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Abstract

Description logics belong to a family of knowledge representation formalisms that are

widely used for representing ontologies. However, ontologies are subject to changes and

are susceptible to logical errors as they evolve. Ontology reasoners are able to identify

these errors, but they provide very limited support for resolving them. In particular, the

existing tools do not provide adequate support to prevent logical errors from being intro-

duced into an ontology. In this research, we investigate three different operations that

are directly related to the management of logical inconsistencies in ontologies, namely:

ontology contraction, integration and debugging. Ontology contraction concerns the re-

moval of information from a set of description logic sentences, where the resulting set of

sentences is consistent. Ontology integration is the problem of combining multiple sets

of description logic sentences in a consistent manner. Ontology debugging deals with the

removal of description logic sentences to restore the consistency of an ontology. In this

regard, contraction and integration can be considered as prevention of logical errors, and

debugging as cure.

We present a construction of contraction for description logics based on the well-

known partial meet contraction for belief bases from the area of belief change. We show

that this construction produces more refined solutions, and we show that this construc-

tion is governed by a refined set of contraction postulates. Moreover, we recast a class

of propositional knowledge integration strategies known as adjustments. We show that

these strategies cannot be directly used in the description logic setting due to limita-

tions in the expressive power of description logics. We then provide two new adjustment

iv



strategies which are appropriate for description logics, and we show that these strate-

gies produce more refined solutions. Furthermore, we study a tableau-based algorithm

that identifies the maximally satisfiable subsets (and minimally unsatisfiable subsets)

of an ontology. We show that classical blocking do not guarantee completeness in the

presence of cyclic definitions, and we provide revised blocking conditions and prove that

they preserve both soundness and completeness. Finally, we introduce a diagrammatic

approach for debugging ontologies based on Reduced Ordered Binary Decision Diagrams

(ROBDDs).
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Chapter 1

Introduction

The proliferation of the World Wide Web (WWW) in the past decade has made a

dramatic impact to the way people live and interact with the world. Information has

become more accessible and more diverse. Search engines provide a convenient and

powerful means to filter important information. Yet, the often overwhelming amount of

search results make it prohibitive for users to identify and locate useful information. In

addition, information available on the web is still primarily in text that requires human

effort to parse, interpret and make sense from it. This has led to investigations on

technologies that could improve the web, in particular how information can be shared

and acquired across the web more easily, and how information can be exchanged between

agents with minimal human involvement and interactions. A promising line of research

towards this direction is the so-called Semantic Web. The dream of the Semantic Web

as envisioned by Tim-Berners Lee is:

“The Web was designed as an information space, with the goal that it should

be useful not only for human-human communication, but also that machines

would be able to participate and help.” [BL98]

“The Semantic Web is not a separate Web but an extension of the current

one, in which information is given well-defined meaning, better enabling com-

puters and people to work in cooperation.” [BLHL01]

1
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An important goal, therefore, as pointed out by Tim-Berners Lee is to devise a

means to represent information in an unambiguous manner, that enables the exchange

of information among machines across the web. For this to be realised, there needs to

be a formal representation that not only provides sufficient expressive power, but also

supports powerful and efficient reasoning. Research in Knowledge Representation and

Reasoning (KRR), especially formal representations of ontologies provides the foundation

for this vision. Nevertheless, there are serious challenges that remain to be solved as well

as some concerns with the practical use of ontologies in the real world. The challenge

that is central to our investigation is the management of logical errors in ontologies.

In this dissertation, we address the issue of inconsistency management in formally

represented ontologies. Our investigation is primarily from the perspective of formal

logics, where ontologies are represented as description logic knowledge bases. We consider

ontologies undergoing changes and we look at the impact of these changes on the logical

integrity of the ontologies.

1.1 What is an Ontology?

The term ‘ontology’ originates from the area of philosophy where it was taken as the

study of being or existence. There is, however, a huge discrepancy in how this term is

being defined and used in Computer Science. We list below the definitions provided by

Tom Gruber [Gru93, Gru95]:

“An ontology is an explicit specification of a conceptualisation.”

“A specification of a representational vocabulary for a shared domain of dis-

course – definitions of classes, relations, functions, and other objects – is

called an ontology.”

While these definitions are generally vague and that there is no consensus on the

precise meaning of this term, it is often perceived that an ontology is a representation

that establishes a view of the world. Its purpose is to standardise and formalise con-

cepts within a domain so that they can be unambiguously represented. For example,
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some ontology languages consists of the disjunction construct or the “OR” construct.

This construct is used in our daily lives but its intended semantics is often unclear. It

could be used to mean “only one of the statements is true” or “at least one of the state-

ments is true”. In this sense, ontological languages are not different from Knowledge

Representation (KR) languages where the heart of KR research is to devise appropriate

representations to serve some particular purposes in some domain of discourse. There-

fore, the more important question here is not what ontologies are, but rather, what their

functions are and how they are practically used in the real world. One convenient way

to assess the usefulness of an ontology representation is to consider its expressive power

and its computational efficiency in providing some of the reasoning services. In this

regard, description logics are most suited for representing ontologies because they have

been carefully considered in the literature both in terms of their expressive power and

computational efficiency.

1.2 Description Logic and Logical Inconsistencies

Description logics (DLs) has been widely accepted as a suitable class of logical formalisms

to represent ontologies. An ontology represented in description logics is a DL knowledge

base or simply a set of DL sentences. This set of DL sentences can be further divided into

components: a set of TBox axioms and a set of ABox assertions. The former contains

intensional knowledge and the latter contains extensional knowledge. Similar to propo-

sitional logic and first-order logic, description logics are monotonic logics, meaning that

their consequence relation exhibits monotonic behaviours. That is, adding a sentence α

to a set of sentences A will never lead to a smaller set of consequences than that of A.

Similarly, removing a sentence α from a set of sentences A will never lead to a larger set

of consequences than that of A.

In some fragments of description logics, it is possible to introduce conflicting informa-

tion into a DL knowledge base. For example, the classical description logic ALC allows

one to express complement of a concept description. This means that a DL knowledge

base in ALC may, for example, contain a statement like “Tweety is a bird” and since
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complement of a concept description can be expressed, one may also have the statement

“Tweety is not a bird” in the same DL knowledge base. Hence, this DL knowledge

base contains at least one conflicting piece of information. This is undesirable in many

classical logics, including classical description logics, where a single inconsistency could

“corrupt” the whole knowledge base and results in a theory that contains every sentence

in the language. In other words, once an inconsistency is introduced into the knowl-

edge base, one could conclude everything from it, thus making it no longer useful for

inferencing. Therefore, it is important to maintain an ontology in a consistent state.

However, ontologies are expected to be constantly undergoing changes and these

changes are prone to introduction of logical errors. For example, sentences could be

added to an ontology to expand the scope of an ontology, or the part of the world that

one wants to model has changed and modifications are needed to update the ontology,

or one might want to update an ontology in order to provide a more finer-grain view

for their intended application. All of these would require changing an ontology. These

changes are often made manually by knowledge engineers who are familiar with the

specific domain that they are trying to model, but they may not necessarily have a

complete understanding of ontology languages or how inconsistencies are introduced.

The existing reasoners provide a convenient way to determine the consistency (or

satisfiability) of an ontology, but they provide limited support to prevent inconsistencies

from happening or to remove inconsistencies once they are introduced into an ontology.

To understand this problem better, consider the following scenario:

A Sample Scenario

Bob is a knowledge engineer who is an expert in the military domain, but

knows little about ontology languages. He was asked to build an ontology

to be used in a situation awareness system. Bob makes use of an existing

ontology, which provides him the basic skeleton for the ontology he wants

to build, but the existing ontology does not capture many of the important

concepts that he needs for the situation awareness system. Bob’s intention

is to extend the ontology with concepts that he needs, so he makes use of an
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ontology editor Protege to try and extend the ontology.

Although Bob is an expert in the military domain, it is likely that he will be in-

troducing logical errors while he tries to extend the existing ontology with additional

concept and role axioms. The fact that he is using an existing ontology means that

Bob may not necessarily fully understand the implications of all the information in the

ontology. It is also likely that the original designer of the ontology has a different view

(conceptualisation) about the military domain from that of Bob. This makes extending

an ontology difficult and also more prone to logical errors.

Debugging an Ontology with a Reasoner

An effective, yet cumbersome, way to ensure the consistency of an ontology is by checking

its consistency each time a sentence is changed. This is similar to the strategy that a

computer programmer adopts when he runs a debugger each time he makes changes to a

program. Obviously, if new bugs were introduced after making the changes, then these

changes are necessarily responsible for the bugs. Similarly for ontology debugging, if

adding new sentences causes the ontology to become inconsistent, then these sentences

alone or together with other sentences in the ontology are necessarily the culprit of

the inconsistencies. However, there are a number of disadvantages to this approach.

Firstly, it is a time-consuming process and running the reasoner on a large ontology

(e.g., SNOMED) could take a considerable amount of time. Secondly, it does not give

any information about the exact cause of the problem and it does not provide a way to

resolve this problem. This would be particularly useful in large ontologies.

In particular, one of the emphases of Semantic Web research is the reuse aspect of

ontologies. Ontologies are often built by domain experts over a long period of time (e.g.

SNOMED and GALEN).

These ontologies contain a large number of concepts and cannot be easily reproduced.

Therefore, knowledge engineers are encouraged to make use of these existing ontologies

as much as possible for their applications. However, it is also recognised that these

ontologies have limitations and cannot always suit all applications, which means changes

are required to tailor ontologies to suit specific needs.
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1.3 An Ontology Example: Cluedo

The aim of this section is to demonstrate how an ontology can be created, what can

be achieved with ontology reasoning and what the limitations of ontologies are. We

achieve these goals by modelling a board game called Cluedo as an ontology represented

in description logic ALCQO. The representation we came up makes use of all the

constructors in ALCQO. However, this is by no means the only way to represent the

game. Some constructors are deliberately used to demonstrate the expressive power of

DL.

As a brief introduction, Cluedo is a popular board game invented in the late 40s.

The goal of the game is to identify three cards from a stack of twenty-one cards, which

are hidden away in an envelope at the start of the game. The cards are divided into

three categories: six weapon cards, nine room cards and six character cards. The typical

setting of the game involves 6 players. The stack of cards are shuffled and three cards

are distributed to each player with the remaining three (one room card, one suspect

card and one weapon card) hidden away in an envelope. Players are allowed to see their

own cards but not the others. At each round of the game, each player takes turns to

ask about the cards his/her adjacent player (clock-wise) holds. Specifically, the player is

only allowed to name three cards and ask if the adjacent player has at least one of them.

If the adjacent player has one of three cards then he is obliged to show one of them to

the requested player as a proof. Otherwise, he has to say that he is not in possession

of any of the cards. The game continues until a player could work out what the hidden

cards are.

This game can be expressed as an ontology in KRSS format1 as shown in Program 1.

We use KRSS format to represent the Cluedo ontology for two reasons: (1) KRSS is a

valid input format for many major reasoners (e.g., FaCT++, CEL and RACER), and this

is exactly how one would construct and execute an ontology; (2) It can be easily written

and read by human, as opposed to OWL that is designed to be parsed by machines.

The line (implies player (=3 has_card card)) states that each player has ex-

actly three cards, and the line (equiv card (or suspect_card weapon_card room_card))

1http://dl.kr.org/krss-spec.ps
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states that each card is either a room card, a suspect card, or a weapon card. The

line (implies envelope (=1 has_card room_card)) says that an envelope has ex-

actly one room card, and similarly, there is a suspect card and a weapon card in the

envelope. Next, we describe instances of each of the three card types. For example,

(instance ballroom room_card) states that ballroom is a room card.

Once the game is properly represented as an ontology (as we have done), one could

feed it into a KRSS reasoner (e.g. RacerPro [HMW03]) and query about the ontology.

For example, one could ask for the list of room cards from the ontology using an appro-

priate querying language (e.g. nRQL). We could also extend the ontology dynamically

while we play the game. For example, one could insert the following assertions while the

game is being played:

(instance sam player)

(instance sam (some has_card (one-of hall dagger white)))

The first line states that Sam (an actual player) is a player and the second line states

that Sam has one of the three cards: hall, dagger or white. Notice that the second line is

information that we have obtained while the game is in progress and we are dynamically

asserting it into the ontology. One could then query the ontology with the following:

(retrieve (?x) (some (inv has_card) (one-of sam)))

The above query attempts to infer from the ontology exactly, which cards are being held

by Sam. It shows how one could use reasoning to obtain information from an ontology.

The example also exposed some limitations of DL systems in representing a dynamic

system. In particular, DL ontologies are not designed to handle changes over time, it is

merely a static representation.

1.4 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a family of knowledge representation languages

endorsed by the W3C for representing ontologies. It is based on the Resource Description

Framework (RDF) syntax, which means an OWL ontology is represented as a set of RDF

triples. However, there is a clearly defined semantics to allow constructs to be interpreted
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(implies player (=3 has_card card))

(implies envelope (=1 has_card room_card))

(implies envelope (=1 has_card suspect_card))

(implies envelope (=1 has_card weapon_card))

(equiv card (or suspect_card weapon_card room_card))

;; room cards

(instance ballroom room_card)

(instance billiard room_card)

(instance conservatory room_card)

(instance dining_room room_card)

(instance hall room_card)

(instance kitchen room_card)

(instance library room_card)

(instance lounge room_card)

(instance study room_card)

;; suspect cards

(instance black suspect_card)

(instance green suspect_card)

(instance mustard suspect_card)

(instance peacock suspect_card)

(instance plum suspect_card)

(instance scarlett suspect_card)

(instance white suspect_card)

;; weapon cards

(instance candlestick weapon_card)

(instance dagger weapon_card)

(instance pipe weapon_card)

(instance revolver weapon_card)

(instance rope weapon_card)

(instance spanner weapon_card)

Program 1: Representing Cluedo in KRSS
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logically. The original OWL specification [BvHH+04] proposed three variants of the

language with varying expressive power and computational properties. They are OWL

Lite, OWL DL and OWL Full.

An OWL ontology contains class axioms: owl:subClassOf, owl:equivalentClass

and owl:disjointWith. These axioms in turn make use of different types of class de-

scriptions. However, not all axiom types or class descriptions are supported by all three

variants of OWL. More specifically, OWL Lite supports only a small number of these

constructs. OWL DL and OWL Full support most of these constructs but there are still

differences between them.

One clear distinction is that OWL Full does not explicitly distinguish between classes

and individuals in an ontology. This will not only impact the way an ontology is repre-

sented but also such representations are likely to incur additional computational costs.

It should be noted that OWL does not have the Unique Name Assumption (UNA),

meaning that multiple syntactically different names or identifiers can be used to refer

to the same instance and inference mechanisms are provided in OWL reasoners to infer

hidden relationships between individuals (e.g. inferring that two individual names are

referring to the same instance).

There are six types of class descriptions in OWL, they are owl:Class, owl:Restriction,

owl:oneOf, owl:intersectionOf, owl:unionOf and owl:complmentOf.

OWL Lite is the least expressive of the three sub-languages. It is designed with

simple constructs in mind to enable highly efficient computations. OWL Lite allows

for restricted forms of class descriptions. In terms of concept descriptions, OWL Lite

does not support owl:oneOf, owl:unionOf and owl:complementOf. However, it does

support a restricted form of owl:intersectionOf that only allows to build intersections

of class identifiers and property restrictions. In terms of axioms, OWL Lite does not

permit the use of owl:disjointWith. It allows a restricted form owl:subClassOf and

equivalentClass, where the subject of the constructor is required to be a class identifier,

and the object is either a class identifier or a property restriction. The type of restrictions

imposed on the syntax of OWL Lite has the implication that OWL Lite ontologies are

always consistent.
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The following table provides a summary of the constructs that are supported by the

different sublanguages of OWL.

Constructor OWL Lite OWL DL OWL Full

owl:Class • • •

owl:Restriction • • •

owl:oneOf × • •

owl:intersectionOf ◦2 •2 •

owl:unionOf × • •

owl:complementOf × • •

owl:allValuesFrom ◦3 • •

owl:someValuesFrom ◦3 • •

owl:hasValue × • •

owl:maxCardinality ◦4 • •

owl:minCardinality ◦4 • •

owl:cardinality ◦4 • •

owl:subClassOf ◦5 • •

owl:equivalentClass ◦5 • •

owl:disjointWith × • •

owl:ObjectProperty • • •

owl:DatatypeProperty • • •

owl:sameAs • • •

owl:differentFrom • • •

owl:AllDifferent • • •

owl:InverseFunctionalProperty • • •

owl:SymmetricProperty • • •

rdfs:subPropertyOf ◦ ◦ •

rdfs:domain ◦6 • •

rdfs:range ◦6 • •
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• - supported, ◦ - limited support, × - not supported

The OWL-DL fragment of the OWL standard has received much interest in the

Semantic Web community. It corresponds to an interesting class of description log-

ics that is known to perform decidable (but intractable) reasoning, and therefore pro-

vides a theoretical foundation for promising practical implementations, such as Racer-

Pro [HM01b, HM01a], FaCT [Hor98], FaCT++ [TH06] and Pellet [SPG+07].

Extensions of OWL

There have been two extensions of the Web Ontology Language (OWL) since the original

version of OWL 1.0.

Both of them are motivated by practical uses in the Semantic Web community and

in particular, they were carefully chosen to suit the needs for certain applications. One

is an extension of OWL DL known as OWL 1.1. OWL 1.1 supports the description

logic SROIQ that is an extension of the well known SHOIQ [HS07] with the following

features: disjoint roles, reflexive and irreflexive roles, negated role assertions, complex

role inclusion axioms, universal role, local reflexivity of roles.

These features are known to be useful in practise (e.g. medical ontologies) and do

not incur additional computational costs. In particular, they do not introduce additional

non-determinisms to the reasoning algorithm. Details of the description logic SROIQ

are discussed in 2.3.3. The development of OWL 2.0 [MPSP+08] has led to three addi-

tional sublanguages: OWL 2 EL, OWL 2 QL and OWL 2 RL. However, these languages

are beyond the scope of this dissertation.

1Only intersections of class identifiers or property restrictions.
2Only class identifier is allowed as object of this construct.
3Only used with values 0 or 1.
4Subject of the construct must be a class identifier and object must be a concept identifier or a

property restriction.
5Value of the construct must be a class identifier.
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1.5 Non-standard Reasoning Services

1.5.1 Ontology Alignment

Ontology Alignment is one of the major challenges in ontology modification. The setting

is as follows: Two or more agents have different ontologies relating to the same domain.

Their purpose is to be able to communicate. What is needed is a method of translation

from one ontology to the other.

