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Abstract

For decades we have known that an optical parametric oscillator (OPO) generates

a two-mode squeezed vacuum state. The interaction between the ‘pump’ field at

the second harmonic frequency and a nonlinear medium inside the optical cavity

produces entangled pairs of parametric down-converted photons. Due to the me-

chanics of a cavity, these photons can be generated at the optical carrier frequency

(half the pump frequency), or in equally-spaced side-band frequencies symmetrically

above and below the carrier. These side-band frequencies can be within the OPO

linewidth centred on the carrier (spaced by kHz-MHz) or at the cavity resonance

frequencies, which are evenly spaced by the free spectral range (FSR) of the cavity

(spaced by MHz-GHz). The entangled photons in each correlated pair of side-bands

form a two-mode squeezed vacuum state.

However, since the photons only differ by kHz-GHz in frequency, the output from

an OPO is usually viewed as degenerate. This is due to the way a homodyne detec-

tor measures this two-mode state. Homodyne detection automatically performs a

mixing operation on the upper and lower side-bands which rotates the measurement

basis. In this rotated basis the two-mode state becomes two separable single-mode

squeezed vacua. The standard homodyne detection technique cannot distinguish be-

tween these two symmetric single-mode states, therefore giving measurements that

look like an OPO is a degenerate system which produces a single-mode squeezed

vacuum state.

We have shown that combining the wave-like nature of homodyne detection with

the particle-like nature of photon counting in a hybrid experiment can produce an

asymmetric two-mode quantum state. Applying photon-subtraction to a two-mode

squeezed vacuum state produces two distinguishable single-mode states: a photon-

subtracted squeezed vacuum state and a squeezed vacuum state. These asymmetric

states cannot be properly characterised by a measurement technique that cannot

distinguish between them. We have applied a novel measurement that combines

time-domain measurements with frequency-resolved homodyne detection for a fixed

demodulation phase. The ability to control this phase gives us independent access to

either single-mode state. We were able to perform quantum state tomography on our

projected state and separately reconstruct each single-mode state. We also showed
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that the photon-subtracted squeezed vacuum state is a quantum non-Gaussian state

without homodyne detection efficiency correction by extracting entanglement be-

tween the first three FSRs created by the optical implementation of our projector.

Therefore, by accessing the FSR side-band modes of a nondegenerate OPO we were

able to generate both a squeezed vacuum state and a quantum non-Gaussian state

that are independent yet travelling in the same optical mode.
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Glossary of terms

Term Definition

APD Avalanche photodiode

BS Non-polarising beamsplitter
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DV Discrete variable

FBS Frequency beamsplitter
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HD Homodyne detector

LO Local oscillator (optical)
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Pdc APD dark count probability

p Total cavity path length

ξ Squeezing parameter

ρ̂ Density operator (state operator)
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Chapter 1

Introduction

Anyone who can contemplate quantum mechanics without getting dizzy hasn’t
properly understood it.

Niels Bohr

In this chapter we present a brief introduction to quantum information science,

and discuss the possible platforms currently under investigation for use in various

quantum technologies. We concentrate our review on optical schemes, focusing on

the contrasts between the discrete and continuous variable regimes. We will then

discuss various hybrid quantum optics experiments that attempt to bridge these

two worlds. We will highlight a particular type of hybrid experiment that combines

the wave-like nature of homodyne detection with the particle-like nature of photon

counting to produce quantum non-Gaussian states. We conclude by discussing the

quantum states generated by our experiment which utilises two-mode squeezed vac-

uum to generate concurrent quantum resource states, and how these states could

play an important role in future quantum technologies.

1.1 Historical perspective

Quantum information science offers exciting possibilities to improve a wide-range of

real world applications from storing and processing vast amounts of information at

classically unreachable speeds and efficiencies, to transmitting codes with unbreak-

able security and improving the accuracy of clocks [1,2]. Utilising various quantum

properties of light and matter can lead to several advantageous abilities, including

the quantum internet [3], secure information transfer protocols, such as quantum key

distribution (QKD) [4], and quantum computing algorithms, such as Shor’s quan-

tum factoring algorithm [5,6] and Grover’s quantum search algorithm [7–9]. As first

proposed by Feynman in 1982 [10], it is believed that a quantum computer is neces-

sary for properly simulating some physical systems [11–17]. There are several other

practical applications of quantum technologies that include increasing the sensitiv-
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ities of measurement techniques by employing non-classical light through quantum

metrology [2, 18–21] and quantum lithography [22]. Quantum lithography is an

emerging field that exploits a well-known quantum property called entanglement to

fabricate devices with features on the order of magnitude smaller than an optical

wavelength [22]. Fabrication on this scale is impossible with classical light due to the

limits imposed by optical diffraction. This application has immediate implications

in the current trend of miniaturisation of computer chips and the birth of nanotech-

nology. As the size of circuit boards becomes closer to the quantum scale, quantum

effects must be considered when designing, fabricating, and operating these devices.

One significant appeal offered by quantum information science is the possibility

of a quantum computer. A quantum computer can store and manipulate information

in the form of quantum bits (qubits) instead of classical bits. Unlike the classical

bit, which can be assigned the value 0 or 1, qubits can utilise quantum mechanical

qualities, such as superposition, to exist in a superposition state of 0 and 1. The idea

that a quantum system could perform computations was first explicitly commented

on by Benioff in 1982 [23]. A quantum computer can also exploit quantum parallelism

in which certain probabilistic tasks can be performed much faster compared to any

classical restriction of the calculation [24]. There’s little doubt that such a computing

device provides the possibility for enormous computing power, which may surpass

the factoring abilities of current supercomputers due to the exponential speed-up of

quantum algorithms over existing classical computing algorithms [5, 11].

A basic requirement of a universal quantum computer is to consist of a system of

scalable physical qubits that can be initialised, measured, and made to controllably

interact with each other, while remaining well-isolated from the surrounding envi-

ronment [25]. These qualities are vital for implementing a universal set of quantum

logic gates [26, 27]. It is also necessary to transfer quantum information between

these qubits [28], which could be implemented with the help of quantum telepor-

tation [29–32]. Quantum teleportation is the transmission and reconstruction of

quantum information over arbitrary distances [29]. Usually the teleported infor-

mation takes the form of the state of a quantum system, such as transferring the

polarisation state of one photon to another photon. A novel encoding technique

called quantum dense coding could also be used to increase the quantum capacity of

a classical information channel to facilitate more efficient communication [33–35].

There are various physical platforms which could be utilised to construct such

a qubit, such as non-classical light [25,36–39], atom- and ion-traps [40–45], impuri-

ties in diamond [46], superconducting charge and flux qubits [47], nuclear magnetic

resonance (NMR) techniques [48–50], spin- and charge-based quantum dots [51–53],

nuclear spin qubits in silicon and other molecules [54], cavity quantum electrody-

namics [55–60], and superconducting Josephson junctions [61]. Currently, there are
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several international collaborations working towards creating a universal quantum

computer using one or a combination of these platforms. Some schemes have clear

advantages over others but all platforms have challenges to overcome.

Employing light as part of the encoding platform in quantum information pro-

cessing is a logical choice as light naturally integrates into quantum computation,

communication, and cryptography schemes [62–64]. One critical advantage of optical

quantum systems over their atomic counterparts is the ability to transfer information

at the speed of light. Since photons remain fairly isolated from their environment,

they are potentially free from decoherence compared to atoms, causing photons to

possess longer information storage times [38]. Logical photonic qubits also offer

flexibility in how the information is encoded due to their multiple degrees of free-

dom, such as polarisation, spatial, and optical frequency modes. Optical quantum

gates are relatively simple to implement as standard birefringent wave plates can

act as single qubit logic gates, and polarising beamsplitters can be used to transi-

tion between polarisation and path encoding [25]. However, the inherent ability of

photons to undergo non-destructive interactions with their surroundings becomes

a disadvantage when an operation requires photons to interact with each other,

such as in two-qubit quantum gates. There are ways to work around this problem

by making nonlinear projective measurements with photodetectors [27]. However,

these measurements are probabilistic whereas deterministic operations are required

for a technically viable quantum computer.

There exists two distinct paradigms in quantum optics for generating resource

states and demonstrating optical quantum information operations: the discrete vari-

able (particle-like) regime [38] and continuous variable (wave-like) regime [65]. The

difference between these two regimes is in the type of measurement performed on

the state, not the state itself. Each regime utilises a different property of light by

choosing to measure its discrete variable (DV) or continuous variable (CV) proper-

ties. Changing the nature of the measurement affects the measurement result and

reveals either the CV or DV nature of light. The fact that light (and matter) behaves

either wave-like or particle-like depending on the measurement technique used has

been known since the birth of quantum physics and is referred to as wave-particle

duality [66]. The DV regime stores and manipulates information in discrete levels of

light [67–70]. Therefore, single photons are the carriers of DV information, which can

be encoded in their polarisation or frequency degrees of freedom. Measurements are

then performed by avalanche photodiodes (APDs) or by photon-number-resolving

detectors (PNRDs), such as transition-edge sensors (TESs). A CV scheme exploits

the continuous degrees of freedom associated with an optical field, such as its phase

and amplitude quadratures, to encode information. A particular kind of CV pho-

todetection called homodyne detection is utilised for state characterisation in this
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regime. This technique can access either the phase or amplitude quadratures of

light, unlike direct CV detection which can only access the amplitude quadrature.

These photodetection techniques will be further explain in chapter 2.

Both the DV and CV regimes rely on the production of entangled photon pairs

[71]. The generation of correlated photons had its beginnings decades ago with

the theoretical prediction [72–74], and then experimental demonstration of photons

being emitted by ‘parametric fluorescence’ [75]. One of the first observations of

this non-classical light state was from optically pumping ammonium dihydrogen

phosphate and lithium niobate (LiNbO3) crystals with high-powered lasers [75–77].

Then photon antibunching was observed from atomic fluorescence [78–81] using

photomultiplier tubes [82, 83]. The technique of producing entangled photon pairs

from nonlinear crystals is now commonly referred to as parametric down-conversion

(PDC), and is the standard technique used in a large number of quantum optics

experiments [84–95].

Parametric down-converted photons can be distinguishable or indistinguishable

in all degrees of freedom (wavelength, polarisation, spatial and temporal modes), and

entangled in all of these parameters. A PDC process that produces indistinguishable

photons is usually referred to as degenerate PDC. Another type of PDC can generate

entangled distinguishable photons. These photons may exit the nonlinear crystal

at different spatial angles or have orthogonal polarisations, or they could be at

completely different wavelengths, such as a photon at 532 nm down-converting into

532nm 7→ 810nm+1550nm [96–98]. Throughout this thesis we will refer to this type

of nondegeneracy where the wavelengths of the down-converted photons differ by a

few nanometres or more as wavelength-scale nondegenerate PDC (WS-NPDC).

In chapter 2 we will discuss another type of nondegenerate PDC that is generated

by an optical cavity with a nonlinear medium inside. This type of optical system

forms a side-band-scale nondegenerate optical parametric oscillator (SS-NOPO). The

frequency transfer function of the optical cavity shapes the down-conversion spec-

trum of the nonlinear medium to generate a ‘comb’ of entangled photon pairs at fre-

quencies above and below the optical carrier frequency. The down-converted photons

can exist at frequencies within the ‘baseband’ cavity linewidth at frequencies equally

separated by a few kilohertz or megahertz from the optical carrier frequency. Or

these entangled photons can exist at correlated cavity resonance frequencies spaced

by the free spectral range (FSR) of the cavity. Entangled side-bands spaced by one

or more FSRs exist on a frequency scale of megahertz to gigahertz from the carrier

frequency. Therefore, these photons are at Ω0 ± ωs, where Ω0 is the carrier angular

frequency and ωs is a particular FSR angular frequency. These side-bands can differ

by only a few hundredths of a nanometre in wavelength. Thus this type of PDC

is often thought of as degenerate. However, these photons (side-bands) are distin-
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guishable, as demonstrated by the ability to spatially separate them using an empty

optical cavity or unbalanced interferometer [99–101]. There are several other types

of single photon sources [46, 94, 102], some of which include quantum dots in pillar

microcavities [103], single atoms or ions in high-finesse cavities [104, 105], diamond

nanocrystals [106], single molecules in host crystals [107], Kerr nonlinearity four-

wave mixing [108], and waveguiding structures [109]. We shall focus exclusively on

the states produced by a SS-NOPO in this thesis.

Discrete variable experiments commonly utilise APDs or TESs to detect one

photon from an entangled pair which projects the presence of its entangled partner

in the appropriate optical mode. The ability to deterministically know the success

or failure of a quantum operation based on the detection of a photon is a major

advantage of the DV paradigm. A well-known DV quantum computing scheme

is the Knill, Laflamme, and Milburn (KLM) protocol [37]. In 2001 they illustrated

theoretically that it is possible to conduct efficient linear optical quantum computing

(LOQC) with the sole use of photons and linear optics. The information is encoded

in two orthogonal modes of a single photon with one mode as logical 0 and the

other mode as logical 1. Since this seminal paper several groups have experimentally

demonstrated the power of this technique [27,110–112].

However, there are significant disadvantages to the KLM scheme due to the

enormous resource requirements, such as the requirement of more than 10, 000 pairs

of entangled photons to achieve > 95% success probability of a near-deterministic

control-NOT (CNOT) gate [25]. A CNOT gate is the canonical example of an en-

tangling logic gate which is necessary for universal quantum computation [25]. The

state of the target qubit ‘flips’ conditional on a control qubit being in the logical

state 1. As the majority of entangled photon production is probabilistic, the ex-

perimental challenges to produce large numbers of resource states is overwhelming.

Furthermore, there is a lack of fault tolerance, the requirement for photon-number-

resolving measurements, and the quantum gates are probabilistic so they only suc-

ceed 1/16 of the time (with heralded fails) [27]. There have been several attempts

to simplify the scheme further to create practical schemes for linear optical comput-

ing [25,111,113–116]. For example, the success rate of the gates can be improved by

utilising quantum teleportation to transfer a non-deterministic gate that was suc-

cessful onto waiting control and target qubits to ensure 100% success [31]. Quantum

teleportation is a critical ingredient for quantum computing and communication net-

works, and was first experimentally demonstrated in DV systems by Bouwmeester

et al. in 1997 [30]. Further proof-of-principle experiments were performed shortly

afterwards by several groups [117–119].

Optical quantum information science was extended into the CV regime by the

demonstration that electromagnetic fields are a natural physical representation of the
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formalism for quantum error correction [120–122], teleportation [123–127], and com-

putation [128]. These experiments typically involve generating a CV non-classical

state, such as quadrature squeezed light. The first experimental demonstration of CV

quantum teleportation was of an optical coherent state using squeezed light by Fu-

rusawa et al. [125]. A squeezed state has a lowered noise variance in one quadrature,

and therefore an increased noise level in the conjugate quadrature [129–135]. This

quantum state will be further defined in chapter 2. Some of the first experimental

demonstrations of quadrature squeezing were generated by four-wave mixing in an

optical cavity [136] and PDC in an optical cavity using χ(2) nonlinearity [137–145].

Since those seminal experiments, the quality and level of noise reduction in optical

states have been significantly improved [146–157].

Continuous variable states offer efficient ways to implement essential aspects

of quantum communication and computation protocols. The CV qubit, called a

‘qumode’, can be prepared, unitarily manipulated, measured, and entangled by util-

ising the continuous Gaussian noise profiles in their quadratures [65]. Gaussian

states and transformations have been shown to be primary tools for analysing quan-

tum information processing [158]. Furthermore, feed-forward techniques can be used

to displace an optical mode in phase space, which is a vital operation in quantum

information [65]. As mentioned earlier, homodyne detection is a well-known mea-

surement technique that can characterise either quadrature of the CV state with

high efficiency. Furthermore, efficient CV entanglement can be created by interact-

ing two non-classical Gaussian beams on a beamsplitter [125,159,160]. The quality

of entanglement depends directly on the amount of squeezing present in the inter-

acting light beams, so there will always be a degree of imperfection.

However, it has been established that Gaussian states and transformations alone

are insufficient for universal quantum computation [128]. The use of squeezing

unitaries and linear optics only transforms Gaussian states into Gaussian states.

Although quantum Gaussian states are useful for quantum communication [161–

164] and one-way quantum computation with cluster states [165–170], a quantum

computer consisting of fully Gaussian qubits can always be efficiently simulated by

a classical computer [171]. Therefore, non-Gaussian operations or states must be

included in the quantum system for universality to be achieved, and for the system

to be no longer classically simulated. The cubic Hamiltonian like the χ(3) Kerr

nonlinearity is an example of a non-Gaussian operation [172–178]. However, due

to the weak nature of this nonlinearity, it is experimentally challenging to use in a

scalable quantum computer.

Experiments involving measurement-induced nonlinearities can produce quan-

tum non-Gaussian states from Gaussian states. This technique can be easier to

experimentally implement than a strong χ(3)-nonlinearity, and creates states that
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are necessary for universal quantum computing [179]. The KLM protocol is an ex-

ample of a measurement-induced nonlinearity applied to a fully DV system. Another

approach can generate non-Gaussian states by merging the DV and CV worlds in

a new type of optical system referred to as a hybrid experiment. Hybrid exper-

iments belong to a paradigm that utilises both discrete and continuous variable

measurement techniques on the same optical state. Optical hybrid quantum infor-

mation protocols have been proposed that attempt to overcome the various practical

and fundamental limitations caused by relying solely on measurements of discrete

or continuous variables while retaining the advantages of both systems [180, 181].

For example, there can be more advantages to working in the CV regime for certain

tasks, such as quantum teleportation, which can be accomplished unconditionally in

the CV paradigm with only linear optics [124]. The discrete nature of single photons

means that they are excellent for heralding the success or failure of an event over a

lossy channel, which is useful for entanglement generation [182, 183]. However, one

drawback to DV detection is that APDs at certain wavelengths, like telecommu-

nication wavelengths, have notoriously poor quantum detection efficiencies which

can affect the quality of state characterisation. Whereas homodyne detection at

these wavelengths uses photodiodes that have ∼ 90% quantum efficiencies, and is a

well-known and reliable measurement technique for CV state characterisation.

There are several other advantages to combining CV and DV measurement tech-

niques to form a hybrid discrete-continuous photonic system [181], from the study

of fundamental quantum phenomena [184–187] to a hybrid quantum repeater pro-

tocol for long-distance entanglement distribution [188–190] to heralded state gener-

ation [191]. Quantum repeaters work by first generating entanglement over shorter

segments and then joining these segments by entanglement swapping and purifica-

tion to achieve scalable entanglement distribution across long lossy channels [192].

A hybrid system can also generate essential resources for quantum-enhanced ap-

plications [65] such as entanglement distillation [193–195], quantum computation

[178, 196], CV quantum teleportation of DV encoded photonic qubits [197–200],

and highly efficient optical telecommunications [201, 202], and can allow for hybrid

Bell measurements [203] and hybrid projectors using both discrete and continuous

variable detection systems [204,205].

One of the first applications of a measurement-induced nonlinearity to a hybrid

system was the Gottesman, Kitaev, and Preskill (GKP) scheme. In this proto-

col, photon number measurements are utilised to create non-Gaussian states from

Gaussian resources, which encodes logical DV states into physical CV states [179].

Recently, the various advantages provided by a hybrid quantum information sys-

tem has encouraged several experimental demonstrations, especially in the area of

generating single-photon states or superpositions of macroscopic states (both non-
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Gaussian states). This type of hybrid experiment combines the advantages of ‘de-

terministic’ DV photon counting with high-efficiency homodyne detection to project

quantum non-Gaussian states. Lvovsky et al was one of the first to demonstrate a

non-Gaussian state by generating a one-photon Fock state, and then characterising

it using CV measurements [206]. In this experiment, spatially nondegenerate PDC

photons are separated into two optical modes: the trigger and signal. The trigger

field is spectrally filtered before detection by a single-photon detector. A detection

event of the trigger photon heralds the presence of its entangled partner in the signal

field. The signal field is then characterised using homodyne detection, and quan-

tum state tomography is conducted of the one-photon Fock state, which revealed

negativity of the Wigner function near the origin in phase space.

Other quantum non-Gaussian states have been generated since this seminal ex-

periment in which the squeezed vacuum state is used to generate a photon-subtracted

squeezed vacuum state. These photon-subtracted states have photon number dis-

tributions (PNDs) that are clearly different to a single-photon Fock state. The

probability of measuring a three-photon term in a photon-subtracted squeezed vac-

uum state is higher than for a two-photon term, which is not possible to generate

with spatial or polarisation nondegenerate PDC. (We will show in chapter 3 that it is

possible to generate such a state with nondegenerate PDC from a SS-NOPO.) This

PND of odd photon number probabilities is approximate to an odd Schrödinger cat

state of small amplitude [207,208]. The famous Schrödinger cat [209] is a gedanken

experiment in quantum physics which illustrates the bizarre possibility that a macro-

scopic object, such as a cat, could exist simultaneously in a quantum superposition of

two clearly distinguishable states, such as the cat being both ‘dead’ and ‘alive’. The

optical version of a Schrödinger cat state can be a superposition of bright coherent

states with opposite phase, |α〉± |−α〉 [210]. However, it is experimentally difficult

to generate such coherent state superpositions with a coherent amplitude of α� 1.

Therefore, photon-subtracted squeezed vacuum states are generated instead, which

are mathematically approximate to small-amplitude Schrödinger cat states (kitten

states) [91, 94, 95, 97, 102, 186, 193, 211–231]. For α . 1, these kitten states can be

approximated with high fidelity by squeezed single-photon states [232].

Quantum non-Gaussian states are extremely powerful resource states, as illus-

trated by the recent development of a quantum information scheme, called coherent

state quantum computing (CSQC). This scheme utilises coherent state superposi-

tions to encode, compute, and transmit information [232–240]. Furthermore, in-

formation could be encoded into the odd and even kitten state basis, which offers

the advantage of being a more orthogonal basis compared to CSQC, which uses

phase-shifted coherent states as the basis [237]. As the Gaussian squeezed vacuum

state is approximate to an even kitten state, there are notably several advantages
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to having a system that could produce both quantum non-Gaussian and Gaussian

states simultaneously. Thus far such a quantum state from a single optical cavity

has not been experimentally generated.

By combining the DV nature of projective photon-counting measurements with

time-and-frequency-resolved CV homodyne detection and phase-locked frequency

demodulation, we have realised simultaneous generation of independent and dis-

tinct quantum resource states in a single optical mode at a telecommunication

wavelength. We utilised the nondegenerate qualities of a SS-NOPO to generate a

photon-subtracted two-mode squeezed vacuum state. Homodyne measurement of a

two-mode state rotates the measurement basis into a basis defined as the linear com-

binations of the correlated upper and lower side-bands. These combinations define

two distinct modes that we will refer to as the symmetric and anti-symmetric modes.

Thus, the two-mode quantum state becomes two single-mode quantum states in this

symmetric/anti-symmetric basis. However, only one of the two modes is affected

by the photon-subtraction operation. Therefore, a quantum non-Gaussian state is

created in the symmetric side-band mode that is independent of the single-mode

squeezed vacuum state in the anti-symmetric side-band mode. Due to the nature of

our measurement technique, both of these states can be accessed and manipulated

independently. Furthermore, they exist in a natural basis for demonstrating uni-

versal quantum gate operations, such as displacement in the phase and amplitude

quadratures.

1.2 Thesis plan

In the next chapter we review fundamental concepts in theoretical and experimental

quantum optics, as well as a theoretical model for Schrödinger kitten state gener-

ation with imperfect experimental conditions. We will also discuss the standard

tomographic reconstruction technique used to characterise quantum states via ho-

modyne detection.

In chapter 3 we introduce state generation theory pertaining to our experiments

with two-mode squeezed vacuum and photon-subtracted two-mode squeezed vac-

uum. We will define a new basis consisting of the superpositions of the upper and

lower side-bands produced by a SS-NOPO (symmetric and anti-symmetric modes).

This will introduce a novel way of interpreting the standard homodyne measure-

ment in this symmetric/anti-symmetric basis. We will then mathematically de-

rive what occurs when a frequency-resolved homodyne measurement is applied to

a two-mode squeezed vacuum state, which naturally preforms a measurement in

the symmetric/anti-symmetric basis. Unlike the standard homodyne measurement
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technique, applying this phase-locked-frequency-resolved measurement technique al-

lows access to both the symmetric and anti-symmetric modes. We then predict an

intriguing result by applying this measurement operator to the photon-subtracted

two-mode squeezed vacuum state. We shall show that photon-subtraction will only

occur on one of the two modes (e.g. the symmetric mode), leaving the squeezed

vacuum state in the orthogonal mode unaffected. This produces a unique set of in-

dependent and distinguishable quantum states in the symmetric and anti-symmetric

side-bands modes. A phase-locked-frequency-resolved homodyne measurement is

necessary to fully characterise this asymmetric state.

In chapter 4 we will discuss the experiment in detail. The experiment can be run

in one of two modes: unprojected state mode or projected state mode. We will discuss

each of these modes, and focus on describing each component in the experiment

separately. We will also introduce a novel way to characterise the frequency transfer

function on an optical system up to the gigahertz frequency range without the need

for a wide-bandwidth photodetector.

Our data acquisition techniques and results from the unprojected two-mode

squeezed vacuum state experiment are presented in chapter 5. We will demonstrate

the ability of our measurement technique to fully characterise this unprojected state

at the first three FSRs of our SS-NOPO. We will also show that for the case of the

unprojected state, the states at each FSR are independent squeezed vacuum states.

The true power of this measurement technique is demonstrated in chapter 6 when

this method is applied in a hybrid photon-subtracting experiment. We present re-

sults that fully characterise two distinguishable and independent quantum states in

the projected symmetric and anti-symmetric side-band modes. Due to the transmis-

sion function of our optical filtering system used in the projected state experiment,

the states at each FSR are no longer independent. We establish that these states are

entangled and that the quality of our reconstructed projected states improve when

a frequency-dependent temporal mode function is applied which exploits this entan-

glement. We conclude in chapter 7 and identify possible areas of future research.

1.3 Summary of results

The novel contributions to the field discussed in this thesis are:

• We present state generation theory pertaining to our experiments with two-

mode squeezed vacuum and photon-subtracted two-mode squeezed vacuum

(chapter 3).

• Formulated a measurement technique to conduct frequency characterisation
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of optical cavities into the gigahertz range using a standard power meter and

an amplitude modulator (chapter 4).

• Experimental implementation of time-and-frequency-resolved homodyne mea-

surements on a two-mode squeezed vacuum state which demonstrates the abil-

ity of this measurement technique to access both the symmetric and anti-

symmetric side-band modes of a quantum state (chapter 5).

• Experimental demonstration of a photon-subtraction operation on a two-mode

squeezed vacuum state produced by a SS-NOPO which only affects one of the

side-band modes. This operation effectively destroys the symmetry that pre-

viously existed between the symmetric and anti-symmetric side-bands modes

of the two-mode squeezed vacuum state (chapter 6).

• Experimental characterisation of projected states consisting of a quantum non-

Gaussian state in the symmetric side-band mode and a squeezed vacuum state

in the anti-symmetric mode. These states are independent and exist in a single

optical mode at a telecommunication wavelength (chapter 6).
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Chapter 2

Quantum optics basics

A careful analysis of the process of observation in atomic physics has shown that the
subatomic particles have no meaning as isolated entities, but can only be understood
as interconnections between the preparation of an experiment and the subsequent
measurement.

Erwin Schrödinger

2.1 Quantum state representations

2.1.1 Basics

Before the introduction of quantum theory, the physics of the universe was explained

using classical Newtonian mechanics. The state of an object was described by ob-

servable quantities, such as position (x) or momentum (p) variables. The state could

be directly observed via a measurement of its exact position and momentum, and

the uncertainty in that measurement depended on the accuracy of the measure-

ment device. There was no theoretical limit to the accuracy of such a measurement.

Therefore, according to classical physics, it is theoretically possible to perform an

exact measurement on a system with an ideal measurement device, and the act of

that measurement is seen as an independent event which does not affect the state

of the system.

The introduction of quantum mechanics changed the concept of states and inde-

pendent measurements without uncertainties. The state of a system can no longer

be described by a set of exact single-valued variables, and is instead represented by

a state vector written as a ‘ket’, |ψ〉. If the system is prepared perfectly then it can

be described by a superposition of pure states [241],

|ψ〉 = c1|ψ〉1 + c2|ψ〉2 + . . . (2.1)

Measurements are represented by Hermitian operators Â called observables which
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describe a particular action or measurement to be performed on the system. An

operator is determined to be Hermitian if Â = Â†, where Â† is the Hermitian

conjugate of Â, and (Â†)† = Â [242]. Generally the system to be measured will be in

a superposition state of the possible measurement outcomes before the measurement

is performed. These possible outcomes are the eigenstates |a〉 associated with the

measurement observable Â. Therefore, before the act of measurement we can expand

the state vector, |ψ〉, to give

|ψ〉 =
∑
a

〈a|ψ〉|a〉, (2.2)

where 〈a|ψ〉 is the complex projection of |ψ〉 onto |a〉 [243]. After the measurement

has been made, the superposition collapses to just one of the eigenstates, and the

numerical outcome of the measurement is a real number called an eigenvalue, a.

The observable can be described in terms of its eigenstates and eigenvalues as

Â =
∑
a

a|a〉〈a|. (2.3)

Each eigenstate has a probability of occurring associated with it, pa, which is defined

as

pa =
|〈a|ψ〉|2∑
a |〈a|ψ〉|2

. (2.4)

If we immediately repeated the measurement, we would obtain the same result, a,

because the act of the first measurement collapsed the system into a single eigen-

state, which gives a particular measurement result with certainty. This is called the

collapse of the state vector or collapsing the wavefunction. Furthermore, the average

or expectation value, 〈Â〉, of the measurement value a is given by [243]

〈Â〉 =
∑
a

apa = 〈ψ|Â|ψ〉. (2.5)

According to the principles of quantum mechanics, non-commuting observables

such as position and momentum, cannot be simultaneously measured with absolute

precision. This is because there is a minimum uncertainty relationship called the

Heisenberg uncertainty principle [244] that is always obeyed in nature. In general

the commutation relation for two arbitrary observables Â and B̂ is defined as

[Â, B̂] = ÂB̂ − B̂Â = C, (2.6)

where C is a complex constant. If |C| > 0 then observables Â and B̂ are non-

commuting. The uncertainty principle states that the product of uncertainties of
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simultaneous measurements is bounded by a factor which depends on the commu-

tator relation

∆Â∆B̂ ≥ |[Â, B̂]|
2

. (2.7)

The variance ∆Â2 (or VA) of a measurement is defined as the square of the

uncertainty ∆Â in the measurement (standard deviation), where ∆Â2 = (∆Â)2 and

∆Â2 ≡ VA = 〈ψ|(Â− 〈Â〉)2|ψ〉 (2.8)

= 〈ψ|Â2|ψ〉 − (〈ψ|Â|ψ〉)2

= 〈Â2〉 − 〈Â〉2.

2.1.2 The density matrix

It is possible for a system to exist in a statistical mixture (or ensemble) of multiple

pure states, |ψj〉, with probabilities qn. A single state ket cannot adequately de-

scribe such a mixed state and therefore the density operator (or state operator) was

introduced, which is defined as

ρ̂ =
∑
j

qj|ψj〉〈ψj|, (2.9)

where
∑

j qj = 1 and ρ̂ = |ψ〉〈ψ| for a pure state. The density matrix is defined as

the representation of ρ̂ in a given basis, {|φk〉},

ρ̂ =
∑
m,n

ρmn|φm〉〈φn|, (2.10)

where

ρmn = 〈φm|ρ̂|φn〉 =
∑
j

qj〈φm|ψj〉〈ψj|φn〉. (2.11)

The diagonal elements are ρnn =
∑

j qj|〈φn|ψj〉|2 and therefore non-negative. A

very common density matrix representation in quantum optics is in terms of the

photon-number basis called the Fock basis where these diagonal elements represent

the photon number distribution of the quantum state. The density matrix con-

tains complete information about any given state and can be used to calculate the

expectation value of any observable as

〈Â〉 = tr[Âρ̂] =
∑
n,j

qj〈φn|Â|ψj〉〈ψj|φn〉 =
∑
j

qj〈ψj|Â|ψj〉. (2.12)

Throughout this thesis we will discuss multimode systems in which the two modes

are entangled. In quantum optics a mode of a state refers to a degree of freedom
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of the electromagnetic field, such as frequency, polarisation, temporal, spatial, etc.

A system is defined as entangled if the state vector describing the total system is a

tensor product of subspaces, |ψ〉 = |a1〉⊗ |a2〉, and cannot be factorized any further.

The density matrix of mode a in such a two mode state can be found by taking a

partial trace of the two-mode density matrix, ρ̂ab, over mode b as

ρ̂a = trb

[
ρ̂ab

]
. (2.13)

This is equivalent to measuring one half of the two-mode state by applying a mea-

surement operator to only mode a. The partial trace of a joint system |ψ〉C =

|ψ〉A ⊗ |ψ〉B where,

ρC = ρ⊗ σ =

(
ρ11σ ρ12σ

ρ21σ ρ22σ

)
,

is mathematically defined as

trB

[
ρC
]

=

(
ρ11tr[σ] ρ12tr[σ]

ρ21tr[σ] ρ22tr[σ]

)
=

(
ρ11 ρ12

ρ21 ρ22

)
= ρ

2.1.3 Quadrature operators of light fields

This mathematical formalism of operators can be applied to the quantum mechanical

description of the electromagnetic field and various optical states. A quantized

electromagnetic field at frequency ω can be described by a Hamiltonian which is

analogous to the harmonic oscillator,

Ĥ = }ω
(
â†â+

1

2

)
, (2.14)

where â and â† are the annihilation and creation operators of field excitations,

respectively. These operators satisfy the boson commutation relation

[âν , â
†
ν′ ] = δνν′ , (2.15)

and

[âν , âν′ ] = [â†ν , â
†
ν′ ] = 0, (2.16)

where ν and ν ′ are optical modes and δνν′ is the Kronecker delta. If both operators

are acting on the same mode then ν = ν ′ and [âν , â
†
ν′ ] = 1. The annihilation and

creation operators are non-Hermitian, and therefore are not measurable quantities.

However, their real and imaginary parts are Hermitian, and they form the amplitude
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quadrature operator, X̂+, and phase quadrature operator, X̂−, which are defined as

X̂+ = â+ â† (2.17)

X̂− = − i(â− â†).

More generally any arbitrary quadrature operator, X̂(θ), is defined as

X̂(θ) = e−iθâ+ eiθâ† = X̂+ cos θ + X̂− sin θ. (2.18)

We can calculate the commutation relation between these quadratures by applying

equation 2.6 to give

[X̂+, X̂−] = 2i. (2.19)

And according to the uncertainty principle defined in equation 2.7,

∆X̂+∆X̂− ≥ 1. (2.20)

Therefore, it is impossible to simultaneously measure both the phase and amplitude

quadratures of an electromagnetic field with perfect precision. This fundamental

noise level in a measurement is referred to as quantum noise or quantum uncertainty.

The noise levels in one quadrature can be reduced below the quantum noise limit,

which results in an increased noise level in the orthogonal quadrature according

to equation 2.20. Such optical states are called squeezed states and they will be

discussed in more detail in §2.2. States that obey the equality in equation 2.20,

such as coherent states, the vacuum state, and pure squeezed states are referred to

as minimum uncertainty states and will be further discussed in §2.2.

The overlap between the eigenstates of the quadrature operators, |X+〉, and a

state |ψ〉 is given by the wavefunction ψ(X+) = 〈X+|ψ〉. The quadrature probability

distribution of the given state is given by |ψ(X+)|2. Therefore, the probability

distribution for the general quadrature operator, X̂(θ), is given by

pr[X(θ)] = |〈X(θ)|ψ〉|2, (2.21)

and for a general mixed state

pr[X(θ)] = 〈X(θ)|ρ̂|X(θ)〉 = tr
[
|X(θ)〉〈X(θ)|ρ̂

]
. (2.22)

The wavefunctions of photon-number states (called Fock states and will be fur-
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ther discussed in §2.2.1) for a general rotated quadrature are given by [243,245]

〈X(θ)|n〉 =
einθ√

2nn!
√
π
Hn[X(θ)]e−X(θ)/2, (2.23)

where Hn(x) is the Hermite polynomial of order n. The wavefunction of the vacuum

state where n = 0 is

|〈X(θ)|0〉|2 =
1√
π
e−X(θ)/2, (2.24)

which is a Gaussian function with quadratures of equal variance that satisfies the

equality in the uncertainty principle (2.20), illustrating this state is a minimum un-

certainty state. Only the zeroth-order of this function gives a Gaussian distribution.

2.1.4 The Wigner function

In classical physics the momentum and position of a particle trapped in a harmonic

oscillator is well-defined. It can be represented as a point in phase space spanned by

these variables called a phase distribution W (x, p). Therefore, such a distribution

allows the prediction of all statistical information about the state, and we can deter-

mine a particular pair of x and p values for a given simultaneous measurement. The

equivalent distribution in classical optics would be a joint-probability distribution of

the real and imaginary components of the complex amplitude α of an optical state

(the amplitude and phase quadratures of the electromagnetic oscillator). However,

obtaining such a distribution for a quantum state is forbidden by the uncertainty

principle as it would mean that we could precisely and simultaneously know informa-

tion about two non-commuting observables. Instead a quasi-probability distribution

is defined which provides us with an intuitive representation of the state. In 1932, E.

P. Wigner introduced a distribution that is now referred to as the Wigner function,

which has become one of the most famous distributions used in quantum optics [246].

The Wigner function has a one-to-one correspondence with the density matrix and

can be written as [243]

W (X+, X−) =
1

2π

∞∫
−∞

exp(ixX−)
〈
X+ − x

2

∣∣∣ρ̂∣∣∣X+ +
x

2

〉
dx. (2.25)

It is normalized,
∞∫

−∞

∞∫
−∞

W (X+, X−)dX+dX− = 1, (2.26)

and its marginal distributions are the probability distributions for the amplitude
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and phase quadratures,

∞∫
−∞

W (X+, X−)dX− = pr(X+) (2.27)

∞∫
−∞

W (X+, X−)dX+ = pr(X−).

More generally the amplitude quadrature probability distribution pr(X+, θ) after an

arbitrary phase shift θ is [243,247]

pr(X+, θ) =

∞∫
−∞

W (X+ cos θ −X− sin θ,X+ sin θ +X− cos θ)dX−. (2.28)

We can also use the Wigner function to evaluate the expectation value of an operator

Â by

〈Â〉 = tr[ρ̂Â] = 2π

∞∫
−∞

∞∫
−∞

W (X+, X−)WA(X+, X−)dX+dX−, (2.29)

where

WA(X+, X−) =
1

2π

∞∫
−∞

exp(ixX−)
〈
X+ − x

2

∣∣∣Â∣∣∣X+ +
x

2

〉
dx. (2.30)

Equation 2.30 is a special case of the overlap formula [243] where

tr[ÂB̂] = 2π

∞∫
−∞

∞∫
−∞

WA(X+, X−)WB(X+, X−)dX+dX−. (2.31)

Most properties of the Wigner function are similar to a classical distribution ex-

cept for the surprising feature that it can have negative values. As mentioned in the

previous chapter, some optical states can have negativity in their Wigner functions,

which is often considered the signature of a non-classical (quantum) state [248]. The

first experimental demonstration of a system that could be characterised by a nega-

tive Wigner function was done by Leibfried et al. for the motional state of a trapped

ion [249]. These negative values are allowed since simultaneous measurements of the

amplitude and phase quadratures are forbidden. For example, using equation 2.23,
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the Wigner function of the single-photon Fock state |1〉 can be shown to be

W|1〉(X
+, X−) =

1

2π

∞∫
−∞

exp(ixX−)
〈
X+ − x

2

∣∣∣1〉〈1
∣∣∣X+ +

x

2

〉
dx (2.32)

=
1

π3/2

∞∫
−∞

exp(ixX−)
(
X+ − x

2

)(
X+ +

x

2

)
× exp

(
− 1

2

(
X+ − x

2

)2

− 1

2

(
X+ +

x

2

)2
)
dx

=
1

π
exp

(
− (X+)2 − (X−)2

)(
2(X+)2 + 2(X−)2 − 1

)
,

which has the negative value of −1/π within a circle of radius 1/
√

2 around the

origin. In fact there are restrictions on the maximum and minimum values the

Wigner function can take, where −1/π is the absolute minimum and 1/π is the

absolute maximum. This property is another example of how the Wigner function

differs from a classical probability distribution. In contrast to the single-photon

state, the vacuum state has a completely positive Wigner function, which is found

by integrating the Wigner function over a Gaussian with variances fulfilling equation

2.20 [250]

W|0〉(X
+, X−) =

1

π
exp

[
− (X+)2 − (X−)2

]
. (2.33)

Another useful aspect of the Wigner function is the ability to calculate a state’s

density matrix in the Fock basis from it and vice versa. This relationship illustrates

the transition between these two different ways of describing the same state: the

continuous variable Wigner function and discrete variable density matrix. We can

see from equation 2.29 that

ρmn = tr
[
ρ̂|n〉〈m|

]
= 2π

∞∫
−∞

∞∫
−∞

W (X+, X−)Wmn(X+, X−)dX+dX−, (2.34)

with

Wmn(X+, X−) =
1

2π

∞∫
−∞

exp(ixX−)
〈
X+ − x

2

∣∣∣m〉〈n∣∣∣X+ +
x

2

〉
dx. (2.35)

From Leonhardt [243], this function is:
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for m ≥ n,

Wmn(X+, X−) =
1

π
exp

(
− (X+)2 − (X−)2

)
(−1)m(−X+ + iX−)m−n (2.36)

×
√

2m−n
n!

m!
Lm−nn

(
2(X+)2 + 2(X−)2

)
,

and for m < n,

Wmn(X+, X−) =
1

π
exp

(
− (X+)2 − (X−)2

)
(−1)m(−X+ + iX−)n−m (2.37)

×
√

2n−m
m!

n!
Ln−mm

(
2(X+)2 + 2(X−)2

)
,

where Lak are generalized Laguerre polynomials. Conversely, the Wigner function

can be found given a state’s density matrix ρmn from equation 2.25

W (X+, X−) =
1

2π

∞∫
−∞

exp(ixX−)
〈
X+ − x

2

∣∣∣(∑
m,n

ρmn|m〉〈n|
)∣∣∣X+ +

x

2

〉
dx (2.38)

=
∑
m,n

ρmnWmn(X+, X−).

Often the quality of a quantum state is described by the value at the origin of the

Wigner function due to its ability to have negative values. Therefore it is interesting

to note that the value W (0, 0) is given by a simple equation which only depends on

the diagonal elements of the density matrix, since Wmn(0, 0) = δmn(−1)m/π:

W (0, 0) =
1

π

∑
n

(−1)nρnn (2.39)

This simplicity is because all of the phase information about the state is contained in

the off-diagonal elements of the density matrix. Because the phase space origin has

no defined phase, the off-diagonal elements of the density matrix are not required

to calculate W (0, 0).

2.2 Quantum states of light

2.2.1 Fock states

Photon-number states or Fock states are non-classical states that consist of a fixed

number of photons. They are the eigenstates of the photon-number operator, n̂,

where n̂ ≡ â†â. As discussed in the previous chapter, Fock states such as the single

photon state are highly desirable resource states in optical quantum information
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applications. The annihilation and creation operators are known as ‘lowering’ and

‘raising’ operators due to their ability to annihilate or create single photons when

acted on a Fock state, |n〉, in the same mode,

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (2.40)

A Fock state always has a positive integer number of photons as it is not physically

possible for a state to have a fractional photon number or a negative number of

photons.

