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Abstract 
The metagenome of a microbial community contains a large quantity of information 

about the inter-strain genetic variation present in that community. Genome assemblers 

using algorithms designed for use with isolate genomes obscure the inter-strain 

variation within metagenomic data. Analysing this variation in metagenomic data is 

further complicated by sequencing errors that add noise to the system by making base 

assignments ambiguous. 

In order to develop improved computational methods for metagenome analysis, 

simulations were performed using genome data of individual species. A software 

program, MetaSim, was used to generate simulated reads. Assemblies of these reads 

were used to investigate the development of an error model to confidently identify SNPs 

(Single Nucleotide Polymorphisms). This approach proved limited due to the nature of 

the MetaSim software and the insufficient availability of consistent, well-documented 

data. 

As an alternative approach, a graphical analysis of unitigs (high confidence contigs) 

was developed. This approach provided accurate predictions of whether each unitig in 

an assembly of simulated reads consisted of only one strain, or more. The approach 

included developing a system of rules describing the relationship between the number 

and proportions of strains in an assembly and the positioning of clusters in scatter plots. 

The differences in densities of clusters were used to help distinguish between 

ambiguous cluster patterns. Idealised assemblies of simulated reads without sequencing 

errors were produced, to examine how sequence quality affects the ability to make 

inferences about inter-strain variation. Computational clustering was investigated as a 

means of automating the analysis. 

Having established an approach to analyse unitigs, environmental metagenome data 

was analysed. This graphical analysis provided a well-supported and parsimonious 

interpretation of the number of strains present in metagenome data of an Antarctic lake 

community, and their proportions. 

  



 

iv 
 

Acknowledgements 
  

Thank you to my Supervisors Matt, Rick, Fede, and for a little while Torsten. Matt, 

I’ve really appreciated all your help. Thanks, for all the help with day to day stuff, for 

all your guidance and for being enthusiastic about my project. Thanks, for staying back 

late the day before multiple presentations. Thanks, for fixing toAmos and for all your 

proofreading. Thanks Rick, for finding me a project and a scholarship. Thank you for 

help with presentations and proofreading even though I rarely explained things well and 

didn’t always take your advice. I appreciate it. Thanks for helping guide the overall 

project and for persevering with me. Thanks Fede, for proofreading, even though you 

were really busy, and including me in your group meetings. Thanks Torsten, for having 

an open door and a listening ear. 

To my awesome girlfriend Laura: I don’t know how I would have managed without 

you. Thanks for advice on presentations and supervision, encouragement to work hard, 

constant support, a listening ear even when you didn’t always follow, advice and help 

with thesis writing etc. etc. Thank you for all the proofreading and for all the help 

making my sentences less awkward. I’m sorry I’m such a slow learner sometimes. 

Thanks Sheree, for listening to what I'm up to and for proofreading my thesis. 

Thanks for discussions about reports, presentations and supervision. Thanks for 

patiently and sympathetically listening to me during the highs, lows and in betweens of 

life. Thanks John, for always responding enthusiastically to my M. frigidum questions. 

Thanks Mark, for being willing to chat about 16S stuff. Thanks David, for offering to 

collaborate and for organising journal clubs. Thanks Wei Hua and Shaun, for discussing 

maths with me and being interested in my project. Thanks to Daniel Huson, for 

patiently emailing me in response to what I thought were bugs in MetaSim. Thanks to 

the research students at New College Village who listened to me practice presentations 

and gave good advice. Thanks Travis and the coffee cart, for my exceptional daily 

coffee. 

Thank you all my friends and my siblings, for providing some fun and relaxation to 

break up the study and keep me sane. Thanks Drew, for being keen to celebrate with 

me, sorry I kept having to postpone. Thanks dad, for offering to proofread even though 



Acknowledgements 

v 
 

it’s a bit out of your area of specialisation. Thanks mum and dad, for encouraging me to 

work hard and being there to chat when I needed it. Thanks, for spoiling me during 

holidays. Thanks for all your love and prayers. Thanks to everyone who encouraged me 

and prayed for me while I was stressing out. Thank you God, most of all, for all your 

love and provision. 



 

vi 
 

Table of Contents 
Originality Statement ........................................................................................................... i 

Copyright Statement ............................................................................................................ ii 

Authenticity Statement ........................................................................................................ ii 

Abstract ................................................................................................................................ iii 

Acknowledgements.............................................................................................................. iv 

Abbreviations ........................................................................................................................x 

List of Figures ..................................................................................................................... xii 

List of Tables ..................................................................................................................... xiv 

Chapter 1 General Introduction ..........................................................................................1 

1.1 Metagenomics ......................................................................................................... 1 

1.2 Species, Strains and OTUs ...................................................................................... 2 

1.3 Variation within Species ......................................................................................... 3 

1.4 Microheterogeneity in Metagenomic Data ............................................................. 4 

1.5 Aims ........................................................................................................................ 5 

Chapter 2 Error Model Development .................................................................................6 

2.1 Summary ................................................................................................................. 6 

2.2 Introduction ............................................................................................................. 7 

2.2.1 Sequencing Technologies ................................................................................ 7 

2.2.2 Discrepancies and Variation ............................................................................ 8 

2.2.3 Simulations....................................................................................................... 9 

2.2.4 Error Modelling................................................................................................ 9 

2.3 Materials and Methods .......................................................................................... 10 

2.3.1 The 454 and Simulated Sanger Sequence Pipeline ........................................ 10 



Table of Contents 

vii 
 

2.3.2 The Experimentally-derived Sanger Sequence Pipeline ................................ 13 

2.4 Results and Discussion .......................................................................................... 16 

2.4.1 Sanger Dideoxy Sequence.............................................................................. 16 

2.4.2 454 Pyrosequencing ....................................................................................... 24 

2.5 Conclusion ............................................................................................................ 29 

Chapter 3 Detecting Chimeric Contigs ............................................................................ 31 

3.1 Summary ............................................................................................................... 31 

3.2 Introduction ........................................................................................................... 32 

3.2.1 Chimerism and Contig Read Depths .............................................................. 32 

3.2.2 Unitigs ............................................................................................................ 32 

3.2.3 Logit Regression ............................................................................................ 33 

3.2.4 ROC Curves and AUCs ................................................................................. 33 

3.2.5 Aims ............................................................................................................... 33 

3.3 Materials and Methods .......................................................................................... 35 

3.3.1 Strains ............................................................................................................. 35 

3.3.2 MetaSim ......................................................................................................... 37 

3.3.3 Assembly ........................................................................................................ 37 

3.3.4 Unitigs and Contigs ........................................................................................ 38 

3.3.5 Unitig Binning ................................................................................................ 38 

3.3.6 Normalisation of Coverage ............................................................................ 39 

3.3.7 Logit Regression and ROC Plots ................................................................... 40 

3.4 Results and Discussion .......................................................................................... 41 

3.4.1 Choice of Variables ........................................................................................ 41 

3.4.2 Read Tracking ................................................................................................ 44 

3.4.3 Understanding Cluster Locations ................................................................... 46 

3.4.4 Normalisation of Coverage ............................................................................ 54 

3.4.5 Dichotomous Prediction using Logit Regression and ROC curves ............... 56 

3.5 Conclusion ............................................................................................................ 62 

Chapter 4 Predicting the Number and Relative Abundances of Strains ...................... 63 

4.1 Summary ............................................................................................................... 63 

4.2 Introduction ........................................................................................................... 64 

4.2.1 Chapter Aim ................................................................................................... 64 

4.3 Materials and Methods .......................................................................................... 65 

4.3.1 Strain Choice .................................................................................................. 65 



Table of Contents 

viii 
 

4.3.2 Unitig Binning................................................................................................ 65 

4.3.3 Grinder ........................................................................................................... 66 

4.3.4 MCLUST: Model-based Clustering ................................................................ 66 

4.3.5 Cluster Locations: Contig Binning ................................................................ 68 

4.3.6 Peak Height Prediction................................................................................... 69 

4.3.7 M. frigidum Genome Data ............................................................................. 70 

4.3.8 Filtering Metagenomic Datasets .................................................................... 70 

4.4 Results and Discussion.......................................................................................... 71 

4.4.1 MCLUST ........................................................................................................ 71 

4.4.2 MclustDA ....................................................................................................... 73 

4.4.3 Rules for Structure of Plots ............................................................................ 76 

4.4.4 Idealised Assemblies with Zero Sequencing Errors ...................................... 83 

4.4.5 Analysis of Single Genome and Environmental Sequence Data ................... 84 

4.5 Conclusion ............................................................................................................ 98 

Chapter 5 Research Findings and Future Directions ......................................................99 

5.1 Research Findings ................................................................................................. 99 

5.2 Future Directions................................................................................................. 102 

5.2.1 Outlier filtering ............................................................................................ 102 

5.2.2 Assembler Dependence ................................................................................ 103 

5.2.3 Resolving Cluster Overlaps ......................................................................... 103 

5.2.4 Validation with a well-studied, low-complexity metagenome .................... 103 

5.2.5 Variability of Genomic Divergence ............................................................. 104 

5.2.6 Idealised Assemblies and Discrepancy Filtering ......................................... 104 

5.2.7 Clustering with Improved Models ............................................................... 105 

References ..........................................................................................................................109 

Appendix A Supplementary Results for Chapter 2 .......................................................115 

Appendix B Supplementary Results for Chapter 3 .......................................................117 

Appendix C Supplementary Results and Discussion for Chapter 4 .............................119 

C.1 Investigation, Filtering and Comparison of Outliers .......................................... 119 

C.2 Training Data ...................................................................................................... 123 

C.3 Location of Clusters ........................................................................................... 126 



Table of Contents 

ix 
 

C.4 Idealised Assemblies with Zero Sequencing Errors ........................................... 129 

C.4 Oligonucleotide Frequency Filtering .................................................................. 129 

 



 

x 
 

Abbreviations 

AMOS A Modular, Open-Source whole genome assembler 

AUC  Area Under ROC Curve 

ANI Average Nucleotide Identity 

BLAST  Basic Local Alignment Search Tool  

BLASTX BLAST using a translated nucleotide query 

BOG Best Overlap Graph unitigger 

 Discrepancies in contig per unit of contig length 

 Discrepancies in unitig per unit of unitig length 

DDH DNA-DNA Hybridization 

FP False Positive rate 

GS Genome Sequencer 

GSB Green Sulfur Bacteria  

IID Internal IDentifier 

JAZZ JGI in-house ASSembler 

JCVI J. Craig Venter Institute, USA 

JGI Joint Genome Institute, US Department of Energy 

JTC The Joint Technology Center, USA 

LUCY  Less Useful Chunks Yank  

MEGAN MEtaGenome ANalyzer 

MER oligoMER overlapper 

MNFS Mean Negative Flow Signal 

μ Mean 



Abbreviations 

xi 
 

MUMmer  Maximal Unique Matches  

NCBI  The National Center for Biotechnology Information, National Institute of 
Health, USA  

NR  Non-Redundant protein sequences database 

OTUs Operational Taxonomic Units 

PHRAP PHRagment Assembly Program or PHil's Revised Assembly 
Program 

 Reads in contig per unit of contig length 

 Reads in unitig per unit of unitig length 

ROC Receiver Operating Characteristic  

 Estimate of the number of Strains that contributed a significant proportion 
of reads to a unitig 

SDNFS Standard Deviation for Negative Flow Signals 

σ Standard deviation 

SNP  Single Nucleotide Polymorphism  

SSDM Signal Standard Deviation Multiplier 

SSDSRM Scale Standard Deviation with Square Root of Mean 

TCAG The Center for the Advancement of Genomics, USA 

TIGR The Institute for Genomic Research, USA 

TP True Positive rate 

XML  eXtensible Markup Language  

  



 

xii 
 

List of Figures 
Figure 2.1: The 454 and simulated Sanger sequence pipeline (run_pipeline.py). .......... 12 
Figure 2.2: The experimentally-derived Sanger sequence pipeline (run_pipeline2.py). 14 
Figure 2.3: MetaSim error rates for Sanger reads can be accurately controlled. ............ 18 
Figure 2.4: Variation in observed error rates in genome sequencing projects does not 
correlate with project age. ............................................................................................... 23 
Figure 2.5: 454 error rates in MetaSim cannot be conveniently controlled. ................... 26 
Figure 2.6: The total errors in MetaSim 454 data could be calibrated to experimentally 
derived data. .................................................................................................................... 27 
Figure 3.1: Read and discrepancy counts are not sufficiently informative variables. .... 41 
Figure 3.2: Normalising read and discrepancy counts make these variables more 
informative. ..................................................................................................................... 42 
Figure 3.3: Length filtering of  and  allows clear evenly spaced clusters to be seen.43 
Figure 3.4:  and  are appropriate variables, since have a moderately high 
correlation. ...................................................................................................................... 44 
Figure 3.5: Tracking reads allows clusters to be coloured by strain count. .................... 45 
Figure 3.6: The chosen variables create clusters that correlate well with strain count. .. 46 
Figure 3.7: The size and positions of clusters with the same strain count are similar 
across assemblies with different strain counts. ............................................................... 47 
Figure 3.8: The same clustering is apparent in assemblies of a distantly related species.
 ......................................................................................................................................... 48 
Figure 3.9: Clustering of N. meningitidis assemblies is more apparent at a higher 
unitigger error rate. ......................................................................................................... 49 
Figure 3.10: Clustering is independent of coverage over a wide range of coverage. ..... 50 
Figure 3.11: Unitigger error rates can be adjusted to improve clustering. ...................... 52 
Figure 3.12: Besides the last cluster, clusters with more strains lose unitgs more easily.
 ......................................................................................................................................... 53 
Figure 3.13: Clustering patterns also apply to N. meningitidis assemblies. ................... 54 
Figure 3.14: Adjusting the coverage of assemblies of distantly related species can make 
cluster postions more similar. ......................................................................................... 55 
Figure 3.15: Using the same coverage gives clusters with very similar positions across 
assemblies of different classes and phyla. ...................................................................... 56 
Figure 3.16: Logit classification allows accurate predictions of clonal unitigs for one- 
and two-strain assemblies. .............................................................................................. 58 
Figure 3.17: Logit predictions are also accurate in an assembly of a different species 
with more strains. ............................................................................................................ 59 
Figure 3.18: Logit predictions can also classify accurately when the training data comes 
from a distantly related species. ...................................................................................... 60 
Figure 4.1: Mclust clustered a four-strain assembly into four unevenly spaced clusters 
plus an outlier cluster. ..................................................................................................... 71 
Figure 4.2: Mclust clustered a two-strain assembly into four clusters plus an outlier 
cluster. ............................................................................................................................. 72 
Figure 4.3: Mclust can be used to detect outliers. ........................................................... 74 
Figure 4.4: The rule of one visible cluster per strain only applies to strains in equal 
proportions. ..................................................................................................................... 76 
Figure 4.5: Three-strain assemblies contain seven clusters. ........................................... 77 



List of Figures 

xiii 
 

Figure 4.6: Cluster positions move predictably due to changes in strain proportions. ... 78 
Figure 4.7: There is a strong linear relationship between cluster location and strain 
proportions. ..................................................................................................................... 79 
Figure 4.8: Contour plots show two and three clear clusters for two- and three-strain 
equal proportion assemblies, respectively....................................................................... 81 
Figure 4.9: An equal proportion assembly can be used to estimate the densities of 
clusters in an assembly with unequal proportions........................................................... 82 
Figure 4.10: The clonal clusters in idealised assemblies have lower  values and a 
smaller range in these values........................................................................................... 84 
Figure 4.11: The M. frigidum assembly appears clonal despite a small amount of 
contamination. ................................................................................................................. 86 
Figure 4.12: ANTRC230_0.1 contains at least two species. .......................................... 87 
Figure 4.13: The contigs in ANTRC230_0.1 with the highest   values are too long to 
be outliers. ....................................................................................................................... 88 
Figure 4.14: GC content suggests the presence of at least one clonal and one chimeric 
GSB cluster in ANTRC230_0.1. ..................................................................................... 89 
Figure 4.15: The filtered ANTRC230_0.1 assembly contains evidence of chimerism. . 90 
Figure 4.16: The dimer filtering process is corroborated by MEGAN. ........................... 91 
Figure 4.17: The first and last filtered ANTRC230_0.1 clusters are well supported, but 
the sparse unitigs in between are not. ............................................................................. 92 
Figure 4.18: The well-supported filtered ANTRC230_0.1 clusters suggest one strain in 
low abundance and one strain with approximately nine times that abundance. ............. 94 
Figure 4.19: The structure of the strains is not apparent from the filtered 
ANTRC231_0.1 scatter plot. .......................................................................................... 95 
Figure 4.20: Mclust clustering of ANTRC231_0.1 did not match simulations. ............. 96 
Figure 4.21: The third ANTRC231_0.1 cluster is weaker than in simulations............... 96 
Figure 4.22: Additional ANTRC231_0.1 clusters are consistently placed across length 
cut-offs. ........................................................................................................................... 97 
Figure 5.1: Removing sequencing errors could provide sufficient cluster structure for 
automated analysis. ....................................................................................................... 107 
 



 

xiv 
 

List of Tables 
Table 2.1: Simulation of an E. coli assembly for error calibration. ................................ 17 
Table 2.2: Simulation of eight assemblies for error comparison .................................... 21 
Table 2.3: Error settings calibrated to E. coli ................................................................. 21 
Table 2.4: Sequencing Project Metadata ......................................................................... 22 
Table 3.1: Percentage alignments of five strains of E.coli .............................................. 36 
Table 3.2: Percentage identities of five strains of E.coli ................................................ 36 
Table 3.3: Percentage alignments of four strains of N. meningitidis .............................. 36 
Table 3.4: Percentage identities of four strains of N. meningitidis ................................. 36 
Table 4.1: Cluster cut-offs for variable proportion two-strain S. aureus assemblies. ..... 68 
Table 4.2: MclustDA multivariate mixture models ......................................................... 72 
Table 4.3: Peak heights in 12, 24, 24× E. coli assembly. ............................................... 82 



 

1 
 

Chapter 1                                        
General Introduction 

1.1 Metagenomics 
 

The traditional approach of studying cultivatable microorganisms is limited due to the 

fact that the majority of microorganisms from natural environments are not able to be 

cultivated (Kalyuzhnaya et al. 2008). Genome databases are thus heavily biased towards 

certain taxa (Handelsman 2004, Kunin et al. 2008). By sequencing microbial 

communities directly from the environment, metagenomics (alternatively called 

environmental genomics, ecogenomics or community genomics) provides the 

opportunity to study underrepresented and uncultured taxa.  

Metagenomics also allows the structure and interactions of microbial communities 

to be investigated. One reason this is important is because microorganisms underpin the 

majority of the geochemical cycles (Handelsman 2004). As carbon dioxide levels and 

temperatures continue to increase, understanding how environmental changes will affect 

these communities will become more important. For example, a quarter of the natural 

release of the greenhouse gas methane is from understudied permafrost Archaea 

(Wagner et al. 2005). Microbial communities like these could have important feedback 

effects on the extent of climate change. 

With the advent of high-throughput DNA sequencing, abundant species in low to 

medium complexity microbial communities can be sequenced to a high read depth. This 

provides the opportunity for unprecedented analyses of the genomic heterogeneity and 

evolution of microorganisms (Handelsman 2004). To obtain genetic sequence data for 

an entire genome, a high number of reads is required for each position, on average. If 

less abundant species are to be assembled, then the more abundant species are 

consequently sampled deeply. 

Metagenomic data has traditionally been assembled by algorithms designed for 

single clonal genomes (Raes et al. 2007). For example, Venter et al. (2004) used the 

Celera assembler and Tyson et al. (2004a) used JAZZ (JGI in-house ASSembler). Other 
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assemblers used for metagenomes include PHRAP (PHRagment Assembly Program or 

PHil's Revised Assembly Program) and Arachne (Raes et al. 2007). The Celera 

assembler, PHRAP and Arachne use the overlap-layout-consensus approach (Zerbino 

and Birney 2008), as does JAZZ (Aparicio et al. 2002). However, PHRAP does not 

perfectly follow this paradigm (Kunin et al. 2008). Assemblers using this approach 

conventionally assume that any disagreements in the assembled sequence are due to 

sequencing or assembly errors rather than real genetic variation. Thus, these 

conventional assemblers focus on consensus sequence as the end product, obscuring 

intra-strain variation. 

 

1.2 Species, Strains and OTUs 
 
The best way to define the species concept in Bacteria and Archaea is still being 

debated (Deloger et al. 2009, Richter and Rosselló-Móra 2009). The traditional species 

definition for bacteria is of at least one shared distinguishing phenotypic trait and 70% 

DDH (DNA-DNA Hybridization) (Wayne et al. 1987). Whilst this definition is 

pragmatic and can be applied across the entire bacterial domain, it has several 

limitations. These include impractical experiments, a lack of overlap with the 

Eukaryotic species concepts, inapplicability to metagenomics and too much phenotypic 

variation within named species (Konstantinidis et al. 2006). 

Multiple other definitions have been proposed. ANI (Average Nucleotide Identity) 

is the most promising of these, as it correlates well with DDH (Goris et al. 2007, 

Richter and Rosselló-Móra 2009). Other methods include DNA content, which 

measures the percentage of DNA that is conserved between genomes (Deloger et al. 

2009).  This can be calculated from either the whole genome or the protein coding 

portion (Goris et al. 2007). However, it has been found to not correlate well with  DDH 

or ANI (Konstantinidis et al. 2006). Alternatively, there is maximal unique matches, a 

method that correlates well with ANI (Deloger et al. 2009) but which cannot be used 

with incomplete draft genomes (Richter and Rosselló-Móra 2009).  

Oligonucleotide frequencies can also be used for distinguishing species (Richter 

and Rosselló-Móra 2009). This involves comparing the frequency of short sequences of 

bases (most commonly, tetranucleotides) between genomic sequences, and is useful for 

metagenomics, as it is superior to alternative methods (Teeling et al. 2004a). 
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A strain encompasses separate populations within a species that are distinct groups 

based on genotypic or phenotypic differences (Dijkshoorn et al. 2000). In theory, two 

strains could be separated by a single SNP. In practice, the equilibrium between 

selection, genetic drift and recombination between distinct populations should increase 

divergence beyond the minimum. There are no widely accepted guidelines as to the 

expected quantity of genetic differences between strains. One pragmatic way of 

classifying whether genetic sequences belong to the same strain is observing whether 

they co-assemble using a particular algorithm and parameters. For example, the Celera 

assembler has multiple error rate parameters that can be used to adjust the level of 

similarity required for sequences or their aggregates to be co-assembled. Even with high 

error rates, some conserved regions of separate strains will probably co-assemble, which 

could provide additional information for how similar two organisms are. Chapter 3 

describes how the adjustment of these parameters can provide information about the 

strains present in a metagenome. 

OTUs (Operational Taxonomic Units) are groupings of similar genetic sequences 

within a dataset that can be used as an alternative to taxa such as species and strain. 

They allow sequences from related organisms to be divided in a self-consistent manner 

that is free from the biases in the taxonomic tree. However, OTUs still require a 

phylogenetic classification if they are to be connected to related organisms from other 

studies, which is a task that currently lacks a consistent method (Schloss and Westcott 

2011). 

 

1.3 Variation within Species 
 
In metagenomic sequencing projects, the DNA that is sequenced comes from so many 

different cells that it is unlikely that any two sequences come from the same individual 

(Eppley et al. 2007). Thus, a higher read depth for a species means more data about 

microheterogeneity (intra-species variation) is available for analysis. 

In 2004, metagenomics was moving from smaller-scale targeted sequencing (Stein 

et al. 1996) to bulk random sequencing of an entire community (Tyson et al. 2004a, 

Venter et al. 2004). The comparison of single-strain genome projects had shown that 

there can be high variation within microbial species (Rodrı ́guez-Valera 2004). 

Metagenomics had also shown that even populations that appeared uniform could 
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contain substantial microheterogeneity (Schleper et al. 1998). At that time, there was 

concern about the extent to which metagenomic sequences could be assembled (Tringe 

et al. 2005). This concern was due both to the variation between the species, and within 

them (Béjà 2004, Rodrı ́guez-Valera 2004). It was known that eukaryotes have similar 

gene content within and between species, and variation in the sequence of those genes. 