This is a difficult yet important challenge as solving this problem essentially enables

effective communications between machines. The main difficulty of this alignment prob-

lem is that the terminologies (ontologies) of the two agents can be substantially different,

even though they are describing the same domain. There are several sources of hetero-

geneity that could come into play and they can vaguely be categorise into syntactic and

semantic differences. The most obvious ones, and perhaps the easiest to solve, are the

terminologies with syntactic differences but with same or similar meanings. For this

class of alignment problems, we could turn to classical Natural Language Processing

literature for solutions. Most of the existing approaches rely on normalisation of concept

names in terminologies so that syntactically similar concept names can be identified and

aligned. This approach, however, does not resolve the more critical problem of semantic

differences that often present in real-world ontologies. In particular, real-world ontolo-

gies are often constructed directly by human or through conversion from some existing

structured texts. This means that these ontologies are constructed for different purposes

and the granularity or description of (even the same) concepts can be different. For

example, people’s perceptions of a dog can vary due to their background and knowledge.

A typical person might describe it as an animal with four legs but a biologist would

have a completely different notion, even though they are referring to the same class of

objects. Therefore, the first question one should ask before committing to an alignment

is whether it makes sense to align two ontologies, or more specifically, how does one

measure semantic differences between ontology concepts.

There has been some work [YK03] in making use of Channel Theory to perform

ontology alignment, in which a method for automatically determining such ontology
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translation procedures is defined, under the assumption that all agents share a set of

basic primitives on which all other terms are based. In description logics this would

amount to the alignment of concepts defined in the TBox. Therefore, if we are to

perform ontology modification, one would probably give higher priorities to the TBox

than the ABox.

1.5.2 Ontology Merging

It is possible to identify different types of ontology merging. Merging TBoxes amounts

to making sure that different agents use the same terms in identical ways. The goal here

is quite unlike that of classical belief merging [KPP98]. In belief merging, information

from different sources are pooled together and the requirement is to find a consistent

set of beliefs representing the merged information. In the case of merging TBoxes, it

seems that either one of the two things could happen. If agents find that they use

the same terms in ways that differ only slightly, it would be required from all involved

agents to amend their definitions slightly. This is indeed reminiscent of classical belief

merging. The other possibility is for them to realise that although they are using the

same term(s), they are really describing sufficiently different concepts. In such a case it

would be necessary for both agents to invent new terms to describe the concept of the

other one. Perhaps a combination of alignment and merging would be appropriate.

Observe that TBox merging ought not to affect the ABoxes, although it might affect

the conclusions that can be drawn, from assertions in the ABoxes. Suppose that a

concept in the TBoxes of agents 1 and 2 has been modified slightly; that is, merging has

taken place. For example, suppose agent 1’s concept of fish in its TBox is of an animal

with fins that lives in water, and that its ABox contains the information that Willy is

an animal, has fins, lives underwater, and suckles its young. It will then be able to

conclude that Willy is a fish. But if, after merging, agent 1’s concept of a fish is changed

to an animal with fins, living in water, not suckling its young, Willy would no longer be

classified as a fish.

A formalisation of TBox merging looks quite different from that of classical merging.

For example, one of the basic properties of belief merging is that if all the pieces of
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information to be merged put together yield a consistent set of sentences, this is what

the merged outcome should be. But consider a situation in which agent 1 defines a dog

as an animal with four legs that barks, and agent 2 defines a dog as a large animal with

four legs, that barks. Although these two definitions are consistent, it is unintuitive to

take the merged outcome to be these two definitions put together (yielding a definition

of a dog as a large animal with four legs that barks). Agent 1 might well reason that

agent 2’s definition is based on the fact that it has not yet encountered small dogs.

The other type of merging is ABox merging. This is merging in the classical style,

although one has to make the assumption that TBoxes have already been aligned and

merged before ABox merging takes place.

1.5.3 Ontology Revision

One view of ABox revision is that it is essentially classical revision, but with the provision

that everything in the TBox is fixed. Formally, this can be described as classical AGM

revision, for example, with sentences in the TBox treated similarly to logically valid

sentences. However, there exists another view of ABox revision. Suppose that Agent 1’s

definition of a bird is of an animal with feathers. Furthermore, suppose that Agents 1’s

TBox contains the fact that all birds fly. Now suppose further that I have observed that

Agent 1 has observed that Tweety is an animal with feathers, and Agent 1 has been told

that Tweety is a bird. Now Agent 1 observed that Tweety cannot fly. This thus creates

an inconsistency with information in TBox. One solution to this, of course, is to remove

the information that Tweety is a bird.

An even more natural solution would seem to be to modify the ABox assertion so

that it is no longer inconsistent with the TBox. For example, asserting that Tweety is

an animal instead of a bird. At the moment it is still unclear as to when to perform

the first kind of ABox revision, and when it would be more appropriate to perform the

second kind.
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1.6 Ontology Tools

Ontology Editors

There are a number of open-source ontology editors, including Protege [NFM00],

Swoop [KPS+06], OilEd [BHGS01] and Hozo [KKIM02], as well as commercial ones

such as RacerPorter [HMW03].

The main functions of these ontology editors are to facilitate the construction of

ontologies in a user-friendly environment.

In particular, since OWL is not designed to be read or written directly but serve

as a representation to store ontologies, the ontology editors parse this representation

and presents useful information about the ontologies. For example, they show detailed

information about classes, properties and instances.

In addition, most ontology editors support reasoning over ontologies. This is usually

achieved by either connecting to a remote server where an ontology reasoner resides

or through access to a locally running ontology reasoner. For the former, there is a

protocol DIG that is used by a number of ontology reasoners to transfer and query

ontologies over a TCP/IP connection. However, the DIG protocol in its current state

has many problems. Specifically, it does not capture some of the constructors in OWL

adequately. An example is the lack of datatype support in DIG 1.0 and 1.1. There are a

number of ontology reasoners that have adopted DIG, including CEL, FaCT++ [TH06],

Pellet [SPG+07] and RacerPro [HM01b]. For the latter, reasoners are simply running

locally in the machine where the ontology editor resides. In many cases, this is a more

efficient solution since data is no longer required to be sent over a TCP/IP connection,

thus avoiding transfer overhead. Ontology editors can simply query a reasoner through

a reasoning interface. For example, JRacer can be used to access RacerPro in Java.

Reasoners can also be accessed through general reasoning interfaces, such as the OWL

API and Jena.

In addition to standard reasoning services, some ontology editors also provide so-

called non-standard reasoning services, such as axiom pinpointing. These additional

reasoning services intend to provide additional support to enhance ontology construction,
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maintenance and reuse. The ontology editor SWOOP supports axiom pinpointing.

OWL Reasoners

There are a number of highly optimised OWL reasoners, including RacerPro [HM01b],

FaCT++ [TH06] and Pellet [SPG+07]. Most of these are based on the tableau-based

algorithm. There is also a probabilistic description logic reasoner called Pronto [Kli08].

Bock et al. presented a benchmarking of the popular OWL reasoners [BHJV08].

Reasoner Reasoning Type Expressivity OWL

RacerPro [HM01b] Tableau SHIQ(D) OWL DL

FaCT++ [TH06] Tableau SROIQ(D) OWL DL

Pellet [SPG+07] Tableau SROIQ(D) OWL DL

KAON2 [Mot08] Resolution SHIQ(D) OWL DL

HermiT [SMH08] Hyper-tableau SHOIQ+ OWL DL

CEL Structural EL++ OWL EL

1.7 Research Contributions

Our main research contribution is the investigation of three important operations con-

cerning the management of logical inconsistencies in description logics (DL). The three

operations are ontology contraction, ontology integration and ontology debugging, they

are presented in Chapter 3, Chapter 4 and Chapter 5 respectively.

In Chapter 3, we consider the problem of ontology contraction where a set of DL

sentences A is contracted by a single sentence α. We study the AGM method of partial

meet contraction in the DL setting, and show by example that it can be directly appli-

cable to DL, but may lead to counter-intuitive results. We address issues in applying

AGM methods in the context of DL, which we discussed in [LM04]. We then present

the notion of exception, which we introduced in [MLB05]. We then present the notion

of remainder set for DL as a refinement of the classical notion of remainder set. We

use our notion of remainder set for DL to produce a partial meet contraction operator

for DL and argue that it retains more information than that of classical partial meet
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contraction. We then show that our partial meet contraction operator for DL does not

satisfy the classical AGM contraction postulates, and we present a refinement of these

postulates that our partial meet contraction operator satisfies. Moreover, we extend the

notion of multiple contraction into the DL setting, which involves contraction of a set of

sentences A by another set of sentences B instead of a single sentence. We present the

notions of package and choice contractions for DL and show that they satisfy our refined

sets of postulates.

In Chapter 4, we address the issue of ontology integration, where a stratified set of

sentences is to be integrated into a single set of sentences. We consider a class of propo-

sitional knowledge integration techniques called adjustment and show that adjustment

is not directly applicable to DL. We show that there are limitations to the expressive

power of DL and in particular disjunctions of DL sentences cannot be freely expressed,

which we published in [MLB05]. We then introduce the notion of disjunctive knowl-

edge base [MLB05], which provides a way to express the result of integrating a stratified

DL knowledge base. We present a new version of adjustment called Conjunctive Maxi-

Adjustment (CMA), which we introduced in [MLB05], as a variant of a propositional

adjustment strategy known as (whole) Disjunctive Maxi-Adjustment (DMA). We present

an adaptation of the CMA strategy into the DL context called CMA-DL and show that

it is applicable to DLs. Yet this approach does not adequately exploit the structure of

DL sentences. We address this issue by introducing a refined version of CMA-DL called

RCMA-DL, which makes use of the notion of exception we introduced in [MLB05]. We

show that RCMA-DL presents results that retains more information than that of CMA-

DL. Moreover, we define the semantics of CMA-DL and RCMA-DL based on the notion

of lexicographic ordering on DL interpretations and we establish the connection of lexico-

graphic ordering on DL interpretations with lexicographic entailment of both CMA-DL

and RCMA-DL.

In Chapter 5, we study a method for restoring consistency of an inconsistent ontology.

Specifically, we look at a tableau-based algorithm, which was first introduced by Baader

et al. in [BH95] and later studied by [Sch05b] and by us [MLBP06]. We show by

example that the labelled consistency algorithm with classical subset blocking does not
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guarantee completeness in the presence of cyclic definitions, as we argued in [LMPB06].

We then introduce a refined version of subset blocking that takes the labels of sentences

into account and show that this refined version guarantees completeness. We extend the

notion of label blocking into more expressive description logics and present both a refined

version of equivalence blocking and a refined version of pair-wise blocking. Furthermore,

we argue that using propositional formulas as a way to retain a trace in the labelled

consistency algorithm has many advantages. In particular, we show that propositional

formulas can be compiled into Reduced Ordered Binary Decision Diagrams (ROBDDs),

which can be used as a diagrammatic tool to repair an ontology.

1.8 Structure of the Dissertation

This dissertation is organised as follows: Chapter 1 specified the problem of inconsistency

management in description logics. We provide background to the area of Semantic Web

and ontologies, and their connection with description logics. We also introduced some

existing semantic technologies. Chapter 2 reviews material in description logics. We

introduce the syntax and semantics of description logics. We describe the various types of

reasoning tasks offered by description logics and how these are realised through reasoning

algorithms. Chapter 3 presents ontology change as operations acting upon ontologies.

We focus on the semantic characterisation of change in description logics. Chapter 4

is pertinent to the problem of ontology integration where multiple ontologies are to

be integrated to form a single coherent ontology. We establish the connection of this

problem with a similar problem in propositional logic and show how the existing solutions

in propositional logic can be employed into the description logic context. Chapter 5

extends the work from the previous chapters to provide a tableau-based algorithm for

repairing inconsistent ontology. Chapter 6 closes this dissertation with a summary of

the results and contributions.



Chapter 2

Description Logics

Description Logic (DL) plays a foundational role in the development of the Semantic

Web. Perhaps the most significant contribution of DL is that it has brought forth a

spectrum of formal languages with serious considerations of their expressive power and

computational properties, making concrete what ontologies are and precisely what is

achievable with them. Research in DL has also given rise to a wide range of semantic

technologies, including ontology standards, frameworks, APIs and tools. In particular,

it has facilitated the development of the Web Ontology Language (OWL) [BvHH+04]

and its successors OWL 1.1 [MPSH07] and OWL 2.0 [MPSP+08, GHM+08], establish-

ing a W3C recommendation for specifying ontologies and allowing them to be shared

and distributed across the web. It has also led to the implementation of ontology ed-

itors that support the construction and maintenance of ontologies, including Protege,

RacerPorter [HMW03], Swoop, Hozo [KKIM02] and OilEd. It has resulted in many

highly optimised DL reasoners that are able to support standard reasoning services such

as consistency and satisfiability checking and subsumption tree generation, as well as

non-standard reasoning services such as ontology debugging, alignment, mapping and

integration. Many of these technologies have been deployed in various domains and

real-world application areas.

In this chapter, we provide an overview of description logics. This chapter is organ-

ised in three sections. The first section gives an introduction to the family of description

logics. In particular, we make clear the connection between the Semantic Web and

19
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description logics, and explain why description logics are appropriate for representing

ontologies. We focus our study on the classical description logic ALC [SSS91] which is

the foundation to many well-known description logics (e.g. SHOIN [HS99], SHIQ and

SROIQ) that are used in practise. The second section is devoted to a discussion of rea-

soning algorithms in description logics. These reasoning algorithms enable description

logics to provide the various types of reasoning services. We look at the most popular

reasoning algorithm in DL known as tableau algorithm, which is deployed in many of

the state-of-the-art reasoners. These reasoners are known to produce promising compu-

tational performance [Tob01, HST00]. The third section provides a summary of other

description logics, including the class of DLs known as expressive description logics, such

as SHIQ, SHOIN and SROIQ. This class of logics is highly expressive but are still

known to be in the decidable fragments of first-order logic. In addition, we also look at

description logics that are less expressive than ALC [SSS91] such as EL and EL+. These

logics are known to allow tractable reasoning [BLS06] and perform exceptionally well in

certain application areas.

2.1 Description Logic Knowledge Bases

Description Logics are a class of knowledge representation languages with formal syntax

and semantics. They are decidable fragments of first-order logic carefully chosen to have

adequate expressive power but also possess desirable computational properties, such as

soundness and completeness of reasoning.

A typical DL knowledge base K = 〈T ,A,R〉 comprises three finite and mutually

disjoint sets: a set of concept axioms (or terminologies) T , a set of assertions A and a

set of role properties 1 R, where T , A and R are also known as TBox, ABox and RBox

respectively. Concept axioms describe relationships between concepts. Some common

concept axioms are inclusion axioms and equality axioms. Assertions describe individuals

in the knowledge base and how they relate to concepts and roles. Common assertions

1Role properties were called role assertions in [HKS06]. However, role assertions are traditionally used
in the literature to describe DL sentences of the form R(s, t). These were called individual assertions in
[HKS06].
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are role assertions and concept assertions. It should be noted that description logic

knowledge bases do not traditionally contain an RBox, although role properties such

as transitivity of roles are supported in DLs such as SHIQ and SHOIN . Description

logics knowledge bases in RIQ and SROIQ are known to contain RBoxes. These logics

support additional role properties such as reflexivity, irreflexivity and disjointness. For

convenience, we simply assume that the RBox of a knowledge base is an empty set for

cases where role properties are not supported in the logic.

2.1.1 The Syntax

Each description language is defined by a set of grammar rules which governs the types

of axioms, assertions, concept descriptions and role descriptions that can be used in the

language. The precise syntax can be expressed as a context-free grammar in Backus-Naur

Form (BNF). For example, the classical description logic ALC [SSS91] allows terminolo-

gies in the following syntactic forms:

〈concept axiom〉 ::= 〈inclusion axiom〉 | 〈equality axiom〉

〈inclusion axiom〉 ::= 〈concept〉“ ( ”〈concept〉

〈equality axiom〉 ::= 〈concept〉“
.
= ”〈concept〉

The rules above define a concept axiom to be either an inclusion axiom (also called

subsumption axiom) or an equality axiom. The left-hand side and right-hand side of

the subsumption symbol (() and the equality symbol (
.
=) are concept descriptions. In

ALC [SSS91], the syntax of the concept and role descriptions are inductively defined as

follows:
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〈concept〉 ::= “(”〈concept〉“ ) ”〈concept〉“)” |

“(”〈concept〉“ * ”〈concept〉“)” |

“∃”〈role〉“.”〈concept〉 |

“∀”〈role〉“.”〈concept〉 |

“¬”〈concept〉 |

〈concept name〉 | “-′′ | “⊥′′

〈role〉 ::= 〈role name〉

The non-terminals 〈concept name〉 and 〈role name〉 are assumed to be defined by some

terminal expressions. If the left-hand side of an equality axiom is a concept name then

it is also called a concept definition. It is important to identify concept definitions

because they often constitute a large portion of real-world ontologies and they have

the nice property of being unfoldable. As we shall see in later sections, unfoldable

terminologies are highly optimised for reasoning using a technique called absorption

that avoids unnecessary non-deterministic branching. A TBox T is unfoldable if and

only if the left-hand side of every terminology τ ∈ T contains a concept name A, that

there are no other τs with A on the left-hand side, and that the right-hand side of τ

contains no direct or indirect references to A (i.e. there are no cycles). The syntactic

forms of assertions are similarly defined as follows. An assertion can be either a concept

assertion or a role assertion. Again, the non-terminal 〈individual name〉 is assumed to

be defined by a terminal expression.

〈assertion〉 ::= 〈concept assertion〉 | 〈role assertion〉

〈concept assertion〉 ::= 〈concept〉“(”〈individual name〉“)”

〈role assertion〉 ::= 〈role〉“(”〈individual name〉“, ”〈individual name〉“)”

The syntactic rules above completely define the grammar of the ALC [SSS91] language.

It should be noted that there are no syntactic rules for RBox elements, because the ALC

language does not support role axioms. This (as mentioned before), we simply take the

RBox as an empty set. Below is an example of a simple knowledge base in ALC.

Example 2.1
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T











Penguin ( Bird

Bird
.
= Animal ) Fly

A











Penguin(tweety)

hasChild(tweety, chirpy)

Consider a DL knowledge base K = 〈T ,A〉, where T and A are the sentences stated

above. This ontology makes references to four concepts, named Penguin, Bird, Animal

and Fly; one role hasChild; and two individuals tweety and chirpy. There are two

concept axioms: the first axiom states that every penguin is a bird and the second axiom

defines a bird as being an animal that flies. Notice that we have used a subsumption for

the first axiom but an equivalence for the second. The reason is that we want to describe

a bird as the necessary condition to be a penguin but not the other way around. That is,

a bird is not necessarily a penguin. In the second axiom, an equivalence is used instead

because we are describing a necessary and sufficient condition. That is, it is not only

that every bird is an animal that flies, but also every animal that flies is a bird. There

are also two assertions in the knowledge base: a concept assertion and a role assertion.

