
Development of advanced autonomous learning algorithms
for nonlinear system identification and control

Author:
Ferdaus, Md Meftahul

Publication Date:
2019

DOI:
https://doi.org/10.26190/unsworks/21586

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/64893 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/21586
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/64893
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Development of advanced autonomous
learning algorithms for nonlinear system

identification and control

Md Meftahul Ferdaus

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

MANU E T MEN
TE

SCIENTIA

School of Engineering and Information Technology

University of New South Wales, Australia

c© 2019 by Md Meftahul Ferdaus





 

 

Thesis/Dissertation Sheet 

  

Surname/Family Name : Ferdaus 

Given Name/s : Md Meftahul 

Abbreviation for degree as give in the University calendar : Ph.D. 

Faculty : University of New South Wales Canberra 

School : School of Engineering and Information Technology 

Thesis Title : 
Development of advanced autonomous learning algorithms for modeling and 
controlling nonlinear dynamical systems 

 

Abstract 350 words maximum: (PLEASE TYPE) 

Identification or modeling of nonlinear dynamical systems, data stream analysis, etc. are handled by algorithmic 

development of autonomous learning machines like evolving fuzzy and neuro-fuzzy systems (ENFSs) characterized by the 

single-pass learning mode and the open-structure property. Such features enable their effective handling of fast and rapidly 

changing natures of data streams. The underlying bottleneck of ENFSs lies in its design principle, which involves a high 

number of free parameters (rule premise and rule consequent) to be adapted in the training process. From this literature 

gap, a novel ENFS, namely Parsimonious Learning Machine (PALM) is proposed in this thesis. To reduce the number of 

network parameters significantly, PALM features utilization of a new type of fuzzy rule based on the concept of hyperplane 

clustering where it has no rule premise parameters. It is capable of automatically generating, merging, and tuning the 

hyperplane-based fuzzy rule in a single-pass manner. The efficacy of PALM has been evaluated through numerical study 

with data streams and to model nonlinear aerial vehicle system. The proposed models showcase significant improvements 

in terms of computational complexity and the number of required parameters against several renowned ENFSs while 

attaining comparable and often better predictive accuracy.  

 

The ENFSs have also been utilized to develop three autonomous intelligent controllers (AICons) in this thesis. All these 

controllers start operating from scratch and no offline training is required. To cope with the dynamic behavior of the plant, 

these controllers can add, merge or prune the rules on demand. Among these controllers, in the G-controller, integration 

of generalized adaptive resonance theory provides a compact structure, which lowers its computational cost. Another 

AICon namely PAC is rooted with PALM's architecture. The threshold-dependency of PALM is replaced with the concept 

of bias-variance trade-off in PAC. In the last AICon called RedPAC, the network parameters have further reduced to one 

parameter per rule. All the controllers' efficacy is evaluated by observing various trajectory tracking performance of 

unmanned aerial vehicles.  The tracking accuracy is comparable or better than the benchmark controllers where the 

proposed AICons incur significantly fewer parameters to attain similar or better performance. 
 

Declaration relating to disposition of project thesis/dissertation 
 
I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part 
in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, 
such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 
 
I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral 
theses only). 
 
 
…………………………………………………………… 
                                Signature 

 
 
……………………………………..……………… 
                               Witness Signature 

 
 
……….……………………...…….… 
                        Date 

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use.  Requests for restriction 
for a period of up to 2 years must be made in writing.  Requests for a longer period of restriction may be considered in exceptional circumstances and 
require the approval of the Dean of Graduate Research. 

 

FOR OFFICE USE ONLY Date of completion of requirements for Award:  

 





 
 

INCLUSION OF PUBLICATIONS STATEMENT 

UNSW is supportive of candidates publishing their research results during their candidature 

as detailed in the UNSW Thesis Examination Procedure.  

 

Publications can be used in their thesis in lieu of a Chapter if:  

 The student contributed greater than 50% of the content in the publication and is the 

“primary author”, ie. the student was responsible primarily for the planning, execution and 

preparation of the work for publication  

 The student has approval to include the publication in their thesis in lieu of a Chapter from 

their supervisor and Postgraduate Coordinator. 

 The publication is not subject to any obligations or contractual agreements with a third 

party that would constrain its inclusion in the thesis 

 

Please indicate whether this thesis contains published material or not. 

 This thesis contains no publications, either published or submitted for publication 
(if this box is checked, you may delete all the material on page 2) 

 

Some of the work described in this thesis has been published and it has been 
documented in the relevant Chapters with acknowledgement (if this box is 
checked, you may delete all the material on page 2) 

 

This thesis has publications (either published or submitted for publication) 
incorporated into it in lieu of a chapter and the details are presented below 

  

CANDIDATE’S DECLARATION  

I declare that: 

 I have complied with the Thesis Examination Procedure 

 where I have used a publication in lieu of a Chapter, the listed publication(s) 
below meet(s) the requirements to be included in the thesis. 

Name  
 

Signature 
 
 

Date (dd/mm/yy) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ORIGINALITY STATEMENT 
 
‘I hereby declare that this submission is my own work and to the best of my 
knowledge it contains no materials previously published or written by another 
person, or substantial proportions of material which have been accepted for the 
award of any other degree or diploma at UNSW or any other educational 
institution, except where due acknowledgement is made in the thesis. Any 
contribution made to the research by others, with whom I have worked at 
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that 
the intellectual content of this thesis is the product of my own work, except to 
the extent that assistance from others in the project's design and conception or 
in style, presentation and linguistic expression is acknowledged.’ 
 
 
Signed   …………………………………………….............. 
 
 
Date      …………………………………………….............. 





 
 COPYRIGHT STATEMENT  
 
‘I hereby grant the University of New South Wales or its agents a non-exclusive licence 
to archive and to make available (including to members of the public) my thesis or 
dissertation in whole or part in the University libraries in all forms of media, now or here 
after known. I acknowledge that I retain all intellectual property rights which subsist in 
my thesis or dissertation, such as copyright and patent rights, subject to applicable law. 
I also retain the right to use all or part of my thesis or dissertation in future works (such 
as articles or books).’ 
 
‘For any substantial portions of copyright material used in this thesis, written permission 
for use has been obtained, or the copyright material is removed from the final public 
version of the thesis.’ 
 
 
Signed ……………………………………………...........................  

Date ……………………………………………..............................  

 
AUTHENTICITY STATEMENT  
‘I certify that the Library deposit digital copy is a direct equivalent of the final officially 
approved version of my thesis.’  

 
Signed ……………………………………………...........................  

Date …………………………………………….............................. 





Abstract

Identification of nonlinear dynamical systems, data stream analysis, etc. is usu-

ally handled by autonomous learning algorithms like evolving fuzzy and evolving

neuro-fuzzy systems (ENFSs). They are characterized by the single-pass learning

mode and open structure-property. Such features enable their effective handling

of fast and rapidly changing natures of data streams. The underlying bottleneck

of ENFSs lies in its design principle, which involves a high number of free

parameters (rule premise and rule consequent) to be adapted in the training

process. This figure can even double in the case of the type-2 fuzzy system.

From this literature gap, a novel ENFS, namely Parsimonious Learning Machine

(PALM) is proposed in this thesis.

To reduce the number of network parameters significantly, PALM features uti-

lization of a new type of fuzzy rule based on the concept of hyperplane clustering,

where it has no rule premise parameters. PALM is proposed in both type-1 and

type-2 fuzzy systems where all of them characterize a fully dynamic rule-based

system. Thus, it is capable of automatically generating, merging, and tuning the

hyperplane-based fuzzy rule in a single-pass manner. Moreover, an extension of

PALM, namely recurrent PALM (rPALM), is proposed and adopts the concept

of teacher-forcing mechanism in the deep learning literature. The efficacy of

both PALM and rPALM have been evaluated through numerical study with data

streams and to identify nonlinear unmanned aerial vehicle system. The proposed

models showcase significant improvements in terms of computational complexity

and the number of required parameters against several renowned ENFSs while

attaining comparable and often better predictive accuracy.

The ENFSs have also been utilized to develop three autonomous intelligent

controllers (AICons) in this thesis. They are namely Generic (G) controller,

Parsimonious controller (PAC), and Reduced Parsimonious Controller (RedPAC).

All these controllers start operating from scratch with an empty set of fuzzy rules,
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and no offline training is required. To cope with the dynamic behavior of the

plant, these controllers can add, merge or prune the rules on demand. Among

three AICons, the G-controller is built by utilizing an advanced incremental

learning machine, namely Generic Evolving Neuro-Fuzzy Inference System. The

integration of generalized adaptive resonance theory provides a compact structure

of the G-controller. Consequently, the faster evolution of structure is witnessed,

which lowers its computational cost. Another AICon namely, PAC is rooted with

PALM’s architecture. Since PALM has a dependency on user-defined thresholds

to adapt the structure, these thresholds are replaced with the concept of bias-

variance trade-off in PAC. In RedPAC, the network parameters have further

reduced in contrast with PALM-based PAC, where the number of consequent

parameters has reduced to one parameter per rule.

These AICons work with very minor expert domain knowledge and devel-

oped by incorporating the sliding mode control technique. In G-controller and

RedPAC, the control law and adaptation laws for the consequent parameters are

derived from the SMC algorithm to establish a stable closed-loop system, where

the stability of these controllers are guaranteed by using the Lyapunov function

and the uniform asymptotic convergence of tracking error to zero is witnessed

through the implication of an auxiliary robustifying control term. While using

PAC, the boundedness and convergence of the closed-loop control system’s track-

ing error and the controller’s consequent parameters are confirmed by utilizing

the LaSalle-Yoshizawa theorem. Their efficacy is evaluated by observing various

trajectory tracking performance of unmanned aerial vehicles. The accuracy of

these controllers is comparable or better than the benchmark controllers where

the proposed controllers incur significantly fewer parameters to attain similar or

better tracking performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Many real-world systems are inherently complex and highly nonlinear. identi-

fication of complicated nonlinear dynamical systems is challenging using linear

systems theory and first principle techniques. Being capable of learning complex

nonlinear relationships, Neural Networks (NNs), Fuzzy Logic Systems (FLSs),

and their combination namely Neuro-Fuzzy Systems (NFSs), etc. are used to

identify complex nonlinear systems [1]. Conventional NNs, NFSs, or FLSs have

a predefined fixed structure. Though they can learn a system’s nonlinearity by

adapting their learning parameters, with a static structure, they face constraints

in dealing with rapid changes in the system’s dynamics. Another complex prob-

lem, like the identification of nonlinear dynamical systems, is handling the data

streams.

In recent times, due to the progression in both hardware and software tech-

nologies, countless applications produce a massive amount of data in an auto-

mated way. These data are generated sequentially at a rapid rate under complex

1
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environments. Besides, they are massive and possibly unbounded. Such online

data are known as data streams. In the field of data stream mining, a complete

dataset is not at hand to embark the training of a learning algorithm since

the data arrive in a sequential manner. However, the classical batched-learning

algorithms require the whole data to train them. It makes them infeasible to deal

with data streams. Besides, the batched-learning algorithms need to be retrained

by using the up-to-date training data whenever a new knowledge is observed. This

retaining process is computationally expensive, which makes them impractical to

employ in real-time scenarios. Due to the retraining phase, batched-learning

algorithms also suffer from catastrophic interference, i.e., they may absolutely

and rapidly forget previously learned knowledge when learning new knowledge.

Some other challenges to handle data streams for the learning algorithms can

be expressed as follows: 1) unbounded size of the data streams; 2) huge amount

of data; 3) unknown distribution of incoming data, which may alter at different

rates like slowly, rapidly, abruptly, gradually, locally, globally, cyclically, etc.

over time. Such variations in the data distribution of data streams over time are

known as concept drift ; 4) data are discarded after being processed to maintain

an economical and bounded memory demand.

To develop a learning algorithm to cope with the challenges in data stream

mining and identification of nonlinear dynamical systems, it should expose the

following desired characteristics: 1) ability to work in single-pass mode; 2) dealing

with the concept drifts in streaming data; 3) handling sudden changes in complex

systems’ dynamics; 4) should not be computationally complex and maintain a

low memory demand to deploy it in real-time under resource-constrained envi-

ronment. Such features are exposed by incremental learning algorithms in the

domain of online machine learning. In the realm of FLS, such learning aptitude
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is demonstrated by evolving fuzzy or neuro-fuzzy systems [2]. The self-adaptive

nature of the evolving neuro-fuzzy systems also inspires researchers to develop

model-free Autonomous Intelligent Controllers (AICons).

FLS and NN-based intelligent controllers have been used successfully in many

autonomous and nonlinear dynamical systems. There are numerous ways to

develop these intelligent controllers [3]. When the mathematical model of the

autonomous system to be controlled is known, it can be utilized to train those

controllers in offline mode with input-output data [4]. It yields a static-structured

intelligent controller with a fixed number of rules or neurons. When the system

dynamics is known, another approach is to use an expert’s knowledge to build

the rules of the controller. In many complex autonomous systems, their mathe-

matical model is unknown. To overcome the intelligent controllers’ dependency

on the mathematical model or the expert’s knowledge, intelligent controllers

are advanced as intelligent adaptive controllers by combining with conventional

controllers [5]. Being adaptive, these fixed-structured controllers adapt their pa-

rameters to attain desired control signals. In these adaptive intelligent controllers,

selecting the required number of rules or neurons beforehand is difficult. With

a small number of rules or neurons, achieving the desired control accuracy may

become impractical. On the other hand, a higher number of neurons or rules

create a complex control structure to implement in real-time. To mitigate the

limitation with predefined structure, these intelligent controllers structure need

to be evolved by appending or pruning rules or neurons. Such property will make

them a fully autonomous intelligent controller. Their ability to change their

structure online is an expected feature in some challenging control applications

such as control of Unmanned Aerial Vehicles (UAVs) in the presence of various

environmental uncertainties like gust, motor degradation, etc. These desiring
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features are the motivation to develop some novel evolving and self-adaptive

neuro-fuzzy systems in this thesis.

1.2 Scope of Research

In this thesis, limitations of the existing evolving neuro-fuzzy systems in identi-

fying nonlinear dynamical systems and analyzing data streams are highlighted.

Evolving neuro-fuzzy systems have a high number of network parameters in both

antecedent and consequent part. These parameters need to be tuned online

whether they are used for data stream regression or to identify complex nonlinear

systems like unmanned helicopter [6–8], or similar unmanned aircraft [9–11]. The

number of parameters becomes double in the case of type-2 fuzzy systems. A

higher number of parameters increases the computational complexity and requires

high memory demand.

In this thesis, we also have sorted out the limitations of the existing control

techniques of UAVs and the feasibility of applying evolving neuro-fuzzy systems

as control tools. Conventionally, UAVs are regulated by First Principle Tech-

nique (FPT)-based controllers. Among variety of UAVs, linear control methods

like Proportional Integral Derivative (PID), Linear Quadratic (LQ) methods

are employed commonly in UAVs. Though the employment of these simple

controllers is easy, their performance degrades sharply in dealing with environ-

mental uncertainties due to UAV’s inherent non-linearity and coupled dynamics.

To overcome such limitations, FPT-based nonlinear control techniques perform

better than their linear counterparts. However, a common shortcoming of all the

FPT-based controllers, whether linear or nonlinear, is their dependency on the

precise dynamics of the plant to be controlled. An alternative to the FPT-based
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control methods is model-free control techniques. The traditional model-free

control techniques like FLS or NFS are developed using experts’ knowledge

or require off-line training before employing in control applications. Besides,

they have a fixed structure with a fixed number of rules. To overcome these

limitations and to improve their control efficiency, researchers have tried to make

them adaptive, where FPT-based nonlinear control methods like Sliding Mode

Control (SMC), backstepping, H-∞ control method, etc. are utilized to tune the

parameters of the FLS, NFS-based model-free controllers. Nevertheless, these

controllers have a fixed structure, which impedes them to handle sharp changes

in plant dynamics.

To mitigate the above-mentioned limitations, recently, researchers have pro-

posed flexible structure-based autonomous controllers using evolving fuzzy or

neuro-fuzzy systems. These evolving controllers have been validated for complex

situation like aircraft with failures and undergoing nonlinear maneuvers [12–14].

Though these model-free autonomous controllers perform better than adaptive

variants, a challenge in their real-time deployment is the requirement of tuning a

high number of network parameters online with limited memory resources, espe-

cially while used in UAVs. From these research gaps, in this thesis, autonomous

controllers have been developed with fewer network parameters to control UAVs.

1.3 Contributions of the Thesis

The contributions of this thesis can be summarized as follows:

1. The first contribution of the thesis is in developing a novel autonomous

learning algorithm using a new evolving neuro-fuzzy structure, which is

named as Parsimonious Learning Machine (PALM). In PALM, a new type
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of fuzzy membership function based on the concept of hyperplane clustering

is utilized, which significantly reduces the number of network parameters

because it has no rule premise parameters. PALM is proposed in both

type-1 and type-2 fuzzy systems. PALM characterizes a fully dynamic

rule-based system, i.e., they can automatically generate, merge, and tune

the hyperplane-based fuzzy rules in a single pass manner. The efficacy of

PALMs have been evaluated by considering the computational complexity

and the number of required parameters against several renowned evolving

neuro-fuzzy systems. PALMs have been implemented for online identifica-

tion of unmanned helicopter and quadcopter from real-world experimental

data streams.

2. Usually, true outputs of an incremental learning algorithm are not known

in the deployment mode. To circumvent PALM’s dependency on the true

output in the deployment phase, the so-called Teacher Forcing mechanism

is employed in PALM. By following a similar approach like teacher forcing

technique, the output of PALM is connected with the input layer of PALM

at the next step. It forms a recurrent structure of the PALM (rPALM),

which is the second contribution of this thesis.

3. The third contribution is in the area of AICon, where an evolving neuro-fuzzy

system, namely PALM is used to develop an AICon called Parsimonious

Controller (PAC). Because of using PALM, it features fewer network pa-

rameters. To remove the reliance of PAC on user-defined thresholds to

adapt the structure, the bias-variance concept-based simplified method

namely network significance is proposed in PAC. PAC adapts the conse-

quent parameters with SMC theory in the single-pass fashion. The bound-
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edness and convergence of the closed-loop control system’s tracking error

and the controller’s consequent parameters are confirmed by utilizing the

LaSalle-Yoshizawa theorem. Lastly, the controller’s efficacy is evaluated

by observing various trajectory tracking performances from a Bio-Inspired

Flapping Wing Micro Aerial Vehicle (BI- FWMAV) and a rotary-wing UAV

called hexacopter. This controller has also validated for aerial vehicles’

nonlinear maneuvers.

4. The fourth contribution of this thesis is also in the area of AICon. PAC has

been simplified as a new AICon, namely Reduced Parsimonious Controller

(RedPAC). In contrast with PAC, the number of consequent parameters

has further reduced to one parameter per rule in RedPAC. The SMC

technique is utilized to adapt consequent parameters of RedPAC, where the

SMC-based auxiliary robustifying control term has guaranteed the uniform

asymptotic convergence of tracking error to zero. The proposed controller’s

performance has been evaluated by implementing it to control a quadcopter

UAV simulator namely Dronekit.

5. Development of a multivariate Gaussian function based AICon namely,

Generic controller (G-controller) is the fifth contribution in this thesis.

G-controller is rooted with an incremental learning machine namely Generic

Evolving Neuro-Fuzzy Inference System (GENEFIS) [1]. Control law and

adaptation laws for the consequent parameters are derived from the SMC

algorithm to establish a stable closed-loop system, where the stability of

the G-controller is guaranteed by using the Lyapunov function.

6. Besides controlling the UAVs, online modeling of the quadcopter from

experimental data streams using an autonomous neuro-fuzzy system is the
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sixth contribution in this thesis. For obtaining a better predictive accuracy,

Metacognitive Scaffolding Interval Type 2 Recurrent Fuzzy Neural Network

(McSIT2RFNN) is utilized to model the UAV. The metacognitive concept

enables the what-to-learn, how-to-learn, and when-to-learn scheme, and the

scaffolding theory realizes a plug-and-play property which strengthens the

online working principle of McSIT2RFNN.

1.4 Organization of the Thesis

This thesis is partitioned into seven chapters. After this introduction, Chapter

2 presents the basis of fuzzy systems, and groundwork for the research, Chapter

3-6 describes the main technical contributions and numerical experimentation

results. Finally, the thesis ends with concluding remarks and future research

directions in Chapter 7. Particular issues that are addressed in each chapter are

outlined as follows:

1. In Chapter 2, a brief introduction to fuzzy logic system is provided. It

describes the architecture of both type-1 and type-2 fuzzy system by includ-

ing some popular fuzzy models, namely Takasi-Sugeno-Kang (TSK) and

Mamdani. Different ways of combining fuzzy systems with neural networks

and state of the art in evolving fuzzy systems are also described here. Liter-

ature regarding the challenges of using evolving fuzzy or neuro-fuzzy-based

autonomous learning algorithms in data stream analysis, in modeling and

controlling nonlinear dynamical systems, especially UAV systems with pos-

sible solutions, are discussed. The details in each of these contributions are

presented one by one in further chapters.

2. In Chapter 3, evolving neuro-fuzzy system (ENFS) based novel autonomous
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learning algorithm, namely PALM, is proposed. It utilizes a new type of

fuzzy membership function based on the concept of hyperplane clustering.

In PALM, the number of network parameters has reduced significantly be-

cause it has no rule premise parameters. PALM is proposed in both type-1

and type-2 fuzzy structures where all of them characterize a fully dynamic

rule-based system. It is capable of automatically generating, merging, and

tuning the hyperplane-based fuzzy rule in a single-pass manner. Moreover,

an extension of PALM, namely recurrent PALM (rPALM), is proposed by

adopting the concept of teacher-forcing mechanism in the deep learning

literature.

3. In Chapter 4, evolving neuro-fuzzy-based two AICons namely, Parsimonious

Controller (PAC) and Reduced Parsimonious Controller (RedPAC), are pro-

posed. Both of them feature fewer network parameters than conventional

approaches due to the absence of rule premise parameters. In contrast

with PAC, the number of consequent parameters has further reduced to

one parameter per rule in RedPAC. Though both PAC and RedPAC are

built upon PALM, their rule growing and pruning modules are derived

from the concept of bias and variance. It removes the controllers’ reliance

on user-defined thresholds, thereby increasing their autonomy for real-time

deployment.

4. In Chapter 5, another AICon, namely Generic-controller (G-controller),

is proposed. It is developed by incorporating the SMC theory with an ad-

vanced incremental learning machine, namely Generic Evolving Neuro-Fuzzy

Inference System (GENEFIS). The controller starts operating from scratch

with an empty set of fuzzy rule, and therefore, no offline training is required.
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To cope with changing dynamic characteristics of the plant, the controller

can add or prune the rules on demand. Control law and adaptation laws for

the consequent parameters are derived from the SMC algorithm to establish

a stable closed-loop system, where the stability of the G-controller is guar-

anteed by using the Lyapunov function. Due to the integration of General-

ized Adaptive Resonance Theory+(GART+), multivariate Gaussian func-

tion, and SMC learning theory-based adaptation laws, the self-evolving

mechanism of the G-controller is fast with a lower computational cost.

5. In Chapter 6, a quadrotor UAV has been modeled online using real-time

experimental flight data streams based on an autonomous learning algo-

rithm, namely Metacognitive Scaffolding Interval Type 2 Recurrent Fuzzy

Neural Network (McSIT2RFNN). The metacognitive concept enables the

what-to-learn, how-to-learn, and when-to-learn scheme, and the scaffold-

ing theory realizes a plug-and-play property which strengthens the online

working principle of the proposed evolving intelligent system.

6. In Chapter 7, a summary of the findings of all the technical contributions

is presented. Besides, future issues and directions which could be pursued

with the aim of making the autonomous learning algorithms more efficient

for handling data streams, modeling and controlling real-world nonlinear

dynamical systems.
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Abstract

The necessities of multi-valued logic in real-world applications with the inclusion

of uncertainties traverse to the concept of fuzzy logic. Fuzzy logic system-based

modeling has been proved to be useful for complex nonlinear systems. To get

a broad overview of the fuzzy system, this chapter describes the basics of the

fuzzy system. This chapter also covers the state of the art of various fuzzy

and neuro-fuzzy systems from the static to evolving one, applications of evolving

systems with existing limitations, and possible opportunities. Fuzzy logic systems

have also been successfully used in variety of control applications. Fuzzy-based

control approaches for Micro Aerial Vehicles (MAVs) are reviewed in this chapter

too. There exists an increasing demand for a flexible and computationally effi-

cient controller for MAVs due to a high degree of environmental perturbations.

However, MAVs are mostly regulated by FPT-based controllers. Limitations of

these FPT-based controllers, and possible solutions by implementing fuzzy logic,

neuro-fuzzy-based model-free adaptive and evolving controllers are discussed in

this chapter.

2.1 Introduction

With the current technological advancements, the autonomy of numerous systems

has raised significantly. Consequently, they are becoming complicated and highly

nonlinear dynamical systems. To model such a system by mathematical equa-

tions, or linear system theories is difficult. Inspired by the ability of fuzzy logic

systems, Neural networks, or Neuro-fuzzy systems to learn complex nonlinear re-

lationships, they have been utilized to model or identify nonlinear dynamical sys-

tems. For instance, the identification of nonlinear helicopter dynamics from flight
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data using Nonlinear Auto Regressive eXogenous input (NARX) model, neural

network with internal memory known as Memory Neuron Networks (MNN), and

Recurrent MultiLayer Perceptron (RMLP) networks was accomplished in [8]. The

identification of a quadcopter unmanned aerial vehicle from experimental data

streams has been observed using a neuro-fuzzy system in [15] and using fuzzy

system in [16]. To improve the performance of the fuzzy systems, neuro-fuzzy sys-

tems, or neural networks in identifying nonlinear dynamical systems, researchers

have attempted to make their structure autonomous and developed fuzzy system,

neuro-fuzzy system, or neural network-based autonomous learning algorithms.

On the other hand, to deal with significant uncertainties in the autonomous

systems and the environment, and to compensate the systems’ failure with no

human or external interactions, the idea of fuzzy logic system-based Autonomous

Intelligent Controllers (AICons) is introduced in [17,18].

AICons should have the ability to self-govern the desired control functions

to handle the system’s parameter variation, gross fundamental and environmen-

tal changes without any external interventions. To achieve autonomy in a de-

signed control method, [17] have proposed an amalgamation of the mathematical

model-based conventional controller and model-free decision-making symbolic

method-based intelligent controller. Autonomous controllers should have the

ability to deliver a high degree of endurance to failures. To confirm the reliability

of an autonomous system, autonomous controllers must detect and isolate faults

by designing new control laws if necessary. They must be able to plan for the

sequence of control laws to complete a complicated task. They must have the

ability to interact with other systems and with the operator as well.

If we consider implementing the AICons in advanced applications like space

vehicular system, AICons can help to increase the vehicle’s autonomy by replacing
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the tasks currently accomplished by pilots, crews, or ground stations. Some

conventional AICons, namely Fuzzy Logic Controller (FLC), knowledge-based

controller, and Neural Network (NN)-based controller, have been implemented

already in a variety of control applications. For instance, in damping the vi-

bration of flexible robot-arms [19], complex process control problems [20], the

FLC has been implemented successfully. In managing and coordinating various

activities of autonomous systems like robots, knowledge-based controllers have

been implemented [21]. NN-based controllers are employed successfully to control

highly nonlinear dynamical systems [22]. Though the conventional AICons have

certain successful implementations, in some cases, they have exaggerated the

claims. For example, some researchers have stated that conventional control

techniques can not handle nonlinear dynamical systems and system uncertainties.

However, these so-called conventional controllers namely Proportional Integral

Derivative (PID), state-space controller, frequency domain techniques, adaptive

and robust control methods, Kalman filters, Lyapunov methods, etc. have been

implemented in numerous complicated nonlinear plants [23]. From the successful

implementation of conventional controllers in a variety of autonomous systems,

it is clearly indicating their adaptability in automated systems. Nevertheless,

achievement of highly autonomous feature can be easier in AICons. Before

discussing the recent advancements in fuzzy logic systems and FLCs, the basics

of the fuzzy logic system has been presented in the next section.

2.2 Fundamentals of Fuzzy Logic System

In the 19th century, uncertainties were not considered in control system applica-

tion [24]. However, at the end of the 19th century, researchers realized the exis-
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tence of a certain amount of uncertainty in every physical system [25]. Modeling

of systems is inadequate without considering the uncertainty. In the early stage,

the quantification of uncertainties was accomplished by probability theory [26].

The probability theory based technique was challenged by [27], where he proposed

vagueness, which has the capability of explaining some definite uncertainties. The

proposed technique in [27] can provide an accurate mathematical model using

membership curve. On the other hand, among the logicians, the principle of

bivalence and compositionality were popular assumptions [28]. In these assump-

tions, each phenomenon was considered as either true or false and presented

by numerical denotation of 1 and 0. However, many physical phenomenon are

not possible to explain by two-valued logic. From these shortcomings, the idea of

multivalued logic was introduced. Due to the research of the Polish school of logic

led by Lukasiewicz J [29], the multi-valued logic gained researchers’ attention and

huge development occurred in between 1930 and 1940 [30,31]. The necessities of

multivalued logic in real-world applications with the inclusion of uncertainties

traverse to the concept of fuzzy logic [32]. Though Zadeh has invented the

fuzzy logic system in 1965, it attracted researchers after its application in the

automation of the steam engine by [33] and [34]. Afterward, the use of fuzzy

logic has increased very rapidly in various automation systems.

The fuzzy logic system replaces the classical bi-valued (either 1 or 0) vari-

able to a linguistic variable and can be expressed as “big negative”, “close

to zero”, “big positive”, etc. [35]. It provides fuzzy systems the capability

of imitating the human expression. The flow of work in a fuzzy system are

divided into three steps namely, fuzzification, the Fuzzy Inference System (FIS)

and the defuzzification respectively. In the fuzzification process, the classical

or crisp data are transformed into fuzzy data using membership function, and
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the degree of confidence is obtained. The fuzzy domain confidence degree is

amalgamated with one of the input features to yield a rule firing strength. The

fuzzy rules have an IF-THEN structure, where the first part associated with IF

is known as antecedent and remaining part with THEN is called as consequent.

Finally, the rule firing strength is combined with the defuzzification interface

to produce the final output. In the defuzzification step, various techniques

like Centre of Gravity (CoG), Centroid of Area (CoA), maximum membership

method, weighted average, Centre of Sums (CoS), Mean of Maximum (MoM),

etc., are utilized to convert the fuzzy element to classical or crisp data [34, 36].

The selection of proper defuzzification technique carries significance to generate

the desired output. Nevertheless, there is no specific rule for picking the proper

defuzzification technique [35]; it depends on empirical knowledge and types of

application. To get a clearer overview of the fuzzy system, the block diagram of

a FIS is presented in Figure 2.1.

Input crisp

variable
Fuzzification

interface
Defuzzification

interface

Output

crisp

variable

Knowledge base

Decision making

process

Data base Rule base

Fuzzy input

sets

Fuzzy input

sets
Fuzzy outptt ut

sets

Fuzzy output

sets

Figure 2.1: Fuzzy inference system (type 1)

Usually, two different fuzzy models are widely used in various industrial au-

tomation applications. These models are namely Mamdani [34], and Takasi-Sugeno-

Kang (TSK) [37]. Mamdani fuzzy model offers a completely human-like linguistic
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rule. Therefore the decision-making process delivered by Mamdani model is more

interpretable than other popular models. Based on the type of membership

functions, fuzzy systems can be further classified into type-1 and type-2 systems,

which are described in the following subsection 2.2.1 and 2.2.2:

2.2.1 Type-1 fuzzy system

In a type-1 (T1) fuzzy system, for a certain value of the input (X), a precise

value of membership grade µx is obtained. Such a phenomenon is pictured in

Figure 2.2, where for a particular value of 2.7 a fixed membership grade of 0.5 is

obtained in case of a Gaussian membership function.

2.7

Figure 2.2: Gaussian membership function (type 1 fuzzy system)

A typical rule of the T1 Mamdani fuzzy model is described as follows:

Ri : If x1 is Ai1 and x2 is Ai2 and ... and xj is Aij

Then y1 is Gi
1 and y2 is Gi

2 and ... and ym is Gi
m (2.1)

where Aij denotes the fuzzy set of the i-th rule and j-th input attribute, whereas

Gi
m labels the i-th rule and m-th output variable. Conversely, X ∈ <1×j and

Y ∈ <1×m characterize the input and output vectors of interest correspondingly.

By utilizing the COA defuzzification method, the output of the Mamdani
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fuzzy model can be illustrated mathematically as follows:

y =

∑u
i=1 µ(wi)× wi∑u

i=1 µ(wi)
(2.2)

where u is the number of the quantization levels of the output, whereas wi can

be elicited by taking a maximum operation of the output fuzzy set.

Unlike the Mamdani fuzzy rule-based system, in the TSK fuzzy model, the

consequent of the rules are not linguistic terms. Rather they are identified as

any non-linear or linear continuous functions of the inputs. Therefore in TSK

fuzzy model, a complex nonlinear system can be represented by continuous linear

equations. A typical rule of the TSK fuzzy model can be expressed as follows:

Ri : If x1 is Ai1 and x2 is Ai2 and ... and xj is Aij Then y
i = xeΩi (2.3)

where xe = [1, x1, x2, ..., xj] ∈ <1×(j+1) is an extended input vector to include the

intercept of the consequent hyper-planes with the number of input dimensions j,

Ωi is a weight vector. This weight vector is possible to form as Multi-Input-Single-

Output (MISO) or Multi-Input-Multi-Output (MIMO) structure. The MISO

structure can be presented as follows:

mΩi = [wi0, wi1, ..., wic]
T ∈ <(c+1)×1 (2.4)



2.2. FUNDAMENTALS OF FUZZY LOGIC SYSTEM 19

And the MIMO structure can be presented as

Ωi =



w1
i0, w2

i0, . . . woi0, . . . wmi0

w1
i1, w2

i1, . . . woi1, . . . wmi1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

w1
ic, w2

ic, . . . woic, . . . wmic


(2.5)

where m is the number of target outputs. The output of the TSK fuzzy model

can be expressed mathematically as follows:

y =

∑u
i=1 y

i × wi∑u
i=1 wi

(2.6)

where wi denotes the firing strength of ith rule. The next subsection describes

the type-2 fuzzy system.

2.2.2 Type-2 fuzzy system

A new type of fuzzy set called type-2 fuzzy set (T2 FS) was proposed by Zadeh

[38]. The precise membership values of T1 FS is replaced in T2 FS with a fuzzy

set between 0 and 1. The MFs of T2 FS contains a footprint of uncertainty

(FOU) as presented in Figure 2.3 (a). This FOU of the MFs helps the T2 FS to

handle the uncertainties.

ÂÎA

pA
m

1
FOU

1
Primary membership Secondary membership

ÂÎA

sA
m

0.6

0.4

0.4 0.6
(a) (b)

Figure 2.3: Footprint of uncertainty in type 2 fuzzy system



20 2. LITERATURE REVIEW

From Figure 2.3(a), it is evident that the membership grade (µAp) for a certain

value of A is not a crisp value. Instead, it is a function with a value ranging from

0.4 to 0.6 in the domain of primary membership. The function can be presented

as a triangular secondary MF, where the weights vary from 0.4 to 0.6, as displayed

in Figure 2.3(b). Stronger weighting indicates the middle value and strength of

the weight decreases as it moves away from the middle value. Equal weighting is

also possible, and then the T2 FS is known as Interval T2 FS (IT2 FS).

Each FOU of a typical T2 FS namely Ã has an upper MF (UMF) and a lower

MF (LMF), which are presented in Figure 2.4(a). In other words, the UMF and

LMF are two T1 MFs that bound the FOU. The UMF is related to the upper

bound of FOU and can be presented by µA(w) as follows [39]:

µA(w) = sup{g|g ∈ [0, 1], µÃ > 0} ∀w ∈ < (2.7)

Similarly, the LMF is associated with the lower bound of FOU and expressed

by µ
A

(w) as follows:

µ
A

(w) = inf{g|g ∈ [0, 1], µÃ > 0} ∀w ∈ < (2.8)

In Equation (2.7) and Equation (2.8), g is the secondary variable, and has a

domain g = [0, 1] at each w ∈ <. The LMF of a FOU for the IT2 FS is presented

in Figure 2.4(b), where the dashed lines within the FOU domain are T1 FSs.

This phenomenon indicates the capability of IT2 FS to aggregate several T1 FSs.

The FIS of type-2 fuzzy system is presented in Figure 2.5. T2 FIS has

fuzzification interface, knowledge base, and defuzzification interface like the T1

FIS. In addition, unlike the T1 variant, the T2 FIS includes an extra type reducer.
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Figure 2.4: (a) LMF and UMF of FOU in T2 FS, (b) Three embedded T1 FSs in the
LMF of T2 FSs FOU

Till now, the majority of type reducers are developed based on Karnik-Mendel

(KM) algorithms, as explained in [40]. This type reducer projects the T2 fuzzy

output sets into T1 fuzzy output sets. Like the T1 FS, T2 FS also has two

commonly used architectures or models, and they are T2 Mamdani model and

T2 TSK model.
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Type
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Figure 2.5: Fuzzy inference system (type 2)
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2.2.3 Various conventional neuro-fuzzy systems

Fuzzy Logic Systems (FLSs), and Neural Networks (NNs) are the two primary

artificial intelligent methodologies in the field of computational intelligence. The

fuzzy logic system has the capability to imitate human-like behavior by utilizing

linguistic rules, and the NN can learn and store information like the human brain.

In FLS, the construction of Membership Functions (MFs) and linguistic rules is

challenging since there is no automated way to construct the MFs and rules.

Usually, the development of these MFs or rules is accomplished by expert knowl-

edge or trial and error process. Even the experts face difficulties in constructing

the MFs or rules for FLSs of large and complicated applications since those

FLSs consist of a higher number of inputs, outputs, and linguistic parameters,

which raises the number of possible linguistic rules exponentially. Consequently,

experts fail to describe a full set of rules with corresponding MFs for obtaining

satisfactory system performance. Without the expert knowledge, the problem can

be solved by utilizing Evolutionary Algorithms (EAs), since the EAs do not need

any information about the MFs or rule base a prior. However, the performance of

EA is slow due to a large population, which affects many researchers not to use EA

based FLS. NN-based fuzzy system can be a solution to the problem since NNs can

construct and train the MFs and rule base and optimize the linguistic parameters.

The presentation of data is vital to NNs. The NNs have high sensitivity to the

input range, that is, if the variation between the maximum and minimum value

is high, it affects the NNs. Researches have been conducted to combine the NNs

and FLS in a way, to sum their individual advantages and reduce the limitations

of both systems. Usually, there are three different ways [35] to combine the

NNs and FLS, and they are namely: 1) cooperative, 2) concurrent and 3) hybrid

neuro-fuzzy systems. In cooperative neuro-fuzzy systems, the learning techniques
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of NNs are utilized to construct the fuzzy MFs or rule-base from the training

data, and then the FLS works individually or vice versa. In the concurrent

neuro-fuzzy system, the NNs and FLSs operate in parallel and help each other

to determine the necessary parameters. In the hybrid neuro-fuzzy system, the

architectural presentation FLS is like NN, which enables the NNs to apply their

learning algorithm to FLS. However, these conventional fuzzy models are not

able to evolve their structure. State of the art of the Evolving Intelligent System

(EIS) based fuzzy systems, i.e. Evolving Fuzzy Systems (EFSs) are described in

the following subsections.

2.3 State of the Art in Evolving Fuzzy Systems

2.3.1 Popular evolving fuzzy systems

The idea of an EIS was first implemented by [41], in their proposed Self-Organizing

Neural Fuzzy Inference Network (SONFIN). SONFIN has the ability to evolve

both the structure and parameter and performs excellently in single-pass learning

mode. However, SONFIN doesn’t have the ability to remove ineffective fuzzy

rules, which results in a generation of higher numbers of rules. A Dynamic

Evolving Neural-Fuzzy Inference System (DENFIS) was developed by [42], where

they have utilized an Evolving Clustering Method (ECM) for evolving the fuzzy

rules. However, in both SONFIN and DENFIS, the inputs are partitioned using a

distance-based approach, and thus, lack of robustness is observed against outliers.

In the Self-Organizing Fuzzy Neural Network (SOFNN) [43], Ellipsoidal Basis

Function (EBF) neurons have the ability of self-organizing, even if they have

no prior information about the number of neurons. The development of evolving

Takagi-Sugeno (eTS) fuzzy by [44] had a huge impact on the rapid growth of EIS.
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The eTS algorithm is developed based upon online subtractive clustering [45],

with the adoption of recursive density estimation concept. However, in the case

of sequential arrival of data samples, the eTS are not able to simplify the rule

base by eliminating those rules which may become useless with the upcoming

data samples. A simplified version of eTS called simp eTS was proposed by

[46]; In simp eTS, they have replaced the concept of data potential with data

scatter, which induces faster computation than the eTS technique. Sequential

Adaptive Fuzzy Inference System (SAFIS) was developed by [47], where they

amend the rule growing and pruning modules called GAP-RBF and GGAP-RBF

[48, 49] for the fuzzy system. However, the limitation of the SOFNN, eTS,

simp eTS, and SAFIS is the utilization of univariate Gaussian fuzzy rule, which

does not express the scale-invariant characteristics. Furthermore, an approach

called FLEXFIS is developed by [50], which exhibits an incremental version of

vector quantization. However, the limitations of the FLEXFIS is the missing

of simplification technique for rule base, which results in a complex structure.

To solve the problem, an extended version of FLEXFIS, called FLEXFIS++ is

proposed by [51]. In FLEXFIS++, they have overcome their previous limitations

by accomplishing the automatic merge of redundant rules. An improved version

of eTS called eTS+ was proposed by [52]. In eTS+, Angelov had simplified few

methods of online rule base and reduced online dimensionality in compare to the

original eTS. The simp eTS+ technique, which is a modified version of eTS+

was developed by [53]. In simp eTS+, Angelov employed the density increment

technique for adding rules. The simp eTS+ performs faster than the eTS in terms

of the computational efficiency. However, both eTS+ and simp eTS+ utilize the

axis parallel ellipsoidal data distribution. Thus they are not effective to deal with

data distributions which are not axis-parallel.
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2.3.2 Multi-variable Gaussian-based evolving fuzzy sys-

tem

The EFSs discussed in the previous subsection have utilized univariate Gaussian

function, which are not effective to deal with non-axis-parallel data distributions.

As a solution researchers have tried to look for multivariate Gaussian function

based EFS. An evolving Multi-variable Gaussian (eMG)-based fuzzy classifier was

developed by [54]. The eMG is an extension of evolving Participatory Learning

(ePL), where the multi-variable Gaussian generalizes the basic TS fuzzy rules.

However, they did not integrate the method of online dimensionality reduction

in their proposed eMG based system. Another significant contribution to the

field of EIS is AngelovYager (AnYa), developed by [55]. In their proposed

technique, they have altered the scalar and parametrized antecedent part of the

conventional Mamdani and TS fuzzy set with non-parametric data clouds. In the

defuzzification process, they have replaced the Centre of Gravity (COG) method

with the fuzzily weighted sum (average) technique. These approaches make the

fuzzy system simple and faster with the online evolving feature. However, their

proposed technique is based on the idea of relevance, which suffers from the

discontinuity problem. An advanced EIS called Parsimonious Network-based

Fuzzy Inference System PANFIS is developed by [56]. The PANFIS is an im-

proved version of SAFIS, where they have modified the statistical contribution

theory by the multivariate Gaussian function. After this, the PANFIS is ex-

panded in [1] by incorporating a new online feature selection scheme. In the

expanded FLEXFIS [57], they have employed multivariate Gaussian function

with an off-diagonal covariance matrix. Further, they have employed geometrical

rule merging principle to attain high compactness and a smooth feature weighting
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concept to gently mitigate the curse of dimensionality effect (i.e., small weighted

features have a minor influence in all the calculated distance). An implementation

of the statistical contribution measure of the Generic Evolving Neuro-Fuzzy

Inference System (GENEFIS) [1] is observed in their work for approximating

feature contribution. In AnYA, the statistical contribution only considers feature

saliency without taking into account mutual information across input attributes.

In all the above-mentioned algorithms, the feedforward network structure is

utilized, which is unable to deal with the temporal system dynamic properly.

Further, the feedforward network structure is over dependant on the time-delayed

input attributes.

2.3.3 Recurrent network structure-based EFS

To mitigate the limitation with the feedforward network structure, the idea of EIS

has been addressed in the recurrent network structures too. This idea of evolving

recurrent network has been introduced by [58] in their proposed RSONFIN, where

they have inserted a global feedback loop in the previous SONFIN. However, like

the SONFIN, the RSONFIN is also utilizing a distance-based clustering approach,

and thus RSONFIN is not robust against the outliers. Another global recurrent

network topology based EIS called TSK-type recurrent fuzzy network (TRFN)

is proposed by [59]. In TRFN, a combination of the gradient descent and GA

methods is observed in the adaptation process of EIS. However, the utilization

of GA hinders scalability of an online scheme, since GA has computational

prohibitive behavior. Besides, the global recurrent network structure performs

less effectively in an online learning environment as it ignores the local learning

scenario, and consequently assumes the EIS as a loosely coupled fuzzy model.

