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Abstract

The standard error of result obtained from a straight line calibration is given by a well
known | SO-endorsed expression. Its derivation and use are explained and the approach is
extended for any function that is linear in the coefficients, with an example of aweighted
quadratic calibration in ICPAES. When calculating the standard error of an estimate, if
QC datais available it is recommended to use the repeatability of the instrumental
response, rather than the standard error of the regression, in the equation.
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Introduction

Calibration of a measuring system is at the heart of many chemical measurements. It has
direct relevance to the traceability of the measurement and contributes to the
measurement uncertainty. A measurement can be seen as a two-step process in which an
instrument is calibrated using one or more standards, followed by presentation of a
sample to the instrument and the assignment of the value of the measurand. Instrumental
analytical methods, particularly chromatographic, spectroscopic and electrochemical
methods, are usually calibrated over arange of concentrations of the analyte. Often the
calibrations are assumed (or arranged to be) linear and in the past, a graph was prepared
by drawing the best straight line by eye through the points. Having obtained a response
from the instrument from the sample to be analysed, the concentration of this sample was
read off the graph, going from the instrument response on the y-axis to the concentration
on the x-axis. While drawing a graph for the purpose of calibration is no longer done in
practice, with a spreadsheet performing a least squares regression to obtain the equation
of the best straight line, the calibration function is often still referred to asa‘calibration
line’ or ‘calibration curve'.

In this paper the commonly used expression for the standard error of aresult obtained
from a straight line calibration is extended to a quadratic calibration, and the case where
weighted regression is necessary. Spreadsheet recipes are given to accomplish these
calculations.

Linear calibration by classical least squares regression

In calibration a series of x,y pairs are obtained where the response of an instrument y is
obtained for atest material with measurand value x. (From now on, the x quantity will be
called ‘ concentration’, being the most common quantity measured in chemistry). A
function of the form
Y =a+bx (1)
can be fitted to the data, where the estimates of the parametersa and b, still called
intercept and slope respectively, are £and k, and for a particular response

y. =a+bx +¢ (2
Classical least squares regression makes three assumptions about the system: the linear
model holds for the data; errors are only in y; these errors are normally distributed and
independent of the value of x (so-called homoscedacity). If any of these assumptionsis
not met, then the best fit is not realised by this process. For example if there is error in x
aswell asy then an ‘error-in-variables model isindicated" 2. If the error is proportional
to concentration then aweighted least squares model should be used®. The consequences
of failure of the linear model have been demonstrated by Hibbert and Mulholland *,
The least squares estimates of a and b can be obtained directly from the calibration data

2406 =Xy - y)}

b= 3)

a=y-bx (4)
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where the sum is over all data pairs, and Xand yyare the average values of x and y in the

calibration set. These estimates minimise the standard error of the regression, s, (also
known as the residual standard deviation)

2 -9)

Sy/x = : n— 2 (5)
where V. isthe value of y obtained from equation 2.

Having determined a calibration function the equation must be inverted to assign a
concentration ()’Z() given aresponse (Yo) from an unknown test sample.

~  Y,—a

Xy = Ob (6)
Note that the carets on a and b will now be omitted. Equation 6 can be written in terms of
the mean x and y values from the calibration, to remove the constant term a and its
correlation with b when the standard error is calcul ated.

% =2 - ™
The standard error of the estimate of the concentration from the mean of m responses, Yo,
isusually given as

S 1,1, (e-y)
AT " e -x)
i=1
where there are n points in the calibration, and<and yzare the means of the calibration

data’. Equation 8 is quoted with a caveat that this is an approximation, which stems from
the statistical difficulties of an error model applied to the inversion of equation 2% 7. A
rigorous derivation of the confidence interval on >'Z( was given by Fieller in 1954 8,

(8)

S,

Derivation of the equation for the standard error of an estimated
value

The derivation stems from a first-order expansion of the variance by Taylor’s theorem.
The procedure is straightforward and only requires knowledge of the variances, and
possibly covariances, of the parameters and the ability to differentiate the equation
assigning the result with respect to each parameter. For a general function

X = (X, Xgyeren X:) 9)
ox ox ) ox Y ox
V(X) :[&] V(X1)+(a—xz] V(X2)++2(&](8—XZJC(X1,X2)
oX | oX
+ 2(&}(@73}0()9 X3) +...