The former describes an individual tweety as being a penguin and the latter describes

the relationship between two individuals, that tweety has a child named chirpy.

Thus far we have only stated syntactic rules to write description languages. This

provides us a way to check the syntactic validity of statements in the language, but it

does not tell us how to interpret them. For example, we have mentioned earlier that (

and
.
= are two different relations. One expresses a necessary condition, while the other

expresses both a necessary and sufficient condition. However, we have not yet defined any

rule that enforces this. In fact, ( and
.
= are merely symbols in a (description) language,

and one could interpret them in exactly the same way. As we shall see in the next

section, description languages have formally defined semantics. Symbols in a description

language, such as concept names and operators, are interpreted in a systematic way and

through this they are given a precise meaning.
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2.1.2 The Semantics

The formal semantics of description languages is provided through means of interpre-

tations. An interpretation I is a 2-tuple 〈∆I , .I〉 where ∆I is a non-empty (possibly

infinite) set that denotes the domain of I, and .I is a function that maps every individ-

ual s to an element sI ∈ ∆I , every concept C to a subset CI of ∆I , and every role R

to a subset RI of ∆I ×∆I . 2 In addition, there are two constants - and ⊥. The top

concept - maps to the set -I = ∆I , and the bottom concept ⊥ maps to the set ⊥I = ∅.

The definition of the interpretation function .I is extended to concept and role de-

scriptions. It can be seen as a set of constraints imposed onto the interpretation. For

ALC, the interpretation I satisfies the following conditions:

(¬C)I = ∆I \ CI (2.1)

(C )D)I = CI ∩DI (2.2)

(C *D)I = CI ∪DI (2.3)

(∃R.C)I = {x | ∃y(〈x, y〉 ∈ RI ∧ y ∈ CI)} (2.4)

(∀R.C)I = {x | ∀y(〈x, y〉 ∈ RI → y ∈ CI)} (2.5)

In ALC and all description languages that extend it, it is required that Condi-

tions (2.1)-(2.5) are satisfied. For description logics that support additional constructs

such as inverse roles and transitive roles, there are additional conditions that an inter-

pretation must satisfy. Details of more expressive description logics are in Section 2.3.

Definition 2.2 (DL Model)

An interpretation I is a model of a knowledge base K = 〈T ,A〉 if and only if I is a

model of T and A. An interpretation I is a model of a TBox T if and only if it satisfies

Conditions 2.6 and 2.7. An interpretation I is a model of an ABox A if and only if it

2X × Y is the Cartesian product of the sets X and Y , defined as {〈x, y〉 | x ∈ X and y ∈ Y }
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satisfies Conditions 2.8 and 2.9.

(C ( D) ∈ T =⇒ CI ⊆ DI (2.6)

(C
.
= D) ∈ T =⇒ CI = DI (2.7)

C(x) ∈ A =⇒ xI ∈ CI (2.8)

R(x, y) ∈ A =⇒ 〈x, y〉I ∈ RI (2.9)

Note that C,D are concept descriptions, R is a role name and x, y are individual names.

Logical Integrity

The notion of model from Definition 2.2 can be extended to the notion of logical integrity.

It should be noted that coherence in Definition 2.4 applies to a TBox whereas consis-

tency in Definition 2.5 applies to a DL knowledge base (i.e. the combination of a TBox

and an ABox). The three notions in Definition 2.3-2.5 form the basis for all the other

reasoning tasks available in DL. In fact, most existing reasoners are focused towards the

optimisation of satisfiability checking. All other reasoning tasks are essentially reduced

to it.

Definition 2.3 (Concept Satisfiability)

A concept C is satisfiable with respect to a TBox T if and only if there is a model I of

T such that CI 6= ∅.

Definition 2.4 (Coherence)

A TBox T is coherent if and only if A is satisfiable with respect to T for all concept

names A appearing in T .

Definition 2.5 (Consistency)

A DL knowledge base K is consistent if and only there exists a model I of K.

Example 2.6

Consider Example 2.1 again and suppose we have the interpretation I as shown below.

Recall that an interpretation consists of a set ∆I and a mapping function .I . In this
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example, we have ∆I = {tweety, chirpy, bob} and the following defines the mapping

function .I :

-I = {tweety, chirpy, bob}

BirdI = {tweety, chirpy}

AnimalI = {tweety, chirpy}

FlyI = {tweety, chirpy}

PenguinI = {tweety}

hasChildI = {〈tweety, chirpy〉}

tweetyI = tweety

chirpyI = chirpy

(Animal ) Fly)I = {tweety, chirpy}

. . .

I is an interpretation forALC because it satisfies Conditions (2.1)-(2.5). It is also a model

of the knowledge base defined in Definition 2.2 because it satisfies Conditions (2.6)-(2.9).

Notice that I is a model even though the individual bob in ∆I does not appear anywhere

in the knowledge base.

Unique Name Assumption (UNA)

The Unique name Assumption (UNA) enforces that symbols in a language that are

different are necessarily referring to different objects in the domain. Description logics

do not employ the UNA, concept (also role and individual) names can be syntactically

different but still be referring to the same objects in the domain. For example, we

could construct an interpretation I such that ∆I = {alice, bob}, and have bobI = bob

and bobbyI = bob. In this case, the names Bob and Bobby are referring to the same

single object (the person Bob) in the domain, where Bob could be the actual name of

the person and Bobby is a nickname. This kind of scenarios often occur in real-world

applications [BBB+09]. Systems that do not adopt the UNA can be seen as being more
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general than systems that adopt the UNA. This is because without the UNA, one could

assert sentences to explicitly state that two individuals are (necessarily) equivalent or

that two individuals are not equivalent. The Web Ontology Language (OWL) also does

not enforce the UNA instead it allows the use of owl:sameAs and owl:differentFrom to

make explicit whether two individuals are referring to the same objects in the domain or

not. If none of these are specified and no additional information can be inferred then it

is assumed to be unknown. Some reasoners, such as RacerPro, allows the user to specify

whether to employ the UNA or not in the reasoning. Employing the UNA will usually

incur additional computational costs.

Open and Closed World Semantics

An important distinction between a (relational) database and a DL knowledge base is

that the former is based on the Closed World Assumption (CWA) while the latter is

based on the Open World Assumption (OWA). To illustrate the differences between

the two notions, consider the sentence “Bob is a student”. In the case of a relational

database, this sentence can be represented as a row in a database table and for a DL

knowledge base, it can be represented as a concept assertion Student(bob). We can

query both the database and the knowledge base, and both would return the correct

output (i.e., “Bob is a student”). In this scenario, there is no difference between the

two systems. The difference lies in cases where information is in absence. Suppose the

row that encodes the above sentence is not present in a relational database. That is the

sentence is not asserted true explicitly.

Since relational databases adopts the CWA, a sentence that is not asserted true im-

plies that its negation is true or simply that the sentence is false. Therefore, it concludes

that Bob is not a student. This is different from a DL knowledge base that adopts the

OWA, where absence of information is regarded as unknown, without passing judgement

on its truth value. The fact that Student(bob) is not asserted true means it could either

be the case that Bob is not a student or that Bob is in fact a student. There is simply

insufficient information in the knowledge base to make a conclusion. In some sense, the

OWA enables reasoning in a knowledge base because it allows information to be inferred
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from different fragments of the knowledge base.

Another way to view CWA and OWA is that the CWA can be seen as a version of two-

valued logics where propositions are assigned one of the two truth values: true or false.

On the other hand, the OWA can be regarded as a three-valued logic where sentences are

assigned with one of the three truth values: true, false or unknown. There are advantages

and disadvantages to adopting either of these approaches but the choice of choosing

one is dependent on the application scenario. Roughly speaking, systems that adopt

the OWA are generally more suitable in scenarios where complete information is not

available. For example, the problem of Situation Awareness (SA) in the military domain

as demonstrated in [BBB+09] where sensor information is not necessarily complete due

to failures in sensing equipment, interference or equipment limitations.

2.2 Reasoning in Description Logics

The ability to make inferences is a prominent feature in DL systems. It allows implicit

knowledge to be inferred based on the explicitly asserted knowledge. In Section 2.1.2, we

have defined some of the standard reasoning tasks that can be performed in description

logics, including satisfiability and consistency checking. In the subsections ahead, we will

explain how these reasoning tasks are realised using reasoning algorithms. We will also

give an overview of other reasoning services that are provided by DLs including instance

and subsumption checking, and the generation of subsumption hierarchy.

2.2.1 Reasoning Services

The various types of reasoning services are summarised in the table below.

Reasoning Task Definition

Satisfiability CI 6= ∅ for some model Is of T

Subsumption CI ⊆ DI for all model Is of T

Equivalence CI = DI for all model I of T s

Disjointness CI 6= DI for all model Is of T

Instance checking sI ∈ CI for all model of I of A
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2.2.2 Constructing a Subsumption Hierarchy

The construction of a subsumption hierarchy is one of the most important reasoning

tasks in description logics. A subsumption hierarchy, also known as a classification tree,

is a partially ordered set over the set of concept names appearing in an ontology.

The construction of a subsumption hierarchy requires determining subsumption re-

lationships between all ordered pairs of concept names. For example, suppose C,D,E

are concept names that appear in the axioms of an ontology, then a subsumption hi-

erarchy will tell us the subsumption relationships between these concepts (e.g., C ( D

and D ( E). Note that, subsumption is a transitive relation so it is necessary that

C ( E in the previous example. Therefore, an important question is how we could

minimise the number of subsumption checks (a standard query in most DL reasoners) in

order to induce the whole subsumption hierarchy, and this question relates closely to the

classical problem of computing a partially ordered set. We will describe below in some

detail how to compute a partially ordered set, but we will first define the properties of a

subsumption relation.

Definition 2.7

The subsumption relation (() is a partial order over a set of concept names. Being a

partial order, it satisfies the following properties:

(Reflexivity) C ( C, for all C.

(Antisymmetry) if C ( D and D ( C then C
.
= D for all C,D.

(Transitivity) if C ( D and D ( E then C ( E for all C,D,E.

Computing a partially ordered set

The problem of computing a partially ordered set (poset) was first explored by Faigle et

al. [FT88], where they have devised two algorithms for sorting posets and have shown a

query complexity of O(wn log n
w ), where n and w corresponds to the number of elements

and the width of the poset respectively. These algorithms assume that there is an

oracle that answers queries and provides information about the ordering of the elements.
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They also assume that the computational cost for querying an oracle is expensive and

that all queries are of equal computational cost. Therefore the aim is to minimise the

number of queries. However, this problem is not completely identical to the problem of

constructing a subsumption hierarchy. It is similar in the sense that one could consider

each subsumption check as a query to an oracle. Minimising the number of subsumption

checks to some extent minimises the overall computation cost. However, the cost of each

subsumption check is not necessarily the same and in many cases they vary. Therefore

minimising the number of subsumption checks does not necessarily minimises the overall

computational cost.

For any ordered pair of concepts (C,D), we could determine their subsumption rela-

tionship by performing a subsumption check. For an ontology O, subsumption checking

is a function SubO : L× L→ B where L is the set of all concept names appearing in O

and B is the boolean domain {true, false}.

C ! D C "! D

D ! C C ≡ D D ! C
D "! C C ! D D ! C

Figure 2.1: Subsumption relationships of two concepts C,D

By performing subsumption checks on a pair of concepts C,D, one could derive the

following four properties: (1) If C ( D and D ( C then C and D are equivalent, (2) if

C ( D and D 6( C then C ! D, (3) if C 6( D and D ( C then D ! C, (4) if C 6( D and

D 6( C then C and D are incomparable (i.e. C ! D). This is summarised in Fig. 2.1

For less expressive description languages that do not express negations, such as the

EL family, it is possible to apply structural subsumption algorithms to induce the sub-

sumption hierarchy [BLS06]. However, in classical description languages such as ALC

and other more expressive description languages, subsumption checking is normally re-

duced to satisfiability checking, as we have indicated in Section 2.2.1.
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2.2.3 Reasoning Algorithms

In this section, we study a reasoning algorithm that has been used to realise the rea-

soning services described in Section 2.2.1. More specifically, we focus our attention

to the problem of satisfiability checking for description logic ALC and its extensions.

Among all reasoning algorithms, tableau-based algorithm is the most extensively stud-

ied in the literature and there exists highly optimised implementations. There are other

reasoning algorithms that have been explored in the literature, including SAT-based

algorithms [KH08].

Tableau Algorithms

The tableau algorithm can be seen as a search algorithm. It comprises of two parts: a

search procedure that drives the construction of a search tree, and a set of expansion

rules that determines what to do at each node in the search tree. The search procedure

is not prescribed to any specific search strategy. However, it is typically implemented

as a variant of depth-first search, because it is more memory conservative and easier to

keep track of the search states than breadth-first search. Algorithm 1 shows a typical

implementation of the search procedure.

It should be noted that Algorithm 1 is not fixed to a specific search strategy, but

instead the choice of the queue used in the algorithm determines it. For example, a last-

in-last-out queue results in a depth-first search, while a first-in-first-out queue results in

a breadth-first-search. The behaviour of Add and Remove are determined by the type of

queue used.

The Expand function is the core part of the algorithm. It encompasses a set of

expansion rules as shown in Figure 2.2. For simplicity, we treat Expand as a blackbox

and assumes that it takes exactly one ABox A as input and outputs either one ABox

A′, or two ABoxes A′ and A′′.

The tableau algorithm takes as input a TBox tbox and a concept C. It outputs a

boolean value: true if C is satisfiable with respect to tbox and false otherwise.

The procedure is initialised as follows: the queue queue as an empty list, the boolean

variable isSat as false, the initial ABox Ainit as a set with only one concept assertion
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input : a TBox tbox, a concept C
output: true if C is satisfiable, otherwise false
initialise an empty queue queue;
isSat← false; /* set to false */

Ainit ← {C(s)}; /* initialise ABox */

Add(queue, Ainit); /* initialise queue */

while true do /* loops indefinitely */

Anext ← Remove(queue);
if Anext is not consistent then /* if not consistent */

continue;
end
if Anext is expandable then /* if expandable */

aboxes← Expand(tbox,Anext);
foreach Anew in aboxes do /* add new ABoxes to queue */

Add(queue,Anew);
end

else
isSat← true; /* set to true */

break;

end

end
return isSat ;

Algorithm 1: A typical search algorithm for satisfiability checking

{C(s)} where C is the concept to check for satisfiability and s is an anonymous individual.

The initial ABox Ainit is then added to queue. The main part of the procedure is a while-

loop. In each iteration, an ABox Anext is removed from queue via Remove. After this,

Anext is checked for consistency. If Anext is not consistent, it will go to the top of the

while-loop. Otherwise, Anext is consistent and it will proceed to checking whether Anext

is expandable. An ABox is expandable if it triggers at least one of the expansion rules

in Figure 2.2. If Anext is expandable, then Expand is called to generate a set of ABoxes

aboxes. Each of these new ABoxes Anew is an expansion of the preceding ABox Anext,

meaning that for each Anew ∈ aboxes, Anext ⊆ Anew. All new aboxes are then added

to the queue. If Anext is not expandable, then none of the expansion rules is applicable

to Anext. In this case, we have constructed a complete and clash-free ABox for C with

respect to tbox, hence we simply set isSat to true and break out of the while-loop.

As we have mentioned earlier, the core part of the tableau algorithm is the Expand
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function. It consists of a set of expansion rules that controls how the search tree is

expanded. The expansion rules for ALC are shown in Fig. 2.2. The notation we use here

is one adopted in [BCM+03]. The intuitive idea is that we start off with an ABox and

the expansion rules are treated as completion rules driven by the growing ABox and the

static TBox, where each application of the expansion rule “completes” the ABox a step

further and produces more complete ABoxes. An alternative notation from [HS07] was

also commonly adopted in the literature.

)-rule if A contains (C1 ) C2)(x), but it does not contain both C1(x) and C2(x).
then A′ = A ∪ {C1(x), C2(x)}

*-rule if A contains (C1 * C2)(x), but neither C1(x) nor C2(x).
then A′ = A ∪ {C1(x)}, A′′ = A ∪{ C2(x)}

∃-rule if A contains (∃R.C)(x), but there is no individual name z such that C(z)
and R(x, z) are in A.
then A′ = A∪{C(y), R(x, y)} where y is an individual name not occurring
in A.

∀-rule if A contains (∀R.C)(x) and R(x, y), but it does not contain C(y).
then A′ = A ∪ {C(y)}.

Figure 2.2: Expansion Rules for ALC

Algorithm 1 above will guarantee termination because each expansion rule can only

be applied to the same fact once. As shown in the expansion rules, the precondition of

each expansion rule checks the presence of certain ABox or TBox sentences. The TBox

is static and no additional axioms are added in the course of the algorithm, so it will not

cause any problem to termination. On the other hand, the ABox is dynamic and new

assertions are being added to it each time an expansion rule is triggered. It means that

the algorithm will not terminate if there are new and different assertions being added at

each expansion. In the case of an unfoldable TBox this situation is not possible because

the size of each assertion is fixed and expansions will only cause new assertions of the

same size or less to be created. However, this is not the case for terminologies with cyclic

definitions or General Inclusion Axioms (GCIs) where special treatment is necessary to
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ensure termination.

Blocking

Blocking ensures termination of the tableau algorithm. In the absence of cyclic defini-

tions, termination is guaranteed by the expansion rules. Each of the expansion rules is

essentially applicable to the same set of DL sentences only once, the rule will then trigger

the expansion of the ABox which makes this set of DL sentences no longer applicable

to the rule. However, this is not the case in the presence of cyclic definitions where

expansion rules can be applied indefinitely because the ∃-rule could generate an infinite

number of individuals. Blocking checks for certain conditions in the expanding ABox

and causes certain rules (in particular, the ∃-rule) to become inapplicable at some stage

during the expansion. Blocking should happen at the right point during the expansion

to ensure completeness of the algorithm.

Different blocking conditions are needed for description logics with different ex-

pressivity. Subset blocking is appropriate for the description logic ALC, equivalence

blocking for description logics with inverse roles (e.g. ALCI), and pairwise blocking

for description logics with role hierarchy (e.g. SHIQ and SHOIN ). These blocking

conditions are outlined below. Note that the notation L(x) = {C | C(x) ∈ A} and

L(x, y) = {R | R(x, y) ∈ A}

Definition 2.8 (Subset Blocking)

An individual y is blocked by x if and only if {C | C(y) ∈ A} ⊆ {C ′ | C ′(x) ∈ A} and

y > x, where y > x means that y was introduced later than x.

