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Abstract 

Based on cognitive load theory, the variability effect occurs when learners’ 

exposure to highly variable tasks results in better test performance. Using four 

randomised controlled trials in the area of secondary and tertiary mathematics 

instruction, the present study investigated the effects of variability, with an 

emphasis on levels of instructional guidance and levels of learner expertise. 

Experiments 1, 2 and 4 hypothesised that learners who study fully-guided worked 

examples will yield higher post-test performance scores, compared to learners who 

attempt unguided problem-solving tasks (Hypothesis 1); and learners who study 

high-variability worked examples will yield higher post-test performance scores, 

compared to learners who study low-variability worked examples, with no 

difference being generated under problem-solving conditions (Hypothesis 2). 

Hypothesis 1 was not supported in Experiments 1, 2 and 4, while Hypothesis 2 was 

supported only in Experiment 2. The variability effect that was produced in 

Experiment 2 led to further investigation in Experiment 3, where it was 

hypothesised that more-experienced learners (experts) would demonstrate the 

variability effect, and less-experienced learners (novices) would demonstrate a 

reverse variability effect. This hypothesis was supported, producing a classic 

expertise reversal effect. In addition, in all four experiments, learners’ cognitive 

load was evaluated by having each participant complete a subjective rating of 

difficulty scale upon completion of their learning tasks. The results supported the 

assumptions based on cognitive load theory: learners in the worked-examples 

groups experienced less cognitive load compared to the problem-solving groups (in 

Experiments 1, 2 and 4); novices experienced less cognitive load when solving 

low-variability problems compared to high-variability problems, and lower 
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cognitive load was experienced by experts, compared to novices, for both high- and 

low-variability tasks (in Experiment 3); and cognitive load associated with the 

completion of high-variability tasks was higher compared to the completion of low-

variability tasks (only in Experiment 4). Although it is well grounded in empirical 

evidence that learners should be provided with worked examples during the initial 

stages of learning, these results strongly suggest that learners should be initially 

presented with low-variability problems, and as their levels of knowledge advance, 

variability should increase. 
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Introduction 

Over the last 30 years, cognitive load theory (CLT hereafter) has developed 

into a robust instructional theory that has successfully identified, for novices, 

processes that foster learning and impediments that compromise learning. The 

theory is grounded in extensive research in cognitive processes arising from the 

interactions between working memory and long-term memory (see Sweller, Ayres, 

& Kalyuga, 2011, for a comprehensive review of the theory), and cognitive load 

(mental effort generated in working memory) that is experienced when processing 

instructional information or performing problem-solving tasks (Sweller, 1994; 

Sweller, van Merriënboer, & Paas, 1998).  

In well-defined domains such as mathematics, the most common approach to 

learning is to initially provide students with worked examples that relate to new 

material. Substantial research from a cognitive load perspective confirms that 

initially providing appropriately designed worked examples is a more effective 

instructional technique than using problem-solving tasks for individuals who lack 

relevant knowledge structures for a particular task (Sweller et al., 2011). The 

variability technique is an enhancement and extension to the methodology of 

worked examples. Increasing problem variability exposes students to a greater 

range of tasks which facilitates the differentiation of relevant and irrelevant 

features of tasks (van Merriënboer & Sweller, 2005). Within the theoretical 

framework of CLT, the present study focuses on how variability fosters deeper 

understanding of problem-solving procedures by examining the effect of variability 

on worked-examples and problem-solving instructional formats, and the possibility 

of a reverse variability effect depending on learner prior knowledge, by comparing 

the performance of more- and less-experienced learners. 
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A worked example provides a detailed step-by-step solution to a problem so 

that learners do not need to try to work out the solution steps on their own. 

According to CLT, the worked example effect occurs when learning is enhanced for 

less-experienced learners if they are exposed to instruction that relies on studying 

worked examples, rather than instruction that directs them to attempt to problem 

solve without exposure to worked examples. However, with increasing expertise in 

a specific task domain, processing worked examples may inhibit learning because 

more-experienced learners will expend cognitive resources processing (integrating 

and cross-referencing) redundant information (information they already know). 

Correspondingly, the advantage of studying worked examples over problem 

solving ultimately reverses, so that solving problems becomes superior to studying 

worked examples for more-experienced learners (Kalyuga, Chandler, Tuovinen, & 

Sweller, 2001). Investigated within the cognitive load theoretical framework, this 

phenomenon is known as the expertise reversal effect (Kalyuga, 2007; Kalyuga, 

Ayres, Chandler, & Sweller, 2003). 

Several studies have found a reversal in the effectiveness of instructional 

methods when there is a change in the level of learner knowledge in a particular 

domain (Kalyuga et al., 2003; Kalyuga, Chandler et al., 2001; Kalyuga & Renkl, 

2010; Kalyuga, Rikers, & Paas, 2012; Tuovinen & Sweller, 1999). These studies 

showed problem solving to be a more effective strategy, compared to 

comprehensive guidance in the form of worked examples, for learners with high 

levels of prior knowledge in a domain, and an ineffective strategy for those 

learning new procedures and concepts for the first time. A contemporary issue that 

confronts CLT is whether providing novices with problem-solving tasks during the 

initial learning phase, can actually facilitate learning. CLT theorists argue that the 
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only advantage in favour of problem solving has been limited to learners who have 

acquired high levels of prior knowledge and hence would benefit more from 

problem solving. Kalyuga et al. (2003) claim that if unnecessary instructional 

guidance is provided to expert learners, this imposes an additional cognitive load 

because experts will need to consume additional working memory resources to 

interpret the redundant information. 

Learning occurs best when instructional designs are matched to the learner’s 

level of expertise and consider fundamental characteristics of human cognitive 

architecture. CLT is linked to an established human cognitive architecture model 

which includes working memory (WM hereafter) and long-term memory (LTM 

hereafter). It is generally accepted that WM limitations – such as duration 

constraints, along with restricted storage and processing capacities for new 

information – require learners to avoid processing excessive amounts of interacting 

elements of information, otherwise cognitive overload may occur (Chandler & 

Sweller, 1996; Kester, Kirschner, & van Merriënboer, 2006; Mayer & Moreno, 

2003; van Merriënboer & Kirschner, 2018). 

Overloading WM inhibits learning, and consequently innovative designs have 

been developed by cognitive load theorists to reduce cognitive load to foster 

learning (Carroll, 1994; Cooper & Sweller, 1987; Gerjets, Scheiter, & Catrambone, 

2004; Pollock, Chandler, & Sweller, 2002; Ward & Sweller, 1990). Accordingly, 

cognitive load optimisation can be achieved by providing instructional support to 

novice learners and removing unnecessary guidance as learners gain superior levels 

of proficiency in a specific domain. Despite WM’s duration and capacity 

constraints, Sweller (2003, 2004) discusses no known limitations when information 
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is retrieved from LTM, as information that is stored in LTM is extensive and 

comparatively permanent. 

LTM contains elements of information that have been organised and stored in 

knowledge structures known as schemas (Paas, Renkl, & Sweller, 2004). 

According to van Merriënboer, Kirschner, and Kester (2003), schemas provide a 

bridge between a learner’s prior knowledge and new information they need to 

know in order to perform a learning task. Schema construction incorporates 

chunking – a memory mechanism in which familiar units of information are 

grouped together to form a larger unit of information (Gobet et al, 2001; Miller, 

1956). By chunking information into a larger unit of meaningful information, an 

individual can improve their WM capacity (Ericsson, Chase, & Faloon, 1980), and 

as a result, learners can hold large amounts of information in WM because a larger 

unit of information is easily dealt with as one element (van Merriënboer & Sweller, 

2005). 

Since a schema incorporates multiple elements of information into a single 

element (or chunk of information), Kalyuga and Sweller (2004) stipulate that it is 

possible for a single, high-level element to make WM more manageable, as a single 

element requires less WM capacity for processing, compared to the many, low-

level elements it comprises. Learner expertise emerges from the construction of 

increasingly sophisticated schemas, by which easy concepts merge into more 

complicated ones. Sweller (2004) also maintains that if information that is 

processed in WM is not stored in LTM (in the form of schemas), no permanent 

learning has taken place. 

In addition to human cognitive architecture, the type of material provided to 

learners is also critical to CLT. Researchers in CLT emphasise the importance of 
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variability of tasks for learning and transfer. Research studies have shown that 

exposure to highly variable example-based instruction, compared to less variable, 

homogeneous examples, gives learners the opportunity to engage in deeper 

processing, enabling new knowledge to be adaptable to novel situations, resulting 

in enhanced transfer performance (Clark, Nguyen, & Sweller, 2006; Paas & van 

Merriënboer, 1994; Quilici & Mayer, 1996; van Merriënboer & Sweller, 2005). 

Paas and van Merriënboer’s (1994) study was the first study of variability 

from a cognitive load perspective to show that high-variability worked examples 

enhanced learning compared to low-variability worked examples. Despite high-

variability examples requiring an increased use of WM resources (due to an 

increase in element interactivity), their experimental results showed that the 

variability effect was obtained using appropriate instructional designs. 

Notwithstanding the positive effects of high-variability tasks, surprisingly little is 

known about the advantages and disadvantages of providing high-variability tasks 

to learners with varying levels of prior knowledge in the domain. 

Instructional procedures must be adapted for a learner’s existing schematic 

knowledge base in LTM in a way that optimises cognitive load during learning 

(Kalyuga & Sweller, 2004). When schemas are acquired or automated, studies have 

demonstrated that more cognitive resources are freed up – allowing for greater 

capacity for creativity to enable transfer of learning (Cooper & Sweller, 1987; 

Kotovsky, Hayes, & Simon, 1985; Schneider & Shiffrin, 1977; van Merriënboer & 

Kirschner, 2018). Despite this, existing research has not explored whether learning 

and problem solving would improve with high- or low-variability tasks provided to 

learners with varying levels of prior knowledge. As such, this proposition provided 

the major impetus for the research undertaken for this thesis. By building on 
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previous research that showed that the worked-example – high-variability 

combination yields superior transfer outcomes, the present study investigated the 

connections between low/high-variability worked examples and problem-solving 

tasks, and the connections between low/high-variability tasks provided to less-

experienced and more-experienced learners in the domain. 

This thesis is divided into two parts. Part I comprises the first two chapters: 

Chapter One reviews literature on human cognitive architecture underpinning CLT, 

and Chapter Two addresses the basic theoretical assumptions of CLT. Part II 

comprises the remaining three chapters: Chapter Three sets out the dependent and 

independent variables that embody the hypotheses which the present empirical 

study seeks to investigate; Chapter Four reports and discusses the empirical 

findings of four experiments comprising the present study, in light of previous 

findings that were generated by CLT; and Chapter Five concludes the thesis with a 

general discussion, including an overview of the results and the limitations of the 

present study, critical factors for educational practitioners and instructional 

designers to consider when tailoring tasks to learners with different levels of 

expertise, and recommendations for future research.  
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Chapter 1: Human Cognition 

1.1 Introduction to Chapter 1 

The goal of this chapter is to provide a historical review of the assumptions 

relating to the characteristics of human cognitive architecture, upon which CLT is 

based on. Human cognitive architecture refers to the components and properties of the 

human cognitive system whereby humans are able to think, learn, and problem solve 

(Sweller et al., 2011). This chapter will focus on the key memory structures of this 

architecture: WM (previously known as short-term memory) and LTM. Additionally, 

the conceptualisation of CLT and its link with biological evolution will be discussed 

with reference to a comparative framework comprising five principles. Analogies 

between human cognition and biological evolution will reveal how thinking, learning 

and problem solving are all natural occurrences (Sweller & Sweller, 2006).  

1.2 Human Cognitive Architecture 

The concept of human cognitive architecture is derived from examining the 

components of the human memory system (Sweller, 2003). The framework of 

human cognitive architecture is based on WM, which deals with the conscious 

activity of processing new elements of information (that need to be learned and 

constructed into meaningful knowledge), and LTM, where information is 

permanently stored in the form of schemas of varying size, complexity and degree 

of automaticity (Sweller et al., 1998). CLT is based on the way these two major 

components of human cognitive architecture are arranged and interconnected 

(Sweller et al., 2011). 

 Baddeley’s (1992) widely used WM model assumes a limit on complex 

cognitive activities (such as learning, reasoning, and language comprehension), in 

terms of temporary storage and manipulation of information. Sweller (1994) 
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claimed that this limitation could be overcome through schema acquisition and 

automation. Constructed schemas only develop into automated schemas if they are 

continuously applied across consistent problem situations (van Merriënboer & 

Sweller, 2005). Because schema automation eliminates or reduces the need for 

conscious processing in WM, automation makes it possible for familiar tasks to be 

performed smoothly and accurately – a mechanism by which maximum WM 

capacity is made available for unfamiliar tasks to be learned with maximum 

efficiency. 

 Without the dual functions of schema construction and automation, van 

Merriënboer and Sweller (2005) claimed that WM is incapable of dealing with 

complex, unfamiliar tasks, for which no schemas are available. However, when 

mandatory skills are automated, this can increase the availability of WM resources 

that can become available for managing complex interactions between unfamiliar 

elements (van Merriënboer & Sweller, 2005).  

 Human cognitive architecture can be used to explain how different skills and 

experiences account for the ways novices and experts reason and plan solutions. 

For example, when a novice in a mathematics domain attempts to solve a problem, 

they do so by backward reasoning. They begin with the known end, or by 

envisioning the desired end (the goal state), and then attempt to solve the problem 

by using a general means-ends search (Sweller, 1999). Because a novice has not 

yet had extensive experience solving similar problems, they will reason between 

the superficial features of the question by recalling and applying a sequence of 

individual formulae that relate to the specific parts in the question (initial problem 

state). This imposes considerable cognitive load and diverts attention from critical 

features of the problem that are crucial for learning (Ayres & Sweller, 1990; 
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Cooper & Sweller, 1987; Owen & Sweller, 1985). In contrast, an expert in a 

mathematics domain is able to solve a problem by forward reasoning. They are able 

to generate an integrated representation of the problem description based on 

principles. Because an expert possesses domain specific knowledge, they are able 

to analyse and sub-group the problem within a generalised solution (schema) from 

their LTM. This enables them to solve the problem in a single mental step which 

demands minimal WM load because they are able to see the entire solution as one 

unit. This difference between novices and experts was described in Larkin, 

McDermott, Simon, and Simon’s (1980) research which used two simulation 

models that solved elementary physics problems in ways that were analogous to 

novice and skilled human problem solvers when they produced solutions on paper.  

Adding to the above, when a task requires several elements to be 

simultaneously manipulated in WM, cognitive load levels become “naturally high” 

(Sweller, 1994, p. 295). The concept of a high-element interactivity task explains 

why material may be difficult to learn and understand, because the elements need 

to be mentally organised into a coherent knowledge structure and integrated with 

relevant existing knowledge (Mayer & Moreno, 2003). In this sense, expertise 

develops as learners develop cognitive schemas that incorporate interacting 

elements.  

Sweller et al. (1998) claimed that material that is low in element interactivity 

entails sequential learning and requires just a few elements to be held in WM at a 

given time. A low-element interactivity task is very simple since no schemas are 

acquired or integrated with other schemas. Furthermore, the level of expertise of a 

learner will determine the level of element interactivity. This is because a single 
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element for a higher-ability learner might be equivalent to a large number of 

interacting elements for a lower-ability learner (van Merriënboer & Sweller, 2005). 

1.2.1 The modal model of human cognition. 

The theoretical framework adopted by this thesis, which is underpinned by 

human cognitive architecture, is rooted in the modal model of human cognition. In 

the late 1950s, information processing models were created by cognitive scientists 

(Shiffrin & Atkinson, 1969; Waugh & Norman, 1965) who built on the memory 

processes which had traditionally been broken into three stages by memory 

researchers: the acquisition of new information into a system, the storage of this 

information within the system, and the retrieval of information from the system 

when it was required. The main features of the framework that guided these 

information processing models came to be known as the modal model of memory. 

The modal model assumed three separate memory stores (sensory, primary and 

secondary), which were connected; that is, information could be transferred 

between them (Healy & McNamara, 1996). 

The main feature of the modal model was the short-term store (STS hereafter) 

of information because long-term learning was assumed to be dependent on the 

information held in this STS, until it transferred to the long-term store (LTS 

hereafter). Baddeley (1986) clarified this by claiming that the probability of 

learning was “a direct function of the amount of time an item resides in STS” and 

that the STS was “responsible for encoding the incoming material in a range of 

different ways” (p. 16). This suggests that the STS was considered to be a 

temporary storage system where information was manipulated and learning was 

limited. 
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Certain aspects of the formulation of the modal model’s multistore system 

were objected to. For example, Tulving and Patterson (1968) opposed the notion 

that information was transferred from one store to another. Similarly, Shallice and 

Warrington’s (1970) findings opposed the idea that information needed to enter 

STS before entering LTS. 

By the early 1970s, many problems began to beset the general modal model. 

An increasing number of new techniques and ongoing changes to the model 

resulted in more complex components (see Sweller et al., 2011, for a review). For 

example, it was proposed that there was a loop connecting LTM to sensory memory 

which allowed permanently stored information to influence briefly held stimuli for 

initial perceptual processing. This proposition suggests that information does not 

flow through memory in a linear fashion; that is, by entering sensory memory and 

proceeding to WM for further processing, prior to entering LTM. Instead, 

information is processed simultaneously between WM and LTM which are 

interconnected components within the memory system; with LTM influencing 

initial processing. 

1.2.2 Short-term memory. 

Research on memory performance which supports the modal model of 

memory can be traced back to James (1890), who first distinguished “primary” 

memory, which he described as immediate concerns held momentarily in 

consciousness, from “secondary” memory, which he assigned to unconscious, 

lasting memories. It was not until the late 1950s that the distinction between short-

term memory (STM hereafter) and LTM was more fully developed (Broadbent, 

1957; Brown, 1958). STM was used with reference to tasks that contained small 
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amounts of information that needed to be retained for brief moments, and LTM was 

used with reference to information that was stored for more than a few seconds. 

An early argument that information processing was constrained by STM was 

discussed in Miller’s (1956) classic article, where he claimed that a normal 

person’s memory span could handle approximately seven, plus or minus two, 

chunks of information at any point in time. The general limitation on human 

information processing, as represented by Miller’s (1956) model, suggests that to 

process information more efficiently, the size of the chunks needs to be expanded 

so that several elements of information are organised into a single, meaningful unit 

of information. Although many cognitive psychologists have accepted this narrow 

memory range of around seven items (across many domains), Cowan (2001) 

argued, drawing on a wide variety of data on capacity limits, that the common 

capacity of STM was around three to five chunks. This implies that the number of 

chunks that can be reliably stored is dependent on the type of processing required; 

that is, capacity is limited by the number of chunks and the level of processing of 

these chunks (for example, a complex cognitive activity such as problem solving, 

which requires more processing, would result in the storage of fewer chunks). 

As well as being limited in capacity, studies have suggested that STM is 

limited in duration. For example, Peterson and Peterson’s (1959) study confirmed 

that memory in STM faded away as a function of time (time-related decay) if 

information was not refreshed by rehearsal. By measuring how well university 

students could recall a trigram (a three-consonant syllable, such as ‘ABC’) after 

undertaking a continuous verbal activity (counting backwards by three from a given 

number), Peterson and Peterson (1959) found that after three seconds, students had 

forgotten half of the information, and after eighteen seconds, students had forgotten 
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almost everything. However, Cowan (2001) discussed several studies that revealed 

forgetting in STM was more a result of interference (where old information was 

replaced by new information) than time-related decay. For example, Waugh and 

Norman’s (1965) experiment showed that unrehearsed verbal information that was 

interfered with intervening information resulted in forgetting, irrespective of time-

related decay. 

1.2.3 Working memory. 

Traditionally, the prominent framework for memory research postulated that 

information entered STM after being initially processed by sensory memory – the 

component which perceived, recognised, and assigned meaning to incoming 

stimuli. STM has since been replaced with WM because of the distinction between 

the subprocesses in STM that passively maintained information and the active 

processing of information in WM (Baddeley, 2001). In his book on WM, Baddeley 

(1986) referred to the common perception that “memory might not be a single 

monolithic system but might have two or more components” (p. 3). 

According to Baddeley (1992), the concept of WM evolved from the idea that 

there was a unitary STM system. The concept postulated that there was a more 

complex framework, where the temporary storage of information was used to 

process complex cognitive tasks such as “language comprehension, learning, and 

reasoning” (p. 255). Baddeley and Hitch (1974) proposed that the simultaneous 

storage and manipulation of information in WM required three components: the 

central executive (which controlled the overall system), and two subsystems (which 

were responsible for the maintenance of spatial and verbal information): the visuo-

spatial sketchpad (the visual channel) and the phonological loop (the auditory 

channel). Despite some criticism which indicated that the WM model placed too 
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much emphasis on the interpretation of a tripartite structure rather than the 

processes underlying the subsystems, Baddeley and Hitch’s WM model has proven 

useful in explaining the way in which information is temporarily stored as part of 

its central role in complex cognitive processing (Tulving & Craik, 2000). 

To understand the usefulness of theorising the existence of a tripartite system, 

Miyake and Shah (1999) surveyed common and diverse conceptualisations of ten 

comprehensive WM theories. They discussed the combination of an executive 

control with specialised storage systems which displayed key differences between 

verbal and visual material. Additionally, Baddeley’s (2001) further analysis of the 

controlling central executive led to an update to his multicomponent WM model 

with the incorporation of a fourth system, the “episodic buffer”, which formed an 

interface between the visual and auditory subsystems. Irrespective of ongoing 

debates concerning the validity of the multicomponent WM model, cognitive 

scientists have continued to use this model in many CLT studies, and it has led to 

an increased level of knowledge about human cognitive architecture. 

1.2.4 Long-term memory. 

The distinction between temporary storage of information (in WM) and 

permanent storage of information (in LTM) continues to be a central characteristic 

of all prominent information processing theories. LTM refers to the unconscious 

component of the memory system where unlimited amounts of information, in the 

form of schemas, are stored. According to Tulving and Craik (2000), the transfer of 

information from WM to LTM is the most vital part of information processing, 

which has been identified to be a specific function of WM. Unlike the capacity and 

duration constraints when novel information is dealt with in WM, there are no 
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known limitations when WM deals with information retrieved from LTM (Ericsson 

& Kintsch, 1995; Sweller, 2003, 2004). 

Information in LTM is coded in terms of its meaning. For example, in 

relation to verbal material, the real distinction between STM and LTM, as shown 

by Baddeley and Dale (1966), was their different coding characteristics. STM 

appeared to be predominantly acoustic, while LTM appeared to be mainly semantic 

(meaningful encoding). Moreover, Shiffrin and Atkinson (1969) argued that 

forgetting from STM occurred after less than 30 seconds, while material was 

forgotten from LTM either very slowly or not at all. Shiffrin (1975) stated that once 

sensory information entered STM, it was initially encoded automatically. At a later 

stage, additional rehearsal, such as maintenance or coding, occurred to facilitate the 

complete transfer from the STS to the LTS. 

According to Sweller (1999), LTM is not just a passive repository of 

memorised facts; rather, it contains an unlimited storage of “sophisticated 

structures that permit us to perceive, think and solve problems” (p. 10). Since WM 

can only deal with a limited number (usually no more than two or three) of novel 

interacting elements, the expansion of learners’ processing ability is possible 

because of the schemas brought from LTM to WM (Paas, Renkl, & Sweller, 2003). 

Schemas retrieved from LTM organise and store a vast number of low-interacting 

elements, that would normally have exceeded the processing capacity of WM if 

each interacting element needed to be processed individually (Paas, Renkl, & 

Sweller, 2003). 

As mentioned, schemas allow problem solvers to group elements of 

information into appropriate categories according to the manner in which the 

information will be used to solve a similar category of problems (Chi, Feltovich, & 
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Glaser, 1981). Knowledge, according to cognitive science, can be distinguished 

between declarative knowledge and procedural knowledge (Chi & Ohlsson, 2005; 

Schraw, 2006). Declarative (or descriptive) knowledge refers to static information 

such as facts (for example, ‘A’ is the first letter of the alphabet), concepts (for 

example, the abstract phenomena of happiness), and the relationship between 

concepts which form integrated conceptual knowledge in a particular domain. 

Procedural (or implicit) knowledge refers to knowing how to process or manipulate 

information (for example, driving a car). This distinction indicates that even if the 

declarative knowledge of two problems may be the same (i.e., common elements 

are contained in each problem), the procedural knowledge involved in solving the 

problems may differ (i.e., different processes are required to solve each problem). 

1.2.4.1 Novice-expert differences.  

The role of LTM in human cognitive performance was accounted for in de 

Groot’s (1965), and Chase and Simon’s (1973a, 1973b) pioneering research on 

chess players’ expertise. They theorised that after many years of practice, chess 

experts’ superiority in memorising chessboard configurations was obtained from 

encoding a large number of specific arrangements of chess pieces in terms of 

familiar, well-organised, integrated memory patterns of information. The ability to 

chunk and organise new information into schemas enabled chess experts to quickly 

recognise meaningful patterns of information, such as successful chess moves and 

the implications of such moves (de Groot, 1965).  

Chase and Simon (1973a, 1973b) found that expert and novice chess players 

relied on a similar number of chunks in STM with reference to the patterns of the 

chess pieces on the chessboard. On the one hand, the chess expert’s performance 

was superior, compared to the novice’s performance, because they possessed 
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chunks of information that were substantially more complex. Experts automated 

parts of the problem-solving process contained in these more complex chunks 

which enabled them to quickly recognise specific patterns of information (chunks) 

presented on the chess board so that they could encode and recall chess board 

configurations. On the other hand, novices recognised fewer chess board 

configurations which required them to encode arrangements in terms of individual 

chess pieces. The inability of novices to recognise meaningful patterns of 

information increased demand on their conscious attention to search for better 

moves. De Groot (1965) explained that the superior recall of expert chess players 

when briefly presented with chessboard configurations was based on their ability to 

chunk information and organise it into schemas. 

CLT is concerned with the way learners develop expertise in a domain during 

learning and problem solving – a process that requires learners to circumvent WM 

capacity limitations. By mindfully combining simple elements into more complex 

elements, to facilitate continuous construction of more complex schemas, skilled 

performance development is made possible. Sweller (1989) clarified this by 

arguing that schema acquisition (construction and automation) are the constituents 

of skilled problem-solving performance. When learners practise a task extensively, 

schemas can become automated – resulting in schemas being processed 

unconsciously, further reducing the cognitive load on WM (Paas, Renkl, & 

Sweller, 2003). Hence, freeing up WM capacity, by schema construction and 

automation, enables learners to process and integrate new information with prior 

knowledge in WM, before new information is encoded in LTM (Sweller et al., 

2011). 
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There is ample evidence which shows that the expansion of WM capacity and 

the enhancement of memory performance occur when higher levels of memory 

skill are developed and relevant prior knowledge is acquired within a task domain 

(Kalyuga et al., 2003). Ericsson and Kintsch (1995) showed that “subjects must 

acquire encoding methods and retrieval structures that allow efficient storage and 

retrieval from LTM”, in order to meet the specific demands of WM for a certain 

activity (p. 239). Within a complex domain, the acquisition of a greater number and 

sophistication of schemas account for the difference between novices and experts 

(Chase & Simon, 1973a, 1973b). Cooper and Sweller (1987) suggested that schema 

acquisition, more than schema automation, plays a major role in skilled problem-

solving performance. 

As discussed above, organising and storing information in LTM is not the 

only function served by schemas. Since there are no limitations on the magnitude, 

complexity and refinement of schemas, these vast arrays of interrelated elements 

can also effectively boost WM capacity. That is why Sweller et al. (1998) claimed 

that complex schemas, held in WM as a single entity, enable experts to encode and 

understand the elements of an intellectual task into an entity with one or few 

elements, yet novices, on the other hand, who do not possess relevant schemas, 

must remember and process each element individually. 