For example, a comparison of four genomes from the yeast genus Saccharomyces found 

five to nineteen unique genes per species compared to around 6000 shared ones (Kellis 

et al. 2003). It was also known that even closely related bacterial strains could have a 

large difference in the complement of genes. For example, when the genomes of three 

Escherichia coli strains were compared, only about 40% of the genes were found in all 

three (Welch et al. 2002). Thus, the gene pool of a species could be “orders of 

magnitude larger than the genome of one strain” (Rodrı ́guez-Valera 2004). Together, 

this meant that intra-species variation was considered a problem that would hinder the 

study of microorganisms in their environment (Béjà 2004). 

Since then, bulk random shotgun metagenomic sequencing has become widespread 

and increased in scale largely due to improved sequencing technology (Petrosino et al. 

2009). The techniques used to sort and assemble metagenomic datasets have been 

evaluated and refined over time (Mavromatis et al. 2007, Kunin et al. 2008). Together, 

this means that microheterogeneity in microbial communities can now be seen as the 

focus of scientific study rather than a potential obstacle to it.  

1.4 Microheterogeneity in Metagenomic Data 
For metagenomes of very simple communities, microheterogeneity can be manually 

analysed. For example, Tyson et al. (2004b) analysed an acid mine drainage community 

with a very dominant species (75%) that had low polymorphism. The low complexity in 

this case allowed the reads to be divided into groups with similar SNPs by the use of 

custom scripts. The prevalence of one to three such groups throughout this genome 

shows that there were approximately three distinct strains present in this metagenome.  

Other studies have investigated microheterogeneity on a gene by gene or gene 

island basis without attempting to separate a population into its composite strains 

(Coleman et al. 2006, Allen et al. 2007). Using the data from Tyson et al., a custom-

built program, Strainer, has been developed to automate the analysis of 

microheterogeneity through the use of patterns of SNPs to trace strain variants through 

co-assembled data (Eppley et al. 2007). Strainer was designed for use with data from a 
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very simple community and to utilise long, high quality, mated reads. As the authors 

suggest, it could theoretically be expanded to work with shorter, lower quality, unmated 

reads. Strainer also utilises quality scores which can be less meaningful and accurate in 

next generation sequence data (Brockman et al. 2008). Eppley et al. used manual 

curation on some of their datasets before analysis with Strainer and also recommend 

manual curation to “resolve complicated regions”, both of which may prove less viable 

with larger more complex next generation sequencing datasets.  

1.5 Aims 
 
The aim of this thesis was to determine if DNA microheterogeneity could be 

detected and accurately quantified in metagenome data from environmental 

microbial communities. Chapter 2 describes the investigation of a statistical model of 

microheterogeneity in metagenomic datasets. Chapter 3 describes inferences about 

whether metagenomic assembly contigs are clonal. In Chapter 4, inferences about the 

number of closely related organisms (or strains) in a metagenomic assembly contig are 

described. Estimations of the relative abundances of those strains are also described. 

Chapter 5 summarises the findings of this thesis and describes future directions. 

Appendix A contains supplementary material for Chapter 2, Appendix B for Chapter 3, 

Appendix C for Chapter 4 and Appendix D (supplied as an enclosed CD) contains 

source code for the custom scripts mentioned in this thesis. 
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Chapter 2                                            
Error Model Development 

2.1 Summary 
 
The aim of the work in this chapter was to investigate a statistical model of 

microheterogeneity in metagenomic datasets. The purpose of the model was to assess 

whether discrepancies (potential SNPs) in the datasets were real variation or systemic 

noise. This was to be done by assigning a probability to each discrepancy describing 

how confidently it can be classified as real variation.  

Reads from nine different Sanger genome sequencing projects were assembled and 

analysed. Assemblies of equivalent simulated reads were produced to allow calibration 

of sequencing errors. MetaSim was used to generate simulated reads from genome 

sequence data. The proportion of substitutions, insertions and deletions could all be 

calibrated to a single sequencing project. However, the high variation in error rates and 

missing metadata for the available Sanger reads prevented a general calibration and thus 

limited the usefulness of this methodology.  

To overcome this problem, the calibration was repeated with three assemblies of 

data produced on 454 Genome Sequencer (GS) FLX machines. For 454 data, it was not 

feasible to calibrate the different kinds of sequencing errors, thus only the combined 

error rate was calibrated. This was due to the complex non-linear parameters for 

modelling error rates in MetaSim-produced 454 data. To overcome these problems, a 

different strategy was developed, as described in Chapter 3. If a strong signal of 

variation could be detected then a detailed understanding of the nature and quantity of 

systemic noise would not be necessary. 
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2.2 Introduction 

2.2.1 Sequencing Technologies 

2.2.1.1 Sanger Dideoxy Sequencing 
 

Sanger sequencing can provide long reads up to ~1000 bp in length and up to 99.999% 

per-base ‘raw’ accuracies (Shendure and Ji 2008). Sanger sequencing can also provide 

mated reads with a large range of insert sizes.  

Given the expense of reagents (especially dyes) in Sanger sequencing, there is 

pressure to adjust protocols in order to be more economical. As decreasing dye usage 

can produce significant cost savings in a large facility, there is incentive to use as little 

as possible, even to the extent that quality might suffer. This can lead to significant 

drops in sequence quality (DeMaere, personal communication). Other factors have been 

shown to affect the outcome of Sanger sequencing. For example, the presence of 

secondary structures in primers or templates can be disruptive (Hirao et al. 1992). 

 

2.2.1.2 454 Pyrosequencing 
 

Next generation sequencing technologies like 454 pyrosequencing (454 Life Sciences, 

Branford, CT, USA) are providing low cost, ultra-high throughput alternatives to 

Sanger sequencing. The GS FLX system produced 250 bp reads (Shendure and Ji 2008), 

but this sequencer has been superseded by the GS FLX Titanium (Petrosino et al. 2009). 

454 technology did not originally provide mated reads (Margulies et al. 2005), but they 

are now available (Mardis 2008). 

Compared to Sanger sequencers, 454 sequencers are more likely to misjudge the 

length of homopolymer repeats. Whilst true substitution errors are very rare in 454 data, 

adjacent deletions and insertions can be interpreted as substitution errors, and are more 

common (Mardis 2008, Balzer et al. 2010, Balzer et al. 2011). All the next generation 

technologies have much higher error rates than Sanger. Raw Sanger base calls are on 

average ten times more accurate (Shendure and Ji 2008).  

The high through-put capabilities of next generation sequencing technologies make 

them attractive for metagenomics. The resultant greater read depth provides much more 

information on variation within species.  
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2.2.2 Discrepancies and Variation 
 
When assemblers tile reads together they often overlap imperfectly matching reads. For 

each column of bases from different reads, traditional assemblers assign a consensus 

base. If there is disagreement between the reads, then these assemblers attempt to 

choose the optimal base using either sequence identity percentages, quality values, or 

both (Myers et al. 2000, Denisov et al. 2008). 

Discrepancies (non-unanimous consensus bases) can be due to a variety of causes. 

Any cause other than microheterogeneity (real mutations within the species of interest) 

can be treated as part of the noise of the system. A minority base (a base at a 

discrepancy that does not match the consensus base) may or may not be a real SNP. The 

probability that this base is a real SNP is increased if that exact base is found in more 

reads. Thus, if the probability of a particular base being affected by noise can be 

quantified, then this indicates how confidently it can be regarded as real variation. 

Factors that contribute to the noise of the system include sequencing errors, inter-

species chimerism and misassembly. The dominant cause for a difference between 

aligned reads is sequencing errors. Alternatively, the aligned reads may come from 

different species. Reads not from the species of interest may come from a species native 

to the environment sampled or from a contaminant. Lastly, the aligned reads may be 

from distinct but similar regions of the genome and thus incorrectly assembled together. 

For example, the two regions may contain paralogous genes. 

There is another level of variation within a species that can also complicate 

assembly. Strains from the same species may differ due to deletions, insertions, 

duplications and rearrangements of varying size (Allen et al. 2007). These differences 

can range from a few bases to the level of genes or even genomic islands containing 

multiple genes. Heterogeneity on this scale can decrease the degree and accuracy of 

assemblies and make down-stream analysis more problematic. 

Metagenomic samples provide a clear advantage for studying inter-strain variation 

over isolate sequence data. When strains are assembled together discrepancies are made 

that can be regarded as high quality SNPs. These SNPs can be mined for information 

about evolution and population structure (Kunin et al. 2008). They contain information 

about which strains are present in a sample, and how and why they differ (Whitaker and 

Banfield 2006).  

Distinguishing real SNPs from sequencing errors is challenging because the SNPs 
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can occur at low frequencies whilst the errors often occur at frequencies which are 

orders of magnitude higher (Shen et al. 2010). Furthermore, there are regions of 

genomes that are much more likely than others to be sequenced incorrectly. For 

example, in Titanium data, a homopolymer of length five will have a mean length of 

4.95 and a standard deviation of 0.39 (Balzer et al. 2011). It seems reasonable to assume 

that older FLX data is even more error prone in this area. The higher frequencies of 

errors in these areas increase the uncertainty concerning what is true 

microheterogeneity. Next generation sequencing methods are more prone to errors than 

Sanger sequencing and compensate for this with higher read depths. These two factors 

together produce more duplicated errors and thus make the data more complex to 

interpret. 

 

2.2.3 Simulations 
 
Simulations allow metagenomic microheterogeneity to be explored systematically. 

Statistical measurements from real sequencing projects can be used to set some of the 

variables in the simulations and thus make them more realistic. For example, the mean 

and standard deviation of read length from a real project can be used. Likewise, the 

rates and kinds of sequencing errors should be controllable and able to be calibrated. 

Variables that require investigation such as the quantity and proportions of the strains 

used in the simulation can also be controlled. It should be possible to track every read, 

simulated mutation and simulated sequencing error from its origin in a genome to its 

location in a scaffold. For example, the strain of origin of each read can be tracked. The 

methods needed to extract all the information on microheterogeneity from a noisy 

metagenomic sample are yet to be developed. By using a simulation, methods can be 

tested in a system where the amount of intra-species variation is known. Thus, these 

methods can be evaluated and further developed. 

 

2.2.4 Error Modelling 
 

The aim described in this chapter was to investigate a statistical model of discrepancies. 

MetaSim (version 0.9.1; www-ab.informatik.uni-tuebingen.de/software/metasim; 

Richter et al. 2008) was used to produce datasets of simulated DNA-sequencing reads. 
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To model discrepancies, the calibration of the proportions of the different kinds of 

sequencing errors in the simulations was attempted. The model would involve assigning 

probabilities of whether discrepancies are real variation or systemic noise. This could be 

done by identifying a threshold above which any microheterogeneous signal can be 

confidently identified as real variation.  

 

2.3 Materials and Methods 

For a simulation to be useful in developing a realistic error model, it requires calibration 

to data from real sequencing projects. To calibrate MetaSim to this kind of data, two 

data analysis pipelines were constructed. The first was constructed to assemble 

simulated Sanger reads. This pipeline was also used to assemble experimentally-

derived, and simulated, 454 reads. The second pipeline was created to assemble 

experimentally-derived reads sets downloaded from The National Center for 

Biotechnology Information (NCBI) trace archive (www.ncbi.nlm.nih.gov; Wheeler et 

al. 2006). These pipelines combine custom Python (version 2.4; www.python.org) 

scripts with third party code. Unit testing on the custom scripts was performed using 

PyUnit (http://pyunit.sourceforge.net).  

 

2.3.1 The 454 and Simulated Sanger Sequence Pipeline 
 

The 454 and simulated Sanger sequence pipeline (run_pipeline.py; Figure 2.1) uses 

MetaSim generated FASTA output as its input. MetaSim provides only embedded 

mate-pair data and does not provide any quality scores. Therefore, custom scripts were 

written to create matching quality (make_quality.py) and mate-pair (make_mate-pair.py) 

data files. The mate-pair information for MetaSim generated reads was embedded in the 

identifiers of those reads. For make_quality.py, correct bases were assigned a score of 

40, while erroneous bases were assigned a score of five. A score of five (  probability 

of error) is just below the most common value for low quality scores and a score of 40 

(  probability of error) is approximately the most common value for high quality 

scores (Ewing and Green 1998). Thus, the scores chosen are reasonable scores for 

individual bases and represent a best case scenario in aggregate. The source code for all 

custom software mentioned in this thesis is available in Appendix D (supplied as an 

http://www.ncbi.nlm.nih.gov
http://www.python.org
http://pyunit.sourceforge.net


Chapter 2 Error Model Development 

11 
 

enclosed CD). 
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Figure 2.1: The 454 and simulated Sanger sequence pipeline (run_pipeline.py).  
Blue boxes denote custom Python scripts. Red boxes denote third party computer software. See 
text for details. 

 

In this pipeline, the sequence, quality and mate-pair information were combined 

into a FRG file using convert-FASTA-to-v2.pl. This script is part of the Celera 

Assembler package (version 5.4; wgs-assembler.sourceforge.net; Myers et al. 2000). 

FRG files are the input format expected by the Celera Assembler. Information on the 

mean and standard deviation of the insert sizes was also incorporated into each FRG 

file. For 454 data, both the mean and standard deviation were set to zero as none of the 

454 reads have mates. The reads in the FRG file were then assembled by the Celera 

Assembler. For 454 data, the BOG (Best Overlap Graph) unitigger and MER 

(oligoMER) overlapper were used, as recommended by Celera (http://sourceforge.net 

2009Brzuszkiewicz et al. 2006). Since MetaSim creates reads that do not need 

trimming, overlap trimming was disabled. 

The assembly was converted into an AMOS (A Modular, Open-Source whole 

genome assembler) bank using toAmos and bank-transact. It was then analysed using 

http://sourceforge.net2009Brzuszkiewiczetal.2006
http://sourceforge.net2009Brzuszkiewiczetal.2006
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analyzeSNPs. analyzeSNPs is one of multiple programs requiring the conversion to the 

AMOS format. These three programs are all parts of the assembly validation pipeline 

amosvalidate (http://sourceforge.net/projects/amos; Phillippy et al. 2008) and included 

in the AMOS Assembler package (version 2.0.8). analyzeSNPs was set to report 

discrepancies with no minimums for the cumulative quality values or the number of 

consistent disagreeing reads. These reports were set to display IIDs (Internal 

IDentifiers) for the contigs and read identifiers.  

The list of SNPs reported by analyzeSNPs was further analysed by another custom 

Python script: SNP_info.py. This script counts the proportions of substitutions, deletions 

and insertions in each assembly. It also counts the number of discrepancies where the 

same minority base appears in at least two reads. Lastly, SNP_info.py also calculates the 

total number of discrepancies and the number per kilobase of consensus sequence.  

When experimentally-derived 454 data was used in this pipeline, the quality data 

used was also experimentally-derived. Sequence was obtained in FASTQ format. This 

was converted into FASTA and quality files by a custom script FASTQ_splitter.py that 

utilised Biopython (http://biopython.org; Cock et al. 2009). Multiple FASTQ files were 

provided for each species. The reads in these files were given unique identifiers by 

another in-house script (FASTQ_read_renamer.py) before they were combined. 

 

2.3.2 The Experimentally-derived Sanger Sequence Pipeline 
 

To assemble Sanger reads from real sequencing projects, a second pipeline was created 

(run_pipeline2.py) (Figure 2.2). This pipeline trims, assembles and analyses 

experimentally-derived data to allow calibration of MetaSim’s parameters. A custom 

script, change_identifiers.py, was used to standardise the read identifiers in the 

sequence and quality data to match the XML (eXtensible Markup Language) metadata. 

LUCY (Less Useful Chunks Yank) (version 1.19; http://sourceforge.net/projects/lucy; 

Chou and Holmes 2001) was used to calculate where reads needed trimming. It also 

listed the low quality reads that should be discarded. The custom script trim_LUCY.py 

was used to trim and filter these reads. This was performed for both the sequence and 

quality files according to LUCY’s calculations. The custom script cull_LUCY.py was 

used to remove the mate-pair information for discarded reads from the mate-pair data 

http://sourceforge.net/projects/amos
http://biopython.org
http://sourceforge.net/projects/lucy
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file. The data was then combined and assembled in the same manner as for the 454 and 

simulated Sanger sequence pipeline. 

 
Figure 2.2: The experimentally-derived Sanger sequence pipeline (run_pipeline2.py).  
Blue boxes denote custom Python scripts. Red boxes denote third party computer software. See 
text for details. 
 

Where possible, the sizes of the inserts used to create mate-pairs were obtained 

from the XML metadata file. The metadata file should list the library each read came 

from and that library’s mean insert size. Libraries with the same insert size listed were 

designated as a group of libraries. Some of these groups contained only one library. 

Every genome project investigated contained libraries with different insert sizes and 

thus multiple groups. A custom script, XML_sorter.py, was created to sort the reads into 

these groups of libraries. Separate assemblies were made for each group in the same 

manner as for the 454 and simulated Sanger sequence pipeline. Another in-house script, 

cull_FASTA.py, was used to remove all reads that did not belong to a particular group. 

These reads were removed from the trimmed sequence and quality data for that 

assembly. Likewise, references to these reads were removed from the quality-culled 
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mate-pair data by the custom script cull_mates.py. The assembly of each group of 

libraries was used to obtain the mean and standard deviation of the insert sizes for that 

group. It was also used to obtain the group’s numbers of mated and unmated reads. 

These statistics were obtained from Hawkeye (http://sourceforge.net/projects/amos; 

Schatz et al. 2007), part of the AMOS Assembler package. MetaSim also requires the 

mean and standard deviation of the read lengths for each group simulated. These 

numbers were obtained by the Perl script getlengths, also part of the AMOS Assembler 

package. This third party script was called by the custom script get_stats.py. 

get_stats.py took the statistics from Hawkeye and converted them for use in MetaSim. 

The numbers of mated and unmated reads were converted into the number of mate-pairs 

and proportion of reads with mates. get_stats.py outputs all this information in the .mprs 

format used by MetaSim. These statistics could then be used for replicating assemblies 

of experimentally-derived sequence data in a simulated assembly.  

To investigate the reasons for differences in error rates between assemblies, the GC 

content and coverage of each assembly were calculated. The GC content and coverage 

of each genome project was calculated using numbers from Hawkeye. The mean read 

length in each assembly for mated and unmated reads were multiplied by the number of 

reads in their respective categories. These combined read lengths for each category were 

added together to give the combined length of all reads, i.e. mean read length times 

number of reads. The combined read length for each assembly was then divided by the 

corresponding total number of consensus bases to give the coverage in that assembly. 

The GC content for each category in an assembly was multiplied by the combined read 

length for that category. The resulting scaled GC contents were then added and divided 

by the combined read length for the entire assembly to give the GC content of that 

assembly.  

 

 

  

http://sourceforge.net/projects/amos


Chapter 2 Error Model Development 

16 
 

2.4 Results and Discussion 

2.4.1 Sanger Dideoxy Sequence 

2.4.1.1 Calibration to a Single Genome Sequencing Project 
 
The calibration of sequencing errors in MetaSim to experimentally-derived genome 

sequencing data was necessary to allow the detection of confident SNPs in 

metagenomic data. As a first step, MetaSim was calibrated to a single genome project. 

E. coli HS trace files (Rasko et al. 2008) were downloaded from the NCBI trace 

archive, assembled and simulated. Individual sequencing project data obtained from this 

archive usually contained plasmid libraries with two to seven different insert sizes. Each 

project’s metadata file was used to divide the reads into their component groups of 

libraries. Each group contains one or more libraries from the same project that share the 

same mean insert size. These groups were then assembled separately and the statistics 

required to simulate the combined assembly were calculated. The statistics required 

were the number of mate-pairs, the proportion of reads that were mated, the mean and 

standard deviation of the observed insert lengths and the mean and standard deviation of 

the read lengths. This information was obtained from or derived from Hawkeye’s 

graphical user interface and the script getlengths.  

Third party scripts were investigated as a method of automating the process of 

obtaining this information. However, these scripts generated unreliable data. The scripts 

getlengths, astats and insert-sizes are all from the AMOS Assembler package and all 

produce output in plain text. If the information was obtainable in plain text format, then 

these scripts could have been placed in a pipeline with in-house code. 

Insert-sizes gave slightly higher insert lengths than Hawkeye regardless of which 

settings were used. Astats gave nonsensical output, for example, reporting that a group 

of libraries had more mates than reads. Castats from the AMOS package was also 

investigated and this gave mate-pair information that was different again. Given these 

errors and disagreements, Hawkeye was used instead of astats, castats or insert-sizes. 

Hawkeye is a more widely used program and since these programs are open source this 

means there have been more opportunities for Hawkeye’s users to detect and correct any 

software bugs. When a comparison was made between insert-sizes and Hawkeye, 

MetaSim produced simulations that better matched the original data. 

MetaSim provides four parameters which together control the types and locations of 
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sequencing errors introduced into the simulated Sanger reads. These four parameters 

are: the proportion of deletion and insertion errors and the error rates at the first and last 

position in each read. MetaSim calculates the proportion of substitution errors from the 

first two proportions (Richter et al. 2009). 

MetaSim was used to produce simulated reads for each group of libraries 

separately. These datasets were then pooled and assembled. This assembly was then 

compared to the assembly of the undivided sequencing project data. MetaSim 

parameters (including the four error parameters) were adjusted iteratively to make the 

two assemblies as similar as possible. All but one of the observed statistics for the 

simulation could be adjusted to within 1% of the values from a real sequencing project 

(Table 2.1). The proportion of insertions was adjusted to within 3%. 

 

Table 2.1: Simulation of an E. coli assembly for error calibration. 

  Real MetaSim % Change 
Unmated Reads  24,130 24,168 0.16 
Mated Reads  37,306 37,230 -0.20 
Insert Length Mean  7281.93 7256.65 -0.35 
Insert Length Standard Deviation 3055.29 3025.80 -0.97 
Total Discrepancies  53,428 53,549 0.23 
Discrepancies per kb 11.427 11.500 0.64 
Proportion of Substitutions 0.406 0.405 -0.25 
Proportion of Deletions  0.446 0.443 -0.67 
Proportion of Insertions  0.148 0.152 2.70 

 
As confirmation that the error rate for each type of error could be calibrated, a 

variational study was conducted for each MetaSim error parameter in isolation. Such a 

calibration would be dependent on finding an appropriate set of sequencing projects. A 

simple linear relationship between the proportion of insertion or deletion errors in a 

simulation, and proportion in the corresponding assembly was found (R2 = 0.9999 and 

1.0000, respectively) (Figure 2.3A and B). The other two error parameters “Error rate at 

start of read” and “Error rate at end of read” were kept in their original 1:2 ratio and 

varied as a pair. The relationship between the settings in MetaSim and the number of 

errors added (as reported by MetaSim) was linear (R2 = 0.9999). When these two error 

rates were set at twice their defaults (0.02, 0.04), the extra errors were not directly 

detectable in the assembly. This is because they caused an increase in the number of 
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reads that were labelled as singletons and rejected, and a decrease in the amount of 

assembly. For all lower settings measured, the relationship between the error rate set 

and the error rate observed in the assembly was linear (R2 = 0.9997).  

 

 
Figure 2.3: MetaSim error rates for Sanger reads can be accurately controlled. 
Relationship between expected and observed levels of A) insertions and B) deletions in 
simulated E. coli Sanger Sequence 

 

The numbers of discrepancies that resemble basic evidence for SNPs (i.e. at least 

two minority bases) in the E. coli assemblies were compared. This comparison found a 

large difference between the simulated and experimentally-derived assemblies with 145 

and 1634 such discrepancies, respectively. MetaSim produces read errors at random 

unbiased locations (though it does allow for adjustment of error likelihood of the two 

ends of the reads separately). The pattern of locations of errors in experimentally-

derived reads is more complex. For example, experimentally-derived reads have higher 

sequencing errors around homopolymer runs. This result suggested that MetaSim may 

not be suitable, if this could not be adjusted.  

