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Abstract 
The standard error of result obtained from a straight line calibration is given by a well 
known ISO-endorsed expression. Its derivation and use are explained and the approach is 
extended for any function that is linear in the coefficients, with an example of a weighted 
quadratic calibration in ICPAES. When calculating the standard error of an estimate, if 
QC data is available it is recommended to use the repeatability of the instrumental 
response, rather than the standard error of the regression, in the equation. 
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Introduction 
Calibration of a measuring system is at the heart of many chemical measurements. It has 
direct relevance to the traceability of the measurement and contributes to the 
measurement uncertainty. A measurement can be seen as a two-step process in which an 
instrument is calibrated using one or more standards, followed by presentation of a 
sample to the instrument and the assignment of the value of the measurand. Instrumental 
analytical methods, particularly chromatographic, spectroscopic and electrochemical 
methods, are usually calibrated over a range of concentrations of the analyte. Often the 
calibrations are assumed (or arranged to be) linear and in the past, a graph was prepared 
by drawing the best straight line by eye through the points. Having obtained a response 
from the instrument from the sample to be analysed, the concentration of this sample was 
read off the graph, going from the instrument response on the y-axis to the concentration 
on the x-axis. While drawing a graph for the purpose of calibration is no longer done in 
practice, with a spreadsheet performing a least squares regression to obtain the equation 
of the best straight line, the calibration function is often still referred to as a ‘calibration 
line’ or ‘calibration curve’.  
In this paper the commonly used expression for the standard error of a result obtained 
from a straight line calibration is extended to a quadratic calibration, and the case where 
weighted regression is necessary. Spreadsheet recipes are given to accomplish these 
calculations. 

Linear calibration by classical least squares regression 
In calibration a series of x,y pairs are obtained where the response of an instrument y is 
obtained for a test material with measurand value x. (From now on, the x quantity will be 
called ‘concentration’, being the most common quantity measured in chemistry).  A 
function of the form 

 (1) 
can be fitted to the data, where the estimates of the parameters a and b, still called 
intercept and slope respectively, are and , and for a particular response 

 (2) 
Classical least squares regression makes three assumptions about the system: the linear 
model holds for the data; errors are only in y; these errors are normally distributed and 
independent of the value of x (so-called homoscedacity). If any of these assumptions is 
not met, then the best fit is not realised by this process. For example if there is error in x 
as well as y then an ‘error-in-variables’ model is indicated1, 2. If the error is proportional 
to concentration then a weighted least squares model should be used3. The consequences 
of failure of the linear model have been demonstrated by Hibbert and Mulholland 4. 
The least squares estimates of a and b can be obtained directly from the calibration data 
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where the sum is over all data pairs, and and are the average values of x and y in the 
calibration set. These estimates minimise the standard error of the regression, sy/x (also 
known as the residual standard deviation) 

 (5) 

where  is the value of y obtained from equation 2. 
Having determined a calibration function the equation must be inverted to assign a 
concentration ( ) given a response (y0) from an unknown test sample. 

 (6) 

Note that the carets on a and b will now be omitted. Equation 6 can be written in terms of 
the mean x and y values from the calibration, to remove the constant term a and its 
correlation with b when the standard error is calculated. 

 (7) 

The standard error of the estimate of the concentration from the mean of m responses, y0, 
is usually given as 

 (8) 

where there are n points in the calibration, and and are the means of the calibration 
data5. Equation 8 is quoted with a caveat that this is an approximation, which stems from 
the statistical difficulties of an error model applied to the inversion of equation 2 6, 7. A 
rigorous derivation of the confidence interval on  was given by Fieller in 1954 8.  

Derivation of the equation for the standard error of an estimated 
value 
The derivation stems from a first-order expansion of the variance by Taylor’s theorem. 
The procedure is straightforward and only requires knowledge of the variances, and 
possibly covariances, of the parameters  and the ability to differentiate the equation 
assigning the result with respect to each parameter. For a general function  

 (9) 

 (10) 

Equation 10 is applied to the variance of given by equation 7 with the assumptions that 
the variables are independent (all covariance terms are zero), and that V( ) = 0, from the 
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base assumptions of classical least squares (all error in y). This is why we use equation 7 
and not equation 6, a and b are correlated, but b and  are not. 