Research conducted by Chi et al. (1981) revealed that the process of 

categorisation and representation of physics problems differed between experts and 

novices. The expert-novice difference was related to the content of the problem 

schemas. Even though novice schemas contained elaborate declarative knowledge, 

these schemas were “poorly formed” (p. 122), or contained “fewer explicit 

procedures” (Chi et al., 1981, p. 140). On the other hand, expert schemas contained 
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a considerable amount of procedural knowledge which, at the very least, contained 

possible solution methods. The results from Chi et al.’s (1981) experiments 

revealed that the use of a cueing strategy, employed by the expert, involved 

analysing the problem, categorising the problem, and then selecting and applying 

the associated principles in their knowledge base to solve the problem 

representation. By contrast, the novice searched for a particular solution based on 

the literal surface features explicitly stated in the problem statement. Unlike the 

expert, the novice was unable to activate an internal problem-solving schema 

(category knowledge), as a response to some cue in the externally presented 

problem, that could provide the general form necessary to solve the specific 

category of problems. This indicates that an expert can call upon their rich schemas 

(which contain strong skills and extensive problem-solving processes) to guide 

them in interpreting and solving problems, which in turn results in a more efficient 

learning processes. 

1.3 Evolutionary Perspective on Human Cognition 

A framework for understanding natural information processing systems was 

developed by Sweller and Sweller (2006). This framework conceptualised CLT in 

evolutionary terms by linking human cognitive processes with biological 

evolutionary processes, and Geary’s (2008) work on biologically primary and 

secondary knowledge. 

Biologically primary knowledge is knowledge that has evolved over 

thousands of generations. It is acquired unconsciously and effortlessly without 

instruction, during immersion in a human society, rather than by explicit 

instruction. Learning to speak and listen in a native language are some examples. 

Because we have evolved to acquire such knowledge automatically, it does not 
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need to be taught. On the other hand, biologically secondary knowledge needs to be 

explicitly taught and requires conscious effort, with most subject areas taught in 

educational institutions belonging to this category. Learning how to read and write 

are some examples (Geary, 2008). The modal model described in section 1.2.1, 

applies to biologically secondary rather than biologically primary information. CLT 

is strongly associated with the acquisition of biologically secondary knowledge. 

According to Sweller (2008), human cognition and biological evolution have 

important similarities in how they generate new information, accumulate and 

reserve that information, and apply and reuse that information indefinitely. It is 

argued that the manner in which all natural information processing systems, 

including human cognition, operate, is based on five fundamental principles 

(Sweller, 2004; Sweller & Sweller, 2006). These principles reflect the deep 

connection between the functions and processes of the human cognitive system and 

biological evolution: information store principle and LTM, borrowing and 

reorganising principle and knowledge acquisition, randomness as genesis principle 

and search-based problem solving, narrow limits of change principle and WM of 

less-knowledgeable learners, and environmental organising and linking principle 

and WM of more-knowledgeable learners. 

1.3.1 Information store principle. 

The information store principle relates to the very large store of schematically 

organised information in human LTM (required for the adaption to complex human 

cognitive activity), and similarly, to biological information held in a genome, that 

is encoded in its DNA (for the creation and maintenance of an organism). The 

contents in human LTM must be altered for learning to happen, and likewise, in 
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evolutionary biology, a species’ genome must be altered for evolution by natural 

selection to exist. 

1.3.2 Borrowing and reorganising principle. 

The borrowing and reorganising principle refers to mechanisms used for 

information stores to acquire information when needed. Examples include, when 

information stored in LTM is insufficient to complete a particular task, and 

equivalently, when information stored in a genome may be insufficient to conduct a 

vital activity. In human cognition, information can be acquired by borrowing from 

another human (either through imitation, listening or reading) and reorganising 

knowledge by encoding the new information into existing knowledge. Similarly, in 

the case of biological evolution, a species’ genome is changed through asexual 

(copying of a genetic code) and sexual (a novel combination of female and male 

genetic codes) reproduction. Inherent to the borrowing principle is the random 

manner in which old information combines with new information. For example, 

when borrowing information from another human, information cannot be copied in 

the exact way because of the way elements are uniquely combined from another 

LTM in the prevailing LTM. Similarly, novel constructions arise when genetic 

codes are copied and combined. 

1.3.3 Randomness as genesis principle. 

The randomness as genesis principle relates to the situation when individuals 

endeavour to solve a problem by random generation and testing because knowledge 

through the borrowing and reorganising principle is unavailable. The randomness 

as genesis principle provides the mechanism for creativity. It allows humans to go 

beyond their existing knowledge to create new information by using their primary 

knowledge to generate new, domain-specific, secondary information. Just as 
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humans randomly generate ideas by testing them for effectiveness during problem 

solving, new genetic codes are randomly generated and tested. In biological 

evolution, if new information is effective, this results in random mutation (changes 

in DNA) – similar to the way learners retain successful, novel solution steps when 

they successfully solve a problem using no prior knowledge. On the other hand, 

when a randomly-generated genetic code is ineffective after testing, the new 

information is abandoned – similar to the way learners abandon a particular way of 

solving a problem after a failed attempt. 

1.3.4 Narrow limits of change principle. 

The narrow limits of change principle is concerned with the slow, 

incremental stages by which new information is generated in a natural information 

processing system. A rapid alteration in human LTM by way of a combinatorial 

explosion (for example, if a learner were to attempt to simultaneously process a 

large quantity of unorganised, random elements) would not be possible because of 

the capacity and duration limitations of WM. For instance, mathematically, if three 

elements of information are handled, the number of possible permutations (i.e., the 

number of various ways the three elements can be ordered) is 3! = 3×2×1 = 6 (i.e., 

123; 132; 213; 231; 312; and 321), an amount that is unlikely to overload a natural 

information system. However, if the number of elements is doubled, the number of 

possible permutations drastically increases to 6! = 6×5×4×3×2×1 = 720, an 

amount that cannot be easily processed by a natural information system. Limited 

WM in human cognition ensures information in LTM is not manipulated by a 

random mechanism (because of the borrowing and reorganising principle, and 

randomness as genesis principle) that has no function. Only small amounts of novel 

information can be processed consciously in WM at a given time, in conjunction 
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with information held in LTM. In a similar way, genetic changes develop over 

numerous generations because the epigenetic system has a similar role in 

evolutionary biology as WM has in human cognition. The epigenetic system selects 

the information from the external environment and transfers this information to the 

genetic system (which has the capability to make a change in an organism’s DNA). 

1.3.5 Environmental organising and linking principle. 

The environmental organising and linking principle describes how stored 

information is used to generate actions that are appropriate to a particular 

environment. In addition, the principle explains why the narrow limits of change 

principle does not function after information is organised in the information store to 

be used in the environment. In human cognition, WM has no capacity and duration 

limitations when it uses information that is drawn from LTM and applied to a 

particular situation. Because accumulated information in LTM has been tested for 

its effectiveness, it does not require random processing in WM, and instead there 

are no limitations on what can be reused, thus reducing unnecessary WM load. 

Correspondingly, in evolutionary biology, vast amounts of information stored in a 

genome can be used by an epigenetic system to ensure, for example, there is 

sufficient protein synthesis required by a particular environment. The comparison 

in this case is the analogy between LTM and the genome, and WM and the 

epigenetic system. 

The abovementioned five principles are all required for a continual 

information processing system to exist. For instance, without a complex store of 

information held in LTM, the human cognitive system is unable to accommodate 

an individual’s skilled performance in a domain. In more detail, the extent to which 

an individual is skilled in a domain depends on the information they acquire in 
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LTM as a result of the alteration and construction of knowledge. When an 

individual is unable to solve a problem because knowledge is unavailable, the 

learner will test randomly generated solution steps as a last resort. Sweller (2009) 

argued that the absence of learned material gives rise to human creativity as 

individuals are unable to retrieve acquired knowledge from previous experience. 

As previously discussed, central to CLT are the limitations imposed by WM 

in both capacity (Miller, 1956) and duration (Peterson & Peterson, 1959). Given 

Miller’s (1956) finding that no more than seven items of novel information can be 

held in STM, and Cowan’s (2001) observation that no more than four items can be 

processed simultaneously in WM, random alterations to existing knowledge in 

LTM is slow and limited. These narrow limits of change pertain to novice learners 

because they lack sophisticated schemas associated with a task at hand. 

Conversely, expert learners, who deal with familiar information, are able to transfer 

large amounts of organised schematic information in a single, higher level element, 

from LTM to WM, to assist with carrying out complex problem-solving tasks. 

1.4 Summary of Chapter 1 

This chapter outlined the properties of human cognitive architecture critical 

for understanding human cognition. The key organisational and structural 

properties of this architecture comprised the modal model of human cognition, with 

particular reference made to the WM and LTM. The conceptualisation of CLT was 

also discussed in relation to five biological evolutionary principles, showing how 

they can be used to explain particular cognitive characteristics. 

The next chapter will discuss how CLT developed on the basis of human 

cognitive architecture. It will detail the theoretical framework of CLT, and how our 

understanding of CLT can significantly impact learning and instruction.  
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Chapter 2: Cognitive Load Theory 

2.1 Introduction to Chapter 2 

CLT developed as an instructional theory to explain the relationship between 

two constructs: cognitive load (the difference between a task demand imposed on a 

learner and their ability to master the task demand) and learning (the process of 

acquiring new or adjusting existing knowledge and skills by instruction or study). 

This chapter will review the theoretical framework of CLT and its contribution to 

an understanding of human cognitive processes in learning. Categories of cognitive 

load, subjective measures of cognitive load, and cognitive load effects, which 

inform many aspects of the present study, will be examined. Specifically, detailed 

discussions of the worked example effect, the expertise reversal effect, the 

redundancy effect, the split-attention effect, and the variability effect, will present 

how these instructional design effects influence cognitive load to improve learning 

and instruction. 

2.2 Overview of Cognitive Load Theory 

CLT is an instructional theory primarily associated with complex cognitive 

tasks, where novel, unorganised information needs to be processed concurrently for 

meaningful learning (Paas, Renkl, & Sweller, 2003; Sweller, 1988, 1999). Since its 

initial development in the 1980s by John Sweller, CLT has assumed a human 

cognitive architecture that focuses on WM limitations, and how these impact 

learning and instructional design (Sweller et al., 1998). As stated by Paas et al. 

(2004), CLT suggests that learning is most efficient and effective when 

instructional designs and procedures are in accordance with major characteristics of 

human cognitive architecture. 
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The limitations of WM make it necessary to avoid “cognitive overload” – a 

situation where competing demands of cognitive processes, induced by a learning 

task, exceed the processing capacity of WM and impair student learning (Sweller et 

al., 2011). The potential for cognitive overload makes it necessary to achieve a 

balance between instructional guidance and the availability of an organised learner 

knowledge base. Accordingly, the manner in which information is attended to and 

manipulated in WM during the learning phase, before it can be stored in LTM, 

necessitates the implementation of appropriate procedures and techniques to 

optimise cognitive load. 

2.2.1 Categories of cognitive load. 

Cognitive load is generally defined as WM resources used to process a 

specific task (Sweller et al., 1998). There will always be cognitive load associated 

with any learning process because performing a particular task involves a level of 

intellectual complexity. Therefore, instructional design should ideally avoid 

imposing unnecessary cognitive load (Chandler & Sweller, 1996). Of essential 

interest to cognitive load theorists is the ease with which WM processes 

information to facilitate schema construction within LTM (van Merriënboer & 

Sweller, 2005). 

According to CLT, cognitive load can arise from three sources: intrinsic, 

extraneous, and germane (Paas, Renkl, & Sweller, 2003; Paas et al., 2004; Sweller, 

2010; Sweller et al., 1998; van Merriënboer & Sweller, 2005). Understanding these 

categories of cognitive load can explain why some learning environments create 

higher processing load and why some learners can be overwhelmed by the 

numerous elements involved in a complex learning task. 
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2.2.1.1 Intrinsic cognitive load. 

When learning complex tasks, a high number of new, interacting elements 

need to be processed simultaneously in WM for learning to begin (Chandler & 

Sweller, 1991; Sweller & Chandler, 1994; Sweller et al., 1998). Element 

interactivity occurs when elements must be processed in conjunction with other 

elements, and without this interconnection, presenting them in isolation would have 

no meaning (Chandler & Sweller, 1991; Sweller & Chandler, 1994). By estimating 

the number of interacting elements in a learning task, the level of element 

interactivity can be determined (Sweller & Chandler, 1994; Tindall-Ford, Chandler, 

& Sweller, 1997). In mathematics, for instance, a low element interactivity task 

requires the processing of fewer individual learning elements to reach a solution, 

compared to a high element interactivity task. For example, consider the equivalent 

problems, ‘18m = 12m + 36’ and ‘(6 × 3)m = 24m – 12m + (6)%’, where both need 

to be solved for m. Assuming novice learners in both cases, the first problem is a 

lower element interactivity task because it requires fewer steps to solve the 

equation for m, compared to the second problem. The first problem requires at least 

two steps to reach the solution. One solution method would be to subtract 12m 

from both sides (to arrive at the solution step, 6m = 36), and then divide both sides 

by 6 (to obtain the answer, m = 6). The second problem requires at least five steps 

to reach the same solution. One solution method would be to multiply 6 and 3 (to 

obtain 18), to subtract 12m from 24m (to obtain 12m), to square 6 (to obtain 36), to 

formulate the simpler equation ‘18m = 12m + 36’, and then follow the same two 

steps that were used to solve the first problem. 

Since element interactivity is partly dependent on the intrinsic nature of the 

learning task, element interactivity is the main influencer of intrinsic cognitive 
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load. Intrinsic cognitive load is dependent on the complexity of the material that is 

to be learned and the expertise of the learner (Ayres, 2006; Kalyuga et al., 2003; 

Sweller & Chandler, 1994). High intrinsic cognitive load will arise when learning 

material is characterised by high element interactivity and when a learner lacks 

rudimentary schemas to complete the task (Sweller & Chandler, 1994). For 

instance, in relation to the previous mathematics example, the first problem might 

be regarded as being a high interactivity task for a lower-ability mathematics 

student, who requires more than two steps to solve the equation for m. 

Closely related to the previous point, the complexity of learning tasks is 

dependent on the number of interacting elements that are actively related and 

controlled in WM during the learning process (van Gog, Paas, & van Merriënboer, 

2006). Complex mathematical tasks are often high in intrinsic cognitive load 

because numerous elements must be dealt with simultaneously and not 

sequentially. To assist less-knowledgeable learners in a domain, complex learning 

can be enhanced if information is presented sequentially. For example, by using 

simple-to-complex scaffolding, van Merriënboer et al. (2003) argued that the 

intrinsic components of cognitive load could be reduced. 

 Sequential instruction involves single elements that can be learned 

independently of each other, and does not impose a high cognitive load because 

element interactivity is low, irrespective of the number of elements that need to be 

assimilated (Chandler & Sweller, 1996; Clarke, Ayres, & Sweller, 2005). Pollock 

et al.’s (2002) study provided evidence that sequencing instruction of complex 

material in two parts – from isolated elements (initially presenting discrete 

elements that could only be processed serially) to interacting elements 

(subsequently presenting the original full set of interacting elements) – could 
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artificially reduce intrinsic cognitive load. By reducing interactions among 

information elements during the initial stages of learning, learners were able to 

fully understand the complex material when they were confronted with it during 

their later learning phase. In relation to the previous mathematics example, for 

instance, the interactive elements in both equations are presented simultaneously. 

However, if the elements were presented sequentially, this would help reduce 

intrinsic cognitive load for a lower ability mathematics student. Breaking down the 

higher element interactivity task into simpler, sequential tasks, such as ‘6 × 3 = ?’, 

‘(6 × 3) × m = ?’, ‘(6 × 3)m = ?’, would omit many interacting elements in the 

second problem, and reduce cognitive load to a more manageable level. 

Eliminating interacting elements may partially compromise full 

understanding of the relationships between the elements. However, an advantage of 

learning from independent (isolated) elements is that students are able to form 

partial schemas initially, and later form a whole schema after receiving instructions 

on how the elements interact with each other (Pollock et al., 2002). To reduce the 

element interactivity of learning materials, Blayney, Kalyuga, and Sweller’s (2010) 

experiment, which tested university students in the domain of accountancy, 

compared an isolated-elements condition (by presenting information sequentially in 

an isolated form) with a fully interactive-elements condition. Their results revealed 

that less-knowledgeable learners benefitted more from an isolated-elements 

condition, as opposed to more-knowledgeable learners. In contrast, the instructional 

sequence involving an isolated-elements format interfered with the more-

knowledgeable students’ learning because extra memory resources were required to 

integrate the simple, isolated elements with their existing knowledge. These 

findings indicate that more-experienced learners do not need to process elements 
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serially because they have sufficient information stored in their LTM to handle the 

fully interacting elements without cognitive overload. On the other hand, when 

solving high element interactivity problems, presenting isolated elements of 

information (that can be processed sequentially, rather than simultaneously) 

facilitates learning for less-experienced learners when intrinsic cognitive load 

exceeds cognitive capacity. 

To avoid the difficulty of comprehending the high element interactivity of 

complex tasks, an option left for learners is to combine information elements into 

cognitive schemas so that interacting elements are not considered individually 

within WM (Sweller et al., 1998). Intrinsic cognitive load reduces when a task 

containing a collection of elements is organised by a single schema. In relation to 

the previous example, one way to combine some of the interacting elements in the 

higher element interactivity task, ‘(6 × 3)m = 24m – 12m + (6)%’, would be to 

divide each term by a common factor of six. Applying this problem-solving schema 

would produce a simpler equation, ‘3m = 4m – 2m + 6’, comprising of fewer 

interacting elements. Applying such a schema would make it easier to accomplish 

the intellectual task. 

Along with the process of schema acquisition, Schneider and Shiffrin (1977) 

claimed that capacity limitations of WM could be bypassed if learners used 

automated schemas. By using automated schemas, fewer demands are placed upon 

the capacity of WM because “an automatic process operates through a relatively 

permanent set of associative connections”  in LTM, and “once learned, an 

automatic process is difficult to suppress, to modify, or to ignore” (Schneider & 

Shiffrin, 1977, p. 2). In the previous mathematics example, an expert mathematics 

student could perform the recurrent task aspects efficiently and effectively if they 
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possessed an automated schema which involved associating a particular 

characteristic of the higher element interactivity task (e.g., where every term in the 

equation is a multiple of six) to a particular action (e.g., by dividing every term by 

six to produce the equation, 3m = 4m – 2m + 6, which is easier to solve). 

An automatic sequence does not consume any WM resources because it has 

been learned from earlier controlled processing which consumed WM capacity 

(Schneider & Shiffrin, 1977). The importance of schema construction and 

automation of pre-existing schemas arose from the understanding of human 

cognitive architecture. Namely, a procedural activity is rapid and requires low 

levels of conscious attention and WM resources when automated LTM knowledge 

structures are used to execute the automatic procedure. 

2.2.1.2 Extraneous cognitive load. 

Unlike intrinsic cognitive load which is innate and unalterable other than by 

changing what is learned or changing the expertise of learners, extraneous 

cognitive load is controllable because it varies exclusively by the way instructional 

information is presented to learners. Extraneous cognitive load is imposed when 

effort is needed to process poorly designed or unsuitable instructional procedures 

(Sweller et al., 1998). This commonly occurs when a problem-solving task, without 

any guidance, is presented to a learner that has insufficient prior knowledge to 

build upon. Under such conditions, the novice learner’s WM resources are 

absorbed by random attempts at finding a solution to the problem, rather than being 

directly involved in learning, since they do not possess developed schemas to 

problem solve error-free. Consequently, when extraneous cognitive load, imposed 

by a problem-solving task, interferes with learning, fewer cognitive resources 

remain in WM that can be devoted to schema construction and automation 
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(Sweller, 1994). Thus, extraneous cognitive load is considered detrimental for 

learning because WM resources are involved with following instructions, rather 

than learning (Paas et al., 2004). As discussed below, differences in extraneous 

cognitive load are just as dependent on variations in element interactivity as 

differences in intrinsic cognitive load. 

Element interactivity is the major source of WM load and can be used to 

distinguish between intrinsic and extraneous cognitive load (Sweller, 2010). 

Reducing extraneous cognitive load lies at the core of CLT, given it is a theory of 

cognition and instructional design. However, like intrinsic cognitive load that is 

commonly discussed in terms of element interactivity, it was suggested by Sweller 

(2010) that extraneous cognitive load should also fall within the concept of element 

interactivity. For example, a learning task that requires the mental integration of 

separately presented sources of information would be regarded as a high element 

interactivity task if learners had to intensively match elements to make any sense of 

the information. Element interactivity in this case would relate to extraneous 

cognitive load (because the suboptimal instructions can be improved by physically 

integrating the elements), rather than intrinsic cognitive load (because learning 

content remains the same before and after the physical integration of the split-

source elements of information).  

For effective learning to occur, within the framework of CLT, the total of 

intrinsic and extraneous cognitive load should not exceed total WM resources. If 

limited WM capacity is exceeded by high intrinsic cognitive load and high 

extraneous cognitive load, this will interfere with, and have negative effects on 

learning (Sweller et al., 1998). Since intrinsic load is relevant to learning (and in 

some cases can be temporarily altered by instructional interventions such as 
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sequential instruction), it is essential to decrease extraneous load when intrinsic 

cognitive load is high, in order to avoid cognitive overload. It should be noted that 

high extraneous cognitive load may not overload WM if intrinsic cognitive load is 

very low, because total cognitive load is manageable. 

2.2.1.3 Germane cognitive load. 

Similar to extraneous cognitive load, germane cognitive load varies because 

it is also imposed by the design of instructional material. However, unlike 

extraneous load which impedes learning, germane cognitive load is relevant to 

learning. Germane cognitive load contributes to learning because it comprises WM 

resources devoted to accommodating intrinsic cognitive load by contributing to the 

development of schema construction and automation (Sweller et al., 1998; van 

Merriënboer, Kester, & Paas, 2006). For this reason, germane cognitive load is not 

considered as an independent source of cognitive load in addition to intrinsic and 

extraneous cognitive load (Kalyuga, 2011; Sweller, 2010). 

The concept of germane cognitive load was initially introduced by Sweller et 

al. (1998) to explain the effects of variability in learning materials. Processing 

high-variability material requires the learner to identify variants of the task such as 

the context and way the task is presented. Studies on variability have shown that 

high variability yields beneficial effects on schema construction and transfer of 

learning as demonstrated by superior performance in solving novel problems (Paas 

& van Merriënboer, 1994; Quilici & Mayer, 1996; Ranzijn, 1991). Determining 

which schemas are applicable in solving high-variability problems requires the 

learner to invest more cognitive load because of the highly varied sequence. It is 

this increase in WM resources, which is devoted to dealing with intrinsic cognitive 
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load (and less WM resources devoted to dealing with extraneous cognitive load), 

that comprises germane cognitive load. 

On the grounds that germane cognitive load is concerned with processes that 

are relevant for the acquisition of knowledge, this strengthens the idea that germane 

cognitive load should be considered as germane resources (Ayres, 2018; Kalyuga, 

2011; Sweller, 2010; Sweller et al., 2011). Given both extraneous and germane 

cognitive load are imposed by the design of the task, in contrast to intrinsic 

cognitive load which is imposed by the nature of the information contained in the 

task, there exists a rational view that a reduction in extraneous factors and a 

replacement of these with intrinsic factors require mental effort expended in the 

form of germane cognitive load (van Gog & Paas, 2008). Accordingly, Sweller 

(2018) inferred that the increase in germane cognitive load from a resultant 

decrease in extraneous cognitive load produces a decrease in overall cognitive load.  

Hence, this explains why germane cognitive load should not be classified as an 

independent source of cognitive load (Sweller, 2010). 

2.2.2 Managing cognitive load through instructional design. 

On the basis that total cognitive load consists of the addition of intrinsic and 

extraneous cognitive load, as mentioned, learning can only occur if overall 

cognitive load does not exceed available resources in WM (Paas, Tuovinen, 

Tabbers, & Van Gerven, 2003). Consequently, most research into CLT has focused 

on investigating instructional techniques that reduce extraneous load to allow an 

increase in germane resources. Paas et al. (2004) claimed that the source, and not 

the level, of cognitive load was of greater importance, providing that total cognitive 

load associated with the instructional design was maintained at a manageable level 

and did not exceed WM capacity. In particular, if mental load is imposed by the 
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primary factors of learning (such as the construction or automation of schemas), it 

will have positive effects on learning. In contrast, if mental load interferes with, 

and is not necessary for learning (because it is extraneous in nature), it will have 

negative effects on learning (Paas et al., 2004). 

In order for instruction to be effective, intrinsic cognitive load (difficulty of a 

task) should be adequately aligned with the learner’s level of expertise so as not to 

overburden the learner’s WM (e.g., ensuring the task is not too complex) or sub-

challenge the learner’s WM (e.g., ensuring the task is not too easy) (Schnotz & 

Kürschner, 2007). This was supported by Kalyuga (2011) who stated that intrinsic 

cognitive load must be managed to an appropriate level (decreased or increased), so 

that materials are not too complex or too simple in relation to the learner’s level of 

expertise. In particular, extraneous cognitive load must be reduced, or eliminated 

where possible, to make available more WM resources for dealing with learning 

activities that require intrinsic cognitive load (Kalyuga, 2011). This implies that 

minimising extraneous cognitive load to free up cognitive resources for germane 

activities is the most beneficial way to improve learning, as the engagement in 

conscious cognitive processing directly pertains to the construction and automation 

of schemas. 

According to the classical view of CLT, an optimal instructional design 

should reduce extraneous load and increase germane load, and thereupon allow the 

learner to invest more effort in essential learning processes such as schema 

construction and automation. Extraneous cognitive load is not necessarily 

detrimental when intrinsic element interactivity and consequent cognitive load are 

low (Sweller & Chandler, 1994; van Merriënboer & Sweller, 2005). On the other 

hand, many studies containing instructional designs to reduce extraneous cognitive 
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load for tasks that are high in intrinsic load have been successful in fostering 

effective learning environments (e.g., Brünken, Plass, & Leutner, 2004; Cierniak, 

Scheiter, & Gerjets, 2009; Florax & Ploetzner, 2010; Gerjets, Scheiter, Opfermann, 

Hesse, & Eysink, 2009; Mayer & Moreno, 2003; Sweller, 1999). 

To re-articulate, the central tenet of CLT is to design instructional techniques 

that decrease extraneous cognitive load and bolster germane cognitive load by not 

overloading or underloading the available WM capacity (Sweller et al., 1998). 

Examples include the processing of solution steps in worked examples in more 

depth using self-explanation (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; 

Renkl, 1997, 1999; Renkl, Stark, Gruber, & Mandl, 1998) and imagination 

procedures (Cooper, Tindall-Ford, Chandler, & Sweller, 2001; Ginns, Chandler, & 

Sweller, 2003) by students who hold pre-requisite schemas; eliciting self-

explanations to promote the integration of newly learned information with existing 

knowledge (Chi, de Leeuw, Chiu, & Lavancher, 1994); tailoring the level of 

instructional guidance to the level of learner experience (Kalyuga et al., 2003; 

Kalyuga, Chandler et al., 2001); omitting steps (fading) of a worked example until 

the worked example becomes a conventional problem (Renkl & Atkinson, 2003; 

Renkl, Atkinson, Maier, & Staley, 2002); combining a fading procedure with self-

explanation prompts (Atkinson, Renkl, & Merrill, 2003; van Merriënboer et al., 

2006); and removing process information during instruction when learners gain an 

understanding of the solution procedure and replacing it with product-oriented 

worked examples (van Gog, Paas, & van Merriënboer, 2008). 

In Atkinson, Derry, Renkl, and Wortham’s (2000) review of instructional 

paradigms, the effectiveness of worked-example instruction was examined 

alongside pure problem-solving practice, in relation to promoting the acquisition of 
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skills and transferable cognitive structures. The conclusion was that learners benefit 

from worked examples that minimise excessive cognitive load. In particular, 

novices, who possess inadequate knowledge schemas, are more likely to experience 

cognitive overload when they are forced to integrate and cross-reference multiple 

sources of information. 

Research efforts have often focused on identifying strategies to reduce 

extraneous cognitive load because intrinsic load is considered to be unchangeable 

by instructional design as it is dependent on the number of essential elements of the 

given task that need to be processed in WM (Sweller et al., 1998; Sweller, 1999). 