Two methods of dealing with this difference were considered. One method would 

be to improve MetaSim’s error model to be more realistic. The second option was to 

abandon MetaSim and to work solely with experimentally-derived reads. To inform a 

decision, the comparison of experimentally-derived and simulated data was repeated 

with more species. 
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2.4.1.2 Calibration to Multiple Sequencing Projects 
 

To test the calibration of simulations, eight bacterial species were chosen, each from a 

different phylum. Phylum was used as a proxy for any genomic variable that might 

affect assembly, such as GC content or genome size. Some of these species could not be 

used due to various issues with the data and metadata and thus replacements were 

required. The original set chosen included: Anabaena variabilis ATCC 29413 

(Copeland et al. 2005), Bacillus anthracis Ames (Read et al. 2003b), Chlamydophila 

caviae GPIC (Read et al. 2003a), Deinococcus geothermalis DSM 11300 (Copeland et 

al. 2006), Hydrogenobaculum sp. Y04AAS1 (Lucas et al. 2008a, Reysenbach et al. 

2009), Neisseria meningitidis MC58 (Tettelin et al. 2000), Thermotoga petrophila 

RKU-1 (Zhaxybayeva et al. 2009) and Treponema denticola ATCC 35405 (Seshadri et 

al. 2004). Problems with data and metadata (outlined below) were found with A. 

Variabilis, B. anthracis, T. petrophila and T. denticola. The following potential 

replacements were also found to be problematic: Chlamydia muridarum Nigg (Read et 

al. 2000), Sphingomonas wittichii RW1 (Miller et al. 2010), Staphylococcus aureus 

subsp. aureus COL (Gill et al. 2005) and Thermotoga sp. RQ2 (Copeland et al. 2008a). 

Ultimately, Borrelia burgdorferi ZS7 (Fraser-Liggett et al. 2008), Dictyoglomus 

turgidum DSM 6724 (Lucas et al. 2008b), Mycoplasma arthritidis 158L3-1 (Dybvig et 

al. 2008) and Prochlorococcus marinus AS9601 (Kettler et al. 2007) were chosen as the 

final replacements.  

Various problems with data, metadata and simulation led to genomes being 

replaced. A. variabilis had no information on insert length. This sequencing project also 

had reads which were recorded as having more than one mate. Both B. anthracis groups 

of libraries had no remaining mate-pairs after read trimming and culling by LUCY. 

T. petrophila had some insert lengths marked as zero. For the T. denticola traces, the 

XML metadata file had seven different insert sizes. Some of these groups of libraries 

(those marked 32 kb and 60 kb) did not have any of their reads listed in the mate-pair 

data. However, when all the groups were assembled together, four insert lengths of 

approximately these sizes were found (29 kb and 62 kb). Thus, the number of mate-

pairs in these groups for the simulation was increased from zero to two. Unfortunately, 

MetaSim did not generate any reads for the T. denticola group marked 1200 bp. 

Downloading the mate-pair data for S. wittichii and C. muridarum was not possible. 

S. aureus and Thermotoga sp. RQ2 did not assemble.  
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Some issues could be resolved. For the N. meningitidis MC58 traces, 95% of the 

insert sizes were recorded as 300 or 700 bp in the XML file. This seems unlikely since 

the mean read length was 360 bp, and inserts should contain sequence from two reads 

and intervening sequence. The mean observed insert size in the assembly for these 

groups of libraries was 1652 bp. It would appear that the experimenters mistook the 

“insert length” field for “read length”. The reads for the insert size group marked as 

having 8 kb inserts had an observed mean insert length of 861 bp in the assembly, albeit 

with a very small sample size. Due to this inconsistency and the single peak in the 

overall assembly insert size distribution, this assembly was simulated with a single 

group of libraries. The C. caviae simulation did not produce the expected number of 

reads; instead it produced two orders of magnitude less. This was explained by MetaSim 

designer Daniel Huson as resulting from long reads with high standard deviations on 

short inserts (personal communications). If the reads were too long for the inserts, they 

were not produced. Thus, the standard deviation for the read lengths in these 

simulations were both decreased to 150 bp (from 206.16 and 199.44 bp, respectively) to 

allow the production of the expected quantity of reads. Likewise, the simulation for 

N. meningitidis was producing too few reads. Therefore, the standard deviations for 

both insert length and read length were decreased from 322.49 and 141.29 to 200 and 

80, respectively. 

The simulation and comparison to data from real sequencing projects was 

performed for eight different datasets each containing a species from a different phylum 

(Table 2.2). There was a much greater variability in the number of errors per kb in the 

experimentally-derived data in comparison to the simulated data. These results were 

produced using the error settings calibrated to E. coli (Table 2.3).  
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Table 2.2: Simulation of eight assemblies for error comparison 

Phylum Species Data 
Source 

Discrepancies per kb Total 
Bases Total >2a 

Aquificales Hydrogenobaculum 
sp. Y04AAS1 

Real  28.497  1.695 2396541  
MetaSim  5.287  0.020 2167789  

Chlamydiae C. caviae Real  41.755  1.255 1479123  
MetaSim  4.922  0.009 1506662  

Cyanobacteria P. marinus Real  16.293  0.800 2745613  
MetaSim  5.671  0.009 2424352  

Deinococcus- 
Thermus D. geothermalis Real  10.414  0.162 3939084  

MetaSim  5.281  0.011 3293592  

Dictyoglomi D. turgidum Real  95.711  5.280 2228630  
MetaSim  5.598  0.010 2630906  

Proteobacteria N. meningitidis Real  7.612  0.072 2693295  
MetaSim  5.959  0.018 2324094  

Spirochaetes B. burgdorferi Real  32.706  3.260 1421068  
MetaSim  6.976  0.017 1496373  

Tenericutes M. arthritidis Real 186.706  26.319  919297  
MetaSim  8.427  0.047 1334471  

aRefers to discrepancies filtered so that only those with at least two matching minority bases are 
listed.  
 
Table 2.3: Error settings calibrated to E. coli 

Error rate at first position  6.432 × 10−4 

Error rate at last position  1.2768 × 10−3 

Proportion of Substitutions  0.406  

Proportion of Deletions  0.446  

Proportion of Insertions  0.148  

 
To determine if this variability was linked to how the data were generated, the 

sequencing facility, date of sequencing, sequencing machine type and base-calling 

software were investigated for each data set. A limited amount of data was available 

(Table 2.4).  
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Table 2.4: Sequencing Project Metadata 

Species Facility Load Date Run Date Date 
Submitted Base-caller 

B. burgdorferi  
TCAG 
JCVI 
JTC 

15th Jun 2007  17th Sep 2008 
15th Oct 2008 

Jtrace 3.10 
Tracetuner 
3.0 

C. caviae TIGR 28th Mar 2003  8th Apr 2002 
29th Oct 2002  

Phred 
0.960108.C 

D. geothermalis JGI 29th Mar 2005  25th Apr 2006 
9th May 2006  0.990772.G 

D. turgidum JGI 7th Oct 2008  4th Dec 2008 
14th Dec 2008 KB 1.3.0 

E. coli JCVI 6th Oct 2005  13th Aug 2007
13th Sept 2007 Phred 

Hydrogenobaculum 
sp. Y04AAS1 JGI 24th Aug 2007  7th Aug 2008 Phred 

0.990772.G 

M. arthritidis TIGR 26th Mar 2003  1st Apr 2008 
29th Jun 2008  

Phred 
0.990722.G 

N. meningitidis TIGR 15th Jun 2005  
17th Mar 2000 
19th Sept 2001 
18th May 2005 

Phred 

P. marinus JCVI 15th Nov 2007 5th July 
2005 

6th Nov 2006 
22nd Jan 2007 

KB 1.1.2 
Tracetuner 
2.0.1 

Abbreviations: JCVI (J. Craig Venter Institute, USA) formerly TIGR (The Institute for 
Genomic Research, USA), JGI (Joint Genome Institute, US Department of Energy), TCAG 
(The Center for the Advancement of Genomics, USA). Load date and run date refer to NCBI 
trace archive. Date submitted refers to NCBI website.  

 

Sequencing machine type was not stated for any of the eight projects. Since this 

was not available, the year the DNA was sequenced could have provided an indication 

of which machine was used. However, the actual sequencing date was only recorded for 

one species. For six out of eight genomes, the dates specified regarding when data was 

loaded into the NCBI trace archive are earlier than those provided on the NCBI website 

for when the data was submitted. For multiple projects the dates provided span over five 

years. The addition of new data to old sequencing projects can explain some of the 

variability in the dates for each project. The oldest date provided for each genome did 

not correlate well with the error rates in the assemblies of experimentally-derived data 

(Figure 2.4). Updates to older genomes could explain lower sequencing errors but they 

do not explain high sequencing errors. Whilst multiple database submission dates were 

available, this only provides a minimum age for the data. Legacy data may have been 

only recently uploaded. The base-calling software used by different projects was 
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recorded but multiple versions of various software programs were used in a variety of 

combinations. Thus, base-caller information was of limited use for determining the age 

of the assemblies. Even if the same machines and base-callers were used there could 

still be large differences in sequence quality due to cost-reducing variations in 

protocols. 

 

 
Figure 2.4: Variation in observed error rates in genome sequencing projects does not 
correlate with project age.  
Observed error rates from experimentally-derived sequence data (“Real”) are depicted in blue. 
Observed error rates in assemblies of simulated data (“MetaSim”) are depicted in red. 
Sequencing projects are sorted, left to right, by the earliest date recorded for that project (run 
date, load date or submission date). Error rates in simulated reads are calibrated to E. coli. 
 

2.4.1.3 Discussion 
  

The use of MetaSim for simulating and understanding microheterogeneity in Sanger 

metagenomic datasets is still uncertain. Calibrating the settings requires a set of 

consistent sequencing projects, which was not available. It may have been possible to 

select a consistent set if sufficient metadata had been available. The sequencing 

institution from which the data originated could potentially be used to sort genome 

projects and obtain a consistent set. However, all eight sequencing projects analysed 

were sequenced by only two institutions (JGI and JCVI/TIGR), both of which produced 

projects with one of the highest and one of the lowest observed error rates. The 

sequencing machine used should have been a better discriminator of projects. The 
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machines used at each institution presumably change over time and more than one type 

of machine may be used at the same time at the same institution. The machine used for 

some of the projects should be available in the associated literature. However, many 

genome projects do not currently have any associated publications (eg. Copeland et al. 

2006, Lucas et al. 2008b, Ward et al. 2010a). Extremes of GC content could affect the 

efficacy of Sanger sequencing and thus explain some of the large variability in 

sequencing error rates. Whilst the genomes with the highest error rates did have low GC 

contents (31% for M. arthritidis and 35% for D. turgidum), the genomes with the lowest 

(29% for B. burgdorferi) and highest (66% for D. geothermalis) GC contents had 

comparatively low error rates (Table A.1). Assembly coverage does explain a 

proportion of the variability in error rates. Coverage and sequencing error rate have a 

weak linear relationship (R2 = 0.8257). However, this does not explain all of the 

variation in error rates. Even when normalised by coverage, there is still a large 

difference in error rates (from 1.88 to 11.21) (Table A.2). 

Another problem is that the frequencies of more than two errors at a discrepancy 

are too low in the simulations and these are the ones that, in experimentally-derived 

data, provide better evidence for real SNPs (Table 2.2). Thus, it would have been 

desirable to make changes to MetaSim’s error model to make it more realistic. However, 

this would have required access to MetaSim’s source code, which was not available.  

 

2.4.2 454 Pyrosequencing 
 

The genomes of Brucella abortus NCTC 8038 (Ward et al. 2009), Lactobacillus 

crispatus CTV-05 (Ward et al. 2010a) and Neisseria gonorrhoeae F62 (Ward et al. 

2010b) were investigated using data produced on 454 GS FLX machines. These 

genomes were chosen because they were sequenced using the same technology at the 

same institute (Broad Institute of MIT (Massachusetts Institute of Technology) and 

Harvard, USA). Completed genome sequences were not available for these genomes. 

Therefore, the simulation of this data was produced from the scaffolds assembled by the 

Celera Assembler. The scaffolds longer than 3 kb from each species were concatenated 

together to approximate their respective genomes. The lengths of these pseudo-genomes 

were compared with the genome lengths of related strains to make sure that they were 

approximately the right size. 
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Since the parameters in MetaSim that control 454 simulation are so different from 

those used to control the Sanger simulations, only the total number of errors was 

calibrated instead of trying to fit the ratio of error types as well. The calibration process 

revealed that the parameter variously called “Proportionality Constant for Std. 

Deviation” or “Signal Std. Deviation Multiplier” (SSDM) was the main controlling 

parameter. To confirm this, SSDM and two other parameters were plotted, namely 

“Lognormal Distribution Mean”/“Mean Negative Flow Signal” (MNFS) and 

“Lognormal Distribution Std. Deviation”/“Std. Deviation for Negative Flow Signals” 

(SDNFS), to show that adjustments of these parameters had only small effects when the 

total errors added were appropriately low (Figure 2.5). The fourth error parameter 

“Scale Standard Deviation with Square Root of Mean” (SSDSRM) is a binary 

parameter which produces the least errors with its default setting. 
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Figure 2.5: 454 error rates in MetaSim cannot be conveniently controlled. 
Effect of varying: A) Signal Standard Deviation Multiplier (SDNFS), B) Mean Negative Flow 
Signal (MNFS) and C) Standard Deviation for Negative Flow Signals (SSDM) in B. abortus. 
For the value of the first data point in Subfigure C see insert. 

 

The result of the variational study on the 454 parameters was that, when varied 

independently, the degree of effect of each parameter was comparable. A combination 

of these parameters (fit1: MNFS = 0.05, SDNFS = 0.01 and SSDM = 0.1396) allowed 

the creation of assemblies that were calibrated to the corresponding genome sequencing 

projects (Figure 2.6). Since these calibrations only considered total number of errors, 

other combinations of these parameters could have been used. If setting the proportions 

of error types for 454 reads in MetaSim was to be pursued then all three parameters 

would need to be further investigated. Since the effect of the parameters is comparable 

they should be treated equally. 
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Figure 2.6: The total errors in MetaSim 454 data could be calibrated to experimentally 
derived data. 
Total discrepancies in three assemblies of 454 reads from different species. Blue bars denote 
data from real genome sequencing projects (“Real”). Red bars denote simulated data 
(“MetaSim”).  

 

When SSDM was lowered to 0.01 and the other error parameters were kept at their 

defaults, the number of errors added rose to 84 million instead of decreasing (Figure 

2.5C). This aberration appears to be due to a defect in MetaSim and thus outside of the 

usable range of the variable. 

Despite this constraint on low values, SSDM is probably still the strongest 

controlling parameter. Measured in terms of the number of errors that MetaSim adds, it 

has the largest range of errors despite a smaller range of values being investigated. 

However, it is only marginally better and a future analysis should probably investigate 

the combined effects of all three parameters. 

The relationships of all three parameters to the total number of errors produced are 

non-linear. The parameters provided in MetaSim for controlling 454 sequencing error 

are ambiguous and difficult to calibrate. The parameters for controlling sequencing error 

in Sanger reads were much clearer. The differences may allow more realistic 

simulations of the 454 technology. The non-linearity of the effect of parameters and 

their apparently complex combined effects add to this. This complexity is hinted at by 

the two data points investigated on how these parameters interact: the combination 
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arrived at by the above investigation (fit1: MNFS = 0.05, SDNFS = 0.01 and SSDM = 

0.1396) and previously calibrated settings (Lauro, unpublished work) (fit2: MNFS = 0.1, 

SDNFS = 0.05 and SSDM = 0.05). The effect of lowering all three parameters by 50% 

to 67% from the default settings lowered the total errors to 954. This is much lower than 

the 500,378 for fit1 where one of the parameters was decreased by a larger amount. An 

automated investigation of these parameters would probably be required to match the 

proportions of the different kinds of errors.  
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2.5 Conclusion 
The calibration of an error model was problematic for both Sanger and 454 data. For the 

Sanger data, this was largely due to high variation in sequencing error rates in the 

available genome projects. This variation may have been dealt with if the necessary 

metadata on sequencing machines was available. Likewise, information on the date of 

sequencing may have helped but this was not explicitly stated. Multiple submission and 

upload dates were given, which may not correspond to the date of sequencing. 

The 454 data available were more consistent and better documented. This allowed 

the calibration of the total number of discrepancies in each assembly. The individual 

calibration of insertion, substitution and deletion errors was not possible because of the 

issues involved in modelling 454 errors in MetaSim. This program uses different 

parameters for adjusting error rates in 454 and Sanger reads. For Sanger reads, these 

parameters are straight forward, have a simple relationship and linear effects on the 

errors introduced. For the 454 data, the parameters in MetaSim had non-linear 

relationships with the numbers of errors added. These parameters also had a complex 

relationship among themselves. Therefore, a direct search for a strong signal of inter-

strain variation was performed.  

An error model would have allowed a fine level of control over the FP (False 

Positive rate). Continuing without the model, the only way to control the FP was to look 

only at signal that was well above noise. A strong signal can be detected by looking for 

a pattern in the data that correlates with the desired information in simulations. Filtering 

that improves the readability of this patterned structure becomes a substitute for 

probability assignment and a probability cut-off. Chapter 3 describes the detection and 

filtering of such a signal. 
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Chapter 3                                          
Detecting Chimeric Contigs 

3.1 Summary 
 
To help identify a strong signal of inter-strain variation, a method was developed for 

graphically representing data from a simulated metagenomic dataset. This involved 

filtering the data by contig length and selecting informative variables. The strain of 

origin of each read in each assembly was tracked to show a correlation between clusters 

in scatter plots of the data and contig chimerism. The effects of varying assembly 

parameters and coverage on the resultant scatter plots were investigated. Large 

quantities of reads were found to be unreported in some Celera Assembler contigs. This 

was corrected by using unitigs (high confidence contigs) as the basis of the analysis 

rather than contigs. A method of binning unitigs based on their chimerism was 

developed. Predictions could then be made about whether contigs in an assembly were 

clonal using logit regression and ROC (Receiver Operating Characteristic) plots.  
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3.2 Introduction 

3.2.1 Chimerism and Contig Read Depths 
 

For the purpose of this thesis, chimerism is defined as reads from multiple strains 

having been assembled together. Patterns in the read depths of contigs in an assembly 

contain information about the chimerism of each contig and the assembly as a whole. 

In an assembly of reads from a clonal sample it would be expected that most 

contigs would have approximately the same read depth of . However, there are 

regions in many genomes that are repetitive, which would create regions of higher read 

depth. Similarly, consider an assembly of two clonal strains of the same species, each 

sequenced to a read depth of . This assembly should contain regions where the two 

strains were unique and thus there should be contigs with a read depth of . There 

should also be regions that were common to both strains and these regions should have 

approximately twice that read depth, i.e. . Likewise, in an assembly of three such 

strains, there would be regions common to one, two and three strains. These regions 

should have read depths of ,  and , respectively. Such a combinatorial pattern 

could provide the strong signal necessary to determine the number of distinct strains in 

the microbial community that was sequenced. Alternatively, this pattern could be used 

to determine whether a species in a microbial community is clonal. Additionally, 

predictions could be made about whether individual contigs contain sequence from 

more than one strain. 

 

3.2.2 Unitigs 
 

In the Celera assembler, unitigs are a precursor of contigs. They can be considered as 

high confidence contigs and thus provide an alternative to contigs as a basis of analysis. 

A unitig of maximum length should either be unique sequence spanning up to repeat 

boundaries or almost the entire span of a genomic repeat. If a unitig is unique it should 

not have more than a read length of repeat on either end (Myers et al. 2000; 

http://sourceforge.net 2010, Fraley and Raftery 2006). Because a unitig can be a repeat, 

it can be classed as a surrogate (a collapsed repeat) and removed from the final 

assembly. This can occur even when the unitig has been placed into a contig. In such a 

http://sourceforge.net
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case the reads from that unitig are removed and the consensus sequence still spans the 

gap. 

 

3.2.3 Logit Regression 
 

Contigs, and clusters thereof, can be divided into two categories: clonal and chimeric. 

Logit Regression (a.k.a. logistic regression analysis) provides an optimal method for the 

analysis of binary dependent variables (Allison 1999). It uses training data to create a 

classifier for similar datasets. Thus, given appropriate training data, contigs can be 

classified according to whether they are clonal. 

 

3.2.4 ROC Curves and AUCs 
 

ROC plots allow classifiers, such as a logit regression of the chimerism of contigs, to be 

visualised and evaluated. Logit regressions assign scores to each data point along a 

continuum. This continuum is similar to the probability that a given data point belongs 

to a particular class. However, a score of 0.5 does not necessarily correlate to a 

probability of 0.5. Thus, an appropriate cut-off for dividing this continuum into two 

categories is required. ROC plots allow the optimum cut-off to be selected for a 

classifier by displaying how the false positive rate (FP) and true positive rate (TP) 

change as the cut-off value is varied.  

AUCs (Area Under ROC Curve) allow different classifiers to be compared and for 

the best one to be selected. Thus, logit regressions using different training data but 

evaluating the same test data can be ranked using AUCs. A classifier’s AUC value is 

equivalent to measuring its ability to rank a randomly chosen correct data point higher 

than a randomly chosen incorrect one (Fawcett 2004). Since an AUC value is a 

proportion of the area of a square its value is always between zero and one. A ROC 

curve produced by random guessing would be a diagonal line with an AUC of 0.5.  

 

3.2.5 Aims 
 
The aim in this chapter was to infer whether contigs from assemblies of simulated reads 

from the same species were clonal. To achieve this aim, informative variables were 
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chosen to allow the graphical analysis of microheterogeneity in these assemblies. The 

number of reads and discrepancies in each contig were used as a starting point for such 

variables. Due to unreported reads in contigs, unitigs became the basis of analysis. Once 

a strong relationship was shown between the chosen variables and contig chimerism, 

logit regression could be used to infer the chimerism of these contigs. ROC plots 

allowed the optimum cut-offs in the logit output to be selected. 
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3.3 Materials and Methods 

3.3.1 Strains 
 
Strains of E. coli, N. meningitidis and S. aureus were selected for use in simulated 

metagenomic assemblies. These three species are distantly related, had genomes from 

multiple strains available and have been well-studied. A standard set of strains was used 

for each of these species. Genomes were downloaded from NCBI by MetaSim. Since 

reads from the different strains from the same species were assembled together, 

knowledge about how similar these strains are was required. dnadiff 

(version    1.2),    from the MUMmer (Maximal Unique Matches) package 

(http://mummer.sourceforge.net; Kurtz et al. 2004), was used to compare the genomes 

of strains within these species. Percentage alignments and identities were calculated for 

each pair of strains in a species. The alignment values reported for each pair of strains 

used the percentage of bases of one strain aligned to the other. Likewise, the reported 

identity values for each pair used the average one-to-one identity of one strain in 

reference to the other. For both alignment and identity values, the first strain 

alphabetically was used as the reference strain.  

The percentage identity and percentage alignment of the strains from E. coli (Table 

3.1 and Table 3.2), N. meningitidis (Table 3.3 and Table 3.4) and S. aureus were used to 

determine the similarity of the chosen strains. The percentage alignment of S. aureus 

COL (Gill et al. 2005) and S. aureus JH1 (Copeland et al. 2007) was 95.35. The 

percentage identity of these two strains was 98.92. The main requirement for strain 

selection was that all strains for a species had similar values for their identity and 

alignment. In practice, this meant keeping the range of alignment values under 12.5% 

and the range in identity values under 1.8%. Thus, E. coli CFT073 (Welch et al. 2002) 

was not chosen as it had the highest identity and alignment values to the other four 

E. coli strains. These values were 3.86% and 0.12% above the next highest, 

respectively. Discarding E. coli APEC O1 (Johnson et al. 2007), the strain with the 

lowest identity and alignment values, would not have decreased the range values 

considerably. In this case, the respective decreases in range would only have been 1.4% 

and 0.01%.  