 (11) 

The variance in the response to the unknown (y0) is usually estimated by the variance of 
the regression . If y0 is the mean of m independent observations then 

 (12) 

Similarly the variance of the mean of the calibration responses ( ) is 

 (13) 

The variance of the slope is 9  

 (14) 

and therefore  

 (15) 

which is equation 8 squared. It is seen that V(y0) is estimated by equation 12, that is from 
the standard error of the regression. It is possible that calibration measurements have 
been made under different conditions than routine measurements, for which a separate 
estimate of the standard deviation of the responses might well be available from in house 
QC measurements of repeatability. Therefore, if such data is known, then instead of  
equation 8, it would be clearer and better to calculate  as 
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which distinguishes between the variance of the response when the instrument is 
presented with the sample (first term) and the component due to the lack of fit of the 
calibration line (second term).  

Other linear calibration functions 

Equations that are linear in the parameters, for example a quadratic, can be derived 
through equation 10. Quadratic functions are used in calibration of ICPAES and ICPMS 
analyses of elements with a wide range of concentrations (x), and quadratic functions 
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have been shown to be a better function than linear for some HPLC applications 10.  The 
observed instrumental response y (usually a number of ‘counts’ of a detector, or 
absorbance of a spectrophotometric detector) is 

 (17) 
As with the straight line calibration the constant, a, is eliminated by moving the origin of 
the calibration to the origin 

 (18) 
In the analysis of a sample, a response (y0) allows calculation of a concentration ( ) 

 (19) 

Applying equation 10 to the variance of  from equation 19 

 (20) 

The assumptions of the regression give and , and the further 
assumption of independence between the indications and the parameters of the regression 
is made. Note that equation 19 can be differentiated and for a linear system the 
covariance matrix of the coefficients (b) is given by σ2 (xTx)-1 where σ2 is the variance of 
y which can be estimated by and the matrix x is the design matrix of the calibration 
(a column of 1’s, followed by columns of the x-values and x2-values used in the 
calibration). Table 1 gives expressions for the differentials in equation 20. Kirkup and 
Mulholland 10 have derived a similar expression but retained the constant term. In the 
practical implementation of their scheme, three covariance terms must be calculated 
(C(a,b), C(a,c), C(b,c)) in contrast to the single term in equation 20.  
 
Table 1: Differentials in equation 20 for the calculation of the variance of an estimated value from a 

quadratic calibration . The discriminant of the solution 

for x  is   
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Weighted linear regression 

Where a weighted regression is required the equation for the variance of the estimated 
concentration remains as equation 15, but the form of the covariance matrix of the 
coefficients and the standard error of the regression sy/x need to take account of the 
weighting matrix. There are two common situations in which data must be weighted. 
First if a transformation of the indications has been used to obtain a linear form (y → 
f(y) ), but the original indications have normally distributed error, the weights are 

. Secondly, if the data itself is heteroscedastic, with variance si
2 for the i th 

datum, then the weighting matrix is 1/ si
2. If the system is both transformed and 

heteroscedastic then the product of the weights are applied. If W is a diagonal matrix of 
the weights the coefficients, b,  are given by  

 (21) 

The covariance matrix is  

 (22) 

with p the number of coefficients in the model and n the number of independent 
concentrations.  

Confidence intervals 
To obtain a confidence interval the standard error of the regression is multiplied by an 
appropriate point on the distribution function. In the case of normally-distributed data this 
is the two-tailed Student-t value for the degrees of freedom of the calibration (n – 1 or n – 
2). The reason that at least five calibrations solutions of different concentrations should 
be used, is that the resulting three degrees of freedom has an associated Student’s t value 
for α = 0.05 of 3.18, which then multiplies to give a larger confidence interval than is 
the case with more points. For example, ten points with eight degrees of freedom has a 
Student’s t value of 2.30. 