The quantisation of the electromagnetic field leads us to the minimum energy

state of the electromagnetic oscillator, which is the vacuum state and is denoted

by |0〉. The vacuum state is a physically meaningful state and can be measured

via homodyne detection. Therefore, there is a physical limit to the action of the

annihilation operator once an n-photon state |n〉 has been lowered by n steps: â|0〉 =

0, where 0 is the null vector and not a scalar. Furthermore, we can see that we can

generate |n〉 by repeatedly acting the creation operator on the vacuum state,

(â†)n|0〉 =
√
n!|n〉 (2.41)

2.2.2 Coherent states

Optical states such as coherent states possess Gaussian statistics and can therefore

be characterised by a completely positive Gaussian Wigner function. Coherent states

are perfectly coherent light states which can be produced by an ideal laser. These

states best emulate the classically defined light state and are therefore often referred

to as classical states. Mathematically they are defined as displaced vacuum states

|α〉 = D̂(α)|0〉, (2.42)

where

D̂(α) = e−
1
2
|α|2eαâ

†
e−α

∗â, (2.43)

and are the eigenstates of the annihilation operator â,

â|α〉 = α|α〉. (2.44)

We can express this state in the Fock basis as

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (2.45)
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Figure 2.1: Theoretical 3-dimensional Wigner function and 2-dimensional ‘ball and
stick picture’ of a coherent state with |α| = 1/

√
2.

A coherent state has equal noise levels in its amplitude and phase quadratures.

This can be seen in the continuous variable Wigner function of a coherent state

shown in figure 2.1. This Wigner function is defined as

Wα(X+, X−) =
1

π
exp

(
− (X+ −X+

α )2 − (X− −X−α )2
)

(2.46)

with

α =
X+
α + iX−α√

2
, (2.47)

which is a Gaussian function with minimum variance in both quadratures, making it

a minimum uncertainty state. Figure 2.1 illustrates that a coherent state is simply

a displaced vacuum state centred on α = (X+
α + iX−α )/2. The standard deviation

of the contour of such a Gaussian Wigner function is an ellipse, which corresponds

to the quadrature noise levels of the state. This ellipse is the ‘ball’ shown on the

2-dimensional X+, X− plot shown below the 3-dimensional Wigner function plot in

figure 2.1. Also shown in the 2-dimensional plot is a ‘stick’ extending from the origin

of the graph to the ‘ball,’ which represents the coherent amplitude of the state. That

is why the X+, X− plot of a quantum state is often referred to as the ‘ball and stick

picture’.

It can be shown from equation 2.45 that a coherent state has Poissonian photon

statistics,

pn = |〈n|α〉|2 =
|α|2n

n!
e−|α|

2

. (2.48)

Equation 2.48 describes a coherent state in terms of its discrete variables (photon-
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Figure 2.2: Theoretical photon number distributions for a coherent state (|α|2 =
0.32), a thermal state (-5 dB of squeezing), and a pure squeezed vacuum state (-5
dB of squeezing).

numbers) and this type of representation is shown in figure 2.2. By definition a state

that can be described by Poissonian statistics is entirely random. Hence there are

equal noise levels in the amplitude and phase quadratures.

Increasing the amplitude |α| only affects the displacement away from W (0, 0) and

does not affect the height of the Wigner function or the quadrature noise distribution.

This is why very large coherent states can be thought of as ‘classical’ states as the

noise becomes negligibly small and the state becomes a point in classical phase space

(i.e. if the ‘stick’ becomes very large compared to the size of the ‘ball’, then the

‘ball’ becomes a point). The average number of photons in the state is proportional

to the intensity: n̄ = 〈n〉 = 〈α|n̂|α〉 = |α|2. The standard deviation of the photon

number is ∆n = |α|. Performing a photon counting measurement on the state will

return n photon numbers with pn probability.

2.2.3 Thermal states

Unlike a coherent state where photons occupy a single optical mode, the number of

possible optical modes in a thermal state can exceed the number of photons, resulting

in less than one photon on average per mode. The photon number distribution is

dependent on the temperature of the system, as evident in black body radiation.

The density matrix of this mixed state is defined as,

ρ
thermal

= (1− e−βkB}ω)
∞∑
n=0

e−nβkB}ω|n〉〈n|, (2.49)
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Figure 2.3: Theoretical 3-dimensional Wigner function and 2-dimensional ‘ball and
stick picture’ of two thermal states corresponding to A) -5 dB of squeezing, and B)
-8 dB of squeezing.

where

βkB =
1

kBT
,

ω is the optical frequency, kB is the Boltzmann’s constant, and T is the temperature.

A thermal state can result from multi-mode squeezing when some modes are not

detected. In the case of two-mode squeezing where one mode is traced over, the

temperature of the resultant thermal state can also be related to the amount of

squeezing in the two-mode squeezed vacuum state [251]

T =
}ω

2kBln(coth |ξ|)
, (2.50)

where

ξ = − ln(V θ)

2

is the squeezing parameter for a squeezing angle of zero degree, and V θ = (∆X(θ))2

is the variance of the minimum noise quadrature, X(θ), in linear units (referred to

as the squeezing level). The squeezing level can also be expressed in decibel units

(dB) where xdB = 10 log10(V θ). The photon number distribution (discrete variable

representation) of a thermal state corresponding to -5 dB of squeezing is shown in

figure 2.2.

The continuous variable Wigner function for a thermal state can be expressed
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as [243]

W (X+, X−) =
1

π
tanh

(
βkB}ω

2

)
exp

(
− (X+2 +X−2) tanh

(βkB}ω
2

))
. (2.51)

The Wigner functions for two thermal states that correspond to different squeezing

levels are shown in figure 2.3. Unlike the Wigner function of a coherent state, these

distributions are centred on W (0, 0), and the amount of quadrature noise and the

height of the Wigner functions depends on the temperature of the state. Increasing

the amount of squeezing, V0, has the affect of increasing the temperature of the

state, and therefore proportionally increasing the amount of quadrature noise evenly

distributed between X+ and X−, which decreases the height of the Wigner function.

2.2.4 Squeezed states

A squeezed state is an optical state that has a reduced noise level in one quadrature

which is below the quantum noise limit (QNL), say ∆X+ < 1, and consequently

due to the uncertainty principle the noise level in the conjugate quadrature has

been increased above the QNL, resulting in ∆X− > 1. For example, if the variance

of the noise level of X+ is lowered to 0.5 relative to QNL (which is normalized to

1), then V + = 0.5 in linear units or V + =-3 dB in decibels (squeezing). If the

squeezed state is a minimum uncertainty state then the variance of the orthogonal

quadrature is V − = 2 in linear units or V − = 3 dB (anti-squeezing), such that

∆X+∆X− = 1. However, it is experimentally challenging to produce a minimum

uncertainty squeezed state as any loss in the system results in an disproportional

amount of anti-squeezing to squeezing [152].

The photon number distribution of a squeezed state is given by [252]

pn = |〈n|α, φ, ξ〉|2, (2.52)

where

〈n|α, φ, ξ〉 =

√
einφ tanhn ξ

2nn! cosh ξ
exp

(
− 1

2

(
|α|2 + |α|∗2eiφ tanh ξ

))
(2.53)

×Hn

[
α + α∗eiφ tanh ξ√

2eiφ tanh ξ

]
,

and φ is the quadrature squeezing angle. A pure single-mode squeezed vacuum state
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with φ = 0 can be expressed as [253]

|ξ〉 = Ŝ(ξ)|0〉 =
∞∑
n=0

β2n|2n〉, (2.54)

where

β2n =
1√

cosh ξ

√
(2n)!(− tanh ξ)n

2nn!
, (2.55)

and Ŝ(ξ) is the single-mode squeezing operator. Note that according to equation

2.54, a squeezed vacuum state is defined as the squeezing operator acting on the

vacuum state. The photon number distribution of a pure squeezed vacuum state

consists of only even photon numbers (pairs of photons). The photon number dis-

tribution of a pure squeezed vacuum state corresponding to -5 dB of squeezing is

shown in comparison to a coherent state and a thermal state in figure 2.2.

Another way to represent a squeezed state is by its Wigner function, which is

given by

Wsqz(X
+, X−) =

1

π
exp

(
− (X+)2

e2ξ
− (X−)2

e−2ξ

)
, (2.56)

which is a completely positive Gaussian with a maximum value of 1/π. The variance

of a squeezed vacuum state is given by,(
∆X(θ)

)2

= 〈ξ|X(θ)2|ξ〉 − 〈ξ|X(θ)|ξ〉2, (2.57)

where

〈ξ|X(θ)2|ξ〉 =
1

2

[
〈0|Ŝ†(ξ)

(
â2e−2iθ + ââ† + â†â+ â†2e2iθ

)
Ŝ(ξ)|0〉

]
(2.58)

= 〈0|â2(ξ)e−2iθ|0〉+ 〈0|â(ξ)â†(ξ)|0〉+ 〈0|â†(ξ)â(ξ)|0〉

+ 〈0|â†2(ξ)e2iθ|0〉.

∵ â(ξ) = â cosh r + â†eiφpump sinh r (2.59)

and

â†(ξ) = â† cosh r + â†e−iφpump sinh r, (2.60)

where φpump is the optical phase of the second harmonic field. Then

〈ξ|X(θ)2|ξ〉 = 2 cos(φpump − 2θ) cosh r sinh r + cosh2 r + sinh2 r. (2.61)
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When φpump − 2θ = 0,

〈ξ|X(θ)2|ξ〉 = e2r, (2.62)

and when φpump − 2θ = π,

〈ξ|X(θ)2|ξ〉 = e−2r. (2.63)

〈ξ|X(θ)|ξ〉 is given by

〈ξ|X(θ)|ξ〉 =
1

2
〈ξ|â+ â†|ξ〉 (2.64)

=
1

2
〈0|S†(ξ)(â+ â†)S(ξ)|0〉

=
1

2
〈0|â(ξ) + â†(ξ)|0〉

= 0.

Therefore(
∆X(θ)

)2

= 〈ξ|X(θ)2|ξ〉 (2.65)

=
1

2

[
e2r
(

cos(φpump − 2θ) + 1
)

+ e−2r
(

1− cos(φpump − 2θ)
)]
,

When φpump − 2θ = 0, (
∆X(θ)

)2

= e2r, (2.66)

which is the minor axis of the squeezing ellipse, and when φpump − 2θ = π,(
∆X(θ)

)2

= e−2r, (2.67)

which is the major axis of the squeezing ellipse.

The Wigner function can also be expressed in terms of the optical phase of the

second harmonic field, φpump, relative to the down-converted photon pairs at the

fundamental frequency [254],

W (x, y) =
1

π∆XSqz∆XAsqz

exp

[
−(x− e0 cosφpump)

2

(∆XSqz)2
− (y − e0 sinφpump)

2

(∆XSqz)2

]
(2.68)

where ∆XSqz is the minimum standard deviation of the quadrature fluctuations (and

(∆XSqz)
2 is the squeezing level in linear units), ∆XAsqz is the maximum standard

deviation of the quadrature fluctuations (and (∆XAsqz)
2 is the anti-squeezing level

in linear units), e0 is the state’s amplitude (e0 = 0 for squeezed vacuum state and
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Figure 2.4: Theoretical 3-dimensional Wigner functions and 2-dimensional ‘ball and
stick pictures’ of minimum uncertainty squeezed states for -3 dB (6 dB) of squeezing
(anti-squeezing). A) amplitude-quadrature squeezed vacuum state, and B) phase-
quadrature squeezed coherent state with |α| = 1/

√
2.

e0 6= 0 for a squeezed coherent state), and

x =X− cosφpump +X+ sinφpump (2.69)

y = −X− sinφpump +X+ cosφpump.

The Wigner functions for a squeezed coherent state and a squeezed vacuum state

are shown in figure 2.4. A squeezed coherent state is defined as

|ξ〉α = D̂(α)Ŝ(ξ)|0〉, (2.70)

where D̂(α) is the displacement operator defined in equation 2.43. The contour of

the Wigner function of a squeezed state is an ellipse with semiminor and semimajor

axes which correspond to the squeezed and anti-squeezed quadratures, respectively.

The Wigner function of a squeezed vacuum state is centred on W (0, 0), whereas the

Wigner function of a squeezed coherent state is displaced away from the phase-space

origin by its coherent amplitude.

2.3 Propagation in quantum optics

2.3.1 Schrödinger and Heisenberg pictures

Unitary transformation operators, Û , are employed to model the propagation of

quantum optical modes through basic optical elements, such as mirrors, cavities, and
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Figure 2.5: Schematic diagrams of two common models used to represent a beam-
splitter. A) Physical representation of a beamsplitter with reflectivity r; Heisenberg
operators b̂1 and b̂2 represent the incident modes and ĉ1 and ĉ2 represent the exiting
modes. B) Circuit model diagram of a beamsplitter with Schrödinger picture states
representing the input state |ψ〉in evolving to the output state |ψ〉out after interacting
with the beamsplitter unitary SU(2).

beamsplitters. Operators of elements that do not change with time are defined such

that Û = exp(−iĤτ/}), where Ĥ is the interaction Hamiltonian which characterises

the optical element and τ characterises the strength of the interaction or the time

over which it acts [242]. These operators are defined to be unitary where Û−1 = Û †.

There are two distinct and equivalent ways to use these operators to model the

evolution of light through optics: the Schrödinger picture and the Heisenberg picture.

In the Schrödinger picture, the observables remain stationary while the states evolve

from |ψ〉in → |ψ〉out, which is calculated via

|ψ〉out = Û |ψ〉in. (2.71)

Whereas in the Heisenberg picture, the state of the system remains stationary and

the mode observables evolve. An operator in the Schrödinger picture, B̂, is equiva-

lent to an operator in the Heisenberg picture, b̂, via

b̂ ≡ Û †B̂Û . (2.72)

These two pictures are also equivalent in that both techniques return the same

expectation values,

out〈ψ|B̂|ψ〉out ≡ in〈ψ|Û †B̂Û |ψ〉in ≡ in〈ψ|b̂|ψ〉in. (2.73)

Figure 2.5 illustrates how these two pictures can be applied to model a beamsplitter

in two distinct yet equivalent ways. We will now use these two pictures to model

the propagation of light through a beamsplitter with an arbitrary intensity reflection

coefficient of r.
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2.3.2 Beamsplitter model

Understanding how to model a beamsplitter plays an important role in modelling

more complex optical systems, such as homodyne detection and an interferometer.

The beamsplitter unitary is a 2× 2 matrix (SU(2)) that can take one of two forms

of symmetry: spatially symmetric or time symmetric [255]. The spatially symmetric

beamsplitter Ûs with an arbitrary intensity reflection coefficient of r is defined as

Ûs =

(
i
√
r
√

1− r
√

1− r i
√
r

)
.

In this model each beam acquires a π/2-phase shift upon reflection; hence it is

spatially symmetric. Applying this unitary in the Heisenberg picture gives

cout = Ûsbin (2.74)(
ĉ1

ĉ2

)
=

(
i
√
r
√

1− r
√

1− r i
√
r

)(
b̂1

b̂2

)
.

It is simple to model light travelling in the opposite direction through an optical

element as beam paths are reversible in quantum field theory. Since Us is not time

symmetric, its Hermitian conjugate must be used to calculate the input operators

in terms of the output operators,

bin = Û †scout (2.75)(
b̂1

b̂2

)
=

(
−i
√
r
√

1− r
√

1− r −i
√
r

)(
ĉ1

ĉ2

)
.

However, the time symmetric beamsplitter unitary Ût can be used to calculate the

output operators in terms of the input operators or vice versa, and is defined as

Ût =

( √
r

√
1− r

√
1− r −

√
r

)
(2.76)

bin = Ûtcout

cout = Ûtbin.

Note that this unitary is not spatially symmetric as one beam acquires a π-phase

shift upon reflection while the other beam does not acquire a phase shift.

Sometimes it is more intuitive to model a system in the Schrödinger picture

instead of the Heisenberg picture or vice versa. The Schrödinger picture gives a

uniquely quantum mechanical view of these transformations whereas the Heisenberg
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Figure 2.6: Schematic diagram of the Hong-Ou-Mandel effect modeled using both
the Heisenberg and Schrödinger pictures.

picture takes a more classical approach in that canonical quantisation requires that

the equations of motion of the annihilation operator â be identical to those of the

classical amplitude α.

For example, Schrödinger picture is more intuitive to use to model the famous

Hong-Ou-Mandel effect where two single photons incident on a beamsplitter will

‘stick together’ and both exit either one output or the other [256]. A schematic of

how to model this effect is shown in figure 2.6. First we describe the input state as

|Ψ〉in = |ψ〉b1 ⊗ |ψ〉b2 (2.77)

= |1〉b1 ⊗ |1〉b2.

Using the relation described by equation 2.41 we can rewrite |Ψ〉in in terms of

Schrödinger creation operators,

|Ψ〉in = B̂†1|0〉b1 ⊗ B̂
†
2|0〉b2 (2.78)

= B̂†1B̂
†
2|0〉in.

Now we apply Us to the input state to calculate the output state from a spatially

symmetric beamsplitter with r = 0.5 (50/50 beamsplitter),

|Ψ〉out = Ûs|Ψ〉in (2.79)

= ÛsB̂
†
1B̂
†
2|0〉in

= ÛsB̂
†
1B̂
†
2Û
†
s Ûs|0〉in



33 2.3. Propagation in quantum optics

Inserting Û †s Ûs in the final step of equation 2.79 is allowed because Û †s Ûs = 1. We

can apply the definition 2.72 to translate the Schrödinger operators into Heisenberg

operators as ÛsB̂
†
1Û
†
s ≡ b̂†1. We can then evolve the Heisenberg operators using the

beamsplitter unitary to give b̂1, b̂2 in terms of ĉ1, ĉ2. By definition the vacuum mode

is unaffected by unitary transformations representing linear passive optical elements.

Therefore

|0〉out = Ûs|0〉in. (2.80)

Applying the inverse equation of motion defined in equation 2.75 and using the

relation 2.80 gives,

|Ψ〉out = b̂†1b̂
†
2Ûs|0〉in (2.81)

=
1

2

(
ĉ†2 + iĉ†1

)(
ĉ†1 + iĉ†2

)
|0〉out

=
1

2

[
ĉ†2ĉ
†
1 + iĉ†2ĉ

†
2 + iĉ†1ĉ

†
1 − ĉ

†
1ĉ
†
2

]
|0〉out

=
1

2

[
|1〉c2|1〉c1 + i|0〉c1|2〉c2 + i|2〉c1|0〉c2 − |1〉c1|1〉c2

]
=
i

2

[
|0〉c1|2〉c2 + |2〉c1|0〉c2

]
.

Clearly from the output state equation |Ψ〉out we would expect both photons to

exit the same output port of the beamsplitter if the two single photons reach the

beamsplitter simultaneously. Therefore the number of coincidence counts between

the two detectors monitoring these output ports would drop dramatically due to

the interaction of the single photons with the 50/50 beamsplitter, which was exper-

imentally confirmed by Hong et al. in 1987 [256]. This calculation is an example of

the power of the Schrödinger picture to model quantum mechanical effects.

2.3.3 Frequency beamsplitter

Various applications in optics require the spatial separation of frequency side-bands

from an optical spectrum. One example is the spatial separation of entangled side-

bands from a squeezed vacuum state to demonstrate EPR entanglement between its

spectral components [99, 164, 257]. Spatial separation of spectral side-bands can be

achieved via an unbalanced Mach-Zehnder interferometer consisting of two 50/50

beamsplitters and a path length difference which adds a time delay between the

two arms of the interferometer. The time delay, τ , results in a phase shift ωτ given

to the frequency side-bands and not the carrier since ω is the side-band angular

frequency above or below the carrier angular frequency, Ω0. This ability to spatially

separate frequencies is the reason such an interferometer is referred as a ‘frequency

beamsplitter ’ (FBS).
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Figure 2.7: Schematic diagram of a frequency beamsplitter with the various input
and output modes modelled using Heisenberg operators. The path length difference
illustrated in this schematic results in the spatial separation of ±ωs,±3ωs,±5ωs,
etc. side-bands from the carrier at Ω0 and side-bands at ±2ωs,±4ωs, etc. Both
beamsplitters have r = 0.5.

The path length difference can be engineered to separate the spectral components

at particular side-band frequencies ±nωs in a specific configuration. For example,

an upper frequency side-band at +ωs could be separated from a lower frequency

side-band at −ωs via an FBS [101]. Another possible configuration results in the

spatial separation of ±ωs,±3ωs,±5ωs, etc. side-bands from the carrier at Ω0 and

side-bands at ±2ωs,±4ωs, etc. [100]. An FBS with this path length configuration

is illustrated in figure 2.7 and will be referred to as ‘configuration A.’ An FBS in

configuration A was used in our experiment, and will be further discussed in chapter

4. Therefore, a detailed model of an FBS in this configuration shall be the focus for

the rest of this section.

It can be more intuitive to model an FBS in the Heisenberg picture, as shown in

figure 2.7. Using the spatially symmetric beamsplitter convention, Ûs, the outputs

from the first 50/50 beamsplitter are given by

b̂1(t) =
1√
2

(
iâin(t) + v̂in(t)

)
(2.82)

b̂2(t) =
1√
2

(
âin(t) + iv̂in(t)

)
, (2.83)

where v̂in models the input vacuum field. The path length difference results in a

phase shift eiωτ , and the optical-scale phase shift due to the piezo-mounted mirror
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is eiφFBS = eiΩ0τ . Therefore

b̂3(t) = b̂2(t)eiφFBS eiωτ (2.84)

=
1√
2

(
âin(t) + iv̂in(t)

)
eiφFBS eiωτ .

The outputs from the second beamsplitter are

â1(t) =
1√
2

(
b̂2(t) + ib̂3(t)

)
(2.85)

â2(t) =
1√
2

(
ib̂2(t) + b̂3(t)

)
. (2.86)

Substituting equations 2.83 and 2.84 into equations 2.85 and 2.86 gives,

â1(t) =
1

2

[
âin(t)(1− eiφFBS eiωτ ) + v̂in(t)(i+ ieiφFBS eiωτ )

]
(2.87)

â2(t) =
1

2

[
âin(t)(i+ ieiφFBS eiωτ ) + v̂in(t)(eiφFBS eiωτ − 1)

]
. (2.88)

The propagation mode âin can be broken up into two contributions: the steady-state

mean amplitude term āin at the carrier frequency, Ω0, and the fluctuating term δâin

which represents the continuum of side-band modes at ω surrounding the carrier

frequency. That is

âin(t) = āin + δâin(t) (2.89)

v̂in(t) = v̄in + δv̂in(t) = δv̂in(t). (2.90)

Note that the mean amplitude of the vacuum state is zero. Therefore, equations

2.87 and 2.88 become

â1(t) =
1

2

[
āin(1− eiφFBS ) + δâin(t)(1− eiφFBS eiωτ ) + δv̂in(t)(i+ ieiφFBS eiωτ )

]
(2.91)

â2(t) =
1

2

[
āin(i+ ieiφFBS ) + δâin(t)(i+ ieiφFBS eiωτ ) + δv̂in(t)(eiφFBS eiωτ − 1)

]
.

(2.92)

We can transform the output fields in terms of frequency components by taking the

Fourier transform of the fluctuating terms δâin(t)→ δâin(ω) to give

δâ1(ω) =
1

2

[
δâin(ω)(1− eiφFBS eiωτ ) + δv̂in(ω)(i+ ieiφFBS eiωτ )

]
(2.93)

δâ2(ω) =
1

2

[
δâin(ω)(i+ ieiφFBS eiωτ ) + δv̂in(ω)(eiφFBS eiωτ − 1)

]
. (2.94)
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The FBS path length difference is engineered with a particular design frequency

in mind, ωs. Thus, the path length difference between the two arms of the inter-

ferometer results in a phase shift of ς
FBS

given to the fluctuating terms, which is

defined as

ς
FBS

= ωsτ =
ωs∆l

c
, (2.95)

where ωs is the design frequency of the FBS, ∆l is the actual path length difference

and c is the speed of light in a vacuum. Using equations 2.93 and 2.94 we can now

calculate the various frequency components found in the exiting fields of the second

beamsplitter for a particular ς
FBS

and φ
FBS

. The spectral components for an FBS

in configuration A (φ
FBS

= 0 and ς
FBS

= π) are listed in table 2.1.

FBS output â1 FBS output â2

ā1 = 0 ā2 = āin

δâ1(±ωs) = δâin(±ωs) δâ2(±ωs) = −δv̂in(±ωs)

δâ1(±2ωs) = iδv̂in(±2ωs) δâ2(±2ωs) = iδâin(±2ωs)

δâ1(±3ωs) = δâin(±3ωs) δâ2(±3ωs) = −δv̂in(±3ωs)

δâ1(±4ωs) = iδv̂in(±4ωs) δâ2(±4ωs) = iδâin(±4ωs)

δâ1(±5ωs) = δâin(±5ωs) δâ2(±5ωs) = −δv̂in(±5ωs)

Table 2.1: Spectral components of output fields â1 and â2 for an FBS in configuration
A (φ

FBS
= 0 and ς

FBS
= π).

Therefore an FBS in configuration A will result in both the upper and lower

frequency side-bands at ±ωs,±3ωs,±5ωs, etc. to exit from one output port of the

second beamsplitter in the FBS (â1) and being spatially separated from the carrier

and side-bands at ±2ωs,±4ωs, etc. This result has been graphically represented in

figure 2.7.

An important feature of the FBS is that for particular configurations, the side-

bands are not corrupted by vacuum. To illustrate this point, we show the output

modes for a different FBS phase configuration (configuration B) in tables 2.2 and 2.3

where φ
FBS

= π/2 and ς
FBS

= π/2. Note that the frequency components at ±2ωs

and ±4ωs of both FBS output fields are corrupted by vacuum. Any corruption of

a quantum state by vacuum can be detrimental to its quantum properties. The

fact that configuration A does not lead to vacuum corrupted states and sends both

upper and lower side-bands down the same spatial mode were necessary features for

its use in our quantum optics experiment.
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FBS output â1 FBS output â2

ā1 = āin
e−iπ/4√

2
ā2 = āin

ie−iπ/4√
2

δâ1(+ωs) = δâin(+ωs) δâ2(+ωs) = −δv̂in(+ωs)

δâ1(−ωs) = iδv̂in(−ωs) δâ2(−ωs) = iδâin(−ωs)

δâ1(+3ωs) = iδv̂in(+3ωs) δâ2(+3ωs) = iδâin(+3ωs)

δâ1(−3ωs) = δâin(−3ωs) δâ2(−3ωs) = −δv̂in(−3ωs)

δâ1(+5ωs) = δâin(+5ωs) δâ2(+5ωs) = −δv̂in(+5ωs)

δâ1(−5ωs) = iδv̂in(−5ωs) δâ2(−5ωs) = iδâin(−5ωs)

Table 2.2: Spectral components of output fields â1 and â2 at ±nωs where n = 1, 3, 5
for an FBS in configuration B (φ

FBS
= π/2 and ς

FBS
= π/2).

FBS output â1 FBS output â2

δâ1(+2ωs) = 1
2

[
δâin(+2ωs)(1 + i) δâ2(+2ωs) = 1

2

[
iδâin(+2ωs)(1− i)

+iδv̂in(+2ωs)(1− i)
]

−δv̂in(+2ωs)(1 + i)
]

δâ1(−2ωs) = 1
2

[
δâin(−2ωs)(1 + i) δâ2(−2ωs) = 1

2

[
iδâin(−2ωs)(1− i)

+iδv̂in(−2ωs)(1− i)
]

−δv̂in(−2ωs)(1 + i)
]

δâ1(+4ωs) = 1
2

[
δâin(+4ωs)(1− i) δâ2(+4ωs) = 1

2

[
iδâin(+4ωs)(1 + i)

+iδv̂in(+4ωs)(1 + i)
]

+δv̂in(+4ωs)(i− 1)
]

δâ1(−4ωs) = 1
2

[
δâin(−4ωs)(1− i) δâ2(−4ωs) = 1

2

[
iδâin(−4ωs)(1 + i)

+iδv̂in(−4ωs)(1 + i)
]

+δv̂in(−4ωs)(i− 1)
]

Table 2.3: Spectral components of output fields â1 and â2 at ±nωs where n = 2, 4
for an FBS in configuration B (φ

FBS
= π/2 and ς

FBS
= π/2).

2.4 Detecting light

2.4.1 Direct detection

One of the most important aspects of a quantum optics experiment is the ability to

detect light and therefore characterise the generated quantum states. Without this

ability to convert an optical signal into an electrical signal we could not quantify the

resulting optical state from a nonlinear interaction or conduct photon-subtraction

experiments to produce non-Gaussian quantum states. In direct detection no phase

information can be retrieved about the light being measured. Instead it is a straight-

forward intensity measurement of the light done by generating a current which is

proportional to the light’s intensity. The most common measurement device used

in a quantum optics laboratory for direct detection is a photodetector. A photode-
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tector consists of a combination of electronics and a photodiode which generates a

current that is directly proportional to the optical power Popt in the incident light.

This current is then transformed into a voltage, U , where Popt ∝ U , which can be

analysed by an oscilloscope or a radio-frequency (RF) spectrum analyser. Photodi-

odes usually have a linear response which is important for accurate characterisation

of a light field. The term saturation refers to when the electrical signal can no longer

linearly respond to an increase in the optical power of the incident light, and should

be avoided during many measurements. However, some measurement devices such

as an avalanche photodiode (APD) are purposely operated in this saturation mode

in order to generate a large enough electrical signal to be detectable in response

to the measurement of an optical field with low photon flux. The proportionality

constant of a photodiode is referred to as its responsivity and is expressed in units

of A/W. The photodiodes that we use to detect near-infrared light at 1550 nm are

standard InGaAs PIN photodiodes which have a quantum efficiency (i.e. number of

electrons per photon) of 90%.

The photon flux of the optical state we wish to characterise determines the ideal

method of detection. PIN photodiodes perform well at detecting more intense light

when it is only necessary to generate a photo-current which is proportional to the

light. However in situations where the field has a low photon flux (a few photons/sec)

it is necessary to use an avalanche photodiode (APD). A single photon absorption

event in an APD operating with a reverse bias above the diode breakdown voltage

(Geiger mode) results in an electron avalanche which generates a macro-current

that can be detected. APDs are approximate to a photon-number detector, and are

commonly used in projecting experiments to generate non-classical states such as

photon-subtracted squeezed vacuum states. Unfortunately the quantum efficiencies

of InGaAs APDs is 10 − 20%, which means out of 100 photons only 10 − 20 are

actually detected by the APD. This low quantum efficiency can have detrimental

effects on the quality of the projected state, which will be further discussed later in

this thesis.

2.4.2 Homodyne detection

A photodetection technique that can provide both amplitude and phase information

about a quantum state is balanced homodyne detection. In this detection scheme

a weak signal field is interfered with a phase-coherent strong beam called an op-

tical local oscillator (LO) at the same optical frequency on a 50/50 beamsplitter.

The exiting beams are then detected by two standard PIN photodiodes, and the

resulting photo-currents are subtracted via electronics. High-speed photodiodes can

be combined with fast electronics to produce a wide-bandwidth homodyne detector
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Figure 2.8: Schematic diagram of homodyne detection.

that can measure frequencies up to several gigahertz (GHz). Homodyne detection is

a standard measurement technique in quantum optics and is thoroughly explained

in the literature [242, 243, 258–261]. Therefore we will only discuss a brief overview

of the technique.

A schematic diagram of the homodyne detection technique is shown in figure 2.8.

It is more intuitive to model this system in the Heisenberg picture. The operator

âin denotes the input signal field to be measured and âLOe
iθ denotes the strong LO

field with an adjustable optical phase, θ, relative to the signal, which is controlled

(in our experiments) by a piezo-mounted mirror in the LO beam path.

The exiting modes â1 and â2 are given by

â1(t) =
1√
2

(
iâin(t) + âLO(t)eiθ

)
(2.96)

â2(t) =
1√
2

(
âin(t) + iâLO(t)eiθ

)
. (2.97)

Since the photo-currents i1 and i2 are proportional to the number of photons in the

detected field, n̂, the subtracted output from the homodyne detector is

i1 − i2 ∝ n̂1 − n̂2 = â†1â1 − â†2â2 (2.98)

where

â†1â1 =
1

2

(
iâ†LOâine

−iθ + â†LOâLO + â†inâin − iâ
†
inâLOe

iθ
)

(2.99)

â†2â2 =
1

2

(
iâ†inâLOe

iθ + â†LOâLO + â†inâin − iâ
†
LOâine

−iθ
)
. (2.100)
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Having a balanced detection scheme (i.e. equal transmission and reflection on the

beamsplitter) means that the subtracted output removes the direct detection com-

ponents of the LO and signal fields, and leaves just the interference terms which

depend on the optical phase θ,

â†1â1 − â†2â2 = iâ†LOâine
−iθ − iâ†inâLOeiθ. (2.101)

We then use relation 2.89 and linearise the resulting equation by ignoring the second-

order fluctuation terms like δâ†LOδâin to give

â†1â1 − â†2â2 ≈ 2āLOāin cos θ + āLO(δâine
−iθ + δâ†ine

iθ) (2.102)

+ āin(δâLOe
iθ + δâ†LOe

−iθ)

= 2āLOāin cos θ + āLOδX̂in(−θ) + āinδX̂LO(θ).

The term āin (āLO) is the steady-state amplitude of the signal (local oscillator),

and δX̂−θin (δX̂θ
LO) is the quadrature measurement of fluctuations in the signal (local

oscillator) field, respectively. As the signal strength of the measured fluctuations

scales with the optical power, by setting āsig � āLO in the homodyne measurement

allows for the last term in equation 2.102 to be disregarded, leaving

â†1â1 − â†2â2 ≈ 2āLOāin cos θ + āLOδX̂in(−θ). (2.103)

Thus, homodyne detection is capable of measuring the quadrature observable X̂(θ) =

e−iθâ+ eiθâ† for any given phase of the LO.

2.5 Optical parametric oscillators

2.5.1 Parametric amplification

The amplification of an optical signal is useful in a number of applications, partic-

ularly for producing a high power laser beam. If the process is insensitive to phase

then both the noise and the coherent amplitude of the state are amplified, and this

amplification acts equally on all quadratures. However, it is possible to have a phase

sensitive amplifier in which the noise in one quadrature is amplified while the noise

in the other quadrature is attenuated or de-amplified. Consider the situation where

the amplitude quadrature is amplified by amount
√
K and the phase quadrature

is attenuated by the same amount. We can write the annihilation operator of the

output field as

âout =
1

2

(√
KX̂+ +

i√
K
X̂−
)
. (2.104)
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This transformation is legitimate and still obeys the commutation relations.

Therefore, as long as the product of the gains is unity, noiseless amplification of one

of the quadratures at the expense of noise amplification of the orthogonal quadra-

ture can be achieved. In analogy with the linear amplifier, equation 2.104 can also

be written in the form [242],

âout =
√
Gâin +

√
G− 1â†in (2.105)

where the gain is

G =
(K + 1)2

4K
. (2.106)

This classical nonlinear behaviour can be used to generated a squeezed state

from a ‘full’ optical cavity (i.e. a cavity with a nonlinear crystal inside the resonant

field). A higher amount of amplification/de-amplification of the classical field can

correspond to more squeezing in the quantum state as long as the amount of loss in

the system is low. We will show in §2.7 that the amount of squeezing in a system is a

function of classical gain and loss, as well as the detection efficiency of the technique

used to characterise the quantum state.

2.5.2 Second-order nonlinearity

Phase sensitive amplification can be achieved from a second-order nonlinearity. Clas-

sically the induced dipole polarisation P (E) caused by the interaction of an optical

beam’s electric field E with an atomic medium can be described by

P (E) = χE + χ(2)E2 + χ(3)E3 + · · · (2.107)

An optical material can be classified as nonlinear if the higher-order terms in the

P (E) expansion become significant for a particular incident beam power. The in-

vention of high-powered lasers has led to the discovery of several materials that

show nonlinear behaviour. Materials that exhibit a second-order χ(2) nonlinearity

can be used to produce phase sensitive amplification and squeezed light due to their

ability to couple a fundamental field (oscillating at ν) to a harmonic or ‘pump’ field

(oscillating at 2ν). The interaction Hamiltonian is given by

Ĥ = i~χ(2)(b̂†â2 − â†2b̂). (2.108)

This Hamiltonian can be interpreted in terms of photons: two photons at the fun-

damental frequency (mode a) are annihilated to produce a single photon at the

harmonic frequency (mode b), whilst one photon at the harmonic frequency is be-



Chapter 2. Quantum optics basics 42

ing annihilated to produce a pair of photons at the harmonic frequency which are

entangled. In order to achieve maximum conversion efficiency, both the energy and

momentum must be conserved in either the up-conversion (fundamental to har-

monic) or the down-conversion (harmonic to fundamental) process.

The conversion efficiency, Enl, of a χ(2)-nonlinear crystal can be experimentally

measured by characterising its single-pass conversion efficiency. The amount of

second harmonic power, PH , produced by the incident single-pass fundamental field,

PF , is measured as a function of crystal temperature to give Enl = PH/P
2
F . The

nonlinear crystals employed in our experiment exhibit quasi-phase matching which

is where alternating polarity regions of the birefringent crystal are electrostatically

induced at manufacture. This structure in the crystal’s refractive index is referred

to as ‘periodic poling’ and serves to cyclically correct relative phase shifts between

the fundamental and harmonic that may accumulate during the active region. The

refractive indices of these regions are very sensitive to temperature. Therefore, there

is a precise temperature at which maximal up- or down-conversion efficiency will be

achieved.

2.5.3 Wavelength-scale v.s. side-band-scale nondegeneracy

In parametric down-conversion, a ‘pump’ beam at the harmonic frequency, ω3, is

down-converted into two fields of lower frequency at ω1 and ω2, where ω1 +ω2 = ω3.

In preserving energy and momentum these down-converted photons are correlated

in spatial, temporal, frequency, and polarisation degrees of freedom. Depending on

the phase-matching conditions of the nonlinear medium used, the entangled pho-

tons may be indistinguishable and have the same polarisation, spatial mode and

wavelength. This type of parametric down-conversion (PDC) is usually referred to

as degenerate parametric down-conversion. For example, the pump beam at ω3 is

down-converted into two indistinguishable photons where ω1 = ω2 = ω3/2 [90,91].

There is another category of parametric down-conversion where the entangled

photons are distinguishable. For example, the down-converted pair could have com-

pletely different wavelengths, and follow from parametric down-conversion processes

such as [96–98,102,219,262]

390nm 7→ 521nm + 1550nm (2.109)

532nm 7→ 810nm + 1550nm

710nm 7→ 1310nm + 1550nm.

Systems that produce this type of PDC need two completely different sets of optics

with different optical coatings to work with the down-converted beams because the



43 2.5. Optical parametric oscillators

Figure 2.9: Comparison between A) wavelength-scale nondegenerate parametric
down-conversion (WS-NPDC) and B) a side-band-scale nondegenerate optical para-
metric oscillator (SS-NOPO).

two wavelengths are in different regions of the electromagnetic spectrum. Therefore,

this type of PDC can be referred to as wavelength-scale nondegenerate PDC (WS-

NPDC) and is depicted in figure 2.9A.

There is another type of PDC which is usually referred to as degenerate even

though this is not technically true. Consider the situation where a nonlinear crystal

with a conversion bandwidth of 2 THz was manufactured to down-convert a 775 nm

photon into two 1550 nm photons. According to the conservation of energy, there is

an entire spectrum of down-converted photons with wavelengths ranging from 1542

nm to 1558 nm (i.e. within the crystal’s conversion bandwidth) because a 775 nm

photon could down-convert into two photons at exactly 1550 nm (truly degenerate)

or into two photons at slightly different wavelengths, such as one photon at 1549

nm and the other at 1551 nm. This type of PDC has been previously demonstrated

in a single-pass system where 394.5nm 7→ 789nm + 791nm [92]. Since the down-

converted photons are at slightly different wavelengths they are distinguishable but

the colours are not so different as to warrant the use of different optics. For that

reason, this type of PDC is usually referred to as degenerate PDC even through this

label is untrue.

The usual technique for generating a squeezed state is to use a nonlinear χ(2)-

medium to produce ‘degenerate’ PDC. In continuous-wave experiments the χ(2)-

material is commonly placed inside an optical cavity. An optical cavity consists of

an arrangement of at least two mirrors which circulate the light in a closed path.

The light inside the cavity can form a resonant field which amplifies the optical
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power. Since the strength of the χ(2)-nonlinearity scales with the optical power of the

incident laser beam, a stronger beam results in more nonlinear behaviour. Placing

a nonlinear crystal inside an optical cavity can amplify its nonlinear behaviour and

lead to a higher up-conversion or down-conversion efficiency.

We know from classical optics that optical cavities have an infinite number (the-

oretically) of resonance frequencies defined by,

ωcavity = m
2πc

p
(2.110)

where

m = 1, 2, 3, . . . (2.111)

and p is the round-trip path length of the cavity. Therefore the cavity will emit light

at every resonance, and these frequencies are evenly spaced by the free spectral range

(FSR) of the cavity, ωs = 2πc/p. This resonant behaviour of a cavity combined with

the down-conversion bandwidth of the nonlinear crystal forms an optical parametric

oscillator (OPO). An OPO will create a ‘comb’ of entangled frequency side-bands

where the pump beam at ωp is down-converted into light at +ωs and −ωs which

are correlated symmetrically about the carrier at Ω0 = ωp/2, as shown in figure

2.9B. A typical cavity will have an FSR of a few hundred megahertz to a few

gigahertz which means that if a pump photon at 775 nm is down-converted into

the 1st FSR side-bands at ±515 MHz (as for our cavity) then the wavelengths of the

down-converted photons are 1549.996 nm and 1550.004 nm. We shall refer to this

type of nondegenerate system as a side-band-scale nondegenerate optical parametric

oscillator (SS-NOPO).

2.5.4 Two-mode squeezed vacuum from a SS-NOPO

The two-mode squeezed vacuum state produced by a SS-NOPO for a particular pair

of side-band frequencies, ±ωs, where +ωs is in mode a and −ωs is in mode b, takes

the form of

|Ψ〉
SS−NOPO = Ŝ(ξ)a,b|0〉a|0〉b = exp(ξâ†b̂† − ξ∗âb̂)|0, 0〉a,b (2.112)

=
∞∑
n=0

α2n|n〉+ωs|n〉−ωs ,

where

α2n =
1

cosh ξ
(tanh ξ)n. (2.113)
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Therefore the output state from a SS-NOPO can be expressed as

|Ψ〉
SS−NOPO =

∞∑
m=0

∞∑
n=0

α2n|n〉+mωs|n〉−mωs ,

where m is the FSR number, ωs is the FSR frequency for the cavity, n is the photon

number, and m = 0 corresponds to the perfectly degenerate case at the carrier, Ω0.

The two-mode squeezed vacuum state for a pair of side-bands spaced by a single

FSR (i.e. m = 1) can be simplified to

|Ψ〉
SS−NOPO ≈ α0|0〉+ωs|0〉−ωs + α2|1〉+ωs|1〉−ωs + α4|2〉+ωs|2〉−ωs + α6|3〉+ωs|3〉−ωs ,

(2.114)

where the Fock space of this equation has been truncated to n = 3. The fact that

SS-NOPOs produce two-mode squeezed vacuum states with the modes consisting

of the upper and lower side-bands has been known for decades [130]. However, due

to the way standard homodyne detection measures a symmetric quantum state like

squeezed vacuum, this nondegenerate output looks degenerate, as we shall show in

chapters 3 and 4. We will show in the next chapter that we can no longer pretend

a SS-NOPO is degenerate when we apply homodyne detection to an asymmetric

quantum state, such as photon-subtracted two-mode squeezed vacuum. In fact it

can be beneficial to remove the pretence and utilise the distinguishable frequency

side-bands from a SS-NOPO.