 

http://mummer.sourceforge.net
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Table 3.1: Percentage alignments of five strains of E.coli 

E. coli 536 55989 APEC O1 ATCC 8739 
55989 83.21    
APEC O1 91.13 81.35   
ATCC 8739 80.08 84.77 78.68  
CFT073 94.81 81.11 91.06 84.69 

  

Table 3.2: Percentage identities of five strains of E.coli 

E. coli 536 55989 APEC O1 ATCC 8739 
55989 97.14    
APEC O1 98.90 97.13   
ATCC 8739 97.18 98.62 97.17  
CFT073 98.98 97.15 99.02 97.17 

 

Table 3.3: Percentage alignments of four strains of N. meningitidis 

N. meningitidis 053442 FAM18 MC58 
FAM18 94.38   
MC58 95.36 94.19  
Z2491 95.51 93.48 92.5 

 

Table 3.4: Percentage identities of four strains of N. meningitidis 

N. meningitidis 053442 FAM18 MC58 
FAM18 97.43   
MC58 97.17 97.23  
Z2491 97.32 97.32 97.13 

 

Assemblies of different quantities of strains were produced to find relationships 

between strain count and the way contig data-points cluster in scatter plots. For E. coli, 

the two-strain assemblies used the strains E. coli APEC O1 and E. coli ATCC 8739 

(Copeland et al. 2008b). Three-strain assemblies also included E. coli 55989 (Touchon 

et al. 2009). Four-strain assemblies additionally included E. coli 536 (Brzuszkiewicz et 

al. 2006). For N. meningitidis, the two-strain assembly used N. meningitidis 053442 

(Peng et al. 2008) and N. meningitidis FAM18 (Bentley et al. 2007). The three-strain 

assembly also included N. meningitidis MC58 (Tettelin et al. 2000). The four-strain 

additionally included N. meningitidis Z2491 (Parkhill et al. 2000). S. aureus assemblies 

used S. aureus COL and S. aureus JH1.  
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3.3.2 MetaSim 
 

For all assemblies of simulated reads, MetaSim produced 454 reads calibrated to the real 

genome sequencing projects that were used to calibrate MetaSim’s error parameters for 

454 reads in Chapter 2, namely B. abortus, L. crispatus and N. gonorrhoeae. The error 

calibration set MNFS to 0.05, SDNFS to 0.01, SSDM to 0.1396 and SSDSRM to true. 

The number of simulated reads per strain used in assemblies was 433,590, the average 

number of reads in the three genome projects. This allowed the creation of multi-strain 

assemblies with high, yet technically feasible, coverage. MetaSim was set to create 

reads with an expected read length of 258 bp (101 flow cycles). This number was 

calculated by averaging the read length means of the three sequencing projects and 

rounding to the nearest flow cycle. MetaSim’s other parameters were kept at their 

default settings. 

 

3.3.3 Assembly 
 

The Celera assembler has a default unitigger error rate of 1.5%. In this thesis, this rate 

was standardised to a higher value of 4% to increase the degree of assembly of reads 

from different strains. Ideally, this would be set so that contigs with all possible 

combinations of strains would be present in equal proportions. Read overlaps above the 

unitigger error rate are not used to construct unitigs. The assembler’s overlapper error 

rate and consensus error rate both have a default setting of 6%. The unitigger error rate 

cannot be set higher than either of these rates. Overlaps with an error rate above the 

overlapper error rate are not computed. The consensus error rate describes the 

approximate error rate in alignments expected by the consensus stage of the assembler. 

When the unitigger error rate was set above 6%, the overlapper error rate and consensus 

error rate were also increased to the same value. 

A separate FRG file was produced for each strain and these were then concatenated. 

This required use of the custom Python script combine_FASTA.py to ensure that the 

read identifiers remained unique. A new version of run_pipeline.py 

(run_pipeline_beta.py) with extra options was created to facilitate this. The creation of 

two FRG files for the one assembly allowed the tracking of the number of reads from 

each strain in each contig. Extra functionality was added to SNP_info.py to calculate 

statistics, including source strain proportions, on every contig in each assembly.  
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3.3.4 Unitigs and Contigs 
 

Strong relationships were found between the chosen variables, reads per unit of contig 

length ( ) and discrepancies per unit of contig length ( ), and the chimerism of contigs. 

However, some contigs had a very large proportion of their reads unreported in the 

assembler output. This is because the Celera assembler designates unitigs with 

uncharacteristically large read depths as surrogates because they are likely to be stacked 

repeats. Surrogates are used to extend the consensus sequence in contigs but their reads 

are not included in the contig. However, in metagenomic assemblies, such areas are 

often due to a species in high abundance or a section of a genome that was very similar 

across multiple strains. Therefore, assemblies were analysed with the -utg setting in 

toAmos, so that the list of contigs in the AMOS bank used during SNP analysis was 

replaced by unitigs. The custom script SNP_info_unitig.py was created to replace 

contigs with unitigs as the basic unit of analysis. Total reads per unit of unitig length 

( ) and total discrepancies per unit of unitig length ( ) were used instead of  and . 

 

3.3.5 Unitig Binning 
 

The creation of training data required the classification of that data into discreet groups.  

Unitigs were binned based on the number of strains that contributed a substantial 

number of reads to that unitig. The number of bins is equal to the number of strains. A 

method for binning these unitigs that was tolerant to some variation in the quantity and 

source of reads was developed. This method took into account the proportions of reads 

from each contributing strain and not just the number of contributing strains. It assigned 

a number to each unitig along a continuum which was then brought back into discrete 

bins by the use of cut-off values. The equation that governed bin assignment is: 

 
  (3.1) 
 

Where  estimates the number of strains that contributed a significant proportion of 

reads to a unitig and how close to equal proportions those strains are;  is the number of 

strains that contributed at least one read to that unitig and  is the total number of 
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strains in the assembly; , , ... and  are the percentages of reads from strains , 

, ... and  in the unitig; where and ; , ,  and ; and 

 

 
(3.2) 

 

If a unitig from a three-strain assembly had 50 reads from one strain and 50 from 

another, it would be correctly assigned the number two (  = 2). A similar 

unitig with 50 reads from one strain, 49 from another and one from a third would be 

assigned: . Thus, this method assigned similar 

numbers to similar unitigs and consequently allowed them to be binned together by 

using an appropriate cut-off value. It was implemented using a series of custom R 

(version 2.12.1) functions. 

For dichotomous predictions, a simplified version of the above formula was used. 

All unitigs not classified as clonal were classified as chimeric. Unitigs with less than 

75% of reads from one strain were classified as chimeric and those with greater than 

75% as clonal. 

 

3.3.6 Normalisation of Coverage 
 

To test whether plots from different species could be made more similar, assemblies 

were made with the number of reads used for each strain normalised by the length of 

each genome. The lengths of plasmids were not included as this sequence was not used 

by MetaSim. The average coverage for each strain was calculated as: number of reads 

times read length divided by genome length. The mean read lengths for the reads 

MetaSim produced for each strain varied within a small range of values. Thus, the exact 

mean value for each strain was used in the coverage calculation for that strain. The 

combined two-strain coverage for S. aureus and N. meningitidis were adjusted to match 

the coverage of E. coli, namely 46.605×. 
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3.3.7 Logit Regression and ROC Plots 
 

Logit regression was performed in R to make predictions about whether unitigs were 

clonal. The ROCR package in R was used to create ROC plots (version 2.12.1). The 

formula  was used to calculate the cut-off value for the logit 

regression output (adapted from Provost and Fawcett 2001). This was equivalent to 

choosing the point on the ROC curve closest to the top left corner.  was minimised 

in order to minimise the proportion of possible type one and type two errors. 
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3.4 Results and Discussion 

3.4.1 Choice of Variables 
 

The expected combinatorial pattern in the read depths of contigs indicates that the 

number of reads in each contig is a potential indicator of inter-strain variation. In a 

mixed system, a contig that has reads from multiple strains should have more reads than 

similar clonal contigs. Likewise, if reads from different strains were assembled together, 

the probability of discrepancies would be higher than if the reads were from the same 

strain. Additionally, adding extra reads in a contig, even if they were sequenced from 

identical regions of DNA, would add extra discrepancies due to sequencing errors. 

Thus, the number of discrepancies in each contig is also a potential indicator of inter-

strain variation. Therefore, the number of reads and discrepancies in each contig were 

used as the basis of informative variables, which were in turn used for a graphical 

analysis of chimerism. 

The total number of reads versus the total number of discrepancies for each contig 

was not sufficiently informative. For example, a three-strain assembly of E. coli with a 

7% unitigger error rate (three-strain 7% E. coli assembly) has a single cluster 

longitudinally dispersed along y = x (Figure 3.1).  

 
Figure 3.1: Read and discrepancy counts are not sufficiently informative variables.  
Three-strain 7% E. coli assembly, unfiltered and unnormalised. 
 

The number of reads in a contig is highly dependent on the length of that contig. 

Ten kilobase contigs almost always have more reads than 100 bp contigs. The number 
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of discrepancies in a contig is also highly dependent on length. Thus, the numbers of 

reads and discrepancies in each contig were normalised by dividing by the contig 

length. These plots were more informative for extracting information about contig 

chimerism. The equivalent scatter plot of the 7% E. coli assembly had two poorly 

separated clusters with different shapes surrounded by many scattered observations 

(Figure 3.2). 

 

 

 

 
Figure 3.2: Normalising read and discrepancy counts make these variables more 
informative.  
Three-strain 7% E. coli assembly, length filtered and unnormalised.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

A further improvement of the chosen variables for detecting chimerism was to filter 

out the shortest contigs, i.e. those less than 1 kb.  and  are both statistical in nature. 

Both refer to an average value over the length of that contig. This means that contigs 

with only a few reads had a small sample size for these values and therefore their 

derived parameters were less reliable. The filtered version of the 7% E. coli assembly 

had three small well-separated elliptical clusters (Figure 3.3).  
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Figure 3.3: Length filtering of  and  allows clear evenly spaced clusters to be seen.  
Three-strain 7% E. coli assembly, length filtered and normalised.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

A correlation matrix was used to confirm this choice of variables. Since both 

variables were being used to measure chimerism, at least a moderate correlation was 

expected. If the correlation was very high then there would be no extra information 

added by using a second variable, although it would still provide a confirmation. A 

moderately high correlation of 87% was found (Figure 3.4). 
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Figure 3.4:  and  are appropriate variables, since have a moderately high correlation.  
Correlation matrix of variables in a two-strain 8% assembly of N. meningitidis.  

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

3.4.2 Read Tracking 
 

The systematic naming of reads in MetaSim made the tracking of reads from different 

strains possible. This in turn allowed the creation of the script is_chimeric.py. This 

script counted the numbers of reads from each strain in each contig and thus assigned a 

percentage value to each contig. This value recorded what proportion of a contig’s reads 

come from the first strain and therefore how chimeric it is. With the use of this script, 

every contig on a scatter plot could be coloured according to this percentage. Contigs in 

a two-strain E. coli assembly were divided into groups based on this percentage value. 

The extra information on chimerism correlated very closely with the two clusters 

(Figure 3.5).  
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Figure 3.5: Tracking reads allows clusters to be coloured by strain count.  
Coloured two-strain E. coli assembly. Red contigs:  < 1.5. Green contigs:  > 1.5.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
 
This colouring method shows that the filtering and normalisation applied to  and  

results in more informative scatter plots (Figure 3.6). The correlation between strain 

count bins and clusters in Figure 3.5 and Figure 3.6C shows that the binning has worked 

well. 
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Figure 3.6: The chosen variables create clusters that correlate well with strain count.  
Coloured three-strain 7% E. coli assembly. Normalisation of variables is by length. Filtering 
removed contigs < 1 kb in length. 
Red contigs:  < 1.5. Green contigs: 1.5 <  < 2.5. Blue contigs:  > 2.5.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
  

3.4.3 Understanding Cluster Locations 
 

As a control, a one-strain (E. coli APEC O1) assembly was produced. This assembly 

contained one distinct cluster, as expected (Figure 3.7A). This assembly was compared 

to equivalent two- and three-strain assemblies (Figure 3.7B and C). The bottom-left 

cluster, that denotes non-chimeric contigs, was very similarly placed in all three scatter 

plots. Its size was also very similar between the two- and three-strain assemblies. The 

one-strain assembly had the least reads and therefore had less contigs and a smaller 
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cluster. The top-right cluster in the two-strain assembly has a corresponding cluster in 

the three-strain plot, both of which denote a roughly even mixture of two strains.  

  

 

 
Figure 3.7: The size and positions of clusters with the same strain count are similar across 
assemblies with different strain counts.  
E. coli assemblies with different strain quantities. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

In each of these three assemblies, there are contigs with higher  values than any of 

the distinct clusters. In the one-strain assembly, these contigs look like a weak two-

strain cluster and in the two-strain assembly they look like an even weaker three-strain 

cluster. In the one-strain assembly, there are even a few points located where a three- or 

four-strain cluster would be located. Many genomes contain highly conserved regions 

that have similar sequence to other parts of that genome. These regions can be 
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erroneously assembled together leading to unitigs of greater read depth. If the sequence 

of a clonal contig can be found with sufficient similarity in two locations in a genome 

then it should have twice the read depth of other clonal contigs. Likewise, if that 

sequence is located in three or four locations then it should have three or four times the 

read depth. Thus, a small number of clonal contigs can imitate the location on a scatter 

plot of chimeric contigs. It is also possible for chimeric contigs to have increased read 

depth due to this effect, if they contain sequence that is conserved in at least one of their 

constituent strains. In the two-strain plot (Figure 3.7B), four of the six contigs with 

higher  values than the two-strain cluster are clonal, and two are chimeric. In the three-

strain assembly (Figure 3.7C), two out of six are clonal, two are two-strain unitigs and 

two are three-strain. 

Two-strain and three-strain assemblies of N. meningitidis were produced to 

determine if the trend of one cluster per strain in assemblies of E. coli held in other 

species. The same correspondence of clustering was observed between these assemblies, 

though the boundary between the two- and three-strain clusters in the three-strain 

assembly was not clearly defined (Figure 3.8). These clusters have higher  values 

since the same number of reads was used with a smaller genome. The E. coli strains 

have a mean genome size of 4.981 Mb compared to 2.201 Mb for the N. meningitidis 

strains.  

 
Figure 3.8: The same clustering is apparent in assemblies of a distantly related species.  
N. meningitidis assemblies with different strain quantities. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

These two assemblies were reproduced with a higher 8% unitigger error rate which 
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made the cluster boundaries more distinct (Figure 3.9). The reproduced assemblies used 

unitigs rather than contigs as the scatter plot data points, as explained in the next 

section. The use of unitigs is denoted by the symbols  and . 

 

 

Figure 3.9: Clustering of N. meningitidis assemblies is more apparent at a higher unitigger 
error rate. 
N. meningitidis 8% assemblies with different strain quantities:  

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

3.4.3.4 Understanding the Effect of Coverage on Cluster Locations 
 

In S. aureus two-strain assemblies, the number of reads used per strain was varied from 

10% to 100% of the standard number in 10% intervals. As the number of reads 

decreased, the clusters moved closer together and closer to the origin (Figure 3.10). For 

the 10% reads assembly, the clusters were so close that further magnification was 

required to distinguish them (Figure 3.10A). The equivalent spacing of clusters across 

assemblies of different coverage showed that the chosen variables possessed a robust 

relationship across this coverage range. 
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Figure 3.10: Clustering is independent of coverage over a wide range of coverage. 
S. aureus two-strain assemblies with varying coverage: 10% (4.19× per strain) coverage to 
100% (41.89× per strain) coverage. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
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3.4.3.5 Understanding the Effect of Assembly Tolerances on Clusters 
 

The three-strain assembly of E. coli was repeated using unitigger error rates in the 

Celera assembler between 1% and 8% (Figure 3.11). Scatter plots were produced for 

these assemblies. As the unitigger error rate was increased, the number of clusters 

increased. The 1% assembly plot (Figure 3.11A) displays a strong clonal cluster, a less 

dense two-strain cluster and almost no obvious three-strain unitigs. The 2% plot shows 

the second cluster elongating and, in the 3% plot, the second cluster starts to resolve 

into two clusters (Figure 3.11C). In the 5% plot, the two-strain cluster becomes obvious 

and it is well resolved in the 6% plot (Figure 3.11E and F). After this, the second cluster 

decreases in density in the 7% and 8% plots (Figure 3.11G and H). While this clustering 

was dependent on an assembly parameter, since this is part of the analysis, it should be 

possible to use the most appropriate settings in all situations. For this assembly, the 

plots showed 7% as the optimal error rate. When contour plots were used, 6% was the 

setting where there were three peaks with the most similar heights (Figure B.1). 

However, the setting of 4% was still used as the standard setting for consistency. 

As the unitigger error rate is increased, the density of the three-strain cluster 

increases and the one- and two-strain clusters decrease in density. This does not apply to 

the two-strain cluster at very low tolerances. At a rate of 4% or lower, the two- and 

three-strain clusters are still forming. At higher rates, the positions of the clusters are 

relatively stable. At these rates, the main effect of varying the tolerances is the changes 

in density of these clusters. This is expected, as reads that are unique to one or two 

species to a particular level of similarity can be considered common to all three strains, 

when a lower standard of similarity is used. 
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Figure 3.11: Unitigger error rates can be adjusted to improve clustering. 
Three-strain E. coli assemblies with varying unitigger error rates. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

A four-strain E. coli 4% assembly was created (Figure 3.12A). It had four clusters, 

and the fourth cluster's position followed the pattern of assemblies with less strains. 

However, the boundary between the third and fourth clusters was poorly defined. A 6% 

(Figure 3.12B) and 8% assembly (Figure 3.12C) were also created. The boundary 

between these clusters becomes clearer at higher tolerances but the density of the third 

cluster is severely reduced. The two-strain cluster loses fewer unitigs and the loss of 

unitigs from the one-strain cluster is barely noticeable. The number of unitigs in the 

four-strain cluster is also decreasing, but at the slowest rate. The total number of unitigs 

is decreasing because the mean unitig length in each cluster increases with the unitigger 

error rate and this is most pronounced in the four-strain assembly. All of the other 
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clusters are losing reads and the four-strain cluster is gaining them.  

 

 
Figure 3.12: Besides the last cluster, clusters with more strains lose unitgs more easily. 
Four-strain E. coli assemblies with varying unitigger error rates. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

If a unitig contains sequence common to three strains, then the likelihood of the 

fourth strain also having similar sequence is higher than if that unitig was common to 

only one or two strains. Likewise, if a unitig is common to two strains then its 

likelihood of having similar sequence in the other two strains is higher than if it was 

unique to only one strain. Thus, clusters with fewer strains should be more resilient to 

changes to the assembly tolerances.  

Four-strain N. meningitidis assemblies produced using the same three unitigger 

rates also followed the clustering pattern and the same effects on cluster density across 
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unitigger error rates were observed (Figure 3.13). The decrease in density of the clonal 

clusters is more apparent in these assemblies, though this is still most obvious in the 

three-strain clusters. These N. meningitidis assemblies used unitigs rather than contigs. 

These plots were produced with a larger scale than the E. coli assemblies because the 

same number of reads was used with a smaller genome. Thus, these clusters all have 

larger  values. 

 

 
Figure 3.13: Clustering patterns also apply to N. meningitidis assemblies. 
Four-strain N. meningitidis assemblies with varying unitigger error rates. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

3.4.4 Normalisation of Coverage 
 

The original assemblies were produced with exactly the same number of reads 

regardless of which species and strains were assembled. For the two-strain S. aureus 
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assemblies, lower quantities of reads led to clusters that more closely matched the 

positions of the E. coli clusters (Figure 3.14). The match between the S. aureus 

assembly with 60% reads and the standard E. coli assembly makes sense since the mean 

S. aureus genome length is 58% of the mean E. coli genome. Similarly, the mean 

N. meningitidis genome is 44% of the length of the mean E. coli genome. 

 

 
Figure 3.14: Adjusting the coverage of assemblies of distantly related species can make 
cluster postions more similar. 
Similar two-strain assemblies from different species:  
A) E. coli. 
B) S. aureus with 60% of the standard number of reads. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

When plotted together, the positions of the assembly’s clusters are in decreasing 

order of genome size (Figure 3.15A). These assemblies of S. aureus and N. meningitidis 

were reproduced with the same per-strain coverage as E. coli leading to more 

consistently located clusters across species (Figure 3.15B). This normalisation showed 

that cluster location was highly dependent on per-strain coverage but much less 

dependent on species. Consistent cluster locations between species could allow accurate 

predictions of chimerism in one species with another species used as the training data.  
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Figure 3.15: Using the same coverage gives clusters with very similar positions across 
assemblies of different classes and phyla. 
Comparison of two-strain assemblies of E. coli, S. aureus and N. meningitidis:  
A) Standard read numbers.  
B) Normalised coverage. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

Since one of the chosen variables ( ) is equivalent to contig read depth and the 

other variable is correlated to it, this effect of coverage on cluster position is not 

surprising. These assemblies were all produced with the same sequencing error rates 

and the similarities between the strains of each species have been controlled, thus the 

rate of discrepancy has been largely controlled as well. However, the differences in  

values between the species do not have the expected correlation to strain similarity.  

There is a distinct curve ( , R² = 0.9562) to the clusters in 

Figure 3.15A. The reason why this relationship is not linear is because  saturates at 

higher  values. More reads mean more sequencing errors at each consensus base, on 

average. However, due to the method of calculating discrepancies, additional 

sequencing errors at a discrepancy have no effect on . Thus, the higher  becomes, the 

lower the increase in  values. 

 

3.4.5 Dichotomous Prediction using Logit Regression and ROC curves 
 

Contigs from the simulated data shown in Figure 3.7A and B and Figure 3.9B were 

automatically sorted into clonal and chimeric contigs by logit regression. This 

regression was used to classify contigs in each assembly into clonal and chimeric by 
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using a different -binned assembly as training data. ROC plots were used to evaluate 

the resulting classifiers as well as showing the ideal cut-off for each. The -binning of 

the assembly to be classified was used to create the ROC plots. 

ROCR cannot be used to create a classifier with a one-strain assembly as training 

data, as there are no negative values. Likewise, if a cut-off for any classifier was 

calculated using a one-strain assembly, it could be used to perfectly classify that 

one-strain data by using a cut-off of one. Thus, the simplest control possible was to use 

a classifier and cut-off produced on a two-strain assembly to make a prediction on a 

one-strain assembly. To produce this classifier and cut-off, predictions were made on a 

two-strain E. coli assembly using that same assembly as training data. This produced a 

ROC plot with an AUC of 0.9789 (Figure 3.16A). The boundaries of the contigs 

classified as clonal closely matched the clonal cluster. Classification using the optimal 

cut-off of 0.5935 gave 550 true positives, 17 false positives, 793 true negatives and 34 

false negatives (Figure 3.16B). When used on a one-strain assembly, this classifier and 

cut-off gave 80 true positives and 21 false positives (Figure 3.16C). The true positives 

correlated closely with the distinct clonal cluster. This prediction method correctly 

labelled the clonal clusters in both one- and two-strain assemblies as being clonal, using 

a classifier developed on a two-strain assembly. 
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Figure 3.16: Logit classification allows accurate predictions of clonal unitigs for one- and 
two-strain assemblies.  
Logit prediction of chimerism using a two-strain E. coli assembly as training data: 
A) ROC plot of classifications of the same assembly. 
B) Classification of contigs in the same assembly using the optimal cut-off shown in A. 
C) Classification of contigs in a one-strain E. coli assembly using the same classifier and 
cut-off. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

A four-strain N. meningitidis 8% assembly as shown in Figure 3.13C was used to 

predict which unitigs in an 8% three-strain assembly were clonal. The classifier 

achieved an AUC of 0.9983 (Figure 3.17A). Classification with a cut-off of 0.3952 gave 

143 true positives, 3 false positives, 509 true negatives and 3 false negatives (Figure 

3.17B). The unitigs classified as clonal perfectly matched the clonal cluster, discounting 

the three false positives. This prediction method correctly labelled the clonal cluster in a 

three-strain assembly as clonal using a four-strain assembly as training data. Accurate 
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predictions of chimerism were made for assemblies of different species, different 

numbers of strains and assemblies using different assembly settings. 

