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Abstract

This thesis investigates some properties of complex structures on nilpotent Lie alge-

bras. In particular, we focus on nilpotent complex structures that are characterized

by a suitable J-invariant ascending or descending central series dj and dj respec-

tively. In this thesis, we introduce a new descending series pj and use it to give

a proof of a new characterization of nilpotent complex structures. We examine

also whether nilpotent complex structures on stratified Lie algebras preserve the

strata. We find that there exists a J-invariant stratification on a step 2 nilpotent

Lie algebra with a complex structure.
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Introduction

In recent years, complex structures on nilpotent Lie algebras have been shown

to be very useful for understanding some geometric and algebraic properties of

nilmanifolds, which are compact quotients of a simply connected nilpotent Lie group

with a complex structure. Complex structures on 6 dimensional nilpotent Lie al-

gebras were first investigated by Salamon in [26], who completed the classification

of 6 dimensional nilpotent Lie algebras with complex structures. Unfortunately,

his methods can not be extended to higher dimensional Lie algebras. Later on,

Ovando made a classification of 4 dimensional solvable Lie algebras with com-

plex structures in [22]. In [4], Cordero, Fernández, Gray and Ugarte introduced

nilpotent complex structures and they studied 6 dimensional nilpotent Lie algebras

with nilpotent complex structures in [5] and provided a classification. Meanwhile,

as the ascending central series is not necessarily J-invariant, they introduced a

J-invariant ascending central series to characterize nilpotent complex structures.

More recently, Latorre, Ugarte and Villacampa defined the space of nilpotent com-

plex structures on nilpotent Lie algebras and further studied complex structures on

nilpotent Lie algebras with one dimensional center [15], [16]. They also provided a

structure theorem, describing the ascending central series of 8 dimensional nilpotent

Lie algebras with complex structures. In [12], Gao, Zhao and Zheng studied the

relation between the step of a nilpotent Lie algebra and the smallest integer j0 such

that the J-invariant ascending central series stops. Furthermore, they introduced

a J-invariant descending central series, which is another instrumental to character-

ize nilpotent complex structures. It is clear that a classification of nilpotent Lie

algebras would help to study nilpotent complex structures. However, since little is
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known about the classification of real Lie algebras with dimensions higher than 7,

it is an interesting question to study algebraic properties of higher dimensional real

nilpotent Lie algebras with complex structures. In the paper referred to above, the

language of differential forms is generally, we use the language of Lie algebras and

provide a simple proof.

In this thesis, we consider a special type of nilpotent Lie algebras: stratified Lie

algebra. Tanaka proposed the concept of stratified Lie algebras [27], [28] and this was

further developed by Yamaguchi [29]. Recent results on nilpotent Lie algebras with

a stratification can be found in [7], [8], [17]. A complex structure J on a stratified Lie

algebra n is said to be strata-preserving if it preserves each layer of the stratification.

One of our goal is to examine the strata-preserving property of complex structures

on stratified Lie algebras.

In Chapter 1, we introduce the notation and preliminary results. In particu-

lar, we will state the Newlander–Nirenberg Theorem, which is in the background

throughout this thesis. In Section 1.1, we provide some definitions of smooth and

complex manifolds, as well as the definition of complex structures on vector spaces.

In particular, we show that a real vector space V with a complex structure J must

admit a J-invariant inner product and a J-adapted orthonormal basis. Next, in

Section 1.2 we introduce basic Lie theoretic tools and left-invariant complex struc-

tures on Lie groups, which leads to the integrability condition of a complex structure

on a Lie algebra g.

Chapter 2 is the main chapter of the thesis and it is divided into several sections.

Our main contributions are in this chapter. In the first 4 sections, we shall provide

some general results on nilpotent Lie algebras with complex structures. Some ap-

plications of these results are studied in Section 2.5 and 2.6. We next explain the

contents of each section in detail.

We first introduce, in Section 2.1, stratified Lie algebras and provide some exam-

ples. In particular, we show that not every even-dimensional nilpotent Lie algebra

admits a complex structure, for instance, a class of 2n-dimensional filiform algebras.

6



27/01/2022

Next, in Section 2.2 we study the central series of nilpotent Lie algebras with com-

plex structures. In particular, we show that there exists a stratification on a 2-step

nilpotent Lie algebra with a complex structure J such that J is strata-preserving.

The formal definition of nilpotent complex structures on Lie algebras appears in

Section 2.3. The nilpotency of complex structures implies the nilpotency of Lie al-

gebras. Our main objective here is to find a way to characterize nilpotent complex

structures J by a J-invariant descending central series as the characterization of J is

given by the J-invariant ascending central series dj, which is studied in [4]. On the

one hand, using the property of dj, we deduce that if a 2n dimensional non-Abelian

Lie algebra admits a nilpotent complex structure, then 2 ≤ dim z ≤ 2n − 2. This

implies that the Lie algebra of strictly upper triangular matrices does not admit

nilpotent complex structures. One the other hand, we focus on the J-invariant de-

scending central series dj, which is first introduced in [12], and show that cj(n) ⊆ dj,

where cj(n) is the descending central series of n. Meanwhile, we introduce a new

type of descending central series pj, which provides a method to show the following

theorem and characterize nilpotent complex structures.

Theorem. Let n be a Lie algebra with a complex structure J. The following are

equivalent:

(i) J is nilpotent of step j0;

(ii) pj0 = {0} and pj0−1 6= {0};

(iii) dj0 = {0} and dj0−1 6= {0},

where dj and pj are as in Definition 2.3.2 and Definition 2.3.19.

One of the important consequence of this theorem is that strata-preserving com-

plex structures are nilpotent complex structures of step k, where k is the nil-index

of stratified Lie algebras. Conversely, nilpotent complex structures preserve the

descending central series cj(n) if cj(n) = ck−j(n). Moreover, if J is nilpotent of step

j0, where k ≤ j0, the inclusion relations between the J-invariant descending and
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ascending central series are more explicit as follows

cj(n) ⊆ cj(n) + Jcj(n) ⊆ pj + Jpj ⊆ dj ⊆ dj0−j ⊆ cj0−j(n).

In Section 2.4 we investigate complex structures on the Lie algebra direct sum of

two nilpotent Lie algebras.

In the last two sections, we focus on stratified Lie algebras with nilpotent com-

plex structures. In particular, we study the strata-preserving properties of complex

structures on 2-step stratified Lie algebras in Section 2.5. We will give a new proof

that every complex structure structure on a 2-step nilpotent Lie algebra is nilpo-

tent of step either 2 or 3, the original proof is in [12] and [25]. Moreover, under the

assumption that dim n2 = 2, we have the following theorem.

Theorem. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex structure

J such that dim n2 = 2. Then

(i) J is nilpotent of step 2;

(ii) if dim d1 = 2, then Jn2 = n2.

In Subsection 2.5.1 we present a case study on 6 dimensional 2-step nilpotent

Lie algebras with complex structures.

Finally, in the last section we will investigate step k ≥ 3 stratified Lie algebras

with complex structures. We show that if a 3-step stratified Lie algebra has a

complex structure J that preserves the last layer, then J must be nilpotent of step

3. Furthermore, under the condition z = nk, one can show that if J is nilpotent of

step k, then J preserves z.
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Chapter 1

Complex structures on real manifolds and Lie algebras

In this thesis, we will study and discuss a special class of complex manifolds. For

the reader’s convenience, we shall review some basic results about manifolds and

Lie theory. Most of this background material can be found in [13], [14] and [18]. We

start with the basic concept of manifolds in Section 1.1. There are many different

types of manifolds. In this thesis, we are interested in manifolds that admit complex

structures. Next, in Section 1.2 we provide some fundamental facts in Lie theory

and investigate complex structures in real Lie algebras.

1.1 Complex structures on real smooth manifolds

Definition 1.1.1. A topological space is an ordered pair (M, τ), where M is a set

and τ is a collection of subsets of M, satisfying the following conditions:

(a) The empty set Ø and M itself belong to τ ;

(b) if Gi ∈ τ for all i ∈ I, then ⋃i∈I Gi ∈ τ , where I is the set of indexes which

can be either finite or infinite;

(c) if Gi ∈ τ for i = 1, . . . , n, then ⋂ni=1 Gi ∈ τ.

If τ is clear from the context, then we often refer to M as a topological space.

If the topology has a countable basis, then a topological space M is called

second countable; if distinct points can be separated by neighbourhoods, then M

is Hausdorff. Let (M, τM) and (N, τN) be topological spaces with m = dimM and

n = dimN . A function f : M → N is continuous if V ∈ τN , then its inverse image

f−1(V) ∈ τM . Furthermore, a function f : M → N is a homeomorphism if

9
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(a) f is bijective;

(b) both f and f−1 are continuous.

If f exists, then m = n.

Definition 1.1.2. Let M be a topological space.

(a) A coordinate chart on M is a pair (U , φ), where U is an open subset of M

and φ : U → Ũ is a homeomorphism from U to φ(U) = Ũ ⊆ Rn.

(b) An atlas A is a collection of coordinate charts {(Uα, φα) : φα : Uα → Rn}α∈C

such that Uα covers M , i.e., ⋃α∈C Uα = M and such that φα ◦ φ−1
β is a home-

omorphism for all α, β ∈ C, where C is an index set and φα ◦ φ−1
β is called a

transition map.

(c) An atlas A is maximal if it is not properly contained in any larger atlas.

We say that a second countable, Hausdorff topological space is a topological

manifold if it admits a maximal atlas.

Remark 1.1.3. (i) We say that M is a topological manifold of dimension n if each

point of M has a neighborhood that is homeomorphic to an open subset of Rn. We

denote the dimension of M by dimM.

(ii) Given a chart (U , φ), the map φ is called a coordinate map. We define

local coordinates on U by φ(p) = (x1(p), . . . , xn(p)), where p is a point at U and

(x1, . . . , xn) are the component functions of φ.

(iii) By Zorn’s Lemma, every atlas A is contained in a unique maximal atlas.

Let U ⊆ Rn and V ⊆ Rm be open subsets. In the sense of ordinary calculus, a

real valued function f : U → V is called smooth if it is infinitely differentiable. A

smooth function f : U → V is called a diffeomorphism if f is bijective and f−1 is

smooth. Notice that the word smooth may be defined differently by some authors.

Throughout this thesis, smooth is synonymous of C∞.

Definition 1.1.4. Let M be a topological manifold. An atlas A = (Uα, φα) is called

a smooth atlas if all transition maps

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)
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are diffeomorphism, where Uα ∩ Uβ 6= {0}. A topological manifold with a maximal

smooth atlas is a smooth manifold.

Remark 1.1.5. We say that two atlases are equivalent if their union is an atlas. In

general, different atlases could give the same collection of smooth functions on M.

For instance, [18, p13] the atlases on Rn

A1 = {(Rn, IdRn)} and A2 = {(B1(x), IdB1(x)) : x ∈ Rn}

are smooth, where Id is the identity map and B1(x) is the open ball of radius 1

around x, and their union is an atlas. We define a function f : M → R to be

smooth if and only if f · ϕ−1 is smooth in the sense of ordinary calculus for each

coordinate chart (U,ϕ) in the atlas. Hence defining the maximal smooth atlas is

an appropriate way of defining the equivalence class of smooth atlases. For more

examples, please refer to [13] and [18].

Next, we provide some examples of smooth manifolds.

Example 1.1.6. (i) The Euclidean space Rn is a smooth manifold. The maximal

atlas contains (Rn, IdRn).

(ii) Let M(n,R) be the space of n×n real matrices. The general linear group is

GL(n,R) = {T ∈M(n,R) : detT 6= 0},

where det : GL(n,R)→ R is a continuous function. This is a smooth n2-dimensional

manifold since it is an open subset of the n2-dimensional vector space M(n,R).

There are still lots of interesting examples of smooth manifolds that we will not

introduce here. See, e.g., [18,Chapter 1].

Definition 1.1.7. Let M,M ′ be smooth manifolds with atlases A and A′ respec-

tively. A function f : M → Rn is smooth if for all charts (U, φ) ∈ A, the function

f ◦ φ−1 : φ(U)→ Rn
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is smooth. A continuous function F : M → M ′ is a smooth map if for all charts

(U, φ) ∈ A of M and all charts (V, ψ) ∈ A′ of M ′, the map

ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ ψ(V )

is smooth. Furthermore, F is a diffeomorphism between manifolds accordingly.

Remark 1.1.8. (i) Notice that φ(F−1(V ) ∩ U) is open since F is continuous.

(ii) We have an equivalent characterization of smoothness between manifolds as

follows:

Suppose that M and M ′ are smooth manifolds with atlases A and A′ respec-

tively. A continuous function F : M → M ′ is a smooth map if for all p ∈ M and

for all smooth charts (U, φ) ∈ A around p ∈ M and all charts (V, ψ) ∈ A′ around

F (p) ∈ N such that F (U) ⊆ V, the composition

ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V )

is smooth.

Next, we define the tangent space to smooth manifolds. Let C∞(M) be the set

of all real valued smooth functions on M. Notice that C∞(M) is a vector space.

Definition 1.1.9. Let M be a smooth manifold, and let p ∈ M. A tangent vector

to M at p is a linear map Xp : C∞(M)→ R that satisfies the following property

Xp(fg) = f(p)Xp(g) + g(p)Xp(f), for all f, g ∈ C∞(M).

The set of all tangent vectors at p is called tangent space to M at p and it is denoted

by TpM.

Remark 1.1.10. (i) Notice that TpM is a vector space with dimTpM = dimM

for every point p ∈ M. For more details, please refer to [13, Section 8.3] and

[18,Chapter 3].

12



27/01/2022

(ii) In a coordinate chart, the tangent space TpM has a natural basis

 ∂

∂x1

∣∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣∣
p

 ,
where n = dimM.

(iii) Suppose that M = V is a vector space. The tangent space TpV to V at

p ∈ V can be identified with V by a vector space isomorphism.

Definition 1.1.11. Let M,M ′ be smooth manifolds, and let F : M → M ′ be a

smooth map. For each p ∈ M, the differential of F at p is the map dFp : TpM →

TF (p)M
′, defined by

dFp(Xp)(f) = Xp(f ◦ F ).

Remark 1.1.12. (i) Notice that dFp : TpM → TF (p)M
′ is linear. If F is a diffeomor-

phism, then dFp is an isomorphism.

(ii) Given Xp ∈ TpM , dFp(Xp) is a tangent vector at F (p). Notice that if

f ∈ C∞(M ′), then f ◦ F ∈ C∞(M), hence Xp(f ◦ F ) is well-defined.

We next look at the definition of tangent bundle on a smooth manifold.

Definition 1.1.13. Let M be a smooth manifold. We define the tangent bundle of

M, denoted by TM , to be the disjoint union of tangent spaces at all points of M :

TM =
⊔

p∈M
TpM =

⋃
p∈M
{p} × TpM =

⋃
p∈M
{(p, q) : q = Xp ∈ TpM}.

A global vector field is a smooth map A : M → TM given by p 7→ (p, Ap) such that

π ◦A = IdM , where π : TM →M is the projection. We denote by X(M) the set of

all such vector fields on M.

Remark 1.1.14. (i) For each p ∈M, π−1(p) = TpM is a real vector space.

(ii) For simplicity, we will omit the term ‘global’ in this thesis, since all vector

fields we treat here are global.

(iii) The rank of a tangent bundle is dimTpM.

13
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(iv) By combining together the differential of F at all p ∈M, we get a globally

defined map between tangent bundles, called the global differential and denoted by

dF : TM → TM ′. Notice that this map is smooth. [18,Proposition 3.21].

Notice that tangent bundles are a special case of vector bundles. For more

details, please refer to [18,Chapter 10].

Definition 1.1.15. Let TM and TM ′ be tangent bundles, and let π : TM → M

and π′ : TM ′ → M ′ be the canonical projections. A diffeomorphism F : TM →

TM ′ is a tangent bundle homomorphism if there exists a smooth map f : M →M ′

such that the following diagram commutes:
TM TM ′

M M ′

F

π π′

f

,

and such that Fp : TpM → Tf(p)M
′ is a linear map for all p ∈M.

Remark 1.1.16. A bijective tangent bundle homomorphism F : TM → TM ′ whose

inverse is also a tangent bundle homomorphism is called a tangent bundle iso-

-morphism. Equivalently, for all p ∈ M, the map Fp : TpM → Tf(p)M
′ is a vector

space isomorphism.

We next define complex structures on vector spaces, which we always assume to

be real, unless otherwise stated.

Definition 1.1.17. Let V be a vector space. A complex structure on V is a linear

isomorphism J : V → V such that J2 = −I.

Remark 1.1.18. (i) Notice that if V admits a complex structure J , then dim V ∈ 2N.

(ii) Let V be a vector space with a complex structure J . Defining the multipli-

cation by a complex number by

(a+ ib)v = a v + b J(v), for all a, b ∈ R and v ∈ V,

gives a structure of complex vector space. Conversely, if V is a complex vector space

with dimC V = n, then define J ∈ GLC(V ) by J(v) := i · v for all v ∈ V. When V

14
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is considered as a real 2n dimensional vector space, the isomorphism J induces a

complex structure.

(iii) Let V = TpM for each p ∈M. We usually denote the complex structure at

p by Jp.