Despite this assumption, there has been limited research focusing on manipulating 

this task-related load when learning highly complex information (Ayres, 2006; 

Gerjets et al., 2004; Pollock et al., 2002; van Merriënboer et al., 2003). Gerjets et 

al.’s (2004) findings revealed that intrinsic cognitive load could be reduced by 

changing solution procedures from being “molar”, which focus on problem 

categories, to being “modular”, which focus on breaking down the solution 

procedure into smaller, meaningful, comprehensible pieces. Similarly, Pollock et 

al.’s (2002) isolated-interactive elements effect was observed when element 

interactivity was reduced in the first part of instruction by not presenting the whole 

information, and in the second part of instruction, by presenting all of the 

information at once. The results indicated that learning improved for novice 

learners when they were initially presented with individual elements which were 

processed serially (instead of simultaneously) as isolated pieces of information, 

followed by fully interactive material presented during the later stages of learning, 

which had to be processed simultaneously. This mixed approach produced better 

understanding in the second phase of instruction, even though understanding may 
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have decreased during the first phase. These recent studies show that intrinsic 

cognitive load can be artificially reduced by the manipulation of instructional 

materials.  

The distinction between the three categories of cognitive load appears highly 

reliable due to the myriad of empirical evidence which has identified factors that 

inhibit learning, alongside strategies that facilitate learning. The key assumption of 

CLT that learning becomes more difficult when cognitive load increases has 

continually driven the theory to improve ways of measuring cognitive load. 

2.2.3 Subjective measures of cognitive load. 

Given the centrality of cognitive load in instructional design theories such as 

CLT, the measurement of cognitive load has helped CLT researchers understand 

why the effectiveness of different learning environments may vary as a function of 

learner characteristics and experimental treatment. Cognitive load was initially 

conceptualised as a unidimensional concept. It became multidimensional with 

Sweller et al.’s (1998) distinction between three different sources of cognitive load: 

intrinsic, extraneous and germane. Following Sweller et al.’s (1998) publication, 

ongoing research has seen a growing number of ways for measuring cognitive load, 

especially instruments that enable researchers to measure the changes in different 

types of cognitive load. However, the most adopted measure is the subjective rating 

scale, which was originally developed by Bratfisch, Borg, and Dornic (1972). This 

scale was subsequently modified by Paas (1992), who was the first to introduce a 

unidimensional nine-point symmetrical category rating scale in the context of CLT, 

which was later used by Paas and van Merriënboer (1994) and widely adopted by 

other researchers. 
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The basis upon which Paas (1992) designed the subjective rating scale was 

that learners could directly self-evaluate the amount of mental effort they invest in 

the learning and/or test phases. As an alternative to a subjective rating scale, 

difficulty scales have also been used where learners are asked to rate the degree of 

ease or difficulty they experienced in completing a task. Despite measures of 

difficulty and measures of mental load (cognitive load) being related to some 

extent, these different tools measure different constructs. For instance, in van Gog 

and Paas’s (2008) review, they stated that very different outcomes and 

interpretations may arise in an extreme case, for example, when a learner does not 

invest any effort in completing a task because they perceive it to be extremely 

difficult. 

Subjective measures of difficulty have been used in many studies to find 

hypothesised differences in cognitive load (to name a few: Corbalan, Kester, & van 

Merriënboer, 2006; Hummel, Paas, & Koper, 2004; Kalyuga, Chandler, & Sweller, 

2000, 2004; Marcus, Cooper, & Sweller, 1996; Paas, Van Gerven, & Wouters, 

2007; van Gog et al., 2008). In the present study, a modified version of the nine-

point scale developed by Paas & van Merriënboer (1994) was used to measure the 

perceived amount of difficulty experienced during learning. Participants reported 

how easy or difficult they found the learning phase, by circling a number in the 

range from “1” to “9”, where “1” represented “Extremely Easy”, “3” represented 

“Moderately Easy”, “5” represented “Neither Easy nor Difficult”, “7” represented 

“Moderately Difficult”, and “9” represented “Extremely Difficult”.  

Paas’ (1992) subjective rating-scale technique continues to be widely used 

because it has repeatedly demonstrated internal consistency with high reliability 

and sufficient face validity (Ayres, 2006; Kester et al., 2006; Paas, Tuovinen et al., 
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2003; Paas, van Merriënboer, & Adam, 1994). Although subjective measures are 

generally reliable, valid, non-intrusive, require very little time to complete, and are 

easy to implement, collect and analyse, the rationale behind using this type of 

measure hinges on the assumption that learners are able to retrospectively report on 

the mental effort they experience (Paas et al., 1994). More so, this assumption 

presupposes the ability of learners to interpret the wording of items in the way 

intended by the researcher. 

Subjective measures, in many cases, are used to obtain information on an 

individual cognitive load by varying only one constituent aspect of total cognitive 

load and holding the others constant (Ayres, 2006; Brünken, Steinbacher, Plaas, & 

Leutner, 2004; Cierniak et al., 2009; Kalyuga, Chandler, & Sweller, 1998). 

However, in some cases the single item measure has not been matched with 

significant treatment group differences (Hummel et al., 2004; Kester, Kirschner, & 

van Merriënboer, 2005). In Kester et al.’s (2005) study on the comparison of two 

information presentation formats, there were no differences in subjective ratings of 

mental effort between the split-source format and the integrated format conditions. 

Kester et al. (2005) argued the likely cause for the same average amount of mental 

effort was due to the participants in the split-source group dividing their cognitive 

capacity over learning and mental integration processes. On the other hand, the 

participants in the integrated group allocated all of their cognitive capacity solely to 

learning processes, such as general schema construction. This consequently led to 

better performance on transfer-test performance for the participants in the 

integrated group. 

In recent years, scales have been developed with the intention of measuring 

intrinsic, extraneous, and germane cognitive loads separately (Cierniak et al., 2009; 
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DeLeeuw & Mayer, 2008; Leppink, Paas, van der Vleuten, van Gog, & van 

Merriënboer, 2013). By analysing the effects of different instructional formats, 

types of cognitive load and learning outcomes, DeLeeuw and Mayer’s (2008) study 

provided empirical support for the dissociation of three types of cognitive load as 

defined by CLT. Compared to the cognitive load measures used by DeLeeuw and 

Mayer (2008) and Cierniak et al. (2009), Leppink et al.’s (2013) ten-item 

psychometric instrument is regarded as being more cogent in differentiating 

intrinsic, extraneous, and germane cognitive load. 

Leppink et al.’s (2013) instrument was subjected to an online pilot study 

involving students at a Belgian university. It was administered in four studies in a 

randomised experiment in statistics using different cohorts of students, and 

different lectures and subject matter, which may have produced confounding. 

However, the advantage of the instrument was the applicability of the ten items to 

any complex knowledge domain, with only a minor adjustment being that the word 

“statistics” (that appeared in some items) had to be replaced if the instrument was 

used in another domain. The 10-item questionnaire comprised the measurement of 

intrinsic cognitive load (items 1-3), extraneous cognitive load (items 4-6), and 

germane cognitive load (items 7-10). Items 2 and 9 referred to formulae, and items 

1, 3, 7, 8, and 10 referred to concepts or definitions or topic content. To avoid 

potential confounding generated by the questionnaire, the items were 

counterbalanced in three randomised orders (so the participants sitting next to each 

other did not respond to the same items in the same order). 

The realisation of the association between intrinsic and germane cognitive 

load led Leppink, Paas, van Gog, van der Vleuten, and van Merriënboer (2014) to 

modify Leppink et al.’s (2013) psychometric scales. Leppink et al. (2014) made the 
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modification by adding one item to each of the three groups of items representing 

intrinsic, extraneous and germane cognitive load. Leppink et al.’s (2014) modified 

multi-item scale was consistent with the reconceptualised idea of germane 

cognitive load; namely, the idea that germane load represents WM resources 

allocated to dealing with intrinsic cognitive load. However, their findings indicated 

that further development of instruments for measuring different types of cognitive 

load was required given how the participants interpreted the wording of items in 

multi-scale measures. The positive correlation that was found between intrinsic and 

extraneous cognitive load – which based on CLT should have been close to zero 

because these independent cognitive loads are additive (Sweller et al., 1998) – led 

Leppink et al. (2014) to conclude that it was worthwhile investigating, in new tests, 

the effect of the wording that was used to distinguish the different types of 

cognitive load. 

Paas (1992) pointedly referred to subjective measures of mental effort as 

“valuable research tools for assessment of cognitive load in instructional research” 

(p. 433). Moreover, Ayres (2018) built upon this notion by expressing the 

relativistic nature of one-item scales. By rating mental effort made or difficulty 

experienced, subjective measures can measure differences in cognitive load rather 

than measure it in absolute terms (Ayres (2018). In most studies, the advancement 

of cognitive load measurement techniques has successfully provided empirical 

evidence for the effect of different instructional interventions on cognitive load 

(Paas, Tuovinen et al., 2003). However, some studies have found cognitive load 

differences with no treatment group differences (Kalyuga et al., 1998; Van Gerven, 

Paas, van Merriënboer, Hendriks, & Schmidt, 2003).  
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Furthermore, the points where subjective ratings are collected are usually at 

the discretion of researchers. To establish the viability of rating scales, Schmeck, 

Opfermann, van Gog, Paas, and Leutner (2015) investigated whether the time of 

collection of rating scales affected the ratings and if cognitive load measures, using 

mental effort and difficulty, were suitable predictors of performance. Their findings 

replicated those of van Gog, Kirschner, Kester, and Paas (2012) who found a 

delayed, discrete mental effort rating, made after the completion of tasks, was 

higher than the corresponding average ratings collected immediately after the 

completion of each task and independent of the sequence of the tasks. Such a 

discrepancy in ratings indicated the need for further research to find ways of 

measuring cognitive load with a higher degree of validity. Valid and reliable 

measures of cognitive load are fundamental in understanding the wide variety of 

factors affecting cognitive load and learning caused by different instructional 

manipulations. 

2.2.4 Cognitive load effects. 

Over the last several decades, empirical results from CLT studies have led to 

the demonstration of several cognitive load effects. Cognitive load effects have 

been extensively tested for their effectiveness in optimising cognitive load and 

improving learning outcomes to facilitate the development of learner expertise. The 

following sections discuss the worked example effect, the expertise reversal effect, 

the redundancy effect, the spilt-attention effect, and the variability effect, all of 

which are of prime concern to the present study. 

2.2.4.1 The worked example effect. 

A worked example comprises a full sequence of solution steps that 

demonstrate how to solve a problem or perform a task (Clark et al., 2006). 
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Learning from worked examples benefits a novice learner who does not possess the 

relevant knowledge, by directing their focus to elements that solely represent 

correct solution steps so that they avoid taking irrelevant steps to complete the task 

at hand (Tuovinen & Sweller, 1999). When a learner is unable to draw on existing, 

well-developed domain schemas, studying a worked example provides a substitute 

for missing schemas (Renkl & Atkinson, 2003). This cognitive-instruction 

technique emphasises the borrowing and reorganising principle (discussed in 

section 1.3.2) because a novice is able to borrow and recognise information through 

imitation (e.g., by studying worked-out solutions because they themselves lack 

well-structured schemas) which helps them develop knowledge in a particular 

domain (e.g., using the worked-out solution to solve similar problems). 

A worked example, as articulated by Atkinson et al. (2000), is an 

instructional device comprising a problem statement followed by an expert’s 

problem-solving model that can be studied and emulated. This conveys that worked 

examples are most critical during the initial stages of cognitive skill acquisition in 

assisting novice learners to acquire problem schemas so that they can solve other 

similar problems. Notwithstanding that research on worked examples has 

frequently taken place in controlled laboratory settings, Atkinson et al. (2000) 

stipulated that findings from laboratory settings can be applied to real classroom 

settings because of the similarities that exist between the two settings. 

As discussed, the limited capacity of WM plays a significant role for novice 

learners, especially when they attempt to problem solve. Since problem solving 

requires rapidly sorting through random ideas from an existing knowledge base 

(Sweller, 2006), novices are usually unable to pay attention to the essential 

information required for learning new knowledge. As a consequence, novices will 
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address a problem-solving task by searching for solution paths, using a trial-and-

error strategy or a means-ends analysis (Kalyuga, Chandler, & Sweller, 2001; 

Sweller, 1999). Such a condition inhibits learning because it induces high 

extraneous cognitive load rather than increasing germane WM resources (Sweller 

& Chandler, 1994). A more effective alternative is worked-example-based learning 

because novices can focus their WM resources on dealing with intrinsic element 

interactivity related to learning new knowledge (relating to the solution concept), 

which helps reduce any unnecessary extraneous cognitive processes (Sweller, 

2010). 

The use of worked examples as an instructional tool, within the cognitive 

load theoretical framework, runs contrary to the constructivist views of instruction. 

According to CLT, studying worked examples is a more efficient way of acquiring 

complex skills than solving conventional problems. Research on well-designed 

worked examples has consistently demonstrated that example-based instruction is 

more effective than problem solving to support initial skill acquisition (see 

Kirschner, Sweller, & Clark, 2006, for a review). The worked example effect 

occurs when learners who study worked examples perform better on subsequent 

test problems compared to learners who attempt to solve the equivalent problems. 

The worked example effect, from a cognitive load perspective, was first 

described by Sweller and Cooper (1985), and Cooper and Sweller (1987) in the 

area of mathematics. It has since been replicated by many empirical studies using a 

large variety of learners in scientific-based domains, such as statistics, computer 

programming, physics, and engineering, and in arts-based domains, such as foreign 

language acquisition, athletics, music instruction and English literature (see 

Atkinson et al., 2000; Sweller et al., 1998; van Gog & Rummel, 2010, for reviews). 
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Consequently, Sweller (2006) argued that the worked example effect is the best-

known and extensively studied cognitive load effect. 

Most of all, worked examples are designed to reduce extraneous cognitive 

load (by scaffolding at the beginning of skill acquisition) to allow novice learners 

to allocate more WM resources to acquire relevant knowledge (Nievelstein, van 

Gog, van Dijck, & Boshuizen, 2013; Paas, 1992; van Gog et al., 2006). Using three 

computer-based training strategies (conventional problems, worked-out problems, 

and partly worked-out problems), Paas (1992) found that instruction which focused 

attention on partly or completely worked-out problems resulted in better 

performance and a lower perceived mental effort in a transfer test, with the 

completely worked-out problems condition attaining the lowest time on training. 

Exposure to concrete schemas enabled the participants in the worked-out 

conditions to invest their limited WM resources in relevant learning processes 

(such as appropriate schema abstraction). In contrast, cognitive capacity that was 

allocated to the construction of incorrect solution procedures (during means-ends 

analysis), by the participants in the problem-solving condition, resulted in WM 

resources being unavailable for schema acquisition (Paas, 1992). In a similar way, 

van Gog et al.’s (2006) investigation demonstrated the basic worked example 

effect. Senior secondary electrotechnics students whose training consisted of 

worked examples performed better in near and far transfer performance, with less 

mental exertion and investment of time (in training and the test) than students 

whose training consisted of solving conventional problems (van Gog et al., 2006). 

Although learning from worked examples is a widely used cognitive load- 

reducing technique, worked examples lose their effectiveness when cognitive 

capacity is allocated to an activity that is unrelated to schema construction. Tarmizi 
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and Sweller (1988), using geometry, and Ward and Sweller (1990), using physics, 

confirmed that worked examples were ineffective when they required the mental 

integration of mutually referring information in order to be understood (e.g., a 

diagram with an accompanying textual explanation). When neither source of 

information is intelligible on its own and meaning can only be extracted by 

matching the sources of information, cognitive resources are allocated to an activity 

that is unrelated to schema construction. When such an activity is present, the 

consequences for learning are the same as problem solving. The inappropriate 

allocation of resources because of the way the material is designed is discussed in 

more detail in section 2.2.4.3 (the redundancy effect) and in section 2.2.4.4 (the 

split-attention effect). 

Some worked-example-based learning can reduce the potential for conceptual 

understanding if a worked example fails to provide the learner with the opportunity 

to integrate their existing knowledge with new principle knowledge. If a worked 

example does not highlight the main solution concept, the learner will likely gloss 

over the worked-example material, rather than attend to the new knowledge 

(Atkinson et al., 2000; van Gog, Paas, & van Merriënboer, 2004). In such cases, the 

learner will likely perform poorly on far transfer tests because the worked-

example-based learning is considered to be a passive learning activity (Moreno, 

2006). 

Employing example-problem pairs, in which a worked example is 

immediately followed by a similar problem to solve, is a traditional method that has 

been used in cognitive load research (Carroll, 1994; Cooper & Sweller, 1987; 

Kalyuga, Chandler et al., 2001; Sweller & Cooper, 1985). There is research to 

suggest that studying examples is more effective when they are sequenced such that 
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they are immediately followed by a similar problem. Trafton and Reiser (1993) 

showed that the most efficient way to present learning material to acquire a skill 

was to link the worked example to a similar target practice problem rather than 

present an entire set of worked examples followed by an entire set of practice 

problems. This method of alternating worked examples and problem solving 

enabled the learner to derive the full benefit of using applicable prior information 

from the example (source) to build rules for the problem (target) to be solved. 

When a learner is aware that they will solve a problem immediately after 

studying a similar worked example (example-problem pair instruction), they are 

likely to study the original example with more incentive. Contrary to problem-

solving-only instruction, example-problem pair instruction may strengthen the 

learner’s knowledge acquired from the worked example (Sweller et al., 2011). 

Consequently, the example-problem pair condition engenders lower cognitive load 

and generates superior post-test performance of learners compared to the equivalent 

problem-solving-alone condition (Leppink et al., 2014). Moreover, van Gog (2011) 

showed that providing novice learners with example-problem pairs was more 

effective for learning than providing problem-example pairs. Van Gog’s (2011) 

experiment demonstrated that the example-problem pair instruction required less 

mental effort (in both the learning tasks and transfer post-test) and outperformed 

the problem-example pair instruction in the transfer post-test, despite the identical 

learning instructions provided to both instructional conditions. These findings 

confirmed that initial exposure to worked examples enabled novices to acquire 

cognitive schemas which assisted with subsequent problem solving. 

To refine the CLT explanation of the worked example effect, van Gog, 

Kester, and Paas (2011) found that the examples-only and the example-problem 
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pairs conditions led to better post-test performance than the problem-solving only 

and problem-example pairs conditions. Van Gog et al. (2011) established that their 

findings aligned with the CLT view that worked examples were more efficient 

(with lower investment of mental effort during the training) and more effective 

(with higher performance) when provided before problems. This was further 

exemplified with no significant difference in the test performance between the 

example-problem pair and the examples only condition (van Gog et al., 2011). This 

finding by van Gog et al. (2011) was replicated by van Gog and Kester (2012) who 

demonstrated that the example only and the example-problem pair conditions were 

equally effective in an immediate post-test. 

Given worked examples entail specific solution procedures, Atkinson et al. 

(2000) pointed out that critics did not view worked examples to be ideal for 

adaptive learning because exposure to specific procedures made it difficult for 

learners to solve novel problems which deviated from worked examples. This 

explanation was evident in Carroll’s (1994) discussion with his participants, who 

reported experiencing difficulties with transfer even with slight differences 

between worked examples and the practice problems. To foster initial cognitive 

skill acquisition, Renkl, Atkinson, and Große (2004) claimed it was more effective 

to use a series of worked examples prior to solving problems. 

Gradually fading out worked-solution steps has been shown to generate better 

learning outcomes compared to the traditional technique that involves example-

problem pairs (Renkl et al., 2002; Atkinson et al., 2003). The completion or fading 

strategy considers the learner’s increasing knowledge level of a task by allowing 

the learner to smoothly transition from example study (during the early stage of 

skill acquisition) to working on incomplete examples to solving problems (during 
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the later stage of skill acquisition). This effective delivery strategy for learning 

does not require learners to work out task-specific solutions during the early stages 

of learning, thus assisting learners with retaining sufficient cognitive capacity to 

focus on deepening their understanding. This strategy is consistent with findings 

from Renkl et al.’s (2004) extensive controlled experiments which were conducted 

in both the classroom and laboratory. Recognising that previous studies on fading 

out worked-solution steps did not investigate how sequential steps of fading 

affected learning outcomes, Renkl et al. (2004) conducted further research by 

examining the series of solution steps across two experiments.  

In Renkl et al.’s (2004) study, the findings from Experiment 1 confirmed that 

learners gained knowledge from the particular type of solution step that was faded 

rather than the position of the solution step that was faded (backward or forward). 

In Renkl et al.’s (2004) Experiment 2, which looked at the learning processes more 

directly with the collection and analyses of thinking-aloud protocols, it was 

revealed that learners using the fading procedure experienced fewer unproductive 

impasse-triggered events and more productive learning events compared to those 

encountered by learners in the example-problem pairs group. These findings show 

that fading out worked examples, by gradually omitting solution steps, facilitates a 

smooth transition from learning from a complete worked example, in the earlier 

stages of skill acquisition, to an incomplete example and finally to conventional 

problem solving in the later stages. This strategy of providing learners with 

complete worked examples during the beginning stages of cognitive skill 

acquisition, to assist them to gain a deeper understanding of domain principles, 

suggests that effective provision of worked examples are related to the expertise 

level of the learner. 
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2.2.4.2 The expertise reversal effect. 

CLT provides a framework for conceptual and practical explanations about 

why instructional design needs to be tailored to the knowledge level of the intended 

learner (see Kalyuga, 2007; Kalyuga et al., 2003; Kalyuga et al., 2012; Kalyuga & 

Sweller, 2005; Paas, Renkl, & Sweller, 2003, for reviews). According to Kalyuga 

et al. (2003), choosing the most appropriate teaching approach depends on what 

stage the learner is at. Explicit teaching during the early stages of learning is 

effective as a means of reducing the cognitive load on students. Once learners 

acquire sufficient knowledge and develop automated skills, they become capable of 

engaging in relevant problem solving. As mentioned on several occasions, experts 

are able to bypass their WM capacity limitations because they are able to identify a 

recognizable arrangement of multiple elements of information as a familiar 

schema. As learners advance beyond novice status, they may still require some 

form of guidance to reduce or minimise cognitive load during their learning 

process. Consequently, it is vital for instructors to provide opportunities for 

learners to assimilate their prior knowledge with new knowledge by assisting 

learners to acquire the appropriate skills needed to comprehend the material. The 

level of prior knowledge in the domain will affect the rate at which problems are 

solved. 

In cognitive psychology, expertise is generally defined as the possession of a 

large amount of available and applicable complex knowledge in a domain. The 

novice-expert difference, according to Chase and Simon (1973a) in their chess-

related research, is based on the size of the chunks each recalled in relation to a 

sequence of moves, where a “chunk” is defined as a unit of knowledge structure. 

Beyond the fact that experts possess more higher-order chunks which develop with 
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increasing skill, Chi, Glaser and Rees (1982) commented that a salient difference 

between novices and experts is the rapidity with which a solution is applied during 

problem solving. 

In their findings, Chi et al. (1982) alluded to an important difference between 

expert learners’ knowledge and novice learners’ knowledge. Experts’ schemas 

contain more procedural knowledge – knowing how to complete a task by 

processing or manipulating a knowledge structure; as opposed to novices’ schemas 

which contain declarative (conceptual) knowledge – knowing facts about a learning 

task but lacking procedural skills which diminish the ability to learn from existing 

knowledge. The conclusion drawn from Chi et al.’s (1982) study was that the 

novices’ schemata was “impoverished” and this “[could] seriously hinder their 

problem-solving success” (p. 62), and that novices had a “limited ability to 

generate inferences and relations not explicitly stated in the problem” (p. 68). 

These statements explain why novices lack the ability to abstract pertinent 

knowledge from relevant cues in a problem, and thus provide support for the 

premise that procedural and declarative knowledge are required for transferring 

knowledge and skills from one task to a second, target task. 

Further research suggests that as learners develop their schematic knowledge 

in a domain, their problem-solving abilities improve. Experts are able to categorise 

new problems by abstracting underlying structural features as belonging to a 

distinct category of problems which require specific operations to attain a solution 

(Paas, 1992; Quilici & Mayer, 2002). It is clear from the large volume of published 

studies that acquired schemas can equip experts with analogies in novel problem-

solving situations because domain specific knowledge, in the form of schemas, can 
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be used to map processes to obtain solutions for unknown parts of a problem-

solving task (Plass, Moreno, & Brünken, 2010). 

Research in domains such as mathematics (Schoenfeld & Herrmann, 1982; 

Silver, 1981) and physics (Chi et al., 1981; Hardiman, Dufresne, & Mestre, 1989) 

indicates that while experts categorise problems based on structural features, 

novices categorise problems based on surface features. However, it cannot be 

assumed that experts focus exclusively on deep structures of problems (by applying 

the most appropriate principle(s) and methods of solutions), and novices 

exclusively focus on surface characteristics (by relying on vocabulary and 

equations of similar, specific problems) for problem solutions. Rather, findings 

support the view that learners who are able to organise knowledge in terms of 

general principles, are likely to solve problems more effectively compared to 

learners who use surface features. This suggests a causal relation between using 

principles and better problem solving. 

When an instructional technique that is effective for less-experienced learners 

loses its effectiveness, or even becomes ineffective, if used by more-experienced 

learners, this phenomenon is known as the “expertise reversal effect” (see Kalyuga, 

2007, for an overview of the expertise reversal effect). Kalyuga et al. (2012) clear 

up any potential misunderstanding of the term “reversal” by stating it refers to a 

reversal in the relative effectiveness of the instruction and not a reversal in relative 

performance. 

Two types of imbalances in cognitive processing underlie the expertise 

reversal effect: the deficiency of relevant knowledge, and the overlapping of 

relevant knowledge. When there is an absence of relevant knowledge, especially 

during the initial phase of learning, less-experienced learners require externally 
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guided information to help them substitute missing, relevant knowledge to build 

schemas in an efficient way. Dealing with new elements of information without 

any external instructional support is likely to cause cognitive overload for novices 

as they randomly engage in an unguided search for general solution strategies. This 

inefficient process, which compensates for a novice’s limited knowledge base, 

results in the unnecessary consumption of most of their cognitive resources. In 

contrast, in the same problem situation, when a more-experienced learner is forced 

to integrate and cross-reference externally guided information with their available 

cognitive schemas in WM, this redundant activity imposes a higher cognitive load 

than problem solving (Kalyuga et al., 2003). 

Over the past several decades, the expertise reversal effect has been regarded 

as a well-established empirical phenomenon. Kalyuga (2007) illustrated this by 

describing multiple empirical investigations that credibly generated the expertise 

reversal effect across a large range of instructional materials and participants. 

Additionally, the cognitive mechanisms in van Merriënboer et al.’s (2003) design 

model reflected the expertise reversal effect. Their design model encapsulated the 

importance of cognitive load aspects associated with complex skill acquisition by 

controlling two forms of scaffolding related to levels of learner expertise: intrinsic 

factors (e.g., scaffolding tasks by using simple-to-complex sequencing), and 

extraneous factors (e.g., using a fading procedure which involves initially 

providing learners with worked examples, followed by completion tasks, and 

finishing with conventional problems). By preventing a heavy cognitive load via 

the reduction in intrinsic and extraneous cognitive load, this design model makes it 

possible to present learners with real-life tasks. 
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Much research has supported the expertise reversal effect, by demonstrating 

that for instruction to be efficient and for learners to gain optimal benefits, 

instructional techniques and procedures must be tailored to different levels of 

expertise (Clarke et al., 2005; Kalyuga et al., 2003; Kalyuga et al., 1998, 2000; 

Kalyuga, Chandler et al., 2001;  Renkl, 1997; Renkl et al., 2004; Renkl et al., 2002; 

Yeung, Jin, & Sweller, 1998). In particular, Renkl and Atkinson (2003) showed 

how their fading procedure was able to build a bridge between studying worked 

examples during the intermediate phase of cognitive skill acquisition, and problem 

solving in the later phase. Transitioning from example study to problem solving 

was achieved by giving considerable instructional support to novice learners for the 

initial learning tasks and then no support for the final tasks (Renkl & Atkinson, 

2003). 