Due to the global recurrent network structure, the input dimension also expands,
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which may add to cause the curse of dimensionality. To solve the problem, local

recurrent network architecture based EIS is proposed by [60], where the local

recurrent connection is observed in the rule base. The concept of interactive

recurrent network structure was extended by [61] in their proposed IRSFNN,

where they have observed that the functional-link-based IRSFNN performs better

than TSK type IRSFNN. However, with respect to their global counterpart,

the interactive structure may hamper the quality of the local learning scheme

since recurrent components are interconnected across different rules. All the

above-mentioned algorithms have utilized the Type-1 Fuzzy System (T1 FS),

which contain crisp and specific memberships. The T1 FS is not robust enough

to handle the uncertainty issue, especially in time of dealing with the imprecise,

inexact and inaccurate real-world data streams, where it is essential to identify

the parameters accurately. Note that in the real world systems, disagreement

may occur in the expert’s knowledge, and noises are observed in measurements.

Due to these reasons, uncertainties are present in real-world data streams.

2.3.4 KM type reduction technique-based type-2 EFS

To deal with the uncertainty issue, the idea of the Type-2 Fuzzy System (T2 FS)

was developed by [38], where the membership value of the T2 FS is itself a fuzzy

set between 0 and 1. Thus the MFs are not precise, and rather they are fuzzy in T2

FS. Well-established T1 FS mathematics cannot process the T2 FS [62]. Further,

the T2 FS suffers from prohibitive computational complexity, which occurs due to

the type reduction mechanism from type-2 to type-1. To reduce the complexity

of the T2 FS, an interval type-2 fuzzy system (IT2 FS) was developed by [63],

where they have assumed the weight of secondary membership function of the

T2 FS to be unity. This IT2 FS can be expressed as an interval-valued fuzzy
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system by using a single interval primary membership [64]. The integration

of IT2 FS with EIS was introduced by [65], where they have improved their

previously developed SONFIN with the type-2 fuzzy set. Afterward, they have

extended their idea in local recurrent architecture [60], and to the interactive

recurrent architecture [66] as well. However, due to the distance-based clustering

technique, the method developed by [67] is not robust against outliers. Interval

type-2 based EIS with the hybrid learning scheme is developed by [68], where

they have proposed three dissimilar configurations of the interval type-2 network

structure based on gradient descent method. However, their proposed network is

static, and consequently not able to adapt to the changing learning environments.

The IT2 FS was incorporated into the Mamdani type fuzzy system by [69]. [66]

have proposed a new parameter learning scheme to address the interpretability

problem of the interval type-2 based EIS. However, the feature selection process,

which is required as a part of the preprocessing step, is absent in both of the

previously mentioned works. All the interval type-2 based EIS, mentioned in this

paragraph, use the Karnik-Mendel (KM) type reduction technique intensively

and therefore suffer from the scalability issue.

2.3.5 Other type reduction technique-based type-2 EFS

An evolving type-2 fuzzy classifier called GT2FC was developed by [70], which

works in a purely sequential learning scheme. The GT2FC is a zero-order clas-

sifier, where the rule consequent is set in the class label. Therefore, they can

work without using the KM type reduction method. But, the accuracy of the

zero-order classifier is normally lower than a first order or higher-order classifier,

because it does not predict the decision surface of the classification problem. It is

worth noting though if there is no (monotonic) order of class indices, the accuracy
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of a higher order classifier is compromised. In [71], the KM method was replaced

with q coefficient in the fixed structure of an IT2FNN. The idea of incorporating

the q coefficient in the interval type-2 EIS was also adopted by [72, 73]. It is

essential to mention that all the IT2FSs discussed here are interval value fuzzy

systems since single interval primary membership is employed in all the cases. In

the last decade, huge research on EISs has been conducted. However, most of the

underlying design is cognitive since they mainly concern about the how to learn

issue, and do not consider the other two vital issue of what to learn and when to

learn. This infers that all the data streams are in order without giving careful

consideration to their impact on the training progress.

2.3.6 Metacognitive Learning Machine (McLM)-based EFS

The idea of the McLM was introduced in EIS by [74] in their proposed architec-

ture called Self-Adaptive Resource Allocation Network (SRAN). In SRAN, they

have claimed that the adaptive and evolving nature of EIS can be improved by

interpreting the meta-memory model of [75] into the machine learning context.

In their proposed idea, they have incorporated the issues of when-to-learn and

what-to-learn, which was not included in the conventional EIS’s training process.

The work has been expanded by a variety of cognitive components like fully

complex network architecture [76], type-1 fuzzy systems [77], and interval type-2

fuzzy systems [78]. Nevertheless, a limitation of the McLM is the absence of

important learning modules in the main learning engine; therefore it depends

upon the pre-and/or post-training steps. This pitfall highly distracted them

from the underlying spirit of the online real-time learner, which can be predicted

as a plug-and-play learning algorithm. The integration of the sample selection

scheme only actualize the fully supervised learning scenario and consequently
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charges costly annotation efforts by the operator.

2.3.7 Scaffolding McLM (McSLM)-based EFS

The McSLM aims to tackle this issue by incorporating the Scaffolding theory.

It is a prominent tutoring theory in psychology, by which a learner can solve a

complex learning task to develop the how-to-learn component of the metacogni-

tive learning scenario. The idea of McSLM was pioneered by [79], and later,

this work was modified by [80]. Three issues were unsolved in their work,

namely the uncertainty, temporal system dynamics, and the unknown system

order. The uncertainty issue arises because of the existing McSLM’s type-1 FNN

architecture, which is well-known to suffer from the issue of uncertainty. McSLMs

are also built on the traditional feed-forward network topology and are not robust

against temporal system dynamics. The feed-forward network architecture entails

prior knowledge of the lagged input features to form the input-output relationship

of the regression model. In addition, the vast majority of McLMs and McSLMs in

the current literature are designed for the classification problem and to the best

of our knowledge, only that of [81] handles the regression cases. The work, done

by [81] still leaves open questions, because it shares similar characteristics with

the work of [78]. To solve these three existing problems of McSLM based EIS,

a novel Metacognitive Scaffolding Based Interval type 2 Fuzzy Recurrent Neural

Network (McSIT2FRNN) is proposed by [82]. Classification of all algorithms

discussed in this section is summarized in Table 2.1.
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Table 2.1: Summary of state-of-the art of various EFS

References Working Principle Structure Hidden node

[41] Evolving Feedforward type-1 spherical rule

[44] Evolving Feedforward type-1 spherical rule

[46] Evolving Feedforward type-1 spherical rule

[47] Evolving Feedforward type-1 spherical rule

[52] Evolving Feedforward type-1 axis-parallel rule

[53] Evolving Feedforward type-1 axis-parallel rule

[54] Evolving Feedforward type-1 non-axis-parallel rule

[55] Evolving Feedforward type-1 cloud-based rule

[56] Evolving Feedforward type-1 non axis-parallel rule

[1] Evolving Feedforward type-1 non axis-parallel rule

[57] Evolving Feedforward type-1 non axis-parallel rule

[58] Evolving Global Recurrent type-1 spherical rule

[59] Evolutionary Global Recurrent type-1 spherical rule

[60] Evolving Local Recurrent type-1 spherical rule

[67] Evolving Interactive type-1 spherical rule

[65] Evolving Feedforward type-1 spherical rule

[66] Evolving Feedforward type-1 spherical rule

[69] Evolving Feedforward type-1 spherical rule

[70] Evolving Feedforward type-2 non axis-parallel rule

[72] Evolving Feedforward type-2 compensatory axis-parallel rule

[73] Evolving Feedforward type-2 axis-parallel rule

[74] Metacognitive Feedforward type-1 spherical rule

[76] Metacognitive Feedforward type-1 spherical rule

[77] Metacognitive Feedforward type-1 spherical rule

[78] Metacognitive Feedforward type-2 spherical rule

[79] Metacognitive scaffolding Feedforward type-1 spherical rule

[80] Metacognitive scaffolding Feedforward type-2 spherical rule

2.3.8 Challenges with the existing EFS-based autonomous

learning algorithms

Until now, existing EFS-based autonomous learning algorithms are usually con-

structed via hypersphere based or hyperellipsoid based clustering techniques

(HSBC or HEBC) to automatically partition the input space into a number

of fuzzy rules and rely on the assumption of normal distribution due to the
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use of Gaussian membership functions [1, 44, 46, 56, 83–87]. As a result, they

are always associated with rule premise parameters, the mean and width of

the Gaussian function, which need to be continuously adjusted in data stream

analysis. This issue complicates their implementation in a complex and deep

structure. As a matter of fact, existing neuro-fuzzy systems can be seen as a

single hidden layer feedforward network. Other than the HSBC or HEBC, the

data cloud-based clustering (DCBC) concept is utilized in [55, 88] to construct

the EFS. Unlike the HSBC and HEBC, the data clouds do not have any specific

shape. Therefore, required parameters in DCBC are less than HSBC and HEBC.

However, in DCBC, parameters like mean, accumulated distance of a specific

point to all other points need to be calculated. In other words, it does not

offer significant reduction on the computational complexity and memory demand

of EFS. Hyperplane-Based Clustering (HPBC) provides a promising avenue to

overcome this drawback because it bridges the rule premise and the rule conse-

quent by means of the hyperplane construction. Although the concept of HPBC

already exists since the last two decades [89–91], all of them are characterized by

a static structure and are not compatible for data stream analysis due to their

offline characteristics [92]. Besides, the majority of these algorithms still use the

Gaussian or bell-shaped Gaussian function [93] to create the rule premise and

are not free of the rule premise parameters. This problem is solved in [94], where

they have proposed a new function to accommodate the hyperplanes directly in

the rule premise. Nevertheless, their model also exhibits a fixed structure and

operates in the batch learning node. Based on this research gap, a novel EFS,

namely parsimonious learning machine (PALM), is proposed and described in

chapter 3. In the next section, an overview of a nonlinear dynamical system

namely UAV and challenges in its control autonomy, are discussed.
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2.4 Unmanned Aerial vehicles and the Control

Autonomy

Advancements in portable electronic technology over the past few years encourage

researchers to work on Unmanned aerial vehicles (UAVs). They are aircraft with

no aviator on-board. In relation to the wing types, UAVs are usually classified

into three subdivisions, and they are namely: 1) fixed wing, 2) rotary wing, and 3)

flapping wing UAVs, where the rotary wing UAVs (RUAVs) can be categorized as

a helicopter, quadcopter, hexacopter, octocopter, etc. Comparison among fixed

wing, rotary wing, and flapping wing UAVs in various aspects are exposed in

Table 2.2.
Table 2.2: Comparison among various UAVs (H: high, M: medium, L: low)

Characteristics Rotary wing Fixed wing Flapping wing References

Maneuverability H L M [95,96]

Expenditure M L H [97,98]

Complexity in assembly M L H [99,100]

Civilian usage H L H [101–104]

Military Application M H M [105,106]

Power Consumption L H M [107,108]

Flight safety M M L [109,110]

Range M H L [111,112]

Attempts to humanize the UAVs, such as with the capacity of autonomous

flying in a confined space is challenging. A positive step to such achievement is the

low cost of miniature electronic components like sensors, actuators, microproces-

sors, batteries, etc. Another point is their immense applicability in both civilian

and military sectors. Usage of UAVs in the military sector has intensified in the

last decades as explored in [113]. Participation of UAVs in civilian application

has a lot of socioeconomic benefits. For example, images provided by satellites
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are costly and depend upon weather condition. Since the UAVs can fly very

close to the ground, it can take images with better resolution in severe weather.

Sometimes, human cannot capture images due to the lack of accessible roads.

Surveillance in such locations with wide-area and spot imagery can easily be

achieved by UAVs. In agriculture industries, they can contribute ingeniously

to monitor crops health, which helps farmers to make an effective decision. In

energy industries UAVs can be used predominantly to inspect large solar power

plants, high voltage power cables without interrupting the power supply, and to

observe critical places of hydroelectric dams, where human inclusion is unsafe. In

the infrastructure sector, UAVs are feasible to capture post-disaster imagery of

critical infrastructure, inspect pipelines, and roads. In the transportation sector,

UAVs are possible to utilize in delivering goods to remote areas. They might

be a great help in a rescue mission by accessing to dangers faster and safely.

To transmute all these potentialities of UAVs into reality, a major concern is to

pursue the preferable control autonomy.

In a recent survey on the technological growth of small autonomous robots

in [114], they split the control autonomy of UAVs into three tiers, namely 1)

sensory-motor autonomy, 2) reactive autonomy, and 3) cognitive autonomy. The

sensory-motor autonomy indicates the translation of human instructions into de-

sirable control signals, such as maintaining the track of the desired trajectory with

appropriate altitude, roll, pitch, and yaw angle or velocity commands. Reactive

autonomy indicates the capability of UAVs to preserve user-defined positions

or trajectories in the presence of environmental disturbances like wind gust,

motor/actuator failure; the ability of obstacle-avoidance, retaining safe distance

from the ground; proficiency to takeoff or land in moving objects like moving

ship. Cognitive autonomy is an advanced version of the reactive autonomy, which
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enables UAVs to learn from the environment in resolving inconsistent facts, to

plan for future requirement like recharging battery. It will capacitate UAVs

in simultaneous mapping and localization along with their obstacle-avoidance

and path-planning aptitude. Realization of cognitive autonomy in UAVs is still

far-reaching in terms of control certitude that allows them to follow commands

precisely from many sensors.

The first principle techniques are one of the commonly used methods to

control UAVs. The necessity of a precise mathematical model is a limitation of

these methods since uncertainties are extremely difficult to model. It forwarded

researchers to look for model-free knowledge-based techniques. Among various

knowledge-based techniques, FLSs and NNs are prominently utilized in various

UAVs. Before going through various FLSs and NFSs, their advancements and

application in UAVs, the use of different first principle techniques in controlling

UAVs are discussed in the next subsection of this chapter.

2.4.1 First principle techniques in controlling UAVs

Proportional Integral Derivative (PID) is one of the most commonly used first

principle-based control technique for UAVs [115]. Linear Quadratic (LQ) meth-

ods are also employed successfully in different UAVs [116] due to their simple

and linear structure. However, linear controllers performance degrade to deal

with environmental disruption due to UAV’s inherent non-linearity and coupled

dynamics. In rejecting disturbance of nonlinear UAV dynamics, nonlinear control

techniques namely back-stepping [117–119], Sliding Mode Control (SMC) [118,

120–123], Feedback Linearization (FBL) [121, 124], H∞ robust control [125, 126]

etc. perform better than their linear counterpart.

In the backstepping control technique, the controller is divided into several
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stages, which facilitates fast convergence and reduce computational time as well.

[127] utilized the back-stepping control method for an UAV, where they have

witnessed proper tracking of position and yaw. However, they have not validated

their controller through experimentation. [128] implemented the FBL method to

achieve a stable trajectory tracking performance from the quadcopter UAV, where

they have witnessed a satisfactory position and velocity tracking. Nonetheless,

FBL technique requires a transformation to convert the nonlinear system into

an equivalent linear system by changing the variables. This linearization may

cause imprecision and degrade their performance. In addition, they have not

addressed disturbances like aerodynamic drag forces, parametric uncertainties

in their controller. [121] associated the FBL with an adaptive SMC. They have

proved their controller’s robustness theoretically by deriving an adaptation rule.

However, during experimentation, it was not robust against uncertainties and

noise from UAVs sensors. To be summarized, the majority of these conventional

control systems are based on dynamic modeling of the system, where the precise

mathematical model is a necessity to regulate their performance. Besides, their

control parameters are fixed or bounded. A smart solution to these problems is

the utilization of model-free knowledge-based or data-driven techniques.

2.4.2 Model-free intelligent control approaches for UAVs

Being a model-free approach [129], NNs [130,131], FLSs and NFSs [132,133] are

used in control application [3, 134–136]. To develop a FLS, NN, or a NFS-based

intelligent controller with a better tracking accuracy is challenging. When the

system dynamics and various characteristics of a plant to be controlled are known,

then they are utilized to train the controller and to construct a fixed-structured

controller with a certain number of rules, membership functions, neurons, and
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layers. Due to the fixed structure and absence of parameter adaptation, these

controllers cannot cope with changing plant dynamics. However, in many control

applications, the plant dynamics and other system information may not be readily

available. Therefore, the fixed-structured FLS, NN, or NFS-based controller

become unreliable or unobtainable. Furthermore, the characteristics of real-world

plants are non-stationary. A fixed-size controller may fail to regulate such plants.

To improve the performance of the model-free static controllers, researchers have

tried to combine them with conventional nonlinear control techniques such as

backstepping [117], sliding mode techniques [137], FBL, H∞ [138], etc. In

[139, 140], nonlinear adaptive neural controllers are trained offline to ensure the

stability of different types of aircraft. To cope with the variations in aircraft

dynamics, their controller can adapt the weights online. A neural controller was

augmented with a conventional controller in [141] to enhance the fault tolerant

capabilities of a high-performance fighter aircraft during the landing phase when

subjected to severe winds and failures. Though these controllers can adapt to

the disturbances by tuning the parameters, they cannot evolve their structure.

Therefore, selecting the required number of rules to achieve the desired control

accuracy is difficult [142]. The problem can be circumvented by using evolving

FLS, NN, NFS-based controllers [143].

2.4.3 Autonomous intelligent control approaches for UAVs

Research on Autonomous Intelligent Controllers (AICons) with evolving structure

has started at the beginning of the twenty-first century. In 2003, a self-organizing

NF-based AICon was proposed in [144], where they applied system error, ε-

completeness, and error reduction ratio in their rule evolution scheme. Their

controller needed to store all preceding input-output data, which forced to com-
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pute a large matrix in each step and yields a high computation cost. It makes

them impractical to implement in systems like UAVs, where a fast response

is expected from the controller to emulate the desired commands. Another

AICon was developed in [145] by utilizing the evolving Takagi Sugeno (eTS)

model [44]. Though their controller was evolving in nature, it suffers from several

imperfections. First, in their structural evolution mechanism, fuzzy rules were

added or replaced only, pruning of rules was missing. Besides, their AICon needed

to memorize the previous data obtained from both the plant and controller. Such

obligation leads to a computationally costly control mechanism and made them

unrealistic in the swift reaction-based control application. A hybrid AICon was

developed in [146] by mixing an evolving and static TS fuzzy system. Despite

their design simplicity, they required to know some parameters of the plant to be

controlled. Such parameters may not be available during control operation. An

AICon was also actualized using model predictive control technique [147]. How-

ever, their dependency on the plant’s dynamic model restricted their application

in complex nonlinear systems, where dynamic models may not be known. An

Extended Minimal Resource Allocation Network (EMRAN)-based autonomous

fault-tolerant neural control scheme was developed in [148]. The EMRAN was

utilized to grow or prune the hidden neurons in their autonomous controller. The

weights of their neural controller were adapted using an Extended Kalman Filter

(EKF). The thresholds associated with the growing and pruning criteria and EKF

were optimized using Genetic Algorithm (GA).

A back-stepping-based autonomous radial basis function (RBF) neural con-

troller was developed in [149] reconfigurable flight control of aircraft in the pres-

ence of large changes in the aerodynamic characteristics and failures. Lyapunov

theory was used to prove the stability in the ultimate bounded sense for their
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controller. An evolving controller using Interval Type-2 (IT2) NF structure was

proposed in [150] to control a quadcopter UAV. Nonetheless, their IT2NF system

was functioning as an uncertainty and perturbation observer, and a PD controller

was used to control the attitude and position of the quadcopter. In [151], an

evolving NF controller was proposed for a simulated quadcopter UAV plant.

Though their controller successfully generated and pruned fuzzy rules on the fly

with a satisfied tracking accuracy, they only had considered a simplified dynamic

model of the quadcopter to be controlled.

2.4.3.1 Adaptation of consequent parameters in AICon

In AICons, the adaptation of consequent parameters plays a crucial role to

attain the desired accuracy. To adapt the AICon’s rule consequent parameters,

gradient-based methods are typically used [152]. However, the gradient-based

controllers perform well only when they were used to control plants with a

slow variation in dynamics. Furthermore, gradient-based methods like dynamic

back-propagation techniques comprise of partial derivatives. Such algorithms can

not guarantee fast convergence speed, particularly in complex non-convex search

space. In addition, there are chances to be trapped in a local minimum [153].

Alternately, evolutionary algorithms were attempted in [154] to tune parameters.

Nevertheless, the stability of their proposed controller was not confirmed, and

the fast response was not ensured. Such constraints can be handled simply by

imposing SMC theory to adapt the consequent parameters as witnessed in [5].
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2.4.4 Challenges in real-time implementation of the AICons

for UAVs

Though the evolving fuzzy and neuro-fuzzy-based AICons have advantages over

their existing static and adaptive variants, a challenge in their real-time im-

plementation is their complex structure. In AICons, a large number of pa-

rameters are required to be tuned online, which is very difficult to achieve by

using the limited memory resource of the existing UAV systems. To minimize

the parameters, AICons with minimum parameters are developed in Chapter

4. Another limitation of the AICons is their predefined thresholds to shape

their structure. To overcome such dependency, the bias-variance concept-based

network significance method is proposed to develop AICon in Chapter 4.

2.5 Summary

In this chapter, the fundamental concept about the fuzzy system, state of the

art of various fuzzy and neuro-fuzzy systems from the static to evolving ones

are discussed. It includes the challenges in data stream analysis, in modeling

nonlinear dynamical systems, identification, and control of UAVs. The limita-

tions of conventional FPT-based controllers for UAVs make various fuzzy and

neuro-fuzzy system an appropriate candidate to control various UAVs. How-

ever, the majority of them are a batch learning-based system, which causes an

unsatisfactory performance in handling uncertainties. The problem is partially

solved by tuning the parameters of the fuzzy system. Still, they fail to cope

with sudden changes in UAVs flight behavior due to their static structure. In

such cases, evolving fuzzy and neuro-fuzzy system-based autonomous learning

algorithms are the appropriate candidates since they can change their structure
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to cope with sharp changes. Evolving fuzzy and neuro-fuzzy-based autonomous

learning algorithms’ application in modeling and controlling nonlinear dynamical

systems like UAVs with existing limitations, and possible opportunities are also

reviewed in this chapter. From the literature survey, some research gaps have

been identified with autonomous learning algorithms in dealing with nonlinear

dynamical systems. The details in each of these contributions are presented one

by one in further chapters.
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Abstract

In this chapter, a Self-Adaptive Neuro-Fuzzy Systems (SANFS) based advanced

autonomous learning algorithm, namely PArsimonious Learning Machine (PALM),

is proposed. PALM features utilization of a new type of fuzzy rule based on

the concept of hyperplane clustering, which significantly reduces the number of

43
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STREAM REGRESSION

network parameters because it has no rule premise parameters. PALM is proposed

in both type-1 and type-2 fuzzy systems where all of them characterize a fully

dynamic rule-based system. Therefore, it is capable of automatically generating,

merging and tuning the hyperplane-based fuzzy rules in the single-pass manner.

Moreover, an extension of PALM, namely recurrent PALM (rPALM), is proposed

that adopts the concept of teacher-forcing mechanism in the deep learning liter-

ature. The efficacy of PALM has been evaluated through numerical study with

six real-world and synthetic data streams from public database and our project

of autonomous vehicles. The proposed model showcases significant improvements

in terms of computational complexity and number of required parameters against

several renowned SANFSs while attaining comparable and often better predictive

accuracy.

3.1 Introduction

Advances in both hardware and software technologies have triggered the genera-

tion of a large quantity of data in an automated way. Such applications can be ex-

emplified by space, autonomous systems, aircraft, meteorological analysis, stock

market analysis, sensors networks, users of the internet, etc., where the generated

data are not only massive and unbounded but also produced at a rapid rate under

complex environments. Such online data are known as data stream [155,156]. A

data stream can be expressed more formally [157] as S =
{
x1, x2, ..., xN

}
i.e. S =

{xi}Ni=1, where xi is an enormous sequence of data objects and possibly unbounded

(N →∞). Each of the data objects can be defined by an n-dimensional feature

vector as xi = [xij]
n
j=1, which may belong to a continuous, categorical, or mixed

feature space. In the field of data stream mining, developing a learning algorithm
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as a universal approximator is challenging due to the following factors: 1) the

whole data to train the learning algorithm is not readily available since the data

arrive sequentially; 2) the size of a data stream is not bounded; 3) dealing with a

huge amount of data; 4) distribution of the incoming unseen data may slide over

time slowly, rapidly, abruptly, gradually, locally, globally, cyclically or otherwise.

Such variations in the data distribution of data streams over time are known as

concept drift [158, 159]; 5) data are discarded after being processed to suppress

memory consumption into a practical level.

To cope with above-stated challenges in data streams, the learning machine

should be equipped with the following features: 1) capability of working in

single-pass mode; 2) handling various concept drifts in data streams; 3) has low

memory burden and computational complexity to enable real-time deployment

under resource-constrained environment. In the realm of fuzzy system, such

learning aptitude is demonstrated by SANFS [41]. Until now, existing SANFSs

are usually constructed via hypersphere-based or hyperellipsoid-based clustering

techniques (HSBC or HEBC) to automatically partition the input space into

a number of fuzzy rules and rely on the assumption of normal distribution

due to the use of Gaussian membership functions [1, 44, 46, 56, 83–87]. As a

result, they are always associated with rule premise parameters, the mean and

width of the Gaussian function, which need to be continuously adjusted. This

issue complicates their implementation in a complex and deep structure. As a

matter of fact, existing neuro-fuzzy systems can be seen as a single hidden layer

feedforward network. Other than the HSBC or HEBC, the data cloud-based

clustering (DCBC) concept is utilized in [55,88] to construct the SANFS. Unlike

the HSBC and HEBC, the data clouds do not have any specific shape. Therefore,

the required parameters in DCBC are less than HSBC and HEBC. However, in
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DCBC, parameters like mean, and accumulated distance of a specific point to all

other points need to be calculated. In other words, it does not offer significant

reduction on the computational complexity and memory demand of SANFS.

Hyperplane-Based Clustering (HPBC) provides a promising avenue to overcome

this drawback because it bridges the rule premise and the rule consequent by

means of the hyperplane construction.

Although the concept of HPBC already exists since the last two decades

[89–91], all of them are characterized by a static structure and are not compatible

for data stream analytic due to their offline characteristics. Besides, the majority

of these algorithms still use the Gaussian or bell-shaped Gaussian function [93]

to create the rule premise and are not free of the rule premise parameters. This

problem is solved in [94], where they have proposed a new function to accommo-

date the hyperplanes directly in the rule premise. Nevertheless, their model also

exhibits a fixed structure and operates in the batch learning node. Based on this

research gap, a novel SANFS, namely parsimonious learning machine (PALM),

is proposed in this chapter.

3.2 Contribution

The proposed algorithm PALM in this chapter is equipped with some new fea-

tures. The novelty of PALM can be summarized as follows:

1. Hyperplane-based Fuzzy Rule: PALM is constructed using the HPBC

technique, and its fuzzy rule is fully characterized by a hyperplane which

underpins both the rule consequent and the rule premise. This strategy

reduces the rule base parameter to the level of C ∗ (P + 1) where C,P are

respectively the number of fuzzy rules and input dimensions.
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2. Type-1 and Type-2 architecture: PALM is proposed in both type-1

and type-2 versions derived from the concept of type-1 and type-2 fuzzy

systems. Type-1 version incurs less network parameters and faster training

speed than the type-2 version whereas type-2 version expands the degree

of freedom of the type-1 version by applying the interval-valued concept

leading to be more robust against uncertainty than the type-1 version.

3. New mechanism of evolving structure: PALM features a fully open

network structure where its rules can be automatically generated, merged

and updated on-demand in the one-pass learning fashion. The rule genera-

tion process is based on the self-constructing clustering approach [160,161],

checking the coherence of input, and output space. The rule merging

scenario is driven by the similarity analysis via the distance and orientation

of two hyperplanes. The online hyperplane tuning scenario is executed

using the Fuzzily Weighted Generalized Recursive Least Square (FWGRLS)

method.

4. Recurrent PALM architecture: An extension of PALM, namely recur-

rent PALM (rPALM), is put forward in this work. rPALM addresses the

underlying bottleneck of HPBC method: dependency on the target variable

due to the definition of point-to-hyperplane distance [162]. This concept is

inspired by the teacher forcing mechanism in the deep learning literature

where the activation degree of a node is calculated with respect to predic-

tor’s previous output. The performance of rPALMs have been numerically

validated where their performance is slightly inferior to PALM but still

highly competitive to most prominent SANFSs in terms of accuracy.

5. Real-world application: Two real-world problems from our project, namely
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online identification of quadcopter and unmanned helicopter, are presented

in this chapter and exemplify real-world streaming data problems. The two

datasets are collected from indoor flight tests in the UAV lab of the Uni-

versity of New South Wales (UNSW), Canberra campus. These datasets,

PALM, and rPALM codes are made publicly available in [163].

The efficacy of both type-1 and type-2 PALM has been numerically evaluated

using six real-world and synthetic streaming data problems. Moreover, PALM

is also compared against prominent SANFSs in the literature and demonstrates

encouraging numerical results in which it generates compact and parsimonious

network structure while delivering comparable and even better accuracy than

other benchmark algorithms.

The remaining sections of this chapter is structured as follows: In Section

3.3, the network architecture of both type-1 and type-2 PALM are elaborated.

Section 3.4 describes the online learning policy of type-1 PALM, while Section

3.5 presents online learning mechanism of type-2 PALM. In Section 3.7, the

proposed PALM’s efficacy has been evaluated through real-world and synthetic

data streams. Finally, the chapter ends by drawing the concluding remarks in

Section 3.8.

3.3 Network Architecture of PALM

In this section, the network architecture of PALM is presented in detail. The T-S

fuzzy system is a commonly used technique to approximate complex nonlinear

systems due to its universal approximation property. The rule base in the T-S

fuzzy model of a multi-input single-output (MISO) system can be expressed in
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the following IF-THEN rule format:

Rj : If x1 is Bj
1 and x2 is Bj

2 and...and xn is Bj
n

Then yj = b0j + a1jx1 + ...+ anjxn (3.1)

where Rj stands for the jth rule, j = 1, 2, 3, ..., R, and R indicates the number

of rules, i = 1, 2, ..., n; n denotes the dimension of input feature, xn is the nth

input feature, a and b are consequent parameters of the sub-model belonging to

the jth rule, yj is the output of the jth sub-model. The T-S fuzzy model can

approximate a nonlinear system with a combination of several piecewise linear

systems by partitioning the entire input space into several fuzzy regions. It

expresses each input-output space with a linear equation as presented in Equation

(3.1). Approximation using T-S fuzzy model leads to a nonlinear programming

problem and hinders its practical use. A simple solution to the problem is the

utilization of various clustering techniques to identify the rule premise parameters.

Because of the generation of the linear equation in the consequent part, the HPBC

can be applied to construct the T-S fuzzy system efficiently. The advantages of

using HPBC in the T-S fuzzy model can be seen graphically in Figure 3.1.

Some popular algorithms with HPBC are Fuzzy C-Regression Model (FCRM)

[164], Fuzzy C-Quadratic Shell (FCQS) [165], double FCM [89], Inter Type-2

Fuzzy C-Regression Model (IT2-FCRM) [94]. A crucial limitation of these al-

gorithms is their non-incremental nature, which does not suit for data stream

regression. Moreover, they still deploy Gaussian function to represent the rule

premise of TS fuzzy model, which does not exploit the parameter efficiency trait of

HPBC. To fill up this research gap, a new membership function [94] is proposed

to accommodate the use of hyperplanes in the rule premise part of TS fuzzy
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Figure 3.1: Clustering in T-S fuzzy model using hyperplanes

system. It can be expressed as:

µB(j) = exp

(
−Γ

dst(j)

max (dst(j))

)
(3.2)

where j = 1, 2, ..., R; R is the number of rules, Γ is an adjustment parameter

which controls the fuzziness of membership grades. Based on the observation

in [94], and empirical analysis with a variety of data streams in my research, the

range of Γ is settled as [1, 100]. dst(j) denotes the distance from the present

sample to the jth hyperplane. In this chapter, dst(j) is defined as follows [94]:

dst(j) =
|Xtωj|
|ωj|

(3.3)

where Xt ∈ <1×(n+1) and ωj ∈ <(n+1)×1 respectively stand for the input vector of

the tth observation and the output weight vector of the jth rule. This membership

function enables the incorporation of HPBC directly into the T-S fuzzy system

with the absence of rule parameters except the first order linear function or

hyperplane. Since a point to plane distance is not unique, the compatibility

measure is executed using the minimum point to plane distance.

The following discusses the network structure of PALM encompassing its
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type-1 and type-2 versions. PALM can be modeled as a four-layered network

working in tandem, where the fuzzy rule triggers a hyperplane-shaped cluster

and is induced by Equation (3.3). Since T-S fuzzy rules can be developed solely

using a hyperplane, PALM is free from antecedent parameters which results in

a dramatic reduction of network parameters. Furthermore, it operates in the

one-pass learning fashion where it works point by point, and a data point is

discarded directly once learned.

3.3.1 Structure of type-1 PALM network

In type-1 PALM network architecture, the membership function exposed in Equa-

tion (3.2) is utilized to fit the hyperplane-shaped cluster in identifying type-1 T-S

fuzzy model. To understand the work flow, let us consider that a single data point

xn is fed into PALM at the nth observation. Appertaining to the concept of type-1

fuzzy system, this crisp data needs to be transformed into a fuzzy set. This

fuzzification process is attained using a type-1 hyperplane-shaped membership

function, which is framed through the concept of point-to-plane distance. This

hyperplane-shaped type-1 membership function can be expressed as:

f 1
T1 = µB(j) = exp

(
−Γ

dst(j)

max (dst(j))

)
(3.4)

where Γ is an adjustment parameter which controls the fuzziness of membership

grades, dst(j) in Equation (3.4) denotes the distance between the current sample

and jth hyperplane as with Equation (3.3). It is defined as per definition of a

point-to-plane distance [162] and is formally expressed as follows:

dst(j) =

∣∣∣∣yd − (
∑n

i=1 aijxi + b0j)√
1 +

∑n
i=1(aij)2

∣∣∣∣ (3.5)
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where aij and b0j are consequent parameters of the jth rule, i = 1, 2, ..., n; n is the

number of input dimension, and yd is the target variable. The exertion of yd is an

obstruction for PALM due to target variable’s unavailability in the testing phase.

This issue comes into the picture due to the definition of a point-to-hyperplane

distance [162]. To eradicate such impediment, a recurrent PALM (rPALM)

framework is developed here. Considering a MISO system, the IF-THEN rule

of type-1 PALM can be expressed as follows:

Rj : IF Xn is close to f 2
T1j

THEN yj = xjeωj (3.6)

where xe is the extended input vector and is expressed by inserting the intercept

to the original input vector as xe = [1, x1, x2, ..., xn], ωj is the weight vector for

the jth rule, yj is the consequent part of the jth rule. Since type-1 PALM has

no premise parameters, the antecedent part is simply hyperplane. It is observed

from Equation (3.6) that the drawback of HPBC-based TS fuzzy system lies in

the high-level fuzzy inference scheme which degrades the transparency of fuzzy

rule. The intercept of the extended input vector controls the slope of hyperplane,

which functions to prevent the atypical gradient problem.

The consequent part is akin to the basic T-S fuzzy model’s rule consequent

part (yj = b0j+a1jx1 + ...+anjxn). The consequent part for the jth hyperplane is

calculated by weighting the extended input variable (xe) with its corresponding

weight vector as follows:

f 2
T1j

= xTe ωj (3.7)

Weights are used in Equation (3.7) after updating recursively by the FWGRLS

method, which ensures a smooth change in the weight value. In the next step,

the rule firing strength is normalized and combined with the rule consequent to
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produce the end-output of type-1 PALM. The final crisp output of the PALM for

a type-1 model can be expressed as follows:

f 3
T1 =

∑R
j=1 f

1
T1j
f 2
T1j∑R

i=1 f
1
T1i

(3.8)

The normalization term in Equation (3.8) guarantees the partition of unity, where

the sum of normalized membership degree is unity. The T-S fuzzy system is

functionally-equivalent to the radial basis function (RBF) network if the rule

firing strength is directly connected to the output of the consequent layer [166].

It is also depicted that the final crisp output is produced by the weighted average

defuzzification scheme.

3.3.2 Network structure of the type-2 PALM

Type-2 PALM differs from the type-1 variant due to the use of interval-valued

hyperplane, which generates the type-2 fuzzy rule. Akin to its type-1 version,

type-2 PALM starts operating by intaking the crisp input data stream xn to

be fuzzied. Here, the fuzzification occurs with the help of type-2 interval-valued

hyperplane-shaped clustering-based membership function, which can be expressed

as:

f̃ 1
out = exp

−Γ
d̃st(j)

max
(
d̃st(j)

)
 (3.9)

where f̃ 1
out =

[
f 1

out
, f

1

out

]
is the upper and lower hyperplane, d̃st(j) =

[
dst(j), dst(j)

]
is interval-valued distance, where dst(j) is the distance between present input

samples and jth upper hyperplane, and dst(j) is that between present input

samples and jth lower hyperplane. In type-2 architecture, distances among
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incoming input data and upper and lower hyperplanes are calculated as follows:

d̃st(j) =

∣∣∣∣yd − (
∑n

i=1 ãijxi + b̃0j)√
1 +

∑n
i=1(ãij)2

∣∣∣∣ (3.10)

where ãij =
[
aij; aij

]
and b̃0j =

[
b0j; b0j

]
are the interval-valued coefficients of the

rule consequent of type-2 PALM. Like the type-1 variants, type-2 PALM has a

dependency on target value (yd). Therefore, they are also extended into type-2

recurrent structure in this chapter. The use of interval-valued coefficients results

in the interval-valued firing strength, which forms the footprint of uncertainty

(FoU). The FoU is the key component against uncertainty of data streams and

sets the degree of tolerance against uncertainty.

In a MISO system, the IF-THEN rule of type-2 PALM can be expressed as:

Rj : IF Xn is close to f̃ 2
out THEN yj = xjeω̃j (3.11)

where xe is the extended input vector, ω̃j is the interval-valued weight vector for

the jth rule, yj is the consequent part of the jth rule, whereas the antecedent

part is merely interval-valued hyperplane. The type-2 fuzzy rule is similar to that

of the type-1 variant except the presence of interval-valued firing strength and

interval-valued weight vector. In type-2 PALM, the consequent part is calculated

by weighting the extended input variable xe with the interval-valued output

weight vectors ω̃j =
[
ωj, ωj

]
as follows:

f
2

outj
= xjeωj, f 2

outj
= xjeωj (3.12)

The lower weight vector ωj for the jth lower hyperplane and upper weight vector

ωj for the jth upper hyperplane are initialized by allocating higher value for upper
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weight vector than the lower weight vector. These vectors are updated recursively

by FWGRLS method, which ensures a smooth change in weight value.

Before performing the defuzzification method, the type reduction mecha-

nism is carried out to craft the type-reduced set - the transformation from the

type-2 fuzzy variable to the type-1 fuzzy variable. One of the commonly used

type-reduction methods is the Karnik Mendel (KM) procedure [167]. However,

in the KM method, there is an involvement of an iterative process due to the

requirement of reordering the rule consequent first in ascending order before

getting the cross-over points iteratively incurring an expensive computational

cost. Therefore, instead of the KM method, the q design factor [168] is utilized

to orchestrate the type reduction process. The final crisp output of the type-2

PALM can be expressed as follows:

f 3
out = yout =

1

2
(ylout + yrout) (3.13)

where

ylout =

∑R
j=1 qlf

1

out
f 2

out∑R
i=1 f

1

out

+

∑R
j=1(1− ql)f

1

outf
2

out∑R
i=1 f

1

out

(3.14)

yrout =

∑R
j=1 qrf

1

out
f

2

out∑R
i=1 f

1

out

+

∑R
j=1(1− qr)f

1

outf
2

out∑R
i=1 f

1

out

(3.15)

where ylout and yrout are the left and right outputs resulted from the type reduction

mechanism. ql and qr, utilized in Equation (3.14) and (3.15), are the design factors

initialized in a way to satisfy the condition ql < qr. In this q design factor [92],

the ql and qr steer the proportion of the upper and lower rules to the final crisp

outputs ylout and yrout of the PALM. The normalization process of the type-2 fuzzy

inference scheme [71] was modified in [83] to prevent the generation of the invalid

interval. The generation of this invalid interval as a result of the normalization
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process of [71] was also proved in [83]. Therefore, the normalization process as

adopted in [83] is applied and advanced in terms of ql and qr in our work. Besides,

in order to improve the performance of the proposed PALM, the ql and qr are

not left constant, rather continuously adapted using a gradient descent technique

as explained in Section 3.4. Notwithstanding that the type-2 PALM is supposed

to handle uncertainty better than its type-1 variant, it incurs a higher number

of network parameters in the level of 2 × R × (n + 1) as a result of the use of

upper and lower weight vectors ω̃j =
[
ωj, ωj

]
. In addition, the implementation

of q-design factor imposes extra computational cost because ql and qr call for a

tuning procedure with the gradient descent method.

3.4 Online Learning Policy in Type-1 PALM

This section describes the online learning policy of our proposed type-1 PALM.

PALM is capable of starting its learning process from scratch with an empty rule

base. Its fuzzy rules can be automatically generated on the fly using the self

constructive clustering (SCC) method, which checks the input and output coher-

ence. The complexity reduction mechanism is implemented using the hyperplane

merging module, which vets similarity of two hyperplanes using the distance and

angle concept. The hyperplane-based fuzzy rule is adjusted using the FWGRLS

method in the single-pass learning fashion.

3.4.1 Mechanism of growing rules

The rule growing mechanism of type-1 PALM is adopted from the self-constructive

clustering (SSC) method [160,161] to adapt the number of rules. This method has

been successfully applied to automatically generate interval-valued data clouds
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[88] but its use for HPBC deserves an in-depth investigation. In this technique,

the rule significance is measured by calculating the input and output coherence.

The coherence is measured by analyzing the correlation between the existing

data samples and the target concept. Let us assume the input vector as Xt ∈ <n,

target vector as Tt ∈ <m, hyperplane of the ith local sub-model as Hi ∈ <1×(n+1).

Here, n is the input vector dimension, and m is the target vector dimension. Now,

the input and output coherence between Xt ∈ <n and each Hi ∈ <1×(n+1) are

calculated as follows:

Ic(Hi, Xt) = ξ(Hi, Xt) (3.16)

Oc(Hi, Xt) = ξ(Xt, Tt)− ξ(Hi, Tt) (3.17)

where ξ( ) expresses the correlation function. There are various linear and nonlin-

ear correlation methods for measuring correlation, which can be applied. Among

them, the nonlinear methods for measuring the correlation between variables

are hard to employ in the online environment since they commonly use the dis-

cretization or Parzen window method. On the other hand, Pearson correlation is

a widely used method for measuring correlation between two variables. However,

it suffers from some limitations: it’s insensitivity to the scaling and translation

of variables and sensitivity to rotation [169]. To solve these problems, a method

namely maximal information compression index (MCI) is proposed in [169], which

has also been utilized in the SSC method to measure the correlation ξ( ) between

variables as follows:

ξ(Xt, Tt) =
1

2
(var(Xt) + var(Tt)

−
√

(var(Xt) + var(Tt))2 − 4var(Xt)(Tt)(1− ρ(Xt, Tt)2)) (3.18)
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ρ(Xt, Tt) =
cov(Xt, Tt)√

var(Xt)var(Tt)
(3.19)

where var(Xt), var(Tt) express the variance of Xt and Tt respectively, cov(Xt, Tt)

presents the covariance between two variables Xt and Tt, ρ(Xt, Tt) stands for

Pearson correlation index of Xt and Tt. In a similar way, the correlation ξ(Hi, Xt)

and ξ(Hi, Tt) can be measured using Equation (3.18) and (3.19). In addition, the

MCI method measures the compressed information when a newly observed sample

is ignored. Properties of the MCI method can be expressed as follows:

1. 0 ≤ ξ(Xt, Tt) ≤ 1
2
(var(Xt) + var(Tt)).

2. a maximum possible correlation is ξ(Xt, Tt) = 0.

3. express symmetric behavior ξ(Xt, Tt) = ξ(Tt, Xt).

4. invariance against the translation of the dataset.

5. express the robustness against rotation.

Ic(Hi, Xt) is projected to explore the similarity between Hi and Xt directly,

while Oc(Hi, Xt) is meant to examine the dissimilarity between Hi and Xt indi-

rectly by utilizing the target vector as a reference. In the present hypothesis, the

input and output coherence need to satisfy the following conditions to add a new

rule or hyperplane:

Ic(Hi, Xt) > b1 and Oc(Hi, Xt) < b2 (3.20)

where b1 ∈ [0.01, 0.1], and b2 ∈ [0.01, 0.1] are predetermined thresholds. If the

hypothesis satisfies both the conditions of Equation (3.20), a new rule is added

with the highest input coherence. Besides, the accommodated data points of a

rule are updated as Nj∗ = Nj∗ + 1. Also, the correlation measure functions ξ( )
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are updated with Equation (3.18) and (3.19). Due to the utilization of the local

learning scenario, each rule is adapted separately and therefore covariance matrix

is independent to each rule Cj(k) ∈ <(n+1)×(n+1), here n is the number of inputs.

When a new hyperplane is added by satisfying Equation (3.20), the hyperplane

parameters and the output covariance matrix of FWGRLS method are crafted

as follows:

πR+1 = πR∗ , CR+1 = ΩI (3.21)

Due to the utilization of the local learning scenario, the consequent of the

newly added rules can be assigned as the closest rule, since the expected trend

in the local region can be portrayed easily from the nearest rule. The value of

the correction parameter Ω in Equation (3.21) is very large (105). Initially, the

weights (ω) have a low approximation power, therefore a large value of correction

factor Ω in Equation (3.21), consequently large covariance matrix Cj helps to

obtain a fast convergence of the consequent parameters to the optimal solution

in the least squares sense [170, 171]. This approach includes the possibility to

perform incremental training from scratch without generating an initial model.

