
Evolutionary Optimization of File Assignment for a Large-
Scale Video-on-Demand System

Author:
Guo, Jun; Wang, Yi; Tang, Kit-Sang; Chan, Sammy; Wong, Eric; Taylor, Peter;
Zukerman, Moshe

Publication details:
IEEE Transactions on Knowledge and Data Engineering
v. 20
Chapter No. 6
pp. 836-850
1041-4347 (ISSN)

Publication Date:
2008

Publisher DOI:
http://dx.doi.org/10.1109/TKDE.2007.190742

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/37829 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/http://dx.doi.org/10.1109/TKDE.2007.190742
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/37829
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Evolutionary Optimization of File Assignment
for a Large-Scale Video-on-Demand System

Jun Guo, Member, IEEE, Yi Wang, Student Member, IEEE, Kit-Sang Tang, Member, IEEE,

Sammy Chan, Member, IEEE, Eric W.M. Wong, Senior Member, IEEE, Peter Taylor, and

Moshe Zukerman, Fellow, IEEE

Abstract—We present a genetic algorithm for tackling a file assignment problem for a large-scale video-on-demand system. The file

assignment problem is to find the optimal replication and allocation of movie files to disks so that the request blocking probability is

minimized subject to capacity constraints. We adopt a divide-and-conquer strategy, where the entire solution space of file assignments

is divided into subspaces. Each subspace is an exclusive set of solutions sharing a common file replication instance. This allows us to

utilize a greedy file allocation method for finding a good-quality heuristic solution within each subspace. We further design two

performance indices to measure the quality of the heuristic solution on 1) its assignment of multicopy movies and 2) its assignment of

single-copy movies. We demonstrate that these techniques, together with ad hoc population handling methods, enable genetic

algorithms to operate in a significantly reduced search space and achieve good-quality file assignments in a computationally efficient

way.

Index Terms—File assignment, genetic algorithm, video-on-demand.

Ç

1 INTRODUCTION

WITH the rapid advances in multimedia, communica-
tions, and mass storage technologies, the deployment

of commercial video-on-demand (VOD) services to a large
population of users has become a reality [1]. For such a large-
scale VOD system, it is essential to manage and store an
extensive collection of movie titles in a digitized and
compressed format by using a storage subsystem made of
a large cluster of online disks. Due to the significant
asymmetry in access demand for different movie titles, it is
necessary to replicate popular movie titles over multiple
disks so as to increase the stream capacity of the system in
serving user requests for popular movie titles.

Because of the large disk storage space and I/O
bandwidth required in storing and delivering movie
contents, it is important to manage the limited disk
resources in the VOD system efficiently to achieve good
service quality. Due to the long-lived nature of the channel

holding time, an important performance metric of the VOD
system is the request blocking probability (RBP). The impact of
file assignment optimization on the RBP of the VOD system
has been well established in the literature [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Given a large number of disks with
limited capacity in both storage space and I/O bandwidth
and a large library of movie titles with significant
asymmetry in access demand and file size, the file assign-
ment problem is to find how we can replicate and allocate
movie files to disks so that the RBP of such a capacity-
constrained system is minimized.

As we will see in Section 2, earlier proposals in the
literature for the file assignment problem relied on more or
less simplified and, thus, unrealistic assumptions. Although
the complexity of the file assignment problem can be greatly
reduced with such unrealistic assumptions, the practicabil-
ity of the obtained solutions in real systems is significantly
undermined. This concern has led us to approach the file
assignment problem in a more realistic way, which gives rise
to a challenging constrained nonlinear integer optimization
problem.

Our focus in this paper is to present an evolutionary
approach based on genetic algorithms (GAs) [12] for finding
good-quality solutions in a computationally efficient way
for this difficult file assignment problem. The proposed
evolutionary approach exploits an elaborate transformation
of the file assignment problem so that ad hoc methods can
be designed to manipulate the stochastic search of GAs
within a drastically reduced yet effective solution space. To
circumvent the cumbersome RBP evaluation for each
feasible solution explored in the evolution process, we
design two performance indices to estimate the quality of a
file assignment on 1) its assignment of multicopy movies
and 2) its assignment of single-copy movies. By means of
these two easy-to-compute attributes that jointly measure
the quality of a file assignment, we further expedite the

836 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

. J. Guo is with the Networks Research Group, School of Computer Science
and Engineering, The University of New South Wales, NSW 2052,
Australia. E-mail: jguo@cse.unsw.edu.au.

. Y. Wang is with the School of Computer Science and Information
Technology, RMIT University, VIC 3001, Australia.
E-mail: yi.wang@computer.org.

. K.-S. Tang, S. Chan, and E.W.M. Wong are with the Department of
Electronic Engineering, City University of Hong Kong, Hong Kong SAR,
China. E-mail: {eekstang, eeschan, eeewong}@cityu.edu.hk.

. P. Taylor is with the Department of Mathematics and Statistics, The
University of Melbourne, VIC 3010, Australia.
E-mail: P.Taylor@ms.unimelb.edu.au.

. M. Zukerman is with the Department of Electrical and Electronic
Engineering, The University of Melbourne, VIC 3010, Australia.
E-mail: m.zukerman@ee.unimelb.edu.au.

Manuscript received 7 Feb. 2007; revised 13 Oct. 2007; accepted 3 Dec. 2007;
published online 14 Dec. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0056-0207.
Digital Object Identifier no. 10.1109/TKDE.2007.190742.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

stochastic search of GAs and yet obtain file assignment
solutions of comparable quality.

The rest of this paper is organized as follows: We discuss
related work in Section 2. The VOD system model is
described in Section 3. Section 4 presents the problem
formulation and the transformation method. Section 5 deals
with the design of the ad hoc population handling methods
and the implementation of the evolutionary optimization
program based on GAs. Details of the two performance
indices are provided in Section 6. In Section 7, we show how
we solve the file assignment problem by means of the two
easy-to-compute performance indices using multiobjective
optimization techniques. We demonstrate in Section 8 the
superior performance of our proposed algorithms through
extensive numerical experiments. Finally, we provide
concluding remarks in Section 9.

2 RELATED WORK

The impact of file assignment optimization on the RBP
performance of VOD systems and the motivation of the file
assignment problem considered in this paper have been
well established in the literature [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11]. It is complicated to the point that the RBP of
the VOD system is not only susceptible to how movie files
are assigned to disks but also sensitive to how disks
(servers) are selected to serve user requests for multicopy
movies [10].

Little and Venkatesh [2] studied a simplified version of
the problem, assuming that requests for multicopy movies
are handled in accordance with what we call a single random
trial (SRT) server selection scheme. In the SRT system, when
a request for a multicopy movie arrives, one of the disks
storing a file copy of the requested movie title is randomly
selected. If the I/O bandwidth (stream capacity) of the disk
is used up, the request is simply blocked, without further
attempting any other disk that keeps a file copy of the
requested movie title. Little and Venkatesh proved that the
RBP of the SRT system is minimized if each homogeneous
disk has an equal probability of being accessed. In other
words, the problem is reduced to finding a movie file
assignment that achieves disk load balancing [11].

Taking advantage of the latter, various algorithms were
proposed in [3], [4], [5], and [6] to find optimal or near-
optimal solutions for the simplified file assignment pro-
blem. The polynomial time greedy algorithm proposed in
[4] guarantees the file assignment to attain disk load
balancing. However, it relies heavily on a weighted
scheduler and the assumption of unlimited disk storage
space. For a practical system with disks of limited storage
space, it was proved in [3] that, even if all movie titles are
restricted to having only one single file copy in the system,
the file assignment problem is still NP-hard [13]. An
interesting method was proposed in [3] to decide the
number of file copies for each movie title. It is essentially
similar to the well-known apportionment method used to
achieve fairness of state representation in a government
congress [14]. However, such an approximation method
works for the VOD system only if all movie titles are of
identical file size, which is not a realistic assumption in
practice.

Considering, again, in the context of the SRT system but
for a more realistic assumption of heterogeneous movie file
sizes and a system of heterogeneous disks, a hybrid
evolutionary algorithm was presented in [5] to find near-
optimal solutions for the file assignment problem. A similar
version of the problem in [5] was studied in [6], which
allows for the same weighted scheduler as in [4]. The
methodology in [6] relies on solving a relaxed problem for
finding the ideal access probability of each heterogeneous
disk and a goal programming approach for performing the
assignment and reassignment of movie files iteratively until
a sufficiently near-optimal file assignment solution is found.

