
BlockTorrent: A Privacy-Preserving Data Availability Protocol
for Multiple Stakeholder Scenarios

Author:
Hill, Ambrose

Publication Date:
2023

DOI:
https://doi.org/10.26190/unsworks/25193

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/101486 in https://
unsworks.unsw.edu.au on 2024-05-05

http://dx.doi.org/https://doi.org/10.26190/unsworks/25193
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/101486
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

BlockTorrent: A Privacy-Preserving Data
Availability Protocol for Multiple

Stakeholder Scenarios

Ambrose William Hill

A thesis in fulfilment of the requirements for the degree of
Master of Engineering

School of Computer Science and Engineering
Faculty of Engineering The University of New South Wales

Prof. Salil Kanhere
Prof. Raja Jurdak

Dr. Volkan Dedeoglu

March 2023

Abstract

As industries across the globe continue to digitize their processes, the need for a
mechanism to share private data between multiple stakeholders is becoming in-
creasingly apparent. However, sharing data poses challenges around privacy and
accessibility, particularly in disputes between stakeholders with a shared interest,
such as a supply chain. Auditors currently rely on stakeholders’ compliance in order
to verify data. Malicious parties may falsify the data before passing it on to the
auditor. Using supply chains as a case study we present BlockTorrent, a protocol
to address these challenges and help facilitate data sharing between supply chain
participants and named after the integration of Blockchain technology and the Bit-
Torrent protocol. BlockTorrent allows participants to securely share their data in
near real-time with other participants without the risk of information leakage or
allowing data falsification, whilst guaranteeing data availability for auditors. This
is achieved using a novel combination of distributed storage and on-chain secret
sharing. This thesis provides an implementation and evaluation of BlockTorrent,
highlighting its performance and a security discussion, specifically that a system
like BlockTorrent can reach large transaction throughput as high as 500 tps and be
viable in a real world environment. Lastly, the thesis provides a discussion on the
privacy challenges that were considered when designing BlockTorrent.

i

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Salil Kanhere, Raja
Jurdak, and Volkan Dedeoglu, whom without this work would have never been
started or completed. They provided me with guidance that allowed me to grow
both academically and personally and I will be forever grateful for their time and
patience during my time completing this degree.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

Abbreviations vii

Publications viii

1 Introduction 1
1.1 Supply Chain on Blockchain . 2
1.2 The Data Availability Problem . 3
1.3 Research Questions . 5
1.4 Contributions . 6

2 Background 8
2.1 Technology Background . 8

2.1.1 Blockchain . 8
2.1.2 BitTorrent . 11
2.1.3 Distributed Storage . 12

2.2 Related Work . 14
2.2.1 Research Gap . 17

3 BlockTorrent 18
3.1 System Architecture . 19

iii

3.2 System Functionality . 22
3.2.1 Hashed Sharding . 23
3.2.2 Key Management . 23
3.2.3 Storing Data . 26
3.2.4 File Retrieval . 28

4 Evaluations 33
4.1 Implementation . 33
4.2 Evaluation . 35

4.2.1 Performance Evaluation . 35
4.2.2 Security . 40
4.2.3 Potential Attacks . 43

5 Challenges and Conclusion 48
5.1 Challenges and Discussions . 48

5.1.1 Future Work . 51
5.2 Conclusion . 52

Bibliography 55

iv

List of Figures

2.1 How blocks are linked inside a blockchain. Source: intellipaat.com . . 9
2.2 Size of the bitcoin blockchain over the years. 13

3.1 A high-level overview of the proposed architecture. 20
3.2 The layers and interactions of BlockTorrent architecture 21
3.3 Transaction flow for the storing of data. 26
3.4 Transaction flow for file retrieving. 30

4.1 Time taken to split files into chunks 36
4.2 Time taken to distribute chunks across the network 37
4.3 Time taken to retrieve chunks and recreate the file 37
4.4 Transaction throughput and latency of storing and splitting the pri-

vate key on the blockchain. 39
4.5 Transaction throughput and latency for querying a specific number

of shards from a particular private key. 40

v

List of Tables

2.1 Summary of BlockTorrent’s comparison to related work. 14
2.2 Summary of BlockTorrent’s comparison to related work. 15

3.1 How the design decisions of BlockTorrent align with the requirements
of the system . 32

4.1 Identified security attacks and proposed countermeasures using
BlockTorrent. 44

vi

Abbreviations

BC Blockchain.

BFT Byzantine Fault Tolerance.

DFS Distributed File Systems.

IoT Internet of Things.

IoTD Internet of Things Devices.

NFT Non-Fungible Token.

P2P Peer-To-Peer.

TPS Transactions Per Second.

vii

Publications

The main contributions of the thesis are based on the following publication:

A. Hill, S. Mishra, A. Dorri, V. Dedeoglu, R. Jurdak and S. Kanhere, "BlockTorrent: A privacy-
preserving data availability protocol for multiple stakeholder scenarios", In the IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), Sydney, Australia, 2021.

viii

Chapter 1

Introduction

Blockchain technology has gained significant attention in recent years due to its
potential to revolutionise various industries, including supply chain management[1].
Blockchain is a decentralised, digital ledger technology that allows for secure and
transparent transactions without the need for intermediaries such as banks or govern-
ment institutions to maintain its stability and security. It is a distributed database
that stores data in blocks that are linked together in a chronological chain, cre-
ating a permanent and unalterable record of transactions. Each block contains a
unique cryptographic code, or hash, that ensures the integrity and authenticity of
the data. This technology has gained prominence as the underlying technology be-
hind cryptocurrencies such as Bitcoin [2]. However, its potential applications go
far beyond simple digital currencies. It has the potential to revolutionise various
industries, including finance, supply chain management, healthcare and law. This
is due to one of the most significant features of blockchain, the fact that it exists
exclusively in decentralised environments. Since it is a distributed ledger, no single
entity controls the data, making it in certain situations, more secure and resistant
to hacking and fraud. Additionally, transactions on the blockchain are transparent
and traceable, enabling greater accountability and trust in the data accumulated in
the chain. The process of duplicating the chains and distributing them to multiple
users on the network leads to a large amount of confidence that the data is not
being manipulated, in fact, blockchains are considered immutable because of this
property. There is, however, one problem that arises because of this property which
is commonly referred to as the "Rubbish In, Rubbish Out" dilemma. Since the data
cannot be changed or altered once it is submitted to the blockchain, you have to
be very careful about how the information is being sent and to somehow ensure

1

Chapter 1 Introduction

that the information is both valid and accurate. For cryptocurrencies where the
validity of a transaction is based on a user’s balance alone, this is less of a concern,
but when you consider a blockchain application on a supply chain, where the data
being stored is non-uniform and complex this becomes a problem. Alongside this,
in a supply chain, most entities would not be willing to share private information so
there is a need for a solution that incentivises untrusted parties to share and provide
potentially sensitive information with each other.

This thesis aims to support blockchain technology in its endeavour to solve prob-
lems plaguing some of the biggest industries in the world. Specifically, the problem
of data availability within supply chains. Blockchain has the potential to solve many
problems but only if the technology is understood and applied correctly. This thesis
is laid out as follows: First, background information on blockchain technology, sup-
ply chains and the data availability problem, this is followed by the introduction of
the BlockTorrent Protocol, the main contribution of this thesis, before finally pro-
viding an evaluation and discussion of the proposed architecture with a discussion
around the security and privacy implications of such a solution.

1.1 Supply Chain on Blockchain
A supply chain, in essence, is a network of businesses, individuals, and activities
involved in creating and delivering a product or service to the end consumer. There
are many moving parts to a supply chain including, logistics, administration, financ-
ing and auditing that are required to work in unison in order to manage a supply
chain. Managing a supply chain e�ectively is crucial to ensure that the right prod-
uct is delivered to the right place at the right time. Supply chains exist in almost
every industry across the globe and they are used to create e�ciencies in logistics in
all areas, from raw resources to manufactured products. Supply chains are a vital
cog in the global ecosystem and as a result of their importance, it would be easy
to assume that they are already optimised and heading towards perfection. Whilst
this may be true for specific trades, it is almost certainly not the case for the vast
majority of supply chains operating around the world. Recently, the digital age
has provided mechanisms for transferring information at rapid speeds regardless of
physical distance however there is still one major problem plaguing all supply chains

2

Chapter 1 Introduction

in existence, how do you trust that the data you are receiving is accurate? The short
answer is you can’t, but there are steps you can take to help eliminate untrusted
data.

Traditional supply chain management systems face several challenges, including
limited visibility, high costs, and ine�ciencies [3]. Blockchain technology o�ers a
solution to these challenges by providing a transparent, secure, and decentralised
platform for supply chain management. In a blockchain-based supply chain, trans-
actions are recorded on a distributed ledger that is accessible to all participants in
the network. This enables real-time tracking of products and transactions, enhanc-
ing transparency and accountability throughout the supply chain. Additionally, the
use of smart contracts, which are self-executing agreements with the terms of the
contract directly written into code, can automate various processes in the supply
chain, reducing costs and increasing e�ciency [4].

Overall, supply chain on blockchain has the potential to transform the way busi-
nesses manage their supply chains, leading to increased transparency, e�ciency, and
trust among all stakeholders but there are still large problems facing the technology
and its applications within supply chains [3].

1.2 The Data Availability Problem
Simply put, blockchain provides a technology that can maintain information and
protect it against hacks and data corruption, but there is an inherent need to trust
the information that was initially put on the blockchain and going one step further,
to trust the source of the information. A malicious participant on a blockchain
could have a facade of being honest and transparent with its information but behind
closed doors, is manipulating the data they are entering on to the blockchain. The
malicious entity could also just refuse to share accurate information when requested,
leading to a situation where blockchain is used but the data stored on the blockchain
is e�ectively useless. As mentioned, this is commonly referred to as "Rubbish in,
Rubbish out" in the blockchain industry.

To illustrate this problem a little clearer, let us use a specific example such as
the construction supply chain. The construction industry is one of the longest-
running industries of human development to date. From turning mud into bricks

3

Chapter 1 Introduction

and metal into skyscrapers, it has allowed human creativity and innovation to thrive.
There is a clear improvement when it comes to construction, it can be seen as
one drives through a city and notices the subtle di�erences in buildings that were
constructed in di�erent eras, and although it is easy to see the improvements in the
physical design and construction of buildings, there is a significant element of the
construction industry that has not received the same amount of innovation and that
is the administration of construction projects.

The construction administration system is one of many systems in the world
today that heavily rely on participant compliance when it comes to data sharing
and accessibility. The most common form of these systems is the supply chain [5].
A construction supply chain involves a group of organisations that are responsible
for facilitating the transfer of resources and services from suppliers to construction
sites. Recently, Internet of Things (IoT) sensor devices have been integrated with
some supply chains allowing for the automatic tracking of items during their journey
from supplier to end user. Furthermore, the sensorisation of supply chains has given
the stakeholders access to real-time data allowing for optimisation and improving
e�ciency.

Participants willing to share real-time data amongst themselves will facilitate
faster trades, enjoy lower operational costs and have the ability to detect and com-
petently rectify delays. However, data sharing among supply chain participants
poses privacy and security challenges. Sharing data can lead to information leaking,
such as contextual details of quality or quantity of supplies or company secrets like
the temperature used to store resources. These challenges make it highly critical
for the supply chain entities to keep all data secure and private, particularly data
captured automatically i.e. IoT sensor data. In response to this, many supply chain
entities prefer centralised solutions for managing their digital data. Although this
solves privacy concerns, it causes an issue when an audit is required. Each entity can
manipulate or misrepresent the data that is supplied solely by them. Some existing
solutions require hashes of the data to be shared at the point of capture so that the
data cannot be changed at a later date. However, storing only the hash cannot solve
this problem as the participant that provided the hash can claim that the data has
been lost or manipulate the data in advance so that the hash reflects the corrupted
information.

Blockchain is one potential technology to help facilitate a solution to this problem.

4

Chapter 1 Introduction

Blockchain supports multi-stakeholder applications, such as a supply chain, with
data immutability, audibility and access control [6]. Blockchain-based supply chains
have seen increased interest due to their improved scalability as seen in [7]–[10].
Although blockchain is a promising solution to address supply chain challenges [1],
the overarching problem is that anyone on the network can access data stored on
the blockchain.

To solve this issue, a few avenues are available to ensure data privacy on a
blockchain, such as using a permissioned chain or a mechanism like channels that
exist on Hyperledger’s blockchain solutions[11]. Even then, these solutions come
with challenges when trying to share data that only exists on a private channel or
permissioned chain.