Other examples of empirical studies demonstrating the expertise reversal 

effect include the following. Blayney et al.’s (2010) examination of accountancy 

students’ performance on post-session test questions revealed novice learners 

benefited most from studying isolated elements instructions and more expert 

learners benefited most from fully interacting elements instruction. Reisslein, 

Atkinson, Seeling, and Reisslein’s (2006) example-based instructional designs, in a 

computer-based learning environment, found low prior knowledge participants 

benefited most from example-problem instruction and high prior knowledge 

participants benefited most from problem-example instruction. Oksa, Kalyuga, and 

Chandler’s (2010) study, using intrinsically difficult Shakespearian play extracts, 

showed students who possessed no prior knowledge of the text performed better in 

the explanatory notes group (which integrated Modern English explanatory 

interpretations for every line of the original, complex Elizabethan English text), 
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while Shakespearian experts performed better in the control group (which used the 

original, conventional text with no guidance). 

Overall, it can be concluded from the research conducted on the expertise 

reversal effect that guided instructional support, which is optimal for novice 

learners, is redundant and even detrimental for more expert learners. Kalyuga 

(2007) exemplified this by claiming the expertise reversal effect is an example of 

the redundancy effect in a broader sense. Expressed another way, a version of the 

redundancy effect refers to different sources of external information covering the 

same area, whereas the expertise reversal effect refers to the overlapping of internal 

knowledge structures with external information covering the same area. 

2.2.4.3 The redundancy effect. 

Cognitive load theorists refer to the term “redundancy” when unnecessary 

information is added to essential information. Sweller (1999) claimed learners are 

forced to process redundant material, especially when it is integrated with essential 

material, because it cannot be ignored. As a consequence, this unnecessary 

processing imposes extraneous cognitive load. Despite this being a cognitively 

demanding process, it may not have a negative impact on learning if the redundant 

material has low element interactivity. In contrast, processing redundant material is 

more likely to impede meaningful learning if the redundant material has high 

element interactivity and the combined high extraneous and high intrinsic cognitive 

load overwhelms WM’s limited processing capacity (Sweller, 1993, 1994). When 

instructional material is fully intelligible in isolation, any additional information 

which duplicates the material in a different format should be removed. The 

redundancy effect refers to the phenomenon in instruction when the inclusion of 

redundant, additional information interferes rather than enhances learning. 
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The redundancy effect has been demonstrated in studies dating back to the 

1930s (see Sweller, 1993, for a brief history). In the past several decades, studies 

have continued to investigate this phenomenon. Ward and Sweller (1990) found the 

inclusion of additional explanatory text into worked examples was redundant, and 

needed to be omitted because it interfered with, rather than assisted, learning. 

Chandler and Sweller (1991) showed integrated instruction to be more favourable 

only in situations where different sources of information had to be mentally 

integrated in order to be understood. However, when integrated instructional 

material contained redundant information, the physical integration of unnecessary 

information with information that was intelligible on its own was not beneficial to 

learning (Chandler & Sweller, 1991). 

Additionally, the experiments conducted by Mayer, Bove, Bryman, Mars, 

and Tapangco (1996) provided evidence that suggested a lengthy text explanation 

was less efficient than a multimedia summary (combining visual and verbal 

formats). The multimedia summary was found to promote better understanding of a 

scientific explanation because the smaller amount of text (based on three criteria: 

conciseness, coherence and coordination) reduced the burden on the cognitive 

system and consequently promoted better retention and transfer compared to the 

full text. Also, in Kalyuga et al.’s (2004) study involving technical apprentices 

within realistic training facilities, it was suggested that the concurrent presentation 

of written and spoken text (compared to nonconcurrent presentation, exclusive 

presentation of written text, or exclusive presentation of auditory text) was 

beneficial to learning if both modes of textual information were required to be 

integrated in order to be understood. 
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According to Kalyuga’s (2012) evaluation of the potential benefits of 

instructional presentations delivered through the auditory modality (e.g., spoken 

words), visual modality (e.g., printed words, on-screen words, animations), or dual-

modality (employing both auditory and visual sensory modalities), the notion of 

redundancy is also dependent on learner expertise, due to the expertise reversal 

effect (previously discussed in section 2.2.4.2). Kalyuga (2012) clarified this by 

pointing out that accompanying spoken words which assist a novice to comprehend 

a diagram (because both sources of information are relied upon for a better 

understanding) may be redundant for a more expert learner, who understands the 

diagram on its own (because both sources of information are intelligible on their 

own). The latter situation demonstrates the redundancy effect whereby the 

connection between the redundant verbal explanation and already available 

schemata does not improve learning, but instead requires additional WM resources 

for processing, and accordingly results in avoidable increased cognitive load.   

Liu, Lin, Gao, Yeh, & Kalyuga (2015) were the first to explore the 

occurrence of the redundancy effect in a virtual classroom which simulated real 

classroom conditions, using three experimental conditions: audio-visual, audio only 

and visual only. Liu et al. (2015) obtained a robust reverse redundancy effect and 

claimed this was due to two possible factors: the presentation of segmented 

information, and interference in the classroom. Segmentation resulted from the use 

of common everyday language in spoken form, which imposed a low intrinsic 

cognitive load, with the provision of written factual information as a visual back-

up. Correspondingly, the spoken narrations, supplemented with on-screen textual 

information, outperformed the other presentation formats that contained either 

spoken or written form. Liu et al. (2015) concluded that interference or cognitive 
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overload, replicated from real classroom conditions, which resulted in students 

losing fundamental information from either source (written on-screen text or 

narrated text) could be easily replaced by the other source. Liu et al.’s (2015) 

findings demonstrated that the simultaneous provision of two forms of the same 

information had a complementary effect rather than a redundancy effect. Any lost 

information from one source was backed by the retrieval of information from the 

other source, which promoted better learning. Liu et al.’s (2015) study laid the 

groundwork for future research to consider classroom interference as a significant 

cause of heavy cognitive demands when students rely on one source of information 

for learning. 

When learners split their attention between different sources of information, 

for example, within a visual modality containing a diagram and separated 

explanatory text, the process of mentally integrating the sources unnecessarily 

increases cognitive load. Kalyuga et al. (1998) clarified this further by 

distinguishing between sources of information that are intelligible in isolation (e.g., 

when text explaining a diagram is redundant) and sources of information that 

cannot be understood in isolation (e.g., when the diagram requires additional, 

possibly textual, explanatory information). Kalyuga et al. (1998) postulated that a 

redundancy situation occurred when the sources of information were intelligible in 

isolation, and a split-attention situation occurred when the sources of information 

could not be understood in isolation. 

2.2.4.4 The split-attention effect. 

When information is in a split-source format, disparate sources of visual 

information require constant changes in the focus of attention to and from each 

source; for example, diagrams and text, solely textual information, solely 
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diagrammatic information, or text and equations. In a split-attention situation, 

learning is likely to be interfered with because of the intensive search-and-match 

process that is required for mental integration. The split-attention effect arises from 

the advantage of presenting multiple sources of information in an integrated format 

so the learner is presented with a single source of information (see Sweller et al., 

2011, for an overview). In an example of the expertise reversal effect, it was 

suggested by Yeung et al. (1998) that the efficacy of an integrated format may be 

moderated by the degree of learner expertise. In Yeung et al.’s (1998) investigation, 

presenting additional information (e.g., vocabulary definitions and explanatory 

notes) in an integrated form either facilitated or interfered with performance 

through a split-attention effect or a redundancy effect respectively. 

Multiple studies in split attention within a cognitive load framework found 

that students learned more effectively when they were not required to 

simultaneously mentally search and physically integrate disparate sources of 

information (Cerpa, Chandler, & Sweller, 1996; Chandler & Sweller, 1991, 1992; 

Sweller & Chandler, 1994; Sweller, Chandler, Tierney, & Cooper, 1990; Tarmizi & 

Sweller, 1988; Ward & Sweller, 1990). Tarmizi and Sweller (1988), and Ward and 

Sweller (1990) showed how converting ineffective worked examples which 

imposed a heavy, extraneous cognitive load because students were required to 

mentally integrate disparate sources of information, to reformatted worked 

examples which reduced multiple sources of mutually referring information, 

resulted in the reintroduction of the worked example effect; by not having to 

integrate material into a single source, cognitive load reduced and learning from 

integrated instructions was superior to conventional instructions. 
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Using engineering and high school coordinate geometry materials, Sweller et 

al. (1990) found that eliminating split attention by combining the mutually referring 

units of diagrammatic and written material into a unitary source of information 

substantially enhanced performance. Similarly, Chandler and Sweller (1991, 1992) 

demonstrated the spilt-attention effect, showing integrated instructions 

outperformed conventional instructions in which mutually referring information 

was separated and so had to be mentally integrated because it was unintelligible in 

isolation. Additionally, the results from Sweller and Chandler’s (1994) experiments 

showed that a self-contained, modified manual format (having no contact with the 

apparatus) was superior to the other formats because, despite its high level of 

element interactivity, extraneous cognitive load was reduced by controlling split-

attention. 

The findings from Ginns’ (2006) review revealed the benefits of reducing 

split attention between spatially or temporally disparate, related elements of 

information. By synthesising the results of fifty independent, instructional design 

experimental studies, Ginns’ (2006) meta-analysis showed that learning was more 

efficient and effective when related elements of information were integrated over 

space (the spatial contiguity effect, also known as the split-attention effect) or over 

time (the temporal contiguity effect). A major limitation of the generalisability of 

Ginns’ (2006) meta-analysis is that the results came from experimental studies 

using learners who were classified as novices and materials that were 

predominantly high in element interactivity. 

 To test the interaction of element interactivity with the split-attention effect, 

Chandler and Sweller’s (1996) study, which introduced learners to a new computer 

application, showed that using low element interactivity materials produced non-
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significant differences between instructional formats. These results indicated that 

extraneous cognitive load, imposed by a sub-optimal instructional design 

containing split attention, only became critical with high element interactivity 

instructional material. Otherwise, the combination of increased extraneous 

cognitive load imposed by a sub-optimal instructional design containing split 

attention and decreased intrinsic cognitive load from low element interactivity 

material was less likely to overload limited WM resources, leaving adequate WM 

resources available for schema construction and possibly automation (Chandler & 

Sweller, 1996).  

2.2.4.5 The variability effect. 

Research has consistently revealed that multiple examples are more effective 

than one example for promoting learning (Cooper & Sweller, 1987; Namy & 

Gentner, 2002; Rittle-Johnson & Star, 2007, 2009; Silver, Ghousseini, Gosen, 

Charalambous, & Strawhun, 2005; Sweller & Cooper, 1985). Studies have also 

suggested that multiple examples with the same solution structure and different 

surface characteristics can foster the acquisition of transferrable knowledge 

(Catrambone & Holyoak, 1989; Gick & Holyoak, 1983; Quilici & Mayer, 1996). 

This was exemplified in the work undertaken by Pirolli and Anderson (1985) who 

found that novice learners were able to solve novel and difficult problems by 

finding analogies between examples. The results of Holyoak and Koh’s (1987) 

study suggested that transfer could be obtained if the surface features of the source 

had at least one salient similarity to the features of the target problem. 

Additionally, Corbalan, Kester, and van Merriënboer (2011) found that a 

learner-controlled selection of tasks which differed in their surface features yielded 

beneficial effects on learning through enhanced transfer test performance, 
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compared to a learner-controlled selection of tasks which differed in their structural 

features. Since surface features are salient for both novices and experts, Chen and 

Mo (2004) also found that when tasks differed in their surface features, this helped 

learners recognise the same solution steps which then improved the construction of 

broader and flexible schemas. This process, referred to as generalization, enhances 

schema induction because tasks that are performed in the same way assist learners 

to see beneath the surface features, and thus create generalised rules for a wider 

class of related tasks (Gick & Holyoak, 1987). 

Furthermore, Reeves and Weisberg (1994) highlighted the need for learners 

to be explicitly instructed to compare multiple examples with respect to their 

similarities if the instructional goal is schema construction. This is because the 

acquisition of schemas from diverse examples was driven by the identification of 

structural features. Additionally, Gentner and Namy (1999) found that comparing 

examples helped to highlight a common structure which encouraged conceptual 

learning. However, not all comparisons may be equally effective. It is well 

established from a variety of studies that the effectiveness of comparing multiple 

examples is dependent upon the type of variability of the examples being compared 

(Paas & van Merriënboer, 1994; Quilici & Mayer, 1996; Renkl et al., 1998).  

To better understand the effects of variability, it is important to recognise that 

much of the literature highlights that examples are generally analysed in terms of 

surface and structural features (Holyoak & Koh, 1987; Paas & van Merriënboer, 

1994; Quilici & Mayer, 1996; Reed, 1989). In line with these two distinct features, 

the present study distinguished between low-variability tasks (such as worked 

examples and problem solving) that varied only in surface features, and high-

variability tasks that varied in structural features. The low-variability tasks in the 
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present study varied by way of numbers and mathematical terms (i.e., the surface 

features changed, and the structure remained the same between tasks) and the high-

variability tasks varied by way of rules and procedures, as well as numbers and 

mathematical terms (i.e., the structural features changed between tasks). 

Several studies have attempted to explain how students learn to categorise, 

based on the surface and structural features of tasks, to form generalised problem 

schemas. Quilici and Mayer’s (2002) study, which investigated word problems in 

statistics, revealed that direct exposure to structure-emphasising examples enabled 

students to abstract underlying structural features of a problem statement which led 

to the successful categorisation of elementary statistics problems. Quilici and 

Mayer (2002) confirmed that increasing structural awareness allowed students to 

more successfully engage in creative problem solving after feeling assured that a 

statistics problem did not fall within a pre-existing category. Correspondingly, 

Quilici and Mayer (1996) found that structure-emphasising example problems 

improved students’ performance in problem categorisation within the domain of 

statistics. By comparing two groups, where one group studied worked examples 

with varied surface features and the second group studied worked examples with 

varied structural features, they revealed that the latter group was better at sorting 

task performance (Quilici & Mayer, 1996). This indicates that the process of 

schema construction is not an automatic process that occurs when learners are 

presented with multiple examples that emphasise the same surface instruction. 

Rather, multiple tasks that emphasise the same structural characteristics enable the 

learner to distinguish features so that they are able to recognise how one problem 

may be similar to another. By extracting constant, underlying solution rationales, 
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the learner is able to construct abstract solution schemas that can facilitate accurate 

transfer schemas to tasks that contain different surface features. 

Despite their promising results, Quilici and Mayer (1996) recommended that 

further research was required to determine whether guided instruction would 

augment the effectiveness of structure-emphasising examples. Accordingly, Renkl 

et al. (1998) found that confronting learners with highly variable examples without 

instructional support (in the form of self-explanation) did not significantly 

influence near or far transfer, which led to poor learning outcomes. However, Paas 

and van Merrienboer's (1994) noteworthy study was the first study of variability 

from a cognitive load perspective to reveal that exposure to a highly varied 

sequence of worked examples yielded better schema construction and transfer, 

compared to exposure to conventional problems that had to be solved, followed by 

worked-example study. Similarly, van Merriënboer and Sweller (2005) postulated 

that by increasing variability, learners are exposed to a greater range of tasks which 

facilitates the differentiation between relevant and irrelevant features of worked 

examples. By assessing new tasks in light of any previous tasks, this process 

promotes the abstraction of schemas into LTM, so learners know when to apply the 

concept, thus boosting transfer performance (Clark et al., 2006). Increasing the 

variability of tasks increases the number of interacting elements related to the task. 

The effectiveness of this increased element interactivity gives learners the 

opportunity to invest germane cognitive load by engaging in deeper processing. 

In contrast, some findings on the effect of learning from multiple examples 

have shown that high-variability examples make it difficult for the structural 

features to be identified which then reduces the likelihood of inducing a schema 

(Gentner & Namy, 1999; Namy & Gentner, 2002; Richland, Holyoak, & Stigler, 
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2004; Ross & Kennedy, 1990). However, other findings have shown that low-

variability (similar) examples interfere with schema formation because learners are 

more likely to regard surface features as more important (Paas & van Merriënboer, 

1994; Quilici & Mayer, 1996; Ranzijn, 1991). With these contradictory findings in 

mind, Renkl et al. (1998) hypothesised that the positive impact of high variability 

in worked examples is dependent on two factors: the type of learning outcome 

desired; and the prior knowledge in the domain. In relation to learning outcomes, 

Renkl et al. (1998) considered that high-variability worked examples are 

particularly important if far-transfer tasks need to be solved. Otherwise, presenting 

learners with similar worked examples (where solution methods do not need to be 

modified) are sufficient if near-transfer tasks need to be solved, despite the 

likelihood of redundant information. With respect to prior knowledge in the 

domain, Renkl et al. (1998) asserted that more-experienced learners in a domain 

benefit from studying high-variability examples because they are not overloaded by 

the complexity of structurally different examples. On the other hand, less-

experienced learners are overburdened by high-variability examples because they 

find it difficult to detect any structural similarities across examples. Renkl et al.’s 

(1998) hypothesis in relation to prior knowledge in the domain was investigated in 

Experiment 3 of this thesis. 

In reviewing the literature, relatively few studies have been found on the 

question of how learners’ prior knowledge interacts with the variability of 

examples. Some research has established that learners with less prior knowledge in 

a domain do not gain from comparing multiple examples, particularly complex 

examples (Gentner, Loewenstein, & Hung, 2007; Holmqvist, Gustavsson, & 

Wernberg, 2007; Schwartz & Bransford, 1998). While research performed by 
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Quilici and Mayer (1996) opposed this by showing that lower-ability learners 

gained from comparing very different (structure-emphasising) examples and 

higher-ability learners gained from comparing all types of examples. More 

specifically, Quilici and Mayer (1996) established that lower-ability learners 

naturally paid attention to surface features (unless they were conditioned to focus 

on structural features), whereas higher-ability learners tended to focus on solution 

procedures that were based on structural features, irrespective of being exposed to a 

surface-emphasising or structure-emphasising instructional condition.  

Previous research has established that novices in a domain effectively learn a 

new solution method when they compare multiple similar examples of the same 

solution method which they can easily align to solve transparent problems (Gentner 

et al. 2007; Kotovsky & Gentner, 1996). This accords with Rittle-Johnson, Star, 

and Durkin’s (2009) findings that novice learners in a domain built competence if 

they were assigned to learn a single solution method (by comparing problem 

features of multiple examples) before comparing different solution methods from 

the start. Of the 236 seventh- and eighth-grade mathematics students who 

participated in Rittle-Johnson et al.’s (2009) study, students with sufficient prior 

knowledge of solving algebraic equations benefitted most from comparing different 

solution methods for solving the same equation, as opposed to students who did not 

commence the study with equation-solving skills. This suggests that less-

experienced learners can build competence by familiarising themselves with one 

solution method before they compare alternative solution methods. 

In their examination of schema construction and transfer of learning, van 

Merriënboer and Ayres (2005) affirmed that the variability of problem situations 

increases the likelihood of the learner distinguishing between relevant and 
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irrelevant features, as well as recognising similar features. As a consequence, the 

intrinsic complexity of a high-variability task requires the learner to “invest more 

effort in genuine learning” (van Merriënboer & Ayres, 2005, p. 7). One way to 

make cognitive resources available for genuine learning is to diminish extraneous 

cognitive load, so this suggests that example variability can be employed as an 

instructional technique to assist with substituting extraneous load with intrinsic 

load. However, if the complexity of the learning tasks remains excessively high 

after the extraneous load is minimised, van Merriënboer and Ayres (2005) advised 

that simplification of learning tasks may be required during the early stages of 

learning. This is in line with CLT where it is well established that increasing the 

complexity of a task increases the number of interacting elements associated with 

the task. Thus, increasing task variability by exposing the learner to a greater range 

of tasks, increases element interactivity which in turn increases intrinsic cognitive 

load, which can potentially overwhelm WM capacity. 

In chapter four of their book, van Merriënboer and Kirschner (2018) notably 

discuss how the variability of practice, through which the use of a varied set of 

learning tasks representative of real-life tasks, supports the construction of new 

cognitive schemas and the modification of existing ones in WM. Additionally, in 

relation to designing a sequence of learning tasks, van Merriënboer & Kirschner 

(2018) described the importance of scaffolding, a process that entails the provision 

of optimal level of support and guidance to learners during the initial stages of 

learning so they are able to carry out the required steps, and the fading away of 

support and guidance when learners become capable of carrying out the required 

action. Scaffolding is necessary because of the expertise reversal effect, on the 

grounds that instructional techniques that are effective for novices are likely to lose 
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their effectiveness or even become detrimental when used with more-experienced 

learners (Kalyuga et al., 2003; Kalyuga et al., 2012; van Merriënboer et al., 2003). 

Drawing on research undertaken on task variability, the present study 

attempted to provide empirical evidence of the impact of exposing learners to high- 

or low-variability learning material using either worked examples or problem-

solving tasks, on test questions that were similar in context or dissimilar in context 

(transfer tasks) to the learning material (in Experiments 1, 2 and 4). Additionally, 

the impact of exposing more-experienced or less-experienced learners to high- or 

low-variability learning material, on test questions that were similar or dissimilar in 

context to the learning material was also investigated (in Experiment 3). 

2.3 Summary of Chapter 2 

This chapter established the theoretical framework of CLT and discussed the 

wide benefits of its use for instructional design in education. A review of cognitive 

load was examined with respect to the identification of intrinsic, extraneous and 

germane cognitive load; managing cognitive load through different instructional 

designs to optimise learning; and subjective measures of cognitive load, as a tool 

for assessing the mental effort made or level of difficulty experienced by learners 

during instruction. Finally, there was an examination of five instructional design 

effects: the worked example effect, the expertise reversal effect, the redundancy 

effect, the split-attention effect, and the variability effect. All of these relate to the 

present study. They were reviewed in detail to clarify how they can influence 

cognitive load and learning outcomes. Specifically, the chapter discussed empirical 

research relating to the effectiveness of adjusting instructional design methods for 

learners under worked-example instruction or problem-solving conditions, and 

learners’ levels of prior knowledge in a domain. 
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The next chapter, which initiates Part II of this thesis, will provide the rationale 

for the dependent and independent variables, and the theoretical arguments for the 

cognitive load effects used to develop the hypotheses for the present study. 
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Chapter 3: Design of Empirical Study 

3.1 Introduction to Chapter 3 

By synthesising the information presented in the previous chapters, this chapter 

will discuss the dependent and independent variables used to formulate the hypotheses 

in all four experiments of the present study. In addition, fundamental cognitive load 

effects – the worked example effect, the variability effect, and the expertise reversal 

effect – will be discussed in relation to the development of these hypotheses. Particular 

reference will be made to Paas and van Merriënboer’s (1994) study, which provided 

a major impetus for the present study. 

3.2 Dependent Variables 

Transfer of learning and subjective ratings of difficulty were the two dependent 

variables that were measured in the present study. Given their significance for 

measuring post-test performance and cognitive load respectively, they are reviewed in 

detail in this section.  

3.2.1 Transfer tasks as measures of post-test performance. 

3.2.1.1 Overview of transfer of learning. 

The fundamental aim of learning is to acquire the ability to judge which skill 

and knowledge to use in a new context by generalising from past lessons and 

specific experience (McKeough, Lupart, & Marini, 2015). This ability to 

spontaneously adapt what has been previously learned is known as transfer of 

learning. Along the same lines, Brooks and Dansereau (1987) claimed that 

effective transfer from one task to another occurs when an individual is able to 

determine which skills and knowledge to apply to a second, target task. They 

clarified this by arguing that “skills may be substantially content independent and, 

thus, may be a part of the individual’s repertoire of general learning and problem-
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solving strategies” (Brooks & Dansereau, 1987, p. 125). If these skills are non-

existent and “compensatory guidance through the transfer task is not provided by 

an instructor, supervisor, or someone in a similar capacity” (p. 125), Brooks and 

Dansereau (1987) claimed that transfer will not take place because the gap between 

an individual’s existing knowledge and the target task cannot be bridged. 

Over the last century, educational psychologists have developed several 

different theoretical perspectives about how to best design educational programs to 

facilitate transfer. However, educational transfer remains a complex phenomenon 

(Barnett & Ceci, 2002; Cormier & Hagman, 1987; Gick & Holyoak, 1983, 1987; 

Hayes & Simon, 1977; Holyoak & Koh, 1987; Nickerson, Perkins, & Smith, 1985; 

Thorndike & Woodworth, 1901a, 1901b, 1901c). For example, Nickerson et al. 

(1985) acknowledged that transfer may occur spontaneously. However, it is not 

always possible for students to directly carry over skills they have acquired in one 

context to different contexts due to the “significant adjustment” (p. 335) required 

which creates “another barrier in the way of smooth transfer” (Nickerson et al., 

1985, p. 335). Developing a clear understanding of the principles of transfer 

continuous to be a principal focus amongst educational psychologists since 

effective transfer is of practical importance in educational settings.  

Despite the challenge of designing instruction to effectively teach for 

transfer, several educational theorists have successfully reported on different ways 

that transfer can be achieved. Thorndike (1913) posited that increasing the 

similarity of elements between tasks played a key role in the transfer learning 

process, arguing that “successful responses are due to fruitful connections and 

analogies” (p. 48). As a basis for analogical transfer, Gick and Holyoak (1983) 

found that a verbal or spatial summary of a solution schema (single analogue) did 
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not facilitate transfer to a target problem compared to mapping two analogues, 

which induced more schema abstraction. 

Group cooperation in the form of reciprocal teaching has been shown to 

evoke zones of proximal development (Vygotsky, 1978) whereby all learners, with 

varying skill and expertise levels, are encouraged to undertake increasing 

responsibility for more-experienced roles. Palincsar and Brown (1984) notably 

argued that reciprocal teaching encouraged transfer when students were provided 

with four reading strategies (questioning, clarifying, summarising, and predicting) 

to actively enhance reading comprehension. Additionally, Salomon and Perkins 

(1989) maintained that transfer emerged in two ways, by either “low-road transfer” 

(p. 113), or “high-road transfer” (p. 113). The former is dependent on considerable 

practice that leads to automatization of learning. And, although is a quick way of 

accomplishing transfer, results in less flexibility. The latter is dependent on deep 

insights into the learning tasks. And while it is a slower way of attaining transfer, it 

is much wider in scope and adaptability. 

In their approach to transfer of learning, Hayes and Simon (1977) employed 

different sets of problem isomorphs by making changes in the form of problem text 

representation. Two problems were defined as being isomorphs “if any solution 

path of one may be translated step by step into a solution path of the other and vice 

versa” (Hayes & Simon, 1977, p. 22). By presenting virtually the same problem 

differently, Hayes and Simon (1977) found that increased transfer between two 

problems occurs when subjects are able to recognise the similarity between the 

structures of the two problems (isomorphs). These findings indicate that transfer of 

a solution is more likely to be obtained when a learner’s mental representation of 

the training and transfer situations is associated with similar goals and processing 
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between both situations. Increased perceived similarity of training and transfer 

tasks facilitates the retrieval of previously acquired knowledge of the training task 

and the appropriate application to the transfer task. 

Barnett and Ceci (2002) elucidated the nature of a skill being transferred by 

distinguishing between two dimensions: “near” versus “far”; and “specific” versus 

“general”. The former dimension “relat[ing] to the similarity of the training and 

transfer situations” (p. 620), and the latter dimension “relat[ing] to how generally 

applicable the learned information is [, such as,] specific facts or procedures versus 

general skills, principles, or strategies” (Barnett & Ceci, 2002, p. 620). Moreover, 

Barnett and Ceci (2002) specified that the two dimensions should be separated 

given that far transfer can be defined as specific or general, and that general skills 

can be transferred to a near or far situation.  

A high degree of similarity implies near transfer, whilst a low degree implies 

far transfer (Mayer, 1975; Royer, 1979). Using a multilevel transfer post-test, 

Mayer (1975) assessed the learning of binomial probability concepts by including 

near transfer items that required applying the formula; for example, subjects had to 

find the value for P(R,N) given values for R, N, and P (which were similar to the 

items presented in the booklet), and far transfer items were included that required 

interpretation; for example, using only part of the formula or recognising that the 

formula couldn’t be applied. Mayer (1975) found that subjects who received 

pretraining in general concepts were more competent at transferring what they 

learned to far transfer items (novel situations) compared to subjects who received 

pretraining in using the formula. In the opposite way, subjects who received 

pretraining in using the formula were faster at completing near transfer items than 

subjects who received pretraining in general concepts. This shows that a learner 
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could master a specific skill if they previously learned that same skill in a particular 

learning situation. However, a learner may not have been able to recognise and 

correctly apply the specific skill to a far transfer situation which did not share 

identical elements with the original learning task.  