2.6 Photon-subtracted state generation theory

Optical Schödinger cat states in the form of coherent state superpositions are ex-

perimentally challenging to produce. The coherent amplitude of the superposition

state must be large (α� 1) to make a true ‘cat’ state, which is difficult to generate

as large coherent amplitude superpositions quickly decohere [263]. An alternative

approach is to produce a state that is approximate to a small-amplitude cat state,

called a ‘kitten’ state, by subtracting a single photon from squeezed vacuum. This

photon-subtracted squeezed state is conditioned when a squeezed vacuum state is

incident on a weakly reflecting beamsplitter and a photon is detected by a single-

photon detector in the reflected field [207]. The detection of a single photon heralds

the generation of the photon-subtracted state at the characterising detector (usually

a homodyne detector) in the transmitted field. Hence these states are also referred

to as ‘heralded states.’ The reflectivity of the beamsplitter is small in these experi-

ments, which results in a low probability of more than one photon being removed.

Dakna et al was the first to propose the concept of this ‘conditional measurement’
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Figure 2.10: Schematic diagram of a theoretical model for Schrödinger kitten state
generation with experimental imperfections. Label convention used to denote the in-
put/output ports as ‘1-4’ from a beamsplitter is illustrated. Note that |ψ〉13 is both
the output state from BS1 and the input state to PBS2. Grey beam: vacuum,
BS: beamsplitter, PBS: polarising beamsplitter, PND: photon-number detector, r1:
intensity reflection coefficient of BS1 used to model loss, r2: variable intensity reflec-
tion coefficient from combination half-wave plate and polarisation beamsplitter used
to model the tap-off beamsplitter in a projected state experiment, ηHD: intensity
transmission coefficient of BS3 used to model inefficient homodyne detection.

based on a lossless beamsplitter [207]. They developed a model by taking into ac-

count the squeezing level, beamsplitter transmission, photon-number detector ineffi-

ciency, and non-photon-number-resolving ability [207,264,265]. We will now discuss

such a model based on photon-subtraction from a single-mode squeezed vacuum

state.

A schematic diagram of a theoretical model for Schrödinger kitten state gen-

eration with experimental imperfections [227] is shown in figure 2.10. The model

includes three parts: impure input state, photon subtraction, and inefficient state

characterisation. We will use the following notation to denote the input and output

states from the first two beamsplitters in the model: |ψ〉jk where j = 1, 2 denotes ei-

ther the first beamsplitter, BS1 (j = 1) or the second beamsplitter, PBS2 (j = 2),

and k = 1, 2, 3, 4 denotes specific beamsplitter input/output ports following the

numbering convention illustrated in figure 2.10.

The input state |ψ〉11 to the first beamsplitter BS1 is a pure single-mode squeezed

state. This beamsplitter has an intensity reflection coefficient of r1 and represents

a fictitious beamsplitter used to model optical loss in the experiment which results

in an impure input state. Loss in a pure squeezed vacuum state manifests itself

as the appearance of odd photon number components in the density matrix of the

squeezed vacuum state. The output state |ψ〉13 from BS1 is the input state to the

second stage of the model which simulates photon subtraction. This stage consists

of a ‘magic’ beamsplitter composed of an arbitrarily tunable half-wave plate and a
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polarisation beamsplitter, PBS2 [221,227]. The combination of half-wave plate and

PBS2 results in a variable intensity reflection coefficient, r2. The output state |ψ〉24

from PBS2 is then detected by a photon-number detector, PND. Finally, an artificial

beamsplitter, BS3, is used to model the inefficiency of the homodyne detector in the

state characterisation stage.

Ideally, when an even (odd) number of photons are subtracted from a pure

squeezed vacuum state, an even (odd) kitten with a negative Wigner function will

be obtained. However, numerous factors can undermine the ability of such an exper-

iment to produce a Wigner function with negativity. These factors include optical

elements related to the experiment, such as the impurity of the input squeezed

vacuum state, mode impurity before the PND, and inefficiency of the homodyne

detector used to characterise the quantum state. Imperfections in the PND can

further degrade the prepared state. Some examples of common detector imperfec-

tions are a high dark count probability, low quantum efficiency, and a non-photon-

number-resolving ability of some detectors. Therefore, a quantitative analysis of all

these imperfections can shed light on the practical generation of Schrödinger kitten

states, particularly with regards to experiments at telecommunication wavelengths.

We will now summarize a model outlined by Song et al. to analyse the impacts of

these experimental parameters on the quality of Schrödinger kitten state generation.

2.6.1 Impure input state

Parametric down-conversion from a second-order χ(2) nonlinear medium is an effec-

tive approach to generate squeezed vacuum states. As discussed in §2.2.4, a pure

squeezed vacuum state consists of a photon number distribution with only even pho-

ton numbers. Impurity in the state contaminates the photon number distribution

with odd photon number probabilities. This impurity can be equivalent to loss in

a pure squeezed vacuum state, and can be described as a pure squeezed vacuum

state defined by equation 2.54 followed by a beamsplitter, as shown in figure 2.10.

Therefore, the total input state to BS1 is written as

|Ψ〉
IN1

= |ψ〉11 ⊗ |ψ〉12 (2.115)

= Ŝ11(ξ)|0〉11|0〉12

=
∞∑
n=0

β2n|2n〉11|0〉12,

where β2n is defined by equation 2.55. Using the definition 2.41, we get

|Ψ〉
IN1

=
∞∑
n=0

β2n(â†11)2n√
(2n)!

|0〉11|0〉12. (2.116)
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Applying the time symmetric beamsplitter matrix (2.76), Ût, we can describe the

total output state from BS1 as

|Ψ〉
OUT1

= Ût|Ψ〉IN1
(2.117)

=
∞∑
n=0

β2n√
(2n)!

(√
r1â
†
14 +
√
t1â
†
13

)2n

|0〉13|0〉14,

where t1 is the intensity transmission coefficient and r1 + t1 = 1 for a lossless beam-

splitter. The binomial theorem can be applied to expand equation 2.117 since â†13

and â†14 act on the same frequency mode and [â†, â†] = 0, giving

|Ψ〉
OUT1

=
∞∑
n=0

2n∑
k=0

β2n

√
(2n)!

k!(2n− k)!
r
k
2
1 t

2n−k
2

1 |2n− k〉13|k〉14. (2.118)

The density matrix ρ̂13 of the transmitted state |ψ〉13 from BS1 (i.e. the impure

single-mode squeezed vacuum state) can be obtained by tracing the density matrix

%̂
OUT1

of the overall output state |Ψ〉
OUT1

over mode 13 [266],

ρ̂13 = |ψ〉13 13〈ψ| (2.119)

= tr13

[
%̂
OUT1

]
=

∞∑
n,b=0

min(2n,2b)∑
k=0

√
(2n)!(2b)!

(2n− k)!(2b− k)!

β2nβ2br
k
1t
n+b−k
1

k!
|2n− k〉13 13〈2b− k|,

where

%̂
OUT1

= |Ψ〉
OUT1 OUT1

〈Ψ|, (2.120)

and tr[·] denotes the trace of a matrix. Figure 2.11 shows a comparison between a

pure -5 dB squeezed vacuum state and an impure -5 dB squeezed vacuum state after

5% loss (i.e. r1 = 0.05). Note the appearance of odd photon numbers in the impure

squeezed vacuum state. The variance of an impure squeezed state is given by,

V ±imp = (1− r1)V ±pure + r1V
±
vac (2.121)

= (1− r1)V ±pure + r1

where V ±imp is the variance of the amplitude and phase quadratures of the impure

squeezed state, V ±pure is the variance of the amplitude (V +
imp) and phase (V −imp) quadra-

tures of the pure squeezed state, and V ±vac is the variance of the vacuum state

(V ±vac = 1).
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Figure 2.11: Theoretical photon number distributions of a pure squeezed vacuum
state (-5 dB of squeezing) and an impure squeezed vacuum state (-5 dB of squeezing
with r1 = 5%).

2.6.2 Conditional measurement based on lossless
beamsplitter

According to the conditional beamsplitter operator defined in reference [264], we

can express the output state |ψ〉23 from PBS2 in terms of the input state |ψ〉13 as

|ψ〉23 =
Ŷ |ψ〉13

‖Ŷ |ψ〉13‖
, (2.122)

where ‖ · ‖ denotes the magnitude of a state vector. The non-unitary conditional

beamsplitter operator, Ŷ is defined as

Ŷ = 24〈ψ|Ûr|ψ〉22 (2.123)

=
T n̂13

2 (−R∗2)m(â13)m√
m!

,

where |ψ〉22 (|ψ〉24) is a single-port input (output) state for PBS2, respectively. T2

(R2) is the complex amplitude transmittance (reflectance) of PBS2, respectively,

where |R2|2 + |T2|2 = r2 + t2 = 1. The number operator, n̂13, is defined as n̂13 =

â†13â13. This subscript notation follows the same notation scheme as used for the

states where n̂jk = â†jkâjk for j = 1, 2 and k = 1, 2, 3, 4. m is the number of detected

photons by the PND. Ûr is the standard representation of the rotation [SO(3), special
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orthogonal] group in three dimensions and is defined as [255]

Ûr = exp
(
− i(φT2 − φR2)L̂3

)
exp

(
− i2 arccos(T2)L̂2

)
exp

(
− i(φT2 + φR2)L̂3

)
,

(2.124)

where φT2 , φR2 are the quantum mechanical counterparts to the classical Euler angles

related to PBS2, and L̂2, L̂3 are angular momentum operators defined as

L̂2 =
1

2i

(
â†13â22 − â†22â13

)
(2.125)

L̂3 =
1

2i

(
â†13â22 − â†22â13

)
.

Equation 2.124 can be rewritten as [264]

Ûr = T n̂13
2 exp

(
−R∗2â

†
22â13

)
exp

(
R2â

†
13â22

)
T−n̂22

2 . (2.126)

Therefore

ρ̂23(m) = |ψ〉23 23〈ψ| (2.127)

=
t
n̂13
2

2 âm13ρ̂13â
†m
13 t

n̂13
2

2

tr
[
t
n̂13
2

2 âm13ρ̂13â
†m
13 t

n̂13
2

2

] .
2.6.3 Impact of projecting detector’s qualities on state

preparation

State preparation with an ideal photon-number-resolving detector

In the case of an ideal photon-number-resolving detector (i.e. no dark counts and

the quantum efficiency is 100%), we can obtain the projected state density matrix

by substituting equation 2.119 into equation 2.127,

ρ̂23(m) = |ψ〉23 23〈ψ| (2.128)

=
ρA(m)

tr
[
ρA(m)

] ,
where ρ̂A(m) is the density matrix for a projected state generated with an ideal

photon-number-resolving detector, which is defined as

ρA(m) =
∞∑
n=0

∞∑
b=0

min(2n,2b)−m∑
k=0

β2nβ2br
k
1r
m
2 (t1t2)n+b−k

m!k!
(2.129)

×

√
(2n)!(2b)!

(2n− k −m)!(2b− k −m)!
|2n− k −m〉23 23〈2b− k −m|.
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However, an ideal photon-number-resolving detector is unavailable in practical

experiments. APDs are commonly used as photon-number detectors, where Si-

APDs and InGaAs-APDs are used to detect near-infrared wavelengths (∼ 860 nm)

and telecommunication wavelengths (∼ 1550 nm), respectively. Therefore, it is

imperative to consider all possible imperfections of the photon-number detector, in-

cluding the dark count probability, quantum efficiency, and the non-photon-number-

resolving ability, and implement a quantitative analysis on the impact of all these

experimental imperfections on the resultant quantum state.

State preparation with an imperfect photon-number-resolving detector

We will now discuss how to model the qualities of an imperfect photon-number-

resolving detector, such as dark count probability, quantum efficiency, and non-

photon-number-resolving ability.

Dark counts probability and quantum efficiency

On the one hand, the existence of dark counts causes ‘false’ clicks even if a

photon is not actually subtracted. On the other hand, some actual clicks are missed

due to the inefficiency of the detector. Therefore, m-click events may originate from

m−1,m−2, . . . , 0 or m+1,m+2, . . . actual photons being subtracted. Consequently,

the conditional state is a statistical mixture, which can be expressed as [207,227]

ρ̂B(m) =
∞∑
k=0

Q(k|m)ρ̂23(k), (2.130)

where ρ̂B(m) is the density matrix for a projected state generated with an imperfect

photon-number-resolving detector and Q(k|m) is defined as the conditioned proba-

bility, with which m photons would have been subtracted, given that k photons are

actually detected by the imperfect detector. According to the Bayes rule, we can

obtain the conditional probability

Q(k|m) =
P (m|k)S(k)

P (m)
, (2.131)

where

S(k) =
∞∑
n=k

∞∑
l=0

∞∑
b=0

min(2l,2b)∑
s=0

β2nβ2br
s
1t
l+b−s
1 rk2t

n−k
2

√
(2l)!(2b)!

(2l − s)!(2b− s)!
(2.132)

× n!

k!s!(n− k)!
〈n|2l − s〉23 23〈2b− s|n〉

is the probability of k photons being subtracted, which is calculated based on [267]
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and

P (m|k) =
m∑
d=0

e−Pdc
(Pdc)

d

d!

k!ηm−dAPD(1− ηAPD)k−m+d

(m− d)!(k −m+ d)!
, (2.133)

where Pdc and ηAPD are the dark count probability and quantum efficiency of the

APD, respectively [268].

Non-photon-number-resolving ability

Most photon-number detectors used in experiments so far are on-off or non-

photon-number-resolving detectors without the capability to distinguish the specific

number of detected photons. A non-photon-number-resolving detector is different

from a photon-number-resolving detector in that it accepts k clicks even though the

actual number of clicks can be larger than k. Thus we have [227]

ρ̂C(m) =
∞∑
k=m

Q(k)ρ̂B(k)∑∞
k=mQ(k)

, (2.134)

where ρ̂C(m) is the density matrix for a projected state generated with an imperfect

non-photon-number-resolving detector.

Mode purity of subtracted photons

The mode purity, s
′
, is defined as the probability that the photons detected

by the photon-number detector are mode matched to the local oscillator used in

the kitten state characterisation via homodyne detection. As it is quite difficult

to obtain a perfect mode purity, the detected density matrix of a projected state,

ρ̂detect, would be a mixed state consisting of the actual projected state, ρ̂proj, and

the unprojected state, ρ̂unproj (i.e. the input state after experiencing loss from r1

and r2). Therefore, we have [211,269]

ρ̂detect = s
′
ρ̂proj + (1− s′)ρ̂unproj, (2.135)

where ρ̂proj could be ρ̂A (density matrix for a projected state from an ideal photon-

number-resolving detector), ρ̂B (density matrix for a projected state from an imper-

fect photon-number-resolving detector), or ρ̂C (density matrix for a projected state

from an imperfect non-photon-number-resolving detector).

2.7 Inefficient homodyne detection

The optical homodyne detector efficiency can be calculated as [216,221,227]

ηHD = ηQE ∗ ηt ∗ ζ2, (2.136)
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where ηQE is the quantum efficiency of the two photodiodes in the homodyne detec-

tor, ηt is the propagation efficiency to the homodyne detector, and ζ is the interfer-

ence visibility between the signal and local oscillator, denoting the degree of mode

matching. Therefore the total efficiency, ηHD, quantifies various categories of loss.

As shown in figure 2.10, the homodyne detection inefficiency can be simulated by

a lossless beamsplitter before a perfect homodyne detector with transmission, ηHD,

and the density matrix measured with an inefficient homodyne detector is given

by [243]

〈l|ρ̂detect(ηHD)|n〉 =
∞∑
k=0

Bl+k,l(η)Bl+k,l(η)〈l + k|ρ̂detect|n+ k〉 (2.137)

in terms of the initial field density matrix, ρ̂detect, where

Bl+k,l(η) =

√
(l + k)!

k!l!
ηlHD(1− ηHD)k (2.138)

2.7.1 ηHD affect on measured variance

Inefficient homodyne detection affects the level of detected squeezing and anti-

squeezing from a squeezed state. For example, the variance of the output mode

from an OPO for the anti-squeezed V + and squeezed V − quadratures can be mod-

elled as [152,270,271]

V ± = 1±
[
ηHDηesc

4x

(1∓ x)2 + 4Ω2

]
, (2.139)

where Ω is the detuning parameter defined as the ratio between the measurement

frequency (frequency shift away from FSR resonance, which is Ω = 0 in our experi-

ment) and the OPO cavity decay rate, which is defined as

β =
c
[
(1− roc) + L

]
p

, (2.140)

and roc is the intensity reflection of the OPO output coupler mirror, L is the total

intracavity loss, and p is the total cavity path length. ηesc is the OPO escape

efficiency and x is a parameter related to the cavity, which are defined as

ηesc =
1− roc

(1− roc) + L
(2.141)

x =
Ppump
PTh

. (2.142)

Ppump is the optical power of the second harmonic field (‘pump’), and PTh is the
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pump threshold power (i.e. the pump power at which the OPO reaches self-sustained

oscillation) defined as

PTh =

[
(1− roc) + L

]2

4Enl
(2.143)

The theoretical amount of classical parametric amplification, G+, and attenuation,

G−, produced by an OPO is related to x

G± =
1

1∓ x
. (2.144)

Therefore, given the other experimental parameters, equation 2.139 defines the

minimum (maximum) amount of squeezing (anti-squeezing) that could be measured

by a homodyne detector with efficiency ηHD. If ηHD < 1 then the measured variance

of the squeezed quadrature will be higher (i.e. less squeezing) than the theoretical

minimum defined by equation 2.139 for ηHD = 1.

2.7.2 Modelling electronic noise as poor quantum efficiency

All homodyne detectors are subject to non-desirable electronic noise, which includes

a range of noise such as ambient noise, dark current noises from the detector’s pho-

todiodes, and the intrinsic noise of components in the detector’s electronic circuit.

Another source of noise is the electronic noise floor of the instrument being used to

measure the homodyne detector signal. Kumar et al. have shown that the detection

efficiency of a homodyne detector depends not only on detector characteristics, de-

fined by ηHD, but also on the measurement conditions. A high enough noise level in

the measurement conditions can affect the homodyne detection efficiency, and there-

fore affect the amount of measured squeezing. This concept that a raised electronic

noise floor can be modelled as poor quantum efficiency can be quantified by defining

a frequency-dependent electronic homodyne detection efficiency, ηe(f), as [272]

ηe(f) = 1− 〈Q̂2
e〉

〈Q̂2
meas〉

, (2.145)

where Qe represents the added noise to the measurement of the field quadrature,

Qmeas. This electronic detection efficiency is related to the shot noise level of the

measurement conditions, which corresponds to the noise level determined by the

local oscillator’s optical intensity as

ηe(f) = 1− Pdark(f)

Pshot(f)
, (2.146)

where Pdark(f) (Pshot(f)) is the power spectral density of the electronic (shot) noise
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at frequency, f . Ideally we would want Pdark(f) � Pshot(f) such that ηe(f) ≈ 1.

However, as we will show in chapter 5, this is sometimes not possible and the

measurement of a quantum state can be corrupted due to a raised electronic noise

level from data aliasing affects.

2.8 Optical quantum state tomography

2.8.1 Maximum likelihood estimation

A common challenge in experimental science is estimating a model that best de-

scribes the underlying structure of the system under observation. A standard tech-

nique used to overcome this challenge is called the maximum likelihood method.

Usually a functional relationship between the independent and dependent variables

of the system are known or can be assumed where y = f(x1, x2, . . .) and y is the

variable being measured. This model will depend on one or more parameters, s,

where y = f(x1, x2, . . . ; s) and the set of observations of the system {yi} can be

used to estimate the parameters s. If a specified model and known parameters are

given then it is straightforward to calculate the probability for an observed outcome

to happen by pr({yi}|s). However, if only the observations are known and the pa-

rameters s are unknown then the probability becomes a function that depends on

both the observations and a range of possible parameter values called the likelihood

function:

L(s) ≡ pr({yi}|s). (2.147)

The basis of the maximum likelihood method is that with no other a priori

information about the system other than the observed data set {yi}, the parameters

that are most likely correct are the ones that maximise the likelihood function.

The parameters s0 which maximise the likelihood are called the maximum likelihood

(MaxLik) estimator. The familiar least-squares method of parameter estimation

is in fact just a special case of maximum likelihood estimation. This method of

parameter estimation is only relevant under the assumption that the measurement

outcomes are independent and normally distributed [273].

The total probability outcome for a system where the data samples {yi} are

independent and identically distributed is given by the product of the probabilities

of the individual samples. For this reason it is common to use the logarithm of the

likelihood since the product turns into a sum without changing the location of the

maximum,

lnL(s) = ln
∏
i

pr({yi}|s) =
∑
i

ln pr({yi}|s). (2.148)

The maximisation of this function can be conducted using various techniques, such



Chapter 2. Quantum optics basics 56

as the iterative expectation-maximisation algorithm [274]. Generally a variation of

this algorithm is used to carry out parameter estimation with maximum likelihood

in most quantum state applications.

2.8.2 MaxLik applied to homodyne tomography

We can estimate which quantum states of light are generated by our experiment

by using the maximum likelihood method which was previously applied to quan-

tum state reconstruction by Lvovsky [245]. We will follow the form presented by

Lvovsky [245] and summarized by Neergaard-Nielsen [275]. One of the reasons this

method can be applied to quantum optics experiments is that the generated state

can be sampled a large number of times and these samples are independent and

identically distributed. Each sample corresponds to a homodyne measurement of

the experimental state for a particular measurement angle where this state can be

continuously generated under the same experimental conditions. The sample distri-

bution is determined by the density matrix through equation 2.22. Therefore the

density matrix can be estimated through the maximum likelihood method where the

parameters s are the matrix entries. The Wigner function can then be calculated

from the density matrix that maximises the likelihood function. This technique has

been referred to as homodyne tomography due to its similarities to medical tomo-

graphic imaging where 2D projections are taken at various angles and used to create

a 3D model.

The continuous-valued outcomes from the homodyne measurements have to be

binned to discretize the data. The probability of detecting a particular quadrature

value X̂θ for a density matrix ρ̂ (whether its the state’s actual density matrix or one

estimated by this technique) within the jth bin is

prθ,j =

∫ qj+1

qj

pr(Xθ)dXθ (2.149)

=

∫ qj+1

qj

tr
[
|Xθ〉〈Xθ|ρ̂

]
dXθ

= tr
[
Π̂θ,j ρ̂

]
,

where

Π̂θ,j =

∫ qj+1

qj

|Xθ〉〈Xθ|dXθ (2.150)

is the projection operator for the jth bin. The sum of the probabilities and projectors

for a specific measurement angle equals unity/identity if the bins cover the entire
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range of Xθ values, ∑
j

prθ,j = 1 (2.151)∑
j

Π̂θ,j = Î.

The likelihood function in terms of the density matrix ρ̂ for Nθ,j observations in the

jth bin is

lnL(ρ̂) = ln
∏
θ,j

pr
Nθ,j
θ,j (2.152)

=
∑
θ,j

Nθ,jln prθ,j.

This equation assumes the quadrature phase angle is kept constant while X̂θ

is sampled a number of times before the angle is adjusted to a new value and

the measurement is repeated. The
∑

θ denotes the summation over all sampled

measurement phase angles. In our measurement procedure we allow the LO phase

to randomly wander, which is a technique previously demonstrated [206, 276, 277].

The measurement angle is then determined during post-processing of the data based

on measured experimental parameters, which will be further explained in chapter

4. It is important to ensure a sufficient number of measurement angles were used

in order to avoid a low azimuthal resolution of the reconstructed Wigner function.

For each set of measurement angles there is an entire corresponding quadrature

distribution pr(Xθ) and set of projectors {Π̂j}.
To find the ensemble ρ̂ that maximises the likelihood function we must introduce

the operator

R̂(ρ̂) ≡
∑
θ

Nθ

N

∑
j

fθ,j
prθ,j

Π̂θ,j, (2.153)

where fθ,j is the frequency of observations in the jth bin within the θ phase angle

measurement. Note that according to definition 2.153 the distribution ρ0 which is

most likely to produce the observed data set must have its probabilities equal to the

measured frequencies in all bins. As outlined in several papers [245, 278, 279], the

solution to the extremal equation R̂(ρ̂0)ρ̂0 = ρ̂0, which is equivalent to

R̂(ρ̂0)ρ̂0R̂(ρ̂0) = ρ̂0, (2.154)

can be found by an iterative method that can be seen as a special case of the classical

expectation-maximisation algorithm [274]. Beginning from an initial guess, ρ̂(0), the
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iteration continues as

ρ̂(k+1) = N [R̂(ρ̂(K))ρ̂(K)R̂(ρ̂(K))], (2.155)

where N denotes normalization to a unitary trace. Each step in the iteration will

monotonically increase the likelihood associated with the current density matrix

estimate and converge towards the fixed point ρ̂0. The iterations were terminated

once the incremental changes to the estimated density matrix fell below an arbitrarily

defined threshold given by

∆ρ̂ =
∑
m,n

∣∣∣ρ̂(n)
mn − ρ̂(n−1)

mn

∣∣∣. (2.156)

The reconstructed density matrix is conveniently in the number state basis, where

the matrix representation of the projection operator is given by

(Π̂θ,j)mn =

∫ qj+1

qj

〈m|Xθ〉〈Xθ|n〉dXθ, (2.157)

with 〈m|Xθ〉 defined in equation 2.23. It is necessary to truncate the infinite Hilbert

space to dimension M + 1 where M is the maximal photon number. The choice of

M must be large enough to include all photon numbers that may contribute to the

state.

2.8.3 Correcting for imperfect homodyne efficiency

A significant advantage to the maximum likelihood method is its ability to explicitly

include imperfect detection efficiency in the algorithm [245, 280]. As discussed in

§2.7, it is common to model detection efficiency ηHD by a fictitious beamsplitter with

transmittance ηHD before the homodyne detection set-up (figure 2.10). This non-

unity efficiency can be incorporated into the reconstruction algorithm by exchanging

the projection operator Π̂θ,j with an element of a POVM (positive operator-valued

measure). A POVM is a set {Êm} of positive operators fulfilling the completeness

relation
∑

m Êm = Î. Therefore we get

Êθ,j(ηHD) =
∑
m,n,k

√
Bm+k
m (ηHD)Bn+k

n (ηHD)

∫ qj+1

qj

dXθ〈n|Xθ〉〈Xθ|m〉|n+ k〉〈m+ k|,

(2.158)
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where

Bm+k
m =

√√√√(m+ k

m

)
ηm(1− η)k.

The summation of m and n runs from 0 to the truncation number M , and k from 0 to

M -max(m,n). This operator now represents a detection event in the (θ, j) bin by an

ηHD-efficiency detector. Therefore, the non-unity efficiency is incorporated into the

reconstruction algorithm by exchanging the projection operator Π̂θ,j with Êθ,j(ηHD)

everywhere it appeared in the previous discussion. This iteration algorithm will

directly reconstruct the state ρ̂ηHD=1 before the imperfect detector.
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Chapter 3

Theory of SS-NOPO state
generation

The true sign of intelligence is not knowledge but imagination.
Albert Einstein

In this chapter a frequency-resolved measurement operator is applied to a two-

mode squeezed vacuum state generated by a side-band-scale nondegenerate optical

parametric oscillator (SS-NOPO). We will show that a rotation operation occurs on

these two-modes if the measurement technique cannot distinguish between the upper

and lower side-bands. This operation rotates the measurement basis which results

in the two-mode state becoming two separable single-mode squeezed vacuum states.

These single-mode states are indistinguishable due to their symmetry. It is because

of this property that the two-mode squeezed vacuum state produced by a SS-NOPO

is often treated as degenerate and therefore single-mode. We will show that standard

homodyne detection cannot distinguish between these two single-mode states, and

also cannot choose which state to characterise. Therefore this technique returns a

measurement that is indistinguishable from a single-mode squeezed vacuum state.

We will then illustrate that a new measurement technique is required to fully

characterise each single-mode state if the symmetry between the states is broken so

that the two single-mode states become distinguishable. We will discuss how apply-

ing a measurement-induced nonlinearity such as photon-subtraction to a two-mode

squeezed vacuum state will result in two independent and distinguishable quantum

states. Thus producing a photon-subtracted squeezed vacuum state and a squeezed

vacuum state in a single optical mode.

3.1 Two-mode squeezed vacuum

Parametric down-conversion is a well-known technique for generating entangled pairs

of photons [84]. These down-converted photons will be correlated in spatial, tempo-
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ral, frequency, and polarisation degrees of freedom. Since the two fields originated

from the second harmonic pump field, they will also be quadrature-correlated and

can form a two-mode squeezed state. The two-mode structure of the photons can

take numerous forms. The down-converted photons could have orthogonal polar-

isations, or exit the nonlinear medium in distinguishable spatial modes. Another

common form of nondegeneracy is wavelength-scale nondegenerate parametric down-

conversion (WS-NPDC) in which the photons are created at wavelengths that may

differ by tens to hundreds of nanometres (e.g. a 532 nm photon down-converting

into a 810 nm photon and 1550 nm photon).

In §2.5.3 we introduced the concept of a side-band-scale nondegenerate optical

parametric oscillator (SS-NOPO). It has been well established that a two-mode

squeezed vacuum (twin-beam) state can be generated by a χ(2)-nonlinear medium

inside an optical cavity [130, 281–290]. The two-mode structure can take the form

of upper and lower frequency side-bands correlated symmetrically about the optical

carrier. These side-bands could be separated by only a few kilohertz to megahertz

above and below the optical carrier frequency Ω0 (e.g. Ω0 ± 1 MHz) and therefore

be within the ‘baseband’ linewidth of the cavity centred on the carrier. Often the

squeezed vacuum state produced by a SS-NOPO is investigated in this baseband

frequency range. Since an optical cavity has multiple resonance frequencies (spaced

by the free-spectral range, FSR), the down-converted photons could also exist at

side-bands evenly spaced by an FSR frequency, which is usually in the range of

megahertz to gigahertz above and below the carrier. Due to the way in which

homodyne detection probes both the upper and lower side-bands simultaneously,

and the fact that the wavelengths of the photons only differ by a fraction of a

nanometre, the SS-NOPO output state is often treated as degenerate and single-

mode.

We will show that this is ‘allowed’ since the standard homodyne detection tech-

nique returns a measurement result that is indistinguishable from a single-mode

squeezed vacuum state. In this way, homodyne detection can be interpreted as mea-

suring a two-mode state in a rotated measurement basis in which the state becomes

two separable single-mode states. For the case of two-mode squeezed vacuum, these

two states are both single-mode squeezed vacuum states that are indistinguishable.

However, this standard detection technique is no longer adequate when the de-

generacy from a SS-NOPO breaks down and the two single-mode states become

distinctly different (e.g. a non-Gaussian and a Gaussian state). Therefore, the up-

per and lower frequency side-bands produced by a SS-NOPO should be thought of

as forming a two-mode state. A new measurement technique must be utilised that

can individually access and characterise either single-mode state in this rotated ba-

sis. This measurement technique involves frequency-resolved homodyne detection
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and was first introduced by Ralph et al. [291]. We will explicitly show that having

access to the frequency demodulation phase allows state reconstruction of either

single-mode side-band state.

3.1.1 Decomposition of two-mode squeezed vacuum state

As we discussed in §2.5.3, a pure two-mode squeezed vacuum state can be described

by [263,292]

|Ψ〉a,b = Ŝ(ξ)a,b|0〉a|0〉b (3.1)

= exp(tanh(ξ)â†b̂†)(cosh ξ)−(â†â+b̂†b̂+1) exp(tanh(ξ)âb̂)|0, 0〉a,b

=
∞∑
n=0

α2n|n, n〉a,b,

where α2n is defined by equation 2.113. The measurement result from separately

characterising one mode demonstrates that modes a and b are entangled. If mode a

is isolated and measured, the properties of its state will no longer have the photon

statistics of a squeezed vacuum state. Direct measurement of mode a or b results

in lost correlation between the entangled modes, causing the measured state to be

indistinguishable from a thermal state [251, 293, 294]. We can see this result by

taking the partial trace over mode a in equation 3.1, which calculates the photon

number distribution in mode a

P (a) = trb

[
Ŝ(ξ)|0, 0〉a,b a,b〈0, 0|Ŝ†(ξ)

]
(3.2)

= trb

[ 1

cosh2 ξ

∞∑
n=0

∞∑
m=0

(tanh ξ)n+m|n, n〉a,b a,b〈m,m|
]

=
1

cosh2 ξ

∞∑
n,m=0

(tanh ξ)n+m
b〈m|n〉b |n〉a a〈m|

=
1

cosh2 ξ

∞∑
n,m=0

(tanh ξ)n+mδnm|n〉a a〈m|

=
1

cosh2 ξ

∞∑
n=0

(tanh ξ)2n|n〉a a〈n|,

which is a thermal state with 〈n〉 = sinh2 ξ. Measuring a thermal state by measuring

one half of an entangled pair has been experimentally demonstrated in two-mode

squeezed vacuum states generated from nondegenerate PDC [284,289,295]. However,

single-mode squeezed vacuum states can be retrieved from the two-mode state if

a mode-mixing operation is applied to the state before detection [289, 296]. For

example, if modes a and b were spatial modes they could be optically mixed on a
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beamsplitter and the outputs would be in spatial modes c and d, which are defined

as

ĉ =
â+ b̂√

2
, d̂ =

â− b̂√
2
.

Homodyne detection of modes c and d results in two single-mode squeezed vac-

uum states with opposite squeezed quadratures. This result can be explained by

expressing the two-mode squeezing operator in the rotated c, d basis as

exp(ξâ†b̂† − ξ∗âb̂) = exp

(
ξ

2
ĉ†2 − ξ

2

∗
ĉ2

)
exp

(
− ξ

2
d̂†2 +

ξ

2

∗
d̂2

)
. (3.3)

Therefore, the two-mode squeezing operator can be written as a product of two

single-mode squeezing operators in the rotated basis [292]. Furthermore, the two-

mode squeezed vacuum state becomes a product state of two single-mode squeezed

vacuum states in this rotated basis

|Ψ〉a,b = |Ψ〉c|Ψ〉d, (3.4)

where

|Ψ〉c =
∞∑
n=0

β2n|2n〉c, |Ψ〉d =
∞∑
n=0

β2n|2n〉d.

|Ψ〉c and |Ψ〉d are single-mode squeezed vacuum states that are amplitude and phase

quadrature squeezed, respectively, and β2n is defined in equation 2.55. This result

applies for modes of any kind, not just spatial modes and just relies on a rotation

operation to move between the {a, b} and {c, d} bases.

3.1.2 Measuring squeezed vacuum side-band modes

The Einstein-Podolsky-Rosen (EPR) entanglement that exists between the upper

and lower FSR side-bands generated by a SS-NOPO have been theoretically and

experimentally investigated [99, 164, 168]. Therefore, a similar mode-mixing opera-

tor must be performed on the correlated frequency side-bands in order to retrieve

the single-mode squeezed vacuum states. However, optical frequency-mixing can be

experimentally challenging and damaging to fragile quantum states [297]. Luckily,

the standard technique for characterising optical quantum states, homodyne detec-

tion, automatically performs this mixing operation on the upper and lower frequency

side-bands, and can therefore be thought of as measuring in the c, d-basis. We will

now summarise a measurement technique that combines homodyne detection with
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frequency demodulation to allow access to a single-mode state in the c, d-basis at a

particular side-band frequency, ωs.

We first define the following Hermitian operator that represents the observable

measured by an ideal homodyne detector [291]

X̂(θ, t) = e−iθâ(t) + eiθâ†(t) =

∞∫
−∞

dωeiωt[e−iθâ(ω) + eiθâ†(−ω)], (3.5)

where θ is the optical phase difference between the local oscillator and the signal

field to be measured. We can isolate a pair of side-bands at a particular frequency,

ωs, from the homodyne signal by multiplying X̂(θ, t) with a cosine at frequency ωs,

and doing a time integration. First we note that the time domain â(t) and frequency

domain â(ω) annihilation operators are Fourier transform pairs:

â(t) =

∞∫
−∞

â(ω)eiωtdω (3.6)

â(ωs) =

∞∫
−∞

â(t)e−iωstdt (3.7)

â(−ωs) =

∞∫
−∞

â(t)eiωstdt. (3.8)

According to the Fourier transforms defined in equations 3.6-3.8, we have

â†(t) =

∞∫
−∞

â†(−ω)eiωtdω (3.9)

â†(ωs) =

∞∫
−∞

â†(t)eiωstdt (3.10)

â†(−ωs) =

∞∫
−∞

â†(t)e−iωstdt. (3.11)

We can relate â(ω) to â(ωs) by substituting equations 3.6 into equation 3.7, and

substituting equation 3.9 into equation 3.10 to give

â(ωs) =

∫ ∫
â(ω)ei(ω−ωs)tdωdt (3.12)

â†(ωs) =

∫ ∫
â†(−ω)ei(ω+ωs)tdωdt. (3.13)
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Similar expressions are found for â(−ωs) and â†(−ωs). Therefore, a signal at fre-

quency ωs can be isolated from the homodyne data by

X̂ωs(θ, φ) =

∫
dt cos(ωst+ φ)X̂(θ, t) (3.14)

=

∫ ∫
1

2

{
ei(ω+ωs)t

[
e−i(θ−φ)â(ω) + ei(θ+φ)â†(−ω)

]
+ ei(ω−ωs)t

[
e−i(θ+φ)â(ω) + ei(θ−φ)â†(−ω)

]}
dωdt,

where φ is the rf demodulation phase. Solving equation 3.14 by utilising equation

3.12 and equation 3.13 gives [291]:

X̂ωs(θ, φ) =
1

2

[
e−i(θ+φ)â+ωs + ei(θ+φ)â†+ωs + e−i(θ−φ)â−ωs + ei(θ−φ)â†−ωs

]
. (3.15)

This measurement operator can be experimentally implemented by combining high-

frequency homodyne detection with frequency demodulation. We will now show

that applying this measurement technique to the two-mode squeezed vacuum state

generated by a SS-NOPO allows us to extract two single-mode squeezed vacuum

states from the homodyne signal.

3.1.3 Symmetric & anti-symmetric basis

We define the symmetric and anti-symmetric side-band modes at a particular side-

band frequency ωs in terms of the upper and lower side-bands:

âS =
1√
2

[
â+ωs + â−ωs

]
(3.16)

âA =
1√
2

[
â+ωs − â−ωs

]
. (3.17)

We can use these definitions to transform equation 2.114 into the symmetric/anti-

symmetric (S,A) basis:

|Ψ〉
SS−NOPO = α0|0〉S|0〉A +

α2√
2

[
|2〉S|0〉A − |0〉S|2〉A

]
(3.18)

+
α4

4

[√
6|4〉S|0〉A − 2|2〉S|2〉A +

√
6|0〉S|4〉A

]
+

α6√
48

[√
15|6〉S|0〉A − 3|4〉S|2〉A + 3|2〉S|4〉A −

√
15|0〉S|6〉A

]
.

Substituting the α-coefficients of a pure two-mode squeezed vacuum state (equation
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2.113) into equation 3.18 gives

|Ψ〉
SS−NOPO =

1

cosh ξ
|0〉S|0〉A +

tanh ξ√
2 cosh ξ

[
|2〉S|0〉A − |0〉S|2〉A

]
(3.19)

+
(tanh ξ)2

cosh ξ

[√
6

4
|4〉S|0〉A −

1

2
|2〉S|2〉A +

√
6

4
|0〉S|4〉A

]
+

(tanh ξ)3

cosh ξ

[√
5

16
|6〉S|0〉A −

√
3

16
|4〉S|2〉A +

√
3

16
|2〉S|4〉A −

√
5

16
|0〉S|6〉A

]
.

This result is equivalent to the product of two single-mode squeezed vacuum states

|Ψ〉
SS−NOPO = |Ψ〉S|Ψ〉A, (3.20)

where

|Ψ〉S ≈ β0|0〉S − β2|2〉S + β4|4〉S − β6|6〉S (3.21)

|Ψ〉A ≈ β0|0〉A + β2|2〉A + β4|4〉A + β6|6〉A,

and β2n is defined in equation 2.55. |Ψ〉S and |Ψ〉A are amplitude and phase-squeezed

single-mode states in the symmetric and anti-symmetric modes, respectively, at a

single FSR frequency, ±ωs. We can transform our measurement operator, X̂ωs(θ, φ),

into this rotated basis:

X̂ωs(θ, φ) =
1

2

[
e−i(θ+φ)(âS+âA)+ei(θ+φ)(â†S+â†A)+e−i(θ−φ)(âS−âA)+ei(θ−φ)(â†S−â

†
A)
]
.

(3.22)

We simplify equation 3.22 and define X̂S,A(θ, φ) as the equivalent measurement

operator of X̂ωs(θ, φ) in this rotated basis:

X̂S,A(θ, φ) = X̂ωs(θ, φ) = cosφX̂S(θ) + sinφX̂A(θ + π/2), (3.23)

where

X̂S(θ) = e−iθâS + eiθâ†S (3.24)

X̂A(θ + π/2) =− i(e−iθâA − eiθâ†A).

Therefore,

SS−NOPO〈Ψ|X̂ωs(θ, φ)|Ψ〉
SS−NOPO (3.25)

≡ S〈Ψ| A〈Ψ|X̂S,A(θ, φ)|Ψ〉S|Ψ〉A

= S〈Ψ| A〈Ψ|
(

cosφX̂S(θ) + sinφX̂A(θ + π/2)
)
|Ψ〉S|Ψ〉A.
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Furthermore, we can access the kth-order moments by

SS−NOPO〈Ψ|
(
X̂ωs(θ, φ)

)k
|Ψ〉

SS−NOPO ≡ S〈Ψ| A〈Ψ|
(
X̂S,A(θ, φ)

)k
|Ψ〉S|Ψ〉A. (3.26)

We can see from equation 3.25 that measuring with a fixed demodulation phase,

φ, will give a measurement result where the homodyne signal only depends on the

state of the symmetric or anti-symmetric mode.

For φ = 0,

S〈Ψ| A〈Ψ|
(
X̂S,A(θ, φ = 0)

)k
|Ψ〉S|Ψ〉A (3.27)

= S〈Ψ|
(
X̂S(θ)

)k
|Ψ〉S

= S〈Ψ|
(

1√
2

(
X̂+ωs(θ) + X̂−ωs(θ)

))k
|Ψ〉S,

where

X̂±ωs(θ) = e−iθâ±ωs + eiθâ†±ωs .

For φ = π/2,

S〈Ψ| A〈Ψ|
(
X̂S,A(θ, φ = π/2)

)k
|Ψ〉S|Ψ〉A (3.28)

= A〈Ψ|
(
X̂A(θ + π/2)

)k
|Ψ〉A

= A〈Ψ|
(

1√
2

(
X̂+ωs(θ + π/2)− X̂−ωs(θ + π/2)

))k
|Ψ〉A,

where

X̂±ωs(θ + π/2) = −i(e−iθâ±ωs − eiθâ
†
±ωs). (3.29)

The equation 3.27 is an EPR measurement of the anti-correlations between the

amplitude quadratures of the upper and lower side-bands, and equation 3.28 is an

EPR measurement of the correlations between the phase quadratures of the upper

and lower side-bands. Note that rotating the demodulation phase not only transi-

tions between the symmetric and anti-symmetric modes but also has the effect of

rotating the measurement quadrature. Therefore, for a fixed local oscillator phase

of θ = 0, for a demodulation phase of φ = 0 (φ = π/2) this will result in a measure-

ment of the (anti)-correlations between the (phase) amplitude quadratures of the

two modes. Both of these measurement results look the same because of the EPR

entanglement that exists between the upper and lower side-bands.