Example calculations 
Two systems are given here to illustrate the methods described above, a linear calibration 
of sulfite using a channel biosensor and the weighted quadratic calibration of the ICPAES 
analysis of K+.  An illustrative spreadsheet is given in the supplementary material to this 
paper. 

Linear calibration of sulfite 
The work up of data to produce a calibration graph with 95% confidence intervals on 
estimated values is given in Box 1 and in the spreadsheet in the supplementary material. 
All that is required for the calculations are the internal Excel functions LINEST, 
AVERAGE, SQRT and SUMSQ.  
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Box 1a 

 
 
 
 
 
 
 
Box1b 

 
 
 

Box 1: Calculation of standard error and 95% confidence interval for an estimated concentration in 
a linear calibration. (a) Data and calculations for error formula including output from LINEST.(b) 
First rows of a calculation of the 95%  confidence interval on an estimated concentration. 

=LINEST(C5:C10,B5:B10,1,1)

=B3-$B$9

=SUMSQ(E3:E8)

=LINEST(C5:C10,B5:B10,1,1)

=B3-$B$9

=SUMSQ(E3:E8)

=(G2-$C$13)/$B$13

=$C$15*(G2-$C$9)/$B$13^2/SQRT($E$9)

=$C$15/SQRT(COUNT($B$3:$B$8)/$B$13)

=$C$15/$B$13

=SQRT(SUMSQ(I2:K2))

=TINV(0.05,$C$16)*L2

=H2-M2

=(G2-$C$13)/$B$13

=$C$15*(G2-$C$9)/$B$13^2/SQRT($E$9)

=$C$15/SQRT(COUNT($B$3:$B$8)/$B$13)

=$C$15/$B$13

=SQRT(SUMSQ(I2:K2))

=TINV(0.05,$C$16)*L2

=H2-M2
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Quadratic calibration of ICP data 

The instrumental software performs a weighted quadratic calibration on the blank 
subtracted data, forcing the line through zero. While this procedure can be questioned, 
forcing through zero leads to the following equations for the concentration (x) in terms of 
the coefficients (b1, b2) and the blank corrected response of the sample (Y) 

 (23) 

 (24) 

The variance of the estimate is obtained from  

 (25) 

with V(b1), V(b2) and C(b1,b2) from the covariance matrix equation (22), and V(y0) 
estimated from QC or validation data, or the weights. Table 2 gives the equations of the 
differentials in equation 25. 

 
Table 2: Differentials in equation 25 for the calculation of the variance of an estimated value from a 

quadratic calibration forced through the origin . The discriminant of the 

function for an indication y0  is  . 

X in   
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y0 D-1/2 

 
The regression line and 95% confidence interval of estimates of concentration are 
calculated in the spreadsheet shown in Box 2, and are graphed in Figure 1. The 
confidence intervals are quite dependent on the errors in the calibration points, but Figure 
1 is typical of a number of data sets processed. The confidence intervals diverge with 
increasing concentration, as the contribution of the uncertainty of the quadratic term (b2) 
increases (Figure 2). The effect is ameliorated by the increasing negative correlation 
term. 
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Figure 1: Calibration for the routine ICPAES analysis of potassium. Five calibration points, 
measured in triplicate, blank-corrected and fitted with a weighted quadratic regression through zero. 
Error bars are the 95% confidence interval of the mean of each point. Dashed lines are the 95% 
confidence interval on estimated concentrations from the calibration. 
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Figure 2: The fractional contributions of the components in the calibration function to the standard 
error of the estimates in Figure 1.  
Box 2a 
 

 
 
Box 2b 
 

 

=AVERAGE(C7:E7)
=STDEV(C7:E7)

=F7-$B$1

=SQRT(SUMSQ(I3:I7)/5)

=AVERAGE(C7:E7)
=STDEV(C7:E7)

=F7-$B$1

=SQRT(SUMSQ(I3:I7)/5)

=1/$G7^2

=MMULT(MINVERSE(MMULT(B11:F12,MMULT(B15:F19,A3:B7)))
,MMULT(B11:F12,MMULT(B15:F19,H3:H7)))