The SRT system is inherently inefficient in disk resource
utilization, given the existence of multicopy movies. More-
over, the quality of a file assignment with respect to the RBP
established in the SRT system does not hold true in
situations where more efficient server selection schemes
are used [10].

Without much concern for the cost and complexity of
real-time stream scheduling in large-scale VOD systems, a
stream repacking scheme was considered in [7], which
utilizes disk resources more efficiently than SRT. The
heuristic algorithm proposed in [7] for the file assignment
problem contains two parts. First, it again relies on the
unrealistic assumption of a homogeneous movie file size so
that the number of file copies replicated for each movie title
could be decided approximately by the apportionment
method [14]. Second, taking advantage of multicopy
movies, it provides a greedy file allocation method that
seeks to connect more pairs of disks by allocating some
common movie files on both disks in each pair. It was
observed that high disk connectivity produced this way
increases the potential of finding a feasible schedule for
facilitating stream repacking. Subsequently, two other
groups of researchers [8], [9] followed the strategy in [7]
but offered variations of the stream repacking scheme and
of the heuristic algorithm to achieve high disk connectivity.

Clearly, these earlier proposals for the file assignment
problem rely on more or less simplified and, thus,
unrealistic assumptions so that the complexity of the
problem can be greatly reduced. In this paper, we approach
the file assignment problem in a more realistic way. We
assume disks of limited storage space and movies of
heterogeneous file sizes. We consider a more realistic server
selection scheme called least busy fit (LBF) [10] in handling
requests for multicopy movies. LBF can achieve efficient
utilization of disk resources at reasonable implementation
cost and complexity. Making use of the available system
state information, the LBF system always directs a request
for a multicopy movie to the least busy disk where a file
copy of the requested movie title is placed. We will see that
the file assignment problem in the context of the LBF system
is challenging. Our goal in this paper is to develop robust
algorithms for tackling this difficult file assignment
problem in a computationally efficient way.

3 SYSTEM MODEL

For the reader’s convenience, we provide in Table 1 a list of
major symbols that we shall define and use in this paper.

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 837

Consider a VOD system with a set D of J online disks
labeled 1; 2; . . . ; J and a set F of M movie titles marked
1; 2; . . . ;M. Note that each online disk in this context can be
either a conventional hard disk drive or a disk striping
group [15]. Without loss of generality, we describe any
substantive secondary storage device in the storage sub-
system of the VOD system as a “disk” throughout this
paper. In situations where the system consists of hetero-
geneous disks, we assume the use of the disk merging
technique [16] so that a logical collection of J homogeneous
disks can be constructed from the array of heterogeneous
disks. It was shown in [16] that the disk merging technique
yields secondary storage with high availability and max-
imum flexibility. In our context, it allows the use of the
combination load balancing (CLB) technique [11] to utilize
disk resources more efficiently.

We assume that each disk has a limited storage space of
C units. (For example, one unit of storage space could be
1 Gbyte.) Each variable-bit-rate (VBR) compressed video
stream is delivered over a constant-bit-rate (CBR) channel
by using temporal smoothing algorithms [17]. Bit rates of
independent video streams are considered to be statistically
equivalent [18]. Thus, each disk can support up to
N concurrent video streams. The file size of movie m is
Lm units. Therefore, it requires L ¼

P
m2F Lm units of disk

storage space to allocate one file copy for each movie title in
F . We assume that L < JC so that the system has spare

disk storage space to place multiple file copies for certain
movie titles in F . We also assume that L > C so that we
cannot replicate each movie title in F to each disk in D.

Let X ¼ ½xm;j�M�J denote a file assignment matrix, where
xm;j ¼ 1 if a file copy of movie m, m 2 F , is placed on disk j,
j 2 D; otherwise, xm;j ¼ 0. For X to be a feasible file
assignment solution, it must allocate at least one file copy
for each movie m in F . It must also satisfy the storage space
constraint on each disk in D, that is,

P
m2F xm;jLm � C,

8j 2 D. To extract from X the information of how each
movie title is replicated and where the movie and its
replicas (if it is replicated) are allocated, we define two
concepts.

We define a file replication instance as the vector
n ¼ ðn1; n2; . . . ; nMÞ, where nm ¼

P
j2D xm;j indicates the

integer number of file copies replicated for movie m. We
call a movie title that has c file copies a type-c movie.
Considering the fact that no performance gain can be
obtained by storing multiple file copies of any movie title on
one single disk [2], the nm file copies of movie m must be
allocated to nm different disks. The overall disk storage
space required by a file replication instance n is given byP

m2F nmLm. We further define a file allocation instance as a
disk location arrangement � ¼ ð�1;�2; . . . ;�MÞ or � ¼
ð�1;�2; . . . ;�JÞ for the set of movie files specified in the
file replication instance n. The mth element in � describes
the set of nm different disks, where the nm file copies of
movie m are stored. It corresponds to all nonzero items in
the mth row of X and is given by �m ¼ fj : j 2 D; xm;j ¼ 1g.
Similarly, the jth element in � describes the set of movie
titles of which a file copy is placed on disk j. It corresponds
to all nonzero items in the jth column of X and is given by
�j ¼ fm : m 2 F ; xm;j ¼ 1g. Thus, X can be equivalently
represented by the tuple hn;�;�i.

It was observed in [19] that interarrival times of user
requests in streaming multimedia systems are exponentially
distributed. We therefore assume that the aggregate arrivals
of user requests in the VOD system follow a Poisson process
with a rate of � requests per time unit. (For example, one
time unit could be 1 hour.) The request arrival processes for
different movie titles are mutually independent Poisson
processes. The demand rate for movie m creates its
popularity profile pm, defined as the relative probability of
the movie m being requested by users, and

PM
m¼1 pm ¼ 1.

The channel holding time of movie m is arbitrarily
distributed with a mean of 1=�m time units. In practice,
the movie popularity profiles are updated periodically to
capture the variability of user demand. During the time
interval between such updates, the request arrival rate of
movie m is given by �pm. Therefore, the traffic load Am of
movie m is given by �pm=�m. The aggregate traffic load Âc

of all type-c movies is obtained by
P

m2F ;nm¼c Am. The
aggregate traffic load A of all movie titles in F is computed
by
P

m2F Am.
For all numerical experiments that we have conducted in

this paper, we assume that the movie popularity profiles in
the VOD system are distributed so that

pm ¼
m��PM
k¼1 k

��
; 8m 2 F : ð1Þ

838 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

TABLE 1
Summary of Major Symbols

The parameter � in (1) determines the skewness of the
popularity distribution. This distribution function is com-
monly known as a Zipf-like distribution [20], since, when
� ¼ 1, it becomes a Zipf distribution [21]. Moreover, we
assume that the channel holding time of movie m, taking
into consideration user interactive behavior [22], follows a
lognormal distribution. Without loss of generality, we
assume that the mean channel holding time of movie m is
proportionally equivalent in magnitude to its file size.

4 PROBLEM FORMULATION AND TRANSFORMATION

Given the parameters and notation defined in Section 3, the
file assignment problem aiming at finding a feasible
solution that minimizes RBP in the VOD system can be
formulated as

Minimize RBPX

subject to
X
j2D

xm;j � 1; 8m 2 F ; ð2Þ

X
m2F

xm;jLm � C; 8j 2 D; ð3Þ

xm;j 2 f0; 1g; 8m 2 F ; 8j 2 D: ð4Þ

The inequality in (2) requires each movie in F to have at
least one file copy stored in the system, which we call the
movie availability constraint. The inequality in (3) describes
the storage space constraint for each disk in D. For each X, we
derive its corresponding tuple hn;�;�i so that its RBP can
be evaluated by a fixed-point approximation model of the
LBF system provided in the Appendix.

The fixed-point approximation model can be used to
evaluate the RBP of the LBF system with sufficient accuracy
[10]. However, it is complex in nature. Among other things,
the evaluation of the fixed-point approximation model is,
by itself, an iterative process. Thus, the objective function
RBP in this context has to be treated like a black box.
Moreover, this black box must take in the complete binary
representation of a feasible file assignment as the input so
that it can return a valid RBP result. This makes it infeasible
to drop the integrality requirements on the binary variables
in (4) and to compute for gradients. We are not aware of any
existing mathematical approach that can be applied to solve
such a constrained nonlinear integer optimization problem.
We have therefore resorted to GAs [12].