Lemma 1.1.19. Let V be a finite-dimensional real vector space with a complex

structure J . Then V admits a J-invariant inner product ψ, that is, ψ(JX, JY ) =

ψ(X, Y ) for all X, Y ∈ V. Consequently,

(i) if V1 is a J-invariant subspace of V, its orthogonal complement V2 with respect

to ψ is also J-invariant;

(ii) V admits a basis of the form {X1, . . . , Xn, JX1, . . . , JXn}.

Proof. We first show that there exists a J-invariant inner product on V. Let φ be

any inner product on V. Define ψ : V × V → R by

ψ(X, Y ) = φ(X, Y ) + φ(JX, JY ), for all X, Y ∈ V.

It is clear that ψ is an inner product. For every X, Y ∈ V,

ψ(JX, JY ) = φ(X, Y ) + φ(JX, JY ) = ψ(X, Y ).

Therefore ψ is a J-invariant inner product. Let V2 = V ⊥1 ⊆ V . It is clear that

V = V1 ⊕ V2 since V = V1 ⊕ V ⊥1 . Finally, for all Y ∈ V2,

{0} = ψ(V1, Y ) = ψ(JV1, JY ) = ψ(V1, JY ).

Hence JY ∈ V2 and V2 is J-invariant as required.

For part (ii), choose 0 6= X1 ∈ V. Let β1 = {X1, JX1}. Since

ψ(X1, JX1) = φ(JX1, X1)− φ(JX1, X1) = 0,

15
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β1 is a linearly independent subset. Next, suppose that there exist s independent

non-zero vectors X1, . . . , Xs such that βs = {X1, . . . , Xs, JX1, . . . , JXs} is a linear

independent subset for some s ∈ N. Let 0 6= Xs+1 ∈ V such that ψ(Xs+1, Xj) =

ψ(Xs+1, JXj) = 0 for all 1 ≤ j ≤ s. Then

ψ(JXs+1, JXj) = φ(Xs+1, Xj) + φ(JXs+1, JXj) = ψ(Xs+1, Xj) = 0;

ψ(Xs+1, JXj) = φ(JXs+1, Xj)− φ(Xs+1, JXj) = −ψ(Xs+1,JXj
) = 0.

Therefore βs+1 = {X1, . . . , Xs+1, JX1, . . . , JXs+1} is a linearly independent set. By

induction, βn is a basis of V .

We can now define complex manifolds. Roughly, complex manifolds can be

thought of as topological spaces that are locally equivalent to a neighbourhood of

Cn. Let M be a real smooth manifold. A maximal holomorphic atlas is a holomor-

phic atlas that is not properly contained in any larger atlas. We say that M is a

complex manifold if it has a maximal holomorphic atlas. There are many examples

of complex manifolds, for instance, the Riemann Sphere, CP, Cn, etc.

Example 1.1.20. Let M = R2n and p ∈M . Clearly, Cn ∼= R2n. For all zj = xj + iyj

with 1 ≤ j ≤ n, the multiplication map mi : Cn → Cn given by zj 7→ izj induces a

complex structure J on R2n defined by J = ξ ◦mi ◦ ξ−1, where ξ : (. . . , zj, . . .) 7→

(. . . , xj, . . . , yj, . . .). The action of J on M is given by

J =

0n −In

In 0n

 .

By Cayley-Hamilton theorem, the minimal polynomial of J is x2 + 1. However,

since R2n is real, there are no real eigenspaces. We may extend J linearly to

J : (R2n)C → (R2n)C. Hence the eigenvalues of J are ±i. The eigenspaces are

Ei = span{e1, . . . , en} and E−i = span{f1, . . . , fn}, where ej = (0, . . . , 1, . . . , 0, 0, . . . ,

−i, . . . , 0) and fj = (0, . . . , 1, . . . , 0, 0, . . . , i, . . . , 0). Since dimCE±i = n, we con-

clude that (R2n)C = TC
p R2n = Ei ⊕ E−i.
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In general, suppose that M is a 2n-dimensional real smooth manifold and TpM

is a tangent space of M at p ∈M. The complexification of the tangent space of M

is denoted by TC
p M for all p ∈M. Set

TC
p M = {Xp + iYp|Xp, Yp ∈ TpM} = TpM ⊗ C.1

Since TpM ∼= R2n, we can define a complex structure on TpM, denoted by Jp, for all

p ∈M. Since Jp has no real eigenvalues on TpM, we extend it to the complexification

Jp : TC
p M → TC

p M as a C-linear isomorphism defined by Jp(Xp + iYp) = JpXp +

iJpYp. Hence Jp has eigenvalues ±i. This allows us to define the following spaces:

T (1,0)
p M = {Zp ∈ TC

p M |JpZp = iZp} = {Xp − iJpXp|Xp, Yp ∈ TpM}

T (0,1)
p M = {Zp ∈ TC

p M |JpZp = −iZp} = {Xp + iJpXp|Xp, Yp ∈ TpM},

where T (1,0)
p M is the i-eigenspace and T (0,1)

p M is the −i-eigenspace. It is clear

that T (0,1)
p M = T

(1,0)
p M , where · is the complex conjugation. By the eigenspace

decomposition,

TC
p M = T (1,0)

p M ⊕ T (0,1)
p M, with dimC T

(1,0)
p M = dimC T

(0,1)
p M = n.

For all Zp ∈ TC
p M,

Zp = 1
2(Zp + iJpZp) + 1

2(Zp − iJpZp).

The space T (1,0)
p M is called the holomorphic tangent space, T (0,1)

p M is the anti

-holomorphic tangent space.
1Elements of TC

p M are of the form Xp ⊗ 1 + Yp ⊗ i, where Xp, Yp ∈ TpM . For the sake of
simplicity, we will omit the tensor product and write Xp + iYp for a complex tangent vector on
M.
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Definition 1.1.21. Let M be a real smooth manifold. A tangent bundle isomor-

phism J : TM → TM such that J2 = −I is called an almost complex structure. In

this case, M is called an almost complex manifold.

Remark 1.1.22. (i) Notice that if M is an almost complex manifold, then dimM ∈

2N. Indeed, suppose that M is n-dimensional and let J be an almost complex

structure. Since J2 = −I, it follows that (det J)2 = (−1)n. Since M is a real

manifold, we observe that det J ∈ R. Therefore n must be an even number.

(ii) It is well-known that there is an almost complex structure J on all complex

manifolds. See, e.g., [9].

(iii) Suppose that M admits an almost complex structure J. We can complexify

TM to obtain TCM and we call TCM the complex tangent bundle.

An almost complex structure on M induces a decomposition of the complex

tangent bundle. We define the holomorphic tangent subbundle of the complex

tangent bundle TCM as follows.

Definition 1.1.23. Let M be a real smooth manifold with an almost complex struc-

ture J. The holomorphic tangent bundle of M , T (1,0)M and the anti-holomorphic

tangent bundle of M, T (0,1)M , are given by

T (1,0)M =
⊔

p∈M
T (1,0)

p M and T (0,1)M =
⊔

p∈M
T (0,1)

p M.

Furthermore, we have the tangent bundle decomposition TCM = T (1,0)M⊕T (0,1)M.

In other words, for each p ∈M, TC
p M = T (1,0)

p M ⊕ T (0,1)
p M .

For all A,B ∈ X(M), we define the Lie bracket of vector fields to be the operator

[A,B] : C∞(M)→ C∞(M) such that

[A,B]f = A ◦Bf −B ◦ Af.

It is clear that [A,B] ∈ X(M). For each p ∈ M, [A,B]p is a tangent vector to M.

Later, we will see that the Lie bracket gives X(M) the structure of a Lie algebra.

Next, we define an important tensor field.
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Definition 1.1.24. Let M be a smooth manifold and J be an almost complex

structure on M. We define the Nijenhuis tensor by

NJ(A,B) = [JA, JB]− [A,B]− J([JA,B] + [A, JB]),

for all A,B ∈ X(M).

Remark 1.1.25. It is obvious that NJ : X(M)× X(M)→ X(M) is bilinear.

Definition 1.1.26. Let M be a smooth manifold and let J be an almost complex

structure on M. We say that J is integrable if for all Z,W ∈ X(1,0)(M),

[Z,W ] ⊆ X(1,0)(M), (1.1)

where X(1,0)(M) is the set of all smooth vector fields Z : M → T (1,0)M. We will

refer to (1.1) as the integrability condition. We say that J is a complex structure if

it is an integrable almost complex structure.

The following theorem is an important tool that permits us to determine whether

or not J is integrable, which is known as the Newlander–Nirenberg Theorem.

Theorem 1.1.27 ([20]). Let J be an almost complex structure on a smooth manifold

M. Then J is a complex structure if and only if NJ = 0.

1.2 Complex structures on real Lie algebras

We will be interested in the particular case of manifolds that are nilpotent Lie

groups. In what follows, we define Lie groups and Lie algebras.

Definition 1.2.1. A Lie group is a finite dimensional smooth manifold G equipped

with a group operation µ : G×G→ G such that

(a) µ is smooth;

(b) ι : G→ G defined by ι : x 7→ x−1 is smooth.

Remark 1.2.2. (i) Notice that the two requirements can be combined into the single

requirement that µ : (x, y) 7→ x−1y is smooth for every x, y ∈ G.
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(ii) For all x, y ∈ G, let Lx be the left translation of G defined by Lx(y) = xy.

One can define a left-invariant vector field X̃ on G by

X̃x = d(Lx)eX, (1.2)

where e is the identity of G, d(Lx)e is the differential of Lx at e and X is a tangent

vector to G at e. Since d(Lx)y(aX̃y+bỸy) = a d(Lx)yX̃y+b d(Lx)yỸy for all a, b ∈ R,

the set of all smooth left-invariant vector fields on G is a linear subspace of X(G).

Furthermore, if X̃, Ỹ ∈ X(G) are left-invariant, then [X̃, Ỹ ] is also left-invariant.

See, e.g., [18,Proposition 8.33].

Definition 1.2.3. A vector space g over R equipped with a bilinear form [·, ·] :

g× g→ g is called a Lie algebra if

(a) [X, Y ] = −[Y,X];

(b) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X, Y, Z ∈ g. This is called

the Jacobi identity.

Remark 1.2.4. (i) An immediate consequence of (a) is that [X,X] = 0 for all X ∈ g.

(ii) The set of all smooth left-invariant vector fields on G, denoted Lie(G), is a

Lie algebra over R. There is a vector space isomorphism between Lie(G) and TeG,

namely, λ : Lie(G)→ TeG given by λ : X̃ 7→ X where X̃ is as in (1.2) and X ∈ TeG.

Hence the tangent space TeG inherits a Lie algebra structure and we will denote it

by g.

Euclidean spaces are the easiest example of Lie algebras.

Example 1.2.5. [13] For all x, y ∈ GL(n,R), let the group operation µ : GL(n,R)×

GL(n,R) → GL(n,R) be the matrix product xy. The smoothness of µ follows

since the product of matrices has polynomial components. The smoothness of ι

follows from that of the determinant function and the fact that det x 6= 0 for all

x ∈ GL(n,R).

The vector space M(n,R) of n×n real matrices becomes an n2-dimensional Lie

algebra with the Lie bracket given by [X, Y ] = XY −Y X. It is clear that bilinearity
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and antisymmetry hold and the Jacobi identity follows from a straightforward cal-

culation. We denote this Lie algebra by gl(n,R). It is known that we may identify

Lie(GL(n,R)) and gl(n,R). See, e.g., [18,Proposition 8.41].

Definition 1.2.6. Let g be a Lie algebra. A Lie subalgebra is a subspace h ⊆ g

such that [h, h] ⊆ h. An ideal i of a Lie algebra is a subalgebra satisfying [i, g] ⊆ i.

In this case, we write i� g and the quotient space g/i = {X + i : ∀ X ∈ g} is a Lie

algebra.

Remark 1.2.7. (i) A Lie algebra g is Abelian if [X, Y ] = 0 for all X, Y ∈ g. For

instance, vector spaces are Abelian Lie algebras.

(ii) The projection π : g→ g/i a surjective homomorphism of Lie algebras.

(iii) The center of g is the ideal given by Z(g) = {X ∈ g : [X, g] = {0}}. We

will denote Z(g) by z in this thesis, if no confusion arises.

(iv) Let g and g′ be two Lie algebras with Lie brackets [·, ·] and [·, ·]′. A

Lie algebra homomorphism is a linear map that preserves Lie brackets:

f : g→ g′, f [X, Y ] = [f(X), f(Y )]′,

for all X, Y ∈ g.

We next define left-invariant almost complex structures on G.

Definition 1.2.8. An almost complex structure J on G is said to be left-invariant

if (dLx)e ◦ Je = Jx ◦ (dLx)e for all x ∈ G.

Remark 1.2.9. Recall, from (1.2), that for all X̃ ∈ Lie(G) and x ∈ G, JxX̃ =

(dLx)e ◦ Je(X).

In the case of a Lie group G, there is a one to one correspondence between left-

invariant almost complex structures on G and almost complex structures defined

on g. In this context, Theorem 1.1.27 reads as follows.
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Corollary 1.2.10. A left invariant almost complex structure J on G is a complex

structure if and only if Je satisfies the integrability condition

[JeX, JeY ]− [X, Y ]− Je([JeX, Y ] + [X, JeY ]) = 0, (1.3)

for all X, Y ∈ g.

Remark 1.2.11. (i) Formally, we should use Je to represent the complex structure

on g. However, since we are interested only on Lie algebras in this thesis, from now

on, we will write J for Je.

(ii) By abuse of notation, we denote the left hand side of (1.3) by NJ(X, Y ) and

we will refer to (1.3) as the Newlander–Nirenberg condition.

(iii) Given a complex structure J on g, its complexification gC splits into g(1,0)⊕

g(0,1), where

g(1,0) = {Z ∈ gC : JZ = iZ} and g(0,1) = {Z ∈ gC : JZ = −iZ}

are the ±i-eigenspaces of J. By the integrability condition (1.1), J is a complex

structure if and only if the g(1,0) and g(0,1) are complex subalgebras of gC.

There are different types of complex structures that can be defined on Lie alge-

bras. We shall define some of them here. See, e.g., [2], [23].

Definition 1.2.12. A complex structure J on g is called bi-invariant if J [X, Y ] =

[JX, Y ] for all X, Y ∈ g. A complex structure J is called Abelian if [X, Y ] =

[JX, JY ] for all X, Y ∈ g.

Remark 1.2.13. (i) Suppose that J is bi-invariant on g. It is easily seen that J [X, Y ]

= [X, JY ] = [JX, Y ] for all X, Y ∈ g.

(ii) Suppose that J is bi-invariant over a Lie algebra g. The Lie brackets on g

are C-linear. Conversely, if a Lie algebra g admits a C-linear Lie bracket, then J is

bi-invariant.
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Proposition 1.2.14. Let g be a Lie algebra with a complex structure J and gC be

its complexification. Then g(1,0) is Abelian if and only if J is Abelian. Furthermore,

g(1,0) is a complex ideal of gC if and only if J is bi-invariant.

Proof. For all X − iJX, Y − iJY ∈ g(1,0), by the Newlander–Nirenberg condition,

[X − iJX, Y − iJY ] = ([X, Y ]− [JX, JY ])− i([X, JY ] + [JX, Y ])

= ([X, Y ]− [JX, JY ]) + iJ([X, Y ]− [JX, JY ]). (1.4)

Suppose that g(1,0) is Abelian. Then (1.4) equals zero and [X, Y ] = [JX, JY ] for

all X, Y ∈ g and J is Abelian. Conversely, assume that J is Abelian. Then again

from (1.4), [X − iJX, Y − iJY ] = 0. Therefore g(1,0) is Abelian.

Next, assume that g(1,0) is a complex ideal of gC. That is, [gC, g(1,0)] ⊆ g(1,0). For

all Z = X − iJX ∈ g(1,0) and for all W ∈ gC,

[W,X − iJX] = [W,X]− i[W,JX] ∈ g(1,0).

Let W = A+ iB where A = Re(W ), B = Im(W ) ∈ g. Then

[X − iJX,A+ iB] = [X,A] + [JX,B]− i([JX,A]− [X,B]) ∈ g(1,0).

Since [X,A] + [JX,B]− i([JX,A]− [X,B]) is of the form U − iJU for some U ∈ g,

[JX,A]− [X,B] = J([X,A] + [JX,B]). By the Newlander–Nirenberg condition,

[X,B] + J [JX,B] = [JX, JB]− J [X, JB].

Hence

[JX, JB]− J [X, JB] = [JX,A]− J [X,A]⇒ J [JX,A− JB] = [JX,A− JB].
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By Definition 1.2.12, J is bi-invariant. Conversely, suppose that J is bi-invariant.

Since the Lie bracket is C-linear, for all [W,X − iJX] ∈ [g(1,0), gC]

J([W,X]− iJ [W,X]) = J [W,X − iJX] = [JW,X − iJX]

= [JW,X]− iJ [JW,X]

= i([W,X]− iJ [W,X]).

Hence [W,X]− iJ [W,X] ∈ g(1,0) and g(1,0) is a complex ideal of gC.

Proposition 1.2.15. Let g be a Lie algebra with a complex structure J. Then J is

both Abelian and bi-invariant if and only if g is Abelian.