Participants could collude to store incorrect or inaccurate information, choosing
to hide information or selectively storing partial information in the first place.

Furthermore, supply chain entities could use the blockchain as an indexed
database, only submit hashes of the information to the blockchain, and store the
bulk of their data o� the chain. This would help to prevent the leakage of privacy-
sensitive information.

There are alternate methods of storing data on a blockchain, such as requiring
the shared information to be encrypted. However, a malicious party could claim
they lost the decryption key and assuming the encryption standards are high this
still results in missing or corrupted information.

While this approach ensures data privacy, it impacts the accessibility of the data.
This leads to the main concern that data can still be made intentionally unavailable.
Whether this information was inaccurate or misleading or intentionally corrupted
so that it could never be accessed again, there is a critical need for mechanisms
that ensure data availability and integrity to authorised parties while preserving the
privacy of data contributors.

1.3 Research Questions
As with all areas of research, there are countless questions to be answered. For the
purpose and scope of this thesis, there will be a specific focus on the transfer and
trust of information within supply chain.

5

Chapter 1 Introduction

This thesis aims to answer the following research questions around blockchains
integration with supply chain and the Internet of Things.

• What supply chain processes can blockchain help advance?

• How can blockchain improve the trust of information inside supply chains?

• Can blockchain or other distributed storage methods be used to guarantee
access to data in multi-stakeholder scenarios, like supply chains?

1.4 Contributions
This thesis’s main contribution is presenting a solution to the data availability prob-
lem described above. This thesis proposes BlockTorrent, a novel blockchain-based
data management protocol that enhances data availability while protecting partic-
ipants’ privacy. BlockTorrent is an integration of BitTorrent [12], a Peer-To-Peer
(P2P) file-sharing protocol and Blockchain.

Although BlockTorrent can be used by any application that requires data avail-
ability among multiple untrusted stakeholders, we focus on the supply chain context
as a representative case study. To ensure data accessibility, BlockTorrent distributes
data among a set of peers in the blockchain. The participating nodes should be able
to read the data for audibility; however, this compromises user privacy. In BlockTor-
rent, data is split into multiple chunks, and each chunk is sent to a randomly chosen
node, another user, for storage. The selection of nodes involves hashed sharding,
which is a random process where each node in the network is assigned a range of
values, each chunk is hashed and then distributed to the nodes based on the value
of the digest [13]. Data splitting helps prevent unauthorised access, as even if an
adversary can decrypt a chunk, they still need every other chunk to retrieve the
complete file. It also reduces the load on the network through the transmission of
small packets rather than the bulk transfer of IoT data logs, similar to how the
BitTorrent [14] protocol distributes files.

We provide a solution for maintaining the data through its lifecycle. As the
data is being dissected, it is necessary to store how the data is being split up and
where each piece is located so that it can be recreated later on. BlockTorrent uses
a permissioned blockchain to store the metadata of each distributed chunk. Our

6

Chapter 1 Introduction

protocol allows each participant in a supply chain to continually share their data
with other participants without leaking private information or impacting the supply
chain performance.

As explained above there is a real world need for systems and protocols to maintain
data availability through the data’s entire lifecycle. Leveraging two new technolo-
gies, in blockchain & bit torrent, in a way that solves an impact problem like data
availability is significant research that should be continued in any and all directions
possible. This thesis and its contributions are only a small part of the blockchain
research industry and could lead to significant innovations in the near future.

The major contributions of this thesis are:

• A data-sharing protocol that can be used by participants to share their private
data on the main blockchain securely. These participants can be generalised
to any untrusting stakeholders The protocol enhances data availability while
preserving data confidentiality, as it distributes chunks of data to random peers
on the network while securely storing the encrypted details of file sharing on the
blockchain. The secret sharing process is implemented using a smart contract
such that no participant can manipulate the process.

• A generalised blockchain and IoT architecture that can be applied to most
supply chains in existence today.

• An evaluation based on an implementation of the protocol that demonstrates
the system’s robustness and resistance to major security attacks and e�cacious
performance in terms of scalability.

• A discussion about performance and privacy trade-o�s that came into consid-
eration while designing the BlockTorrent protocol.

7

Chapter 2

Background

This chapter aims to provide background information on the overall supply chain
industry and the technology that is being used to improve it. Following the back-
ground information there will also be an overview of the related work in the fields
of distributed storage and data availability. As BlockTorrent is a solution based
on blockchain technology the related work and background will have a focus on
solutions that involve blockchain.

2.1 Technology Background

2.1.1 Blockchain

Blockchain technology is a distributed and decentralised digital ledger that is used
to record transactions across many users in a way that is secure, transparent, and
permanent. It was originally developed in 2008 [2] by an anonymous person or
group using the pseudonym Satoshi Nakamoto as a way to facilitate transactions on
a decentralized digital currency called Bitcoin. At its core, a blockchain has two main
components, a data structure and a consensus algorithm. Usually, the data structure
will consist of a chain of blocks, where each block contains a list of transactions.
Each block in the chain is linked to the previous block through a cryptographic hash
function, which ensures that once a block is added to the chain, it cannot be altered
or deleted without invalidating the entire chain. A consensus algorithm is a protocol
that can be used by a network of users to come to an agreement or make a decision
without the need for consistent authority [15].

8

Chapter 2 Background

Figure 2.1: How blocks are linked inside a blockchain. Source: intellipaat.com

There are many di�erent consensus algorithms in use today [15] and one way
of classifying them in a helpful manner is to use Byzantine fault tolerance (BFT)
algorithms. BFT is a concept in distributed computing that refers to the ability
of a system to function correctly and reach a consensus even in the presence of
faulty or malicious components. This is helpful as when you start operating in
distributed computing environments it is hard to identify all participants. In fact,
cryptocurrencies boast that they allow for secure anonymous entities, so when you
need to be able to stop malicious actors from being able to compromise your network
but you can’t authenticate any entities. There is an added problem as well because
you have all nodes executing the same identical protocol, there is no element of
secrecy in the protocol itself. This means that the protocol has to be resilient when
all of its processes and mechanisms are publicly known [16].

The term ’Byzantine’ comes from the ’Byzantine Generals Problem’, a theoretical
problem in computer science that asks how a group of generals, each commanding
a portion of an army, can come to an agreement on whether to attack or retreat,
despite the possibility of some of the generals being traitors who may send conflicting
messages. The problem is used as an analogy to describe the challenge of achieving
consensus in distributed computing systems where some nodes may be unreliable or
malicious [17].

In a BFT system, nodes in the network work together to reach a consensus on
the state of the system. Each node has a copy of the current state of the system

9

Chapter 2 Background

and can propose updates to it. The system is designed to detect and mitigate
any faults or attacks, such as messages that are intentionally altered or delayed
by malicious nodes, to ensure that the system continues to operate correctly. An
algorithm being BFT is important in blockchain technology, as it is used to ensure
the integrity and security of the network [16]. In blockchains, nodes work together
to validate transactions and add them to the ledger. The system must be able
to reach a consensus on the state of the ledger, even in the presence of faulty or
malicious nodes. Byzantine proof helps to ensure that the system remains secure
and trustworthy, even when some nodes are compromised or colluding.

The decentralised nature of blockchain means that there is no need for a cen-
tral authority or intermediary, such as a bank, to validate or process transactions.
Instead, transactions are validated by a network of nodes, or computers, that are
connected to the blockchain network [11]. The protocol that handles these valida-
tions is known as a consensus algorithm. Each node on the network has a copy of
the entire blockchain, which means that transactions are verified and recorded by
multiple parties in real-time and makes it increasingly di�cult to lie, cheat or misled
other users as they have a full copy of the information as well.

In addition to being decentralised and secure, blockchain technology has several
other key features that make it a popular choice for a variety of applications. These
include:

• Transparency: Because the blockchain ledger is distributed, all transactions
that occur on the network are visible to anyone with access to the network.
This provides a high degree of transparency and accountability, which is par-
ticularly useful in industries such as finance, where transparency is essential.

• Immutability: Once a block is added to the blockchain, it cannot be altered
or deleted. This means that the data stored on the blockchain is permanent
and tamper-proof, providing a high degree of security and trust.

• E�ciency: Blockchain technology enables transactions to be processed quickly
and e�ciently, with no need for intermediaries or lengthy settlement periods.
This can help to reduce costs and increase e�ciency in industries such as
supply chain management and real estate.

• Smart contracts: Blockchain technology can be used to facilitate the creation

10

Chapter 2 Background

of self-executing smart contracts, which are computer programs that automat-
ically execute the terms of a contract when certain conditions are met. This
can help to reduce the need for intermediaries and increase the e�ciency and
transparency of contract execution.

The concept of this data structure has been around since the early 1990s in a
data structure known as Hash chains, the integration of the data structure and
consensus algorithm is where the true novelty and brilliance of bitcoin lies. This
small integration of two technologies is what led to cryptocurrencies, Non-Fungible
Tokens (NFTs) and Web 3.0 as a whole.

Overall, blockchain technology has the potential to transform many industries by
providing a secure, decentralised, and e�cient way to facilitate transactions and ex-
change value [18]. These new ways of exchanging information can also help improve
trust in the information itself and in systems as a whole. While it is still a relatively
new technology, it has already been adopted by a variety of industries and is likely
to continue to grow in popularity in the coming years.

2.1.2 BitTorrent

BitTorrent is a peer-to-peer file-sharing protocol that was first developed by Bram
Cohen in 2001 [19]. It is a decentralised method of sharing large files over the
internet that has become one of the most popular ways to distribute files, such as
movies, music, and software. BitTorrent works by breaking files into smaller pieces,
which are then shared among a network of users. This allows users to download and
upload files segments simultaneously, making the process faster and more e�cient
than traditional file-sharing methods.

One of the key benefits of BitTorrent is that it uses a distributed network of
users to share files, rather than relying on a centralised server. This means that
files can be downloaded and shared from multiple sources, making the process faster
and more resilient to network failures. Additionally, BitTorrent’s use of smaller file
pieces means that users can download only the parts of a file that they need, rather
than having to download the entire file all at once. This can help to reduce band-
width usage and improve download speeds. This aspect of BitTorrent is similar to
blockchain’s decentralised trait, as both BitTorrent and blockchain exist exclusively
in peer-to-peer networks.

11

Chapter 2 Background

However, BitTorrent has also been associated with piracy and copyright infringe-
ment, as it is often used to share copyrighted content without permission. This
has led to legal challenges for BitTorrent and its users and has prompted e�orts
to develop more legal and legitimate uses for the technology. One of those uses is
by game development giant Activision Blizzard. Blizzard uses a custom BitTorrent
client to distribute updates for its games, including World of Warcraft, StarCraft
II, and Diablo 3. This helps speed up downloads for everyone by allowing people to
share their upload bandwidth with others, leveraging this previously unused band-
width tends towards faster downloads for everyone. Of course, it also saves Blizzard
money on their internet usage bills as well as bringing legitimacy to a notorious data
exchange protocol.

Even with its association with piracy, BitTorrent has proven to be one of the
fastest file-sharing protocols currently in use. Its e�cient file size and leverage of
every user’s bandwidth make it a good fit with blockchain. If integrated correctly a
system with both blockchain and BitTorrent could attempt to speed up information
transfer. Both BitTorrent and Blockchain exist on P2P networks leading to the
question of how are these two technologies best integrated.

2.1.3 Distributed Storage

As mentioned blockchains are immutable and generally you need all blocks in the
chain to be able to correctly validate new transactions. This leads to a problem
as blockchains become more popular and have increased tra�c, where do we store
all of the blocks? There is also the question of redundancy, if a blockchain requires
every user to store every block, there is 100% data redundancy for each user. Whilst
this brings security and legitimacy to certain blockchains (such as bitcoin), there are
many applications where it is infeasible or improbable to expect every participant
to store every block and/or transaction, a supply chain for instance is one of these
applications.

The bitcoin blockchain network has grown consistently over the 14 years since
its inception. As seen in Fig 2.2, the network is currently over 460 GB in size.
A blockchain operating in a traditional fashion would expect all of its users and
nodes to store a full copy of all that information. It would also require any new
users wishing to get an up-to-date copy of the blockchain to wait until they had

12

Chapter 2 Background

Figure 2.2: Size of the bitcoin blockchain over the years.

completed a 460 GB download. Even with the fast internet speeds of today that
could take days to complete and it is unreasonable to expect that from an everyday
user. A common approach to minimise this is by having di�erent nodes for di�erent
purposes. There are many types of nodes but the main ones that can be seen on
almost any blockchain are full node, light node and miner/validtor node.