An important point to realize in a practical VOD system
is that the spare disk storage space available for accom-
modating multicopy movies is usually not very large.
Consequently, the region of infeasible solutions to the file
assignment problem can be rather large. Although con-
straint handling methods [23] can be applied to guide the
search direction of GAs toward the feasible region, we will
see in Section 8.1 that it can take a considerably long time
before GAs can locate the feasible region. For the sake of a
more efficient stochastic search using GAs, we have
designed a divide-and-conquer strategy that allows us to
transform the original file assignment problem in such a
way that we can operate GAs within a drastically reduced
yet effective search space.

To that end, we have divided the entire solution space of
the original problem into subspaces. Each subspace is an
exclusive set of file assignments sharing a common file
replication instance and is conquered by finding a good-
quality heuristic solution through the greedy file allocation
method presented in [11]. In that paper, the authors
established that such a heuristic solution, if any, aims for
uniform disk resource sharing of multicopy movie traffic and
disk load balancing on single-copy movie traffic. It yields a
closer-to-optimal RBP in the VOD system than those
methods proposed in [7], [8], and [9], which typically aim
for high disk connectivity. This way, the original problem is
reduced to finding an optimal file replication instance, of
which the heuristic solution achieves a globally minimal
RBP. Let �� ¼ ð��1;��2; . . . ;��MÞ or �� ¼ ð��1;��2; . . . ;��JÞ
denote the heuristic file allocation instance, if any, of a file
replication instance n. The file assignment problem can now
be reformulated as

Minimize RBPhn;��;��i

subject to nm 2 f1; 2; . . . ; $g; 8m 2 FX
m2��j

Lm � C; 8j 2 D;

where $ ¼ J is defined as the upper bound on nm, 8m 2 F .
We will see in Section 8.2 that in practice, an upper bound
smaller than J may be selected. Since the value of each
element in the file replication instance can be easily
controlled within a positive integer range ½1; $�, the movie
availability constraint in (2) of the original problem
formulation is readily satisfied in the transformed problem
formulation. For a system of J disks and M movie titles, the
search space is reduced from 2JM file assignment solutions
to merely $M file replication instances.

Recall that the overall disk storage space required by a
file replication instance n is given by

P
m2F nmLm. Clearly,

if
P

m2F nmLm > JC, no feasible file assignment solutions
can be found for n. Such a file replication instance is
therefore strictly nonallocatable. On the other hand, we will
see that, even if

X
m2F

nmLm � JC; ð5Þ

there is no certainty that any feasible file assignment
solution can be found for n. If this occurs, the file replication
instance is not strictly allocatable. This is due to hetero-
geneous movie file sizes but is also attributed to the
stringent requirement that multiple file copies of any movie
title in F must be placed on different disks. A file
replication instance satisfying (5) is hence considered as
likely allocatable. For the transformed problem, a likely
allocatable file replication instance is allocatable only if a
heuristic solution can be found by the greedy file allocation
method.

Based on this reasoning, we are able to further partition
the solution space of the transformed problem into two
separate regions: 1) strictly nonallocatable file replication
instances and 2) likely allocatable file replication instances.
Now, the transformed problem boils down to the design of
ad hoc methods so that we can operate GAs solely within

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 839

the search space of likely allocatable file replication
instances and thus further improve the stochastic search
efficiency.

Fig. 1 illustrates an example of how the proposed
transformation method drastically reduces the search space
of the file assignment problem. Here, we consider a system
of three disks and eight movie titles. Each disk has a storage
space of four units. Table 2 provides the corresponding
movie file size. As a result, 36.5 percent of the disk storage
space can be utilized to replicate certain movie titles. The
entry ðm; jÞ of each file assignment matrix depicted in Fig. 1
is 1 if a file copy of movie m is placed on disk j. The element
nm of each file replication instance describes the number of
file copies of movie m. We see in Fig. 1 that, even for such a
small system, the search space of the original problem is
reduced by more than four orders of magnitude. Only 355
out of the 507 likely allocatable file replication instances are
strictly allocatable, but we are not able to further confine the
search space to this narrower region.

5 SINGLE-OBJECTIVE EVOLUTIONARY

OPTIMIZATION

GAs are population-based generic search methods inspired
by the mechanism of natural selection obeying the rule of
“survival of the fittest” [24]. In a typical implementation of
GAs, a population of chromosomes is processed. Each
chromosome represents a candidate solution to the pro-
blem. Starting from an initial population of randomly

created chromosomes, GAs perform multidirectional sto-

chastic search through a genetic evolution process, without

the need for any problem information, except for the

objective function values. It is hoped that after a certain

number of generations, the best chromosome represents a

good-quality solution that is reasonably close to the optimal

solution. Considering that GAs have been extensively and

successfully used for solving various real-world complex

optimization problems due to their broad applicability, ease

of use, and global perspective [12], we shall base our

implementation of the single-objective evolutionary opti-

mization (SOEO) program in this paper on GAs.

5.1 Chromosome Representation

Fig. 2 depicts the chromosome structure of a file assign-

ment matrix in the original problem and that of a file

replication instance in the transformed problem. The gene

at the kth locus, k ¼ Jðm� 1Þ þ j, of a chromosome X in

the original problem controls a binary number indicating if

a file copy of movie m is placed on disk j in the

corresponding file assignment solution. Thus, the allele

space of each gene in the original problem is f0; 1g.
Similarly, the gene at the mth locus of a chromosome n in

the transformed problem controls a positive integer

representing the number of file copies replicated for movie

m specified in the corresponding file replication instance.

Thus, the allele space of each gene in the transformed

problem is f1; 2; . . . ; $g.

840 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 1. Reduce the search space by problem transformation in a system of three disks and eight movie titles. (a) File assignment solutions to the

original problem. (b) File replication instances to the original problem. (c) File replication instances to the transformed problem. (d) Strictly

nonallocatable file replication instances. (e) Likely allocatable file replication instances.

TABLE 2
Movie File-Size Distribution in the Three-Disk Example

Fig. 2. Chromosome structure. (a) File assignment matrix in the original

problem. (b) File replication instance in the transformed problem.

5.2 Choice of Population Size

The performance of GAs is susceptible to population size. In
general, a small population size increases the likelihood of
premature convergence due to the loss of niche, while a
large population size leads to a high computation cost. In
this paper, the principle of allele coverage established in [25]
has been used as a guideline to decide an appropriate value
for population size.

To prevent the premature convergence of GAs due to
poor population diversity, Reeves [25] suggested a prefer-
able property of an initial population such that “every
possible point in the search space should be reachable from
the initial population by crossover only.” This property may
only be achieved if the entire allele space is covered at each
locus in the whole population of chromosomes. Given the
population size K, the chromosome length M, and the
cardinality $ of the gene at each locus of the chromosome,
the probability � of allele coverage is computed by

� ¼ $!SðK;$Þ
$K

� �M
ð6Þ

in the transformed problem, where SðK;$Þ is the Stirling
number of the second kind [26]. Equation (6) serves as a
guideline for us to choose an appropriate K such that it is
large enough to ensure a sufficiently high probability of
allele coverage in the initial population. Note that for the
original problem, we can compute � from (6) simply by
replacing $ with 2 and using MJ as the chromosome
length. Table 3 enumerates the smallest K required to meet
� � 99 percent for each $ in the range ½2; J �, given J ¼ 10
and M ¼ 100.

5.3 Initial Population

A naive population handling approach for population
initialization is to generate the initial population of
chromosomes in a purely random way within the entire
solution space. For the original problem, this is done by
randomly selecting a binary number for each gene of the
chromosome. For the transformed problem, this is done by
marking the corresponding gene with a positive integer
randomly selected from the allele space. Due to the large
infeasible region inherent in the file assignment problem,
the initial population created in such a purely random way
likely contains many chromosomes far from the feasible
region. Our proposed transformation method allows us to
exploit the problem-specific knowledge of the file assign-
ment problem so that we can initialize the population in an
ad hoc way and obtain a diverse population sufficiently
close to the feasible region.

To that end, we create chromosomes for the initial
population by replicating movie titles in a greedy biased yet
random manner. Since our design goal with the proposed

transformation method is to operate GAs solely within the
search space of likely allocatable file replication instances,
we ensure that chromosomes in the initial population are
randomly generated within the domain of likely allocatable
file replication instances. Additionally, given the spare disk
storage space, it is preferable that multiple file copies are
allocated for movie titles with high traffic load. On the other
hand, we may replicate movie titles with a small file size
(though less popular) to fully utilize the disk storage space.