Equation 10 is applied to the variance of f((given by equation 7 with the assumptions that
the variables are independent (all covariance terms are zero), and that V(<) = 0, from the

(10)
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base assumptions of classical least squares (all error iny). Thisiswhy we use equation 7
and not equation 6, a and b are correlated, but b and y arenot.

2 2 2
- oy oy _ ob
V(X,) = \% + V(Y)+ V(b
(%) [8?0 (Yo) 5%, (¥) 5, (b)
— =\2
V() V) V) (v-9)
b? b? b? b?
The variance in the response to the unknown (Yp) is usually estimated by the variance of
the regression 55 /- If Yo is the mean of mindependent observations then

(11)

SZ
V(Y,) = i;] (12)
Similarly the variance of the mean of the calibration responses ( y) is
SZ
V(y) =

y I x
The variance of the slope is®
2

V(D)= — (14)

Z (% %)’

and therefore

(13)

+%+ (yo_y)2 (15)

b*> (x —x)°
i=1

which is equation 8 squared. It is seen that V(Yp) is estimated by equation 12, that is from

the standard error of the regression. It is possible that calibration measurements have

been made under different conditions than routine measurements, for which a separate

estimate of the standard deviation of the responses might well be available from in house

QC measurements of repeatability. Therefore, if such datais known, then instead of

eguation 8, it would be clearer and better to calculate SIS

oSl
V(Xo):by_/z E

2 SZ SZ _g)?
S :E S_r+ y/x+ y/x(yo y) (16)

X0 n
i LD O i
i=1
which distinguishes between the variance of the response when the instrument is
presented with the sample (first term) and the component due to the lack of fit of the
calibration line (second term).

Other linear calibration functions
Equationsthat are linear in the parameters, for example a quadratic, can be derived

through equation 10. Quadratic functions are used in calibration of ICPAES and ICPMS
analyses of elements with awide range of concentrations (x), and quadratic functions
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have been shown to be a better function than linear for some HPLC applications °. The
observed instrumental response y (usually a number of ‘counts' of a detector, or
absorbance of a spectrophotometric detector) is

y=a+hx+h,x° (17)
Aswith the straight line calibration the constant, a, is eliminated by moving the origin of
the calibration to the origin

y—V:bl(x—Y)+bz(X2—F) (18)
In the analysis of a sample, aresponse (yo) alows calculation of a concentration (>'Z()

e e e (19)
)=
2D,
Applying equation 10 to the variance of X from equation 19

A ox ) o5\ o5\
V(%) =| 22| v Po lvib,)+| 2ol vi)+| o | vy,
(%) [ j (b1)+( ] ()J{ay] (y)+(ayJ (Yo)

ob, ab, 0

0%, ) 0%
*%J(a—sz““’b”

The assumptions of the regression give /() = 0 and v(x2) = o, and the further
assumption of independence between the indications and the parameters of the regression
is made. Note that equation 19 can be differentiated and for alinear system the
covariance matrix of the coefficients (b) is given by o (x'x)™* where ¢* is the variance of
y which can be estimated by Sf, / ,and the matrix x is the design matrix of the calibration

(acolumn of 1's, followed by columns of the x-values and x*-values used in the
calibration). Table 1 gives expressions for the differentials in equation 20. Kirkup and
Mulholland *° have derived a similar expression but retained the constant term. In the
practical implementation of their scheme, three covariance terms must be calculated
(C(a,b), C(a,c), C(b,c)) in contrast to the single term in equation 20.