1. Full Node: This is a complete copy of the blockchain and can validate any and
all transactions being submitted to the blockchain. They maintain a complete
and accurate copy of the chain. For bitcoin this would be all 460GBs.

2. Light Node: This is a lightweight version of a full node where a complete copy
of the blockchain is not required. They generally store the most recent blocks
and can validate new transactions, but cannot look back past the first block
they stored. These are designed to run on lightweight devices with bandwidth
or storage limitations. If a light node is missing any vital information it will
communicate with a full node until it has all the information required.

3. Miner/validator Node: This node is responsible for adding new transactions
to the blockchain. How this is done is dependent on the consensus algorithm
employed by the blockchain. For bitcoin, this is Proof of Work (PoW) and
for Ethereum, this is Proof of Stake (PoS). This is where complex calculations
are being executed and generally, they do not store a copy of the blockchain,
rather just the most recent blocks or any other information required to validate
and add transactions.

The problem of large data storage a�ects all blockchains and has led to a large
research area of computer science, namely distributed storage, and at the core this
is one of the problems this thesis is attempting to solve.

13

Chapter 2 Background

There is also the concern of how do we get around storing data in a distributed
fashion. We could force supply chain participants to use a blockchain but whose
servers or computers are being used to store the data? Most large entities will want
to use centralised storage solutions as they most likely will have sensitive information
to protect and more than anything else, they do not trust the other participants to
handle their data securely. This forces any solution that wants to be adopted into
having separate storage solutions or not being able to store any data of importance
on the blockchain.

2.2 Related Work
This section will outline the current work that has been done in the field of data
availability in distributed systems, starting with two tables that summarise the
largest pieces of work and their shortcomings.

Related Work Decentralised Availability Privacy
Ethereum Swarm [20] X X ◊
IPFS [21] X ◊ ◊
BTT [19] X ◊ ◊
BigChainDB [22] X X ◊
IoTSmartContract [23] ◊ ◊ X
Controllable BC Data [24] ◊ X X
Secure IoT [25] X ◊ X
BlockTorrent [Our Work] X X X

Table 2.1: Summary of BlockTorrent’s comparison to related work.

Table 2.1 gives a summary of the key features used in related literature and
production systems. This section will provide a brief discussion of the related work
in distributed data storage, data sharing, and data availability.

The authors in [26] present a survey of the current Distributed File Systems
(DFS) and their integration with blockchain. They discuss two main solutions in
Ethereum’s Swarm and IPFS and compare the two via a wide range of metrics.
They also provide a seven layer framework that any DFS should have, that consists
of identity, data, data-swap, network, routing, consensus and incentive layers. In-

14

Chapter 2 Background

Related Work Integrity Generalised Data Store
Ethereum Swarm [20] X X
IPFS [21] X X
BTT [19] X X
BigChainDB [22] X ◊
IoTSmartContract [23] X X
Controllable BC Data [24] X ◊
Secure IoT [25] ◊ ◊
BlockTorrent [Our Work] X X

Table 2.2: Summary of BlockTorrent’s comparison to related work.

creasing scalability of the framework and the privacy of the users while sharing data
are mentioned as the fundamental challenges and future research directions.

In [27], the authors discuss the major issues and challenges for data storage in
blockchain. The proposed solution stores the data in an o�ine storage medium and
the corresponding hash in the blockchain. It also mentions "BigchainDB", which
enables blockchain-like trusted transactions on top of an existing modern distributed
database system. The authors further discuss the issues with blockchain storage such
as the impact on the "Right to Forget". The paper does not mention any methods
to handle data distribution or splitting up data for e�cient storage, access, and
availability.

The authors in [23] discuss a system where data is encrypted and stored using a
Trusted Computing Environment - Intel SGX, and the corresponding hash of the
data is stored in the blockchain. A third-party who needs to access the data can
request the data and check integrity via the hash. The system does not have a data
splitting mechanism for splitting and reconstructing information which can lead to
bottleneck congestion when the network is busy. There is only one host of the data,
i.e. the data owner, hence, it can be very di�cult for other parties to acquire that
data. There is no distribution protocol mentioned as they attempt to solve the
challenge of data management through trusted environments. The Intel SGX can
be used to provide this environment but it forces users of the system to buy specific,
potentially expensive hardware.

The authors in [24] propose a system that stores documents in a blockchain-based
cloud server and keeps track of the changes being made to the documents. Any

15

Chapter 2 Background

user of the network can upload a document to the system. If the document is to be
altered by another user, then he has to send the changes to the owner in the form
of encrypted messages, which have to be validated. There is a Trusted Authority
(TA) which has control over the network. All the requests are sent to the TA, which
keeps track of the changes made to the document, also centralising the system. The
TA has the veto power to cancel any changes to a document as well as monitor the
user’s identities and behaviors. Moreover, the documents are stored in a cloud server
furthering the centralisation of the network. Therefore, if the TA acts maliciously
or the cloud server is accessed by a malicious party, then the security can be easily
breached. The system relies on standard networking protocols for data distribution
and access and does not provide functionality for splitting up documents, which can
lead to slower access times in the network. A system that relies on a TA could be
improved by using a smart contract to manage the TA’s actions on the network and
depending on the complexity of the contract, act as an authority figure itself.

In [19], the authors propose BitTorrent Token (BTT), a crypto token that is
attached to the BitTorrent network. It is used as a reward for users that seed
content which incentives more users and creates a more active network, overall
boosting download speeds. Users can then use these tokens to pay for a faster
download speed from other users. The token will be integrated with the BitTorrent
File System which is a proposed decentralised file storage system that will make
use of the millions of BitTorrent nodes. The main purpose of BTT is to facilitate
faster downloads for the torrent and file storage networks and not guarantee data
accessibility.

In [25], the authors propose a system that splits the data into data chunks and
then distributes the data chunks among the nodes using a proximity metric. The
system is structured into two planes: control and data. The data plane uses a cloud-
based service to store the data. The control plane is built on a blockchain and keeps
the access control policies and metadata on the stored data. To reduce the storage
and bandwidth requirements, data is compressed before encryption. The trade-o�s
of their proposed system, such as the data availability vs. the number of database
replications are not discussed. Similarly, they have not considered how a party can
reconstruct the whole data from the distributed data chunks.

In [28] the authors propose using Shamir’s (k,n) key sharing technique in combina-
tion with a partitioned blockchain to improve data integrity and privacy. Blocktor-

16

Chapter 2 Background

rent also uses this key sharing technique and it will be explained in detail in Section
3.2.2. They formulate a cloud storage system that is able to distribute data storage
amongst the peers on the network, however the system does not guarantee data
availability. The authors do not provide an implementation and their evaluation is
theory based.

The authors in [29] propose a secure online storage system that splits up the
storage of information and metadata. They make use of the blockchain to store
the metadata and distribute information over a P2P network similar to BitTorrent.
The system relies on users to create their shared secrets independently which does
not guarantee availability. The authors also do not provide an implementation or
performance evaluation.

In [30], the authors propose an improvement to the BitTorrent protocol by intro-
ducing agents known as replicators. These replicators are used to optimise the file
download speed in BitTorrent networks by alleviating the strain on the seeders of
popular files. The authors provide proof for how these agents increase the download
speed for other peers on the network. This solution focuses on popular files which
change over time, so it is not suitable for private data that may never become pop-
ular. The paper also lacks a security and privacy discussion around replicating data
and relies on the security present in BitTorrent.

2.2.1 Research Gap

So far, distributed storage approaches have been unable to strike a balance between
protecting the sensitive information of data owners and ensuring data availability
and integrity to authorised parties. The current state of the art does not o�er
solutions that distribute, route, find and reconstruct chunked data, rather they
focus on using the immutability feature of blockchain to store the data hash. Related
works also lack a thorough privacy and security evaluation, thus leaving room for
future work to address these challenges by providing discussions and evaluations of
potential solutions.

17

Chapter 3

BlockTorrent

This chapter outlines the details of BlockTorrent using supply chain applications as
an example scenario. Accessing information in large supply chains is a challenging
problem. This is largely due to the ownership of the information, as each individual
organisation has sole ownership of their captured data and there is currently no pro-
cess to guarantee access to that data. Ideally, supply chain agents would act in good
faith and there would be no need for third parties to access the private information of
a supply chain participant. However, due to imperfect processes, there are disputes
and delays at many stages of the supply chain. Each of these disputes can cause an
expensive and lengthy resolution process which incentivises companies to miscon-
strue the information they present to a mediator. Hiding, manipulating or claiming
ignorance only furthers the delay, impacting more participants and increasing costs.

BlockTorrent is a privacy-preserving protocol that ensures data availability during
audits. BlockTorrent combines blockchain technology as the underlying platform,
to ensure immutability and availability through replication, and the BitTorrent pro-
tocol to share large amounts of data chunks with each participant, which enhances
data privacy through data splitting. BitTorrent has been proven to be an e�ec-
tive file-sharing protocol in P2P networks, and it further improves BlockTorrent’s
transfer times, allowing for near real-time data sharing.

Each participant in the supply chain is incentivised to share supply chain-related
data but in a way that it is secured from non-authorised parties. This incentive is
twofold: firstly, BlockTorrent uses penalties for non-compliance, which can be finan-
cial or in extreme cases result in removal from the system, furthering the incentive
for honest participant behaviour. A point of consideration here is that in a real
world application it can be hard or even impossible at times to completely remove

18

Chapter 3 BlockTorrent

a participant from a network, in these cases the fine would need to be large enough
to incentivise honesty. Secondly, a participant honestly complying with BlockTor-
rent will be able to provide reliable evidence that shows they are adhering to legal
industry regulations, if relevant. Since the data is being shared as it is captured,
the chance of it being manipulated in favour of the participant is slim, which helps
verify compliance.

First, we will introduce the network layers and their interactions within the system
architecture. BlockTorrent relies on three key networks set up in parallel in order to
reduce bottlenecks in network tra�c. After, we will outline the functionality that
the proposed system o�ers and describe how it solves the data-sharing challenges
explained in the previous sections. While we use a supply chain as an example
scenario, it should be noted that this solution is application-agnostic and can be
used as a data-sharing mechanism within any information system.

3.1 System Architecture
In this section, we outline the system architecture for the data-sharing framework
defined above. First, we define the key entities of the architecture:

• Participant: Any organisation that is a part of the supply chain employing
BlockTorrent. This could be the supplier, transporter, retailer or an authority
representing the local, state or federal governments.

• Admin Nodes: A group of nodes, one for each participant that is responsible
for accessing all layers of the network. These nodes monitor and maintain the
data-sharing mechanism for each organisation.

• Auditor: A unique participant that is responsible for auditing the supply chain
data and is the entity that is responsible for mediating the dispute resolution
process between participants.

• User: All other users interacting with the system such as a buyer.

The participants involved in the supply chain jointly form a consortium blockchain
where they are able to communicate and exchange data. This blockchain will be
referred to as the main chain. Each organisation also has its own private database

19

Chapter 3 BlockTorrent

Main Chain and

Overlay network

Auditor

Participant

Participant

Participant

Admin

NodePrivate

Database

Admin

Node

Admin

Node

Admin

Node

Figure 3.1: A high-level overview of the proposed architecture.

that contains the associated data of the sensors and any other information required
for processes along the supply chain. This database is owned and controlled by the
participant and is referred to as the private database layer. Each participant is a
member of the overlay network, which facilitates all o�-chain communication for
BlockTorrent. The admin node for each participant has access to the main chain,
the overlay network as well as its organisation’s private database in order to carry
out the data-sharing mechanism.

BlockTorrent can be used with a private database of any form, including another
blockchain. This private chain is secure from other participants on the main chain
but also allows members from one participant to share and validate information
amongst themselves. Fig. 3.1 displays the basic setup for a participating organisa-
tion.

As mentioned earlier, there are three key components: the main chain, the private
database and the overlay network.

Main Chain: Serves as the interface between organisations and BlockTorrent.
Each participant in the supply chain has access to the main chain and the ability to
read and write transactions. Participants are added to the main chain when they
join the supply chain consortium and use it as the source of truth in the network.

20

Chapter 3 BlockTorrent

Figure 3.2: The layers and interactions of BlockTorrent architecture

The main chain facilitates the sharing of encrypted data between the parties. This
includes both participant-to-participant data sharing and audit requests. The pro-
tocol has been designed to limit tra�c on the main chain as it is distributed between
all participants and can cause congestion in the network. As a result, metadata of
shared chunks and decryption keys for these chunks are stored on the main chain.