The proof of such consequent parameter setting is detailed in [171]. In addition,

the covariance matrix of the individual rule has no relationship with each other.

Thus, when the rules are pruned in the rule merging module, the covariance ma-

trix, and consequent parameters are deleted as it does not affect the convergence

characteristics of the C matrix and consequent of remaining rules.

3.4.2 Mechanism of merging rules

In SANFS, the rule evolution mechanism usually generates redundant rules.

These unnecessary rules create complicacy in the rule base, which hinders some
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desirable features of fuzzy rules: transparency and tractability in their operation.

Notably, in handling data streams, two overlapping clusters or rules may easily

be obtained when new samples occupied the gap between the existing two clus-

ters. Several useful methods have been employed to merge redundant rules or

clusters in [1,52,57,88]. However, all these techniques are appropriate for mainly

hypersphere-based or ellipsoid-based clusters.

In the realm of hyperplane clusters, there is a possibility of generating a

higher number of hyperplanes in dealing with the same data-set than spherical

or ellipsoidal clusters because of the nature of HPBC in which each hyperplane

represents specific operating region of the approximation curve. This opens a

higher chance of generating redundant rules than HSSC and HESC. Therefore,

an appropriate merging technique is vital and has to achieve trade-off between

diversity of fuzzy rules and generalization power of the rule base. To understand

clearly, the merging of two hyperplanes due to the new incoming training data

samples is illustrated in Figure 3.2.
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Figure 3.2: Merging of redundant hyperplanes (rules) due to new incoming training
samples

In [172], to merge the hyperplanes, the similarity and dissimilarity between them
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are obtained by measuring only the angle between the hyperplanes. This strategy

is, however, not conclusive to decide the similarity between two hyperplanes

because it solely considers the orientation of hyperplane without looking at the

relationship of two hyperplanes in the target space.

In our work, to measure the similarity between the hyperplane-shaped fuzzy

rules, the angle between them is estimated as follows [1, 173]:

θhp = arccos

(∣∣∣∣ ωTRωR+1

|ωR||ωR+1|

∣∣∣∣) (3.22)

where θhp is the observed angle that evolves between 0 and π radian, ωR =

[b1,R, b2,R, ..., bk,R] , ωR+1 = [b1,R+1, b2,R+1, ..., bk,R+1] .

The angle between the hyperplanes is not sufficient to decide whether the rule

merging scenario should take place because it does not inform the closeness of

two hyperplanes in the target space. Therefore, the spatial proximity between

two hyperplanes in the hyperspace is taken into account. If we consider two

hyperplanes as lR1 = a1 + xb1, and lR2 = a2 + xb2, then the minimum distance

between them can be projected as follows:

dR,R+1 =

∣∣∣∣(a1 − a2).
(b1 × b2)

|b1 × b2|

∣∣∣∣ (3.23)

For simplicity, in this chapter, the difference between weights of two consecutive

rules is considered as the minimum distance between them.

The rule merging condition is formulated as follows:

θhp ≤ c1 and dR,R+1 ≤ c2 (3.24)

where c1 ∈ [0.01, 0.1], c2 ∈ [0.001, 0.1] are predefined thresholds. These design
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parameters are set from the empirical analysis with a variety of datasets used

in this chapter. If Equation (3.24) is satisfied, fuzzy rules are merged. It is

worth noting that the merging technique is only applicable in the local learning

context because, in the case of global learning, the orientation and similarity of

two hyperplanes have no direct correlation to their relationship.

In our merging mechanism, a dominant rule having higher support is retained,

whereas a less dominant hyperplane (rule) resided by less number of samples is

pruned to mitigate the structural simplification scenario of PALM. A dominant

rule has a higher influence on the merged cluster because it represents the un-

derlying data distribution. That is, the dominant rule is kept in the rule base in

order for good partition of data space to be maintained and even improved. For

simplicity, the weighted average strategy is adopted in merging two hyperplanes

as follows:

ωnewacm =
ωoldacmN

old
acm + ωoldacm+1N

old
acm+1

N old
acm +N old

acm+1

(3.25)

Nnew
acm = N old

acm +N old
acm+1 (3.26)

where ωoldacm is the output weight vector of the acmth rule, ωoldacm+1 is the output

weight vector of (acm + 1)th rule, and ωnewacm is the output weight vector of the

merged rule, N is the population of a fuzzy rule. Note that the rule acm is more

influential than the rule acm+ 1, since Nacm > Nacm+1. The rule merging proce-

dure is committed when no addition of rules occurs. This strategy aims to attain

a stable rule evolution and prevents new rules to be merged straightaway after

being introduced in the rule base. As an alternative, the Yager’s participatory

learning-inspired merging scenario [57] can be used to merge the two hyperplanes.
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3.4.3 Adaptation of the parameters of hyperplanes

In previous work on hyperplane based T-S fuzzy system [174], recursive least

square (RLS) method is employed to calculate parameters of the hyperplane. As

an advancement to the RLS method, a term for decaying the consequent parame-

ter in the cost function of the RLS method is utilized in [175] and helps to obtain

a solid generalization performance - generalized recursive least square (GRLS)

approach. However, their approach is formed in the context of global learning.

A local learning method has some advantages over its global counterpart: inter-

pretability and robustness over noise. The interpretability is supported by the

fact that each hyperplane portrays specific operating region of approximation

curve. Also, in local learning, the generation or deletion of any rule does not

harm the convergence of the consequent parameters of other rules, which results

in a significantly stable updating process [176].

Due to the desired features of local learning scenario, the GRLS method is

extended in [1, 83]: Fuzzily Weighted Generalised Recursive Least Square (FW-

GRLS) method. FWGRLS can be seen also as a variation of Fuzzily Weighted

Recursive Least Square (FWRLS) method [44] with the insertion of weight decay

term. The FWGRLS method is formed in the proposed type-1 PALM, where the

cost function can be expressed as:

JnLj =(yt − xeπj)Λj(yt − xeπj)+

2βϕ(πj) + (π − πj)(Cjxe)−1(π − πj) (3.27)

JnL =
i∑

j=1

JnLj (3.28)

where Λj denotes a diagonal matrix with the diagonal element of Rj, β represents
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a regularization parameter, ϕ is a decaying factor, xe is the extended input vector,

Cj is the covariance matrix, πj is the local subsystem of the jth hyperplane. Fol-

lowing the similar approach as [1], the final expression of the FWGRLS approach

is formed as follows:

πj(k) =πj(k − 1)− βCj(k)∇ϕπj(k − 1)+

Υ(k)(yt(k)− xeπj(k)); j = [1, 2, ..., R] (3.29)

where

Cj(k) = Cj(k − 1)−Υ(k)xeCj(k − 1) (3.30)

Υ(k) = Cj(k − 1)xe

(
1

Λj

+ xeCj(k − 1)xTe

)−1

(3.31)

with the initial conditions

π1(1) = 0 and C1(1) = ΩI (3.32)

where Υ(k) denotes the Kalman gain, R is the number of rules, Ω = 105 is a

large positive constant. The reason for using a large value is already mentioned

in explaining the type-1 PALM. In this work, the regularization parameter β is

assigned as an extremely small value (β ≈ 10−7). It can be observed that the

FWGRLS method is similar to the RLS method without the term βπj(k)∇ϕ(k).

This term steers the value of πj(k) even to update an insignificant amount, which

helps to minimize the impact of inconsequential rules. The quadratic weight decay

function chosen in PALM is written as follows:

ϕ(πj(k − 1)) =
1

2
(πj(k − 1))2 (3.33)
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Its gradient can be expressed as:

∇ϕ(πj(k − 1)) = πj(k − 1) (3.34)

By utilizing this function, the adapted-weight is shrunk to a factor proportional to

its present value. It helps to intensify the generalization capability by maintaining

the change of output weights into small values [177].

3.5 Online Learning Policy in Type-2 PALM

The learning policy of the type-1 PALM is extended in the context of the type-2

fuzzy system, where q design factor is utilized to carry out the type-reduction

scenario. The learning mechanisms are detailed in the following subsections.

3.5.1 Mechanism of growing rules in type-2 PALM

In the realm of the type-2 fuzzy system, the SSC method has been extended to

the type-2 SSC (T2SSC) in [88]. It has been adopted and extended in terms

of the design factors ql and qr, since the original work in [88] only deals with a

single design factor q. In this T2SSC method, the rule significance is measured

by calculating the input and output coherence as done in the type-1 system. By

assuming H̃i = [Hi,Hi] ∈ <R×(1+n) as interval-valued hyperplane of the ith local

sub-model, the input and output coherence for our proposed type-2 system can

be extended as follows:

IcL(H̃i, Xt) = (1− ql)ξ(Hi, Xt) + qlξ(Hi, Xt) (3.35)

IcR(H̃i, Xt) = (1− qr)ξ(Hi, Xt) + qrξ(Hi, Xt) (3.36)
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Ic(H̃i, Xt) =

(
IcL(H̃i, Xt) + IcR(H̃i, Xt)

)
2

(3.37)

Oc(H̃i, Xt) = ξ(Xt, Tt)− ξ(H̃i, Tt) (3.38)

where

ξL(H̃i, Tt) = (1− ql)ξ(Hi, Tt) + qlξ(Hi, Tt) (3.39)

ξR(H̃i, Tt) = (1− qr)ξ(Hi, Tt) + qrξ(Hi, Tt) (3.40)

ξ(H̃i, Tt) =

(
ξL(H̃i, Tt) + ξR(H̃i, Tt)

)
2

(3.41)

Unlike the direct calculation of input coherence Ic( ) in type-1 system, in type-2

system the Ic( ) is calculated using Equation (3.37) based on left IcL( ) and

right IcR( ) input coherence. By using the MCI method in the T2SCC rule

growing process, the correlation is measured using Equation (3.18) and (3.19),

where (Xt, Tt) is substituted with (Hi, Xt) , (Hi, Xt), (Hi, Tt) , (Hi, Tt). The

conditions for growing rules remain the same as expressed in Equation (3.20) and

is only modified to fit the type-2 fuzzy system platform. The parameter settings

for the predefined thresholds are as with the type-1 fuzzy model.

3.5.2 Mechanism of merging rules in type-2 PALM

The merging mechanism of the type-1 PALM is extended for the type-2 fuzzy

model. To merge the rules, both the angle and distance between two interval-valued

hyperplanes are measured as follows:

θ̃hp = arccos

(∣∣∣∣ ω̃TRω̃R+1

|ω̃R||ω̃R+1|

∣∣∣∣) (3.42)
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d̃R,R+1 =

∣∣∣∣(ã1 − ã2).
(̃b1 × b̃2)

|̃b1 × b̃2|

∣∣∣∣ (3.43)

where θ̃hp = [θhp θhp], and d̃R,R+1 = [dR,R+1 dR,R+1]. θ̃hp and d̃R,R+1 also need to

satisfy the condition of Equation (3.24) to merge the rules, where the same range

of c1 and c2 are applied in the type-2 PALM. The formula of merged weight in

Equation (3.25) is extended for the interval-valued merged weight as follows:

ω̃newacm =
ω̃oldacmN

old
acm + ω̃oldacm+1N

old
acm+1

N old
acm +N old

acm+1

(3.44)

where ω̃acm = [ωacm ωacm]. As with the type-1 PALM, the weighted average

strategy is followed in the rule merging procedure of the type-2 PALM.

3.5.3 Learning of the hyperplanes’ parameters in type-2

PALM

The FWGRLS method [1] is extended to adjust the upper and lower hyperplanes

of the interval type-2 PALM. The final expression of the FWGRLS method is

shown as follows:

π̃j(k) =π̃j(k − 1)− βC̃j(k)∇ϕπ̃j(k − 1)+

Υ̃(k)(yt(k)− xeπ̃j(k)); j = [1, 2, ..., R] (3.45)

where

C̃j(k) = C̃j(k − 1)− Υ̃(k)xeC̃j(k − 1) (3.46)

Υ̃(k) = C̃j(k − 1)xe

(
1

Λ̃j

+ xeC̃j(k − 1)xTe

)−1

(3.47)



68
3. PALM: AN INCREMENTAL CONSTRUCTION OF HYPERPLANES FOR DATA

STREAM REGRESSION

where π̃j = [πj πj], C̃j = [Cj Cj], Υ̃ = [Υ Υ], and Λ̃j = [Λj Λj]. The quadratic

weight decay function of FWGRLS method remains in the type-2 PALM to

provide the weight decay effect in the rule merging scenario.

3.5.4 Adaptation of q design factors

The q design factor, as used in [83] is extended in terms of left ql and right qr

design factors to actualize a high degree of freedom of the type-2 fuzzy model.

They are initialized in such a way that the condition qr > ql is maintained. In

this adaptation process, the gradient of ql and qr with respect to error E =

1
2

(yd − yout)2 can be expressed as follows:

∂E

∂ql
=

∂E

∂yout
× ∂yout
∂ylout

× ∂ylout
∂ql

= −1

2
(yd − yout)

(
f 1

out
f 2

out∑R
i=1 f

1

out

−
f

1

outf
2

out∑R
i=1 f

1

out

)
(3.48)

∂E

∂qr
=

∂E

∂yout
× ∂yout
∂yrout

× ∂yrout
∂qr

= −1

2
(yd − yout)

(
f 1

out
f

2

out∑R
i=1 f

1

out

− f
1

outf
2

out∑R
i=1 f

1

out

)
(3.49)

After obtaining the gradient ∂E
∂ql

and ∂E
∂qr

, the ql and qr are updated as follows:

qnewl = qoldl − a
∂E

∂qoldl
(3.50)

qnewr = qoldr − a
∂E

∂qoldr
(3.51)

where a is a learning rate. Based on the empirical analysis with different datasets,

the value of a in this chapter is set as a = 0.1. Note that the learning rate is a key
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of ql and qr convergence because it determines the step size of adjustment. An

adaptive strategy as done in [80] can be implemented to shorten the convergence

time without compromising the stability of the adaptation process.

3.6 Proposed Recurrent PALM Structure

In the PALM, hyperplane-shaped membership function is formulated exercising

a distance (dst(j)) exposed in Equation (3.5). The (dst(j)) is calculated using

true output value based on theory of the point to hyperplane distance [162].

Therefore, the PALM has a dependency on the true output in deployment phase.

Usually, true outputs are not known in the deployment mode. To circumvent

such structural shortcoming, the so-called Teacher Forcing mechanism [178] is

employed in PALM. In teacher forcing technique, the network has connections

from outputs to their hidden nodes at the next time step. Based on this concept,

the output of PALM is connected with the input layer at the next step, which

constructs a recurrent PALM (rPALM) architecture. The modified distance

formula for the rPALM architecture can be expressed as:

dst(j) =

∣∣∣∣yk−1
out − (

∑n
i=1 aijxi + b0j)√

1 +
∑n

i=1(aij)2

∣∣∣∣ (3.52)

where aij and bij are the ith coefficient of jth rule consequent, k is the current

time step, and yk−1
out is the true output variable from a prior time step.

In the case of type-2 rPALM configuration, the distance is articulated as

follows:

d̃st(j) =

∣∣∣∣yk−1
out − (

∑n
i=1 ãijxi + b̃0j)√

1 +
∑n

i=1(ãij)2

∣∣∣∣ (3.53)

where ãij =
[
aij; aij

]
and b̃0j =

[
b0j; b0j

]
are the interval-valued coefficients of the
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rule consequent of type-2 PALM, k is the current time step, and yk−1
out is the true

output variable from a prior time step.

Implementation of Equation (3.52) in recurrent PALM structure solves the

limitation of original PALM i.e., their reliance on true output.

To acquire a lucid conception about the network architecture of various PALMs,

their high-level structures are portrayed in Figure 3.3 and Figure 3.4.
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Figure 3.3: Network architecture of Basic (a) Type-1 PALM, (b) Type-2 PALM
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Figure 3.4: Network architecture of recurrent (a) Type-1 PALM, (b) Type-2 PALM
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3.7 Performance Evaluation of PALM

PALM has been evaluated through numerical studies with the use of synthetic

and real-world streaming datasets. The code of PALMs and rPALMs along with

these datasets have been made publicly available in [163,179].

3.7.1 Experimental setup

3.7.1.1 Synthetic streaming datasets

Three synthetic streaming datasets are utilized in our work to evaluate the

adaptive mechanism of the PALM: 1) Box-Jenkins Time Series dataset, 2) the

Mackey-Glass Chaotic Time Series dataset, and 3) non-linear system identifica-

tion dataset.

3.7.1.2 Box-Jenkins gas furnace time series dataset

The Box–Jenkins (BJ) gas furnace dataset is a famous benchmark problem in

the literature to verify the performance of SANFSs. The objective of the BJ

gas furnace problem is to model the output (y(k)) i.e. the CO2 concentration

from the time-delayed input (u(k−4)) methane flow rate and its previous output

y(k − 1). The I/O configuration follows the standard setting in the literature as

follows:

ŷ(k) = f(u(k − 4), y(k − 1)) (3.54)

This problem exposed in Equation (3.54) consists of 290 data samples where 200

samples are reserved for the training samples while the remaining 90 samples are

used to test the model’s generalization.
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3.7.1.3 Mackey-Glass chaotic time series dataset

Mackey-Glass (MG) chaotic time series problem, having its root in [180] is a

popular benchmark problem to forecast the future value of a chaotic differential

delay equation by using the past values. Many researchers have used the MG

dataset to evaluate their SANFSs’ learning and generalization performance. This

dataset is characterized by their nonlinear and chaotic behaviors where its non-

linear oscillations replicate most of the physiological processes. The MG dataset

is initially proposed as a control model of the generation of white blood cells.

The mathematical model is expressed as:

dy(k)

dt
=

by(k − δ)
1 + y10y(k − δ)

− ay(k) (3.55)

where b = 0.2, a = 0.1, and δ = 85. The chaotic element is primarily attributed

by δ ≥ 17. Data samples are generated through the fourth-order Range Kutta

method, and our goal is to predict the system output ŷ(k + 85) at k = 85 using

four inputs: y(k), y(k−6), y(k−12), and y(k−18). This series-parallel regression

model can be expressed as follows:

ŷ(k + 85) = f (y(k), y(k − 6), y(k − 12), y(k − 18)) (3.56)

For the training purpose, a total of 3000 samples between k = 201 and k = 3200

is generated with the help of the 4th-order Range-Kutta method, whereas the

predictive model is tested with unseen 500 samples in the range of k = 5001−5500

to assess the generalization capability of the PALM.
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3.7.1.4 Non-linear system identification dataset

A non-linear system identification is put forward to validate the efficacy of PALM

and has frequently been used by researchers to test their SANFSs. The nonlinear

dynamics of the system can be formulated by the following differential equation:

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (3.57)

where u(k) = sin(2πk/100). The predicted output of the system ŷ(k+1) depends

on the previous inputs and its own lagged outputs, which can be expressed as

follows:

ŷ(k + 1) = f(y(k), y(k − 1), ..., y(k − 10), u(k)) (3.58)

The first 50000 samples are employed to build our predictive model, and other

200 samples are fed to test the model’s generalization ability.

3.7.1.5 Real-world streaming datasets

Three different real-world streaming datasets from two rotary wing unmanned

aerial vehicle’s (RUAV) experimental flight tests and a time-varying stock index

forecasting data are exploited to study the performance of PALM.

3.7.1.6 Quadcopter unmanned aerial vehicle streaming data

A real-world streaming dataset is collected from a Pixhawk autopilot framework

based quadcopter RUAV’s experimental flight test. All experiments are per-

formed in the indoor UAV laboratory at the University of New South Wales,

Canberra campus. To record quadcopter flight data, the Robot Operating System

(ROS), running under the Ubuntu 16.04 version of Linux is used. By using the

ROS, a well-structured communication layer is introduced into the quadcopter
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reducing the burden of having to reinvent necessary software.

During the real-time flight testing accurate vehicle position, velocity, and

orientation are the required information to identify the quadcopter online. For

system identification, a flight data of quadcopter’s altitude containing approxi-

mately 9000 samples are recorded from VICON optical motion capture system.

Among them, 60% of the samples are used for training and the remaining 40% is

for testing. In this work, our model’s output y(k) is estimated as ŷ(k) from the

previous point y(k − 6), and the system input u(k), which is the required thrust

to the rotors of the quadcopter. The regression model from the quadcopter data

stream can be expressed as follows:

ŷ(k) = f (y(k − 6), u(k)) (3.59)

3.7.1.7 Streaming data from unmanned helicopter

Another RUAV for gathering streaming dataset is a Taiwanese made Align Trex450

Pro Direct Flight Control (DFC), fly bar-less, helicopter. The high degree of

non-linearity associated with the Trex450 RUAV vertical dynamics makes it

challenging to build a regression model from experimental data streams. All

experiments are conducted at the UAV laboratory of the UNSW Canberra cam-

pus. Flight data consists of 6000 samples collected in near hover, heave and

ground effect flight conditions to simulate non-stationary environments. First

3600 samples are used for the training data, and the rest of the data are aimed to

test the model. The nonlinear dependence of the unmanned helicopter is governed

by the regression model as follows:

ŷ(k + 1) = f (y(k), u(k)) (3.60)
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where ŷ(k + 1) is the estimated output of the helicopter system at k = 1.

3.7.1.8 Time-varying stock index forecasting data

Our proposed PALM has been evaluated by the time-varying dataset, namely

the prediction of Standard and Poor’s 500 (S&P-500 (ˆGSPC)) market index

[181,182]. The dataset consists of sixty years of daily index values ranging from 3

January 1950 to 12 March 2009, downloaded from [183]. This problem comprises

14893 data samples. In our work, the reversed order data points of the same 60

years indexes have amalgamated with the original dataset, forming a new dataset

with 29786 index values. Among them, 14893 samples are allocated to train the

model and the remainder of 14893 samples are used for the validation data. The

target variable is the next day S&P-500 index y(k + 1) predicted using previous

five consecutive days indexes: y(k), y(k − 1), y(k − 2), y(k − 3) and y(k − 4).

The functional relationship of the predictive model is formalized as follows:

ŷ(k + 1) = f (y(k), y(k − 1), y(k − 2), y(k − 3) y(k − 4)) (3.61)

From Equation (3.61), it is clearly observed that 5 inputs are utilized to

develop the predictive model. This dataset carries the sudden drift property

which happens around 2008. This property corresponds to the economic recession

in the US due to the housing crisis in 2009.

3.7.2 Results and discussion

In this work, we have developed PALM by implementing type-1 and type-2 fuzzy

concept, where both of them are simulated under two parameter-optimization

scenarios: 1) Type-1 PALM (L); 2) Type-1 PALM (G); 3) Type-2 PALM (L); 4)
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Type-2 PALM (G). L denotes the Local update strategy while G stands for the

Global learning mechanism. Basic PALM models are tested with three synthetic

and three real-world streaming datasets. Furthermore, the models are compared

against eight prominent variants of SANFSs, namely DFNN [166], GDFNN [184],

FAOSPFNN [185], eTS [44], simp eTS [46], GENEFIS [1], PANFIS [56], and

pRVFLN [88]. Experiments with real-world and synthesis data streams are

repeated with recurrent PALM. All experimental results using the rPALM are also

purveyed in the supplementary document. Proposed PALMs’ efficacy has been

evaluated by measuring the root mean square error (RMSE), and nondimensional

error index (NDEI) written as follows:

MSE =

∑N
k=1(yt − yk)2

NTs

, RMSE =
√
MSE (3.62)

NDEI =
RMSE

Std(Ts)
(3.63)

where NTs is the total number of testing samples, and Std(Ts) denotes a standard

deviation over all actual output values in the testing set. A comparison is

produced under the same computational platform in Intel(R) Xeon(R) E5-1630

v4 CPU with a 3.70 GHz processor and 16.0 GB installed memory.

3.7.2.1 Results and discussion on synthetic streaming data- sets

Table 3.1 sums up the outcomes of the Box-Jenkins time series for all bench-

mark models. Among various models, our proposed type-2 PALM (G) clearly

outperforms other consolidated algorithms in terms of predictive accuracy. For

instance, the measured NDEI is just 0.0598 - the lowest among all models. Type-2

PALM (G) generates thirteen (13) rules to achieve this accuracy level. Although

the number of generated rules is higher than that of remaining models, this
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accuracy far exceeds its counterparts whose accuracy hovers around 0.29. A

fair comparison is also established by utilizing very close number of rules in some

benchmark strategies namely eTS, simp eTS, PANFIS, pRVFLN, Interval-Valued

Metacognitive Scaffolding Fuzzy Neural Network (RIVMcSFNN) and GENEFIS.

By doing so the lowest observed NDEI among the benchmark variations is 0.29,

delivered by GENEFIS. It is substantially higher than the measured NDEI of

type-2 PALM (G). The advantage of HPBC is evidenced by the number of

PALM’s network parameters, where with thirteen rules and two inputs, PALM

evolves only 39 parameters, whereas the number of network parameters of other

algorithm, for instance GENEFIS is 117. PALM requires the fewest parameters

than all the other variants of SANFS as well and affects positively to execution

speed of PALM. On the other hand, with only one rule the NDEI of PALM is also

lower than the benchmark variants as observed in type-2 PALM (L) from Table

3.1, where it requires only 3 network parameters. It is important to note that

the rule merging mechanism is active in the case of only local learning scenario.

Here the number of induced rules are 8 and 2, which is lower than 8 and 14 in

their global learning versions. In both cases of G and L, the NDEI is very close

to each other with a very similar number of rules. In short, PALM constructs a

compact regression model using the Box-Jenkins time series with the least number

of network parameters while producing the most reliable prediction.

The prediction of Mackey–Glass chaotic time series is challenging due to the

nonlinear and chaotic behavior. Numerical results on the Mackey–Glass chaotic

time series dataset is consolidated in Table 3.2, where 500 unseen samples are

used to test all the models. Due to the highly nonlinear behavior, an NDEI

lower than 0.2 was obtained from only GENEFIS [1] among other benchmark
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Table 3.1: Modeling of the Box-Jenkins Time Series using various Self-Adaptive
Neuro-Fuzzy Systems

Model Reference RMSE
using
test-
ing

sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

training
samples

Execution
time
(sec)

DFNN [166] 0.7800 4.8619 1 6 200 0.0933
GDFNN [184] 0.0617 0.3843 1 7 200 0.0964
FAOSPFNN [185] 0.0716 0.4466 1 4 200 0.0897
eTS [44] 0.0604 0.3763 5 30 200 0.0635
simp eTS [46] 0.0607 0.3782 3 18 200 1.5255
GENEFIS [1] 0.0479 0.2988 2 18 200 0.0925
PANFIS [56] 0.0672 0.4191 2 18 200 0.3162
pRVFLN [88] 0.0478 0.2984 2 10 200 0.0614
RIVMcSFNN [83] 0.0582 0.3632 2 36 200 0.3447
Type-1 PALM (L) - 0.0484 0.3019 8 24 200 0.1972
Type-1 PALM (G) - 0.0439 0.2739 8 24 200 0.1244
Type-2 PALM (L) - 0.0377 0.2355 2 12 200 0.2723
Type-2 PALM (G) - 0.0066 0.0410 14 84 200 0.3558

algorithms. However, it costs 42 rules and requires a big number (1050) of

network parameters. On the contrary, with only 13 rules, 65 network parameters

and faster execution, the type-2 PALM (G) attains NDEI of 0.0685, where this

result is traced within 2.45 seconds due to the deployment of fewer parameters

than its counterparts. The use of rule merging method in local learning mode

reduces the generated rules to five (5) - type-1 PALM (L). A comparable accuracy

is obtained from type-1 PALM (L) with only 5 rules and 25 network parameters.

An accomplishment of such accuracy with few parameters decreases the compu-

tational complexity in predicting complex nonlinear system as witnessed from

type-1 PALM (L) in Table 3.2. Due to low computational burden, the lowest

execution time of 0.7771 seconds is achieved by the type-1 PALM (G).

PALM has been utilized to estimate a high-dimensional non-linear system

with 50000 training samples. This study case depicts similar trend where PALM

is capable of delivering comparable accuracy but with much less computational

complexity and memory demand. The deployment of rule merging module lessens
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Table 3.2: Modeling of the Mackey–Glass Chaotic Time Series using various
Self-Adaptive Neuro-Fuzzy Systems

Model Reference RMSE
using
test-
ing

sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 3.0531 12.0463 1 10 3000 11.1674
GDFNN [184] 0.1520 0.6030 1 13 3000 12.1076
FAOSPFNN [185] 0.2360 0.9314 1 6 3000 13.2213
eTS [44] 0.0734 0.2899 48 480 3000 8.6174
simp eTS [46] 0.0623 0.2461 75 750 3000 20.9274
GENEFIS [1] 0.0303 0.1198 42 1050 3000 4.9694
PANFIS [56] 0.0721 0.2847 33 825 3000 4.8679
pRVFLN [88] 0.1168 0.4615 2 18 2993 0.9236
Type-1 PALM (L) - 0.0688 0.2718 5 25 3000 0.8316
Type-1 PALM (G) - 0.0349 0.1380 18 90 3000 0.7771
Type-2 PALM (L) - 0.0444 0.1755 11 110 3000 2.8138
Type-2 PALM (G) - 0.0159 0.0685 13 130 3000 2.4502

the number of rules from 9 to 5 in case of type-1 PALM, and 3 from 21 in type-2

PALM. The NDEI of PALMs with such a small number of rules is also similar

to other SANFS variants. To sum up, the PALM can deal with data-streaming

examples with low computational burden due to the utilization of few network

parameters, where it maintains a comparable or better predictive accuracy.

Table 3.3: Modeling of the non-linear system using various Self-Adaptive Neuro- Fuzzy
Systems

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.0380 0.0404 2 12 50000 2149.246
GDFNN [184] 0.0440 0.0468 2 14 50000 2355.726
FAOSPFNN [185] 0.0027 0.0029 4 16 50000 387.7890
eTS [44] 0.07570 0.08054 7 42 50000 108.5791
simp eTS [46] 0.07417 0.07892 7 42 50000 129.5552
GENEFIS [1] 0.00041 0.00043 6 54 50000 10.9021
PANFIS [56] 0.00264 0.00281 27 243 50000 42.4945
pRVFLN [88] 0.06395 0.06596 2 10 49999 12.0105
Type-1 PALM (L) - 0.08808 0.09371 5 15 50000 9.9177
Type-1 PALM (G) - 0.07457 0.07804 9 27 50000 10.5712
Type-2 PALM (L) - 0.03277 0.03487 3 18 50000 13.7455
Type-2 PALM (G) - 0.00387 0.00412 21 126 50000 55.4865
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3.7.2.2 Results and discussion on real-world data streams

Table 3.4 outlines the results of identification a quadcopter RUAV from experi-

mental flight test data. A total 9112 samples of quadcopter’s hovering test with a

very high noise from motion capture technique namely VICON [186] is recorded.

Building SANFS using the noisy streaming dataset is computationally expensive

as seen from a high execution time of the benchmark SANFSs. Contrast with

these standard SANFSs, quick execution time is seen from PALMs. It happens

due to the requirement of few network parameters. Besides, PALM arrives at

encouraging accuracy as well. For instance, the lowest NDEI at just 0.1538 is

elicited in type-2 PALM (G). To put it plainly, due to utilizing incremental HPBC,

PALM can perform better than its counterparts SANFSs driven by HSSC and

HESC methods when dealing with noisy datasets.

Table 3.4: Online identification of the quadcopter utilizing various Self-Adaptive
Neuro-Fuzzy Systems

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.1469 0.6925 1 6 5467 19.0962
GDFNN [184] 0.1442 0.6800 1 7 5467 20.1737
FAOSPFNN [185] 0.2141 1.0097 12 48 5467 25.4000
eTS [44] 0.1361 0.6417 4 24 5467 3.0686
simp eTS [46] 0.1282 0.6048 4 24 5467 3.9984
GENEFIS [1] 0.1327 0.6257 1 9 5467 1.7368
PANFIS [56] 0.1925 0.9077 47 424 5467 6.0244
pRVFLN [88] 0.1191 0.5223 1 5 5461 0.9485
Type-1 PALM (L) - 0.1311 0.6182 2 6 5467 0.6605
Type-1 PALM (G) - 0.1122 0.5290 2 6 5467 0.5161
Type-2 PALM (L) - 0.1001 0.4723 3 18 5467 1.7049
Type-2 PALM (G) - 0.0326 0.1538 4 24 5467 1.6802

The identification of an unmanned helicopter (Trex450 Pro) from experimen-

tal flight data at hovering condition are tabulated in Table 3.5. The highest
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identification accuracy with the NDEI of only 0.1380 is obtained from the pro-

posed type-2 PALM (G) with 9 rules. As with the previous experiments, the

activation of rule merging scenario reduces the fuzzy rules significantly from 11

to 6 in type-1 PALM, and from 9 to 6 in type-2 PALM. The highest accuracy

is produced by type-2 PALM with only 4 rules due to most likely uncertainty

handling capacity of type-2 fuzzy system.

Table 3.5: Online identification of the helicopter utilizing various Self-Adaptive
Neuro-Fuzzy Systems

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.0426 0.6644 1 6 3600 8.7760
GDFNN [184] 0.0326 0.5082 2 14 3600 11.2705
FAOSPFNN [185] 0.0368 0.5733 2 8 3600 2.4266
eTS [44] 0.0535 0.8352 3 18 3600 1.3822
simp eTS [46] 0.0534 0.8336 3 18 3600 2.3144
GENEFIS [1] 0.0355 0.5541 2 18 3600 0.6736
PANFIS [56] 0.0362 0.5652 9 81 3600 1.4571
pRVFLN [88] 0.0329 0.5137 2 10 3362 1.0195
Type-1 PALM (L) - 0.0363 0.5668 6 18 3600 0.9789
Type-1 PALM (G) - 0.0313 0.4886 11 33 3600 0.9517
Type-2 PALM (L) - 0.0201 0.3141 6 36 3600 2.3187
Type-2 PALM (G) - 0.0088 0.1380 9 54 3600 1.9496

PALM’s prediction on the helicopter’s hovering dynamic and its rule evolution

are depicted in Figure 3.5. These figures are produced by the type-2 PALM(L).

500 1000 1500 2000

Testing sample step

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

p
li

tu
d

e
 (

h
o

v
e
r
in

g
)

Predicted

Helicopter data

(a)

500 1000 1500 2000 2500 3000 3500

Training sample step

0

5

10

15

20

25

30

N
u

m
b

e
r
 o

f 
r
u

le
s

Rule Evolution

(b)

Figure 3.5: (a) Online identification of helicopter (in hovering condition); (b) rule
evolution in that identification using type-2 PALM (L)
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For further clarification, the fuzzy rule extracted by type-1 PALM(L) in case

of identifying helicopter can be shown as follows:

R1 : IF X is close to

(
[1, x1, x2]× (3.64)

[0.0186,−0.0909, 0.9997]T
)
, THEN y1 = 0.0186− 0.0909x1

+ 0.9997x2

In Equation (3.64), the antecedent part is manifesting the hyperplane. The

consequent part is simply y1 = x1
eω, where ω ∈ <(n+1)×1, n is the number of

input dimension. Usage of 2 inputs in the experiment of Table V assembles an

extended input vector like: x1
e = [1, x1, x2]. The weight vector is: [ω01, ω11, ω21] =

[0.0186,−0.0909, 0.9997]. In case of Type-2 local learning configuration, a rule

can be stated as follows:

R1 : IF X is close to

((
[1, x1, x2]× (3.65)

[0.0787,−0.3179, 1.0281]T
)
, ([1, x1, x2]×

[0.2587,−0.1767, 1.2042]T )

)
THEN y1 = [0.0787, 0.2587] + [−0.3179,−0.1767]x1+

[1.0281, 1.2042]x2

where Equation (3.65) is expressing the first rule among 6 rules formed in that

experiment in Type-2 PALM’s local learning scenario. Since the PALM has no

premise parameters, the antecedent part is just presenting the interval-valued

hyperplanes. The consequent part is noting but y1 = x1
eω̃, where ω̃ ∈ <(2(n+1))×1,

n is the number of input dimension. Since 2 inputs are availed in the experiment of
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Table 3.5, the extended input vector is: x1
e = [1, x1, x2], and interval-valued weight

vectors are:
[
ω01, ω01

]
= [0.0787, 0.2587];

[
ω11, ω11

]
= [−0.3179,−0.1767]; and[

ω21, ω21

]
= [1.0281, 1.2042].

The numerical results on the time-varying Stock Index Forecasting S&P-500

(ˆGSPC) problem are organized in Table 3.6. The lowest number of network

parameters is obtained from PALMs, and subsequently, the fastest training speed

of 2.0326 seconds is attained by type-1 PALM (L). All consolidated benchmark

algorithms generate the same level of accuracy around 0.015 to 0.06.

Table 3.6: Modeling of the Time-varying Stock Index Forecasting using various
Self-Adaptive Neuro-Fuzzy Systems

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.00441 0.01554 1 12 14893 347.7522
GDFNN [184] 0.30363 1.07075 1 16 14893 344.4558
FAOSPFNN [185] 0.20232 0.71346 1 7 14893 15.1439
eTS [44] 0.01879 0.06629 3 36 14893 30.1606
simp eTS [46] 0.00602 0.02124 3 36 14893 29.4296
GENEFIS [1] 0.00849 0.02994 3 108 14893 2.2076
PANFIS [56] 0.00464 0.01637 8 288 14893 5.2529
pRVFLN [88] 0.00441 0.01555 1 11 11170 2.5104
Type-1 PALM (L) - 0.00273 0.00964 3 18 14893 2.0326
Type-1 PALM (G) - 0.00235 0.00832 5 30 14893 2.2802
Type-2 PALM (L) - 0.00442 0.01560 2 24 14893 4.0038
Type-2 PALM (G) - 0.00421 0.01487 3 36 14893 3.9134

3.7.3 Results of using recurrent PALM

Like the original PALM, four kinds of rPALMs are developed by using local

(L) and global (G) learning scenario, and type-1 and type-2 fuzzy architecture.

They are namely: 1) Type-1 rPALM (L); 2) Type-1 rPALM (G); 3) Type-2

rPALM (L); 4) Type-2 rPALM (G). They are evaluated with three synthetic

and three real-world streaming datasets. rPALM models are also compared
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against eight prominent variants of SANFSs, namely DFNN [166], GDFNN [184],

FAOSPFNN [185], eTS [44], simp eTS [46], GENEFIS [1], PANFIS [56], and

pRVFLN [88]. Tabulated information in evaluating rPALMs in each table are

as follows: RMSE, NDEI, number of generated rules, number of input features,

quantity of network parameters, training samples, and time of executing the

experiment. Same computational platform like the PALM’s experiment i.e. In-

tel(R) Xeon(R) E5-1630 v4 CPU with a 3.70 GHz processor and 16.0 GB installed

memory is availed in rPALM’s experimentation.

End results of the Box-Jenkins time series for all models are summarized

in Table 3.7. In comparison with the basic PALMs, the predictive accuracy

of rPALMs has dropped slightly. However, attainments of rPALMs are bet-

ter/comparable with benchmark models. The lowest NDEI of nearly 0.25 is

witnessed from type-2 rPALM with global learning scheme. To obtain such

accuracy it generates 8 rules, slightly higher than the reference models. Enig-

matically, local learning-based rPALMs generate only 3 and 2 rules with type-1

and type-2 architecture respectively, where their predictive accuracies are very

close to GENEFIS and pRVFLN, and surpassing remaining benchmark models.

It is noteworthy to mention that the rule merging scenario is active in local

learning version of rPALMS, not in their global learning variants. It outcomes

only 2 and 3 rules, which is higher (8 rules) in global learning version. In short,

rPALM structures a compact regression model utilizing the Box-Jenkins time

series with the least number of network parameters (when same number of rules

are considered) while producing comparable prediction.

The nonlinear and chaotic behavior of Mackey–Glass chaotic time series makes

it a challenging prediction problem. Numerical results with 3000 training samples
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Table 3.7: Modeling of the Box-Jenkins Time Series using various Self-Adaptive
Neuro-Fuzzy Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.7800 4.8619 1 6 200 0.0933
GDFNN [184] 0.0617 0.3843 1 7 200 0.0964
FAOSPFNN [185] 0.0716 0.4466 1 4 200 0.0897
eTS [44] 0.0604 0.3763 5 30 200 0.0635
simp eTS [46] 0.0607 0.3782 3 18 200 1.5255
GENEFIS [1] 0.0479 0.2988 2 18 200 0.0925
PANFIS [56] 0.0672 0.4191 2 18 200 0.3162
pRVFLN [88] 0.0479 0.2984 2 10 200 0.0614
Type-1 rPALM (L) - 0.0589 0.3672 3 9 200 0.1130
Type-1 rPALM (G) - 0.0589 0.3672 8 24 200 0.1302
Type-2 rPALM (L) - 0.0495 0.3088 2 12 200 0.2101
Type-2 rPALM (G) - 0.0416 0.2594 8 48 200 0.2234

on the Mackey–Glass chaotic time series dataset are consolidated in Table 3.8,

where 500 unseen samples are used to test all the models. Due to the highly

nonlinear behavior, an NDEI lower than 0.2 was obtained from only GENEFIS

[1]. However, it costs 42 rules and requires a big number (1050) of network

parameters. In case of proposed type-1 rPALM (G) and type-2 rPALM (G),

the predictive accuracy in terms of NDEI is around 0.23. Here though the G

rPALMs need 54 and 49 rules for type-1 and type-2 fuzzy structure, number of

required network parameters are 490 and 270, less than half of GENEFIS. On

the contrary, in local learning scenario, number of induced rules in rPALM are 2

and 13 only, which requires just 15 and 130 network parameters for type-1 and

type-2 variants correspondingly. Exploitation of few parameters mitigates the

computational complexity, and prediction accuracy is comparable too. Due to

low computational burden, the lowest execution time of 0.3472 seconds is achieved

by the type-1 rPALM (L) in Table 3.8.

rPALMs are implemented to estimate a high-dimensional non-linear system
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Table 3.8: Modeling of the Mackey–Glass Chaotic Time Series using various
Self-Adaptive Neuro-Fuzzy Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 3.0531 12.0463 1 10 3000 11.1674
GDFNN [184] 0.1520 0.6030 1 13 3000 12.1076
FAOSPFNN [185] 0.2360 0.9314 1 6 3000 13.2213
eTS [44] 0.0734 0.2899 48 480 3000 8.6174
simp eTS [46] 0.0623 0.2461 75 750 3000 20.9274
GENEFIS [1] 0.0303 0.1198 42 1050 3000 4.9694
PANFIS [56] 0.0721 0.2847 33 825 3000 4.8679
pRVFLN [88] 0.1168 0.4615 2 18 2993 0.9236
Type-1 rPALM (L) - 0.1179 0.4655 2 15 3000 0.3472
Type-1 rPALM (G) - 0.0631 0.2489 54 270 3000 3.8318
Type-2 rPALM (L) - 0.1215 0.4796 13 130 3000 3.1759
Type-2 rPALM (G) - 0.0590 0.2330 49 490 3000 6.8859

with 50000 training samples. In contrast with PALMs, prediction accuracy has

been reduced slightly in rPALMS. In this study case, similar trend like PALM

is depicted. rPALM can deliver comparable accuracy with less computational

complexity and memory demand. Least execution time of around 6 seconds is

perceived in type-1 rPALM (L), which is half of the best-performed benchmark

variants GENEFIS, which takes around 10 seconds as exposed in Table 3.9.

To sum up, like PALMs, rPALMS can deal with streaming examples with low

computational burden due to the utilization of few network parameters, where it

maintains a comparable or better predictive accuracy.

Table 3.10 outlines the results of online identification of a quadcopter RUAV

from experimental flight test data with 9112 samples, which consists of noise from

motion capture technique namely VICON [186]. Building SANFS using the noisy

streaming dataset is computationally expensive as seen from a high execution

time of the benchmark SANFSs. Contrast with these standard SANFSs, a quick

execution time is seen from rPALMs. It happens due to the requirement of few
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Table 3.9: Modeling of the non-linear system using various Self-Adaptive Neuro- Fuzzy
Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.0380 0.0404 2 12 50000 2149.246
GDFNN [184] 0.0440 0.0468 2 14 50000 2355.726
FAOSPFNN [185] 0.0027 0.0029 4 16 50000 387.7890
eTS [44] 0.07570 0.08054 7 42 50000 108.5791
simp eTS [46] 0.07417 0.07892 7 42 50000 129.5552
GENEFIS [1] 0.00041 0.00043 6 54 50000 10.9021
PANFIS [56] 0.00264 0.00281 27 243 50000 42.4945
pRVFLN [88] 0.06395 0.06596 2 10 49999 12.0105
Type-1 rPALM (L) - 0.1299 0.1382 2 6 50000 5.6905
Type-1 rPALM (G) - 0.1280 0.1362 7 21 50000 9.1829
Type-2 rPALM (L) - 0.0628 0.0668 2 12 50000 10.8614
Type-2 rPALM (G) - 0.0611 0.0650 4 24 50000 11.1630

network parameters. Besides, rPALM arrives at encouraging accuracy as well.

For instance, the lowest NDEI at just 0.4995 is elicited in type-2 rPALM (G).

To put it plainly, due to utilizing incremental HPBC, rPALM can perform better

than its counterparts SANFSs driven by HSSC and HESC methods when dealing

with noisy datasets.