Bearing these concerns in mind, we have specifically
arranged all movie titles in decreasing order according to
Am. During the procedure of generating a chromosome,
for each movie m in that order, we mark its corresponding
gene with a positive integer nm randomly selected from
the range ½1; x�. Let O0 count the required disk storage
space for all marked genes. Let L0 count the overall file
size of all unmarked genes (one file copy for each such
movie title), except that of movie m. We set x as $ if
$Lm � JC �O0 � L0. Otherwise, it is given by the largest
positive integer satisfying xLm < JC �O0 � L0. A proce-
dure that implements this ad hoc method is shown in
Fig. 3.

5.4 Genetic Operators

In each cycle of the evolution process, a mating pool is
formed from the current population to enable reproduction
in the subsequent generation. For each pair of coupled
chromosomes in the mating pool, a uniform crossover
operator is used to promote information exchange between
the two chromosomes with an operational rate �. To
introduce greater variability into the offspring, for each
gene of the offspring, a uniform mutation operator with a
small probability � is applied. For the original problem, if
the gene xm;j is chosen for mutation, it is simply changed
from 1 to 0, and vice versa. For the transformed problem, if
the gene nm is chosen for mutation, it is altered with a
positive integer randomly selected from the allele space.

5.5 Repair Mechanism

It is possible that an offspring generated through the genetic
operators lies in the region of strictly nonallocatable file
replication instances. A purely random population hand-
ling approach would leave the offspring as is. In contrast, to
meet our design goal with the proposed transformation
method, we handle it in an ad hoc way. We specifically
apply a repair mechanism to correct the offspring into the

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 841

TABLE 3
Impact of $ on the Population Size K

Fig. 3. Ad hoc method for creating a chromosome for the initial

population.

region of likely allocatable file replication instances. An
operation of the repair mechanism randomly selects a
multicopy movie m and decreases nm by one. This
operation is repeated until the overall disk storage space
required by the chromosome drops below JC.

5.6 Implementation

Fig. 4 shows the general procedures of the SOEO imple-
mentation. Note that such an implementation is applicable
to both the original problem and the transformed problem.
While we will describe in Section 8.1 the detailed constraint
handling method required for dealing with the original
problem and the transformed problem with purely random
population handling, here, we provide the details of the
SOEO implementation for the transformed problem with ad
hoc population handling.

We start by creating an initial population of size K by
using the ad hoc method presented in Fig. 3. We identify the
heuristic solution for each chromosome through the greedy
file allocation method. If the chromosome is allocatable, we
compute its RBP. If no heuristic solution is found, we
impose a death penalty by setting the RBP of the
chromosome to 1. The fitness fðnÞ of each chromosome n

is obtained by 1� RBP.
In each generation of SOEO, we use the tournament

selection operator to select K solutions from the current
population, some of which may be duplicate, to form the
mating pool. Tournament selection is known to have better
or equivalent convergence and computational time com-
plexity properties when compared to any other selection
operator that exists in the literature [27]. For two chromo-
somes chosen for competition in a tournament, the winner
is the one with higher fitness. The rule is set in such a way
that any chromosome is made to participate in exactly two
tournaments. As a result, any chromosome in the current
population will have at most two copies in the mating pool.
Tournament selection essentially limits the number of
copies of each chromosome to be placed in the mating
pool, which is useful to prevent predominance of elitist
solutions and thus prevent premature convergence of GAs.

The K solutions in the mating pool are then genetically
varied through crossover and mutation operations, as
explained in Section 5.4. If the resulting chromosome is
strictly nonallocatable, we apply the repair mechanism to
correct the solution into the region of likely allocatable file
replication instances.

The mating pool and the offspring are combined into one
transitional population. In the same way as for the initial
population, we decide the RBP of each offspring and obtain
its fitness value. The best K chromosomes are selected and
placed in the new population for the next generation.

The evolution process is terminated after a predefined
number of G generations have been completed. Alterna-
tively, we presume convergence if the best solutions are not
improved over a certain succession of generations. In either
case, the file assignment with the highest fitness in the last
population is selected as the optimal solution. Ties are
broken by choosing the solution that requires the smallest
overall disk storage space.

6 PERFORMANCE INDICES

It was demonstrated in [11] that, for an LBF system with a
specified file replication instance, a file allocation instance
that ideally attains CLB always yields a lower bound on the
RBP. CLB is defined in such a way that for each c, c � 1, the
traffic wishing to access type-c movies is uniformly
distributed among all J

c

� �
groups of c disks chosen from

the set of J disks in the system. It was observed in [11] that
the working principle of CLB is intuitively due to the fact
that it maximizes the disk resource sharing of multicopy
movie traffic, in addition to a straightforward disk load
balancing on single-copy movie traffic. Based on the
definition of disk resource sharing, the amount of movie
traffic that comes to disk i generated by multicopy movies
that also reside in disk j is

P
m2�i\�j

Am=nm. It was shown
in [11] that if a file allocation instance ideally attains CLB,
the amount of type-c movie traffic received by disk i from
type-c movies that also reside in disk j is given by

ðc� 1ÞÂc

JðJ � 1Þ : ð7Þ

If each disk in the VOD system can accommodate at least
one file copy of each movie title, a request for any movie
title is blocked only if the stream capacity of all disks is used
up upon the arrival of the request. Recall that no further
performance gain can be obtained, even if multiple file
copies of the same movie title are stored on a single disk.
We would therefore be able to achieve the ideally minimal
RBP of the system adequately by placing exactly one file
copy of each movie title on each disk. Such a full-replication
solution is extremely unlikely and unnecessary to be
employed in practice. Nevertheless, the concept of full
replication allows us to utilize the idea of disk resource
sharing to design efficient performance indices that can be
used to estimate the quality of a feasible file assignment.

6.1 Multicopy Traffic Index

The full-replication solution indicates an ideal file replica-
tion instance n, where nm ¼ J , 8m 2 F . Such an ideal file

842 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 4. Flowchart of the SOEO implementation.

replication instance has one unique file allocation instance
that clearly attains CLB. Letting c ¼ J and Âc ¼ A in (7), we
readily find in this case that disk i receives a total of A=J
movie traffic from all movies that are also stored on disk j.

Accordingly, we define a multicopy traffic index (MTI)
given by

MTIhn;�;�i ¼

ffi
2

JðJ � 1Þ
X
i;j2D
i<j

� X
m2�i\�j

Am

nm
�A
J

�2
vuut ð8Þ

to estimate the quality of a file assignment solution hn;�;�i
on its assignment of multicopy movies as compared with
the ideal full-replication solution. More explicitly, we
measure for its file replication instance what proportion of
the movie traffic is for multicopy movies and for its file
allocation instance how evenly the multicopy movie traffic
is shared within each pair of disks. A smaller value of MTI
indicates a better file assignment solution regarding multi-
copy movies.

6.2 Single-Copy Traffic Index

The ideal full replication solution also indicates that there is
no single-copy movie on any disk in the system. For a real
file assignment solution hn;�;�i that has single-copy
movies, the traffic load of single-copy movies on disk j is
given by

P
m2�j;nm¼1 Am.

We therefore define a single-copy traffic index (STI)
given by

STIhn;�;�i ¼

ffi
1

J

X
j2D

� X
m2�j; nm¼1

Am

�2
vuut ð9Þ

to estimate the quality of a file assignment solution hn;�;�i
on its assignment of single-copy movies as compared with
the ideal full-replication solution that has 0 single-copy
movie traffic on each disk. More explicitly, we measure for
its file replication instance what proportion of the movie
traffic is for single-copy movies and for its file allocation
instance how evenly the single-copy movie traffic is
distributed among the disks. A smaller value of STI
indicates a better file assignment solution with respect to
single-copy movies.

6.3 Conflicting Relationship between MTI and STI

At first glance, each of these two performance indices
appears to indicate an attribute of an exclusive class of
movie titles for a given file assignment solution. While MTI
estimates the quality of a file assignment solution on its
assignment of multicopy movies, STI evaluates the quality of
the file assignment solution on its assignment of single-copy
movies only. We therefore might hope that MTI and STI do
not conflict with each other so that an optimal file assignment
solution would always be associated with the best values in
both MTI and STI. If that is the case, we would be able to form
a composite index simply by adding MTI and STI. Such an
easy-to-compute composite index would promise a sub-
stantial speedup of the SOEO presented in Section 5 by
simply replacing the cumbersome RBP evaluation.