A mix-down angle of φ = π/4 results in a measurement that depends on the

averaged sum of the symmetric and anti-symmetric modes.
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For φ = π
4
,

S〈Ψ| A〈Ψ|
(
X̂S,A(θ, φ = π/4)

)k
|Ψ〉S|Ψ〉A (3.30)

= S〈Ψ| A〈Ψ|
(

1√
2

(
X̂S(θ) + X̂A(θ + π/2)

))k
|Ψ〉S|Ψ〉A

= S〈Ψ| A〈Ψ|
(

1

2

(
X̂+ωs(θ) + X̂−ωs(θ) + X̂+ωs(θ + π/2)− X̂−ωs(θ + π2)

))k
|Ψ〉S|Ψ〉A.

Since the phase and amplitude quadratures of the upper or lower side-bands

are uncorrelated, for a fixed local oscillator phase of θ = π/4, this measurement

results in a state that is statically equivalent to a thermal state. Interestingly,

this demodulation phase produces a measurement result that is similar to probing

the upper or lower side-band of the two-mode squeezed vacuum state described in

equation 2.114. In chapter 5 we present experimental measurement results from

applying this measurement operator to a two-mode squeezed vacuum state for these

three special mix-down angles.

3.1.4 Side-band modes measured by spectrum analyser

We will now discuss a measurement technique that employs a random mix-down

angle, such as a spectrum analyser. The first order moments of X̂S,A(θ, φ) for phase-

averaged demodulation are zero:

1

2π

2π∫
0

X̂S,A(θ, φ)dφ =
1

2π

2π∫
0

(
cosφX̂S(θ) + sinφX̂A(θ + π/2)

)
dφ = 0. (3.31)

However, the second order moments are nonzero and instead results in a measure-

ment of the average EPR variances of the symmetric and anti-symmetric modes

1

2π

2π∫
0

(
X̂S,A(θ, φ)

)2

dφ (3.32)

=
1

2

[(
X̂S(θ)

)2

+
(
X̂S(θ + π/2)

)2
]

=
1

4

[(
X̂+ωs(θ) + X̂−ωs(θ)

)2

+
(
X̂+ωs(θ + π/2)− X̂−ωs(θ + π/2)

)2
]
.

The minimum variance of this measurement result is an average of the squeez-

ing levels of the single-mode squeezed vacuum states in the symmetric and anti-

symmetric modes. Therefore, a phase-averaged demodulation scheme is equivalent



Chapter 3. Theory of SS-NOPO state generation 70

to the standard homodyne detection technique which returns a measurement result

indistinguishable from a singe-mode squeezed vacuum state.

However, since the two single-mode states are indistinguishable, the ability to

individually access them does not provide any more useful information about the

state. Since a squeezed vacuum state is a Gaussian state, it can be fully characterised

by its mean and standard deviation, which can be determined from these phase-

averaged measurements. As we will show in the next section, the ability to use

a fixed demodulation phase to access the symmetric or anti-symmetric side-band

mode becomes useful when applied to an asymmetric two-mode state, such as a

photon-subtracted two-mode squeezed vacuum state.

3.2 Two-mode projected state

The true nondegenerate properties of a SS-NOPO are demonstrated when frequency-

resolved homodyne detection is applied to a photon-subtracted two-mode squeezed

vacuum state. We will now show that the two single-mode states in the symmetric/anti-

symmetric basis are no longer identical, and they can be individually characterised

by this measurement technique that allows access to either the symmetric or anti-

symmetric mode.

As we will discuss in chapters 4 and 6, it is experimentally possible to construct

an optical projector that will subtract a photon from the symmetric side-band mode,

and leave the anti-symmetric side-band mode untouched (or vice versa). The fre-

quency side-band spectrum of the trigger mode can be shaped by a series of optical

filtering cavities before detection by the APD. We will first present a simplified

model where a single pair of FSR side-bands at ±ωs are isolated from the SS-NOPO

spectrum. This model will then be extended to include mulitple FSR side-band

pairs in the trigger mode, which represents the real trigger mode in our experiment.

3.2.1 Single frequency trigger mode

One ideal filter cavity system would be able to isolate an upper and lower side-

band pair at a particular FSR frequency. If the frequency spacing between the side-

bands is within the detection bandwidth of the APD, the projecting detector cannot

distinguish from which side-band the annihilated photon originated. Therefore, this

measurement result is equivalent to a superposition state of annihilation operators

acting on the upper and lower side-bands, which is the projector

Π̂s = â+ωs + â−ωs . (3.33)
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The projected state can then be described by

|Ψ〉proj = Π̂s|Ψ〉SS−NOPO (3.34)

=
[
â+ωs + â−ωs

][
α0|0〉+ωs|0〉−ωs + α2|1〉+ωs|1〉−ωs + α4|2〉+ωs|2〉−ωs

+ α6|3〉+ωs|3〉−ωs
]

= α2

[
|0〉+ωs|1〉−ωs + |1〉+ωs|0〉−ωs

]
+ α4

√
2
[
|1〉+ωs|2〉−ωs + |2〉+ωs|1〉−ωs

]
+ α6

√
3
[
|2〉+ωs|3〉−ωs + |3〉+ωs|2〉−ωs

]
.

We can use the definitions from equation 3.16 to transform this equation into the

symmetric/anti-symmetric basis:

|Ψ〉proj =
√

2α2|1〉S|0〉A + α4

[√
3|3〉S|0〉A − |1〉S|2〉A

]
(3.35)

+ α6

[√
15

4
|5〉S|0〉A −

√
3

2
|3〉S|2〉A +

√
3

4
|1〉S|4〉A

]
.

Note that the odd- and even-photon number Fock states are now separated into the

symmetric and anti-symmetric modes, respectively. Substituting the α-coefficients

from equation 2.113 for two-mode squeezing gives

|Ψ〉proj =

√
2 tanh ξ

cosh ξ
|1〉S|0〉A +

(tanh ξ)2

cosh ξ

[√
3|3〉S|0〉A − |1〉S|2〉A

]
(3.36)

+
(tanh ξ)3

cosh ξ

[√
15

4
|5〉S|0〉A −

√
3

2
|3〉S|2〉A +

√
3

4
|1〉S|4〉A

]
,

which is equivalent to

|Ψ〉proj =
√

2âS|Ψ〉S|Ψ〉A (3.37)

= |Φ〉S|Ψ〉A,

where

|Φ〉S ≈ −2β2|1〉S + 2
√

2β4|3〉S − 2
√

3β6|5〉S. (3.38)

The state |Φ〉S is a photon-subtracted squeezed vacuum state in the symmetric

side-band mode at ±ωs FSR frequency for a truncated Fock space, and |Ψ〉A was

previously defined in equation 3.21. The β-coefficients are the single-mode terms

defined in equation 2.55. Therefore, a projector could be engineered that would

subtract a single photon from the symmetric side-band mode and not the anti-

symmetric mode, producing two independent and distinct quantum resource states

in a single optical mode.
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Applying our measurement operator to this projected state for a known demod-

ulation phase allows us to access each quantum state separately. Thus, the kth-order

moments are accessible by

proj
〈Ψ|
(
X̂ωs(θ, φ)

)k
|Ψ〉

proj
≡ S〈Φ|A〈Ψ|

(
X̂S,A(θ, φ)

)k
|Φ〉S|Ψ〉A (3.39)

= S〈Φ|A〈Ψ|
(

cosφX̂S(θ) + sinφX̂A(θ + π/2)
)k
|Φ〉S|Ψ〉A.

For a demodulation phase φ = 0,

S〈Φ| A〈Ψ|
(
X̂S,A(θ, φ = 0)

)k
|Φ〉S|Ψ〉A = S〈Φ|

(
X̂S(θ)

)k
|Φ〉S, (3.40)

which results in the homodyne signal depending on only the photon-subtracted

squeezed state in the symmetric side-band mode. And for a mix-down angle of

φ = π/2,

S〈Φ| A〈Ψ|
(
X̂S,A(θ, φ = π/2)

)k
|Φ〉S|Ψ〉A = A〈Ψ|

(
X̂A(θ + π/2)

)k
|Ψ〉A, (3.41)

which results in the homodyne signal depending on only the squeezed vacuum state

in the anti-symmetric side-band mode.

3.2.2 Multi-frequency trigger mode

Our experimental implementation of this concept of applying a photon-subtraction

operation to only the symmetric mode was a proof-of-principles experiment. As we

shall see in chapter 6, we did not engineer an optical filtering system that isolated

only a single frequency pair of upper and lower side-bands at ±ωs, where ωs is the

FSR frequency of our SS-NOPO. Instead our cavity system transmits a small portion

of two other FSR side-band pairs at ±2ωs and ±3ωs. Therefore, it is necessary to

extend our model to include multiple FSR frequencies in the projector. As we

will discuss in chapter 6, due to the detection bandwidth of our APD and the

transmission spectrum from the optical filter cavities, these three FSR pairs of upper

and lower side-bands became entangled. While this is not ideal, it is interesting to

note that such an entangled frequency spectrum is a required resource state for

time-division-multiplexing (TDM).

First we define the two-mode squeezed vacuum state that consists of three FSR

frequencies:

|Ψ〉±Tωs = α0|0〉+Tωs|0〉−Tωs + α2â
†
+Tωs

â†−Tωs|0〉+Tωs|0〉−Tωs (3.42)

+
α4

2
â†2+Tωs

â†2−Tωs |0〉+Tωs|0〉−Tωs +
α6

6
â†3+Tωs

â†3−Tωs |0〉+Tωs|0〉−Tωs ,
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where

|0〉±Tωs = |0〉±ωs + |0〉±2ωs + |0〉±3ωs (3.43)

â†±Tωs = γ1â
†
±ωs + γ2â

†
±2ωs + γ3â

†
±3ωs

are the states and creation operators at ±ωs, ±2ωs, and ±3ωs FSR frequencies.

The three FSR components in â†±Tωs are given specific weightings (γ1, γ2, γ3) that

correspond to the measured transmission spectrum from our optical filtering system,

normalised to γ2
1 +γ2

2 +γ2
3 = 1. These weightings will be further discussed in chapters

4 and 5. We define the total symmetric and total anti-symmetric modes as

â†TS =
1√
2

[
γ1(â†+ωs + â†−ωs) + γ2(â†+2ωs + â†−2ωs) + γ3(â†+3ωs + â†−3ωs)

]
(3.44)

â†TA =
1√
2

[
γ1(â†+ωs − â

†
−ωs) + γ2(â†+2ωs − â

†
−2ωs) + γ3(â†+3ωs − â

†
−3ωs)

]
.

Using these definitions, we can transform equation 3.42 into the total symmetric

and anti-symmetric basis to give

|Ψ〉±Tωs = |Ψ〉TS|Ψ〉TA, (3.45)

where

|Ψ〉TS =
1√
2

(γ1|Ψ〉S + γ2|Ψ〉2S + γ3|Ψ〉3S) (3.46)

|Ψ〉TA =
1√
2

(γ1|Ψ〉A + γ2|Ψ〉2A + γ3|Ψ〉3A).

|Ψ〉S and |Ψ〉A are the single-mode squeezed vacuum states at ±ωs FSR frequency

that were previously defined in equation 3.21. Similarly, |Ψ〉2S and |Ψ〉2A are single-

mode squeezed states at ±2ωs FSR frequency, and |Ψ〉3S and |Ψ〉3A are at ±3ωs

FSR frequency.

We can now define a multi-frequency projector as

Π̂Tωs =
1√
2

[
γ1(â+ωs + â−ωs) + γ2(â+2ωs + â−2ωs) + γ3(â+3ωs + â−3ωs)

]
. (3.47)

Acting this projector on the SS-NOPO squeezed vacuum spectrum results in

|Ψ〉TProj = Π̂Tωs|Ψ〉±Tωs =
√

2âTS|Ψ〉TS|Ψ〉TA (3.48)

= |Φ〉TS|Ψ〉TA,
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where

|Φ〉TS =
1√
2

[
γ1|Φ〉S + γ2|Φ〉2S + γ3|Φ〉3S

]
. (3.49)

|Φ〉S is a single-mode photon-subtracted squeezed vacuum state at ±ωs that was

previously defined in equation 3.38. Similarly, |Φ〉2S and |Φ〉3S are single-mode

photon-subtracted squeezed states at ±2ωs and ±3ωs FSR frequencies, respectively.

3.3 Summary

In this chapter we introduced new state generation theory pertaining to our experi-

ments with two-mode squeezed vacuum and photon-subtracted two-mode squeezed

vacuum. We defined a new basis consisting of the superpositions of the upper and

lower side-bands (‘symmetric’ and ‘anti-symmetric’ modes) produced by a side-band-

scale nondegenerate optical parametric oscillator (SS-NOPO). This introduced a

novel way of interpreting the standard homodyne measurement in this symmetric/anti-

symmetric basis.

We then mathematically derived what occurs when a frequency-resolved ho-

modyne measurement is applied to a two-mode squeezed vacuum state produced

by a SS-NOPO, which naturally preforms a measurement in the symmetric/anti-

symmetric basis. This led to the theoretical prediction that a frequency-resolved

measurement in this rotated side-band basis allows access to both the symmetric

and anti-symmetric modes, which revealed two independent single-mode squeezed

vacuum states with opposite squeezed-quadratures. By applying this measurement

operator to a photon-subtracted two-mode squeezed vacuum state, we were able to

mathematically demonstrate the power of this frequency-resolved technique, which

gives access to either the symmetric or anti-symmetric mode. The model predicts

an intriguing result that two distinct and independent quantum states will occur: a

photon-subtracted squeezed vacuum state in the symmetric mode, and a squeezed

vacuum state in the anti-symmetric mode. We then extended this model to include

a multi-frequency projector that better represents our experimental projector which

consists of three FSR side-band pairs at ±ωs,±2ωs, and ±3ωs.
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Experimental methods

Scientific discovery and scientific knowledge have been achieved only by those who
have gone in pursuit of it without any practical purpose whatsoever in view.

Max Planck

In this chapter we discuss the details and characterisation of our quantum optics

experiment that generates non-classical light. The experiment consists of the stan-

dard configuration necessary to generate a two-mode squeezed vacuum state from a

side-band-scale nondegenerate optical parametric oscillator (SS-NOPO). In chapter

3 we demonstrated theoretically how projective measurements performed on this

two-mode squeezed vacuum state could produce a photon-subtracted squeezed vac-

uum state in the symmetric mode and a squeezed vacuum state in the anti-symmetric

mode. The experiment described in this chapter was designed as a proof-of-principles

demonstration to test this prediction.

A series of optical filtering cavities are placed before the projecting detector (an

APD). These cavities were engineered to have a symmetrical frequency transmission

spectrum as described in §3.2.2, to send equal proportions of both the upper and

lower frequency side-bands to the APD. There is a significant difference in how we

implement our optical projector and measurement operator compared to previous

work. As we shall show in the following chapters, utilising the nondegenerate side-

bands produced by a SS-NOPO results in novel frequency side-band quantum states

at multiple frequencies.

Firstly we will summarize the condition of the experiment when it was inherited

from a previous group member. We will discuss the key components in the exper-

iment and the various modifications that were made in the effort to improve the

quality of quantum state generation. We will also introduce a novel technique for

characterising the linewidth, free spectral range, and overall frequency transfer func-

tion of any optical cavity using only a standard power meter and an electro-optic

intensity modulator.
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Figure 4.1: Experimental photon number distribution of photon-subtracted squeezed
vacuum state produced by Generation I of experiment.

4.1 The experiment - Generation I

The first generation of this experiment included the optical infrastructure to generate

a two-mode squeezed vacuum state, along with the optical filtering system necessary

to spectrally filter the trigger photons for projected state generation. Preliminary

characterisation of the quantum states generated by this experiment established that

the optical system was functioning [298]. Figure 4.1 is a data set taken from Genera-

tion I of the experiment. The photon number distribution shown is from a quantum

state tomographic reconstruction of the projected photon-subtracted squeezed vac-

uum state. These results were statistically-significantly different to the squeezed

vacuum measurements. However, they had significant room for improvement. The

vacuum probability is ∼ 94% and the single-photon probability is ∼ 4%, which were

typical results produced by Generation I of the experiment.

Possible reasons to explain the low single-photon probability have been subse-

quently thoroughly investigated. Various stability and alignment issues in Gener-

ation I (GI) of the experiment were identified and addressed. One of the most

significant sources of instability in GI was a digital locking system that was used

to phase-lock the OPO and two of the optical filtering cavities. The temperamen-

tal nature of the locking system meant it was often difficult and time-consuming

to establish simultaneous lock of all three cavities. Once the cavities were locked,

the system was unable to maintain lock for longer than a few minutes. It was also

discovered that the GI locking system for the final and most vital filter cavity before

the APD was malfunctioning. Therefore, this system lacked the locking stability and
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accuracy required during the long data collection times and needed to be replaced.

Increasing the APD gate rate from 100 kHz to 4 MHz and replacing the locking

system led to a dramatic speed-up in the data acquisition time from ∼ 13 hours to

just ∼ 2 hours. This time reduction significantly reduced the impact of experimental

instability on the data. Due to the sensitive nature of projective state quantum

optics experiments, prolonged collection times can expose the data to excess noise,

and this contamination can ruin delicate quantum features. For example, features

that were not statistically significant due to instability and noise in Generation I of

the experiment became prominent in the data collected from Generation II (GII). In

particular, GII data showed experimental evidence that a projected state produced

from two-mode squeezed vacuum has two independent side-band modes with distinct

quantum states.

This experiment utilises a ‘chop-lock’ technique during data collection, which will

be further explained in the next section. GI used ultra-fast fibre optical switches

instead of optical choppers (fan blades) to block the low-power 1550 nm beam during

data collection. Due to the finite extinction ratio of these switches, it was discovered

that 1550 nm photons were leaking through the switches during the ‘off’ setting, and

corrupting the quality of the projected data. Also, the fibre in the switches was not

polarisation maintaining, which caused further instability issues in the down-stream

optics. These switches were replaced in GII with a new chop-lock system that

utilises phase-locked free-space optical choppers.

Finally, there were some issues with the alignment techniques used to align the

second harmonic generator (SHG) cavity, and with the beam alignment of the 775

nm ‘pump’ beam into the optical parametric oscillator (OPO) cavity. It is vital to

have a well-aligned SHG cavity to maximise 775 nm power output. This 775 nm

beam also needs to be well-aligned and mode-matched to the OPO cavity to ensure

a sufficient amount of nonlinearity is generated. The previous alignment technique

for the SHG cavity involved a detection path that was coupled through the OPO.

Therefore, it was necessary to introduce a new detection path to extricate the SHG

cavity alignment from the pump beam alignment into the OPO. Furthermore, a 775

nm mode-matching cavity was constructed that allows for more precise alignment of

the pump beam into the OPO.

4.2 The experiment - Generation II

4.2.1 Overview

We will now describe the experiment in its current form after its numerous modifi-

cations and additions. First the main optical components will be briefly introduced.
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Then we will summarise various stability issues that were addressed concerning the

general infrastructure in the laboratory and experiment. Finally, we will systemati-

cally discuss the details of the experiment from the chop-lock technique and its main

components to the various measurements made to characterise the experiment.

The experiment can be categorized into the following constituents:

1. The fundamental mode at 1550 nm is frequency up-converted by a second

harmonic generator (SHG) to a 775 nm ‘pump’ beam.

2. The second harmonic pumps an optical parametric oscillator (OPO) to gener-

ate a two-mode squeezed vacuum state which has side-band-scale nondegen-

eracy.

3. A 775 nm mode-matching cavity is used to improve the alignment and mode-

matching between the pump beam and the resonant cavity mode of the OPO.

4. The two-mode squeezed vacuum state is incident on a weakly-reflecting beam-

splitter, which results in the reflection of a trigger field towards the projecting

detector (APD), and the transmission of a signal field towards the homodyne

detector for state characterisation.

5. The trigger field is frequency-filtered by several optical cavities before detection

by the projecting detector (APD).

6. The final trigger beam is mode-matched into a 1550 nm optical fibre, which is

connected to the APD used to detect photons subtracted from the squeezed

vacuum state. These detection events herald a projected state at the char-

acterising detector (homodyne detector), and initiate data collection of the

homodyne signal for quantum state tomography of the projected state.

A frequency-offset temporal mode function is applied to the homodyne signal dur-

ing post-processing to mode-match the signal field to the correlated trigger mode

that initiated data collection. Figure 4.2 is a simplified schematic diagram of the

Generation II experiment with numbered stars that correspond to the previously

listed compartmental description of the experiment. All mode-matching optics and

a large number of beam-steering mirrors have been removed from the schematic for

visual clarity.

The experiment can be operated in two different modes: the unprojected state

mode or the projected state mode. The unprojected state mode involves character-

ising the unprojected squeezed vacuum state by triggering data collection off dark

counts from the APD. The projected state mode utilises the optical filter cavities

shown in figure 4.2 to send photons at particular FSR frequencies to the APD. Data
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Figure 4.2: Simplified schematic diagram of Generation II experiment for unpro-
jected and projected state generation. The optical systems labeled with numbered
stars correspond to the numerical items in the compartmental description of the
experiment. The illustrated legend applies to this and all subsequent schematics.
Red beam: 1550 nm, green beam: 775 nm, HP: high power output, LP: low power
output, PM: fibre phase modulator, FM: flipper mirror, PD: photodetector, HD:
homodyne detector, LO: local oscillator, FBS: frequency beamsplitter.
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Figure 4.3: Polarisation stability measurement of laser and PMP fibre before fibre
and laser shielding system was installed.

collection is then triggered off a mixture of real and false detection events. Ideally, a

real photon detection event will correspond to a photon being subtracted from the

two-mode squeezed vacuum state produced by the SS-NOPO, which projects this

photon-subtracted squeezed vacuum state at the homodyne detector.

4.2.2 General stability

Quantum optics experiments are notoriously sensitive to disturbances, which can

undermine the quality of the quantum state generated. Therefore, several efforts

were made to isolate the optics table and laboratory from building vibrations and

noise. We discovered that temperature fluctuations also had a detrimental effect on

the stability of the optics, laser, optical fibre, and on the electronic equipment critical

to running the experiment. Therefore, a new air conditioning system was installed

in the laboratory capable of handling the heat load generated by the equipment.

An intricate enclosure system was also installed over the entire optical table to

minimise disturbances from air currents. We discovered that the SHG system was

particularly sensitive to air currents so a separate smaller enclosure was installed

over that optical system.

Our laser source had to be replaced during the various modifications to this

experiment. The new laser is a continuous-wave high-power fibre laser at 1549.315

nm (NP Photonics, The Rock), which has a separate low power output of ∼ 20

mW and a high power output of ∼ 1 W (see figure 4.2). It was realised during

characterisation and installation that the optical polarisation of the new laser and

fibre optic system is extremely sensitive to temperature fluctuations and air currents.
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Figure 4.4: Polarisation stability measurement of laser and PMP fibre after fibre
and laser shielding system was installed.

Polarisation-maintaining-panda (PMP) fibre optic cable is used to connect the fibre

laser to the free-space collimators in the experiment. After installation of the laser

and PMP fibre, the horizontal and vertical polarisation components of the high-

power output displayed an oscillation of amplitude ±30% of the average power that

repeated every ∼ 10 minutes. A typical data set taken of these fluctuations before

the fibre and laser were stabilised is shown in figure 4.3.

It was determined that these oscillations were correlated to the temperature

cycling of the new air conditioning system. Since any polarisation drift will mani-

fest as power and fringe visibility drift in the experiment, this level of fluctuation

was unacceptable. Despite replacing any pre-existing fibre in the experiment with

PMP fibre that had a 3 mm cable jacket, these large polarisation oscillations were

still observed. The fibre shielding was insufficient to provide isolation from slight

stresses on the fibre or room temperature fluctuations. Therefore, a fibre shielding

system was designed and installed which held the PMP fibre in constant tension,

and provided extra protection from the temperature fluctuations and air currents.

Furthermore, a three-sided perspex box was constructed to shelter the laser and a

curtain was installed to block air currents generated by the air conditioning system.

These modifications significantly reduced the power fluctuations from ±30% to an

acceptable level of ±2% of the average power, which is shown in figure 4.4.

4.2.3 Chop-lock technique

A low-power 1550 nm beam called the ‘seed’ is used to frequency-lock the OPO and

optical filter cavities. In order to generate true two-mode squeezed vacuum, this
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Figure 4.5: An oscilloscope trace of the 775 nm pump and 1550 nm seed beams being
chopped, illustrating that the chopping periods of the optical choppers are phase-
locked in quadrature. The timing signal generated by QMATE and the reference
OUT signal from the seed optical chopper are also shown. There are four distinct
measurement stages labelled I-IV; data collection occurs during stages I (pump ‘on’,
seed ‘off’) and IV (pump and seed ‘off’).

beam must be blocked while the pump beam interacts with the OPO. Any photon

leakage from the seed into the data collection stage can lead to APD detection events

that do not correspond to a photon-subtraction event. Conversely, the pump beam

must be blocked while the seed light is ‘on’ and used to lock the OPO. Therefore,

specialised optical choppers were installed to completely block the pump and/or

seed light during data collection. These two phase-locked optical choppers (Thorlabs

MC2000, MC1F10 10-slot chopper blades) are used to periodically block these beams

in quadrature. The chopper labelled ‘Chop1’ in figure 4.2 is in the pump beam and

the ‘Chop2’ chopper is in the seed beam. This ‘chop-lock’ technique results in four

distinct measurement stages (I-IV), as shown in figure 4.5 where the pump and seed

alternate being ‘off’ and ‘on.’

A home-built analogue electronics system called QMATE (Quantum Measure-

ment And Timing Electronics) was designed and constructed by Shane Brandon of

our electronics workshop team. QMATE produces two signals that are used in post-

processing to analysis the data. Its design was based on the previous digital system

from GI (circuit diagram for QMATE is shown in appendix 7.2, figure 1). QMATE

produces a periodic signal of constant voltage levels that is used as a timing signal

to separate the collected data into their respective measurement stages. This tim-

ing signal is phase-locked to the leading edge of the chopped pump signal, which is

measured by PD2 shown in figure 4.2. This system also generates a real-time signal
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that is proportional to the level of parametric gain from the OPO, which is used to

estimate the pump/seed phase. Data capture is triggered while the reference OUT

signal from the seed chopper is high, which corresponds to the seed beam being ‘off’.

Four signals are captured during data collection: the high-frequency homodyne sig-

nal, low-frequency homodyne signal, and the QMATE timing and parametric gain

signals. The purpose of each measurement stage and the signals collected therein

will now be discussed.

Stages I and IV

Data collection of the four signals occurs during stages I and IV of the tim-

ing signal from QMATE. In stage I, the pump beam is ‘on’ and the seed beam is

‘off’, resulting in the homodyne data capture of either squeezed vacuum or photon-

subtracted squeezed vacuum data, depending on which configuration the experiment

is operating. Homodyne quantum noise measurements of the vacuum are performed

during stage IV while both beams are blocked. The timing signal is used to separate

the acquired homodyne data into these two stages. Due to limitations of the phase-

lock system, there is a small phase drift between the two optical choppers, which

can lead to the pump beam being accidentally ‘on’ during a vacuum measurement.

In order to avoid contamination of the measurement stages from this drift, stage I

of the timing signal tracks the leading edge of the pump chopper.

Another advantage of this tracking feature is realised when operating the exper-

iment in photon-subtraction mode, as it maximises the chances of capturing a real

photon-subtracted event during stage I. The low APD detection efficiency and high

dark count probability leads to an overall low count rate of real photon-subtracted

events. This leads to longer data acquisition times as a large number of quadrature

measurements must be performed for accurate reconstruction of the quantum state.

As with any complex quantum optics experiment, long data collection times can lead

to instability issues, which can degrade the quality of the projected state. The best

way to avoid these problems is to minimise the data collection time by maximising

the chances of capturing a real photon-subtracted event.

Stage II

Attempts to experimentally phase-lock the pump beam relative to the seed were

unsuccessful due to an unknown phase drift. Therefore, the pump phase wanders

during data acquisition and must be tracked for successful reconstruction of the

quantum state during post-processing. The optical phase relationship between the

parametric down-converted pump photons and the seed field can be calculated from

the level of parametric gain produced by the OPO. Careful attention was paid to

ensure that the optical phase drift of this signal was on a time scale larger than 2
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Figure 4.6: Parametric gain data from our OPO as a function of pump phase. The
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shown in the figure (red).

ms (one full chopping period of all stages I-IV) to maintain correlation between this

phase information and the captured high-frequency homodyne signal.

It has been shown that a pump phase angle of φpump = 0 (φpump = π/2) corre-

sponds to parametric amplification (attenuation) of the seed, and phase (amplitude)

quadrature squeezing [146,147]. Therefore, the pump phase angle can be determined

by monitoring the level of classical parametric gain from the OPO, and fitting this

data with the appropriate equation. The actual values of the gain measurement are

just arbitrary numbers and only used to estimate the pump phase.

The InGaAs photodetector PD3 shown in figure 4.2 is used to quantify the

parametric gain levels of the OPO as the pump phase wanders. Figure 4.5 shows

the seed undergoing parametric attenuation as seen by the voltage level in stage

II, UII , being below that of stage III, UIII . Therefore, the amount of classical gain

is quantified as G = UII/UIII . The voltage level from PD3 is sampled twice by

QMATE over a full chop cycle (once during stage II and once during stage III), and

the ratio of these values is recorded during data acquisition.

A typical data set of parametric gain measurements from our OPO is shown in

figure 4.6. We tried fitting this curve with an equation based on a sine wave, defined

as

Upump =
1

2

[
(Umax,p − Umin,p) sin

(
2φpump +

π

2

)
+ Umax,p + Umin,p

]
(4.1)
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Figure 4.7: Classical interference curve from homodyne detector between LO and
signal fields as a function of local oscillator phase. Experimental measurements of
arbitrary voltage values at the special angles of θ = 0◦, 90◦, 180◦ are shown and
fitted with a theory curve describe by equation 4.2. Maximum and minimum points
on the interference curve correspond to a homodyne measurement of the amplitude
quadrature of the signal field, and the halfway point corresponds to measuring the
phase quadrature.

where Umax,p (Umin,p) corresponds to the overall maximum (minimum) voltage of the

parametric gain signal, respectively. However, this equation does not provide the

desired level of fit to the data due to the asymmetry of the parametric gain curve.

We found that fitting a 4th-order polynomial to the arbitrary voltage values at the

special angles φpump = 0, φpump = π/4, and φpump = π/2 provided a better fit to the

overall gain curve. An example of such a 4th-order polynomial equation and fit is

shown in figure 4.6. Therefore, this technique was used in post-processing to derive

the pump phase from the parametric gain signal using PD3 and QMATE.

Stage III

Tomography of the state is performed by varying the local oscillator (LO) phase

for a series of homodyne measurements. Therefore, the LO phase must be tracked so

a measurement angle can be assigned to the quadrature data, as described in §2.8.2.

This is done by capturing the low-frequency homodyne detector signal during stage

III when the pump is ‘off’ and the seed is ‘on’. There is a known phase relationship

between the classical interference of the LO and signal fields to which quadrature of

the signal field is being measured. This relationship can be seen in equation 2.103,

which describes the subtracted output from a homodyne detector. The classical

interference signal is at a maximum when the LO phase is θ = 0. This angle corre-
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Figure 4.8: Optical phase relationships between seed, pump, and local oscillator.
The angle labelled between the amplitude quadratures of the LO (red) and seed
(black) fields is the LO phase, θ. The angle between the major axis (light blue) of
the squeezing ellipse and the amplitude quadrature of the seed field is the pump
phase, φpump. The overall measurement angle, θmeas, is located between the LO axis
and major axis of the squeezing ellipse.

sponds to measuring the amplitude quadrature of the signal field, X̂+
sig. Similarly,

halfway between maximum and minimum interference (θ = π/2) corresponds to

measuring the phase quadrature of the signal field, X̂−sig. This relationship between

the classical interference and LO measurement angle are illustrated in figure 4.7.

Thus, the LO phase can be determined by data capturing this interference signal,

and modelling it by

ULO =
1

2

[
(Umax,LO − Umin,LO) sin

(
θ +

π

2

)
+ Umax,LO + Umin,LO

]
(4.2)

where Umax,LO (Umin,LO) corresponds to the overall maximum (minimum) voltage

of the low-frequency homodyne detector signal, which measures of the classical in-

terference between the LO and seed. A sample-and-hold circuit was used to sample

the photodetector signal from HD2 (labelled in the experimental schematic, figure

4.2) during stage III while the seed and LO are interfering, and hold the level until

the next full chop cycle. The circuit diagram for the LO phase sample-and-hold

circuit is shown in appendix 7.2 (figure 2). As with the parametric gain signal,

any time delays due to electronic circuits were minimised to ensure the informa-

tion derived from these signals pertained to the quadrature data captured from the

high-frequency homodyne signal during the same chop cycle.

As discussed in §2.8.2, an overall measurement angle has to be assigned to the



87 4.2. The experiment - Generation II

Figure 4.9: Schematic diagram of the second harmonic generator (SHG) in Genera-
tion II experiment. A ‘flipper mirror’(FM1 ) is used in the transmitted path which
can be set in one of two positions as illustrated (Pos1 or Pos2 ). Red beam: 1550
nm, green beam: 775 nm, PD1: silicon photodetector, HD1: 1550 nm homodyne
detector.

quadrature data for use in the maximum-likelihood reconstruction algorithm. For

an accurate reconstruction of the quantum state, this measurement phase, θmeas,

must depend on the optical phase relationships between the pump, seed and local

oscillator. Figure 4.8 is a phase-space diagram which illustrates the phase conven-

tions used to calculate θmeas. The LO phase, θ, is defined as the angle between the

amplitude quadratures of the local oscillator and seed fields. We define the pump

phase, φpump, as the angle between the semi-major axis of the squeezing ellipse and

the amplitude quadrature of the seed field. Conceptually, the pump phase rotates

the squeezing ellipse relative to the seed quadratures, while the LO phase rotates

the measurement axis. The overall phase assigned to the quadrature data used in

the MaxLik quantum state tomographic reconstruction is therefore defined as

θmeas = θ − φpump +
π

2
. (4.3)

4.2.4 Second harmonic generator

It is important in these types of quantum experiments that all laser beams originate

from the same laser source so that a common phase relationship is established.

Therefore, the first step to generating the squeezed vacuum state is to convert the

high-power 1550 nm laser output to the second harmonic at 775 nm. This is done

by using an optical cavity called a second harmonic generator (SHG) which has a

nonlinear crystal inside.
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Figure 4.10: SHG cavity modes (red) and corresponding bipolar error signal (black)
from homodyne locking technique used to frequency lock the SHG to the TEM00
mode.

Our SHG cavity in a standard bow-tie configuration (see figure 4.9) with the

parameters listed in table 4.1. A type I periodically-poled lithium niobate (PPLN)

nonlinear crystal is placed between the two curved mirrors in the cavity at the

location of the smallest beam waist to maximise the nonlinear process. As shown in

figure 4.9, a Schott RG9 filter is used at the output of the cavity to filter any residual

high-power 1550 nm light. A ‘flipper mirror’ (FM1 ) is used in the transmitted

path which can be set in one of two positions. Position 1 sends the 775 nm to a

silicon photodetector, PD1, which is used to monitor the SHG cavity modes during

realignment. Position 2 allows the 775 nm light to pass onto a beam path which

leads through an optical chopper, Chop1, and eventually into the OPO.

length FSR poling period measured Enl crystal temperature

412 mm 728 MHz 18.92 µm 2.6 x 10−3 W−1 158◦C

Table 4.1: Cavity parameters of SHG in Generation II experiment.

It is vital to frequency lock the SHG cavity to the driving laser to maintain a

stable 775 nm output. Therefore, a bipolar error signal must be generated that is

correlated to any frequency detuning which may occur between these systems. The

SHG is locked using a technique called ‘homodyne locking’ [299]. In this technique, a

homodyne detector (HD1 ) is used to monitor the phase quadrature of the reflected

light from the cavity input coupler, which has been shown to be related to the

frequency detuning between the input field and the circulating cavity field [300].
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Figure 4.11: Characterisation of second harmonic generation from a phase-locked
SHG cavity for various input 1550 nm powers.

Two error signals are generated in which one corresponds to the light field re-

jected by the cavity, and the other corresponds to the cavity mode of interest. We

use the latter signal to frequency lock the SHG on resonance with the TEM00 mode,

as shown in figure 4.10. It has been shown that utilising this locking technique on a

cavity which generates squeezed vacuum allows for homodyne measurements of the

squeezed field while locking the cavity [299]. However, as the SHG does not produce

squeezed vacuum, this ability to perform homodyne measurements on a squeezed

field while phase-locking the cavity was not exploited.

The conversion efficiency for a phase-locked SHG cavity is measured before any

measurements are taken to quantify the nonlinear behaviour of the OPO for a partic-

ular input 775 nm power. Figure 4.11 illustrates the second harmonic power conver-

sion relationship from the phase-locked SHG cavity. It is important to characterise

this curve to determine appropriate input powers of 1550 nm light for operating this

cavity in an unsaturated conversion region. The conversion relationship is consid-

ered to be saturated when increasing the incident fundamental optical power does

not correspond to a proportional increase in the generated second harmonic optical

power. As evident from the trend shown in figure 4.11, the conversion efficiency re-

mains almost linear for the highest input power of 1550 nm light that our fibre laser

can produce. Ideally, the second harmonic power would increase quadratically with

respect to the incident fundamental power, as predicted by simple mathematical

modelling of an SHG [242]. However, due to the characteristics of our SHG cavity,

such as large optical losses, large beam waist at the crystal location, and low effec-

tive nonlinearity of the PPLN crystal, the frequency doubling of this optical cavity
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Figure 4.12: Schematic diagram of the optical parametric oscillator (OPO) in Gen-
eration II experiment. Red beam: 1550 nm, green beam: 775 nm, PM: fibre phase
modulator, PD3: fast InGaAs photodetector, MMC: mode-matching cavity.

follows a more linear relationship [298]. Furthermore, there are clearly competing

nonlinearities in this cavity as the third harmonic at 387.5 nm has been observed

exiting the cavity. This concept of competing nonlinearities in an optical cavity

will be further explained in §4.2.6. Despite these imperfections, the SHG cavity can

produce a final maximum 775 nm power of 180 mW from 736 mW of input 1550

nm light, which is sufficient for the subsequent experiments.

4.2.5 Sub-threshold optical parametric oscillator

As previously discussed in §2.5.3, a two-mode squeezed vacuum state is produced

by the nonlinear interaction of the 775 nm ‘pump’ beam with a second nonlinear

optical cavity called an optical parametric oscillator (OPO). The pump photons

undergo parametric down-conversion in the nonlinear crystal, which results in pairs

of entangled photons at 1550 nm. These down-converted photons are generated

at symmetrically correlated frequencies evenly spaced about the carrier within the

down-conversion bandwidth of the nonlinear crystal. Surrounding the crystal with

an optical cavity suppresses the generation of photons at frequencies outside the

cavity resonances. Therefore, a frequency-shaped spectrum of entangled upper and

lower side-bands, called an entangled frequency comb, are emitted by the OPO at

Ω0 ± nωs, where Ω0 is the optical carrier angular frequency, ωs is the FSR angular

frequency, and n = 1, 2, 3, . . . is the FSR number. The two-mode squeezed vacuum

state produced by a side-band-scale nondegenerate OPO (SS-NOPO) consists of

these upper and lower side-band pairs of entangled photons.
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Description Symbol Value

Total cavity path length p 582.5 mm

Measured free spectral range ωs 2π × 515 MHz

Measured linewidth (FWHM) γ
FWHM

2π × 8.76 MHz

Finesse F ∼ 59

OPO decay rate (HWHM) β 2π × 4.07 MHz

Measured output coupler roc 0.916
1550 nm reflectivity

Cavity mirror r2 0.9995
1550 nm reflectivity

Cavity mirror r3 0.9999
1550 nm reflectivity

Cavity mirror r4 0.9999
1550 nm reflectivity

OPO escape efficiency ηesc 0.848

Total cavity loss L 0.015

Measured single-pass Enl 7.2× 10−3 W−1

nonlinear conversion efficiency

Quasi-phase matching Tc 156.6◦C
temperature of crystal (PPLN)

Pump threshold power PTh 340 mW

Table 4.2: Cavity parameters of OPO in Generation II experiment.

A simplified schematic of our OPO is illustrated in figure 4.12, and its various

parameters are listed in table 4.2. These values were used in our data analysis

code to reconstruct the measured quantum state using quantum state tomography

and the MaxLik technique. Three of these parameters, β, ηesc, and PTh, are related

to roc, L, and Enl, and were mathematically defined in §2.7.1. The OPO has a

type I PPLN nonlinear crystal of similar poling period to the SHG crystal and a

higher nonlinear conversion efficiency. We operated the OPO in the sub-threshold

regime for the purposes of generating squeezed vacuum. This is accomplished by

maintaining the power of the 775 nm pump beam well-below the pump threshold

power, PTh.

The finesse, F , of an optical cavity can be defined in terms of the magnitude of
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the round trip gain, grt, where grt ≡ |g̃rt(ω)|, and [301]

g̃rt(ω) ≡ RocR2R3R4 exp
[
− Lp− iωp

c

]
. (4.4)

Roc, R2, R3, R4 are the complex amplitude reflectance coefficients associated with

each cavity mirror illustrated in figure 4.12 (|Roc|2 = roc), L is the overall cavity

loss, p is the total path length, and ω is the optical angular frequency. Therefore

the finesse is

F =
π
√
grt

1− grt
, (4.5)

where

grt ≡ |g̃rt(ω)| = RocR2R3R4e
−Lp, (4.6)

The finesse of a cavity can also be calculated from its FSR and linewidth as

F =
ωs

γ
FWHM

. (4.7)

We use a modified version of the Pound-Drever-Hall modulation-based technique

to frequency-lock the OPO to the laser [302, 303]. This technique usually involves

phase modulation at frequencies outside the cavity linewidth. If the carrier is near

resonance and the phase side-bands are at a high enough frequency then they will

be completely reflected. The conventional approach involves measuring the reflected

light with a photodetector and mixing-down the signal with the original modulation.

This leads to a bipolar error signal that is related to the frequency detuning between

the input field and the cavity mode of interest. Instead of using phase modulation

at very high frequencies (compared to the cavity linewidth), we use modulation at

a frequency within the linewidth of our OPO. This way the modulated signal on

the light is transmitted through the cavity and we can phase-lock the OPO using a

photodetector on the transmitted port instead of in the reflected beam (which goes

to the rest of the experiment). A fibre broadband low-loss LiNbO3 electro-optic

phase modulator (EOspace, PM-0K5-10-PFA-PFA-UL) is used to place 3 − 10.2

MHz phase modulation on the carrier (see PM in figure 4.12). Since this frequency

is within the linewidth of our OPO, the modulation is transmitted through the

mirror labelled r2 and is detected by a fast photodetector (PD3 ) on the transmitted

port. Multiplying the voltage signal from PD3 with the original high-frequency

modulation and low-pass filtering the result generates the necessary bipolar error

signal to frequency-lock the input field to the cavity mode of interest.
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Figure 4.13: Schematic diagram of 775 nm mode-matching cavity (MMC) used to
improve pump alignment and mode-matching into the OPO. A ‘flipper mirror’(FM2 )
can be set in one of two positions as illustrated (Pos1 or Pos2 ); Pos2 sends the 775
nm light towards the MMC. A) Optical configuration used to construct, align, and
mode-match the MMC to the seed-generated 775 nm beam which is transmitted by
the OPO. B) Optical configuration used to align and mode-match the pump beam
into the MMC. Red beam: 1550 nm, green beam: 775 nm, M1 & M2: pump beam-
steering mirrors, L1 & L2: mode-matching optics for pump beam into OPO, L3 &
L4: mode-matching optics for MMC, PD2 & PD4: silicon photondetectors, PD3:
fast InGaAs photodetector.
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Figure 4.14: Transmission spectrum from the 775 nm mode-matching cavity for
different input fields as the path length is varied with a piezoelectric transducer.
The top red trace corresponds to the mode structure from the OPO-generated 775
nm beam as the input field, whereas the bottom blue trace corresponds to the pump
beam as the input field.