 

 
Figure 3.17: Logit predictions are also accurate in an assembly of a different species with 
more strains.  
Logit prediction of chimerism using a four-strain N. meningitidis 8% assembly as training data: 
A) ROC plot of classifications of 8% three-strain assembly.  
B) Classification of contigs in the three-strain assembly using the optimal cut-off shown in A. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

A two-strain normalised S. aureus assembly, as shown in Figure 3.15B, was used to 

make a prediction on a two-strain E. coli assembly. The classifier achieved an AUC of 

0.9799 (Figure 3.18A). Classification with a cut-off of 0.4223 gave 545 true positives, 

10 false positives, 798 true negatives and 39 false negatives (Figure 3.18B).  
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Figure 3.18: Logit predictions can also classify accurately when the training data comes 
from a distantly related species. 
Logit prediction of chimerism using a two-strain S. aureus normalised assembly as training 
data: 
A) ROC plot of classifications of an E. coli two-strain assembly.  
B) Classification of contigs in the E. coli assembly using the optimal cut-off shown in A. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

This prediction on the two-strain E. coli assembly had a higher AUC and less false 

positives than the prediction that used the same assembly as the training data. The 

training data was successful even though it came from a different phylum. This shows 

that accurate predictions of unitig chimerism can be made for an assembly of a species 

without access to training data from that species. Accurate predictions on the chimerism 

of experimentally-derived metagenomic assemblies could potentially be made by using 

a model organism for the training data. This is useful as it would allow reuse of training 

data and allow predictions on assembly data from species that do not have a genome of 

a close relative available. 

All of the assemblies in this chapter used strains in equal proportions. This will 

rarely be the case in nature. Despite this, these assemblies allowed the development of a 

graphical analysis method based on the informative variables  and  (Figure 3.6). 

Whilst the boundaries between clusters are not always clear in the resulting scatter plots 

(Figure 3.8), several optimisations can help disambiguate. These include adjusting the 

unitigger error rate (Figure 3.9), using contour plots (Figure B.1) and, for simulated 

data, colouring by strain count bin (Figure 3.5 and Figure 3.6). The scatter plots cluster 

unitigs according to their level of chimerism across species from different classes and 

phyla (Figure 3.7, Figure 3.8 and Figure 3.10), and different coverage (Figure 3.10). 
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While the ideal unitigger error rate of 6% to 7% was not used as the standard assembly 

setting, accurate predictions of chimerism were still produced (Figure 3.16AB). 

The unitig binning method described (Equations 3.1 and 3.2) classified clusters 

effectively using information on the source strains of reads (Figure 3.5 and Figure 3.6). 

This binning method could be used for predictions of the quantity of strains in each 

unitig, rather than just predicting which unitigs are clonal. It could be used to create 

training data needed to make these predictions and to evaluate them. In order to be used 

for assemblies of strains in unequal proportions, this method will need to be extended, 

as discussed in Chapter 4. 

Both the one- and two-strain E. coli assemblies have multiple unitigs that are 

located outside the clonal clusters. These data points can be considered outliers and they 

are discussed in Chapter 4. The logit classification identified the clonal clusters almost 

perfectly but did not classify the outliers correctly. Thus, removing these outliers could 

greatly improve this analysis. The clonal cluster in the N. meningitidis three-strain 8% 

assembly has only three of these outliers (false negatives) (Figure 3.17). This is not 

because N. meningitidis has fewer regions of self-similarity than E. coli, as it in fact has 

more (Figure B.2). This implies the low number of erroneous classifications is due to 

the quantity of strains assembled together, or the higher unitigger error rate. 

Since these outliers are highly conserved within a strain, they may also be highly 

conserved between strains. Thus the higher quantity of strains and higher unitig error 

rate are likely to be the cause of the low number of errors in Figure 3.17. This is because 

if there are more strains, then the likelihood of a unitig’s sequence being common to at 

least two strains will be higher. Likewise, a higher unitig error rate decreases the 

threshold of similarity between similar sequences from different strains and increases 

the likelihood of these sequences being assembled together into one unitig.  
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3.5 Conclusion 
 
This chapter describes informative variables that were chosen to allow a graphical 

analysis of simulated metagenomic assemblies. This analysis method was robust across 

read-depths and, to a lesser extent, assembly tolerances. A robust method of binning 

unitigs from these assemblies based on the number of strains represented by their reads 

was also developed. Accurate dichotomous predictions of the chimerism of multiple 

assemblies were made, including a prediction that used training data from a different 

species. Thus, progress has been made towards the overall aim of predicting the number 

of strains in a metagenomic sample. 
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Chapter 4                                    
Predicting the Number and Relative 

Abundances of Strains 

4.1 Summary 
 
The graphical analysis method described in this Chapter was applied to sequencing data 

from microbial communities found in Ace Lake, Antarctica. A high fidelity unitig 

filtering method with minimal data loss was developed to select for species of interest.  

Chapter 3 described informative variables that were chosen to allow the binning of 

each unitig in an assembly to ensure linkage to the strains of origin. Chapter 4 describes 

a pattern analysis of the clustering of the resulting scatter plots that allowed the number 

of strains to be predicted in multi-strain assemblies. Using this analysis with assemblies 

of strains in unequal ratios required rules describing the relationship between the 

number and proportions of strains and the positioning of clusters. The clustering 

package MCLUST was investigated for automating the analysis. The method of binning 

unitigs by their source strains was extended to create training data for clustering of 

strains in unequal ratios. Cluster density differences helped distinguish between 

ambiguous cluster patterns. Idealised assemblies of simulated reads without sequencing 

errors were produced, which allow more detail that links clusters to their strains of 

origin to be observed. 
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4.2 Introduction 
After demonstrating predictions of whether the unitigs in an assembly were clonal or 

not (Chapter 3), it was important to determine the quantity of strains in these 

assemblies. Assemblies of simulated reads from multiple strains, each with the same 

read depth were used for dichotomous predictions (Chapter 3). Distinct clusters in 

scatter plots of these assemblies indicated the number of strains in each assembly. Thus, 

Chapter 4 describes a pattern analysis method that was developed to determine the 

relationship between the quantity and proportions of strains and cluster patterns. 

 

4.2.1 Chapter Aim 
 
The aim of the work described in this chapter was to infer the number of closely related 

strains in a metagenomic assembly contig and to estimate the relative abundances of 

those strains. Techniques to achieve this were developed using simulations and then 

applied to “contaminated” genome, and low complexity metagenome, data. Rules 

connecting cluster location and strain abundances were developed. Methods involving 

additional features were explored to enable the analysis of ambiguous cluster patterns. 

 

 

  



Chapter 4 Predicting the Number and Relative Abundances of Strains 

65 
 

4.3 Materials and Methods 

4.3.1 Strain Choice 
 
The strains and species used for assemblies of simulated reads were as described in 

Chapter 3 (Subsection 3.3.1). 

 

4.3.2 Unitig Binning 
 
When simulated reads from E. coli strains were combined in unequal proportions, the 

percentages of reads from each strain were scaled to allow use of the unitig binning 

method described in Chapter 3 (Equation 3.1). For each unitig, the percentage of reads 

from each strain was adjusted as follows: 

 

 

 (4.1) 

 

Where  is  scaled;  is the percentage of reads in that unitig from strain ;  is the 

proportion of reads in the assembly from the same strain;  is the total number of 

strains in the assembly and  .  

This scaling was necessary because, in an assembly of strains in unequal 

proportions, the ratio of reads from each strain in a perfectly mixed unitig is also 

unequal. For example, if an assembly of two strains is produced from a sample with 

90% of its reads from one strain, then 90% of the reads in a perfectly mixed unitig will 

be from that strain. In this case, the scaling method would convert the strain ratio for a 

unitig with a 90:10 mixture into a 50:50 mixture to allow it to be binned correctly: 

 

. 

 

Ranking the unitigs in an assembly of simulated reads based on their proximity to the 

expected mixture ratio clarifies the structure of the resulting scatter plot. 
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4.3.3 Grinder 
 
Grinder (version 0.1.6; http://biogrinder.sourceforge.net) is an alternative program to 

MetaSim. The parameters provided by Grinder are very straight forward compared to 

the 454 error parameters in MetaSim. Grinder uses a single parameter for indels rather 

than allowing control of insertions and deletions independently. Unlike MetaSim, 

Grinder does not provide separate models for different sequencing technologies. 

Assemblies of Grinder reads specified the coverage of each strain rather than the 

amount of reads. Equal proportion three-strain assemblies were created with 20× 

per-strain coverage. Unequal proportions for three-strain assemblies were chosen so that 

the total coverage also had a sum of 60.  

The error parameters in Grinder were set to match MetaSim. This led to the 

discovery that MetaSim had not been adding any substitution errors to its reads. Thus, 

assemblies with more realistic substitution settings were produced. However, 

assemblies that matched MetaSim were set as the standard for Grinder for consistency. 

Both kinds of assemblies used a sequencing error frequency for indels of 0.5. The 

sequencing error frequency for substitutions in the more realistic settings was set to 0.2. 

To calculate this, the ratio of substitutions to indels in the three real genome sequencing 

projects used for calibrating MetaSim in Chapter 2 and Chapter 3 were averaged. The 

substitution frequency rate was then chosen so that this ratio would apply, but without 

changing the frequency of indels. 

 

4.3.4 MCLUST: Model-based Clustering 
 
Logit regression is designed for binary systems and thus was inappropriate for 

predictions involving more than two classes. Since clusters in the scatter plots are 

strongly correlated with the level of chimerism of their unitigs, automated clustering of 

the data was performed. 

The R library MCLUST (version 3; Fraley and Raftery 2002) was used with default 

parameters. The MCLUST package provides normal mixture modelling. It does this via 

expectation-maximisation and model-based clustering. MclustDA provides discriminant 

analysis by performing model-based clustering on each class in the training set. The 

Mclust function uses a Bayesian information criterion to evaluate which models and 

how many clusters to use (Fraley and Raftery 2006). 

http://biogrinder.sourceforge.net
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4.3.4.6 Outlier Tracking and Filtering 
 

Pattern analysis provided a model of clustering in the scatter plots. However, a small 

number of observations did not fit this model. To improve the quality of this model, 

these outliers were removed from the MclustDA training sets. These outliers are likely 

due to paralogous regions within a strain’s genome being erroneously assembled 

together. For example, consider a unitig in a two-strain assembly that contains reads 

from two regions of each strain. The read depth of this unitig will resemble that of a 

four-strain unitig. In an experimentally-derived metagenomic assembly, orthologous 

regions could also have increased read depths. Outliers were defined as those few 

unitigs on scatter plots that have higher  than all the clearly identifiable clusters. Such 

outliers were detected by Mclust as a large sparse cluster, furthest from the origin and 

containing only these observations. The distance of these outliers from the final cluster 

mean was measured as a confirmation. MclustDA was originally used with its default 

settings: unrestricted in the number, orientation, size and shape of the clusters it could 

use to describe each bin in the training data. It was ultimately restricted to representing 

each bin as a single ellipsoidal cluster. 

Outliers with similar positions were found in the scatter plots across different 

species and unitigger error rates. Two-strain assemblies were produced for E. coli, 

N. meningitidis and S. aureus at both 4% and 8% unitigger error rates. For these 

assemblies, outliers were defined as those unitigs with an  value greater than 0.2. The 

4% assemblies were repeated with reads simulated with Grinder. For the Grinder 

assemblies, an outlier cut-off of an  value greater than 0.17 was used. The outliers in 

the different assemblies for each species were compared using cross_match 

(www.phrap.org/phredphrapconsed.html; version 1.080801). This program was used to 

create a mapping from outliers in each 4% assembly to unitigs in the corresponding 8% 

assembly and vice versa. Mappings were also calculated between the 4% assembly and 

the Grinder assembly for each species.  

The genes present in the outliers from 4% assemblies were examined to determine 

if the outliers could be systematically filtered out. Likewise, outliers from the 8% 

assemblies that were not matches to any 4% outliers were examined. The consensus 

sequence was used to obtain BLASTX (Basic Local Alignment Search Tool using a 

http://www.phrap.org/phredphrapconsed.html
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translated nucleotide query) hits against NR (Non-Redundant protein sequences 

database). Unique hits from the top five hits for each contig were examined.  

 

4.3.5 Cluster Locations: Contig Binning 
 
Assemblies of S. aureus COL and S. aureus JH1 in varying ratios were produced. The 

total number of reads was kept to the standard number for a two-strain assembly, as 

described in Chapter 3. The proportion of reads from S. aureus COL was varied from 

10% to 90% in 10% increments. The contigs were binned into two clonal clusters and 

one chimeric cluster according to their proportion of strains. For the equal proportions 

assembly, the standard  bin cut-offs were used. That is, contigs were divided into those 

with greater than 75% S. aureus COL, those with greater than 75% S. aureus JH1 and 

those with 25% to 75% of each. In the other assemblies, this originally chosen threshold 

was too stringent for the expected inter-strain-variation signal strength. Thus, a revised 

strategy for thresholding with adjusted cut-offs was developed. (Table 4.1). These 

adjustments were made because the number of reads from each strain in a perfectly 

mixed chimeric contig is proportional to abundance in the sample. The cut-off values 

were chosen to be halfway between the values for a purely clonal and a perfectly mixed 

contig. For example, in the 90% S. aureus COL, 10% S. aureus JH1 assembly, the 

S. aureus COL cluster has a cut-off of 95%, which is halfway between 90% for the 

perfectly mixed cluster and 100% for a completely clonal cluster. Likewise, the 

S. aureus JH1 cluster has a cut-off of 55% which is halfway between 10% and 100%. 

 

Table 4.1: Cluster cut-offs for variable proportion two-strain S. aureus assemblies.  

% S. aureus Reads in Assembly Clonal S. aureus  
Cluster Cut-offs 

JH1 COL JH1 COL 
10 90 JH1 > 55% COL > 95% 
20 80 JH1 > 60% COL > 90% 
30 70 JH1 > 65% COL > 85% 
40 60 JH1 > 70% COL > 80% 
50 50 JH1 > 75% COL > 75% 

The cut-offs for the clonal clusters are specified. All other contigs are assigned to the chimeric 
cluster. 

 

Outlier rejection of contigs with an  value over 0.4 was performed on these 

assemblies. These contigs were over four standard deviations from the mean  value of 
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the chimeric cluster. Standard deviations for the chimeric cluster were then recalculated. 

 

4.3.6 Peak Height Prediction 
 
The observed heights of peaks (i.e. maximal estimated cluster kernel density) were 

estimated directly off the contour plots in R by rounding down to the nearest level. 

These heights were also calculated by the custom script peak_picker.py.  

The input for peak_picker.py was produced using two-dimensional kernel density 

estimation with the kde2d function in R. Default bandwidths, or a bandwidth of 0.05, 

were used in this function. The default bandwidth was used as the standard for both the 

script and the contour plots. kde2d adjusts its default bandwidth depending on the input 

data. It was set to a 1000 by 1000 matrix of smoothed density values, for both the script 

and the plots. The points which were higher than all eight adjacent points were reported 

as peaks. It was assumed that the edge cases would not contain any peaks. Heights of 

peaks that weren’t reported by the script were not examined.  

When the contour plots were used, the centre of an obscured cluster was estimated. 

The location of the cluster was calculated using Equation 4.4. The peak centre for this 

cluster was then estimated using the distance from known peak centres and plot 

features. The shoulders of larger peaks made estimating the heights and centres of 

smaller nearby peaks more error prone. The height of the smaller peak tended to be 

overestimated. The contour plot of overlapping clusters like these is distinctive (Figure 

4.9B). 

The expected heights of peaks in assemblies of strains in unequal abundances were 

estimated. This required the peak heights in a plot with the same strains in equal 

abundances. The peak heights in the equal abundances assembly were divided by the 

number of contributing clusters. For  strains, the number of clusters that have  strains 

is equal to the number of distinct subsets with  items that can be chosen from a set of  

items, i.e.  clusters. Thus, for a three-strain equal ratios assembly, the height of the 

first cluster would be divided by , the second by  and the last left as is, 

as . The heights of these contributing clusters were then summed when the 

unequal ratio clusters overlapped sufficiently. If a cluster had no significant overlap, its 

expected height was set to the height of the corresponding equal ratio contributing 

cluster. 
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4.3.7 M. frigidum Genome Data 

 
The M. frigidum genome project contained small amounts of bacterial contamination 

with a low GC content (Webster 2010). To determine which unitigs were from the 

contaminant, the mean and standard deviation of GC content for the assembly were 

calculated from the GC content of all the unitigs in the assembly larger than 1 kb. 

The coverage of the genome was calculated from the contigs over 5 kb in length. 

The mean read length in these contigs was estimated by using the mean read length of 

all untrimmed reads. Since the reads were trimmed before assembly (Webster 2010), 

this means that the calculated coverage is an over estimate. 

 

4.3.8 Filtering Metagenomic Datasets 
 
To investigate intra-species variation in a microbial community, sequences from species 

other than the species of interest needed to be filtered out. For the Ace Lake samples, a 

filtered assembly of Sanger reads had already been produced for the GSB (Ng et al. 

2010) and Pelagibacter samples (DeMaere, unpublished work). This filtering was 

performed post-assembly on contigs using GC content, read depth, consensus sequence 

length and normalised di- and tri-nucleotide frequencies. Clustering was performed 

using a self organising map, after which contigs pertaining to the dominant species were 

selected.  

These dominant Sanger contigs were decomposed into reads. The unitigs in the 

hybrid 454 and Sanger assembly that contained these reads were recorded. These unitigs 

were used as a testing dataset for a ROC plot analysis. The ROC plots were used to 

compare di-, tri- and tetra-nucleotide frequencies. These frequencies were evaluated 

based on their value for filtering the hybrid assembly. The oligomer frequency that 

created a ROC plot with the highest AUC was chosen. A cut-off value was calculated 

from this ROC plot according to the method described in Chapter 3. The unitigs with a 

value above this cut-off were then analysed. 

As a corroboration of the filtering method, the program MEGAN (MEtaGenome 

ANalyzer) (version 3.7; http://ab.inf.uni-tuebingen.de/software/megan; Mitra et al. 

2009), was used to assign unitigs to taxa. Results were reported at the family level and 

http://ab.inf.uni-tuebingen.de/software/megan
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above. 

 

4.4 Results and Discussion 

4.4.1 MCLUST 
 

In Chapter 3, a relationship was demonstrated between the number of clusters in a 

scatter plot and the number of strains in the corresponding assembly. Thus, automated 

clustering of the chosen variables could enable automated predictions on the number of 

strains present in the assembly, and, to a lesser extent, predictions on the number in 

each unitig to be performed. Model based clustering using the MCLUST package was 

chosen for this task. MCLUST’s Mclust function produced good results for a four-strain 

assembly with the default settings (Figure 4.1). However, the spacing between the 

cluster centres was uneven. 

 
Figure 4.1: Mclust clustered a four-strain assembly into four unevenly spaced clusters plus 
an outlier cluster.  
Mclust clustering of an E. coli four-strain assembly using default parameters. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

The usefulness of Mclust was also limited due to its tendency to over-estimate the 

number of clusters at low strain counts. For example, it assigned five clusters including 

outliers to an E. coli two-strain assembly where two clusters plus outliers would have 

been appropriate (Figure 4.2). While the number of clusters can be specified, this is not 

helpful if Mclust is being used to determine how many clusters there are. 
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Figure 4.2: Mclust clustered a two-strain assembly into four clusters plus an outlier 
cluster. 
Mclust clustering of an E. coli two-strain assembly using default parameters. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

By default, Mclust compares 10 models (covariance structures), with different 

distributions, volumes, shapes, and orientations, each with up to nine clusters 

(components) (Table 4.2). The set of models to be compared and the limits on the 

number of clusters to be assigned can be specified. For Figure 4.1 and Figure 4.2, 

Mclust used an ellipsoidal model with varying volume and orientation but with a fixed 

shape (VEV) as the best fit.  

 

Table 4.2: MclustDA multivariate mixture models 

Multivariate Mixture Models Explanation 
EII Spherical, equal volume 
VII Spherical, unequal volume 
EEI Diagonal, equal volume and shape 
VEI Diagonal, varying volume, equal shape 
EVI Diagonal, equal volume, varying shape 
VVI Diagonal, varying volume and shape 
EEE Ellipsoidal, equal volume, shape, and orientation 
EEV Ellipsoidal, equal volume and equal shape 
VEV Ellipsoidal, equal shape 
VVV Ellipsoidal, varying volume, shape, and orientation 

 

The model selected by Mclust was not fitting well despite specifying the volume, 

orientation and shape appropriately. Thus, the plots were examined for further 

relationships. The clusters in the plots lie along the curve  (Figure 
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3.15A). The spacing of clusters along this curve is uniform (Figure 3.3 and Figure 3.12). 

Controlling these aspects of the clustering could have improved the fit of the model. 

However, the spacing between clusters in Mclust cannot be controlled. The source code 

of MCLUST was examined, but the time required to modify the package was too great. 

Since it was not feasible to change the models in Mclust, a different method of utilising 

the observed cluster spacing pattern in MCLUST was sought.  

 

4.4.2 MclustDA 
 
MclustDA is a MCLUST function that uses training data to predict the locations of 

clusters. The use of MclustDA was investigated as the training data could provide an 

implicit guide to the spacing of clusters.  

 

4.4.2.1 Investigation, Filtering and Comparison of Outliers 
 

For all three species used in simulated assemblies (E. coli, S. aureus and 

N. meningitidis), there were unitigs that had a much higher read depth than expected. 

Outlier rejection was used to improve the MclustDA training data.  

To determine whether outliers in assemblies of different species and with different 

assembly settings had similar sequences, 4% and 8% two-strain assemblies of each of 

the three species were produced (Figure C.1). For each of the three species, outliers in 

4% Grinder assemblies were compared with those in the MetaSim 4% assemblies. For 

each of these species, cross_match was used to map outliers in each assembly to the 

outliers in the other assemblies of the same species.  

Of the 80 outliers in the nine assemblies, 63 mapped to outliers in assemblies with 

different unitigger error rates and to those in assemblies using a different read simulator 

(Table C.1 and Table C.3). A high proportion of repetitive genes such as phage proteins 

and transposases were reported in these outliers by BLASTX using the NR database 

(Table C.1 and Table C.3). However, the set of genes detected was not sufficiently 

predictable to allow sequence based filtering of the outliers. Filtering sequences by gene 

type could require a closely related species with an annotated genome. This restriction 

would be excessive for metagenomic studies because the species of interest and the 

close relatives of that species are often poorly studied. 
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Analogous outliers were found for clusters with less than the maximum quantity of 

strains. These often overlap with the adjacent cluster furthest from the origin. Filtering 

of these kinds of unitigs could also improve the analysis.  

An N. meningitidis four-strain Grinder assembly was used as training data for 

clustering of a three-strain assembly. Mclust was run on the training data and any 

observations that were beyond the last obvious cluster were classed as outliers and 

removed (Figure 4.3). This last outlier cluster is easy to distinguish visually as it is a 

much larger ellipse containing far fewer observations. The outliers identified in this 

assembly are 1.9 to 12.9 standard deviations from the four-strain cluster mean. 

 
Figure 4.3: Mclust can be used to detect outliers. 
Mclust clustering of an N. meningitidis four-strain Grinder assembly using default settings. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

4.4.2.2 Training Data 
 

In Chapter 3, a binning method was described that assigned a real number, the strain 

number estimator , to each unitig (Equation 3.1). This continuum was then 

transformed back into discrete bins by specifying a width range of this number. Both 

restrictions in the width of the discrete  bins and the number of standard deviations 

from the mean (μ)  and  values for each bin were specified to finetune this binning 

(Figure C.2 and Figure C.3). A compromise was required between the number of unitigs 

in a bin and the accuracy of the cluster centres, i.e. between signal strength and quality. 

To test this parameter space, an N. meningitidis four-strain assembly was used to make 

predictions on an equivalent three-strain assembly.  bin widths of ± 0.05, 0.1, 0.2, 0.3, 
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0.4 and 0.5 were used. Each of these  widths was used twice – once with σ widths of 1 

(Table C.3) and once with 1.5 (Table C.4). Table 4.2 and Table C.5 describe the models 

used to cluster each bin. A setting of ± 1 σ ± 0.2  achieved the lowest test error. 