Proof. Since J is both Abelian and bi-invariant, by definition, [JX, JY ] = [X, Y ]

and J [X, Y ] = [X, JY ] = [JX, Y ] for all X, Y ∈ g. Combining these two equalities,

we have that

J [X, Y ] = J [JX, JY ] = −[JX, Y ] = −J [X, Y ],

which implies that [X, Y ] = 0 for all X, Y ∈ g. Hence g is Abelian.

Conversely, suppose that g is Abelian. Thus

J [X, Y ] = [X, Y ] = [JX, Y ] = [X, JY ] = [JX, JY ] = 0

for all X, Y ∈ g. In conclusion, J is both Abelian and bi-invariant.

Proposition 1.2.16. Let g be a Lie algebra with a complex structure J . Suppose

that i is a J-invariant ideal of g. Then J induces a complex structure Ĵ on the

quotient Lie algebra g/i.

Proof. Since i � g, by definition, g/i = ĝ is a quotient Lie algebra. For π(X) =

X̂ ∈ g/i, define Ĵ(X̂) = π(JX), where π the surjective Lie algebra homomorphism
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given by the projection π : g → g/i. Since i is J-invariant, Ĵ is well defined. We

now check that Ĵ is a complex structure on g/i. By a straightforward calculation,

Ĵ2(X̂) = Ĵ(Ĵ(X̂)) = Ĵ(π(JX)) = π(J2(X)) = −X̂

[ĴX̂, Ĵ Ŷ ]− [X̂, Ŷ ] + Ĵ [X̂, Ĵ Ŷ ] + Ĵ [ĴX̂, Ŷ ]

= [π(JX), π(JY )]− [π(X), π(Y )] + Ĵ [π(X), π(JY )] + Ĵ [π(JX), π(Y )]

= π(NJ(X, Y )) = π(0) = 0̂.

By definition, Ĵ is a complex structure.

Proposition 1.2.17. Let g be a Lie algebra with a complex structure J and assume

that the induced map Ĵ ∈ GL(g/i) is a linear isomorphism, where i is a J-invariant

ideal of g. If J is Abelian, then Ĵ is Abelian; if J is bi-invariant, then Ĵ is bi-

invariant.

Proof. By Proposition 1.2.16, Ĵ is a complex structure on g/i. Let π : g → g/i

be the surjective Lie algebra homomorphism as in Proposition 1.2.16. Then for all

X̂, Ŷ ∈ g/i,

[ĴX̂, Ĵ Ŷ ]− [X̂, Ŷ ] = [π(JX), π(JY )]− [π(X), π(Y )]

= π ([JX, JY ]− [X, Y ])

Ĵ [X̂, Ŷ ]− [ĴX̂, Ŷ ] = Ĵπ([X, Y ])− π([JX, Y ])

= π (J [X, Y ]− [JX, Y ]) .

If J is Abelian, π ([JX, JY ]− [X, Y ]) = π(0) = 0̂. Hence Ĵ is Abelian. If J is

bi-invariant, π (J [X, Y ]− [JX, Y ]) = π(0) = 0̂. Therefore Ĵ is bi-invariant.

Let g = span{X1, . . . , X2n} be a Lie algebra. Whether or not an almost complex

structure on g is a complex structure is an interesting question to investigate. We

first provide a necessary condition for J ∈ GL(g) to be an almost complex structure.
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For Xi ∈ g with i ∈ {1, . . . , 2n}, suppose that J ∈ GL(g) is given by JXi =∑2n
j≥1 aijXj where aij ∈ R.

Lemma 1.2.18. Let g be a Lie algebra and let J be a linear isomorphism on g. If

any of the columns or any of the rows of the matrix representing J is zero except

the diagonal term, then J is not an almost complex structure.

Proof. Suppose, by contradiction, that J is an almost complex structure. By defini-

tion, J2 = −I. Recall that JXi = ∑2n
j≥1 aijXj where aij ∈ R for all i, j ∈ {1, . . . , n}.

Then

J2(Xi) =
2n∑
j=1

2n∑
m≥1

aijajmXm = −Xi =⇒
2n∑
j=1

aijaji = −1. (1.5)

Without loss of generality, taking i = 1, it follows that ∑2n
j=1 a1jaj1 = a2

11 + a12a21 +

. . .+a1,2na2n,1 = −1. Suppose that either a12 = a13 = . . . = a1,2n = 0 or a21 = a31 =

. . . = a2n,1 = 0. By substituting on (1.5), a2
11 = −1. This implies a11 =

√
−1, which

contradicts the assumption that a11 ∈ R.

Lemma 1.2.19. Let J be an almost complex structure on g and let NJ be the

Nijenhuis tensor. Then NJ(X, Y ) = −NJ(Y,X) and NJ(JX, Y ) = −JNJ(X, Y )

for all X, Y ∈ g.

Proof. For all X, Y ∈ g,

NJ(Y,X) = [Y,X]− [JY, JX]− J([JY,X] + [Y, JX])

= −([X, Y ]− [JX, JY ]− J([JX, Y ] + [X, JY ])) = −NJ(X, Y ).

NJ(JX, Y ) = [JX, Y ] + [X, JY ] + J([X, Y ]− [JX, JY ])

= J([X, Y ]− [JX, JY ]− J([JX, Y ] + [X, JY ])) = −JNJ(X, Y ).

In conclusion, NJ(X, Y ) = −NJ(Y,X) and NJ(JX, Y ) = −JNJ(X, Y ) for all

X, Y ∈ g.
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Proposition 1.2.20. Let J ∈ GL(g) be an almost complex structure on g =

span{Xj, JXj}nj=1. If NJ(Xi, Xj) = 0 for all 1 ≤ i < j ≤ n, then J is a com-

plex structure.

Proof. Let X = ∑n
i=1(aiXi+biJXi), Y = ∑n

j=1(a′jXj+b′jJXj) for some ai, bi, a′j, b′j ∈

R. Then

NJ(X, Y ) =
n∑
i,j

(
aia
′
jNJ(Xi, Xj) + aib

′
jNJ(Xi, JXj)

+bia′jNJ(JXi, Xj) + bib
′
jNJ(JXi, JXj)

)
.

Recall, from Lemma 1.2.19, that

NJ(Xi, Xj) = −NJ(Xj, Xi) and NJ(JXi, Xj) = −JNJ(Xi, Xj).

Since NJ(Xi, Xj) = 0 for all 1 ≤ i < j ≤ n, by Lemma 1.2.19, it is sufficient to

show that

NJ(Xi, JXj) = JNJ(Xj, Xi) = 0 and

NJ(JXi, JXj) = −JNJ(Xi, JXj) = NJ(Xi, Xj) = 0.

Hence NJ(X, Y ) = 0. By definition, J is a complex structure on g.

Let J be an almost complex structure on g. We define the following subspace

ImNJ = span{NJ(X, Y ) : ∀ X, Y ∈ g}.

Corollary 1.2.21. Let J be an almost complex structure on g = span{Xj, JXj}nj=1.

Then dim ImNJ ≤ 2
(
n
2

)
.

Proof. Since NJ is bilinear, Proposition 1.2.20 implies that

ImNJ = span{NJ(Xi, Xj), JNJ(Xi, Xj) : 1 ≤ i < j ≤ n}.
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Hence dim ImNJ ≤ 2
(
n
2

)
.

Remark 1.2.22. Suppose that J is a complex structure on g. Then dim Im(NJ) = 0.

To end this section, we have the following observation for arbitrary 2-dimensional

Lie algebras.

Lemma 1.2.23. Let g be a 2-dimensional Lie algebra with an almost complex struc-

ture J . Then J is a complex structure on g.

Proof. By Lemma 1.1.19, there exists a basis {X1, JX1} such that g = span{X1,

JX1}. Suppose that [X1, JX1] = 0. It follows that [g, g] = {0} and therefore

g = span{X1, JX1} ∼= R2. Hence J =

 0 1

−1 0

 is a complex structure.

Next, suppose that [g, g] 6= {0}. Let X = a1X1+a2JX1 and Y = b1X1+b2JX1 ∈

g for some ai, bi ∈ R. Then

[JX, Y ] = [a1JX1 − a2X1, b1X1 + b2JX1] = −(a1b1 + a2b2)[X1, JX1]

[X, JY ] = [a1X1 + a2JX1, b1JX1 − b2X1] = (a1b1 + a2b2)[X1, JX1].

Hence [JX, Y ] = −[X, JY ]. By replacing Y by JY , [X, Y ] = [JX, JY ]. It follows

that NJ(X, Y ) = 0. By definition, J is a complex structure.

Remark 1.2.24. Recall that a 2 dimensional Lie algebra is isomorphic to either

g1 = R2 or g2 = {X1, X2 ∈ g : [X1, X2] = X1}. Complex structures on each of those

algebras must be Abelian.
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Chapter 2

Complex structures on nilpotent Lie algebras

In this chapter, we first introduce some notation and provide the proof of some

results obtained by different authors in different papers. Next, we consider some

properties of the central series of nilpotent Lie algebras with complex structures

J and define J-invariant central series. In particular, we introduce a J-invariant

descending central series pj + Jpj that provides a new characterization of a special

type of complex structure, called nilpotent. We next show that strata-preserving

complex structures on stratified Lie algebras have to be nilpotent and provide a Lie

theoretic proof of the connection between the J-invariant central series and nilpotent

complex structures. Finally, we will study nilpotent complex structures on stratified

Lie algebras and investigate how the nilpotency of J impacts the strata-preserving

property.

2.1 Stratified Lie algebras

In Chapter 1, we introduced the general notation and provided the definition of Lie

groups and Lie algebras. In this section, we focus on a special class of Lie algebras.

Definition 2.1.1. [14] Let g be a Lie algebra. The descending central series and

ascending central series of g are denoted by cj(g) and cj(g) respectively, for all

j ≥ 0, and defined inductively by

c0(g) = g, cj(g) = [g, cj−1(g)]; (2.1)

c0(g) = {0}, cj(g) = {X ∈ g : [X, g] ⊆ cj−1(g)}. (2.2)
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Remark 2.1.2. (i) Notice that c1(g) = Z(g), c1(g) = [g, g], and

cj(g)/cj−1(g) = Z
(
g/cj−1(g)

)
∀j ≥ 1,

where Z(·) is the center of a Lie algebra. Furthermore, cj(g) and cj(g) are ideals of

g for all j ≥ 0.

(ii) For all k, l ∈ N, notice that [ck(g), cl(g)] ⊆ ck+l(g). Let k = l = 1. By

definition, [c1(g), c1(g)] ⊆ [c1(g), g] = c2(g). Assume that [ct(g), cs(g)] ⊆ ct+s(g) for

some s, t ∈ N. We first show that [ct(g), cs+1(g)] ⊆ cs+t+1(g). Note that

[ct(g), cs+1(g)] = [ct(g), [cs(g), g]]. (2.3)

For all Y ∈ g, Us ∈ cs(g) and Ut ∈ ct(g), using the Jacobi identity,

[Ut, [Us, Y ]]︸ ︷︷ ︸
∈ [ct(g), [g, cs(g)]]

+ [Us, [Y, Ut]]︸ ︷︷ ︸
∈ [cs(g), [g, ct(g)]]

= − [Y, [Ut, Us]].︸ ︷︷ ︸
∈ [g, [ct(g), cs(g)]] ⊆ ct+s+1(g)

Hence, returning to (2.3), [ct(g), cs+1(g)] ⊆ ct+s+1(g). Similarly, [ct+1(g), cs(g)] ⊆

ct+s+1(g). By induction, [ck(g), cl(g)] ⊆ ck+l(g) for all k, l ∈ N.

Proposition 2.1.3. Let g be a Lie algebra. Then cj(g)/cj+1(g) ⊆ Z (g/cj+1(g)) for

all j ≥ 0.

Proof. By definition, for all U ∈ cj(g) and Y ∈ g with all j ≥ 0, [U, Y ] ∈ cj+1(g).

Then

[U + cj+1(g), Y + cj+1(g)] = [U, Y ] + cj+1(g) ⊆ cj+1(g).

Hence cj(g)/cj+1(g) ⊆ Z (g/cj+1(g)).

Definition 2.1.4. A Lie algebra g is called nilpotent of step k, for some k ∈ N,

if ck(g) = {0} and ck−1(g) 6= {0}. We will denote nilpotent Lie algebras by n. A

connected Lie group N is called nilpotent if its Lie algebra is nilpotent.
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Remark 2.1.5. The number k is also called the nil-index or nilpotent length of n.

Notice that n is Abelian if and only if k = 1. Furthermore, if n is nilpotent of step

k, then ck(n) = n and ck−1(n) ⊂ n. See, e.g., [13, Section 5.2] or [14].

Proposition 2.1.6. Let n be a k-step nilpotent Lie algebra and i � n. Then the

quotient Lie algebra n/i is nilpotent and every subalgebra of n/i is nilpotent.

Proof. Since π : n → n/i is a surjective Lie algebra homomorphism, it follows

that ck(n/i) = π(ck(n)) = π({0}). Hence n/i is nilpotent. Furthermore, let h be a

subalgebra of n/i. By definition, c1(h) ⊆ c1(n/i). Next, assume that cs(h) ⊆ cs(n/i)

for some s ∈ N, Then

cs+1(h) = [cs(h), n] ⊆ [cs(n/i), n] = cs+1(n/i).

By induction, cj(h) ⊆ cj(n/i) for all j ≥ 1. Hence there exists k ∈ N such that

ck(h) ⊆ ck(n/i) = {0}. By definition, h is nilpotent.

Remark 2.1.7. Let n be a k-step nilpotent Lie algebra and let z be the center of n.

It is clear that n/z is nilpotent of step k − 1.

Definition 2.1.8. Let V be a vector space and let gl(V ) be the Lie algebra con-

sisting of all linear endomorphisms of V. A representation of a Lie algebra g on V

is a Lie algebra homorphism π : g→ gl(V ). The adjoint representation

ad : g→ gl(g)

is defined by ad(X)(Y ) = [X, Y ] for all X, Y ∈ g.

Remark 2.1.9. Definition 2.1.4 is equivalent to the following statement:

A Lie algebra n is nilpotent of step k if

[X1, [X2, . . . , [Xk, Y ]], . . .]] = ad(X1) ad(X2) . . . ad(Xk)(Y ) = 0
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for all X1, . . . , Xk, Y ∈ n and there exist X ′1, . . . , X ′k, Y ′ ∈ n such that ad(X ′1)

ad(X ′2) . . . ad(X ′k−1)(Y ′) 6= 0.

Definition 2.1.10. A nilpotent Lie algebra n is said to admit a step k stratification

if it has a decomposition as a vector space direct sum of the form n1⊕n2⊕ . . .⊕nk,

where nk 6= {0}, satisfying the bracket generating property

[n1, nj−1] = nj ∀j ∈ {2, . . . , k} and [n1, nk] = {0}.

A Lie algebra n that admits a stratification is called a stratified Lie algebra. A

connected and simple connected Lie group N is called stratified if its Lie algebra is

stratified.

Remark 2.1.11. Suppose that n is a stratified Lie algebra. The Lie bracket gener-

ating property can be written as [ni, nj] ⊆ ni+j for all i, j ≥ 1.

Lemma 2.1.12. Let n be a k-step stratified Lie algebra. Then

cj(n) =
⊕

j+1≤l≤k
nl ∀ j ≥ 0. (2.4)

Proof. We shall prove (2.4) by induction. By definition, c0(n) = n. Next, suppose

that cs(n) = ⊕
s+1≤j≤k nj for some s ∈ N. Notice that

cs+1(n) = [n, ns+1 ⊕ . . .⊕ nk] = span{[X,
k∑

j=s+1
Xj] : X ∈ n, Xj ∈ nj}

For all X = ∑k
i=1 Yi ∈ n with each Yi ∈ ni, since [ni, nj] ⊆ nj+i,

k∑
j=s+1

[X,Xj] =
k∑

j=s+1

k∑
i=1

[Yi, Xj]︸ ︷︷ ︸
∈ [ni, nj ] ⊆ ni+j

∈
⊕

s+2≤j≤k
nj.

Hence cs+1(n) = ⊕
s+2≤j≤k nj. By induction, cj(n) = ⊕

j+1≤l≤k nl for all j ≥ 0.

Proposition 2.1.13. Let n be a k-step nilpotent Lie algebra. Then ck−j(n) ⊆ cj(n)

for all j ≥ 0.
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Proof. We show the statement by induction. First, by assumption, ck−1(n) ⊆ z =

c1(n). Next, for some s ∈ N, assume that ck−s(n) ⊆ cs(n). Then

ck−s(n) = [ck−s−1(n), n] ⊆ cs(n) ⇒ ck−s−1(n) ⊆ cs+1(n).

By induction, ck−j(n) ⊆ cj(n) for all j ≥ 0.

Remark 2.1.14. Let n be a k-step stratified Lie algebra. Then ck−j(n) ⊆ cj(n) for

all j ≥ 0.

Proposition 2.1.15. Let n be a 2n-dimensional step n nilpotent Lie algebra for

some n ∈ N. Suppose that dim cj(n) = 2n− 2j for all 1 ≤ j ≤ n. Then n does not

admit a stratification.

Proof. Suppose, by contradiction, that n admits a stratification. It follows, from

Lemma 2.1.12, that cj(n) = ⊕
j+1≤l≤n nl and dim c1(n) = 2n − 2, then dim n1 = 2.

Furthermore, notice that [n1, n1] = n2. Thus dim n2 = 1 and dim c2(n) = 2n − 3 >

2n− 4. This is a contradiction.