(20)

Table 1: Differentialsin equation 20 for the calculation of the variance of an estimated value from a

quadratic calibration y_y — b, (x— %) + b, (Xz _F) . The discriminant of the solution

for x is p — p? _4b2(y_yo _bli—bZF)

i % 0%,
X X
by —1+%D (2D, + 4b,X)
2b,
b _
2 b, — DY2 +1/2D‘1/2(4y0 —4y+4bli+8b2X2)
2b? 2b,
— -172
Y -D
yO D-l/2
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Weighted linear regression

Where aweighted regression is required the equation for the variance of the estimated
concentration remains as equation 15, but the form of the covariance matrix of the
coefficients and the standard error of the regression s,x need to take account of the
weighting matrix. There are two common situations in which data must be weighted.
First if atransformation of the indications has been used to obtain a linear form (y —»
f(y) ), but the original indications have normally distributed error, the weights are

(yj . Secondly, if the data itself is heteroscedastic, with variance s for thei th
y

datum, then the weighting matrix is 1/ s If the system is both transformed and
heteroscedastic then the product of the weights are applied. If W is a diagonal matrix of
the weightsthe coefficients, b, are given by

b= (x"wx)"(x"wy] (21)

The covariance matrix is

Y, =(XTWX)_l(yTWy—bTxTWy)/(n— p) (22)

with p the number of coefficients in the model and n the number of independent
concentrations.

Confidence intervals

To obtain a confidence interval the standard error of the regression is multiplied by an
appropriate point on the distribution function. In the case of normally-distributed data this
is the two-tailed Student-t value for the degrees of freedom of the calibration (n—1or n—
2). The reason that at least five calibrations solutions of different concentrations should
be used, is that the resulting three degrees of freedom has an associated Student’s t value
for a = 0.05 of 3.18, which then multiplies SH give alarger confidence interval thanis

the case with more points. For example, ten points with eight degrees of freedom has a
Student’s t value of 2.30.

Example calculations

Two systems are given here to illustrate the methods described above, a linear calibration
of sulfite using a channel biosensor and the weighted quadratic calibration of the ICPAES
analysis of K*. Anillustrative spreadsheet is given in the supplementary material to this

paper.

Linear calibration of sulfite

The work up of datato produce a calibration graph with 95% confidence intervals on
estimated values is given in Box 1 and in the spreadsheet in the supplementary material.
All that is required for the calculations are the internal Excel functions LINEST,
AVERAGE, SQRT and SUMSQ.

The uncertainty of aresult from alinear calibration for UNSWworks.docx



Box 1la
A | B | ¢ | D | E]
1 DATA
2 x/mil y/ mA X-<x>
3 0.01 00013 -0.267.
4| 005 00350 0227 \ | —B3-$B$9 |
| 5 | 0.1 0.0808 -0.177
6 | 0.25 01803 -0.027
7 0.5 0.3244 0.223 ~ _
8 075 04852 0.473 =SUMSQ(ESES)
_ 9 /mean 0.277 01845  sumsq (.42
10
1] LINEST
12 b a
3] 0641528 000699 =LINEST(C5:C10,B5:B10,1,1)
14 0.015976 U)lgﬁﬁg
18 0.997525 70010456
16 | 1612 4000000
I 0.176284 0000437
IETY r
Box1b
=(G2-$C$13)/$B$13
=$C$15%(G2-$C$9)/$B$13"2/SQRT(SES9)
=$C$15/SQRT(COUNT($B$3:$B$8)/$B$13)
=$C$15/$B$13
6 [/H [f v [Jo [ /K [ L [ M| N][O]

1 |y0 ,ﬁterm bar termyf term  |sx0 95% xdn  xup
_ 2| 000000 "-0.01090° -0.00716 0.00342 0.0163 ,0.0181,0.0503 -0.061 0.039
-3 | 003000 0.03587 -0.00800 0.00342 0.0163/ 0.017% 0.0431/-0.013 0 UBSI_

=SQRT(SUMSQ(12:K2))

=TINV(0.05,$C$16)*L2

=H2-M2

Box 1: Calculation of standard error and 95% confidenceinterval for an estimated concentration in
alinear calibration. (a) Data and calculationsfor error formula including output from LINEST .(b)
First rows of a calculation of the 95% confidenceinterval on an estimated concentr ation.
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Quadratic calibration of ICP data

