.642] reveal that these differences in the information sampled 

between groups remained consistent in all aperture conditions and phases. See Figure 

4.10B. Visual inspection of Figure 4.10B reveals a tendency of typical viewers to show a 

more negative loading score compared to super recognisers. According to our subjective 

interpretation of PC1, a negative loading score relates to preferences to observe the eye 

region more than other facial parts. Therefore, our analysis shows that typical viewers 

tended to observe the eye region to memorise faces more than super-recognisers across 

aperture conditions. In contrast, super-recognisers preferred to investigate the central 

features of the face, not showing too much importance to the eye region. However, we also 

found a significant main effect of aperture size [b = 0.07, CI = [0.05, 0.08], t(2808.8) = 7.97, p 

< .001], showing that for smaller aperture sizes, both typical viewers and super-recognisers 

approached the eye region (i.e. a more negative PC1 loading score). 
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Linear mixed model results for PC1 loading  

  
95% Confidence 

Interval 
  

Fixed Effects  Estimate SE Lower Upper df t p 

(Intercept) -0.00879 0.09342 -0.1919 0.1743 59.6 -0.0941 0.925 

Group 0.17504 0.18569 -0.1889 0.539 58.1 0.9427 0.35 

Phase 0.00521 0.01426 -0.0227 0.0332 11111.1 0.3655 0.715 

Aperture 0.07057 0.00886 0.0532 0.0879 2808.8 7.9646 < .001 

Group ✻ Phase -0.10087 0.02713 -0.154 -0.0477 11511.6 -3.7182 < .001 

Group ✻ Aperture -0.05356 0.01411 -0.0812 -0.0259 10436.3 -3.7954 < .001 

Phase ✻ Aperture 0.0773 0.01405 0.0498 0.1048 11214.9 5.5034 < .001 

Group ✻ Phase ✻ Aperture -0.0125 0.02688 -0.0652 0.0402 11516.6 -0.4649 0.642 

  

Table C.5. Linear mixed model results for PC1 loading. 

 

Linear mixed model results for PC2 loading  

  
95% Confidence 

Interval 
  

Names Estimate SE Lower Upper df t p 

(Intercept) -6.84e−4 0.0717 -0.1411 0.13977 61.2 -0.00955 0.992 

Group 0.0517 0.1415 -0.2257 0.32913 58.2 0.36541 0.716 

Phase -0.0158 0.0165 -0.0481 0.01657 11024.3 -0.956 0.339 

Aperture -0.2077 0.0101 -0.2276 -0.18782 2779.4 -20.46696 < .001 

Group ✻ Phase -0.0218 0.0314 -0.0835 0.03982 11534.1 -0.69391 0.488 

Group ✻ Aperture -0.0426 0.0163 -0.0746 -0.01059 10399 -2.60909 0.009 

Phase ✻ Aperture -0.0342 0.0163 -0.066 -0.0023 11143.8 -2.10152 0.036 

Group ✻ Phase ✻ 
Aperture 

-0.0478 0.0312 -0.1089 0.01324 11537.3 -1.535 0.125 

  

Table C.6. Linear mixed model results for PC2 loading. 
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Linear mixed model results for PC3 loading  

  
95% Confidence 

Interval 
  

Names Estimate SE Lower Upper df t p 

(Intercept) -0.00513 0.06775 -0.1379 0.1277 59.8 -0.0757 0.94 

Group 0.05951 0.13456 -0.2042 0.3232 58.2 0.4422 0.66 

Phase 0.01056 0.01679 -0.0223 0.0435 9159.6 0.629 0.529 

Aperture 0.18005 0.00966 0.1611 0.199 1143.9 18.6439 < .001 

Group ✻ Phase -0.04411 0.03243 -0.1077 0.0195 11577.6 -1.36 0.174 

Group ✻ Aperture 0.00163 0.01655 -0.0308 0.0341 8818.7 0.0984 0.922 

Phase ✻ Aperture 0.207 0.01656 0.1745 0.2395 9610.1 12.4969 < .001 

Group ✻ Phase ✻ Aperture 0.04043 0.03213 -0.0225 0.1034 11576.8 1.2582 0.208 

  

Table C.7. Linear mixed model results for PC3 loading. 