In their research review of transfer, Gick and Holyoak (1987) affirmed that 

“the interrelationships between task structure, encoding and retrieval processes, and 

the prior knowledge of the learner” (p. 39-40) are factors related to transfer. Gick 

and Holyoak (1987) clarified this by maintaining that the structure of a task 

impacts on the encoding of the task which then fosters the acquisition of rules that 

can be applied to an array of tasks with structural commonalities that are 

superficially different. Retrieval of acquired knowledge in the context of transfer is 

then made possible if the transfer task induces “similar goals and processing 

mechanisms, or has salient surface resemblances to the training task” (Gick & 

Holyoak, 1987, p. 40). Additionally, Marini and Genereux (2015) claimed that the 

basic elements connected with transfer involve: the learner, the instructional and 

transfer tasks, and the instructional and transfer context; and that a combination of 

all of these elements are critical when designing instruction. Correspondingly, 

establishing the degree of difference between the instructed task/context and the 

transfer task/context respectively must be interpreted with caution when 

establishing the extent (near or far) and manner (specific or general) in which 

transferred knowledge is tested. 

3.2.1.2 Transfer of learning in CLT research. 

Effective and efficient transfer performance has been attained from a variety 

of CLT studies involving the use of worked examples (Cooper & Sweller, 1987; 

Hummel et al., 2004; Lim, Reiser, & Olina, 2009; Mawer & Sweller, 1982; Paas, 
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1992; Paas & van Merriënboer, 1994; Ranzijn, 1991; Robins & Mayer, 1993). This 

was first evident in Cooper and Sweller’s (1987) series of experiments which 

showed that the reduced cognitive load associated with worked examples facilitated 

the interaction between schema acquisition (the conscious process whereby 

acquired schemas were used to directly solve test problems that were similar to 

previously seen problems) and schema automation (the automatic process which 

mainly bypassed WM) which was required for solving transfer problems. Schema 

automation, as defined by Sweller et al. (1998), occurs after extensive practice, 

which justifies why automaticity develops more slowly than schema acquisition. 

Since schema automation is carried out with minimal WM resources, available 

WM capacity makes it possible to complete novel tasks in cases where acquired 

schemas are of limited use on transfer problems (Kotovsky et al., 1985). In 

addition, as previously discussed in section 2.2.4.4 (the split-attention effect), better 

transfer test performance has been shown when two or more sources of information 

are integrated (to avoid split attention) when mutually referring information cannot 

be understood in isolation (Chandler & Sweller, 1992; Kester et al., 2005; Ward & 

Sweller, 1990). 

An issue pertaining to undesired instructional design, referred to as the 

transfer paradox, is the phenomenon whereby efficient instructional methods, that 

are designed to minimise training time, reduce the number of practice items, and 

reach non-integrated, specific learning objectives, may yield low transfer of 

learning (Helsdingen, van Gog, & van Merriënboer, 2011a, 2011b). In contrast, 

less efficient instructional methods, that vary on both surface and structural 

features, which require more time-on-task and investment of mental effort because 

they ultimately require learners to work on randomly sequenced tasks, will yield 
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higher transfer of learning. Van Merriënboer and Kirschner (2018) avowed that 

variability and random sequencing of tasks fostered increased investment in 

abstraction – a process whereby comparing and contrasting information enhances 

transfer of learning. When learners work “harder and longer” (p. 67), by 

accomplishing a set of varied learning tasks in a random order, they are able to 

construct knowledge that is general and abstract, which then enables them to reach 

integrated objectives and confront unfamiliar problems (van Merriënboer & 

Kirschner, 2018). In other words, if the aim of the instructional design is to yield 

higher transfer of learning, the instructional method should not encourage learners 

to construct specific knowledge that enables them to deal with tasks that are 

concordant with isolated, specific objectives. 

The practice of random sequencing, which is referred to as interleaving, 

promotes the development of general and abstract schemas that enables learners to 

deal with unfamiliar features of novel problems (i.e., transfer). Interleaving helps 

learners to develop a more integrated knowledge base because they are required to 

practise different versions of the same constituent skills (Birnbaum, Kornell, Bjork, 

& Bjork, 2013). An example where unrelated tasks are interleaved, for instance, 

would be where successive 30 min lessons on mathematics, music and science 

respectively are followed by another set of successive 30 min lessons in the same 

subject areas, as opposed to presenting a single set of one-hour lessons on each 

subject. On the other hand, when learners practice the same constituent skills for 

equivalent tasks, they are less likely to compare and contrast the tasks, and as a 

result show lower transfer of learning (de Croock & van Merriënboer, 2007; 

Helsdingen et al., 2011a, 2011b). The present study did not investigate interleaving 

and its related effects because any reference made to variability in the four 
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experiments specifically referred to changes to surface features and/or structural 

variations made to the question formats, in a similar fashion to the investigations 

undertaken by Paas and van Merriënboer (1994), and Quilici and Mayer (1996). 

Although worked-example-based learning (as discussed in section 2.2.4.1) 

and variation between tasks (as discussed in section 2.2.4.5) have a positive effect 

on the development of proficient task performance, the present study aimed to shed 

more light on instructional design that enables learners to solve new and unfamiliar 

tasks after the achievement of initial learning of familiar tasks. In particular, the 

present study further investigated how the exposure to task variability (as discussed 

in section 2.2.4.5) can play a critical role in promoting the abstraction of general 

schemas and facilitate successful transfer to novel problems.    

3.2.2 Subjective ratings of difficulty as measures of cognitive load. 

When learners process inherently complex material, this imposes high 

intrinsic cognitive load, and if extraneous cognitive load associated with the 

instructional design is also high, this will increase the number of interactive 

elements that must be processed simultaneously in WM in order to complete the 

task. As discussed in section 2.2.1, the level of element interactivity is determined 

by the extent to which the material imposes cognitive load by the intrinsic nature of 

the material (which can vary from low to high depending on the learner’s level of 

prior knowledge) and the extraneous factors caused by the instructional design 

(which can vary by the way the instructional material is presented without altering 

what needs to be learned). 

Subjective ratings of difficulty were employed in the present study to 

distinguish between extraneous and intrinsic cognitive load. Based on the cognitive 

load theoretical framework, material consisting of elements with an intrinsically 
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high degree of interactivity require considerable cognitive resources. Hence, the 

present study assumed that learners could complete high-variability tasks if 

extraneous cognitive load was reduced by studying worked examples or if the high-

variability tasks were assigned to higher ability learners for completion, who are 

more likely to have sufficient WM capacity to deal with the complexity of high 

element interactivity tasks, compared to lower ability learners. 

Out of the four experiments in the current study, Experiments 1, 2 and 4 

investigated whether studying worked examples increases WM capacity by 

reducing extraneous cognitive load. Subjective ratings of difficulty were used to 

compare the cognitive load of participants who attempted to solve problems 

(without guidance) and participants who studied fully-guided worked examples. In 

Experiment 3, subjective ratings of difficulty by more-knowledgeable learners and 

less-knowledgeable learners were compared to investigate whether more-

knowledgeable learners would experience less difficulty in completing the learning 

tasks because of their greater prior knowledge in the domain. 

3.3 Independent Variables 

Levels of variability and guidance, and levels of variability and learner expertise, 

were the independent variables used in Experiments 1, 2 and 4, and Experiment 3 

respectively. These independent variables each had two levels (high and low) in order 

to observe the effect they had on transfer of learning and subjective ratings of 

difficulty.  

The present study aimed to expand previous empirical work pertaining to the 

variability effect, worked example effect, and expertise reversal effect. Comprising 

four experiments, the present study investigated the effect of high- and low-

variability tasks on a learner’s capacity to construct schemas and transfer acquired 
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knowledge. The participants’ post-test results in each experiment were composed 

of two parts: similar questions (which were similarly structured to the tasks in the 

initial training and tested for schema formation); and transfer questions (which 

required the abstraction of a solution method from the tasks in the initial training). 

Experiments 1, 2 and 4 explored the effect of high- or low-variability tasks with 

high guidance (studying fully-guided worked examples) or low guidance 

(generating problem solutions without any guidance). Experiment 3 examined the 

effect of high- or low-variability tasks with more-experienced learners (experts) or 

less-experienced learners (novices). 

All four experiments in the present study used high-variability tasks that 

involved the application of same solution process in a wider variety of contexts. 

This was achieved by changing not only the surface features (e.g., numbers) but 

also varying the structure of the problems (i.e. question formats), as opposed to the 

low-variability tasks, whereby only some surface features changed and the 

structure of the tasks remained the same. 

3.3.1 Levels of variability and guidance. 

According to Ranzijn (1991), widely dispersed examples (as opposed to 

narrowly dispersed examples) improved procedural knowledge. Based on this 

outcome, Experiments 1, 2 and 4 investigated the likelihood that studying high-

variability worked examples would increase learners’ ability to identify similar 

features between tasks and increase their ability to differentiate between relevant 

and irrelevant features. Using the rationale that students are more likely to achieve 

learning transfer after studying highly variable examples, the present study further 

explored the variability of practice. 
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The low-variability worked examples in Experiments 1, 2 and 4 were 

analogous to the structure-emphasising worked-out examples in Quilici and 

Mayer’s (1996) study which aimed to foster schema construction. In Experiments 

1, 2 and 4, low-variability worked examples were designed by using the solution 

structures of the source examples (which were presented on the board throughout 

the general instruction, during the initial part of the Learning Phase) as analogues 

to the solution structures of the target examples in the learning handout (which 

were studied during the latter part of the Learning Phase). 

Unlike the hypothesis that was explored by Quilici and Mayer (1996) 

whereby college students who studied structure-emphasising example problems 

were more likely to categorise and apply the correct statistical test (e.g., t- test or 

correlation or chi-square) to statistics word problems compared to students who 

studied surface-emphasising example problems, the aim of Experiments 1, 2 and 4 

was to examine the likelihood that participants in the high-variability worked-

examples group would be better at solving test problems that required the 

adjustment of learned solution methods, compared to participants in the low-

variability worked-examples group. In other words, studying high-variability 

worked examples would enhance schema formation and transfer more than 

studying low-variability worked examples (that were designed to emphasise the 

same structure). Thus, Experiments 1, 2 and 4 augmented Quilici and Mayer’s 

(1996) study with the incorporation of two problem-solving groups. The high-

variability problem-solving and low-variability problem-solving learning handouts 

provided students with the same problem statements as those in their respective 

high- and low-variability worked-examples handout but without the inclusion of 

solution steps. 
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The four instructional groups in Experiments 1, 2 and 4 were akin to those 

used by Paas and van Merriënboer (1994), whose investigation involved four 

computer-based training strategies: a low-variability and high-variability worked 

condition (which involved studying worked examples); and a low-variability and 

high-variability conventional condition (which involved solving conventional 

practice problems). However, unlike the participants in Paas and van Merriënboer’s 

(1994) conventional condition, who worked on six problems (with two attempts to 

get each answer right within a restricted timeframe) and later studied the solutions 

to these problems (which were identical to the ones studied by the participants in 

the worked condition), the participants in the problem-solving groups in 

Experiments 1, 2 and 4 were provided with problem statements (excluding solution 

steps), with answers (only in Experiments 2 and 4). However, similar to Paas and 

van Merriënboer’s (1994) study, the worked-examples condition in Experiments 1, 

2 and 4 did not contain any subsequent practice problem-solving tasks. That is to 

say, Experiments 1, 2 and 4 used a pure worked-examples and pure problem-

solving procedure for the high- and low-variability conditions. The pure worked-

examples and pure problem-solving procedures in Experiments 1, 2 and 4 were in 

contrast to procedures previously used in some worked-examples studies (Cooper 

& Sweller, 1987; Leppink et al., 2014; Paas, 1992; Sweller et al., 1990) that 

showed the worked-example – problem-solving sequence to be superior to the 

reverse sequence. 

3.3.2 Levels of variability and learner expertise. 

Experiment 3 investigated the variability effect further. In it, participants 

were separated into novice or expert groups, according to their levels of prior 

knowledge. The instructional design of Experiment 3 was unique in comparison to 
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any other CLT empirical investigation reported to date, as it tested for main effects 

of task variability (i.e., the possibility of a variability effect) and expertise, and an 

interaction effect between task variability and expertise (i.e., the possibility of a 

reverse variability effect and consequently, an expertise reversal effect). Unlike 

Experiments 1, 2 and 4 (which distinctly included worked-examples or problem-

solving learning handouts), all the handouts in Experiment 3 contained the same 

initial worked examples, followed by either low-variability problem-solving tasks 

(which were of similar structure to the preceding worked examples) or high-

variability problem-solving tasks (which were of dissimilar structure to the 

preceding worked examples). 

Since levels of guidance (tested in Experiments 1, 2 and 4) and levels of 

expertise (tested in Experiment 3) both alter element interactivity, the learning 

handouts in Experiment 3 (which contained both worked-examples and problem-

solving tasks) were designed to negate the need to vary guidance between groups 

because it was argued that levels of expertise could act as a substitute for levels of 

guidance. 

3.4 Development of the Hypotheses 

3.4.1 Worked example effect. 

To obtain a worked example effect (as discussed in section 2.2.4.1), the 

learning material should be high in element interactivity (e.g. a complex task), 

otherwise, if the learning material is low in element interactivity (e.g., a simple 

task), the effectiveness of worked examples is reduced. When completing a simple 

task (where fewer elements need to be processed simultaneously compared to a 

complex task), more WM resources are available that can be allocated to manage 

extraneous cognitive load imposed by suboptimal task instructions (e.g., problem-
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solving tasks which require more effort to complete because of the absence of any 

instructional guidance, as opposed to studying the solution steps of a worked 

example for a similar task). 

Experiments 1, 2 and 4 in the present study compared a worked-examples 

condition with a problem-solving condition under high element interactivity 

conditions because it was assumed that the learners were novices concerning the 

tasks. It was assumed that any weak problem-solving strategies (used by the 

learners in the problem-solving condition) would impose high extraneous cognitive 

load on WM which would not be conducive for learning even if these learners were 

successful in solving the problems. Since attempting to solve problems contributes 

less to learning because fewer WM resources are available for constructing 

cognitive schemas, it was presumed that the learners in the worked-examples 

condition would devote all their available WM capacity to studying the solution 

steps in the worked examples, and therefore be able to abstract general rules from 

the worked examples. 

3.4.2 Variability effect. 

The variability effect (as discussed in section 2.2.4.5) was investigated in all 

four experiments of the present study. In order to identify the variability effect, 

Experiments 1, 2 and 4 compared worked-examples study and problem solving 

with either high-variability or low-variability tasks, in a similar way to Paas and 

van Merriënboer (1994). Experiment 3 compared experts and novices completing 

either high-variability or low-variability tasks.  

In their study of instructional effects of variability, Paas and van Merriënboer 

(1994), assuming that the learners in all condition groups were novices, confirmed 

that increasing variability would only be effective in the worked-examples 
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condition. In line with the arguments put forward by Paas and van Merriënboer 

(1994), the presumption made for Experiments 1, 2 and 4 in the present study was 

that the variability effect could not be obtained in the problem-solving condition 

because problem solving would impose a higher WM load on novices compared to 

studying worked examples. Increased WM load associated with high-variability 

tasks (because more elements are needed to be managed simultaneously in WM 

compared to low-variability tasks) combined with the WM load associated with 

problem solving, would place a heavy strain on the learners’ limited cognitive 

capacity. However, presenting learners with high-variability worked examples 

would reduce unnecessary extraneous cognitive load (because learners would not 

be faced with unfamiliar problems to solve) and increase intrinsic cognitive load 

(because learners would direct their attention to the highly variable solution steps), 

which is important for learning and would improve learning.  

In Experiments 1, 2 and 4, and based on Paas and van Merriënboer’s (1994) 

findings, it was assumed that studying high-variability worked examples would 

likely lead to better transfer of learning, compared to low-variability worked 

examples, because cognitive load imposed by high-variability tasks is intrinsic and 

not extraneous. In contrast, it was assumed that high-variability problem-solving 

tasks would impose intrinsic cognitive load, as well as extraneous cognitive load – 

due to the material being intrinsically high in element interactivity, and the absence 

of solution steps making it difficult for the learner to acquire cognitive skills (that 

otherwise are supported through the design of worked examples). 

In Experiment 3, it was hypothesised that increasing variability would only 

be effective for more-knowledgeable learners (experts), but not for novices. This 

hypothesis will be discussed in the section below. 
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3.4.3 Expertise reversal effect. 

The expertise reversal effect (as discussed in section 2.2.4.2) was investigated 

conjointly with the variability effect in Experiment 3. In this experiment, all the 

participants were placed into a novice or expert group (after initial testing of their 

prior mathematical knowledge that related to the experimental learning material). 

This was designed to test Renkl et al.’s (1998) assertion that more-experienced 

learners were more likely to benefit from studying high-variability examples 

because their cognitive capacity would be less likely to be overloaded by the 

structurally different examples, compared to less-experienced learners whose 

cognitive capacity was more likely to be overburdened. However, contrary to using 

only examples, all the learning handouts in Experiment 3 comprised the same 

worked examples followed by either high- or low-variability conventional 

problem-solving tasks. 

It was predicted that presenting experts with high-variability problem-solving 

tasks and novices with low-variability problem-solving tasks would better induce 

schema construction to facilitate improved performance on the Post-Test similar 

questions than presenting experts with low-variability problem-solving tasks and 

novices with high-variability problem-solving tasks accordingly. Improved 

performance for the experts and novices for the above conditions would extend to 

the Post-Test transfer questions if the rules that were learned from studying the 

worked examples (in the initial part of all the learning handouts) and practised by 

solving the high- and low-variability problems (which followed the worked 

examples) respectively, became strengthened (or automated). That is, of primary 

importance was the prediction that problem-solving high-variability tasks would be 

more effective only for experts (compared to solving low-variability tasks). The 
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effectiveness of this instruction was predicted to reverse for novices, such that 

problem solving low-variability tasks would be more effective compared to 

problem solving high-variability tasks. 

The possibility of a reverse variability effect was predicted for novices 

because practising to solve low-variability problems would require less cognitive 

load due to the lower level of element interactivity of low-variability tasks 

compared to high-variability tasks. Simultaneously dealing with fewer elements 

would make greater cognitive capacity available for novices to deal with aspects of 

the low-variability tasks that were unfamiliar. In contrast, it was predicted that a 

variability effect would occur for experts because they had acquired more prior 

knowledge in the target domain. More-knowledgeable learners in a domain would 

likely require fewer search strategies (such as means-ends analysis), compared to 

less-knowledgeable learners, when dealing with high-variability problems. If 

experts attempted to solve high-variability problems, it was expected that it would 

be more beneficial for schema construction and for transfer of acquired skills (as 

opposed to solving low-variability problems) because they would be dealing with a 

wider range of different problem-solving tasks which would extend the range and 

applicability of schemas. 

3.4.4 Cognitive load. 

Comparing high- and low-variability groups in all four experiments of this 

thesis involved the evaluation of whether more mental effort (cognitive load) 

would be invested in completing high-variability learning tasks compared to low-

variability tasks. The rationale behind this comparison was based on the notion that 

the higher element interactivity in high-variability learning tasks made them more 

difficult to learn compared to low-variability tasks. The more difficult it was to 
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complete a task, the greater the processing demands and hence the greater amount 

of imposed cognitive load. It was assumed that learners exposed to the high-

variability condition would experience greater intrinsic cognitive load due to the 

tasks being higher in element interactivity, compared to the low-variability tasks. 

Hence, it was hypothesised that subjective ratings of difficulty for completing high-

variability tasks would be higher compared to completing low-variability tasks in 

all the experiments. 

In Experiments 1, 2 and 4, it was hypothesised that the problem-solving 

conditions would impose a high extraneous cognitive load on participants who 

attempted to problem solve the learning tasks. This would hinder their learning 

because participants (who were assumed to be novices) would be forced to resort to 

weak methods such as means-ends analysis, leaving few or no cognitive resources 

left for useful processes such as schema construction. In contrast, it was 

hypothesised that the worked-examples conditions would diminish extraneous 

cognitive load, and studying the solution steps contained in worked examples 

would efficiently assist the learners to arrive at the correct answers. 

  In Experiment 3, it was hypothesised that more-knowledgeable learners 

who had acquired more schema-based knowledge in the target domain, in contrast 

to less-knowledgeable learners, would be more likely to resort to more efficient 

schema-based problem-solving strategies, and thus experience less difficulty in 

completing the learning tasks. On the other hand, it was hypothesised that less-

knowledgeable learners would experience more difficulty in completing the 

learning tasks because they would encounter more unfamiliar elements when 

attempting to solve problems. This would more likely overwhelm their WM and 

increase cognitive load. 
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3.5 Summary of Chapter 3 

This chapter provided the theoretical arguments for the dependent and 

independent variables used to formulate the hypotheses for the four experiments in the 

present study, as well as a discussion of the development of these hypotheses in 

relation to the expected cognitive load effects. The next chapter will detail the 

empirical examination of these four experiments. 
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Chapter 4: Four Experiments 

4.1 Introduction to Chapter 4 

This chapter will outline four empirical experiments which comprise the present 

study. These experiments aimed to examine two main areas: how studying worked 

examples or attempting to problem solve low- or high-variability mathematics tasks 

can influence test performance outcomes (Experiments 1, 2 and 4); and how studying 

the same worked examples followed by low- or high-variability mathematics problem-

solving tasks can influence test performance outcomes for less-experienced and more-

experienced learners in the domain (Experiment 3). Across all four experiments, 

subjective ratings of difficulty were used as measures of cognitive load to help identify 

the factors inhibiting or facilitating learning. 

4.2 Experiment 1 

4.2.1 Introduction. 

Experiment 1 examined whether the variability effect could be obtained by 

analysing the comparison of studying high-variability and low-variability worked 

examples during the Learning Phase, and whether a worked example effect could 

be obtained by analysing the comparison of studying worked examples (full 

guidance) and solving problems (no guidance) during the Learning Phase, 

regardless of task variability. Hypotheses were tested in this experiment by using a 

2 by 2 design with two levels of variability (high or low) and two levels of 

guidance (worked examples or problem solving). 

Variability in the high- and low-variability learning handouts was achieved 

by changing the range of tasks for which worked examples were studied or 

problems had to be solved for the second and third questions (keeping the first 

question identical). In the case of the worked-examples – high-variability handout 
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(see Appendix A) and corresponding problem-solving handout (see Appendix B), 

the solution processes for Questions 2 and 3 were applied in a wider variety of 

contexts, in both surface and structural features to that of Question 1. For example, 

the expression “4 / [k (k + 4)]” in Question 1, was replaced with the expression “(-

7k – 6) / [k (k + 1) (k + 2)]” in Question 2 (i.e., the number “4” in the numerator 

was replaced with the algebraic expression “-7k – 6”, and the two factors in the 

denominator, “k” and “k + 4”, were replaced with three factors, “k”, “k + 1” and “k 

+ 2”). In the case of the worked-examples – low-variability handout (see Appendix 

C) and corresponding problem-solving handout (see Appendix D), only the surface 

features varied in Questions 2 and 3, and not the question format, to that of 

Question 1. For example, the expression “4 / [k (k + 4)]” in Question 1 was 

replaced with the expression “5 / [k (k + 5)]” in Question 2 (i.e., only the number 

“4” in the numerator and denominator was replaced with the number “5”, without 

making any structural changes to the question). 

The worked examples in the worked-examples – high-variability and worked-

examples – low-variability handouts required students to study fully-guided tasks 

that contained step-by-step solutions for how to solve a problem, while the 

problem-solving statements in the corresponding high- and low-variability 

problem-solving handouts required students to generate problem solutions without 

any guidance. Given the difference in instructional design between the worked 

examples and problem-solving tasks, participants completed a difficulty rating 

scale; this rating scale was partly used to detect variations in cognitive load due to 

extraneous cognitive load. 

Since instructional formats containing high-variability mathematical tasks are 

likely to increase mental effort because they are performed under conditions that 
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require a highly varied sequence of solution steps, this experiment also explored 

whether completing high-variability mathematical tasks would further increase 

cognitive load because of the increased level of element connectedness. Learning to 

solve high-variability problems (either by studying worked-example solution steps 

or attempting to generate solutions without any guidance) requires learners not only 

to focus on one type of solution procedure but also to recognise which problems 

require relevant solution procedures. Therefore, increasing variability increases 

intrinsic cognitive load. Hence, the difficulty rating scale that each participant 

completed was also partly used to detect variations in cognitive load due to 

intrinsic cognitive load.  

This experiment examined the learners’ ability to solve similar and transfer 

questions in the Post-Test (see Appendix E), on the basis that effective 

mathematical learning occurs when students understand learned procedures and 

develop skills that allow them to solve new problems beyond a single context. For 

example, the expression ‘1 / [(5k – 2) (5k + 3)]” in Question 1 of the Post-Test was 

similar to the expression “4 / [k (k + 4)” in Question 1 of the learning handout (i.e., 

the number “4” in the numerator was replaced with “1”, and the two factors in the 

denominator, “k” and “k + 4”, were replaced with “5k – 2” and “5k + 3”). The 

expression “𝑙𝑜𝑔%[1 + (1/𝑘)]” in Question 2 of the Post-Test, for example, tested the 

learners’ ability to transfer knowledge and skills, by looking for any patterns and 

relationships from any past lessons/experience that could be generalised and widely 

applied. 

4.2.2 Hypotheses. 

Experiment 1 tested the following hypotheses: 
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1. Learners who study fully-guided worked examples will yield higher post-test 

performance scores, compared to learners who attempt to solve problems without 

any guidance, due to a reduction in extraneous cognitive load. Accordingly, 

subjective ratings of difficulty for worked-example study will be lower compared 

to problem solving. 

2. Learners who study high-variability worked examples will yield higher post-test 

performance scores, compared to learners who study low-variability worked 

examples, due to increased intrinsic cognitive load. However, this difference will 

not be generated under problem-solving conditions. Subjective ratings of difficulty 

for completing high-variability tasks will be higher compared to completing low-

variability tasks.  

4.2.3 Method. 

4.2.3.1 Participants. 

The participants were tertiary students enrolled in the Discrete Mathematics 

course (MATH1081) at the School of Mathematics and Statistics, University of 

New South Wales, Sydney. The experiment convenor attended one of the students’ 

lectures to discuss and invite the students to participate in the upcoming 

experiment. Out of the 421 students enrolled in the course, 106 consented to 

participate in the experiment, of which 97 were present for the entire experiment. 

In order to enrol in the course, students needed to demonstrate assumed knowledge 

by achieving a combined mark of at least 100/150 in their high school advanced 

and extension mathematics subjects (which they completed in their final year of 

secondary school, prior to enrolling in their university program). The sample 

comprised 26 females (27%) and 71 males, aged between 17 and 29 (𝑀/01	= 

20.11,	𝑆𝐷/01  = 2.32). The academic abilities of each participant varied as they 
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were enrolled in diverse programs (mainly from Computer Science, Mathematics 

Education, Science, Advanced Science, Advanced Mathematics, Engineering and 

Actuarial Studies) and they were at different stages in their program. 

4.2.3.2 Materials. 

The material used in the experiment focused on the topic of “telescoping 

sums” which is taught in the first unit of the Discrete Mathematics course. To 

measure the amount of prior knowledge of each participant, an average 

percentage score of two previous class tests (that tested for other mathematical 

topics) was used to assess the participants’ ability to acquire, integrate and apply 

knowledge.   

During the Learning Phase (initial part of the experiment), each participant 

received a handout in accordance with the assigned experimental group they were 

in: ‘worked-examples – high-variability’, ‘worked-examples – low-variability’, 

‘problem-solving – high-variability’, or ‘problem-solving – low-variability’. 

