
Achieved IPC Performance (Still the Foundation for Efficiency)

Author:
Liedtke, Jochen; Elphinstone, Kevin; Schonberg, Sebastian; Hartig, Hermann;
Heiser, Gernot; Islam, Nayeem; Jaeger, Trent

Publication details:
6th Workshop on Hot Topics in Operating Systems (HotOS)
pp. 28-31
0818678348 (ISBN)

Event details:
6th Workshop on Hot Topics in Operating Systems (HotOS)
Cape Cod, USA

Publication Date:
1997

Publisher DOI:
http://dx.doi.org/10.1109/HOTOS.1997.595177

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39929 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/http://dx.doi.org/10.1109/HOTOS.1997.595177
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39929
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Achieved IPC Performance(Still The Foundation For Extensibility)Jochen Liedtke � Kevin Elphinstone y Sebastian Sch�onberg z Hermann H�artigzGernot Heisery Nayeem Islam� Trent Jaeger�Abstract
6th Workshop on Hot Topics in Operating Systems (HotOS)May 5-6, 1997, Chatham (Cape Cod), Massachusetts

Extensibility can be based on cross-address-space com-munication or on grafting application-speci�c modulesinto the operating system. For comparing both ap-proaches, we need to explore the best achievable perfor-mance for both models. This paper reports the achievedperformance of cross-address-space communication forthe L4 �-kernel on Intel Pentium, Mips R4600 andDEC Alpha. The direct costs range from 45 cycles (Al-pha) to 121 cycles (Pentium). Since only 2.3% of theL1 cache are required (Pentium), the average indirectcosts are not to be expected much higher.1 Motivation: extensibility"Extensibility" is a relatively new buzzword in OS re-search. Nevertheless, the requirement for extensibilityis neither speci�c to operating systems nor new. Edi-tors are extended by macros associating new functionsto keys, programming languages are extended by li-braries, database systems are extended by application-speci�c functions, word processing systems are ex-tended by customized texts, et cetera, et cetera.What makes extensibility an OS-speci�c topic?Security and safety!When extending an operating system by a new ormodi�ed service, we require that (a) the service canbe introduced only for selected clients and that (b) apotential malfunction of the new service a�ects onlythose clients that use it. In accordance to (a), di�fer-ent clients can, of course, use di�erent services for thesame event. (a) is di�cult because the operating sys-tem controls central resources; (b) is di�cult because�IBM T. J. Watson Research Center, 30 SawMill River Road,Hawthorne, NY 10532, USA, jochen@watson.ibm.comySchool of Computer Science, University of New SouthWales,Sydney, 2052, Australia, kevine@cse.unsw.edu.auzDepartment of Computer Science, Dresden Univer-sity of Technology, Hans-Grundig-Str., Dresden, Germany,sebastian.schoenberg@inf.tu-dresden.de

(i) these resources are critical with respect to the cor-rect functioning of the entire system and (ii) servicesneed to be protected from each other making uncon-trolled interference impossible.The multiple-server approachAn obvious (and well-known) solution: use multipleservers, protect them by classical operating systemmechanisms, i.e. address spaces, and make them freelyattachable to applications. Basically, that is the �-kernel approach, pioneered by Amoeba, Mach and Cho-rus, further developed by L4 [Liedtke 1995], Fluke[Ford et al. 1996] and others.This method is best-suited to incorporate general,well-known software techniques for extensibility. Func-tionally, it is most 
exible and most general.However, good performance of the multiple-servertechnique requires that the direct and indirect costs ofcross-address-space communication (including address-space switching) are su�ciently low. Unfortunately,years ago, IPC was considered to be expensive.The grafting approachA further solution is to graft additional modules intothe monolithic server (the operating system). Earlyapplications of this technique are widely used but in-secure and/or of limited 
exibility: mounting new �lesystems, adding new device drivers et cetera.New research projects, in particular Spin [Bershadet al. 1995] and Vino [Seltzer et al. 1996] experimentwith compile-time and run-time (compiler-supported)security for \grafted" kernel components. Spin [Ber-shad et al. 1995] inserts type-checked modules into thekernel; Vino [Seltzer et al. 1996] permits unsafe graftsand controls them by sandboxing and transactions.Necula and Lee [1996] developed a very interest-ing method of controling grafts by mathmatical proofs.However, currently this method is probably not (yet?)applicable to non-toy grafts.