4.4.2.3 Results 
 

MclustDA achieved similar but inferior results to Mclust when using an N. meningitidis 

four-strain Grinder assembly to make predictions on a three-strain Grinder assembly of 

the same species. MclustDA achieved AUCs of 0.973, 0.888 and 0.978 for the three 

clusters and a mean AUC of 0.946; Mclust gave AUCs of 0.979, 0.923, 0.970 and a 

mean of 0.957. This experiment was selected as it should have produced optimal results 

for MclustDA. The training and test data in this case are very similar except that the 

training data has one more cluster. MclustDA should outperform Mclust in some 

situations such as two-strain assemblies where Mclust detected too many clusters.  

The even spacing in clusters in Chapter 3 only applied because the read depth for 

each strain was the same. When the proportion of reads from each strain is varied, the 

clusters move in relation to each other as described in the next section. Thus, MclustDA 

would not be practical for strains in unequal ratios as the training data would probably 

not match the test data. Also, the single strain read depth in training data needs to match 

the assembly being analysed. Estimating this read depth in real samples would be 

difficult but possible, as the clonal cluster is generally easily identified visually. 

However, it may not be possible to estimate this to the required accuracy. Lastly, 

MclustDA requires training data with at least as many clusters as the test data, which 

may also prove restrictive. 

Because of the variable spacing between clusters, constraining model spacing in 

Mclust would not be of much benefit. Without a different method of constraining the 

clustering performed by Mclust, this function is of limited use. Likewise, without 

realistic training data, MclustDA is of limited use. Thus a different method of predicting 

strain quantities and abundances was necessary. 
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4.4.3 Rules for Structure of Plots 

4.4.3.1 Location of Clusters 
 

When there are equal numbers of reads per strain in an assembly, the scatter plot of this 

data should have one visible cluster for each strain. All but one of the visible clusters 

are made of multiple overlapping clusters with coincident centres, i.e. , where 

, ,  and . The exception is the cluster furthest from the origin which 

denotes a mixture of all the strains in the assembly, i.e. . Figure 4.4A shows two 

S. aureus strains that were assembled together. Both strains produce a clonal cluster 

which has a coincident centre with the other (red and blue). There is also a two-strain 

cluster (purple).  

 
Figure 4.4: The rule of one visible cluster per strain only applies to strains in equal 
proportions. 
Two-strain S. aureus assemblies: Red contigs: S. aureus JH1. Blue contigs: S. aureus COL. 
Purple contigs: S. aureus JH1 and S. aureus COL.  
A) Strains in equal proportions.  
B) 70% of reads from S. aureus COL, 30% from S. aureus JH1.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

In an assembly with three strains in equal proportions, both the clonal and two-

strain visible clusters are each composed of three clusters with coincident centres 

(Figure 4.5). When the strains are not in equal proportions, the centres of clusters with 

the same level of chimerism will no longer be coincident (Figure 4.4B). The degree of 

coincidence is dependent on the relative proportions of the strains. 

When the strains assembled are in equal proportions, the clusters are evenly spaced. 
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When the proportions of reads from each strain are varied, more clusters are visible and 

are no longer evenly spaced. 

 

 
Figure 4.5: Three-strain assemblies contain seven clusters. 
Three-strain E. coli assembly.  
Red contigs:  < 1.5 and E. coli 55989 > 50%.  
Yellow contigs:  < 1.5 and E. coli APEC O1 > 50%.  
Blue contigs:  < 1.5 and E. coli ATCC 8739 > 50%.  
Orange contigs: 1.5 ≤  ≤ 2.5 and E. coli 55989 > E. coli ATCC 8739 and E. coli APEC O1 > 
E. coli ATCC 8739.  
Purple contigs: 1.5 ≤  ≤ 2.5 and E. coli 55989 > E. coli APEC O1 and E. coli ATCC 8739 > 
E. coli APEC O1.  
Green contigs: 1.5 ≤  ≤ 2.5 and E. coli APEC O1 > E. coli 55989 and E. coli ATCC 8739 > 
E. coli 55989.  
Brown contigs:  > 2.5. 
Strain 1: E. coli 55989. Strain 2: E. coli APEC O1. Strain 3: E. coli ATCC 8739. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

Two-strain S. aureus assemblies were produced with varying proportions of reads 

but the same total number of reads. The proportion of S. aureus JH1 was varied from 

10% to 50% by 10% increments. This means that the proportion of S. aureus COL 

varied from 90% down to 50%. For the assembly with 90% of the reads from S. aureus 

COL (Figure 4.6), there are three clusters, two of which overlap. There is a large gap 

between the bottom red clonal cluster, and the top blue clonal and purple two-strain 

clusters. The red clonal cluster contains only reads from the less abundant S. aureus JH1 

strain. The blue clonal cluster has reads from the more abundant S. aureus COL strain 

and the tightly clustered two-strain purple cluster contains contigs with reads from both 

strains. The two clonal cluster centres approach coincidence as the proportions of strains 
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approaches equality. The S. aureus JH1 cluster rises and the S. aureus COL cluster 

drops and separates from the mixed cluster (Figure 4.6B to E). 

 

 

 
Figure 4.6: Cluster positions move predictably due to changes in strain proportions. 
Two-strain S. aureus assemblies with variable strain proportions. The percentage of the strains 
S. aureus COL and S. aureus JH1 are as indicated. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

The locations of the cluster centres on the  axis were plotted against strain read 

depth (Figure 4.7). The two-strain clusters used the sum of the read depths for the two 

strains. For the clonal JH1 clusters, the  values have a linear relationship (R2 = 

0.9995). The S. aureus COL clonal clusters also have a linear relationship (R2 = 

0.9992). The pattern from the S. aureus JH1 clusters continues with the S. aureus COL 

clusters (R2 = 0.9996) and two-strain clusters (0.9965). The mixed S. aureus COL and 

S. aureus JH1 clusters all have similar  values (μ = 0.2781, σ = 0.003927).  
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Figure 4.7: There is a strong linear relationship between cluster location and strain 
proportions. 
Two-strain S. aureus assemblies with variable strain proportions: mean cluster  values versus 
one- and two-strain cluster read depths.  
Red and blue data points denote single-strain cluster values of S. aureus JH1 and S. aureus 
COL, respectively. Purple data points denote clusters of two-strain contigs. Error bars are ± 1 σ. 

: reads per unit of contig length. 
 

Three-strain E. coli Grinder assemblies were produced with their strains in varying 

proportions and with substitution errors (Figure C.4). The locations of the clusters in 

these assemblies followed the same pattern as in the S. aureus scatter plots. The linear 

relationship applies across the combined dataset of clonal, two-strain and three-strain 

clusters (R2 = 0.9863) (Figure C.5). The main deviation from this pattern is the E. coli 

APEC O1 and E. coli ATCC 8739 clusters (green) (Figure C.5). These clusters contain 

a low number of unitigs which decrease the accuracy of the cluster centres and the 

linearity of their relationship (R2 = 0.7042). The low number of unitigs is due to these 

strains having a lower similarity than the other combinations of strains (Table 3.1). 

Formulae to predict the location of clusters given the read depths of the strains was 

developed. Example formulae are given for assemblies with two and three strains 

(Equations 4.2 and 4.3) and then a general formula is given (Equation 4.4). If there are 

two strains with read depths of  and  times, then there will be clusters at: 

 
 (4.2) 
 

Where  is a constant; ,  and  and ,  and . 
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For three strains, with read depths of ,  and  times, there will be clusters at:  

 
 (4.3) 

Where  and . 

For  strains, with read depths of , , , , ... , ,  and  times, there will 

be clusters at:  

 

Combinations of one strain:   

(4.4) 

Combinations of two strains:   

Combinations of three strains:  

 

 

 
  

 
Combination of   strains:   

 

Where , ... , ;  and , ... , . 

For  strains, there are  clusters that have  strains, giving a total of: 

 
 

(4.5) 

 

By using Equation 4.4, the positions of clusters can be used to determine the 

proportions and quantities of strains for most assemblies with a low numbers of strains.  

 

4.4.3.2 Peak Picking 
 

Given the limitations of Mclust and MclustDA, an alternative method of locating cluster 
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centres for real data was sought. Peak picking tools were sought but were too specific in 

their design, e.g. the R library rNMR (http://rnmr.nmrfam.wisc.edu; Lewis et al. 2009). 

Since contour plots clustered equal proportion assemblies well (Figure 4.8), a custom 

peak picking tool based on contour plots was developed. 

 
Figure 4.8: Contour plots show two and three clear clusters for two- and three-strain 
equal proportion assemblies, respectively. 
E. coli assembly contour plots. Bandwidth = 0.05.  

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

4.4.3.3 Densities of Clusters 
 

The density of a cluster provides information about the unitigs that form it. For 

example, a cluster formed by two completely overlapping clonal clusters would be 

denser than a single clonal cluster. If the underlying clonal and chimeric clusters in a 

scatter plot have distinct densities then this can decrease the possible interpretations of 

each visible cluster. For example, the combination of the two kinds of clusters should be 

noticeably different from either kind of single cluster or two overlapping clusters of the 

same kind. The density of a three-strain cluster may also be noticeably denser than a 

two-strain cluster.  

Considering only the positions of cluster centres, it would be possible to construct 

assemblies with different numbers of strains that have ambiguous patterns. For example, 

consider an assembly of three strains, each with a read depth of 10×. This assembly 

would be largely indistinguishable from a two-strain assembly with 10 and 20× per-

strain read depths. Both would have clusters centred around 10, 20 and 30× per-strain 

http://rnmr.nmrfam.wisc.edu
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read depths. However, assemblies of this nature should be distinguishable when cluster 

density is taken into account.  

Successful predictions of density patterns were made using contour plots and the 

associated underlying kernel density estimations. For example, an E. coli Grinder 

assembly with all three strains at 20× read depth had peak heights of 135, 55 and 140 

(Figure 4.9A). This was used to predict the peak heights in an equivalent assembly with 

per-strain read depths of 12, 24 and 24× (Figure 4.9B and Table 4.3). The calculated 

densities of overlapping clusters in Figure 4.9A were used to estimate the peak heights 

at the five distinct cluster centres in Figure 4.9B. The second last cluster in this 

assembly was close to the large final peak and thus appears larger. 

 
Figure 4.9: An equal proportion assembly can be used to estimate the densities of clusters 
in an assembly with unequal proportions. 
Contour plots of E. coli three-strain assemblies with a bandwidth of 0.05. 
Strain 1: E. coli 55989. Strain 2: E. coli APEC O1. Strain 3: E. coli ATCC 8739.  

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

Table 4.3: Peak heights in 12, 24, 24× E. coli assembly. 

Clusters Formula Estimated Observed 
12× clonal cluster  × 135 45 35 
Two overlapping 24× clonal clusters  × 135 90 110 
Two overlapping 12× with 24× two-strain clusters  × 55 36.67 50 
Two-strain cluster of both 24×  × 55 18.33 40 
Three-strain cluster 140 140 140 

 

The contour plots did not always distinguish between clusters sufficiently, even 

after adjusting the bandwidth settings. Thus, the locations of peak centres had to be 

estimated using the read depths of the contributing strains. The density predictions also 
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required knowledge of the density values for an equal proportion assembly of the same 

strains. There was a general pattern in the equal-proportion assembly heights across 

species. The three-strain equal 20× ratio E. coli assembly had peaks of 185, 70 and 

180, at a bandwidth of 0.05. The equivalent N. meningitidis assembly had peaks of 175, 

40 and 170. These two species have ratios of peaks of 1:0.378:0.973 and 

1:0.229:0.971, respectively. The average of these two peak-ratios could be sufficient for 

predictions of densities in an experimentally-derived metagenomic assembly. For 

two-strain assemblies of Grinder reads, E. coli had peaks of 255.61 and 279.47 and a 

ratio of 1:1.094 (peak_picker.py, bandwidth = 0.05). For N. meningitidis, the peaks were 

at 212.94 and 301.65 and the ratio was 1:1.417. S. aureus peaks were at 237.66 and 

395.31 with a ratio of 1:1.663. While these ratios are a little different, these assemblies 

all have a denser chimeric cluster. 

Various factors can affect how distinct the heights of different kinds of clusters are. 

Higher unitigger error rates lead to lower densities for the clonal clusters as they 

increase assembly (Figure 3.11). Likewise, a lower sequencing error rate will also 

increase assembly (Figure 4.10). Furthermore, more similar strains will have less 

distinct sequence and thus less dense clonal clusters. In Figure 3.15A, the order of 

decreasing clonal cluster density matches the order of alignment and identity scores, i.e. 

E. coli, N. meningitidis, S. aureus (Subsection 3.3.1). 

The degree to which different combinations of clusters can be distinguished will 

depend on the strength of the signal and the signal to noise ratio. That is, if there are 

more observations and less noise due to contaminating reads then this technique will be 

more useful. Even if the exact densities cannot be accurately predicted, a qualitative 

manual approach could still aid in interpretation. This could be done by utilising 

densities and other visual cues such as cluster size and . 

 

4.4.4 Idealised Assemblies with Zero Sequencing Errors 
 

Three-strain variable proportion E. coli assemblies of simulated reads without any 

sequencing errors were analysed. The boundaries in the scatter plots for these 

assemblies were not clear (Figure C.6). Thus, the filtering on these assemblies was 

increased to 2.5 kb (Figure 4.10). In these assemblies, the clonal clusters were distinct 

from the two-strain clusters in their size and location. The clonal clusters have lower  
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values and a smaller range in these values as seen in a 20, 20, 20× assembly (Figure 

4.10A). However, the two-strain clusters could still obscure the clonal ones. This is seen 

in a 12, 18, 30× assembly where the blue 30× clonal unitigs are directly below and very 

close to the 12, 18× chimeric cluster (Figure 4.10B). This ambiguity is accentuated 

because the lack of errors increased assembly and therefore there are only a few 

observations for the clonal assemblies. The stricter length cut-off of 2.5 kb further 

decreased the number of observations. More stringent assembly parameters (i.e. lower 

unitigger error rates) may allow the detection of the obscured clusters. Filtering of 

sequencing errors could enable some of the extra information in zero error assemblies to 

be available to non-simulated reads. Analysis of experimentally-derived metagenomic 

samples by filtering of sequencing errors is discussed further in Chapter 5. 

 

 
Figure 4.10: The clonal clusters in idealised assemblies have lower  values and a smaller 
range in these values. 
Three-strain E. coli assemblies with zero sequencing errors and a 2.5 kb cut-off.  
Strain 1: E. coli 55989. Strain 2: E. coli APEC O1. Strain 3: E. coli ATCC 8739.  

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

4.4.5 Analysis of Single Genome and Environmental Sequence Data 
 

Ace Lake is located in the Vestfold Hills, Antarctica. Metagenomic samples were taken 

from six depths in the lake. These samples were fractionated on successive 3.0, 0.8 and 

0.1 μm filters. The dominant phylum (excluding viruses) in the 0.1 to 0.8 μm size 

fraction of the 11.5 m sample is Alphaproteobacteria, predominantly from the SAR11 
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clade. The dominant species from this phylum is closely related to Pelagibacter 

ubique HTCC1062 and HTCC1002 strains (Lauro et al. 2010). The dominant species in 

the 12.7 m sample is a member of Green Sulfur Bacteria (GSB) (Chlorobiaceae) (Ng et 

al. 2010). The GSB was also isolated on a 0.1 μm filter after passing through a 0.8 μm 

filter. These metagenomic samples were sequenced using both Sanger (3730xl capillary 

sequencers) and 454 (GS20 FLX Titanium) technologies (Lauro et al. 2010). Hybrid 

assemblies of 454 and Sanger data were produced for each sample using the Celera 

assembler with a unitigger error rate of 3% (DeMaere, unpublished work, Ng et al. 

2010). The archaeon Methanogenium frigidum was isolated from Ace Lake (Franzmann 

et al. 1997) and its genome was sequenced using the GS20 FLX Titanium. A 454 

assembly of the M. frigidum sequence was produced with a 4% unitigger error rate 

(Webster 2010). 

4.4.5.1 M. frigidum 
 

An assembly of M. frigidum was analysed. The sample that was sequenced had bacterial 

contamination which was mostly removed before sequencing. The plot of this assembly 

has a single cluster near the origin (Figure 4.11A). This is as expected for a clonal 

population. The cluster has a smooth density profile indicating that it is not multiple 

overlapping clusters (Figure 4.11B). Reads of definite bacterial origin were identified as 

having a low GC mean content of 33% (Webster 2010). The mean GC content of 

M. frigidum is 49 ± 0.045% (Figure 4.11C). A unitig with a GC content of 35% would 

be more than three standard deviations from the mean and thus unlikely to be from 

M. frigidum. Suspect low GC unitigs were few in number and spread across the long 

diagonal axis of the cluster (Figure 4.11D). Removing these did not affect the analysis, 

indicating the robustness of the  and  method. The M. frigidum cluster is closer to 

the origin than in simulations. This is due to the lower coverage; M. frigidum was 

sequenced to 12.4× coverage. The coverage calculation used untrimmed reads and 

thus could be an overestimation. The length of the cluster, along its longest axis, is 

greater than that found in clonal clusters in the standard simulations (Figure 3.7). This is 

due to differences in the substitution error rates (Figure C.4F). This assembly shows that 

the simulations are applicable to experimentally-derived datasets, at least for a very 

simple case. 
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Figure 4.11: The M. frigidum assembly appears clonal despite a small amount of 
contamination. 
A) Scatter plot of M. frigidum contigs.  
B) Zoomed contour plot of M. frigidum contigs. 
C) Histogram of M. frigidum GC content. 
D) M. frigidum contigs with a GC content less than 35% are marked in red. Those with a GC 
content greater than or equal to 35% but less than 40% are marked in green. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

4.4.5.2 Green Sulfur Bacteria 
  

The Ace Lake, 12.7 m, 0.1 μm filter sample (ANTRC230_0.1) had been identified as 

having a large population of GSB. Histograms of the GC content of this sample showed 

at least two main peaks denoting at least two different species (Figure 4.12). Thus, the 

sample required filtering to isolate the GSB sequences. However, a preliminary analysis 
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of the unfiltered data can allow confirmation of results from the filtered data. 

 
Figure 4.12: ANTRC230_0.1 contains at least two species. 
Unfiltered ANTRC230_0.1 GC content histogram. 
 

The scatter plot of the unfiltered ANTRC230_0.1 assembly has a cluster near the 

origin that resembles the clonal cluster in simulations (Figure 4.13A). It also has 

additional sparsely-clustered observations that correspond to the location of chimeric 

contigs. The structure of the plot does not match simulations as it is not divided into a 

line of distinct or overlapping clusters. This is because this data is an unfiltered 

environmental sample with sequence from multiple species. To determine if the 

scattered observations in the top right of the ANTRC230_0.1 plot were outliers, the 

lengths of contigs were investigated. Outliers in simulated assemblies were generally 

short, for example, all outliers in the 4% and 8% normalised two-strain assemblies 

(Figure C.1) were less than 7 kb. Therefore, given the distance of these contigs from the 

only distinct cluster it would be appropriate to remove these contigs if they were short. 

However, all 10 of the contigs with  values over 0.175 have lengths over 25 kb and 

four of these are over 100 kb. Therefore, these contigs are not outliers and they should 

not be rejected (Figure 4.13B). The likelihood of entire contigs over 100 kb in length 

being highly conserved sequence is low. There are additional long contigs between the 

putative clonal cluster and the putative final cluster. Additional information is required 

to determine the boundaries of the clusters that these points belong to. Evidence is also 

required to determine which of the two identified clusters and other long contigs are 

GSB. 
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Figure 4.13: The contigs in ANTRC230_0.1 with the highest   values are too long to be 
outliers. 
Unfiltered ANTRC230_0.1 assembly  
A) Uncoloured  
B) Long contigs coloured by contig length. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

The unfiltered ANTRC230_0.1 scatter plot was coloured for GC content (Figure 

4.14). The histogram of GC for the assembly shows two peaks at approximately 35% 

and 51% (Figure 4.12). All except four of the low GC unitigs (< 35%) appeared in the 

bottom cluster. All of these unitigs have an  value less than 0.1. The high GC (> 50%) 

unitigs are located across the plot. Of 12 GSB species compared, Prosthecochloris 

vibrioformis DSM 265 was found to be the genome with the highest level of similarity 

to the Ace Lake GSB (Ng et al. 2010). P. vibrioformis strains have a GC content of 

52.0% to 53.5% (Imhoff 2003), which provides evidence that the potential outliers are 

genuine and informative GSB unitigs that denote multiple strains assembled together 

(Figure 4.14). The GC content of the ANTRC230_0.1 GSB was also measured from the 

filtered Sanger assembly to be 52.2% (Ng et al. 2010). A high proportion of the contigs 

between the two identified clusters have a high GC content, including eight contigs over 

10 kb.  

Whilst this preliminary analysis of the unfiltered assembly identified two clusters 

with a GC content consistent with GSB, the plot is limited in its interpretability. GC 

content has not provided sufficient information to allow the boundaries of all clusters to 

be determined or to give sufficient evidence of which contigs are GSB. Filtering is 
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required to determine if there are any other clusters and to confirm that the identified 

clusters are GSB. This need is heightened because the structure of the plot does not 

match simulations. 

 
Figure 4.14: GC content suggests the presence of at least one clonal and one chimeric GSB 
cluster in ANTRC230_0.1. 
Unfiltered ANTRC230_0.1 assembly coloured by GC content. 

: reads per unit of contig length. : discrepancies per unit of contig length. 
 

4.4.5.1 Oligonucleotide Frequency Filtering 
 

The program Tetra (www.megx.net/tetra; Teeling et al. 2004a) was investigated in 

conjunction with GC content and BLAST (Basic Local Alignment Search Tool) to filter 

the ANTRC230_0.1 data. Tetra calculates di-, tri-, tetra- and penta-nucleotide 

frequencies in order to compare DNA sequences. The time taken to run Tetra on large 

datasets and limited access to Macintosh computers (Apple, Cupertino, CA, USA) 

meant that only unitigs greater than 2.5 kb were used. P. vibrioformis was used as a 

comparison. 

To bin the hybrid assembly of 454 and Sanger reads, ROC plots of the di-, tri- and 

tetra-nucleotide frequencies; GC content and BLAST E-values against P. vibrioformis 

(Figure C.7) were produced. These were used to determine which measurement 

correlated most effectively with the previously filtered assembly of Sanger reads. Other 

ROC plots were made of the di-, tri- and tetra-nucleotide frequencies and GC content 

with BLAST hits used as the test data (Figure C.8).  

From these plots, it was decided that di-nucleotide frequency (dimers) was the most 

http://www.megx.net/tetra
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effective method for filtering the ANTRC230_0.1 dataset. This is because dimers 

produced the classifier with the highest AUC value against either test data set 

(Table C.6).  

Due to the limited availability of dimer binning with Tetra, a custom script tetra.py 

was written to implement the core routine of this program, as described in Teeling et al. 

(2004a). However, since Tetra uses an undescribed method for dimer binning, the dimer 

scores for tetra.py used normalisation. The classifiers produced with these dimers 

achieved even higher AUCs of 0.9807 against P. vibrioformis and 0.9457 against 

BLAST. This gives extra support for the choice of dimers.  

The filtered set of GSB unitigs suggests chimerism since there are unitigs of 

varying  values including a strong cluster at higher values (Figure 4.15).  

 
Figure 4.15: The filtered ANTRC230_0.1 assembly contains evidence of chimerism. 
ANTRC230_0.1 assembly with filtered unitigs coloured, length > 2.5 kb. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

As a confirmation of the filtering, the ANTRC230_0.1 unitigs were assigned to taxa 

using MEGAN (Figure 4.16). The filtered assembly contained 92% of the unitigs that 

MEGAN classified as Chlorobiaceae (GSB). The percentage of unitigs that MEGAN 

identified as GSB was enriched from 26% to 80% by the filtering. Only two unitigs that 

MEGAN had assigned to other phyla were retained by the filtering. Thus these MEGAN 

classifications provide corroboration that the dimer filtering has kept a very high 

percentage of the GSB unitigs and discarded the vast majority of everything else. 