However, it needs to be noted that the movie access
demand in the VOD system is highly skewed. Moreover,

the movie file size is also significantly asymmetric. To

achieve a good-quality allocation of multicopy movies, we

may have to suffer a poor-quality allocation of single-copy

movies to guarantee a feasible file assignment solution

satisfying the disk storage space constraint. Consequently,

there may exist a conflicting relationship between MTI and

STI, as we will see in Section 8.3.

6.4 Domination-Based Ranking

The concept of domination [12] has been conventionally used

in the classification of solutions for a multiobjective

optimization problem. Using this concept, solution x is said

to dominate solution y if 1) x is not worse than y in all

objectives and 2) x is strictly better than y in at least one

objective. On the other hand, the two solutions are said to be

nondominated solutions if neither can be said to dominate

the other. The nondominated set of solutions among a set of

solutions P therefore contains those chromosomes that are

not dominated by any member of P.
For a given P, it is useful to classify the entire set of

solutions into various nondomination levels. One effective

way of doing this is by the method of nondominated sorting

[28]. Using this method, solutions in P are sorted according

to an ascending level of nondomination. The nondomi-

nated solutions are grouped as rank-1 solutions. Once all

rank-1 solutions are identified, they are removed from the

set. Similarly, the nondominated solutions of the remaining

set of solutions are identified as rank-2 solutions and are

subsequently removed from the set in order to find rank-

3 solutions. This procedure is continued until all members

of P are classified into a nondomination level. An

illustrative example of how file assignment solutions can

be classified using the concept of domination with respect

to MTI and STI is shown in Fig. 5.

7 MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION

Given MTI and STI that jointly estimate the quality of a file

assignment solution, we can convert the transformed

problem into the following multiobjective optimization

problem:

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 843

Fig. 5. Domination in MTI and STI among five file assignment solutions.

A, C, and D are rank-1 solutions. B and E are rank-2 solutions.

Minimize MTIhn;��;��i

Minimize STIhn;��;��i

subject to nm 2 f1; 2; . . . ; $g; 8m 2 FX
m2��j

Lm � C; 8j 2 D:

The principle in solving a multiobjective optimization
problem is to search for a set of Pareto-optimal solutions,
including all the ultimate nondominated solutions [28], [29].
The curve formed by joining all Pareto-optimal solutions is
known as the Pareto-optimal front. The goal of multiobjective
optimization is thus to find a diverse set of nondominated
solutions that converges as close as possible to the Pareto-
optimal front.

Various implementations of multiobjective evolutionary
algorithms exist in the literature [28], [29]. Recent studies
have shown that elitism can significantly improve the
performance of multiobjective evolutionary algorithms [30].
It has also been demonstrated that the newly developed
NSGA-II outperforms all other popular elitist algorithms
[31]. We therefore base our implementation of the multi-
objective evolutionary optimization (MOEO) program in
this paper on the controlled elitist NSGA-II [32]. This
version of NSGA-II allows us to maintain a good population
diversity through a crowding distance measure, which avoids
the inconvenience of setting a sharing parameter commonly
required in several early implementations of multiobjective
evolutionary algorithms. In addition, it employs a controlled
elitism mechanism, which largely improves the convergence
capability of the algorithm toward the Pareto-optimal front.

7.1 Implementation

As the flowchart in Fig. 6 shows, we start by creating an
initial population of size K using the ad hoc method. We
identify the heuristic solution for each chromosome through
the greedy file allocation method. If the chromosome is

allocatable, we compute its MTI and STI by using (8) and
(9). If no heuristic solution is found, we impose a death
penalty by setting MTI of the chromosome to a sufficiently
large value MTI such that no feasible solution can yield an
MTI higher than MTI. Similarly, we set the STI of the
chromosome to a sufficiently large value STI such that no
feasible solution can yield an STI higher than STI. Note that
in this context, it is sufficient to let MTI ¼ A=J and
STI ¼ A=

ffiffiffiffi
J
p

. The nondominated sorting method classifies
the entire population into ascending levels of nondomi-
nated solutions with respect to MTI and STI. A lower rank
indicates a better front of nondominated solutions. For each
solution within the same front, we further assign its
crowding distance by using the procedure described in
[28, p. 248]. This metric conveniently estimates the density
of the neighborhood where a solution resides.

In each generation of MOEO, we use the crowded
tournament selection operator [28] to select K solutions
from the current population, some of which may be
duplicate, to form the mating pool. For two chromosomes
chosen for competition in a tournament, the winner is the
one with a lower rank or the one with a larger crowding
distance if both are of the same rank. These solutions are
genetically varied through uniform crossover and uniform
mutation operations, followed by the repair mechanism, if
necessary, to correct any strictly nonallocatable chromo-
some into the region of likely allocatable file replication
instances.

The mating pool and the offspring are combined into one
transitional population. In the same way as for the initial
population, we identify nondominated fronts of the transi-
tional population and estimate the crowding distance of
each solution. In order to prevent the algorithm from
premature convergence to a suboptimal nondominated
front, we use the controlled elitism mechanism presented
in [28] to promote an adaptive selection of elitist solutions
from each nondominated front in the transitional popula-
tion and force these widely spread solutions to coexist in the
new population for the next generation.

The evolution process is terminated after a predefined
number of G generations have been completed. Alterna-
tively, we presume convergence if the nondominated
solutions are not improved over a certain succession of
generations. In either case, we evaluate RBP for each rank-1
trade-off solution in the final population so that the global
optimal file assignment solution can be ascertained. Ties are
broken by choosing the solution that requires the smallest
overall disk storage space.

8 NUMERICAL EXPERIMENTS

We have conducted extensive experiments to examine the
performance of our proposed evolutionary approach. Here,
we report numerical results from five test systems:

. TS-1: J ¼ 10, and M ¼ 100.

. TS-2: J ¼ 20, and M ¼ 200.

. TS-3: J ¼ 30, and M ¼ 300.

. TS-4: J ¼ 40, and M ¼ 400.

. TS-5: J ¼ 50, and M ¼ 500.

844 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 6. Flowchart of the MOEO implementation.

Studies in [33] have shown that the performance of the
evolutionary approach is not sensitive to the changes in the
crossover rate � and the mutation probability � though with
a slower convergence rate as � increases. All experiments
reported in this paper set � ¼ 0:7 and � ¼ 0:01. The
population size K is chosen in such a way that � �
99 percent is ensured. Unless specified, all numerical results
are presented in the form of an observed mean from
10 independent runs of the corresponding experiment. The
radii of the 95 percent confidence intervals ([34, p. 273]) are
also provided where possible.

8.1 Impact of Problem Transformation
on SOEO-LBF

Our purpose with this experiment is to demonstrate the
impact of problem transformation on file assignment
optimization for the LBF system using SOEO (hence referred
to as SOEO-LBF). As discussed in Section 4, the region of
infeasible solutions to the file assignment problem can be
rather large. To implement SOEO-LBF for the original
problem, we need constraint handling techniques to guide
the search direction of GAs from the large infeasible region
toward the feasible region. The constraint handling method
proposed in [23] can be used in this context. This approach
efficiently handles constraints, without the need of setting
any penalty parameter commonly required in conventional
penalty-function-based constraint handling methods.

Let EX define the amount of constraint violation on disk
storage space by an infeasible chromosome X, which is
given by

EX ¼
X
j2D

X
m2F

xm;jLm � JC: ð10Þ

Let �E be a sufficiently large value such that no chromosome
would require excessive disk storage space higher than �E.
Note that it is sufficient to set �E ¼ JðL� CÞ for the file
assignment problem.

If X is a feasible chromosome, we evaluate its fitness by

fðXÞ ¼ �E þ 1� RBPXð Þ: ð11Þ

On the other hand, if X is an infeasible chromosome, we
evaluate its fitness by

fðXÞ ¼ �E �EX: ð12Þ

In particular, if X violates (2), we impose a death penalty by
setting EX ¼ �E. We also impose such a death penalty on X
if
P

m2F xm;j ¼ 0 for at least one j, j 2 D. Clearly, chromo-
somes with fitness higher than �E are feasible solutions.
With the fitness function defined in this form, we ensure for
the original problem that 1) the fitness of a feasible
chromosome is higher than that of an infeasible chromo-
some, 2) a comparison between two feasible chromosomes
is purely based on RBP, and 3) a comparison between two
infeasible chromosomes uses the information of constraint
violation on disk storage space alone.