Table 3.10: Online modeling of the quadcopter utilizing various Self-Adaptive
Neuro-Fuzzy Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.1469 0.6925 1 6 5467 19.0962
GDFNN [184] 0.1442 0.6800 1 7 5467 20.1737
FAOSPFNN [185] 0.2141 1.0097 12 48 5467 25.4000
eTS [44] 0.1361 0.6417 4 24 5467 3.0686
simp eTS [46] 0.1282 0.6048 4 24 5467 3.9984
GENEFIS [1] 0.1327 0.6257 1 9 5467 1.7368
PANFIS [56] 0.1925 0.9077 47 424 5467 6.0244
pRVFLN [88] 0.1191 0.5223 1 5 5461 0.9485
Type-1 rPALM (G) 0.1271 0.5991 3 9 5467 0.7361
Type-1 rPALM (L) - 0.1342 0.6328 2 6 5467 0.8366
Type-2 rPALM (G) - 0.1059 0.4995 4 24 5467 1.6376
Type-2 rPALM (L) - 0.1089 0.5135 3 18 5467 1.8817

The identification of a unmanned helicopter (Trex450 Pro) from experimental
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flight data with 6000 samples at hovering condition are tabulated in Table 3.11.

The identification accuracy with the NDEI lower than 0.50 is witnessed from

the proposed type-2 rPALM (G and L) with a comparable execution time. As

with the previous experiments, the activation of rule merging scenario reduces

the fuzzy rules significantly from 9 to 2 in type-1 rPALM, and from 11 to 4

in type-2 rPALM. In type-1 rPALMs, fast execution time less than 1 second is

evidenced due to the requirement of comparatively lower network parameters,

where a comparable predictive accuracy is recorded.

Table 3.11: Online identification of the helicopter utilizing various Self-Adaptive
Neuro-Fuzzy Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.0426 0.6644 1 6 3600 8.7760
GDFNN [184] 0.0326 0.5082 2 14 3600 11.2705
FAOSPFNN [185] 0.0368 0.5733 2 8 3600 2.4266
eTS [44] 0.0535 0.8352 3 18 3600 1.3822
simp eTS [46] 0.0534 0.8336 3 18 3600 2.3144
GENEFIS [1] 0.0355 0.5541 2 18 3600 0.6936
PANFIS [56] 0.0362 0.5652 9 81 3600 1.4571
pRVFLN [88] 0.0329 0.5137 2 10 3362 1.0195
Type-1 rPALM (G) - 0.0534 0.8319 9 27 3600 0.9945
Type-1 rPALM (L) - 0.0544 0.8481 2 6 3600 0.6886
Type-2 rPALM (G) - 0.0306 0.4765 11 66 3600 2.7619
Type-2 rPALM (L) - 0.0310 0.4828 4 24 3600 1.6364

The numerical results on the time-varying Stock Index Forecasting S&P-500

(ˆGSPC) problem are organized in Table 3.12. The lowest NDEI of 0.01285 is at-

tained in type-1 rPALM (G). Though such accuracy costs 19 rules, the execution

time is only 11.6796 seconds, much lower than some prominent benchmark models

namely eTS with 30.1606 seconds, and simp eTS with 29.4296 seconds. To sum

up, rPALMs achieved a comparable/better accuracy with a compact structure.
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Table 3.12: Modeling of the Time-varying Stock Index Forecasting using various
Self-Adaptive Neuro-Fuzzy Systems (considering rPALM)

Model Reference RMSE
using

testing
sam-
ples

NDEI
using

testing
sam-
ples

Number
of rules

Network
Param-

eters

Number
of

train-
ing

sam-
ples

Execution
time
(sec)

DFNN [166] 0.00441 0.01554 1 12 14893 347.7522
GDFNN [184] 0.30363 1.07075 1 16 14893 344.4558
FAOSPFNN [185] 0.20232 0.71346 1 7 14893 15.1439
eTS [44] 0.01879 0.06629 3 36 14893 30.1606
simp eTS [46] 0.00602 0.02124 3 36 14893 29.4296
GENEFIS [1] 0.00849 0.02994 3 108 14893 2.2076
PANFIS [56] 0.00464 0.01637 8 288 14893 5.2529
pRVFLN [88] 0.00441 0.01555 1 11 11170 2.5104
Type-1 rPALM (L) - 0.02377 0.08385 2 12 14893 15.6844
Type-1 rPALM (G) - 0.00364 0.01285 19 114 14893 11.6796
Type-2 rPALM (G) - 0.00430 0.01517 4 48 14893 4.4907
Type-2 rPALM (L) - 0.00443 0.01562 2 30 14893 5.7106

An inadequacy in rPALMs is that the rules are not transparent enough to

express them in human-level linguistic fuzzy rule base. However, a typical fuzzy

rule for type-1 and type-2 rPALM in case of Box-Jenkins Time Series can be

exemplified as follows:

R1 : IF X is close to

(
[1, x1, x2]× (3.66)

[1.1981,−1.0649,−0.2889]T
)
, THEN y1 = 1.1981− 1.0649x1

− 0.2889x2

In Equation (3.66), the antecedent part is manifesting the hyperplane with recur-

rent connection. The consequent part is simply y1 = x1
eω, where ω ∈ <(n+1)×1, n

is the number of input dimension. Usage of 2 inputs in the experiment of Table

I assembles an extended input vector like: x1
e = [1, x1, x2]. The weight vector

is: [ω01, ω11, ω21] = [1.1981,−1.0649,−0.2889]. In case of Type-2 local learning
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configuration, a rule can be stated as follows:

R1 : IF X is close to

((
[1, x1, x2]× (3.67)

[0.1533,−0.6178, 0.3445]T
)
, ([1, x1, x2]×

[0.5598,−0.4119, 0.5938]T )

)
THEN y1 = [0.1533, 0.5598] + [−0.6178,−0.4119]x1+

[0.3445, 0.5938]x2

where Equation (3.67) is expressing the first rule among 6 rules formed in that

experiment in Type-2 rPALM’s local learning scenario. Since the rPALM has no

premise parameters, the antecedent part is just presenting recurrent connection

based the interval-valued hyperplanes. The consequent part is noting but y1 =

x1
eω̃, where ω̃ ∈ <(2(n+1))×1, n is the number of input dimension. Since 2 inputs

are availed in the experiment of Table I, the extended input vector is: x1
e =

[1, x1, x2], and interval-valued weight vectors are:
[
ω01, ω01

]
= [0.0787, 0.2587];[

ω11, ω11

]
= [−0.3179,−0.1767];

[
ω21, ω21

]
= [1.028, 1.204].

3.7.4 Sensitivity analysis of predefined thresholds

In the rule growing purpose, two predefined thresholds (b1 and b2) are utilized

in our work. During various experimentation, it has been observed that the

higher the value of b1, the less the number of hyperplanes are added and vice

versa. Unlike the effect of b1, in case of b2, at higher values, more hyperplanes are

added and vice versa. To further validate this feature, the sensitivity of b1 and

b2 is evaluated using the Box–Jenkins (BJ) gas furnace dataset. The same I/O

relationship as described in the subsection 3.7.1 is applied here, where the model
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is trained also with the same 200 samples and the remaining 90 unseen samples

are used to test the model.

In the first test, b2 is varied in the range of [0.052, 0.053, 0.054, 0.055], while

the value of b1 is kept fixed at 0.020. On the other hand, the varied range

for b1 is [0.020, 0.022, 0.024, 0.026], while b2 is maintained at 0.055. In the sec-

ond test, the altering range for b1 is [0.031, 0.033, 0.035, 0.037] and for b2 is

[0.044, 0.046, 0.048, 0.050]. In this test, for a varying b1, the constant value of

b2 is 0.050, where b1 is fixed at 0.035 during the change of b2. To evaluate

the sensitivity of these thresholds, normalized RMSE (NRMSE), NDEI, running

time, and number of rules are reported in Table 3.13. The NRMSE formula can

be expressed as: NRMSE =
√

MSE
Std(Ts)

.

Table 3.13: Sensitivity Analysis of Rule growing thresholds

Parameters NRMSE NDEI Execution time #Rules
b2 = 0.055 0.023 0.059 0.355 13
b2 = 0.054 0.023 0.059 0.312 13
b2 = 0.053 0.023 0.059 0.326 13
b2 = 0.052 0.023 0.059 0.325 13
b1 = 0.020 0.023 0.059 0.324 13
12 = 0.022 0.023 0.059 0.325 13
b1 = 0.024 0.023 0.059 0.320 13
b1 = 0.026 0.023 0.059 0.344 13

b1 = 0.037 0.046 0.115 0.260 10
b1 = 0.035 0.046 0.115 0.259 11
b1 = 0.033 0.046 0.115 0.269 11
b1 = 0.031 0.048 0.121 0.269 11
b2 = 0.050 0.047 0.118 0.265 11
b2 = 0.048 0.046 0.115 0.267 11
b2 = 0.046 0.047 0.116 0.266 11
b2 = 0.044 0.047 0.117 0.306 11

From Table 3.13, it has been observed that in the first test for different values

of b1 andb2, the value of NRMSE and NDEI remains stable at 0.023 and 0.059

respectively. The execution time varies in a stable range of [0.31, 0.35] seconds and
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the number of generated rules is 13. In the second test, the NRMSE, NDEI, and

execution time are relatively constant in the range of [0.046, 0.048], [0.115, 0.121],

[0.26, 0.31] correspondingly. The value of b1 increases and b2 reduces compared

to test 1, and few rules are generated across different experiments of this chapter.

3.8 Summary

An advanced autonomous learning algorithm, namely PALM, is proposed in this

chapter for data stream regression and modeling nonlinear dynamical systems like

quadcopter and helicopter. The PALM is developed with the concept of HPBC

which incurs very low network parameters. The reduction of network parameters

bring down the execution times because only the output weight vector calls for

the tuning scenario without compromise on predictive accuracy. PALM possesses

a highly adaptive rule base where its fuzzy rules can be automatically added when

necessary based on the SCC theory. It implements the rule merging scenario for

complexity reduction and the concept of distance and angle is introduced to coa-

lesce similar rules. The efficiency of the PALM has been tested in six real-world

and artificial data stream regression problems where PALM outperforms recently

published works in terms of network parameters and running time. It also delivers

state-of-the art accuracies which happen to be comparable and often better than

its counterparts. In the next chapter, PALM is utilized to develop self-adaptive

controllers.
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Abstract

In this chapter, evolving neuro-fuzzy system-based two Autonomous Intelligent

Controllers (AICons), namely Parsimonious Controller (PAC) and Reduced Par-

simonious Controller (RedPAC) are proposed. Both of them feature fewer network

parameters than conventional approaches due to the absence of rule premise

parameters. In contrast with PAC, the number of consequent parameters has

further reduced to one parameter per rule in RedPAC. Both PAC and RedPAC

are built upon PALM developed in chapter 3. In contrast with PALM, in both

RedPAC and PAC, new rule growing and pruning modules are derived from the

concept of bias and variance. These methods have no reliance on user-defined

thresholds, thereby increasing their autonomy for real-time deployment. They

adapt the consequent parameters by using the sliding mode control (SMC) theory

in the single-pass fashion. The boundedness and convergence of the closed-loop

control system’s tracking error and the controller’s consequent parameters are

confirmed by utilizing the LaSalle-Yoshizawa theorem. The PAC’s efficacy is

evaluated by observing various trajectory tracking performance from a bio-inspired

Flapping Wing Micro Aerial Vehicle (BI-FWMAV) and a rotary wing UAV called

hexacopter. Lastly, RedPAC’s performance has been evaluated by implementing

it to control a quadcopter simulator, namely Dronekit.

4.1 Introduction

In recent times, massive applicability of Micro Aerial Vehicles (MAVs) is wit-

nessed in both civilian [114] and military sectors [113]. In MAVs, a major

concern to pursue is the preferable control autonomy. To stabilize and con-

trol the MAVs, First Principle Techniques (FPTs) are used commonly. Among
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numerous FPTs, simple controllers like Proportional Integral Derivative (PID),

Linear Quadratic (LQ) [116], nonlinear control techniques namely Backstepping,

Sliding Mode techniques, Feedback Linearization (FBL), H−∞ methods are

employed successfully in different MAVs. Performance of all these controllers

depends upon the preciseness of the mathematical model of MAVs. In MAVs,

encountering environmental disruptions like wind gust in open space, actuator

degradation, etc. are usual. Integration of all these factors into the mathematical

model of MAVs is laborious or inconceivable. It yields imprecise models of

MAVs, and consequently, all the FPT-based controllers’ performance degrades.

These deficiencies of FPT-based controllers tempt research towards mathematical

model-free intelligent control methods.

Among numerous intelligent control approaches, the Fuzzy Logic Controller

(FLC), Neural Network (NN), and Neuro-Fuzzy (NF) controllers are employed

in diverse engineering industries [187, 188]. Majority of these controllers con-

sist of a fixed architecture with a definite number of neurons or membership

functions, rules or layers. To improve the performance of model-free static

controllers, researchers have developed adaptive controllers by combining con-

ventional nonlinear control techniques such as backstepping [117], sliding mode

techniques [137], feedback linearization (FBL), H∞ [138], etc. with FLS, NN, or

NF structure. Such mixture provides a mode-free robust and adaptive control

scheme. In these control schemes, only the network parameters are altered, where

they are maintaining a fixed structure. It enforces us to specify the number of

nodes, layers, or rules beforehand. It is hard to know the exact number of rules

a priori to attain desired control performance. Controllers with only a few rules

may fail to produce the desired performance, whereas too many of them may

originate an over-complex structure of controllers to actualize in real-time. To
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circumvent such shortcomings, NN or NF controller with flexible architecture can

be employed. These flexible controllers are not only able to tune parameters, but

also to evolve the structure by adding or deleting layers or rules in self-adaptive

fashion, which make them fully AICons.

Usually, the AICons are associated with several rule premise parameters like

mean and width of hyper-spherical or hyper-ellipsoidal clusters. These param-

eters need to be updated continuously, which rises computational complexities.

To epitomize, a bottleneck of AICons is the engagement of manifold parameters,

which strike adversely in furnishing a fast response. To mitigate the computa-

tional complexity of the above discussed AICons, hyper-plane-shaped clustering

techniques could be a promising avenue since they are absolutely free from premise

parameters.

4.2 Contributions

In this chapter, two AICons, namely PAC and RedPAC, are developed. Both of

them are rooted with a HPSC technique-based evolving NF architecture namely

parsimonious learning machine (PALM) architecture. However, the complex

rule-evolution mechanism of PALM has been replaced with the concept of bias-

variance trade-off in developing the controllers. Main features of the PAC and

RedPAC can be uttered as follows:

1. Premise-free fuzzy rule base system: Usually fuzzy logic controllers’

have a rule base that consists of antecedent and consequent parts, where

both parts are associated with a number of parameters. Unlike the con-

ventional FLC, the fuzzy rules in both PAC and RedPAC are portrayed by

hyper-planes. These hyper-planes corroborate both the rule premise and
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consequent parts. As a result, they do not have any premise parameter.

Such scheme trims the rule-based parameters to the level of R× (N +1) for

PAC, where N denotes the number of input dimension and R is the number

of fuzzy rules. In contrast with PAC, the RedPAC’s learning parameters

have been further reduced. With R rules and N inputs to RedPAC, it

requires to adapt only R parameters.

2. New rule growing and pruning mechanism based on bias and

variance: In PALM [189], self-constructing clustering approach [160,161]

was employed to generate rules, which faces computational complexities

to calculate variance and covariance among different variables. Besides,

similarity analysis among hyper-planes in terms of distance and orientation

between hyper-planes were measured to merge rules. To eliminate such

a complex calculation of growing and pruning rules, bias-variance concept

based simplified method, namely network significance is proposed in PAC

and RedPAC. This concept is derived from the idea of network significance

[190] in estimating the network’s bias and variance. A new rule is added

in the underfitting situation, while the pruning process is triggered by the

overfitting case. The key difference of this chapter from [190] lies in the

estimation of bias and variance for the hyperplane-shaped hidden unit.

3. New evolving fuzzy controller: In general, the evolving fuzzy con-

troller’ rule evolution methods have a reliance on a number of predefined

thresholds. To eliminate such dependency on user-defined thresholds, the

bias-variance concept based network significance method is exercised in the

developed controllers, where they do not need any user-defined problem

specific thresholds. Since the proposed controller has no premise param-



98
4. PALM-BASED AUTONOMOUS INTELLIGENT CONTROLLERS FOR MICRO

AERIAL VEHICLES

eters, its only consequent parameter, i.e. weights are adapted by using

SMC learning theory to confirm a stable closed-loop system. To evaluate

the controllers’ stable and precise tracking performance, they have been

implanted into different simulated MAV’s plant.

Aforementioned features of the PAC and RedPAC are desiring to achieve

desired control autonomy in MAVs. Therefore, the developed PAC is applied to

control BI-FWMAV and hexacopter, and RedPAC to control a quadcopter. In

addition, the whole code of the PAC is written in C programming language. It is

compatible with the majority of the MAVs hardware, where its implementation

is made accessible publicly in [191].

Arrangement of the remaining sections of this chapter is as follows: Challenges

in formulating the FW MAV, hexacopter, and quadcopter’s plant model are

asserted in Section 4.3. In Section 4.4, limitations of existing evolving con-

trollers are analyzed. Section 4.5 details the network structures of the PALM

based evolving controller PAC along with the explanation on rule generation and

pruning mechanism. Experimental results and performance evaluation of the

proposed controller are described in Section 4.6. At last, the chapter terminates

with concluding remarks in Section 4.7.

4.3 Plant Dynamics of MAVs

Three different plants are engaged in this chapter to evaluate the proposed

controllers’ performance. Among them, the hexacopter plant is developed at

the Unmanned Aerial Vehicle (UAV) laboratory of the UNSW Canberra, the

BI-FWMAV plant is inspired by the work of [192,193], and the quadcopter sim-

ulator is developed at the Computational Intelligence Lab (CIL) of the Nanyang
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Technological University Singapore. In this section, we are initiating with hexa-

copter’s nonlinear complex plant dynamics.

4.3.1 Dynamics of hexacopter plant and associated com-

plexities

Unlike the conventional hexacopter plant with 6 degrees of freedom (DOF) rigid

body dynamics, an 8 DOF over-actuated hexacopter plant with medium fidelity is

considered in this chapter. Two surplus DOF are two moving masses. The masses

can slide along their own rail aligned in lengthwise and sideways consecutively.

To get a synopsis about the simulated Hexacopter plant, its high-level diagram is

shown in Figure 4.1. The roll and pitch command to the “control mixing” block of

Figure 4.1 is driven by “attitude controller”. In attitude control mechanism, the

inner loop is controlled by a linear PID controller and outer loop is governed by

PAC. The thrust command of “control mixing” is geared by PAC based height

or position controller. Moving of mass to the longitudinal direction shifts the

Center of Gravity (CoG) to X-axis, which is denoted by CGX in Figure 4.1, and

CGY is expressing the shift of CoG to Y-axis owing to the movement of mass

to the lateral direction. Both the movements CGX and CGY are supervised by

the PAC. In control mixing block, a simple linear mixing composition is utilized

to convert the roll, pitch, yaw, and thrust commands to the required speed of

motors. These signals are availed to calculate the craved thrust and torque of

individual rotors based on the relative airflow faced by each of them and the

commanded motor speed. Afterward, the total vertical force and yawing torque

of the plant are quantified by summing up the thrust and torque of individual

rotors. The product of thrust to a single rotor and moment arm yields the rolling

and pitching moments acting on the hexacopter. Finally, the controlled thrust
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Figure 4.1: High-level presentation of the over-actuated simulated Hexacopter plant
diagram

along with the yawing torque, and rolling and pitching moments are fed to the

rigid body dynamics to update the body state accordingly. In upcoming para-

graphs, hexacopter’s nonlinear aerodynamics along with associated complexities

are discoursed.

In hexacopter, body axes system is fixed to its CoG. Therefore, variations in

hexacopter attitude cause rotation to the body axes. These axes play an impor-

tant role in crafting the desired control signal as the sensors are fixed to the body

axes. With regard to the earth surface, an additional set of three-dimensional

axes (X-axis: horizontal and pointing to the north; Y-axis: horizontal and

pointing to the east; and Z-axis: positive down towards the CoG), namely inertial

axes are also considered in developing the nonlinear dynamic model. Now, the

translational velocities along body axes are designated as u, v, and w. Similarly,

body axes rotational rates are expressed as p, q, and r, right-hand axes system

is considered. To define the proper orientation of the hexacopter, it is essential

to specify the coordination system around which to assign rotations. Besides,
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the sequence in which they employed is equally significant. In this work, a

conventional aviation measure, namely Euler angles (roll: φ, pitch: θ; yaw: ψ) are

utilized to depict the orientation of the hexacopter with respect to inertial axes.

Four simplified quaternion parameters (q0, q1, q2, q3) are exerted to refrain from

wraparound effect and to linearize the attitude. In addition, attitude values are

stored in those parameters and converted into required Euler angles as expressed

in Equation (4.1).

q0 = cos φ
2

cos θ
2

cos ψ
2

+ sin φ
2

sin θ
2

sin ψ
2

q1 = sin φ
2

cos θ
2

cos ψ
2
− cos φ

2
sin θ

2
sin ψ

2

q2 = cos φ
2

sin θ
2

cos ψ
2

+ sin φ
2

cos θ
2

sin ψ
2

q3 = cos φ
2

cos θ
2

sin ψ
2
− sin φ

2
sin θ

2
cos ψ

2

(4.1)

4.3.1.1 Complexity in hexacopter’s aerodynamics

When flying, rotors of hexacopter face relative air-stream velocity resulting from

their own motion V∞. The air-stream deflects through the rotor disc at a velocity

of Vi, which alters the down-stream flow by 2Vi. At each rotor disc, Vi can be

segregated perpendicularly (Vn), and tangentially (Vt). Again, Vn is determined

by summing up with the perpendicular component of V∞, whereas, Vt is computed

by adding the tangential part of V∞. It is noteworthy that V∞ is executed when

the individual rotor is experiencing airflow during pitching, rolling, and yawing

motions. To subdue the complexity of hexacopter’s aerodynamics, an uniform

inflow is assumed in our work. Thus, the inflow Vi remains the same at various

disc radius or azimuth. After such simplification, the elemental forces can be

integrated to attain a closed-form solution for thrust as expressed in Equation

(4.2). Interested readers are referred to [194] for a detailed derivation of Equation
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(4.2).

T =
ρa(ΩR)2Ab

2

[
1

3
θ0

(
1 +

3

2
µ2

)
− 1

2
λ
′
]

(4.2)

where θ0 denotes blade pitch, inflow relative to the rotor disk is presented by λ
′
,

Ab is the area of the blade, R is the blade radius, a is the lift curve slope, ρ is

the absolute air-density µ is expressing an advance ratio, Ω is rotational speed of

rotor blade in radians per sec. λ
′

can be expressed as follows:

λ
′
=
Vi + Vn

ΩR
and µ =

Vt
ΩR

(4.3)

Based on Glauert’s induced flow model [195], the mean generated velocity Vi

is exposed as follows:

Vi =
T

2ρAV̂
where V̂ =

√
V 2
T + (Vn + Vi)2 (4.4)

where A = πR2. Equation (4.4) can be rearranged as follows:

V 2
i =

√√√√( V̂
2

)2

+

(
T

2ρA

)2

− V̂ 2

2
(4.5)

In our work, the momentum theory and blade element theory are combined

through Glauert’s simple inflow model, which outcomes two coupled nonlinear

Equation (4.2) and (4.5). A straightforward binary search algorithm is utilized

to solve them numerically and to acquire Vi by assuming a monotonic variation

of thrust with Vi.

The drag confronted by the rotor blades through air results the yawing torque

N . It is formulated by dividing the total rotor power Ptot by rotational speed of
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rotor blade as follows:

N =
Ptot
Ω

(4.6)

The total power Ptot is an amalgamation of induced power Pind and profile power

P0, expressed as Ptot = Pind+P0. Induced power Pind is the power needed to yield

induced velocity Vi and to overcome gravitational force, whereas P0 is the power

to beat the profile drag of the rotor blades. These powers can be articulated as

follows:

Pind = kindTVi + TVc (4.7)

P0 =
σCD0

8
(1 + κµ2) (4.8)

In Equation (4.7), kind is a correlation factor, which is imported to atone the

non-uniformly produced velocity and tip loss effects. On the other hand, κ in

Equation (4.8) is to rectify the skewed flow and other detrimental effects in the

forward flight, Vc is presenting the climbing speed achieved by the rotor thrust

in a steady climb, TVi is the rate of work accomplished on the air and portrays

the kinetic energy of the rotor downwash [194]. To reduce the obscurity in our

plant dynamics, impacts of vortex ring state in sharp descent are scorned.

4.3.1.2 Rigid body dynamics of hexacopter plant

In rigid body dynamics of our hexacopter plant, Newton’s second law of motion is

exercised to formulate correlations between the forces and moments acting on the

hexacopter and translational and rotational accelerations. Here the hexacopter

plant is considered as of a traditional mass distribution, where the xz plane is

generally the plane of symmetry. Such consideration makes the cross product

of moments of inertia in yz and xy plane zeros i.e. Iyz = Ixy = 0. After this
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simplified implementation, the equations are exposed in Equation (4.9). For

further clarifications, readers can go through [196], where equations in (4.9) are

derived elaborately.

Fx = m(u̇+ qw − rv)

Fy = m(v̇ + ru− pw)

Fz = m(ẇ + pv − qu)

L = Ixṗ− Ixz ṙ + qr(Iz − Iy)− Ixzpq

M = Iy q̇ + rp(Ix − Iz) + Ixz(p
2 − r2)

N = −Ixzṗ+ Iz ṙ + pq(Iy − Ix) + Ixzqr

(4.9)

where

Ix =
∫ ∫ ∫

(y2 + z2)dm

Iy =
∫ ∫ ∫

(x2 + z2)dm

Iz =
∫ ∫ ∫

(x2 + y2)dm

Ixy =
∫ ∫ ∫

xydm

Ixz =
∫ ∫ ∫

xzdm

Iyz =
∫ ∫ ∫

yzdm

(4.10)

where m is the body mass in kg; Ix, Iy, Iz are hexacopter’s mass moments of

inertia with regard to x, y, and z-axis respectively in kgm2; Ixz is the product of

inertia. In our simulated plant, the practiced values of the above parameters are

as: m = 3kg, Ix = 0.04kgm2, Iy = 0.04kgm2, Iz = 0.06kgm2, Ixz = 0kgm2.

The robustness of the hexacopter plant is maintained by storing and updating

the attitude as a quaternion as exposed in Equation (4.11). Equation (4.11)

is explained clearly in [197]. The realization of quaternion to update attitude

eliminates the usage of trigonometric functions which would be required if we
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were integrating the Euler angle based differential equations.



q0

q1

q2

q3


= −1

2



0 p q r

−p 0 −r q

−q r 0 −p

−r −q p 0


(4.11)

At this stage, the position of the hexacopter’s rigid body states is updated in

global coordinates relative to the inertial axes. Firstly, a conversion is required

from local velocities u, v and w to global velocities Ẋ , Ẏ and Ż. The conversion

is executed in Equation (4.12), where the local velocities are multiplied by the

rotation matrix B to obtain the globals.


Ẋ

Ẏ

Ż

 = B


u

v

w

 (4.12)

where the rotation matrix B is determined directly from the quaternions using

Equation (4.13).

B =


q2

0 + q2
1-q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q2 + q0q3)

2(q1q2 − q0q3) q2
0 + q2

1-q2
2-q2

3 2(q2q3 + q0q1)

2(q1q3 + q1q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (4.13)

These velocities are then integrated to obtain the global position [X, Y, Z]. In

our simulated hexacopter plant, Equation (4.9) is implemented as a C code

SIMULINK S-function. The states for our hexacopter’s rigid body dynamics

block are position, local velocity components in the body axes system, rotation

rates, and quaternion attitude. In our experiments, the states are being updated
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by a simple trapezoidal integration scheme executing at 200 updates per second.

Incoming signals to the block are the forces and moments acting on the hexacopter

while the outcomes are accelerations, local velocities, position, body angular

rates, and attitude. A user-friendly graphical mask for the dynamics block allows

users to alter the mass, moments of inertia and initial states on demand. During

experimentation, errors are obtained by measuring the difference from actual to

reference altitude and attitude. These errors, their derivatives, and actual values

are intakes for our proposed PAC, which is free from any plant parameters.

Therefore, PAC can perform in a complete model-free manner. Finally, it is

crucial to note that, after manifold simplification, the hexacopter plant is still

highly nonlinear, complex with numerous parameters. Efficient controlling of

such plant is difficult for the model-based nonlinear controller, or model-free

but the parameter-dependent conventional AICon, whereas our proposed AICon,

namely PAC exposes an improved control performance.

4.3.2 Dynamics of BI-FWMAV plant

Dynamics of the BI-FWMAV plant is highly nonlinear and expresses higher

complexity than the hexacopter. It is mainly due to its lightweight and smaller

size. The simulated BI-FWMAV plant saves the time and expenses to set-up the

experimental flight test, which is inspired by the work of [192,193]. The top-level

diagram of the simulated BI-FWMAV plant is shown in Figure 4.2.

Four wings of the BI-FWMAV are operated by four actuators as exhibited

in Figure 4.2. From the analysis on dragonfly flight in [198, 199], the influence

of seven different flapping parameters on the wings and actuators as well, are
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Figure 4.2: Top-level framework of the BI-FWMAV plant

considered in developing the BI-FWMAV plant. These parameters are namely

stroke plane angle (Fpspa)(in rad) , flapping frequency (Fpff ) (in Hz), flapping

amplitude (Fpfa) (in rad), mean angle of attack (Fpaoa) (in rad), amplitude of

pitching oscillation (Fppo) (in rad), phase difference between the pitching and

plunging motion (Fppd), and time step (Fpts) (in sec). Exploring a variety

of combinations of these parameters, the BI-FWMAV can carry out take-off,

rolling, pitching, and yawing, as explained in [200]. Since our proposed controller

is used to regulate the altitude of the BI-FWMAV, it is essential to know the

dominant parameter in determining the altitude. After a successful parametric

analysis, the flapping amplitude has turned out to be the dominant one in altitude

tracking. Individual forces and moments of actuators are combined to provide

the demanded force and moment to the rigid body dynamics based on the relative

airflow acting on each wing and the commanded actuator speed. The combined

force utilized in our work can be formulated as follows:

FT = Fa1 + Fa2 + Fa3 + Fa4 + (mg ×DCM) (4.14)

where m is the mass, g is the acceleration due to gravity, × is expressing a matrix
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multiplication, the matrix dimension of mg = [0 0 mg] is (3 × 1), DCM is the

direction cosine matrix with a dimension of (3×3), Fai (where i = 1, 2, 3, 4) is the

force provided by the individual actuator. Similarly, the total moment necessary

for the rigid body can be demonstrated as follows:

MT = Ma1 +Ma2 +Ma3 +Ma4 (4.15)

where Mai (where i = 1, 2, 3, 4) is presenting the individual momentum of each

wing and can be articulated as:

Mai = Fai × (CG− CPi) (4.16)

where i = 1, 2, 3, 4; CG = [0 0 0]; and CP1 = [0.08 0.05 0]; CP2 = [0.08 0.05 0];

CP3 = [0.08 − 0.05 0]; CP4 = [−0.08 − 0.05 0]; and ′×′ is presenting (3 ×

3) cross product. Finally, the accumulated force and moment are transformed

into the body coordinate system, and all the required body states like three

dimensional angular displacements (φ, θ, ψ), angular velocities (ωbx, ωby, ωbz) and

accelerations (αbx = dωbx
dt
, αby =

dωby
dt
, αbz = dωbz

dt
) and linear displacements (Xb, Yb,

Zb), linear velocities (vbx, vby, vbz) and accelerations (abx = dvbx
dt
, aby =

dvby
dt
, abz =

dvbz
dt

) are acquired, and the BI-FWMAV states are updated.

4.3.2.1 Wing dynamics and aerodynamics module of the BI-FWMAV

To diminish complexity, aerodynamic force faced by a wing of the BI-FWMAV

is determined by employing a three-dimensional quasi-steady model. To observe

the impact of wind velocity on a small section of the wing, it was segmented

into spanwise sections. Based on the local wind velocity acting on each section,

their individual instantaneous forces are computed. These instantaneous forces
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are then summed to attain the force faced by a wing at any instant. It is assumed

that the wing is flapping in an inclined stroke plane with a certain angle. The

detailed flapping profile of the wing along with their kinematics are modeled and

prescribed in [192,201,202]. The flapping angle (φ) and the angle of attack (αaoa)

in the stroke plane can be manifested in a sinusoidal form as follows:

φ(t) =
φa
2

cos(πft) (4.17)

αaoa = αmn + αpsin(ωdt+ Ψ) (4.18)

where φa is the flapping amplitude (in rad), f is the flapping frequency (in Hz),

t is the time (in sec), αmn is mean angle of attack (in rad), αp is amplitude of

pitching oscillation (in rad), dt is time step (in sec), and Ψ is the phase difference

between the flapping angle and angle of attack (in rad).

Based on the experiments performed in [203, 204] to examine the effective

maneuverability of MAV, the relative wind due to the movement of BI-FWMAV

is considered in our work and can be presented as:

Vwind = vb + r × ωb (4.19)

where, vb = [vbx, vby, vbz] are linear velocities, and ωb = [ωbx, ωby, ωbz] are angular

velocities. In developing the aerodynamics module of BI-FWMAV, Vwind is added

with the relative wind caused by the movement of the wing.

The drag, lift, and rotational coefficients captured during experimentation

in [205,206] were employed in [201] to analyze the dragonfly flight simulator. The

same drag, lift, and rotational coefficients are also utilized in our BI-FWMAV
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plant and can be expressed as follows:

Cdr = 1.92− 1.55 cos(2.04αaoa − 9.82◦) (4.20)

Clf = 0.225 + 1.58 cos(2.13αaoa − 7.2◦) (4.21)

Crt = π(0.75− x̂0) (4.22)

where the angles are presented in degrees, x̂0 represents the dimensionless distance

of the rotation axis from the leading edge. The force (dFrot) yields in each span

of the wing due to its rotation, and lift (dFlift) and drag (dFdrag) are formulated

as follows:

dFlift = 0.5ρV 2ClfdA (4.23)

dFdrag = 0.5ρV 2CdrdA (4.24)

dFrot = Crtρc
2Uα̇aoadS (4.25)

where ρ is denoting the wind density, V is exposing the velocity of wind, dA is

the area of a small section of the wing, U is the Euclidean norm of wind velocity,

dS is the width and c is the length of an individual small part of a the wing.

From the above discussion, it is obvious that the BI-FWMAV plant associates

profuse parameters with high nonlinearity, though we have omitted some com-

plexity in revealing precise wing kinematics. Deriving a precise mathematical

model of such highly nonlinear, complex, and the over-actuated plant is ex-

ceptionally laborious, where inclusion of uncertainties and uncharted disruption

is more difficult or unfeasible in some cases. These perspectives necessitate a

controller that performs precisely with a minimum or no knowledge about the

system. Being model-free and self-evolving, our developed PAC is a suitable
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candidate. More importantly, the impediment of conventional evolving controllers

i.e. involvement of numerous free parameters is resolved here since our controller

do not have any premise parameters and only depends on consequent parameters,

namely weights of the network. With such simplistic evolving structure, PAC and

RedPAC provide comparable and satisfactory tracking performance.

4.3.3 Dynamics of quadcopter MAV

This section describes a general nonlinear quadcopter model derived from its

kinematics and dynamics [207]. The state variables are the Euler angles namely

roll (φ), pitch (θ), and yaw (Υ), body axis angular velocities (p, q, r), inertial

frame position (pn, pe, h) and the body axis velocity (u, v, w). The force balance

equation is provided in Equation (4.26). The moment balance equation is exposed

in Equation (4.27). The relation between Euler angles and (p, q, r) is given in

Equation (4.28). The relationship between the inertial frame and body axis

velocity components is presented in Equation (4.29).


u̇

v̇

ẇ

 =


rv − qw

pw − ru

qu− pv

+


−g sin θ

g cos θ sinφ

g cos θ cosφ

 1
m


0

0

−Fz


(4.26)


ṗ

q̇

ṙ

 =


Jy−Jz
Jx

qr

Jz−Jx
Jy

pr

Jx−Jy
Jz

pq

+


1
Jx
τφ

1
Jy
τθ

1
Jz
τΥ

 (4.27)
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
φ̇

θ̇

Υ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ




p

q

r

 (4.28)


ṗn

ṗe

ḣ

 =


cθcΥ sφsθcΥ− cφsΥ cφsθcΥ + sφsΥ

cθsΥ sφsθcΥ + cφsΥ cφsθcΥ− sφsΥ

sθ −sφcθ −cφcθ




u

v

w


(4.29)

In the above equations, g denotes the acceleration due to gravity, Jx, Jy and

Jz are the moments of inertia along the X, Y, and Z-axis respectively. The

input torques along body XYZ-axis are denoted by τφ, τθ and τΥ respectively. In

Equation (4.29), c and s are indicating the cos and sin function respectively.

The six-DOF quadcopter dynamics is highly nonlinear, and there are uncer-

tainty factors that affect the static or linear controller’s performance. Therefore,

it is hard to attain satisfactory performance from simple controllers like PID,

LQR. Though the nonlinear controllers perform better than the linear counter-

parts, the nonlinear ones need information about the precise plant dynamics,

which may not be known. In this case, model-free control approaches proved

improved performance than modeled linear or nonlinear variants, as discussed in

the previous section. However, due to their static structure, their performance

deteriorates with the sudden changes of plant dynamics. Though the AICons

solve the shortcomings of static model-free controllers, a high number of learning

parameters limit their performance in controlling plants like a quadcopter, where

fast response is expected from the controller. Thus, to yield fast response, an

evolving intelligent controller with minimum learning parameters called RedPAC
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Figure 4.3: Flow of data streams in closed-loop PAC

is utilized to control the quadcopter.

4.4 Problem Statement

In a closed-loop control system, data comes in a sequential online manner to the

controller, which may contain various uncertainties and disturbances. Such a

randomly distributed sequence of incoming data to the controller can be exposed

formally as e =
{
e1, e1+t, e1+2t..., ef

}
, denoted by ”Data steam of e” in Figure

4.3, where t is the time step (in sec) of the closed-loop control system, f is the

final time until which plants need to be controlled. Here, e is indicating the data

stream of error, which is the difference between the reference trajectory data

stream Yr and observed corresponding out data stream from the plant Y . The

remaining incoming data streams to the closed-loop system are data stream of

derivative of error (ė), and integral of error (
∫
e) as displayed in Figure 4.3.

To tackle random sequence of incoming data, the controller should hold some

desiring features such as 1) able to work in single-pass mode; 2) deal with various
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uncertainties of the incoming data; 3) perform with low memory burden and com-

putational complexity to enable real-time deployment under resource constrained

environment. In the realm of NFS, such learning proficiency is manifested by

evolving NFSs [41]. However, large number of free parameters associated with the

evolving NFS-based AICons cause complex computation. From the perspective

of controlling MAV, a swift response from the controller is much expected, where

the tuning of several premise parameters in AICon is a hindrance to fulfill such

expectation. To decipher the involvement of profuse premise parameters in

AICon, their premise parameter-dependent hyper-spherical or hyper-ellipsoidal

clustering techniques require to substitute with premise parameter-free clustering

method. From this research gap, a hyper-plane based clustering method [189]

is utilized in our work, which is composed of the consequent parameter rather

than any premise parameters as explained in [189]. Another inadequacy of state

of the art AICons is their affiliation to user-defined parameters to evolve their

structure. Those parameters claim to alter with respect to the corresponding

closed-loop system. Our proposed AICon is free from such parameter, and they

have been superseded with the bias-variance concept. To get a clearer view, the

flow of data streams in our closed-loop system is displayed in Figure 4.3. Unlike

the PALM [189], in the fuzzification layer of PAC, we always have incoming

target/reference data stream Yr as shown in the fuzzification block of the Figure

4.3. To obtain an explicit impression, the self-evolving formations of our proposed

PAC and RedPAC are enumerated in the next section.



4.5. STRUCTURE OF PAC AND REDPAC 115

Error 

calculation

Micro aerial 

vehicle plant

Sliding 

surface

Subsidiary 

robustifying  

control

Weight 

adaptation 

law

Proposed  evolving 

controller PAC

∑ 

sum 

ė 

∫e  

e  

e  

ė 

Y

Y

uPALM

usrc

u

Yr

.

.

.

.

.

.

.

.

.

PALM 

architecture

Figure 4.4: Self-adaptive PAC’s closed-loop mechanism

4.5 Structure of PAC and RedPAC

Both the PAC and RedPAC are three-layered NF systems. Their evolving ar-

chitecture is rooted with TS fuzzy model, where classical hyper-spherical [145],

hyper-ellipsoidal [56], or data-cloud based [88] clusters are substituted with hyper-

plane-based clusters. Utilization of hyper-planes have removed antecedent param-

eters, as explained in Chapter 3, which reduces the number of operative param-

eters of the developed controllers dramatically. Popular hyper-plane-based clus-

tering techniques like fuzzy C-regression model (FCRM) [164], fuzzy C-quadratic

shell (FCQS) [165], double FCM [89], inter type-2 fuzzy c-regression model (IT2-

FCRM) [94] are non-incremental in nature. They can not entertain evolving

hyper-planes. Additionally, they deploy hyper-spherical functions, for instance,

Gaussian function to accommodate hyper-planes. To mitigate such inadequacies,

a new membership function [94] is used in both PAC and RedPAC. The detailed

architecture of the PAC and RedPAC are disclosed in Figure 4.5 and Figure 4.4.
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In our developed evolving closed-loop control systems, the networks are fed by

three inputs, namely error (e), the derivative of error (ė) and actual plant’s

output (Y ) as displayed in Figure 4.5 and Figure 4.4. Referring to the theory

of fuzzy system, these crisp data (e, ė, Y ) need to be transformed into a fuzzy

set, which is the initial step in the controllers’ work flow. This fuzzification

process is accomplished by adopting hyper-plane-shaped clustering (HPSC)-based

membership function, which is framed through the concept of point-to-plane

distance. The employment HPSC-based membership function can be expressed

as follows:

f 1
T1 = µB(j) = exp

(
−η d(j)

max (d(j))

)
(4.30)

where η is a regulating parameter which adjusts the fuzziness of membership

grades. Based on the observation in [94, 189], and empirical analysis with dif-

ferent MAV plant in our work, the range of η is fixed as [1, 100] in PAC. After
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numerous flight tests with the drone simulator (Dronekit SITL), the value of η

is chosen as 0.5 in RedPAC. This membership function empowers the utilization

of hyper-plane-based clusters directly into the PALM network without any rule

parameters except the first order linear function or hyperplane. Because a point

to plane distance is not unique, the compatibility measure is executed using the

minimum point to plane distance. d(j) in Equation (4.30) denotes the distance

between the current data point and jth hyperplane as with Equation (4.32). It

is determined by following the definition of a point-to-plane distance [162]. In

PAC, it can be formally expressed as follows [189]:

d(j) =

∣∣∣∣Yr − (
∑n

i=1 ωijxi + ω0j)√
1 +

∑n
i=1(ωij)2

∣∣∣∣ (4.31)

In case of RedPAC, the expression is as follows:

d(j) =

∣∣∣∣Yr − (
∑n

i=1 xi)ωj√
ω2
j

∣∣∣∣ (4.32)

where ω0j and ωij are consequent parameters of the jth rule, i = 1, 2, ..., n; n is

the number of inputs for both the controllers, Yr is the desired reference for the

plants. Unlike the ωij of PAC in Equation (4.31), in RedPAC, we are using only

ωj as expressed in Equation (4.32). If we choose i = n and j = R, then from

Equation (4.31) and Equation (4.32), it is clear that the number of weights in

PAC is R × (n + 1), which is only R in RedPAC. It is noteworthy to state that

a type-1 fuzzy structure is facilitated in both PAC and RedPAC. In light of a

MISO system, the IF-THEN rule can be exposed as follows:

Rj : IF Xn is close to f 2
T1j

THEN yj = xjeωj (4.33)
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where 2 in f 2
T1j

is indicating the output of the second layer of the underlying

TS-fuzzy structure, xe is the extended input vector and is expressed by inserting

the intercept to the original input vector as xe = [1, e, ė, Y ], e is the error i.e.

the difference between the reference and actual output of the plant, ė is the error

derivative i.e. the difference between the present and previous state error value,

Yr is the reference for the plant to be controlled, ωj is the weight vector for the jth

rule, yj is the consequent part of the jth rule. The antecedent part of PALM is

simply hyperplane and does not consist of any premise parameters. The intercept

of the extended input vector dominates the slope of hyperplane, which eliminates

the atypical gradient dilemma.

In both PAC and RedAPC, an analogous consequent part alike the basic

TS-fuzzy model’s rule consequent part (yj = b0j + a1jx1 + ... + anjxn) is em-

ployed. The consequent part for the jth hyperplane is calculated by weighting

the extended input variable (xe) with its corresponding weight vector as follows:

f 2
T1j

= xTe ωj (4.34)

The weight vector in Equation (4.34) is updated recursively by the SMC theory-

based adaptation laws, which ensures a smooth alteration in the weight value.

In the next step, the rule firing strength is normalized and added with the rule

consequent to produce the end-output of PALM. The final defuzzified crisp output

of the PALM can be expressed as follows:

uPR =

∑R
j=1 f

1
T1j
f 2
T1j∑R

i=1 f
1
T1i

(4.35)

The normalization term in Equation (4.35) assures the proper partition where the

sum of normalized membership degree is one. Both the controllers developed in
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this chapter have a simplified structure-learning mechanism, unlike the original

PALM [189] as explained in the next subsection.