 

Linear mixed model results for PC4 loading  

  
95% Confidence 

Interval 
  

Names Estimate SE Lower Upper df t p 

(Intercept) -0.01121 0.0676 -0.14369 0.1213 62.3 -0.16583 0.869 

Group 0.27065 0.133 0.01004 0.5313 58.3 2.03549 0.046 

Phase -0.00147 0.0172 -0.03517 0.0322 11108 -0.08548 0.932 

Aperture 0.01943 0.0106 -0.00144 0.0403 2925.7 1.82513 0.068 

Group ✻ Phase 0.14967 0.0327 0.08551 0.2138 11524.1 4.57261 < .001 

Group ✻ Aperture -0.05797 0.017 -0.09131 -0.0246 10481.9 -3.40777 < .001 

Phase ✻ Aperture -7.13e−5 0.0169 -0.03327 0.0331 11211.2 -0.00421 0.997 

Group ✻ Phase ✻ 
Aperture 

0.01142 0.0324 -0.05214 0.075 11528.3 0.35215 0.725 

  

Table C.8. Linear mixed model results for PC4 loading. 
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Linear mixed model results for PC5 loading  

  
95% Confidence 

Interval 
  

Names Estimate SE Lower Upper df t p 

(Intercept) 0.00292 0.0678 -0.12989 0.1357 62.8 0.043 0.966 

Group -0.16011 0.133 -0.42076 0.1005 58.3 -1.204 0.233 

Phase 0.02561 0.0174 -0.00841 0.0596 11253.7 1.4752 0.14 

Aperture -0.05374 0.0108 -0.07499 -0.0325 3399.5 -4.9543 < .001 

Group ✻ Phase -0.12362 0.033 -0.18827 -0.059 11514 -3.7477 < .001 

Group ✻ Aperture 0.07301 0.0172 0.03933 0.1067 10693.6 4.2487 < .001 

Phase ✻ Aperture 0.04549 0.0171 0.01198 0.079 11327.6 2.661 0.008 

Group ✻ Phase ✻ Aperture -0.05022 0.0327 -0.11427 0.0138 11519.1 -1.5366 0.124 

  

Table C.9. Linear mixed model results for PC5 loading. 

 

We investigated the stability of fixation patterns measured by PC1 scores. See Figure 

C.5. To illustrate the order of magnitude of this variation, we found that the average range 

of participants’ PC1 scores (range = max - min) in the learning phase was of 3.24 standard 

deviations (Typical viewers= 3.33; Super-recognisers= 3.17; t(58)=1.13, p=.262), and in the 

recognition phase was of 3.09 standard deviations (Typical viewers= 3.13; Super-

recognisers= 3.06; t(58)=0.58, p=.563). This vast range of PC1 scores per participants 

suggests that individual trials influence participants to engage in particular fixation patterns. 

In addition, we found a great relationship between PC1 loading scores for learning and 

recognition phases. This result suggests that despite the large intra-individual differences, 

participants showed significant consistency between their fixation patterns across phases 

(r(58) =0.95, p< 0.001). Curiously, we also found stability in the standard deviation of PC1 

loading scores between phases (r(58)= 0.69, p< 0.001), raising evidence that the fixation 

pattern differences within participants also show a stable trait. 
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C.5. Trial-level variability in PC1 loading scores across participants. The boxes show the interquartile 

range, and the whiskers show the minimum and maximum of the distribution. 

 

Gaze dispersal Analysis (all apertures) 

We used linear mixed model analysis to investigate the exploration of participants 

processing the stimuli using Gini coefficients. For the model using the Gini Coefficient, we 

set participants’ intercept as a random effect and group, aperture size, and phase as fixed 

effects. Linear mixed models reveal a significant main effect of phase [b= .018, CI= [.016, 

.019], t(11304.4)= 22.52, p< 0.001] and aperture size [b= .002, CI= [.002, .004], t(3865)= 
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5.35, p< 0.001]. In addition, we found that the three-way interaction between group, phase, 

and aperture size [b= .004, CI= [.001, .007], t(11503.5)= 2.82, p= 0.005] was also significant. 

Investigating further, simple effects found lower Gini coefficients (i.e. more exploration) for 

super-recognisers at larger aperture sizes compared to typical viewers [b = -.013, t(63.6) = -

1.73, p= 0.089] and this difference decreased with smaller aperture sizes [b = -.003, t(63.7) = 

-0.41, p= 0.683]. We replicated this analysis only considering the recognition phase and 

found that the difference between groups was smaller in magnitude (b’s between -0.001 to 

-0.002). This analysis shows that super recognisers explore faces more than typical viewers. 

However, similar to the analysis in the main document, this pattern was more prominent 

during the learning phase and in larger aperture conditions. 

 
 

PCA – Learning and Recognition (Only NV) 

We show the PCA navigation for the five first PCs in Figure C.6. In Figure C.6, we divided the 

PCA analysis into Learning and Recognition phases. Inspection of this Figure reveals that the 

first 5 PCs for each phase were similar as they visually represent similar changes in fixation 

patterns. 
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Figure C.6. PCA navigation for Learning and Recognition phases. 