Private Database: The private database is used for each individual member’s
private business data. Its purpose is to facilitate the use of the data while securing
it from the public network. This can be any type of database, the only requirement is
that the data is accessible from a node capable of performing BlockTorrent functions,
i.e, not a computationally-constrained device. The private database can be in any
format required and depending on the needs of the system can choose to prioritise
security, transparency or privacy.

Overlay Network: This is the network that facilitates all non-main chain commu-
nication and storage. The chunks of data are distributed on the overlay network
as per the BitTorrent protocol. Auditors on the overlay network will interface with
BlockTorrent’s main chain to access the metadata of a chunk and then request that
chunk from a peer on the overlay network. The admin node consortium, an o�-chain
network consisting of at least one admin node from each participant, resides on the

21

Chapter 3 BlockTorrent

overlay network. This consortium is responsible for ensuring each file passed to the
overlay network is split and distributed in a random manner. This is achieved using
hashed sharding [13] and is explained in Section 3.2.1.

3.2 System Functionality
Note that any solution to this problem is going to have to decide between prioritising
security or privacy as there is a clear trade-o� between them when discussing data
availability. Table 3.1 shows the design decisions made while developing Block-
Torrent and how they match up with requirements of a data availability system.
Overall, there is a trade o� with how much privacy you want to give participants
and their data in the system, but certain sacrifices have to be made in order to
ensure data availability at all times.

If the decryption keys are kept only by the owner of the file, an owner could
’lose’ the key making the corresponding files inaccessible. This is a similar scenario
that was highlighted in Section 1, where a participant could use BlockTorrent but
refuse to share the decryption keys when requested. To address this security risk a
key distribution mechanism, similar to Shamir’s secret sharing scheme [31], can be
implemented which ensures the availability of keys when requested.

The system introduces a data splitting function that is employed to ensure data
availability while preserving the privacy of the data. Organisations that are com-
plying with BlockTorrent will share the encrypted data they capture as well as the
associated decryption key, which will be discussed in Section 3.2.2. The data is split
and shared across all participants using hashed sharding to randomly distribute the
chunks between participants, this is explained in more detail in Section 3.2.1. A
table of contents for each file is generated as the file is chunked and distributed,
this is referred to as the master table of that file. There is one master table per
file distributed in BlockTorrent. Participants send acknowledgements when chunks
are received which are added to the table for that file. Once all chunks have been
distributed the register is encrypted and sent to the main chain along with the
decryption keys for the file and the master table.

To access the stored data, an auditor must request access to the decryption key
through a smart contract on the main chain. This access request is recorded and

22

Chapter 3 BlockTorrent

emitted as an event to the entire network to ensure that auditors are only accessing
the data when needed. Broadcasting this event is a deterrent to any unauthorised
access by an auditor or even colluding participants. As the organisation has no
influence on data access once it has been stored in BlockTorrent, data accessibility
is guaranteed. As the data is stored in near real-time, the ability of an organisation
to misrepresent the data is also lowered as it is harder to know in advance how you
want to misrepresent information.

The system must support two main functions: storing information and retrieving
information. We describe these functions below but first we need to explain two key
concepts that BlockTorrent utilises, the Hashed Sharding and the key management
mechanism.

3.2.1 Hashed Sharding

Hashed sharding [13] is the technique used by the admin node consortium to deter-
mine where each chunk is being sent.

First, each participant is given a range of hash values for which they are respon-
sible. Then each chunk is hashed and sent to any peer that is responsible for the
range that the digest falls into. To ensure accessibility, three separate hash functions
are used, allowing the chunks to be replicated and stored by multiple peers. Using
di�erent hash functions allows each peer to only maintain one range of hash digests
while still securely replicating the data and preventing network failure [32].

As each chunk is processed at the admin node consortium it is hashed by each
node, using the pre-determined hash algorithms and then digests are compared. As
long as the digests match, that chunk is distributed to every participant that is
responsible for the range in which each digest falls. This concept is well used in the
sharding of the Ethereum Network which has proven that sharding can be used to
e�ectively grow distributed databases in a scalable manner.

3.2.2 Key Management

The key management system has the challenging role of generating, distributing
and securely storing the key for the encrypted file. To ensure that privacy concerns
are met this key needs to be shared privately. BlockTorrent uses Shamir’s Secret

23

Chapter 3 BlockTorrent

Sharing (SSS) technique [31] to first split up the key into distinct shards. SSS has
the unique property that, if the key is split into n parts any k can recreate the key
in its entirety. This is the core idea behind key management in BlockTorrent. Each
key is split into n parts where n is less than the total number of participants and k
is agreed upon by all participants beforehand. Then the key shards are distributed
to participants randomly. How this is achieved is explained in Section 3.2.1.

The basic algorithm for SSS uses the concept of Lagrange interpolation theorem,
specifically that k points on the polynomial uniquely determine a polynomial of
degree less than or equal to k-1. For instance, 2 points are su�cient to define a line,
3 points are su�cient to define a parabola, 4 points to define a cubic curve and so
on.

SSS has its strengths making it a good fit for many applications. These strengths
include:

1. Secure: The method of creating the keys is based on a cryptographically se-
cure process and is known to have information-theoretic security. That is,
it is considered safe against adversaries with unlimited computing power and
resources.

2. Minimal: The size of each share does not increase with the size of the secret
being shared

3. Extensible: Shares can be added or deleted without a�ecting the existing
shares

4. Dynamic: Security can be improved by periodically changing the polynomial
used to generate the shares

5. Flexible: A di�erent number of shares can be given to di�erent participants so
that important entities can unlock the secrets themselves while less important
participants would have to collude to get the required number of shares

The main weakness of SSS is that whilst it can split up a secret into multiple
shares, it does not have a mechanism for verifying that a specific share is part of
a specific secret. Although SSS provides a mechanism to share a secret between
multiple parties, there is still the challenge of verifying that each share is part of
the same key. This is because the splitting of the original decryption key happens

24

Chapter 3 BlockTorrent

on chain without any visibility or influence from participants. The shards are then
automatically placed in on chain private storage for each participant meaning that
the location of these shards is unknown. For this reason, the shards are used to
build a Merkle Tree [33] this Merkle Tree is used to generate cryptographic proofs
for each shard. Each proof is also stored on the main chain to be stored as part of
the master table so that participants can verify that shards are from a particular
key. Any participant who receives a shard can use the proof on the main chain to
prove that the shard is valid and a part of the correct key. This process is similar
to the Zero Knowledge Proof used in ZCash [34] except here, each participant acts
as a prover for their own keys and a verifier for other participants’ keys.

The secret keys are passed to the blockchain network using transient fields, which
are ways of providing arguments to functions in chain code without them being
recorded [35] and are unique to Hyperleder’s Fabric Blockchain (HLF) Solution. The
key shards are stored in the di�erent organisations’ private data collections. With
this mechanism, no privacy-sensitive data is visible to the main chain, however, each
participant is able to share their private keys with other participants securely. It
also allows auditors to request k shares of a key and recreate the key without any
input from the key owner.

The key management system revolves around a smart contract deployed on the
main chain. This smart contract is agreed upon by participants and each participant
is able to check the inputs and outputs. If a change to the smart contract is required
it must be agreed upon again by all participants. This smart contract is responsible
for receiving decryption keys, splitting them up and storing them in such a way
that a subset of the key chunks can recreate the key. This is based on Shamir’s
Secret Sharing technique [31], but has been adapted to run on top of a permissioned
blockchain. This mechanism can split a decryption key into n-shares but such that
only k of those shares are needed to recreate it. K is known as the threshold and is
decided by the consortium of participants.

Once the smart contract has split a key into shares, it must store these shares
securely with di�erent participants. For this, we make use of a function unique to
HLF. Within HLF there is a world state and private data collection for each user.
The world state is shared with all users and the private state can only be accessed by
a single organisation. The key is split into k-shares, this is done on-chain via a smart
contract and each unique share is stored in a participant’s private data collection.

25

Chapter 3 BlockTorrent

Figure 3.3: Transaction flow for the storing of data.

This smart contract also has access to each participant’s private data collections, so
no matter which peer is submitting the key shard, it can be securely stored in any
of the participant’s private data collections.

The last concern for this key management system is how the key is submitted
in a transaction to this smart contract. According to the endorsement process of
transactions in HLF, the key can be visible to those nodes at the time of endorse-
ment. However, HLF provides a special field called the transient field, mentioned
above, where users can submit data to smart contracts and have it concealed from
endorsers. BlockTorrent uses the transient field in transactions to obfuscate the key
data from other participants.

3.2.3 Storing Data

Fig. 3.3 shows the following steps for storing a new file in BlockTorrent:
Step 1 : New sensor data is collected and sent to the private database.
Step 2 : The new data is detected by the admin node of the organisation. The data
is first encrypted and then chunked. The number of peers the chunk is sent to is
determined by the total number of participating peers and is determined through
hashed sharding as explained in Section 3.2.1.
Step 3a: The admin node consortium while splitting the file and determining the
owner peers, stores a record of each chunk’s hash, owner peers and timestamp which
is sent to the main chain. Owner peers are the peers that were sent a copy of the
chunk. A master table is created for each file and updated with the record of this

26

Chapter 3 BlockTorrent

chunk. Each admin retains a copy of the master table until it is agreed upon and
stored in the main chain.
Step 3b: The admin peer then sends each chunk to the list of determined peers. The
message is in the following format:

Mchunk = (Ce|O|ts)

where Ce is the encrypted chunk, O is the owner of the file and ts is a timestamp.
Step 4 : If this is the last chunk to be distributed, then the master table is completed,
encrypted and submitted to the main chain. This information maintains the system
integrity and has the following format:

Mmastertable = (H(MT)|MT |O|ts)

where H(MT) is the hash digest of the master table, which is used as a unique iden-
tifier for each chunk, MT is the encrypted master table with the chunk distribution
information in it, O is the owner of the file and ts is the timestamp of when the file
was sent.
Step 5 : The key is submitted to the key management smart contract on the main
chain that is responsible for splitting and sharing that key between participants.
This smart contract also builds the merkle tree and key share proofs.

As per the above steps, the decryption key and chunks of a file are all that is
required to recreate a file and all of that information is stored in the master table
for that file. Moreover, this key has been split into multiple parts and can be
recreated by the auditor and a certain amount of participants (the exact amount is
determined by how the key is split). The chunk distribution data is accessible to
the auditor at all times.

Once a mastertable and key combination has been securely stored in the main
chain, an index of the master tables is updated and stored publicly whilst the key
is split and stored securely. These tables are considered a source of truth within
the network and the BlockTorrent mechanism and are what an auditor will use
when determining the location of chunks. Once a transaction is recorded on the
main chain it is considered to be true and any participant found to be out of sync
with the main chain, depending on the actions of the out-of-sync participant, they

27

Chapter 3 BlockTorrent

are either penalised or ignored as a source of information. There are more severe
punishments such as being excluded from the supply chain or having to pay higher
costs as a result of not having accurate information, this is further explained in
Section 3.2.4.

Algorithm 1 shows the pseudo code of what was implemented in the proof of
concept system in regards to storing the data. It explains how an admin node
receives sensor data, splits it up and fills in the master table.

Algorithm 1 Storing Data
1: data Ω Sensor Data
2: MasterTable Ω Array[]
3: ChunksToDistribute Ω Array[]
4: index Ω 0
5: while index < sizeof(data) do
6: NextChunk Ω data[index : ChunkSize]
7: key1, digest1 Ω SHA1(NextChunk)
8: key2, digest2 Ω SHA2(NextChunk)
9: key3, digest3 Ω SHA3(NextChunk)

10: ChunksToDistribute Ω (key1, digest1)
11: ChunksToDistribute Ω (key2, digest2)
12: ChunksToDistribute Ω (key3, digest3)
13: index Ω index + ChunkSize
14: end while
15: for Chunk in ChunksToDistribute do
16: Peers Ω HashedSharding(chunk.digest)
17: MasterTable Ω chunk.key
18: for Peer in Peers do
19: Peer Ω chunk.digest
20: end for
21: end for
22: MTkey, MTdigest Ω SHA(MasterTable)
23: MainChain Ω MTkey + MTdigest

3.2.4 File Retrieval

Fig. 3.4 shows the following steps for retrieving a file using BlockTorrent:
Step 1 : The auditor requests the decryption key shares from the smart contract.
This request can be validated via a vote of the admin node consortium. Once the

28

Chapter 3 BlockTorrent

request is validated, the participants will submit a transaction indicating their key
shard can be accessed by the auditor. When the auditor receives enough number of
key shards they can recreate the decryption key.
Step 2 : The auditor retrieves the master table from the main chain.
Step 3 : The auditor combines the key shards and recreates the decryption key. This
key can be used to decrypt the master table.
Step 4 : For each chunk in the master table, the auditor looks up its location, requests
the chunk from one of the owner peers. If one of the owner peers is unavailable or
denying the request, another owner peer is selected until the chunk is received. The
auditor can then check the hash of the chunk against the hash recorded in the master
table to ensure the chunk is correct.
Step 5 : The auditor uses the keys from the master table to decrypt each chunk,
combines each chunk, computes the hash, and compares it with the hash stored in
the main chain. If they match, the auditor has successfully recreated the file.