4.5.1 Automatic constructive mechanism of PAC and Red-

PAC

In PALM [189], the self-constructive clustering technique was adopted to grow

the rule. The rule significance was determined by measuring input and output

coherence, where the coherence was calculated by investigating the correlation

between the existing data samples and the target concept. Again, the com-

putation of correlation has a dependency on finding variance and covariance

among different variables. In addition, the PALM’s rule growing method was

regulated by two predefined thresholds. On the other hand, PALM’s rules were

merged by measuring the similarity between the hyperplane-shaped fuzzy rules.

The similarity among rules were measured by observing the angle and minimum

distance between them. The merging strategy was also controlled by prede-

fined thresholds. This clearly shows the high computational cost of PALM’s

rule-evolving mechanism and made them incompatible in fast response based

control applications. To subjugate such complexity, a simplified rule evolution

technique is implemented in PAC and RedPAC by using the network significance

(NS) method, which is formulated from the concept of bias-variance [190]. Here,

no predefined thresholds are required to control the generation or pruning of their

fuzzy rules. This network significance method based rule growing and deletion

modules are clarified in the subsequent paragraphs of this section.
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4.5.2 NS method-based rule-growing mechanism

The strength of PAC and RedPAC can be analyzed by witnessing the tracking

error, which can be written in terms of mean square error (MSE) as follows:

eMSE =
T∑
t=1

1

T

(
yr(t)− y(t)

)2
(4.36)

where eMSE is denoting the mean square error, yr(t) is expressing the desired

trajectory and y(t) is the output of plants to be controlled. Equation (4.36)

experiences two obstructions in learning mechanism of an evolving controller,

such as 1) it needs to memorize all data points to get a clearer view about

the controller’s constructive mechanism; 2) though recursive calculation of eMSE

excluding preceding data is possible, it does not investigate the strength of

reconstruction for uncertain upcoming data. In simple words, it does not consider

the generalization capacity of evolving controllers. To mitigate such hindrance,

let us consider that Y is the observed plant’s output for the reference input Yr, and

E[Y ] is the plant’s expected output. According to the definition of expectation

[208], if x is continuous, then the expectation of f(x) can be formulated as:

E[f(x) =
∫∞
−∞ f(x)p(x)dx], where p(x) is the probability density function of x.

Then the network significance (NS) method can be defined as follows:

NS =

∫ ∞
−∞

(
Yr(t)− Y (t)

)2
p(t)dt (4.37)

where p(t) is the probability density function, and t is denoting the time. For

simplicity, in the following equations, it is considered that Y (t) = Y and Yr(t) =

Yr. By following the definition of expectation of a function E(.) [208], Equation
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(4.37) can be rewritten as:

NS = E
[
(Yr − Y )2

]
= E

[
(Y − E[Y ] + E[Y ]− Yr)2

]
(4.38)

Now, the implementation of the concept of bias-variance in Equation (4.38)

yields the following [209]:

NS = E[(Y − E[Y ])2] + (E[Y ]− Yr)2 = Var(Y ) + Bias(Y )2 (4.39)

where Var(Y (t)) is presenting the variance of Y (t), and it can be expressed as

follows:

Var(Y ) = E
[
(Y − E[Y ])2

]
=

∫ ∞
−∞

(
Y − E(Y )

)2
p(t)dt

= E[Y 2]− (E[Y ])2

(4.40)

By following the similar approach in [209], the maximum rule firing strength

considered in RedPAC is one. It simplifies its output as Y =
∑R

j=1

∑n
i=1 xijωj.

Now applying normal distribution, the expectation of Y can be expressed as

E[Y ] =
∫∞
−∞ Y p(t)dt. In this expression, the integration of xi over −∞ to ∞

originates the mean µi. Thus the E[Y ] can be expressed as follows:

E[Y ] =
R∑
j=1

n∑
i=1

µijωj (4.41)

By utilizing Equation (4.40) and Equation (4.41) in Equation (4.39), it can

further be simplified as follows to get the final expression of NS:

NS = Var(Y ) + Bias(Y )2 = E[Y 2]− (E[Y ])2 + (Yr − E[Y ])2

=
R∑
j=1

n∑
i=1

µ2
ijωj − (E[Y ]× E[Y ]) + (Yr − E[Y ])2

(4.42)



122
4. PALM-BASED AUTONOMOUS INTELLIGENT CONTROLLERS FOR MICRO

AERIAL VEHICLES

Equation (4.42) is manifesting the final expression of NS. From Equation (4.39),

we have observed that the NS contains both variance and bias. Therefore, a high

value of NS may indicate a high variance (over-complex network with profuse

fuzzy rules) or a high bias (oversimplified network) problem. Such phenomenon

can not be elucidated simply by system error index. Augmentation of a new rule

is inferred to subjugate the high bias dilemma. Nonetheless, such phenomenon

is not convenient for high variance context since the addition of rules magnifies

the network complexity. To retain a compact network structure with satisfactory

tracking performance, the concept of bias-variance trade-off is inserted in our

work to calculate the NS. Such regulation of the rules of our controller has no

reliance on user-defined parameters [210, 211]. By confirming the fundamental

objective of rule growing procedure to ease the high bias dilemma, the condition

of growing rules in our work is expressed as follows:

µkba + σkba ≥ µminba + Γσminba (4.43)

where µkba is denoting mean of bias and σkba is standard deviation of bias at

the kth observation whilst µminba and σminba are pointing the minimum mean and

standard deviation of bias up to kth time instant. In computing these variables,

no preceding data are required. Their values are being updated directly based

on the availability of upcoming signals to the PALM. When Equation (4.43) is

satisfied, the values of µminba and σminba are to be reset. To perceive an improved

tracking performance from the commencing of PAC’s control operation, a rapid

decay in the bias value is expected. It is retained in formulating the settings of

bias in Equation (4.43) as long as the plant does not encounter any uncertainties

or disturbances. The presence of any disruptions in the control system will
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the elevate value of bias, which cannot be addressed directly by adapting the

consequent parameter of the PAC. To elucidate such hindrance, Equation (4.43) is

originated from the adaptive sigma rule, where Γ controls the degree of confidence

of the sigma rule. In PAC, the Γ is expressed as Γ = 1.3 exp(−bias2) + 0.7

and in RedPAC Γ = 1.5 exp(−bias2) + 0.5, which revolves Γ between 1 and

2. Consequently, it obtains the level of confidence from around 68% to 96%.

Such scheme enhances the flexibility in the rule-growing module to adapt to

the environmental perturbations. It also eliminates the dependency of evolving

controller on user-defined problem-dependent parameters. To sum up, a high

bias usually signifies an oversimplified network, which is solved by adding rules.

However, it is avoided in case of low bias since it may magnify the variance.

4.5.3 Mechanism of pruning rules

The high complexity of the PAC and RedPAC’s network is caused by the high

variance. On that ground, control of variance is essential to reduce the network

complexity by pruning the fuzzy rules. Since a high variance indicates the

overfitting condition, the rule pruning scheme initiates from the evaluation of

variance. Like the rule growing mechanism of PAC, a statistical process control

technique is embraced in rule pruning module to trace the high variance dilemma

as follows:

µkvar + σkvar ≥ µminvar + 2πσminvar (4.44)

where µkvar is denoting mean and σkvar is the standard deviation of variance at

the kth observation while µminvar and σminvar are pointing the minimum of mean and

standard deviation of variance up to kth time instant. Here, the term π is adopted

as π = 1.3 exp(−var) + 0.7 in PAC and π = 0.2 × (1.5 exp(−variance) + 0.5) in
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RedPAC, π is a dynamic constant and regulating the degree of confidence in the

sigma rule. The term 2 is Equation (4.44) holds the direct pruning after growing.

Furthermore, µminvar and σminvar are reset when the condition in Equation (4.44) is

fulfilled.

After the execution of Equation (4.44), the significance of each rule is exam-

ined via the idea of network significance, and inconsequential rules are pruned

to reduce the overfitting condition. The significance of rules are tested via

the concept of network significance, adapted to evaluate each rule’s statistical

contribution. The significance of ith rule is determined as its average activation

degree for all possible incoming data samples or its expected values as expressed

in Equation (4.39). Considering the normal distribution assumption, the im-

portance of ith rule can be expressed as HSi = ωiµe. A small value of HSi

indicates that the ith rule plays a small role to recover the clean input attributes.

Therefore, it can be pruned with a very insignificant loss of tracking accuracy.

Since the contribution of the ith rule is calculated in terms of the expectation

E(Y ), the least contributing rule having the lowest HS is regarded inactive.

When the overfitting condition occurs, or Equation (4.44) is satisfied, the rule

with the lowest HS is pruned and can be expressed as follows:

Pruning −→ min
i=1,...R

HSi (4.45)

The condition in Equation (4.45) targets to mitigate the overfitting situation

by deleting the least significant rule. It also indicates that the desired trajectory

tracking performance can still be achieved with the rest R−1 rules. Furthermore,

this rule pruning strategy enhances the generalization power of the developed

controllers by reducing their variance, which helps to deal with a variety of
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disturbances.

4.5.4 Adaptation of weights in PAC and RedPAC

Unlike the conventional evolving controller, the evolving neuro-fuzzy controllers

developed in this chapter do not possess any premise parameters, consequently

free from the computation of tuning those parameters. Only the consequent

parameters need to be adjusted to realize desired control efficacy. Inspired by

the smooth employment and regulations of SMC theory in various neuro-fuzzy

systems [212–214], in our work SMC learning theory is functioned to adapt the

controllers’ weight, which ascertains stability in the closed-loop control system.

Besides, it confirms adequate robustness in a system against exterior distur-

bances, parameter variations, and uncertainties [200]. In designing SMC, a

time-varying sliding surface that restricts motion of a system to a plane can

be exposed as follows:

Sss(uPALM , u) = usrc(t) = uPALM(t) + u(t) (4.46)

In RedPAC, the sliding surface for quadcopter simulator can be expressed as:

sl = K1e+K2ė+K3

∫ t

0

e(t)dt (4.47)

where, K1 = 20 and K2 = 0.02 and K3 = 0.002 are pre-defined thresholds.

In PAC, the sliding surface for BI-FWMAV and hexacopter plant to be

controlled can be expressed as:

sl = e+ γ1ė+ γ2

∫ t

0

e(t)dt (4.48)
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where, γ1 = α2

α1
, γ2 = α3

α1
, e is the error i.e. the divergence from the trajectory

obtained from the plant to the reference one. Here, the sliding parameters are

initiated with tiny values such as α1 = 1 × 10−2, α2 = 1 × 10−3, α3 ≈ 0. These

parameters are further evolved by different learning rates. Proper assignment

of these rates supports to secure the desired parameters with minimal time,

which affirms to gain stability in the closed-loop system swiftly. Engagement

of these self-organizing sliding parameters shapes a fully AICon. The definition

maintained in PAC and RedPAC is as follows:

Definition : After a specific time tk, a sliding motion will be formed on

the sliding manifold Sss(uPR, u) = usrc(t) = 0, where the state Sss(t)Ṡss(t) =

usrc(t)u̇src(t) < 0 to be convinced for the entire time period with some non-trival

semi-open sub-interval of time expressed as [t, tk) ⊂ (0, tk).

To enforce the above-mentioned definition of sliding mode condition, weights

of the proposed controllers are adapted accordingly.

In our proposed controller, the reliance of the subsidiary robustifying control

term on the sliding surface can be formulated as follows:

usrc(t) = α1sl (4.49)

This subsidiary robustifying control term usrc may endure high-frequency oscilla-

tions in contributing to the control input [212]. Such repulsive occurrence in

sliding mode control theory is termed as chattering effect. To suppress this

chattering effect, control systems are primarily facilitated with saturation or

sigmoid functions. In this work, due to simplicity, a saturation function is used

to alleviate those detrimental consequence.

The outcome from PALM (uPALM) in PAC and RedPAC can be expressed as
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follows:

uPALM(t) = ψT (t)ω(t) (4.50)

The overall control signal as observed in Figure 4.4 can be declared as follows:

u(t) = usrc(t)− uPALM(t) (4.51)

The adaptation law to guarantee the boundedness of the tracking error and

the consequent parameter, namely weights of PAC and RedPAC is expressed as:

ω̇(t) = −γbePψ (4.52)

where γ > 0, P is a positive definite matrix as exposed in Equation (4.63), b is

an unknown positive constant, e = [e ė]. These weight adaptation laws assure a

stable closed-loop control system.

4.5.4.1 Proof of boundedness of error and weights in PAC and Red-

PAC

Proof : Let us consider an nth order nonlinear system of the form as follows:

X(n) = F (X, Ẋ, ..., X(n−1)) + bu, Y = X (4.53)

where F (.) is an unknown continuous function, b is an unknown positive constant,

u ∈ < is the input and Y ∈ < is the output of the system. We have considered

that the state vector X = (X1, X2, ..., Xn)T = (X, Ẋ, ..., X(n−1))T ∈ <n is avail-

able for measurement. Our control objective in this work is to push Y to track

a given reference trajectory Yr. To be specific, the control objectives can be

summarized as follows:
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i) Parameters of the closed-loop control system should be uniformly, ulti-

mately bounded to confirm the global stability of that closed-loop system.

In this work, |X(t)| ≤ MX < ∞, |ω(t)| ≤ Mω < ∞, and |u(X|ω)| ≤ Mu <

∞ for all t ≥ 0, where MX, Mω, and Mu are pre-defined design parameters.

ii) The closed-loop tracking error e = Yr−Y should be as small as possible by

satisfying the conditions in (i).

Both the controllers should be able to achieve these control objectives. To

show that, let us consider e = (e, ė, ..., e(n−1))T and k = (k1, ..., kn)T ∈ <n carry

such features that all roots of the polynomial h(p) = pn + k1p
(n−1) + ...+ kn will

be in the open left-half plane. If we know about the function F (.) and constant b,

then the optimal control law for PAC and RedPAC can be expressed as follows:

u∗ =
1

b

[
− F (X + Y (n)

r + kTe)
]

(4.54)

Now, applying the optimal control law of Equation (4.54) in Equation (4.53)

yields the follows:

e(n) + k1e
(n−1) + ...+ kne = 0 (4.55)

From Equation (4.55), it is obvious that lim
t→∞

e(t) = 0, which is the desired control

objective from the proposed controller. Since both F (.) and b are unknown, the

optimal control law cannot be implemented. In such circumstance, PALM is

used to approximate the optimal control law. Now utilizing Equation (4.51) in

Equation (4.53), the following is obtained:

X(n) = F (X) + b
[
usrc − uPALM

]
(4.56)

By following the approach in [215], bu∗ is added and substructed to Equation
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(4.56) and the error equation governing the closed-loop system can be exposed

as follows:

en = −kTe + b
[
usrc − uPALM

]
(4.57)

By following the approach of [215, 216], the error dynamics in our work can be

presented as follows:

ė = Ae + b(uPALM − ε) (4.58)

where e = [e ė]T , A =

 0 1

−α1 −α2

, and b = [0 1]T . Let us denote an ideal

weight as ω∗ by defining the corresponding weight error as ω̃ = ω−ω∗. Now, the

error dynamics can be rewritten as:

ė = Ae + bψT ω̃ + b(ψTω∗ − ε) (4.59)

Assume that, in the domain of interest, the ideal weight brings the term ψT (t)ω∗(t)

to within a ∆-neighbourhood of the error ε. It is bounded by

∆∗ ≡ sup
z

∣∣ψT (z)ω∗ − ε(z)
∣∣ (4.60)

where z is the vector that contains all the variables of the inversion error. The

term
∣∣ψT (z)ω∗ − ε(z)

∣∣ represents a residual inversion error which is not modeled

by the controllers. Therefore, ∆∗ is defined as the worst-case difference between

the error and its best approximation.

In this work, the candidate Lyapunov function is considered as follows:

V =
1

2
eTPe +

1

2γ
ω̃T ω̃ (4.61)
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where γ > 0. For α1 > 0 and α2 > 0, A in Equation (4.58) is Hurwitz, P is a

positive definite matrix and satisfying the following equation:

ATP + PA = −Q (4.62)

where Q > 0. For all Q > 0, the solution of Equation (4.62) is > 0. For Q = I2,

it is implying the following value of P :

P =

 α2

α1
+ 1

2α2

1
2α1

1
2α1

1+α1

2α1α2

 (4.63)

Now, the time derivative of the Lyapunov function V with the substitution

of Equation (4.58) and (4.62) can be expressed as:

V̇ = −1

2
eTQe + beTP (ψTω∗ − ε) + bω̃T (t)

(
eTP +

1

γ
˙̃ω
)

(4.64)

The third term of Equation (4.64) is suggesting a design of the adaptation law

as follows:

˙̃ω = ω̇ = −γbeTPψ (4.65)

After employing the above adaptation law to Equation (4.64), it can be reduced

as:

V̇ = −1

2
eTQe + eTPb(ψTω∗ − ε) ≤ −1

2
||e||22 + ∆∗|eTPb| (4.66)

Utilizing the inequality exposed in [216], we can write:

eTPe ≤ λ(P )||e||22 (4.67)
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Using Equation (4.67), the following is obtained from Equation (4.66):

V̇ ≤ − eTPe

2λ(P )
+ ∆∗

√
eTPe

√
λ(P ) (4.68)

Equation (4.68) is strictly negative when:

√
eTPe > 2∆∗(λ(P ))3/2 (4.69)

According to the LaSalle-Yoshizawa theorem [217], since V̇ is strictly negative,

it is sufficient to prove that e and ω(t) will be remained bounded. In addition,

if ∆∗ = 0, there will be no approximation error, then e(t) → 0 as t → ∞. It is

guaranteeing the asymptotic stability of the system.

Unlike the conventional neuro-fuzzy systems, consequent parameters, namely

weights of both controllers are also utilized in the antecedent part as exposed in

Equation (4.32). Therefore, it is important to confirm the boundedness of the

weights while they were used in the antecedent part. In this work, the weights are

initialized with small values (less than one). Then, they are updated recursively,

where their boundedness is confirmed and explained in the above paragraphs.

Absolute value is considered in the distance formula since the distance cannot be

negative. The calculated distance from the weights is employed in the fuzzifica-

tion layer. In Equation (4.30), η is a positive constant, the highest value for the

ratio between the distance and maximum distance is one and positive. Therefore,

the values for the exponent operator always remains negative and bounded by η,

which confirms the stability of the antecedent part of the controllers.
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4.6 Numerical Experiments

In our chapter, the proposed evolving PAC is used to regulate an over-actuated

hexacopter and BI-FWMAV plant, where numerous altitude and attitude tra-

jectories are tracked for both the MAVs. To be specific, PAC is appraised in

tracking altitude of six different trajectories for BI-FWMAV. On the other hand,

in hexacopter, the performance of PAC is witnessed both for tracking six different

altitudes, and sinusoidal attitude. The RedPAC is used to control a quadcopter

with a varying altitude. All these observations are detailed in the upcoming

subsections.

4.6.1 Simulation results from BI-FWMAV

Our proposed evolving PAC was inspected for numerous tracking signals and

their consequent outcomes were contrasted with a Feed-Forward Neural Net-

work (FFNN) based nonlinear adaptive controller, a Takagi-Sugeno (TS) fuzzy

controller, a PID controller, and another AICon namely G-controller described

in Chapter 5 of this thesis. The PAC code was written in C programming

language and made openly accessible in [191]. The performance of all these

controllers was observed in a BI-FWMAV plant for a duration of 100 seconds.

The characteristics of six separate altitude trajectories for BI-FWMAV were as

follows: 1) an unaltered height of 10 meters exposed as Yr(t) = 10 m; 2) variable

heights with sharp edges, where the heights were altering from 3 m to 6 m after 20

seconds, and then from 6 to 9 m for another 20 seconds, and vice versa afterwards

for another 40 seconds. The duration of hovering at a particular height was 20

seconds; 3) variable heights with smooth edges i.e. the change from one
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Table 4.1: Measured features of various controllers in operating the BI-FWMAV (RT:
rise time, ST: settling time, CH: constant height, VH: variable height, SS:
sum of sine, RMSE: root mean square error, ms: millisecond, m: meter, MA:

maximum amplitude, PSW: periodic square wave)

Desired
trajectory

Measured
features

Control methods
PID FFNN TS-

Fuzzy
G-

control
PAC

CH (MA 10
m)

RMSE 0.6460 0.7108 0.6693 0.6631 0.6668
RT (ms) 50.772 55.828 44.629 41.208 47.207
ST (ms) 560.98 415.90 222.06 127.15 147.09
Peak (m) 12.246 11.572 10.451 10.813 10.306

VH with
sharp change
(MA 9 m)

RMSE 0.3303 0.4078 2.4951 0.3324 0.3561
RT (ms) 23.931 48.943 43.949 50.892 13.728
ST (ms) 8176.4 8386.3 8329.4 8133.2 8166.5
Peak (m) 9.3732 9.6740 9.3010 9.0069 9.2265

VH with
smooth
change (MA
13 m)

RMSE 0.0895 0.0556 0.0368 0.0228 0.0523
RT (ms) 8.8573 11.231 1.6537 4.187 0.1314
ST (ms) 9884.3 9857.7 9871.1 9870.5 9872.1
Peak (m) 13.006 13.009 13.004 13.019 13.006

SS function
(MA 11 m)

RMSE 0.4730 0.5356 0.4631 0.4963 0.5018
Peak (m) 11.468 11.502 11.455 11.431 11.462

PSW
function (MA
11 m)

RMSE 2.7771 3.3185 N/A 2.5098 2.5115
RT (ms) 548.93 474.36 N/A 61.563 59.017
ST (ms) 9924.1 9911.7 N/A 9603.2 9634.1
Peak (m) 12.794 12.573 N/A 11.007 11.294

Staircase
function (MA
12 m)

RMSE 0.3073 0.3791 2.1796 0.2885 0.3072
RT (ms) 5996.0 4060.7 4015.7 5998.4 6000.3
ST (ms) 8384.2 8259.1 8094.4 8056.6 8055.1
Peak (m) 12.453 12.458 12.074 12.007 12.198
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height to another height is not so sharp as the previous trajectory; 4) sum of

sines function, which was an amalgamation of sine waves with a frequency of 0.3

radsec−1, amplitude of 4 m, bias of 6 m, and a cosine wave having a frequency

of 0.5 radsec−1, amplitude of 3 m and bias of 3 m; 5) a periodic square wave

pulse, where the amplitude was varying between 1 m to 11 m, and its frequency

is 0.2 radsec−1; 6) a staircase function, where each step had a duration of 20

seconds. The individual heights of first three steps are the same with a value

of 3 m, which is 2 m in the last step. In these numerical experiments, FFNN

based nonlinear adaptive controller operated better than the PID and TS-fuzzy

controllers. Again, the PAC manifested better tracking performance than the

FFNN controller. To acquire a deeper understanding of these manifestations,

some of their desired features like root mean squared error (RMSE), Rising Time

(RT) in milliseconds, Settling Time (ST) in milliseconds, and the peak values

of the overshoot were captured and tabulated in Table 4.1. All these simulation

results were pictured in Figure 4.6 and detailed in the next paragraph.

In Figure 4.6 (a), controllers were facilitated to track a 10 m height trajectory,

where both from PID and FFNN controllers, higher overshoot with peak values

more than 12 m were attested. Better performance with peak overshoots of

less than 7% of the height was noticed from the TS-fuzzy, and self-adaptive

controllers. With regards to peak overshoot, the lowest values were exhibited by

the proposed evolving controller in all six different scenarios of Figure 4.6, which

is evidently signifying the superiority of PAC’s evolving structure. A network

with fewer parameters supports PAC to procure prompter settlement, which was

witnessed from the lowest settling time of 147.09 seconds in Figure 4.6 (a). It was

considerably faster than the benchmark controllers since they demand more than

200 seconds to settle. In most cases of Figure 4.6, lowest or very comparative
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settling time was observed from the PAC. The tracking accuracy of the PAC in

terms of RMSE and rising time was not always the lowest one. Nonetheless,

their achievements were still comparable and sometimes surpassed benchmark

controllers.
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Figure 4.6: Performance observation of different controllers in tracking altitude of
BI-FWMAV, when the trajectories are (a) constant hovering, (b) variable
heights with sharp edges, (e) periodic square wave function, (f) staircase
function, rule evolution corresponding to (c) constant hovering, (d) variable

heights with sharp edges
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4.6.2 Simulation results from hexacopter plant

PAC was assessed to track both the altitude and attitude (in terms of rolling

and pitching) of the over-actuated hexacopter plant. Six separate trajectories of

hexacopter’s altitude were as follows: 1) a constant height with a value of 4 m; 2)

altering heights with sharp edges, where the peak height was of 9 m; 3) altering

heights with smooth edges, where the peak height was of 13 m; 4) a step function,

which can be expressed as 3u(t− 3), where u(t) is a unit step function; and 5) a

staircase function with a peak of 12 m; 6) sum of sines function, which was an

amalgamation of a sine wave with a frequency of 0.3 radsec−1, amplitude of 4 m,

bias of 6 m, and a cosine wave having a frequency of 0.5 radsec−1, amplitude of

3 m and bias of 3 m. In all conditions, a higher overshoot was perceived from the

linear PID controller at each sharp changes as depicted in Figure 4.7. Peak of this

overshoot was lesser while the linear controller was replaced with the nonlinear

adaptive FFNN controller. The FFNN’s performance was not consistent in

all cases. Especially, in dealing with the square wave trajectory, performance

deteriorates significantly as portrayed in Figure4.7 (c). This issue was managed

by the evolving controller effectively owing to self-adaptive architecture. Quick

settlements were also observed from PAC as recorded in Table 4.2.
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Figure 4.7: Performance observation of different controllers in tracking altitude of
hexacopter, when the trajectories are (a) constant hovering, (b) variable
heights with sharp edges, (d) staircase function, and (c) evolution of rules

corresponding to constant hovering

Furthermore, the rolling and pitching position (in rad) was observed with

a sum of sine trajectory, which was a fusion of a sine wave with a frequency

of 0.3 radsec−1, amplitude of 0.3 m, and a cosine wave possessing a frequency

of 0.5 radsec−1, amplitude of 0.5 m. The amplitude of the cosine wave was
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Table 4.2: Measured features of various controllers in regulating the hexacopter (RT:
rise time, ST: settling time, CH: constant height, VH: variable height, ms:
millisecond, m: meter, MA: maximum amplitude, PSW: periodic square wave,

rad: radian)

Desired
trajectory

Measured
features

Control method
PID FFNN TS-

fuzzy
G-

control
PAC

CH (MA 4
m)

RMSE 0.3551 0.4221 0.4771 0.4239 0.4204
RT (ms) 208.97 199.15 259.03 141.66 144.63
ST (ms) 372.82 364.22 368.31 274.51 247.52
Peak (m) 4.0272 4.0704 4.0714 4.0909 4.0015

VH with
sharp change
(MA 9 m)

RMSE 0.5574 0.7588 0.7607 0.6491 0.6537
RT (ms) 205.77 197.21 209.19 122.12 127.84
ST (ms) 8368.9 8649.9 8412.3 8249.2 8279.0
Peak (m) 9.0281 9.0406 9.0216 9.0022 9.0010

VH with
smooth
change (MA
13 m)

RMSE 0.3642 0.3651 0.1013 0.0273 0.0268
RT (ms) 122.21 144.33 6.7804 5.2776 2.4948
ST (ms) 9932.5 9938.4 9869.4 9929.0 9927.0
Peak (m) 12.987 12.868 13.007 12.999 13.002

Step function
(MA 3 m)

RMSE 0.2420 0.2795 0.3078 0.2842 0.2834
RT (ms) 203.94 197.22 215.14 121.83 112.14
ST (ms) 445.12 432.87 396.36 300.50 451.29
Peak (m) 3.0289 3.0676 3.0394 3.0040 3.6242

Staircase
function (MA
12 m)

RMSE 0.5221 0.6151 0.6959 0.5999 0.6237
RT (ms) 6019.9 6030.9 5970.0 6004.2 4227.9
ST (ms) 8245.3 8285.4 8212.7 8179.5 8391.5
Peak (m) 12.026 12.039 12.017 11.998 12.587

Sum of sine
function (MA
11 m)

RMSE 1.2270 1.7091 1.2636 1.0956 1.0856
Peak (m) 11.129 11.235 11.426 11.413 11.409

Pitching

RMSE 0.3513 0.0451 N/A 0.0466 0.0109
RT (ms) 14.907 14.686 N/A 65.469 10.135
ST (ms) 10057 10057 N/A 9982.9 10053
Peak
(rad)

0.5615 0.5758 N/A 0.5398 0.5469

Rolling

RMSE 0.1673 N/A N/A 0.0290 0.0259
RT (ms) 166.116 N/A N/A 118.75 91.596
ST (ms) 10037 N/A N/A 9978.9 9979.9
Peak
(rad)

0.3907 N/A N/A 0.3513 0.4852
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substituted with 0.4 m in rolling mode, where a far precise tracking was witnessed

from the PAC than PID. Interestingly, both the adaptive FFNN controller and

TS-fuzzy controller failed to track the rolling trajectory, which is the reason for

their absence in Figure 4.8 (a). Insertion of PAC yielded better tracking of

pitching position, which is obvious from the lowest RMSE of 0.01 as recorded in

Table 4.2.
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Figure 4.8: Performance observation of different controllers in tracking desired (a)
rolling, (b) pitching of the hexacopter MAV, (c) evolution of rules in tracking

rolling, and (d) pitching in hexacopter

To sum up, superior or comparative tracking of trajectories were witnessed

in the proposed PAC. Additionally, faster responses were obtained than the

benchmark controllers, testifying the benefits of having an evolving structure

with minimal network parameters.
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4.6.3 PAC’s robustness against uncertainties and noise

In this work, a variety of disturbances were inserted in both BI-FWMAV and

hexacopter’s plant to verify PAC’s robustness against those disturbances. For

instance, in the plant dynamics of BI-FWMAV, a sudden noise with a peak of 3

m and duration of 0.1 seconds, and the discrete wind gust model Matlab block

with a wind velocity 4 ms−1 immediately after 2 seconds was embedded in the

plant. The mathematical representation of the discrete gust model is as follows:

Vwind =


0

Vm
2

(
1− cos

(
πx
dm

))
Vm

x < 0

0 ≤ x ≤ dm

x > dm

(4.70)

where Vm is the amplitude of the gust, dm is the length of the gust, x is the

distance traveled, and Vwind is the resultant wind velocity in the body axis frame.

Effects of both wind gust and sudden peak noise was observed for all six

different altitude trajectories of BI-FWMAV, which are depicted in Figure 4.9.

From a closer view, an obvious performance degradation in dealing with distur-

bances was witnessed from the non-adaptive PID controller in all cases. In the

FFNN controller, due to the adaptation of the network parameters, it performed

better than the PID. Sometimes, the TS-fuzzy controller performs better than

PID. However, its performance was not consistent for all the trajectories. Both

FFNN and TS-fuzzy controllers suffered severely in tracking trajectories with

sharp changes because of the absence of structure adaptation mechanism. On

the other hand, quicker settlement and recovery from the adverse effect of gust

were sighted from the proposed evolving controller in our numerical experiments.

At the same time, the proposed PAC dominated all the benchmark controllers
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in rejecting sudden peak noise since the lowest peak was viewed from PAC. Such

accomplishments were possible due to the evolving structure with an adaptation

of fewer parameters.

In the hexacopter dynamics, a sharp peak noise with an amplitude of 2 m and

a period of 0.1 seconds was implanted to observer robustness of the controllers.

Effects of disturbance was witnessed for four different altitude trajectories of

hexacopter. RMSE, settling time, rise time, and peak overshoot values for all

those trajectories were tabulated for all benchmark and proposed controller in

Table 4.4. Such perturbation was handled effectively by PAC than its static

counterparts as attested in Figure 4.10. A high peak and slow settlement was

detected in PID, TS-fuzzy and FFNN controllers. On the contrary, a negligible

overshoot with rapid settlements were inspected from the proposed PAC. For

example, after closely observing the constant altitude trajectory in Figure 4.10

(c), recorded values of rising time were less than 6 ms from the evolving con-

trollers, which was more than 100 ms in FFNN and PID controller. A similar

phenomenon was observed in remaining trajectories, which is evidently declaring

the improved robustness against uncertainties of the PAC in contrast with the

benchmark static controller.
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Figure 4.9: Performance observation of different controllers in tracking altitude of
BI-FWMAV by considering sudden noise and wind gust uncertainty, when the
trajectories are (a) constant hovering, (b) variable heights with sharp edges,
(c) variables height with smooth edges, (d) sum of sine function, (e) periodic

square wave function, and (f) staircase function
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Figure 4.10: Performance observation of different controllers in tracking altitude of
hexacopter considering sudden noise, when the trajectories are (a) constant
hovering, (b) variable heights with sharp edges, (c) variable heights with
smooth edges, (d) sum of sines function, (e) step function, and (f) staircase

function
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Table 4.3: Measured features of various controllers in operating the BI-FWMAV by
considering a noise of sudden peak amplitude, and wind gust disturbance (RT:
rise time, ST: settling time, CH: constant height, VH: variable height, SS: sum
of sine, ms: millisecond, m: meter, MA: maximum amplitude, PSW: periodic

square wave)

Desired
trajectory

Measured
features

Control method
PID FFNN TS-

fuzzy
G-

control
PAC

CH (MA 10
m)

RMSE 0.6536 0.7268 0.5746 0.6657 0.6712
RT (ms) 50.772 55.828 44.629 41.208 47.207
ST (ms) 1025.9 2707.2 743.39 635.53 747.43
Peak (m) 12.247 11.573 11.035 11.022 11.035

VH with
sharp change
(MA 9 m)

RMSE 0.3430 0.4237 2.4603 0.3351 0.3611
RT (ms) 23.931 48.943 43.949 50.892 13.728
ST (ms) 8176.2 8386.3 8329.4 8133.2 8166.5
Peak (m) 9.3731 9.6742 9.3010 9.0073 9.2270

VH with
smooth
change (MA
13 m)

RMSE 0.1258 0.1541 0.0823 0.0613 0.0899
RT (ms) 8.8573 11.231 1.6537 4.1881 0.1314
ST (ms) 9884.3 9857.5 9871.1 9870.5 9872.1
Peak (m) 13.007 13.009 13.004 13.019 13.006

SS function
(MA 11 m)

RMSE 0.4832 0.5565 0.4685 0.4998 0.5075
Peak (m) 11.468 11.712 11.518 11.489 11.534

PSW
function (MA
11 m)

RMSE 2.7739 3.2660 N/A 2.5112 2.5122
RT (ms) 546.47 472.35 N/A 57.067 59.508
ST (ms) 9923.9 9911.7 N/A 9603.2 9634.1
Peak (m) 12.794 12.667 N/A 12.067 12.073

Staircase
function (MA
12 m)

RMSE 0.3205 0.3960 2.1397 0.2916 0.3131
RT (ms) 5996.0 4067.3 4024.4 5999.4 6002.2
ST (ms) 8370.8 8156.2 8094.8 8056.5 8055.1
Peak (m) 12.453 12.458 12.072 12.007 12.198
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Table 4.4: Measured features of various controllers in regulating the hexacopter by
considering noise of sudden peak amplitude (RT: rise time, ST: settling time,
CH: constant height, VH: variable height, ms: millisecond, m: meter, MA:

maximum amplitude)

Desired
trajectory

Measured
features

Control method
PID FFNN TS-

fuzzy
G-

control
PAC

CH (MA 4
m)

RMSE 0.3383 0.4067 0.4772 0.4237 0.4048
RT (ms) 208.28 197.14 259.03 141.66 144.67
ST (ms) 746.30 831.62 634.67 274.51 623.97
Peak (m) 4.0293 4.0704 4.0714 4.0909 4.0015

VH with
sharp change
(MA 9 m)

RMSE 0.5367 0.7586 0.7479 0.6509 0.6391
RT (ms) 203.76 195.22 209.19 122.12 125.84
ST (ms) 8315.9 8583.9 8411.8 8257.2 8232.0
Peak (m) 9.0281 9.0406 9.0258 9.0022 9.0010

VH with
smooth
change (MA
13 m)

RMSE 0.3788 0.3666 0.1189 0.0322 0.0281
RT (ms) 110.21 142.33 6.7867 5.2776 2.4948
ST (ms) 9879.5 9877.4 9869.2 9940.0 9871.0
Peak (m) 12.987 12.868 13.005 13.008 13.002

Step function
(MA 3 m)

RMSE 0.2439 0.2795 0.3078 0.2841 0.2834
RT (ms) 203.94 197.23 215.13 121.83 112.14
ST (ms) 763.38 912.24 396.34 300.48 631.18
Peak (m) 3.0285 3.0676 3.0394 3.0042 3.6242

Staircase
function (MA
12 m)

RMSE 0.5074 0.6000 0.6961 0.5998 0.6078
RT (ms) 5993.9 5980.9 5973.7 6004.0 4144.9
ST (ms) 8204.3 8222.4 8212.7 8183.5 8254.5
Peak (m) 12.028 12.039 12.021 11.998 12.587

Sum of sine
function (MA
11 m)

RMSE 1.2123 1.7003 1.4325 1.0954 1.0787
Peak (m) 11.130 11.235 11.400 11.413 11.409

Pitching

RMSE 0.3513 0.0451 N/A 0.0466 0.0109
RT (ms) 14.907 14.686 N/A 65.469 10.135
ST (ms) 10057 10057 N/A 9982.9 10053
Peak
(rad)

0.5615 0.5758 N/A 0.5398 0.5469

Rolling

RMSE 0.1673 N/A N/A 0.0290 0.0259
RT (ms) 166.116 N/A N/A 118.75 91.596
ST (ms) 10037 N/A N/A 9978.9 9979.9
Peak
(rad)

0.3907 N/A N/A 0.3513 0.4852



146
4. PALM-BASED AUTONOMOUS INTELLIGENT CONTROLLERS FOR MICRO

AERIAL VEHICLES

4.6.4 Self-adaptive mechanism of PAC

Based on the bias-variance concept explained in section 4.5, rules of the PAC have

been evolved dynamically in different experiments. Before analyzing the evolution

of the structure of our proposed AICon, we have tried to summarize shortfalls

of the benchmark controllers used in the experiments explained in this chapter.

The PID controller’s realization is based upon three gain parameters namely

proportional, integral and differential gain. They are typically denoted as Kp, Ki,

and KD. It requires to set values for those parameters in offline before utilizing in

control operation, which may oblige repetitious efforts. Besides, those parameters

can not be tuned online. Before performing the control operation, both the

adaptive FFNN and TS-fuzzy controllers require offline training encouraged by

the PID controller’s input-output datasets. Though they adapt their network

parameters during operation, they have a fixed structure with a hidden layer

consists of ten fixed nodes in FFNN and five rules in TS-fuzzy controller. In con-

trast with the conventional evolving controllers, our proposed PAC has no premise

parameters. The only parameter that needs to be adapted is weight, which is

adapted here using SMC theory. Unlike the traditional evolving controllers, PAC

is free from predefined problem-dependent parameters for regulating its structure.

The structure evolution in terms of added or pruned rules for some trajectories

of BI-FWMAV and hexacopter is disclosed graphically in Figure 4.6 (c) and 4.6

(d), Figure 4.7 (c), and in Figure 4.8 (c) and 4.8 (d) to get a vivid insight into

the evolution of rules in PAC. For further clarification, the fuzzy rule extracted
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by PAC in controlling the BI-FWMAV can be expressed as follows:

R1 : IF Xn is close to

(
[1, e, ė, yr]× [0.0121, 0.0909, 0.4291, 0.6632]T

)
, (4.71)

THEN y = 0.0121 + 0.0909e+ 0.4291ė+ 0.6632yr

where e is the error i.e. the difference between the reference and actual output

of the plant, ė is the error derivative i.e. the difference between the present

and previous state error value, yr is the reference for the plant to be controlled.

Since PAC is targeted to minimize the tracking error to zero or very close to

zero, it needs information about the error as an input to the closed-loop system.

It is also witnessed in PAC’s rule as exposed in Equation (4.71). When PAC

was controlling the BI-FWMAV in tracking a constant altitude of 10 m, it

generated 3 rules within 1 second at the beginning of control operation. Since

the reference is unaltered and stability of the plant is achieved, PAC does not

add or prune any extra rule later on as witnessed from Figure 4.6 (c). While

BI-FWMAV was following a variable height trajectory with sharp changes at

edges, the PAC starts operating by producing only one rule. After 8 seconds it

adds two more rules and achieved system stability. After that, the changes in

trajectories are handled by PAC only through tuning of weights only. It does

not need any further structure evolution as observed in Figure 4.6 (d). The

successful evolution of rules by confirming system stability was also achieved by

PAC in controlling the hexacopter plant. For instance, PAC supports hexacopter

to track a constant altitude of 4 m with two rules, as displayed in Figure 4.7 (c).

While PAC was regulating the rolling of hexacopter for a sum of sine trajectory,

it started operating with only one rule. Immediately after 17 seconds, it added

another two rules; however one of them was pruned at 19 seconds to minimize the
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overfitting phenomenon, while maintained system stability with two rules only.

With these two rules, it tracked the trajectory efficiently through the SMC based

weight adaptation. A similar scenario was witnessed in controlling the pitching

position of the hexacopter since the same trajectory was employed. To sum up,

by adapting both the structure and weights, the PAC was controlling the MAVs

effectively to follow the desired trajectories very closely and by preserving the

stability of the closed-loop system.

4.6.5 Performance evaluation of RedPAC in controlling

quadcopter

RedPAC is tested using popular drone simulator namely Dronekit SITL (Software

in the Loop) [218]. The dynamics of a SOLO quadcopter is simulated in this

work. SOLO has a weight of about 1.5 kg, and it can carry a payload of 0.4

kg. Autonomous missions like search and target tracking using SOLO quad-

copter is reported in the literature [219]. Inside the simulator, environmental

perturbation such as measurement noise and wind gust are considered. The

RedPAC controller code is executed in a MATLAB-Simulink environment and

connected to the Dronekit SITL using a user datagram protocol (UDP) localhost

communication. The code is made publicly accessible in [220]. In this simulation

work, the RedPAC is used to control the altitude of the drone. The controller

is expected to perform an altitude-hold mode operation and to track a varying

altitude reference. The RedPAC generates the required thrust as denoted by

u in Figure 4.5 to maintain the desired altitude. The roll, pitch, and yaw are

controlled by conventional PID controllers.

In this chapter, simulation comparison between PID, SMC, PAC, and Red-

PAC for the quadcopter is provided to clarify that the proposed RedPAC is
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Table 4.5: Testing result summary(RT: Rise Time, TS: Settling Time, MP: Maximum
Peak, SSE: Steady State Error, RMSE: Root Mean Square Error)

Controller Type Test RT (s) ST (±5%) (s) MP (m) SSE RMSE

PID

I 5.1 27 6.2 0.05 0.87
II 6 32 6.9 0.1 1.27
III 6.2 20.5 6.6 0.2 1.03
IV 5 25 6.2 0.3 0.80
V 7.5 40 8.2 0.1 2.30

Avg. 5.96±1.01 28.90± 7.45 5.96± 0.83 6.82± 0.83 1.25± 0.61

SMC

I 6.5 27 6.3 0.2 1.06
II 7 26 6.7 0.01 1.42
III 5.5 24 6.2 0.3 0.81
IV 6.5 25 6.3 0.2 0.82
V 5.5 27 6.3 0.2 0.69

Avg. 6.20± 0.67 25.80± 1.30 6.36± 0.19 0.19± 0.09 0.96± 0.29

PAC

I 6 30 6 0.1 1.07
II 7 27 5.9 0.05 1.11
III 5 30 5.7 0.2 0.66
IV 6 20 6 0.05 0.99
V 6.1 20 7 0.1 1.23

Avg. 6.02± 0.71 25.4±5.08 6.12± 0.51 0.1±0.06 1.01± 0.21

RedPAC

I 7 25 6 0.2 1.05
II 6 25 6 0.05 0.84
III 6 27 5.9 0.1 0.81
IV 6 28 6 0.2 1.27
V 5.7 27 5.9 0.1 0.62

Avg. 6.14± 0.5 26.04± 1.34 5.96±0.05 0.13± 0.07 0.96±0.25

working better than the other linear and nonlinear ones and comparable to the

predecessor controller. For a fair comparison, the parameter of PID and SMC

in this simulation are set equally (Ki = K1 = 20; Kp = K2 = 0.02; Kd = K3 =

0.002). The test was repeated five times to clarify the controllers’ performance

at the different unpredictable disturbances. The altitude hold performance was

observed for all those controllers for 50 seconds and the desired altitude was 5

meters.

The response of quadcopter’s altitude-hold initially sets to reach 2.5 meters

and changes to 5 meters immediately. Below 3 seconds the altitude is reduced as

the effect of disturbance to the system. All controllers were able to follow the ref-

erence signal by minimizing the steady-state error, and rejecting the disturbance

influence as shown in Figure 4.11.

From the simulation results, it is observed that the PID controller had an over-
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shoot with a maximum peak (MP) of around 0.6 meters. A very small overshoot

of around 0.05 meters was observed from our proposed controller RedPAC. A

comparatively lower MP than PID was caused by the adaptation of the evolving

part, which reduced the control-input signal during the transient phase. While

considering the rise time (RT) of PAC and RedPAC, they were comparable with

PID and SMC. However, the settling time (ST) of PAC and RedPAC were slightly

smaller than the other two controllers, which is proving the faster settling capacity

of the evolving controllers than their linear or nonlinear counterparts.

The number of rules for both PAC and RedPAC was evolving from one to

six and five respectively as shown in Figure 4.12. This compact number of rules

is guaranteeing the proposed controller’s ability to handle the complex nonlinear

and uncertain quadcopter dynamics. It is also indicating that only a few rules are

sufficient for the networks to meet the system’s requirements. The robustness in

evolving controllers structure is also validated since the rule is growing during the

early transient-state and holding to a fixed value at the steady-state condition.