 

We analysed PC loadings using a Linear Mixed Model. For this analysis, we used the 

function: Loading ~ 1 + Phase + Group + Phase:Group + (1| ID). See Tables C.10 – C.14. 



251 

 

 

Table C.10. Linear mixed model results for PC1 loading. 

 

Table C.11. Linear mixed model results for PC2 loading. 

 

 

Table C.12. Linear mixed model results for PC3 loading. 

 

Table C.13. Linear mixed model results for PC4 loading. 
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Table C.14. Linear mixed model results for PC5 loading. 

 

Experiment 3B 

PCA – Learning and Recognition 

We analysed PC loadings using a Linear Mixed Model. For this analysis, we used the 

function: Loading ~ 1 + CFMTp + Phase + Aperture + Phase:CFMTp + CFMTp:Aperture + 

Phase:CFMTp:Aperture + (1| ID) + (1 | Image). See Tables C.15 – C.19. 

 

 

Table C.15. Linear mixed model results for PC1 loading. 
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Table C.16. Linear mixed model results for PC2 loading. 

 

 

Table C.17. Linear mixed model results for PC3 loading. 
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Table C.18. Linear mixed model results for PC4 loading. 

 

 

Table C.19. Linear mixed model results for PC5 loading. 

 

For the model of PC1, we set participants’ intercept as a random effect and CFMT+, 

phase, and aperture size as fixed effects. Linear mixed models reveal no significant main 

effect of CFMT+ scores [b= 0.02, CI= [-0.18, 0.23], t(43.0)= 0.2, p= 0.844], no significant main 

effect of phase [b= 0.01, CI= [-0.023, 0.043], t(8521.1)= 0.6, p= 0.545], but a significant main 

effect of aperture size [b= 0.11, CI= [0.08, 0.134], t(653)= 7.75, p < 0.001]. These results 

show that PC1 strongly codes for the fixation pattern differences across aperture sizes. 

However, we found a significant the two-way interaction of CFMT+ and phase [b= -0.057, 

CI= [-0.086, -0.027], t(9155)= -3.77, p < 0.001]. As with Experiment 3a, the simple effects 

(using phase as a moderator) show a larger difference during face learning [b=0.05] than 
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recognition [b=-0.01], showing that higher CFMT+ scores possess higher PC1 scores during 

the learning phase of the experiment. The three-way interaction of CFMT+, phase and 

aperture size [b = 0.03, CI= [0.00, 0.06], t(9157.4)= 2.17, p= 0.030] was non-significant.  

 

Gaze Dispersal Analysis (all apertures) 

We investigated whether the amount of exploration differed across the face 

recognition ability spectrum. For that, we calculated the Gini coefficient (Lorenz, 1905) for 

each trial-level heatmap. As a reminder, lower Gini coefficients would indicate higher 

dispersion of fixations (i.e. higher exploration). Using linear mixed models, we found a 

significant main effect of CFMT+ scores [b= -.008, CI= [-.014, -.002], t(43.0)= -2.44, p=0.019]. 

This result means that those who showed higher exploration (lower Gini coefficients) also 

showed higher performance on the CMFT+. We also found a significant two-way interaction 

between CFMT+ and phase [b= .007, CI= [.005, .008], t(9141.6)= 10.44, p< .001]. The simple 

effects showed an effect of CFMT+ during the learning (b=0.011) but not during the 

recognition phase (b= 0.004). 

 

PCA – Learning and Recognition (Only NV) 

We analysed PC loadings using a Linear Mixed Model. For this analysis, we used the 

function: Loading ~ 1 + Phase + CFMTp + Phase:CFMTp + (1| ID). See Tables C.20 – C.24. 

 

 

Table C.20. Linear mixed model results for PC1 loading. 
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Table C.21. Linear mixed model results for PC2 loading. 

 

Table C.22. Linear mixed model results for PC3 loading. 

 

Table C.23. Linear mixed model results for PC4 loading. 

 

Table C.24. Linear mixed model results for PC5 loading. 
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Experiment 4 

AUC Analysis  

 In Experiment 4, we investigated the accuracy of 9 DCNNs performing the stimuli for 
different participant groups and six aperture size conditions. We show the linear mixed 
model in Table C.25 and its simple effects in Table C.26.  
 
 

 
Table C.25. Linear mixed model results for AUC. 

 

 
Table C.26. Simple effects for AUC. We set aperture size as moderator for this analysis. 

 

 
 

Information available Analysis 

In Experiment 4, we investigated the information available for each stimuli image. We show 
the linear mixed model in Table C.27 and its simple effects in Table C.28.  
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Table C.27. Linear mixed model results for Information Available. 