If any hash does not match its chunk, the auditor requests the chunk again until
all chunks have been acquired and validated. If they cant find a chunk that matches
then a dispute has arisen and a participant has been falsifying data somewhere along
the line.

At no point is the organisation whose files are being audited required to par-
ticipate, significantly diminishing their ability to lie and misconstrue information
during the audit request. There is still the issue of centralisation of power at the
admin node, where organisations could falsify data as it is being recorded. This
can be minimised by having the captured data processed by the admin node con-
sortium before it is processed through the data processing unit, maintained by each
participant.

The functions described in Section 3.2.3 and 3.2.4, participants have access to
mechanisms for sharing data with only those participants that they are engaged
with. An auditor who resides on the main chain can use the data retrieval function
to perform audits on participants. An auditor in BlockTorrent assumes two roles:
(i) mediator for disputes between participants, and (ii) auditor for the network,
either as part of a random inspection or as the result of a fault. The fault could be a
dispute amongst participants or an end user (such as consumer or retailer) receiving a
product that does not reach their satisfaction standard. As an authority, the auditor
manually inspects the relevant products and analyses the relevant information stored

29

Chapter 3 BlockTorrent

Figure 3.4: Transaction flow for file retrieving.

on the main chain. If any party is found to be in conflict with the main chain, they
are penalised. The party at fault would be responsible for all costs related to the
fault, including the fees and the cost of the audit. A financial penalty can also
be applied by the admin node consortium if the party at fault financially profited
from the fault. The penalty should be higher than any potential financial benefits
gained from the conflict so that participants would be incentivised to share data
honestly. BlockTorrent was also designed with a generalised architecture in mind
so each of the components can be changed to accommodate di�erent requirements.
For instance, the underlying storage could be an already established distributed file
storage system such as IPFS or Ethereum Swarm [20].

Algorithm 2 shows the pseudo code of what was implemented in the proof of con-
cept system in regards to recreating data files that have been stored using Block-
Torrent. It explains how An Auditor can request the decryption key shards from
di�erent peers on the main chain, then with a decrypted master table, they can
request each chunk individually, recreate the file and decrypt it.

30

Chapter 3 BlockTorrent

Algorithm 2 Retrieving Data
1: DecryptionKeyShards Ω Array[]
2: No.Keys Ω 0
3: PeerOwners Ω MainChain.peers
4: while No.Keys < Key Threshold K do
5: for Peer in Peer Owners do
6: DecryptionKeyShards Ω Peer.shard
7: No.Keys Ω No.Keys + 1
8: end for
9: end while

10: for Shard in Decryption Key Shards do
11: FinalKey Ω FinalKey + Shard
12: end for
13: MasterTable Ω MainChain(MasterTable)
14: ReceivedChunks Ω Array[]
15: for Chunk in Master Table do
16: for Peer in Peer Owners do
17: NewChunk Ω Peer.Chunk
18: if Hash(NewChunk) == Chunk then
19: ReceivedChunks Ω NewChunk
20: Break
21: end if
22: end for
23: end for
24: CompleteF ile Ω 0
25: for Chunk in ReceviedChunks do
26: CompleteF ile Ω CompleteF ile + Chunk
27: end for
28: DecryptedF ile Ω Decrypt(CompleteF ile, F inalKey)

31

Chapter 3 BlockTorrent

Table 3.1: How the design decisions of BlockTorrent align with the requirements of the

system

Requirement Design Decision
Ensure Data Availability This is the main problem BlockTorrent attempts to

solve. You could argue all decisions while develop-
ing BlockTorrent had this requirement in mind. How-
ever, the one aspect of BlockTorrent that could not
be changed was that in order to guarantee data access
it had to be shared and stored in multiple locations.
Storing data in multiple places is decreases security
and privacy as it increases the number of points of
failure the system has to protect.

Ensure Privacy The requirement of privacy is significant as no busi-
ness or industry would adopt a system that could not
protect its private and confidential information. For
this reason, BlockTorrent attempts to protect all data
stored within the system by encrypting it at the point
of collection and having strict policies around who &
when this data can be accessed

Ensure Security Using blockchain technology provides a high level of se-
curity. Using a sophisticated consensus algorithm and
ensuring that only identified participants join the net-
work BlockTorrent is resistant to many classical net-
work attacks. This is explained in detail with a per
attack analysis in Table 4.1. One of the main reasons
the decision to use blockchain was made is because of
the security benefits that it provides.

32

Chapter 4

Evaluations

This chapter will explain the evaluations on a proof of concept system that was de-
signed and built for this thesis. The implementation of this system will be explained
and the evaluations and results will follow.

4.1 Implementation
The implementation has three interacting components. A detailed description of
them are as follows:

Main Chain: BlockTorrent is implemented on Hyperledger Fabric (HLF) version
2.31, which is one of IBM’s enterprise-level blockchains created for easy integration
with business applications. HLF is a private blockchain that relies on a consortium
to create a secure decentralised shared ledger. The participants in this consortium
network are identified by predetermined certificate authorities, either agreed upon
before or organised separately by each participant. HLF uses peer nodes to allow
administrators and applications access to the ledger by exposing a set of API’s for
accessing certain parts of the ledger. HLF has two key features that BlockTorrent
takes advantage of and were mentioned previously in Section 3.2. They are, (i) pri-
vate data collections, and (ii) the transient field within transactions. Private data
collections are used to give organisations the ability to store data within the HLF
network but secure it so that only that organisation can access it. BlockTorrent
uses these collections to store the key shares once a decryption key is submitted
to the network. The transient field allows users to submit private information to

1
https://www.hyperledger.org/projects/fabric

33

Chapter 4 Evaluations

the blockchain without allowing validators to view this information. BlockTorrent
uses the transient field to shield the decryption key from eavesdropping when it is
submitted as part of the data storing mechanism. The last vital aspect of the im-
plementation is the smart contracts that were developed and deployed. The smart
contracts were developed in Go v1.11.2 and their main function is to accept and pro-
cess transactions from participants. As referenced in Section 3.2 there are two smart
contracts. The first implements Shamirs secret sharing algorithm and is responsible
for splitting a key into di�erent parts and storing them in participants’ private data
collections. HLF operates with an endorsement policy, which in essence, is a set of
rules that governs how transactions are added to the ledger. An endorsement policy
was developed that allows transactions from one organisation to store key shards in
a distinct organisation’s private data collection but not retrieve them. This is what
allows BlockTorrent to guarantee key storage. The second smart contract accepts
transactions that contain the metadata and master table including the peers that
have stored a copy, hash digest and owner of the file. Depending on the application
this second smart contract could be public within the consortium, as knowing where
chunks are stored is not necessarily a security risk.

Overlay Network: The overlay network was written in Python 3.7. We made
use of Python’s native networking to simulate a P2P network as well as generate
files to share. For encryption and hashed sharding processes, we used the SHA3-
256, SHA-384 and SHA-512 algorithms. Each peer is setup to listen to two events.
The first event is detecting new data in the private database and the second is
listening for incoming packets from other peers. Similar to a BitTorrent network,
a Distributed Hash Table is maintained for storing the address and names of each
peer so that they can easily be found.

Private Database: This component can be any data storage solution that the
private organisation deems necessary. The only requirement for use within Block-
Torrent is that the data can be aggregated into files and that an admin node that
can access the data is also a part of the admin node consortium. For this imple-
mentation, the database was just text files stored on the local computer. In theory,
this can be any database or storage structure that suits an organisation’s needs.

34

Chapter 4 Evaluations

4.2 Evaluation
The evaluation has been divided into two sections, (i) a performance component,
and (ii) a security analysis. The performance evaluation is to prove that the proof
of concept would be capable in a real-world scenario. The security analysis is to add
to the discussion of this thesis around what level of data sharing is reasonable and
could be expected of organisations. The overlay and blockchain components were
tested independently.

4.2.1 Performance Evaluation

We tested the performance of the main chain using Caliper2 on a Linux server with a
Intel(R) Xeon(R) W-2135 CPU with 64GB of memory. In order to evaluate the sys-
tem performance for a realistic scenario, the test network included four participants
each deploying an endorsing peer, a chaincode container and a regular peer. Each
participant also has a process that is simulating the sensor devices by generating
data files. There is also an ordering service running solo for the test network.

The overlay network was tested on an HP Pavilion-15-cc134tx with 16GB of mem-
ory and an Intel i7 processor. The time module in Python was used to calculate
the time required for splitting, distributing, and retrieving files. We studied the
variation in these three metrics as a function of changing the file size and the to-
tal number of chunks for each file. For testing purposes, we considered 100 files
of sensor data being generated, split and distributed by six peers in the network
simultaneously. We retrieve at least two files from each peer on the network each
round. We tested with di�erent file sizes (5,10,15,25,50 MB) of sensor data as well
as a di�erent number of chunks. A test with a particular number of chunks (10, 20,
40, 50, 60, 80, 100, 120, 140, 160, 180, 200) and a particular file size was carried out
100 times and averaged to minimise ant outlying errors. For example, one round of
testing includes a 5MB sensor data split into 50 chunks and distributed among 6
peers to give us the splitting time and distribution time. Lastly, 10 files are retrieved
on a particular peer to capture retrieval time. This process was executed 100 times
for each pair of file size and number of chunks. So, in total, the network has been
tested 5500 times to obtain consistent results and ensure that any outlier tests can

2
https://www.hyperledger.org/projects/caliper

35

Chapter 4 Evaluations

Figure 4.1: Time taken to split files into chunks

be eliminated.
Fig. 4.1 shows the results for splitting time with changing file sizes and number of

chunks. For files smaller than 10MB the splitting time remains almost constant. On
the other hand for larger file sizes (more than 10MB), the splitting time is higher
and decreases slightly for larger number of chunks (110+). Splitting time scales
with file size and not the number of chunks. This is because the larger the file size
and number of chunks, the longer each chunk takes to slice, hash and encrypt, all
of which increase the splitting time. Therefore, we should choose the number of
chunks based on the size of the file. If the file is less than 10MB than the number
of chunks can be reduced to optimise distribution time, as seen below. Therefore if
the file is larger than 10MB then a larger amount of chunks should be selected, our
results indicate a chunk number between 110 and 150 would be the fastest.

Fig. 4.2 shows the results for distributing file chunks to the peers. To evaluate
the distribution time, we used an acknowledgement signal to indicate the end of the
distribution process. Each peer sends an acknowledgement to the peer from which
it received a chunk. The di�erence between the start of the distribution process and

36

Chapter 4 Evaluations

Figure 4.2: Time taken to distribute chunks across the network

Figure 4.3: Time taken to retrieve chunks and recreate the file

37

Chapter 4 Evaluations

the time at which the final chunk is received is the distribution time. For each file
size, the distribution time increases with an increase in the number of chunks. With
almost no e�ect on the file size, although if the file size was to become drastically
large it would become an issue again. The increase in time for smaller file sizes is
steeper than for the larger file sizes, this is obvious past 150 chunks. For smaller file
sizes the e�ect of the number of chunks dominates distribution time, whilst for the
larger file sizes the e�ect of the size of chunks dominates. Hence, if we want faster
distribution in our network, a smaller number of chunks should be selected.

Fig. 4.3 shows the regeneration time which is equal to the di�erence between
the time at which the retrieval of the first chunk starts and the time at which the
complete file is regenerated and verified against the hash in the master table. The
regeneration time remains almost constant, with respect to the number of chunks
and increases with respect to file size. As the number of chunks increases, the
size of each chunk requested reduces. Hence, the increasing number of chunks and
the decreasing chunk size neutralise each other’s e�ect. On the other hand, the
regeneration time increased with the increase in the size of IoT data files. This is
because with an increase in size, the amount of data to be put into the regenerated
file increases.

It is to be noted that with an increase in the number of chunks, the size of each
chunk reduces. These two changes have counter intuitive e�ects on the results, as the
number of total chunks gets larger, the size of those individual chunks is smaller and
faster to distribute across the network. These times would be a�ected by the total
time it takes to split up a file into these chunks but the splitting time is constant
for file sizes under 10MB.