This evolution of structure is effectively solving the limitations of the conventional

controller to deal with the uncertainties from the environment.

To sum up, from the average of all five observations, the fastest RT is wit-

nessed while the PID controller is utilized. These are recorded in Table 4.5 for an

altitude-hold condition. From the PAC, the fastest settling time and minimum

steady-state error are attained. Compared to the benchmark controllers, RedPAC

performs better with a lower MP and lower root mean square error (RMSE).

Both the PAC and RedPAC have obtained the best performance in two different

performance criteria, which is indicating that they are comparable to each other

with a narrow performance difference. The number of weight parameters is

smaller by one-third in RedPAC than the PAC since RedPAC has three inputs
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Figure 4.11: Comparison among various controllers’ performance while controlling the
altitude of the Dronekit simulator
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Figure 4.12: Evolution of rules in RedPAC

while maintaining a comparable or better performance.

4.7 Summary

Based on the research gap in controlling MAVs in cluttered environments, two

AICons, namely PAC and RedPAC are proposed in this chapter. A bottleneck

of the existing AICons is the utilization of numerous free parameters and their

tuning. Such inadequacy has been mitigated in the PAC since it has no premise

parameters. The only parameter used in PAC to acquire the desired tracking

is the weight. Apart from that, conventional AICons adhere to user-defined
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problem-based thresholds to shape their structure. In PAC and RedPAC, rather

than predefined parameters, the bias-variance concept based network significance

method is utilized to determine their’s structure. The PAC has been verified

by implementing them in BI-FWMAV and hexacopter to track diverse trajec-

tories. Achievements are contrasted with a commonly utilized linear controller

PID, an adaptive nonlinear FFNN controller, TS-fuzzy controller. Furthermore,

controllers’ robustness against uncertainties and disruptions is ascertained by

injecting a wind gust and sudden peak to the MAVs dynamics. In controlling

both plants with uncertainties, lower or comparable overshoot and settling time

were observed from PAC with a simplified evolving structure, which is testifying

its robustness against uncertainties and compatibility in regulating MAVs. The

simulation for RedPAC is completed with a quadcopter testbed (Dronekit-SITL)

which behaves very close to the real system. Better or comparable tracking

performance is witnessed from RedPAC than its modeled or model-free counter-

parts. In the next chapter, another AICon using multivariate Gaussian function

is described.
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Abstract

In this chapter, an autonomous intelligent controller (AICon) namely Generic-

controller (G-controller) is proposed. It is developed by incorporating the sliding

mode control (SMC) theory with an advanced incremental learning machine,

namely Generic Evolving Neuro-Fuzzy Inference System (GENEFIS). The con-

troller starts operating from scratch with an empty set of fuzzy rule, and therefore,

no offline training is required. To cope with changing dynamic characteristics

of the plant, the controller can add or prune the rules on demand. Control

law and adaptation laws for the consequent parameters are derived from the

SMC algorithm to establish a stable closed-loop system, where the stability of

the G-controller is guaranteed by using the Lyapunov function. The uniform

asymptotic convergence of tracking error to zero is witnessed through the impli-

cation of an auxiliary robustifying control term. In addition, the implementation

of the multivariate Gaussian function helps the controller to handle the non-axis

parallel data from the plant and consequently enhances the robustness against the

uncertainties and environmental perturbations. Finally, the controller’s perfor-

mance has been evaluated by observing the tracking performance in controlling

simulated plants of bio-inspired flapping wing micro air vehicle (BIFW MAV)

and hexacopter unmanned aerial vehicle (UAV) for a variety of trajectories.

5.1 Introduction

Obtaining an accurate first principle model for many UAV systems is considerably

arduous due to their highly non-linear, over-actuated or under-actuated behavior.

Besides, various uncertainty factors like impreciseness in the data obtained from

sensors, induced noise by the sensors, outdoor environmental uncertainties like
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wind gust, motor degradation, etc. are difficult or impossible to integrate into the

first principle models. In such circumstances, approaches without the necessity

of accurate mathematical models of the system are much appreciated. Being

a model-free approach [129], the NN and FLS-based intelligent controllers have

been successfully implemented in many control applications [221, 222] over the

past few years. Recently, systems with an amalgamation of FLS and NN, namely

Fuzzy Neural Network (FNN) based controllers, are becoming popular. FLS, NN,

and FNN are employed in a variety of engineering applications [223].

To handle uncertainties in control applications, researchers have tried to

develop adaptive controllers by combining FLS, NN, FNN systems SMC [224],

H∞ control, back-stepping, etc. Such amalgamation empowers the FLS, NN,

FNN controllers with the feature of parameter-tuning, which provides an adaptive

control structure. It assists them to mitigate the adverse effects of various

uncertainties and perturbations. However, such adaptive FNN-based controllers

are not able to evolve their structures by adding or pruning rules. Therefore,

the number of rules needs to be determined a priori in adaptive FNN-controllers,

where a selection of a few fuzzy rules may hinder to achieve the desired control

performance. On the other hand, consideration of too many rules may create

complexity in a hardware implementation.

The problems mentioned above can be circumvented by implementing evolv-

ing FLS, NN, FNN-based AICon [143]. They can evolve their structure by

adding, or deleting rules through self-organizing techniques. All the AICons

discussed in chapter 2 have utilized univariate Gaussian function, which does not

expose the scale-invariant property. Besides, they are not effective in dealing with

non-axis parallel data distribution. To mitigate these shortcomings, we utilized

a multivariate Gaussian functions based incremental learning algorithm called
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Generic Evolving Neuro-Fuzzy Inference System (GENEFIS) [1]. In this work,

GENEFIS is amalgamated with SMC technique to develop an AICon, namely

G-controller.

5.2 Contribution

Main features of the proposed G-controller are as follows:

1. The design of the proposed G-controller does not depend upon the plant

dynamics or any other features of the plant.

2. No previous information or off-line training is required. Thus, the controller

starts self-construction from scratch with only one rule at the beginning,

and then it adds or deletes rules to follow the desired trajectory. Besides,

the application of a fast kernel-based metric approach helps to capture the

fuzzy set and rule level redundancy.

3. Integration of the Generalized Adaptive Resonance Theory+ (GART+)

helps to upgrade the premise parameters with respect to input data distri-

butions, and utilization of multivariate Gaussian function aids the controller

to handle a variety of data generated from the sudden change in plants, or

from uncertainties, environmental perturbations.

4. Adaptation laws for the GENEFIS based G-controller’s consequent pa-

rameters are derived from the SMC learning theory, which confirms a

stable closed-loop control system. Instead of predefined values, the sliding

parameters in the SMC theory is also self-organizing in this controller. A

robustifying auxiliary control term ensures uniform asymptotic convergence
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of tracking error to zero. Finally, the stability of the G-controller is proved

using the Lyapunov function.

5. Successful evaluation of the proposed G-controller through implementing it

into the simulated BIFW MAV and hexacopter plant.

The above-mentioned characteristics of the proposed autonomous G-controller

make them an appropriate candidate to control autonomous vehicles like BIFW

MAV, quadcopter, hexacopter, octocopter etc. with better accuracy than a

stand-alone FPT-based controller. Furthermore, the control algorithm is de-

veloped using C programming language to make it compatible with all types of

hardware, where their implementation is made publicly available in [225].

The organization of rest of this chapter is as follows: The evolving architecture

of the GENEFIS based G-controller is explained in Section 5.3. Section 5.4 rep-

resents SMC learning algorithm based adaptation of the proposed G-controller.

The results are summarized, and analysed in Section 5.5. Finally, the chapter

ends with the concluding remarks encompassed in Section 5.6.

5.3 Architecture of the Evolving G-Controller

The self-organizing mechanism of the G-controller is adopted from GENEFIS

developed in [1]. GENEFIS is a TS FLS that features multidimensional mem-

bership functions in the input space where the contours are ellipsoid in arbitrary

positions. Each estimated one-dimensional membership function represents a

portion in the input space partition by assigning the Gaussian function’s own

center and width. Concurrently, in the GENEFIS-based G-controller, first-order

polynomials are the consequent part of the fuzzy rules. In G-controller, a typical
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fuzzy rule can be expressed as follows:

IF Z is Ri, then ηi = a0i + a1iζ1 + a2iζ2 + ...+ akiζk (5.1)

where Z is an input vector of interest, Ri represents the ith rule (membership

function) constructed from a concatenation of fuzzy sets and epitomizing a multi-

dimensional kernel, ani (n = 1, 2, ..., k) are the consequent parameters, k denotes

the dimension of input feature, ζk is the kth input feature. The predicted output

of the self-evolving model can be expressed as:

η̂ =

j∑
i=1

ψi(ζ)ηi(ζ) =

j∑
i=1

Riηi

j∑
i=1

Ri

=

∑j
i=1 exp(−(Z −Θi)Σ

−1
i (Z −Θi)

T )ηi∑j
i=1 exp(−(Z −Θi)Σ

−1
i (Z −Θi)T )

(5.2)

In Equation (5.2), Θi ∈ <1×j is the centroid of the ith fuzzy rule, j is the number

of fuzzy rules, Σi ∈ <j×j is a non-diagonal covariance matrix whose diagonal

components are expressing the spread of the multivariate Gaussian function, ηi

is the consequent part of the ith rule.

5.3.1 Statistical contribution-based rule growing mecha-

nism

The Datum Significance (DS) method developed in [48] is utilized as a rule

growing mechanism in G-controller. The original DS method is geared into

the multivariate Gaussian membership function and polynomial consequents,

which is the crux of GENEFIS [1]. The integration of the multivariate Gaussian
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membership function into the original DS method can be observed here as follows:

Dsgn = |ern|
∫
Z

exp

(
−(Z − Zn)Σ−1(Z − Zn)T

(Z −Θ)Σ−1(Z −Θ)T

)
1

H(Z)
dz (5.3)

where Dsgn denotes the significance of the nth datum, Zn is the current input

to the controller in a closed-loop control system Zn ∈ <, and H(Z) is the range

of input Z. In a closed-loop control system, error (e) indicates the difference

between the desired reference and plant’s output, which is usually fed as input

to the controller. Error ern mentioned in Equation (5.3) can be expressed as:

|ern| = |trn − ηn| (5.4)

where trn is the plant’s output of the closed-loop control system, and ηn is

control output from the G-controller at nth time instant. After applying k−fold

numerical integration to Equation (5.3), the following is obtained:

Dsgn = |ern|
(

det(Σj+1)

H(Z)

)k
(5.5)

When the statistical contribution of the datum is higher than the existing rules,

it becomes an appropriate candidate to be a new rule. Therefore, the DS criterion

can be amended mathematically as follows:

Dsgn = |ern|
det(Σj+1)k∑j+1
i=1 det(Σi)k

(5.6)

When a sample lies far away from the nearest rule, a high value of Dsgn is

obtained from Equation (5.6) even with a small value of ern. In such a situation,

generalization capability of the self-evolving neuro-fuzzy controller remains good
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without the addition of any new rules. Therefore, a high value of Dsgn does not

always indicate the necessity of a rule evolution. On the other hand, a high value

of ern may be observed in an overfitting phenomenon. In such a case, the addition

of a new rule may worsen the overfitting phenomenon. Thus, a separation is

needed in Equation (5.6) to cover the two above-mentioned discernible situations.

To overcome an overfitting scenario, it is important to monitor the effect of a

newly injected sample on ern, since structural learning is not occurring in every

observation. In other words, the rule growing mechanism is probably turned

on when the rate of change of ern is positive. In the proposed controller, the

mean and variance of ern are measured by recursively updating ern and standard

deviation [53] as follows:

ērn =
n− 1

n
ērn−1 +

1

k
ērn (5.7)

σ̄2
rn =

n− 1

n
σ̄2
rn−1 +

1

k
(ērn − ērn−1) (5.8)

When ērn + σ̄2
rn − (ērn−1 + σ̄2

rn−1) > 0, the DS criterion is simplified in our

chapter as follows:

Dsgn =
det(Σj+1)k∑j+1
i=1 det(Σi)k

(5.9)

The condition in expanding the rule base utilizing Equation (5.9) is Dsgn ≥ g,

where g is a predefined threshold. Equation (5.9) represents an encouraging

generalization and summarization of the datum since a new rule can omit possible

overfitting effects. Besides, this DS criterion can predict the probable contribu-

tion of the datum during its lifetime.
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5.3.2 Statistical contribution-based rule pruning mecha-

nism

The Extended Rule Significance (ERS) method was put forward by [48]. The ERS

concept appraises the statistical contribution of the fuzzy rules when the number

of observations or time instants are approaching infinity. The default ERS theory

is not possible to integrate directly into GENEFIS due to the incompatibility of

default ERS concept with the concept of neuro-fuzzy structure. ERS theory

is modified to fit them with G-controller. In this chapter, the concept of the

statistical contribution of the fuzzy rules can be expressed mathematically as

follows:

E(i, n) = |δi|Ei, where |δi| =
k+1∑
i=1

|ηi| (5.10)

Ei =

∫
Z

exp(−(Z −Θn
i )Σ−1

i (Z −Θn
i )T )

1

H(Z)
dz (5.11)

From Equation (5.10), it can be anticipated that the contribution of fuzzy

rules is a summary of the total contribution of input and output parts of the fuzzy

rules, where Ei is expressing the modified version of original input contribution

explained in [48, 49], and δi is expressing the contribution of output parameters.

Usually, inverse covariance matrix Σ−1
i in Equation (5.11) has a smaller size than

that of Z, which necessitates an amendment in Equation (5.11) as follows:

Ei ≈
1

H(Z)

(
2

∫ ∞
0

exp

(
−
(

Z2

det(Σi)

))
dz

)k
(5.12)

By using the k fold numerical integration, the final version of ERS theory can
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be expressed as:

E iinf =

j+1∑
i=1

ηi
det(Σi)

k∑j
i=1 det(Σi)k

(5.13)

When E iinf ≤ ke, it is presumed that the clusters or rules cannot capture

the latest incoming data to GENEFIS. It can be deduced that the hypervolume

of the triggered cluster indicates the significance of the fuzzy rule. Thus, when

the volume of the ith cluster is much lower than the summation of volumes of

all clusters, that rule is considered as inconsequential. Such a rule is pruned

to protect the rule base evolution from its adverse effect. Here, ke exhibits a

plausible trade-off between compactness and generalization of the rule base. The

allocated value for δ is δ = [0.0001, 1], and ke = 10% of δ.

5.3.3 Adaptation of the rule premise parameters

Generalized Adaptive Resonance Theory+ (GART+) [226] is used in G-controller

as a technique of granulating input features and adapting premise parameters. It

is observed that GART [227] and its successor namely improved GART (IGART)

[228] suffer from a cluster or rule growing problem. In GART the compatibility

measure is done utilizing the maximal membership degree of a new datum to

all available rules. In the first round, if the selected rule expresses a higher

membership degree than a predefined threshold ρa, then it is declared as a winning

rule and the match-tracking mechanism is executed. However, if the first round

winning rule fails to beat the match-tracking threshold ρb, it deactivates that

rule and increases the value of threshold ρa to find a better candidate. A larger

width is required in the next selected cluster to cope with the increased value of ρa.

Otherwise, it fabricates a new cluster. Nonetheless, a cluster with larger radii may

contain more than one distinguishable data clouds and thereby marginalizing the
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other clusters in every training episode. In an incremental learning environment,

this effect is known as cluster delamination [229], pictorially exhibited in Figure

5.1. To relieve from the cluster delamination effect in G-controller, the size of

the fuzzy rule is constrained by using GART+, which allows a limited grow or

shrink of clusters.

5.3.3.1 Improved selection procedure of winning rule

To determine the most compatible or winning rule, Bayes’s decision theory is

utilized in GART+ [226]. To stimulate a more appropriate selection of the

winning rule, the Bayesian concept does not only consider the proximity of a

rule or cluster to the inserted datum, but also the dominance of the cluster with

respect to the other categories through the measure of cluster’s prior-probability.

That is, the prior probability can count the number of samples falling in the

outreach of the cluster, and is expressed as follows:

P̂r(ψi) =
Ni∑j
i=1Ni

(5.14)

where Ni indicates the number of times that ith cluster or fuzzy rule wins the

competition.
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Figure 5.1: Cluster delamination effect (adapted from [1] with proper permission)
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When a new input datum to the controller finds two categories with almost

similar distances but with different population numbers, Bayes’s decision theory

assists to select the cluster with more data points and declare it as a winning

cluster. In the proposed G-controller, the posterior probability of the ith cluster

can be represented as follows:

P̂r(ψi|Z) =
p̂r(Z|ψi)P̂r(ψi)∑j
i=1 p̂r(Z|ψi)P̂r(ψi)

(5.15)

where p̂r(ψi|Z) and P̂r(ψi) represents the likelihood and the prior probability

correspondingly. The likelihood can also be elaborated as follows:

p̂r(Z|ψi) =
1

(2πVi)1/2
exp(−(Z −Θi)Σ

−1
i (Z −Θi)

T ) (5.16)

where Vi determines the estimated hyper-volume of feature space covered by the

ith cluster, which can be expressed as:

Vi = det(Σi) (5.17)

The Bayesian concept presented in Equation (5.15) is implemented in G-controller,

which can be interpreted as follows:

1. When a new sample is adjacent to existing categories, it causes a higher

likelihood expressed by Equation (5.16).

2. A cluster with a large volume is forced to divide its volume in Equation

(5.16), as a consequence, it delivers a lower value of the posterior probability

according to Equation (5.15). This is particularly important to avoid large

span clusters and to decrease the likelihood of cluster delamination effects.
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3. According to Equation (5.14), categories surrounded by more incoming

data samples are more worthwhile, which inflicts a high value of posterior

probability.

5.3.3.2 Vigilance test

There are two goals to perform the vigilance test [83]. The first one concerns

about the capability of the winning cluster to accommodate a new datum. The

second goal is to reduce the size of the rule, where a rule is not allowed to have a

volume higher than the threshold Vmax, that is calculated from Vmax ≡ ρb
∑j

i=1 Vi.

The vigilance test is a way to compress the procedure of rule-deletion, update,

or evolution, where a rule needs to satisfy four different conditions as presented

below:

Case I: Rwin ≥ ρa, Vwin ≤ Vmax

where Rwin is the membership degree of the winning rule to seize the latest

datum. The condition in Case I is indicating the capability of the selected cluster

to accommodate the newest datum and emphasizing on the limited size of a

cluster. In our proposed G-controller, ρa is set close to 1. Contrarily, the value

of ρb is set as [0.0001, 0.1]. Then the adaptation mechanism of focal point Θi,

and the dispersion matrix Σi is generated by the equations as follows:
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Θnew
win =

N old
win

N old
win + 1

Θold
win +

(
Z −Θold

win

)
N old
win + 1

(5.18)

Σnew−1

win =
Σold−1

win

1− α
+

α

1− α(
Σold−1

win (Z −Θnew
win )

)(
Σold−1

win (Z −Θnew
win )

)T
1 + α (Z −Θnew

win ) Σold−1

win (Z −Θnew
win )T

(5.19)

Nnew
win = N old

win + 1 (5.20)

where α can be expressed as follows:

α =
1

N old
win + 1

(5.21)

where N old
win denotes the number of incoming samples populating the winning

cluster.

Besides, a major advantage of utilizing Equation (5.19) is the prompter update

of the dispersion matrix (inverse covariance matrix), since a direct adjustment

of the dispersion matrix is occurring without the necessity to re-inverse the

dispersion matrix [171]. Concerning the conditions in Case I, some pertinent

likelihoods may emerge in the rehearsal process and they are outlined as follows:

Case II: Rwin < ρa, Vwin > Vmax

In this circumstance, the input data to the G-controller cannot be touched by

any existing rules of the controller, since the inserted input data is hardly covered

by any rules. The statistical contribution of the datum needs to be calculated by

DS-criterion. When both conditions are satisfied, a new rule is generated and its
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parameters are assigned as follows:

Θj+1 = Z (5.22)

diag

(
Σj+1

)
=

max((Θi −Θi−1), (Θi −Θi+1))√
1

In(ε)

(5.23)

where the value of ε is 0.5. Equation (5.23) ensures a sufficient coverage of

the newly added rule, which is proved in [184]. It helps GENEFIS to explore un-

touched regions in the feature space fitting a superfluous cluster at whatever point

a relatively unexploited region or knowledge is fed, which is a mandatory element

to confronting possible non-stationary and evolving qualities of the self-evolving

control system. Note that proper initialization of the inverse covariance matrix

plays a crucial role in the success of multivariate Gaussian fuzzy rule. Although it

meets the ε−completeness criterion, Equation (5.23) requires re-inversion phase

which sometimes leads to instability when the covariance matrix is not full-rank.

As an alternative, the inverse covariance matrix is initialized here as follows:

Σ−1
0 = kfsI (5.24)

where kfs is a user-defined parameter, and I is an identity matrix.

Case III: Rwin ≥ ρa, Vwin > Vmax

This situation is indicating the capability of the existing rule base to cover

the current data easily. However, the width of the chosen cluster is oversized.

This datum creates a redundancy when added to the rule base. To mitigate the

adverse impact, one of the solutions is to replace the selected cluster merely by
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this datum. Then the fuzzy region can be expressed as follows:

Θwin = Z (5.25)

Σnew−1

win =
1

kwin
Σold−1

win (5.26)

where kwin is a constant with a value of 1.1, and the width of the cluster is

reduced until a desirable fuzzy region is obtained while satisfying Vwin ≤ Vmax.

Case IV: Rwin < ρa, Vwin ≤ Vmax

The same action is taken as in Case I, i.e., the adjustment process is executed

to stimulate the cluster to move towards the incoming data.

5.4 Adaptation of the rule consequent parame-

ters

In our chapter, an advanced evolving neuro-fuzzy system called GENEFIS is

utilized to build the evolving structure and adapt premise parameters of the

proposed G-controller, where the integration of multivariate Gaussian function

and GART+ method helps the controller to reduce the structural complexity and

to adapt with the dynamic behavior of nonlinear UAV plants. On the other hand,

being robust enough to guarantee the robustness of a system against external

perturbations, parameter variations, and unknown uncertainties, the SMC theory

is applied to adapt the consequent parameters of the G-controller. In SMC

scheme, the motion of a system is restricted to a plane known as sliding surface.

The SMC learning theory-based adaptation laws are developed to establish a

stable closed-loop system.

By following the regulations of SMC scheme as explained in [212–214], the
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zero dynamics of the learning error coordinate is defined as time-varying sliding

surface as follows:

Sssr(ug, u) = uARC(t) = ug(t) + u(t) (5.27)

The sliding surface for the highly nonlinear over-actuated autonomous vehi-

cles, namely FW MAV, and hexacopter plant to be controlled is expressed as:

sH = e+ λ1ė+ λ2

∫ t

0

e(τ)dτ (5.28)

where, λ1 = α2

α1
, λ2 = α3

α1
, e is the error which is the difference between the actual

displacement from the plant and desired position in case of altitude control. In

this work, in case the BIFW MAV plant, the sliding parameter α1 is initialized

with a small value 1× 10−2, whereas α2 is initialized with 1× 10−3, and α3 ≈ 0.

Each of the parameters is then evolved by using learning rates. These learning

rates are set in such a way so that the sliding parameters can achieve the desired

value in the shortest possible time to create a stable closed-loop control system.

A higher initial value of the sliding parameters is avoided, since it may cause a

big overshoot at the beginning of the trajectory. It can be abstracted that, to

make our proposed G-controller absolutely autonomous, these sliding parameters

are self-organizing rather than predefined constant values.

Definition : After a certain time tk a sliding motion will be developed on

the sliding manifold Sssr(ug, u) = uARC(t) = 0, where the state Sssr(t)Ṡssr(t) =

uARC(t)u̇ARC(t) < 0 to be satisfied for the whole time period with some nontrival

semi-open sub-interval of time expressed as [t, tk) ⊂ (0, tk).

It is expected to produce such online adaptation of consequent parameters of
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Figure 5.2: Self-evolving G-controller based closed-loop control system

the proposed G-controller that the sliding mode condition of the aforestated defi-

nition is enforced. The adaptation process of the proposed method is summarized

below.

The adaptation laws for the consequent parameters of the G-controller are

chosen as:

ω̇(t) = −α1G(t)ψ(t)sH(t), where ω(0) = ω0 ∈ <nR×1 (5.29)

where the term G(t) can be updated recursively as follows:

Ġ(t) = −G(t)ψ(t)ψT (t)G(t), where G(0) = G0 ∈ <nR×nR (5.30)

where n is the number of inputs to the controller, and R is the number of

generated rules. These adaptation laws guarantee a stable closed-loop control

system, where the plants to be controlled can be of various order.

Proof : The sliding parameter-dependent robustifying auxiliary control term

of the proposed controller can be expressed as follows:

uARC(t) = α1sH (5.31)
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The robustifying auxiliary control term uARC may suffer from high-frequency

oscillations in the control input. It is an undesirable phenomenon in sliding

mode controller and known as chattering effect. Due to simplicity, saturation, or

sigmoid functions are mostly used to reduce the chattering effect. In this work,

a saturation function is utilized to mitigate the adverse effect of chattering.

The G-controller’s final output signal can be expressed as follows:

ug(t) = ψT (t)ω(t) (5.32)

The overall control signal as observed in Figure (5.2) can be obtained as

follows:

u(t) = uARC(t)− ug(t) (5.33)

The cost function can be defined as:

J(t) =

∫ t

0

s2
H(τ)dτ

=
1

α2
1

∫ t

0

(u(τ) + ug(τ))2dτ

=
1

α2
1

∫ t

0

(u(τ) + ψT (t)ω(τ))2dτ (5.34)
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The gradient of J with respect to ω is as follows:

∇ωJ(t) = 0

⇒
∫
ψ(τ)u(τ)dτ + ω(t)

∫ t

0

ψ(τ)ψT (τ)dτ = 0

⇒ ω(t) =

[∫ t

0

ψ(τ)ψT (τ)dτ

]−1 ∫ t

0

ψ(τ)u(τ)dτ (5.35)

⇒ ω(t) = −G(t)

∫ t

0

ψ(τ)u(τ)dτ (5.36)

⇒ G−1(t)ω(t) = −
∫ t

0

ψ(τ)u(τ)dτ (5.37)

where,

G(t) =

[∫ t

0

ψ(τ)ψT (τ)dτ

]−1

(5.38)

G−1(t) =

∫ t

0

ψ(τ)ψT (τ)dτ (5.39)

The derivative of Equation (5.39) is as follows:

G−1(t)Ġ(t)G−1(t) = −ψ(t)ψT (t)

Ġ(t) = −G(t)ψ(t)ψT (t)G(t) (5.40)

From Equation (5.40), it is observed that Ġ(t) is a negative definite and G(t) is

decreasing over time, therefore G(t) ∈ l∞. Now executing the time derivative of

Equation (5.36) and utilizing Equation 6(a)(5.31), (5.32), (5.33), and (5.37) the
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following is obtained:

ω̇(t) = Ġ(t)G−1(t)ω(t)−G(t)ψ(t)u(t)

= −G(t)ψ(t)ψT (t)ω(t)−G(t)ψ(t)u(t)

= −G(t)ψ(t)
(
ψT (t)ω(t) + u(t)

)
= −α1G(t)ψ(t)sH(t) (5.41)

5.4.0.1 Stability Analysis

Definition : FLS is known as a general function approximator. Therefore, in

this work, it is assumed that without loss of generality there exists a ω∗ such

that:

u(t) = ψTω∗(t) + ε∗f (z) (5.42)

where ε∗f (z) = [ε∗f1, ε
∗
f1, ..., ε

∗
f1]T ∈ <k is the minimal functional approximator

error. In this work, the following is defined:

ω̃(t) = ω(t)− ω∗ (5.43)

In addition:

sH(t) = ψT ω̃(t) (5.44)
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Lemma 1 :

d(G−1(t)ω̃(t))

dt
= −G−1(t)Ġ(t)G−1(t)ω̃(t) +G−1(t) ˙̃ω(t)

= ψ(t)ψT (t)ω̃(t)− ψ(t)sH(t)

= ψ(t)sH(t)− ψ(t)sH(t)

= 0 (5.45)

This is indicating that G−1(t)ω̃(t) is not altering with respect to time, and

therefore G−1(t)ω̃(t) = G−1(0)ω̃(0), ∀t > 0.

lim
t→∞

ω̃(t) = lim
t→∞

G(t)G−1(0)ω̃(0) (5.46)

Since G(t) is decreasing and ω̃(t) ∈ l∞, ω(t) ∈ l∞. In this work, the following

Lyapunov function is considered:

V (t) =
1

2
ω̃T (t)G−1(t)ω̃(t) (5.47)

The time derivative of the Lyapunov function is as follows:

V̇ (t) =
1

2
ω̃T (t)G−1 ˙̃ω(t) +

1

2
ω̃T (t)Ġ−1ω̃(t)

= −ω̃T (t)ψ(t)sH(t)− 1

2
ω̃T (t)ψ(t)ψT (t)ω̃(t)

= −s2
H(t)− 1

2
s2
H(t)

= −3

2
s2
H(t) ≤ 0 (5.48)

From Equation (5.47), and Equation (5.48), it is observed that V (t) > 0,

and V̇ (t) ≤ 0. In addition, Equation (5.48) shows that V̇ (t) = 0, if and only

if e(t) = 0. It is indicating that the global stability of the system is guaranteed
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by the Lyapunov theorem. By utilizing Barbalat’s lemma [230], it can also be

observed that e(t) → 0 as t → ∞. It is ensuring the asymptotic stability of the

system. Thus, a convergence of the system’s tracking error to zero is witnessed.

5.5 Results and Discussion

Modeling and control of BIFW MAVs are recent research topics in the field

of autonomous unmanned aerial vehicles (UAVs). BIFW MAV exhibits some

advanced characteristics like fast flight, vertical take-off, and landing, hovering

and quick turn, and enhanced maneuverability when compared to similar-sized

fixed and rotary wing UAVs. To observe these features from a BIFW MAV,

an advanced control mechanism is necessary. Thus, our proposed self-evolving

G-controller is implemented in a BIFW MAV plant, which is inspired by the work

of [192, 193]. In this chapter, the G-controller is also attempted to control the

hexacopter. In case of the BIFW MAV plant, tracking of various trajectories of

altitude is observed to evaluate the controller’s performance. In the hexacopter

plant, not only the altitude but also the attitude-tracking performances are

witnessed. Being an evolving controller, the G-controller can evolve both the

structure and parameters. The observed structure-evolution procedure from the

G-controller’s performance is explained in the following subsection 5.5.1.

5.5.1 Observed evolution in G-controller’s structure

The proposed G-controller has the capability of evolving the structure by adding

or pruning rules like many other evolving controllers discussed in the litera-

ture review chapter. However, unlike the existing evolving controllers, GART+,

multivariate Gaussian function, SMC learning theory-based adaptation laws are
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combined in the G-controller. From the amalgamation of such advanced features,

a fast self-evolving mechanism is recorded with a lower computational cost.

In controlling the altitude and attitude of the highly nonlinear and complex

autonomous vehicles discussed in Section 4.3 of chapter 4, the activation of both

the rule growing and pruning mechanism are witnessed here. Due to the evolving

nature of the G-controller, the fuzzy rules are evolved in different time steps

for different trajectories. This rule evolution of the G-controller with respect

to various desired altitude of BIFW MAV plant are compiled in table 5.3. To

observe them graphically, the number of evolved rules for various trajectories of

BIFW MAV and hexacopter are plotted and disclosed in Figure 5.3.
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Figure 5.3: Generated rules of the self-evolving G-controller at various trajectories of
BIFW MAV and hexacopter where the trajectories are (a) step function altitude
for BIFW MAV, (b) customized altitude for BIFW MAV, (c) pitching for

Hexacopter, (d) rolling for Hexacopter
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5.5.2 Results

The G-controller’s performance is observed with respect to various reference

signals, and the results are compared with a TS fuzzy controller [231], and a

Proportional Integral Derivative (PID) controller, Radial Basis Function Neural

Network (RBFNN) and Generalized Regression Neural Network (GRNN) based

controllers. Our source codes are made publicly available in [225]. In the case of

the BIFW MAV, a variety of desired trajectories are utilized in the closed-loop

control system to evaluate controllers performance for 100 seconds, such as 1) a

constant altitude of 10 meters (m) expressed as Zd(t) = 10; 2) three different step

functions, where one of them is varying its amplitude from 0 m to 10 m, another

is from 5 m to 10 m, and the other one is varying from -5 m to 5 m, expressed

as Zd(t) = 10u(t− 20), Zd(t) = 5u(t) + 5u(t− 20), Zd(t) = −5u(t) + 10u(t− 20)

respectively; 3) three different square wave functions with a frequency of 0.1 Hz,

where their amplitudes are 1 m, 4 m, and 10 m correspondingly; 4) two square

wave functions with a frequency of 1 Hz. One of them has an amplitude of 1

m and the other one of 4 m; 5) a customized trajectory, where the amplitude

varies from 0 to 2 m; 6) a sawtooth wave function with an amplitude of 1 m

and a frequency of 1 Hz; 7) a sine wave function with an amplitude of 1 m

and a frequency of 1 Hz. For all these trajectories, the performances of our

proposed G-controller, TS fuzzy controller, PID controller, RBFNN controller,

GRNN controller are observed and compared, where higher tracking accuracy

is obtained from the G-controller. For a clearer understanding, some of these

observations are presented pictorially in figures from Figure 5.4 to Figure 5.7.

The performance of various controllers for a step function Zd(t) = 5u(t) +

5u(t−20) is observed in Figure 5.4, where our proposed G-controller outperformed

benchmark controllers. The performance for the square wave pulse trajectory
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with an amplitude of 4 m and a frequency of 1 Hz is observed in Figure 5.5, where

comparatively improved performance is witnessed from our G-controller. The TS

fuzzy controller fails to follow this trajectory. Therefore, the comparisons among

the PID, GRNN, RBFNN, and G-controller are exposed in Figure 5.5, where

the G-controller has beaten the benchmark controllers in terms of accuracy. In

case of other trajectories for BIFW MAV, superior performances are visualized

by our proposed G-controller. To compare the performance among controllers,

the root mean square error (RMSE), rising time, and settling time of all the

controllers for various reference signals are also measured and summarized in

Table 5.1, where the lowest RMSE is inspected from the G-controller. Since the

G-controller starts operating from scratch with an empty fuzzy set, the rising

time is comparatively longer than the PID controller. However, comparatively

lower settling time is indicating the proposed controller’s ability to settle to the

desired trajectory sharply.

A simulated wind gust is generated using a discrete wind gust Simulink model

and added to the BIFW MAV plant dynamics to check the robustness of our

proposed G-controller against unknown perturbations and uncertainties. This

simulated wind gust has a maximum velocity of 4 ms−1 and is applied to the

plant after 2 seconds of starting the operation. In the presence of the wind gust,

some of the trajectory tracking performances of the controllers are manifested

in Figure 5.7, where tracking with a very small deviation from the trajectories

are observed. However, this adverse effect has been minimized very sharply by

the G-controller. The RMSEs by considering the effect of wind gust are also

tabulated in Table 5.2.

Furthermore, the G-controller has been utilized to control altitude and the

outer loop of attitude (roll and pitch) of the simulated over-actuated hexacopter
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plant. All these results are compared with the PID, GRNN, and RBFNN con-

trollers. In case of controlling the altitude, the controllers are employed to control

the thrust of the control-mixing box of the plant. Due to the addition of the

moving mass, the rolling motion is not only controlled by the velocity in Y-axis

(vy) generated by the motors, but also by the mass moving in the Y direction due

to their Center of Gravity (CG)-shifting capability. Our proposed controller has

been employed in both facts to control the rolling motion. Similarly, to control

the pitching motion of the hexacopter, the G-controller has been used to control

both the velocity in X-axis (vx) and the mass moving in the X-direction. The

altitude tracking performances of hexacopter for various trajectories have been

presented in Figure 5.8, whereas the tracking of rolling and pitching are exhibited

in Figure 5.9. In all cases, better tracking performances are monitored from the

G-controller than that of benchmark controllers.
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5.5.3 Discussion

Unlike the benchmark PID, TS fuzzy, RBFNN and GRNN controller, the G-controller

starts the self-construction with an empty fuzzy set at the beginning of the

closed-loop control system. The benchmark controllers start operating with their

predefined control parameters. In case of the PID controller, control parameters

(proportional gain Kp, integral gain Ki, and differential gain KD) are obtained

offline before starting the closed-loop control operation. The TS fuzzy controller

consists of five rules, where univariate Gaussian membership functions are utilized

in each rule. To obtain the antecedents and consequent parameters of the rules,

the fuzzy controller is trained with the PID controller’s input-output dataset.

Similar offline training is required for the RBFNN and GRNN controllers, where

both of them have utilized ten nodes in the single hidden layer. Besides, both

are feed-forward neural networks, where sigmoid activation function is used. In

benchmark controllers, both the parameters and the structure are fixed before

the starting of the closed-loop operation. On the contrary, in G-controller not

only the GENEFIS but also the parameters of the sliding surface are evolving.

Those sliding parameters are initialized with a very small value, then evolved

to the desired value by using different learning rates. These rates are varied

with respect to the corresponding plants and desired actions. To the best of our

knowledge, this approach of evolving the sliding parameters is not utilized in the

existing evolving neuro-fuzzy controller. It makes the proposed G-controller a

fully self-evolving controller.
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5.6 Summary

The G-controller developed in this chapter is fully autonomous and evolving in

nature, i.e. it can alter its structure, and system parameters online to cope

with changing nonlinear dynamics of the plant to be controlled. Besides, the

synthesis of SMC theory-based adaptation laws improved its robustness against

various internal and external uncertainties. These desirable features make the

G-controller a suitable candidate for highly nonlinear autonomous vehicles. Our

proposed control algorithm is developed using C programming language consid-

ering the compatibility issues to implement directly in the hardware of a variety

of autonomous vehicles like BIFW MAV, quadcopter, hexacopter, etc. The

controller’s performance has been evaluated by observing the tracking perfor-

mance of an over-actuated BIFW MAV and an over-actuated hexacopter’s plant

for a variety of trajectories. The performances are compared to that of PID,

TS fuzzy, RBFNN, and GRNN controller to observe the improvements of our

proposed evolving G-controller. The G-controller starts building the structure

from scratch with an empty fuzzy set in the closed-loop system. It causes a slow

response at the very beginning of the loop, which is a common phenomenon

in any self-evolving controller. However, due to the integration of GART+,

multivariate Gaussian function, and SMC learning theory-based adaptation laws,

the self-evolving mechanism of the G-controller is fast with a lower computational

cost. In addition, wind gust has been added to the BIFW MAV plant as environ-

mental uncertainties to evaluate the G-controller’s robustness against unknown

perturbations, where satisfactory tracking of the desired trajectory proves the

proposed controller performance to eliminate uncertainty. The G-controller’s

stability is confirmed by both the Lyapunov theory and experiments. In the next
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chapter, another novel evolving neuro-fuzzy system-based autonomous learning

algorithm has been utilized to model an UAV online from the flight test data

streams.
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Table 5.1: Measured RMSE, rise and settling time of various controllers in operating
the BIFW MAV

Desired
Trajectory (Zd)

Maximum
amplitude
(meter)

Measured
features

Without gust

PID
TS-
Fuzzy

G-
control

RBF-
NN

GR-
NN

Constant
height

10

RMSE 0.6460 0.6855 0.6631 0.7108 0.5881

Rise time (ms) 50.772 61.884 41.208 55.828 51.493

Settling time
(ms)

560.9 261.9 127.1 415.9 230.8

Step function

Zd(t) =
5u(t) +
5u(t− 20)

RMSE 0.3866 0.4043 0.4000 0.4571 0.4401

Rise time (ms) 2024.8 2039.0 2023.6 2033.3 2027.5

Settling time
(ms)

2442.5 2124.7 2088.7 2414.2 2129.1

Zd(t) =
10u(t− 20)

RMSE 0.6265 0.7728 0.5731 0.7119 0.5896

Rise time (sec) 54.927 60.832 51.271 55.785 51.544

Settling time
(ms)

2539.5 2270.0 2104.9 2416.0 2232.2

Zd(t) =
−5u(t) +
10u(t− 20)

RMSE 0.6695 0.8156 0.6534 0.7623 0.6446

Rise time (ms) 42.710 28.145 41.823 24.511 26.430

Settling time
(ms)

2538.3 2267.0 2104.7 2407.0 2220.3

Square wave
function
(f = 0.1 Hz)

1

RMSE 0.2039 0.2119 0.1742 0.2635 0.1942

Rise time (ms) 10.855 21.463 44.097 24.417 20.409

Settling time
(ms)

9823.8 9637.9 9515.7 9840.1 9643.9

4

RMSE 0.8908 0.8910 0.8336 0.9594 0.8487

Rise time (ms) 47.903 24.645 51.995 23.595 25.523

Settling time
(ms)

9883.0 9664.7 9542.7 9826.7 9667.1

10

RMSE 2.7380 312.51 2.5405 4.2534 2.6128

Rise time (ms) 41.995 2394.4 28.507 31.603 27.292

Settling time
(ms)

9915.5 9963.0 9611.6 9731.5 9672.2

Square wave
function(f =
1 Hz)

1

RMSE 0.6718 0.6410 0.5720 0.8986 0.6452

Rise time (ms) 12.689 21.555 44.521 21.467 21.441

Settling time
(ms)

9952.8 9969.4 9822.9 9954.0 9956.5

4

RMSE 3.1435 2.8409 2.6773 3.37674 2.7638

Rise time (ms) 95.759 23.289 52.142 16.512 24.555

Settling time
(ms)

9883.8 9903.5 9853.0 9952.6 9874.9

Customized
wave function

2

RMSE 0.2856 0.1771 0.0978 0.23799 0.1459

Rise time (sec) 14.819 4.7401 4.0331 5.6073 4.4579

Settling time
(sec)

995.19 993.49 993.46 995.69 994.12

Sawtooth wave
function(f =
1 Hz)

1

RMSE 0.5234 0.4303 0.4781 0.64061 0.5590

Rise time (ms) 174.82 208.67 207.99 199.46 208.27

Settling time
(ms)

9986.4 9989.5 9983.6 9991.3 9989.3

Sine wave
function
(f = 1 Hz)

1 RMSE 0.2096 0.0733 0.0355 0.13735 0.0725
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Table 5.2: Measured RMSE, rise and settling time of various controllers in operating
the BIFW MAV by considering wind gust

Desired
Trajectory (Zd)

Maximum
amplitude
(meter)

Measured
features

With gust

PID
TS-
Fuzzy

G-
control

RBF-
NN

GR-
NN

Constant
height

10

RMSE 0.6466 0.6867 0.6635 0.7150 0.5897

Rise time (ms) 50.772 61.884 41.208 55.828 51.493

Settling time
(ms)

574.4 261.5 127.1 417.8 230.7

Step function

Zd(t) =
5u(t) +
5u(t− 20)

RMSE 0.3868 0.4016 0.3988 0.4520 0.4365

Rise time (ms) 2024.7 2038.0 2023.0 2031.7 2025.6

Settling time
(ms)

2455.9 2127.8 2087.1 2406.7 2131.6

Zd(t) =
10u(t− 20)

RMSE 0.6216 0.7638 0.5665 0.7001 0.5843

Rise time (sec) 52.302 60.257 45.895 56.168 51.263

Settling time
(ms)

2551.4 2163.5 2075.8 2426.2 2138.3

Zd(t) =
−5u(t) +
10u(t− 20)

RMSE 0.6648 0.8070 0.6476 0.7511 0.6398

Rise time (ms) 39.297 27.655 27.344 24.485 26.339

Settling time
(ms)

2550.2 2162.3 2075.8 2418.6 2135.3

Square wave
function
(f = 0.1 Hz)

1

RMSE 0.2021 0.2140 0.1744 0.2703 0.1967

Rise time (ms) 10.669 20.704 41.700 23.019 19.525

Settling time
(ms)

9823.5 9637.9 9515.7 9840.1 9643.9

4

RMSE 0.8891 0.8875 0.8310 0.9530 0.8454

Rise time (ms) 49.739 24.118 51.3939 23.485 25.277

Settling time
(ms)

9883.0 9664.7 9542.7 9826.7 9667.1

10

RMSE 2.7339 312.52 2.5375 4.2429 2.6042

Rise time (ms) 43.790 2394.4 27.961 31.507 27.484

Settling time
(ms)

9915.4 9963.0 9611.6 9731.5 9672.2

Square wave
function(f =
1 Hz)

1

RMSE 0.6720 0.6329 0.5733 0.8968 0.6420

Rise time (ms) 12.682 21.492 44.237 21.315 21.349

Settling time
(ms)

9952.1 9969.4 9822.8 9954.2 9956.5

4

RMSE 3.1335 2.8299 2.6766 3.3516 2.7579

Rise time (ms) 95.319 23.273 52.064 16.506 24.550

Settling time
(ms)

9883.8 9903.5 9852.9 9952.7 9875.3

Customized
wave function

2

RMSE 0.2845 0.1742 0.0969 0.23282 0.1428

Rise time (sec) 15.533 13.347 10.049 1.3929 14.723

Settling time
(sec)

994.99 993.44 993.42 995.24 994.14

Sawtooth wave
function(f =
1 Hz)

1

RMSE 0.5239 0.4253 0.4775 0.63287 0.5531

Rise time (ms) 177.67 211.69 209.39 203.594 211.19

Settling time
(ms)

9991.2 9989.3 9982.8 9986.4 9989.0

Sine wave
function
(f = 1 Hz)

1 RMSE 0.1879 0.0762 0.0394 0.14043 0.0763
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Table 5.3: Variation of rule generation at various trajectories of BIFW MAV

Desired
Trajectory (Zd)

Maximum
height
(meter)

Rule Time
step of
Rule
Gen-
era-
tion

Constant height 10
1 1
2 40
3 45

Step function

Zd(t) =
5u(t) + 5u(t−
20)

1 1
2 8
3 26

Zd(t) =
10u(t− 20)

1 1
2 61
3 2012

Zd(t) =
−5u(t) +
10u(t− 20)

1 1
2 8
3 13

Square wave
function
(frequency=0.1
Hz)

1
1 1
2 52
3 63

4
1 1
2 55
3 129

10
1 1
2 95
3 101

Square wave
function
(frequency=1
Hz)

1
1 1
2 52
3 63

4
1 1
2 55
3 129

Customized
wave function

1
1 1
2 56
3 143

Sawtooth wave
function

1
1 1
2 39
3 48

Sine wave
function

1
1 1
2 49
3 60





Chapter 6

Online Identification of an

Unmanned Aerial Vehicle from

Data Streams

The work presented in this chapter has been published in the following article:

• Ferdaus, M. M., Pratama, M., Anavatti, S. G., Garratt, M. A. ”Online

Identification of a Rotary Wing Unmanned Aerial Vehicle from Data

Streams.” Applied Soft Computing 76 (2019): 313-325.