Definition 2.9 (Equivalence Blocking)

An individual y is blocked by x if and only if {C | C(y) ∈ A} ≡ {C ′ | C ′(x) ∈ A} and

y > x, where y > x means that y was introduced later than x.

Definition 2.10 (Pair-wise Blocking [HST99])

A node is blocked if and only if it is directly or indirectly blocked3. A node x is directly

3A node is indirectly blocked if at least one of its ancestors is directly blocked.
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blocked if and only if none of its ancestors are blocked, and it has ancestors x′, y and y′

such that:

• x is a successor of x′ and y is a successor of y′ and

• L(x) = L(y) and L(x′) = L(y′) and

• L(〈x′, x〉) = L(〈y′, y〉).

2.3 Other Description Logics

The family of description logics contains many other sublanguages. We introduce some

of these sublanguages in this section.

2.3.1 Description Logic ALCN

The description logic ALCN is a slight extension to ALC with Qualified Cardinality

Restrictions. This extension has added two important concept constructs of the form:

(≤ nR.C) and (≥ nR.C). The additional constructs constrain on the number of values of

a given type. For example, (≥ 3hasChild.Male)(mary) ∈ A means that each interpreta-

tion satisfying this concept assertion will have an individual mary who has three children

and they all belong to the class Male. Note that, these individuals can be either named

(i.e., individuals that appear in the ABox) or unnamed (i.e., individuals that do not

appear in the original ABox). More formally, an interpretation I satisfies the following:

(≤ nR.C)I = {x ∈ ∆I |#RI(x,C) ≤ n} and (≥ nR.C)I = {x ∈ ∆I |#RI(x,C) ≥ n}.

We show in Fig. 2.3 the additional rules that are needed to form the tableau algorithm

for the description logic ALCN .

2.3.2 Description Logic SHOIQ

Another important class of description logics is known as SHOIQ which is an extension

of the classical ALC with existential and universal restrictions, at-least and at-most num-

ber restrictions, role hierarchy and inverse role constructors. The semantics of SHOIQ
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≥-rule if A contains (≥ nR)(x), and there are no individual names z1, . . . , zn such
that R(x, zi) (1 ≤ i ≤ n) and zi 6

.
= zj (1 ≤ i < j ≤ n) are contained in A.

then A′ = A ∪{ R(x, yi) | 1 ≤ i ≤ n} ∪ {yi 6
.
= yj | (1 ≤ i < j ≤ n)}, where

y1, . . . , y2 are distinct individual names not occurring in A.

≤-rule if A contains distinct individual names y1, . . . , yn+1 such that
(≤ nR)(x) and R(x, y1), . . . , R(x, yn+1) are in A, and yi 6= yj is not in
A for some i 6= j.
then For each pair yi, yj such that i > j and yi 6= yj is not in A, the ABox
Ai,j = [yi/yj ]A is obtained from A by replacing each occurrence of yi by
yj .

Figure 2.3: Tableau algorithm additional rules for ALCN

is defined the way as ALC. Formally, an interpretation I = (∆I , .I) is a tuple, where

∆I contains the set of all elements in the domain of interest and .I is a function that

maps every concept to a set of individuals in ∆I and every role name to a set of pairs

(of individuals) in ∆I × ∆I . In addition, an interpretation I satisfies the following

conditions:

(C )D)I = CI ∩DI ,

(C *D)I = CI ∪DI ,

¬CI = ∆I \ CI ,

#oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I |RI(x,C) 6= ∅},

(∀R.C)I = {x ∈ ∆I |RI(x,¬C) = ∅},

(≤ nR.C)I = {x ∈ ∆I |#RI(x,C) ≤ n},

(≥ nR.C)I = {x ∈ ∆I |#RI(x,C) ≥ n},

Moreover, SHOIQ supports transitive and inverse roles. The semantics of roles are

described in [HS07]. In addition to subsumption and equivalence axioms, SHOIQ also
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support role hierarchy on role names. That is, it allows role axioms of the form R ( S.

An interpretation of this axiom satisfies RI ⊆ SI .

2.3.3 Description Logic SROIQ

The description logic SROIQ was proposed in [HKS06] as a combination of SHOIN

and RIQ. It was designed to make some of the most expressive yet decidable fragments

of description logics to be more useful in practise. This has led to the development of

the OWL 1.1.

In particular, SROIQ introduces an additional component of a DL knowledge base

known as the Role Box (or RBox for short). Consequently, a DL knowledge base in

SROIQ is defined as K = (T ,A,R), where T and A are the TBox and ABox respec-

tively, and the additional R is the RBox where all role axioms and assertions now reside.

That is, the TBox no longer stores any role axioms. The description logic SROIQ

extends SHOIQ [HS07] with the following features:

1. Disjoint roles

2. Reflexive and irreflexive roles

3. Negated role assertions

4. Complex role inclusion axioms

5. Universal role U

6. Local reflexivity of roles

The set DiagI is defined as {〈x, x〉 | x ∈ ∆I}. An interpretation I of SROIQ is an

interpretation of SHOIQ with the following extensions:

(C )D)I = CI ∩DI ,

(C *D)I = CI ∪DI ,

¬CI = ∆I \ CI ,

#oI = 1 for all o ∈ NI ,
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I |= ¬R(x, y) if 〈x, y〉 6∈ RI (2.10)

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI (2.11)

I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI imply 〈x, z〉 ∈ RI (2.12)

I |= Ref(R) if DiagI ⊆ RI (2.13)

I |= Irr(R) if RI ∩DiagI = ∅ (2.14)

I |= Dis(R,S) if RI ∩ SI = ∅ (2.15)

The semantics of disjoint roles is captured by Equation 2.15, of reflexive and irreflexive

roles by Equation 2.13 and 2.14 respectively and negated role assertion by Equation 2.10.

The universal role UI is simply defined as ∆I ×∆I and local reflexivity of a role R is

defined as (∃R.Self)I = {x | 〈x, x〉 ∈ RI}. Note that Self is a special concept name.

Definition 2.11 (Role Box [HKS06])

A SROIQ-role box is a set R = Rh ∪Ra, where Rh is a regular role hierarchy and Ra

is a finite, simple set of role assertions. An interpretation satisfies a role box R (written

I |= R) if T |= Rh and I |= φ for all role assertions φ ∈ Ra. Such an interpretation is

called a model of R.

2.3.4 The DL-Lite Family [GLRV04]

The DL-Lite family of description logics is fragment of DLs that are designed to perform

tractable reasoning. The DL-Lite family corresponds to the OWL 2 QL sublanguage of

the OWL 2.0 standard. The syntax of DL-Lite core is defined below:

B ::= A | ∃R | ∃R−

C ::= B | ¬B | C1 )C2

where A denotes an atomic concept, C denotes a complicated concept, R denotes a

role name, R− denotes the inverse of the role R and ∃R denotes unqualified existential

restriction on atomic role R.
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2.3.5 The EL Family

The EL family represents a unique stream of research in description logics that focuses

towards computational performance of reasoning [BLS06] rather than expressive power.

Specifically, EL logics are tractable fragments of description logics. The class of EL

logics consists of three variants: EL, EL+ and EL++. In terms of reasoning these logics

employ a technique known as structural subsumption, instead of traditional DL reasoning

algorithms such as the tableau algorithm. The syntax of EL is presented below:

〈concept〉 ::=“(”〈concept〉“ ) ”〈concept〉“)” |

“∃”〈role name〉“.”〈concept〉

〈concept name〉

〈role〉 ::=“(”〈concept〉“ ◦ ”〈concept〉“)” |

“∃”〈role name〉“.”〈concept〉

〈concept name〉

Since we do not make explicit use of EL+ or EL++ in this dissertation, we will omit

the semantic descriptions of EL+ or EL++. Instead, we point the readers to the literature

[BLS06, BBL05].

2.3.6 Reasoning with Rules

One of the limitations of the original version of OWL was that it had not been designed

to express rules. This has led to the proposal of SWRL as an extension to OWL and later

to the development of OWL 2 RL specifically for efficient handling of rules by giving up

some expressive power of OWL.

Below is an example of a horn-like rule that cannot be expressed in OWL. The rule

is composed of three binary predicates has_uncle, has_father and has_brother; and

three variables x,y and z. It reads ‘if x has a father y and y has a brother z, then x has
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an uncle z’.

has uncle(x, z)← has father(x, y) ∧ has brother(y, z)

A typical SWRL rule consists of an antecedent and a consequent. The antecedent is

also known as the body of the rule and the consequent as the head. Both the antecedent

and the consequent are composed of predicates with arity r where r > 0. It is generally

required that predicate and individual names appearing in rules must also appear in the

original ontology. This excludes any individual that is generated by the inference engine

of the OWL ontology. In other words, it only takes named individuals into account.

There are at least two known interpretations for the above rule in the community.

One has been adopted in SWRL and another by the so-called SWRL-like rules. The

difference lies in the way the arrow (←) is interpreted. For SWRL-like rules the arrow

is interpreted as in production systems. That is, if the antecedent of the rule is satisfied

then the rule is fired and the consequent of the rule is triggered.

For SWRL rules, however, the arrow is interpreted as a logical implication where the

contrapositive holds. For example, if we have a rule penguin(x)← bird(x)∧fly(x), then

its contrapositive ¬penguin→ ¬bird(x) ∨ ¬fly(x) also holds.

The difference between the interpretations of the two types of rules is similar to the

difference between logical implication and causality. This topic has been extensively

studied in the context of Reasoning about Action.

This difference lead to the development of ontology reasoners with different treat-

ments for rules.

Currently, both RacerPro [HMW03] and KAON2 [Mot08] support SWRL rules.

2.3.7 Summary and Discussion

In this chapter, we introduced description logics as a family of knowledge representa-

tion languages that are widely used to represent ontologies. We described the syntax

and semantics of the classical description logic ALC, as to lesser extent of some other

description logics such as SROIQ and EL. We presented the tableau-based reasoning
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procedure that is used by most of the state-of-the-art ontology reasoners to perform

various reasoning services supported by a description logic knowledge base. We also

described some of the underlying assumptions of description logics (e.g. the open-world

assumption) and how they differ from assumptions in relational databases. We showed

that there are limitations to what can be expressed in DLs.



Chapter 3

Ontology Contraction

3.1 Chapter Introduction

In this chapter, we study the topic of ontology contraction as a means to retract knowl-

edge from an ontology. The framework we adopt is based on the classical belief con-

traction literature and we focus on reformulating those techniques into the context of

description logics. In particular, we explore the classical remainder set operator for

propositional logic and show that such operator is not desirable for the description logic

setting. Moreover, we introduce a remainder set operator for description logics and argue

that such operator yields finer-grained results than classical remainder set. We establish

a representation theorem for the remainder set operator for DL by showing correspon-

dence between the operator and a set of revised postulates. Furthermore, we extend

our results to the multiple contraction setting and present both the notions of package

contraction and choice contraction for description logics.

3.2 Motivation

The goal of this chapter is to look at the problem of ontology contraction from a theo-

retical standpoint. To understand why this is important, consider a knowledge engineer

who is reusing an ontology available in the public domain (e.g., SNOMED). In most real-

world scenarios, it is unlikely that the existing ontology captures exactly the domain that

42
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the knowledge engineer has in mind. Therefore, it is necessary for the knowledge engi-

neer to modify the ontology in order to properly model the intended domain of interest.

Typically, this process involves removing unwanted inferred knowledge from the existing

ontology. To facilitate this process, the knowledge engineer may use a standard ontology

editor (such as Protege) to make changes to the ontology and manually remove those

sentences (axioms or assertions) that lead to the unwanted inferred knowledge. However,

this poses a number of challenges. Firstly, an ontology can be huge and may contain

millions of axioms so it may not be practical to perform the task manually. Secondly, it is

not always easy to identify those sentences that lead to the unwanted inferred knowledge

and at the same time ensure minimal information loss. It is therefore our goal to delve

into the ontology contraction operation from the theoretical viewpoint. This work will

have impact in understanding a number of operations that are related to contraction,

including ontology merging, revision, alignment and mapping.

3.3 Related Work

There has been a large body of work in the area of Belief Change where the process of

an agent’s epistemic state undergoing changes is being modelled.

The most foundational piece of work in this area is the AGM framework of belief

change [Gar88, Pep07], where the agent’s epistemic state is represented as a set of formal

sentences. While the framework is not tied to a specific formal logic, it is typically

assumed to be in a propositional setting, and is subject to meeting certain properties

and assumptions (satisfied by propositional logic). As we shall see in later sections,

this poses many problems when one tries to cast the techniques in the AGM framework

directly to description logics.

There have been many attempts in resolving inconsistencies with ontologies [QP07].

In particular, Flouris et al. [FHP+06] pointed out the limitations of certain description

logics in meeting some of the requirements of the AGM framework. These description

logics are considered as non AGM-compliant, as termed by Flouris et al.

One line of active research [LLMW06, FPA05a, HWK06, FPA04, FPA05b] in the area
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is to identify (or design new) description logic constructs that will make certain class of

description logics AGM-compliant. In particular, the work by Flouris et al. [FHP+06]

studied negation of TBox sentences, which is generally not supported in classical de-

scription logics. However, negations are fundamental in propositional logic, which allows

negation of any arbitrary formula including double negations.

In relation to the AGM framework, the Levi identity [Lev77, Han99] and Harper

identity [Har75, Han99] established connections between contraction and revision. The

Levi identity allows revision to be formulated in terms of contraction and expansion. It

is formally defined as follows: K ∗α = (K÷¬α)+α. Loosely speaking, the Levi identity

states that revising a knowledge base K by a sentence α is the same as first contracting

K by the negation of α (i.e., ¬α) then expanding the result with α. Similarly, the

Harper identity formulates contraction in terms of revision. Formally, it is defined as:

K÷α = K∩K∗¬α. The Harper identity states that contracting a knowledge baseK by a

sentence α is the same as first revising it by the negation of α then taking the conjunction

of the result with K. Both notions, however, requires the use of negation in the target

logic. Flouris et al. identified a number of conditions that negations of axioms must

satisfy in order for the Levi identity [Lev77, Han99] and Harper identity [Har75, Han99]

to be applicable. They have also identified a way to negate axioms that is applicable to

most popular description logics.

Another line of research by Ribeiro et al. [RW06] looks at the the applicability of

AGM in the absence of negations. The essence of the research was the investigation of

the external revision operator that leads to so-called semi-revision. Semi-revision can be

thought of as a weaker form of revision where certain postulated conditions in classical

revision (or internal revision) are not fully met. For example, the success postulate is

not guaranteed in the case of semi-revision. However, the external revision operator has

the advantage that inconsistencies are being removed after new information has been

incorporated. This allows to identify sets of sentences that lead to inconsistencies and

avoids the explicit use of negations. In addition, they have presented two version of base

revision operators based on kernel contraction that attempts to augment semi-revision

with some versions of success. One satisfies their defined notion of weak-success and
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another satisfies (full) success.

3.4 Belief Change

The problem of belief change has been considered in both the belief set and belief base

contexts [AGM85, Han99]. The former considers sets of sentences closed under logical

consequences, meaning that if a belief set contains a certain sentence, then it also contains

all sentences implied by it. The latter considers sets of sentences not necessarily closed

under logical consequence. It means that a belief base is simply a set of sentences.

However, this does not mean that an agent that acquires a belief base model does not

believe in the consequences of its belief base. From the computational point of view,

the belief base model is considered to be a more promising approach compared to the

belief set model. The belief set and the belief base model are sometimes connected to

the so-called coherentist and fundamentalist viewpoints.

Analogously, we discuss both the belief set and belief base models in the ontology

context. For convenience, we shall refer to these as the ontology set and the ontology

base models respectively.

Although both of these models have been studied in the literature, we focus pri-

marily on the ontology base model for computational reasons. In particular, since we

are expressing ontologies in DL and most DLs are sufficiently expressive (compared to

propositional logic at least) and allow for domains that are infinite, it is expected that

ontology sets will be infinite. For example, an ontology set that contains C(s) will

necessarily contain all its consequences, including (C * ∀R.D)(s).

An important problem that is to be highlighted here is that description logics do

not natively support negation of sentences in general. In particular, we cannot express

the negation of an TBox sentence in classical description logics, such as ALC, SHOIN ,

SROIQ and EL. While one could turn to the literature [BBH96, BKW03] that provides

other non-standard constructs, using these constructs is not always the best option

because many of the existing reasoners do not yet provide support for them. Moreover,

negation of ABox sentences is also not fully supported, although the description logic
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SROIQ and EL++ allow for negation of role assertion. This is also made known in

OWL 2.0. Many of the classical description logics, such as SHIQ, SHOIN and EL, do

not support negation of role assertion. Nonetheless, many of the AGM constructions are

formalised in terms of negation of sentences. This makes it prohibitive to directly apply

AGM techniques to description logics. In order to solve this problem, one must either

provide sufficient expressive power to support negation or to explore other means that

do not use negations. We will explore some of these options in this chapter.

3.5 Ontology Contraction

In belief change, the contraction operation deals with the consistent removal of certain

information from the agent’s beliefs. The problem of ontology contraction can be con-

sidered in a similar fashion, in the sense that we could explore means to consistently

remove information from an ontology. Instead of beliefs which is typically represented

as a set of propositional formulas (closed or not closed under logical consequences), we

represent an ontology as a set of DL sentences and consider the scenario where a single

DL sentence is removed from the ontology. We proceed by introducing the notion of

a remainder set which is a basic tool to build a partial-meet contraction operator. We

then motivate our research by demonstrating how a remainder set can be used for DLs

and describe some of its limitations. We then present a new version of remainder set for

DL based on the notion of exceptions.

3.5.1 Remainder Set

We present below the classical notion of remainder set and an example to demonstrate

how the remainder set operation works.

Definition 3.1 ([AM81])

Let A be a set of sentences and α a sentence. The set A⊥α is the set such that

B ∈ A⊥α if and only if:

1. B ⊆ A
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2. α 6∈ Cn(B)

3. There is no set B′ such that B ⊂ B′ ⊆ A and α 6∈ Cn(B′)

Example 3.2

Let K = (T,A) where T = {Bird ( Penguin} and A = {Bird(tweety), Bird(chirpy)},

and let α be Penguin(tweety). Note that we consider K as a single set that is the union

of T and A.

K⊥α = {{Bird ( Penguin,Bird(chirpy)},

{Bird(tweety), Bird(chirpy)}}

The remainder set is a commonly used construction for belief contraction, such con-

struction is intuitive and has been shown to satisfy the classical belief contraction pos-

tulates. However, there are limitations to the remainder set which makes it inadequate

to capture the structure of more expressive languages. In particular, remainder set has

the property that it limits its solutions to only subsets of the original set of sentences.