Which approach should be preferred?There are two scienti�c criteria for comparing themultiple-server against the grafting approach: func-tionality and performance. Liedtke [1995] showed thatthe �-kernel-based approach (multiple servers in multi-ple address spaces communicate via IPC) is at least as
exible as to modify a monolithic server. This includespolicy extensibility since a real �-kernel is policy-freeand permits to implement all policies at user-level. Itis still not clear whether the reverse statement \mod-ifying a monolithic server always gives the same 
exi-bility" holds.The second, and probably the more critical question,is performance.Therefore, it is important to �nd the really achiev-able best performance of cross-address space commu-nication. That is the topic of this paper. Section 2.1reports the achieved best-case performance in the L4 �-kernel on Intel Pentium, Mips R4600 and DEC Alphasystems. Section 2.2 analyzes indirect costs for averageand worst cases.Of course, this is only one side of the coin. Compa-rably substantiated and comparably analyzed perfor-mance results are also required for the grafting model.Currently, the reported numbers are 6 to 80 timesworse for grafting than the L4-based results (see sec-tion 3). However, there is no evidence how closethe reported numbers are to the principally achievableperformance.12 Achieved IPC performanceThe L4 �-kernel is currently implemented for Intel 486and Pentium [Liedtke 1996], Mips R4600 and DEC Al-pha 21164 processors [Sch�onberg 1996]. Intel versionsof L4 are available since early 1996. In the meantime,Linux was ported to run on top of the 486 and PentiumL4 �-kernels [Hohmuth et al. 1996]. According Mipsand Alpha versions are forethcoming.On the Pentium processor, a simple IPC transfersup to 3 registers (plus sender id) from the sendingto the receiving thread. R4600 and Alpha permit upto 8 registers. More complex communication can useapplication-speci�c memory sharing or the ability ofIPC to copy longer messages between address spaces.1Remember what happened in the IPC case: for years IPCwas reported to cost about 100 �s (independentof the processor),then it improved to 5 �s, now 1 �s.

cache lines cyclesused requiredPentium 12 of 512 121 166 MHz: 0.73 �sR4600 19 of 1024 86 100 MHz: 0.86 �sAlpha 17 of 512 45 433 MHz: 0.10 �sTable 1: Simple IPC performance.2.1 Direct costsTable 1 summarizes the direct costs (space and time)for a simple cross-address-space IPC. Address-spaceswitch does not require a TLB 
ush in either system.Alpha and Mips have tagged TLBs, for Pentium, asegment-based technique is used to emulate a taggedTLB. The Pentium requires 121 cycles for a simpleIPC, about 35 cycles more than Mips, 75 cycles morethan Alpha. Mips R4600 is a single-issue processorwhile Pentium and Alpha are dual-issue machines (inthe absence of 
oating point operations). The addi-tional costs for the Pentium processor are due to itsslow kernel-trap instruction.These nevertheless small numbers show that IPCcan be regarded as a simple, basic operation. In away, it is similar to a complex microprogrammed in-struction. This is corroborated by the small amount of�rst-level cache consumed by IPC. Tables 2 and 3 givea detailed breakdown of cycles and cache lines required.2.2 Indirect costsThe simple IPC implementation is small enough to per-mit an in-depth performance analysis of the indirectcosts. Currently, we have a detailed understandingwhat happens in the Pentium implementation.None of the three mentioned implementations
ushes the TLB on an address-space switch. So in-direct TLB costs can only occur when the �-kerneluses virtual memory. Note that the Pentium does notsupport unmapped memory, i.e. operating system codeand data is also part of virtual memory. This needs 4TLB entries (of 96 entries) per IPC. Two of the entriesare also used per incoming hardware interrupt, one isassociated with the currently running thread. So weconsider 3 of them to be always present. The fourth oneis associated with the destination thread and shouldbe present with a high probability if the destinationis frequently accessed and we have no TLB thrashingsituation. Since a TLB miss takes approximately 25cycles, the average TLB-related indirect costs shouldnot exceed 5 cycles.2