=MINVERSE(MMULT(B11:F12,MMULT(B15:F19,A3:B7)))*(MMULT(B13:F13,
MMULT(B15:F19,H3:H7))-MMULT(E22:F22,MMULT(B11:F12,MMULT(B15:F19,H3:H7))))/3

=SQRT(B26)

=1/$G7^2

=MMULT(MINVERSE(MMULT(B11:F12,MMULT(B15:F19,A3:B7)))
,MMULT(B11:F12,MMULT(B15:F19,H3:H7)))

=MINVERSE(MMULT(B11:F12,MMULT(B15:F19,A3:B7)))*(MMULT(B13:F13,
MMULT(B15:F19,H3:H7))-MMULT(E22:F22,MMULT(B11:F12,MMULT(B15:F19,H3:H7))))/3

=SQRT(B26)
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Box 2c 
 

 

 
Box 2: Calculation of standard error for a concentration of potassium from an ICPAES analysis 
using a weighted quadratic calibration. The data is blank corrected and fitted through the origin. (a) 
Data and calculation of standard deviations for the weights for each point. (b) Matrix calculations for 
the variance/covariance matrix of the coefficients. (c) Calculation of first rows for standard error of 
the estimate of concentration. The 95% confidence intervals (not shown) are calculated from s(x0) as 
in Box 1b.  

=1/SQRT(C32)

=G32*SQRT(C$27)

=(-1+0.5/SQRT(C30)*(2*B$22))/2/B$23

=((B$22-SQRT(C32))/2/B$23^2+A32/
SQRT(C32)/B$23)

=$B$22^2+4*$B$23*A32

=A32*$I$8

=(-$B$22+SQRT(C32))/2/$B$23

=E30*SQRT(B$26)

=B30*I30

=2*E30*G30*C$26

=SQRT(SUMSQ(F30,H30,J30)+K30)

=1/SQRT(C32)

=G32*SQRT(C$27)

=(-1+0.5/SQRT(C30)*(2*B$22))/2/B$23

=((B$22-SQRT(C32))/2/B$23^2+A32/
SQRT(C32)/B$23)

=$B$22^2+4*$B$23*A32

=A32*$I$8

=(-$B$22+SQRT(C32))/2/$B$23

=E30*SQRT(B$26)

=B30*I30

=2*E30*G30*C$26

=SQRT(SUMSQ(F30,H30,J30)+K30)
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Some points to consider for calibrations 
Although there has been much discussion about appropriate calibration methods and the 
correct incorporation of components in an estimate of measurement uncertainty, for 
routine methods that adopt linear calibration in a range in which there is a good fit to the 
linear model, the calibration is usually not a major source of uncertainty. The traditional 
“four nines r2”, i.e. a squared correlation coefficient greater than 0.9999, invariably yields 
a useable function. Despite arguments about the unthinking use of r2 11, 12, Ellison has 
shown that there is some utility in this statistic13.   
Correlations between parameters of a calibration function are usually a significant 
component of the uncertainty and therefore can rarely be ignored. However the 
covariance matrix is usually available and the inverse calibration function can be 
differentiated. Thus the correct uncertainty of an estimate can be calculated. Correlations 
usually reduce the uncertainty, so not including them will lead to overestimated 
confidence intervals.  
In the expression for the standard error of an estimate from a linear calibration (equation 
8), the uncertainty of the observed response when the unknown is presented to the 
instrument usually has the greatest contribution. When its standard deviation is estimated 
by sy/x, the standard error of the regression, it enters the equation as sy/x/(b √m) where m is 
the number of replicate measurements. As m is usually one or two, the term is always 
greater than that for ,  sy/x/(b √n), where n is the number of points in the regression 
(typically five or more). The contribution to uncertainty of the slope, b, is zero in the 
middle of the calibration when (y0 – ) is zero, and rarely is greater than the other terms. 
As discussed above, there is likely to be knowledge of the standard deviation of the 
indication from QC data, and this is likely to be a better estimate than the standard error 
of the regression. Therefore I recommend use of equation 16 in such cases.  
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