4.2.6 775 nm mode-matching cavity

The importance of high-quality alignment and mode-matching of the 775 nm pump

beam to the OPO was briefly mentioned in the beginning of this chapter. Nonlinear

behaviour is dependent on a strong interaction between the down-converted pump

field and the OPO cavity mode of interest. Coarse alignment of the pump beam into

the OPO can be performed by maximising the parametric gain signal from the cav-

ity. However, this technique does not provide sufficient information concerning the

quality of mode-matching between the pump beam and the OPO. Therefore, a 775

nm ‘mode-matching cavity’ (MMC) was constructed to allow for mode-mismatch to

be quantified, and to provide a more sensitive response to pump misalignment. Low

mode-mismatch and good pump alignment is heralded when a similar mode struc-

ture of the mode-matching cavity is observed whether the circulating field originated

from the pump beam or from the OPO-generated 775 nm light.

Figure 4.13 is a simplified schematic of the construction and use of our three-

mirror 775 nm MMC. The schematic depicts the alignment procedure for first con-

structing the MMC, and then using it to improve and quantify the alignment and

mode-mismatch of the pump beam into the OPO. The first step in constructing a

775 nm mode-matching cavity is to generate the second harmonic from the OPO

(figure 4.13A). This is achieved by increasing the intensity of the 1550 nm input field

until a detectable amount of 775 nm is produced. For this system, 380µW of 775
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nm is produced by our phase-locked OPO for an input 1550 nm power of 15.6 mW.

The high-power pump beam is blocked from entering the OPO during this proce-

dure, as illustrated in figure 4.13A. Therefore, the 775 nm light entering the MMC is

generated by the bright 1550 nm beam undergoing parametric up-conversion in the

OPO (which is temporarily acting as an SHG). The MMC is then mode-matched

and aligned to this OPO-generated 775 nm field. The optics used to mode-match

the 775 nm light into the MMC are labelled L3 & L4 in figure 4.13A.

The top oscilloscope trace in figure 4.14 shows the final mode-structure after

the MMC was aligned to the OPO-generated 775 nm field. The ultimate goal

when constructing a single-mode optical cavity is to achieve a completely single-

mode structure (e.g. have only the fundamental transverse electromagnetic (TEM)

mode (TEM00) present). However, this was not a requirement for the MMC’s

structure as this cavity will only serve as a means of comparison between the pump

and the OPO fields. We will compare the MMC’s mode structures produced by

the OPO-generated 775 nm to that produced by the pump beam. Therefore, the

presence of small higher-order modes, such as a Laguerre-Gaussian mode, LG10,

(which indicates slight mode-mismatch between the OPO field and the MMC) and

TEM01 (a misalignment mode), will not affect the final outcome as the ratios of

these higher-order modes to the fundamental TEM00 mode will be compared for

the different input fields.

Once the MMC has been aligned and mode-matched to the OPO-generated

775 nm field, the MMC can be used to improve and quantify the pump alignment

and mode-mismatch to the OPO-generated mode. First the 1550 nm seed beam

is blocked from entering the OPO, and the pump beam is allowed to pass through

the OPO and into the MMC (figure 4.13B). There are two beam-steering mirrors in

the pump path before the OPO, M1 and M2, which allow for adjustments to the

beam alignment into the OPO. There are also optics in the beam path before the

OPO which are used to mode-match the pump beam into the OPO, and are labelled

L1 & L2 in figure 4.13B. Adjusting these mirrors and lenses has a cascading affect

on the alignment and mode-matching of the pump beam into the MMC. Thus, the

alignment of the pump beam can be adjusted using this set of optics until the mode-

structure of the MMC generated by the pump beam is similar to that generated by

the OPO field.

The bottom oscilloscope trace in figure 4.14 shows the final mode-structure pro-

duced by the pump beam after it was realigned to the cavity mode dictated by the

MMC (and hence by the OPO). The mode ratios for the OPO-generated 775 nm

field compared to that generated by the pump beam are listed for comparison in ta-

ble 4.3. Comparing these mode ratios illustrates the high quality of both alignment

and mode-matching between the pump beam and the OPO cavity field.
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Figure 4.15: Observation of competing nonlinearities in the OPO between the pump
beam (top blue) and a strong 1550 nm seed beam (bottom red) in stage II of the
optical chopping period.
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775 nm Source LG10
TEM00

TEM01
TEM00

OPO 5.0% 1.7%

SHG 4.5% 1.7%

Table 4.3: Typical set of measurements to quantify the mode-mismatch and align-
ment quality of the pump beam into the OPO. The mode structure of the 775 nm
mode-matching cavity is compared for the two different 775 nm input fields.

The presence of competing nonlinearies between the pump and the OPO field is

further indication of the high-quality of pump mode-matching and alignment to the

OPO. Parametric amplification and attenuation of the pump field was observed in

the OPO for a bright 1550 nm input field (figure 4.15). As the optical phase of the

pump beam is swept (φpump on M1 in figure 4.13), parametric behaviour is observed

in stage II of the four measurement stages which are bought about while operating

the experiment in ‘chop-lock mode’ as described earlier in §4.2.3. Figure 4.15A is an

oscilloscope trace of the fundamental field undergoing parametric attenuation (‘seed

attenuation’) due to nonlinear interactions with the down-converted pump field. At

the same time the pump field experiences amplification (‘pump amplification’) from

interactions with the OPO-generated second harmonic field. As evident in figures

4.15A and 4.15B, these two processes have an orthogonal phase relationship: as

the pump undergoes attenuation, the seed undergoes amplification, and vice versa.

The observation of competing nonlinearies is also an indication that the assumption

made in the simplified cavity model that the pump can be treated as a static field

is not applicable [242]. Therefore, the 1550 nm input field power was decreased

until this interaction was no longer observed so that the simplified cavity model of

nonlinear behaviour would be applicable.

4.2.7 Tap-off beamsplitter reflectivity

The ideal reflectivity of the tap-off beamsplitter in a projected state experiment

(shown in figure 4.16) depends on several experimental parameters. These parame-

ters have been thoroughly investigated for photon-subtracted squeezed vacuum state

experiments at various wavelengths [227, 265, 304]. The tap-off beamsplitter reflec-

tivity, r2, must be optimized to obtain a high-quality quantum non-Gaussian state

with the minimum possible value of the Wigner function at the origin, W(0,0). The

quality of a quantum non-Gaussian state can also be quantified by the ‘quantum

non-Gaussian character witness,’ which was introduced by Filip and Mǐsta Jr. as

a novel measurement of non-classicality for Gaussian and non-Gaussian states with

positive Wigner functions [305]. Maximising this quantity corresponds to maximis-
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Figure 4.16: Schematic diagram of tap-off beamsplitter in projected state experi-
ment.

ing the non-Gaussian qualities of the measured state. This non-classicality measure

will be explained in more detail in §6.1.

The projecting detector in experiments at ∼ 860 nm tend to be silicon (Si)

single-photon detectors, whereas experiments conducted at ∼ 1550 nm typically

use indium gallium arsenide (InGaAs) detectors. Standard InGaAs single-photon

detectors (APDs) have significantly lower quantum efficiencies and higher dark count

probabilities compared to Si-APDs. Dark counts are false detection events that

occur in the single-photon detector that do not correspond to a photon-subtraction

event from the squeezed vacuum state. It has been shown that a high dark count

probability and low detection efficiency can have a negative influence on the quality

of the projected state [227,265,304]. These effects can be compensated for somewhat

by increasing r2, and therefore ensuring the count rate from real photon-subtraction

events is higher than the dark count rate.

However, there is a limit to increasing r2 as too high of a reflectivity begins

to degrade the quality of the projected state, as illustrated in figure 4.17. A va-

riety of single-photon detector types were numerically investigated for both the Si

and InGaAs wavelengths using the theoretical model outlined in §2.6. These types

included a perfect photon-number-resolving detector, a perfect non-photon-number-

resolving detector, an imperfect photon-number-resolving detector, and an imperfect

non-photon-number-resolving detector. As shown in figure 4.17, the optimal value

of r2 for a Schrödinger kitten state prepared with a Si-APD (r2 = 0.01) is notably

smaller than for state preparation with an InGaAs-APD (r2 = 0.09) [304]. These

calculations were based on experimental parameters similar to our experiment [304].

Under the circumstances of a Si-APD, the smaller r2 results in a better character

witness value and a deeper W(0,0). However, if r2 is too small, then it is easy to
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Figure 4.17: Quantum non-Gaussian character witness and W (0, 0) as a function of
tap-off beamsplitter reflectivity, r2 for A) a Si-APD and B) an InGaAs-APD. Dash
lines and solid lines represent W (a, s) − WG(a) on left vertical axis and W (0, 0)
on right vertical axis, respectively. Red: perfect photon-number-resolving detec-
tor, green: perfect non-photon-number-resolving detector, pink: imperfect photon-
number-resolving detector, blue: imperfect non-photon-number-resolving detector.
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Figure 4.18: Schematic diagram of the optical filter cavities used in the projected
state experiment.

induce false clicks since the number of real APD counts, which are proportional

to r2, will be lower than the amount of dark counts. Therefore, it is necessary to

compromise a small r2 that is still high enough to ensure the count rate is larger than

the dark count rate. This has been validated by the results reported in most kitten

state generation experiments using Si-APDs [216,217,221,227]. The measured value

for the tap-off reflectivity in our experiment is r2 = 8%, which was close to optimum

for our system.

4.2.8 Optical filter cavities

The interaction of the squeezed vacuum field with the tap-off beamsplitter results

in the separation of the trigger field from the signal field. The trigger field is sent

to the APD and used to herald photon-subtracted squeezed vacuum states at the

homodyne detector. However, as a SS-NOPO generates a frequency comb of en-

tangled side-band pairs, it is important to isolate particular pairs of side-bands in

this trigger field so as to generate projected states in the desired frequency modes.

Therefore, the spectrum of the trigger field is filtered by a series of optical cavities,

as shown in figure 4.18. These cavities were engineered with the intention to isolate

a particular frequency side-band pair at ±515 MHz from the entangled comb pro-

duced by the SS-NOPO. However, as we discussed in §3.2.2, the overall frequency

transmission function of these cavities includes a small portion of ±1030 MHz and

±1545 MHz side-bands. We will now introduce the three filter elements and describe

their purpose in shaping the trigger spectrum. Their optical properties and locking

parameters are summarized in table 4.4.
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4.2.8.1 Chip filter

The first element in the filtering system is a ‘chip filter’ (Bookham, part number

TF100-1549315-0783). This device is a thin-film narrowband interference filter with

a transmission passband centred on 1549.315 nm (the laser wavelength). The pur-

pose of this ‘top-hat’ filter is to restrict the SS-NOPO frequency comb from ∼ 2 THz

to ∼ 100 GHz. Frequency locking this filter is not required as it is a bulk optical

device.

Filter Type Linewidth FSR or Dither locking
element (FWHM) Measured ωm frequency

Chip filter Top-hat filter 3.7 GHz 1000 GHz —

Etalon Linear empty cavity 1.3 GHz 338 GHz 26.1 kHz

FBS Unbalanced Mach- — 509 MHz 31.14 kHz
Zehnder interferometer

Table 4.4: Summary of properties and locking parameters of the elements which
compose the optical filtering system. ωm is the actual FBS frequency; this was
designed to be ωm = ωs = 515 MHz; the constructed FBS has ωm = 509 MHz.

4.2.8.2 Etalon

The second element is a free-space Fabry-Perot empty cavity called an etalon, as

shown in figure 4.18. The purpose of this cavity is to maximise the transmission of

±515 MHz side-bands to the FBS while minimising the transmission of other FSR

side-bands. A compromise had to be made when designing its ideal linewidth due

to the Lorentzian-shape of the transmission function. The FSR of the etalon also

needed to be well outside the bandwidth of the chip filter to suppress side-bands at

undesirable frequencies within the top-hat transmission function.

The cavity was frequency-locked to the laser using a dither locking technique

[303]. A modulation signal at 26.1 kHz was sent to the piezo to modulate a cav-

ity mirror. This modulation frequency was purposely chosen close to a resonance

frequency of the piezo to maximise the modulation depth. The reflected light from

the etalon was measured by photodetector PD6 (see figure 4.18). This photodetec-

tor signal was mixed-down with the original modulation signal, and the result was

low-pass filtered to give a bipolar error signal. This locking system was extremely

robust to any disturbances and could stay locked for hours.
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4.2.8.3 Frequency beamsplitter

The final filtering cavity is an unbalanced Mach-Zehnder interferometer which acts

as a frequency beamsplitter (FBS) to spatially separate frequency side-bands. The

physics of how this interferometer works was described in §2.3.3 and a schematic of

the FBS is shown in figure 4.18. The interferometer first separates the input beam

on a 50/50 beamsplitter. The output beams follow different path lengths before

recombining on a second 50/50 beamsplitter. It has been experimentally demon-

strated that the path-length difference can be purposely engineered to provide a

particular phase-shift to side-bands at specific frequencies, which spatially separates

them at the outputs [101].

Our FBS has a design frequency of ωs = 515 MHz and a path length difference

which spatially separates the ±ωs, ±3ωs, ±5ωs, . . . side-bands from the optical

carrier and ±2ωs,±4ωs, . . . side-bands. The path-length difference, p
FBS

, required

to achieve this spatial separation is defined as

p
FBS

=
cπ

ωs
=∼ 29cm. (4.8)

Therefore, an FBS with this path length difference will send light at ±ωs, ±3ωs,

±5ωs, . . . frequencies towards the APD in our experiment, while the light at Ω0,

±2ωs, ±4ωs, . . . frequencies are sent towards the photodetector, PD5 (see figure

4.18). We referred to an FBS with this path length configuration as ‘configuration

A’ in §2.3.3.

The signal from PD5 is used to frequency lock the optical-scale phase shift due

to the piezo-mounted mirror labelled φ
FBS

in figure 4.18. A dither-locking technique

similar to the etalon locking system (but using a different modulation frequency of

31.14 kHz) is used to lock φ
FBS

= 0. This optical phase reflects the optical carrier

and ±2ωs, ±4ωs, . . . frequencies away from the APD, and sends the ±ωs, ±3ωs,

±5ωs, . . . frequencies towards the APD. An optical phase of φ
FBS

= π would do the

opposite and transmit the Ω0, ±2ωs, ±4ωs, . . . frequencies to APD.

The quality of interference depends on the mode-matching and alignment of the

beams in the interferometer, and can be quantified by measuring the interference

visibility, ζ
FBS

. In the case of an FBS in configuration A, an ideal visibility of

ζ
FBS

= 1 corresponds to the perfect spatial separation of the Ω0, ±2ωs, ±4ωs, . . .

frequencies from the ±ωs, ±3ωs, ±5ωs, . . . frequencies. Therefore, the interference

visibility can quantify the spatial separation efficiency of frequency side-bands by

this filter element.

The interference visibility is measured by sweeping the optical phase φ
FBS

to
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move between φ
FBS

= 0 and φ
FBS

= π, and calculating

ζ
FBS

=
Umax − Umin

Umax + Umin − 2Udark
, (4.9)

where Umax corresponds to the maximum voltage of the interference sine wave (which

occurs when φ
FBS

= 0), Umin corresponds to the minimum voltage (which occurs

when φ
FBS

= π), and Udark is the electronic noise floor of the photodetector, PD5.

The measured fringe visibility of our FBS was 92%, which meant ∼ 8% of the

undesired frequencies (Ω0, ±2ωs, ±4ωs, . . .) were accidentally sent to the APD

when the FBS was phase-locked to φ
FBS

= 0.

4.2.9 APD fibre coupling efficiency, ηf

The final stage of the experiment is to couple the free-space light transmitted by the

FBS into the fibre optic cable connected to the APD (Id Quantique, id-200). It is

crucial to capture as much light from the trigger field as possible. Any loss reduces

the number of real photons that could be detected by the APD. Decreasing this count

rate relative to the already high dark count rate can diminish the quality of the pro-

jected state. Each data collection event triggered by a non-photon-subtracting event

results in the homodyne detector measuring an unprojected two-mode squeezed

vacuum state instead of a projected photon-subtracted two-mode squeezed vacuum

state. Since a Gaussian state has a completely positive Wigner function, adding this

quantum state to the non-Gaussian quantum state greatly reduces the negativity

near the origin in phase space.

A possible source of APD events triggered by non-photon-subtracting events is

the leakage of local oscillator photons into the APD fibre. This beam does not pass

through an optical chopper, and must be constantly ‘on’ during data collection for

the purposes of quantum state tomography of the projected state. Due to the sensi-

tive nature of single-photon experiments, any detection of an LO photon by the APD

corrupts the quality of the projected quantum non-Gaussian state. While monitor-

ing the APD count rate during realignments of the experiment, it was discovered

that the count rate rose dramatically when the LO was unblocked and allowed to

enter the homodyne detection set-up. It was inferred from this observation that

LO photons were reflecting off the photodetectors in the experiment and travelling

down the optical filter system into the APD fibre. The possible path these reflected

LO photons could be taking to reach the APD fibre is illustrated in figure 4.19A.

An optical circulator was placed within the homodyne detection set-up to min-

imise these reflected photons from reaching the APD. The circulator consists of two

quarter-wave plates, a half-wave plate and a polarising beamsplitter, as shown in



Chapter 4. Experimental methods 104

Figure 4.19: Schematic diagrams of coupling light transmitted by the optical filter
cavities into the APD fibre optic cable. A) Schematic illustrating potential pathways
light may reflect off photodetectors and travel to the APD fibre; blue: reflected
beams off photodetectors. B) Procedure for aligning light from optical filters into
the APD fibre; blue: direction of light travelling from laser. C) Procedure for
measuring the fibre coupling efficiency, ηf = P2/P1.
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figure 4.19A. Fortunately, most of the LO photons are blocked from the APD by the

FBS when it is phase-locked to φ
FBS

= 0 (i.e. pass the carrier to PD5 ). However,

the wave plates in the circulator must be tuned to minimise the amount of reflected

photons from reaching the FBS. Therefore, our alignment technique involves phase-

locking the FBS to pass the carrier to the APD, which maximises the APD count

rate caused by leaking LO photons. Despite the low detection efficiency of our APD

(ηAPD =∼ 8%), locking the FBS phase to pass the LO photons to the APD allows

us to see a real time reaction in the count rate as we tune the circulator wave plates.

The wave plates are tuned until the APD count rate is lowered to dark count levels

(∼ 10 counts/sec). We cannot tune the wave plates with any further precision due

to the APD’s poor detection efficiency and high dark count rate.

In order to achieve a high fibre coupling efficiency, the light from the experiment

needs to be aligned to the same spatial mode and alignment plane as projected by

light leaving the fibre. Therefore, a common alignment technique is to send light

through the fibre you wish to couple into, and spatially overlap this beam with the

light from your experiment. This procedure is illustrated in figure 4.19B by the blue

beam emanating from the fibre (‘fibre beam’) and the red beam coming from the

optical filter cavities. This alignment procedure again involved phase-locking the

etalon and FBS to pass the carrier to the APD, which provided a bright enough

beam from the experiment to see on an IR card. Then light from the laser was

connected to the APD fibre, and a beam profiler was used to measure the fibre

beam’s waist position and size. The light from the FBS was then mode-matched to

the beam profile of the fibre beam using lenses L5 & L6 in figure 4.19B.

The spatial alignment of the FBS beam onto the plane of the fibre beam was

done using two beam-steering mirrors labelled M1 & M2 in figure 4.19B, and the

X-Y-Z mount of the APD fibre coupler. First coarse alignment of the two beams was

achieved via beam-walking. Then fine-tuning of this alignment was accomplished

by utilising various reflections caused by the fibre beam entering the optical filter

system ‘backwards.’ Thus the mode-structure of the etalon cavity was used like a

mode-matching cavity to fine-tune the alignment of the two beams. Light from the

fibre would interact with the etalon and reflect back to PD5. Since the etalon was

already well-aligned to the beam from the experiment, it was reasonable to assume

that achieving a similar mode-structure (i.e. single-mode) with the fibre beam would

improve the coupling efficiency. This was accomplished by blocking the light from

the experiment from entering the etalon, sweeping the cavity, and adjusting the

X-Y-Z mount of the fibre coupler to beam-steer the light into the etalon until a

single-mode structure is observed via PD5.

Finally, the fibre coupling efficiency was quantified by disconnecting the laser to

the APD fibre, phase-locking the etalon and FBS to pass the carrier to the APD, and
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measuring the APD fibre output with a power meter (figure 4.19C). The coupling

efficiency from free-space to fibre is determined by comparing the optical power just

before the coupling collimator, P1, to the optical power inside the fibre. However, it

can be difficult to do an accurate ‘in-fibre’ power measurement. Therefore, we use a

second collimator to transmit the coupled light back into free-space and measured

the light with a standard power meter, P2. The loss from the second collimator is

minimal and therefore can be ignored. We measured the free-space to fibre coupling

efficiency to be ηf = P2/P1 = 0.73.

4.3 Characterising classical parameters of optical

cavities

The properties of a quantum state produced by an optical cavity rely on classical

parameters of that cavity, such as its linewidth and FSR. Therefore these parameters

need to be accurately measured. Furthermore, knowing the frequency transmission

function of the optical filter system in our projected state experiment becomes im-

portant when applying temporal mode-matching to the captured homodyne signal.

Since we are interested in quantum states at particular side-bands frequencies, post-

processing the homodyne data from our experiment requires a frequency-offset tem-

poral mode-matching function (or ‘spectral mode-function’). This spectral mode-

function is designed to select the part of the homodyne signal which is correlated

with the detected trigger mode. Since the filter cavities shape the trigger mode

spectrum, it is important to know the frequency transfer function of this filter sys-

tem. Therefore, two techniques were investigated to measure the linewidth and FSR

frequencies of the optical cavities using an intensity modulator.

4.3.1 Calibrating the horizontal axis of oscilloscope

The linewidth and FSR of the OPO and filter cavities that were summarised in

tables 4.2 and 4.4 were measured using two basic techniques involving amplitude

modulation side-bands. The first technique is well-known and involves placing am-

plitude modulation on the carrier to calibrate a frequency scale to an oscilloscope’s

horizontal axis as the transmission spectrum from a cavity is measured. A basic

photodetector is used to measure the transmitted light from the cavity as the path

length is varied by sweeping a mirror with a piezoelectric transducer. The cavity

is used as an ‘optical spectrum analyser’ to display the frequency of the ampli-

tude side-bands relative to the carrier [306]. A fibre broadband low-loss LiNbO3

electro-optic intensity modulator (EOspace, AZ-0K5-10-PFA-PFA-UL) was used to
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Figure 4.20: Schematic diagram of measurement technique used to measure the
linewidth and FSR of the OPO and etalon. Amplitude modulation at fAM is placed
on the carrier and used to calibrate a frequency scale to the horizontal axis of an
oscilloscope trace. AM: fibre amplitude modulator

generate amplitude modulation side-bands at a range of frequencies, fAM . These

side-bands were then used to calibrate the horizontal axis of an oscilloscope trace

to a frequency scale. A schematic of this experimental technique is shown in figure

4.20.

Figure 4.21 shows oscilloscope traces of this side-band method being applied on

the OPO (figure 4.21A) and etalon (figure 4.21B). By placing amplitude modulation

side-bands at known frequencies, the horizontal axis of the scope was calibrated to

a frequency scale, so that the FSR and linewidth could be determined. Figure

4.21A shows the OPO transmission spectrum measured by PD3 as M3 is swept at

a frequency of 4 Hz (see figure 4.20). The 80 MHz side-bands are clearly visible

symmetrically about the fundamental cavity mode (TEM00). Using this technique

led to the estimation that the OPO linewidth is 8.767± 0.1 MHz (FWHM) and the

FSR is 516.6± 0.33 MHz.

Due to the much larger linewidth and FSR of the etalon, measurements of its

linewidth and FSR required the highest modulation frequency produced by our sig-

nal generator, which is 3 GHz. Figure 4.21B shows the etalon transmission spectrum

measured by PD5 as M2 is swept at a frequency of 8 Hz (see figure 4.20). Again

these 3 GHz side-bands were used to calibrate the horizontal axis of the oscilloscope

and the linewidth was estimated to be 1.23 ± 0.03 GHz (FWHM) and the FSR to

be 337.6± 0.83 GHz.
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Figure 4.21: Oscilloscope screenshot of the OPO and etalon transmission spectrums
with amplitude modulation (AM) side-bands placed on the carrier (green trace).
Both cavities are aligned such that the TEM00 mode is the dominant mode. A)
OPO transmission spectrum with 80 MHz AM as the cavity is swept at a frequency
of 4 Hz (red trace). B) Etalon transmission spectrum with 3 GHz AM as the cavity
is swept at a frequency of 8 Hz (red trace).
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4.3.2 Measuring a frequency transfer function of an optical

system

While characterising the experiment before undertaking a projected state data run,

we discovered a novel way to measure the frequency transfer function of the optical

filtering system and OPO without the need for a fast photodetector. A fibre ampli-

tude modulator is used to place intensity side-bands on the light (see figure 4.22).

This modulated light is sent to a cavity and the resulting transmitted (or reflected)

power from this cavity is then recorded as a function of modulation frequency, fAM .

These low-frequency (DC) power measurements map the cavity linewidth and FSR.

We first used this technique on the OPO by phase-locking the cavity on reso-

nance, and mapping the reflected power with a power meter (Newport, 918D-IR-

OD3, S/N 10316) as a function of modulation frequency (see schematic in figure

4.22A). The etalon and FBS were phase-locked to pass the carrier to the power

meter during these measurements. Since the OPO was locked on resonance to the

carrier, the reflected power drops as the modulation frequency approaches the OPO

linewidth centred on the first FSR (515 MHz). The results from these power mea-

surements are shown in figure 4.23, where the minimum of the reflected power spec-

trum is centred on 515 MHz. Using this technique we were able to estimate the

linewidth of the OPO to be 8.75± 0.1 MHz, which is within error of the estimated

value found using the calibrated oscilloscope technique previously described. Table

4.6 shows a complete comparison between all measured values found using either

technique.

For the next set of measurements, the circulating field in the OPO was ‘blocked’

to remove the influence of its reflected spectrum from the characterisation of the op-

tical filter cavities (see figure 4.22B). The transmitted light from the filter cavities

was measured as a function of amplitude modulation frequencies for two measure-

ment configurations. In this first configuration, the etalon was frequency-locked to

the carrier while the FBS optical phase φ
FBS

was swept. As mentioned in §4.2.8.3,

when only the optical carrier frequency is sent to the FBS (i.e. no side-bands are

present), sweeping the FBS phase from φ
FBS

= 0 to φ
FBS

= π sweeps the interfer-

ence curve from maximum (i.e. sending the carrier towards PD5 ) to minimum (i.e.

sending the carrier away from PD5 ). Therefore the FBS visibility, ζ
FBS

, could be

redefined as

ζ
FBS
∝

∣∣∣P (φ
FBS

= 0)− P (φ
FBS

= π)
∣∣∣∣∣∣P (φ

FBS
= 0) + P (φ

FBS
= π)

∣∣∣ , (4.10)

where P (φ
FBS

= 0) is the optical power sent to PD5 when φ
FBS

= 0, and P (φ
FBS

=

π) is the optical power sent to PD5 when φ
FBS

= π.



Chapter 4. Experimental methods 110

Figure 4.22: Schematic diagram of measurement technique used to characterise
frequency transfer function of OPO and optical filter system. Amplitude modulation
at fAM is placed on the carrier and used to map the transmitted or reflected power
as a function of modulation frequency. A) Schematic of how the linewidth and FSR
of the OPO was characterised. B) Schematic of how the OPO was ‘blocked’ and the
frequency transfer function of just the filter cavities was characterised. PM: fibre
phase modulator, AM: fibre amplitude modulator.
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Figure 4.23: Characterisation of the OPO linewidth and FSR by intensity mod-
ulating the light at several frequencies and measuring the reflected optical power.
The FWHM measurement from the experimental data shown gives a linewidth of
8.75 ± 0.1 MHz. The minimum of the spectrum occurs at the FSR of the cavity,
which is measured to be 515± 0.2 MHz.

Take the scenario that the etalon and chip filter have been removed from the

optical set-up, leaving only an ideal FBS in the filter chain. Amplitude modulation

side-bands are placed on the carrier at exactly ±ωs (FBS design frequency), and the

modulator is adjusted such that the sum of the side-bands’ optical powers equals the

optical power of the carrier, Pc = P+ωs + P−ωs . When the FBS phase is φ
FBS

= 0,

the photodetector PD5 outputs a voltage proportional to Pc. When the FBS phase

is φ
FBS

= π, the photodetector PD5 outputs a voltage proportional to P+ωs +P−ωs .

Therefore, according to equation 4.10 the measured visibility becomes ζ
FBS

= 0 as

P (φ
FBS

= 0) = P (φ
FBS

= π). This measurement result does not mean the FBS

has poor interference but simply that placing AM side-bands on the light affects the

measurement. Therefore the measured FBS visibility will change as a function of

modulation frequency. This effect can be exploited to experimentally determine the

actual FBS frequency, ωm, by measuring the visibility as a function of modulation

frequency.

However, the etalon and chip filter are in the path way before the FBS in the

actual experiment, which influences the power ratios between the amplitude side-

bands and carrier before the spectrum reaches the FBS. Fortunately, this does not

cause a problem as we are interested in the overall frequency transfer function,

and not the individual functions of each filter element. The amplitude modulator

has a DC bias input that can be used to adjust the optical power ratio between

the side-bands relative to the optical carrier. The OPO can be used as an optical
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Figure 4.24: Characterisation of optical filter system with amplitude modulation for
a sweeping FBS phase. The experimental data (red dots) is fitted with a theory
curve (blue line) that modelled the three optical elements in the filtering system.
Model parameters used are listed in table 4.5.

spectrum analyser (before it is ‘broken’) to set a consistent power ratio between the

AM side-bands and carrier before each measurement of the filter system. The FBS

visibility was measured with PD5 as a function of modulation frequency, and the

measurement results are shown in figure 4.24.

A theory model of the transmission spectrum of the optical filter system was then

developed based on the theoretical spectral transmission response of the Fabry-Perot

resonator defined as [307]

Tcav(ω) =
1

1 +

[(
2F
π

)
sin

(
πω

ωfsr

)]2 (4.11)

where F and ωfsr are the finesse and FSR of the cavity under investigation, re-

spectively. The transmission function of the FBS was modelled after the response

of an interferometer with the peak of the transmission curve centred on the FBS

frequency, ωm [242]

T
FBS

(ω) = ζ
FBS

sin2(g1ω − g2) +

(
1− ζ

FBS

2

)
, (4.12)

where ζ
FBS

is the FBS visibility measured without AM side-bands on the light

(ζ
FBS

= 0.92), g1 is a factor that controls the frequency of the sine wave and was

numerically found to be related to ωm (actual FBS frequency), and g2 is a factor
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that controls the phase shift of the sine wave. This factor was numerically found to

be related to the lock-point of the FBS optical phase, φ
FBS

. Ideally the FBS would

be locked perfectly to a specific phase (e.g. φ
FBS

= 0) but experimentally this is not

possible due to phase drifts in the experiment and finite reaction times of the locking

system. Therefore, the overall transmission function of the optical filter cavities is

modelled by,

Ttot(ω) = Tchip(ω)Tetalon(ω)T
FBS

(ω) (4.13)

=
1

1 +

[(
2Fchip
π

)
sin

(
πω

ωchip

)]2

× 1

1 +

[(
2Fetalon

π

)
sin

(
πω

ωetalon

)]2

×
[
ζ
FBS

sin2(g1ω − g2) +

(
1− ζ

FBS

2

)]
,

where Fchip (ωchip) is the finesse (FSR) of the chip filter, and Fetalon (ωetalon) is the

finesse (FSR) of the etalon cavity. A summary of the parameters used in the model

to fit the experimental data is given in table 4.5.

There were some restrictions on the parameter values chosen for the theoretical

model. The etalon’s linewidth and FSR had been experimentally measured using

the calibrated oscilloscope method, and the FBS path length difference was known

to be ∼ 29 cm, which corresponds to ωm ≈ 515 MHz. However, since the exact

values are unknown, various combinations were tried until a unique solution was

found that agreed with the experimental data shown in figure 4.24.

There are five identifiable regions in figure 4.24 that each correspond to particular

parameters of the filter cavities. Region 1 corresponds to the FBS visibility in

equation 4.13, and is determined by the measured visibility when there are no AM

side-bands (ζ
FBS

= 0.92). Regions 2 & 3 of the theory curve predicts two minima in

the FBS visibility at f1 ≈ 380 MHz and f2 ≈ 560 MHz. These minima in the FBS

visibility were observed during the experimental measurements. The interference

curve amplitude decreased as the amplitude modulation frequency approached these

special values, and then a phase-flip occurred in the interference curve after the side-

band frequency passed f1 or f2. A set of measurements illustrating this phase-flip

behaviour in the FBS interference curve for AM frequencies between 350−400 MHz

is shown in figure 4.25.

The values of the minimum visibility frequencies were experimentally determined

to be f1 ≈ 385 MHz and f2 ≈ 565 MHz. The frequency locations of these minima in
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Figure 4.25: A set of measurements illustrating the phase-flip behaviour in the FBS
interference curve for AM frequencies between 350−400 MHz. A) The FBS visibility
is reduced for AM at 350 MHz. B) The FBS visibility is at a minimum for AM at
380 MHz. C) The FBS visibility curve has phase-flipped for AM at 390 MHz. D)
The FBS visibility curve begins to increase in amplitude for AM at 400 MHz.
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Model parameter Symbol Value

Frequency range ω -2π × 5.15 GHz to 2π × 5.15 GHz

Chip filter γchip 2π × 3.7 GHz
linewidth (FWHM)

Chip filter FSR ωchip 2π × 1000 GHz

Chip filter Fchip =
ωchip
γchip

∼ 270

finesse

Etalon γetalon 2π × 1.3 GHz
linewidth (FWHM)

Etalon FSR ωetalon 2π × 338 GHz

Etalon finesse Fetalon =
ωetalon
γetalon

∼ 260

FBS visibility ζ
FBS

0.92

FBS factor g1
1.55

2π
related to ωm

FBS factor g2 2.6781 rads
related to lock point

Table 4.5: Parameters used in optical filter model described by equation 4.13.

the theory curve were found to be dependent on the etalon linewidth and the FBS

factor g1. A unique solution was found that produced a theory curve (shown in figure

4.24) which agreed with the experimentally measured frequencies. The solution gave

the etalon linewidth to be 1.3 GHz (FWHM) and to have an FSR of 338 GHz.

The FBS path length was designed with the intention that ωm = ωs = 515 MHz.

However, these characterisation measurements determined that the FBS frequency

is in fact ωm = 509 MHz. These parameter values are reasonable and within error of

the previously measured values of the etalon, which were found by calibrating scope

(see table 4.6 for comparison).

An equation to model the chip filter like a cavity (Tchip(ω)) had to be included

in the model in order for the theory curve to agree with the experimental data in

regions 4 & 5. Originally, the frequency response of the chip filter was thought

to be constant over its bandwidth (100 GHz), and therefore was not included in

the theoretical model. However, by not including the chip filter in the model, the

theory curve would overshoot the experimental data in region 4 and undershoot the

data in region 5. Adjusting the etalon and FBS parameters had little to no affect
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Figure 4.26: Characterisation of optical filter system with amplitude modulation
for a locked FBS phase. The experimental data (red dots) was fitted with a theory
curve (blue line) that modelled the three optical elements in the filtering system.
The model parameters used are listed in table 4.5.

on the theory curve in this frequency region above ∼ 800 MHz. Adding a third

equation to the model to represent the chip filter (Tchip(ω)) was the only solution

found that allowed the model to agree with the experimental data in regions 4 & 5.

This solution gave the chip filter linewidth to be 3.7 GHz (FWHM) and to have an

FSR of 1000 GHz.

Filter Measurement Linewidth FSR or
element technique (FWHM) Measured ωm

OPO Calibrated scope 8.767± 0.1 MHz 516.6± 0.33 MHz

Etalon Calibrated scope 1.23± 0.03 GHz 337.6± 0.83 GHz

OPO AM + power meter 8.75± 0.1 MHz 515± 0.2 MHz

Chip filter AM + power meter 3.7 GHz∗ 1000 GHz∗

Etalon AM + power meter 1.3 GHz∗ 338 GHz∗

FBS AM + power meter — 509 MHz∗

Table 4.6: Summary of cavity linewidth and FSR measurements performed using two
different techniques. * refers to values determine by the theoretical model described
by equation 4.13

In the second set of characterisation measurements, the OPO was still ‘broken’

and the etalon remained locked to the optical carrier. However, the FBS optical

phase was now phase-locked (instead of being swept) to the phase φ
FBS

= 0, which
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Figure 4.27: Theoretical transmission spectrum of the SS-NOPO and optical filter
system generated using model parameters listed in table 4.5. Black: SS-NOPO, red:
frequency beamsplitter, blue: etalon, green: chip filter.

sent the carrier to PD5 (away from the power meter in the APD path). These

are the phase-locked conditions for the etalon and FBS during a projected state

data run. The optical power transmitted by the optical filtering system in this

locked configuration was recorded as a function of amplitude modulation frequency.

Figure 4.26 shows the experimental measurements and corresponding theory curve

given by equation 4.13 and the parameters listed in table 4.5. This curve was

generated by the same model and parameters previously determined by the FBS

visibility measurements. The one parameter that could not be determined by the

FBS visibility measurements was the FBS factor g2, which is related to the FBS

phase-lock point. This factor could not be previously determined as the FBS phase

was being swept during the FBS visibility measurements, and therefore g2 had no

physical meaning. This factor was adjusted until the model was in agreement with

the experimental data without adjusting the other parameters previously identified

by the FBS visibility measurements. The final theoretical transmission functions

for each filter element (along with the OPO transmission function) based on the

parameters listed in table 4.6 for the ‘AM + power meter’ measurement technique

are shown in figure 4.27.

An important realisation concerning this second set of characterisation measure-

ments is that both the APD and the power meter are ‘color blind’ to these frequency

side-bands. As we discussed in §2.5.3, a SS-NOPO produces entangled side-bands

shifted in frequency away from the carrier by MHz-GHz. This frequency shift results

in side-bands that differ by fractions of a nanometre in wavelength, and therefore
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look the same colour to an APD or power meter. Thus, the transmission spectrum

measured by the power meter for this range of AM frequencies should be similar

to the spectrum seen by the APD. Neither detector can distinguish between the

photons generated at the first (515 MHz), second (1030 MHz), or third (1545 MHz)

FSRs of our SS-NOPO.

Therefore, this second set of measurements performed with a phase-locked FBS

is actually a prediction of the trigger mode spectrum that would be measured by the

APD during a projected state data run. One way to test this idea would be to use the

theory curve shown in figure 4.26 to generate a spectral mode function that would

weight each FSR component in a multi-frequency temporal mode-matching equation.

The concept of such a multi-frequency weighted projector being related to the trigger

mode spectrum was discussed in §3.2.2. This hypothesis would be confirmed if

the quality of the projected state improved when the weightings predicted by this

measurement set were used in the frequency-offset temporal mode-function. This

technique of optimising the mode-function to match the trigger field is a well-known

practice, and usually leads to an improvement in the quality of the projected state

[275]. We will further discuss and apply such a multi-frequency temporal mode-

function based on these measured results in chapters 5 and 6.

4.4 Summary

We introduced the main concepts involved in a projective experiment that generates

photon-subtracted squeezed vacuum states. In doing so we have discussed details

of the experiment, and listed significant modifications that were made to said ex-

periment which culminated into ‘Generation II.’ Various characterisation methods

of classical parameters of cavities were presented, and important results on the fre-

quency transfer function of the optical filtering system were discussed. Finally, a

novel technique was introduced that allows for the characterisation of the frequency

transfer function of an optical cavity up to a gigahertz frequency range without

requiring a wide-bandwidth photodetector.



Chapter 5

Two-mode squeezed vacuum
results

In science one tries to tell people, in such a way as to be understood by everyone,
something that no one ever knew before. But in the case of poetry, it’s the exact
opposite!

Paul Dirac

In this chapter we will first introduce our data acquisition technique used to

characterise both the unprojected and projected quantum states. The details of our

post-processing technique will be discussed, which involves applying a frequency-

offset temporal mode-matching function to the homodyne signal. This mode func-

tion is designed to select the part of the homodyne signal that is correlated with

the detected trigger mode. In the case of the unprojected squeezed vacuum state,

data acquisition is initiated by APD dark counts. Therefore the quantum state

is uncorrelated with the (non-existent) trigger mode. Instead this mode function

serves to combine temporal mode-matching with phase-locked frequency demodula-

tion, which allows full reconstruction of the two single-mode squeezed vacuum states

that exist in the symmetric and anti-symmetric side-band modes of the two-mode

squeezed vacuum state. This concept of a symmetric/anti-symmetric side-band ba-

sis was defined in §3.1.3, and here we present experimental results of quantum state

tomography of both the symmetric and anti-symmetric modes. Having access to the

demodulation phase also allows full reconstruction of a state with statistics similar

to a thermal state from the same homodyne data set (something not possible with

conventional homodyne tomography). This chapter will also introduce the concept

of a ‘pump phase lock,’ which is implemented during data post-processing. This

lock was found to be necessary to improve the quality of the reconstructed quantum

states.

In the case of two-mode squeezed vacuum, the symmetric and anti-symmetric

modes are both single-mode squeezed vacuum states and therefore indistinguishable.
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We will see in chapter 6 that these modes become distinguishable when photon-

subtraction is applied to the two-mode squeezed vacuum state in a hybrid discrete-

continuous variable experiment.

5.1 Data acquisition & post-processing

5.1.1 Data sampling

We used an Agilent Acqiris 10-bit digitizer (DC282, U1065A) to digitally-sample

the analogue signals. A trigger NIM pulse from the APD was used to initiate

data collection with the Acqiris during stages I and IV. The chop-lock technique

and the resultant four measurement stages (I-IV) were discussed in §4.2.3. A fast

homodyne detector with a 2 GHz analogue bandwidth was used to characterise

the quantum states at particular FSR frequencies (515 MHz, 1030 MHz, and 1545

MHz) [298]. Due to limitations in the available sampling frequencies of the Acqiris,

we were unable to avoid aliasing the high-frequency homodyne signal. According

to the Shannon-Nyquist theorem, the signal must be sampled at twice the highest

frequency component to avoid data aliasing [308]. We were limited to a sampling

frequency of 2 Gsamples/sec (GS/s). In order to avoid data aliases, we would have

had to digitally sample our 2 GHz bandwidth homodyne signal at 4 GS/s. As this

was not possible due to the processing restrictions of the Acqiris, the homodyne

signal was undersampled, which caused data aliasing. However, the data at the

frequencies of interest were still recoverable as the FSR frequencies are not multiples

of the sampling frequency. Thus, this undersampling did not overlap the FSRs but

instead aliased them to separate frequencies which did not destroy the information.