When dealing with high-variability tasks, learners were expected to do 

comparisons within a broader range of tasks. For example, in the high-variability 

handouts, the expression “4 / [k (k + 4)]” in Question 1, was replaced with the 

expression “cos(2k – 1)” in Question 3, using “2sin(1) cos(2k – 1) = sin(2k) – sin(2k 

– 2)” (i.e., the basic algebraic expression in Question 1 was replaced with an 

advanced trigonometric expression and equation in Question 3, which required 

more solution steps to evaluate). On the other hand, low-variability tasks required 

learners to repeatedly deal with the same type of tasks within a narrower range. For 

example, in the low-variability handouts, the expression “4 / [k (k + 4)]” in Question 

1, was replaced with the expression “1 / [(k + 4) (k + 5)]” in Question 3 (i.e., both 

expressions comprised the same algebraic format with only the number in the 
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numerator of Question 1, “4”, being replaced with “1” in Question 3, and the 

pronumeral in the denominator of Question 1, “k”, being replaced with the 

expression “k + 5” in Question 3). The high-variability handouts contained tasks 

that were high in element interactivity as these tasks required more solution steps 

and/or the complexity of each solution step was higher than the tasks in the low-

variability handouts. 

The worked-examples handouts contained fully-guided worked examples 

with explicit solution steps. The problem-solving handouts consisted only of the 

same problem statements, excluding any written instructions.  

All participants were given the same single-item, nine-point Likert-type 

rating scale to complete. The question was: “How difficult was it for you to 

complete the tasks?” (see Appendix F). The rating scale ranged from “Extremely 

Easy” (on the far left, with point “1” assigned to the answer) to “Neither Easy nor 

Difficult” (in the middle, point “5”) and to “Extremely Difficult” (on the far right, 

point “9”). The participants’ subjective ratings of difficulty were used to measure 

cognitive load imposed during their completion of the Learning Phase handout.   

The Post-Test consisted of three questions that included eight tasks in total. 

The first four tasks were structurally similar to the questions that were explicitly 

presented during the participants’ lecture that took place prior to the 

commencement of the experiment. The remaining four tasks were intended to test 

for transfer of learning because they required the ability to extend what had been 

learned (from attending the lecture and completing the learning handout) and to use 

this knowledge in new contexts. The Post-Test was identical in content for all 

participants. The questions were internally reliable based on a Cronbach’s Alpha of 

.75. 
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4.2.3.3 Procedure. 

Prior to the commencement of the experiment, the course lecturer provided 

the participants with comprehensive explicit instruction on the topic of 

telescoping sums that reflected standard solution procedures on the board during 

the participants’ normal lecture time. Following the lecture, the experiment 

convenor met with the participants during two normal mathematics tutorials 

(which were two weeks apart). 

During the first tutorial (30 min), the participants were randomly assigned to 

one of the four experimental conditions: worked-examples – high-variability group 

(23 students), worked-examples – low-variability group (27 students), problem-

solving – high-variability group (24 students), and problem-solving – low-

variability group (23 students). The number of students in the worked-examples – 

low-variability group contained more students because there were some students in 

the other three groups that did not participate in the Post-Test (second part of the 

experiment) and hence were not counted as participating in the overall experiment. 

Random assignment was achieved by allowing the students to choose their 

seat when they entered the classroom and then handing out the different materials 

in a sequential order so that every fourth student received the same material. The 

worked-examples – high-variability group and the worked-examples – low-

variability group were instructed to study step-by-step worked-out solutions for 

eight high- or low-variability problems respectively. The problem solving-high 

variability group and the problem-solving – low-variability group were instructed 

to generate solutions for the same eight high- or low-variability problems. After the 

Learning Phase, the handouts were collected and each participant completed the 

subjective rating of difficulty scale. 
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During the second tutorial that followed two weeks after the Learning Phase, 

all participants completed an identical, 30 min Post-Test. 

4.2.3.4 Marking procedure. 

 The marking of the Post-Test, which was an objective test, was undertaken 

by the experiment convenor. Consistency was achieved by considering all 

possible solutions. Answers to questions were awarded one mark for every correct 

solution step, and incorrect solution steps were awarded a mark of zero. Based on 

this procedure, the highest possible total score for the Post-Test was 38 marks, 

consisting of 19 marks for the similar questions and 19 marks for the transfer 

questions. All the raw scores were converted into percentage scores. 

4.2.4 Results. 

There were two independent variables: level of variability and level of 

guidance; and three dependent variables: Post-Test (similar questions) scores, 

Post-Test (transfer questions) scores, and subjective ratings of difficulty. Table 1 

shows the descriptive statistics for the participants’ performance. Prior 

mathematical knowledge was also tested to ensure group comparability. 

4.2.4.1 Prior knowledge. 

To compare the level of prior mathematical knowledge for the four groups, 

a one-way between-groups analysis of variance was conducted for the average 

class test scores for two previous class tests that were completed before the 

commencement of the experiment. It involved one independent variable (the 

condition group) across four levels (worked-examples – high-variability group, 

worked-examples – low-variability group, problem-solving – high-variability 

group, and problem-solving – low-variability group) and one dependent variable  
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Table 1 

Means (and Standard Deviations) of the Average Class Test Scores, Post-

Test (Similar Questions) Scores, Post-Test (Transfer Questions) Scores, 

and Subjective Ratings of Difficulty for Experiment 1 

 
Experimental condition 

 Worked-
examples – 

high-
variability 

group 

Worked-
examples – 

low-
variability 

group 

Problem-
solving – 

high-
variability 

group 

Problem-
solving –      

low-
variability 

group 

Variable 
M 

(SD) N M 
(SD) N M 

(SD) N M 
(SD) N 

Average class test scores 
(%) 

60.43 
(17.70) 23 62.59 

(22.38) 27 70.42 
(18.76) 24 68.26 

(21.41) 23 

Post-test (similar 
questions) scores (%) 

65.33 
(28.56) 23 55.75 

(24.82) 27 60.42 
(31.64) 24 58.93 

(25.21) 23 

Post-test (transfer 
questions) scores (%) 

21.97 
(28.06) 23 17.74 

(22.62) 27 28.95 
(32.02) 24 20.48 

(24.90) 23 

Subjective ratings of 
difficulty (1-9) 

2.87 
(1.66) 23 2.48 

(1.67) 27 5.25 
(2.07) 24 4.74 

(2.78) 23 

 

(average class test score). The results did not reach statistical significance, F(3, 

93) = 1.28, MSE = 523.98, p = .29, partial 𝜂2 = .04. Therefore, the average class 

test scores were not used to control for any differences between the experimental 

groups for any Post-Test performance results. 

4.2.4.2 Post-test scores. 

Two 2 by 2 between-groups analyses of variance were conducted on the 

Post-Test (similar questions) scores and Post-Test (transfer questions) scores. The 

results for guidance did not reach statistical significance for the Post-Test (similar 
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questions) scores, F(1, 93) = .02, MSE = 18.24, p = .88, partial 𝜂2 = .000, and the 

Post-Test (transfer questions) scores, F(1, 93) = .78, MSE = 570.35, p = .38, 

partial 𝜂2 = .01. Likewise, the results for variability did not reach statistical 

significance on the Post-Test (similar questions) scores, F(1, 93) = .97, MSE = 

739.82, p = .33, partial 𝜂2 = .01, and on the Post-Test (transfer questions) scores, 

F(1, 93) = 1.33, MSE = 973.13, p = .25, partial 𝜂2 = .01. The results of these 

analyses showed no evidence of a relationship between levels of guidance 

(studying worked examples or problem solving) or levels of task variability (high 

or low) for the completion of Post-Test tasks in similar and novel situations. 

Hence the expected worked example effect and variability effect were not 

obtained. 

The variability by guidance interactions were not statistically significant for 

the Post-Test (similar questions) scores, F(1, 93) = .52, MSE = 395.02, p = .47, 

partial 𝜂2 = .01, and the Post-Test (transfer questions) scores, F(1, 93) = .15, MSE 

= 108.43, p = .70, partial 𝜂2 = .002. Hence there was no simultaneous effect of the 

two independent variables (variability and guidance) on any of the dependent 

variables (similar and transfer Post-Test scores) in which one of the independent 

variables differed depending on the level of the other independent variable. 

4.2.4.3 Subjective ratings of difficulty. 

A 2 by 2 between-groups analysis of variance was conducted to assess the 

effect of the two independent variables on subjective ratings of difficulty 

(cognitive load). The results showed a statistically significant main effect for 

guidance, F(1, 93) = 30.02, MSE = 129.86, p < .001, partial 𝜂2 = .24. Subjective 

ratings of difficulty were less for the worked-examples groups compared to the 

problem-solving groups. However, the results for variability were not statistically 
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significant, F(1, 93) = 1.13, MSE = 4.88, p = .29, partial 𝜂2 = .01 Thus, the 

subjective ratings were not different for the low- and high-variability groups. This 

result indicates that the similarity and dissimilarity of the low- and high-

variability tasks respectively did not have an impact on cognitive load. On the 

other hand, the significant main effect of guidance on subjective ratings indicates 

that higher cognitive load was imposed on learners who generated solutions to 

problem-solving tasks (without any guidance) compared to learners who studied 

fully-guided worked examples, regardless of the level of variability that the 

learners were exposed to. The variability by guidance interaction for cognitive 

load was not statistically significant, F(1, 93) = .02, MSE = .09, p = .89, partial 𝜂2 

= .00. 

4.2.4.4 Discussion. 

The post-test performance of learners who studied worked examples was not 

superior to learners who attempted to solve equivalent problems during the 

Learning Phase. The failure to obtain a worked example effect, and thus the failure 

to support the first part of Hypothesis 1, may have been due to the complexity of 

the material contained in the worked examples. Even though the worked example 

effect is usually obtained when learners struggle to understand high element 

interactivity information, the results suggest that the worked examples in the 

current experiment may have been unable to guide the learners through the 

problem-solving process so that they could deal with the complex information. 

Supposing the material studied in the worked examples was difficult to understand, 

this may have left no processing capacity for the germane cognitive processes that 

help learners to construct cognitive schemas for solving such problems. If the 

learners were able to construct cognitive representations from the worked 
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examples, this would have helped them solve similar test problems, and transfer 

test problems for which general rules had to be abstracted from the examples they 

studied.  

The two-week time frame between the Learning Phase and the Post-Test may 

not have induced the students to study the worked examples with more incentive. 

The findings from Sweller et al. (2011) suggest that students’ learning in the 

present experiment may have been enhanced if they recognised that they needed to 

solve test problems immediately after studying worked examples. 

Despite the absence of a worked example effect on the Post-Test scores, the 

last part of Hypothesis 1 was supported whereby participants in the worked-

examples groups found their instructional procedure substantially easier than the 

participants in the problem-solving groups. The higher level of cognitive efficiency 

for the worked-examples condition suggests that there was a relative benefit in 

studying worked examples. This finding is in accordance with the CLT view 

whereby studying worked examples eliminates the need to resort to weak problem-

solving strategies (e.g., means-ends analysis) that impose a high extraneous 

cognitive load. 

Learners who studied high-variability worked examples did not attain higher 

levels of conceptual understanding and superior transfer skills compared to learners 

who studied low-variability worked examples and high- or low-variability 

problem-solving tasks. The failure to obtain a variability effect, and thus the failure 

to support the first part of Hypothesis 2, meant that the results did not replicate the 

Paas and van Merriënboer (1994) findings. One reason for this could be due to the 

absence of a worked example effect arising from the possibility that the prior 

knowledge of the participants was lower than expected in relation to understanding 
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the solution steps in the worked examples. If studying worked examples did not 

free sufficient WM resources for schema formation (by reducing extraneous 

cognitive load), then processing high-variability worked examples would have 

further reduced the likelihood of fostering the acquisition of conceptual and 

transferable knowledge. The limited capacity of WM may have made it impossible 

to deal with the high level of element connectedness in the high-variability tasks 

which imposed high levels of intrinsic cognitive load. On the other hand, if a 

worked example effect had been obtained, this would have freed up WM resources 

for schema formation, thus increasing the benefits of processing high-variability 

worked examples. 

The lower than anticipated prior knowledge of the participants could be the 

reason why the last part of Hypothesis 2 was not confirmed. Despite the lower level 

of element interactivity of the low-variability tasks compared to the high-variability 

tasks, the participants may not have found the low-variability tasks significantly 

easier than the high-variability tasks. The decrease in intrinsic cognitive load by 

reducing the level of element interactivity may have been insufficient for the 

learners dealing with the low-variability tasks. 

Overall, the non-significant difference in the subjective ratings of difficulty 

between the high- and low-variability groups indicate that the element interactivity 

and consequent intrinsic cognitive load experienced by the learners may have been 

excessively high, which possibly jeopardised any potential for learning. 

Consequently, the same hypotheses were tested in Experiment 2 but with learning 

material that the students were expected to find less difficult. 
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4.3 Experiment 2 

4.3.1 Introduction. 

Similar to Experiment 1, Experiment 2 investigated the effect of high- and 

low-variability conditions on worked examples or problem-solving tasks. 

Correspondingly, a 2 (worked examples vs. problem solving) by 2 (high- vs. low-

variability) design, in line with Paas and van Merriënboer’s (1994) study, was used 

to examine whether the variability effect was more likely to occur under worked-

examples rather than problem-solving conditions. This design was based on the 

assumption that problem-solving conditions increase element interactivity due to 

extraneous cognitive load beyond the point where working memory can handle 

increased element interactivity associated with higher variability.  

As discussed in Part I of this thesis, task variability increases element 

interactivity associated with intrinsic cognitive load because of the need for 

learners to distinguish between and classify different problem types. This increase 

in intrinsic cognitive load increases learning outcomes, provided there is sufficient 

capacity in WM to process the increased number of elements. Similar to 

Experiment 1, the current experiment examined whether the use of high-variability 

worked examples would allow the increased number of interacting elements 

associated with intrinsic cognitive load to be processed, because studying the 

explicit solution steps of the worked examples could help reduce element 

interactivity due to extraneous cognitive load. When problem solving without any 

guidance is used as an instructional method, most working memory resources are 

taken up by random attempts at finding a solution to the problem, rather than 

learning its essential features. 
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Since the variability effect was not obtained in Experiment 1 under worked-

examples conditions, the current experiment used learning material that was 

expected to be easier (for a different mathematical topic), with different 

participants (who were at the secondary mathematics knowledge level), compared 

to Experiment 1 (who were at the tertiary mathematics knowledge level). 

Subjective measures of difficulty were used to detect variations in extraneous 

cognitive load (due to the instructional factors arising from studying worked 

examples or problem solving equivalent tasks) and intrinsic cognitive load (due to 

the difference in element interactivity in high- and low-variability tasks).  

4.3.2 Hypotheses. 

On the basis that the present study re-examined the likelihood of the worked 

example effect and the variability effect, the hypotheses remained the same as 

those tested in Experiment 1, namely: 

1. Learners who study fully-guided worked examples will yield higher post-test 

performance scores, compared to learners who attempt to solve problems without 

any guidance, due to a reduction in extraneous cognitive load. Accordingly, 

subjective ratings of difficulty for worked-example study will be lower compared 

to problem solving. 

2. Learners who study high-variability worked examples will yield higher post-test 

performance scores, compared to learners who study low-variability worked 

examples, due to increased intrinsic cognitive load. However, this difference will 

not be generated under problem-solving conditions. Subjective ratings of difficulty 

for completing high-variability tasks will be higher compared to completing low-

variability tasks. 
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4.3.3 Method. 

4.3.3.1 Participants. 

The participants were 103 mathematics students, aged between 18 and 55 

(𝑀/01	= 26.57,	𝑆𝐷/01  = 7.55), enrolled in a preparation program at the University 

of New South Wales, Sydney. This post-secondary education program prepares 

students for admission to university programs. The academic abilities of each 

participant varied because of individual differences in workplace experience 

and/or former education. The sample comprised 42 females (41%) and 61 males. 

4.3.3.2 Materials. 

The material used in the experiment comprised the definition of a quadratic 

function, the formulae for the roots of a quadratic function, the axis of symmetry 

and the vertex of a parabola, and the skill of graphing a quadratic function. All 

participants were regarded as novice learners in relation to quadratic functions as 

this topic was the next scheduled topic in the mathematics preparation program. 

To measure the amount of prior knowledge of each participant, an average 

percentage score of three previous class tests (that tested for other mathematical 

topics) was used to assess the participants’ ability to acquire, integrate and apply 

knowledge. 

During the first half of the Learning Phase (initial part of the experiment), 

on the board, the experiment convenor provided the participants with explicit 

instruction on the topic of quadratic functions that reflected standard solution 

procedures during the participants’ normal lecture time. During the second half of 

the Learning Phase, each participant received a handout in accordance with the 

assigned experimental group they were in: ‘worked-examples – high-variability’ 

(see Appendix G), ‘worked-examples – low-variability’ (see Appendix H), 
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‘problem-solving – high-variability’ (see Appendix I), or ‘problem-solving – low-

variability’ (see Appendix J). 

The high-variability handouts contained tasks that differed in the presentation 

format and the solution procedures from the tasks performed on the board during 

the explicit instruction part of the Learning Phase. For example, the first question 

in the high-variability handout, which transitioned into the topic of quadratic 

functions, consisted of the following tasks: “Given g(x) = 5 – 2x, for all real x, find: 

(i) g(−3x), (ii) g(1/4), [and] (iii) g(a + 5)”. These high-variability questions 

required the participants to substitute x with three highly varied expressions, 

namely: “−3x” (a variable with a negative coefficient), “1/4" (a fraction), and “a + 

5” (an algebraic expression). 

The low-variability handouts contained tasks that were similar to those 

performed on the board during the explicit instruction part of the Learning Phase. 

For example, the first question in the low-variability handout consisted of the 

following tasks: “Given f(x) = 4x + 8, for all real x, find: (i) f(0), (ii) f(-2), [and] (iii) 

f(a)”. This question had a similar instructional format to Example 1 which was 

demonstrated on the board during the explicit instruction part of the Learning 

Phase: “Consider the function defined by f(x) = 3x + 6, for all real x. Find: (i) f(1), 

(ii) f(−2), [and] (iii) f(a)”. The name of the function in first question of the low-

variability handout, f(x), was the same function name used in Example 1 of the 

explicit instruction. However, to increase variability in the first question of the 

high-variability handout, the function name changed from f to g. 

The worked-examples handouts contained fully-guided worked examples 

with explicit solution steps and diagrams. Similar to Experiment 1, the problem-

solving handouts consisted only of the same problem statements, excluding any 
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written instructions or diagrams. However, unlike Experiment 1, the last page of 

the high-variability and low-variability problem-solving handouts contained 

answers (but not step-by-step worked-out solutions) to each problem task on the 

previous pages to enable the participants to compare their answers to the correct 

answers. This was intended to assist students in gauging the accuracy of their 

attempts, so that whenever a correct answer was obtained for a particular task, 

they could repeat their solution steps for similar type tasks that followed. 

 All participants were given the same single-item, nine-point Likert-type 

rating scale to complete, identical to the one used in Experiment 1 (see Appendix 

F). The participants’ subjective ratings were used to measure cognitive load 

imposed during their completion of the Learning Phase handout.   

The Post-Test consisted of seven questions that included 10 tasks in total (see 

Appendix K). The first six tasks were structurally similar to the examples 

demonstrated on the board during the explicit instruction part of the Learning 

Phase. For example, Question 3(i) in the Post-Test, “Determine the concavity of the 

following quadratic functions: (i) y = – 4 + 2x – 𝑥%”, was similarly structured to 

Example 4(iii) that was presented on the board during the direct instruction, 

“Determine the concavity of the following quadratic functions: y = – 𝑥% + 4x + 5”. 

The last four questions in the Post-Test were structurally different and were 

intended to test for transfer of learning, because they required the capacity to apply 

the learned knowledge in new situations. For example, Question 7 in the Post-Test, 

“Without sketching the graph, determine whether the curve y = 2𝑥% + 4x + 5 

crosses the x-axis”, required students to apply and generalise the skills they 

acquired during the explicit instruction part of the Learning Phase. Participants did 

not practise answering this type of question prior to the Post-Test. The Post-Test 
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was identical in content for all participants. The questions were internally reliable 

based on a Cronbach’s Alpha of .75. 

4.3.3.3 Procedure. 

At the start of the experiment, participants were randomly assigned to one of 

the four experimental conditions: worked-examples – high-variability group (25 

students), worked-examples – low-variability group (26 students), problem-solving 

– high-variability group (26 students), and problem-solving – low-variability group 

(26 students). The random assignment was achieved by allowing the students to 

choose their seat when they entered the lecture theatre and then handing out the 

different materials in a sequential order so that every fourth student received the 

same material. 

The duration of the experiment was 1 hr 30 min, and it was conducted 

during the participants’ normal mathematics lecture and tutorial time. The 

experiment consisted of a Learning Phase (60 min) and a Post-Test Phase (30 

min). In the first half of the Learning Phase (30 min), the experiment convener 

provided all participants with comprehensive explicit instructions on quadratic 

functions reflecting standard solution procedures on the board. In the second half 

of the Learning Phase (30 min), participants were instructed to complete a 

different handout that assigned them to their respective experimental group. 

The worked-examples – high-variability group and the worked-examples – 

low-variability group were instructed to study step-by-step worked-out solutions 

for 14 high- or low-variability problems respectively. The problem-solving – 

high-variability group and the problem-solving – low-variability group were 

instructed to generate solutions for the same 14 high- or low-variability problems. 

The last page of the high-variability and low-variability problem-solving handouts 
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contained answers to each problem task on the previous pages to enable the 

participants to compare their answers to the correct answers. 

Similar to Experiment 1, after the Learning Phase, the handouts were 

collected and each participant completed a subjective rating of difficulty. 

Following the subjective rating questionnaire, all participants completed the Post-

Test. 

4.3.3.4 Marking procedure. 

The marking of the Post-Tests was undertaken by the experiment convenor. 

Similar to Experiment 1, consistency was achieved by considering all possible 

solutions. Answers to questions were awarded one mark for every correct solution 

step, and incorrect solution steps were awarded a mark of zero. Based on this 

procedure, the highest possible total score for the Post-Test was 38 marks, 

consisting of 25 marks for the similar questions and 13 marks for the transfer 

questions. All the raw scores were converted into percentage scores. 

4.3.4 Results. 

There were two independent variables: level of variability and level of 

guidance; and three dependent variables: Post-Test (similar questions) scores, 

Post-Test (transfer questions) scores, and subjective ratings of difficulty. Table 2 

shows the descriptive statistics for the participants’ performance. Prior 

mathematical knowledge was also tested to ensure group comparability. 

4.3.4.1 Prior knowledge. 

The prior mathematical knowledge of each participant was measured by 

averaging scores for three previous class tests that were completed before the 

commencement of the experiment. A one-way between-groups analysis of variance 

was conducted for the average class test scores to compare the level of prior   
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Table 2 

Means (and Standard Deviations) of the Average Class Test Scores, Adjusted 

Post-Test (Similar Questions) Scores, Adjusted Post-Test (Transfer 

Questions) Scores, and Subjective Ratings of Difficulty for Experiment 2  

 
Experimental Condition 

 Worked-
examples –

high-
variability 

group 

Worked-
examples – 

low-
variability 

group 

Problem-
solving – 

high-
variability 

group 

Problem-
solving –     

low-
variability 

group 

Variable 
M 

(SD) N M 
(SD) N M 

(SD) N M 
(SD) N 

Average class test scores 
(%) 

61.12 
(22.45) 25 53.67 

(19.40) 26 68.94 
(20.66) 26 69.73 

(19.34) 26 

Adjusted post-test 
(similar questions) 
scores (%) 

45.91 
(18.31) 25 37.98 

(18.81) 26 38.16 
(18.45) 26 33.10 

(18.51) 26 

Adjusted post-test 
(transfer questions) 
scores (%) 

39.94 
(16.79) 25 32.06 

(17.25) 26 37.22 
(16.92) 26 31.09 

(16.97) 26 

Subjective ratings of 
difficulty (1-9) 

3.64 
(2.20) 25 3.92 

(2.23) 26 6.69 
(2.13) 26 6.85 

(1.57) 26 

 

mathematical knowledge for the four groups: worked-examples – high-variability 

group, worked-examples – low-variability group, problem-solving – high-

variability group, and problem-solving – low-variability group. The dependent 

variable was average class test score. The results showed a statistically significant 

difference, F(3, 99) = 3.52, MSE = 1477.44, p = .02, partial 𝜂2 = .10 (medium 

effect size). Bonferroni post-hoc pairwise comparisons indicated a significant 

difference between the worked-examples – low-variability group and problem-

solving – low-variability group only. Even though the previous class tests 
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comprised questions that differed from the topic content used in the current 

experiment, the average class test scores were used as a covariate for all Post-Test 

performance results to control for the unexpected differences between the 

experimental groups in the prior knowledge analyses. 

4.3.4.2 Post-test scores. 

Two 2 by 2 between-groups analyses of covariance were conducted on the 

Post-Test (similar questions) scores and Post-Test (transfer questions) scores. The 

results for variability on the Post-Test (similar questions) scores did not reach 

statistical significance, F(1, 98) = 3.23, MSE = 1080.06, p = .08, partial 𝜂2 = .03. 

The results showed a statistically significant main effect for variability on the Post-

Test (transfer questions) scores, F(1, 98) = 4.46, MSE = 1254.08, p = .04, partial 𝜂2 

= .04. The results of these analyses showed that increasing variability effectively 

boosted transfer of learning: the ability to solve problems that have not been solved 

before. In addition, there was evidence of a marginal relationship (a possible effect) 

between high-variability tasks and the application of knowledge and skills in 

completing similar questions. 

The results for guidance were not statistically significant for the Post-Test 

(similar questions) scores, F(1, 98) = 2.83, MSE = 943.92, p = .10, partial 𝜂2 = .03, 

and the Post-Test (transfer questions) scores, F(1, 98) = .29, MSE = 80.53, p = .59, 

partial 𝜂2 = .003. The results of these analyses showed no evidence of a relationship 

between guidance and the application of knowledge and skills in completing tasks 

in similar and novel situations. These results indicate that the expected worked 

example effect was not obtained. 

The variability by guidance interactions were not statistically significant for 

the Post-Test (similar questions) scores, F(1, 98) = .16, MSE = 52.31, p = .69, 
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partial 𝜂2 = .002, and the Post-Test (transfer questions) scores, F(1, 98) = .07, 

MSE = 19.48, p = .79, partial 𝜂2 = .001. These results showed that levels of 

guidance did not alter the effects of variability on the Post-Test questions. 

4.3.4.3 Subjective ratings of difficulty. 

A 2 by 2 between-groups analysis of variance was conducted to assess the 

effect of the two independent variables on subjective ratings of difficulty 

(cognitive load). The results showed a statistically significant main effect for 

guidance, F(1, 99) = 54.88, MSE = 229.79, p < .001, partial 𝜂2 = .36. Subjective 

ratings of difficulty were less for the worked-examples groups compared to the 

problem-solving groups. However, the results for variability were not statistically 

significant, F(1, 99) = .29, MSE = 1.23, p = .59, partial 𝜂2 = .003. Thus, the 

subjective ratings were not different for the high- and low-variability groups. This 

result indicates that the similarity and dissimilarity of the high- and low-

variability tasks respectively did not have an impact on cognitive load. On the 

other hand, the significant main effect of guidance on subjective ratings of 

difficulty indicates that higher cognitive load was imposed on learners who 

generated solutions to problem-solving tasks (without any guidance) compared to 

learners who studied fully-guided worked examples, regardless of the level of 

variability that the learners were exposed to. The variability by guidance 

interaction for cognitive load was not statistically significant, F(1,99) = .03, MSE 

= .11, p = .87, partial 𝜂2 = .00. 

4.3.4.4 Discussion. 

The findings of this experiment showed that when students are provided 

with high-variability tasks, they will attain higher test scores under worked-

examples conditions. Thus, the first part of Hypothesis 2 was supported (for the 
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Post-Test transfer questions, and marginally for the Post-Test similar questions). 

As part of this hypothesis, this effect would not be obtained under problem-

solving conditions but in fact, the same effect was obtained under both worked-

examples and problem-solving conditions. This result provides support for the 

conceptual premise that high-variability tasks promote transfer learning; that is, 

understanding gained through learning to distinguish a high variety of tasks 

assists learners in abstracting common structures of problems, instead of common 

surface features confined to a specific problem. 