For the purpose of comparison, we use the same
constraint handling method to implement SOEO-LBF for
the transformed problem with purely random population
handling. In this approach, the search space of GAs is the
entire domain of file replication instances. Consequently,
we again need constraint handling techniques to guide the
search direction of GAs from the large region of strictly
nonallocatable file replication instances toward the region
of allocatable file replication instances.

The results in Fig. 7 are obtained from the test system
TS-1. The disk model uses N ¼ 30. The movie file size is
randomly generated. The movie popularity distribution
follows (1), with � ¼ 0:271. We consider four different cases
by varying C from 14 to 17. With a smaller C, the region of
infeasible solutions to the file assignment problem is larger,
and the RBP of the LBF system is, in general, higher. The
results in Fig. 7 confirm that the constraint handling method
is effective in directing the search of GAs toward the
feasible region of the original problem. However, we
observe in all cases that SOEO-LBF for the transformed
problem consistently outperforms that for the original
problem. Even for such a small size system and even after
100,000 generations, the latter can only obtain solutions
with RBP up to 11 percent higher than those achieved by
the former in only 1,000 generations. Comparing between
the two population handling approaches for the trans-
formed problem, we see in all cases that the ad hoc
approach converges to better quality solutions within fewer
generations. The performance gain is more evident in large-
sizes systems, as shown in Table 4.

8.2 Impact of $ on SOEO-LBF

It needs to be noted that SOEO-LBF can require consider-
able CPU time due to the cumbersome evaluation of RBP

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 845

Fig. 7. Impact of problem transformation on SOEO-LBF. (a) Original problem. (b) Transformed problem with purely random population handling.

(c) Transformed problem with ad hoc population handling.

for each feasible solution explored in the evolution process.
This is true, because the RBP calculation in (17) relies on an
iterative process to obtain a fixed-point solution. It is also
true due to the enumeration of the combination set �ð�Þ
involved in (13) to estimate the reduced load request arrival
rate for a multicopy movie m on each disk in the set �m.
Such an enumeration would be rather cumbersome if a
movie title had a large number of file copies. On the other
hand, it is important to observe in (18) the dramatic
performance gain obtainable by movie m if its number of
replicas increases from nm to nm þ 1. Consequently, it is not
necessary to place a large number of file copies for any
movie title (even those popular ones) in a system of limited
disk storage space.

This point is demonstrated by running SOEO-LBF for
the same test system considered in Fig. 7, with $ varied
in the range ½2; J�. We also increase the skewness
parameter � from 0.271 to 0.4 and then to 1. Let Amax ¼
maxm2F Am and Amin ¼ minm2F Am. With a higher value of
�, the ratio Amax=Amin is larger. For this particular test

system, Amax=Amin ¼ 3:98, 6.92, and 100.54 when � ¼ 0:271,
0.4, and 1, respectively. Fig. 8 presents the RBP results of
the optimal solutions after 1,000 generations. Fig. 9
provides the average CPU time required on a 3.0-GHz
Pentium 4 machine for the 10 independent runs of SOEO-
LBF in each experiment. The quantities are plotted on a
logarithmic scale due to the large measured range.

These results confirm that SOEO-LBF with a large $
converges to solutions of statistically equivalent quality as
those obtained from SOEO-LBF with a small $, especially
when � is not large. Even when � ¼ 1, it is sufficient to
restrict $ to 5 in all cases, with different C values. On the
other hand, with large $, SOEO-LBF requires considerable
CPU time. This is mainly due to the cumbersome RBP
evaluation for feasible chromosomes typically having a
large number of file copies for certain movie titles. It is also
attributed to the large population size required to ensure
that � � 99 percent, as shown in Table 3. Note that even for
such a small size system, we have only managed to run
SOEO-LBF for � ¼ 1, with $ up to 7. This is ascribed to the

846 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

TABLE 4
Efficiency of SOEO-STI when � ¼ 0:271

Fig. 8. Impact of $ on the RBP performance of SOEO-LBF. (a) � ¼ 0:271. (b) � ¼ 0:4. (c) � ¼ 1.

Fig. 9. Impact of $ on the runtime efficiency of SOEO-LBF. (a) � ¼ 0:271. (b) � ¼ 0:4. (c) � ¼ 1.

exponential growth of CPU time, as can be observed in

Fig. 9.

8.3 Efficiency of Performance Indices

We now investigate the efficiency of MTI and STI when

applied to solve the file assignment problem using MOEO.

Our particular interest is to see if MOEO can obtain

solutions of comparable quality but require less CPU time

when compared to SOEO-LBF. We again use the test system

TS-1 for this purpose. We run MOEO for 1,000 generations

in each experiment, with a particular value on C and � that

we have considered before. We set $ to J in this context,

since the evaluation of the two easy-to-compute perfor-

mance indices does not involve the enumeration of any

combination set, as done with the RBP calculation.
The widely spread nondominated front of rank-1

solutions in the last population, as depicted in each plot

in Fig. 10 for C ¼ 14, clearly indicates a conflicting relation-

ship between MTI and STI. It is interesting to observe that

when � ¼ 0:271, the solution with a minimal RBP (marked

by “A” in the plot) turns out to be the one with the smallest

STI. This indicates that in situations where � is not large, it

could be sufficient to use SOEO with STI alone (i.e., SOEO-

STI) to find good-quality file assignments. This observation

is confirmed in Fig. 11, where we compare the solution

quality among SOEO-LBF, MOEO, and SOEO-STI. For

SOEO-LBF, we use the results presented in Fig. 8 at $ ¼ 10

for � ¼ 0:271 and � ¼ 0:4 and the ones at $ ¼ 7 for � ¼ 1,

since we have not managed to obtain results with a larger $

due to the exponential growth of CPU time. The results in

Fig. 11 demonstrate the sufficient accuracy of MOEO in all

cases. Despite the failure in all cases when � ¼ 1, SOEO-STI
is sufficiently accurate for � ¼ 0:271 and � ¼ 0:4.

Such an interesting property of STI is essentially due to
the disk storage space constraint and the nature of the
greedy file allocation method. With limited disk storage
space, the greater the number of file copies replicated for
certain movie titles, the greater the number of other movie
titles that would have only one single file copy. We have
seen in Fig. 8 that when � is not large, the optimal solutions
are, in general, those where no movie title has more than
two file copies. This results in fewer single-copy movies
and, hence, less proportion of the movie traffic for single-
copy movies. Consequently, such solutions are, in general,
associated with the smallest STI, provided that the single-
copy movie traffic is evenly distributed among the disks,
which is more or less ensured by the greedy file allocation
method [11].

This property of STI is further justified in Table 4 by the
extensive numerical results obtained from the five test
systems for � ¼ 0:271. In all cases, the disk model uses C ¼
14 and N ¼ 30. The movie file size is randomly generated.
Due to the exponential growth of CPU time required for a
large $, we are not able to carry out SOEO-LBF experiments
for the large size test systems if we shall set $ ¼ J . For the
purpose of performance comparison, we have chosen to set
$ ¼ minðJ; dAmax=AmineÞ. This leads to $ ¼ 4 for TS-1, $ ¼
6 for TS-2 and TS-3, and $ ¼ 8 for TS-4 and TS-5. This is a
conservative upper bound, since we have seen in Fig. 8 that,
even if Amax=Amin ¼ 100:54 when � ¼ 1, it is sufficient to
restrict $ to 5. Table 4 again confirms the efficiency of MTI
and STI. Although MOEO converges slowly in the large size
test systems and hence requires more generations to obtain

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 847

Fig. 10. Rank-1 solutions in the last population of MOEO. (a) � ¼ 0:271. (b) � ¼ 0:4. (c) � ¼ 1. The solution with a minimal RBP is marked by “A.”

Fig. 11. Performance comparison among SOEO-SRT, SOEO-LBF, MOEO, and SOEO-STI. (a) � ¼ 0:271. (b) � ¼ 0:4. (c) � ¼ 1.

comparable solutions, SOEO-STI succeeds in finding solu-
tions of statistically equivalent quality within the same
number of generations but with significantly reduced CPU
time by up to two orders of magnitude when compared to
SOEO-LBF.