Table 5.1 summarises the FSR frequencies and their aliases.

However, the FSR data was corrupted by the aliasing effects as the 1030 MHz

and 1545 MHz signals were aliased down in frequency and therefore corrupted by

unaliased noise at those lower frequencies. Aliasing had the effect of raising the

electronic noise floor of the measurement. The data at 515 MHz is not aliased but

is instead affected by aliased noise from 1485 MHz. In §2.7.2 we discussed how a

raised electronic noise floor can be modelled as poor quantum efficiency, ηe(f). The

aliased noise has an equivalent effect of raising the electronic noise floor, and as a

result decreases the effective homodyne detection efficiencies at the FSR frequencies.

In order to characterise this effect, the noise profiles of the homodyne detec-

tor and Acqiris digitizer were measured, and are shown in figure 5.1. Since the

noise/gain profile of the detector decreases rapidly after 2 GHz, the contributions

from aliased frequencies above 2 GHz can be ignored. Therefore the effect from

the aliased noise can be quantified by defining a frequency-dependent homodyne
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Figure 5.1: Characterisation of shot noise for a local oscillator optical power of 3.2
mW (red) and dark noise (black) of the 2 GHz homodyne detector. The noise floor
of the Agilent Acqiris 10-bit digitizer used for data acquisition is shown in green.

detection efficiency,

ηe(f) = 1− Pdark(f)

Pshot(f)
(5.1)

= 1− Pshot(fB) + Pdark(fA)

Pshot(fB) + Pshot(fA)

where Pshot(fA) (Pdark(fA)) is the power spectral density of shot (dark) noise within

the OPO bandwidth centred on an FSR frequency, fA, respectively. Pshot(fB) is

the power spectral density of shot noise within the OPO bandwidth centred on the

corresponding aliased frequency, fB. This results in frequency-dependent effective

homodyne detection efficiencies due to undersampling the homodyne data. The

detection efficiencies at the FSR frequencies are summarised in table 5.1.

Original frequency, fA Aliased frequency, fB ηe(fA)

515 MHz 1485 MHz∗ 0.86

1030 MHz 970 MHz 0.424

1545 MHz 455 MHz 0.055

Table 5.1: Summary of the aliased frequencies and resultant detection efficiencies,
ηe(fA), for three FSR frequencies. * the 515 MHz signal is not aliased; noise at 1485
MHz is aliased onto the 515 MHz FSR signal, corrupting the detection efficiency at
515 MHz.
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5.1.2 Extracting quadrature data of side-band modes

As previously discussed, the detection of a trigger photon by the APD heralds the

projection of a photon-subtracted state at the homodyne detector. The continuous

variable quadrature data captured by the homodyne detector must be processed to

select that portion of the signal which is correlated with the temporal and spectral

qualities of the detected trigger mode. As the detection of a trigger photon occurs

at a distinct moment in time, a temporal mode function must be applied to the

homodyne data. The most common temporal mode function is a double-sided expo-

nentially decaying correlation function of the OPO output [216,221,230,231,309,310]

Γ(τ, t) = exp
[
− β|t+ τ |

]
, (5.2)

where β is the half width at half maximum (HWHM) of the OPO decay function in

angular frequency (for our experiment, β = 2π × 4.07 MHz), and τ is the temporal

offset between the APD click time and collection time of the homodyne data. The

nature of our time-and-frequency-resolved homodyne measurement operator imple-

mented in our experiment means that we have an additional frequency demodulation

stage in our post-processing. This allows us to reconstruct quantum states at spe-

cific FSR frequencies within the bandwidth of our OPO. Therefore, we implement

a frequency filter to demodulate the homodyne data at a particular frequency, ωs,

Υ(ωs, φ, t) = cos(ωst+ φ), (5.3)

where φ is the demodulation phase offset.

In equation 3.14 we defined the continuous-time equation of the measurement

operator, X̂ωs(θ, φ), designed to isolate a signal at a particular frequency, ωs, from

the homodyne data. Since the homodyne data is digitally sampled at 10 000 sam-

ples/APD event, a frequency-offset temporal mode function is applied to the homo-

dyne data in discrete time and then numerically summed to give a single quadrature

value:

X̂(ωs, θ, φ, τ) =
i=10000∑
i=1

Γ
(
τ, t(i)

)
Υ
(
ωs, φ, t(i)

)
X̂
(
θ, t(i)

)
(5.4)

=
i=10000∑
i=1

exp
[
− β|t(i) + τ |

]
cos
(
ωst(i) + φ

)
X̂
(
θ, t(i)

)
,

where X̂
(
θ, t(i)

)
is the digitally sampled homodyne data measurement. The homo-

dyne data is captured over a 5 µs data window for a particular local oscillator phase,

θ. Implementing the demodulation stage numerically in post-processing gives us the
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ability to choose which frequency components of the generated state to investigate.

Furthermore, we can choose which side-band mode(s) to reconstruct by adjusting

the demodulation phase, φ and temporal offset, τ , of the mode function. These

offsets interact to produce an overall demodulation phase, ϑ, which reveals either

the symmetric or anti-symmetric modes defined in §3.1.3.

The actual time delay due to electronics between the APD ‘click’ and the cap-

tured homodyne data is difficult to measure. Therefore, it is common practice to

reconstruct the quantum state for a variety of temporal offsets, and use the tem-

poral mode function that best reconstructs the quantum state that shares maximal

entanglement with the trigger mode [275]. For our experiments, maximal entangle-

ment is quantified by the largest possible single-photon probability, minimum value

in the Wigner function, and best quantum non-Gaussian character witness for the

photon-subtracted squeezed vacuum state (which will be further discussed in §6.1).

In our demodulation scheme, the real time delay is integrated into the overall

phase rotation, ϑ. Thus, the optimum τ and φ values that show maximum entangle-

ment vary for different demodulation frequencies. For example, the frequency-offset

temporal mode function applied to the homodyne data to reconstruct the quantum

state in the symmetric side-band mode at the first FSR frequency is done at specific

τ and φ values,

X̂(ωs, θ, φ1, τ1) =
i=10000∑
i=1

exp
[
− β|t(i) + τ1|

]
cos
(
ωst(i) + φ1

)
X̂
(
θ, t(i)

)
, (5.5)

where τ1 and φ1 interact to produce a unique demodulation phase that reveals the

symmetric side-band mode at the first FSR frequency, ωs = 515 MHz. Recon-

struction of the same side-band mode at the second FSR frequency, 2ωs, requires

a different set of parameters, τ2 and φ2. Similarly, reconstruction at the third FSR

frequency, 3ωs, again requires another set of parameters, τ3 and φ3. An example

of three FSR mode functions corresponding to three different temporal offsets are

shown in figure 5.2.

As we will show in chapter 6, due to the multiple FSR spectral quality of the op-

tical filter cavities in our the projected state experiment, we actually created a state

that was entangled between the FSRs. Therefore, the optimal mode function for

reconstruction of these states is a combination of the temporal mode function with

a multi-frequency demodulation function and a particular set of τm and φm values,

as well as phase and temporal offsets related to the individual FSR parameters (τ1,
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Figure 5.2: Three sets of temporal mode functions corresponding to different tem-
poral offsets (τ).

φ1, τ2, φ2, τ3, φ3):

X̂(ωs, θ, φm, τm) =
i=10000∑
i=1

[
γ1Ξ1 + γ2Ξ2 + γ3Ξ3

]
X̂
(
θ, t(i)

)
, (5.6)

where

Ξ1 = Γ
(
τm, t(i)

)
×Υ

(
ωs, φm, t(i)

)
(5.7)

= exp

[
− β

∣∣∣t(i) + τm

∣∣∣] sin
(
ωst(i) + φm

)
Ξ2 = Γ

(
τm,∆τ2, t(i)

)
×Υ

(
2ωs, φm,∆φ2, t(i)

)
(5.8)

= exp

[
− β

∣∣∣t(i) + τm + ∆τ2

∣∣∣] sin
(

2ωst(i) + φm + ∆φ2

)
Ξ3 = Γ

(
τm,∆τ3, t(i)

)
×Υ

(
3ωs, φm,∆φ3, t(i)

)
(5.9)

= exp

[
− β

∣∣∣t(i) + τm + ∆τ3

∣∣∣] sin
(

3ωst(i) + φm + ∆φ3

)
,

and

γ1 =

√
P (ωs)ηe(ωs)

N
(5.10)

γ2 =

√
P (2ωs)ηe(2ωs)

N

γ3 =

√
P (3ωs)ηe(3ωs)

N
,
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Figure 5.3: Overall spectral mode function from the optical filtering system (purple),
and transmitted SS-NOPO FSR side-bands frequencies at first FSR (red), second
FSR (green) and third FSR (blue) to the APD.

where

N = P (ωs)ηe(ωs) + P (2ωs)ηe(2ωs) + P (3ωs)ηe(3ωs). (5.11)

P (ωs), P (2ωs), and P (3ωs) are the normalized transmissions from the frequency

characterisation curve of the optical filters (shown in figure 5.3) at the first, second,

and third FSR, respectively. ηe(ωs), ηe(2ωs), and ηe(3ωs) are the effective homodyne

detection efficiencies listed in table 5.1 as they arise from aliasing effects. Figure

5.4 illustrates the mode function weightings as a function of side-band frequency

which results in the γ-coefficients used in the three FSR frequency-offset temporal

mode function. Note that the specific phase relationships between the FSRs for a

particular side-band mode must be upheld in equation 5.6 in order to reveal the

correlations. These phase relationships are defined as

∆τ2 = τ2 − τ1 (5.12)

∆τ3 = τ3 − τ1

∆φ2 = φ2 − φ1

∆φ3 = φ3 − φ1,

where these temporal and phase offsets come from the τ and φ values used to reveal

a particular side-band mode at each individual FSR frequency (τ1,φ1 are for the 515

MHz side-band mode, τ2,φ2 are for the 1030 MHz side-band mode, and τ3,φ3 are for

the 1545 MHz side-band mode).



Chapter 5. Two-mode squeezed vacuum results 126

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

OPO side−band frequency [GHz]

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 5.4: Final weightings of the FSR components in the multi-frequency temporal
mode function used in projected state reconstruction.

5.1.3 Locking the pump phase

It was determined that an as-yet unknown phase drift in the experiment was mani-

festing in the pump phase, φpump, and affecting the quality of reconstructed quantum

state. This first manifested itself in measurements of the classical phase difference

between the pump and seed phases. Attempts to experimentally lock the pump

phase were unsuccessful due to that technical issue. Therefore, the pump phase was

‘locked’ during post-processing of the tomography data. Recall from §4.2.3 where we

discussed the chop-lock method used to lock the experiment during data acquisition.

This method involves two optical choppers (one in the pump beam, the other in the

seed beam before the OPO) which are phase-locked in quadrature. This creates

four measurements stages (I-IV) in which the pump and seed go through combi-

nations of being ‘on’ and ‘off.’ The pump phase is allowed to wander randomly

during data acquisition, and must be estimated so an overall phase can be assigned

to the quadrature data (used in MaxLik reconstruction). Therefore, the pump phase

is estimated by measuring the parametric gain in the OPO during stage II at the

moment of data collection (triggered by an APD event, whether dark or real). The

pump phase is then calculated during post-processing using the recorded parametric

gain level and equation 4.1.

The pump phase ‘lock’ is initiated in the data analysis by selecting to keep

homodyne data that was taken while the pump phase was within a certain ‘pump

phase window.’ A histogram of the pump phase data was made in order to determine

the phase phase window size and on what phase it should be centred. Since the

pump phase ranges from -90◦ to 0◦, we chose a histogram bin size of 6◦ to give 15
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Figure 5.5: Histogram of the pump phase data from unprojected state data set.
Blue: all data from stages I & IV; red: data from stage I (pump ‘on’, seed ‘off’);
black: data from stage IV (vacuum).

histogram bins. The resulting histogram is shown in figure 5.5. As the homodyne

data is sorted into stage I (pump ‘on’, seed ‘off’) and stage IV (pump ‘off’, seed

‘off’) during post-processing, we can compare the histogram count rate (i.e. number

of pump phase measurements that fit in a particular bin) for each of these stages.

Since the unprojected squeezed vacuum state data collection is initiated by APD

dark counts, the count rates between stage I and IV should be approximately the

same (which they are).

Note that there is a clear bias in the pump phase drift towards φpump = 0

(parametric amplification). We used this bias to our advantage to maximise the

amount of quadrature kept for a smaller pump phase window. Having a smaller

pump phase window (i.e. 2.5◦) minimises the pump phase drift in the reconstructed

quantum state, and as we shall show in §5.3, significantly improves the quality of

the quantum state.

5.2 Data presentation — Unlocked pump phase

As it was not possible to experimentally lock the pump phase due to technical

issues, we will first present a complete set of classical parametric gain measurements,

spectrum analyser measurements, and reconstructed quantum states for both the

symmetric and anti-symmetric modes for an unlocked pump phase (i.e. the pump

phase window was not applied during post-processing).
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Figure 5.6: Characterisation of the parametric gain profile of the OPO was quantified
for a wandering pump phase as a function of 775 nm pump power. Red: parametric
amplification, G+, for theory (line) and experimental data (dots); blue: parametric
attenuation, G−, for theory (line) and experimental data (dots). The theory curves
are defined by equation 2.144.

5.2.1 Classical parametric gain measurements

As we discussed in §2.7.1 there is a relationship between the amount of classical

parametric gain (and loss) in a system, and the amount of observed squeezing and

anti-squeezing. Therefore, before discussing the levels of squeezing observed from

our system, we will first present experimental data characterising the amount of

parametric gain observed for a range of input pump beam optical powers.

Parametric amplification of the fundamental 1550 nm field occurs when the opti-

cal phase between the down-converted pump photons and the input 1550 nm field is

φpump = 0. At this phase the optical power of the 1550 nm field is amplified relative

to the intensity of the original input field. Similarly, parametric attenuation (or ‘de-

amplification’) of the fundamental field occurs when the optical phase between the

down-converted pump photons and the input 1550 nm field is φpump = π/2. Thus

reducing the optical power below the level of the input field.

Classical parametric amplification and attenuation of the low-power 1550 nm

input field was observed while the OPO was phase-locked on resonance. The the-

oretical amount of gain that could be observed is defined by equation 2.144, and

depends on parameters such as the pump threshold, PTh and the input pump power,

P775. Characterisation of the parametric gain profile of the OPO was quantified for

a wandering pump phase, and is shown in figure 5.6 as a function of input pump

power. The maximum observed gain levels are G+ = 2.4 and G− = 0.536 for an in-
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put pump power of Ppump = 124 mW. A comparison of these quantities to the values

predicted by equation 2.144, as well as a summary of the experimental conditions

these measurements were taken are summarised in table 5.2.

5.2.2 Spectrum analyser measurements at 515 MHz

As detailed in chapter 4, the experiment can be operated in two configurations:

unprojected state mode or projected state mode. When operating in unprojected

mode, the experiment generates a two-mode squeezed vacuum state. Measuring

this state with our fast homodyne detector and spectrum analyser is equivalent to

applying our time-and-frequency-resolved measurement operator to the two-mode

state for a random demodulation phase. As discussed in chapter 3, this results in an

averaged variance measurement of the symmetric and anti-symmetric modes, and

can only return a non-zero result for the 2nd-order moment of the measurement

operator, X̂ωs(θ, t). For the unprojected state, both of these side-band modes are

single-mode squeezed vacuum states, arising in the spectrum analyser measurement

to always be of a single-mode squeezed vacuum state.

The unprojected squeezed vacuum state was characterised with a high-frequency

spectrum analyser for a wandering pump phase. The squeezing and anti-squeezing

levels of the system were measured at the FSR frequency of 515 MHz. We used a

fast spectrum analyser to perform a zero-span measurement centred on 515 MHz

(with a resolution bandwidth of 500kHz) with the experiment operating in ‘chop-

lock’ mode. Performing this measurement during chop-lock mode allows for real-

time comparisons between the squeezed vacuum state and vacuum quantum noise

(see figure 5.7). The best squeezing level observed was -2.35 ± 0.5 dB, which had

a corresponding anti-squeezing level of 3.9 ± 0.5 dB for an input pump power of

124 mW. Table 5.2 summarises relevant cavity parameters needed to calculate the

theoretical squeezing levels (V ±) and parametric gain (G±) from equations 2.139

and 2.144, and the measurement conditions of the experimental data.

5.2.3 Quantum state tomography — 515 MHz modes

Implementing a time-and-frequency-resolved homodyne measurement with a fixed

demodulation phase allows for the symmetric and anti-symmetric modes to be dis-

tinguished and probed individually. This measurement technique also allows for all

statistical moments of either mode to be measured. Performing tomography of the

unprojected state with a frequency-offset temporal mode function in post-processing,

as described by equation 5.5, implements such a measurement.

Data acquisition for quantum state tomography of the unprojected state is trig-
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Figure 5.7: Zero-span spectrum analyser measurements of the squeezed vacuum
state from our OPO while in chop-lock mode for a wandering pump phase (resolution
bandwidth (RBW) = 500 kHz, zero-span set to 515 MHz, LO power = 3.2 mW,
100 mV = 1 dB). A) Captured screenshot of squeezing measurement (-2.2 dB).
B) Captured screenshot of anti-squeezing measurement (3.85 dB). Red: spectrum
analyser trace, blue: chopped pump beam, QNL = quantum noise limit, SQZ =
squeezing, ASQZ = anti-squeezing.
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Description Symbol Value

Quantum efficiency ηQE 0.9
of homodyne detector

Propagation efficiency ηt 0.88

Homodyne detector ζ 0.924
interference visibility

Homodyne detection ηHD = ηQEηtζ
2 0.676

efficiency

OPO escape efficiency ηesc 0.848

Total cavity loss L 0.015

Pump threshold power PTh 340∗ mW

Pump power P775 124 mW

Theoretical amplification gain G+ 2.477

Theoretical attenuation gain G− 0.537

Measured amplification gain — 2.4

Measured attenuation gain — 0.536

Theoretical anti-squeezing level V + 4.876 dB

Theoretical squeezing level V − -2.591 dB

Measured anti-squeezing level — 3.9± 0.5 dB∗∗

(spectrum analyser)

Measured squeezing level — -2.35± 0.5 dB∗∗

(spectrum analyser)

Table 5.2: OPO cavity parameters and measurement conditions for parametric gain
and spectrum analyser measurements for a wandering pump phase. * PTh was
calculated using equation 2.143; ** best observed squeezing level and corresponding
anti-squeezing level.
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gered by false detection events (dark counts) of the APD. The trigger photons in

the experiment are treated as propagation loss, ηt, and are not used to trigger data

collection. The filtering parameters, τ and φ, interact to produce an overall constant

demodulation phase which allows access to particular side-band modes.

We will now present quantum state tomography results for an unlocked pump

phase. There are three categories of results which will be discussed:

1. Data uncorrected for imperfect homodyne detection efficiency

2. Data corrected for imperfect optical homodyne detection efficiency (ηHD)

3. Data corrected for both ηHD and ηe(f), where ηe(f) is the detection efficiency

at each FSR frequency, f , due to a raised electronic noise floor caused by data

aliasing (previously discussed in §5.1.1)

Table 5.3 is a summary of the experimental and reconstruction parameters that

were used to collect and analysis all data presented in this chapter.

Parameter Value

Pump power 124 mW

LO power 3.2 mW

ηHD 0.676

ηe(515 MHz) 0.86

ηHDηe(515 MHz) 0.5814

ηe(1030 MHz) 0.424

ηHDηe(1030 MHz) 0.2866

Data sampling rate 2 GS/s

Homodyne data length 5 µs

Table 5.3: Summary of experimental and reconstruction parameters that were used
to collect and analysis all unprojected data presented in this chapter.

5.2.3.1 Without detection efficiency correction

We were able to access the symmetric and anti-symmetric side-band modes of the

two-mode squeezed vacuum state for an unlocked pump phase by changing the pa-

rameters τ and φ. We were able to reconstruct the states at the first FSR frequency

of our SS-NOPO by choosing a demodulation frequency of 515 MHz. Table 5.4 is a
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Figure 5.8: Comparison of uncorrected experimental and theoretical photon number
distributions of the 515 MHz unprojected symmetric side-band mode (S-mode) for
an unlocked pump phase. The reconstruction parameters are listed in tables 5.3 &
5.4, and the model parameters are listed in table 5.5.

summary of the parameters used during post-processing to reconstruct three quan-

tum states from the unprojected state data: symmetric side-band mode (single-mode

squeezed vacuum state), anti-symmetric side-band mode (single-mode squeezed vac-

uum state), and a ‘thermal state’ (reconstructed state that looks like a thermal

state). In §3.1.1 we discussed how measuring one-half of a two-mode squeezed state

produces a result that is statistically equivalent to a thermal state [135,251,293–295].

Since our measurement technique gives us access to the symmetric/anti-symmetric

modes, we can also access a mixture of these modes (see equation 3.30). As we shall

show in the following data presentations, this type of measurement results in a state

statistically equivalent to a thermal state.

Side-band Demodulation τ φ
mode frequency

Symmetric mode 515 MHz -238.3 ns 60◦

Anti-symmetric mode 515 MHz -184.8 ns 175.4◦

‘Thermal’ mode 515 MHz -148 ns 107.5◦

Table 5.4: Summary of parameters that were used to reconstruct unprojected states
for an unlocked pump phase at the first FSR (515 MHz).

Figure 5.8 shows the uncorrected experimental photon number distribution (PND)

of the unprojected symmetric side-band mode (S-mode) at 515 MHz. This PND was
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Figure 5.9: Comparison of uncorrected experimental and theoretical photon number
distributions of the 515 MHz unprojected anti-symmetric side-band mode (A-mode)
for an unlocked pump phase. The reconstruction parameters are listed in tables 5.3
& 5.4, and the model parameters are listed in table 5.5.

reconstructed from homodyne tomography data of the unprojected state using the

parameters listed in tables 5.3 & 5.4, and the MaxLik technique explained in §2.8.

Figure 5.8 also shows the theoretical PND of an impure single-mode squeezed vac-

uum mathematically simulated using the impure squeezed vacuum model outline in

§2.6.1. The model parameters used to generate this theoretical PND are listed in

table 5.5. The model and experimental PNDs shown in figure 5.8 agree within error.

Side-band mode Pure squeezing level Loss, r1 ηHD

515 MHz symmetric mode -3.909 dB 0.004916 0.676

515 MHz anti-symmetric mode -3.561 dB 0.004916 0.676

Table 5.5: Summary of model parameters used to simulated impure squeezed vac-
uum states for unprojected state results with unlocked pump phase at the first FSR
(515 MHz).

Figure 5.9 shows the uncorrected experimental PND of the unprojected anti-

symmetric side-band mode (A-mode) at 515 MHz reconstructed using the param-

eters listed in tables 5.3 & 5.4. The theoretical PND of an impure single-mode

squeezed vacuum is also shown, which was mathematically simulated using the

model parameters listed in table 5.5. As with the symmetric mode data, the anti-

symmetric mode data and model shown in figure 5.9 are in agreement within error.

In §2.2.3 we discussed how the PND of a thermal state can be related to a
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Figure 5.10: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of a ‘thermal’ mode at 515 MHz for an unlocked pump phase. The
theoretical thermal state PND was calculated using equation 2.49 and corresponds
to -2.6 dB of squeezing. The reconstruction parameters are listed in tables 5.3 &
5.4.

certain level of squeezing, which can be modelled by equation 2.49. By choosing

the appropriate filtering parameters we were able to reconstruct a state from the

unprojected data which has the statistics of a ‘thermal’ state. Figure 5.10 shows the

uncorrected experimental PND of this state that appears to be a ‘thermal’ mode at

515 MHz. This PND was reconstructed from the same homodyne data set as the

previous S-mode and A-mode PNDs, and was reconstructed using the parameters

listed in tables 5.3 & 5.4.

Because of the known relationship between the PND of a thermal state and

the squeezing level, we can estimate the squeezing level from the uncorrected ex-

perimental PND, and compare this with the value previously measured using the

spectrum analyser. Table 5.6 compares the theoretically predicted squeezing levels

by equation 2.139, and experimentally measured values for the squeezed vacuum

results with an unlocked pump phase.

In §2.1.4 we summarised how a state’s density matrix in the Fock basis can

be calculated from its Wigner function and vice versa. This method was used to

reconstruct the experimental Wigner functions based on the reconstructed density

matrices. Figure 5.11 shows the Wigner functions for the squeezed vacuum symmet-

ric mode (figure 5.11A) and the ‘thermal’ mode (figure 5.11B). Due to the low level

of squeezing these experimental Wigner functions look similar. We will see them

become more noticeably different as the data is corrected for imperfect homodyne

detection in the next section.
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Figure 5.11: Experimental uncorrected Wigner functions reconstructed from unpro-
jected data at 515 MHz for an unlocked pump phase. A) Squeezed vacuum (sym-
metric mode), and B) ‘thermal’ mode. The reconstruction parameters are listed in
tables 5.3 & 5.4.

5.2.3.2 Corrected for ηHD

It was discussed in §2.8.3 that imperfect homodyne detection efficiency can be explic-

itly included in the maximum likelihood algorithm [245,280]. We used this method

to corrected for homodyne detection inefficiency. First we will present results from

only correcting for the imperfect detection efficiency due to optical characteristics

of the experiment, which is defined as ηHD = ηQEηtζ
2. The experimental values for

these parameters are defined in table 5.2, and give ηHD = 0.676 for the unprojected

state measurements.

Figure 5.12 shows the PNDs for the unprojected symmetric, anti-symmetric, and

‘thermal’ modes at 515 MHz corrected for ηHD = 0.676 and with an unlocked pump

phase. These PNDs were reconstructed using the parameters listed in tables 5.3 &

5.4. Correcting for ηHD in the reconstruction code does not correct for ηe(f), which

is the poor detection efficiency caused by data aliasing effects described in §5.1.1.

Figure 5.13 shows the Wigner functions for the unprojected squeezed vacuum

symmetric mode (figure 5.13A) and the ‘thermal’ mode (figure 5.13B). Note that

correcting for imperfect homodyne detection, ηHD, increases the level of squeezing

in the state and results in the Wigner functions becoming more noticeably different.
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Figure 5.12: Comparison of experimental photon number distributions corrected for
ηHD = 0.676 for the unprojected symmetric (S-mode), anti-symmetric (A-mode),
and ‘thermal’ modes at 515 MHz for an unlocked pump phase. The reconstruction
parameters are listed in tables 5.3 & 5.4.

Figure 5.13: Experimental Wigner functions corrected for ηHD = 0.676 recon-
structed from unprojected data at 515 MHz for an unlocked pump phase. A)
Squeezed vacuum (symmetric mode), and B) ‘thermal’ mode. The reconstruction
parameters are listed in tables 5.3 & 5.4.
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Figure 5.14: Comparison of experimental photon number distributions corrected
for ηHDηe(515 MHz) = 0.5814 for the unprojected symmetric (S-mode) and anti-
symmetric (A-mode) modes at 515 MHz for an unlocked pump phase to a pure
squeezed vacuum state with -3.4 dB of squeezing. The reconstruction parameters
are listed in tables 5.3 & 5.4, and the pure squeezed vacuum PND was calculated
using equation 2.54.
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Figure 5.15: Comparison of experimental photon number distributions corrected for
ηHDηe(515MHz) = 0.5814 for the ‘thermal’ mode at 515 MHz for an unlocked pump
phase to a theoretical thermal state corresponding to -3.4 dB of squeezing. The
reconstruction parameters are listed in tables 5.3 & 5.4, and the theoretical thermal
state PND was calculated using equation 2.49.
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Measurement technique Squeezing Anti-squeezing
or theoretical prediction level level

Predicted by eqn 2.139 -2.591 dB 4.876 dB

Spectrum analyser -2.35± 0.5 dB 3.9± 0.5 dB
measurement

Estimated from ‘thermal’ -2.6 dB —
reconstructed PND

Table 5.6: Summary of the theoretically predicted squeezing levels by equation 2.139
and the experimentally measured values for the squeezed vacuum results with an
unlocked pump phase.

5.2.3.3 Corrected for ηHDηe(f)

Finally we present experimental results corrected for both ηHD and ηe(f), where

ηe(f) models a loss in frequency-dependent detection efficiency caused by data alias-

ing effects. By correcting for both of these detection inefficiencies, the experimental

results of the unprojected symmetric and anti-symmetric modes shown in figure 5.14

closely resemble a pure squeezed vacuum state. These PNDs were reconstructed us-

ing ηHDηe(515 MHz) = 0.5814, as well as the parameters listed in tables 5.3 &

5.4.

The pure squeezed vacuum state PND shown was calculated using equation 2.54

for a squeezing level of -3.4 dB. Figure 5.15 shows the PND for the ‘thermal’ mode

corrected for ηHDηe(515 MHz) = 0.5814, and reconstructed using the parameters

listed in tables 5.3 & 5.4. The theoretical PND of a thermal state shown corresponds

to -3.4 dB of squeezing. Note that this squeezing level of -3.4 dB is similar to the

pure squeezing levels used in the theoretical model to calculate PNDs for the impure

uncorrected symmetric and anti-symmetric mode experimental data (see table 5.5).

5.3 Quantum state tomography — Locked pump

phase

We will now present the data results of the unprojected states with the pump phase

‘locked.’ Figure 5.16 illustrates how the quality of the unprojected symmetric mode

squeezed vacuum state demodulated at 515 MHz is considerably improved by im-

plementing a pump phase lock with a smaller and smaller window. The amount

of uncorrected squeezing is shown to increase (i.e. lower variance) as the pump
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Pump phase window Demodulation frequency τ φ

-90◦ − 0◦ 515 MHz -238.3 ns 60◦

-70◦ − 0◦ 515 MHz -208.5 ns 18◦

-50◦ − 0◦ 515 MHz -250 ns 59.5◦

-30◦ − 0◦ 515 MHz -280 ns 81◦

-10◦ − 0◦ 515 MHz -281 ns 84◦

-5◦ − 0◦ 515 MHz -282 ns 59◦

-3.5◦ − 0◦ 515 MHz -284 ns 80.5◦

-2.5◦ − 0◦ 515 MHz -296 ns 81.6◦

Table 5.7: Summary of parameters that were used to reconstruct unprojected states
for various pump phase windows at the first FSR (515 MHz).

phase window is narrowed from ∆90◦ to ∆2.5◦. The amount of squeezing shown

for a ∆90◦ pump phase window corresponds to the data results presented in §5.2.3

for an unlocked pump phase. The optimal pump phase window was found to be

φpump = −2.5◦ to 0◦, which kept enough quadrature data for the results to be sta-

tistically significant and reliable. Rejecting large amounts of data affects the size

of the errorbars, as illustrated in figure 5.16 (errorbar sizes increase as the pump

phase window is lowered). Lowering this window further rejects too much data and

the results become unreliable. The reconstruction parameters associated with each

data point in figure 5.16 are listed in tables 5.3 & 5.7.

A probable explanation for why ‘locking’ the pump phase improves the quality of

the quantum state is that an unknown phase drift in the experiment is affecting the

pump phase, causing erratic phase jitter in the squeezing angle, φpump. This jitter

may be difficult to accurately track by the parametric gain measurement used to

estimate the pump phase. However, keeping only the data corresponding to a pump

phase that falls within a small phase range around φpump = −1.25◦ removes the

phase jitter effect. Therefore, the remaining data results presented in this chapter

and in chapter 6 are with a ∆2.5◦ pump phase window centred on φpump = −1.25◦

applied to the data.

5.3.1 515 MHz unprojected modes

Since the combination of τ and φ results in an effective phase rotation, there are

multiple combinations of these values that can demodulate the data to expose the

various side-band modes. Figure 5.17 illustrates the several sets of unprojected

squeezed vacuum and thermal states that were found as the overall demodulation
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Figure 5.16: Uncorrected minimum variance of unprojected symmetric mode
squeezed vacuum states demodulated at 515 MHz for various pump phase window
sizes. The reconstruction parameters are listed in tables 5.3 & 5.7.

phase, ϑ, was rotated. We defined this overall demodulation phase as

ϑ = −ωsτ + φ, (5.13)

where ωs is the demodulation angular frequency at an FSR frequency. However,

there is only one unique set of τ and φ values that result in the best quality state

for each mode. For the unprojected states, the ‘best quality’ is defined as the

highest two-photon probability in the reconstructed symmetric and anti-symmetric

mode squeezed vacuum states, and as the highest one-photon probability in the

reconstructed ‘thermal’ mode. We will now present the PNDs of the unprojected

symmetric and anti-symmetric modes demodulated at 515 MHz for a locked pump

phase.

5.3.1.1 Without detection efficiency correction

Figure 5.18 shows the uncorrected experimental photon number distribution (PND)

of the unprojected symmetric side-band mode (S-mode) at 515 MHz for a locked

pump phase. This PND was reconstructed from homodyne tomography data of

the unprojected state using the parameters listed in tables 5.3 & 5.8. Figure 5.18

also shows the theoretical PND of an impure single-mode squeezed vacuum math-

ematically simulated using the impure squeezed vacuum model outline in §2.6.1.

The model parameters used to generate this theoretical PND of an impure squeezed

vacuum state are listed in table 5.9. The model and experimental PNDs shown in

figure 5.18 agree within error. Since the unprojected symmetric and anti-symmetric
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Figure 5.17: Multiple unprojected symmetric, anti-symmetric, and ‘thermal’ side-
band modes at 515 MHz for several sets of τ and φ values for a locked pump phase.
The overall demodulation phase is plotted as a function of the temporal offset, τ .
Red dot: squeezed vacuum state, blue dot: ‘thermal’ state, black line: linear best
fit.

modes are indistinguishable squeezed vacuum states, we will only present the PNDs

and Wigner functions for the S-mode states for the rest of this chapter.

Side-band Demodulation pump phase τ1 φ1

mode frequency window

Symmetric mode 515 MHz -2.5◦ − 0◦ -296 ns 81.6◦

‘Thermal’ mode 515 MHz -2.5◦ − 0◦ 319 ns 4◦

Table 5.8: Summary of parameters that were used to reconstruct unprojected states
for a locked pump phase at the first FSR (515 MHz).

Figure 5.19 shows the uncorrected experimental PND of a state that appears to

be a ‘thermal’ mode at 515 MHz. This PND was reconstructed from the same ho-

modyne data set as the previous S-mode and A-mode PNDs, and was reconstructed

using the parameters listed in tables 5.3 & 5.8.

Figure 5.20 shows the uncorrected Wigner functions for the unprojected squeezed

vacuum symmetric mode (figure 5.20A) and the ‘thermal’ mode (figure 5.20B). The

application of a pump phase window has made these Wigner functions become more

noticeably different, even for uncorrected data.
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Figure 5.18: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the 515 MHz unprojected symmetric side-band mode (S-mode)
for a locked pump phase. The reconstruction parameters are listed in tables 5.3 &
5.8, and the model parameters are listed in table 5.9.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photon number

P
ro

b
a
b
ili

ty

 

 

Theory
"Thermal" data

Figure 5.19: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of a ‘thermal’ mode at 515 MHz for a locked pump phase. The
theoretical thermal state PND was calculated using equation 2.49 and corresponds
to -4.21 dB of squeezing. The reconstruction parameters are listed in tables 5.3 &
5.8.
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Side-band mode Pure squeezing level Loss, r1 ηHD

515 MHz S-mode -5.82 dB 0.004916 0.676

1030 MHz S-mode -3.474 dB 0.004916 0.676

1545 MHz S-mode -3.301 dB 0.004916 0.676

Table 5.9: Summary of model parameters used to simulated impure squeezed vac-
uum states for unprojected state results with locked pump phase at 515 MHz, 1030
MHz, and 1545 MHz.

5.3.1.2 Corrected for ηHD

Figure 5.21 shows the PNDs for the unprojected symmetric and ‘thermal’ modes at

515 MHz corrected for ηHD = 0.676 and with a locked pump phase. These PNDs

were reconstructed using the parameters listed in tables 5.3 & 5.8. Correcting for

ηHD in the reconstruction code does not correct for ηe(f), which is the poor detection

efficiency caused by data aliasing effects described in §5.1.1.

Figure 5.22 shows the Wigner functions for the unprojected squeezed vacuum

symmetric mode (figure 5.22A) and the ‘thermal’ mode (figure 5.22B). Note that

correcting for imperfect homodyne detection, ηHD, increases the level of squeezing

in the state and results in the Wigner functions becoming even more different to

each other as compared to figure 5.20.

5.3.1.3 Corrected for ηHDηe(f)

Finally we present experimental results corrected for both ηHD and ηe(f), where

ηe(f) models a loss in detection efficiency caused by data aliasing effects. By cor-

recting for both of these detection inefficiencies, the experimental results of the

unprojected symmetric mode shown in figure 5.23 closely resemble a pure squeezed

vacuum state corresponding to -5.82 dB of squeezing. These PNDs were recon-

structed using ηHDηe(515 MHz) = 0.5814, as well as the parameters listed in tables

5.3 & 5.8.

The pure squeezed vacuum state PND shown was calculated using equation 2.54

for a squeezing level of -5.82 dB. Figure 5.24 shows the PND for the ‘thermal’ mode

corrected for ηHDηe(515 MHz) = 0.5814, and reconstructed using the parameters

listed in tables 5.3 & 5.8. The theoretical PND of a thermal state shown corresponds

to -5.82 dB of squeezing. Note that this squeezing level is the pure squeezing level

used in the theoretical model to calculate the PND for the impure uncorrected

symmetric mode at 515 MHz (see table 5.9).
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Figure 5.20: Experimental uncorrected Wigner functions reconstructed from unpro-
jected data at 515 MHz for a locked pump phase. A) Squeezed vacuum (symmetric
mode), and B) ‘thermal’ mode. The reconstruction parameters are listed in tables
5.3 & 5.8.
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Figure 5.21: Comparison of experimental photon number distributions corrected for
ηHD = 0.676 for unprojected symmetric (S-mode) and ‘thermal’ modes at 515 MHz
for a locked pump phase. The reconstruction parameters are listed in tables 5.3 &
5.8.
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Figure 5.22: Experimental Wigner functions corrected for ηHD = 0.676 recon-
structed from unprojected data at 515 MHz for a locked pump phase. A) Squeezed
vacuum (symmetric mode), and B) ‘thermal’ mode. The reconstruction parameters
are listed in tables 5.3 & 5.8.
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Figure 5.23: Comparison of experimental photon number distributions corrected for
ηHDηe(515 MHz) = 0.5814 for the unprojected symmetric (S-mode) mode at 515
MHz for a locked pump phase to a pure squeezed vacuum state with -5.82 dB of
squeezing. The reconstruction parameters are listed in tables 5.3 & 5.8, and the
pure squeezed vacuum PND was calculated using equation 2.54.



147 5.3. Quantum state tomography — Locked pump phase

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photon number

P
ro

b
a

b
ili

ty

 

 

Theory
"Thermal" data

Figure 5.24: Comparison of experimental photon number distributions corrected for
ηHDηe(515 MHz) = 0.5814 for the ‘thermal’ mode at 515 MHz for a locked pump
phase to a theoretical thermal state corresponding to -5.82 dB of squeezing. The
reconstruction parameters are listed in tables 5.3 & 5.8, and the theoretical thermal
state PND was calculated using equation 2.49.

5.3.2 1030 MHz unprojected modes

As discussed previously, a SS-NOPO generates squeezed vacuum states at every FSR

frequency within the down-conversion bandwidth of the nonlinear crystal. We have

access to the FSR states within the 2 GHz detection bandwidth of our homodyne

detector. In the case of the unprojected states, each of the FSR states are indepen-

dent squeezed states. Thus, we can probe the quantum states at the second FSR by

choosing to demodulate at 1030 MHz. Theoretically the squeezed vacuum state at

this frequency should be of a similar quality to the first FSR squeezed vacuum state.

However, the data aliasing effect decreased the detection efficiency at the second FSR

(ηe(1030 MHz) = 0.424) compared to at the first FSR (ηe(1030 MHz) = 0.86). We

will show that the uncorrected unprojected symmetric mode data at 1030 MHz cor-

responds to a theoretical PND with a lower pure squeezing level than used to model

the 515 MHz unprojected symmetric mode (see table 5.9). If the 1030 MHz data

is only corrected for optical detection efficiency, ηHD, then the reconstructed PND

still does not correspond to the same squeezing level as the 515 MHz data. It is only

when both the optical detection efficiency and the aliasing effects are corrected for

does the squeezing level of the reconstructed unprojected squeezed vacuum state at

1030 MHz look similar (to within less than 0.5 dB) to the 515 MHz states.
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5.3.2.1 Without detection efficiency correction

Figure 5.25 shows the uncorrected experimental photon number distribution (PND)

of the unprojected symmetric side-band mode (S-mode) at 1030 MHz for a locked

pump phase. This PND was reconstructed from homodyne tomography data of the

unprojected state using the parameters listed in tables 5.3 & 5.10. Figure 5.25 also

shows the theoretical PND of an impure single-mode squeezed vacuum mathemat-

ically simulated using the impure squeezed vacuum model outline in §2.6.1. The

model parameters used to generate this theoretical PND are listed in table 5.9. The

model and experimental PNDs shown in figure 5.25 agree within error. Note that a

lower pure squeezing level had to be used to model the data from 1030 MHz. We

will show later in this section that this can be explained by the corruption of the

quality of the squeezed vacuum state (i.e. lowered two-photon probability) due to

the data aliasing effects.

Side-band Demodulation pump phase τ2 φ2

mode frequency window

Symmetric mode 1030 MHz -2.5◦ − 0◦ 120 ns 48◦

‘Thermal’ mode 1030 MHz -2.5◦ − 0◦ 66.5 ns 129◦

Table 5.10: Summary of parameters that were used to reconstruct unprojected states
for a locked pump phase at the second FSR (1030 MHz).

Figure 5.26 shows the uncorrected experimental PND of a state that appears

to be a ‘thermal’ mode at 1030 MHz. This PND was reconstructed from the same

homodyne data set as the previous S-mode PND, and was reconstructed using the

parameters listed in tables 5.3 & 5.10. Figure 5.27 shows the uncorrected Wigner

functions for the unprojected squeezed vacuum symmetric mode (figure 5.27A) and

the ‘thermal’ mode (figure 5.27B).

5.3.2.2 Corrected for ηHD

Figure 5.28 shows the PNDs for the unprojected symmetric and ‘thermal’ modes at

1030 MHz corrected for ηHD = 0.676 and with a locked pump phase. These PNDs

were reconstructed using the parameters listed in tables 5.3 & 5.10.

Figure 5.29 shows the Wigner functions for the unprojected squeezed vacuum

symmetric mode (figure 5.29A) and the ‘thermal’ mode (figure 5.29B). Note that

correcting for imperfect homodyne detection, ηHD, increases the level of squeezing

in the state. However, the PND and Wigner function for these corrected modes

corresponds to a lower squeezing level (i.e. lower two-photon probability in the
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Figure 5.25: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the 1030 MHz unprojected symmetric side-band mode (S-mode)
for a locked pump phase. The reconstruction parameters are listed in tables 5.3 &
5.10, and the model parameters are listed in table 5.9.
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Figure 5.26: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of a ‘thermal’ mode at 1030 MHz for a locked pump phase. The
theoretical thermal state PND was calculated using equation 2.49 and corresponds
to -3.24 dB of squeezing. The reconstruction parameters are listed in tables 5.3 &
5.10.
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Figure 5.27: Experimental uncorrected Wigner functions reconstructed from unpro-
jected data at 1030 MHz for a locked pump phase. A) Squeezed vacuum (symmetric
mode), and B) ‘thermal’ mode. The reconstruction parameters are listed in tables
5.3 & 5.10.

squeezed vacuum state and lower one-photon probability in the ‘thermal’ state)

compared to the 515 MHz modes corrected for ηHD. In the next section we will

show what happens when we correct the 1030 MHz modes for both ηHD and ηe(f).