This is sufficient for propositional logic because the structure of propositional languages

are (relatively) inexpressive. In the context of DL, however, it is possible to explore

the structure of DL sentences further to produce finer-grained solutions. We develop a

version of the remainder set construction based on the notion of exceptions.

The construction relies on the use of nominals a standard construct in almost all

popular expressive description logics, including ALCO, SHOIQ and SRIOQ. It is

important to note that nominals are not the only means to construct a remainder set. It

is possible to replace nominals with some other cardinality based constructs that allow

exceptions to be expressed adequately, such as the use of cardinality restrictions on

concepts [BBH96] or existence axiom [HPS03].

Classical remainder set is constructed by computing maximal subsets that do not

imply the sentence to be removed. This is natural for propositional logic because all

sentences in the original set of sentences are, in a sense, treated as having equal value.
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Unless one imposes an ordering on the set of sentences, there is no reason why a particular

sentence should be seen more valuable than another one, especially if the two sentences

have no logical relations with each other (i.e. they do not share any models). This is

different from description logic knowledge bases where sentences are divided into TBox

or ABox sentences. TBox sentences can be seen as intensional knowledge and they

impose constraints onto sets of individuals in the domain. This makes them, in a way,

more valuable than ABox sentences (extensional knowledge) because each ABox sentence

refer only to certain individuals, thus affecting only a small portion of the domain. In

constructing a remainder set for DL, we could give preference to TBox sentences by

making use of the notion of exceptions.

Instead of removing a TBox sentence completely as we do in the classical remainder

set construction, one could weaken TBox (and ABox) sentences in the original set of

DL sentences until it no longer implies the sentence that we wish to retract. Note that

weakening an ABox sentence is the same as removing it, in this sense the way we handle

ABox sentences is no different from the classical notion of remainder set. As suggested by

Qi et al. [QLB06], one could also weaken an ABox sentence C(s) to -(s). This has the

advantage of being able to retain the presence of the individual name s in the case where

C(s) is the last sentence that s is in presence1. The description logic SROIQ allows

one to express universe for roles, therefore one could similarly express the weakening of

ABox sentence of the form R(s, t) to U(s, t) where UI = ∆I ×∆I .

We now introduce some definitions (Definition 3.3-Definition 3.5) to describe the

notion of a weakened DL knowledge base. These definitions will be used to define our

refined version of remainder set for DL (Definition 3.6).

Definition 3.3 (Weakened TBox adapted from [QLB06])

Let i be an integer and πi(S) = {S′ ⊆ S | |S′| = i}. Also, let NK
s be the set all

individual names appearing in the ontology K. Suppose φ is a TBox sentence of the form

1It is good to weaken an ABox to Top in cases where retaining the information about the individual
names is important, but this is not always needed.
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C ( D, the i-weakening of φ, written di(φ), is defined as follows:

di(φ) =











[

(C ) ¬{a1} ) . . . ) ¬{ai}) ( D | {a1, . . . , ai} ∈ πi(NK
s )

]

for i ≤ |NK
s |

[

⊥ ( -
]

for i > |NK
s |

Informally, i is the number of exceptions made to φ. Notice that, the (|NK
s | + 1)-

weakening of a TBox sentence is equivalent to ⊥ ( -. This is the same as dropping the

sentence. The m-weakening of a TBox T is defined as:

dm(T ) =
[

{φ′
1, . . . ,φ

′
n} | φ′

j ∈ dij (φj) for all 1 ≤ j ≤ n;
n
∑

k=1

ik = m
]

where φ1, . . . ,φn are elements (axioms) of T .

Definition 3.4 (Weakened ABox)

The m-weakening of an ABox A is defined as:

dm(A) =
[

A′ ⊆ A | |A|− |A′| = m
]

Definition 3.5 (Weakened DL Knowledge Base)

Let K = (T ,A) be a DL knowledge base, where T is the TBox and A is the ABox.

The m-weakening of K is defined as:

dm(K) =
[

T ′ ∪A′ |T ′ ∈ dj(T );A′ ∈ dk(A);

m = j + k; j ≤ |T |× (|NK
s |+ 1); k ≤ |A|

]

where |T | and |A| are the sizes of the TBox and ABox respectively, and |NK
s | is the

number of individual names in K.

We define below the notion of remainder set for DL, which is a refinement of the

classical notion of remainder set. The idea is that, we want to treat TBox sentences as
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being more important than ABox sentences.

The three conditions we specify below (Definition 3.6) are analogous to that defined

for the classical remainder set. The first condition requires that B (element of the

remainder set for DL) be an element of the i-weakening of A, which consists of both

weakened TBox and ABox sentences. The second condition is the same as that defined

in the classical remainder set it specifies that B does not imply α. The third condition

requires that B be a weakened knowledge base of A and that there is no weakened

knowledge base B′, such that B′ is also a weakened knowledge base of A, and B is

a weakened knowledge base of B′. In other words, this condition ensures that B is

“maximal” in the sense that it contains sentences that are least weakened with respect

to A.

Definition 3.6 (Remainder Set for DL)

Let A be a set of DL sentences and α be a DL sentence. A⊥dlα is the set such that

B ∈ A⊥dlα if and only if:

1. B ∈ di(A) for some i.

2. α 6∈ Cn(B).

3. There is no B′ such that B′ ∈ di(A) and B ∈ dj(B′) for some 0 ≤ i and 0 < j, and

α 6∈ Cn(B′).

We demonstrate below the notion of remainder set for DL with a simple example.

Example 3.7

Consider Ex. 3.2 again but this time we compute the remainder set for DL instead. Let

K = (T,A) where T = {Bird ( Penguin} and A = {Bird(tweety), Bird(chirpy)}, and

let α be Penguin(tweety).

K⊥dlα = {{Bird ( Penguin,Bird(chirpy)},

{(Bird ) ¬{tweety}) ( Penguin,Bird(tweety), Bird(chirpy)}}



3.5 Ontology Contraction 51

In Ex. 3.2 and Ex. 3.7, we see that both examples are able to conclude that removing

the statement “Tweety is a bird” is a possible solution. But for the other solution,

classical remainder set requires dropping the statement that birds are penguins, while

our notion of remainder set for DL retains this statement, but makes an exception to

specify that all individuals except Tweety satisfy this statement. It is clear from this

example (Ex. 3.7) that our notion of remainder set for DL produces more intuitive results.

Proposition 3.8

Let A be a set of DL sentences and α a DL sentence, then B′ ∈ A⊥α if and only if

there is some set B ∈ A⊥dlα such that B′ ⊆ B.

Proof. (=⇒)

Suppose B′ ∈ A⊥α and there is no B ∈ A⊥dlα such that B′ ⊆ B. By Definition 3.1,

α 6∈ Cn(B′) but we also know that α ∈ B for all B such that B′ ⊂ B ⊆ A. Consider two

cases (1) B′ is A, and (2) B′ ⊂ A. If B′ is A, then by Definition 3.1 and Definition 3.6,

we have A⊥α = A⊥dlα = A. If B′ ⊂ A, then by Definition 3.1 we know that there exists

some φ ∈ A such that α ∈ Cn(B′∪{φ}) (Note that, there does not exist B′′ ∈ di(A) such

that B′∪{φ} ∈ dj(B′′) for 0 ≤ i and 0 < j, and α 6∈ Cn(B′′), because α ∈ Cn(B′∪{φ})).

If φ is an ABox sentence, then by Definition 3.4 weakening it will have it removed

so we have B′ and we know that α 6∈ Cn(B′). We have now two cases to consider:

(1) B′ is minimal, which means B′ ∈ A⊥dlα, or (2) B′ is not minimal in which case

there exists another set B′′ such that B′′ ∈ di(A) and B′ ∈ dj(B′′) for some 0 ≤ i

and 0 < j and α 6∈ Cn(B′′), and B′′ is minimal. That means, B′′ ∈ A⊥dlα. If φ

is a TBox sentence, then by Definition 3.4 it will be weakened to d1(B′ ∪ {φ}) where

B′ ∪ {d1(φ)} ∈ d1(B′ ∪ {φ}). If α 6∈ Cn(B′ ∪ {d1(φ)} then B′ ∈ A⊥dlα. Otherwise,

B′∪{d1(φ)} is weakened to d1(B′∪{d1(φ)}) where B′∪{d2(φ)} ∈ d1(B′∪{d1(φ)}). And

so on, until either α 6∈ Cn(B′ ∪ {dn(φ)} for some n < |s|, or we have B′ ∪ {dn(φ)} = B′

for n = |s|. Hence, either B′ ∈ A⊥dlα or there exists some set B′′ such that B′′ ∈ A⊥dlα.

(⇐=)

Suppose there is a set B ∈ A⊥dlα, then by Definition 3.6, we have α 6∈ Cn(B). So there

exists a subset B′ of B, such that α 6∈ Cn(B′). If B′ 6∈ A⊥α and α 6∈ Cn(B′), then by
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Definition 3.1, there exists a set B′′ such that B′ ⊂ B′′, B′′ ∈ A⊥α and α 6∈ Cn(B′′).

But by (=⇒), we know that B′′ ∈ A⊥α means there exists some set B′′′ ∈ A⊥dlα where

B′′ ⊆ B′′′. "

3.5.2 Contraction Postulates

We present below the set of well-known partial meet contraction postulates for belief

bases [Han99]. The set of postulates is intended to be a guide for a contraction operator

with good behaviours. It does not specify a particular contraction operation. Instead,

it is a legitimate set of rules that governs a class of contraction operators. Each of the

postulates describes a property that a good contraction operator exhibits. For example,

the success postulate requires that a contraction operator be always able to remove a

sentence unless the sentence itself is a tautology (i.e. α 6∈ Cn(∅)).

We present below the set of four partial meet contraction postulates for belief bases

proposed by Hansson et al. [Han99]. This is followed by a brief description of each

postulate.

Definition 3.9 ([Han99])

The set of contraction postulates are listed below:

(Success) If α 6∈ Cn(∅), then α 6∈ Cn(A÷ α)

(Inclusion) A÷ α ⊆ A

(Relevance) If β ∈ A and β 6∈ A÷ α, then there is a set A′ such that A÷ α ⊆ A′ ⊆ A

and that α 6∈ Cn(A′) but α ∈ Cn(A′ ∪ {β})

(Uniformity) If it holds for all subsets A′ of A that p ∈ Cn(A′) if and only if q ∈

Cn(A′), then A÷ p = A÷ q.
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The success postulate ensures that the sentence we would like to be removed is actu-

ally removed after contraction. The inclusion postulate says that the result of contraction

must be a subset of the original set of sentences, which means one cannot introduce un-

necessary sentences during contraction. The relevance postulate justifies those sentences

that are in the original set of sentences (i.e., β ∈ A) but are removed after the contraction

(i.e., β 6∈ A ÷ α). It ensures that no sentences are removed for no reason. Uniformity

imposes a view on looking at sentences from the perspective of the original set of sen-

tences A. It requires that sentences, say α and β, that are implied by the same subset

of sentences from A to yield identical outcomes when contracting A by these sentences.

These four postulates together form the axiomatic characterisation of the partial meet

contraction operator for belief bases. That is, not only that partial meet contraction op-

erator satisfies these four postulates but an operator that satisfies these four postulates

are necessarily a partial meet contraction operator.

Let γ be a selection function of A⊥α, written γ(A⊥α), as defined in the classical

partial meet contraction.

That is, γ(A⊥α) = A if A⊥α is an empty set, otherwise γ selects at least one element

from A⊥α.

Also, let ÷ be an operator defined as:

A÷ α =
⋂

γ(A⊥dlα) (3.1)

Our contraction operator does not satisfy all of the classical contraction postulates,

specifically, it does not satisfy the inclusion and the relevance postulates. This is because

our definition of remainder set is more refined than that of the classical remainder set.

It is therefore necessary for us to also revise the postulates accordingly.

The inclusion postulate is revised so that we do not talk about subsets of A.

Instead when we look at the sentences in A ÷ α, we would like to capture the idea

that each of these sentences is somehow originated from A. We weakened the inclusion

postulate to enforce that each sentence in A ÷ α be implied by some sentence in A.
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It should be noted that the original version of the inclusion postulate is stronger than

our version, though it is not appropriate for our construction. It means that every

contraction operator satisfying the original inclusion postulate will also satisfy ours, but

not the other way around.

Similarly, the relevance postulate is inappropriate in our case because the subset op-

erator is not sufficient to capture the weakening approach we adopted for DL. To capture

weakening properly, we incorporate a finer-grained subset operator in the definition of

relevance to allow only those sentences that have a valid reason to be weakened. Intu-

itively, our definition required that sentences are weakened only if previous weakenings

failed.

The new revised postulates are listed below. Note that we have introduced a notation

(̂, where A′(̂A if and only if A′ ∈ di(A) for some i.

Definition 3.10 (Revised Contraction Postulates)

The revised postulates are listed below:

(Success) If α 6∈ Cn(∅), then α 6∈ Cn(A÷ α)

(Inclusion’) If β′ ∈ A÷ α then β′ ∈ Cn({β}) for some β ∈ A

(Relevance’) If β ∈ A and β 6∈ A ÷ α, then there is a set A′ such that A ÷ α(̂A′(̂A

and that α 6∈ Cn(A′) but α ∈ Cn(A′ ∪ {β})

(Uniformity) If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈

Cn(A′), then A÷ α = A÷ β.

Lemma 3.11 (Representation Theorem for Partial Meet Contraction for DL)

The operator ÷ is an operator of partial meet contraction for DL for a set A if and only

if it satisfies the postulates of success, inclusion’, relevance’ and uniformity.
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Proof. This proof is divided into two parts, we first show that our construction satisfies

the four postulates above then we show that the four postulates yield our construction

above. We start with the case of construction-to-postulates. Note that these proofs are

adapted from those in [Han99].

(Success) Suppose α 6∈ Cn(∅) and α ∈ Cn(A ÷ α). By Eq. 3.1, it follows that α ∈

Cn(
⋂

γ(A⊥dlα)). If
⋂

γ(A⊥dlα) is non-empty, then there is some subset B′ of B such

that α ∈ Cn(B′) and B ∈ A⊥dlα. Hence α ∈ Cn(B) but by Definition 3.6 α 6∈ Cn(B).

Therefore,
⋂

γ(A⊥dlα) must be an empty set. That is, α ∈ Cn(∅). So, we have a

contradiction.

(Inclusion’) If β′ ∈ A ÷ α, then by Eq. 3.1, β′ ∈
⋂

γ(A⊥dlα). It follows that there is

a set B′ where β′ ∈ B′ and there is a set B such that B′ ⊆ B and B ∈ A⊥dlα, hence

β′ ∈ B. By Definition 3.6, B ∈ A⊥dlα means β ∈ di(A) for some i. By Definition 3.5,

we know that B = dj(T ) ∪ dk(A) where i = j + k and A = T ∪A. If β′ ∈ B then it is

either in dj(T ) or dk(A). Consider β′ ∈ dk(A), then by Definition 3.4, we have β′ ∈ A,

thus β′ ∈ A. Thus, β′ ∈ Cn(β′). Consider β′ ∈ dj(T ), then by Definition 3.3, we have

β′ ∈ dn(φ) where n ≤ j and β ∈ T . β is of the form C ( D where C and D are concept

descriptions, and dn(β′) is defined as C )¬{a1}) . . . )¬{an} ( D. From the semantics

of inclusion axioms and nominals, it then follows that C ) ¬{a1} ) . . . ) ¬{an} ( D

∈ Cn({C ( D}). Hence, we have β′ ∈ Cn(β) where β ∈ A.

(Relevance’) There are two cases to consider: (1) α ∈ Cn(∅); and (2) α 6∈ Cn(∅). For (1),

it is easy to see that it satisfies the postulate because the precondition of the postulate is

not met (as in the classical case). For (2), since α 6∈ Cn(∅), we know that γ(A⊥dlα) is a

non-empty subset of A⊥dlα. If β ∈ A and β 6∈ A÷α, then β 6∈
⋂

γ(A⊥dlα). Hence, there

exists A′ ∈ γ(A÷ α) such that β 6∈ A′. It then follows that A′ ∈ A⊥dlα, so α 6∈ Cn(A′)

by Definition 3.6. Now, using the fact that A′ ∈ A⊥dlα and A′
! A′ ∪ {β}(̂A, we can

derive that α ∈ Cn(A′ ∪ {β}). Therefore, it satisfies relevance’.

(Uniformity) This is the same as the classical case and the proof for this is available

in [Han99].

We now show that an operator ÷ that satisfies the four postulates above is a partial

meet contraction. We adapt from the proof of partial meet contraction in [Han99]. We
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let γ be as follows: (1) If A⊥α 6= ∅, then γ(A⊥α) = {X ∈ A⊥α|A÷ ⊆ X}; (2) If

A⊥α = ∅, then γ(A⊥α) = {A}. There are three parts to this proof: (1) show that

γ is a function; (2) show that γ is a selection function; and (3) show that for all α,
⋂

γ(A⊥α) = A ÷ α. It is easy to see that (1) can be shown the same way as classical

partial meet contraction since we did not have to revise the uniformity postulate. We

can make use of uniformity the same way to show that γ is a well-defined function.

For (2), we need to show that A⊥dlα is non-empty implies γ(A⊥dlα) is also non-empty.

SupposeA⊥dlα is non-empty, then α 6∈ Cn(∅) by definition of γ. Since α 6∈ Cn(∅), it

follows from success that α 6∈ Cn(A÷ α). It also follows from inclusion’ that A÷α(̂A.

It then follows from the revised upper bound property2 that X(̂X ′ ∈ A⊥α. Hence, we

have γ(A⊥dlα) is also non-empty as required by definition of γ. For (3), the proof is

analagously to that of classical partial meet contraction for belief bases.

"

3.5.3 Kernel Contraction

Kernel contraction represents another stream of research that is complementary to partial

meet contraction. As opposed to the use of remainder sets where the idea was to directly

collect maximal sets of sentences that do not imply α and using a selection function to

pick important subsets, the main tool in kernel contraction is the construction of a kernel

that finds all minimal subsets of the original set of sentences A that imply α. In other

words, the kernel defines sets of sentences that are to be removed from A and an incision

function is used to further filter the sentences. The definition of a kernel is provided

below.

It states that X is a subset of A, X implies α, and X is a minimal subset of A that

implies α. That is, any proper subset of X does not imply α.