Remark 2.1.16. (i) Let n be a stratified Lie algebra with a complex structure J. Sup-

pose that dim n1 = 2. Then J is not strata-preserving. Indeed, suppose, by contra-

diction, that there exists a strata-preserving complex structure J. Then dim nj ∈ 2N

for all j ≥ 1. However, since dim n1 = 2, by definition,

[n1, n1] = span{[αX + βY, γX + δY ] : α, β, γ, δ ∈ R}

= span{(αδ − βγ)[X, Y ]} = n2.

Hence dim n2 = 1, which contradicts the assumption that dim n2 ∈ 2N. Hence n

does not have a strata-preserving complex structure.

(ii) Let n be a 3-step stratified Lie algebra with a strata-preserving complex

structure. Arguing in a similar way as in part (i), we conclude that dim n 6= 4 or 6.
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In the remainder of this section, we provide some examples of stratified Lie

algebras and study one example of an even-dimensional stratified Lie algebra that

does not admit a complex structure.

Example 2.1.17. [3] The Heisenberg groups Hn
∼= Cn × R are the easiest examples

of non-Abelian stratified groups. Denote the coordinates on Hn by (z, t), where

z = (z1, . . . , zn) and zj = xj + iyj ∈ Cn for all j ≥ 1 and t ∈ R. The group law on

Hn is

(z, t) · (w, s) = (z + w, t+ s+ 2Im〈z, w〉),

where 〈·, ·〉 is a Hermitian inner product. A basis for the set of left-invariant vector

fields is {X̃1 . . . , X̃n, Ỹ1, . . . , Ỹn, T̃}, where

X̃j = ∂

∂xj
+ 2yj

∂

∂t
, Ỹj = ∂

∂yj
− 2xj

∂

∂t
, T̃ = ∂

∂t

for all j = 1, . . . , n. It follows that hn = TeHn
∼= span{X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn, T̃}

with non-zero Lie brackets [X̃j, Ỹj] = T̃ , where e is the identity element in Hn. The

Lie algebras hn are called Heisenberg algebras. They admit a stratification hn =

n1⊕n2, where n1 is the 2n-dimensional vector space generated by {(X̃1)e, . . . , (X̃n)e,

(Ỹ1)e, . . . , (Ỹn)e} and n2 is generated by {T̃e}.

Next, we provide examples of nilpotent Lie algebras with stratifications of higher

steps.

Example 2.1.18. [13] From Example 1.2.5, gl(n,R) is a Lie algebra. Let n(n,R) =

{X ∈ gl(n,R) : Xij = 0 if i ≥ j}. This is the Lie algebra of strictly upper

triangular matrices and it is nilpotent of step n− 1. Notice that n admits a strati-

fication, where

nl = {X ∈ n : Xij = 0, unless j − i = l} ,

for all 1 ≤ l ≤ n− 1, are the strata of n. It is easy to see that

z = {Z ∈ z : Zij = 0, unless i = 1 and j = n}.
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It follows that nn−1 = z and dim z = 1.

Example 2.1.19. Let g be a real semisimple Lie algebra and n ⊆ g be the nilpotent

component of the Iwasawa decomposition of g. Then n is a stratified Lie algebra.

See [6] and [21] for more details on the decomposition of semisimple Lie algebras.

Example 2.1.20. [24] A n+1-dimensional Lie algebra n is called filiform if dim ci(n) =

i for all 0 ≤ i ≤ n− 1. Filiform algebras are characterized by

ci(n) = cn−i(n), for all 0 ≤ i ≤ n. (2.5)

It follows that n is nilpotent of step n because cn(n) = c0(n) = {0} and dim cn−1(n)

= dim z = 1.

A class of examples of filiform algebras is characterized by a basis {X1, . . . , Xn+1}

of n such that the non-zero Lie brackets are

[X1, Xj] = Xj+1, for all 1 ≤ j ≤ n.

The stratification of n is of the form n1⊕ n2⊕ . . .⊕ nn−1, where n1 = span{X1, X2}

and nj = span{Xj+1} for all j ≥ 2. Notice that z = nn−1.

Proposition 2.1.21. Let n be the real filiform Lie algebra with n = span{X1, . . . ,

X2n} and non-zero Lie bracket relations [X1, Xi] = Xi+1 for all i ∈ {2, . . . , 2n− 1}.

Then n does not admit a complex structure J .

Proof. We shall prove this proposition by contradiction. Suppose that J : n→ n is

a linear isomorphism of n given by

J : X1 7→
2n∑
j=1

a1jXj; X2 7→
2n∑
j=1

a2jXj; . . . ; X2n 7→
2n∑
j=1

a2n,jXj
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such that J2 = −I and NJ(Xi, Xj) = 0 for all 1 ≤ i ≤ j ≤ 2n. Then for all

1 ≤ i, j ≤ 2n,

[JXi, Xm] =


ai1[X1, Xm] if m > 1

−∑2n−1
j=2 aijXj+1 if m = 1

(2.6)

[JXi, JXm] = (ai1am2 − ai2am1)X3 + . . .+ (ai1am,2n−1 − ai,2n−1am1)X2n. (2.7)

For all i,m 6= 1, since [Xi, Xm] = 0, it follows that NJ(Xi, Xm) = J(ai1[X1, Xm]−

am1[X1, Xi])− [JXi, JXm] = 0. So

[JXi, JXm] = J(ai1[X1, Xm]− am1[X1, Xi]) ∀ i,m ∈ {2, . . . , 2n− 1}. (2.8)

In particular, taking Xi = X2n−1 and Xm = X2n, from (2.6) and (2.8),

[JX2n−1, JX2n] = J(a2n−1,1[X1, X2n]− a2n,1[X1, X2n−1]) = −a2n,1JX2n.

Hence ad(JX2n−1)(JX2n) = −a2n,1JX2n and a2n,1 is an eigenvalue of ad(JX2n−1).

By Engel’s theorem, [14,Theorem 1.35] (ad(X))s = 0 for all X ∈ n, where s ∈ N is

the nil-index. So a2n,1 = 0. In general, for all i ∈ {1, . . . , 2n− 1}, the equation (2.8)

yields

[JXi, JX2n] = J [Xi, JX2n] =


∑2n−1
j=2 a2n,jJXj+1 if i = 1∑2n

j=2 a2n,jJ [Xi, Xj] = 0 if 2 ≤ i ≤ 2n
.

Hence [JXi, JX2n] = J [Xi, JX2n] = 0 for all 2 ≤ i ≤ 2n. Notice that JX2n /∈ z =

span{X2n}. Then JX2n = ∑
j≥2 a2n,jXj. Using (2.7),

[JXi, JX2n] = ai1
2n−1∑
j=2

a2n,jXj+1 = 0 (2.9)
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for all 2 ≤ i ≤ 2n− 1. The family of equations (2.9) are

a21(
2n−1∑
j≥2

a2n,jXj+1) = 0, . . . , a2n−1,1(
2n−1∑
j≥2

a2n,jXj+1) = 0.

One has the two following cases,

(a) ai1 = 0, for all 1 ≤ i ≤ 2n− 1; (b)
2n−1∑
j≥2

a2n,jXj+1 = 0.

If (a) holds, then J2X1 = a11X1 and a1j = 0 for all 2 ≤ j ≤ n. By Lemma 1.2.18,

J is not an almost complex structure.

Assume now (b). Since {Xj}2n−1
j≥2 is a subset of the basis of n, Xj are linearly

independent. Hence a2n,j = 0 for all 2 ≤ j ≤ 2n−1 and therefore JX2n = a2n,2nX2n.

Again by Lemma 1.2.18, J is not an almost complex structure.

In conclusion, n admits no complex structures.

Remark 2.1.22. In [23], Remm proved that there are no complex structures on

filiform algebras. In Proposition 2.1.21, we provided a simple proof in a particular

case.

2.2 Central series of nilpotent Lie algebras with complex structures

In this section, we investigate the central series of nilpotent Lie algebras with com-

plex structures. We will show that there always exists a stratification on a 2-step

nilpotent Lie algebra with a complex structure J such that J is strata-preserving.

Theorem 2.2.1. Let n be a k-step nilpotent Lie algebra with a complex structure

J.

(i) Suppose that J is bi-invariant. Then both central series are J-invariant and

n admits a J-invariant stratification when k = 2.

(ii) Suppose that J is Abelian. Then all cj(n) are J-invariant.
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Proof. We start with part (i). Suppose that J is bi-invariant. Using the fact Jn = n,

cj(n) = [n, cj−1(n)] = [Jn, cj−1(n)] = J [n, cj−1(n)] = Jcj(n).

Hence J preserves cj(n) for all j ≥ 0. Furthermore, we show that all cj(n) are J-

invariant if and only if [JX, n] ⊆ cj−1(n) for all X ∈ cj(n). By definition, Jc0(n) =

Jn = n. Next, suppose that Jcs−1(n) = cs−1(n) for some s ∈ N. Then for all

X ∈ cs(n),

[JX, n] = J [X, n] ⊆ Jcs−1(n) = cs−1(n).

Hence JX ∈ cs(n) and so Jcs(n) ⊆ cs(n). The invertibility of J shows that Jcs(n) =

cs(n). By induction, Jcj(n) = cj(n) for all j ≥ 0.

Now let k = 2. Define a J-invariant inner product ψ as in Lemma 1.1.19. We

show that there exists a stratification on n such that n1 and n2 are J-invariant.

Define n2 = [n, n] and n1 = n⊥2 , the orthogonal complement of n2 with respect to ψ.

From the above paragraph, n2 = c1(n) is J-invariant and by definition n = n1 ⊕ n2.

Also note that

n2 = [n1 ⊕ n2, n1 ⊕ n2] = [n1, n1].

This implies that n1 generates n. Thus by Lemma 1.1.19, J is a complex structure

that preserves both n1 and n2.

For part (ii), suppose that J is Abelian. For all X ∈ cj(n) and for all j ≥ 0, it

follows that

[JX, n] = [JX, Jn] = [X, n] ⊆ cj−1(n)

and therefore JX ∈ cj(n). Hence Jcj(n) = cj(n) for all j ≥ 0.

Remark 2.2.2. (i) Suppose that n = n1 ⊕ n2 admits a step 2 stratification and a

complex structure J. If n2 is J-invariant, then there exists n′1 such that n′1 ⊕ n2 is a

J-invariant stratification. In particular, dim n′1, dim n2 ∈ 2N.
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(ii) Suppose that n is a k-step nilpotent Lie algebra. If J is bi-invariant, J

preserves both c1(n) and z, while if J is Abelian, then J preserves the center z.

Corollary 2.2.3. Let n be a k-step stratified Lie algebra with a bi-invariant complex

structure J. Then dim nj ∈ 2N for all j ∈ {1, . . . , k}.

Proof. Since J is bi-invariant, by Theorem 2.2.1, dim cj(n) ∈ 2N. From Lemma

2.1.12, cj(n) = ⊕
j+1≤l≤k nl. We deduce that

dim
⊕

j+1≤l≤k
nl ∈ 2N and dim

⊕
j≤l≤k

nl ∈ 2N.

Hence dim nj ∈ 2N as required.

Remark 2.2.4. A stratified Lie algebra with some odd dimensional layers does not

admit bi-invariant complex structures.

Since the descending central series is not necessarily J-invariant, it is interesting

to focus on cj(n)∩Jcj(n) = {0}. A similar study for ascending central series appears

in [15, Section 3].

Proposition 2.2.5. Let n be a 2n-dimensional nilpotent Lie algebra with a complex

structure J. Suppose that cj(n) ∩ Jcj(n) = {0} for some j ≥ 2. Then

(i) cj−1(n) ∩ Jcj(n) = {0};

(ii) n− j ≤ dim cj(n) ≤ n− 1.

Proof. We prove part (i) by contradiction. Suppose that there exists a non-zero

X ∈ cj(n) such that JX ∈ cj−1(n). On the one hand, since JX ∈ cj−1(n), there

exists Y such that [JX, Y ] ∈ cj(n) \ cj+1(n). On the other hand, since X ∈ cj(n),

by definition, [X, JY ] ∈ cj+1(n) ⊂ cj(n). Hence there exists [X, JY ] + [JX, Y ] ∈

cj(n) \ {0}. By the Newlander–Nirenberg condition,

0 6= [JX, JY ]− [X, Y ]︸ ︷︷ ︸
∈ cj(n)

= J ([X, JY ] + [JX, Y ]) .︸ ︷︷ ︸
∈ Jcj(n)

This is a contradiction. Hence cj−1(n) ∩ Jcj(n) = {0}.
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Now, we prove part (ii). Let us first look at the upper bound. Since cj(n) ∩

Jcj(n) = {0}, we deduce that dim cj(n) ≤ n. We next show that dim cj(n) 6= n

by contradiction. Suppose that dim cj(n) = n. Then dim Jcj(n) = n. By part (i),

dim cj−1(n)⊕ Jcj(n) > 2n. This is a contradiction. Hence dim cj(n) ≤ n− 1.

On the other hand, since cj(n) is a strictly deceasing series,

0 = dim ck(n) < . . . < dim c2(n) ≤ n− 1.

Hence the lower bound of dim cj(n) is n− j.

2.3 J-invariant central series of nilpotent Lie algebras

Following [4,Definition 1], we define the J-invariant ascending central series dj for

nilpotent Lie algebras and introduce nilpotent complex structures on nilpotent Lie

algebras. Furthermore, the J-invariant descending central series dj was introduced

by Gao, Zhao and Zheng in [12,Definition 2.7]. The inspiration of the definition of

dj comes from the following lemma, which implies that dj is a J-invariant ideal of

n.

Lemma 2.3.1. Let n be a nilpotent Lie algebra with a complex structure J, and let

y be a J-invariant ideal in n. Define

w(n) = {X ∈ n : [X, n] ⊆ y, [JX, n] ⊆ y}.

Then y ⊆ w(n) and w(n) is a J-invariant ideal in n.

Proof. By definition of w(n), since y is J-invariant, it is clear that w(n) is a J-

invariant subspace of n and y ⊆ w(n). For all X ∈ w(n), by definition, [X, n] ⊆

y ⊆ w(n). Since JX ∈ w(n), we deduce that [JX, n] ⊆ w(n). Thus w(n) is an ideal

of n.
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Definition 2.3.2. Let n be a Lie algebra with a complex structure J. Define a

sequence of J-invariant ideals of n by d0 = {0} and

dj = {X ∈ n : [X, n] ⊆ dj−1, [JX, n] ⊆ dj−1} (2.10)

for all j ≥ 1. We call the sequence dj the ascending J-invariant central series. The

complex structure J is called nilpotent of step j0 if there exists j0 ∈ N such that

dj0 = n and dj0−1 ⊂ n.

We define inductively the J-invariant descending central series by:

d0 = n, dj = [dj−1, n] + J [dj−1, n] (2.11)

all for j ≥ 1.

Remark 2.3.3. (i) For the ascending J-invariant central series dj,

dj/dj−1 = Z(n/dj−1) ∩ JZ(n/dj−1). (2.12)

In particular, d1 = z ∩ Jz. Notice that d1 is the largest J-invariant subspace of z

and, if J is nilpotent, then d1 6= {0}.

(ii) From (2.10), if J is nilpotent of step j0, then

{0} = [n, [n, . . . , [n, dj0 ]]]︸ ︷︷ ︸
j0 − 1 terms

⊆ . . . ⊆ [n, [n, d3]] ⊆ [n, d2] ⊆ d1. (2.13)

(iii) By definition, if n admits a nilpotent complex structure, then n is nilpotent.

In Proposition 2.3.11, we will investigate the relation between the nil-index of n and

the nilpotent step of J .

(iv) For the J-invariant descending series, dj/dj+1 ⊆ Z(n/dj+1) for all j ≥ 0.

Indeed, since [dj, n] ⊆ dj+1,

[dj/dj+1, n/dj+1] ⊆ [dj, n] + dj+1 ⊆ dj+1.
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(v) The nilpotency of J implies that the ascending J-invariant central series dj

of n is strictly increasing until dj0 = n.

(vi) Let n be a Lie algebra with a nilpotent complex structure J. Suppose that

z ⊂ c1(n). We show that c1(n) ∩ Jc1(n) 6= {0}. Indeed, since J is nilpotent, d1 =

z ∩ Jz 6= {0} by Definition 2.3.2. Then d1 ⊆ z ⊂ c1(n). Hence c1(n) ∩ Jc1(n) 6= {0}.

(vii) It is known that dj0 = {0} and dj0−1 6= {0} if and only if J is a nilpotent

complex structure of step j0. See, e.g., [12,Theorem 1.2]. We will provide another

proof of this in Theorem 2.3.31.

2.3.1 J-invariant ascending central series and nilpotent complex structures

In Definition 2.3.2, we saw that nilpotent complex structures J are related to the

J-invariant ascending series dj. In this subsection, we will discuss more properties

of dj and their relation with nilpotent complex structures. Note that some of these

properties can be found in [4] and [5].

Proposition 2.3.4 ([4, Corollary 5]). Let n be a Lie algebra with a complex struc-

ture J. Let dj be the J-invariant ascending central series, as in (2.10). Then J

preserves all cj(n) if and only if dj = cj(n) for all j ≥ 0.

Proof. Suppose that J preserves cj(n) for all j ≥ 0. By definition, c0(n) = {0} = d0.