5.3.2.3 Corrected for ηHDηe(f)

Now we present experimental results corrected for both ηHD and ηe(f), where ηe(f)

models a loss in detection efficiency caused by data aliasing effects. By correcting

for both of these detection inefficiencies, the experimental results of the unprojected

symmetric mode shown in figure 5.30 closely resemble a pure squeezed vacuum state

corresponding to -5.4 dB of squeezing. This is only 0.42 dB less squeezing than the

515 MHz unprojected symmetric mode when corrected for ηHDηe(f). These PNDs

were reconstructed using ηHDηe(1030 MHz) = 0.2866, as well as the parameters

listed in tables 5.3 & 5.10.

The pure squeezed vacuum state PND shown was calculated using equation 2.54

for a squeezing level of -5.4 dB. Figure 5.31 shows the PND for the ‘thermal’ mode

corrected for ηHDηe(1030 MHz) = 0.2866, and reconstructed using the parameters

listed in tables 5.3 & 5.10. The theoretical PND of a thermal state shown corre-

sponds to -5.4 dB of squeezing. Note that by correcting for the data aliasing effects,

the reconstructed states at 1030 MHz are quite similar to the states previously pre-
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Figure 5.28: Comparison of experimental photon number distributions corrected for
ηHD = 0.676 for the unprojected symmetric (S-mode) and ‘thermal’ modes at 1030
MHz for a locked pump phase. The reconstruction parameters are listed in tables
5.3 & 5.10.

Figure 5.29: Experimental Wigner functions corrected for ηHD = 0.676 recon-
structed from unprojected data at 1030 MHz for a locked pump phase. A) Squeezed
vacuum (symmetric mode), and B) ‘thermal’ mode. The reconstruction parameters
are listed in tables 5.3 & 5.10.
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Figure 5.30: Comparison of experimental photon number distributions corrected for
ηHDηe(1030 MHz) = 0.2866 for the unprojected symmetric (S-mode) mode at 1030
MHz for a locked pump phase to a pure squeezed vacuum state with -5.4 dB of
squeezing.

sented for 515 MHz. Since the detection efficiency ηe(f) at 1030 MHz is considerably

lower than that at 515 MHz, it can be argued that this lowered quantum efficiency

explains the lower squeezing levels for the uncorrected PNDs.

5.3.3 1545 MHz unprojected modes

5.3.3.1 Without detection efficiency correction

The quantum states at the third FSR can be reconstructed by demodulating at

1545 MHz. As with the second FSR measurement, data aliasing effects have de-

creased the detection efficiency at the third FSR significantly. Figure 5.32 shows

the uncorrected experimental photon number distribution (PND) of the unprojected

symmetric side-band mode (S-mode) at 1545 MHz for a locked pump phase. This

PND was reconstructed from homodyne tomography data of the unprojected state

using the parameters listed in tables 5.3 & 5.11. Figure 5.32 also shows the theo-

retical PND of an impure single-mode squeezed vacuum mathematically simulated

using the impure squeezed vacuum model outline in §2.6.1. The model parame-

ters used to generate this theoretical PND are listed in table 5.9. The model and

experimental PNDs shown in figure 5.32 agree within error.

Figure 5.33 shows the uncorrected experimental PND of a state that appears

to be a ‘thermal’ mode at 1545 MHz. This PND was reconstructed from the same

homodyne data set as the previous S-mode PND, and was reconstructed using the

parameters listed in tables 5.3 & 5.11. Figure 5.34 shows the uncorrected Wigner
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Figure 5.31: Comparison of experimental photon number distributions corrected for
ηHDηe(1030 MHz) = 0.2866 for the ‘thermal’ mode at 1030 MHz for a locked pump
phase to a theoretical thermal state corresponding to -5.4 dB of squeezing.

Side-band Demodulation pump phase τ3 φ3

mode frequency window

Symmetric mode 1545 MHz -2.5◦ − 0◦ -113 ns 26.5◦

‘Thermal’ mode 1545 MHz -2.5◦ − 0◦ -141.5 ns 10.5◦

Table 5.11: Summary of parameters that were used to reconstruct unprojected states
for a locked pump phase at the third FSR (1545 MHz).

functions for the unprojected squeezed vacuum symmetric mode (figure 5.34A) and

the ‘thermal’ mode (figure 5.34B).

5.3.3.2 Corrected for ηHD

Figure 5.35 shows the PNDs for the unprojected symmetric and ‘thermal’ modes at

1545 MHz corrected for ηHD = 0.676 and with a locked pump phase. These PNDs

were reconstructed using the parameters listed in tables 5.3 & 5.11.

Figure 5.36 shows the Wigner functions for the unprojected squeezed vacuum

symmetric mode (figure 5.36A) and the ‘thermal’ mode (figure 5.36B). Note that

correcting for imperfect homodyne detection, ηHD, increases the level of squeezing

in the state. However, the PND and Wigner function for these corrected modes

still corresponds to a lower squeezing level (i.e. lower two-photon probability in

the squeezed vacuum state and lower one-photon probability in the ‘thermal’ state)

compared to the 515 MHz and 1030 MHz modes corrected for ηHD. We tried cor-
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Figure 5.32: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the 1545 MHz unprojected symmetric side-band mode (S-mode)
for a locked pump phase. The reconstruction parameters are listed in tables 5.3 &
5.11, and the model parameters are listed in table 5.9.
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Figure 5.33: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of a ‘thermal’ mode at 1545 MHz for a locked pump phase. The
theoretical thermal state PND was calculated using equation 2.49 and corresponds
to -3.09 dB of squeezing. The reconstruction parameters are listed in tables 5.3 &
5.11.
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Figure 5.34: Experimental uncorrected Wigner functions reconstructed from unpro-
jected data at 1545 MHz for a locked pump phase. A) Squeezed vacuum (symmetric
mode), and B) ‘thermal’ mode. The reconstruction parameters are listed in tables
5.3 & 5.11.

recting the 1545 MHz data for both ηHD and ηe(1545 MHz) = 0.055 but this led to

unphysical results (p1 > 0.3 & p2 > 0.4). This is not surprising given the extremely

small value of ηe(f) at this frequency. However, as we shall show in chapter 6, there

are real quantum states captured from this FSR that make a significant contribution

to the quality of the reconstructed projected states. The unphysical results found

by correcting the unprojected data for both ηHD and ηe(f) are not an indication

of unphysical results in chapter 6 as the ηe(f) correction was not applied to the

projected data. Rather ηe(1545 MHz) was only used to calculate the magnitude of

the third FSR contribution to the multi-FSR temporal mode function described by

equation 5.6.

Table 5.12 summarises the estimated squeezing levels from the uncorrected ‘ther-

mal’ mode experimental data and corrected (ηHDηe(f)) squeezed vacuum mode ex-

perimental data at the three FSRs.

5.3.4 Multi-frequency mode function

Finally, as the data acquisition of the unprojected state was triggered by APD dark

counts, there should be no correlations between the states generated at each FSR.

We can demonstrate that each FSR behaves as an independent squeezed vacuum

mode by observing the effects from demodulation with the multi-frequency mode
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Figure 5.35: Comparison of experimental photon number distributions corrected for
ηHD = 0.676 for the unprojected symmetric (S-mode) and ‘thermal’ modes at 1545
MHz for a locked pump phase. The reconstruction parameters are listed in tables
5.3 & 5.11.

Figure 5.36: Experimental Wigner functions corrected for ηHD = 0.676 recon-
structed from unprojected data at 1545 MHz for a locked pump phase. A) Squeezed
vacuum (symmetric mode), and B) ‘thermal’ mode. The reconstruction parameters
are listed in tables 5.3 & 5.11.
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FSR frequency Estimated V − from Estimated V − from
‘thermal’ mode uncorrected S-mode corrected ηHDηe(f)

515 MHz -4.21 dB -5.82 dB

1030 MHz -3.24 dB -5.4 dB

1545 MHz -3.09 dB —

Table 5.12: Summary of the estimated squeezing levels from the uncorrected ‘ther-
mal’ mode experimental data and corrected (ηHDηe(f)) squeezed vacuum mode ex-
perimental data at the three FSRs.

function described by equation 5.6. This mode function was specifically formulated

to reveal the possible correlations that may exist between the FSRs in the pro-

jected state caused by the multi-FSR spectrum of the trigger mode. Therefore, if

the unprojected FSR states are indeed independent squeezed vacuum states, then

using this multi-FSR demodulation function in the post-processing should result in

a weighted average of the three FSR squeezed vacuum states. That is

diag(ρ̂Ave) = γ2
1 × diag(ρ̂515) + γ2

2 × diag(ρ̂1030) + γ2
3 × diag(ρ̂1545), (5.14)

where diag(ρf ) are the experimental PNDs of the unprojected symmetric modes

at each of the FSR frequencies, and the coefficients γ1, γ2, γ3 are calculated via

equation 5.10. Considering the lower qualities of the uncorrected squeezed vacuum

states at 1030 MHz and 1545 MHz compared to at 515 MHz, if no correlations exist

between these states then using a multi-FSR temporal mode function would be like

taking a weighted average of these three states. Such a reconstructed state should

be of lesser quality (i.e. lower two-photon probability) then compared to the ‘best’

squeezed vacuum reconstructed state, which was the unprojected symmetric mode

at 515 MHz.

5.3.4.1 Without detection efficiency correction

Figure 5.37 shows the uncorrected experimental photon number distributions (PND)

of the unprojected symmetric side-band mode (S-mode) reconstructed using the

multi-FSR temporal mode function described by equation 5.6 for a locked pump

phase. This PND was reconstructed from homodyne tomography data of the un-

projected state using the parameters listed in tables 5.3 & 5.13. As discussed in

§5.1.2, the parameters used in the multi-frequency temporal mode function are re-

lated to the demodulation frequencies, temporal offsets, and demodulation phase

offsets of the unprojected symmetric modes at 515 MHz, 1030 MHz and 1545 MHz.
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The parameters ∆τ2 and ∆φ2 come from the relationships between the values listed

in table 5.10 for the 1030 MHz unprojected symmetric mode, and the values listed

in table 5.8 for the 515 MHz unprojected symmetric mode as defined by equation

5.12. While the parameters ∆τ3 and ∆φ3 come from the relationships between the

values listed in table 5.11 for the 1545 MHz unprojected symmetric mode, and the

values listed in table 5.8 for the 515 MHz unprojected symmetric mode. For clarity

the values of these various offsets that were used to reconstruct the quantum state

using the multi-frequency temporal mode function are summarised in table 5.13.

ωs τm φm ∆τ2 ∆φ2 ∆τ3 ∆φ3

2π × 515 MHz -237.5 ns 71.2◦ 416 ns -33.6◦ 183 ns -55.1◦

Table 5.13: Summary of parameters that were used to reconstruct the unprojected
symmetric mode state for a locked pump phase (∆φpump = 2.5◦) using the multi-FSR
temporal mode function described by equation 5.6.

Figure 5.37 also shows the uncorrected experimental photon number distribution

(PND) of the unprojected symmetric side-band mode (S-mode) at 515 MHz for a

locked pump phase. This PND was reconstructed using the parameters listed in

tables 5.3 & 5.8, and is the FSR state with the highest two-photon probability.

Comparing these two PNDs of the reconstructed unprojected symmetric mode shows

that our prediction was correct: demodulating the unprojected data with this multi-

FSR temporal mode function results in a worse squeezed vacuum (i.e. lower two-

photon probability), indicating that correlations between the FSR states do not

exist. We can further show that the multi-FSR state is in fact closer to a weighted-

average calculated using equation 5.14 of the three individual FSR unprojected

symmetric mode states. This calculated PND of the weighted average is shown in

figure 5.37.

5.3.4.2 Corrected for ηHD

Figure 5.38 shows the PNDs for the unprojected symmetric modes for the multi-

FSR temoral mode function and for demodulation at only 515 MHz with both

corrected for ηHD = 0.676 (and with a locked pump phase). The multi-FSR PND

was reconstructed using the parameters listed in tables 5.3 & 5.13, whereas the 515

MHz unprojected symmetric mode was reconstructed using the parameters listed in

table 5.8. Note that even after the data has been corrected for homodyne efficiency

the two-photon probability of the multi-FSR state is lower than the 515 MHz state.
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Figure 5.37: Comparison of uncorrected experimental photon number distributions
of the multi-FSR unprojected symmetric side-band mode (S-mode Multi-FSRs) and
the 515 MHz unprojected symmetric mode (S-mode 1st FSR) for a locked pump
phase to a calculated weighted average of the three individual FSR unprojected
symmetric mode states. The reconstruction parameters are listed in tables 5.3, 5.8
& 5.13. The weighted average was calculated via equation 5.14.
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Figure 5.38: Comparison of experimental photon number distributions corrected for
ηHD = 0.676 of the multi-FSR unprojected symmetric mode and the 515 MHz un-
projected symmetric mode for a locked pump phase. The reconstruction parameters
are listed in tables 5.3, 5.8 & 5.13.
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5.4 Summary

We first summarized our data acquisition technique and discussed the effect un-

dersampling the homodyne signal had on the effective detection efficiencies at the

various FSR frequencies. Then we introduced the frequency-offset temporal mode

functions that were applied to the homodyne data to extract quadrature data.

An innovative measurement technique was experimentally applied to a two-mode

squeezed vacuum state generated by a SS-NOPO. Quantum tomography of the

single-mode squeezed vacuum states in the symmetric/anti-symmetric side-band

modes were reconstructed at multiple FSR frequencies via phase-locked time-and-

frequency-resolved measurements. Since data collection of the unprojected two-

mode squeezed vacuum state was initiated by APD dark counts, the unprojected

squeezed vacuum states at the multiple FSRs were uncorrelated. Therefore, apply-

ing the multi-frequency demodulation function resulted in a weighted-average of the

quantum states at the three FSRs, and failed to improve the quality of the squeezed

vacuum state.

In the next chapter we shall turn our attention to projected state data, where

we will show that the properties of Gaussianity, equivalence between the symmetric

and anti-symmetric modes, and independent states at each FSR will all be changed.



Chapter 6

Two-mode photon-subtracted
squeezed vacuum results

What we observe is not nature itself, but nature exposed to our method of questioning.
Werner Heisenberg

In this chapter we present the data results from our projected state experiment

where the detection of filtered trigger photons heralded simultaneous generation of a

photon-subtracted squeezed vacuum state and a single-mode squeezed vacuum state

in orthogonal side-band modes. We will present the tomographic state reconstruc-

tion of these quantum states in different side-band modes for the first three FSRs

of our side-band-scale nondegenerate optical parametric oscillator (SS-NOPO). We

then apply a multi-FSR temporal mode function to the projected data that demodu-

lates at multiple FSR frequencies. Applying this mode function reveals entanglement

between the FSR side-band states due to the transmission spectrum of our optical

filter cavities. A recently introduced quantum non-Gaussian character witness is

discussed and applied to our photon-subtracted squeezed state. The result demon-

strates that despite its positive Wigner function, the photon-subtracted squeezed

vacuum state in the symmetric mode can be classified as a quantum non-Gaussian

state. Finally, we discuss some numerical simulation results that investigated the

effects a high APD dark count rate and low detection efficiencies have on the quality

of a projected state.

6.1 Quantum non-Gaussian character witness

First we will discuss a measure of non-classicality which will be used to classify

our photon-subtracted squeezed vacuum state as a quantum non-Gaussian state.

A common method used to determine the non-classicality of a state was to test

for negativity in the Wigner function [311]. However, for some non-classical quan-

tum states, such as squeezed vacuum states, this criterion does not work because
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they possess positive Wigner functions. In addition, some heralded quantum states

have positive Wigner functions that could not be prepared from Gaussian states

and linear optical devices. The Wigner function is also extremely sensitive to var-

ious experimental imperfections that are present in projective state experiments,

especially those conducted at telecommunication wavelengths, and any negativity

can easily degrade in the Wigner function [304]. Therefore, Filip and Mǐsta Jr.

recently proposed a new character witness that shows how some states with posi-

tive Wigner functions cannot be constructed with Gaussian states and linear optical

devices [305]. States beyond a convex set of stochastic mixture of coherent states

are defined as non-classical states. Similarly, quantum non-Gaussian states are re-

ferred to as states beyond a convex set of stochastic mixture of quantum Gaussian

states [312,313].

The quantum non-Gaussian character witness can be written in the Fock state

basis, and is introduced as a linear combination of zero photon probability, p0, and

one photon probability, p1, in the Fock state basis density matrix [312,313],

W (a) = ap0 + p1 (6.1)

where

p0 =
exp[−er sinh r]

cosh r
(6.2)

p1 =
exp[4r]− 1

4

exp[−er sinh r]

cosh3 r
. (6.3)

a ∈ [0, 1] is a dimensionless number and r ∈ [0,∞) is the squeezing parameter.

A quantum Gaussian boundary, WG(a), is defined as the maximum value of W (a)

over a and r. The quantum non-Gaussian character witness value is defined as

W (a) −WG(a). If this witness value is larger than 0, then the state is a quantum

non-Gaussian state.

For quantum states related to squeezed states, such as squeezed single pho-

ton states or Schrödinger kitten states from photon-subtracted squeezed states, the

quantum non-Gaussian character witness is generalized by an anti-squeezing opera-

tion [313],

W (a, s) = ap0(s) + p1(s) (6.4)

where

pn(s) = 〈n|Ŝ†(s)ρ̂Ŝ(s)|n〉. (6.5)

Ŝ†(s) and Ŝ(s) are the anti-squeezing and squeezing operators as a function of the

anti-squeezing parameter, s, respectively, and ρ̂ corresponds to the density matrix

of the state in the Fock basis. The quantum non-Gaussian character witness value
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for these quantum states is defined as W (a, s)−WG(a). Again, if this witness value

is larger than 0, then the state can be classified as a quantum non-Gaussian state.

Equivalently, a classical boundary is defined as the maximum value of

Wcl(a) = ap0 + p1 (6.6)

over a, where

p0 = exp[−n̄] (6.7)

p1 = n̄ exp[−n̄],

and n̄ ∈ [0,∞] is the mean photon number. Therefore, it is easy to identify the

quantum non-Gaussian or non-classical characteristic of a state via its density ma-

trix.

6.2 Two-mode projected states at individual FSRs

A photon-subtracted squeezed vacuum state is traditionally generated by degenerate

PDC where the correlated photons are indistinguishable. Single-photon states are

generally projected from nondegenerate PDC where the photons are distinguishable

in either spatial or polarisation modes. Recently, a SS-NOPO was used to gener-

ate a single-photon state. The correlated upper (+ωs) and lower (−ωs) frequency

side-bands of the SS-NOPO were first spatially separated (ωs is the FSR angular fre-

quency of the SS-NOPO). Then the detection of a photon in the lower side-band via

an APD heralded the presence of a single photon in the upper side-band [218]. How-

ever, generation of a photon-subtracted squeezed vacuum state from a SS-NOPO at

distinguishable side-band frequencies is yet to be experimentally realised. We will

show in this chapter that exploiting the side-band scale naturally produced by a

SS-NOPO leads to powerful resource states that could be used in various quantum

communication and computation applications.

As we showed mathematically in chapter 3, applying an optical projector to a

two-mode squeezed vacuum state that subtracts a photon in a superposition state of

the upper and lower side-bands has the added advantage of producing two separate

and distinguishable quantum states. The symmetric side-band mode is affected

by the photon-subtraction event (producing a photon-subtracted squeezed vacuum

state), whereas the anti-symmetric side-band mode remains a squeezed vacuum

state. These states are independent and travelling in the same optical mode, making

this projected state an attractive new quantum resource state for various quantum

technologies.



Chapter 6. Two-mode photon-subtracted squeezed vacuum results 164

Figure 6.1: Schematic diagram of our optical filtering system and the resulting
optical trigger mode spectrum sent to the APD.

It was also shown in chapter 3 that applying a phase-locked-frequency-resolved

homodyne measurement operator to such a projected state allows full characterisa-

tion of both the symmetric and anti-symmetric side-band modes. The use of such

a measurement is necessary as standard homodyne measurement techniques cannot

individually access either the symmetric or anti-symmetric mode.

These concurrent quantum resource states can be experimentally generated if a

superposition state between the upper and lower side-bands is maintained during

the projective and homodyne measurements of the state. It is crucial that neither

detector can distinguish between +ωs and −ωs side-bands during the experiment in

order for the superposition state to be maintained. Therefore, the optical filtering

applied to the trigger mode in our experiment resulted in a projective measurement

that could not distinguish from which side-band the measured photon originated.

Figure 6.1 shows a schematic of our filtering system used to isolate particular pairs

of frequency side-bands produced by a SS-NOPO. The full spectrum from the SS-

NOPO is sent to the tap-off beamsplitter, where a small portion (∼ 8%) is reflected

towards the optical filter cavities. The majority of the light from the SS-NOPO

is transmitted to the homodyne detector for characterisation. The optical filter

system shapes the spectrum, which results in the trigger mode spectrum illustrated

in figure 6.1 to be sent to the APD for projective state measurements. If we wanted

to reproduce the trigger spectrum used in [218] (i.e. sent only −ωs to the APD),

we would have to change the FBS configuration to ‘configuration B’ as previously
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described in §2.3.3 (φ
FBS

= π/2 and phase shift from the path length difference of

ς
FBS

= π/2).

Homodyne detection coupled with frequency demodulation results in our mea-

surement modes to be in the rotated side-band basis, previously defined as the

symmetric and anti-symmetric modes, +ωs + −ωs and +ωs − −ωs, respectively.

The way that we subtract a single photon from the two-mode squeezed vacuum

state generated by our SS-NOPO makes it equivalent to subtracting a photon from

the single-mode squeezed vacuum state in the symmetric mode without affecting

the single-mode squeezed vacuum state in the anti-symmetric mode. Therefore, a

photon-subtracted squeezed state is projected in the symmetric side-band mode,

and a squeezed vacuum state remains in the orthogonal mode.

The temporal and spectral mode-matching discussed in §5.1.2 was applied to the

captured homodyne data during quantum state reconstruction. The details of our

measurement conditions and data acquisition parameters are summarised in table

6.1.

Data acquisition of the projected state was initiated by the detection of a trigger

photon by the APD. The filter cavities before the APD were designed to isolate the

upper and lower side-bands at the first FSR frequency of 515 MHz from the rest of

the down-conversion spectrum. Due to the optical limitations of the filter chain, a

small portion of the second and third FSR side-band pairs were also transmitted to

the APD, as illustrated in figure 6.1. However, the majority of the spectrum was

concentrated at the first FSR.

We will now present quantum state tomography results for the projected states

demodulated at a single FSR frequency for a ‘locked’ pump phase. There are two

categories of results which will be discussed:

1. Data uncorrected for imperfect homodyne detection efficiency

2. Data corrected for imperfect optical homodyne detection efficiency (ηHD)

Unlike the results presented in chapter 5, we will not correct the projected states

for both ηHD and ηe(f). The data aliasing effects previously described in chap-

ter 5 influences how best to reconstruct the projected state by using a frequency-

offset temporal mode function which incorporates the data aliasing effects into the

weightings of the various frequency components (see equation 5.6). We used such a

multi-FSR weighted temporal mode function on the unprojected data in chapter 5,

which resulted in a ‘worse’ unprojected squeezed vacuum state as each FSR state

was acting as an independent state. We will see that using the same multi-FSR

function (but with the appropriate τ and φ offsets) will result in ‘better’ projected

states as the FSR states are now entangled due to the multi-frequency spectrum of

the trigger mode.
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Parameter Symbol Value

Pump power P775 124 mW

LO power — 3.2 mW

Quantum efficiency ηQE 0.9
of homodyne detector

Propagation efficiency ηt 0.959∗

Homodyne detector ζ 0.924
interference visibility

Homodyne detection ηHD = ηQEηtζ
2 0.7368

efficiency

Detection efficiency (515 MHz) ηe(515 MHz) 0.86
due to data aliasing

Detection efficiency (1030 MHz) ηe(1030 MHz) 0.424
due to data aliasing

Detection efficiency (1545 MHz) ηe(1545 MHz) 0.055
due to data aliasing

Data sampling rate — 2 GS/s

Homodyne data length — 5 µs

Table 6.1: Summary of experimental and reconstruction parameters that were used
to collect and analysis all projected data presented in this chapter. * the tap-off
reflectivity, r2, is not included in the propagation efficiency for the projected state
data (as it was in the unprojected state data).
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Figure 6.2: Multiple projected symmetric and anti-symmetric side-band mode states
at 515 MHz for several sets of τ and φ values. The overall demodulation phase is
plotted as a function of the temporal offset, τ . Red dot: projected squeezed vacuum
state, blue dot: photon-subtracted squeezed vacuum state, black line: linear best
fit.

6.2.1 515 MHz projected modes

Since the demodulation stage is implemented during post-processing, we can choose

to reconstruct the quantum states at individual FSR frequencies by numerically

implementing equation 5.5. We showed in the previous chapter that the temporal

and demodulation offsets interact to produce an overall rotation (defined by equation

5.13) through the symmetric and anti-symmetric modes. A similar effect occurred

when analysing the projected data where multiple photon-subtracted and squeezed

vacuum states were found for various combinations of τ and φ. The various projected

side-band states found at the first FSR of 515 MHz for a locked pump phase are

shown in figure 6.2.

6.2.1.1 Without detection efficiency correction

Figure 6.3 shows the uncorrected experimental photon number distribution (PND)

of the projected symmetric side-band mode (S-mode) at 515 MHz for a locked pump

phase. This PND was reconstructed from homodyne tomography data of the pro-

jected state using the parameters listed in tables 6.1 & 6.2. Figure 6.3 also shows

the theoretical PND of photon-subtracted squeezed vacuum state mathematically

simulated using the model outlined in §2.6. The model parameters used to generate

the theoretical PND of the projected symmetric mode at 515 MHz are listed in table

6.3. The model and experimental PNDs shown in figure 6.3 agree within error.



Chapter 6. Two-mode photon-subtracted squeezed vacuum results 168

Side-band Demodulation pump phase τ1 φ1

mode frequency window

Symmetric mode 515 MHz -2.5◦ − 0◦ 51.6 ns 154.3◦

Anti-symmetric mode 515 MHz -2.5◦ − 0◦ 20 ns 78◦

Table 6.2: Summary of parameters that were used to reconstruct projected states
for a locked pump phase at the first FSR (515 MHz).

Side-band Pure squeezing Loss Tap-off ηHD ηAPD Pdc
mode level r1 r2

515 MHz S-mode -3.474 dB 0.005 0.008 0.7368 0.08 0.00175

515 MHz A-mode -5.646 dB 0.005 0 0.7368 — —

Table 6.3: Summary of model parameters used to simulated projected symmetric
mode (S-mode) and anti-symmetric mode (A-mode) states at 515 MHz with locked
pump phase.

Figure 6.4 shows the uncorrected experimental photon number distribution (PND)

of the projected anti-symmetric side-band mode (A-mode) at 515 MHz for a locked

pump phase. This PND was reconstructed from the homodyne tomography data

using the parameters listed in tables 6.1 & 6.2. Figure 6.4 also shows the theoreti-

cal PND of the impure squeezed vacuum state mathematically simulated using the

model outlined in §2.6. The model parameters used to generate the theoretical PND

of the projected anti-symmetric mode at 515 MHz are listed in table 6.3. The model

and experimental PNDs shown in figure 6.4 agree within error.

In §2.1.4 we summarised how a state’s density matrix in the Fock basis can

be calculated from its Wigner function and vice versa. This method was used to

reconstruct the experimental Wigner functions based on the reconstructed density

matrices. Figure 6.5 shows the uncorrected Wigner functions for the projected

photon-subtracted squeezed vacuum state in the symmetric mode (figure 6.5A) and

the squeezed vacuum state in the anti-symmetric mode (figure 6.5B) at 515 MHz for

a locked pump phase. These quantum states possess experimental Wigner functions

that are clearly different, with the projected symmetric mode Wigner function be-

coming non-Gaussian. We will see these modes become even more obviously different

as the data is corrected for imperfect homodyne detection in the next section.

In §6.1 we reviewed a recently introduced measure for classifying states as quan-

tum Gaussian or quantum non-Gaussian based on the zero-photon probability, p0,
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Figure 6.3: Comparison of uncorrected experimental and theoretical photon number
distributions of the 515 MHz projected symmetric side-band mode (S-mode) for a
locked pump phase. The reconstruction parameters are listed in tables 6.1 & 6.2,
and the model parameters are listed in table 6.3.
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Figure 6.4: Comparison of uncorrected experimental and theoretical photon number
distributions of the 515 MHz projected anti-symmetric (A-mode) side-band mode for
a locked pump phase. The reconstruction parameters are listed in tables 6.1 & 6.2,
and the model parameters are listed in table 6.3.
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Figure 6.5: Experimental uncorrected Wigner functions reconstructed from projected
data at 515 MHz for a locked pump phase. A) Photon-subtracted squeezed vacuum
state (symmetric mode), and B) squeezed vacuum state (anti-symmetric mode).
The reconstruction parameters are listed in tables 6.1 & 6.2.

and single-photon probability, p1. We applied this quantum non-Gaussian character

witness to our projected state data via equation 6.5 by applying the anti-squeezing

operation to our experimental density matrix. This allowed us to calculate the

(p0, p1) trajectory of our experimental data. If this trajectory crosses both the clas-

sical boundary (defined by equation 6.6) and the quantum Gaussian boundary (de-

fined as WG(a) in §6.1), then the state can be classified as a quantum non-Gaussian

state.

Figure 6.6 shows the uncorrected (p0, p1) trajectory of the photon-subtracted

squeezed vacuum state (symmetric mode) at 515 MHz for a locked pump phase and

using the reconstruction parameters listed in table 6.2. Note that the uncorrected

(p0, p1) trajectory crosses the classical boundary but does not cross the Gaussian

boundary by a statistically-significant margin. Therefore this experimental state

can be statistically classified as a quantum Gaussian state but not as a quantum

non-Gaussian state.

The quantum non-Gaussian character witness is defined in §6.1 as W (a, s) −
WG(a). If this witness value is larger than 0, then the state is a quantum non-

Gaussian state. Therefore, we can obtain the optimal witness W (aopt, s)−WG(aopt)

as a function of the anti-squeezing parameter, s, for our reconstructed density ma-

trix. Figure 6.7 shows this optimal witness as a function of s for uncorrected exper-
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Figure 6.6: Projected symmetric mode (p0, p1) trajectory of our uncorrected exper-
imental data at 515 MHz for a locked pump phase. The uncorrected trajectory
crosses the classical boundary by a statistically-significant margin but does not sta-
tistically cross the Gaussian boundary, which means this experimental state cannot
be statistically classified as a quantum non-Gaussian state.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

AntiSqz Parameter

W
(a

,s
)−

W
G

(a
)

Gaussian region

Non−Gaussian region

Figure 6.7: Quantum non-Gaussian character witness of our uncorrected projected
symmetric mode state at 515 MHz for a locked pump phase. As the peak of this un-
corrected curve does not cross the W (a, s)−WG(a) = 0 boundary by a statistically-
significant margin, this state cannot be classified as a quantum non-Gaussian state.
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Figure 6.8: Projected anti-symmetric mode (p0, p1) trajectory of our uncorrected
experimental data at 515 MHz for a locked pump phase. The uncorrected trajectory
does not cross either the classical boundary or the Gaussian boundary due to the
low single-photon probability of the squeezed vacuum state.

imental data of the state in the projected symmetric side-band mode at 515 MHz

for a locked pump phase.

We also applied this non-Gaussian character witness to the uncorrected projected

anti-symmetric side-band state at 515 MHz for a locked pump phase. A squeezed

vacuum state is a quantum Gaussian state, and therefore we would expect the (p0, p1)

trajectory of our uncorrected experimental data to cross the classical boundary and

not the Gaussian boundary. Figure 6.8 shows the uncorrected (p0, p1) trajectory of

the projected squeezed vacuum state (anti-symmetric mode) at 515 MHz for a locked

pump phase. This trajectory was obtained by applying the anti-squeezing operation

to our uncorrected experimental density matrix obtained using the reconstruction

parameters listed in table 6.2. Anti-squeezing the experimental data results in a

(p0, p1) trajectory which does not cross either boundary. The PND of the uncorrected

projected squeezed vacuum state at 515 MHz does not have a high enough single-

photon probability to be classified as a quantum Gaussian state using this character

witness. It is possible that because this character witness is based on the p0 and

p1 properties of the state and not the two-photon probability, it cannot be used to

characterise squeezed vacuum states. Therefore, we propose that a new character

witness could be defined that applies to the p0 and p2 properties of a reconstructed

state. This could be further investigated in future work.
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Figure 6.9: Comparison of experimental photon number distributions corrected for
ηHD = 0.7368 for the projected symmetric (S-mode) and anti-symmetric (A-mode)
side-band modes at 515 MHz for a locked pump phase. The reconstruction param-
eters are listed in tables 6.1 & 6.2.

6.2.1.2 Corrected for ηHD

It was discussed in §2.8.3 that the optical homodyne detection efficiency can be

explicitly included in the maximum likelihood algorithm [245, 280]. Now we will

present tomographic reconstruction results from only correcting for the imperfect

detection efficiency due to optical characteristics of the experiment, which is given

as ηHD = ηQEηtζ
2. The experimental values for these parameters are defined in

table 6.1, and give ηHD = 0.7368 for the projected state measurements. Note that

this detection efficiency is higher than the values used to the correct the unprojected

states (which was ηHD = 0.676). This is because the tap-off reflectivity, r2 ≈ 0.08,

is not included in the propagation efficiency, ηt, for the projected state data as it

was in the unprojected state analysis.

Figure 6.9 shows the PNDs for the projected symmetric and anti-symmetric side-

band modes at 515 MHz corrected for ηHD = 0.7368 and with a locked pump phase.

These PNDs were reconstructed using the parameters listed in tables 6.1 & 6.2.

Correcting for ηHD in the reconstruction code does not correct for ηe(f), which is

the poor detection efficiency caused by data aliasing effects described in §5.1.1.

Figure 6.10 shows the Wigner functions for the photon-subtracted squeezed vac-

uum state in the symmetric mode (figure 6.10A) and the squeezed vacuum state

in the anti-symmetric mode (figure 6.10B) at 515 MHz corrected for ηHD = 0.7368

and with a locked pump phase. These quantum states clearly possess distinctive ex-

perimental Wigner functions, with the projected symmetric mode Wigner function
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Figure 6.10: Experimental Wigner functions corrected for ηHD = 0.7368 recon-
structed from projected data at 515 MHz for a locked pump phase. A) Photon-
subtracted squeezed vacuum state (symmetric mode), and B) squeezed vacuum state
(anti-symmetric mode). The reconstruction parameters are listed in tables 6.1 &
6.2.

becoming even more non-Gaussian after the data has been corrected for ηHD.

Figure 6.11 shows the (p0, p1) trajectory of the photon-subtracted squeezed vac-

uum state (symmetric mode) at 515 MHz corrected for ηHD = 0.7368 and with a

locked pump phase. This trajectory was obtained by applying the anti-squeezing

operation to our corrected experimental density matrix obtained using the recon-

struction parameters listed in table 6.2. Note that the efficiency-corrected (p0, p1)

trajectory crosses both the classical and Gaussian boundaries by a statistically-

significant margin. Therefore the state in the projected symmetric side-band mode

at 515 MHz corrected for ηHD = 0.7368 can be classified as a quantum non-Gaussian

state.

Figure 6.12 shows the optimal witness (W (aopt, s) −WG(aopt)) as a function of

the anti-squeezing parameter, s, for experimental data corrected for ηHD = 0.7368

of the state in the projected symmetric side-band mode at 515 MHz for a locked

pump phase. As the peak of this curve crosses the W (a, s)−WG(a) = 0 boundary

by a statistically-significant margin, this state can be classified as a quantum non-

Gaussian state. Therefore, despite the positive Wigner function shown in figure

6.10A, this character witness identifies our state as a quantum non-Gaussian state by

a statistically-significant margin. This indicates that this state cannot be prepared

by merely mixing Gaussian states.
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Figure 6.11: Projected symmetric mode (p0, p1) trajectory of our experimental
data corrected for ηHD = 0.7368 at 515 MHz for a locked pump phase. The
efficiency-corrected trajectory crosses both the classical and Gaussian boundaries
by a statistically-significant margin, which means this experimental state can be
classified as a quantum non-Gaussian state.
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Figure 6.12: Quantum non-Gaussian character witness of our projected symmetric
mode state corrected for ηHD = 0.7368 at 515 MHz for a locked pump phase. As the
peak of this efficiency-corrected curve crosses the W (a, s) −WG(a) = 0 boundary
by a statistically-significant margin, this state can be classified as a quantum non-
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Figure 6.13: Projected anti-symmetric mode (p0, p1) trajectory of our experimental
data corrected for ηHD = 0.7368 at 515 MHz for a locked pump phase. The efficiency-
corrected trajectory does not cross either the classical boundary or the Gaussian
boundary due to the low single-photon probability of the squeezed vacuum state.

Finally, we applied this non-Gaussian character witness to the corrected pro-

jected anti-symmetric side-band state at 515 MHz. Figure 6.13 shows the efficiency-

corrected (p0, p1) trajectory of the squeezed vacuum state (anti-symmetric mode)

at 515 MHz for a locked pump phase using the reconstruction parameters listed in

table 6.2. Anti-squeezing the experimental data results in a (p0, p1) trajectory which

again does not cross either boundary. In fact the trajectory is even further away

from the classical boundary compared to figure 6.8 due to the much lower single-

photon probability after the experimental data was corrected for ηHD. Therefore,

the PND of the corrected projected squeezed vacuum state at 515 MHz does not

have a high enough single-photon probability to be classified as a quantum Gaus-

sian state using this character witness. We will only present witness data for the

projected symmetric side-band modes of remaining states in this chapter.

6.2.2 1030 MHz and 1545 MHz projected modes

Since a smaller portion of the 1030 MHz and 1545 MHz side-band pairs are transmit-

ted by the optical filtering system compared to the 515 MHz side-band pair, there

is a smaller probability that a photon detected by the APD originated from the

second or third FSR. As we shall see, this caused the single-photon probabilities of

the states in the projected symmetric side-band modes at 1030 MHz and 1545 MHz

to be lower than the single-photon probability of the 515 MHz projected symmetric

mode state. A trend will be shown where a reduction in observed squeezing at these
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frequencies will have a detrimental effect on the non-classicality and non-Gaussianity

of the projected states.

6.2.2.1 Without detection efficiency correction

Figure 6.14 shows the uncorrected experimental PNDs of the projected symmetric

side-band modes (S-mode) at 1030 MHz and 1545 MHz for a locked pump phase.

The experimental PND shown in figure 6.14A was reconstructed from homodyne

tomography data of the projected state using the parameters listed in tables 6.1 &

6.4. This figure also shows the theoretical PND of a photon-subtracted squeezed

vacuum state mathematically simulated using the model outlined in §2.6. The model

parameters used to generate this theoretical PND of the symmetric mode at 1030

MHz are listed in table 6.6. The model and experimental PNDs shown in figure

6.14A agree within error. The experimental PND shown in figure 6.14B was re-

constructed using the parameters listed in tables 6.1 & 6.5. The theoretical PND

shown is of a photon-subtracted squeezed vacuum state mathematically simulated

using the parameters listed in table 6.6. The model and experimental PNDs shown

in figure 6.14B also agree within error.

Figure 6.15 shows the uncorrected experimental PNDs of the projected anti-

symmetric side-band modes (A-mode) at 1030 MHz and 1545 MHz for a locked

pump phase. The experimental PND shown in figure 6.15A was reconstructed from

homodyne tomography data of the projected state using the parameters listed in

tables 6.1 & 6.4. Figure 6.15A also shows the theoretical PND of the impure squeezed

vacuum state mathematically simulated using the model outlined in §2.6. The model

parameters used to generate the theoretical PND of the projected anti-symmetric

mode at 1030 MHz are listed in table 6.6. The model and experimental PNDs shown

in figure 6.15A agree within error. The experimental PND shown in figure 6.15B

was reconstructed using the parameters listed in tables 6.1 & 6.5. The theoretical

PND shown was mathematically simulated using the parameters listed in table 6.6.

The model and experimental PNDs shown in figure 6.15B also agree within error.

Note that the reduction in observed squeezing at 1030 MHz and 1545 MHz

directly leads to a different prediction for the projected PNDs at 1030 MHz and

1545 MHz compared to the projected PND at 515 MHz. A smaller ηHD was needed

to model the projected PNDs at the second and third FSRs due to the reduced

observed squeezing level, and the lower probability of photon-subtraction events

corresponding to photons at these frequencies.

Figure 6.16 shows the uncorrected Wigner functions for the 1030 MHz and 1545

MHz projected states. The uncorrected Wigner functions for the photon-subtracted

squeezed vacuum state in the symmetric mode and the squeezed vacuum state in
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Figure 6.14: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the projected 1030 MHz and 1545 MHz symmetric side-band
modes (S-mode) for a locked pump phase. A) 1030 MHz S-mode state reconstructed
using the parameters listed in tables 6.1 & 6.4, and the model parameters are listed
in table 6.6. B) 1545 MHz S-mode state reconstructed using the parameters listed
in tables 6.1 & 6.5, and the model parameters are listed in table 6.6.

Figure 6.15: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the projected 1030 MHz and 1545 MHz anti-symmetric (A-mode)
side-band modes for a locked pump phase. A) 1030 MHz A-mode state reconstructed
using the parameters listed in tables 6.1 & 6.4, and the model parameters are listed
in table 6.6. B) 1545 MHz A-mode state reconstructed using the parameters listed
in tables 6.1 & 6.5, and the model parameters are listed in table 6.6.
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Side-band Demodulation pump phase τ2 φ2

mode frequency window

Symmetric mode 1030 MHz -2.5◦ − 0◦ -153.3 ns 71.8◦

Anti-symmetric mode 1030 MHz -2.5◦ − 0◦ -160 ns 124◦

Table 6.4: Summary of parameters that were used to reconstruct projected states
for a locked pump phase at the second FSR (1030 MHz).

Side-band Demodulation Pump phase τ3 φ3

mode frequency window

Symmetric mode 1545 MHz -2.5◦ − 0◦ -162.9 ns 22.6◦

Anti-symmetric mode 1545 MHz -2.5◦ − 0◦ -140.5 ns 173◦

Table 6.5: Summary of parameters that were used to reconstruct projected states
for a locked pump phase at the third FSR (1545 MHz).

the anti-symmetric mode at 1030 MHz for a locked pump phase are shown in figures

6.16A and 6.16B, respectively. Whereas the uncorrected Wigner functions for the

photon-subtracted squeezed vacuum state in the symmetric mode and the squeezed

vacuum state in the anti-symmetric mode at 1545 MHz for a locked pump phase are

shown in figures 6.16C and 6.16D, respectively.

These pairs of Wigner functions at each FSR are less obviously different to each

other when compared to the states at 515 MHz. However, the Wigner functions of

the projected symmetric mode states at 1030 MHz and 1545 MHz have a less Gaus-

sian shape compared to the Wigner functions of the projected anti-symmetric states

as evident by their flattened tops. We will see these states become more noticeably

different after the data has been corrected for imperfect homodyne detection in the

next section.