Finally, we implement SOEO-SRT by using the analytical
model of the SRT system presented in [10] to demonstrate
the inefficiency of SRT. We run SOEO-SRT for the
transformed problem with purely random population
handling. For all the experiments presented in Fig. 11 and
Table 4, except those for TS-4 and TS-5, SOEO-SRT indeed
obtains optimal solutions, which achieve disk load balan-
cing in the context of the SRT system. However, such
solutions yield very poor RBP performance in the more
realistic LBF system. A large variation can be seen in Fig. 11
when � ¼ 1. Even in cases where � ¼ 0:271, we see in
Table 4 that the RBP performance can be up to twice as bad.
Moreover, with purely random population handling,
SOEO-SRT cannot even find a feasible solution after
1,000 generations for TS-4 and TS-5. This again demon-
strates the robustness of our proposed evolutionary
approach by operating GAs solely within the search space
of likely allocatable file replication instances to this difficult
file assignment problem.

9 CONCLUSIONS

In this paper, we have presented an evolutionary approach
for tackling a realistic and challenging file assignment
problem for a large-scale VOD system. With the design goal
of a computationally efficient stochastic search using GAs,
we have proposed an elaborate transformation method for
the problem. This essentially relies on a good performance
greedy file allocation method so that a divide-and-conquer
strategy can be adopted and ad hoc population handling
methods can be designed to operate GAs within a drastically
reduced search space and yet obtain good-quality file
assignment solutions. We have further proposed two easy-
to-compute performance indices, namely, MTI and STI.
These two attributes can jointly estimate the quality of a file
assignment solution with respect to RBP. By means of MTI
and STI, we are able to circumvent the cumbersome RBP
evaluation in each cycle of the evolution process and yet
obtain file assignment solutions of comparable quality. We
have also observed that in situations where the skewness of
the movie popularity distribution is not large, the proposed
evolutionary approach can be made more efficient by using
STI alone, since it indicates with sufficient accuracy the
optimal solutions to the file assignment problem in such
circumstances.

APPENDIX

An accurate approximate analysis for RBP evaluation in an
LBF system using the fixed-point method was presented in
[10]. For the purpose of this paper, we briefly describe here
how we derive the set of fixed-point equations.

Let �
ðiÞ
j be the stationary probability that disk j is in state i,

or in other words, it delivers i video streams concurrently.

Define ~�j ¼ �
ð0Þ
j ; �

ð1Þ
j ; . . . ; �

ðNÞ
j

	

and ~� ¼ ~�1; ~�2; . . . ; ~�J

	

. Let

y
ðiÞ
j ðmÞ be the rate of requests for movie m, m 2 �j, given

that disk j is in state i. Let y
ðiÞ
j be the rate of requests for all

movie files in �j when disk j is in state i. We have

y
ðiÞ
j ¼

P
m2�j

y
ðiÞ
j ðmÞ.

The state-transition process of disk j is modeled as

a birth-death process [35], with the birth rate y
ðiÞ
j ,

i ¼ 0; 1; . . . ; N � 1, and the death rate i�̂
ðiÞ
j , i ¼ 1; 2; . . . ; N .

For disk j, j ¼ 1; 2; . . . ; J , the reduced load request arrival

rate y
ðiÞ
j when disk j is in state i is given by

y
ðiÞ
j ¼

X
m2�j

Xnm
h¼1

�pm
h

� � X
S2�ð�m�fjg; h�1Þ

Y
u2S

�ðiÞu

�
Y

v2�m�fjg�S

XN
k¼iþ1

�ðkÞv ;

ð13Þ

where �ð�m � fjg; h� 1Þ defines the set of all possible

combinations of choosing h� 1 disks out of �m � fjg, given

that disk j is in �m. We also have

1

�̂
ðiÞ
j

¼ 1

y
ði�1Þ
j

X
m2�j

y
ði�1Þ
j ðmÞ
�m

ð14Þ

and

�
ðiÞ
j ¼

N !

i!
QN�1

k¼i
y
ðkÞ
j

�̂
ðkþ1Þ
j

�
ðNÞ
j ; ð15Þ

where

XN
i¼0

�
ðiÞ
j ¼ 1: ð16Þ

The system of (13), (14), (15), and (16) forms a set of

fixed-point equations:

~� ¼ fð~�Þ; ð17Þ

which can often be solved efficiently by the successive

substitution method [36]. By the disk independence

assumption [10] and having obtained ~� by solving (17),

the RBP of the LBF system is computed by

RBPhn;�;�i ¼
X
m2F

pm
Y
j2�m

�
ðNÞ
j : ð18Þ

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for

their valuable comments. The work described in this paper

was partially supported by grants from the City University

of Hong Kong (project No. 7001458) and partially supported

by the Australian Research Council (ARC). Part of the work

presented in this paper was done while Jun Guo and Yi

Wang were visiting the Department of Electronic Engineer-

ing, City University of Hong Kong.

REFERENCES

[1] W.D. Sincoskie, “System Architecture for a Large-Scale Video-on-
Demand Service,” Computer Networks and ISDN Systems, vol. 22,
no. 2, pp. 155-162, 1991.

848 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

[2] T.D.C. Little and D. Venkatesh, “Popularity-Based Assignment of
Movies to Storage Devices in a Video-on-Demand System,”
Multimedia Systems, vol. 2, pp. 280-287, Jan. 1995.

[3] A.N. Mourad, “Issues in the Design of a Storage Server for Video-
on-Demand,” Multimedia Systems, vol. 4, pp. 70-86, 1996.

[4] D.N. Serpanos, L. Georgiadis, and T. Bouloutas, “MMPacking: A
Load and Storage Balancing Algorithm for Distributed Multi-
media Servers,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 8, no. 1, pp. 13-17, Feb. 1998.

[5] K.S. Tang, K.T. Ko, S. Chan, and E. Wong, “Optimal File
Placement in VOD System Using Genetic Algorithm,” IEEE Trans.
Industrial Electronics, vol. 48, no. 5, pp. 891-897, Oct. 2001.

[6] Y.W. Leung and R.Y.T. Hou, “Assignment of Movies to Hetero-
geneous Video Servers,” IEEE Trans. Systems, Man, and Cybernetics
A, vol. 35, no. 5, pp. 665-681, Sept. 2005.

[7] J.L. Wolf, P.S. Yu, and H. Shachnai, “Disk Load Balancing for
Video-on-Demand Systems,” Multimedia Systems, vol. 5, no. 6,
pp. 358-370, Nov. 1997.

[8] S.L. Tsao, M.C. Chen, M.T. Ko, J.M. Ho, and Y.M. Huang, “Data
Allocation and Dynamic Load Balancing for Distributed Video
Storage Server,” J. Visual Comm. and Image Representation, vol. 10,
no. 2, pp. 197-218, 1999.

[9] Y. Zhao and C.C.J. Kuo, “Video-on-Demand Server System Design
with Random Early Migration,” Proc. IEEE Int’l Symp. Circuits and
Systems (ISCAS ’03), vol. 2, pp. 640-643, May 2003.

[10] J. Guo, E.W.M. Wong, S. Chan, P. Taylor, M. Zukerman, and K.S.
Tang, “Performance Analysis of Resource Selection Schemes for a
Large-Scale Video-on-Demand System,” IEEE Trans. Multimedia,
vol. 10, pp. 153-159, 2008.

[11] J. Guo, E.W.M. Wong, S. Chan, P. Taylor, M. Zukerman, and K.S.
Tang, “Combination Load Balancing for Video-on-Demand
Systems,” to be published in IEEE Trans. Circuits and Systems for
Video Technology.

[12] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[14] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
Approaches. MIT Press, 1988.

[15] D. Sitaram and A. Dan, Multimedia Servers: Applications, Environ-
ments and Design. Morgan Kaufmann, 2000.

[16] R. Zimmermann and S. Ghandeharizadeh, “Highly Available and
Heterogeneous Continuous Media Storage Systems,” IEEE Trans.
Multimedia, vol. 6, no. 6, pp. 886-896, Dec. 2004.

[17] S.C. Liew and D.C.-Y. Tse, “A Control-Theoretic Approach to
Adapting VBR Compressed Video for Transport over a CBR
Communications Channel,” IEEE/ACM Trans. Networking, vol. 6,
no. 1, pp. 42-55, Feb. 1998.

[18] M. Krunz, R. Sass, and H. Hughes, “Statistical Characteristics and
Multiplexing of MPEG Streams,” Proc. IEEE INFOCOM ’95, vol. 2,
pp. 455-462, Apr. 1995.

[19] C.P. Costa, I.S. Cunha, A. Borges, C.V. Ramos, M.M. Rocha, J.M.
Almeida, and B. Ribeiro-Neto, “Analyzing Client Interactivity in
Streaming Media,” Proc. 13th Int’l Conf. World Wide Web (WWW
’04), pp. 534-543, 2004.