Abstract

This chapter proposes a novel online identification scheme, applied to a quad-

copter using real-time experimental flight data streams based on an autonomous

learning algorithm, namely Metacognitive Scaffolding Interval Type 2 Recurrent

Fuzzy Neural Network (McSIT2RFNN). The metacognitive concept enables the

what-to-learn, how-to-learn, and when-to-learn scheme, and the scaffolding theory

realizes a plug-and-play property which strengthens the online working principle of

189
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the proposed Evolving Intelligent System (EIS). Our proposed approach demon-

strated significant improvements in both accuracy and complexity against some

renowned existing variants of the McSLMs and EISs.

6.1 Introduction

Unmanned aerial vehicles (UAVs) are aircraft with no aviator on-board. Among

various UAVs, the most commonly used one is the quadcopter. The quad-

copter has six degrees of freedom (DOFs): they are three translational motions

along the X, Y, and Z-axes, and three rotational motions (θ, φ, ψ). These 6

DOFs is regulated by four control inputs (Z, θ, φ, and ψ) only, which makes

it an under-actuated system. Mathematical modeling of this nonlinear and

under-actuated system is challenging. Until now, most quadcopter models are

based on dynamic equations of the system, where the aggressive trajectories of

quadcopters are difficult to integrate. In addition, various non-stationary factors

like motor degradation, time-varying payload, wind gusts, and rotor damage are

extremely difficult to predict and model mathematically and consequently hard

to incorporate. These challenges are leading to increasing research interest in

data-driven modeling techniques for system identification with real-time sensory

data and limited expert knowledge.

In the data-driven techniques, system identification is a vital part. Success-

ful system identification indicates the closeness of the input-output behavior

of the identified system with the input-output behavior of the actual plant.

The data-driven system identification or modeling can play an important role

in quadcopter systems since their counterpart i.e. the model-based parameter

identification requires several experimental tests to obtain the model parameters.
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Even some parameters are difficult to obtain from the experiments and are

problem-dependent. Thus, the model-based system requires a lot of effort for

better accuracy. To minimize such effort, the data-driven quadcopter model

can be used as a generalized model with different motors, propellers or sensor

combinations. Some of the commonly used non-linear data-driven system iden-

tification techniques are: describing function method, block-structured systems,

FLSs, NNs, and Nonlinear Autoregressive Moving Average Model with Exoge-

nous inputs (NARMAX methods). Among these techniques, FLS [232–235] and

NN-based [236] artificial intelligent systems are promising computational tools

since they demonstrate learning capability from a set of data and approximate

reasoning trait of human beings which cope with the impression and uncertainty

of the decision making the process [237]. Furthermore, the fuzzy system offers a

highly transparent solution which can be followed easily by the operator [238].

Identification of helicopter dynamics with the flight data using Nonlinear Auto

Regressive eXogenous input (NARX) model, neural network with internal mem-

ory known as Memory Neuron Networks (MNN), and Recurrent MultiLayer

Perceptron (RMLP) networks has been accomplished in [8]. Nonlinear sys-

tem identification using Lyapunov-based fully tuned Radial Basis Function NN

(RBFNN) and Extended Minimal resource allocating network (EMRAN) has

been accomplished in [239,240].

However, a major limitation of these conventional FLS and NN-based quad-

copter modeling is the inability to evolve their structure to adapt to sudden

changes. They also adopt a batched working principle which has to revisit entire

dataset over multiple passes rendering them not scalable for online real-time de-

ployment. To solve the problems that exist with conventional intelligent systems,

Evolving Intelligent Systems (EISs) is a good candidate [44], since they learn
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from scratch with no base knowledge and are embedded with the self-organizing

property which adapts to changing system dynamics [50]. EIS fully work in a

single-pass learning scenario, which is scalable for online real-time requirement

under limited computational resources such as UAVs platform [53]. Nevertheless,

EISs remain cognitive in nature where they still require scanning all samples

regardless of their true contribution and training samples must be consumed

immediately with the absence of learning capability to determine ideal periods

to learn these samples [241]. The Metacognitive Learning Machine (McLM)

technique enhances the adaptability of EIS by interpreting the meta-memory

model of [75] where the learning process is developed in three phases, namely

what-to-learn, how-to-learn and when-to-learn [242, 243]. The what-to-learn is

implemented with a sample selection mechanism which determines whether to

accept data samples, the how-to-learn is where the underlying training process

takes places, the when-to-learn is built upon a sample reserved mechanism which

allows to delay the training process of particular samples when their significance

does not suffice to trigger the learning mechanism.

Recent advances in the McLM [74, 244, 245] have involved the concept of

scaffolding theory as a foundation of the how-to-learn- another prominent theory

in psychology to help learners to solve complex tasks. The use of scaffolding the-

ory is claimed to generate the plug-and-play property where all learning process

are self-contained in the how-to-learn without over-dependence on pre-and/or

post-processing steps. It is worth noting that the scaffolding theory does not

hamper the online learning property of EISs since all learning components fol-

low strictly single-pass learning mode, which is well-suited for online real-time

applications. The scaffolding theory consists of two parts: active supervision

and passive supervision. The passive supervision is constructed using parameter
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learning theories which demand target variables to elicit system errors for cor-

rection signals while the active supervision features three components: fading,

complexity reduction, and problematizing. The complexity reduction alleviates

learning complexities by applying feature selection, data normalization, etc. and

the problematizing focuses on concept drifts in data distributions while the fading

component is meant to reduce the network complexity by discarding inactive

components using the pruning and merging scenarios.

6.2 Contribution

A novel online system identification of quadcopter based on a recently developed

McSLM [83], namely McSIT2RFNN, is proposed in this chapter. McSIT2RFNN

is structured as a six-layered network architecture actualizing interval type-2

Takagi Sugeno Kang (TSK) fuzzy inference scheme. This network architecture

features a local recurrent connection which functions as an internal memory

component to cope with the temporal system dynamics and to minimize the

use of time-delayed input attributes [83]. Note that the local recurrent link does

not compromise the local learning property because the spatio-temporal firing

strength is generated by feeding previous states of system dynamics back to itself

[83]. The rule-layer consists of interval type-2 multivariate Gaussian functions

with uncertain means which characterizes scale-invariant trait and maintains

inter-correlation among input variables.The rule consequent layer is constructed

by the nonlinear Chebyshev polynomial up to the second-order, which expands

the degree of freedom of a rule consequent [82]. The polynomial is utilized here to

rectify the approximation power of the zero-or first-order TSK rule consequent.

McSIT2RFNN features unique online learning techniques where synergy be-
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tween the metacognitive learning scenario and the scaffolding theory comes into

picture while retaining computationally light working principle through a fully

one-pass learning scenario for online real-time applications. The learning process

starts from the what-to-learn process using an online active learning mechanism,

which actively extracts relevant training samples for the training process while

ruling out inconsequential samples for the training process. Selected training sam-

ples are then processed further in the how-to-learn designed under the scaffolding

concept. The problematizing facet of the scaffolding theory is depicted by the rule

growing mechanism which assesses statistical contribution of data points to be a

candidate of a new rule. This scenario controls stability-and plasticity dilemma

in learning from data streams since it guides to proper network complexity

for a given problem and addresses changing data distributions by introducing

a new rule when a change is detected. A rule recall scenario is put forward

to represent the problematizing aspect which tackles the temporal or recurring

drift. This learning mechanism plays a vital role during real-flight missions of

the UAV because previously seen flight conditions often re-appear again in the

future. The complexity reduction component is portrayed by an online feature

selection scenario which puts into perspective relevance and redundancy of input

features. This learning component lowers the input dimension which contributes

positively to models generalization and computational complexity. The fading

process relies on the rule merging scenario and the rule pruning scenario. The

rule pruning scenario removes obsolete rules which are no longer relevant to

current training concept by studying mutual information between fuzzy rule and

the target variable. Significantly overlapping rules are coalesced into a single

rule by the rule merging scenario and this mechanism is capable of cutting down

network complexity and improving interpretability of rule semantics. The efficacy
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of our proposed methodology was carefully investigated through simulations using

real-world flight data as well as real-time flight tests. Our algorithm was bench-

marked with several prominent algorithms, and it was shown that our algorithm

produced the most encouraging performance in attaining a trade-off between

accuracy and complexity.

The proposed methodology carries the following advantages:

• It is compatible with online real-time deployment in the real flight tests since

it works fully in the single-pass learning mode. Furthermore, McSIT2RFNN

does not necessarily see all sensory data streams due to its what-to-learn

component further substantiating scalability of McSIT2RFNN in handling

online data streams.

• It features a highly flexible foundation which self-evolves its network struc-

ture and parameters in accordance with variations of data streams; no

matter how slow, rapid, gradual, and temporal a change in data streams is.

• McSIT2RFNN is created from a combination between the interval type-2

fuzzy system which is more robust to face uncertainties than its type-1

counterparts and the recurrent network architecture which is capable of

coping with temporal system dynamics and lagged input variables.

• It actualizes a plug-and-play working principle where all learning modules

are embedded in only a single training scenario without the requirement of

pre-and/or post-training steps.
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6.3 Main Features

The major features of the evolving neuro-fuzzy system proposed in this chapter

are summarized as follows:

• A novel online system identification of quadcopter based on a psychologi-

cally inspired learning machine, namely McSIT2RFNN, is proposed.

• Real-time flight tests were done where real-world flight data were obtained

and preprocessed. We also made these flight data publicly available for the

convenience of readers.

• The efficacy of the proposed approach was validated by numerical exper-

imentation. This includes simulations using real-world flight data and

real-time flight tests [246].

The remaining parts of this chapter are organized as follows: Section 6.4

describes the learning policy of the McSIT2RFNN technique by describing both

the cognitive and meta-cognitive components. In section 6.5, the details of the

quadcopter flight experiment and system identification are explained. Finally,

the chapter ends with concluding remarks in section 6.6.

6.4 Online Learning Policy of McSIT2RFNN

This section describes the learning policy of Meta-cognitive Scaffolding Based

Interval Type 2 Recurrent Fuzzy Neural Network (McSIT2RFNN) [82]. The

McSIT2RFNN has two components namely cognitive and meta-cognitive. The

cognitive component corresponds to the network structure of McSIT2RFNN

while the metacognitive component consists of learning scenarios to fine-tune

the cognitive component.
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6.4.1 Cognitive mechanism of McSIT2RFNN

In McSIT2RFNN, a six-layered recurrent network structure with a local recurrent

connection is utilized for the hidden layer. The first layer is known as the input

layer, which passes the input to the second layer directly as follows:

(
ηout
)

1
k =

(
ηatv
)1

(xk) = xk (6.1)

where ηout represents output of a layer, and ηatv denotes the forward activation

function of a layer.

Unlike the conventional neuro-fuzzy system, the univariate Gaussian function

is replaced by an interval-valued multivariate Gaussian function with uncertain

mean and then it is utilized in the second layer of the McSIT2RFNN, which is

also known as the rule layer. This Gaussian function consequently generates an

interval-valued firing strength as follows:

η̃out
2 =

(
ηatv

2
)
(ηout

1) = exp(−(Γ2
n − ζ̃i)Σ−1

i (Γ2
n − ζ̃i)) (6.2)

where, η̃out
2 = [ηout

2, ηout
2], ζ̃i = [ζ

i
, ζ i], and ζ̃i is the uncertain centroid of the

ith rule abiding by the condition ζ
i
< ζ i. If we consider to model or identify a

Multi-Input-Single-Output system, the If-Then rule of the McSIT2RFNN can be

expressed as follows:

Rj : If Xn is Ñoutj 2 Then yj = xjeΩj (6.3)

where xje, Ωj are respectively an extended input variable resulting from a non-

linear mapping of the wavelet coefficient (xe ∈ <1×(2µ+1)) and a weight vector

(Ω ∈ <1×(2µ+1)). The consequent part of the rule is explained in the fifth
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layer. However, the rule presented in Equation (6.3) is not transparent enough

to expose atomic clause of the human-like linguistic rule [247]. It operates in a

totally high dimensional space, therefore cannot be represented in fuzzy set. Since

the non-axis-parallel ellipsoidal rule cannot be expressed directly in an interval

type-2 fuzzy environment, a transformation strategy is required [248,249]. Such a

transformation technique should have the capability of formulating the fuzzy set

for the non-axis parallel ellipsoidal cluster [250,251]. The transformation strategy

developed in [1] is extended in this work in terms of interval type-2 system, which

can be expressed as follows:

σi =
(ri + ri)

2
√

Σii

(6.4)

where Σii represents the diagonal element of the covariance matrix and r̃i denotes

the Mahalanobis distance, which is r̃i = (Xn − ζ̃i)Σ
−1
i (Xn − ζ̃i) = [ri ri],

where ri is the upper and ri is the lower Mahalanobis distance and ζ̃i = [ζ
i
, ζ i].

No transformation is required for the mean or centroid (ζ̃i) of the multivariate

Gaussian function, since it can be directly applied to the fuzzy set level. After

successfully presenting the interval-valued multi-variable Gaussian function into

fuzzy set, the fuzzification process of the upper and lower Gaussian membership

functions with uncertain means ζ̃j,i = [ζ
j,i
, ζj,i] is exhibited as follows:

η̃2
outj,i

= exp

−(η2
atvi
− ζ̃j,i
σj,i

)2
 N(ζ̃ji , σ

j
i , η

2
atvi

) ζ̃j = [ζ
j

i , ζ
j

i
] (6.5)

η2
outj,i

=


N(ζ

j

i , σj,i; η) η2
atvi

< ζ
j

i

1 , ζ
j

i < xi < ζj
i

N(ζ̃ji , σj,i; η
2
atvi

) η2
atvi

> ζj
i

(6.6)



6.4. ONLINE LEARNING POLICY OF MCSIT2RFNN 199

η2

outj,i
=


N(ζj

i
, σji ; η) xi ≤

(ζ
j
i+ζ

j
i
)

2

N(ζ
j

i , σ
j
i ; η

2
atvi

) xi >
(ζ
j
i+ζ

j
i
)

2

(6.7)

After getting the above expression of the fuzzy set, the fuzzy rule exposed in

Equation (6.3) can be transformed Equation (6.2) into a more interpretable form

as follows:

Rj : If X1 is η̃out1
2 and X2 is η̃out2

2 and ... and Xnu is η̃outnu
2 Then yj = xieΩi

(6.8)

where j is the number of rules, nu is the number of inputs. This transformation

technique has overcome the issue of transparency of the multi-variable Gaussian

function. The validity of η̃2
outj,i

= [η2
outj,i

, η2
outj,i

] is proven in [83]. In the third

layer, the upper and lower bound of membership degrees are connected using

the product t−norm operator in each fuzzy set and generates an interval-valued

spatial rule firing strength as follows:

(
ηout
)3

i
=

nu∏
k=1

(
ηatv
)3

i,k
=

nu∏
k=1

(
ηout
)2.1

i,k
,
(
ηout
)3

i
=

nu∏
k=1

(
ηatv
)3

i,k
=

nu∏
k=1

(
ηout
)2.1

i,k
(6.9)

The fourth layer is known as temporal firing layer. In this layer of McSIT2RFNN

a local recurrent connection is observed, where the spatial firing strength of

previous observation is fed back to itself and generates a temporal firing strength

as follows:

(
ηout
)4

i,o
= Λo

i

(
ηatv
)4

i
+ (1− Λo

i )
(
ηout
)4

i
(n− 1) (6.10)(

ηout
)4

i,o
= Λo

i

(
ηatv
)4

i
+ (1− Λo

i )
(
ηout
)4

i
(n− 1) (6.11)

where Λo
i ∈ [0, 1] denotes a recurrent weight for the ith rule of the oth class.
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The fifth layer of McSIT2RFNN is the consequent layer, where the Chebyshev

polynomial up to the second-order is utilized to construct the extended input

feature xe [252]. This Chebyshev polynomial is expressed in Equation (6.12).

τn+1(x) = 2xkτn(xk)− τn−1(xk) (6.12)

If X is considered as a 2-D input composition like [x1, x2], then the extended input

vector can be presented as xe = [1, x1, τ2(x1), x2, τ2(x2)], where xe ∈ <1×(2µ+1),

and µ represents the input dimension. This layer functions as an enhancement

layer that maps to the original input vector to high dimensional space to rectify

the mapping capability of the rule consequent. The extended input variable xe

is weighted and generates an output of the consequent layer as follows:

(
ηout
)5

i
= xieΘi (6.13)

where Θi is a connection weight between the temporal firing layer and the output

layer. In the output layer, type reduction mechanism is observed, where q

design coefficient method is used instead of commonly used Karnik-Mendel (KM)

technique. The final crisp output of the McSIT2RFNN can be expressed as

follows:

yout =
(
ηout
)6

=
(1− qout)

(
ηout
)4

i,o

(
ηout
)5

i∑R
i=1

(
ηout
)4

i,o

+
qout
(
ηout
)4

i,o

(
ηout
)5

i∑R
i=1

(
ηout
)4

i,o

(6.14)

where R represents the number of fuzzy rules and q is the design factor q ∈ <1×no.

The q design factor based type reduction mechanism performs by altering the

proportion of the upper and lower rules to the final crisp output of McSIT2RFNN,

where the normalization term of the original q design factor [71] is modified to
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overcome the invalid interval as shown in [82].

6.4.2 Meta-cognitive learning mechanism of McSIT2RFNN

In meta-cognitive learning policy, incoming training data streams
(
(Xn,), where

Xn is an input variable vector
)

are fed into the what-to-learn section. In this

section, the probability of a sample to stay in the existing cluster is calculated

as:

Pr(Xn ∈ Ni) =
1
Ni

∑Ni
n=1 SM(XN , Xn)∑R

i=1

∑Ni
n=1

SM (XN ,Xn)
Ni

(6.15)

where, XN is representing the current incoming data stream and Xn is indicating

the nth support of the ith cluster; meanwhile SM(XN , Xn) is defining the simi-

larity measure. Since Equation (6.15) requires to revisit previously seen samples,

its recursive form is formulated as follows:

∑Ni
n=1 SM(XN , Xn)

Ni

=

∑Ni−1
n=1

∑u
j=1(Xn,j −XN,j)

2

(Ni − 1)u

=
(
∑u

j=1(Ni − 1)xN,j
2 − 2

∑u
j=1 xN,jKi,j + vNi)

(Ni − 1)u
(6.16)

where, KNi,j = KNi−1,j + xNi−1,j, and vNi = vNi−1 +
∑u

j=1 xNi−1,j
2.

The necessity of a data sample to be trained by the how-to-learn section is

monitored by the what-to-learn section through the computation of the sample’s

entropy which portrays the level of uncertainty caused by the samples as follows:

Htr(N |Xn) = −
R∑
i=1

Pr(Xn ∈ Ni) logPr(Xn ∈ Ni) (6.17)

In McSIT2RFNN structure, a highly uncertain data stream is accepted as a

training sample since it helps to mitigate the uncertainties in learning the target

function. However, it opens the door for outliers to be fed to the how-to-learn
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section. To overcome this shortcoming, the entropy or uncertainty measured by

Equation (6.17) can be weighted by its average distance to the R, which are the

densest local regions of the cognitive part [253]. Thus, computation of an average

distance between the enquired sample and focal point can be expressed as:

Ad(X) =

∑R
i=1 similarity(X,Ci)

R
(6.18)

where similarity (X,Ci) is a distance function that computes the pair-wise sim-

ilarity value between two examples. Finally, combining the concept of Equation

(6.18) in Equation (6.17) the Htr can be modified as:

Htr = Htr(N |Xn)× Ad(X) (6.19)

Acceptance of a data stream depends on the magnitude of Htr in Equation

(6.19), where Htr should be greater than or equal to a threshold as follows:

Htr ≥ δ (6.20)

where δ denotes an uncertainty threshold, which is not constant rather it is

adjusted dynamically. In this method, δ is set as δN+1 = δN(1 ± ss), where

δN+1 = δN(1 + ss) creates augmentation by admitting training data from the

training process for minimizing the computational load and vice versa. The

value of the step size ss is set as 0.01, which refers to the thumb rule in [254].

This tuning scenario is necessary notably in non-stationary environments since a

concept change directly hits the sample consumption.

After satisfying the condition of Equation (6.20), a data stream is fed to the

how-to-learn phase. The how-to-learn phase of McSIT2RFNN is derived from
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the scaffolding theory. It encompasses both parameter and structural learning

scenarios which are done in the strictly single-pass manner.

6.4.2.1 Mechanism of growing rules

The feature of growing rules in the how-to-learn section is governed by the Gen-

eralized Type-2 Datum Significance (GT2DQ) method forming a modification of

the neuron significance of [255,256] to the context of interval-valued multi-variable

fuzzy rule. Gaussian Mixture Model (GMM) is used in this method as the

input density function to cope with complex and even irregular data clouds.

The extended formula of the neuron significance for the multi-variable Gaussian

neuron [256] is further extended to the generalized interval-valued neuron in [83],

which is utilized in the rule growing mechanism of this work. To express the

significance of ith multi-variable interval-valued rule, the Lu− norm of the error

function is weighted by the input density function which can be presented as

follows:

Ei = ‖Ωi‖u(1− q)
(∫
<nu

exp(−u||x− ζ i||2Σip(x)dx)

)1/u

+ ‖Ωi‖u q
(∫
<nu

exp(−u||x− ζ
i
||2Σip(x)dx)

)1/u

(6.21)

where the Gaussian term under the integral can be written as follows:

(2π/u)nu/2det(Σi)
−1/2 ×N(x; ζ̃iΣ

−1
i /u), ζ̃i = [ζ

i
, ζ i]

Therefore, it can be realized that the neuron significance depends on the

input density p(x). Usually, the input density p(x) is considered to follow simple

data distributions, as explained in [49] or uniform data distribution, as described
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in [56]. Utilizing the concept of GMM, p(x) is able to cope with complex data

distributions and can be expressed as follows:

p(x) =
M∑
m=1

αmN(x; vm, Σm) (6.22)

where N(x; vm, Σm) denotes multi-variable Gaussian probability density function

with mean vector vm ∈ <1×nu and covariance matrix Σm ∈ <nu×nu, αm denotes

the mixing coefficients which satisfies the condition
∑M

m=1 αm = 1, αm > 0. Now

using the GMM in the input density p(x), the further derivation can be expressed

as follows:

Ei =‖Ωi‖u(1− q)((2π/u)det(Σi)
−1/2

×
M∑
m=1

αm

∫
<nu

N(x; ζ iΣ
−1
i /u)N(x; vm, Σm)dx)1/u

+ ‖Ωi‖uq((2π/u)det(Σi)
−1/2

×
M∑
m=1

αm

∫
<nu

N(x; ζ
i
Σ−1
i /u)N(x; vm, Σm)dx)1/u (6.23)

The integral term of Equation (6.23) is a product of two Gaussian distributions

and can be solved as
∫
<nu N(x; ζ̃iΣ

−1
i /u)N(x; vm, Σm)dx = N(ζ̃i−vm; 0, Σ−1

i /u+

Σm). Accordingly, the final formula of the GT2DQ method to express the

significance of the ith interval-valued multivariable rule [83] is expressed as:

Ei = ‖Ωi‖u(1− q)
{

(2π/u)n
/

2det(Σi)
−1/2N iγ

T
}1/u

+ ‖Ωi‖u q
{

(2π/u)n
/

2det(Σi)
−1/2N iγ

T
}1/u

(6.24)

In Equation (6.24) the mixing coefficient is denoted by γ and can be expressed
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as:

γ = [α1, ..., αm, ..., αM ] ∈ <1×m (6.25)

In Equation (6.24), N i and N i are defined as N i = bN(ζ i−v1; 0,Σ−1
i /u+Σ1), (ζ i−

v2; 0,Σ−1
i /u + Σ2), ..., (ζ i − vm; 0,Σ−1

i /u + Σm), ..., (ζ i − vM ; 0,Σ−1
i /u + ΣM)c,

N i = bN(ζ
i
− v1; 0,Σ−1

i /u+ Σ1), (ζ
i
− v2; 0,Σ−1

i /u+ Σ2), ..., (ζ
i
− vm; 0,Σ−1

i /u+

Σm), ..., (ζ
i
− vM ; 0,Σ−1

i /u+ ΣM)c.

L2-norm is utilized in McSIT2RFNN. Based on empirical analysis and pre-

vious research [82], the value of u is 2. Besides, some parameters of the GMM,

namely the mean vm, the covariance matrix Σm, the mixing coefficients αm, and

the number of mixing models M, are acquired using previously recorded data

points Nprerecord like [49, 255, 256]. In today’s world of big data, having access

to the Nprerecord is easy. Furthermore, the total number of training data samples

is noticeably larger than that of the pre-recorded data samples. The proposed

method’s sensitivity with regards to an altered number of prehistory samples is

analyzed in [82], which proves that the Nprerecord is not case sensitive.

In McSIT2RFNN, the generation of the hypothetical rule depends upon an

incoming data stream and therefore, ci, ci, Σ−1
i are substituted with cR+1, cR+1,

Σ−1
R+1. The formula for crafting a hypothetical rule can be expressed as follow:

C̃R+1 = XN ±∆X, diag(ΣR+1) =
max((Ci − Ci−1), (Ci − Ci+1))√

1
ln(ε=0.5)

(6.26)

where ε is a predefined constant with a set value of 0.5. The ε regulates the

proportion of rule base plenitude. ∆X is the uncertainty factor which initializes

the footprint of uncertainty. In McSIT2RFNN, the value of ∆X is fixed at 0.1
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for simplicity, although one can also use an optimization technique to adjust the

uncertainty factor. A hypothetical rule can be added as a new rule by utilizing

Equation (6.26), only if the condition of Equation (6.27) is satisfied as follows:

max
i=1,...,R

(Ei) ≤ (EP+1) (6.27)

However, this condition itself does not suffice to be the only criteria to judge

the contribution of a hypothetical rule because of the fact where limited infor-

mation in respect to the spatial proximity of a data sample to existing rules is

included. The distance information is required to delineate its relevance to current

training concept. To overcome the limitation, another rule growing condition

need to be satisfied as follows:

Fz ≤ ρ, where Fz = max
i=1,...,R

(
q
(
ηout
)3

i
+ (1− q)

(
ηout
)3

i

)
(6.28)

where ρ denotes a critical value of the chi-square distribution χ2 with nu degrees of

freedom and a significant α level. In [82], the ρ is expressed as ρ = exp(−χ2(α)),

which is similar to the expression of [257]. In McSIT2RFNN, the value of α

is set as 5%. To compute the Fz of Equation (6.28), the q design factors are

applied for considering the effect of lower and upper rules. When a newly added

rule satisfies the condition of Equation (6.28), the new rule is sufficiently away

from the existing rules, and consequently, has a low risk of overlapping. A similar

approach is observed in [49,255,256]. However, McSIT2RFNN utilizes the spatial

firing strength instead of measuring point to point distance [49, 255, 256]. The

second section of Equation (6.28) indicates the maximum spatial firing strength,

which is also known as the winning rule. Finally, a hypothetical rule is added as

a new rule by complying Equation (6.26), Equation (6.27) and Equation (6.28),
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where the consequent part of the new rule is expressed as follows:

ΩR+1 = Ωwin, Ψ = ω (6.29)

where ω is a large positive constant of magnitude of 105.

When a hypothetical rule does not satisfy the condition of neither Equation

(6.27) nor Equation (6.28), then it is not added as a new rule. Nonetheless,

the rule is then utilized by fine tuning its antecedent part. This tuning helps

to absorb information carried by the latest data stream, while it maintains the

existing network architecture as follows:

C̃win
N =

Nwin
N−1

Nwin
N−1 + 1

C̃win
N−1 +

(XN − C̃winN−1)

Nwin
N−1 + 1

(6.30)

Σwin(N)−17 =
Σwin(N − 1)−1

1− α
+

α

1− α
(Σwin(N − 1)−1(XN − ĈwinN−1))(Σwin(N − 1)−1(XN − ĈwinN−1))T

1 + α(XN − ĈwinN−1)Σwin(old)−1(XN − ĈwinN−1)T

(6.31)

Nwin
N = Nwin

N−1 + 1 (6.32)

where α = 1
/

(Nwin
N−1 + 1), C̃win = [Cwin, Cwin], and Ĉwin = (Cwin + Cwin)

/
2.

This adaptation technique is extracted from the idea of the sequential maximum

likelihood principle with an extension for incorporating the interval valued multi-

variate Gaussian function. Here the mid-point of uncertain centroids are utilized

to adapt certain input covariance matrix. The inverse covariance matrix is ad-

justed directly with no re-inversion process. This re-inversion process slows down

the model update. Moreover, it may cause unstable computation in the presence

of an ill-defined covariance matrix. In relationship to scaffolding theory, the rule
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growing and adaptation technique described in this sub-section can be categorized

as the problematizing component of active supervision due to its relationship with

the drift handling approach due to the capability of updating the model with

respect to the learning context. To overcome the drift, McSIT2RFNN embraces

a passive approach by upgrading its structure continuously in accordance with

the new incoming samples and does not depend upon a dedicated drift detection

approach like [258].

6.4.2.2 Mechanism of pruning rules

The idea of the neuron significance is also used in the rule pruning scheme due

to its capability of detecting a superfluous fuzzy rule which does not have a sig-

nificant role during its lifespan. Generalized Type-2 Rule Significance (GT2RS)

method is utilized in McSIT2RFNN, which is an enhanced version of the T2ERS

method through the utilization of the interval-valued multivariate Gaussian func-

tion [80]. The GT2RS technique follows the same principle like its rule growing

counterpart, where a fuzzy rule’s contribution is evaluated based on its statistical

significance presented in Equation (6.27). To sum up, a rule is pruned from the

training process after satisfying a condition as follows:

Ei < mean(Ei)− 2std(Ei), mean(Ei) =

∑N
n=1 Ei,n
N

,

std(Ei,n) =

√∑N
n=1(Ei,n −mean(Ei))2

N − 1
(6.33)

The calculation of mean and standard deviation of Equation (6.33) can be

done easily in a recursive way. The condition of Equation (6.33) analyzes not only

the statistical contribution of ith rule during its lifetime but also the down-trend

of the statistical contribution of that rule. The GT2RS method can approximate
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the rule significance rigorously by considering the overall training region, which

verifies the methods effectiveness. In addition, the capability of handling complex

and irregular data distributions of the GMM based input density function p(x)

is indicating that the future contribution of the ith fuzzy rule is also taken into

account during the estimation of the rule significance. Furthermore, by utilizing

Equation (6.27) in GT2RS method, the influence of the local sub-model Ωi is

considered, which is usually ignored by most of the rule pruning techniques. It is

worth noting that the contribution of a fuzzy rule to the overall system output

is highly affected by the output weight. Low output weight forces the output

of a fuzzy rule to be negligible. The GT2RS method is representing the fading

component of active supervision in scaffolding theory.

In this work, using the default threshold values of growing and pruning

module, only two rules are generated and no rules are pruned to identify the

quadcopter from data streams with a very insignificant RMSE. Therefore, to

observe the rule pruning mechanism clearly, the rule pruning threshold has been

reduced from 0.9 to 0.4 and rule growing threshold from 0.45 to 0.25 in case of

modeling quadcopter with 27000 samples. After that, the number of generated

and pruned rules have been witnessed graphically as shown in Figure 6.1.
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Figure 6.1: Number of added and pruned rules with a reduced threshold (in case of
quadcopter model with 27000 samples)
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6.4.2.3 Mechanism of forgetting and recalling rules

Type-2 Relative Mutual Information (T2RMI) method is utilized in McSIT2RFNN

for detecting the obsolete rules, where the main idea is to examine the correlation

between the fuzzy rules and the target concept. This T2RMI method is an

improved version of the RMI method in [259] with respect to the sequential

working framework of the T2RMI. Moreover, the T2RMI method is tailored

to cope up with the methodology of interval type-2 fuzzy system. Unlike the

RMI, in T2RMI the maximum compression index (MCI) [169] is utilized, which

ameliorates the robustness of the linear correlation measure. In comparison with

other linear correlation measures like Pearson coefficient, the MCI is not affected

by rotation. The MCI is another improved characteristic of the T2RMI method

with respect to the RMI method since the RMI method is still supported by

the classic symmetrical uncertainty approach. The T2RMI also has the ability

to detect outdated fuzzy rules by analyzing their relevance to the current data

progression. In McSIT2RFNN, the T2RMI method is expressed as follows:

ξ
((
η̃out
)3

i
, yout

)
= q0ξ

((
η
out

)3

i
, yout

)
+ (1− q0)ξ

((
ηout
)3

i
, yout

)
(6.34)

ξ
((
η
out

)3

i
, yout

)
=

1

2

(
var
(
η
out

)3

i

)
+ var(yout)−√

(var
(
η
out

)3

i
+ var(yout))2 − 4var

(
η
out

)3

i
var(yout)

(
1− ρ

((
η
out

)3

i
, yout

)2)
(6.35)

ρ
((
η
out

)3

i
, yout

)
=

cov
(
η
out

)3

i
, yout)√

var
(
η
out

)3

i
)var(yout)

(6.36)

where var
(
η
out

)3

i
, cov

(
η
out

)3

i
, ρ
(
η
out

)3

i
respectively represent the variance, co-

variance, Pearson index and output variable of the ith fuzzy rule with a lower

bound. A similar technique is also applied to the upper bound of the fuzzy rule

ξ
((
ηout
)3

i
, yout

)
. Since the spatial firing strength extracts the relevance of the fuzzy
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rule in the input space, the fuzzy rule is represented by the spatial firing strength.

In principle, ξ
((
η̃out
)3

i
, yout

)
implies the eigenvalue for the normal direction to

the principal component of two variables
((
η̃out
)3

i
, yout

)
, where maximum data

compression is attained in the time of projection of information along its principal

component direction. Therefore, the MCI has the ability to categorize the cost of

discarding the ith rule from the training process, aiming to achieve the maximum

amount of information compression. Some interesting features of the MCI is

exposed in [83]. A fuzzy rule is regarded as obsolete, or the rule is forgotten after

satisfying the condition as follows:

ξi,o < mean(ξi,o)− 2std(ξi,o), mean(ξi,o) =

∑N
n=1 ξ

n
i,o

N
,

std(ξi,o) =

√∑N
n=1(ξni,o −mean(ξi,o))2

N − 1
(6.37)

The T2RMI method is also utilized to recall the discarded rules when they become

relevant again to the output of the system. This function is supported by the fact

that the correlation of a rule to target concept is influenced by the environments.

In other words, in McSIT2RFNN a fuzzy rule is not permanently deleted and

is added to a list of rules pruned by the T2RMI method R∗ = R∗ + 1, where

R∗ is the number of deactivated rules by the T2RMI method. Such a rule may

be recalled in the future when it becomes relevant again to the systems output.

This rule recall scenario makes the T2RMI method effective to deal with the

cyclic drift by remembering old data distribution, which increases the relevance

of the obsolete rules. The rule recall technique is activated after satisfying the

condition as follows:

max(ξi∗) > max(ξi), where i∗ = 1, ..., R∗ and i = 1, ..., R (6.38)
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From Equation (6.38) it is obvious that a rule is recalled when the validity of

the obsolete rule is higher than any of the existing rules. Therefore, an obsolete

rule brings the most compatible concept to describe the current data trend and

should be reactivated as follows:

C̃R+1 = C̃i∗ , ΣR+1
−1 = Σi∗

−1, ΨR+1 = Ψi∗ ,ΩR+1 = Ωi∗ (6.39)

The rule recall scenario can be categorized as the problematizing part of the

scaffolding theory.

6.4.2.4 Mechanism of merging rule

In the online identification of a quadcopter, a complete dataset may not be

available. This phenomenon creates an opportunity for two rules to move together

which may cause a significant overlapping as a result of the continuous adaptation

of fuzzy rules [171]. Therefore, an online rule merging mechanism is required to

reduce the system’s complexity and to improve rule interpretability. Recently, the

idea of online rule merging has been introduced in EIS by [173,252]. However, in

these approaches, an over-dependence on a problem-specific predefined threshold

to determine an acceptable level of overlapping is observed, which limits the

flexibility of EIS.

A novel online rule merging technique called Type-2 Geometric Criteria (T2GC)

is utilized in McSIT2RFNN. T2GC is an extended version of geometric criteria

of [57], which was developed for the type-1 fuzzy system. This T2GC not only

observes the overlapping degree between rules but also looks at their geometric

interpretation in the product space thoroughly. Two important properties of this

T2GC are the overlapping degree and homogeneity. These two criteria are applied
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mainly to examine the similarity of the winning rule in light of the fact that the

winning rule is the only one to receive the rule premise adaptation expressed in

Equation (6.34)-(6.36) and a major underlying reason of overlapping. Hence, this

procedure targets to relieve the computational burden.

6.4.2.4.1 Overlapping Degree: The overlapping degree examines the sim-

ilarity level of two rules to analyze their possibility of being redundant. Be-

cause of the necessity of developing a threshold-free rule merging process and

the construction of McSIT2RFNN is with multi-variable Gaussian function, the

Bhattacharyya distance is utilized [260]. The benefits of using the Bhattacharyya

distance is that it can analyze whether two clusters are exactly disjoint, touching,

or overlapping without any trouble in selecting a predefined threshold. The over-

lapping degree between the winning rule and other rules i = {1, ..., R} \ {win}

can be expressed as:

s1(win, i) = (1− q)s1(win, i) + qos1(win, i) (6.40)

s1(win, i) =
1

8
(cwin − ci)TΣ−1(cwin − ci) +

1

2
ln

det(Σ−1)√
det(Σ−1

win)(Σ−1
i )

(6.41)

s1(win, i) =
1

8
(cwin − ci)TΣ−1(cwin − ci) +

1

2
ln

det(Σ−1)√
det(Σ−1

win)(Σ−1
i )

(6.42)

where Σ−1 = (Σ−1
win + Σ−1

i )
/

2. The conditions such as s1(win, i) > 0, s1(win, i) <

0, and s1(win, i) = 0 exhibit respectively the overlapping, disjointing, and touch-

ing phenomenon of two clusters. In the McSIT2RFNN, the rule merging process is
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considered mandatory when two rules are overlapping and/or touching as follows:

s1(win, i) ≥ 0 (6.43)

It is important to mention that the utilization of Bhattacharyya distance is

suitable for the McSIT2RFNNs rule since the multivariate Gaussian function

in the Bhattacharyya distance has a one-to-one relationship with that of the

McSIT2RFNN.

6.4.2.4.2 Homogeneity criterion: Homogeneity of clusters has an impor-

tant role in merging two clusters, since the merging of non-homogeneous clusters

may cause cluster delamination, undermining generalization and representation

of local data clouds [57,261]. The cluster delamination is indicating an over-sized

cluster that covers two or more distinguishable data clouds. The measure of

homogeneity of clusters in McSIT2RFNN is formulated by examining the volume

of the merged clusters in contrast with their individual volume as follows:

νmerged + νmerged < u(νi + νi + νwin + νwin) (6.44)

Finally, after satisfying the condition of Equation (6.43), and Equation (6.44),

the rules are merged. Equation (6.44) also presents a minor chance of cluster

delamination since the volume of the merged cluster is less than the volume of

two independent clusters, and therefore the two clusters form a joint homogeneous

region. The term u is involved in Equation (6.44) to obstruct the curse of

dimensionality.

After satisfying all rule merging conditions, two merging candidates are com-

bined. Since a rule containing more supports should have higher influence to
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ultimate shape and orientation of the merged cluster, the rule merging procedure

is directed by the weighted average strategy [171] as follows:

C̃merged
new =

C̃win
oldNwin

old + C̃i
oldNi

old

Nwin
old +Ni

old
,

C̃i = [Ci + Ci], Nmerged
new = Nwin

old +Ni
old (6.45)

Σ−1
merged

new =
Σ−1
win

oldNwin
old + Σ−1ioldNi

old

Nwin
old +Ni

old
,

Ωmerged
new =

Ωwin
oldNwin

old + Ωi
oldNi

old

Nwin
old +Ni

old
(6.46)

6.4.2.5 Mechanism of online feature selection

The feature selection mechanism plays an important role to improve the per-

formance of EIS by reducing computational complexity and makes modeling

problems easier to solve. Therefore, feature selection characterizes the complexity

reduction part of scaffolding theory. Majority of these feature selection mech-

anisms are a part of a pre-processing step. However, very recently research in

online feature selection mechanism of EIS is being conducted [171,252,261]. These

techniques can minimize the significance of inconsequential features by assigning

a low weight. But they still keep superfluous input attributes in the memory.

Therefore the complexity issue remains unsolved. Besides, in recent EISs the

online feature selection mechanism only measures the relevance between input

attributes and target variables. They do not consider the redundancy among

input attributes. A novel online feature selection mechanism, called Sequential

Markov Blanket Criterion (SMBC) is utilized in McSIT2RFNN, which is able

to mitigate all the above mentioned limitations of the existing EIS and works

completely with the single-pass learning environment. It is an improved version
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of MBC [262].

By analyzing the Markov blanket theory, four different types of input fea-

tures are obtained with respect to their contribution; they are namely: irrel-

evant, weakly relevant, weakly relevant but non-redundant, and strongly rele-

vant. The SMBC targets to eliminate irrelevant, weakly relevant input features

from the training process, while keeping weak relevant but non-redundant, and

strongly relevant features in the training process. In SMBC, C-Correlation and

F-Correlation tests are developed and then utilized to deal with the issue of

irrelevance and redundancy respectively. These two correlations are defined as

follows:

Definition 1 (C-Correlation) [262]: The relevance of the input feature

is indicated by the correlation of input feature xk and target variable tout, which

are measured by the C-correlation C(xk, tout).

Definition 2 (F-Correlation) [262]: The issue of redundancy is signified

by the similarity degree of two different input variables xk, xk1, k 6= k1. The

measure of similarity between two input attributes is called the F-correlation

F (xk, xk1).

The MCI method exposed in Equation (6.34)-(6.36) is adopted to analyze

the C and F-correlation. It is accomplished by just replacing
((
η̃out
)3

i
, yout

)
in

Equation (6.34)-(6.36) with (xk, tout), and (xk, xk1). The SMBC is implemented

in two stages, where in the first stage the F-correlation eliminates the inconse-

quential features, and consequently reduce complexity. It helps the next step,

the C-correlation, to run with a smaller number of input variables.
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6.4.2.6 Mechanism of adapting q design factor and recurrent weight

Adaptation or fine tuning of the free network parameters of the McSIT2RFNN,

namely the design coefficients and the recurrent weights are accomplished by

utilizing the Zero-order Density Maximization (ZEDM) method. This ZEDM

method is an improved version gradient descent technique since ZEDM utilizes

error entropy as cost function unlike the mean square error (MSE) in gradient

descent technique, therefore leads to a more accurate prediction. Since the

accurate model of the error entropy is too complex to be derived with the

first-principle technique, the cost function is formulated by utilizing the Parzen

Window density estimation method and can be expressed as follows:

f̂(0) =
1

Nφ
√

2π

N∑
n=1

exp(−en,0
2

2φ2
) =

1

Nφ
√

2π

N∑
n=1

K(
−en,02

2φ2
) (6.47)

where en,0 represents the system error of the oth output variable, T denotes a

smoothing parameter, fixed as 1 for simplicity and N is the total number of

samples seen so far. It is worth noting that a recursive expression can be derived

to satisfy the one-pass learning requirement. The detailed adaptation process is

explained in [83].

6.4.2.7 Mechanism of adapting rule consequent

The adaptation of the rule consequent represents the passive supervision of scaf-

folding theory because it relies on the system error, actualizing the action-consequent

mechanism. For adapting the rule consequent the Fuzzily Weighted Generalized

Recursive Least Square (FWGRLS) method [1] is used in McSIT2RFNN. FW-

GRLS is an improved version of the Generalized Recursive Least Square (GRLS)

method [175] and performs locally. This local learning scenario provides a flexible
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mechanism and greater robustness, because each rule is fine-tuned separately.

Thereby, entire learning procedures of a particular rule do not affect the stability

and convergence of remaining rules. The local learning scenario also raises the

interpretability of the TSK fuzzy rule as explained in [263]. The details of the

FWGRLS method is elaborated in [1, 56,252].

6.5 Results From Experimental Flight Data

Set-up for the quadcopter flight experiment and its online system identification

results are summarized in this section.