Next, assume that ds−1 = cs−1(n) for some s ≥ 1. On the one hand, take X ∈ ds.

By (2.10), [X, n] ⊆ ds−1 and [JX, n] ⊆ ds−1 and from (2.2), X ∈ cs(n) and JX ∈

cs(n), for all X ∈ ds. Therefore ds ⊆ cs(n). On the other hand, for all X ∈ cs(n),

[X, n] ⊆ cs−1(n) = ds−1 and [JX, n] ⊆ ds−1. Again using (2.10), X, JX ∈ ds. Hence

cs(n) ⊆ ds and therefore cs(n) = ds. By induction, dj = cj(n) for all j ≥ 0.

Conversely, if cj(n) = dj for all j ≥ 0, by definition, all cj(n) are J-invariant.

Corollary 2.3.5. Let n be a k-step nilpotent Lie algebra with a complex structure

J. Suppose that J is bi-invariant or Abelian. Then J is nilpotent of step k.

Proof. From Theorem 2.2.1, J preserves cj(n) for all j ≥ 1. Hence by Proposition

2.3.4, dj = cj(n). Since n is nilpotent of step k, it is clear that dk = ck(n) = n and

dk−1 = ck−1(n) ⊂ n. Thus J is nilpotent of step k.
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Remark 2.3.6. In [10], Dotti and Fino showed that a Lie algebra g that admits an

Abelian complex structure has to be solvable.

Since dj�n, by Proposition 1.2.16, n/dj is a quotient nilpotent algebra. We can

find a sufficient condition for a complex structure to be nilpotent. The following

lemma is stated in [4] and [15] without a proof, we provide one here.

Lemma 2.3.7. Let n be a Lie algebra with a complex structure J . Suppose that J

is nilpotent of step j0. Then n/dj0−1 is Abelian. Conversely, if there exists j0 ∈ N

such that n/dj0−1 is Abelian, then J is nilpotent of step at most j0.

Proof. Suppose first that J is nilpotent of step j0. By definition, dj0 = n and

dj0−1 ⊂ n. Then by (2.12),

Z(n/dj0−1) ∩ JZ(n/dj0−1) = n/dj0−1.

It is obvious that Z(n/dj0−1) = n/dj0−1. Hence n/dj0−1 is Abelian.

Conversely, suppose that n/dj0−1 is Abelian. Then {0} 6= c1(n) ⊆ dj0−1. Hence

dj0−1 6= {0}. For all X ∈ n,

[X, n] ⊆ dj0−1 and [JX, n] ⊆ dj0−1.

We deduce that n = dj0 and therefore J is nilpotent of step at most j0.

To end this subsection, we will investigate the possible range of dim z for a Lie

algebra n with a nilpotent complex structure J. We show the following theorem.

Theorem 2.3.8. Let n be a non-Abelian Lie algebra of dimension 2n with a nilpo-

tent complex structure J. Then 2 ≤ dim z ≤ 2n− 2.

Proof. Recall that d1 = z ∩ Jz, which is the largest J-invariant subspace of z. If

d1 = {0}, it is clear that dj = {0} for all j ≥ 1. Then J is not nilpotent. Hence

d1 6= {0}. Since d1 is J-invariant, it follows that 2 ≤ dim d1 ≤ dim z. Then the lower

bound of dim z is 2.
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Next, we show that the upper bound of dim z is 2n− 2. Since n is non-Abelian,

it is possible to find X, Y ∈ n such that 0 6= [X, Y ] ∈ c1(n). Then span{X, Y } is

2-dimensional and span{X, Y } ∩ z = {0}. Hence dim z ≤ 2n− 2.

In conclusion, 2 ≤ dim z ≤ 2n− 2.

Remark 2.3.9. (i) Suppose that dim z = 2n− 2, then dim c1(n) = 1. In this case, n

is a 2-step nilpotent Lie algebra. Furthermore, if n is Abelian, then z = n.

(ii) From Theorem 2.3.8, we can further conclude that if dim z = 1, then a

complex structure J on n is non-nilpotent.

We immediately have the following corollary.

Corollary 2.3.10. Let n be the Lie algebra of n × n strictly upper triangular ma-

trices. Then a complex structure J on n is not nilpotent.

Proof. Recall, from Example 2.1.18, that n = {X ∈ gl(n,R) : Xij = 0 if 1 ≤ j ≤

i ≤ n}. Then nn−1 = z and dim z = 1. By Theorem 2.3.8, J is not nilpotent.

Next, we will look at a result which was proven in [4] and [12]. We will provide

an alternative demonstration.

Proposition 2.3.11. Let n be a k-step nilpotent Lie algebra with a nilpotent com-

plex structure J of step j0. Then k ≤ j0 ≤ 1
2 dim n.

Proof. Since J is nilpotent of step j0, by definition, {0} ⊂ d1 ⊂ . . . ⊂ dj0 = n. Then

there exist J-invariant quotient spaces dj/dj−1 such that dim dj/dj−1 = dim dj −

dim dj−1 ≥ 2 for all 1 ≤ j ≤ j0. By summing each term from 1 to j0,

j0∑
j=1

(
dim dj − dim dj−1

)
= dim n ≥ 2j0.

Then j0 ≤ 1
2 dim n.

Now, let us look at the lower bound of j0. Suppose that j0 = k−1. By definition,

dk−1 = n. However, n = dk−1 ⊆ ck−1(n), which means that n is nilpotent of step less

then k. This contradicts the assumption that n is nilpotent of step k.

In conclusion, k ≤ j0 ≤ 1
2 dim n.
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2.3.2 New characterization of nilpotent complex structures

In this section, we investigate the relation between a J-invariant central series and

nilpotent complex structures. We remind the reader that the J-invariant descending

and ascending central series dj and dj are defined in Definition 2.3.2. We summaries

some properties of dj in the following theorem.

Theorem 2.3.12. Let n be a Lie algebra with a complex structure J . Then

(i) For all j ≥ 0, cj(n) ⊆ dj and Jcj(n) ⊆ dj;

(ii) J preserves all cj(n) if and only if cj(n) = dj for all j ≥ 0. Furthermore,

dj � n. In particular, the quotient algebra n/d1 is Abelian.

Proof. We show part (i) by induction. By definition, n + Jn = d0 = n. Next,

suppose that cs−1(n) + Jcs−1(n) ⊆ ds−1 for some s ∈ N. Then

cs(n) + Jcs(n) = [cs−1(n), n] + J [cs−1(n), n]

⊆ [ds−1, n] + J [ds−1, n]

= ds.

Hence by induction, cj(n) + Jcj(n) ⊆ dj for all j ≥ 0. Furthermore, cj(n) ⊆ dj and

Jcj(n) ⊆ dj.

For part (ii), we first show that J preserves all cj(n) if and only if cj(n) = dj

for all j ≥ 0. On the one hand, suppose that cj(n) = dj for all j. By definition, all

cj(n) are J-invariant. On the other hand, suppose that J preserves all cj(n). By

definition, c0(n) = n = d0. Next, assume that cs(n) = ds for some s ∈ N. Then

ds+1 = [ds, n] + J [ds, n]

= [cs(n), n] + J [cs(n), n] = cs+1(n).

By induction, dj(n) = cj(n) for all j ≥ 0.
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We now show that dj � n for all j ≥ 0. By definition, d0 = n. Suppose that

ds−1 � n for some s ∈ N. That is, [ds−1, n] ⊆ ds−1. Then

[ds, n] = [[ds−1, n] + J [ds−1, n], n]

⊆ [ds−1, n] ⊆ ds.

By induction, dj �n for all j ≥ 0. Moreover, since dj �n, n/dj is a quotient algebra

from Proposition 2.1.6 for all j. We show that n/d1 is Abelian. By definition,

c1(n) ⊆ d1. Thus

[n/d1, n/d1] ⊆ [n, n] + d1 = c1(n) + d1 ⊆ d1,

and hence n/d1 is Abelian.

Remark 2.3.13. Since d1 = c1(n) + Jc1(n), if n is non-Abelian, it follows that d1 6=

{0}.

Lemma 2.3.14. Let n be a nilpotent Lie algebra with a complex structure J. Suppose

that J is nilpotent of step j0. Then dj ⊆ dj0−j for all j ≥ 0. Conversely, if there

exists j0 ∈ N such that dj ⊆ dj0−j for all j ≥ 0, then J is nilpotent of step at most

j0.

Proof. We first suppose that J is nilpotent of step j0. By definition, d0 = n = dj0 .

Next, assume that ds−1 ⊆ dj0−s+1 for some s ∈ N. Then

ds = [ds−1, n] + J [ds−1, n]

⊆ [dj0−s+1, n] + J [dj0−s+1, n]

⊆ dj0−s + Jdj0−s = dj0−s.

Hence by induction, dj ⊆ dj0−j for all j ≥ 0.
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Conversely, suppose that there exists j0 ∈ N such that dj ⊆ dj0−j for all j ≥ 0.

Then d1 ⊆ dj0−1. By definition, c1(n) ⊆ d1. It follows that

[n/dj0−1, n/dj0−1] ⊆ [n, n] + dj0−1 = c1(n) + dj0−1 ⊆ d1 + dj0−1 ⊆ dj0−1,

and thus n/dj0−1 is Abelian. By Lemma 2.3.7, J is nilpotent of step at most j0.

Remark 2.3.15. If J is nilpotent of step j0, dj0−1 ⊆ d1 ⊆ z. Then dj0−1 is Abelian.

Furthermore, there exists j0 ∈ N such that n/dj0−1 is Abelian if and only if dj ⊆ dj0−j

for all j ≥ 0. This follows by induction from the proof of Lemma 2.3.14.

Corollary 2.3.16. Let n be a k-step nilpotent Lie algebra with a complex structure

J. Then J is nilpotent of step k if and only if dj ⊆ dk−j for all j ≥ 0.

Proof. Suppose that J is nilpotent of step k. By Lemma 2.3.14, dj ⊆ dk−j for all

j ≥ 0. Conversely, assume that dj ⊆ dk−j for all j. Again by Lemma 2.3.14, J

is nilpotent of step at most k. Furthermore, it follows, from Theorem 2.3.12, that

{0} 6= ck−1(n) ⊆ dk−1. Therefore dk−1 6= {0} and J is nilpotent of step k.

Remark 2.3.17. From Remark 2.3.15, we further conclude that J is nilpotent step

k if and only if n/dk−1 is Abelian.

Corollary 2.3.18. Let n be a Lie algebra with a nilpotent complex structure J of

step j0. Then [dj0−2, cj(n)] = {0} for all j ≥ 0. In particular, if n is a k-step

stratified Lie algebra, then [dj0−2, nj+1] = {0}.

Proof. Since J is nilpotent, by Lemma 2.3.14, dj ⊆ dj0−j for all j ≥ 0. Then by

definition,

{0} = [dj0−1, n] ⊆ [dj0−2, n] ⊆ dj0−1 ⊆ d1.

For all X, Y ∈ n, T ∈ dj0−2, by the Jacobi identity,

[[T,X], Y ]︸ ︷︷ ︸
∈ [[dj0−2, n], n] = {0}

= [T, [X, Y ]]︸ ︷︷ ︸
∈ [dj0−2, c1(n)]

+ [X, [Y, T ]].︸ ︷︷ ︸
∈ [n, [dj0−2, n]] = {0}
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Hence [dj0−2, c1(n)] = {0}. Since cj(n) is the descending central series, for all T ∈

dj0−2,

{0} = [T, ck(n)] ⊆ [T, ck−1(n)] ⊆ . . . ⊆ [T, c2(n)] ⊆ [T, c1(n)] = {0}.

Hence [dj0−2, cj(n)] = {0}.

In particular, suppose that n admits a stratification. Recall, from Lemma 2.1.12,

that cj(n) = ⊕
l≥j nl+1. From the above paragraph, {0} = [dj0−2,

⊕
l≥j nl+1]. Hence

[dj0−2, nj+1] = {0} for all j ≥ 0.

In order to show that dj0−1 6= {0} if J is nilpotent of step j0, we need to

introduces a new descending central series whose descending ‘rate’ is slower than

that of cj(n) but faster than that of dj.

Definition 2.3.19. Let J be a complex structure on a Lie algebra n. We define a

sequence inductively by

p0 = n and pj = [pj−1, n] + [Jpj−1, n] for all j ≥ 1. (2.14)

Remark 2.3.20. It is clear that p1 = c1(n).

Lemma 2.3.21. Let n be a Lie algebra with a complex structure J . Then pj � n

and cj(n) ⊆ pj for all j ≥ 0. Furthermore, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0,

where dj is the J-invariant descending central series as in Definition 2.3.2.

Proof. We first show that pj+1 ⊆ pj for all j ≥ 0. By definition, p1 = c1(n) ⊆ n = p0.

Next, assume that ps ⊆ ps−1 for some s ∈ N. Then by (2.14),

ps+1 = [ps, n] + [Jps, n] ⊆ [ps−1, n] + [Jps−1, n] = ps.

By induction, pj+1 ⊆ pj. Then

[pj, n] ⊆ pj+1 ⊆ pj.
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Hence pj�n for all j ≥ 0. Now, we show that cj(n) ⊆ pj for all j ≥ 0. By definition,

c1(n) = p1. Assume next that cs(n) ⊆ ps for some s ∈ N. Then

cs+1(n) = [cs(n), n] ⊆ [ps, n] ⊆ ps+1.

By induction, cj(n) ⊆ pj for all j ≥ 0.

Using (2.11), [dj−1, n] ⊆ dj. By definition, p0 = n = d0 and Jp0 = Jn = n = d0.

Next, suppose that ps ⊆ ds and Jps ⊆ ds for some s ∈ N. Then by (2.14),

ps+1 = [ps, n] + [Jps, n] ⊆ [ds, n] ⊆ ds+1 and Jps+1 ⊆ J [ds, n] ⊆ ds+1

By induction, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0.

Remark 2.3.22. (i) Since p1 = c1(n), it is clear that n/p1 is Abelian. Furthermore,

if dj = pj for all j ≥ 1, then all [dj−1, n] are J-invariant. Indeed,

[dj, n] = [pj, n] = pj+1 = dj+1.

(ii) Notice that pj/pj+1 ⊆ Z (n/pj+1) for all j ≥ 0. Indeed, for all P ∈ pj and

Y ∈ n, since [P, Y ] ⊆ pj+1, it is enough to deduce

[P + pj+1, Y + pj+1] = [P, Y ] + pj+1 ⊆ pj+1.

This implies that pj is a central series.

(iii) By Lemma 2.3.21, pj + Jpj ⊆ dj. We show that pj + Jpj � n for all j ≥ 0.

Indeed, for all P, P ′ ∈ pj,

[P + JP ′, n]︸ ︷︷ ︸
⊆ [pj + Jpj , n]

⊆ [P, n]︸ ︷︷ ︸
⊆ pj+1

+ [JP ′, n]︸ ︷︷ ︸
⊆ pj+1

⊆ pj+1 ⊆ pj+1 + Jpj+1 ⊆ pj + Jpj.
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Hence pj+Jpj�n. From part (ii), we show that pj+Jpj is a J-invariant descending

central series. Indeed, for all T = P + JP ′ ∈ pj + Jpj and Y ∈ n,

[T + pj+1 + Jpj+1, Y + pj+1 + Jpj+1] ⊆ [T, Y ] + pj+1 + Jpj+1 ⊆ pj+1 + Jpj+1.

(iv) Suppose that J is nilpotent of step j0. By Corollary 2.3.18, [pj0−2, cj(n)]

⊆ [dj0−2, cj(n)] = {0} for all j ≥ 0. Hence [pj0−2, cj(n)] = {0}. We further assume

that n is a stratified Lie algebra. Then [pj0−2, nj+1] = {0} for all j ≥ 0.

The contents from Definition 2.3.2 to here actually make sense for every Lie

algebra g. In what follows, we will characterize nilpotent complex structures with

descending central series pj and dj.

Lemma 2.3.23. Let n be a Lie algebra with a complex structure J. Then there

exists j0 ∈ N such that pj0 = {0} and pj0−1 6= {0} if and only if J is nilpotent of

step j0.

Proof. We first assume that J is nilpotent of step j0. By Lemma 2.3.14, dj0−1 ⊆ d1.

Hence by Lemma 2.3.21,

pj0 ⊆ [dj0−1, n] ⊆ [d1, n] = {0}.

Thus pj0 = {0}. Assume, by contradiction, that pj0−1 = {0}.We show that pj0−j−1+

Jpj0−j−1 ⊆ dj for all j ≥ 0 by induction. By definition, pj0−1 + Jpj0−1 = {0} = d0.

Next, suppose that pj0−s−1 + Jpj0−s−1 ⊆ ds for some s ∈ N. Then for all P, P ′ ∈

pj0−s−2,

[P, n] ⊆ pj0−s−1 ⊆ ds and [JP ′, n] ⊆ pj0−s−1 ⊆ ds.

This implies, using (2.10), pj0−s−2 + Jpj0−s−2 ⊆ ds+1. By induction, pj0−j−1 +

Jpj0−j−1 ⊆ dj for all j ≥ 0. In particular, let j = j0 − 1. Then n ⊆ dj0−1, which

implies that J is nilpotent of step j0 − 1 by definition. This is a contradiction.