Figure 6.17 shows the uncorrected (p0, p1) trajectories of the photon-subtracted

squeezed vacuum state (symmetric mode) at 1030 MHz and 1545 MHz for a locked

pump phase. The trajectory shown in figure 6.17A is for the 1030 MHz state and was

obtained by applying the anti-squeezing operation to our uncorrected experimental

density matrix reconstructed using the parameters listed in table 6.4. Whereas the

trajectory shown in figure 6.17B is for the 1545 MHz state and was obtained by ap-

plying the anti-squeezing operation to our uncorrected experimental density matrix

reconstructed using the parameters listed in table 6.5. Note that the uncorrected

(p0, p1) trajectory for the 1030 MHz projected state only crosses the classical bound-
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Side-band Pure squeezing Loss Tap-off ηHD ηAPD Pdc
mode level r1 r2

1030 MHz S-mode -3.474 dB 0.005 0.008 0.3 0.08 0.00175

1030 MHz A-mode -3.909 dB 0.005 0 0.7368 — —

1545 MHz S-mode -3.474 dB 0.005 0.008 0.195 0.08 0.00175

1545 MHz A-mode -3.474 dB 0.005 0 0.7368 — —

Table 6.6: Summary of model parameters used to simulated symmetric mode (S-
mode) and anti-symmetric mode (A-mode) for the 1030 MHz and 1545 MHz states
from the projected data results with locked pump phase.

ary by a statistically-significant margin and does not cross the Gaussian boundary

at all. The uncorrected (p0, p1) trajectory for the 1545 MHz projected state does

not cross either the classical or Gaussian boundaries. Therefore the projected sym-

metric mode state at 1030 MHz can be classified as a quantum Gaussian state but

not as a quantum non-Gaussian state, and the projected symmetric mode state at

1545 MHz is classified as a classical state.

Figure 6.18 shows the optimal witness W (aopt, s)−WG(aopt) as a function of the

anti-squeezing parameter, s, for uncorrected experimental data of the states in the

projected symmetric side-band modes at 1030 MHz (figure 6.18A) and 1545 MHz

(figure 6.18B) for a locked pump phase. Both of these graphs illustrate that since

the peak of the curves do not cross the W (a, s)−WG(a) = 0 boundary, these states

cannot be classified as quantum non-Gaussian states.

6.2.2.2 Corrected for ηHD

Figure 6.19 shows the PNDs for the projected symmetric and anti-symmetric side-

band modes at 1030 MHz and 1545 MHz corrected for ηHD = 0.7368 and with a

locked pump phase. The PNDs shown in figure 6.19A were reconstructed using the

parameters listed in tables 6.1 & 6.4. Correcting for ηHD in the reconstruction code

does not correct for ηe(f), which is the poor detection efficiency caused by data alias-

ing effects described in §5.1.1. The PNDs shown in figure 6.19B were reconstructed

using the parameters listed in tables 6.1 & 6.5. Figures 6.20A and 6.20B shows the

corresponding Wigner functions for the modes at 1030 MHz, whereas figures 6.20C

and 6.20D shows the corresponding Wigner functions for the modes at 1545 MHz.

The pairs of Wigner functions have become more noticeably different between the

projected symmetric and anti-symmetric modes after the data has been corrected

for ηHD. A small dip is starting to appear in the Wigner function of the 1030 MHz
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Figure 6.16: Experimental uncorrected Wigner functions reconstructed from pro-
jected data at 1030 MHz and 1545 MHz for a locked pump phase. A) 1030 MHz
photon-subtracted squeezed vacuum state (symmetric mode), B) 1030 MHz squeezed
vacuum state (anti-symmetric mode), C) 1545 MHz photon-subtracted squeezed
vacuum state (symmetric mode), and D) 1545 MHz squeezed vacuum state (anti-
symmetric mode). The reconstruction parameters are listed in tables 6.1, 6.4 &
6.5.

projected symmetric mode state.

Figure 6.21 shows the efficiency-corrected (p0, p1) trajectories of the photon-

subtracted squeezed vacuum states (symmetric mode) at 1030 MHz (figure 6.21A)

and 1545 MHz (figure 6.21B) corrected for ηHD = 0.7368 and with a locked pump

phase. Figures 6.22A and 6.22B shows the corresponding optimal witnesses for

the 1030 MHz and 1545 MHz states, respectively. Note that the efficiency-corrected

(p0, p1) trajectory of the 1030 MHz state crosses the classical boundary by a statistically-

significant margin but still does not cross the Gaussian boundary. Whereas the tra-

jectory for the 1545 MHz state does not cross either boundary. Therefore the 1030

MHz projected symmetric side-band mode state corrected for ηHD = 0.7368 is still

classified as a quantum Gaussian state despite the improvements made to the state

by correcting for ηHD, and the 1545 MHz projected symmetric mode state is still

classified as a classical state.

6.2.3 Comparing projected A-mode with unprojected S-mode

We now will briefly discuss a ‘sanity check’ by comparing the projected squeezed

vacuum state in the anti-symmetric mode at 515 MHz to the unprojected squeezed

vacuum state in the symmetric mode at 515 MHz, which was previously shown

in chapter 5. Figure 6.23 shows the uncorrected experimental PND of the pro-

jected anti-symmetric side-band mode and of the unprojected symmetric mode at



Chapter 6. Two-mode photon-subtracted squeezed vacuum results 182

Figure 6.17: Projected symmetric mode (p0, p1) trajectories of our uncorrected ex-
perimental data at 1030 MHz and 1545 MHz for a locked pump phase. A) Uncor-
rected trajectory for the 1030 MHz S-mode state; it crosses the classical boundary
by a statistically-significant margin but does not cross the Gaussian boundary at
all, which means this experimental state cannot be classified as a quantum non-
Gaussian state. B) Uncorrected trajectory for the 1545 MHz S-mode state; it does
not cross either boundary and is therefore classified as a classical state.
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Figure 6.18: Quantum non-Gaussian character witness of our uncorrected projected
symmetric mode states at 1030 MHz and 1545 MHz for a locked pump phase. A)
Character witness for the 1030 MHz S-mode state, and B) Character witness for
the 1545 MHz S-mode state. As neither peak of these uncorrected curves crosses
the W (a, s) −WG(a) = 0 boundary, neither state can be classified as a quantum
non-Gaussian state.

515 MHz for a locked pump phase. The projected anti-symmetric mode PND was

reconstructed from the homodyne tomography data using the parameters listed in

tables 6.1 & 6.2. Whereas the unprojected symmetric PND was previously shown

in chapter 5 and was reconstructed using the parameters listed in tables 5.3 & 5.8.

Theoretically these states should be the same as both experimental data runs had

the same amount of input pump power and squeezing from the OPO. Note that

these PNDs agree within error.

6.3 Frequency-entangled projected states

The multi-frequency spectral nature of the transmission function from the filter

cavities caused the trigger mode to consist of multiple FSR side-band pairs. This

is demonstrated by our ability to reconstruct side-band modes at multiple FSR

frequencies instead of only at the first FSR. Since the APD cannot distinguish

between these frequencies, this projective measurement results in an entangled state

between the multiple FSR states. Isolating a single FSR pair by demodulating at

an individual frequency destroys any possible correlations that may exist between

the FSRs.

In chapter 4 we made the hypothesis that the quality of the projected state may
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Figure 6.19: Comparison of experimental photon number distributions corrected for
ηHD = 0.7368 for the projected symmetric (S-mode) and anti-symmetric (A-mode)
side-band modes at 1030 MHz and 1545 MHz for a locked pump phase. A) 1030
MHz S- and A-mode states reconstructed using the parameters listed in tables 6.1 &
6.4. B) 1545 MHz S- and A-mode states reconstructed using the parameters listed
in tables 6.1 & 6.5.

Figure 6.20: Experimental Wigner functions corrected for ηHD = 0.7368 recon-
structed from projected data at 1030 MHz and 1545 MHz for a locked pump phase.
A) 1030 MHz photon-subtracted squeezed vacuum state (symmetric mode), B)
1030 MHz squeezed vacuum state (anti-symmetric mode), C) 1545 MHz photon-
subtracted squeezed vacuum state (symmetric mode), and D) 1545 MHz squeezed
vacuum state (anti-symmetric mode). The reconstruction parameters are listed in
tables 6.1, 6.4, & 6.5.
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Figure 6.21: Projected symmetric mode (p0, p1) trajectory of our experimental data
corrected for ηHD = 0.7368 at 1030 MHz and 1545 MHz for a locked pump phase.
A) Efficiency-corrected trajectory for the 1030 MHz S-mode state; it crosses the
classical boundary by a statistically-significant margin but does not cross the Gaus-
sian boundary, which means this experimental state cannot be statistically classified
as a quantum non-Gaussian state. B) Efficiency-corrected trajectory for the 1545
MHz S-mode state; it does not cross either boundary and is therefore classified as a
classical state.
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Figure 6.22: Quantum non-Gaussian character witness of our projected symmetric
mode states corrected for ηHD = 0.7368 at 1030 MHz and 1545 MHz for a locked
pump phase. A) Efficiency-corrected character witness for the 1030 MHz S-mode
state, and B) Efficiency-corrected character witness for the 1545 MHz S-mode state.
As neither peak of these corrected curves crosses the W (a, s)−WG(a) = 0 boundary,
neither state can be classified as a quantum non-Gaussian state.
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Figure 6.23: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the projected 515 MHz anti-symmetric (A-mode projected) side-
band mode to the uncorrected experimental photon number distribution of the un-
projected 515 MHz symmetric (S-mode unprojected) side-band mode for a locked
pump phase. The reconstruction parameters for the A-mode projected state are
listed in tables 6.1 & 6.2, and for the S-mode unprojected state are listed in tables
5.3 & 5.8.
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Figure 6.24: Final weightings of the FSR components in the multi-frequency tem-
poral mode function used in projected state reconstruction.

improve if we applied a frequency-offset temporal mode function which best matched

the trigger spectrum. However, due to the presence of data aliasing, the ideal tem-

poral mode function needs to incorporate both the FSR weightings predicted by the

measured optical trigger spectrum (presented in §4.3.2) and the detection efficiency

ratios at each FSR frequency determined in §5.1.1. We will show later in this section

that adjusting the detection efficiency ratios away from the experimentally deter-

mined values decreases the single-photon probability and increases the zero-photon

probability of the photon-subtracted squeezed vacuum state (i.e. makes the state

‘worse’).

Therefore, we applied a multi-frequency temporal mode function (as described

by equation 5.6) with the weightings of the FSR components determined by the

measured optical trigger mode spectrum multiplied by ηe(f) for each frequency - see

equation 5.10. Figure 6.24 shows the final weightings of each FSR component used

in the multi-frequency temporal mode function. The temporal and phase offsets

used in the function follow the relationships described by equation 5.12, and are

summarised in table 6.7.

We showed in §5.3.4 that the quality of the reconstructed unprojected squeezed

vacuum state was worse when this multi-frequency temporal mode function was

used. We argued that this occurred because the individual FSR states in the unpro-

jected data were independent. Therefore using the multi-FSR function resulted in a

weighted average, which combined ‘worse’ unprojected squeezed vacuum states from

the second and third FSRs with the ‘better’ state at the first FSR in a weighted fash-

ion. However, if the FSR states were entangled then using this type of function may
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uncover the hidden correlations and improve the quality of the reconstructed state.

Due to the multi-FSR spectrum of our trigger mode, it is probable that we created

an entangled state between the first three FSR states generated by our SS-NOPO.

We will now present data that supports this claim.

6.3.1 Without detection efficiency correction

Figure 6.25 shows the uncorrected experimental PND of the projected symmetric

side-band mode (S-mode) reconstructed using the multi-frequency temporal mode

function described by equation 5.6 for a locked pump phase. This PND was recon-

structed from homodyne tomography data of the projected state using the parame-

ters listed in tables 6.1 & 6.7. Figure 6.25 also shows the uncorrected experimental

PND of the projected symmetric side-band mode (S-mode) at 515 MHz reconstructed

using the parameters listed in tables 6.1 & 6.2. These PNDs are shown together to

illustrate the increase in the single-photon probability and decrease in zero-photon

and two-photon probabilities of the multi-FSR S-mode state compared to that of the

515 MHz S-mode state. To reiterate, this multi-frequency temporal mode function

incorporates the quantum states from all three FSRs. In spite of the poorer qualities

of the individual 1030 MHz and 1545 MHz projected S-mode states compared to

the 515 MHz projected S-mode state, the multi-FSR state is somewhat improved

compared to the 515 MHz state alone. This is in all likelihood due to the entangle-

ment between the FSRs, and utilising the more complex temporal mode function

reveals those hidden correlations. Applying this same function to the unprojected

data (shown in §5.3.4) resulted in a ‘worse’ (weighted average) squeezed vacuum

state because entanglement did not exist between the FSR states. Thus, combining

‘worse’ data due to data aliasing effects with ‘better’ data (i.e. 515 MHz state) gave

an overall ‘worse’ state (i.e. a weighted average). To strengthen this argument, we

show a third PND in figure 6.25 which was calculated from a weighted average of

the three individual projected symmetric mode FSR states via,

diag(ρ̂Ave) = γ2
1 × diag(ρ̂515) + γ2

2 × diag(ρ̂1030) + γ2
3 × diag(ρ̂1545), (6.8)

where diag(ρf ) are the experimental PNDs of the projected symmetric modes at each

of the FSR frequencies, and the coefficients γ1, γ2, γ3 are calculated via equation

5.10. As expected, the weighted average is of worse quality (i.e. lower single-photon

probability and higher zero-photon probability) compared to both of the other PNDs

shown in figure 6.25.

Figure 6.26 shows the uncorrected experimental PND of the projected anti-

symmetric side-band mode (A-mode) reconstructed using the multi-frequency tem-



189 6.3. Frequency-entangled projected states

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photon number

P
ro

b
a
b
ili

ty

 

 

S−mode (Multi−FSR)
S−mode (1st FSR)
Weighted average

Figure 6.25: Comparison of uncorrected experimental photon number distributions
of the state in the projected symmetric side-band mode reconstructed using the
multi-frequency temporal mode function (S-mode Multi-FSR) to the uncorrected
experimental photon number distribution of the state in the projected symmetric
side-band mode at 515 MHz (S-mode 1st FSR) for a locked pump phase, along with
the PND of the weighted average of all three projected S-mode FSR states (weighted
average). The reconstruction parameters for the S-mode multi-FSR state are listed
in tables 6.1 & 6.7, and for the S-mode 1st FSR state are listed in tables 6.1 & 6.2.
The weighted average was calculated via equation 6.8.
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Figure 6.26: Comparison of uncorrected experimental photon number distributions
of the projected anti-symmetric side-band mode state (A-mode Multi-FSR) recon-
structed using the multi-frequency temporal mode function to the uncorrected ex-
perimental PND of the projected anti-symmetric side-band mode state at 515 MHz
(A-mode 1st FSR) for a locked pump phase, along with the PND of the weighted
average of all three projected A-mode FSR states (weighted average). The recon-
struction parameters for the projected A-mode multi-FSR state are listed in tables
6.1 & 6.7, and the reconstruction parameters for the projected A-mode 1st FSR state
are listed in tables 6.1 & 6.2. The weighted average was calculated via equation 6.8.
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Side-band mode τm φm ∆τ2 ∆φ2 ∆τ3 ∆φ3

S-mode 52.6 ns 148.4◦ -204.9 ns -82.5◦ -214.5 ns -131.7◦

A-mode 22.3 ns 70.6◦ -180 ns 46◦ -160.5 ns 95◦

Table 6.7: Summary of parameters that were used to reconstruct the projected states
for a locked pump phase (∆φpump = 2.5◦, ωs = 2π× 515 MHz) using the multi-FSR
temporal mode function described by equation 5.6.

poral mode function described by equation 5.6 for a locked pump phase. This PND

was reconstructed from homodyne tomography data of the projected state using

the parameters listed in tables 6.1 & 6.7. Figure 6.26 also shows the uncorrected

experimental PND of the projected anti-symmetric side-band mode at 515 MHz re-

constructed using the parameters listed in tables 6.1 & 6.2. These PNDs are shown

together to illustrate the increase in the two-photon probability and decrease in

one-photon probability of the multi-FSR A-mode state compared to that of the 515

MHz A-mode state. In spite of the poorer qualities of the individual 1030 MHz and

1545 MHz projected A-mode states compared to the 515 MHz projected A-mode

state, the multi-FSR state is somewhat improved compared to the 515 MHz state

alone. The two-photon probability of the multi-FSR state is now larger than the

one-photon probability by a statistically-significant margin. This is in all likelihood

due to the entanglement between the FSRs, and utilising the more complex tempo-

ral mode function reveals those hidden correlations. To strengthen this argument,

we show a third PND in figure 6.26 which was calculated from a weighted average of

the three individual projected anti-symmetric mode FSR states via equation 6.8. As

expected, the weighted average is of worse quality (i.e. lower two-photon probability

and higher one-photon probability) compared to the multi-FSR PND.

Figure 6.27 shows the uncorrected Wigner functions for the multi-FSR photon-

subtracted squeezed vacuum state in the symmetric mode (figure 6.27A) and the

squeezed vacuum state in the anti-symmetric mode (figure 6.27B) reconstructed us-

ing the multi-frequency temporal mode function described by equation 5.6 for a

locked pump phase. These Wigner functions are more obviously different than com-

pared to the states at 515 MHz (figure 6.5). The Wigner function of the projected

symmetric mode state has a clear dip near W (0, 0) without correction for inefficient

detection, and has a distinct non-Gaussian shape compared to the Wigner function

of the projected anti-symmetric mode state. We will see these modes become even

more different after the data has been corrected for imperfect homodyne detection

in the next section.

Figure 6.28 shows the uncorrected (p0, p1) trajectory of the multi-FSR photon-
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Figure 6.27: Experimental uncorrected Wigner functions reconstructed from pro-
jected data using the multi-frequency temporal mode function described by equa-
tion 5.6 for a locked pump phase. A) Photon-subtracted squeezed vacuum state
(symmetric mode), and B) squeezed vacuum state (anti-symmetric mode). The
reconstruction parameters are listed in tables 6.1 & 6.7.

subtracted squeezed vacuum state (symmetric mode) reconstructed using the multi-

frequency temporal mode function described by equation 5.6 for a locked pump

phase. This trajectory was obtained by applying the anti-squeezing operation to

our uncorrected experimental density matrix obtained using the reconstruction pa-

rameters listed in table 6.7. Note that unlike the uncorrected (p0, p1) trajectory of

the projected symmetric mode state at 515 MHz, the uncorrected (p0, p1) trajec-

tory of this multi-FSR state crosses both the classical boundary and the Gaussian

boundary by a statistically-significant margin. Therefore, unlike the 515 MHz state,

this multi-FSR experimental state can be statistically classified as a quantum non-

Gaussian state.

Figure 6.29 shows the corresponding optimal quantum non-Gaussian character

witness, W (aopt, s)−WG(aopt), as a function of the anti-squeezing parameter, s. As

the peak of this curve crosses the W (a, s)−WG(a) = 0 boundary by a statistically-

significant margin, this state can be classified as a quantum non-Gaussian state.

Experimental characterisation of the frequency transfer function of the optical

filter cavities was presented in chapter 4. The γ-factors in the multi-FSR temporal

mode function used in the state reconstructions presented in this section are weight-

ings derived from these filter measurements combined with the effective homodyne

detection efficiencies, ηe(f), due to data aliasing. The FSR proportions used in the
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Figure 6.29: Quantum non-Gaussian character witness of our uncorrected projected
symmetric mode state reconstructed using the multi-frequency temporal mode func-
tion described by equation 5.6 for a locked pump phase. As the peak of this uncor-
rected curve crosses the W (a, s) - WG(a) = 0 boundary by a statistically-significant
margin, this state can be classified as a quantum non-Gaussian state.
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final mode function is depicted in figure 6.24. It is important to verify whether the

mode function derived from these measurements is in fact the ideal function. As we

have already justified the filter parameters derived from the various measurements

(see §4.3.2), we will now concentrate on testing whether the effective homodyne

detection efficiencies, ηe(f), previously discussed are the optimal values for shaping

the ratios of the FSR components in the temporal mode function.

The relationship between adjusting the effective homodyne detection efficiencies

used in the mode function, and the zero-photon and single-photon probabilities of

the reconstructed photon-subtracted squeezed vacuum state was investigated. As

discussed in §5.1.1, undersampling the homodyne signal led to data aliasing effects,

which lowered the effective homodyne detection efficiencies at the FSR frequencies.

This effect was quantified by the ηe(f) parameter (equation 5.1), which affected the

final FSR ratios in the mode function (equation 5.10). We found that the most

influential quantity of these efficiencies on the mode function was the detection

efficiency ratio between the second and third FSRs,

DetRatio =
ηe(1030 MHz)

ηe(1545 MHz)
(6.9)

Experimental characterisation of the data aliasing effects determined this ratio to be

∼ 7.663 from table 6.1. Hypothetically, we could treat that ratio as a free parameter

in the tomographic reconstruction of the experimental data and explore how the

results change as a consequence. Adjustments to ηe(1030 MHz)/ηe(1545 MHz) away

from the measured quantity led to a statistically-significant decrease in the single-

photon probability of the photon-subtracted squeezed vacuum state, which is shown

in figure 6.30. There is also a statistically-significant increase in the zero-photon

probability. Therefore, the spectral mode function based on the measured cavity

parameters and measured homodyne detection efficiencies resulted in the optimum

reconstruction of the quantum states.

6.3.2 Corrected for ηHD

Figure 6.31 shows the PNDs for the projected symmetric side-band mode (S-mode

Multi-FSR) reconstructed using the multi-frequency temporal mode function de-

scribed by equation 5.6 corrected for ηHD = 0.7368 and with a locked pump phase.

This PND was reconstructed from homodyne tomography data of the projected

state using the parameters listed in tables 6.1 & 6.7. Figure 6.31 also shows the

PND of the symmetric side-band mode (S-mode 1st FSR) at 515 MHz corrected

for ηHD = 0.7368 and reconstructed using the parameters listed in tables 6.1 & 6.2.

These PNDs are shown together to illustrate the increase in the single-photon prob-
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Figure 6.30: Photon number probabilities as a function of effective homodyne de-
tection efficiency ratios used in the multi-frequency temporal mode function for
projected state reconstruction. The detection efficiency ratio used for state recon-
struction presented in this section is labelled in the figure. The single-photon prob-
ability is shown in blue and vacuum probability is shown in red; the lines connecting
the data points is shown to illustrate the data trend and is not a theory curve.

ability and decrease in zero-photon and two-photon probabilities of the multi-FSR

S-mode state compared to that of the 515 MHz S-mode state.

It is interesting to note that the three-photon probability of the multi-FSR sym-

metric mode shown in figure 6.31 is now larger than the two-photon probability by

a statistically-significant margin. This is not the case for the 515 MHz projected

S-mode state. As mentioned in chapter 1, this type of PND is only possible from

photon-subtracted squeezed vacuum states, which are generally thought of as being

produced from strictly degenerate PDC. We have experimentally demonstrated that

applying a projection and state reconstruction measurement technique that can-

not discern between the upper and lower side-bands leads to a photon-subtracted

squeezed state from frequency nondegenerate PDC produced by a SS-NOPO.

Figure 6.32 shows the experimental PND corrected for ηHD = 0.7368 of the

projected anti-symmetric side-band mode (A-mode Multi-FSR) reconstructed using

the multi-frequency temporal mode function described by equation 5.6 for a locked

pump phase. This PND was reconstructed from homodyne tomography data of the

projected state using the parameters listed in tables 6.1 & 6.7. Figure 6.32 also

shows the experimental PND corrected for ηHD = 0.7368 of the anti-symmetric

side-band mode at 515 MHz (A-mode 1st FSR) reconstructed using the parameters

listed in tables 6.1 & 6.2. These PNDs are shown together to illustrate the clear

increase in the two-photon probability and decrease in one-photon probability of the
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Figure 6.31: Comparison of experimental photon number distributions corrected
for ηHD = 0.7368 of the state in the projected symmetric side-band mode (S-mode
Multi-FSR) reconstructed using the multi-frequency temporal mode function to the
experimental PND corrected for ηHD = 0.7368 of the state in the projected symmet-
ric side-band mode at 515 MHz (S-mode 1st FSR) for a locked pump phase. The
reconstruction parameters for the S-mode multi-FSR state are listed in tables 6.1 &
6.7, and for the S-mode 1st FSR state are listed in tables 6.1 & 6.2.

multi-FSR A-mode state compared to that of the 515 MHz A-mode state.

Figure 6.33 shows the corresponding Wigner functions corrected for ηHD =

0.7368 for the photon-subtracted squeezed vacuum state in the symmetric mode

(figure 6.33A) and the squeezed vacuum state in the anti-symmetric mode (figure

6.33B) reconstructed using the multi-frequency temporal mode function described

by equation 5.6 for a locked pump phase. These Wigner functions are more notice-

ably different to each other than compared to the states at 515 MHz (figure 6.10).

The Wigner function of the projected symmetric mode state has a clear dip near

W (0, 0), and has a distinct non-Gaussian shape compared to the Wigner function

of the projected anti-symmetric mode state.

Figure 6.34 shows the efficiency-corrected (p0, p1) trajectory of the photon-subtracted

squeezed vacuum state (symmetric mode) reconstructed using the multi-frequency

temporal mode function described by equation 5.6 for a locked pump phase. This

trajectory was obtained by applying the anti-squeezing operation to our experimen-

tal density matrix corrected for ηHD = 0.7368 obtained using the reconstruction

parameters listed in table 6.7. The efficiency-corrected (p0, p1) trajectory of this

multi-FSR state crosses both the classical boundary and the Gaussian boundary by

a statistically-significant margin. Therefore, this corrected multi-FSR experimen-

tal state can be statistically classified as a quantum non-Gaussian state. Figure
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Figure 6.32: Comparison of experimental photon number distributions corrected for
ηHD = 0.7368 of the projected anti-symmetric side-band mode state reconstructed
using the multi-frequency temporal mode function (A-mode Multi-FSR) to the ex-
perimental PND corrected for ηHD = 0.7368 of the projected anti-symmetric side-
band mode state at 515 MHz (A-mode 1st FSR) for a locked pump phase. The
reconstruction parameters for the A-mode multi-FSR state are listed in tables 6.1
& 6.7, and the reconstruction parameters for the A-mode 1st FSR state are listed
in tables 6.1 & 6.2.

Figure 6.33: Experimental Wigner functions corrected for ηHD = 0.7368 recon-
structed from projected data using the multi-frequency temporal mode function de-
scribed by equation 5.6 for a locked pump phase. A) Photon-subtracted squeezed
vacuum state (symmetric mode), and B) squeezed vacuum state (anti-symmetric
mode). The reconstruction parameters are listed in tables 6.1 & 6.7.
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Figure 6.34: Projected symmetric mode (p0, p1) trajectory of our experimental data
corrected for ηHD = 0.7368 reconstructed using the multi-frequency temporal mode
function described by equation 5.6 for a locked pump phase. The efficiency-corrected
trajectory crosses both the classical boundary and the Gaussian boundary by a
statistically-significant margin, which means this experimental state can be statis-
tically classified as a quantum non-Gaussian state.

6.35 shows the corresponding optimal quantum non-Gaussian character witness,

W (aopt, s)−WG(aopt), as a function of the anti-squeezing parameter, s.

We have seen that applying this multi-frequency mode function with the ap-

propriate temporal and phase offsets reveals the entanglement between the FSR

side-band pairs. This leads to an improvement in the quality of the quantum non-

Gaussian state, as evident by the uncorrected photon-subtracted squeezed vacuum

state reconstructed with the multi-frequency function crossing both the classical

and Gaussian boundaries by a statistically-significant margin. We confirm that the

quantum non-Gaussian character witness proposed in [313] demonstrates a powerful

ability to identify non-classical and quantum non-Gaussian states.

Recall that the use of this mode function on the unprojected data resulted in

a weighted-average of the quantum states at the three FSRs, which was worse due

to the FSRs being uncorrelated. However, the FSRs became entangled in the pro-

jected state due to the spectral nature of the optical trigger mode, and the use

of this mode function improved the quality of both the projected symmetric and

projected anti-symmetric quantum states. Despite the relatively small contribu-

tion of the third FSR in the mode function, including this frequency component

in the demodulation function had a significant effect on the quality of the recon-

structed photon-subtracted squeezed vacuum state. It is interesting to note that

an entangled spectrum of side-bands is necessary to produce a resource state for



199 6.4. Impact of ηAPD and Pdc on projected state

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

AntiSqz Parameter

W
(a

,s
)−

W
G

(a
)

Gaussian region

Non−Gaussian region

Figure 6.35: Quantum non-Gaussian character witness of our projected symmetric
mode state corrected for ηHD = 0.7368 reconstructed using the multi-frequency
temporal mode function described by equation 5.6 for a locked pump phase. As
the peak of this corrected curve crosses the W (a, s) − WG(a) = 0 boundary by
a statistically-significant margin, this state can be classified as a quantum non-
Gaussian state.

time-division-multiplexing (TDM) in which a channel is divided into several time

bins. The number of entangled FSRs is only limited by the detection bandwidth of

the APD, and the frequency transfer function of the optical filter system. Therefore,

these quantum states could lead to ultra-fast TDM channels [163].

6.4 Impact of ηAPD and Pdc on projected state

Although superconducting transition edge sensors (TESs) with photon-number-

resolving ability are available [227,228], commercially available APDs are still widely

used as photon-number detectors in Schrödinger kitten state generation experi-

ments since cryogenic environments are required for TESs. Typical characteristics

of commercially available telecommunication wavelength InGaAs-APDs (ID Quan-

tique Ltd.) range between 10−4 to 10−5 for dark count probabilities (Pdc), and

∼ 10%−20% for quantum detection efficiencies (ηAPD). These quantities are orders

of magnitude worse compared to typical ∼ 860 nm wavelength Si-APDs (Perkin

Elmer Ltd.), which are Pdc = 5× 10−6 to 2.5× 10−7 for ηAPD = 45% [304]. Si-APDs

perform better than InGaAs-APDs due to their lower dark count probabilities and

higher detection efficiencies.

We have established throughout this chapter and the previously chapter that we

have a theoretical model that is consistent with our experimental results. Therefore
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Figure 6.36: Comparison of uncorrected experimental and theoretical photon num-
ber distributions of the 515 MHz projected symmetric side-band mode (S-mode) for
two different types of APDs. The reconstruction parameters are listed in tables 6.1
& 6.2, and the model parameters are listed in table 6.8.

Side-band Pure squeezing Loss Tap-off ηHD ηAPD Pdc
mode level r1 r2

515 MHz S-mode -3.474 dB 0.005 0.008 0.7368 0.08 0.00175
(InGaAs-APD)

515 MHz S-mode -3.474 dB 0.005 0.008 0.7368 0.45 0.00001
(Si-APD)

Table 6.8: Summary of model parameters used to simulated symmetric mode (S-
mode) for the 515 MHz states from the projected data results for two different
projecting detectors (APDs).
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we are able to use that model to predict the expected photon-subtracted squeezed

vacuum state if the projecting detector (APD) had a higher quantum efficiency

and a lower dark count rate. Table 6.8 lists the parameters of the two project-

ing detectors used to predict such a state using the model reviewed in §2.6. The

InGaAs-APD parameters are the same as the ones used throughout this chapter

when modelling the various projected states. The parameters for the Si-APD are

of a typical Si device currently commercially available [304]. Figure 6.36 shows the

uncorrected experimental photon number distribution (PND) of the projected sym-

metric side-band mode (S-mode) at 515 MHz for a locked pump phase. This PND

was reconstructed from homodyne tomography data of the projected state using the

parameters listed in tables 6.1 & 6.2. Figure 6.36 also shows two theoretical PNDs

of photon-subtracted squeezed vacuum state projected using two different types of

APDs: an InGaAs-APD and a Si-APD (parameters listed in table 6.8). This model

predicts that if we were to connect a projecting detector to the existing experiment

that had the characteristics of a standard Si-APD, we would expect a single-photon

probability to be ∼ 60%, which would most likely correspond to negativity in the

Wigner function. This figure illustrates how the qualities of the projecting detector

have a significant influence over the quality of the projected state, and the various

technical challenges that must be overcome in a hybrid experiment performed at

1550 nm.

6.5 Summary

Experimental results from a photon-subtracted two-mode squeezed vacuum state

generated by a side-band-scale nondegenerate optical parametric oscillator (SS-

NOPO) were presented. Measuring this state in a rotated basis revealed two distinct

quantum states in independent side-band modes. These modes could be accessed and

manipulated separately within a single optical mode. Despite its positive Wigner

function, the photon-subtracted squeezed vacuum state was determined to be a

quantum non-Gaussian state according to a recently formulated character witness.

It is important to note that the detection of a trigger photon heralds the genera-

tion of both the quantum non-Gaussian and squeezed vacuum states, which is a

unique property of working with distinguishable frequency side-bands. Utilising a

multi-frequency temporal mode function revealed an improvement in the quality

of the projected states. This demonstrated the presence of entanglement between

the first, second, and third FSR states. The spectral shape of this multi-frequency

temporal mode function was investigated. This investigation established that the

ideal weightings between the FSR components were determined by the frequency
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characterisation measurements of the optical filter system, and homodyne detection

efficiencies due to data aliasing effects. Finally, the detrimental effects on the quality

of a photon-subtracted squeezed vacuum state caused by a high dark count proba-

bility and low quantum detection efficiency of the projecting detector were briefly

discussed. We presented a model of the expected projected state if we were to use a

projecting detector with the qualities of a Si-APD. It was established that we could

theoretically achieve a projected state with a single-photon probability of ∼ 60% if

a commercial InGaAs-APD could be fabricated with a lower dark count rate and

higher detection efficiency similar to a standard Si-APD.



Chapter 7

Conclusions

7.1 Summary

This thesis was focussed on the generation and characterisation of two-mode quan-

tum states. These quantum states were generated by frequency nondegenerate

parametric down-conversion produced by a side-band-scale nondegenerate optical

parameteric oscillator (SS-NOPO). Time and effort were invested to improve the

stability and nonlinearity of this experiment with the goal of generating a projected

state with a higher single photon probability than previously achieved. We obtained

this goal and, more importantly, experimentally demonstrated a photon-subtraction

operation which affected the symmetric side-band mode without affecting the anti-

symmetric side-band mode.

The vital components of the experiment that led to the experimental results high-

lighted in this thesis were discussed in detail. In particular, a simple and powerful

technique for high-frequency characterisation of an optical system, such as measur-

ing the linewidth and FSR of a cavity, was highlighted as an important experimental

tool. An accurate measurement of the FSR of a cavity is experimentally challenging

and usually requires a high-frequency photodetector. Our technique utilises a stan-

dard fibre amplitude modulator and a readily-available power meter to monitor the

transmitted power through the system as a function of modulation frequency. This

discovery allowed the frequency transfer function of the trigger mode filter cavities

to be measured.

We demonstrated theoretically that a two-mode squeezed vacuum state can be

decomposed into two single-mode squeezed vacuum states in the rotated side-band

basis. We defined this basis as the symmetric and anti-symmetric modes, which

are linear combinations of the upper and lower side-bands. Measuring a two-mode

squeezed vacuum state generated by a SS-NOPO using a technique that probes the

states in this rotated basis allowed us to reconstruct the two single-mode squeezed
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vacuum states. This novel technique combines phase-locked frequency demodulation

with wide-bandwidth homodyne detection. We were able to reconstruct single-mode

squeezed vacuum states at the first three FSR frequencies of our SS-NOPO due

to the 2 GHz detection bandwidth of our homodyne detector. This was the first

experimental demonstration of quantum state tomography of single-mode squeezed

vacuum states from two-mode squeezed vacuum states produced by a SS-NOPO at

multiple FSR frequencies.

We then discussed the projection of a photon-subtracted two-mode squeezed

vacuum state using a photodetection technique that could not distinguish whether

the subtracted photon originated from the upper or lower frequency side-band. State

generation theory predicted that applying such a projector to the two-mode squeezed

vacuum state would generate a photon-subtracted squeezed vacuum state in the

symmetric mode without affecting the single-mode squeezed vacuum state in the

orthogonal mode. We experimentally confirmed this prediction and demonstrated

photon-subtraction from a two-mode squeezed vacuum state, which generated a

powerful quantum resource state consisting of two distinguishable quantum states:

a quantum non-Gaussian state in one side-band mode and a squeezed vacuum state

in the orthogonal mode. These states exist as independent states in a single optical

beam.

Due to the multi-frequency nature of our optical trigger mode, we were able

to isolate and reconstruct both photon-subtracted squeezed vacuum states and

squeezed vacuum states at the first three FSR frequencies of our SS-NOPO. We

showed that we could improve the quality of the reconstructed quantum states by

utilising a multi-frequency temporal mode function which best matched the spec-

tral properties of our trigger mode and the data aliasing effects of the homodyne

data. Therefore, the mode function depended on both the optical filtering sys-

tem implemented before the APD, and on the data aliasing effects caused by digi-

tally undersampling our high-frequency homodyne detection signal. Reconstructing

the quantum states using this multi-frequency temporal mode function improved

the quality of both the quantum non-Gaussian and squeezed vacuum states, and

demonstrated entanglement between the three FSR side-band pairs. Such a fre-

quency entangled quantum resource state could be useful in applications such as

time-division-multiplexing.

Finally, we applied a theoretical model for impure squeezed vacuum and Schrödinger

kitten state generation with imperfect experimental conditions to our experimen-

tal results. This model predicts that the single-photon probability of our photon-

subtracted squeezed vacuum state would significantly increase if we were to use a

projecting detector with a lower dark count probability and higher quantum effi-

ciency.
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7.2 Suggestions for Future Work

We have illustrated the power and flexibility possible in quantum optics experiments

that capitalise on the frequency nondegenerate nature of SS-NOPOs. There are

several improvements/extensions that could be made to this experiment, such us

• Unresolved technical issues: There are some technical issues that should be

resolved, such as locating the source of the unknown phase drift that affects the

pump phase. We have demonstrated how the amount of squeezing measured

in the quantum state is related to the pump phase lock. Therefore, it would

be better to experimentally phase-lock the pump phase to reduce the amount

of homodyne data that needs to be rejected during post-processing.

• Build a new optical parametric oscillator: As discussed in chapter 4, the

effective nonlinearities of our PPLN crystals are quite low compared to other

nonlinear medium, such as PPKTP. One way to improve the system would

be to replace the OPO with a new optical system that uses a PPKTP crystal

and has a different cavity geometry with a much smaller beam waist at the

crystal location. These changes should increase the effective nonlinearity of

the crystal and lower the OPO threshold so that less 775 nm optical power is

required to produce a similar level of squeezing.

• Improving the projecting detector: As mentioned towards the end of

chapter 6, using an APD with a lower dark count rate and higher detection

efficiency could improve the quality of our projected quantum states. We could

test our prediction by sourcing a more efficient detector at 1550 nm and retake

the projected state data.

• Proof-of-principles CSQC experiments: Once we have a better detec-

tor we could explore some proof-of-principles experiments on coherent state

quantum computing with our unique quantum resource states.

• Proof-of-principles quantum communication experiments: Our abil-

ity to generated concurrent quantum resource states allows for numerous op-

portunities for proof-of-principles experiments to demonstrate basic quantum

communication which could be explored in the future.

• Construct filters to make TDM states: We could design and construct

a new optical filtering system that would purposely create quantum resource

states for time-division-multiplexing.

• Demonstrate FDM/TDM on CSQC and quantum communication

experiments
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• S-mode/A-mode ‘tool kit:’ In order to explore the opportunities afforded

by having independent access to the symmetric and the anti-symmetric modes,

we would need to develop the appropriate ‘tool kit.’

• Derive new character witness based on p0 & p2: We showed in chapter 6

that the quantum non-Gaussian character witness (which depends on p0 & p1)

may not correctly identify a squeezed vacuum state as a quantum Gaussian

state as the witness does not depend on p2. Therefore a new character witness

that depends on p0 & p2 could be investigated.
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Rev. Lett., 18:905–907, May 1967.

[77] David C. Burnham and Donald L. Weinberg. Observation of simultaneity in
parametric production of optical photon pairs. Phys. Rev. Lett., 25:84–87, Jul
1970.

[78] H. J. Kimble, M. Dagenais, and L. Mandel. Photon antibunching in resonance
fluorescence. Phys. Rev. Lett., 39:691–695, Sep 1977.

[79] M. Dagenais and L. Mandel. Investigation of two-time correlations in photon
emissions from a single atom. Phys. Rev. A, 18:2217–2228, Nov 1978.

[80] R. Short and L. Mandel. Observation of sub-poissonian photon statistics.
Phys. Rev. Lett., 51:384–387, Aug 1983.

[81] M. C. Teich and B. E. A. Saleh. Observation of sub-poisson franck-hertz light
at 253.7 nm. J. Opt. Soc. Am. B, 2(2):275–282, Feb 1985.

[82] John F. Clauser. Experimental distinction between the quantum and classical
field-theoretic predictions for the photoelectric effect. Phys. Rev. D, 9:853–860,
Feb 1974.

[83] P. Grangier, G. Roger, and A. Aspect. Experimental evidence for a photon
anticorrelation effect on a beam splitter: A new light on single-photon inter-
ferences. EPL (Europhysics Letters), 1(4):173, 1986.

[84] H. Paul. Photon antibunching. Rev. Mod. Phys., 54:1061–1102, Oct 1982.

[85] S. Friberg, C. K. Hong, and L. Mandel. Measurement of time delays in the
parametric production of photon pairs. Phys. Rev. Lett., 54:2011–2013, May
1985.

[86] C. K. Hong and L. Mandel. Experimental realization of a localized one-photon
state. Phys. Rev. Lett., 56:58–60, Jan 1986.

[87] Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexan-
der V. Sergienko, and Yanhua Shih. New high-intensity source of polarization-
entangled photon pairs. Phys. Rev. Lett., 75:4337–4341, Dec 1995.



213 References

[88] F. Devaux and E. Lantz. Spatial and temporal properties of parametric flu-
orescence around degeneracy in a type i lbo crystal. The European Physical
Journal D, 8(1):117–124, 2000.

[89] Christian Kurtsiefer, Markus Oberparleiter, and Harald Weinfurter. High-
efficiency entangled photon pair collection in type-ii parametric fluorescence.
Phys. Rev. A, 64:023802, Jul 2001.

[90] Alfred B. U’Ren, Christine Silberhorn, Konrad Banaszek, and Ian A. Walm-
sley. Efficient conditional preparation of high-fidelity single photon states for
fiber-optic quantum networks. Phys. Rev. Lett., 93:093601, Aug 2004.

[91] T.B. Pittman, B.C. Jacobs, and J.D. Franson. Heralding single photons from
pulsed parametric down-conversion. Optics Communications, 246(46):545 –
550, 2005.

[92] S. Castelletto, I. Degiovanni, V. Schettini, and A. Migdall. Spatial and spec-
tral mode selection of heralded single photons from pulsed parametric down-
conversion. Opt. Express, 13(18):6709–6722, Sep 2005.

[93] Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Piotr Wasylczyk, Alfred B.
U’Ren, Christine Silberhorn, and Ian A. Walmsley. Heralded generation of
ultrafast single photons in pure quantum states. Phys. Rev. Lett., 100:133601,
Apr 2008.

[94] G S Buller and R J Collins. Single-photon generation and detection. Mea-
surement Science and Technology, 21(1):012002, 2010.

[95] G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V.
Polyakov, and I. Ruo Berchera. Experimental realization of a low-noise her-
alded single-photon source. Opt. Express, 19(2):1484–1492, Jan 2011.
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Analogue circuitry used in the

experiment

This Appendix gives the analogue electronic circuit diagram of ‘QMATE’ that was

used in the experiment during data collection as described in this thesis.
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Figure 1: Simplified electronic circuit diagram of ‘QMATE’.
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Figure 2: Simplified schematic of the sample-and-hold circuit used to estimate the
LO optical phase during data collection of the experiment.