 
 
 

 
Table C.28. Simple effects for Information Available. We set aperture size as moderator for this 

analysis. 
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APPENDIX D 

Individual visualisation of participants' body maps during the navigation task 

We observed high variability in the strategies engaged by participants when looking 

at people when navigating in the wild. Figure D.1 shows the proportion of fixations 

registered to each landmark separately for each participant in the navigation task.  
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Figure D.1. Individual participant data during navigation task. For each participant, we show fixations 

on 25 dROI when viewing people during the navigation task. Face fixations are marked in red and 
body fixations in blue. The circle size for each dROI indicates the number of fixations participants 

made to that location.  
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Extended ANOVA analysis for 'Faces of passersby do not capture attention in live natural 

settings' 

The main manuscript reports that participants were more likely to fixate on people 

in the navigation task when their faces were in full view. Still, we found no evidence that 

faces captured this attention more than other body regions.  

This conclusion was supported by an ANOVA analysis of the data shown in Figure 5.2 

comparing the probability of fixating on heads and bodies when faces were fully visible in a 

video frame versus when only partially visible due to head rotation or other occlusions. A 2 

(Face type: part face, full face detected) X 3 (Fixation type: Head, Body, Not Person fixations) 

ANOVA revealed a significant interaction between face and fixation type, F(2,60) = 9.76, p < 

0.001, η²p=0.246. Analysis of simple main effects showed a significant reduction of non-

person fixations, F(1,30) = 12.86, p < 0.001, η²p=0.300, and an increase in both head and 

body fixations [Head: F(1,30) = 7.035, p = 0.013, η²p=0.190; Body: F(1,30) = 6.64, p < 0.015, 

η²p=0.181]. 

Extended analysis for 'Individual differences in naturalistic social attention' (analysis of 

residuals) 

Figure D.2 shows scatterplots illustrating the individual differences analysis of 

residuals reported in the main text. In Figure D.2A, we calculated the linear regression 

model predicting the probability of fixating people (head and body) as a function of the 

average number of people detected in video frames, separately for the two route segments 

(First and Second). This analysis allowed us to calculate a residual value for each participant 

for each route segment. Figure D.2B shows the correlation between these residuals for the 

two route segments (Spearman's rho(29)= 0.532, p= 0.002), indicating that some 

participants tend to fixate more on people than others, regardless of the number of people 

they encountered on the walk. 
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Figure D.2. Individual differences analysis of residuals. Panel A shows the proportion of fixations to 

people as a function of the average number of people present for each route segment. Panel B shows 
the correlation between the residuals found in panel A. 

 

Individual visualisation of participants' facial maps during the face-to-face interaction task 

We observed high variability in the fixation patterns shown by participants when engaging 

in a conversation with the experimenter. We filtered participants' recordings to analyse only 

fixation frames that contained the experimenter's face looking straight at the participant by 

using only frames where nose landmarks were detected by OpenPose (Cao et al., 2019). The 
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landmark registration method (see the main manuscript) detected 70 possible dynamic 

regions of interest (dROI) participants attended. Figure D.3 shows individual participant gaze 

patterns registered to facial landmarks. 
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Figure D.3. Individual participant data during face-to-face interaction task. We show fixations to the 
70 dROI identified by OpenPose while participants attended to the experimenter during the face-to-

face interaction task. The colours delimit facial regions for this visualisation, and the size of the circles 
at each dROI indicate the number of fixations at that point. 

 

The landmark registration in Figure D.3 is constrained to record 70 possible dROI 

positions on a face. However, the heatmap registration method allows more fine-grained 

analysis because it uses the relation between these landmarks to determine the exact 

location of where a fixation landed on a face (see main text). Figure D.4 shows individual 

heatmaps for each participant as they focused on the experimenter's face during the face-

to-face task. Comparing the patterns in Figures D.3 and D.4, there is some indication of the 

advantage of using triangulation of spatial location. For example, when analysed using 

landmark registration, P32 appears to have a relatively diffuse gaze pattern, but this is 

revealed as a more focal pattern when using triangulation. 
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Figure D.4. Individual participant data during face-to-face interaction task. We show the heatmap registration 
method results to where participants attended when viewing a face during the face-to-face interaction task.  

 

Comparing automatic versus manual coding 

To validate the use of OpenPose to detect the presence of a person in a video frame,  

we randomly sampled 560 frames from participants' navigation task recordings in which a 

fixation was recorded. Figure D.5 shows an example of a frame image. Four naïve volunteers 

then manually count the number of people in every 560 frames. Figure D.6 shows the 

significant positive correlation between the average manual coding values with the 

automatic values provided by OpenPose (r(559)= 0.89, p<0.001). 
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Figure D.5. Example of a randomly selected video frame used to validate the OpenPose system.  

 
Figure D.6. Correlation between human vs algorithm in the number of people in the scene 
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