Judged against MEGAN, the filtering achieved a TP of 91.8% and a FP of 7.95%. 

However, if false positives are restricted to those confidently classified as taxa outside 
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the lineage of GSB (i.e. Proteobacteria) then FP equals 1.14%. The classifications of 

“Not assigned” and “Bacteria” that MEGAN assigned to unitigs from the filtered 

assembly are not inconsistent with a classification of GSB.  

 
Figure 4.16: The dimer filtering process is corroborated by MEGAN. 
ANTRC230_0.1 assembly MEGAN pie charts. Numbers in brackets indicate the number of 
unitigs assigned to that category by MEGAN. 

 

MEGAN provides strong corroboration for the top cluster, assigning all but one 

unitig to GSB (Figure 4.17A). Four out of nine of the unitigs between the two distinct 

clusters were not corroborated by MEGAN. The other five of these unitigs are only 

loosely clustered. While only six of the unitigs in the bottom cluster were corroborated 

by MEGAN, four of the unitigs that MEGAN classified as GSB but which were not kept 

by the dimer filtering also fall in this cluster. This gives extra evidence for the bottom 

cluster representing at least one real GSB strain (Figure 4.17B). 

Even if a unitig can be confidently identified as GSB, it could still be an outlier. 

Thus, unitigs were compared by length (Figure 4.17C). Only two of the unitigs between 

the two clusters is over 10 kb and only one of these is corroborated by MEGAN. This 

supports the assumption that these intervening unitigs are noise. Whilst only two of the 

unitigs in the bottom cluster are over 10 kb, these are both unitigs that were 

corroborated by MEGAN. The top cluster is even more confident since it has a 98% 

corroboration by MEGAN and it contains 46 unitigs, 12 of which are over 50 kb in 

length. Excluding the intervening unitigs, the simplest explanation is a single strain at 

low abundance and a single strain at high abundance which combine to extend the top 

cluster parallel to y = x. The bottom cluster has a similar length along its longest axis. 

This could be due to two strains in low abundance combining to extend this cluster. 

However, the top cluster is not long enough to support this theory. Also, if the unitig 

with the lowest  value, which was assigned to Proteobacteria by MEGAN, was 

removed then this would slightly reduce this length.  
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Figure 4.17: The first and last filtered ANTRC230_0.1 clusters are well supported, but the 
sparse unitigs in between are not. 
A) ANTRC230_0.1 filtered assembly coloured by MEGAN classification. 
B) ANTRC230_0.1 filtered assembly coloured by MEGAN GSB classification with additional 
data points from the  unfiltered assembly that were classified as GSB by MEGAN. 
C) ANTRC230_0.1 filtered assembly coloured by length. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

Furthermore, the extended clusters may be due to the higher, more realistic levels 

of substitution errors as seen in Figure C.4. While the gradient of the cluster curve is not 

as steep as in these figures, it is still steeper than the standard plots (Figure 4.18). This 

suggests a slightly lower level of substitutions and thus a lower level of cluster 

extension than the assembly in Figure 4.18B. The peak near the origin in the bottom 

cluster and the plateau at the opposite end could suggest two clonal clusters and their 

two-strain cluster. However, the lack of corroboration for most of the unitigs in this 
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cluster makes this evidence unconvincing. The low cluster density in the bottom cluster 

is extra evidence against multiple strains in the bottom cluster (Figure 4.18A). In fact, 

the cluster density is not only lower than the two overlapping clonal clusters in Figure 

4.18B, it is also lower than the single clonal cluster in Figure 4.18C. This low number 

of unitigs may be due to the very low read depths for this putative strain. The peak of 

this cluster has an  value 14% of the value from the clonal cluster in the S. aureus 

assembly and 54% of the value from the E. coli assembly. At very low read depths, the 

number of unitigs assembled should be much lower. The top cluster is much more 

compact and uniform in density than the top clusters in the other assemblies. Given the 

lower read depth of the putative low abundance strain, the distance between the peaks of 

the overlapping clonal and two-strain clusters in the top cluster should be smaller. The 

high density of the top cluster and low density of the bottom cluster could also be due to 

a higher similarity between the two putative strains than between the strains in the other 

assemblies. A higher similarity would decrease the amount of reads in the clonal 

clusters and increase the amount in the two strain cluster. The top half of the top cluster 

has all the long unitigs which, combined with the low read depth of the putative low 

abundance assembly, would explain the uniformity of density in the top cluster if the 

two strains are highly similar. 

If either of the weak clusters at 0.1 or 0.15  do depict a GSB strain then there 

should be at least one cluster at 0.3  or more (Figure 4.18A). The cluster at 0.2  

cannot be explained as purely chimeric and according to Equation 4.4 there needs to be 

a two-strain cluster to accompany any two clonal clusters. According to this rule, no 

combination of the potential intervening clusters at 0.1 and 0.15  and the bottom 

cluster ( 0.01 ) could explain the cluster at 0.2  as purely chimeric, i.e. 0.01 + 0.1 

 0.2, 0.01 + 0.15  0.2, 0.1 + 0.15  0.2 and 0.01 + 0.1 + 0.15  0.2. Since any 

intervening cluster or clusters should be accompanied by a cluster at 0.3  or more, 

which does not exist, the intervening unitigs can be safely excluded and the conclusions 

based on just the top and bottom clusters are well-supported by the available evidence. 
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Figure 4.18: The well-supported filtered ANTRC230_0.1 clusters suggest one strain in low 
abundance and one strain with approximately nine times that abundance. 
A) Contour plot of ANTRC230_0.1 filtered assembly. 
B) Contour plot of 6× E. coli 55989, 6× E. coli APEC O1 and 48× E. coli ATCC 8739.  
C) Contour plot of 90% S. aureus COL, 10% S. aureus JH1. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

The low number of unitigs in the filtered ANTRC230_0.1 assembly and 

uncertainties of the filtering process both decrease the certainty with which this 

assembly could be analysed. However, MEGAN corroboration, unitig lengths, cluster 

positions and cluster density all provided evidence for the quantity and proportions of 

strains in this assembly. This interpretation is that there are two strains: one in high 

abundance (> 90%); and one in low abundance (< 10%). The high similarity of these 

strains (greater than the E. coli or S. aureus strains) was also inferred.  
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4.4.5.2 Pelagibacter 
 

The Ace Lake, 11.5 m, 0.1 μm filter (ANTRC231_0.1) sample was filtered using 

dimers. Pelagibacter ubique HTCC1062 was used as the reference genome. The 

quantity of Pelagibacter strains is not apparent from the scatter plot, it may or may not 

be clonal (Figure 4.19). 

 
Figure 4.19: The structure of the strains is not apparent from the filtered ANTRC231_0.1 
scatter plot. 
ANTRC231_0.1 assembly with filtered unitigs coloured. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

To investigate this structure, the filtered assembly was clustered with Mclust but the 

clustering was not reliable (Figure 4.20). The spacing and positioning of the clusters did 

not match the simulations. 
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Figure 4.20: Mclust clustering of ANTRC231_0.1 did not match simulations. 
Mclust clustering of filtered ANTRC231_0.1 assembly with default settings. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

Thus, a contour plot of this data was produced at the standard 2.5 kb cut-off (Figure 

4.21). The plot showed three clusters, though the third was quite faint. In simulations 

the final cluster was always strong, so this was investigated further by using a variety of 

length cut-offs to see whether this peak would disappear. 

 
Figure 4.21: The third ANTRC231_0.1 cluster is weaker than in simulations. 
Contour plot of filtered ANTRC231_0.1 assembly with only the unitigs longer than 2.5 kb. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
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Additional cut-offs of four, five, six, eight and 10 kb were used (Figure 4.22). This 

helped identify additional well-defined clusters consistently across different cut-offs, 

which had approximately even spacing. 

 

 
Figure 4.22: Additional ANTRC231_0.1 clusters are consistently placed across length 
cut-offs. 
Contour plots of filtered ANTRC231_0.1 assemblies with varying length cut-offs. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

The three confident clusters in this assembly’s scatter plot require at least two 

strains for their explanation. Four clusters of approximately equal spacing could be 

explained by four strains in equal proportions. This interpretation is supported by the 

low density three-strain cluster which was observed in multiple simulations. However, 

this is not the most parsimonious explanation. The same clustering pattern could be 

observed with fewer strains. The data do not support more than four strains as this 

would require at least five clusters with non-coincident centres. Given the density of 

unitigs involved, confirmation of these unitigs by MEGAN is probably unnecessary but 

would be beneficial. The low density of the top cluster may be due to low similarity of 

the strains combined with the low unitigger error rate. The particular density pattern in 

this assembly decreases the certainty with which this assembly can be analysed. 
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4.5 Conclusion 
 
Consistent rules relating the number of strains, and their proportions in an assembly, to 

the locations of clusters in a scatter plot have been developed. Whilst some cluster 

patterns are ambiguous, multiple methods for disambiguating these patterns have also 

been developed. Density prediction and error filtering could both be expanded on and 

this is discussed in Chapter 5. It has been possible to apply these findings to analyse 

multiple experimentally-derived data sets.  

An automated program to apply this analysis to experimentally-derived data sets 

with quantitative certainty is beyond the scope of this project. However, a manual 

approach can tie together multiple strands of evidence to allow a well-supported and 

parsimonious interpretation of the number of strains in an assembly, their proportions, 

and even their similarity. 
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Chapter 5                                          
Research Findings and Future Directions  

5.1 Research Findings 
 
In this thesis, new methods to study DNA microheterogeneity in environmental samples 

from microbial communities have been described. Specifically, methods to infer the 

quantity and proportions of strains in unitigs have been described. 

For Sanger read simulation using MetaSim, all parameters, except one, could be 

calibrated to within 1% of the values in a real sequencing project (Table 2.1). This 

included parameters for controlling the types and rates of sequencing error rates. 

However, when the number of projects was increased to nine this was not possible 

because of the large variability in sequencing error rates in the available genome 

projects (Table 2.2). Neither the inconsistent project ages (Table 2.4 and Figure 2.4) or 

GC content (Table A.1) could explain this variability. Differences in coverage provided 

only a partial explanation (Table A.2). MetaSim’s Sanger error parameters had very 

linear response curves suggesting that calibration would have been simple given a 

consistent dataset to calibrate to (Figure 2.3). The available 454 data was more 

consistent than the Sanger data. However, the 454 error parameters in MetaSim had 

complex non-linear relationships with the quantity of errors added (Figure 2.5). There 

are also strong complex dependencies between these parameters. Thus, only the total 

quantity of errors was able to be calibrated (Figure 2.6). 

A standard set of strains for each of the three species used in simulations was 

chosen, which kept variability in strain alignments and percent identities low (Table 3.1 

to Table 3.4). Informative variables,  and , were chosen to allow microheterogeneity 

in metagenomic samples to be graphically analysed. Length filtering and normalising 

these variables by length resulted in more informative scatter plots (Figure 3.6). This 

choice of variables was supported by a moderately high correlation (Figure 3.4). The 

amount of information contained in different potential variables could be compared due 

to the tracking of the strain of origin of each read, in these simulations (Figure 3.5 and 
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Figure 3.6C). The quantity of distinct clusters in one-, two- and three-strain equal-

proportion assemblies was equal to the number of strains (Figure 3.7). The positioning 

of one- and two-strain clusters also matched across these assemblies. This graphical 

analysis method was independent of read depth over an order of magnitude range 

(Figure 3.10). It was also robust over changes to assembly tolerances (Figure 3.11D to 

H and Figure 3.12) and species (Figure 3.7B, Figure 3.8A and Figure 3.10J). Using the 

same coverage in different species made the corresponding clusters align more 

effectively (Figure 3.15). Methods were developed for robustly binning unitigs 

according to the strains of origin of their reads (Equation 3.1). This allowed accurate 

predictions of the clonality of unitigs in one-, two- and three-strain assemblies to be 

made (Figure 3.16 and Figure 3.17). An accurate prediction was also made using 

assemblies from different species for the training and test data (Figure 3.18). 

Model based clustering of scatter plots, using Mclust, gave mixed results. A 

four-strain assembly was clustered well except with unevenly spaced cluster centres 

(Figure 4.1). A two-strain assembly was assigned two clusters too many (Figure 4.2). 

To improve the clustering, MclustDA used training data which implicitly contained 

information about cluster spacing. To create this training data, the unitig binning 

method was expanded for use with assemblies with strains in unequal proportions 

(Equation 4.1). However, even when very similar training data with finetuned binning 

was used, MclustDA did not improve on Mclust’s binning (Subsection 4.4.2.3). Mclust 

could be used for detecting outliers (Figure 4.3). Outliers in the plots were similar 

across species and assembly settings (Table C.1 and Table C.2). This information was 

used to improve the training data. 

Strong linear relationships were found between the locations of clusters in scatter 

plots and strain proportions (Figure 4.7, Figure C.5). To predict cluster locations given 

strain read depths, rules were developed that allow prediction of strain quantities and 

proportions in assemblies with low strain complexity (Equation 4.4). Contour plots 

clustered equal proportion assemblies well (Figure 4.8). Thus, a custom peak picking 

tool that used the same kernel density estimates as the contour plots was developed. 

Patterns in the densities of clusters allowed predictions of these densities to be made 

(Figure 4.9 and Table 4.3), which helped to improve visual analysis. Scatter plots of 

idealised assemblies with zero sequencing errors showed a stratification of clusters with 

different strain counts (Figure 4.10).  
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The M. frigidum genome was tested and correctly evaluated as clonal (Figure 4.11). 

This provided basic verification of the methodology. Removing the known bacterial 

contamination from M. frigidum data set did not change the analysis, indicating that the 

method was robust. The Antarctic metagenome sample, ANTRC230_0.1, which 

contains a high level of coverage for GSB was found to have at least two different 

species (Figure 4.12). Both contigs in the presumably clonal cluster and the potentially 

chimeric cluster had a GC content close to that of GSB (Figure 4.14). All of the contigs 

with high  values in the second cluster had reads over 25 kb and thus are unlikely to be 

outliers (Figure 4.13B). This gives strong evidence that the GSB is not entirely clonal.  

Different oligonucleotide frequencies were compared as methods of filtering out the 

GSB sequences from the hybrid assembly. This was done using two different test sets: 

one based on a filtered Sanger assembly and the other using BLAST e-values (Figure 

C.7 and Figure C.8). Dimers used with the Sanger-assembly-based test data were found 

to classify the data most effectively (Table C.6). Due to the limited platform 

independence of Tetra and lack of command line interface, tetra.py was written to 

implement the core routine in Tetra. However, Tetra used an undescribed method for 

dimer frequency calculations rather than the z-score method described in the 

accompanying paper.  

The dimer filtering was corroborated by MEGAN (Figure 4.16). MEGAN 

assignments combined with unitig lengths gave strong support that the top and bottom 

clusters in the filtered ANTRC230_0.1 scatter plot represented GSB (Figure 4.17). The 

intervening points lacked support. These clusters suggest that there is one GSB strain in 

low abundance and one with approximately nine times that abundance (Figure 4.18). 

For the ANTRC231_0.1 dimer filtered data set, Mclust clustering was not reliable 

because the spacing and positioning of the clusters did not match the simulations 

(Figure 4.20). A contour plot showed a weak final cluster compared to the strong final 

clusters in simulations (Figure 4.21). Thus contour plots were produced with a variety 

of length cut-offs. This helped identify four well-defined evenly-spaced clusters 

consistently across the different cut-offs (Figure 4.22). The clustering pattern observed 

can be explained with two to four strains. The low density of the third cluster is 

supportive of four strains. 

Analysis of the ANTRC230_0.1 and ANTRC231_0.1 environmental samples found 

evidence that the complexity of these samples was within the usable range of the  and 
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 graphical analysis method. This method was able to make well supported 

conclusions about the number and proportions of strains in these samples. 

 

5.2 Future Directions 
 
The  and  graphical analysis techniques presented in this thesis are currently limited 

by the strain complexity of the metagenomic samples that can be analysed. Whilst rules 

for predicting cluster location have been formulated, additional techniques such as 

cluster density prediction are not sufficiently developed for automation. Ideally, this 

work should be extended to allow automated analysis of metagenomic samples of any 

microbial species regardless of the number or proportions of strains, given sufficient 

read depth. There appear to be good avenues for improving these techniques to allow 

for both the analysis of samples with higher strain counts and the automation of the 

process, some of which are discussed below. 

 

5.2.1 Outlier filtering 
 
In the scatter plots of simulated metagenomic assemblies, unitigs with excessive read 

depth were found for clusters in assemblies of different species and across the range of 

strain counts (Figure 3.16, Figure 4.3 and Figure C.1). It may be possible to filter out 

these outliers in a more sophisticated manner than used here. Many outliers for the 

completely chimeric clusters were found to map to outliers in assemblies with different 

settings (Table C.1 and Table C.2). There were also similarities between the genes 

found in these outliers across species (Table C.1 and Table C.2). This suggests that a 

filter based on parts of the genome that are known to be repetitive may be able to 

accurately remove many of the outliers from each cluster. This could allow a more 

accurate analysis as the cluster boundaries would be more sharply defined. However, 

sequence based filtering may not be feasible for genomes from poorly-studied taxa. This 

is because an annotated genome from a close relative may be necessary. Alternatively, it 

may also be possible to use some of the repeat detection from within the assembly 

process to help identify repeats. However, this would not be appropriate if this relied 

too heavily on read depth as a detection method. 
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5.2.2 Assembler Dependence 
 
All of the assemblies analysed in this thesis were produced using the Celera assembler. 

However, the work could be extended to utilise other assemblers. If the  and  

graphical analysis was automated, it would ideally be made assembler-independent. The 

ability to use contigs instead of unitigs would help facilitate this. The unitig features  

and  were used instead of their contig counterparts due to reasons that would not 

apply to all assemblers. When a unitig is labelled as a surrogate, the Celera assembler 

includes the consensus sequence of the unitig in a contig but not the associated reads. 

This led to very low  values being reported for numerous long informative contigs. 

These reasons are likely to be absent in other assemblers that do not use unitigs, and 

thus contigs could be used in these cases. Since contigs are often longer than unitigs and 

 and  are normalised by length, they make more accurate data points. However, 

unitigs are more numerous than contigs. A lower quantity of more accurate points 

would work most effectively with weighted values so that the longer more accurate 

points have a greater influence on clustering than shorter less accurate points.  

 

5.2.3 Resolving Cluster Overlaps 
 
The method used for estimating cluster peak heights was not precise and would not be 

suitable for automation. However, other methods may allow automated quantitative 

results. For example, the shapes of the density curves for individual clusters could be 

used to predict these shapes for overlapping clusters. One method of doing this would 

be Gaussian deconvolution. Such a technique may allow the  and  graphical 

analysis developed in this work to make predictions on the quantity and abundance of 

strains in significantly more complex metagenomic samples. If discrepancy filtering 

was used to at least partially separate the clusters, then this technique would be even 

more informative. 

 

5.2.4 Validation with a well-studied, low-complexity metagenome 
 
To validate the  and  graphical analysis method, a low complexity metagenome 

from an acid mine drainage (Tyson et al. 2004b) was investigated. This dataset has a 

very dominant species (75%) with low polymorphism, and has been rigorously studied. 
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However, a preliminary characterisation of this dataset found that whilst the data was 

available in an appropriate format, the descriptions of the microheterogeneity were not 

sufficient to allow a meaningful comparison. Similarly, the description of the overall 

structure of the dataset was not adequately detailed, and the provided data on variation 

at specific loci was not generalisable. Thus, whilst this may have been a useful dataset 

for validation, this was unfortunately not possible. If a dataset of similar complexity 

became available, with a global analysis of the number of strains present, their 

proportions, and their percent identities, then this would provide a much better 

validation set for the  and  graphical analysis. 

 

5.2.5 Variability of Genomic Divergence 
 
The degree of variability of genomic divergence between related strains is not always 

constant throughout the genome. For example, Didelot et al. (2007) found a bimodal 

pattern of divergence between two Salmonella enterica strains which appears to be due 

to many recombination events between distantly related strains. Whilst this is an 

extreme example, recombination even on a smaller scale could decrease the accuracy of 

the  and  graphical analysis. It is likely that some level of recombination has 

occurred in the datasets analysed and has made a significant contribution to the 

inaccuracies in the results. If the effect of this variable divergence could be 

compensated for, then the accuracy of the analysis could be significantly improved. 

Tools exist that help detect recombination events in assemblies [e.g. (Eppley et al. 

2007)] and these may help achieve this improvement. 

The genomic divergence between related strains is further complicated by 

differences in the rate at which these mutations occur and the rate at which they are 

fixed within the population. Recombination plays an important role in how these 

mutations are accumulated. Some work has been done to estimate some of these rates 

(Johnson and Slatkin 2009), so it may be possible to utilise this information to improve 

the  and  graphical analysis. 

 

5.2.6 Idealised Assemblies and Discrepancy Filtering 
 
Discrepancy filtering is one area that could lead to improvement in these techniques. In 

zero-sequencing-error simulated assemblies there is extra information about cluster 
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chimerism on the  axis (Figure 4.10). In these assemblies, clusters are stratified 

according to their strain counts, and clusters with more strains have higher  values. 

Thus, clusters with different strain counts that would otherwise overlap should only 

partially overlap if at all. This in turn means that decreasing error rates could give 

increased cluster resolution.  

These assemblies had low quantities of data points for clonal clusters due to 

excessive assembly, which decreased the definition of the clusters. This could be 

rectified by choosing appropriate assembly parameters, i.e. lower unitigger error rates. 

Discrepancy filtering could allow increased cluster resolution for assemblies of 

samples from real microbial communities. The sequencing errors could be filtered by 

changing how the  values are calculated. This would not require the removal of any 

reads from the assemblies and thus the  values would not be affected. For example, 

the program analyzeSNPs can restrict which discrepancies are reported. Minimum 

values can be set for the number of consistent disagreeing reads, conflicting cumulative 

quality values and conflicting quality values. This could be combined with appropriate 

assembly parameters. Such an approach could separate clusters with different numbers 

of strains and thus allow easier interpretation of the scatter plots. This in turn could 

allow accurate predictions of the quantity and proportion of strains in assemblies of data 

from more complex microbial communities.  

 

5.2.7 Clustering with Improved Models 
 
Model based clustering of scatter plots, using Mclust, gave mixed results (Figure 4.1 

and Figure 4.2). Relationships in the spacing of clusters were identified that could not 

be specified by the provided normal mixture models. If these relationships were 

incorporated into a model, the clustering may have been improved. Such changes would 

have required modification of the MCLUST codebase, which was not possible due to 

time constraints.  

The relationships that were originally identified were based on the uniform spacing 

of clusters that only applies to equal proportion assemblies. However, there are 

additional relationships that could be incorporated into a clustering model for unequal 

proportion assemblies, such as the rules developed for cluster locations.  

These rules could be incorporated by performing a search through different possible 
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cluster combinations to see which most effectively fits the data. This approach should 

be more feasible when combined with discrepancy filtering. With this filtering, 

candidate clonal clusters could be located first by searching a band of the lowest  

values (e.g. those less than 0.01 ). This would be followed by candidate two-strain 

clusters being located in the next band (e.g. 0.01 – 0.02 ), three-strain clusters in a 

third band (e.g. 0.02 – 0.03 ) and so on. Different interpretations of the evidence for 

clonal clusters could be evaluated based on the evidence for two-strain clusters. The 

potential two-strain clusters could in turn be evaluated according to the evidence for 

three-strain clusters and so on. Thus, the best supported interpretation of the data would 

be derived during the clustering process. 