The instrumental software performs aweighted quadratic calibration on the blank
subtracted data, forcing the line through zero. While this procedure can be questioned,
forcing through zero leads to the following equations for the concentration (x) in terms of
the coefficients (by, b,) and the blank corrected response of the sample (Y)

Y = b x+b,x? (23)

5 _b1+\/b12 +4b2y0

Xo = o (24)
2

The variance of the estimate is obtained from

V(%) :[‘%’] wm{%} V<b2)+[§7x°j V(yo>+2[2—@(%}c<bl,bz) (25)

with V(by), V(b,) and C(by,b,) from the covariance matrix equation (22), and V(o)
estimated from QC or validation data, or the weights. Table 2 gives the equations of the
differentials in equation 25.

Table 2: Differentialsin equation 25 for the calculation of the variance of an estimated value from a
quadr atic calibration for ced through the origin Y = b1X+ bZX2 . Thediscriminant of the

function for an indication y, isD = b12 + 4b2y0 .

win %o A%,
oX oX
by ~1+D™"?p,
2b,
b2 bl_Dl/Z N D-]JZyO
2h? b,
yO D-l/2

The regression line and 95% confidence interval of estimates of concentration are
calculated in the spreadsheet shown in Box 2, and are graphed in Figure 1. The
confidence intervals are quite dependent on the errors in the calibration points, but Figure
1 istypical of a number of data sets processed. The confidence intervals diverge with
increasing concentration, as the contribution of the uncertainty of the quadratic term (by)
increases (Figure 2). The effect is ameliorated by the increasing negative correlation
term.
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1.5 -
x 17
(2]
o)
c 0.5 1
oS
5
o)
2 % |
S 140
[&]
© -0.5 A
[
oS
g
L 10
cov(by,by)
1.5 -

[K] /mg L™

Figure 1: Calibration for the routine ICPAES analysis of potassium. Five calibration points,
measur ed in triplicate, blank-corrected and fitted with aweighted quadr atic regression through zero.
Error barsarethe 95% confidenceinterval of the mean of each point. Dashed lines ar e the 95%
confidence interval on estimated concentrations from the calibration.

Millions

Detector response

0 20 40 60 80 100 120 140 160 180
[K] /mg L™
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Figure 2: Thefractional contributions of the componentsin the calibration function to the standard
error of the estimatesin Figure 1.

Box 2a
A | B | ¢ [ bl E [ F T 6 [ H [ 1]
Blank N
1 |correction 313 ICP output Y
K] K)? mean Blanik
2 |fmg/) (mgA)® rt r2 r3 (mgA) |8 corrected |RSD
3 1 1 37634 41803 38257 39231 2249 38918 00578
4 10 100 431812 415379 381484 409692 26609 409278 00626
Lh 20 400 947RE4 825732 876093 BB3163  R1273. BR28A0 0 0894
_b | 50 2500 1779387 2017715 2138125 1978409 182570) 1978096 0.0923
7 100 10000 3440185 3323442 3501113 3421580 s 902850 3421267 0.0264
8 | Pooled RSP 00652 _
=AVERAGE(C7:E7)
=STDEV(C7:E7)
=F7-$B%1
=SQRT(SUMSQ(13:17)/5)
Box 2b
A B | ¢ | b | E F
| 11 xT 1 10 20 50 100
12 1 100 400 2500 10000
| 13| ¥ 38918 409278 882850 1978096 3421267
14
| 15 | W[ 1 98E-07 0 0 0 0
16| 0 1 52E-09 0 0 0
7] 0 0 2.66E-10 0 0
18 | 0 0 0 3 00E-11 0_—| =1$G7"2
9] 0 0 0 0 1.23E-10]
20
| 21 |Coefficients of quadratic mode!
22 b[ 413447 bT[ 413447  -701]
| 23| \ 701 =SQRT(B26)
24 \ /
| 25 | b1 b2 s(01) 152)
| 26 | Var-covar M\;?SEB -27877 1636.33
27 |matrix \ -P7a77 376 19.40