Definition 3.12 (Kernel [Han94])

Let A be a set in L and α a sentence. Then A ⊥⊥ α is the set such that X ∈ A ⊥⊥ α if

and only if:

2Our revised upper bound property is the same as the classical upper bound property but replaces
the ⊆ relation with the &̂ relation.
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(1) X ⊆ A

(2) X ? α, and

(3) If Y ⊂ X, then Y 6? α.

Next, we consider the incision function introduced in [Han94]. Eq. 3.2 requires that

σ(A ⊥⊥ α) be a subset of the union of all sets in A ⊥⊥ α. Eq. 3.3 enforces that B be

overlapping with σ(A ⊥⊥ α) for all sets B ∈ A ⊥⊥ α that are non-empty.

Definition 3.13 (Incision Function [Han94])

Let A be a set of sentences. Let A ⊥⊥ α be the kernel set of A with respect to α. An

incision function σ for A is a function such that for all sentences α:

σ(A ⊥⊥ α) ⊆
⋃

(A ⊥⊥ α) (3.2)

∅ 6= B ∈ A ⊥⊥ α, then B ∩ σ(A ⊥⊥ α) 6= ∅ (3.3)

Definition 3.14 ([Han94])

Let A be a set of sentences and σ an incision function for A. The kernel contraction −σ

for A is defined as follows:

A−σ α = A \ σ(A ⊥⊥ α) (3.4)

It is important to note that kernel contraction requires the use of set subtraction to

remove elements from the original set of sentences. This makes it difficult to introduce a

similar refinement approach with kernel contraction as we did in Definition 3.6, because

weakened sentences are not necessarily elements of the original set of sentences. Therefore

one would have to allow for subtraction of weakened sentences. This will be explored

in our future work. There are several techniques [RW09, QHH+08] that have been

proposed in the literature that deal with the use of kernel contraction as a way to revise

a description logic knowledge base.
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In particular, Qi et al. [QHH+08] proposed a kernel revision operator for TBox ax-

ioms. One of the main contributions of this work is the introduction of a cardinality-

minimal incision function, which is an incision function designed to satisfy a number

of postulates in the corresponding revision operator. The authors have also presented

a number of incision functions formulated using Reiter’s Hitting Set Tree (HST) algo-

rithm. One of these algorithms was based on a scoring function and two others based

on confidence values. In contrast to our approach, we do not make explicit use of the

HST algorithm in our contraction operator, and also our approach presents finer-grained

results than their approach. Their approach works on the level of TBox sentences and

treats each TBox sentence as the finest unit for removal (i.e., a TBox sentence is either

completely removed or retained, but not weakened).

3.5.4 Multiple Contraction

The idea of multiple contraction was explored by Hansson et al. [FH94] and its modi-

fication multiple kernel contraction by Ferme et al. [FSS03]. The problem of multiple

contraction considers contraction of a set of sentences instead of classical contraction

where only a single sentence is being contracted at each operation. This is particularly

useful for description logics because conjunction of DL sentences cannot be expressed

and it is generally not possible to combine multiple sentences into a single one. It means

that one will have to perform a sequence of contraction operations on the set of sentences.

For example, it is syntactically invalid to create a sentence of the form C(s) ∧ R(s, t)

that would allow us to perform K ÷ C(s) ∧ R(s, t). Further, the result obtained from

K ÷ C(s) ∧ {C(s), R(s, t)} and K ÷ {C(s), R(s, t)} could be quite different sometimes

because the latter leads to more sentences being deleted. To contract both C(s) and

R(s, t) one would have to contract C(s) and R(s, t) on independent operations one after

the other in some order. In many cases, contraction by removing simultaneously a set of

sentences in one operation and removing a set of sentences in a sequence of contraction

operations could lead to very different results.

Multiple contraction requires to define what exactly is meant by contracting by a set

of sentences. There are two known notions: package contraction and choice contraction.
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The former concerns with the consistent and simultaneous removal of every sentence in

the set. The latter requires at least one sentence from the set to be removed.

These two variants lead to two methodologies to handle multiple contraction. We de-

fine below the corresponding DL versions of package remainder set and choice remainder

set [FH94] based on Def. 3.6. The definition of package and choice selection functions

are also adopted into our context.

Definition 3.15 (Package Remainder Set for DL)

Let A and B be sets of DL sentences. A⊥dlB is the set such that X ∈ A⊥dlB if and

only if:

1. X ∈ di(A) for some i.

2. B ∩Cn(X) = ∅.

3. There is no B′′ such that B′′ ∈ di(A) and X ∈ dj(B′′) for some 0 ≤ i and 0 < j, and

X ∩ Cn(B′′) = ∅.

Definition 3.16 (Choice Remainder Set for DL)

Let A and B be sets of DL sentences. A∠dlB is the set such that X ∈ A∠dlB if and only

if:

1. X ∈ di(A) for some i.

2. B 6⊆ Cn(X).

3. There is no B′′ such that B′′ ∈ di(A) and X ∈ dj(B′′) for some 0 ≤ i and 0 < j,

and X 6⊆ Cn(B′′).

Similar to classical multiple contraction, the package remainder set for DL aims to

remove all the sentences in the set B, whereas the choice remainder set for DL aims to

remove only one of the sentences in B. Just like partial meet contraction, we make use

of a selection function γ that chooses from the package or choice remainder set for DL

the sentences that are most worth retaining.
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Definition 3.17

γ is a package selection function for A if and only if for all sets B:

(1) If A⊥dlB is non-empty, then γ(A⊥dlB) is a non-empty subset of A⊥dlB.

(2) If A⊥dlB is empty, then γ(A⊥dlB) = A.

Definition 3.18

γ is a choice selection function for A if and only if for all sets B:

(1) If A∠dlB is non-empty, then γ(A∠dlB) is a non-empty subset of A∠dlB.

(2) If A∠dlB is empty, then γ(A∠dlB) = A.

Similar to contraction by a single sentence we are able to show some properties of

our package and choice remainder set for DL. These properties are adapted from [FH94].

Definition 3.19

An operator ÷ for a set A is an operator of partial meet package contraction if and

only if it satisfies the following conditions:

(P-success) If B ∩Cn(∅) = ∅ then B ∩Cn(A÷B) = ∅.

(P-inclusion’) If β′ ∈ A÷B, then β′ ∈ Cn(β) for some β ∈ A.

(P-relevance’) If β ∈ A and β 6∈ A ÷ α, then there is a set A′ such that for all

δ′ ∈ A′, δ′ ∈ Cn({δ}) for some δ ∈ A, and B∩Cn(A′) = ∅ but B∩Cn(A′∪{β}) 6= ∅.

(P-uniformity’) If every set of sentences A′, such that for all β ∈ A′, β′ ∈ Cn({β})

for some β ∈ A, implies some element of B if and only if A′ implies some element

of C, then A÷B = A÷ C.

Lemma 3.20

Package remainder set for DL (Definition 3.15) satisfies P-success, P-inclusion’, P-

relevance’ and P-uniformity’.
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Proof. (P-success) This proof follows immediately from Definition 3.15.

(P-inclusion’) Suppose β′ ∈ A ÷ B. Then by Definition, β′ ∈
⋂

γ(A⊥dlB). There are

two cases to consider: (1) A⊥dlB is an empty set. (2) A⊥dlB is a not an empty set. For

(1), since A⊥dlB is an empty set, we know that γ(A⊥dlB) = A =
⋂

γ(A⊥dlB) = A÷B.

It follows immediately that β′ ∈ Cn(β) for some β ∈ A. For (2), since A⊥dlB is not

an empty set, we know that there is some set A′ such that A ÷ B ⊆ A′, A′ ∈ A⊥dlB

and β′ ∈ A′. Since A′ ∈ A⊥dlB, by definition 3.15 A′ ∈ di(A). Hence β′ ∈ A′ meaning

β′ ∈ Cn(β) for some β ∈ A.

(P-relevance’) Suppose β ∈ A and β 6∈ A ÷ α. Then there exists β′ ∈ A ÷ α such that

β′ ∈ Cn({β}). Since β′ ∈ A ÷ α, by Definition 3.15 there is a set A′ such that β′ ∈ A′

and B ∩ Cn(A′) = ∅. By Definition 3.15, we know that B ∩ Cn(A′ ∪ {β}) 6= ∅.

(P-uniformity’) Suppose a weakened set of sentences A′ is one such that for all β′ ∈ A′,

β′ ∈ Cn(β) for some β ∈ A. Also suppose every weakened set A′ implies some element

of B if and only if A′ implies some element of C. By Definition 3.15, we know that each

element A′ ∈ di(A) (for any i) is a weakened set of sentences. Therefore, A′ implies some

element of B if and only if A′ implies some element of C. If β′ ∈ A÷B, then it follows

that β′ ∈
⋂

γ(A⊥B). There are two cases to consider: (1) A⊥B is an empty set, and (2)

A⊥B is not an empty set. For (1), if A⊥B is an empty set, then γ(A⊥B) = A, and so

β′ ∈ A. Since A⊥B, so by Definition 3.15, we know that there is no weakened set A′ that

implies any element of B, so it follows from our assumption that no weakened set implies

any element of C. Therefore, A⊥C is also an empty set, so γ(A⊥C) = A = A÷C. Since

β′ ∈ A, hence β′ ∈ A÷ C. Case (2) can be shown similarly.

"

Definition 3.21

An operator ÷ for a set A is an operator of partial meet choice contraction if and

only if it satisfies the following conditions:

(C-success) If B ∩Cn(∅) = ∅ then B ∩Cn(A÷B) = ∅.
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(C-inclusion’) If β′ ∈ A÷B, then β′ ∈ Cn({β}) for some β ∈ A.

(C-relevance’) If β ∈ A and β 6∈ A ÷ α, then there is a set A′ such that for all

δ′ ∈ A′, δ′ ∈ Cn({δ}) for some δ ∈ A, and B 6⊆ Cn(A′) but B ⊆ Cn(A′ ∪ {β}).

(C-uniformity’) If every set of sentences A′, such that for all β ∈ A′, β′ ∈ Cn({β})

for some β ∈ A, implies some element of B if and only if A′ implies some element

of C, then A÷B = A÷ C.

Lemma 3.22

Partial meet choice contraction for DL (Definition 3.16) satisfies C-success, C-inclusion’,

C-relevance’ and C-uniformity’.

Proof. This proof is analagous to that of Lemma 3.20 "

3.6 Ontology Revision

In this section, we demonstrate the close relationship between ontology contraction and

ontology revision, based on the established notions in the belief change literature. More

particularly, we show how one might be able to achieve ontology revision from the con-

traction operators we proposed.

Revision concerns with the inconsistent incorporation of new information. In the

AGM model, a typical strategy is to revise a set of sentences A with a single sentence

α by first contracting the negation of α and then adding α by the simple expansion

operation.

This formulation is known as the Levi identity [Lev77, Han99]:

K ∗ α = (K ÷ ¬α) + α

The Levi identity allows revision to be formulated in terms of contraction (÷) and

expansion (+). Loosely speaking, the Levi identity states that revising a knowledge base

K by a sentence α is the same as first contracting K by the negation of α (i.e., ¬α)
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then expanding the result with α. This, however, cannot always be easily achieved in

DL where classical negation of DL sentences is generally in absence. More particularly,

negation of TBox sentences such as C ( D and C ≡ D are not valid DL constructs,

though we could derive from the semantics what their negations might be. For example,

from the semantics we know that C ( D can be expressed as - ( (¬C *D) (assuming

that negation of concepts is defined in the language) so its negation can be expressed as

- ( (C ) ¬D).

One approach to overcome this challenge is by defining negation of DL sentences,

either by introducing new constructs or by identifying ways to make use of existing

constructs to produce a form of negation.

3.6.1 Revision with Negation

In [FHP+06], the authors proposed two negation conditions. The negation conditions

below generalises the requirements for using the Levi identity as a way to obtain a revision

operator from a contraction operator. The two negation conditions are very similar to

each other, except that one is designed for consistency while the other for coherence.

Definition 3.23 (Consistency-Negation Flouris et al. [FHP+06])

An axiom ψ is said to be a consistency-negation of an axiom φ, written ψ = ¬φ, if

and only if:

(1) (Inconsistency) {φ,ψ} is inconsistent;

(2) (Minimality) There exists no other ψ′ such that ψ′ satisfies condition (1) and

Cn({ψ′}) ⊂ Cn({ψ}).

It is easy to see that this is a weaker notion of negation than classical negation. Hence,

we know that concept assertions such as ¬C(s) would satisfy the condition. Negation of

concepts is present in DLs such as ALC and its extensions (e.g., SHOIQ and SROIQ).

However, DLs from the class of EL do not generally define negations on concepts (or

have only limited forms of negation such as negation of atomic concepts).
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Definition 3.24 (Coherence-Negation Flouris et al. [FHP+06])

An axiom ψ is said to be a coherence-negation of an axiom φ, written ψ = ¬φ, if

and only if:

(1) (Inconherence) {φ,ψ} is incoherent;

(2) (Minimality) There exists no other ψ′ such that ψ′ satisfies condition (1) and

Cn({ψ′}) ⊂ Cn({ψ}).

3.6.2 Revision without Negation

An alternative method to revise a set of DL sentences is by using the reversed Levi

identity. The idea is that, instead of retracting the negation of α from A and then

adding α (the Levi identity), one could add α and then retract the negation of α.

K ∗ α = (K + α)÷ ¬α

Note that, this approach is exclusively for belief bases and not for belief sets. An

expansion that leads to an inconsistency would invalidate a belief set, as the belief

set would contain all sentences. A revision approach was applied in the context of

DL in [RW09]. Instead of contracting by ¬α in the reversed Levi identity, it can be

replaced with ⊥. The resulting set of sentences will necessary be consistent as long as

the contraction operator satisfies the success postulate.

3.7 Summary and Discussion

Ontology change is a challenging problem, yet it is foundational to the development of

Semantic Technologies. We presented in this chapter numerous techniques that are ap-

plicable to addressing ontology change. In particular, we studied the notion of classical

remainder set and showed by example that it is directly applicable to DL. However, we

argued that this would lead to counter-intuitive results because classical reminder set
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fails to capture the structure of DL sentences properly. In response to this, we intro-

duced our original notion of exceptions and presented the notion of remainder set for

DL based on exceptions. We showed that this would lead to more desirable results.

Furthermore, we investigated our notion of remainder set further to produce a partial

meet contraction similar to that of the classical remainder set. However, we discovered

that the remainder set for DL does not satisfy the classical partial meet contraction

postulates for belief bases. More specifically, it does not satisfy the inclusion and rele-

vance postulates. Therefore, we provided our original revised contraction postulates and

showed that our notion of remainder set is able to satisfy them.

In the next chapter, we investigate the problem of ontology integration. More specif-

ically, we consider stratified knowledge bases where each stratum is a set of sentences

and the goal is to produce a single consistent set of sentences.



Chapter 4

Ontology Integration

4.1 Chapter Introduction

In this chapter, we investigate the problem of knowledge integration in the description

logic context. In propositional logic, the problem of knowledge integration amounts to

integrating multiple sources of information that may not be logically consistent with

each other. In order for these sources to be successfully integrated, it is necessary

to resolve the inconsistent information. Analogously, we consider the problem of on-

tology integration in DLs where ontologies may be inconsistent with each other, and

conflict resolution strategies are necessary to ensure successful integration. Analogously

to propositional knowledge integration, we adhere to the principle of minimal change as

the underlying criterion for successful integration, where loss of information is to be kept

to a minimum. We propose to recast techniques that have been extensively studied in

propositional knowledge integration to the description logic context. We focus our study

to a class of conflict resolution strategies known as adjustments [BKLBW04], which is

known to possess desirable properties. For example, they satisfy the AGM revision pos-

tulates [BKLBW04]. We present a variant of the (whole) Disjunctive Maxi-Adjustment

(DMA) called Conjunctive Maxi-Adjustment (CMA) [MLB05]. We then show that the

additional structure of description logics can be exploited to produce finer-grained ad-

justment strategies and we propose two versions of adjustments for Description Logics

(DL). One is a direct translation of Conjunctive Maxi-Adjustment (CMA) into the DL

66
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context, while the other is a refinement of the CMA strategy called RCMA-DL that

takes into account the structure of both axioms and assertions in DL.

4.2 Motivation

The problem of ontology integration is fundamental to the development of the Semantic

Web and its applications to real-world systems. To elaborate on this problem, consider

a typical lifecycle of an ontology. In many cases, an ontology is created manually by

knowledge engineers (e.g., using Protege) or it is translated and formalised from existing

data sources (e.g., semi-structured text). At some stage during the ontology lifecycle, the

ontology is updated with newly arrived information for various reasons. For example,

to refine the modelling of the domain of interest or to broaden the scope of the model.

As we have discussed in earlier chapters, new information can arrive in different forms.

They can arrive sentence by sentence (as in the case of using an ontology editor to

update an ontology) or many sentences can arrive at the same time (e.g., in the form

of an existing ontology). The latter is more challenging because it is more likely to

introduce logical errors and it is a time-consuming and error-prone process. Therefore,

automating knowledge integration is essential and our goal is to study the ontology

integration operation in a theoretically rigorous manner. In particular, we consider

approaches from propositional belief integration and incorporate them into the context

of description logic.

Adjustments

Adjustment strategies [BKLBW04] are used as a means to solve the knowledge integra-

tion problem in the propositional context. The knowledge integration problem is usually

considered in a setting where there is a stratified knowledge base K and a sentence φ.

A stratified knowledge base K = (S1, . . . , Sn) consists of n levels, where each level Si

is a set of sentences called stratum. The index i attached to each stratum denotes the

degree of reliability with respect to other strata in K. Sentences in Si are more reliable

than sentences in Sj if and only if i < j. Sentences in the same stratum are equally
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reliable. The goal of the problem is to incorporate the sentence φ into the stratified

knowledge base K and produce a single consistent set of sentences. The sentence φ

is assumed to be always present in the resulting set of sentences, unless φ itself is in-

consistent. The general approach is to maintain a set of consistent sentences B while

traversing through each stratum Si of the stratified knowledge base from i to n. For

each stratum Si, a set of sentences S′
i that satisfies ∀ψ ∈ S′

i, Si |= ψ is derived from

Si and is added to B only if they are consistent with each other. In other words, the

resulting set of sentences B is always consistent. The fundamental difference between

the various adjustment strategies is in the way S′
i is being derived for each stratum Si.

In Adjustment and Maxi-Adjustment [BKLBW04], sentences in Si are simply discarded

to derive S′
i. That is, it satisfies S′

i ⊆ Si. A more finer-grained approach is to consider

weakening sentences instead of discarding them.

Disjunctive Maxi-Adjustment (DMA) [BKLBW04] is an example of this approach.