6.5.1 Experimental set up of quadcopter flight

Our quadcopter experiments were accomplished in the indoor UAV laboratory

at the University of New South Wales, Canberra campus. We use a Pixhawk

autopilot framework developed by an open and independent hardware project

called PX4. The Pixhawk Flight Control Unit (FCU) is manufactured and sold by

3D robotics and has three onboard sensors; namely gyroscope, accelerometer, and

magnetometer. The experimental quadcopter model is displayed in Figure 6.2. To

record quadcopter flight data the Robot Operating System (ROS), running under

the Ubuntu 16.04 version of Linux was used. A ROS package called MAVROS was

utilized in this work, where the MAVROS had enabled communication between

the PX4 and a ROS enabled computer. By utilizing the ROS, a well-structured

communication layer was introduced into the quadcopter that reduced the burden

of having to reinvent necessary software.

During the real-time flight testing accurate vehicle position, velocity, and

orientation were the required information for verification of the proposed Mc-
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Figure 6.2: Pixhawk autopilot based experimental quadcopter model

SIT2RFNN based on-line system identification of quadcopter. In order to track

the quadcopter in three-dimensional space, a VICON optical motion capture

system was employed to track the UAV motion with sub-millimetre accuracy. The

indoor VICON motion capture system consisted of a volume that was 10×10×4.3

m3 and formed by a netted truss framework.

The object tracking information was routed to the quadcopter via a custom

SDK UDP package to the desired IP address which in our platform was an Odroid

single board computer. At each time step, position, velocity, and orientation

information was recorded. During testing the pilot controlled the quadcopter

RUAV manually from an RC transmitter using pitch, roll and yaw and thrust

commands. To record key published topics, the rosbag recording tool was used.

The rosbag enables us to record and synchronize all critical experimental data

via published topics that are required for online system identification. Figure 6.3

represents the way of communicating of the experimental quadcopter UAV system

during all the flight tests, where the dotted lines represent wireless communication

and solid lines represent the wired connection.
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Figure 6.3: Pixhawk quadcopter RUAV’s communication flow

6.5.2 Online system identification results

For system identification or moeling of the quadcopter, a variety of quadcopter

flight data have been utilized. Among them, there are three different datasets of

quadcopter’s altitude, consisting of approximately 9,000, 27,000 and 66,000 sam-

ples. Using these datasets, the quadcopter’s altitude based multi-input-single-

output (MISO) online system identification model of quadcopter has been con-

structed by utilizing the proposed McSIT2RFNN technique [83]. The proposed

technique [83] based online data-driven quadcopter model has been also struc-

tured from four inputs and output datasets (vertical altitude and the three

rotational movements (θ, φ, ψ)). The time step of all the dataset was 0.0198

sec. For comparing and validating the accuracy of the proposed technique, the

quadcoper’s data-driven model has also constructed with eight different renowned

EIS based neuro-fuzzy system, namely: eTS [44], simp eTS [46], DFNN [166],

GDFNN [184], FAOSPFNN [185], GENEFIS [1], Adaptive Neuro Fuzzy Inference

System (ANFIS) [264], and PANFIS [56]. For the performance analysis the
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RMSE, number of network parameters, number of training samples, fuzzy rules,

and execution time have been considered for each algorithm. All the results are

summarized in Tables from 6.1 to 6.4. Table 6.1 to Table 6.3 express the results for

a MISO quadcopter model with approximately 27,000, 66,000, and 9,000 samples

of quadcopter’s altitude for three different flight respectively. Table 6.4 summa-

rizes the results of the MIMO quadcopter model. It is clearly observed from the

results that, among these eight different algorithms the proposed McSIT2RFNN

algorithm performs the best since the lowest RMSE, fastest execution is observed.

Besides, by utilizing the what-to-learn mechanism the McSIT2RFNN has reduced

the number of samples required to train, which helps to reduce the execution time

as observed in the Tables from 6.1 to 6.5. This sample deletion mechanism is not

utilized in any other renowned variants of EIS discussed in this chapter. The

altitude tracking performance of the proposed McSIT2RFNN algorithm based

MISO quadcopter model with nearly 27,000 and 66,000 samples are displayed in

Figure 6.5. A MIMO quadcopter model with nearly 9,000 samples for identifying

thrust, roll, pitch, and yaw are displayed in Figure 6.6. From those figures, it is

clearly observed that the proposed online models’ output are following the desired

dataset collected experimentally very closely in all the cases. The evolving and

online nature of the proposed McSIT2RFNN technique helps to track the quick

changes in the desired trajectory.

In this chapter, to model the quadcopter with approximately 27,000, 66,000,

and 9,000 samples, two inputs (X(t) and Y (t − 1)) are utilized to generate the

rules. The If-Then expression of the rule in this work is exposed in Equation

(6.3). However, the rule presented in Equation (6.3) is not transparent enough

to expose atomic clause of the human-like linguistic rule. It operates in a totally

high dimensional space, therefore cannot be represented in fuzzy set directly.
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To express such fuzzy rules with the multidimensional kernel, the phrase ”close

to” is conventionally used [265, 266]. As a solution, a transformation strategy

is employed in this work, as expressed in Equation (6.4) to convert the high

dimensional space based rules to lower dimensional human-like linguistic rules.

After transformation, rules can be expressed in a conventional interval type-2

fuzzy set environment as exposed in Equation (6.5), (6.6), and (6.7). Utilizing

those fuzzy set expression of Equation (6.5), (6.6), and (6.7), a more interpretable

fuzzy rule is exhibited in Equation (6.8).

Now the non-axis-parallel ellipsoidal rule generated in the high dimensional

space by the McSIT2RFNN in case of quadcopter model with 27000 samples can

be expressed as follows:

R1 : If X is close to

η̃out

η
out

=


 −0.5934

−0.2458

 ,
 2 2

2 2


 , ηout =


 0.0066

0.3542

 ,
 2 2

2 2





Then y1 = −0.0043− 0.0039X1 − 0.0046τ(X1) + 0.9999X2 − 0.0002τ(X2)

(6.48)

where η̃out =
[
η
out
, ηout

]
is the rule antecedent of the multi-variable Gaussian

function, which consists of uncertain centroids ζ̃ =
[
ζ, ζ
]
, where ζ =

 −0.5934

−0.2458

 ,
and ζ =

 0.0066

0.3542

, and the inverse co-variance matrix Σ−1 =

 2 2

2 2

; yi is

denoting the rule consequent of the ith rule obtained from yi = xieΘi, where Θi

is a connection weight between the temporal ring layer and the output layer; In

this work, X is a 2-D input composition like [x1, x2], then xe is the extended

input vector obtained using Chebyshev polynomial and can be expressed as
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Figure 6.4: 1st Membership function (with uncertain centroid and certain width) of
rule 1 of McSIT2RFNN

xe = [1, x1, τ(x1), x2, τ(x2)], where, xe ∈ <1×(2µ+1), µ is expressing the input

dimension.

After transformation of the rule presented in Equation (6.48) to a lower-

dimensional space, it can be expressed as follows:

R1 : If X1 is close to η̃out1

(
η
out1

(−0.5934, 0.25), ηout1(0.0066, 0.25)
)

and X2 is close to η̃out2

(
η
out2

(−0.2458, 0.20), ηout2(0.3542, 0.20)
)
,

Then y1 = −0.00432− 0.00387X1 − 0.00457τ(X1) + 0.99995X2 − 0.00022τ(X2)

(6.49)

where η̃out1 and η̃out2 stand for the interval-valued Gaussian membership func-

tion corresponding to X1,X2. The uncertain centroid of η̃out1 is c̃1 = [c1, c1] =

[−0.5934, 0.0066], and width is σ1 = 0.25, and for η̃out2 those parameters are

c̃2 = [c2, c2] = [−0.2458, 0.3542], σ2 = 0.20. The 1st membership function of our

rule 1 is shown in Figure (6.4). The plotted membership function has uncertain

centroid of c̃1 = [c1, c1] = [−0.5934, 0.0066], and certain width of σ1 = 0.25.
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6.5.3 Online system identification with noisy samples

To prove the robustness of the McSIT2RFNN against uncertainties, another

quadcopter flight experiment has been accomplished considering some noise from

VICON optical motion capture system. The quadcopter flight dataset consists

of nearly 27000 samples with a noisy 1000 samples, which is utilized to model

the quadcopter. The adaptation power of the proposed algorithm against noise

is clear from the lowest obtained RMSE compared to its type-1 counterparts.

Furthermore, with the noisy data, it can model the quadcopter with only 546

data samples, where its type-1 variants need all the training samples i.e. 16483

(60% of the total samples). Thereby, the lowest execution time in modeling the

quadcopter is also observed from the type-2 fuzzy-based proposed McSIT2RFNN

algorithm. Therefore, the results are clearly indicating its improved performance

and uncertainty handling capacity than the type-1 counterpart. The results are

summarized in Table 6.5.
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Figure 6.5: System identification of Quadcopter SISO model
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Table 6.1: Online system identification result comparison of SISO quadcopter model
(approx. 27,000 samples)

Algorithm Reference RMSE Network
Parameters

Training
Samples

Number of
Fuzzy
Rule

Execution
Time (sec)

DFNN [166] 0.0780 10 16483 1 194.86
GDFNN [184] 0.0067 10 16483 1 329.93

FAOSPFNN [185] 0.0280 12 16483 2 38.10
eTS [44] 0.0021 40 16483 4 9.39

simp eTS [46] 0.0020 13 16483 1 3.50
GENEFIS [1] 0.0020 63 16483 1 3.29
PANFIS [56] 0.0020 5 16483 1 2.92
ANFIS [264] 0.0061 36 16483 6 33.01

McSIT2RFNN [83] 0.0013 32 1279 2 2.27

Table 6.2: Online system identification result comparison of SISO quadcopter model
(approx. 66,000 samples)

Algorithm Reference RMSE Network
Parameters

Training
Samples

Number of
Fuzzy
Rule

Execution
Time (sec)

DFNN [166] 0.0810 10 39640 1 1113.69
GDFNN [184] 0.0080 10 39640 1 1666.33

FAOSPFNN [185] 0.0150 12 39640 2 135.59
eTS [44] 0.0016 40 39640 2 21.03

simp eTS [46] 0.0015 13 39640 1 11.20
GENEFIS [1] 0.0015 4 39640 1 7.63
PANFIS [56] 0.0015 5 39640 1 6.93
ANFIS [264] 0.0050 30 39640 5 34.93

McSIT2RFNN [83] 0.0008 32 2329 2 5.5
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Figure 6.6: System identification of Quadcopter MIMO model with approx. 9,000
samples
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Table 6.3: Online system identification result comparison of SISO quadcopter model
(approx. 9,000 samples)

Algorithm Reference RMSE Network
Parameters

Training
Samples

Number of
Fuzzy
Rule

Execution
Time (sec)

DFNN [166] 0.15 10 5467 1 19.77
GDFNN [184] 0.14 10 5467 1 23.64

FAOSPFNN [185] 0.21 12 5467 2 28.58
eTS [44] 0.14 40 5467 4 2.10

simp eTS [46] 0.13 13 5467 4 1.77
GENEFIS [1] 0.13 26 5467 1 1.10
PANFIS [56] 0.135 5 5467 1 1.15
ANFIS [264] 0.46 48 5467 8 36.94

McSIT2RFNN [82] 0.13 32 769 2 0.91

Table 6.4: Online system identification result comparison of MIMO quadcopter model
(approx. 9000 samples)

Algorithm Reference RMSE1 RMSE2 RMSE3 RMSE4 Network
Parameters

Training
Samples

Number of
Fuzzy Rule

Execution
Time (sec)

Input
attribute

DFNN [166] 0.26 0.18 0.14 0.15 10 5753 1 49.98 4
GDFNN [184] 0.23 0.18 0.14 0.13 10 5753 1 85.75 4

FAOSPFNN [185] 0.55 0.28 0.14 0.13 12 5753 1 12.11 4
eTS [44] 0.22 0.20 0.15 0.10 292 5753 14 20.06 4

simp eTS [46] 0.29 0.31 0.29 0.18 104 5753 5 8.11 4
GENEFIS [1] 0.24 0.19 0.19 0.11 4 5753 1 6.1 1
PANFIS [56] 0.24 0.17 0.14 0.13 3 5753 1 5.4 4

McSIT2RFNN [82] 0.23 0.17 0.14 0.10 66 461 2 4.5 4

Table 6.5: Online system identification result comparison of SISO quadcopter model
(approx. 27,000 samples with 1000 noisy samples)

Algorithm Reference RMSE Network
Parameters

Training
Samples

Number of
Fuzzy
Rule

Execution
Time (sec)

DFNN [166] 0.0583 10 16483 1 211.7
GDFNN [184] 0.0141 10 16483 1 328.56

FAOSPFNN [185] 0.0242 12 16483 2 216.47
eTS [44] 0.0072 40 16483 4 9.39

simp eTS [46] 0.0212 13 16483 6 14.36
GENEFIS [1] 0.0067 63 16483 1 3.20
PANFIS [56] 0.0067 5 16483 1 2.79
ANFIS [264] 0.0061 36 16483 6 32.29

McSIT2RFNN [82] 0.0011 32 546 2 2.13

6.6 Summary

EIS-based autonomous learning algorithm is an appropriate candidate for mod-

eling a complex and highly nonlinear system like quadcopter RUAV. The incor-

poration of McSLM with EIS makes it more appropriate. Such an advanced EIS

called McSIT2RFNN is utilized to model the quadcopter with uncertainties from

experimental quadcopter flight data. In McSIT2RFNN, a new local recurrent net-

work architecture is driven by the interval-valued multivariate Gaussian function

in the hidden node and the nonlinear Chebushev function in the consequent node.

As with its predecessors, the McSIT2RFNN characterizes an open structure,
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which can grow, prune, adjust, merge, recall its hidden node automatically and

to select relevant data samples of quadcopter flight on the fly using an online

active learning methodology. The McSIT2RFNN is also equipped with the online

dimensionality reduction technique to cope with the curse of dimensionality. All

learning mechanisms are carried out in the single-pass and local learning mode

and actualize the plug-and-play learning principle, which aims to minimize the

use of pre-and/or post-training steps. These features help the McSIT2RFNN

method to identify the quadcopter RUAV more accurately than other variants of

EIS. Thus, the accurate MISO and MIMO quadcopter modeling or better online

identification results from McSIT2RFNN verifies their feasibility in modeling

UAVs. In future research, an AICon for UAVs based on McSIT2RFNN will

be developed.





Chapter 7

Conclusions

7.1 Research and Outcomes

In fuzzy system community, evolving neuro-fuzzy system (ENFS)- based au-

tonomous learning algorithms are used to handle data stream regression problems

and to model complex nonlinear dynamical systems due to their incremental

architecture and online learning mechanism. To cope with the sudden changes

in the distribution of the incoming data streams, and in the complex nonlinear

systems’ dynamics, these algorithms can evolve their structure autonomously.

However, these algorithms face challenges in their real-time deployment with

limited memory resources because of a higher number of free network parameters.

To reduce the number of parameters, an ENFS-based novel autonomous learning

algorithm, namely the parsimonious learning machine (PALM), is proposed in

chapter 3.

ENFSs are usually constructed via hypersphere-based or hyperellipsoid-based

clustering techniques (HSBC or HEBC) to automatically partition the input space

into a number of fuzzy rule, where Gaussian, bell-shaped Gaussian functions

229
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are used as membership functions. Such functions are associated with some

antecedent parameters like the mean and width, which need to be adjusted

continuously. To overcome the dependency on these antecedent parameters,

hyperplane-based clustering (HPBC) is used in PALM to fully characterize the

fuzzy rules. This strategy reduces the rule base parameter to the level of C∗(P+1)

where C and P are the number of fuzzy rules and input dimensions, respectively.

PALM features a fully open network structure where its rules can be auto-

matically generated, merged, and updated on-demand in the one-pass learning

fashion. The rule generation process is based on the self-constructing clustering

approach, checking the coherence of input and output space. The rule merging

scenario is driven by the similarity analysis via the distance and orientation of two

hyperplanes. The online hyperplane tuning scenario is executed using the Fuzzily

Weighted Generalized Recursive Least Square (FWGRLS) method. PALM is pro-

posed in both type-1 and type-2 versions derived from the concept of type-1 and

type-2 fuzzy systems. Type-1 version incurs fewer network parameters and faster

training speed than the type-2 version whereas type-2 version expands the degree

of freedom of the type-1 version by applying the interval-valued concept leading

to be more robust against uncertainty than the type-1 version. Both type-1

and type-2 versions are simulated under two parameter optimization scenarios:

1) Type-1 PALM (L); 2) Type-1 PALM (G); 3) Type-2 PALM (L); 4) Type-2

PALM (G). L denotes the Local update strategy while G stands for the Global

learning mechanism. The efficiency of the PALM has been tested in six real-world

and artificial data stream regression problems where PALM outperforms recently

published works in terms of network parameters and running time. It also delivers

state of the art accuracies which happen to be comparable and often better than

its counterparts.
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Another ENFS-based advanced autonomous learning algorithm called Mc-

SIT2RFNN is utilized in chapter 6 to model the quadcopter with uncertainties

from experimental quadcopter flight data. In McSIT2RFNN, a new local recur-

rent network architecture is driven by the interval-valued multivariate Gaussian

function in the hidden node and the nonlinear Chebushev function in the conse-

quent node. As with its predecessors, the McSIT2RFNN characterizes an open

structure, which has the ability to grow, prune, adjust, merge, recall its hidden

node automatically and to select relevant data samples of quadcopter flight on

the fly using an online active learning methodology. The McSIT2RFNN is also

equipped with the online dimensionality reduction technique to cope with the

curse of dimensionality. All learning mechanisms are carried out in the single-pass

and local learning mode and actualize the plug-and-play learning principle, which

aims to minimize the use of pre-and/or post-training steps. These features help

the McSIT2RFNN method to identify the quadcopter RUAV more accurately

than other variants of ENFS. Thus, the accurate MISO and MIMO quadcopter

modeling or better online identification results from McSIT2RFNN verifies their

feasibility in modeling UAVs.

Besides using the evolving neuro-fuzzy systems in regression or as predictor,

they have been also utilized to develop AICons for UAVs in this thesis. An

advanced evolving neuro-fuzzy system, namely Generic Evolving Neuro-Fuzzy In-

ference System (GENEFIS) has been used to develop an AICon namely Generic-

controller (G-controller) in chapter 5. It can alter its structure, and system

parameters online to cope with changing dynamics of the plant to be controlled.

Besides, the synthesis of SMC theory based adaptation laws improved its ro-

bustness against various internal and external uncertainties. The integration

of GART+, multivariate Gaussian function, and SMC learning theory-based
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adaptation laws yield a fast self-evolving mechanism of the G-controller is with

a compact structure. These desirable features make the G-controller a suitable

candidate for highly nonlinear autonomous vehicles. The controller’s performance

has been evaluated by observing the tracking performance in controlling simulated

plants of UAVs, namely BIFW MAV and hexacopter for a variety of trajectories.

Wind gust has been added to the BIFW MAV plant as environmental uncer-

tainties to evaluate the G-controller’s robustness against unknown perturbations,

where satisfactory tracking of the desired trajectory proves the proposed AICon’s

performance to eliminate uncertainty. Both the Lyapunov theory and numerical

experiments confirm the G-controller’s stability.

Another fully AICon, namely PAC is proposed in chapter 4. A bottleneck

of the existing AICons is the utilization of numerous free parameters and their

online adaptation. Such inadequacy has been mitigated in our PAC since it has

no premise parameters. The only parameter used in our AICon to acquire the

desired tracking is the weight. For instance, if the evolving TS-fuzzy controllers

were used in our experiment, with three rules, they would require 48 network

parameters to be tuned, whereas PAC needs only 12 parameters with three rules.

Apart from that, conventional AICons adhere to user-defined problem-based

thresholds to shape their structure. In PAC, rather than predefined parame-

ters, the bias-variance concept based network significance method is utilized to

determine it’s structure. The PAC has been verified by implementing them in

various UAV plants namely BIFW MAV and hexacopter to track diverse trajec-

tories. Achievements are contrasted with a commonly utilized PID controller,

an adaptive nonlinear FFNN controller, and a TS-fuzzy controller. Furthermore,

the controller’s robustness against uncertainties and disruptions is ascertained by

injecting a wind gust and sudden peak to the UAVs dynamics. In controlling
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both plants with uncertainties, lower or comparable overshoot and settling time

were observed from PAC with a simplified evolving structure, which is testifying

its robustness against uncertainties and compatibility in regulating UAVs.

A simplified version of PAC, namely Reduced Parsimonious Controller (Red-

PAC) is also developed in chapter 4. In RedPAC, the number of consequent

parameters has been further reduced to one parameter per rule. It eliminates

the arduous problem in designing the AICon and enables its implementation to a

minicomputer or embedded system. RedPAC’s performance has been evaluated

by implementing it to control a quadcopter simulator namely Dronekit-SITL. In

addition, the trajectory tracking performance of the quadcopter is compared with

its modeled or model-free counterparts namely PID, SMC, and PAC. RedPAC

outperforms PID and SMC techniques. The results of tracking trajectories are

also comparable to PAC. However, RedPAC needs comparatively less learning

parameters to obtain similar or better tracking accuracy.

7.2 Recommendations for Future Research

Though the thesis has highlighted several limitations of the existing ENFS-based

autonomous learning algorithms and proposed new algorithms with possible solu-

tions, several open issues can be pursued to improve the developed methodology.

Some promising directions for further investigation can be identified as follows:

• Our autonomous learning algorithm namely PALM exposes an open struc-

ture with autonomous appending or merging of fuzzy rules. It requires a

minimum number of parameter-adaptations compared to the state of the

art. However, it can be improved further in different ways. Firstly, at the

present configuration, it does not have a soft feature reduction mechanism
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to overlook the inconsequential input features. The significance of input

features can be foreseen by measuring the mutual information among input

attributes. After measuring the significance of input features, they can be

evolved and pruned autonomously on the fly during the training period.

Secondly, PALM is rooted with a shallow network configuration. Thus, it

has lower generalization power than those of deep structures. It can be

incorporated under a deep network structure.

• In this thesis, ENFS-based another autonomous learning algorithm namely

McSIT2RFNN and an AICon namely G-controller is developed, where both

of them have utilized multi-variate Gaussian function. It creates non-axis

parallel clusters, which help them to capture the data not scattered in the

main axis. However, uneven real-world data distribution are difficult to

cover by a certain shape of the cluster. To overcome such limitations, the

concept of clusters can be replaced by data clouds or hyperplanes, which

help to create a more flexible cluster region.

• Three different AICons are developed in this thesis with their unique fea-

tures. The closed-loop stability of all those controllers has been confirmed

through Lyapunov theory and evaluated by numerical experimentation to

regulate various UAVs. In the future, all these controllers will be executed

through a hardware-based flight test of various UAVs.
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[30] Gödel, K.: Zum intuitionistischen aussagenkalkül. Anz. Akad. Wiss. Wien 69
(1932) 65–66

[31] Jaśkowski, S.: Recherches sur le système de la logique intuitioniste. In: Internat.
Congress Philos. Sci. Volume 6. (1936) 58–61

[32] Zadeh, L.A.: Fuzzy sets. Information and Control 8(3) (1965) 338–353

[33] Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic
plant. In: Proceedings of the Institution of Electrical Engineers. Volume 121.,
IET (1974) 1585–1588

[34] Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies 7(1) (1975) 1–13

[35] Siddique, N., Adeli, H.: Computational intelligence: synergies of fuzzy logic,
neural networks and evolutionary computing. John Wiley & Sons (2013)

[36] Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller. i. IEEE
Transactions on Systems, Man, and Cybernetics 20(2) (1990) 404–418

[37] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics (1)
(1985) 116–132

[38] Zadeh, L.A.: The concept of a linguistic variable and its application to
approximate reasoning-I. Information Sciences 8(3) (1975) 199–249

[39] Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions
on spaces. IEEE Transactions on Fuzzy Systems 18(4) (2010) 841–844

[40] Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Information Sciences
132(1) (2001) 195–220



238 REFERENCES

[41] Juang, C.F., Lin, C.T.: An online self-constructing neural fuzzy inference
network and its applications. IEEE Transactions on Fuzzy Systems 6(1) (1998)
12–32

[42] Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference
system and its application for time-series prediction. IEEE Transactions on Fuzzy
Systems 10(2) (2002) 144–154

[43] Leng, G., McGinnity, T.M., Prasad, G.: An approach for on-line extraction of
fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems
150(2) (2005) 211–243

[44] Angelov, P.P., Filev, D.P.: An approach to online identification of Takagi-Sugeno
fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34(1) (2004) 484–498

[45] Yager, R.R., Filev, D.P.: Approximate clustering via the mountain method.
IEEE Transactions on Systems, Man, and Cybernetics 24(8) (1994) 1279–1284

[46] Angelov, P., Filev, D.: Simpl eTS: A simplified method for learning evolving
Takagi-Sugeno fuzzy models. In: The 14th IEEE International Conference on
Fuzzy Systems, 2005. FUZZ’05., IEEE (2005) 1068–1073

[47] Rong, H.J., Sundararajan, N., Huang, G.B., Saratchandran, P.: Sequential
adaptive fuzzy inference system (SAFIS) for nonlinear system identification and
prediction. Fuzzy Sets and Systems 157(9) (2006) 1260–1275

[48] Huang, G.B., Saratchandran, P., Sundararajan, N.: An efficient sequential
learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(6)
(2004) 2284–2292

[49] Huang, G.B., Saratchandran, P., Sundararajan, N.: A generalized growing and
pruning RBF (GGAP-RBF) neural network for function approximation. IEEE
Transactions on Neural Networks 16(1) (2005) 57–67

[50] Lughofer, E.D.: FLEXFIS: A robust incremental learning approach for evolving
Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 16(6) (2008)
1393–1410

[51] Lughofer, E.: Flexible evolving fuzzy inference systems from data streams
(FLEXFIS++). In: Learning in Non-Stationary Environments. Springer (2012)
205–245

[52] Angelov, P.: Evolving Takagi-Sugeno Fuzzy Systems from Streaming Data
(eTS+). Evolving intelligent systems: methodology and applications 12 (2010)
21

[53] Angelov, P.: Fuzzily connected multimodel systems evolving autonomously from
data streams. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 41(4) (2011) 898–910



REFERENCES 239

[54] Lemos, A., Caminhas, W., Gomide, F.: Adaptive fault detection and diagnosis
using an evolving fuzzy classifier. Information Sciences 220 (2013) 64–85

[55] Angelov, P., Yager, R.: A new type of simplified fuzzy rule-based system.
International Journal of General Systems 41(2) (2012) 163–185

[56] Pratama, M., Anavatti, S.G., Angelov, P.P., Lughofer, E.: PANFIS: A novel
incremental learning machine. IEEE Transactions on Neural Networks and
Learning Systems 25(1) (2014) 55–68

[57] Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart
evolving fuzzy systems. Evolving Systems 6(4) (2015) 269–292

[58] Juang, C.F., Lin, C.T.: A recurrent self-organizing neural fuzzy inference
network. IEEE Transactions on Neural Networks 10(4) (1999) 828–845

[59] Juang, C.F.: A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms. IEEE Transactions on
Fuzzy Systems 10(2) (2002) 155–170

[60] Juang, C.F., Lin, Y.Y., Tu, C.C.: A recurrent self-evolving fuzzy neural network
with local feedbacks and its application to dynamic system processing. Fuzzy
Sets and Systems 161(19) (2010) 2552–2568

[61] Lin, Y.Y., Chang, J.Y., Lin, C.T.: Identification and prediction of dynamic
systems using an interactively recurrent self-evolving fuzzy neural network. IEEE
Transactions on Neural Networks and Learning Systems 24(2) (2013) 310–321

[62] Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Transactions
on Fuzzy Systems 10(2) (2002) 117–127

[63] Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design.
IEEE Transactions on Fuzzy systems 8(5) (2000) 535–550

[64] Sola, H.B., Fernandez, J., Hagras, H., Herrera, F., Pagola, M., Barrenechea, E.:
Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: toward
a wider view on their relationship. IEEE Transactions on Fuzzy Systems 23(5)
(2015) 1876–1882

[65] Juang, C.F., Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network
with online structure and parameter learning. IEEE Transactions on Fuzzy
Systems 16(6) (2008) 1411–1424

[66] Juang, C.F., Chen, C.Y.: Data-driven interval type-2 neural fuzzy system with
high learning accuracy and improved model interpretability. IEEE Transactions
on Cybernetics 43(6) (2013) 1781–1795

[67] Lin, Y.Y., Chang, J.Y., Pal, N.R., Lin, C.T.: A mutually recurrent interval type-2
neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters.
IEEE Transactions on Fuzzy Systems 21(3) (2013) 492–509



240 REFERENCES

[68] Castro, J.R., Castillo, O., Melin, P., Rodŕıguez-Dı́az, A.: A hybrid learning
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[256] Vuković, N., Miljković, Z.: A growing and pruning sequential learning algorithm
of hyper basis function neural network for function approximation. Neural
Networks 46 (2013) 210–226

[257] Tabata, K., Sato, M., Kudo, M.: Data compression by volume prototypes for
streaming data. Pattern Recognition 43(9) (2010) 3162–3176

[258] Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming
imbalanced data. IEEE Transactions on Knowledge and Data Engineering 25(10)
(2013) 2283–2301

[259] Han, H., Qiao, J.: Nonlinear model-predictive control for industrial processes:
An application to wastewater treatment process. IEEE Transactions on Industrial
Electronics 61(4) (2014) 1970–1982

[260] Bhattachayya, A.: On a measure of divergence between two statistical population
defined by their population distributions. Bulletin Calcutta Mathematical Society
35(99-109) (1943) 28

[261] Lughofer, E., Sayed-Mouchaweh, M.: Autonomous data stream clustering
implementing split-and-merge concepts–towards a plug-and-play approach.
Information Sciences 304 (2015) 54–79



254 REFERENCES

[262] Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research 5(Oct) (2004) 1205–1224

[263] Lughofer, E.: On-line assurance of interpretability criteria in evolving fuzzy
systems–achievements, new concepts and open issues. Information Sciences 251
(2013) 22–46

[264] Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics 23(3) (1993) 665–685

[265] Pratama, M., Lu, J., Zhang, G., et al.: Evolving type-2 fuzzy classifier. IEEE
Trans. Fuzzy Systems 24(3) (2016) 574–589

[266] Pratama, M., Zhang, G., Er, M.J., Anavatti, S.: An incremental type-2
meta-cognitive extreme learning machine. IEEE Transactions on Cybernetics
47(2) (2017) 339–353

[267] Castro, J.L.: Fuzzy logic controllers are universal approximators. IEEE
Transactions on Systems, Man, and Cybernetics 25(4) (1995) 629–635

[268] Ying, H.: Interval type-2 takagi-sugeno fuzzy systems with linear rule consequent
are universal approximators. In: Fuzzy Information Processing Society, 2009.
NAFIPS 2009. Annual Meeting of the North American, IEEE (2009) 1–5

[269] Kosko, B.: Fuzzy systems as universal approximators. IEEE Transactions on
Computers 43(11) (1994) 1329–1333

[270] Ying, H., Ding, Y., Li, S., Shao, S.: Typical takagi-sugeno and mamdani
fuzzy systems as universal approximators: Necessary conditions and comparison.
In: Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational
Intelligence., The 1998 IEEE International Conference on. Volume 1., IEEE
(1998) 824–828

[271] You, F., Ying, H.: Interval type-2 boolean fuzzy systems are universal
approximators. In: Fuzzy Information Processing Society (NAFIPS), 2010
Annual Meeting of the North American, IEEE (2010) 1–4



Appendix A

Pseudocodes of PALM

algorithms

A.1 Pseudocodes of PALM algorithms

All the steps of our proposed algorithms are summarized in separate Pseudocodes

to improve their readability. Both Pseudocodes are expressed as follows:

Algorithm A.1 Type-1 PALM algorithm

1: Define: Training data (Xt, Tt)=(x1, ..., xn, t1, ..., tn)

2: Predefined thresholds b1, b2 and c1, c2

3: Step 1: Basic architecture of type-1 PALM

4: procedure Fuzzification

5: for i = 1 to R do

6: Calculate point to plane distance using (5)

7: Find the maximum distance among the rules

8: Calculate hyperplane based membership function using (4)

9: end for

10: end procedure

11: procedure Rule base

12: for i = 1 to R do

13: Calculate consequent part for each rule using (7)

14: end for

15: Express the IF-THEN fuzzy rule utilizing (6)

16: end procedure
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17: procedure Defuzzification

18: Calculate defuzzified crisp output using (8)

19: end procedure

20: Step 2

21: procedure Mechanism of growing rules

22: for j = 1 to n do

23: Compute ξ(Xj, To) using (18)

24: end for

25: for i = 1 to R do

26: Calculate input coherence using (16)

27: for o = 1 to k do

28: Compute ξ(Hi, To) using (18)

29: end for

30: Calculate output coherence using (17)

31: end for

32: if (20) then

33: Create a new rule

34: else

35: Accommodated data points of a rule are updated as Nj∗ = Nj∗ + 1

36: Take the next sample and Go to Step 1

37: end if

38: end procedure

39: procedure Mechanism of merging rules

40: for i = 1 to R do

41: for o = 1 to k do

42: Calculate angle between hyperplanes using (22)

43: Calculate minimum distance between hyperplanes using (23)

44: end for

45: if (24) then

46: Rules are merged

47: end if

48: end for

49: end procedure

50: procedure Adaptation of output weights
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51: for i = 1 to R do

52: Update output weights using FWGRLS described in Section IV.C

53: end for

54: end procedure

Algorithm A.2 Type-2 PALM algorithm

1: Define: Training data (Xt, Tt)=(x1, ..., xn, t1, ..., tn)

2: Predefined thresholds b1, b2 and c1, c2

3: Step 1: Basic architecture of type-2 PALM

4: procedure Fuzzification

5: for i = 1 to R do

6: Calculate point to plane distance using (10)

7: Find the maximum distance among the rules

8: Calculate hyperplane based membership function using (9)

9: end for

10: end procedure

11: procedure Rule base

12: for i = 1 to R do

13: Calculate consequent part for each rule using (12)

14: end for

15: Express the IF-THEN fuzzy rule utilizing (11)

16: end procedure

17: procedure Type reduction and defuzzification

18: Calculate q design factor based type reduction and defuzzified crisp output

using (13), (14) and (15)

19: end procedure

20: Step 2

21: procedure Mechanism of growing rules

22: for j = 1 to n do

23: Compute ξ(H̃i, Xj) using (39), (40) and (41)

24: end for

25: for i = 1 to R do

26: Calculate input coherence using (35), (36) and (37)

27: for o = 1 to k do

28: Compute ξ(H̃i, To) using (39), (40) and (41)
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29: end for

30: Calculate output coherence using (38)

31: end for

32: if (20) then

33: Create a new rule

34: else

35: Accommodated data points of a rule are updated as Nj∗ = Nj∗ + 1

36: Take the next sample and Go to Step 1

37: end if

38: end procedure

39: procedure Mechanism of merging rules

40: for i = 1 to R do

41: for o = 1 to k do

42: Calculate angle between hyperplanes using (42)

43: Calculate minimum distance between hyperplanes using (43)

44: end for

45: if (24) then

46: Rules are merged

47: end if

48: end for

49: end procedure

50: procedure Adaptation of output interval-valued weights

51: for i = 1 to R do

52: Update output weights using interval type-2 FWGRLS described in

Section V.C

53: end for

54: end procedure



Appendix B

PALM as an universal

approximator

B.1 Proof of PALMs as universal approximator

Our developed type-1 PALM and type-2 PALM’s basic structures are followed

by type-1 and type-2 TS-fuzzy architecture. It has already been proved by many

researchers that both type-1 and type-2 TS-fuzzy system work as an universal

approximator [267–271]. Since type-1 PALM and type-2 PALM work as universal

approximator, it can clearly guarantee the predictive accuracy for the system with

chaotic behaviors.

B.1.1 Type-1 PALM as universal approximator:

Type-1 PALM can approximate an unknown function by covering its graph with

hyperplane-based clusters. The approximation improves as the clusters grow in

number. Fig. B.1 displays how the PALM’s hyerplane based clusters in the

input-output product space X × Y represent the real function f : X → Y .

From the left part of Fig. 1 it is clearly observed that lower number of clusters

have lower approximation accuracy than PALM with higher number of clusters

as exposed in the right hand side of Fig. 1. On the other hand, as the clusters

grows, the structural complexity and memory demand raises in PALM.
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X

Y

Hyperplane 1

Hyperplane 2

Hyperplane 3

f

X

Y

Higher number of Hyperplanes

f
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Figure B.1: Type-1 PALM’s approximation of the graph of an unknown function f :
X → Y with only three hyperplane based clusters (left), and eight hyperplane

based clusters (right)

. . .

∑ . . .

. . .

Defuzzifier

Figure B.2: Type-1 PALM’s simplified architecture
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From Fig. 2, the weighted sum can be expressed as:

B =
m∑
j=1

ωja
j
iBj (B.1)

where aji is the degree to which input xi belongs to fuzzy set Aj in the rule

or cluster Aj × Bj. Type-1 PALM can approximate a function f : X → Y by

generating rules or clusters. In the theorem of PALM as universal approximator,

we need to consider that f : X → Y is continuous and that X is compact

(closed and bounded) in <n. The theorem shows that in principle a TS-fuzzy

based PALM with finite fuzzy rules can approximate any continuous function to

any degree of accuracy.

Theorem:A type-1 PALM F uniformly approximates f : X → Y if X is

compact and f is continuous.

Proof: Let us assume any small constant ε > 0. We have to prove that |F (x)−
f(x)| < ε for all x ∈ X, where X is a compact subset of Rn, F (x) is the

output the PALM as expressed in Eq. B.1. Continuity of f on compact X gives

uniform continuity. So there is a fixed distance δ such that, for all x and z in X ,

|f(x)−f(z)| < ε/4 if |x−z| < δ. We can construct a set of open cubes M1, ...,Mm

that cover X and that have ordered overlap in their n coordinates so that each

cube comer lies at the midpoint cJ of its neighbors Mj. If we pick symmetric

output fuzzy sets B, centered on f(cj). and pick u ∈ X, then by construction u

lies in at most 2n overlapping open cubes Mj. Pick any ω in the same set of cubes.

If u ∈ Mj and ω ∈ Mk, then for all u ∈ Mj ∩Mk : |u − v| < δ and |v − ω| < δ.

Uniform continuity implies that |f(u) − f(ω)| ≤ |f(u) − f(v)| + |f(v) − f(ω)|.
So for cube centers cj and ck, |f(cj) − f(ck)| < ε/2. If we pick x ∈ X, then

x too lies in at most 2n open cubes with centers cj and |f(cj) − f(x)| < ε/2.

Along the kth coordinate of the range space Rp the kth component of the PALM

outputF (x) lies as in (6) on or between the kth components of the centroids of

the Bj sets. So, since |f(cj) − f(ck)| < ε/2 for all f(cj), |F (x) − f(cj)| < ε/2.

Then |F (x)− f(x)| ≤ |F (x)− f(cj)|+ |f(cj)− f(x)| < ε/2 + ε/2 = ε.

The proof traps the centroidal output C(B) or yj between the centroids C(B1)and

C(Bm) if C(B1) ≤ C(B2) ≤ ... ≤ C(Bm):
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C(B) =
∑m
j=1 A(Bj)C(Bj)∑m

j=1 A(Bj)

=
∑m

j=1 cjC(Bj)
(B.2)

for volume or area A(Bj) =
∫
X
mB(x)dx and for convex area coefficients c1, ..., cm.

The proof works for any combined output set B = φ(B1, ..., Bm) such that

C(B1) ≤ φ ≤ C(Bm). The proof also works for noncentroidal defuzzifiers D(B)

that obey C(B1) ≤ D(B) ≤ C(Bm). For further clarification, the details proof

of type-1 fuzzy system’s function approximation power is described in [269].

B.1.2 Type-2 PALM as universal approximator:

We will constructively prove that type-2 PALM Fn(x) can uniformly approximate

any multivariate polynomial Pd(x) to any degree of accuracy.

Lemma Fn(x) can uniformly approximate any multivariate polynomial Pd(x) de-

fined in Cr[−1, 1] to any degree of accuracy, where Pd(x) =
∑

di≥0

(
βd1,...,dr

∏r
i=1 x

di
i

)
and

∑r
i=1 di < d. That is, ∀ε > 0, there exists a sufficiently large positive integer

n∗ such that ∀n > n∗.

||Fn − Pd||cr[−1,1] = max
x∈cr[−1,1]

|Fn(x)− Pd(x)|| < ε (B.3)

Proof:Let us consider a dth order polynomial as follows:

f(ph) =
∑
di≥0

(
Ld1,...,dr .n

d

r∏
i=1

(ph,i
n

)di)
(B.4)

with the same degree as Pd(x) with respect to pi, where Ld1,...,dr are integers

obtained from βd1,...,dr of Pd(x) to ensure f(ph) is integer, and Ld1,...,dr = 10s ×
βd1,...,dr ; here, s is the smallest positive integer that will make all the 10s ×
βd1,...,dr integers. It is obvious that M(f, n) = nd.

∑
di≥0 |Ld1,...,dr | We choose

H = 10s.
∑

di≥0 |Ld1,...,dr |, then

H.f(ph)

M(f, n)
=
∑
di≥0

(
βd1,...,dr

∏(ph,i
n

)di)
= Pd

(ph
n

)
(B.5)

where ph
n

=
[ph1
n
, ...,

phr
n

]
. Based on the derivation in [271] the defuzzified crisp

value can be expressed as follows:
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Fn(x) =
1

2τ

2τ∑
h=1

∑τ
q=1 Pd

(
ph+ch
n

)
λhmq∑τ

q=1 λ
h
mq

(B.6)

For simplicity, the case of r = 2 is considered in this proof. We assume that
pi
n
≤ xi ≤ pi

n
, thus∣∣∣∣ph,i + ch,i

n
− xi

∣∣∣∣ ≤ ch,i
n
≤ cmaxi

n
, where i = 1, 2. (B.7)

Let, η = [ηh,1, ηh,2] , where ηh,i =
ph,i+ch,i

n
, i = 1, 2. and x = [x1, x2], |xi| ≤ 1

and |ηh,i| ≤ 1. For 1 ≤ d1and d2 ≤ d, let us consider that ξ(η, x) =
∣∣ηd1h,1.ηd2h,2 − xd11 .x

d2
2

∣∣and

note that

∣∣ηd1h,1.ηd2h,2 − xd11 .x
d2
2

∣∣ ≤ ∣∣ηd1h,1 − xd11

∣∣ . ∣∣ηd2h,2∣∣+
∣∣xd11

∣∣ . ∣∣ηd2h,2 − xd22

∣∣
≤

∣∣ηd1h,1 − xd11

∣∣+
∣∣ηd2h,2 − xd22

∣∣
≤

∣∣ηd1h,1 − x1

∣∣ . ∣∣∣∑d1
v=1 η

d1−v
h,1 .xv−1

1

∣∣∣+
∣∣ηd2h,2 − x2

∣∣ ∣∣∣∑d2
v=1 η

d2−v
h,2 .xv−1

2

∣∣∣
≤ cmax1

n

∑d1
v=1 1 +

cmax2

n

∑d2
v=1 1

=
cmax1 .d1+cmax2 d2

n

(B.8)

Thus,

=

∣∣∣∣ 1
2τ

∑2τ

h=1

∑τ
q=1 Pd

(
η
d1
h,1,η

d2
h,2

)
.λhmq∑τ

q=1 λ
h
mq

− Pd(x1, x2)

∣∣∣∣
≤ 1

2τ

∑2τ

h=1

∑τ
q=1 λ

h
mq

∣∣∣Pd(ηd1h,1,ηd2h,2)−Pd(x1,x2)
∣∣∣∑τ

q=1 λ
h
mq

−

≤ 1
2τ

∑2τ

h=1

∑τ
q=1 λ

h
mq(

∑
d1,d2=0|βd1,d2|)ξ(η,x)∑τ
q=1 λ

h
mq

(B.9)

Combining (8)-(11), the following is achieved:

‖Fn − Pd‖C2[−1,1] = max
x1,x2∈[−1,1]

|Fn(x)− Pd(x)| ≤ cmax1 d1 + cmax2 d2

n
(B.10)

Thus, ∀ε > 0, if we choose n∗ >
∑2

i=1
cmaxi di

ε
.
∑d

d1,d2=0 |βd1,d2| , then ‖Fn − Pd‖C2[−1,1] <

ε for all n > n∗is indicating that Fn(x) can approximate Pd(x) uniformly.
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Theorem: Fn(x) can uniformly approximate any multivariate continuous

function G(x) in Cr[−1, 1] to any degree of accuracy. In other words, ∀ε > 0,

there exists a sufficiently large positive integer n∗ such that ∀n > n∗ , (5) is true.

Proof: According to the Weierstrass approximation theorem, for any given

continuous function G(x) in Cr[−1, 1], there always exists a polynomial Pd(x)

capable of approximating uniformly G(x) to arbitrary degree of accuracy. That

is to say, ∀ε1 > 0, ‖Pd −G‖Cr[−1,1] < ε1. Furthermore, owing to lemma, ∀ε2 >

0, a sufficiently large positive integer n∗ can be found such that ∀n > n∗,

‖Fn − Pd‖Cr[−1,1] < ε2. Thus,

‖Fn −G‖ ≤ ‖Fn − Pd‖+ ‖Pd −G‖ < ε1 + ε2 = ε (B.11)

In other words, Fn can approximate uniformly G in Cr[−1, 1].
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