Therefore pj0−1 6= {0}.
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Conversely, suppose that pj0 = {0} and pj0−1 6= {0}. We show that J is nilpotent

of step j0. By definition, pj0 +Jpj0 = {0} = d0. Next, suppose that pj0−s+Jpj0−s ⊆

ds for some s ∈ N. Then from Remark 2.3.22 part (iii),

[pj0−s−1 + Jpj0−s−1, n] ⊆ pj0−s + Jpj0−s ⊆ ds.

This implies, using (2.10), pj0−s−1 +Jpj0−s−1 ⊆ ds+1. By induction, pj0−j +Jpj0−j ⊆

dj for all j ≥ 0. Hence pj0−j ⊆ dj. In particular, let j = j0 − 1. Then

p1 = [n, n] ⊆ dj0−1 ⇒ n/dj0−1 is Abelian .

By Lemma 2.3.7, J is nilpotent of step at most j0.

We next show that dj0−1 6= n by contradiction. Assume, by contradiction, that

n = dj0−1. We show that pj−1 ⊆ dj0−j for all j ≥ 1 by induction. By definition,

p0 = n = dj0−1. Next, suppose that ps−1 ⊆ dj0−s for some s ∈ N. Then

ps = [ps−1, n] + [Jps−1, n]

⊆ [dj0−s, n] + [Jdj0−s, n]

⊆ dj0−s−1.

By induction, pj−1 ⊆ dj0−j for all j ≥ 1. In particular, let j = j0. We deduce that

pj0−1 ⊆ d0 = {0}. This implies that pj0−1 = {0} which is a contradiction. Hence

dj0−1 6= n. By definition, J is nilpotent of step j0.

Remark 2.3.24. Suppose that a Lie algebra n admits a nilpotent complex structure

J of step j0. Then from Lemma 2.3.21,

cj(n) + Jcj(n) ⊆ pj + Jpj ⊆ dj ⊆ dj0−j (2.15)

for all j ≥ 0. In particular, the converse is true if j0 is equal to the nil-index of n.
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Proposition 2.3.25. Let n be a Lie algebra with a complex structure J. Then there

exists j0 ∈ N such that dj0 = {0} and dj0−1 6= {0} if and only if J is nilpotent of

step j0.

Proof. Since J is nilpotent of step j0, it follows, from Lemma 2.3.14, that dj ⊆ dj0−j

for all j ≥ 0. In particular, let j = j0. By definition, dj0 = d0 = {0}. We show that

dj0−1 6= {0}. By Lemma 2.3.21 and Lemma 2.3.23, {0} 6= pj0−1 + Jpj0−1 ⊆ dj0−1.

Hence dj0−1 6= {0}.

Conversely, assume that dj0 = {0} and dj0−1 6= {0}. By definition, [dj0−1, n] ⊆

dj0 = {0}. Hence {0} 6= dj0−1 ⊆ d1. Next, assume that dj0−s ⊆ ds for some s ∈ N.

Then

[dj0−s−1, n] ⊆ dj0−s ⊆ ds.

By (2.10), dj0−s−1 ⊆ ds+1. By induction, dj0−j ⊆ dj for all j ≥ 0. Let j = j0. We

find that d0 = n ⊆ dj0 . Therefore dj0 = n and J is nilpotent of step at most j0.

We next show that dj0−1 6= n. Suppose not, that is, n = dj0−1. We show that

dj−1 ⊆ dj0−j for all j ≥ 1 by induction. By definition, d0 = n = dj0−1. Next assume

that ds−1 ⊆ dj0−s for some s ∈ N. Then

ds = [ds−1, n] + J [ds−1, n]

⊆ [dj0−s, n] + J [dj0−s, n]

⊆ dj0−s−1.

By induction, dj−1 ⊆ dj0−j for all j ≥ 1. In particular, let j = j0. We find that

dj0−1 ⊆ {0}. This is a contradiction. Hence dj0−1 6= n.

In conclusion, J is nilpotent of step j0.
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Remark 2.3.26. Suppose that J is nilpotent of step j0. This implies the following

inclusion relations

[pj0−1, n] ⊆ [dj0−1, n] ⊆ dj0 ⊆ dj0−1 ⊆ . . . ⊆ d1 ⊂ n. (2.16)

It is clear that d1 ⊂ n. Otherwise, we have dj = n for all j ≥ 0 which implies that

J is not nilpotent. In general, if J is not nilpotent, it is still true that d1 ⊂ n. The

proof of this fact can be found in [19,Proposition 2.7] and the original source is

[26].

In what follows, we show some observations from Lemma 2.3.23 and Proposition

2.3.25. It is shown that, in [4,Corollary 7], if cj(n) is J-invariant for all j ≥ 0, then

J is nilpotent. We will provide a different approach to this.

Corollary 2.3.27. Let n be a k-step nilpotent Lie algebra with a complex struc-

ture J. Suppose that all cj(n) are J-invariant. Then pj = cj(n) for all j ≥ 0.

Furthermore, J is nilpotent of step k.

Proof. Since all cj(n) are J-invariant, by definition, p0 = n = c0(n). Next, assume

that ps = cs(n) for some s ∈ N. Then

ps+1 = [ps, n] + [Jps, n] = [n, cs(n)] = cs+1(n).

By induction, pj = cj(n) for all j ≥ 0. Therefore pk = ck(n) = {0} and pk−1 =

ck−1(n) 6= {0}. By Lemma 2.3.23, J is nilpotent of step k.

Remark 2.3.28. (i) Suppose that all cj(n) are J-invariant. By Theorem 2.3.12,

pj = dj = cj(n) for all j ≥ 0.

(ii) Suppose that J is nilpotent of step k on a k-step nilpotent Lie algebra. It

is not necessarily true that J always preserves all cj(n). For instance, n ∼= h1 × R,

a 4 dimensional 2-step nilpotent Lie algebra admits an Abelian complex structure

such that dim n2 = 1, where h1 is the 3-dimensional Heisenberg algebra. See, e.g.,

[2] and [11].
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Corollary 2.3.29. Let n be a k-step nilpotent Lie algebra with a nilpotent complex

structure J of step k. Suppose that ck−1(n) = z. Then z is J-invariant.

Proof. Since J is nilpotent of step k, by Theorem 2.3.12 part (i) and Lemma 2.3.14,

z + Jz ⊆ dk−1 ⊆ d1 ⊆ z⇒ [z + Jz, n] = {0}.

Hence Jz = z. Therefore Jz ⊆ z and z = dk−1.

Corollary 2.3.30. Let n be a k-step stratified Lie algebra with a strata-preserving

complex structure J. Then Jcj(n) = cj(n) for all j ≥ 0 and J is nilpotent of step k.

Proof. We first show that Jcj(n) = cj(n) for all j ≥ 0. Recall that cj(n) =⊕
j+1≤l≤k nl by Lemma 2.1.12. Then

Jcj(n) =
⊕

j+1≤l≤k
Jnl =

⊕
j+1≤l≤k

nl = cj(n).

Hence all cj(n) are J-invariant. Finally, by Corollary 2.3.27, J is nilpotent of step

k.

We can write down the following theorem by combining Lemma 2.3.23 and

Proposition 2.3.25.

Theorem 2.3.31. Let n be a Lie algebra with a complex structure J. The following

are equivalent:

(i) J is nilpotent of step j0;

(ii) pj0 = {0} and pj0−1 6= {0};

(iii) dj0 = {0} and dj0−1 6= {0}.

Proof. Since J is nilpotent of step j0, by definition, dj0 = n and dj0−1 ⊂ n. Then

using Lemma 2.3.23, (i) and (ii) are equivalent. Furthermore, the equivalence be-

tween argument (i) and (iii) is given by Proposition 2.3.25. Hence (i), (ii) and (iii)

are equivalent.
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Corollary 2.3.32. Let n be a Lie algebra with a nilpotent complex structure J of

step j0. Then for all j ≥ 1, dj0−j is not contained in dj−1.

Proof. Since J is nilpotent of step j0, by Theorem 2.3.31, dj0−1 6= {0} = d0. Hence

dj0−1 is not contained in d0. Next, suppose that dj0−s+1 is not contained in ds−2 for

some N 3 s ≥ 2. We show that dj0−s is not contained in ds−1. Suppose not. That

is, dj0−s ⊆ ds−1. Then

dj0−s+1 = [dj0−s, n] + J [dj0−s, n]

⊆ [ds−1, n] + J [ds−1, n] ⊆ ds−2.

It follows that dj0−s+1 ⊆ ds−2. This is a contradiction. Hence dj0−s is not contained

in ds−1. By induction, dj0−j is not contain in dj−1 for all j ≥ 1.

2.4 Complex structures on decomposable nilpotent Lie algebras

We call a nilpotent Lie algebra n decomposable if n = g1 ⊕̃ . . . ⊕̃ gm, where gi

are nilpotent Lie algebras and ⊕̃ is a Lie algebra direct sum. Let S(n) = {J ∈

GL(n) : J2 = −I and NJ = 0} be the set of complex structures on a Lie algebra n.

We observe the following lemmas about decomposable nilpotent Lie algebras with

complex structures.

Lemma 2.4.1. Let s = n⊕̃n′ be the Lie algebra direct sum of nilpotent Lie algebras

of step k and k′ respectively.

(i) s is a nilpotent Lie algebra of step k0 = max{k, k′};

(ii) suppose that K ∈ S(n) and K ′ ∈ S(n′). Then J = (K,K ′) is a complex

structure on s;

(iii) suppose that K ∈ S(n) is nilpotent of step h and K ′ ∈ S(n′) is nilpotent of

step h′. Then J = (K,K ′) ∈ S(s) is nilpotent of step j0 = max{h, h′}.

Proof. For part (i), since [(X,X ′), (Y, Y ′)] = ([X, Y ], [X ′, Y ′]) for all X, Y ∈ n and

X ′, Y ′ ∈ n′ and [n, n′] = {0}, [s, s] = [n, n] ⊕̃ [n′, n′]. Next, suppose that cs−1(s) =
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cs−1(n) ⊕̃ cs−1(n′) for some s ∈ N. Then

cs(s) = [cs−1(s), s] = [cs−1(n) ⊕̃ cs−1(n′), n ⊕̃ n′] = cs(n) ⊕̃ cs(n′)

By induction, cj(s) = cj(n) ⊕̃ cj(n′) for all j ≥ 0. Without loss of generality, assume

that k ≤ k′. Then

ck(s) = ck(n) ⊕̃ ck(n′) = ck(n′) and ck′(s) = ck′(n′) = {0}, ck′−1(s) 6= {0}.

Hence s is a nilpotent Lie algebra of step k.

For part (ii), consider J as defined in statement of the lemma by J(X,X ′) =

(KX,K ′X ′), where K ∈ S(n), K ′ ∈ S(n′) and X, Y ∈ n, X ′, Y ′ ∈ n′. The Lie

bracket on s is given by [(X,X ′), (Y, Y ′)] = ([X, Y ], [X ′, Y ′]). It is easy to see that

this Lie bracket satisfies the Jacobi identity. Notice that J is an almost complex

structure since

J2(X,X ′) = J(KX,K ′X ′) = (−X,−X ′) = −(X,X).

for all X ∈ n and X ′ ∈ n′. Next, we show that J satisfies the Newlander–Nirenberg

condition. For all P = (X,X ′), Q = (Y, Y ′) ∈ s,

[JP, JQ] = [(KX,K ′X ′), (KY,K ′Y ′)] = ([KX,KY ], [K ′Y,K ′Y ′]);

[P, JQ] = ([X,KY ], [X ′, K ′Y ′]); [JP,Q] = ([KX,Y ], [K ′X ′, Y ′]).

Then

NJ(P,Q) = [JP, JQ]− [P,Q]− J [JP,Q]− J [P, JQ]

= ([KX,KY ], [K ′Y,K ′Y ′])− ([X, Y ], [X ′, Y ′])− (K[X,KX ′]

+K[KX,X ′], K ′[Y,K ′Y ′] +K ′[K ′X ′, Y ′])

= (NK(X,X ′), NK′(Y, Y ′)) = (0, 0)
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since K and K ′ are complex structures. Hence NJ(P,Q) = 0 and therefore, by

definition, J is a complex structure on s.

Now, we show part (iii). From part (ii), J = (K,K ′) is a complex structure

on s. Now, we show that dj(s) = dj(n) ⊕̃ dj(n′) for all j ≥ 0, where dj(n) and

dj(n′) are the J-invariant descending central series of n and n′. By definition,

d0(s) = s = n ⊕̃ n′ = d0(n) ⊕̃ d0(n′). Next, suppose that ds−1(s) = ds−1(n) ⊕̃ ds−1(n′)

for some s ∈ N. Using (2.11) we have

ds(s) = ([ds−1(n), n] +K[ds−1(n), n], [ds−1(n′), n′] +K ′[ds−1(n′), n′])

= ([ds−1(n), n], [ds−1(n′), n′]) + (K[ds−1(n), n], K ′[ds−1(n′), n′])

= [(ds−1(n), ds−1(n′)), (n, n′)] + (K,K ′)[(ds−1(n), ds−1(n′)), (n, n′)]

= ds(n) ⊕̃ ds(n′).

By induction, dj(s) = dj(n) ⊕̃ dj(n′) for all j ≥ 0.

Without loss of generality, suppose that h ≤ h′. It is clear that dh′−1(s) =

{0} ⊕̃ dh′−1(n′) = dh′−1(n′) 6= {0} and dh′(s) = {0} by Theorem 2.3.31. Hence J is

nilpotent of step h′.

Remark 2.4.2. Notice that the ascending central series of s is

cj(s) = cj(n) ⊕̃ cj(n′)

for all j ≥ 0. Further, pj(s) = pj(n) ⊕̃ pj(n′) for all j ≥ 0.

Corollary 2.4.3. Let s = n ⊕̃ n′ be a nilpotent be a Lie algebra sum of nilpotent

Lie algebras n and n′ with a complex structure J = (K,K ′), where K ∈ S(n) and

K ′ ∈ S(n′). Suppose that K and K ′ preserve Z(n) and Z(n′). Then J preserves

Z(s).

Proof. Notice that Z(s) = Z(n⊕̃n′) = Z(n)⊕̃Z(n′). For allW ∈ Z(n) andW ′ ∈ Z(n′),

J(W,W ′) = (KW,K ′W ′) ∈ Z(n) ⊕̃ Z(n′) = Z(s).
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Hence J preserves Z(s).

Lemma 2.4.4. Let s = n ⊕̃ n′ be a nilpotent be a Lie algebra sum of nilpotent

Lie algebras n and n′ with a complex structure J = (K,K ′), where K ∈ S(n) and

K ′ ∈ S(n′). Then J is Abelian or bi-invariant if and only if both K and K ′ are.

In particular, if n and n′ are non-Abelian and K is Abelian and K ′ is bi-invariant,

then J is neither Abelian nor bi-invariant.

Proof. Now, suppose both K and K ′ are Abelian. Then for all P = (X,X ′), Q =

(Y, Y ′) ∈ s, where X, Y ∈ n and X ′, Y ′ ∈ n′,

[JP, JQ] = ([KX,KY ], [K ′X ′, K ′Y ′]) = ([X, Y ], [X ′, Y ′]) = [P,Q],

which implies that J is Abelian. Similarly, J is bi-invariant if both K and K ′ are.

Indeed,

J [P,Q] = (K[X, Y ], K ′[X ′, Y ′]) = ([X,KY ], [X ′, K ′Y ′]) = [P, JQ].

Conversely, if J = (K,K ′) is Abelian, then

([KX,KY ], [K ′X ′, K ′Y ′]) = [JP, JQ] = [P,Q] = ([X, Y ], [X ′, Y ′]).

Hence both K and K ′ are Abelian. Similarly, if J = (K,K ′) is bi-invariant, then

(K[X, Y ], K ′[X ′, Y ′]) = J [P,Q] = [P, JQ] = ([X,KY ], [X ′, K ′Y ′])

Hence K and K ′ are bi-invariant.

Finally, suppose that n and n′ are non-Abelian and K is Abelian and K ′ is

bi-invariant. Notice that (K,K ′) is neither Abelian nor bi-invariant. Indeed,

[JP, JQ] = ([X, Y ],−[X ′, Y ′]) 6= [P,Q];

J [P,Q] = (K[X, Y ], [X ′, K ′Y ′]) 6= [P, JQ]
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as required.

We present an example of a decomposable 2-step nilpotent Lie algebra with a

complex structure that is neither Abelian nor bi-invariant.

Example 2.4.5. Let s = hC1 ⊕̃ hC1 where hC1 is a complex Heisenberg algebra. It

is a 12 dimensional 2-step nilpotent Lie algebra by Lemma 2.4.1 part (i). In

[1,Theorem 3.3 and Remark 6], the authors show that there exists a family of Abelian

complex structures Kt for all t ∈ (0, 1] and a unique bi-invariant complex structure

K ′ on hC1 . From Lemma 2.4.1 and Lemma 2.4.4, J = (Kt, K
′) is nilpotent but

neither bi-invariant nor Abelian.

2.5 2-step stratified Lie algebras with complex structures

In [17], the author showed that every 2-step nilpotent Lie algebra may be stratified.

In this section we focus on 2-step nilpotent Lie algebras with complex structures.

We start with the following proposition.

Proposition 2.5.1. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex

structure J.