The results did not support the first part of Hypothesis 1, that worked 

examples would facilitate superior test performance. There were no significant 

differences between the worked-examples and problem-solving conditions. Neither 

did the results replicate the Paas and van Merriënboer (1994) findings, where the 

variability effect was only obtainable using worked examples but not problem 

solving, even though the worked-examples group found their instructional 

procedure substantially easier than the problem-solving group. Notwithstanding, 

our results are consistent and coherent with the Paas and van Merriënboer (1994) 

findings. 

Whether or not a worked example effect can be obtained is determined by the 

participants’ knowledge levels. The worked example effect is just as susceptible to 

the expertise reversal effect as any other cognitive load effect. If knowledge levels 

are sufficiently high, the effect will not be obtained or may even be reversed 

(Kalyuga, Chandler et al., 2001). In the current experiment, there was no evidence 

of improved test performance following instruction using worked examples rather 

than problem-solving tasks. With no difference in test performance between 

worked-examples and problem-solving conditions, we should not expect any 
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differences in the effect of variability associated with worked examples or problem 

solving. If test performance scores following problem solving are just as high as 

following worked examples, there should be sufficient working memory resources 

available to handle the element interactivity associated with problem solving and 

variability. Accordingly, our failure to replicate the Paas and van Merriënboer 

(1994) results following problem solving is to be expected given the failure to 

obtain a worked example effect on the test results. Both the worked-examples and 

problem-solving conditions should be susceptible to a variability effect as indicated 

by our results. 

The last part of Hypothesis 1, whereby subjective ratings of difficulty would 

be lower for the worked-examples conditions compared to the problem-solving 

conditions, was supported. This indicates that the search-based problem-solving 

conditions imposed a heavy extraneous cognitive load, which supports the 

assumptions based on CLT. However, the last part of Hypothesis 2, whereby 

subjective ratings of difficulty would be higher for the high-variability conditions 

compared to the low-variability conditions, was not supported. Contrary to CLT 

expectations, this may have been due to a reversal of the effectiveness of 

instructional techniques. There may have been significant differences in the 

participants’ level of prior knowledge in the target domain. The level of difficulty in 

completing the learning tasks (due to the level of element interactivity), may not 

have been high for all the participants in the high-variability conditions or low for 

all the participants in the low-variability conditions. This result provided the 

impetus for Experiment 3. 

Experiment 3 initially tested the prior knowledge of each participant by 

having them all complete a Pre-Test that assessed how much they already knew 
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about the new material. The results of the Pre-Test in Experiment 3, which 

determined whether the participants were placed in the expert or novice groups, 

were used to test variability further, by comparing the post-test performance of 

more- and less-experienced learners in the domain. 

4.4 Experiment 3 

4.4.1 Introduction. 

The variability effect was obtained in Experiment 2 following both worked-

examples and problem-solving conditions. This was arguably due to the 

participants’ knowledge levels being too high to obtain a worked example effect. 

Given this, Experiment 3 tested the variability effect further in connection with 

levels of learner prior knowledge by comparing the test performance of more-

experienced (expert) and less-experienced (novice) learners. This experiment 

examined whether more-experienced learners would demonstrate the variability 

effect (i.e. high-variability tasks resulting in increased test performance), while 

less-experienced learners, who are unable to effectively process high-variability 

tasks, would demonstrate a reverse variability effect.  

For more-experienced learners, element interactivity should be relatively low, 

allowing them to readily process the additional element interactivity associated 

with increased variability. A conventional variability effect should result. For less-

experienced learners, element interactivity should be higher, and adding additional 

element interactivity by increasing variability may result in cognitive load 

exceeding working memory capacity (Chen, Castro-Alonso, Paas, & Sweller, 

2018). Accordingly, reduced rather than increased test performance due to 

increased variability should be the result, with a reverse variability effect being 

obtained. The current experiment investigated whether a conventional variability 
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effect for more expert learners associated with a reverse variability effect for less 

able learners would provide an example of an expertise reversal effect. 

In essence, the current experiment attempted to reproduce the results obtained 

by Paas and van Merriënboer (1994) by changing levels of expertise rather than 

changing levels of guidance. Increased levels of guidance via worked examples 

should reduce element interactivity just as increased expertise should reduce 

element interactivity. Both should allow the variability effect to occur provided 

element interactivity is sufficiently low to allow working memory to process the 

increased elements associated with variability. In contrast, if element interactivity 

is too high, increasing it further by increasing variability should eliminate the 

variability effect or even reverse it. 

4.4.2 Hypotheses. 

Experiment 3 tested the following hypotheses: 

1. Providing more-knowledgeable learners with high-variability tasks, compared to 

low-variability tasks, will yield higher post-test performance scores. 

2. Providing less-knowledgeable learners with low-variability tasks, compared to 

high-variability tasks, will yield higher post-test performance scores. 

3. Subjective ratings of difficulty by less-knowledgeable learners will be higher 

compared to more-knowledgeable learners. 

4. Subjective ratings of difficulty for completing high-variability tasks will be 

higher compared to completing low-variability tasks. 

4.4.3 Method. 

4.4.3.1 Participants. 

The participants were 56 mathematics students enrolled in the same 

university preparation program to the one in Experiment 2. The academic abilities 
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of each participant varied because of individual differences in workplace 

experience and/or former education. The participants were aged between 18 and 55 

(𝑀/01	= 26.27, 𝑆𝐷/01  = 8.20), comprising of 21 females (37.5%) and 35 males.  

4.4.3.2 Materials. 

The material used in the experiment comprised the definition of a logarithm, 

logarithmic laws, and solving logarithmic equations. The domain-specific prior 

knowledge of each participant was measured using a Pre-Test that consisted of 22 

tasks (see Appendix L). The first 16 tasks (in Questions 1-4) evaluated baseline 

pre-requisite knowledge required for learning logarithmic equations. These tasks 

were simpler than the tasks in the experimental Learning Phase (and accordingly, 

in the Post-Test) as they required knowledge of individual components and 

isolated procedures involved in the learning tasks. A combination of these 

components and procedures was required to work out the Learning Phase and 

Post-Test tasks. For example, the first tasks in Questions 1-4 were respectively: 

“In the expression 2:: What is the exponent?”; “Simplify the following, writing 

the answers in index form with positive indices: 8𝑎< × 2𝑎=”; “Find the exact 

value of the following without using a calculator: 	8?%”; and “Solve the following 

equations for x: 	4	@ = 1/16”. The final six tasks (in Questions 5-7) were 

analogous to typical test questions that met the expected learning outcomes for 

logarithmic equations. For example, the second tasks in Questions 5-7 were 

respectively: “In the logarithmic equation log: 9 = 2: What is the base of the 

log?”; “Make x the subject for the following:	logE	(𝑥 + 2) = 3"; and “Solve the 

following equations for x:	log: 1 = x”. These six logarithmic tasks were included 

at the end of the Pre-Test to gauge if the participants had any prior understanding 

of the new topic that was going to be taught during the first half of the Learning 
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Phase. These six logarithmic tasks were tested again in the Post-Test (without 

notifying the participants). The Pre-Test questions were identical in content for all 

participants and were internally reliable based on a Cronbach’s Alpha of .75. 

During the second half of the Learning Phase, each participant received 

either a low-variability handout (see Appendix M) or a high-variability handout 

(see Appendix N), regardless of whether they were designated as an expert or 

novice, respectively. The first page of the handout, which was identical for the 

high- and low-variability handouts, contained four worked examples that 

consisted of fully-guided written instructions. The remaining three pages of the 

handout contained sixteen problem-solving tasks which differed according to the 

experimental condition (high or low variability). The problem-solving tasks in the 

low-variability handouts contained tasks with numbers that changed in the same 

part of each question (without changing the position of the variable). For 

example, the first problem-solving question in the low-variability handout 

consisted of the following tasks: “Write the following in logarithmic form, 

without solving for x: (a) 3@	= 9; (b)	4@	=  1/4; (c)	125@	= 5; [and] (d) 32@	= 4”. 

On the other hand, the high-variability handout contained the equivalent problem-

solving questions as those in the low-variability handout with the exception that 

the position of the variable changed in some tasks for each question (i.e., the 

question format changed for some tasks to increase variability). For example, the 

first problem-solving question in the high-variability handout consisted of the 

following tasks: “Write the following in logarithmic form, without solving for x: 

(a) 3@	= 9; (b)	4?J	= x; (c) 𝑥J/: =	5; [and] (d) 32@ = 4”.  

All participants were given the same single-item, nine-point Likert-type 

rating scale to complete, identical to the one used in Experiments 1 and 2 (see 
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Appendix F). The participants’ subjective ratings of difficulty were used to 

measure cognitive load imposed during their completion of the Learning Phase 

handout. 

Unlike Experiments 1 and 2, in which the participants completed one Post-

Test (that contained similar and transfer questions), the participants in the current 

experiment completed two Post-Tests to ensure that an equal amount of time was 

allocated to answering similar and transfer questions. Post-Test 1 comprised 16 

similar tasks (see Appendix O) and Post-Test 2 comprised seven transfer tasks (see 

Appendix P). The questions were internally reliable based on a Cronbach’s Alpha 

of .82 for the similar questions and .69 for the transfer questions. 

In Post-Test 1, the first six tasks (in Questions 1-3) were identical to the last 

six tasks of the Pre-Test, which were structurally similar, both in context and 

concept, to the examples that were demonstrated on the board by the experiment 

convenor during the explicit instruction part of the Learning Phase. These tasks met 

the expected learning outcomes for the topic of logarithms that would normally be 

covered during the participants’ usual lecture and tutorial time. The remaining 10 

tasks (in Questions 4-6) were also structurally similar to the examples that were 

demonstrated on the board by the experiment convenor. For instance, Question 5(a) 

in Post-Test 1, “Evaluate … logK 2”, had the same question format as Example 4, 

which was presented on the board during the direct instruction, “Evaluate … 

logK 4”. 

In Post-Test 2, all seven transfer tasks were structurally different, both in 

context and concept, from the examples that were demonstrated on the board by the 

experiment convenor during the explicit instruction part of the Learning Phase. 

These questions required the application of acquired knowledge in relatively new 
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task situations. For instance, Question 1(b) in Post-Test 2, “Evaluate … 

(logJL 25)/(logJL 5) × 10NOPQR :”, required the application of numerous index laws 

and logarithm laws (which were presented at different stages on the board during 

the direct instruction), in order to arrive at the following solution steps:  

logJL 25 = 	 logJL(5%) = 	2 logJL 5; if x = 10NOPQR :, then logJL 𝑥 = logJL 3, thus 

𝑥 = 3; so [(logJL 25)/(logJL 5)] × 10NOPQR : = [(2 logJL 5)/(logJL 5)] × 3 = 2 × 3 

= 6. In contrast, the examples presented on the board during the direct instruction 

required the application of fewer combinations of these laws. 

4.4.3.3 Procedure. 

The experiment was conducted during the participants’ normal mathematics 

lecture and tutorial time. Its duration was 30 min for the Pre-Test followed one 

week later by a 1 hr 30 min block. Participants who scored in the top half of the 

Pre-Test were designated as experts (more-experienced learners). Participants who 

scored in the bottom half of the Pre-Test were designated as novices (less-

experienced learners). Participants were evenly apportioned with 28 participants in 

the expert groups and 28 participants in the novice groups. 

During the 1 hr 30 min block, the experiment comprised of a Learning Phase 

(60 min) and a Post-Test Phase (30 min). At the start of the 1 hr 30 min block, 

expert participants were randomly assigned to one of two experimental conditions: 

‘expert – low-variability’ or ‘expert – high-variability’. And likewise, novice 

participants were randomly assigned to one of two experimental conditions: 

‘novice – low-variability’ or ‘novice – high-variability’. This gave 14 participants 

in each of the four groups. The random assignment was achieved by allowing the 

expert and novice participants to choose their seat when they entered the lecture 

theatre. 
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In the first half of the Learning Phase (30 min), the experiment convener 

provided all participants with comprehensive explicit instructions on the board by 

demonstrating step-by-step solution procedures for the new topic of logarithmic 

equations. In the second half of the Learning Phase, the expert and novice 

participants received different handouts assigning them to their respective 

experimental groups (high or low variability). The first page of the handout, which 

was identical for all groups, contained four worked examples that consisted of 

fully-guided written instructions. The remaining three pages of the handout 

contained 16 problem solving tasks which differed according to the experimental 

condition (high or low variability). The purpose of the same worked examples on 

the first page of the high- and low-variability handouts, was to provide an identical 

summary of what had been taught on the board by the experiment convenor during 

the first half of the Learning Phase and to provide participants with a general guide 

on how to generate solutions for the problem-solving tasks that followed on the 

remaining pages. 

Participants were given 30 min to complete their Learning Phase handouts. 

Immediately following, the answers to each of the tasks in both conditions (high 

and low variability) were presented on the board. Participants were given a few 

minutes to check their work by comparing the correct answers on the board with 

their written answers, enabling them to determine which problem-solving tasks 

they answered correctly. 

Similar to Experiments 1 and 2, after the Learning Phase, the handouts were 

collected and each participant completed a subjective rating of difficulty. 

Following the completion of the subjective rating questionnaire, all participants 
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completed Post-Test 1 in 15 min, and then proceeded to complete Post-Test 2 in 15 

min. 

4.4.3.4 Marking procedure. 

The marking of the Pre-Tests and Post-Tests, both of which were objective 

tests, was undertaken by the experiment convenor. Similar to Experiments 1 and 2, 

consistency was achieved by considering all possible solutions. Answers to 

questions were awarded one mark for every correct solution step, and incorrect 

solution steps were awarded a mark of zero. Based on this procedure, the highest 

possible score for the Pre-Test was 50 marks, for Post-Test 1 was 34 marks and for 

Post-Test 2 was 34 marks. As in Experiments 1 and 2, the raw scores were 

converted to percentage scores. 

4.4.4 Results. 

There were two independent variables: level of variability and level of 

expertise; and four dependent variables: Pre-Test scores, Post-Test 1 (similar 

questions) scores, Post-Test 2 (transfer questions) scores, and subjective ratings of 

difficulty. Table 3 shows the descriptive statistics for the participants’ performance. 

4.4.4.1 Pre-test scores. 

In order to evaluate the level of prior knowledge of logarithmic equations for 

the four groups, a 2 (expert vs. novice) by 2 (high- vs. low-variability) between-

groups analysis of variance was conducted on the Pre-Test score. As expected, the 

results showed a statistically significant main effect for expertise on the Pre-Test 

scores, F(3, 52) = 111.15, MSE = 9884.57, p < 0.001, partial η2 = 0.68. The results 

did not show a main effect for variability on the Pre-Test scores, F(1, 52) = 2.70, 

MSE = 240.29, p = 0.11, partial η2 = 0.05, indicating that the high- and low-

variability groups had similar levels of prior knowledge. 
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Table 3 

Means (and Standard Deviations) of the Pre-Test Scores, Adjusted Post-Test 

1 (Similar Questions) Scores, Adjusted Post-Test 2 (Transfer Questions) 

Scores, and Subjective Ratings of Difficulty for Experiment 3 

 
Experimental Condition 

 Expert – 
low-

variability 
group 

Expert – 
high-

variability 
group 

Novice – 
low-

variability 
group 

Novice – 
high-

variability 
group 

Variable 
M 

(SD) N M 
(SD) N M 

(SD) N M 
(SD) N 

Pre-test scores (%) 52.00 
(8.56) 14 62.14 

(13.53) 14 31.43 
(5.68) 14 29.57 

(8.20) 14 

Adjusted post-test 1 
(similar questions) 
scores (%) 

49.22 
(12.94) 14 73.91 

(16.76) 14 63.70 
(14.26) 14 35.86 

(14.97) 14 

Adjusted post-test 2 
(transfer questions) 
scores (%) 

29.86 
(14.08) 14 54.08 

(18.23) 14 51.55 
(15.51) 14 19.13 

(16.28) 14 

Subjective ratings of 
difficulty (1-9) 

2.43 
(1.60) 14 3.07 

(1.33) 14 4.93 
(1.64) 14 7.86 

(.95) 14 

 

The expertise by variability interaction effect on the Pre-Test scores was 

significant, F(1, 52) = 5.67, MSE = 504.00, p = 0.02, partial η2 = 0.10, indicating  

that the magnitude of the difference between the low- and high-variability groups’ 

scores was different at different levels of expertise. Given the statistically 

significant interaction, follow-up analyses were performed to determine whether 

there were any simple effects. For expert learners, the high-variability group 

scored higher in the Pre-Test than the low-variability group, F(1, 26) = 5.62, MSE 

= 720.14, p = 0.03, partial η2 = 0.18, indicating that the more able learners in the 
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high-variability group were more knowledgeable than those in the low-variability 

group. For novice learners, there was no simple effect, F(1, 26) = .49, MSE = 

24.14, p = 0.49, partial η2 = 0.02. To control for the unexpected differences 

between the experimental groups in the Pre-Test analyses, the Pre-Test scores 

were used as a covariate in all Post-Test performance analyses. 

4.4.4.2 Post-test scores. 

Two 2 by 2 between-groups analyses of covariance were conducted on the 

Post-Test 1 (similar questions) scores and Post-Test 2 (transfer questions) scores. 

The results showed that the expert learner groups produced significantly higher 

scores than the novice learner groups for the Post-Test 1 (similar questions) scores, 

F(1, 51) = 4.46, MSE = 619.53, p = 0.04, partial η2 = 0.08. However, the results did 

not show a main effect for expertise on Post-Test 2 (transfer questions) scores, F(1, 

51) = 1.19, MSE = 196.14, p = 0.28, partial η2 = 0.02. The results did not show a 

main effect for variability on the Post-Test 1 (similar questions) scores, F(1, 51) = 

0.24, MSE = 32.89, p = 0.63, partial η2 = 0.01, or on Post-Test 2 (transfer questions) 

scores, F(1, 51) = 1.36, MSE = 223.68, p = 0.25, partial η2 = 0.03. 

The variability by expertise interaction was statistically significant on the 

Post-Test 1 (similar questions) scores, F(1, 51) = 62.66, MSE = 8708.87, p < 0.001, 

partial η2 = 0.55, and the Post-Test 2 (transfer questions) scores, F(1, 51) = 61.51, 

MSE = 10119.81, p < 0.001, partial η2 = 0.55. Figures 1 and 2 graphically depict the 

dis-ordinal interactions that existed between levels of expertise and levels of 

variability for the Post-Test 1 and Post-Test 2 scores respectively. 

To test the degree to which variability is differentially effective at the expert 

and novice levels, simple effects were tested following the significant interactions.  
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Figure 1. Variability by expertise interaction using adjusted means for Post-Test 

1 in Experiment 3. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Variability by expertise interaction using adjusted means for Post-Test 

2 in Experiment 3. 
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For expert learners, high-variability tasks led to higher scores in Post-Test 1 

(similar questions) compared to low-variability tasks, F(1, 25) = 21.64, MSE =  

3312.79, p < 0.001, partial η2 = 0.46. For novice learners, low-variability tasks led 

to higher scores in Post-Test 1 (similar questions) compared to high-variability  

tasks, F(1, 25) = 42.54, MSE = 5452.47, p < 0.001, partial η2 = 0.63. For expert 

learners, high-variability tasks led to higher scores in Post-Test 2 (transfer 

questions) compared to low-variability tasks, F(1, 25) = 16.18, MSE = 2924.96, p < 

0.001, partial η2 =0.39. For novice learners, low-variability tasks led to higher 

scores in Post-Test 2 (transfer questions) compared to high-variability tasks, F(1, 

25) = 53.38, MSE = 7574.65, p < 0.001, partial η2 = 0.68. These results show that 

the effect of levels of variability (high and low) differed significantly depending on 

levels of learner expertise (expert or novice). In particular, superior performance 

scores for expert learners were associated with high-variability tasks, while 

superior performance scores for novice learners were associated with low-

variability tasks. 

4.4.4.3 Subjective ratings of difficulty. 

A 2 by 2 between-groups analysis of variance was conducted to assess the 

effect of the two independent variables on subjective ratings of difficulty (cognitive 

load). The results showed a statistically significant main effect for expertise, F(1, 

52) = 93.80, MSE = 185.79, p < 0.001, partial η2 = 0.64, and for variability, F(1, 

52) = 22.54, MSE = 44.64, p < 0.001, partial η2 = 0.30. The lower subjective ratings 

of difficulty experienced by the expert groups shows that the more-knowledgeable 

learners were able to attempt the learning tasks with less mental effort, given their 

greater prior knowledge in the domain, compared to the less-knowledgeable 

learners. The lower subjective ratings of difficulty experienced by the participants 
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in the low-variability groups indicates that the low-variability tasks were lower in 

element interactivity, compared to the high-variability tasks. 

The variability by expertise interaction was statistically significant, F(1, 52) 

= 9.23, MSE = 18.29, p = 0.004, partial η2 = 0.15. Figure 3 depicts the ordinal 

interaction between levels of expertise and levels of variability for cognitive load 

during the Learning Phase. Analyses of simple effects were conducted following 

the significant interaction between the levels of expertise and the levels of 

variability. For expert learners, there was no significant difference between 

cognitive load for high-variability tasks compared to low-variability tasks during 

the Learning Phase, F(1, 26) = 1.34, MSE = 2.89, p = 0.26, partial η2 = 0.05. For 

novice learners, cognitive load was higher for high-variability tasks compared to 

low-variability tasks, F(1, 26) = 33.47, MSE = 60.04, p < 0.001, partial η2 = 0.56. 

These simple effect analyses show that the interaction between expertise and 

variability was due to the difficulty less-knowledgeable learners had dealing with 

high-variability problems compared to low-variability problems. That difference 

was reduced for more-knowledgeable learners. 

4.4.4.4 Discussion. 

This experiment tested the hypothesis that the variability effect could be 

obtained if learners had sufficient working memory capacity associated with higher 

levels of expertise to enable them to process the increased levels of element 

interactivity. Problem sets with higher degrees of variability include more 

interactive elements of information than problem sets with lower degrees of  
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Figure 3. Variability by expertise interaction using means for Subjective Ratings 

of Difficulty in Experiment 3. 

 

variability. This increased element interactivity of information increases intrinsic 

cognitive load. If, because of insufficient levels of expertise, learners do not have 

sufficient spare working memory capacity to handle the increased intrinsic 

cognitive load associated with high-variability information, it was hypothesised 

that the variability effect would be reduced or even reversed. 
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high rather than low-variability problems. Thus, Hypothesis 1 was supported. 
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Furthermore, in the case of less-knowledgeable learners, the improvement in 

scores using low-variability problems was associated with a significant reduction in 

cognitive load. It appears that the novice learners experienced less cognitive load 

when solving low-variability tasks as they were able to identify a surface match 

between the similarly structured questions without the need to go any further. In 

contrast, these learners found processing high-variability problems relatively 

difficult. In order to comprehend dissimilar features of high-variability tasks, 

whereby all the questions did not share any common surface features with the 

examples studied during the explicit instruction part of the Learning Phase, more 

mental effort was required to process the deeper features until the underlying 

common features were found. In addition, the results demonstrated significantly 

lower cognitive load experienced by the more-knowledgeable learners, compared 

to the less-knowledgeable learners. Thus, Hypothesis 3 was supported. 

Finally, Hypothesis 4 was not confirmed since there was no difference in 

subjective ratings of difficulty for completing high-variability tasks compared to 

low-variability tasks. Possibly, the level of difficulty experienced by the learners 

may have been primarily influenced by their level of experience in the domain. 

Since the novice groups found the low- and high-variability learning tasks more 

difficult compared to the expert groups (as predicted by Hypothesis 3), subjective 

ratings of difficulty for both variability conditions were a mixture of higher and 

lower levels of subjective ratings of difficulty respectively because the low- and 

high-variability groups consisted equally of novices and experts in the domain. 

Hence, neither variability condition could produce a significantly lower (in the case 

of low-variability tasks) or higher (in the case of high-variability tasks) level of 

difficulty. 
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4.5 Experiment 4 

4.5.1 Introduction. 

Experiment 4 re-examined whether the worked example effect and the 

variability effect could be achieved by using the same problem statements from 

Experiment 2. Given that the worked example effect was not obtained in 

Experiment 2, the worked-examples handouts that were used in Experiment 2 were 

modified by removing any redundant information and inserting arrows to assist 

learners with physically integrating disparate sources of mutually-referring 

information. By redesigning the worked-examples – high-variability and worked-

examples – low-variability handouts, it was envisaged that extraneous cognitive 

activities that interfered with learning, such as processing redundant and split-

source information, would be minimised and this would facilitate the worked 

example effect. The present experiment used a 2 by 2 design with two levels of 

variability (high or low) and two levels of guidance (worked examples or problem 

solving). This experimental design was identical to the one used in Experiments 1 

and 2. 

4.5.2 Hypotheses. 

On the basis that the present study re-examined the likelihood of the worked 

example and variability effects, the hypotheses remained the same as those in 

Experiments 1 and 2, namely: 

1. Learners who study fully-guided worked examples will yield higher post-test 

performance scores, compared to learners who attempt to solve problems without 

any guidance, due to a reduction in extraneous cognitive load. Accordingly, 

subjective ratings of difficulty for worked-example study will be lower compared 

to problem solving. 
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2. Learners who study high-variability worked examples will yield higher post-test 

performance scores, compared to learners who study low-variability worked 

examples, due to increased intrinsic cognitive load. However, this difference will 

not be generated under problem-solving conditions. Subjective ratings of difficulty 

for completing high-variability tasks will be higher compared to completing low-

variability tasks.  

4.5.3 Method. 

4.5.3.1 Participants. 

The participants were 68 mathematics students, aged between 18 and 65 

(𝑀/01	= 26.68,	𝑆𝐷/01  = 8.40), enrolled in the same post-secondary education 

program indicated in Experiments 2 and 3. However, the participants were part of a 

different cohort. Similar to Experiments 2 and 3, the academic abilities of each 

participant varied because of individual differences in workplace experience and/or 

former education. The sample comprised of 24 females (35%) and 44 males. 

4.5.3.2 Materials. 

The material used in Experiment 4 focused on the same topic area as in 

Experiment 2, namely: the definition of a quadratic function, the formulae for the 

roots of a quadratic function, the axis of symmetry and the vertex of a parabola, 

and the skill of graphing a quadratic function. All participants were regarded as 

novice learners in relation to quadratic functions as this topic was the next 

scheduled topic in the mathematics preparation program. To measure the amount 

of prior knowledge of each participant, an average percentage score of four 

previous class tests (that tested for other mathematical topics) was used to assess 

the participants’ ability to acquire, integrate and apply knowledge. 
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During the first half of the Learning Phase, the experiment convenor 

provided the same explicit instructions that were used in Experiment 2 whereby 

solutions of the relevant tasks were demonstrated on the board. During the second 

half of the Learning Phase, each participant received a handout in accordance with 

the same experimental groups as those in Experiment 2: ‘worked-examples – high-

variability’, ‘worked-examples – low-variability’, ‘problem-solving – high-

variability’, or ‘problem-solving – low-variability’. The range of tasks, for which 

worked examples were studied or problems had to be solved, were identical to 

those used in Experiment 2. 

Since the high-variability and low-variability problem-solving tasks were 

identical to those used in Experiment 2, the format and content of the high-

variability – problem-solving handout and the low-variability – problem-solving 

handout was reused (see Appendices I and J). However, as previously stated, the 

worked-examples handouts were redesigned (to eliminate any redundancy or split-

attention) with the aim of re-testing for the worked examples effect (see 

Appendices Q and R for the modified worked-examples – high-variability and 

work-examples – low-variability handouts respectively). In particular, arrows 

were inserted to reduce extraneous cognitive load by reducing split-source 

information. The physical integration of information, through the use of arrows in 

the worked examples of the current experiment, was designed to facilitate more 

learning by imposing less cognitive load compared to studying the split-source 

worked examples in Experiment 2, which required the mental integration of 

disparate sources of information. Additionally, any redundant information in the 

worked examples that were studied in Experiment 2 was removed. This was to 

avoid any undue cognitive load that was imposed by processing unnecessary 
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information. For example, written text such as the following, which appeared in 

Question 3 of the high-variability – worked-examples handout for Experiment 2, 

was removed in Question 3 of the high-variability – worked-examples handout for 

the current experiment: “STEP 1”, “STEP 2”, “STEP 3”, “we have to factorise 

before we can complete the square”, “[h]alve the co-efficient of x and square it”, 

and “remember to add this number to the constant term”. 