For smaller file sizes the splitting time, distribution time and retrieval time are
similar, however, for larger file sizes the splitting and retrieval time values are sig-
nificantly higher than the distribution time. The file distribution was executed on
a local network which would have a lower latency on average than a live network.
The file sizes and number of chunks should be determined based on the application
needs. Applications requiring faster distribution time can choose smaller number of
chunks to reduce the impact of distribution time.

For benchmarking the blockchain layer, it was split it into two key parts, storing
and splitting the private key and querying the splits. For storing we tested splitting
the key up into 2,3,4 and 10 shards and then storing them in random participants’

38

Chapter 4 Evaluations

Figure 4.4: Transaction throughput and latency of storing and splitting the private key on

the blockchain.

private data collections and recorded the throughput and average latency for each
transaction. The transactions were simulated using Hyperledger Caliper. Fig. 4.4
shows latency and throughput results for these tests. The system reaches saturation
around 35 tps and we see a small drop o� to around 30 tps between splitting the
key into 2 shards and 10 shards. The latency increases with send rate as once the
system is at saturation, higher send rates just create larger queues. The di�erence
in throughput between splitting the key into 2 or 10 shards is small, indicating
that the secret sharing implementation on-chain is a bottleneck in the system. This
can be resolved by having participants aggregate files before encrypting and sharing
them with BlockTorrent. This would reduce the number of keys that need to be
submitted and split up on chain, alleviating some of the issues that come with scaling
this system up.

Fig. 4.5 shows the transaction throughput and latency for querying shards of a
private key. Note this is not the time taken to recombine the shards into the original
key as that can be done o�-chain and will not a�ect the blockchain performance. A
query transaction will execute an access control process on the submitter to make

39

Chapter 4 Evaluations

Figure 4.5: Transaction throughput and latency for querying a specific number of shards

from a particular private key.

sure they are authorised and then will read the shard from the private data collection.
Similar to the key storing benchmark, we tested querying 2,3,4 and 10 shards. The
results show that querying shards is less computationally expensive and does not
reach saturation until after 500 tps. This indicates that the system could handle a
large number of queries and would be adequate to handle a larger-scale supply chain
or similar system.

4.2.2 Security

This section explains how security was considered during the design and imple-
mentation of BlockTorrent. Blocktorrent is a data-transferring protocol and system
architecture that exists exclusively in networks, suggesting that it would be suscepti-
ble to common network attacks as well as specific attacks targeting the protocol and
its processes. BlockTorrent was designed as a decentralised protocol, that is, similar
to bitcoin and other blockchain technologies the protocol is resistant to adversaries
who understand the methods and processes underpinning the system.

40

Chapter 4 Evaluations

The main reason that a security analysis was required is that BlockTorrent is in-
tended to be used by participants that do not trust each other and have an inherent
way to trust each other. BlockTorrent attempts to incentivise honesty and trans-
parency by providing e�cient trades between untrusted parties. In other words,
BlockTorrent will help participants cut costs in exchange for submitting informa-
tion in a distributed fashion. There is always the case that data provided by a
participant could be privacy sensitive, thus protecting data security is an essential
and vital feature. Unlike centralised servers, the data in a distributed system is
required to be shared across multiple participants. Simply put, the more copies of
data that is shared the more points of failure are created. To be completely sure
that data was not being leaked BlockTorrent takes measures like splitting data into
chunks and encrypting all chunks before they are transferred but that doesn’t stop
all attacks and it opens the protocol up to other attacks such as collusion or data
falsification. For these reasons common client-server defences are not appropriate
and other measures are taken to protect against these issues.

To combat some of these network attacks critical areas of BlockTorrent need to
be identified. For the purpose of this analysis we assume that data transfer is
e�cient and complete, that is, if a chunk of data is sent then it is received. Middle-
man attacks a�ect all networks and as BlockTorrent only transfers encrypted data
there is no need to discuss middle-man attacks in this thesis other than packet
sni�ng which is discussed further on. With that assumption, a clear starting point
for vital components in the system is the key management. The decryption keys
being shared along with the encrypted files and encrypted master table implies that
the most critical security risk is access to the keys. HLF allows for transient field
parameters, which allows us to pass the keys to the blockchain without other peers
seeing them. The keys are then split up using SSS on-chain, giving no participant
any control over the process. Participants during the endorsement policy creation
will decide in how many shards each key will be split into and how many shards are
required to recreate the key. They will also agree on the random algorithm used to
determine which shards are shared with which peers. The idea here is that if these
restrictions are put in place in advance it is harder for a malicious actor to game the
system or collude. In the case that participants are found to be acting maliciously
or fraudulently the smart contracts can be updated. If the other participants agree
on new security requirements because of changes to entities or components within

41

Chapter 4 Evaluations

the system then these new changes can be reflected in smart contract updates and
using HLF’s update policy it would need to be approved via the endorsement policy
setup at the network’s inception.

As for accessing these key shards, an endorsement policy can be created that
reflects the privacy and security concerns of the network. This endorsement policy
can require a large proportion of participants to agree on access to any shards. This
minimises the chance of collusion attacks as an adversary would need to compromise
a large number of participants or get exceedingly lucky that the small number of
compromised participants get all the shards to a specific master table decryption key.
The adversaries would then also need the compromised master table and decryption
key to be for the set of data that is actually useful for their attack. As an example,
a group of participants could collude to share shards that are randomly assigned
and transferred to them. But as this is a random process in the cases where the
group receives every shard for a decryption key and master table there is the chance
that this information is useless or it is too late for them to use this information
maliciously.

Another threat is where an adversary launches a sni�ng attack to try and de-
termine how much data a particular participant is generating and potentially gain
insights that would allow them to manipulate supply chain processes in their favour.
To defend against this, BlockTorrent encrypts all files and tables regarding file dis-
tribution and then passes the key to the blockchain in a transient field. Network
tra�c can still be monitored, but no information about the key is leaked. Each shard
is also the same size so the only information that is leaked is which participants are
sharing more files than others. Based on the supply chain where BlockTorrent is
implemented this could even be public knowledge. For example, a logistics company
monitoring food supplies in a refrigerated truck might report temperature data ev-
ery minute whereas a retail producer may only record data for when deliveries are
accepted by them.

One of the last lines of defence in BlockTorrent is the audit system. Even though
the main reason to implement BlockTorrent is to guarantee data availability for
something like an audit, the system itself is designed to incentives honest and trans-
parent users instead of relying on audits. This is mainly due to the fact that audits
are costly and time-consuming and it is usually in the best interest of all participants
to keep the supply chain operating at maximum e�ciency. It is well documented

42

Chapter 4 Evaluations

[1] that supply chain audits are a disruption to the general flow of goods and ser-
vices. To defend against malicious participants who are suspected of attacking the
network an audit can be called for. If a dispute is raised between two participants,
then an authority already established on the main chain can act as a mediator using
the main chain as a source of truth. Any participant detected with contradicting
evidence on the main chain is penalised via a financial penalty or removed from the
network. The goal of BlockTorrent is to not be used but in the case that an audit
is occurring it can guarantee data availability without any interaction from the two
disputing participants. Whilst this will not solve all disputes it will go a long way in
helping supply chains with visibility into their own processes as well as incentivise
all supply chain participants to act honestly as there can be serious repercussions
for not complying.

4.2.3 Potential Attacks

This section outlines potential network attacks that could be executed on the Block-
Torrent protocol. As the protocol itself is an integration of a secure technology
stack, blockchain, and a data transfer protocol, BitTorrent, the security risks pre-
dominantly lie within the network environment and malicious users.

Table 4.1 summarises the identified attacks that could be launched against Block-
Torrent and a brief description of how the attack could be executed. These are just
a summary of potential attacks but depending on the network that BlockTorrent is
deployed on it could be subjected to more attacks. This section will now explain the
adverse e�ects these attacks have on the network and explain the measures designed
in BlockTorrent to mitigate the damage or eliminate the attack completely.

Data Spoofing
Data spoofing is when an adversary or malicious user falsifies the data they are
entering into the system. A peer or authority requesting data from this participant
could receive misleading information that cannot be verified using BlockTorrent.
The data is shared after it is encrypted and so the incorrect or inaccurate data
would not be noticed until it was required to be looked at.

To counter this attack BlockTorrent forces participants to share encrypted data
in near real-time. A malicious participant would need to know in advance what to
modify the data with, which can be exceedingly di�cult to accomplish consistently.

43

Chapter 4 Evaluations

Table 4.1: Identified security attacks and proposed countermeasures using BlockTorrent.

Attack Description
Data Spoofing[36] A malicious admin node could alter the sensor data as

it is being recorded and stored in the private network.
The admin could then choose what to store in the net-
work, allowing a participant to falsify information that
would be used in a trade or an audit.

Sybil Attack[37] A malicious node pretends to be multiple nodes on
the network and trick other nodes into sending it more
chunks than intended. The worst case is a single node
controlling all the chunks of a file. This node then has
control over the distribution of that file.

DoS/DDoS Attack[38] Adversary floods the network with invalid transactions.
51% Attack[39] Adversary takes control of more than 50 % of the ad-

min nodes
Sni�ng Attack[40] Adversary seeks to analyse network tra�c to obtain

insights into participants’ data.
Collusion Attack[41] Adversaries can collude with one or more nodes to re-

veal confidential information.

If the adversary was lying about information that is used during trades then they
would be found out once a buyer received items that did not match the main chain
information. Otherwise, they will be discovered if an audit is requested. There are
businesses where it would be quite easy to know in advance what data would need to
be manipulated and how, this could be achieved by monitoring the data inputs and
outputs for one year and then simulating what the "best" values would be for your
business. In this case, simply encrypting the data would not be enough, however,
solving this specific challenge is outside the scope of this research and is left as a
direction for future work.

Sybil Attack
In a Sybil attack, the chunks being transferred are of an encrypted file so the ad-
versary would only get information on the size of the file and chunks. BlockTorrent
also identifies each user on entry to the network such that if a node wanted to im-

44

Chapter 4 Evaluations

itate a node from another participant they would need to register as a node under
that participant or gain access to that node’s private keys to sign transactions as
them. If a node’s private key is compromised and they are aware, a new key can be
created and re-registered in the network as a new participant whilst removing the
old compromised key from the network.

DoS/DDoS Attack
In this attack, the network is slowed down to a point that valid transactions are
rejected or dropped due to throttling. This is done by having a malicious node sub-
mit a substantial amount of invalid transactions causing the validators and admins
on the node to waste compute time on validating pointless transactions. Block-
Torrent identifies the participants on entry, so every node sending files is linked to
a participant as explained in Chapter 3. Any node found to be generating large
amounts of invalid transactions can be identified and have access denied or revoked
as a response.

51% Attack
The 51% attack is when a single adversary or group of adversaries control more than
50% of the decision power in the network, allowing them to dictate what is stored.
BlockTorrent requires votes to change the endorsement policy, any adversaries hop-
ing to attack the internal configurations of BlockTorrent would need to submit all
the corresponding transactions, and whilst they could vote and pass the changes
with the majority of voting power, they would still have to do it on-chain which
means any admin nodes paying attention would see it and raise the alarms.

Hyperledger Fabric can also be configured with custom consensus algorithms and
rules allowing it to design a mechanism that makes the majority attack impossible.
For example, a rule that transactions requesting file chunks must be validated by
all participants removes the potential 51% attack completely. There is a range of
BFT consensus algorithms that can be used with HLF, improving its resilience to
this attack.

Sni�ng Attack
The adversary can gain insights into other participants’ data, potentially revealing
company secrets. As mentioned in Section 3.2, each file is encrypted before being
split and transferred, so only the amount of tra�c will be visible to anyone on the
network, and no private information is leaked. If the amount of information that is
being generated and stored is sensitive you could set up nodes from that participant

45

Chapter 4 Evaluations

to share a consistent amount of data at all times, using dummy data or empty
transactions.

Collusion Attack
If the adversaries can obtain the decryption keys and the data file chunks they would
be able to retrieve the files. However, as discussed above this would require luck
and even then would not be consistent. Of course, if the malicious actors were able
to compromise enough of the participants then the data would become available by
having the compromised nodes share the chunks they receive. They could also carry
out sophisticated attacks by injecting false information into the network through
the compromised node(s).

Adversaries need access to both the keys and file chunks to execute a successful
collusion attack. Even if an adversary gains access to the keys, they would need to
collude with a large number of participants to request all chunks of a file. Block-
Torrent can increase the number of chunks to increase the di�culty of this attack
and change the random algorithm to increase security. In the case that the data
is extremely sensitive you could use multiple randomness algorithms on rotation.
Since all information is eventually stored in the master table it is not a requirement
to use the same distribution technique for every file and chunk. There are also not
many networks that can maintain stability and security when a large number of
participants (greater than 50%) are colluding.