(i) Suppose that Jz = z. Then J is nilpotent of step 2;

(ii) Suppose that n2 = z and z is not J-invariant. Then J is nilpotent of step 3,

where z is the center of n.

Proof. We start with part (i). If Jz = z, we conclude that d1 = z. By definition, J

is nilpotent of step 2.

For part (ii), since z = n2 is not J-invariant, by definition, d1 = z+Jz. Then for

all Z,Z ′ ∈ z and X ∈ n, by the Newlander–Nirenberg condition,

[d1, n] 3 [Z + JZ ′, X] = −[JZ ′, X] = J [JZ ′, JX] ∈ J [Jz, n] ⊆ z.

Hence by definition, {0} 6= p2 = [Jz, n] ⊆ z and p3 = [p2, n] + [Jp2, n] = {0}. By

Theorem 2.3.31, J is nilpotent of step 3.
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Suppose that n is a 2-step nilpotent Lie algebra. Let ψ be a J-invariant inner

product on n as in Lemma 1.1.19. Suppose that Jz = z. There exists a vector space

decomposition n = u ⊕ z such that [u, u] ⊆ z, where u is a J-invariant orthogonal

complement of z with respect to ψ. We define a linear map j : z→ End(u) by

ψ(j(Z)X, Y ) = ψ(Z, [X, Y ]), for all X, Y ∈ u, Z ∈ z. (2.17)

Notice that, for every Z ∈ z, j(Z) ∈ End(u) is skew symmetric. Indeed,

ψ(j(Z)TX, Y ) = ψ(X, j(Z)Y ) = ψ(Z, [Y,X]) = −ψ(j(Z)X, Y ),

where j(Z)T is the transpose of j(Z). We deduce that j(Z)T = −j(Z). Hence

j : z → so(u) is skew symmetric. For any 2-step nilpotent Lie algebras, since

c1(n) ⊆ z, we denote the complement of c1(n) in z by z	 c1(n). That is, z⊕ c1(n) ⊆ z

and (z	 c1(n))⊕ c1(n) = z.

Proposition 2.5.2. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex

structure J. Suppose that z is J-invariant. We further assume that Jn2 = n2 and

n2 = n⊥1 . Then n has a J-invariant vector space decomposition of the form u⊕ (z	

n2)⊕ n2 and dim n2 ≤ 1
2 dim u(dim u− 1).

Proof. Let ψ be an J-invariant inner product on n. Since Jz = z, it follows, from

Proposition 2.5.1, that J is nilpotent of step 2. Since Jn2 = n2, there exists a

vector space decomposition z = (z 	 n2) ⊕ n2 such that z 	 n2 is the J-invariant

orthogonal complement of n2 in z with respect to ψ. Hence n = u ⊕ (z 	 n2) ⊕ n2.

Let j : z → so(u) be the linear mapping defined in (2.17). Furthermore, define

j′ : n2 → so(u) by restricting j to n2. We next show that j′ is injective. Since j′ is

linear, it is sufficient to show that ker j′ = {0}. Suppose that j′(Z) = 0 for some

Z ∈ n2. Then for all X, Y ∈ u,

ψ(Z, [X, Y ]) = 0⇒ ψ(Z, n2) = {0} ⇒ Z ∈ n⊥2 .
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This implies that Z ∈ n1. Since n1 ∩ n2 = {0}, Z = 0 and so ker j′ = {0}. Hence j′

is injective and therefore dim n2 ≤ dim so(u) = 1
2 dim u(dim u− 1).

Corollary 2.5.3. Let n be a 2-step nilpotent Lie algebra with a complex structure J

and let j(Z) be as in (2.17) for all Z ∈ z. If J is Abelian, then J ◦ j(Z) = j(Z) ◦ J ;

furthermore, if J is bi-invariant, then J ◦ j(Z) = −j(Z) ◦ J .

Proof. Suppose that J is Abelian. Then using (2.17), for all X, Y ∈ u,

ψ((j(Z) ◦ J)(X), JY ) = ψ(Z, [JX, JY ])

= ψ(Z, [X, Y ]) = ψ(j(Z)X, Y ) = ψ(J ◦ j(Z)X, JY ).

Hence J ◦ j(Z) = j(Z) ◦ J for all Z ∈ z. Notice that this result is presented in

[2,Proposition 4.2].

Now, assume that J is bi-invariant. For all Z ∈ z, JZ ∈ z. From (2.17), for all

X, Y ∈ u,

ψ(Jj(Z)X, Y ) = −ψ(j(Z)X, JY ) = −ψ(Z, [X, JY ]) = −ψ(Z, J [X, Y ])

= ψ(JZ, [X, Y ]) = ψ(j(JZ)X, Y );

ψ(j(Z)JX, Y ) = ψ(Z, [JX, Y ]) = ψ(Z, J [X, Y ]) = −ψ(j(JZ)X, Y ).

It follows that ψ(Jj(Z)X, Y ) = −ψ(j(Z)JX, Y ), so J ◦ j(Z) + j(Z) ◦ J = 0 as

required.

It is known, and we will provide another proof in Proposition 2.5.4, that every

complex structure on a 2-step stratified nilpotent Lie algebra is nilpotent of step 2

or 3. See, e.g., [12,Theorem 1.3] and [25,Proposition 3.3]. Instead of studying the

J-invariant subspaces of z, we shall look at J-invariant subspaces of n2. In what

follows, we denote by k = n2 ∩ Jn2 the largest J-invariant subspace contained in

n2 and we remind the reader that d1 = z ∩ Jz is the largest J-invariant subspace

contained in z.
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Proposition 2.5.4. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex

structure J and a J-invariant inner product ψ.

(i) Suppose that k = {0}. Then d1 is Abelian and J is nilpotent of step 2.

(ii) Suppose that {0} 6= k ⊂ n2. Then n/k is a step 2 quotient algebra with an

Abelian complex structure J ′ and J is nilpotent of step 3.

(iii) Suppose that n2 = k. Then J is strata-preserving and nilpotent of step 2.

In conclusion, J is nilpotent of either step 2 or 3.

Proof. For part (i), by the Newlander–Nirenberg condition, for all X, Y ∈ n,

Jn2 3 J([JX, JY ]− [X, Y ]) = [X, JY ] + [JX, Y ] ∈ n2.

Since k = {0}, it follows that [JX, JY ] − [X, Y ] = 0. Hence J is Abelian and z

is J-invariant by Theorem 2.2.1. Using Corollary 2.3.5, J is nilpotent of step 2.

Next, we show that d1 is Abelian. By Definition, d1 = n2 + Jn2. Since k = {0},

d1 = n2 ⊕ Jn2. Then [d1, d1] ⊆ [Jn2, Jn2]. By the Newlander–Nirenberg condition,

for all Z1, Z2 ∈ n2

[Jn2, Jn2] 3 [JZ1, JZ2] = [Z1, Z2] + J([Z1, JZ2] + [JZ1, Z2]) = 0. (2.18)

Thus [d1, d1] = {0} and d1 is Abelian.

For part (ii), suppose that {0} 6= k ⊂ n2. It is clear that k is Abelian. Let

n̂ = n/k and let

ẑ = {X + k ∈ n̂ : [X, n] ⊆ k}

be the center of n̂. By Proposition 1.2.16, Ĵ ∈ GL(n̂) is a complex structure. We

show that n̂ is a 2-step nilpotent Lie algebra. For all X̂ = X + k, Ŷ = Y + k ∈ n̂,

[X + k, Y + k] = [X, Y ] + k ∈ n2 + k = n̂2.
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Furthermore, Ĵ is strata-preserving if J is. Recall that n̂ is a 2-step nilpotent Lie

algebra if n̂/ẑ is Abelian. For all X̂ + ẑ, Ŷ + ẑ ∈ n̂/ẑ, it follows that

[X̂ + ẑ, Ŷ + ẑ] = [X̂, Ŷ ] + ẑ ∈ n̂2 + ẑ ⊆ ẑ.

Hence n̂/ẑ is Abelian and n̂ is a 2-step nilpotent Lie algebra. Now, we show that Ĵ

is Abelian. We prove that k̂ = n̂2 ∩ Ĵ n̂2 = {0̂}. By a direct calculation,

(n2 + k) ∩ (Jn2 + k) = n2 ∩ Jn2 + k = k.

Hence Ĵ is Abelian and therefore Ĵ is nilpotent of step 2. It follows that J is

nilpotent of step 3.

For part (iii), suppose that n2 = k. We find that J preserves n2. By Theorem

2.2.1, J is strata-preserving. By Corollary 2.3.30, J is nilpotent of step 2.

In conclusion, J is either nilpotent of step 2 or 3.

Remark 2.5.5. (i) From the equation (2.18), we can conclude that n1 6= Jn2. Indeed,

suppose that n1 = Jn2. Then n2 = [Jn2, Jn2] = {0}. This is a contradiction. More-

over, if J is nilpotent of step 3, then there does not exist a J-invariant stratification.

(ii) Recall, from [12,Theorem 1.3], that if z is not J-invariant, then J is nilpotent

of step 3. Combining Proposition 2.5.1 and Proposition 2.5.4, we have the following

table:

J Strata-preserving Non-strata-preserving
Jz = z J nilpotent of step 2 J nilpotent of step 2
Jz 6= z J nilpotent of step 2 J nilpotent of step 3

Table 2.1: nilpotency of J

From Table 2.1, if J is nilpotent of step 2, then J is either strata-preserving or

center-preserving. More precisely, we observe the following corollary.

Corollary 2.5.6. Let n = n1 ⊕ n2 be a 2-step stratified Lie algebra with a complex

structure J. Suppose that J is nilpotent of step 2. Then either k = n2∩Jn2 = {0} or

Jn2 = n2. Furthermore, if n2 = z, then J is nilpotent of step 2 if and only if Jz = z.
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Proof. Assume that k 6= {0} and Jn2 6= n2. By Proposition 2.5.4 part (ii), J is

nilpotent of step 3. This is a contradiction.

Moreover, if Jz = z, by Proposition 2.5.1 part (i), J is nilpotent of step 2.

Conversely, if J is nilpotent of step 2, by Corollary 2.3.29, z is J-invariant.

Notice that an even-dimensional nilpotent Lie algebra with dim c1(n) = 1 is

step 2. There does not exist a J-invariant stratification for dimensional reasons.

Furthermore, the authors state, in [2,Proposition 3.4], the following result without

a proof. We provide a simple one.

Corollary 2.5.7. Let n be an even-dimensional 2-step nilpotent Lie algebra such

that dim c1(n) = 1. Then there exists an Abelian complex structure J on n and every

complex structure on n is Abelian.

Proof. It is known, (see, for instance, [2]), that an even-dimensional 2-step nilpotent

Lie algebra with one dimensional commutator space is isomorphic to hk⊕Rm, where

hk is a 2k + 1-dimensional Heisenberg algebra for some k,m ∈ N. Suppose that n

is generated by basis elements X1, . . . , Xk, Y1, . . . , Yk, E1, . . . ,Em, T such that the

Lie bracket relations are given by [Xj, Yj] = T for all j ∈ {1, . . . , k} and the

remaining undetermined commutators vanish. Thus the stratification of n is of the

form n1⊕span{T}, where dim n1 ∈ 2N+1 and n1 = span{X1, . . . , Xk, Y1, . . . , Yk,E1,

. . . ,Em}.

We first show that there exists an Abelian complex structure on n. Notice that

z = Rm⊕ span{T}. Let J be the linear isomorphism on n with J2 = −I defined by

JXi = Yi, JYi = −Xi, JE2p = E2p−1, JE2p−1 = −E2p, JEm = T (2.19)

for all i ∈ {1, . . . , k} and p ∈ {1, . . . , m−1
2 }. It is easy to check that J is a complex

structure on n. One can also check that [JX, JY ] = [X, Y ] for every X, Y ∈ n.

Indeed, k = n2 ∩ Jn2 = {0} since dim n2 = 1. By Proposition 2.5.4 part (i), every

complex structure on n is Abelian.

Suppose that dim c1(n) = 2. We first have a look at the following example.
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Example 2.5.8. Let s = (h1⊕R)⊕̃(h1⊕R). Then s is a 8 dimensional decomposable 2-

step nilpotent Lie algebra. By Lemma 2.4.1 and Corollary 2.5.7, there exist Abelian

complex structures K,K ′ ∈ S(h1⊕R) such that J = (K,K ′) ∈ S(s). Furthermore,

J is Abelian from Lemma 2.4.4. Notice that s has a stratification of the form s1⊕s2,

where dim s1 = 6 and dim s2 = 2. By the definition of s, Js2 6= s2.

Theorem 2.5.9. Let n = n1 ⊕ n2 be a 2-step stratified Lie algebra with a complex

structure J such that dim n2 = 2. Then

(i) J is nilpotent of step 2;

(ii) if dim d1 = 2, then Jn2 = n2.

Proof. By Proposition 2.5.4, J is nilpotent of either step 2 or 3.

For part (i), notice that J could be either strata-preserving or not. If J is strata-

preserving, by Proposition 2.5.4 part (iii), J is nilpotent of step 2. Otherwise, J is

not strata-preserving. Since dim n2 = 2, it follows that k = n2 ∩ Jn2 = {0}. Then

from Proposition 2.5.4 part (i) and Corollary 2.3.5, J is Abelian and nilpotent of

step 2.

Now, for part (ii), recall that d1 = z∩Jz is the largest J-invariant subspace of z.

Suppose that n2 is not J-invariant. Then k = {0}. From part (i), J is nilpotent of

step 2. It follows, from Lemma 2.3.14, d1 ⊆ d1. However, dim d1 = dim n2 ⊕ Jn2 =

4 > dim d1. This is a contradiction. Hence Jn2 = n2.

Corollary 2.5.10. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex

structure J such that dim n2 = 2. Then J is center-preserving or strata-preserving

or both. Furthermore, suppose that 2 ≤ dim z ≤ 3, or dim z = 4 and Jz 6= z. Then

there exists a J-invariant stratification.

Proof. By Theorem 2.5.9, J is nilpotent of step 2. Then by Table 2.1, Jn2 = n2 or

Jz = z or both if n2 = z.

Furthermore, dim d1 = 2 since 2 ≤ dim z ≤ 3 or dim z = 4 and Jz 6= z. By

part (ii) of Theorem 2.5.9, Jn2 = n2. Furthermore, by Theorem 2.2.1, there exists

a J-invariant stratification.
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Example 2.5.11. Suppose that n = n1 ⊕ n2 is an 8 dimensional 2-step stratified Lie

algebra with a complex structure J such that dim n2 = 2. By Theorem 2.5.9, J

is nilpotent of step 2. Furthermore, assume that dim z = 4 and Jn2 6= n2. Using

Corollary 2.5.10, Jz = z. By definition, d1 = n2 ⊕ Jn2 ⊆ z. Furthermore, z ∼= d1 as

both z and d1 are Abelian. Thus there exists a J-invariant orthogonal complement

v of d1 such that n = v ⊕ d1 and J is Abelian, where the orthogonality is with

respect to a J-invariant inner product ψ. Let v = span{X, Y, JX, JY }. Since J is

Abelian, the possible Lie brackets spanning [n, n] are

span{[X, Y ] = [JX, JY ], [JX, Y ] = −[X, JY ], [X, JX], [Y, JY ]}.

Proposition 2.5.12. Let n = n1⊕n2 be a 2-step stratified Lie algebra with a complex

structure J such that dim n2 = 2l for some l ∈ N. Suppose that dim d1 ≤ 4l− 2 and

Jn2 6= n2. Then J is nilpotent of step 3.

Proof. Notice that l 6= 1. Otherwise dim n2 = dim d1 = 2. This implies that Jn2 =

n2. Suppose, by contradiction, that J is not nilpotent of step 3. By Proposition 2.5.4,

J is nilpotent of step 2. Then from Corollary 2.5.6, k = {0}. By definition and

Lemma 2.3.14, d1 = n2 ⊕ Jn2 ⊆ d1. However, dim d1 = 4l > dim d1. This is a

contradiction. Hence {0} 6= k ⊂ n2. By Proposition 2.5.4 part (ii), J is nilpotent of

step 3.

To end of this section, we consider the strata-preserving property on decompos-

able Lie algebras.

Proposition 2.5.13. Let s = n ⊕̃ n′ be the Lie algebra direct sum of nilpotent Lie

algebras of step 2 and let J = (K,K ′), where K ∈ S(n) and K ′ ∈ S(n′). Suppose

that n and n′ admit K and K ′-invariant stratifications. Then s admits a J-invariant

stratification.

Proof. Define K and K ′-invariant inner products φ and φ′ on n and n′. Since n

and n′ admit K and K ′-invariant stratifications, K and K ′ preserve the strata n1
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and n2 and n′1 and n′2, and further, n1 = n⊥2 and n′1 = n′2
⊥. By Corollary 2.3.30,

both K and K ′ are nilpotent of step 2. It follows, from Lemma 2.4.1 part (iii), that

J = (K,K ′) is nilpotent of step 2. Define s2 = n2 ⊕̃ n′2 = [s, s] and take ψ = (φ, φ′)

on n. For all X2 ∈ n2 and X ′2 ∈ n′2,

J(X2, X
′
2) = (KX2, K

′X ′2) ∈ n2 ⊕̃ n′2.

Hence J preserves s2. Define s1 = n1⊕n′1. Then s1 = s⊥2 . By a direct calculation, s2

generates n and s1 is J-invariant. Hence J preserves both the strata s1 and s2.