All participants were given the same single-item, nine-point Likert-type 

rating scale to complete, identical to the one used in Experiments 1, 2 and 3 (see 

Appendix F). The participants’ subjective ratings of difficulty were used to 

measure cognitive load imposed during their completion of the Learning Phase 

handout. Equivalently, the Post-Test was identical to the one used in Experiment 2 

(see Appendix K). The Post-Test was identical in content for all participants. The 

questions were internally reliable based on a Cronbach’s Alpha of .79. 

4.5.3.3 Procedure. 

Similar to Experiment 2, the participants were randomly assigned to one of 

the four experimental conditions at the start of the experiment, namely: worked-

examples – high-variability group (17 students), worked-examples – low-

variability group (17 students), problem-solving – high-variability group (17 

students), and problem-solving – low-variability group (17 students). 

Correspondingly, the duration of the experiment, which was 1 hr 30 min, was 

conducted during the participants’ normal mathematics lecture and tutorial time, 

and consisted of a Learning Phase (60 min) and a Post-Test Phase (30 min), 

identical to Experiment 2.  

Similar to Experiments 1, 2 and 3, after the Learning Phase, the handouts 

were collected and each participant completed a subjective rating of difficulty. 
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Following the subjective rating questionnaire, all participants completed the Post-

Test. 

4.5.3.4 Marking procedure. 

The marking of the Post-Tests was undertaken by the experiment convenor. 

Similar to Experiments 1, 2 and 3, consistency was achieved by considering all 

possible solutions. Answers to questions were awarded one mark for every correct 

solution step, and incorrect solution steps were awarded a mark of zero. Based on 

this procedure, the highest possible total score for the Post-Test was 38 marks, 

consisting of 25 marks for the similar questions and 13 marks for the transfer 

questions. All the raw scores were converted into percentage scores. 

4.5.4 Results. 

There were two independent variables: level of variability and level of 

guidance; and three dependent variables: Post-Test (similar questions) scores, 

Post-Test (transfer questions) scores, and subjective ratings of difficulty. Table 4 

shows the descriptive statistics for the participants’ performance. Prior 

mathematical knowledge also was tested to ensure group comparability. 

4.5.4.1 Prior knowledge. 

In an equivalent way to Experiment 2, the prior mathematical knowledge of 

each participant was measured by averaging scores for four previous class tests 

that were completed before the commencement of the experiment. A one-way 

between-groups analysis of variance was conducted for the average class test 

scores to compare the level of prior mathematical knowledge for the four groups: 

worked-examples – high-variability group, worked-examples – low-variability 

group, problem-solving – high-variability group, and problem-solving – low-  



139 
 

 

Table 4 

Means (and Standard Deviations) of the Average Class Test Scores, Post-

Test (Similar Questions) Scores, Post-Test (Transfer Questions) Scores, and 

Subjective Ratings of Difficulty for Experiment 4  

 

variability group. The dependent variable was average class test score. The results 

did not reach statistical significance, F(3, 64) = .45, MSE = 204.73, p = .72, partial 

𝜂2 = .02. Therefore, the average class test scores were not used to control for any 

differences between the experimental groups for any Post-Test performance results. 

 4.5.4.2 Post-test scores. 

Two 2 by 2 between-groups analyses of variance were conducted on the Post-

Test (similar questions) scores and Post-Test (transfer questions) scores. The 

results for guidance did not reach statistical significance on the Post-Test (similar 

 
Experimental Condition 

 Worked-
examples –  

high-
variability 

group 

Worked-
examples –  

low-
variability 

group 

Problem-
solving –  

high-
variability 

group 

Problem-
solving –  

low-
variability 

group 

Variable 
M 

(SD) N M 
(SD) N M 

(SD) N M 
(SD) N 

Average class test 
scores (%) 

83.77 
(35.00) 17 80.63 

(41.50) 17 75.78 
(20.00) 17 83.65 

(23.25) 17 

Post-test (similar 
questions) scores (%) 

42.59 
(29.39) 17 45.41 

(33.91) 17 30.12 
(27.35) 17 46.59 

(28.18) 17 

Post-test (transfer 
questions) scores (%) 

33.94 
(29.68) 17 31.67 

(25.35) 17 30.77 
(16.54) 17 47.06 

(22.73) 17 

Subjective ratings of 
difficulty (1-9) 

3.65 
(1.37) 17 1.76 

(1.09) 17 6.82 
(1.55) 17 6.06 

(2.30) 17 
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questions) scores, F(1, 64) = .61, MSE = 542.12, p = .44, partial 𝜂2 = .01, or on the 

Post-Test (transfer questions) scores, F(1, 64) = 1.10, MSE = 634.22, p = .30, 

partial 𝜂2 = .02. Likewise, the results for variability did not reach statistical 

significance on the Post-Test (similar questions) scores, F(1, 64) = 1.78, MSE = 

1582.12, p = .19, partial 𝜂2 = .03, or on the Post-Test (transfer questions) scores, 

F(1, 64) = 1.45, MSE = 836.29, p = .23, partial 𝜂2 = .02. The results of these 

analyses showed no evidence of a relationship between levels of guidance (worked 

examples or problem solving) or levels of task variability (high or low) for the 

completion of Post-Test tasks in similar and novel situations. Hence the expected 

worked example effect and variability effect were not obtained. 

The variability by guidance interactions were not statistically significant for 

the Post-Test (similar questions) scores, F(1, 64) = .89, MSE = 791.53, p = .35, 

partial 𝜂2 = .01, or the Post-Test (transfer questions) scores, F(1, 64) = 2.53, MSE 

= 1462.62, p = .12, partial 𝜂2 = .04. Hence, there was no indication of an 

interaction between the two independent variables of level of guidance and level 

of variability. 

4.5.4.3 Subjective ratings of difficulty. 

A 2 by 2 between-groups analysis of variance was conducted to assess the 

effect of the two independent variables on subjective ratings of difficulty (cognitive 

load). The results showed a statistically significant main effect for guidance, F(1, 

64) = 88.08, MSE = 237.19, p < .001, partial 𝜂2 = .58, and for variability, F(1, 64) = 

11.06, MSE = 29.78, p = .001, partial 𝜂2 = .15. As anticipated, the subjective ratings 

of difficulty were less for the worked-examples groups compared to the problem-

solving groups, and less for the low-variability groups compared to the high-

variability groups. These results firstly indicate that a lower cognitive load was 
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imposed on learners who studied fully-guided worked examples compared to 

learners who generated solutions to problem-solving tasks (without any guidance) 

and secondly, that learners who worked on low-variability tasks experienced a 

lower cognitive load compared to learners who worked on high-variability tasks. 

The variability by guidance interaction for cognitive load was not statistically 

significant, F(1,64) = 1.97, MSE = 5.31, p = .17, partial 𝜂2 = .03. 

4.5.4.4 Discussion. 

Experiment 4 tested the hypotheses that when learners study worked 

examples (compared to generating problem solutions without any guidance), and 

when learners are provided with high-variability tasks (compared to low-

variability tasks) under worked-examples conditions, they will attain higher levels 

of conceptual understanding and superior transfer skills. Neither hypothesis was 

supported since the worked example effect (the first part of Hypothesis 1) and 

variability effect (the first part of Hypothesis 2) were not obtained. These analyses 

showed no effect on the Post-Test performance scores generated by the provision 

or absence of guided instruction, and the completion of high- or low-variability 

learning tasks. The lack of significance on the Post-Test performance scores may 

have been due to the sample size being too low. 

The higher group averages of the class test scores (which measured prior 

knowledge) in Experiments 4 (83.77%, 80.63%, 75.78%, and 83.65%), compared 

to Experiment 2 (61.12%, 53.67%, 68.94%, and 69.73%), provide a possible 

explanation as to why the worked example effect was not obtained in Experiment 

4. More specifically, reference can be made to the expertise reversal effect: as 

expertise increases, the worked example effect decreases. This effect suggests why 

the worked example effect was not obtained in Experiment 4 – many of the 
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participants may have been too knowledgeable to demonstrate a worked example 

effect. 

Despite the failure to obtain a worked example effect, similar to Experiment 

2, there was a benefit to studying worked examples compared to solving problems. 

The significant difference in cognitive load experienced by the participants in the 

worked-examples groups compared to the problem-solving groups demonstrated a 

significant advantage for participants in the worked-examples groups compared to 

the problem-solving groups. Learners could understand the high- and low-

variability tasks more easily by studying worked examples, compared to problem 

solving, as a learning device. On the other hand, learners may have found it 

difficult to simultaneously deal with the extra WM resources required when 

generating potential solution steps. Hence, the last part of Hypothesis 1 was 

supported.  

Despite the absence of a worked example effect, it seems that the modified 

worked examples in Experiment 4 successfully reduced redundant and split-source 

information. A higher effect size of .58 for the subjective ratings of difficulty in 

the worked-examples condition was obtained, compared to .36 for the worked-

examples condition in Experiment 2. 

 A major observation to emerge from the findings in Experiment 4 was the 

significant difference in cognitive load experienced by the participants in the high-

variability groups compared to the low-variability groups. This outcome is 

contrary to the findings in Experiments 1 and 2, where the similarity and 

dissimilarity of the low- and high-variability tasks did not have an impact on 

cognitive load. A possible explanation for obtaining the last part of Hypothesis 2 

in the current experiment could be attributed to the participants having more prior 
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mathematical knowledge (according to the higher group averages of the class test 

scores in the current experiment, as discussed previously). Having greater prior 

knowledge suggests there are fewer unfamiliar elements needed to be incorporated 

into existing schemas, thus making more cognitive resources available to deal with 

the low-variability tasks which consisted of a lower level of element interactivity, 

compared to the high-variability tasks which may have caused cognitive overload. 

That is, learners in the low-variability – problem-solving group were less likely to 

use means-ends analysis compared to the learners in the high-variability – 

problem-solving group, and schema acquisition and automation may have 

occurred more quickly for the learners in the worked-examples – low-variability 

group compared to the worked-examples – high-variability group.  

The hypotheses in relation to subjective ratings of difficulty were confirmed. 

The results for subjective ratings of difficulty demonstrated a significant 

advantage for participants in the worked-examples groups and the low-variability 

groups. This is in line with CLT which argues the superiority of worked examples 

to problem solving when learners do not have sufficient prior knowledge in the 

domain, and the lower mental effort required to identify a surface match between 

similarly structured (low-variability) tasks without the need to go any further, 

compared to processing high-variability tasks that require more mental effort to 

process the deeper features until underlying common features are found. 

4.6 Summary of Chapter 4 

This chapter explained the method of analysis, reported the results for the 

method used, and discussed whether the hypotheses were supported, for each of the 

four experiments comprising the present study. Experiments 1, 2 and 4 investigated 

the variability effect under worked-examples conditions, and Experiment 3 
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investigated the variability effect according to learners’ level of prior knowledge in 

the domain. 

The next chapter will summarise the objectives and major findings of the 

present study, discuss the limitations of the present study, share the educational 

implications of the present findings, and provide a scope for future research on the 

variability effect. Finally, the general conclusion, which brings this thesis to a 

close, will focus on how the present study contributes to existing research on the 

variability effect. 
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Chapter 5: General Discussion 

5.1 Introduction to Chapter 5 

The first part of this chapter summarises the empirical findings of the present 

study in relation to its testing of the worked example effect, the variability effect, the 

expertise reversal effect, and the subjective rating of difficulty scale used to measure 

cognitive load. It then identifies some of the limitations of the study, clarifies the 

study’s major educational implications and suggests potential future research. 

Finally, the significance of the study is emphasised with a focus on the insights 

gained into the variability effect. 

5.2 Summary of the Study 

The present study investigated if a relationship exists between high-

variability or low-variability mathematical tasks and post-test performance. In 

particular, if the optimal level of variability of tasks alters according to levels of 

instructional guidance or levels of learner expertise. 

The conclusion reached in Experiments 1, 2 and 4 was that learners’ exposure 

to the worked-examples conditions did not result in higher post-test performance 

compared to the problem-solving conditions. Despite the lower subjective ratings 

of difficulty for the worked-examples groups in Experiment 1, suggesting lower 

extraneous cognitive load imposed by studying the worked examples compared to 

problem-solving equivalent tasks, the failure to obtain a worked example effect 

may have been due to the participants not having sufficient cognitive capacity to 

engage in germane activities to improve learning. In contrast, the findings in 

Experiment 2 suggest that all participants may have been more knowledgeable in 

the domain than expected because of the variability effect that was obtained for 

both the worked-examples and problem-solving groups. It seems that the 
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participants in Experiment 2 had sufficient germane resources available to deal 

with the higher element interactivity of the high-variability tasks (under the 

worked-examples and problem-solving conditions), compared to the low-variability 

tasks, despite the students rating the study of the explicit solution steps in the 

worked examples as being easier to deal with compared to the unguided problem-

solving of the equivalent tasks. Experiment 4 also failed to obtain the worked 

example effect, despite using worked examples with less redundant and split-

attention information in the worked examples that were used in Experiment 2. It 

seems that reducing the extraneous cognitive load that interfered with learning (by 

removing the redundant and split-source information contained in the Experiment 2 

worked examples) did not result in the load being replaced by germane load which 

would in turn have resulted in a significant improvement in learning. 

In Experiment 2, the level of variability proved to be a major mediator 

between the tasks during the Learning Phase and the subsequent performance on 

the Post-Test transfer tasks. Completing high-variability tasks during the Learning 

Phase, in the worked-examples or problem-solving groups, effectively boosted the 

ability of learners to solve novel problems in the Post-Test. The variability effect 

that was obtained in Experiment 2 may have been due to most learners having the 

ability to cope with the larger number of interacting pieces of information in the 

high-variability tasks in order to allow for efficient learning. The diverse Post-Test 

results in the worked-examples and problem-solving conditions of Experiment 2 

within the high-variability condition suggested that ability levels were not given 

due consideration in Experiment 2, and hence were the driving force for separating 

participants into novice and expert groups in Experiment 3. 
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In Experiment 3, the participants’ prior knowledge in the target domain was 

pre-tested and used as a measure of expertise. Using a median split, by 

transforming the Pre-Test scores (continuous variables) into categorical variables 

(expert or novice groups), the Post-Test performance scores did not show a main 

effect for variability. Rather, the effectiveness of the high- or low-variability tasks 

during the Learning Phase was dependent on the participants’ prior knowledge 

levels. The findings revealed that learners’ exposure to high- or low-variability 

tasks resulted in different Post-Test performance scores based on their level of 

expertise. In particular, a classic expertise reversal effect was obtained in 

Experiment 3. When novices and experts were exposed to high- or low-variability 

tasks, it became evident that low-variability tasks worked better for novices and 

had no, or possibly adverse, effects for experts. In the opposite manner, exposure to 

high-variability tasks worked better for experts because the tasks were higher in 

element interactivity for novices but lower in element interactivity for experts. 

Experiment 3 revealed that providing novices with high-variability tasks 

during the Learning Phase seemed to overwhelm their WM, possibly due to their 

lack of schema-based knowledge in the domain. Novices benefitted more from 

completing low-variability tasks during the Learning Phase than from high-

variability tasks because the low-variability tasks assisted the novices to create 

long-term schemas. In contrast, experts were able to complete high-variability tasks 

more effectively than low-variability tasks because they had acquired more 

schema-based knowledge in the domain compared to the novices. Perhaps 

completing low-variability tasks had negative consequences for experts because 

these tasks contained redundant information. In particular, it seems that the experts’ 

higher level of prior knowledge in the domain was critical in helping them solve 
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the Post-Test transfer questions because these novel questions required a more 

flexible representation of knowledge. As a result, the reversal of effectiveness of 

providing high- or low-variability instruction produced a reverse variability effect 

because of the differing levels of prior knowledge of more-experienced and less-

experienced learners. Under these circumstances, a more substantial conclusion 

was reached regarding the variability effect in Experiment 3. Two levels of 

expertise, the novice condition and the expert condition, made it possible to 

identify that high-variability tasks were a better instructional strategy for teaching 

experts, and low-variability tasks were a better instructional strategy for teaching 

novices.  

5.3 Limitations of the Study 

Although the study generated significant results, these results need to be 

interpreted with caution because they are somewhat limited by a relatively small 

sample size. Experiment 2, which produced the variability effect, comprised 103 

participants, and Experiment 3, which produced the reverse variability effect, 

comprised 56 participants. If the sample size of Experiment 3 was as large as 

Experiment 2, the generalisability of the findings in Experiment 3 would hold for a 

better theoretical understanding of when high- or low-variability tasks enhance 

understanding for more-knowledgeable and less-knowledgeable learners. 

Another limitation of this study is that the findings may not hold for learners 

in subject domains other than mathematics and for younger learners (e.g., 

elementary school and junior high school) because the current research was 

conducted with older mathematics learners (at secondary and tertiary levels). This 

is particularly important because it cannot be assumed that the present results are 

generalisable across all subject learning areas and at all learner age levels.   
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Despite the successful use of a subjective, one-item scale measure of 

cognitive load in over 100 well-documented CLT experiments, this measurement 

tool can be considered questionable in the current study. The participants did not 

consistently present with subjective ratings of difficulty that support the 

assumptions based on CLT in all four experiments. Subjective ratings of difficulty 

were lower for all the worked-examples groups compared to the problem-solving 

groups (in Experiments 1, 2 and 4), as anticipated. However, the ratings were lower 

for the low-variability groups compared to the high-variability groups only for the 

novice groups and not the expert groups in Experiment 3, and for both the worked-

examples and problem-solving groups in Experiment 4 (and not in Experiments 1 

and 2 as anticipated). To explain this conflicting theoretical position, we can draw 

on Ayres (2018), who postulated that a subjective measure “is a self-reflection on a 

cognitive process and is somewhat relativistic in nature, being highly dependent 

upon prior knowledge in the domain” (p. 21). Perhaps using a multi-item scale 

could produce responses that enable learners to self-reflect more accurately, despite 

their level of expertise in the domain. 

Furthermore, the cognitive load construct does not consider the psychological 

impact that learners’ beliefs and goals have on their cognitive load perceptions 

(Bannert, 2002; Moreno, 2006). Up until now, CLT has mainly focused on 

cognitive principles of learning, and as a result, cognitive load research has not 

considered possible psychological effects arising from learners’ interest, task 

engagement and emotions. 

The reverse variability effect which prominently appeared in the findings of 

Experiment 3 aligned with the expertise reversal effect. However, the measure used 

to place the participants in either a novice or expert group is questionable. Using 
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the median Pre-Test score to split the participants into two groups may not have 

been the most valid measure of expertise due to the Pre-Test scores that were 

closely positioned above and below the median. More specifically, median splits 

become problematic when the score just above the median is considered the same 

as the scores further away on the higher end, but considered different to the score 

just below the median. However, in their perspective of the literature on artificial 

categorisation, DeCoster, Gallucci, and Iselin (2011) argued that choosing to 

artificially categorise continuous variables was commonly used by researchers who 

examined interaction effects. Language used to describe findings when using 

artificial categorisation should express the “relations between the abstract 

constructs” (DeCoster et al., 2011, p. 205). Accordingly, this prescription was 

adhered to in Experiment 3 where novice and expert groups reflected the relation 

between their prior knowledge in the domain, by referring to the participants as 

being less- and more-experienced learners respectively. Furthermore, in Iacobucci, 

Posavac, Kardes, Schneider, and Popovich’s (2015) analysis of the statistical 

properties of a median split, they argued that using a median split in a factorial 

experimental design (followed by the use of ANOVA to model and report the 

findings) was “perfectly legitimate” (p. 662). However, despite the possibility of 

producing Type 1 errors, a median split was used in Experiment 3 given Iacobucci 

et al.’s (2015) recommendation that this practice is suited for research in group 

differences. 

5.4 Educational Implications 

The findings from this study displayed the benefits of task variability to 

improve mathematical educational practice. In particular, the findings proved 

useful in expanding our understanding of the expertise reversal effect by 
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identifying a reverse variability effect. This innovative aspect suggests that high 

and low task variability can act as a powerful method for fostering better learning 

for experts and novices, respectively. For more-experienced learners in a domain, 

there is a cost when they are presented with low-variability tasks because they do 

not require repetitive tasks to learn a particular solution method. On the other hand, 

less-experienced learners in a domain benefit from low-variability tasks because 

they require more practice to assist with the understanding of the underlying 

solution method. 

Since processing by experts is more abstract than it is for novices, an 

important practical implication from the current findings is that processes that 

underlie experts’ superior performance must be considered when selecting the level 

of task variability. High-variability tasks must be presented to more-experienced 

learners because they have available schemas to modify solution methods to deal 

with tasks that differ from one another on all dimensions. Elements that vary 

between high-variability tasks should highlight meaningful and extensive concepts 

to enable experts to compare and apply solution methods more broadly, to help 

develop their competence. In contrast, low-variability tasks must be presented to 

less-experienced learners to assist them to capitalise on familiar solution methods 

which can help them identify similar problem features. Hence, the current findings 

suggested that greater effort is needed for mathematics educators to design learning 

tasks that align with learners’ existing mathematical abilities in order to facilitate 

efficient and effective learning. 

5.5 Future Research 

The present study contributes to the current literature by providing deeper 

insight into the effectiveness of altering levels of variability with levels of guidance 
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and levels of expertise. However, to extend the current literature about the 

variability effect, further replication studies are necessary that involve different 

instructional materials and learners of different ages. Even though the present study 

aimed to be the first to thoroughly examine the relationship between levels of 

variability and expertise, a natural progression of the present empirical 

investigation would be to repeat the study with a larger sample to potentially 

provide more conclusive evidence of the reverse variability effect. 

Since the majority of previous studies on variability were published over a 

decade ago, more work is required to explore whether altering the level of task 

variability can provide a powerful way to foster transfer of learning. It seems 

reasonable to assert that greater attention to the mechanism of transfer will help 

reveal its association to human cognition. Not only is fostering successful transfer 

associated with learning but it can also reveal other aspects of human cognition 

such as memorising, reasoning, categorising, and problem solving. More 

specifically, there can be further exploration of the theoretical questions about what 

elements of the task should vary and what elements should remain the same to 

promote learners to spontaneously solve novel tasks. Moreover, research on the 

robustness of transfer after an extended period of time is required to distinguish 

between temporary and permanent transfer effects. This will shed some light on 

how long transfer can persist for experts and novices completing high- or low-

variability tasks after training tasks have been mastered. 

Given that most CLT research has been conducted in mathematics and 

science-based domains (such as computing, physics and engineering), and far less 

in non-scientific content domains (such as foreign language acquisition, English 

literature and music instruction), further research on the variability effect should 
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include these non-scientific domains. Based on the present findings, carrying out 

experimental investigations in non-scientific content domains could yield clearer 

practical implications about the positive effects of altering the variability of 

learning tasks to benefit learners with different levels of expertise in specific 

domains. 

Whilst the current findings confirm that to generate higher post-test 

performance, it is advisable to decrease or increase the variability of learning tasks 

depending on learners’ levels of expertise, several questions remain unanswered in 

relation to randomly sequencing those learning tasks (interleaving). The effect of 

interleaving can be made clearer if learners are presented with adjacent high- or 

low-variability learning tasks that require them to practise different versions of the 

constituent skills. For example, the use of a random schedule of learning tasks that 

requires students to apply skills at the same level of difficulty across different 

mathematics topics could boost their ability to learn the critical features of concepts 

and skills. Studying high- or low-variability tasks across different mathematics 

topics could potentially strengthen categorisation and problem-solving skills 

because the learner is required to make associations by differentiating between 

concepts. Even though there are numerous studies that have assessed the efficacy 

of interleaving, further research could usefully explore if combining random 

sequencing with high- or low-variability tasks, tailored for experts and novices 

respectively, can improve the transfer of learning. 

5.6 General Conclusion 

Part I of this thesis explored the key areas of human cognitive architecture, in 

particular WM, where the temporary storage of information is used to process 

complex cognitive tasks; and LTM, where unlimited amounts of information, in the 
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form of schemas, are stored. This was followed by an explanation of how CLT 

began as an instructional theory, and how the basic theoretical assumptions 

underlying CLT are based on our knowledge of human cognitive architecture. An 

overview of the extensive empirical development of CLT over the past three 

decades was provided. This elucidated how CLT has become an influential 

theoretical framework within educational psychology that provides a powerful tool 

for synthesising learning, cognition and instructional design, and successfully 

generating an array of cognitive load effects. As argued by Kirschner (2002) in the 

special issue on the instructional implications of CLT, following CLT guidelines 

can assist with presenting information in ways that encourage learners to optimise 

their intellectual performance.  

Part I concluded with a detailed discussion of the categories of cognitive load 

(intrinsic, extraneous and germane cognitive load), managing cognitive load 

through instructional design, using subjective measures of cognitive load, and five 

cognitive load effects: the worked example effect, the expertise reversal effect, the 

redundancy effect, the split-attention effect, and the variability effect. These five 

instructional design effects were reviewed in detail in terms of how they influence 

cognitive load to improve learning and instruction. These effects were revisited in 

Part II of this thesis which comprised the present study. 

Part II provided further empirical evidence about the nature of the variability 

effect. Within the framework of CLT, the study investigated how the capacity to 

acquire knowledge and skills could be developed for mathematics learners by 

altering the level of task variability. Four experiments were conducted to examine 

the effect of low- and high-variability tasks for learning, solving problems, and 

transferring skills. Experiments 1, 2 and 4 explored the effect between low- and 
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high-variability tasks when studying worked examples or attempting to solve 

problems; and Experiment 3 further explored the effect between low- and high-

variability tasks with less- and more-experienced learners. The significant findings 

of the present study revealed that variability should only be increased once 

learners’ levels of knowledge have advanced sufficiently to allow them to process 

the increased element interactivity associated with increased variability. 

From a practical perspective, the major educational implication of these 

findings are that less-experienced learners in a domain should initially be presented 

with low-variability tasks. Low-variability tasks with their low levels of element 

interactivity can assist in the acquisition of essential problem-solving concepts and 

procedures associated with a given area of study. Once these concepts and 

procedures have been acquired, it is appropriate to acquaint learners with the 

various types of problems to which the concepts and procedures apply. At this 

point, with the basic knowledge stored in LTM, rather than having to be processed 

in WM, learners should have sufficient spare WM capacity to process the elements 

associated with variability. Until this point is reached, presenting learners with the 

basic concepts and procedures, and the various conditions to which they apply 

simultaneously, may overload WM. Further studies are needed to test this 

hypothesis. 
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Appendices 

Appendix A 

Experiment 1: Worked-Examples – High-Variability Handout 
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Appendix B 

Experiment 1: Problem-Solving – High-Variability Handout 
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Appendix C 

Experiment 1: Worked-Examples – Low-Variability Handout 
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Appendix D 

Experiment 1: Problem-Solving – Low-Variability Handout 
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Appendix E 

Experiment 1: Post-Test 
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Appendix F 

Subjective Rating of Difficulty Scale 
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Appendix G 

Experiment 2: Worked-Examples – High-Variability Handout 
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Appendix H 

Experiment 2: Worked-Examples – Low-Variability Handout 
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Appendix I 

Experiment 2: Problem-Solving – High-Variability Handout 
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Appendix J 

Experiment 2: Problem-Solving – Low-Variability Handout  
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Appendix K 

Experiment 2: Post-Test  
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Appendix L 

Experiment 3: Pre-Test 
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Appendix M 

Experiment 3: Low-Variability Handout 
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Appendix N 

Experiment 3: High-Variability Handout 
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Appendix O 

Experiment 3: Post-Test 1 (Similar Tasks) 
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Appendix P 

Experiment 3: Post-Test 2 (Transfer Tasks) 
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Appendix Q  

Experiment 4: Worked-Examples – High-Variability Handout 
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Appendix R 

Experiment 4: Worked-Examples – Low-Variability Handout 
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Appendix S 

Publication (from the thesis) 
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