=MMULT(MINVERSE(MMULT(B11:F12,MMULT(B15:F19,A3:B7)))
,MMULT(B11:F12, MMULT(B15:F19,H3:H7)))

=MINVERSE(MMULT(B11:F12, MMULT(B15:F19,A3:B7)))*(MMULT(B13:F13,
MMULT(B15:F19,H3:H7))-MMULT(E22:F22, MMULT(B11:F12, MMULT(B15:F19,H3:H7))))/3

The uncertainty of aresult from alinear calibration for UNSWworks.docx
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Box 2c

|=SQRT(SUMSQ(F30,H30,J30)+K30) |

| =E30*SQRT(B$26)

| =2*E30*G30*C$26

=(-1+0.5/SQRT(C30)*(2*B$22))/2/B$23

N\

=B30*130 \

0.000 \-0.0025 2 44E-
Err \nr\ﬂ f f F
\— | =((B$22-SQRT(C32))/2/B$23"2+A32/

A ] B [ € [0 [ NI F [ 6 7 [ T\ N KI[L]
x 5bt ¥ sh2 x50 \ ¥ sy
| 29 |y0 s{y0) D x0 dxf‘dbx\@‘db‘l dw/da2  deidb2  dx/dy0 \\Jxr‘dvﬂ\fovar \a(xf})
|30 | 0 0/ 1709365902 0.0 0.0000000 0.000 0.000  0.0000 242E-05'0.000 \ 0.000" 0.000
31| 50000 3262 1695372315 1.2/-0.0000294 -0.048 0,000 -0.0007 243E-05| 0079  0.000 0.092
32| 100000 6525 N5B1358723 24 -0.0000592  -0.097 0159 0.000) 0.185

i-HE 05

SQRT(C32)/B$23)

| =(sBs2+sQRT(C32)2198%23

=G32*SQRT(C$27)

| =$B$22"2+4*$B$23*A32 |

“E |

—1/SQRT(C32)

Box 2: Calculation of standard error for a concentration of potassum from an | CPAES analysis
using a weighted quadratic calibration. The dataisblank corrected and fitted through the origin. (a)

Data and calculation of standard deviationsfor the weightsfor each paint. (b) Matrix calculations for

the variance/covariance matrix of the coefficients. (c) Calculation
the estimate of concentration. The 95% confidenceintervals (not

in Box 1b.

of first rowsfor standard error of

shown) ar e calculated from s(x0) as

The uncertainty of aresult from alinear calibration for UNSWworks.docx
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Some points to consider for calibrations

Although there has been much discussion about appropriate calibration methods and the
correct incorporation of components in an estimate of measurement uncertainty, for
routine methods that adopt linear calibration in arange in which there is a good fit to the
linear model, the calibration is usually not a major source of uncertainty. The traditional
“four nines r?”, i.e. asquared correlation coefficient greater than 0.9999, invariably yields
a useable function. Despite arguments about the unthinking use of r? ***2, Ellison has
shown that there is some utility in this statistic®.

Correlations between parameters of a calibration function are usually a significant
component of the uncertainty and therefore can rarely be ignored. However the
covariance matrix is usually available and the inverse calibration function can be
differentiated. Thus the correct uncertainty of an estimate can be calculated. Correlations
usually reduce the uncertainty, so not including them will lead to overestimated
confidence intervals.

In the expression for the standard error of an estimate from a linear calibration (equation
8), the uncertainty of the observed response when the unknown is presented to the
instrument usually has the greatest contribution. When its standard deviation is estimated
by s/x, the standard error of the regression, it enters the equation as s/(b Vm) where mis
the number of replicate measurements. As mis usually one or two, the term is always
greater than that for y7, s,x/(b \n), where n is the number of points in the regression
(typically five or more). The contribution to uncertainty of the slope, b, is zero in the
middle of the calibration when (yo— ) is zero, and rarely is greater than the other terms.
As discussed above, thereis likely to be knowledge of the standard deviation of the
indication from QC data, and thisis likely to be a better estimate than the standard error
of the regression. Therefore | recommend use of equation 16 in such cases.
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