Pentium R4600 Alphainstructions cycles instructions cycles instructions cyclesenter kernel mode (trap) 1 52 23 25 1 5ipc code 43 23 47 50 60 38segment register reload 4 16 { { { {exit kernel mode (ret) 1 20 9 11 1 2total 50 121 79 86 62 45166 MHz: 0.73 �s 100 MHz: 0.86 �s 433 MHz: 0.10 �sTable 2: Simple IPC, cycle costs.Pentium R4600 Alphacache L1 cache cache L1 cache cache L1 cachelines usage lines usage lines usagekernel code (I-cache) 6 2.3% 14 2.7% 13 5.1%global kernel data (D-cache) 2 0.8% 1 0.2% 0 0.0%thread kernel data (D-cache) 2� 2 1.6% 2� 2 0.8% 2� 2 1.6%total (I+D-cache) 12 2.3% 19 1.9% 17 3.3%Table 3: Simple IPC, cache costs.Costs related to cache misses might be higher. Theworst possible case involves second-level cache missesand bus blocking due to write-back bursts. However,this worst case is very unlikely: Write-back overheadis usually hidden by write bu�ers, and the second-levelcache of at least 256 K should contain the 12 lines {that is 0.15% of the L2 cache { used for IPC. For areasonable very bad case, we assume that per IPC| the L1 cache contains no IPC-related data at all,i.e., that maximum L1 misses occur,+ no second-level cache misses occur, and+ cache re�ll is never delayed due to pending write-back operations.Furthermore, we de�ne a bad case where half of theIPCs perform very badly while the other half are best-case. This is a reasonable worst-case approximationfor very short remote procedure calls. We assume thatthe calling IPC is always very bad as described above.However, the short remote procedure body will usuallynot con
ict with the previously loaded 12 cache linesso that the reply is a best-case IPC.To get an impression about the in
uence of the var-ious memory systems, we measured bad-case and very-bad-case costs on a 90-MHz Thinkpad without an L2cache, a 133-MHz Server with 256-K L2 cache and a

PentiumThinkpad 760C IBM PCS 320 IBM PC 750clock rate 90 MHz 133 MHz 166 MHzL2 cache { 256 K 256 Kideal 121 1.34 �s 121 0.91 �s 121 0.73 �sbad 204 2.27 �s 208 1.56 �s 195 1.18 �svery bad 287 3.19 �s 295 2.22 �s 269 1.63 �sTable 4: Cycles per IPC, ideal and bad cases.166-MHz PC with also 256-K L2 cache. For the badcases, instruction cache and data cache were systemat-ically 
ooded prior to each IPC so that no IPC-relatedcode and data were left in the L1 cache. The according
ooding overhead was subtracted from the total time.For all measurements, the cpu-internal clock registerwhich is incremented per processor cycle was used. Ta-ble 4 shows the resulting IPC costs for the ideal, badand very bad case. Surprisingly, even the Thinkpadwithout L2 cache shows reasonable performance, 166cycles overhead for the very bad case. The 166-MHzmachine shows a bad case overhead of 74 cycles. Sowe conclude that in general, short IPC mostly takesbetween 120 and 200 cycles.A nice behaviour is that cache overhead decreases3