As with most systems, there is not much defence from insider attacks, that is if an
admin of the system or a group of admins in the system decide to collude then the
system would be compromised. In response to this BlockTorrent tries to incentivise
honest actors within the network. This is done with a combination of punishments
for malicious actors and rewards for honest actors. The rewards are mostly realised
with more e�cient transactions between network participants. Rather than being
forced to trust other participants in the chain, you can have trust in the system itself
and be provided with more trustworthy data that is secured and in the event of a
dispute know that a third-party auditor will get access to the required information
or at the very least to discover which participant is acting dishonestly.

Note that at the time of this thesis there were no similar enough solutions to do
an exact comparison. Most solutions in existence today require a trusted third party
to act as the sole arbiter and source of truth within the solution. As BlockTorrent
removes the need for a single entity to be the authority comparisons to similar

46

Chapter 4 Evaluations

solutions has been omitted.

47

Chapter 5

Challenges and Conclusion

This chapter will provide a discussion on the challenges and implications the Block-
Torrent protocol generates. The chapter will first outline the challenges involved in
the design of the system, with a specific focus on the trade-o� between privacy and
security. Lastly, this chapter will conclude the thesis and summarise the research
question, main contributions, results and any future work considerations that were
acknowledged along the way.

5.1 Challenges and Discussions
When designing BlockTorrent there was a clear lack of protocols that guaranteed
data availability whilst also providing adequate levels of privacy. It became clear
that there was not only a need for BlockTorrent but for a protocol that would ac-
tually incentivise participants of supply chains to implement and use it. A simple
solution to the data availability problem is to bring in a trusted third-party partic-
ipant that is responsible for storing any shared data among all participants. This
participant would then hold all the information and e�ectively act as the source of
truth much like the blockchain in BlockTorrent. However, through literature reviews
and conversations with construction supply chain participants, this would be hard
to implement and get o� the ground as it creates a single point of failure for all
participants and their private data. But more so there is no way to ensure that
this trusted third party is actually trusted. This led to an investigation on how a
protocol could ensure data availability amongst all participants in a distributed and
secure manner so that there was no need to trust any single participant or system

48

Chapter 5 Challenges and Conclusion

but rather have trust in the network itself.
As mentioned above, the major trade-o� for BlockTorrent is between privacy and

security. The specific trade-o� occurs in the key management and file distribution
and retrieval components of BlockTorrent. To ensure the privacy and security of
the system both the file and the key need to be distributed. This specifically avoids
the issue of an owner losing the information or delaying providing the information
when requested. BlockTorrent attempts to solve this issue by exploring the gap in
privacy and availability in the context of the integration of blockchain and IoT.
IoT devices can be equipped with state-of-the-art sensors, capable of capturing
substantial amounts of accurate and new data. However, with the advancements of
data capturing devices both in size and accuracy there is the concern that more and
more information is collected there is private data also being collected. For instance,
a resource logistics company that monitored the temperature of their refrigerated
trucks might have temperature recordings taken every minute, however inside the
metadata of those recordings will be location data, date & time data which could
potentially reveal significant insights about the company that they may not want to
be released. Therefore, a discussion about the trade-o� between what information
is considered private and what should be easily available is necessary.

BlockTorrent explores this trade-o� through the key distribution challenge. This
issue occurs whenever a decision about what secret should be kept by the owner
of data to ensure privacy. If the owner keeps the master table or the decryption
key a secret, then they can claim to have ’lost’ the data and the files become un-
available even though they have been distributed on BlockTorrent. However, if a
secret sharing algorithm is used, then the availability of the file is ensured. This
creates a security risk as peers can collude and re-create the decryption key and the
associated files without notifying any authority or admin on the network. The seri-
ousness of the security risk depends on the security requirements of the application,
a construction supply chain may not care whether one hundred panes of glass were
delivered or two hundred as the total construction site will be using over one thou-
sand. Whereas a food supply chain will care whether milk was transported under a
certain temperature to ensure its freshness and overall quality of the product.

The other major consideration is security. A naive design choice would be to store
the raw data on the main chain, but this would lead to potential information leaks.
BlockTorrent employs a di�erent approach where the complete raw data is stored

49

Chapter 5 Challenges and Conclusion

o�-chain and only the transaction metadata, keys and master tables are stored on
the main chain. The raw data is encrypted, chunked and then distributed on a P2P
network that sits underneath the main chain. The P2P aspect of this network helps
secure it as you would need to compromise a participant in order to even gain access
to the network, and even then, packet sni�ng or gaining access to the chunks would
be pointless without the decryption keys.

The master tables contain data for tracing all the chunks of a file in the network.
It can be used to reconstruct a whole file, thereby revealing the private information
of a company. Although everyone in the network can see the transactions storing the
master table, gaining access to the master table, is a little trickier as this information
cannot be used without possessing the decryption key. This is the underlining
security principle of BlockTorrent, data is divided and distributed in such a manner
that even when an adversary gains access to certain information it is useless without
the complete data.

In response to the di�ering needs of supply chains globally, BlockTorrent provides
a mechanism where the level of privacy can be dynamically changed based on the
application’s needs. For instance, a construction supply chain may have lower pri-
vacy concerns than a specialised pharmaceutical supply chain. These supply chains
will have di�erent security regulations and access control requirements, which has
inspired the design of BlockTorrent to be generalised so that it can be integrated
with any supply chain. The degree of privacy present in BlockTorrent can be con-
trolled on a technical level by varying the complexity of encryption used. A stricter
endorsement policy can also be created and agreed upon at any time during the
course that BlockTorrent operates. This can allow for more nodes to recreate files,
and dictate who has control over the random distribution and who the audit au-
thority is. Another way to increase privacy is that participants can agree to share
less data. The goal of BlockTorrent is data availability however this may not be the
need for all supply chains. In the case that only certain data is required to settle
disputes and to keep operating costs down. The overall privacy of the network can
also be determined at the abstract level where we design the role of the main chain
in the system, which can either be a storage medium, a source of truth or a global
world state that keeps track of file locations. If real-time access is not a concern,
then storing whole encrypted chunks on the main chain could be a solution. This
would require larger technical components and better network bandwidth but it is

50

Chapter 5 Challenges and Conclusion

assumed that supply chains with these requirements would also have the relevant
and required technology to operate e�ectively. All of these privacy level changing
levers paired with competent key-sharing mechanisms allows this system to ensure
the accessibility of all files shared.

However, such a system would eventually result in an ever-increasing main chain
as it is append-only and also increases search times when retrieving information
from the main chain. It would also be susceptible to future brute-force attacks
(such as post-quantum) that attempt to decrypt the encrypted files existing on
the main chain. These problems can be alleviated by having time periods that are
consolidated into new genesis blocks and moving the historic blocks to an o�-network
storage. This has happened in certain blockchains, where the whole chain is so large
it is infeasible to expect users to download and maintain the entire copies. There
are also mechanisms that have been developed to help with the processing of large
blockchains such as Tree-chain [42].

Moving onto a discussion around the purpose and goal of BlockTorrent where it
is compared to blockchain’s most famous and popular use case, cryptocurrencies.
A cryptocurrency system values consistency over availability and fault tolerance,
due to the adverse e�ect of having monetary transactions go "missing". This extra
focus on consistency is what has led blockchains to value security and privacy
over speed and scalability. There is also no way to reverse or roll back incorrect
transactions on a cryptocurrency so there are other security concerns that do not
apply in a consortium blockchain like BlockTorrent. However, trying to store all
participant data in BlockTorrent on the main chain is not feasible and will lead
to the main chain becoming the bottleneck of the network. This is the motivation
behind BlockTorrent using the main chain as a global world state and only storing
the hashes and keys of data so that the network isn’t throttled by storing all data
on the main chain but can still validate transactions and verify those keys and
master tables are being stored.

5.1.1 Future Work

With the challenges outlined above, there were some aspects of BlockTorrent that
would have been nice to have implemented and evaluated but were not due to

51

Chapter 5 Challenges and Conclusion

time constraints and complexity of the challenge. Most of these revolve around the
simulation and evaluation of BlockTorrent. The aspects that have been left as future
work consist of the following:

1. Using AI to identify when misleading data is being submitted to the chain with
fraudulent intent. This would allow BlockTorrent to catch lying participants
in real time rather then relying on a dispute to be found and handled for the
inaccurate data to be used and found.

2. Complete System simulation rather than simulating individual components
separately.

3. Simulate results with di�erent database mediums, both in the private data
store and overlay network.

4. Integrate with real IoT sensors and data rather than generating data files.

5. Test with a live overlay network such as the internet or another active P2P
network.

Although the results of this thesis in evaluating BlockTorrent are positive and
prove that a system like BlockTorrent could exist in a real-world supply chain, there
is still more to accomplish in proving that the system will have realised benefits and
not just an extra complication in the world of complex supply chains.

Overall, BlockTorrent provides a platform that allows supply chain participants
to perform their day-to-day tasks and share information with other participants
simultaneously, without impacting their current supply chain processes. It ensures
that public information is accessible to all the participants, and private information
is safeguarded and shared with only verified participants or when access to that
private information is required by authorities to conduct an audit or resolve disputes.

5.2 Conclusion
This thesis proposed BlockTorrent as a novel privacy-preserving data availability
protocol aimed at solving the data availability problem within supply chains. Block-
Torrent is designed with a generalised architecture so that it can be used with any

52

Chapter 5 Challenges and Conclusion

supply chain management data system. It revolves around the idea of splitting data
into smaller chunks, encrypting those chunks and sharing the information required
to retrieve and recreate the files in a secure and fair fashion.

Currently, too many solutions rely on centralised storage mediums and partici-
pant compliance to access data, leaving authorities without a guaranteed means for
accessing data. By distributing chunks of data among supply chain participants,
it is possible for honest participants to share their private data securely. Doing so
in a supply chain environment means that data availability in the event of a dis-
pute or audit is guaranteed. A solution like BlockTorrent helps avoid the issue of
having every participant use a centralised storage solution and then requiring com-
pliance for any relevant information. Having quick access to this data allows for
faster exchanges, reduces supply chain costs and provides a more seamless process
for data access. It also provides a mechanism of data retrieval where the original
data owner has no involvement, leading to less collusion, data manipulation and less
untrustworthy data in the system as a whole.

From the evaluation and simulations performed on BlockTorrent, the results in-
dicate that a smaller number of chunks will improve file distribution time without
severely impacting the security of the protocol. The speed and scalability of Block-
Torrent indicate that it could be used in small to medium supply chains as is, and if
it wanted to be applied to large-scale supply chains, the requirements of security and
privacy can be adjusted to fit the needs and scalability of said supply chain. The
security analysis also highlighted that there are few attacks that could penetrate
BlockTorrents defences and even if they did the information gained would likely be
useless in the case of a malicious goal.

The trade-o� between privacy and security in a data-sharing protocol like Block-
Torrent was also discussed and every e�ort in the design process went to balancing
out this trade-o�. Supply chain participants have a need to trust other entities on
the network but have a distinct lack of mechanisms to do so. In a system where
there is no inherent trust between the users, the trust needs to come from using the
system itself. This is common in blockchain networks but with BlockTorrent this
property is being transferred to supply chain logistics as well.

Overall, BlockTorrent creates an immutable digital history for all transactions
that occur on a supply chain, which can be used as a single source of truth for
determining the truth when disputes arise. It can be applied to new or existing

53

Chapter 5 Challenges and Conclusion

supply chains and will help lower costs, improve trust and ultimately eliminate the
data availability problem if applied correctly.

54

Bibliography
[1] Microsoft, How Blockchain will transform the modern supply chain. Microsoft

White Paper, 2018. [Online]. Available: https://azure.microsoft.com/

mediahandler/files/resourcefiles/how-blockchain-will-transform-

modern - supply - chain / how - blockchain - will - transform - modern -

supply-chain.pdf.
[2] Y. K. Tomov, “Bitcoin: Evolution of blockchain technology”, in 2019 IEEE

XXVIII International Scientific Conference Electronics (ET), 2019, pp. 1–4.
doi: 10.1109/ET.2019.8878322.

[3] Microsoft, How Blockchain will transform the modern supply chain. Microsoft
White Paper, 2018. [Online]. Available: https://azure.microsoft.com/

mediahandler/files/resourcefiles/how-blockchain-will-transform-

modern - supply - chain / how - blockchain - will - transform - modern -

supply-chain.pdf.
[4] P. Catchlove, “Smart contracts: A new era of contract use”, 2017. doi: 10.