Example 2.5.14. Consider Example 2.4.5, s = hC1 ⊕̃ hC1 . Then s has a stratification

of the form (n1 ⊕̃ n′1) ⊕ (n2 ⊕̃ n′2) = s1 ⊕ s2, where dim s1 = dim n1 ⊕̃ n′1 = 8

and dim s2 = dim n2 ⊕̃ n′2 = 4. Recall, from [1,Theorem 3,3 and Remark 6] and

Lemma 2.4.4, that there exist bi-invariant complex structures K,K ′ ∈ S(hC1 ) such

that J = (K,K ′) is bi-invariant. Hence by Theorem 2.2.1, K and K ′ are strata-

preserving. Then by Proposition 2.5.13, J is strata-preserving.

2.5.1 A case study: 6 dimensional nilpotent Lie algebras

In Chapter 1, we found that an almost complex structure on a 2-dimensional Lie

algebra is a complex structure. Moreover, 4 dimensional non-Abelian nilpotent Lie

algebras admit complex structures J if and only if they are isomorphic to h1 ⊕̃ R,

where h1 is the 3-dimensional Heisenberg algebra. See, e.g., [11]. Furthermore, such

J are Abelian. See, e.g., [2]. In this subsection, we will focus on 6 dimensional 2-step

nilpotent Lie algebras with complex structures. In [5,Table 1], there is a complete

classification of complex structures on these algebras. However, no information is

provided on whether or not J preserves the strata.

Proposition 2.5.15. Let n be a 6 dimensional 2-step nilpotent Lie algebra with a

complex structure J . Then the quotient algebra n̂ = n/d1 admits an Abelian complex

structure.

Proof. By Proposition 2.5.4, J is nilpotent. Hence d1 = z ∩ Jz 6= {0}. By Theorem

2.3.8, 2 ≤ dim z ≤ 4. Hence dim d1 ∈ {2, 4}. Since d1 � n, by Proposition 2.1.6, n̂
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is nilpotent and J induces a complex structure Ĵ ∈ GL(n̂). Then dim n̂ = 4. From

the above paragraph, n̂ ∼= h1 ⊕̃ R and therefore Ĵ is Abelian.

Suppose that n is a 6 dimensional 2-step nilpotent Lie algebra with a com-

plex structure J . One can ask if J always preserves each layer when each layer is

even-dimensional. We start with dim z = 4. In particular, since n admits a strati-

fication with dim n2 = 1, for dimensional reasons, n does not admit a J-invariant

stratification. Hence we omit this case.

Now, suppose that dim z ≤ 3. We have the following theorem.

Theorem 2.5.16 ([1, 5]). Let n be a 6 dimensional 2-step nilpotent Lie algebra

with a complex structure J such that dim c1(n) = 2. Then n admits a J-invariant

stratification.

Proof. This is a direct consequence of Corollary 2.5.10.

Remark 2.5.17. From [5,Table 1], n is isomorphic to one of the following Lie alge-

bras:

span{Xi : [X1, X2] = X5, [X3, X4] = X6, 1 ≤ i ≤ 6} ∼= h1 ⊕̃ h1;

span{Xi : [X1, X3] = [X2, X4] = X5, [X1, X4] = −[X2, X3] = X6, 1 ≤ i ≤ 6} ∼= hC1 ;

span{Xi : [X1, X2] = X5, [X1, X3] = [X2, X4] = X6, 1 ≤ i ≤ 6};

span{Xi : [X1, X2] = X5, [X1, X3] = X6, 1 ≤ i ≤ 6}.

To end this subsection, we will present three examples, which illustrate Table

2.1 in detail and investigate 6 dimensional decomposable step 2 nilpotent algebras.

Example 2.5.18. Consider the Lie algebra n = span{Xi : [X1, X2] = X5, [X1, X3] =

X6, 1 ≤ i ≤ 6} with a complex structure J . From Remark 2.5.17, notice that n ad-

mits a J-invariant stratification of the form n1⊕n2, where n1 = span{X1, X2, X3, X4}

and n2 = span{X5, X6}. Furthermore, z = span{X4, X5, X6}. Define J ∈ GL(n) by

X1 = JX4, X3 = JX2 and X6 = JX5.
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Since [JX4, JX2] = J [JX4, X2], NJ(Xi, Xj) = 0 for all Xi, Xj ∈ a. Furthermore,

since d1 = span{X5, X6}, by (2.10), d2 = n. By Definition 2.3.2, J is nilpotent of

step 2.

Example 2.5.19. Consider the Lie algebra

b = span{Xi : [X1, X2] = X6, [X1, X3] = X4, [X2, X3] = X5, 1 ≤ i ≤ 6}.

Define J ∈ GL(b) by

X2 = JX1, X3 = JX6 and X4 = JX5.

By a direct calculation, J2 = −I. Since [X1, JX6] = J [JX1, JX6], [X1, JX1] =

X6, NJ(Xi, Xj) = 0 for all Xi, Xj ∈ b. By definition, J is a complex structure.

Furthermore, since d1 ⊆ z, d1 = span{X4, X5}. Hence using (2.10), we conclude

that d2 = span{X3, X4, X5, X6} ⊂ b and d3 = b. By Definition 2.3.2, J is nilpotent

of step 3. Notice that b = n1 ⊕ z, where n1 = span{X1, X2, X3} and z = n2 =

span{X4, X5, X6}. For dimensional reasons, J is not strata-preserving. Moreover,

the J-invariant descending central series dj is

d1 = span{X3, X4, X5, X6} = d2, d2 = d1 and d3 = {0}.

Recall that k = n2 ∩ Jn2. In this case, k = span{X4, X5}. Then

b̂ = b/k = span{X̂i ∈ b̂ : [X̂1, X̂2] = X̂6, i = 1, 2, 3, 6}

is the quotient Lie algebra and Z(b̂) = span{X̂3, X̂6}. It is clear that b̂ is nilpotent

of step 2. Define Ĵ ∈ GL(b̂) by

X̂2 = ĴX̂1 and X̂3 = ĴX̂6.
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By Proposition 1.2.16, Ĵ is a complex structure. Since dim n̂2 = 1, by Corollary

2.5.7, we further deduce that Ĵ is Abelian.

Example 2.5.20. Let s = n ⊕̃ n′ be a 6 dimensional step 2 decomposable nilpotent

Lie algebra, where n and n′ are indecomposable nilpotent Lie algebras. Then the

possible choices of (dim n, dim n′) are (5, 1), (4, 2) and (3, 3).

(i) For the choice (5, 1), one can deduce that n′ is Abelian. Since n is indecom-

posable, n ∼= h2, the 5-dimensional Heisenberg algebra. Therefore s ∼= h2 ⊕̃ R. By

Corollary 2.5.7, s admits an Abelian complex structure.

(ii) Consider the second choice (4, 2). From the lower dimensional Lie algebra

classification, n′ ∼= R2 otherwise n′ is solvable. Recall that a 4-dimensional nilpotent

Lie algebra n is isomorphic to one of R4 or h1 ⊕̃ R or e, the Engel algebra1. Since

n is indecomposable, n ∼= e. Hence s ∼= e ⊕̃ R2. By Proposition 2.1.21, e does not

admit a complex structure. Hence s does not admit a complex structure.

(iii) Finally, for the case (3, 3), notice that every 3 dimensional 2-step nilpotent

Lie algebra is isomorphic to h1, the 3-dimensional Heisenberg algebra. For dimen-

sional reasons, h1 does not admit complex structures. Hence n = h1 ⊕̃ h1 admits

Abelian complex structures.

2.6 Higher step stratified Lie algebras with complex structures

In this section, we will investigate nilpotent complex structures on higher step

stratified Lie algebras. We start with 3-step stratified Lie algebras and then proceed

to the case of k-step stratified Lie algebras.

Proposition 2.6.1. Let n be a 3-step stratified Lie algebra. Then p1 is Abelian.

Furthermore, if n admits a nilpotent complex structure J of step 3, then d1 is

Abelian.

Proof. For all X, Y,X ′ ∈ c1(n), let X = X2 +X3 and X ′ = X ′2 +X ′3 where Xi, X
′
i ∈

ni for all i = 2, 3. Then since [n2, n2] = [n2, n3] = {0}, [X,X ′] = 0. Therefore

[c1(n), c1(n)] = {0}. By definition, p1 = c1(n) and so p1 is Abelian.
1The 4-dimensional filiform algebra.
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Furthermore, since J is nilpotent of step 3, using Corollary 2.3.18, we deduce

that [d1, c1(n)] = {0}. Then

[X + JY,X ′]︸ ︷︷ ︸
∈ [d1, c1(n)] = {0}

= [X,X ′]︸ ︷︷ ︸
∈ [c1(n), c1(n)] = {0}

+ [JY,X ′].︸ ︷︷ ︸
∈ [Jc1(n), c1(n)]

(2.20)

From (2.20), we deduce that [JY,X ′] = 0 and so [Jc1(n), c1(n)] = {0}. Furthermore,

for all X, Y ∈ c1(n),

[JX, JY ]︸ ︷︷ ︸
∈ [Jc1(n), Jc1(n)]

= [X, Y ]︸ ︷︷ ︸
∈ [c1(n), c1(n)] = {0}

+ J [JX, Y ] + J [X, JY ]︸ ︷︷ ︸
∈ J [Jc1(n), c1(n)] = {0}

= 0.

This implies that [Jc1(n), Jc1(n)] = {0}. Finally, for all X + JY,X ′ + JY ′ ∈ d1,

[X + JY,X ′ + JY ′]︸ ︷︷ ︸
∈ [d1, d1]

= [X,X ′]︸ ︷︷ ︸
∈ [c1(n), c1(n)]

+ [X, JY ′]− [X ′, JY ]︸ ︷︷ ︸
∈ [c1(n), Jc1(n)]

+ [JY, JY ′]︸ ︷︷ ︸
∈ [Jc1(n), Jc1(n)]

= 0.

So [d1, d1] = {0} and d1 is Abelian.

Lemma 2.6.2. Let n be a 3-step stratified Lie algebra with a complex structure J .

Suppose that Jn3 = n3. Then J is nilpotent of step 3.

Proof. By the definition of the descending central series pj in (2.14), {0} 6= p2 =

n3 + [Jc1(n), n]. On the one hand, suppose that [Jc1(n), n] = {0}. We deduce that

p2 = n3 and hence p3 = {0} by definition. Using Theorem 2.3.31, J is nilpotent of

step 3. On the other hand, suppose that [Jc1(n), n] 6= {0}. Then by the Newlander–

Nirenberg condition, for all U ∈ c1(n) and X, JX ∈ n

0 6= [JU, JX]− J [JU,X]︸ ︷︷ ︸
∈ [Jc1(n), n] + J [Jc1(n), n]

= [U,X] + J [U, JX]︸ ︷︷ ︸
∈ n3

.

Hence [Jc1(n), n] ⊆ n3. This implies that p2 ⊆ n3 and therefore Jp2 ⊆ n3. Then

p3 = [p2, n] + [Jp2, n] = {0}. Again by Theorem 2.3.31, J is nilpotent of step 3.
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Remark 2.6.3. Under the condition of Lemma 2.6.2, we further assume that [Jc1(n)

, n] = {0}. Then z is not J-invariant. Suppose not, Jz = z. We deduce that Jc1(n) ⊆

z and therefore c1(n) ⊆ Jz = z. This implies that n is nilpotent of step 2, which is

a contradiction.

Recall, from Corollary 2.3.27, that J is nilpotent of step k on a k-step nilpotent

Lie algebra if cj(n) are J-invariant for all j. Now, in the following proposition, we

can loose our condition to get a nilpotent complex structure of step k on a k-step

stratified Lie algebra.

Proposition 2.6.4. Let n be a k-step stratified Lie algebra with a complex structure

J. Suppose that Jcj(n) = cj(n) for all 1 ≤ j ≤ k−2 and Jz = z. Then J is nilpotent

of step k.

Proof. Since Jcj(n) = cj(n) for all 1 ≤ j ≤ k − 2, by Corollary 2.3.27, pj = cj(n)

for all 1 ≤ j ≤ k − 2. Then

{0} 6= pk−1 = nk + [ck−2(n), n] = nk and pk = [Jnk, n].

Since Jz = z, Jnk ⊆ Jz = z. This implies that pk = {0} and hence J is nilpotent of

step k.

Lemma 2.6.5. Let n be a k-step stratified Lie algebra with a nilpotent complex

structure J of step k.

(i) Suppose that nk = z, then Jz = z;

(ii) suppose that dim nk = 2 and dim z ≤ 3. Then Jnk = nk.

Proof. Part (i) is a direct consequence of Corollary 2.3.29.

Next, for part (ii), since J is nilpotent of step k and dim z ≤ 3, d1 = z∩Jz 6= {0}

and dim d1 = 2. By Theorem 2.3.12 part (i) and Lemma 2.3.14, {0} ⊂ nk =

ck−1(n) ⊆ dk−1 ⊆ d1 ⊆ z. Hence dim dk−1 = 2. Since dim dk−1 = dim d1 = dim nk =

2 and dk−1, d
1 and nk are all Abelian, it follows that nk ∼= d1 ∼= dk−1. Hence

Jnk = nk.
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Remark 2.6.6. Notice that if nk = dk−1, then J is nilpotent of step k. Indeed, by

Definition 2.3.2, dk = [dk−1, n] + J [dk−1, n] = {0}. Furthermore, dk−1 6= {0}. By

Theorem 2.3.31, J is nilpotent of step k.

Proposition 2.6.7. Let n be a 8 dimensional 3-step stratified Lie algebra with a

complex structure J such that 2 dim n3 = dim c1(n) = 4. Suppose that Jn3 6= n3 and

dim z ≤ 3. Then J is nilpotent of step 4. Furthermore, d2 = n3 ⊕ Jn3.

Proof. Since n3 ⊆ z, dim z ≥ 2. By [15,Corollary 3.12], J is nilpotent. Then using

Proposition 2.3.11, 3 ≤ j0 ≤ 4, where j0 is the nilpotent step of J. Suppose, by

contradiction, that J is nilpotent of step 3. It follows, from Theorem 2.3.12 and

Lemma 2.3.14, that n3 + Jn3 ⊆ d2 ⊆ d1 ⊆ z. On the one hand, since dim z ≤ 3,

dim d1 = 2. On the other hand, since Jn3 6= n3 and dim n3 = 2, n3 ∩ Jn3 = {0} and

therefore dim n3 ⊕ Jn3 = 4 > dim d1. This is a contradiction. So J is nilpotent of

step 4.

We now show that d2 = n3 ⊕ Jn3. It is sufficient to show that d2 ⊆ n3 ⊕ Jn3.

By definition,

d2 = [d1, n] + J [d1, n]

= span {[T,X] + J [T ′, X ′] : ∀ T, T ′ ∈ d1, ∀ X,X ′ ∈ n} .

For all T, T ′ ∈ d1, we may write T = U+JV and T ′ = U ′+JV ′ where U, V, U ′, V ′ ∈

c1(n). Then

0 6= [T,X] + J [T ′, X ′] = [U,X] + J [U ′, X ′]︸ ︷︷ ︸
∈ n3 ⊕ Jn3

+[JV,X] + J [JV ′, X ′]. (2.21)

By the Newlander–Nirenberg condition,

0 6= [JV,X] + J [JV, JX]︸ ︷︷ ︸
∈ [Jc1(n), n] + J [Jc1(n), n]

= J [V,X]− [V,X] ∈ n3 ⊕ Jn3.
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Hence [JV,X] + J [JV ′, X ′] ∈ n3 ⊕ Jn3. From (2.21), [T,X] + J [T ′, X ′] ∈ n3 ⊕ Jn3.

Hence d2 ⊆ n3 ⊕ Jn3. In conclusion, d2 = n3 ⊕ Jn3.

Remark 2.6.8. Suppose that dim z ≤ 3 and Jn3 6= n3. Since d2 = n3 ⊕ Jn3, for all

Y3 + JY3, Y
′

3 + JY ′3 ∈ n3 ⊕ Jn3, by definition,

d3 = span{[Y3 + JY3, X] + J [Y ′3 + JY ′3 , X
′] : ∀ X,X ′ ∈ n}.

Then

[Y3 + JY3, X] + J [Y ′3 + JY ′3 , X
′] = [JY3, X] + J [JY ′3 , X ′] ∈ [Jn3, n] + J [Jn3, n].

Furthermore, by the Newlander–Nirenberg condition,

0 6= [JY3, X] = J [JY3, JX] ∈ J [Jn3, n].

Hence d3 ⊆ [Jn3, n].
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List of Symbols

J A complex structure on a Lie algebra

NJ The Nijenhuis tensor

n A real nilpotent Lie algebra

ad The adjoint representation

S(n) The set of complex structures on n

z The center of a nilpotent Lie algebra

Z(·) The center of a Lie algebra

cj(n) The ascending central series of n

cj(n) The descending central series of n

k The largest J-invariant subspace of c1(n)

hj The 2j + 1-dimensional Heisenberg algebra

dj The J-invariant ascending central series of n

dj The J-invariant descending central series of n

pj A new descending central series of n

� Inclusion of a Lie algebra ideal

⊕̃ The Lie algebra direct sum

⊕ The vector space direct sum

	 The vector space complement
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