For example, consider an analysis of a three-strain E. coli 12, 18, 30× assembly 

with zero sequencing errors (Figure 5.1). In this scatter plot, there are obvious clonal 

clusters at approximately 0.04 and 0.06 . At 0.1 , the clonal cluster blends into the 

two-strain cluster but still has enough points in line with the other clonal clusters to be 

well supported. The low  ends of two-strain clusters at 0.14 and 0.16  would be less 

probable clonal clusters. Given these potential clonal clusters, the potential two-strain 

clusters can be used for validation. The clear two-strain cluster at 0.1 validates the 

clonal clusters at 0.04 and 0.06 . The two-strain clusters at 0.14 and 0.16  can be 

easily identified as at least one two-strain cluster. These two-strain clusters and the 

0.1  clonal cluster can be validated because they fit with each other and with the 

previously validated clusters. The three-strain cluster, at 0.2 , provides further 

confirmation for all six of these clusters. The three-strain cluster could appear as 

evidence for the further two-strain clusters needed to validate a clonal cluster at 0.14 or 

0.16 . However, since there are no clusters after the three-strain cluster, additional 

two-strain clusters cannot be validated and therefore a fourth clonal cluster cannot be 

validated.  
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Figure 5.1: Removing sequencing errors could provide sufficient cluster structure for 
automated analysis. 
Three-strain E. coli 12, 18, 30× assembly with zero sequencing errors. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
Sequencing error rate affects the angle of the clusters on the plots, i.e. more errors 

gives a steeper gradient (Figure C.4). Filtering of discrepancies would not remove all 

errors, meaning that the clusters would be on a slight incline. However, the bands used 

in the analysis could be rotated about the origin. This would position the bands correctly 

to allow location of the clusters of each level of chimerism. 

It may also be possible to weight unitigs by length, so that longer, more informative 

unitigs have a greater influence on the clustering. This would also remove the need for 

strict length filtering, allowing more data points without loss of clarity. This weighting 

would have a similar effect to the method used to analyse the Pelagibacter data (Figure 

4.21 and Figure 4.22). 

By adding this information, it may be possible to create a model that greatly 

improves Mclust’s ability to fit it to real data. This might then make it possible to 

eliminate the need for a graphical interpretation, which would substantially increase the 

quantity of samples that could be analysed. Accurate assignment of clusters to their 

chimerism-bins would allow the number and proportion of strains in a metagenomic 

sample to be known. The contigs from each cluster could be analysed separately to 

determine which genes are unique to each strain and which are shared by the different 

combinations of strains. This could allow the ecological roles of the different strains to 

be understood. The understanding of these roles could be further developed by 

analysing time series data or comparing samples of the same species over a longitudinal 
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or latitudinal range. This would allow conclusions about how the species is evolving or 

how it has adapted to different environments.  
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Appendix A                               

Supplementary Results for Chapter 2  
Table A.1: GC Content does not explain variation in error rates between species. 

Species GC Content Discrepancies per kb 
B. burgdorferi 0.2894 32.71 
M. arthritidis 0.3148 186.71 
Hydrogenobaculum sp. Y04AAS1 0.3513 28.5 
D. turgidum 0.3541 95.71 
P. marinus 0.3746 16.29 
C. caviae 0.4552 41.76 
N. meningitidis 0.5136 7.61 
D. geothermalis 0.6630 10.41 

 
Table A.2: Coverage only partially explains variation in error rates between species. 

Species Discrepancies 
per kb Coverage Normalised Discrepancies 

per kb 
Hydrogenobaculum sp. Y04AAS1 28.497 5.709 4.991 
B. burgdorferi 32.706 10.234 3.196 
C. caviae 41.755 6.440 6.484 
D. geothermalis 10.414 5.530 1.883 
D. turgidum 95.711 8.950 10.694 
M. arthritidis 186.706 16.662 11.206 
N. meningitidis 7.612 3.768 2.020 
P. marinus 16.293 6.894 2.363 
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Appendix B                         

Supplementary Results for Chapter 3 
 

 

 

 Figure B.1: Contour plots show a lower ideal unitigger error rate. 
Three-strain E. coli assemblies with varying unitigger error rates. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
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Figure B.2: N. meningitidis has more regions of self-similarity than E. coli or S. aureus. 
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Appendix C                           

Supplementary Results and Discussion 

for Chapter 4 

C.1 Investigation, Filtering and Comparison of Outliers 
 

For all three species used in simulated assemblies (E. coli, S. aureus and 

N. meningitidis), there were unitigs that had a much higher read depth than expected. 

Outlier rejection was used to improve the MclustDA training data.  

To determine whether outliers in assemblies of different species and with different 

assembly settings had similar sequences, 4% and 8% two-strain assemblies of each of 

the three species were produced. In this comparison, the unitigs with an ′ value of at 

least 0.2 were classed as outliers (Figure C.1). For four of these assemblies, the 

designated outliers were all at least 2.5 standard deviations from the mean ′ value of 

the two-strain cluster (Figure C.1A to D). For the 8% N. meningitidis and S. aureus 

assemblies, except for one outlier, all outliers were at least two standard deviations from 

the mean (Figure C.1E and F).  
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Figure C.1: Similar outliers were found in assemblies of different strains and different 
unitigger error rates. 
Two-strain normalised assemblies. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

Outliers in Grinder assemblies for each of the three species were compared with 

those in the MetaSim 4% and 8% assemblies. Cross_match was used to map outliers in 

each assembly for each of the three species to the outliers in the other assemblies of the 

same species. Outliers were mostly consistent between error rates and simulators. All 

outliers from the 4% assemblies mapped to 8% assembly outliers (Table C.1 and Table 

C.2). There were more outliers at 8% and nine out of 30 of these did not map to outliers 

in the 4% assemblies. All of the MetaSim 4% outliers mapped to at least one outlier in 

the equivalent Grinder assembly. For the E. coli assemblies, six out of ten Grinder 

outliers mapped to MetaSim ones. For N. meningitidis, 11 out of 13 did. For S. aureus, 

all four mapped back to a MetaSim outlier. 

A high proportion of repetitive genes such as phage proteins and transposases were 

reported in these outliers by BLASTX using the NR database. Such genes may stack up 

to produce the unexpectedly high read depth as these genes are likely to be present more 

than once per strain. For the E. coli 8% assembly, seven of the outliers mapped back to 

the 4% ones (Table C.1). Three out of the 10 distinct outliers (i.e. the 4% outliers plus 

the unique 8% ones) received hits to a phage gene. Three received hits to transposases 
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and two to a repeat-containing protein. By expanding the number of hits reported for 

each unitig from five to 10, an additional two unitigs received hits to phage (6504 and 

2155). 

 

Table C.1 E. coli two-strain assembly outlier mapping.  

Contig IID 
BLASTX results 4% 

Outlier 
8% 

Outlier 
4% 

Other 

6504 ↔ 2060 → 6502 
Glutamate decarboxylase (beta subunit/isozyme)/ chain 
A, crystal structure of an N-terminal deletion mutant of 
E. coli Gadb in an autoinhibited state 

6570 ↔ 2023 → 6571 Host specificity protein J/ putative tail component of 
prophage/ fibronectin type III domain protein 

 → 6565    

6640 ↔ 2563   Translation elongation factor Tu/ chain A, structure of 
viral polymerase form I/Qb replicase  

7455 ↔ 1203   YD repeat containing/ RHS repeat containing/ rhsA 
7457 ↔ 3255   YD repeat containing/ Type I RHS/ core protein 

 ↔ 2972    

9184 ↔ 3311   Integrase catalytic region/ transposase InsF for insertion 
sequence IS3/ SEc14 transposase B 

      
  2020 → 7533 Tail fibre component K/ (phage) minor tail protein (L) 
   → 6582  
   → 7535  
   → 6577  
   → 6576  
   → 6573  
  2155 → 6609 (Conserved) hypothetical 
  2424 → 7858 Integrase (family protein)/ prophage P4 integrase 
   → 2748  
   → 7861  

  2549 → 6966 
Putative transposase insL for insertion sequence element 
IS186/ unnamed/ transposase DDE domain-
containing/IS4 family 

   → 7582  
Double-headed arrows denote a bidirectional mapping from outliers in the 4% assembly to 
outliers in the 8% assembly. Single arrows denote a unidirectional mapping from outliers in one 
of these assemblies. The IID (Internal IDentifier) numbers of the contigs are shown. Text in 
brackets shows optional text. Contig identifiers have been given to these unitigs to allow their 
inclusion in the conversion of the assembly to AMOS bank format. 
 

The N. meningitidis two-strain assembly also contained phage and transposon 

related outliers (Table C.2). In this assembly, one out of 13 distinct outliers mapped to 

phage genes and two to transposons. Both phage genes and transposable elements have 

been found in high copy number within bacterial genomes (Blattner et al. 1997, Parkhill 

et al. 2000). Repetitive regions of the genome may not always contain genes. However, 

all outliers examined received hits to genes with an E-value of at most 6×10−49. 
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Table C.2 N. meningitidis two-strain assembly outlier mapping.  

Contig IID 
BLASTX results 4% 

Outlier 
8% 

Outlier 
4% 

Other 

2515 ↔ 2519 → 2517 (Adhesion) MafA2/3/ putative lipoprotein/ adhesin, 
MafA (family) 

 → 2518    
2876 ↔ 1533 → 4445 Replication initiation factor/ putative phage protein 

   → 2875  
 ↔ 1534 → 2877  

3051 ↔ 586 → 3050 
FrpC operon protein 

3062 ↔ 1768 → 3063 
Iron-regulated protein frpA/C 

 → 1771    
3146 ↔ 1485 → 3147 (Conserved) hypothetical protein/ pG1 protein 

3149 ↔ 1485   Cell wall associated hydrolase/ conserved 
hypothetical/ CrcB protein domain protein 

3157 ↔ 1824 → 3158 Glucose-1-phosphate thymidylyltransferase 
3159 ↔ 1824   dTDP(-D)-glucose 4,6-dehydratase 

4163 ↔ 1490 → 4164 
(Putative) invertase/transposase/ transposase, 
IS116/IS110/IS902 family/ pilin gene inverting protein 
PivNM-1A 

   → 4166  
   → 4167  

4180 ↔ 1502   Hypothetical/ replication initiation factor/ unnamed 
 → 1501    

  1493   
 → 4168 TspB (family) protein 

   → 4169  
   → 4171  

  2482 → 4016 MafB(-related) protein/ adhesion/ (conserved) 
hypothetical protein 

   → 4015  
   → 4013  
  2677 → 4556 (Translation) elongation factor Tu 
   → 4558  
   → 4559  

Double-headed arrows denote a bidirectional mapping from outliers in the 4% assembly to 
outliers in the 8% assembly. Single arrows denote a unidirectional mapping from outliers in one 
of these assemblies. The IIDs of the contigs are shown. Text in brackets shows optional text. 
Contig identifiers have been given to these unitigs to allow their inclusion in the conversion of 
the assembly to AMOS bank format.  
 

The majority of outliers mapped to outliers in assemblies with different unitigger 

error rates and to those in assemblies using a different read simulator. The genes 

detected in these outliers are similar across species. However, the set of genes detected 

was not sufficiently predictable to allow sequence based filtering of the outliers. 
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Filtering sequences by gene type would require a closely related species with an 

annotated genome. This restriction would be excessive for metagenomic studies because 

the species of interest and the close relatives of that species are often poorly studied. 

Analogous outliers were found for clusters with less than the maximum quantity of 

strains. These often overlap with the adjacent cluster furthest from the origin. Filtering 

of these kinds of unitigs could also improve the analysis.  

 

C.2 Training Data 
 

In Chapter 3, a binning method was described that assigned a real number, the strain 

number estimator , to each unitig (Equation 3.1). This continuum was then 

transformed back into discrete bins by specifying a width range of this number.  

When the discrete  bins used a width of zero, there were no unitigs classified to 

the three- and four-strain bins (Figure C.2A). Moreover, the one-strain cluster had 

points spread across the two-strain cluster and beyond. With a width of ± 0.05 there 

were unitigs in every bin but none of the bins were well separated (Figure C.2B).  

 

 
Figure C.2: Neither a width of zero or ± 0.05 creates strong well-separated clusters for all 
bins.  
E. coli four-strain assembly binning using : 
A) Bins with an  width of zero.  
B) Bins with an  width of ± 0.05. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
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In order to cluster the bins more tightly, the bins were further restricted by 

removing those unitigs in each bin that were not within a given number of standard 

deviations from the mean (μ)  and  values. Width restrictions of ± 0.05 for  and 

± 1 σ gave well separated clusters but with only a few observations especially for the 

third cluster (Figure C.3A). Width restrictions of ± 0.5 for  and ± 1 σ increased the 

minimum observations per cluster from 6 to 69, though the resultant clusters were more 

rectangular with means shifted to lower  values (Figure C.3B). Thus, a compromise 

must be made between signal strength and quality. 

 
Figure C.3: Width selection involved a trade off between number of unitigs and 
positioning of cluster means. 
E. coli four-strain assembly binning using  and σ:  
A) Bins with width restrictions of ± 0.05 for  and ± 1 σ. 
B) Bins with width restrictions of ± 0.5 for  and ± 1 σ. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

To test this parameter space, an N. meningitidis four-strain assembly was used to 

make predictions on an equivalent three-strain assembly. In real microbial communities, 

the number of strains present is normally not known. The ability to make predictions 

using training data that does not exactly match the sample to be studied would be 

advantageous.  bin widths of ± 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 were used. Each of these 

widths was used twice – once with σ widths of one (Table C.3) and once with 1.5 

(Table C.4). The test error reported by MclustDA was used to compare the different 

training data. AUCs are provided in Table C.3 as a comparison. Since test errors had a 

strong inverse correlation with AUCs for that training data, the AUCs for Table C.4 

were not calculated. Table 4.2 and Table C.5 describe the models used to cluster each 
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bin. Each of the bin widths within the 1.5 σ set gave higher test errors than the 

corresponding bin width within the 1 σ set. MclustDA classified 26 out of 40 of the 

training clusters as multiple (up to nine) component clusters.  

 

Table C.3 MclustDA training and test results with 1 σ widths. 

Widths ± 0.05 ± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 
Training 

Error 0 0.02583 0.04675 0.05682 0.06782 0.07360 

Test Error 0.3555 0.09142 0.07901 0.1050 0.09932 0.1027 

Cluster 
Models 

EEI 
EEV 
EEI 
EEV 

2 
6 
9 
6 

VEI 
EII 

XXX 
XXX 

3 
2 
1 
1 

XXX 
XXX 
XXX 
XXX 

1 
1 
1 
1 

VII 
EII 

EEV 
EEE 

2 
2 
2 
3 

XXX 
EII 

XXX 
EEE 

1 
2 
1 
3 

XXX 
EII 

XXX 
EEE 

1 
2 
1 
3 

AUCs 
0.9741 
0.7931 
0.6880 

0.9690 
0.8764 
0.9718 

0.9730 
0.8884 
0.9778 

0.9659 
0.8796 
0.9617 

0.9818 
0.8472 
0.9769 

0.9792 
0.8564 
0.9807 

Mean AUC 0.8184 0.9391 0.9464 0.9357 0.9353 0.9388 
Predictions were made on an N. meningitidis three-strain assembly using a four-strain assembly 
as test data. The AUCs are shown for each cluster separately. 

 

Table C.4 MclustDA training and test results with 1.5 σ widths.  

Widths ± 0.05 ± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 
Training 

Error 0 0.01765 0.06024 0.07324 0.09741 0.1020 

Test Error 0.2810 0.09594 0.09255 0.1095 0.1084 0.1230 

Cluster 
Models 

XXX 
VII 
EII 
EII 

1 
5 
5 
2 

XXX 
EII 

XXX 
XXX 

1 
2 
1 
1 

XXX 
XXX 
XXX 
XXX 

1 
1 
1 
1 

XXX 
XXX 
EEV 
EEE 

1 
1 
3 
2 

XXX 
XXX 
VEV 
EEE 

1 
1 
2 
2 

VVV 
EII 

VEV 
EEE 

2 
3 
2 
2 

Predictions were made on an N. meningitidis three-strain assembly using a four-strain assembly 
as test data.  

 

Table C.5 MclustDA single component models 

Single Component Models Explanation 
X  One-dimensional 
XII  Spherical 
XXI Diagonal 
XXX Ellipsoidal 

 

Since the clustering of the bins was often over fitted, this experiment was repeated 

with all training classification limited to one ellipsoidal cluster per training cluster 

(setting XXX). This restriction led to improvements for seven out of 10 of the parameter 

combinations but did not improve upon the best result of 7.9% test error for the 

combined widths of 1 σ and  ± 0.2. This width combination had automatically been 
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assigned a single ellipse per cluster.  

 

C.3 Location of Clusters 
 

Three-strain E. coli Grinder assemblies were produced with their strains in varying 

proportions and with substitution errors. These assemblies had strains with per-strain 

read depths of: 6, 6 and 48×; 6, 18 and 36×; 12, 12 and 24×; 6, 24 and 30×; 6, 12 and 

42× and 20, 20 and 20× (Figure C.4). The clusters in these plots are stretched due to the 

higher, more realistic substitution error rates in these assemblies. This increases the 

variability of discrepancy rates for the unitigs in each cluster. 



Appendix 

127 
 

 

 
Figure C.4: Cluster location is predictable for three-strain assemblies with varying strain 
proportions. 
Three-strain E. coli Grinder varying proportions assemblies with substitution errors.  
Red contigs:  < 1.5 and E. coli 55989 > 50%.  
Yellow contigs:  < 1.5 and E. coli APEC O1 > 50%.  
Blue contigs:  < 1.5 and E. coli ATCC 8739 > 50%.  
Orange contigs: 1.5 ≤  ≤ 2.5 and E. coli 55989 > E. coli ATCC 8739 and E. coli APEC O1 > 
E. coli ATCC 8739.  
Purple contigs: 1.5 ≤  ≤ 2.5 and 55989 > E. coli APEC O1 and E. coli ATCC 8739 > E. coli 
APEC O1.  
Green contigs: 1.5 ≤  ≤ 2.5 and E. coli APEC O1 > E. coli 55989 and E. coli ATCC 8739 > 
E. coli 55989.  
Brown contigs:  > 2.5.  
Strain 1: E. coli 55989. Strain 2: E. coli APEC O1. Strain 3: E. coli ATCC 8739. 

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

The locations of the clusters in these assemblies follow the same pattern as 

S. aureus. There is a strong linear relationship between the clonal clusters from each 

strain (R2 ≥ 0.9999) (Figure C.5A). This relationship also applies to the set of all clonal 

clusters (R2 = 0.9991). The E. coli APEC O1 and E. coli ATCC 8739 clusters (green) 

contain a low number of unitigs which decreases the accuracy of their cluster centres 

and the linearity of their relationship (R2 = 0.7042) (Figure C.5B). The low number of 

unitigs is due to these strains having a lower similarity than the other combinations of 

strains (Table 3.1). The clusters for the other two pairs of strains have a linear 
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relationship (R2 ≥ 0.9962), as does the set of all two strain clusters (R2 = 0.9604). The 

pattern is also applicable across the combined dataset of clonal, two-strain and three-

strain clusters (R2 = 0.9863). The clusters in these figures have a steeper gradient due to 

the increased substitutions in these Grinder reads. This is because more substitutions 

leads to a large increase in the number of discrepancies detected in each unitig. 

Increased substitutions had a small negative effect on read depth, as some reads were no 

longer similar enough to be assembled together.  

 

 
Figure C.5: The linear relationship between cluster location and strain proportions applies 
to three strain assemblies. 
Three-strain E. coli Grinder varying-proportions assemblies with substitution errors. Mean 
cluster  values versus cluster read depths.  

: reads per unit of unitig length.  
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C.4 Idealised Assemblies with Zero Sequencing Errors 
 

 
Figure C.6: The boundaries between clusters are not clear in idealised assemblies. 
Three-strain E. coli assemblies with zero sequencing errors.  
Strain 1: E. coli 55989. Strain 2: E. coli APEC O1. Strain 3: E. coli ATCC 8739.  

: reads per unit of unitig length. : discrepancies per unit of unitig length. 
 

C.4 Oligonucleotide Frequency Filtering 
 

The program Tetra (www.megx.net/tetra; Teeling et al. 2004a) was investigated in 

conjunction with GC content and BLAST to filter the ANTRC230_0.1 data. Tetra 

calculates di-, tri-, tetra- and penta-nucleotide frequencies in order to compare DNA 

sequences. The use of longer oligonucleotides should better discriminate between 

species (Pride et al. 2003), but these require longer input sequence lengths to work 

effectively. This is because longer oligomers have exponentially more sequence 

combinations, which means that more samples are required to establish an estimate for 

the frequency of any given oligomer. The Windows (Microsoft Corporation, Redmond, 

WA, USA) version of this software contains fewer features than, and gave slightly 

different results in comparison to, the Mac OS (Apple, Cupertino, CA, USA) version. 

To bin the hybrid assembly of 454 and Sanger reads, ROC plots of the di-, tri- and 

tetra-nucleotide frequencies; GC content and BLAST E-values against P. vibrioformis 

(Figure C.7) were produced. These were used to determine which measurement 

correlated most effectively with the previous binning of Sanger reads. The scaffolds in 

http://www.megx.net/tetra
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the filtered Sanger assembly were converted to a list of unitigs in the unfiltered hybrid 

assembly. This was done by listing all the hybrid unitigs that contain at least one read 

from the Sanger scaffolds. This list of unitigs was used as the test data for the ROC 

plots.  

 
Figure C.7: Di-nucleotide frequencies make the most effective classifier. 
ROC plots using unitigs with reads from the Sanger assembly as test data. Comparison of di-, 
tri- and tetra-nucleotide frequencies, GC content and BLAST E values.  
 

Other ROC plots were made of the di-, tri- and tetra-nucleotide frequencies and GC 

content with BLAST hits used as the test data (Figure C.8).  
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Figure C.8: Di- or tri-nucleotide frequencies make the most effective classifiers. 
ROC plots using BLAST E-values of the unitigs against P. vibrioformis. Comparison of di-, tri- 
and tetra-nucleotide frequencies and GC content.  
 

From these plots, it was decided that di-nucleotide frequency (dimers) was the most 

effective method for filtering the ANTRC230_0.1 dataset. This is because dimers 

produced the classifier with the highest AUC value against either test data set (Table 

C.6).  
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Table C.6: Di-nucleotide frequencies produced the best predictions. 

From To AUC 

GC Sanger 0.9267 
BLAST 0.8107 

Di-  Sanger 0.9524 
BLAST 0.8863 

Tri- Sanger 0.9454 
BLAST 0.8892 

Tetra- Sanger 0.9406 
BLAST 0.8607 

BLAST Sanger 0.8602 
 

 Dimers also have the advantage of working well with shorter fragments. Tetra 

recommends 20 kb lengths for tetra-nucleotides. Since this work involves unitigs and 

maximizing the number of observations is preferred for cluster analysis, this would have 

been severely limiting. In a typical assembly (Figure 3.7C) a cut-off of 20 kb would 

remove 98.5% of the unitigs over 1 kb. For a 20 kb fragment tetra-nucleotide 

frequencies have an uncertainty of: 

11.31%. 

The equivalent lengths for trimers and dimers are 5 kb and 

1.25 kb. The time taken to run Tetra on large datasets and limited access to Macintosh 

computers meant that only unitigs greater than 2.5 kb were used. 

Tetra is available on Linux, Mac OS and Windows operating systems but does not 

provide the same features on all. On Windows, it can only generate tetra-nucleotide 

frequencies whilst on Mac OS it can generate di-, tri- and penta-nucleotide frequencies 

as well. It was not possible to install Tetra on the available Linux system. Additionally, 

it was assumed that Tetra would have the same limitations of features on Linux as it has 

on Windows. Due to the limited availability of Macintosh computers to run this 

software, a custom script tetra.py was written to implement Tetra’s core routine. The 

methods followed those of Teeling et al. (2004a). The frequency counts were checked 

against Tetra and the Pearson correlations using R. However, it was found that Tetra 

does not use z-scores as described in their papers for di-nucleotide frequency 

calculations. Instead, it uses an undescribed method termed “DRAB”. In one Tetra 

paper, Teeling et al. (2004a) describe the z-score method for tetra-nucleotide 

frequencies but neither this paper nor the other Tetra paper (Teeling et al. 2004b) 

mention what is used for other frequencies. 
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 Since the implementation of the “DRAB” method was not known, the 

di-nucleotide scores for tetra.py used normalisation. The classifiers produced with these 

dimers achieved even higher AUCs of 0.9807214 against P. vibrioformis and 0.9457008 

against BLAST. This gives extra support for the choice of dimers. 
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