2139/ssrn.3090226. [Online]. Available: https://ssrn.com/abstract=

3090226.
[5] M. Asante, G. Epiphaniou, C. Maple, H. Al-Khateeb, M. Bottarelli, and K. Z.

Ghafoor, “Distributed ledger technologies in supply chain security manage-
ment: A comprehensive survey”, IEEE Transactions on Engineering Manage-
ment, 2021.

[6] S. Pal, T. Rabehaja, A. Hill, M. Hitchens, and V. Varadharajan, “On the
integration of blockchain to the internet of things for enabling access right
delegation”, IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2630–2639,
2019.

[7] S. Malik et al., “ProductChain: Scalable blockchain framework to support
provenance in supply chains”, NCA 2018 - 2018 IEEE 17th International
Symposium on Network Computing and Applications, 2018. doi: 10.1109/

NCA.2018.8548322.
[8] K. Korpela et al., “Digital Supply Chain Transformation toward Blockchain

Integration”, Proceedings of the 50th Hawaii International Conference on Sys-
tem Sciences (2017), 2017. doi: 10.24251/hicss.2017.506.

55

https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://doi.org/10.1109/ET.2019.8878322
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/how-blockchain-will-transform-modern-supply-chain/how-blockchain-will-transform-modern-supply-chain.pdf
https://doi.org/10.2139/ssrn.3090226
https://doi.org/10.2139/ssrn.3090226
https://ssrn.com/abstract=3090226
https://ssrn.com/abstract=3090226
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.24251/hicss.2017.506

Bibliography

[9] R. Monfared and S. Abeyratne, “Blockchain ready manufacturing supply
chain using distributed ledger”, International Journal of Research in Engi-
neering and Technology-IJRET, no. 09, pp. 1–10, 2016. [Online]. Available:
http : / / esatjournals . net / ijret / 2016v05 / i09 / IJRET20160509001 .

pdfMetadataRecord:https://dspace.lboro.ac.uk/2134/22625.
[10] M. S. Ali et al., “Applications of Blockchains in the Internet of Things: A

Comprehensive Survey”, IEEE Communications Surveys Tutorials, pp. 1676–
1717, 2019, issn: 1553877X. doi: 10.1109/COMST.2018.2886932.

[11] E. Elrom, Hyperledger White Paper. IBM Hyperledger, 2019, pp. 299–348. doi:
10.1007/978-1-4842-4847-8{_}8.

[12] J. Pouwelse et al., “The Bittorrent P2P file-sharing system: Measurements and
analysis”, Lecture Notes in Computer Science, vol. 3640 LNCS, pp. 205–216,
2005, issn: 03029743. doi: 10.1007/11558989{_}19.

[13] N. Venkateswaran and S. Changder, “Simplified data partitioning in a con-
sistent hashing based sharding implementation”, in IEEE Region 10 Annual
International Conference, Proceedings/TENCON, vol. 2017-December, Insti-
tute of Electrical and Electronics Engineers Inc., Dec. 2017, pp. 895–900, isbn:
9781509011339. doi: 10.1109/TENCON.2017.8227985.

[14] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P file-
sharing system: Measurements and analysis”, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 3640 LNCS, pp. 205–216, 2005, issn: 03029743.
doi: 10.1007/11558989{_}19.

[15] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed consensus
protocols for blockchain networks”, IEEE Communications Surveys & Tutori-
als, vol. 22, no. 2, pp. 1432–1465, 2020. doi: 10.1109/COMST.2020.2969706.

[16] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos, “Perfor-
mance modeling of pbft consensus process for permissioned blockchain network
(hyperledger fabric)”, in 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), 2017, pp. 253–255. doi: 10.1109/SRDS.2017.36.

[17] X. Hao, L. Yu, L. Zhiqiang, L. Zhen, and G. Dawu, “Dynamic practical byzan-
tine fault tolerance”, 2018 IEEE Conference on Communications and Network
Security, CNS 2018, no. February, pp. 1–14, 2018. doi: 10.1109/CNS.2018.

8433150.
[18] “Blockchains and Their Applications - A critical review”,
[19] Bittorrent Foundation, “BitTorrent (BTT) White Paper”, BitTorrent O�cial

Website, no. February, pp. 1–21, 2019. [Online]. Available: https://www.

bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_

Feb_2019.pdf.

56

http://esatjournals.net/ijret/2016v05/i09/IJRET20160509001.pdfMetadataRecord:https://dspace.lboro.ac.uk/2134/22625
http://esatjournals.net/ijret/2016v05/i09/IJRET20160509001.pdfMetadataRecord:https://dspace.lboro.ac.uk/2134/22625
https://doi.org/10.1109/COMST.2018.2886932
https://doi.org/10.1109/TENCON.2017.8227985
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/SRDS.2017.36
https://doi.org/10.1109/CNS.2018.8433150
https://doi.org/10.1109/CNS.2018.8433150
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf

Bibliography

[20] Swarm Team, “SWARM - Storage and Communication Infrastructure for a
Self-Sovereign Digital Society”, pp. 1–13, 2021.

[21] I. Baumgart and S. Mies, “IPFS Whitepaper”, Proceedings of the International
Conference on Parallel and Distributed Systems - ICPADS, vol. 2, no. Draft
3, 2007, issn: 15219097. doi: 10.1109/ICPADS.2007.4447808.

[22] B. GmbH, BigChainDB, 2020. [Online]. Available: https://www.bigchaindb.

com/.
[23] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized iot data

management using blockchain and trusted execution environment”, Jul. 2018,
pp. 15–22. doi: 10.1109/IRI.2018.00011.

[24] L. Zhu, Y. Wu, K. Gai, and K.-K. R. Choo, “Controllable and trustworthy
blockchain-based cloud data management”, Future Generation Computer Sys-
tems, vol. 91, Sep. 2018. doi: 10.1016/j.future.2018.09.019.

[25] H. Shafagh et al., “Towards blockchain-based auditable storage and sharing
of iot data”, Nov. 2017, pp. 45–50, isbn: 978-1-4503-5204-8. doi: 10.1145/

3140649.3140656.
[26] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When Blockchain Meets

Distributed File Systems: An Overview, Challenges, and Open Issues”, IEEE
Access, vol. PP, p. 1, 2020. doi: 10.1109/ACCESS.2020.2979881.

[27] H. T. Vo, A. Kundu, and M. K. Mohania, “Research directions in blockchain
data management and analytics”, in EDBT, 2018.

[28] R. K. Raman and L. R. Varshney, “Distributed storage meets secret sharing
on the blockchain”, 2018 Information Theory and Applications Workshop, ITA
2018, Oct. 2018. doi: 10.1109/ITA.2018.8503089.

[29] M. Fukumitsu, S. Hasegawa, J. Iwazaki, M. Sakai, and D. Takahashi, “A pro-
posal of a secure P2P-type storage scheme by using the secret sharing and
the blockchain”, Proceedings - International Conference on Advanced Infor-
mation Networking and Applications, AINA, pp. 803–810, May 2017. doi:
10.1109/AINA.2017.11.

[30] M. Meulpolder, D. H. Epema, and H. J. Sips, “Replication in bandwidth-
symmetric bittorrent networks”, IPDPS Miami 2008 - Proceedings of the 22nd
IEEE International Parallel and Distributed Processing Symposium, Program
and CD-ROM, no. May, 2008. doi: 10.1109/IPDPS.2008.4536194.

[31] A. Shamir, “How to Share a Secret”, Communications of the ACM, vol. 22,
no. 11, pp. 612–613, Nov. 1979, issn: 15577317. doi: 10.1145/359168.359176.

57

https://doi.org/10.1109/ICPADS.2007.4447808
https://www.bigchaindb.com/
https://www.bigchaindb.com/
https://doi.org/10.1109/IRI.2018.00011
https://doi.org/10.1016/j.future.2018.09.019
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1109/ACCESS.2020.2979881
https://doi.org/10.1109/ITA.2018.8503089
https://doi.org/10.1109/AINA.2017.11
https://doi.org/10.1109/IPDPS.2008.4536194
https://doi.org/10.1145/359168.359176

Bibliography

[32] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust algo-
rithm for reputation management in P2P networks”, in Proceedings of the 12th
International Conference on World Wide Web, WWW 2003, 2003, pp. 640–
651, isbn: 1581136803. doi: 10.1145/775152.775242.

[33] D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos, “Zero-
Knowledge Proofs for Set Membership: E�cient, Succinct, Modular”, IACR
Cryptology ePrint Archive, no. 2019/1255, pp. 1–67, 2019. [Online]. Available:
https://filecoin.io.

[34] E. Ben-Sasson, A. Chiesa, C. Garman, et al., “Zerocash: Decentralized anony-
mous payments from bitcoin”, Proceedings - IEEE Symposium on Security and
Privacy, pp. 459–474, 2014, issn: 10816011. doi: 10.1109/SP.2014.36.

[35] IBM, Private Data in Hyperledger Fabric, 2020. [Online]. Available: https:

//hyperledger- fabric.readthedocs.io/en/release- 2.2/private-

data/private-data.html.
[36] A. Hadid, N. Evans, S. Marcel, and J. Fierrez, “Biometrics systems under

spoofing attack: An evaluation methodology and lessons learned”, IEEE Signal
Processing Magazine, vol. 32, no. 5, pp. 20–30, Sep. 2015, issn: 1558-0792. doi:
10.1109/MSP.2015.2437652.

[37] J. R. Douceur, “The sybil attack”, in Peer-to-Peer Systems, P. Druschel, F.
Kaashoek, and A. Rowstron, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 251–260, isbn: 978-3-540-45748-0.

[38] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms: Clas-
sification and state-of-the-art”, Computer Networks, vol. 44, no. 5, pp. 643–
666, 2004, issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.

2003 . 10 . 003. [Online]. Available: http : / / www . sciencedirect . com /

science/article/pii/S1389128603004250.
[39] C. Ye, G. Li, H. Cai, Y. Gu, and A. Fukuda, “Analysis of security in blockchain:

Case study in 51%-attack detecting”, in 2018 5th International Conference on
Dependable Systems and Their Applications (DSA), Sep. 2018, pp. 15–24. doi:
10.1109/DSA.2018.00015.

[40] P. Anu and S. Vimala, “A survey on sni�ng attacks on computer networks”, in
2017 International Conference on Intelligent Computing and Control (I2C2),
Jun. 2017, pp. 1–5. doi: 10.1109/I2C2.2017.8321914.

[41] M. Z. A. Bhuiyan and J. Wu, “Collusion attack detection in networked sys-
tems”, in 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress(DASC/PiCom/DataCom/CyberSciTech), Aug. 2016, pp. 286–
293. doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.67.

58

https://doi.org/10.1145/775152.775242
https://filecoin.io
https://doi.org/10.1109/SP.2014.36
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://doi.org/10.1109/MSP.2015.2437652
https://doi.org/https://doi.org/10.1016/j.comnet.2003.10.003
https://doi.org/https://doi.org/10.1016/j.comnet.2003.10.003
http://www.sciencedirect.com/science/article/pii/S1389128603004250
http://www.sciencedirect.com/science/article/pii/S1389128603004250
https://doi.org/10.1109/DSA.2018.00015
https://doi.org/10.1109/I2C2.2017.8321914
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.67

Bibliography

[42] A. Dorri and R. Jurdak, “Tree-chain : A fast lightweight consensus algorithm
for iot applications”, in Proceedings of the 2020 IEEE 45th Conference on Local
Computer Networks (LCN), ser. Proceedings - Conference on Local Computer
Networks, LCN, H.-P. Tan, L. Khoukhi, and S. Oteafy, Eds., United States
of America: Institute of Electrical and Electronics Engineers Inc., Nov. 2020,
pp. 369–372. doi: 10.1109/LCN48667.2020.9314831. [Online]. Available:
https://eprints.qut.edu.au/208959/.

59

https://doi.org/10.1109/LCN48667.2020.9314831
https://eprints.qut.edu.au/208959/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Publications
	Introduction
	Supply Chain on Blockchain
	The Data Availability Problem
	Research Questions
	Contributions

	Background
	Technology Background
	Blockchain
	BitTorrent
	Distributed Storage

	Related Work
	Research Gap

	BlockTorrent
	System Architecture
	System Functionality
	Hashed Sharding
	Key Management
	Storing Data
	File Retrieval

	Evaluations
	Implementation
	Evaluation
	Performance Evaluation
	Security
	Potential Attacks

	Challenges and Conclusion
	Challenges and Discussions
	Future Work

	Conclusion

	Bibliography