when IPC is used frequently. As a rule of thumb, theaverage cache-miss rate is expected to change by x�12when the cache size changes by a factor of x. Applyingthis rule to the 2.3% of cache consumption by IPC,would predict an increase of the cache-miss rate bya factor of 121000. Assume that a system of programscommunicating via IPC has a cache-miss rate of 5%.Then this rule would say that about 121000�5% = 0:06%are due to IPC. Although this is a rule of thumb andthus wrong in many concrete cases, it gives us someimpressions about the order of non-magnitude.Weird Ideas: There might be a problem that someparticular software has systematic con
icts with thecache lines used by IPC. Since the IPC code is so small,it could be replicated for various cache lines. The �-kernel could then from time to time randomly switchbetween them.3 Comparison to graftingcosts per pagefaultL4 Pentium 133 MHz 4.5 �s 592 cyclesSpin Alpha 21064 133 MHz 29.0 �s 3,857 cyclesTable 5: Simple Pager, Spin Versus L4. Experiment:A user program accesses an unmapped page. The pagefault is sent to a user-level pager which simply maps anexisting page (no paging). Costs include all hardware,kernel and user-level operations required to resolve thepage fault. overhead per graft invocationL4 Pentium 133 MHz2� IPC, including 2. . . 3 �s 240. . . 400 cyclesaddress-space switchVino Pentium 120 MHzRead-ahead Graft 102 �s 12,240 cyclesPage-Eviction Graft 156 �s 18,720 cyclesScheduling Graft 113 �s 13,560 cyclesEncryption Graft 251 �s 30,120 cyclesTable 6: Vino Grafts Versus L4 IPC. Vino-graft over-head includes sandboxing, transactions and locking.Result-checking and graft-functionality costs are notincluded.

4 ConclusionWe have some substantiated ideas about the architec-tural costs of IPC, i.e. the ideally achievable perfor-mance. In practice, no more than 100 to 200 cyclesand 2.3% to 3.3% of the L1 cache are required. IPC isan order of magnitude faster than the reported costs ofgrafting kernels or servers. To decide whether graftingis a relevant technique, we need similar optimizatione�orts and analysis for the grafting approach.ReferencesBershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski,M., Becker, D., Eggers, S., and Chambers, C. 1995. Extensi-bility, safety and performance in the Spin operating system.In 15th ACM Symposium on Operating System Principles(SOSP), Copper Mountain Resort, CO, pp. 267{284.Ford, B., Hibler, M., Lepreau, J., Tullman, P., Back, G., andClawson, S. 1996. Microkernels meet recursive virtual ma-chines. In 2nd USENIX Symposium on Operating SystemsDesign and Implementation (OSDI), Seattle, WA, pp. 137{152.Hohmuth, M., Wolter, J., Baumgartl, R., and Borriss, M.1996. Porting Linux to L4. http: //os.inf.tu-dresden.de/L4/LinuxOnL4/ LiOnL4.html.Liedtke, J. 1995. On �-kernel construction. In 15th ACM Sym-posium on Operating System Principles (SOSP), CopperMountain Resort, CO, pp. 237{250.Liedtke, J. 1996. L4 reference manual (486, Pentium, PPro). Ar-beitspapiere der GMD No. 1021 (Sept.), GMD | GermanNational Research Center for Information Technology, SanktAugustin. also Research Report RC 20549, IBM T. J. WatsonResearch Center, Yorktown Heights, NY, Sep 1996.Necula, G. C. and Lee, P. 1996. Safe kernel extensions withoutrun-time checking. In 2nd USENIX Symposium on OperatingSystems Design and Implementation (OSDI), Seattle, WA,pp. 229{243.Sch�onberg, S. 1996. The L4 microkernel on Alpha { design andimplementation. Cambridge University Technical Report 407.Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A. 1996. Deal-ing with disaster: Surviving misbehaved kernel extensions. In2nd USENIX Symposium on Operating Systems Design andImplementation (OSDI), Seattle, WA, pp. 213{228.
4