[20] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies for
an On-Demand Video Server with Batching,” Proc. Second ACM
Int’l Conf. Multimedia (Multimedia ’94), pp. 15-23, 1994.

[21] G.K. Zipf, Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Addison-Wesley, 1949.

[22] P. Branch, G. Egan, and B. Tonkin, “Modeling Interactive Behavior
of a Video-Based Multimedia System,” Proc. IEEE Int’l Conf.
Comm. (ICC ’99), vol. 2, pp. 978-982, June 1999.

[23] K. Deb, “An Efficient Constraint Handling Method for Genetic
Algorithms,” Computer Methods in Applied Mechanics and Eng.,
vol. 186, no. 2-4, pp. 311-338, June 2000.

[24] J.H. Holland, Adaptation in Natural and Artificial Systems. Univ. of
Michigan Press, 1975.

[25] C.R. Reeves, “Using Genetic Algorithms with Small Populations,”
Proc. Fifth Int’l Conf. Genetic Algorithms (ICGA ’93), pp. 92-99, 1993.

[26] Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables, M. Abramowitz and I.A. Stegun, eds. Dover,
1972.

[27] D.E. Goldberg and K. Deb, “A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms,” Proc. First Workshop
Foundations of Genetic Algorithms (FOGA ’91), vol. 1, pp. 69-93,
1991.

[28] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[29] C.A.C. Coello, D.A.V. Veldhuizen, and G.B. Lamont, Evolutionary
Algorithms for Solving Multiobjective Problems. Kluwer Academic
Publishers/Plenum, 2002.

[30] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results,” Evolutionary Com-
putation, vol. 8, no. 2, pp. 173-195, 2000.

[31] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans.
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002.

[32] K. Deb and T. Goel, “Controlled Elitist Non-Dominated Sorting
Genetic Algorithms for Better Convergence,” Proc. First Int’l Conf.
Evolutionary Multi-Criterion Optimization (EMO ’01), pp. 67-81,
Mar. 2001.

[33] J. Guo, “Two Problems in Stochastic Service Systems,” PhD
dissertation, The Univ. of Melbourne, 2006.

[34] S.K. Bose, An Introduction to Queueing Systems. Kluwer Academic
Publishers/Plenum, 2002.

[35] H. Akimaru and K. Kawashima, Teletraffic: Theory and Applications,
second ed. Springer-Verlag, 1999.

[36] W.J. Stewart, Introduction to the Numerical Solution of Markov
Chains. Princeton Univ. Press, 1994.

Jun Guo received the BE degree in automatic
control engineering from Shanghai University of
Science and Technology, Shanghai, in 1992 and
the ME degree in telecommunications engineer-
ing and the PhD degree in electrical and
electronic engineering from the University of
Melbourne, Melbourne, in 2001 and 2006,
respectively. From 2003 to 2004, he was a
research associate in the Department of Elec-
tronic Engineering, City University of Hong

Kong. Since 2005, he has been with the Networks Research Group,
School of Computer Science and Engineering, The University of New
South Wales. His research interests include multicast in wired/wireless
networks. He is a member of the IEEE.

Yi Wang received the BE degree from South
China University of Technology, Guangzhou,
China, in 2002, and the ME degree in tele-
communications engineering from the University
of Melbourne, Melbourne, in 2003. She is
currently working toward the PhD degree in the
School of Computer Science and Information
Technology, RMIT University. From 2003 to
2004, she was a research assistant with the
Department of Electrical and Electronic Engi-

neering, The University of Melbourne. In 2004, she was a research
associate in the Department of Electronic Engineering, City University of
Hong Kong, Hong Kong. Her research interests include biometric
recognition and indexing techniques. She is a student member of the
IEEE.

Kit-Sang Tang received the BSc degree from
the University of Hong Kong in 1988 and the
MSc and PhD degrees from the City University
of Hong Kong in 1992 and 1996, respectively.
He is currently an associate professor in the
Department of Electronic Engineering, City
University of Hong Kong. From 2004 to 2005,
he was the associate editor for the IEEE
Transactions on Circuits and Systems Part II.
He is currently the associate editor for the

Dynamics of Continuous, Discrete and Impulsive Systems Series B.
He has published more than 60 journal papers and four book chapters
and is a coauthor of two books, focusing on genetic algorithms and
chaotic theory. He is a member of the IEEE, the Nonlinear Circuits and
Systems Technical Committee of the IEEE Circuits and Systems
Society, and the Technical Committee on Optimal Control of the IFAC.

GUO ET AL.: EVOLUTIONARY OPTIMIZATION OF FILE ASSIGNMENT FOR A LARGE-SCALE VIDEO-ON-DEMAND SYSTEM 849

Sammy Chan received the BE and MEngSc
degrees in electrical engineering from the Uni-
versity of Melbourne, Melbourne, in 1988 and
1990, respectively, and the PhD degree in
communication engineering from the Royal
Melbourne Institute of Technology in 1995. He
was with the Telecom Australia Research
Laboratories as a research engineer from 1989
to 1992 and as a senior research engineer and
project leader from 1992 to 1994. Since De-

cember 1994, he has been with the Department of Electronic
Engineering, City University of Hong Kong, where he is currently an
associate professor. He is a member of the IEEE.

Eric W.M. Wong received the BSc and MPhil
degrees in electronic engineering from the
Chinese University of Hong Kong, Hong Kong,
in 1988 and 1990, respectively, and the PhD
degree in electrical and computer engineering
from the University of Massachusetts, Amherst,
in 1994. In 1994, he joined the City University of
Hong Kong, where he is currently an associate
professor in the Department of Electronic En-
gineering. His most notable research work

involves the first workable model on state-dependent dynamic routing.
Since 1991, the model has been used by AT&T to design and dimension
its telephone network that uses real-time network routing. His research
interests include the analysis and design of telecommunications
networks, optical burst switching, and video on demand. He is a senior
member of the IEEE.

Peter Taylor received the BSc (Hons) and PhD
degrees in applied mathematics from the Uni-
versity of Adelaide in 1980 and 1987, respec-
tively. After periods at the universities of
Western Australia and Adelaide, he moved, at
the beginning of 2002, to Melbourne. In January
2003, he was the inaugural professor of opera-
tions research at the University of Melbourne.
He has been active on the organizing commit-
tees of many conferences, is the editor in chief

of Stochastic Models and is an associate editor for Queueing Systems.
He is one of the chief investigators of the Australian Research Council
(ARC) Centre of Excellence in Mathematical and Statistical Modelling of
Complex Systems. In addition, he was a key researcher in the CRC for
Smart Internet Technology and has been the recipient of nine large
grants from the ARC. His research interests include stochastic
processes, applied probability, in particular applications in telecommu-
nications, and the interaction of stochastic modeling with optimization
and optimal control. He has published around 85 papers in internation-
ally refereed journals and approximately 20 technical reports dealing
with topics such as the theory of Markov chains, insensitivity theory,
queuing networks, loss networks, matrix-analytic methods, network
optimization, and stochastic Petri nets. In addition, he has several
papers on the performance analysis and control of telecommunications
systems. He has coauthors from 10 countries of the five continents.

Moshe Zukerman received the BSc degree in
industrial engineering and management and the
MSc degree in operations research from Tech-
nion—Israel Institute of Technology and the PhD
degree in electrical engineering from the Uni-
versity of California, Los Angeles (UCLA) in
1985. He was an independent consultant with
the IRI Corp. and a postdoctoral fellow at UCLA
from 1985 to 1986. He was with Telstra
Research Laboratories (TRL) as a research

engineer from 1986 to 1988 and as a project leader from 1988 to
1997. From 1990 to 2001, he taught and supervised graduate students
at Monash University. In 1997, he joined the University of Melbourne,
where he is currently a professor and is responsible for promoting and
expanding telecommunications research and teaching in the Electrical
and Electronic Engineering Department. He served on the editorial
boards of the Australian Telecommunications Research Journal,
Computer Networks, and the IEEE Communications Magazine. He also
served as a guest editor of two issues of the IEEE Journal on Selected
Areas in Communications. He currently serves on the editorial boards of
the IEEE/ACM Transactions on Networking and the International
Journal of Communication Systems. He has more than 200 publications
in scientific journals and conference proceedings. He is a coauthor of
two award-winning conference papers. He is a fellow of the IEEE. He is
the recipient of the 1990 Telstra Research Laboratories Outstanding
Achievement Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

850 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