The idea of DMA is to weaken sentences by taking disjunctions of the original set of

sentences. Initially, DMA considers disjunctions of pairs of sentences. If the result turns

out to be consistent then the algorithm moves to the next stratum, otherwise it continues

to weaken the set of sentences by considering disjunctions of three sentences and then

four and five and so on. Eventually, the algorithm reaches a point where there is no

conflict because the set of sentences will eventually be weakened to -. Note also that

this approach will necessarily terminate since the input is a finite set of sentences.

4.3 Related Work

One of the first attempts to deal with inconsistency in logic-based terminological systems

can be found in [Neb90], where it is phrased as a belief revision problem. More recently

the solution of [SC03] is to provide support for inconsistency by correcting it. They

propose a non-standard reasoning system for debugging inconsistent terminologies. The

idea is to provide an explanation by pinpointing the source of the inconsistency, while

correction is left to human experts. In contrast, the approach taken in [HVHT05] assumes

that ontology reparation will be too difficult. They propose to tolerate inconsistency and
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apply a non-classical form of inference to obtain meaningful results. Our approach is

a hybrid of these. We employ a version of lexicographic entailment to determine the

consequences of an inconsistent DL knowledge base, with the original knowledge base

also weakened so that its classical consequences correspond exactly to the non-monotonic

consequences of the original knowledge base. In [QR92] a technique is described for

assigning a preference semantics for defaults in terminological logics. This technique

uses exceptions, and therefore has some similarities to our work. They draw a distinction

between strict inclusions (TBox statements of the form A ( B) and defaults, which are

interpreted as “soft” inclusions. In our framework, this distinction can be modelled with

two strata in which all strict inclusions occur in S1 and all soft inclusions in S2. In

this sense our framework is more expressive than theirs. More importantly, their formal

semantics is not cardinality-based, and therefore yields quite different results from ours.

And finally, unlike our framework, their method does not provide weakening of the

original knowledge base.

A completely different approach is the explicit introduction of nonmonotonicity into

DLs, usually some variant of default logic. See [BKW03] for an overview. While it

is difficult to draw direct comparisons with our work, it is similar intuitions might be

identified and exploited.

4.4 Propositional Knowledge Integration

Propositional knowledge integration, as described in [BKLBW04], takes as input a strat-

ified knowledge base K = (S1, . . . , Sn) where, for i ∈ {1, . . . , n}, Si is a knowledge base,

or a finite set of propositional sentences (of a finitely generated propositional logic). Sen-

tences in a stratum Si are all judeged to be of equal reliability, while sentences contained

in a higher stratum, i.e. in any Sj for j > i, are seen as less reliable. In [BKLBW04]

the strategies proposed to minimise the loss of information that occurs when a stratified

knowledge base is inconsistent are shown to yield identical results to the lexicographic

system for knowledge integration [BCD+93]. It is well-known that lexicographic entail-

ment is a versatile system with desirable theoretical properties. For example, it has
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been shown in [GSK00] that it can be used to model all classical AGM belief revision

operators. We provide here an alternative semantic characterisation of lexicographic

entailment based on the notion of exceptions. The advantage of this characterisation is

that it makes a clear distinction between the following two distinct principles at work:

1. Independence - sentences in a stratum are assumed to have been obtained inde-

pendently

2. Precedence - More reliable information should take complete precedence over less

reliable information

Independence is used implicitly in the work of [BKLBW04]. It is applied to sentences

in each stratum Si and is formalised in terms of exceptions. The number of Si-exceptions

relative to valuation v is the number of sentences in Si false in v; the fewer Si-exceptions,

the more preferred v is.

4.4.1 Propositional Lexicographic Entailment

Here we define the notion of lexicographic entailment in the propositional context. We

do this by introducing a way to make comparison between valuations. This allows us

to create an ordering on the valuations of a formula and in turns to sets of formulas.

We then extend this definition to create the lexicographic ordering on valuations for

stratified knowledge bases, where each stratum in the knowledge base is a finite set of

propositional formulas.

Note that M(φ) denotes the set of all valuations for a propositional formula φ.

Definition 4.1 (Ordering Propositional Interpretations)

The number of φ-exceptions eφ(v) for a valuation v is 0 if v ∈ M(φ) and 1 otherwise.

For a finite set of sentences Φ, the number of Φ-exceptions for a valuation v is eΦ(v) =
∑

φ∈Φ eφ(v). The ordering @Φ on a set of valuations V is defined as:

v @Φ w if and only if eΦ(v) ≤ eΦ(w)

It is only after the Independence principle has been applied to all strata that the
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Precedence principle is applied to the orderings associated with the different strata to

obtain a lexicographically combined preference ordering.

Observation 4.2

Let Φ be a set of sentences. The number of Φ-exceptions of v, written eΦ(v), satisfies

0 ≤ eΦ(v) ≤ n, where n = |Φ|.

Proof. This proposition follows immediately from Def.4.1. Let Φ = {φ1, . . . ,φn}, where

n = |Φ|. By Def. 4.1, we have eφi(v) ∈ {0, 1} for all i where 1 ≤ i ≤ n. Therefore, we

have 0 ≤ eΦ(v) ≤ n. "

Definition 4.3 (Lexicographic Ordering)

Let K = (S1, . . . , Sn) be a stratified knowledge base, and let @S1
, . . . ,@Sn be the total

preorders for each stratum of K on the set of valuations V . The lexicographic ordering

on the set of valuations V , written v @lex w, is defined as follows:

v @lex w if and only if ∀j ∈ {1, . . . , n}, [v @Sj
w or v ≺Si

w for some i < j].

Alternatively, v @lex w if and only if (∃i > 0)(∀j < m)(v ≈Si
w) ∧ (v ≺Si

w) where

v ≈Si
w if and only if v @Si

w and w @Si
v.

Definition 4.4 (Lexicographic Entailment)

A stratified knowledge base K lexicographically entails φ, written K |=lex φ, if and only

if the (@lex)-minimal models satisfy φ. A valuation v is a (@lex)-minimal model if and

only if v @lex w for all w.

The view of lexicographic entailment as an application of Independence and Prece-

dence is also present in a new strategy for knowledge integration, conjunctive maxi-

adjustment or CMA, that we propose in Algorithm 2. The idea is to work through K

stratum by stratum in order of decreasing precedence, and to construct a consistent

knowledge base B, adding as many sentences as possible while maintaining consistency,

and weakening those strata responsible for inconsistencies. In this sense it is similar
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to whole disjunctive maxi-adjustment [BKLBW04], but the way in which strata are

weakened is (syntactically) different. With CMA, if Si is inconsistent with part of B

constructed so far, it is replaced by the disjunction of the cardinality-maximal conjunc-

tions of Si-formulas consistent with B.

4.4.2 Conjunctive Maxi-Adjustment

The Conjunctive Maxi-Adjustment procedure that we are presenting below is a variation

of the Disjunctive Maxi-Adjustment [BKLBW04]. Specifically, it is a variation of the

whole DMA strategy.

input : K = (S1, . . . , Sn)
output: A consistent classical KB
B0 ← ∅;
for i← 1 to n do

j ← 0;
repeat

φ←
∨

of all
∧

s of size (|Si|− j) of formulas of Si;
Wij ← Bi−1 ∪ {φ};
j ← j + 1;

until Wij is consistent ;
Bi ←Wij;

end
return Bn

Algorithm 2: The Conjunctive Maxi-Adjustment (CMA) Algorithm.

It is easily verified that Algorithm 2 always terminates.

Furthermore, it produces results that are equivalent to lexicographic entailment (i.e.,

B corresponds to the sentences that are most highly ranked based on the lexicographic

ordering), and therefore also to the strategies discussed in [BKLBW04].

Example 4.5

Below is an example that demonstrates the CMA algorithm shown in Algorithm 2.

S1 = {¬(p ∧ q),¬(q ∧ r),¬(p ∧ r)}

S2 = {p, q, r}
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Let K = (S1, S2) be a stratified propositional knowledge base, where S1 and S2 are

shown above. We begin by setting B0 to ∅. We then enter the most outer for loop and

visit the strata from the one with the highest preference to the least. When i is 1, we

set j to 0 and consider conjunctions of |S1| − j = 3 elements, hence we set φ to be the

conjunction of all the elements in S1. That is, φ is set to ¬(p ∧ q) ∧ ¬(q ∧ r) ∧ ¬(p ∧ r).

Since φ is consistent with B0, we simply set B1 to B0 ∪ {φ}. When i is 2, we set j to 0

and consider conjunctions of |S2|− j = 3. Hence we set φ to be the conjunction of all the

elements in S2 and we have φ set to p∧ q ∧ r. Since φ is inconsistent with B1, we cannot

break out of the repeat loop. Instead we increment j to 1 and consider the disjunction of

all the conjunctions of size |S2|− j = 2. Thus, we have φ set to (p∧ q)∨ (p∧ r)∨ (q ∧ r).

However, φ is again inconsistent with B1 and so we increment j again to 2. We consider

the disjunction of all the conjunctions of size |S2| − j = 1, hence we set φ to p ∨ q ∨ r.

Since φ is now consistent with B1, so we break out of the repeat loop and we set B2 to

{¬(p ∧ q) ∧ ¬(q ∧ r) ∧ ¬(p ∧ r), (p ∨ q ∨ r)}. We then break out of the outer loop and

return B2.

Proposition 4.6 Let K = {S1, . . . , Sn} be a stratified propositional knowledge base.

The CMA algorithm in Algorithm 2 generates a consistent knowledge base Bn with at

most
∑n

i=1 |Si| consistency checks.

Proof. (sketch) Consider the most inner repeat loop in the CMA algorithm where weak-

enings of the formulas in Si are being used to construct φ. It should be noted that the

way CMA constructs Bi−1 ensures that it is always consistent. For the first iteration,

φ is set to the disjunction of the conjunctions of size |Si| of Si. If |Si| > 0 then φ is

simply the conjunction of all the elements in Si, and we check whether this Bi−1 ∪ φ is

consistent. If it is, we can then work on the next stratum, otherwise we consider further

weakening of the same stratum. For the second iteration, φ is set to the disjunction of

the conjunctions of size |Si| − 1 of Si and so on. Since we are considering conjunctions

with one element less each time we repeat the loop, each stratum can be weakened for

no more than |Si| times. The size of the conjunctions will eventually reach 0, and so φ
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will be set to -. We then break out of the repeat loop, since Bi−1 ∪ - is always consis-

tent if Bi−1 is consistent. Therefore, each stratum Si requires no more |Si| consistency

checks. In total, we consider n strata, so the algorithm will terminate and return a set

of consistent sentences in no more than
∑n

i=1 |Si| consistency checks. "

It should be noted that the above proposition may not necessarily be a good indicator

of computational time since the formulas generated by the algorithm can be exponential

to the size of the input sentences.

The principal reason for the introduction of CMA is that the two algorithms for

knowledge integration described in the next section are natural extensions of it.

We modify our definition of a stratified knowledge base so that each stratum is a mul-

tiset of sentences, denoted by square brackets (so a stratum is of the form [φ1, . . . ,φn]).

This allows us to prove a result (Corollary 4.10) that does not hold if strata are

represented as sets.

Properties of Conjunctive Maxi-Adjustment

Conjunctive Max-Adjustment has a number of interesting properties. For convenience,

we introduce here some notations which we will use in the proofs. We define δicma(Φ)

as the result of the ith weakening of a set of sentences Φ. For example, if Φ = {p, q, r},

then we have the following:

δ0cma(Φ) = p ∧ q ∧ r

δ1cma(Φ) = (p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)

δ2cma(Φ) = p ∨ q ∨ r

δ3cma(Φ) = -

Furthermore, we define δcma(Φ,K) = δicma(Φ) where δicma(Φ) is consistent with K

and δjcma(Φ) is inconsistent with K for all j < i. In other words, if we produce δicma(Φ)

for i = 1 → n, then δcma(Φ,K) corresponds to the first weakened sentence of Φ that is
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consistent with K. It should be noted that δcma(Φ,K) exists for any set of sentences Φ

if K is consistent since δ|Φ|
cma(Φ) = -.

In a similar manner, we define δidma(Φ) as the result of the ith weakening of a set of

sentences Φ. However, the set of sentences in Φ are weakened differently from CMA. For

DMA, we first consider all clauses of size 1 and take the conjunction of these clauses. This

forms the first level of our weakening or δ0dma(Φ). If this is not consistent with K then

we consider a further weakening by taking the conjunction of all clauses of size 2 (this

forms δ1dma(Φ)). And then conjunction of clauses with size 3, and so on. The example

below illustrates the construction of δidma(Φ) for i = {0, . . . , 3}. Note that, δicma(Φ)

and δidma(Φ) are logically equivalent sentences but represented in different normal forms

(Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF) respectively).

δ0dma(Φ) = p ∧ q ∧ r

δ1dma(Φ) = (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r)

δ2dma(Φ) = p ∨ q ∨ r

δ3dma(Φ) = -

We define δdma(Φ,K) = δidma(Φ) where δidma(Φ) is consistent with K and δjdma(Φ) is

inconsistent with K for all j < i.

CMA and DMA present two representations for adjustments. There are no obvious

advantages of one representation over the other for propositional sentences.

Proposition 4.7 Let Φ be a set of sentences. A valuation v satisfies δcma(Φ,K) if and

only if v satisfies δdma(Φ,K). That is, δcma(Φ,K) ≡ δdma(Φ,K).

Proof. δcma(Φ,K) is simply δdma(Φ,K) in disjunctive normal form, and δdma(Φ,K) is

δcma(Φ,K) in conjunctive normal form. "

Lemma 4.8, Lemma 4.9 and Corollary 4.10 establish the relationship between the clas-

sical lexicographic entailment operation and the notion of Conjunctive Maxi-Adjustment.

Note that Corollary 4.10 is established using Lemma 4.8, Lemma 4.9.
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Lemma 4.8

Let Φ be a set of sentences {φ1, . . . ,φn}, where |Φ| = n. A valuation v is a (@Φ)-minimal

model if and only if v satisfies δcma(Φ).

Proof. We show in this proof the connection between a (@Φ)-minimal model and the

weakened sentence of a set of sentences Φ.

1. (=⇒) Suppose v is a (@Φ)-minimal model. We need to show that v satisfies δcma(Φ).

This amounts to showing that there is some i, such that: (1) v satisfies δicma(Φ)

for some i, and (2) δjcma(Φ) is inconsistent for all j < i. That is, there does not

exist an valuation such that w satisfies δjcma(Φ) for some j < i.

Consider case (1). By Def.4.1, v satisfies all but eΦ(v) elements in Φ, where 0 ≤

eΦ(v) ≤ |Φ|. That is, there exists a set Φ′ ⊆ Φ with |Φ′| = |Φ| − eΦ(v) such that

v satisfies all φ ∈ Φ′. It then follows that v satisfies the conjunction of all the

sentences in Φ′, i.e. v satisfies
∧

φ∈Φ′ φ. By definition, δe
Φ(v)

cma (Φ) is the disjunction

of all the conjunctions of size |Φ| − eΦ(v) = |Φ′| of Φ, so
∧

φ∈Φ′ is a disjunct of

δe
Φ(v)

cma (Φ), and therefore v satisfies δe
Φ(v)

cma (Φ). Therefore (1) holds.

Consider case (2). To show (2), suppose w satisfies δjcma(Φ) for some j < eΦ(v). By

definition, δjcma(Φ) is a disjunction that contains all the conjunctions of size |Φ|− j

of Φ. For w to satisfy δjcma(Φ), w must satisfy at least one of its conjunctions.

This conjunction would contain |Φ| − j elements, so w satisfies |Φ| − j elements

of Φ. By Def. 4.1 and the fact that j < eΦ(v), this means
∑

φ∈S eφ(w) < eΦ(v),

hence eΦ(w) < eΦ(v). So w ≺ v. This is a contradiction since v is a (@Φ)-minimal

model. Thus, we have shown that (1) and (2) holds for i = eΦ(v).

2. (⇐=) Suppose v satisfies δcma(Φ), and v is not a (@Φ)-minimal model. We know

that δcma(Φ) = δicma(Φ) for some i, and δjcma(Φ) is not consistent for all j < i.

Since v satisfies δcma(Φ), it also satisfies δicma(Φ) for some i. That means v satisfies

the disjunction of all the conjunctions of size |Φ|− i, so it satisfies at least one of

the conjunctions. It follows that v satisfies more than or equal to |Φ|− i elements

in Φ. But since δjcma(Φ) is not consistent for all j < i, so v does not satisfy
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δjcma(Φ) for all j < i. It means that v cannot satisfy more than |Φ| − i elements

in Φ. Therefore v satisfies exactly |Φ| − i elements in Φ. By Def. 4.1, we have

eΦ(v) = i. If v is not the (@Φ)-minimal model then there exists a valuation w such

that eΦ(w) < eΦ(v). That is, w satisfies more sentences of Φ than v, so w satisfies

δe
Φ(w)

cma (Φ) where eΦ(w) < eΦ(v). So δe
Φ(w)

cma (Φ) is consistent where eΦ(w) < i, which

is a contradiction.

"

We show below the important correspondence between lexicographic ordering and

the output of Algorithm 2. For convenience, we denote δcma(K) to be the output of

Algorithm 2.

Lemma 4.9

Let K be a stratified knowledge base. A valuation v is a (@lex)-minimal model of K if

and only if v satisfies δcma(K).

Proof. Let K = Kn, Ki = {S1, . . . , Si} for i > 0, and K0 = ∅. Also, let (@i
lex) be the

lexicographic ordering of Ki, and δcma(Ki) be the output of Ki from Algorithm 2.

Consider n = 1. By Def. 4.3, we can derive that (@lex) of K1 is equivalent to (@K1
).

Also, we can derive that δcma(K1) ≡ δcma(S1). It then follows from Lemma 4.8 that v is

a (@lex)-minimal model of K1 if and only if δcma(K1).

Consider n = k. Assume that v is a (@lex)-minimal model of Kk if and only if v

satisfies δcma(Kk). Consider n = k + 1.

(=⇒) Suppose v is a (@lex)-minimal model of Kk+1. It implies that v is a (@lex)-minimal

model of Kk and a (@Sk+1
)-minimal model. From our assumption, v is a (@lex)-minimal

model of Kk, so we know that v satisfies δcma(Kk). Since v is a (@Sk+1
)-minimal model,

by Proposition 4.8 we know that v satisfies δcma(Sk+1). It then follows that v satisfies

δcma(Kk) ∪ δcma(Sk+1) which means that v satisfies δcma(Kk+1).

(⇐=) This direction can be constructed by reversing all steps of (=⇒).

"
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Corollary 4.10 Let K be a stratified knowledge base and δcma(K) the knowledge base

obtained from K by the CMA algorithm (shown in Algorithm 2). Then K |=lex φ if and

only if δcma(K) |= φ.

Proof. This result follows immediately from Lemma 4.9. SinceK |=lex φ, so every (@lex)-

minimal model of K satisfies φ. By Lemma 4.9, every model of δcma(K) is also a (@lex)-

minimal model of K, so every model of δcma(K) satisfies φ. Therefore, δcma(K) |= φ.

Similarly, it can be shown that the other direction also holds. "

4.5 Knowledge Integration in Description Logics

In this section, we present an adaptation of adjustments into the DL context. We

highlight some of the problems in the expressivity of DL that introduces difficulties to

perform adjustments, and also ways to overcome these problems. Similar to propositional

adjustments, we consider a stratified knowledge base K = (S1, . . . , Sn), where each

stratum Si is a finite multiset of DL sentences for 1 ≤ i ≤ n.

We present two versions of the CMA strategy in DL, as well as versions of lexico-

graphic entailment corresponding to these CMA strategies. We present a direct transla-

tion of the propositional CMA strategy to DL called CMA-DL, where sentences in DL

are simply treated just like sentences in propositional adjustments. That is, DL sentences

are regarded as the atomic elements to compose weakened sentences. As we shall see in

later sections, this would lead to counter-intuitive results. This prompted us to explore

an original refined version of the CMA strategy named RCMA-DL. This version of CMA

exploits the expressivity of DLs adequately by taking the structure of DL sentences into

account. RCMA-DL produces more desirable solutions than CMA-DL.

We outline below a number of technical issues that prohibit direct conversion of

propositional adjustments into DL.
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Lack of Expressivity

There are differences in the way sentences are expressed in propositional languages and

in description languages. Classical propositional languages generally allow logical con-

nectives to be freely used between propositional formulas. It is syntactically valid to

form disjunctions (or conjunctions) freely among propositional formulas. This makes it

possible to weaken sentences in a desirable manner. In fact, for any propositional for-

mula φ and any subset V ′ of all valuations of φ, it is possible to find a formula φ′ such

that V ′ is exactly the set of all models of φ′.

This virtually means that one could construct any weakening of φ. Note also that

the existence of φ′ is guaranteed only because the language is finite (as in the case

of propositional languages). On the other hand, description languages do not allow

disjunctions to form over arbitrary sentences. In particular, disjunctions of TBox and

ABox elements are not syntactically valid. For example, the following statements are

considered ill-formed:

(C ( D) ∨ C(s)

C(s) ∨ C(t)

C(s) ∨R(s, t)

R(s, t) ∨R(t, u)

It should be noted that there are exceptional cases where disjunctions of sentences can be

expressed in DLs. Disjunctions over subsumption (or equality) axioms can be expressed

by converting each axiom into its corresponding disjunction form and then reassembling

them into an axiom. For example, disjunction of C ( D and E ( F can be expressed

as (¬C *D)* (¬E * F ) or as an axiom ¬(¬C *D) ( (¬E * F ). There are two ways to

compensate for this shortcoming in expressivity:

1. Make the language more expressive by introducing additional constructs so that

the weakened sentence can be expressed adequately.

2. Keep the same level of expressivity and provide an expressible sentence that is
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semantically closest to the desired inexpressible sentence.

We adopt the first approach. In order to express disjunction over sentences, we intro-

duce the notion of a disjunctive DL knowledge base, or DKB, as a set of DL knowledge

bases. The semantics of DKBs is defined as follows.

Definition 4.11

A DKB B is satisfied by an interpretation I (or I is a model of B) if and only if I is a

model of at least one element in B. B entails a DKB Φ, written B |= Φ, if and only if

every model of B is a model of Φ.

Informally B is read as the disjunction of its elements, where each element of B is a

conjunction of the sentences contained in it.

Here disjunction is treated as classical disjunction in propositional logic. That is, one

of the elements in the disjunction must hold.

For example, {[C ( D,C(a)], [C ( D,D(a)]} states that one of the following holds:

(1) [C ( D, C(a)]; (2) [C ( D, D(a)]. There are more fundamental reasons for the use

of DKBs as well, which will briefly be touched on in the later sections.

Comparability of DL Interpretations

The semantics of propositional lexicographic entailment relies on the fact that propo-

sitional interpretations are comparable to each other with respect to some preference

metrics. This is easily achieved in the propositional context because a propositional

interpretation is merely a function f : A → B where A is the set of propositional vari-

ables and B is the boolean domain {0, 1}. In other words, each interpretation maps

every propositional variable to a truth value. Therefore, propositional interpretations

are naturally comparable because they share the same set of propositional variables, and

identical variables denote the same proposition. However, this is not the case in DL

interpretations. Recall that, a DL interpretation is defined as I = (∆I , .I) where ∆I is

the domain of discourse and .I is the interpretation function. Since each interpretation

acquires its own domain and interpretation function, it is no longer possible to main-

tain comparability of DL interpretations in the semantics. In particular, whenever two
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interpretations have different domains or do not map the same individual names to the

same elements in the domain, it is counter-intuitive to insist that they are comparable in

terms of preference. This issue is solved by requiring that only interpretations obtained

from the same pre-interpretation be comparable. A pre-interpretation is an ordered pair

π = (∆π, dπ), where ∆π is a domain and dπ is a denotation function. Let Π be the class

of all pre-interpretations. For every pre-interpretation π = (∆π, dπ), let Iπ be the class

of interpretations I with ∆I = ∆π and dI = dπ.

4.5.1 Conjunctive Maxi-Adjustment (CMA) for DL

We provide a semantics similar to that of propositional lexicographic entailment, but

each ordering @Si
on valuations associated with a stratum Si will, in the case of DLs, be

replaced by a class of ordering @π
Si
: one for each pre-interpretation π in Π. For a fixed π,

the orderings @π
Si

for i ∈ {1, . . . , n} are then lexicographically combined using Definition

4.3 to obtain the ordering @π
lex. Lexicographical entailment is then defined in terms of

the minimal models of all these ordering. That is, given a preference ordering @π
lex for

each π ∈ Π, lexicographic entailment (|=lex) for stratified DL knowledge bases is defined

as follows:

K |=lex Φ if and only if
⋃

π∈Π

min$π
lex
⊆M(Φ) (4.1)

where min$π
lex

refers to the (@π
lex)-minimal models. The one remaining question is

how the preference orderings @π
Si

used in the construction of @π
lex should be obtained.

A first attempt is to use the same technique as that used for propositional lexicographic

entailment. That is, for each I ∈ Iπ and each stratum Si, let the number of Si-exceptions

w.r.t. I be the number of sentences in Si falsified by I, and use these exceptions to

generate the ordering @π
Si
.

The CMA algorithm for DL (shown in 3 and named CMA-DL) takes a stratified

knowledge base K = (S1, . . . , Sn) as argument. It maintains globally a set of Disjunctive

Knowledge Bases (DKBs) B0, . . . ,Bn, with B0 initialised as a set containing the empty set
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input : K = (S1, . . . , Sn)
output: A consistent DKB
B0 ← {∅};
for i← 1 to n do

Bi ← ∅;
foreach B ∈ Bi−1 do

j ← 0;
repeat

W ← {B ∪ Φ | Φ ⊆ Si and |Φ| = |Si|− j and B ∪ Φ 6|= ⊥ };
j ← j + 1;

until W 6= ∅;
Bi ← Bi ∪W;

end

end
return Bn

Algorithm 3: The CMA Algorithm for Description Logics (CMA-DL).

and B1, . . . ,Bn are initially empty sets. The core part of the algorithm has three nested

loops. The most outer loop iterates through each stratum Si of the stratified knowledge

base from i = 1 to n. For each stratum Si, the algorithm uses the DKB Bi−1 generated

from the previous stratum Si−1 and extends each DKB in Bi−1 by adding subsets of the

elements in Si such that the resulting DKB is consistent. This is then added to the set

of DKB Bi. This algorithm returns Bn, which is the set of DKBs constructed after going

through the nth stratum.

Example 4.12

This is a simple example demonstrating the CMA-DL algorithm in (Algorithm 3):

S1 = [C ( ¬D,C ( ¬E,D ( ¬E]

S2 = [C(a),D(a), E(a)]

Let K = (S1, S2), where S1 and S2 are shown above. Initially, B0 is set to {∅}

and we consider i from 1 to n. When i is 1, B1 is set to an empty set. Since B0 has

only one element, namely ∅, so B is ∅. j is then set to 0 and we consider the most

inner repeat loop. Since j is 0, we look at subsets of S1 with size |S1| = 3 that are

consistent with B. In this case, S1 is the only subset that satisfies the condition, so
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we set W to {S1} and break out of the repeat loop since W 6= ∅. So B1 is then set to

{[C ( ¬D,C ( ¬E,D ( ¬E]}. When i is 2, B2 is set to an empty set and we consider

each DKB in B1. B1 has only one element, so we set B to {S1} and set j to 0. Now, we

consider the most inner repeat loop. Since j is 0, so we look at subsets of S2 with size

|S2| = 3 that are consistent with B.

However, S1∪S2 is not consistent, so W is set to ∅ and j is set to 1. Since W = ∅, we

cannot break of the repeat loop. Instead, we consider subsets of S2 with size |S2|−j = 2,

and they are {[C(a),D(a)], [C(a), E(a)], [D(a), E(a)]}. However, none of these three are

consistent with S1, so we increment j to 2 and continue with the repeat loop. This time

we consider subsets of S2 with size |S2|− 2 = 1 and we have {[C(a)], [D(a)], [E(a)]}.

Since each of these are consistent with S1 so W is non-empty and we break out of

the repeat loop. Finally, B2 is set to the following:

B2 = {[C ( ¬D,C ( ¬E,D ( ¬E,C(a)],

[C ( ¬D,C ( ¬E,D ( ¬E,D(a)],

[C ( ¬D,C ( ¬E,D ( ¬E,E(a)]}

The algorithm breaks out of all loops and returns B2.

As with classical CMA, CMA-DL (and also RCMA-DL) are methods that compute

all possible alternatives instead of a single one. There is no established way to select

between these alternatives, however, this selection is likely to be domain specific. One

possible solution is to select alternatives based on further refinement of the ordering

between the input sentences. For example, in the above example, we can select between

the three alternatives by refining the ordering between the three concept assertions (e.g.,

S1 = [C ( ¬D,C ( ¬E,D ( ¬E], S2 = [C(a)], S3 = [D(a)] and S4 = [E(a)].

Definition 4.13 (Ordering of DL Interpretations)

Let π ∈ Π, I ∈ Iπ, φ be a DL statement, and Φ be a multiset of DL statements. The

number of φ-exceptions eφ(I) for I is 0 if I satisfies φ and 1 otherwise. The number of



4.5 Knowledge Integration in Description Logics 84

Φ-exceptions for I is: eΦ(I) =
∑

φ∈Φ eφ(I). The ordering @φ
Φ on Iπ is defined as:

I @π
Φ J if and only if eΦ(I) ≤ eΦ(J )

To show the following lemma, we introduce two notations δicma−dl(Φ) and δcma−dl(Φ).

The former corresponds to the i-weakening of the set of sentences Φ. Formally, δicma−dl(Φ) =

{Φ′|Φ′ ⊆ Φ, |Φ′| = i,Φ′ is consistent}. The latter corresponds to the i-weakening of Φ

such that it is non-empty for some value i, but the j-weakening of Φ is empty for all

j < i.

Lemma 4.14

Let Φ be a multiset of DL sentences [φ1, . . . ,φn], where |Φ| = n. A DL interpretation I

is a (@π
Φ)-minimal model if and only if I satisfies δcma−dl(Φ).

Proof. Similar to Proposition 4.8. We establish a connection between the (@Φ)-minimal

models and the weakened DL sentences.

1. (=⇒) Suppose I is a (@π
Φ)-minimal model. We need to show that I satisfies

δcma−dl(Φ). This amounts to showing that there is some i, such that: (1) δjcma−dl(Φ)

is inconsistent for all j < i. That is, there does not exist an interpretation J such

that J satisfies δjcma−dl(Φ) for any j < i, and (2) I satisfies δicma−dl(Φ).

Consider case(1). To show (1), suppose there is an interpretation J that satisfies

δjcma−dl(Φ) for some j < eΦ(I). By definition, δjcma−dl(Φ) is a DKB that contains

all sets of size |Φ| − j of the elements in Φ. Since J satisfies δjcma−dl(Φ), by

definition 4.13 it follows that J satisfies a subset Φ′ of Φ where |Φ′| = |Φ|− j. By

Def. 4.13, we know that J satisfies at least |Φ′| DL sentences of Φ, so eΦ(J ) ≤ j.

Since j < eΦ(I), so eΦ(J ) < i. This implies that I is not a @π
Φ-minimal model, so

we have a contradiction. Therefore, (1) holds.

Consider case (2). By Def. 4.13, we know that eΦ(I) is the number of DL sentences

in Φ that I does not satisfy, where 0 ≤ eΦ(I) ≤ |Φ|. This means that there is some

subset Φ′ of Φ, such that |Φ′| = |Φ|− eΦ(I), and I satisfies φ for all φ ∈ Φ′. That
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is, I satisfies Φ′. By definition, we know that δe
Φ(I)

cma−dl(Φ) is a DKB that contains

all sets of size |Φ′| of the elements in Φ and Φ′ is one of these sets. Since I satisfies

Φ′, it follows that I also satisfies δe
Φ(I)

cma−dl(Φ). Therefore (2) holds.

2. (⇐=) Suppose I satisfies δcma−dl(Φ), and I is not a (@π
Φ)-minimal model. We

know that δcma−dl(Φ) = δicma−dl(Φ) for some i, and δjcma−dl(Φ) is inconsistent for

all j < i. Since I satisfies δcma−dl(Φ), it also satisfies δicma−dl(Φ) for some i. By

definition, δicma−dl(Φ) is a DKB that contains all sets of size |Φ|− i of the elements

of Φ, so I satisfies a subset Φ′ of Φ where |Φ′| = |Φ|−i. It implies that I satisfies at

least |Φ|− i DL sentences of Φ, so by definition it means that eΦ(I) ≤ i. However,

I does not satisfy δjcma−dl(Φ) for all j < i, so it follows that eΦ(I) is not less than

i. Therefore eΦ(I) = i. If I is not a (@π
Φ)-minimal model then there exists an

interpretation J such that eΦ(J ) < eΦ(I). By Def. 4.13, J does not satisfy

eΦ(J ) DL sentences of Φ, so J satisfies |Φ|− eΦ(J ) DL sentences of Φ. Therefore,

there exists a subset Φ′ of Φ where |Φ′| = |Φ| − eΦ(J ), and J satisfies φ for all

φ ∈ Φ′. That is, J satisfies Φ′. By definition, we know that δe
Φ(J )

cma (Φ) is a DKB

that contains all sets of size |Φ|− eΦ(J ) of the elements of Φ, and Φ′ is an element

of this DKB. Since J satisfies Φ′, so by definition it also satisfies δe
Φ(J )

cma (Φ). But

eΦ(J ) < eΦ(I) and eΦ(J ) = i, so J satisfies δe
Φ(J )

cma (Φ), where eΦ(J ) < i. This is

a contradiction.

"

Lemma 4.15

Let K be a stratified DL knowledge base. An interpretation I is a (@π
lex)-minimal model

of K if and only if I satisfies δcma−dl(K).

Proof. Let K = Kn, Ki = {S1, . . . , Si} for i > 0, and K0 = ∅. Also, let (@Ki

lex) be the

lexicographic ordering of Ki, and δcma−dl(Ki) be the output of Ki from Algorithm 3.

Consider n = 1. By Def. 4.3, we can derive that (@K1

lex) ≡ (@K1
). Also, we can

derive that δcma−dl(K1) ≡ δcma−dl(S1). It then follows from Lemma 4.14 that I is a

(@lex)-minimal model of K1 if and only if δcma−dl(K1).
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Consider n = k. Assume that I is a (@Kk

lex)-minimal model if and only if I satisfies

δcma−dl(Kk). Consider n = k + 1. Suppose I is a (@
Kk+1

lex )-minimal model. It implies

that I is a (@Kk

lex)-minimal model and a (@Sk+1
)-minimal model. From our assumption,

we know that I satisfies δcma−dl(Kk), since I is a (@Kk

lex)-minimal model. Also, since I

is a (@Sk+1
)-minimal model, by Proposition 4.14 we know that I satisfies δcma−dl(Sk+1).

It then follows that I satisfies δcma−dl(Kk)∪ δcma−dl(Sk+1) which means that I satisfies

δcma−dl(Kk+1). "

Deficiency of CMA

Lexicographic entailment for DLs and the CMA-DL strategy are both faithful transla-

tions of their propositional counterparts. It is precisely because of this that they do not

take the structure of DL statements into account. The following example illustrates this

deficiency.

Example 4.16

This example highlights the deficiency of the propositional CMA algorithm applied to

DL (i.e., the CMA-DL algorithm).

S1 = [Bird(tweety),¬Flies(tweety), Bird(chirpy)]

S2 = [Bird ( Flies]

Let K = (S1, S2), where S1 and S2 are shown above. Again, we set B0 to {∅} and

consider i from 1 to n. When i is 1, we set B1 to ∅ and we look at each element

of Bi−1 = B0. Since ∅ is the only element in B0, we set B to ∅. Also, we set j to

0. Next, we consider the most inner repeat loop. The subsets Ψ of Si = S1 with

with size |Ψ| = |Si − j| = 3 are {S1}. Since S1 is consistent with B = ∅, so we

set W to {[Bird(tweety),¬Flies(tweety), Bird(chirpy)]}. We break out of the repeat

loop since W 6= ∅ and set Bi = B1 to W. When i is 2, we set B2 to ∅ and we

look at each element of Bi−1 = B1. There is only one element in B1, so we set B to

[Bird(tweety),¬Flies(tweety), Bird(chirpy)]. Again, we consider the most inner repeat

loop. At the first iteration, j is set to 0, so we consider subsets Ψ of Si = S2 where
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|Ψ| = |S2|− j = 1.

There is only one such subset which is [Bird ( Flies], but it is inconsistent with B so

W = ∅. We cannot break out of the repeat loop becauseW = ∅. For the second iteration,

j is set 1 and we consider subsets Ψ of Si = S2 where |Ψ| = |S2| − j = 0. Obviously,

this is the ∅ and it is consistent with B. Therefore, we set W to B and break out of the

repeat loop. We then set Bi = B2 = {[Bird(tweety),¬Flies(tweety), Bird(chirpy)]}.

Finally, we break out of all loops and return B2.

When Algorithm 3 (CMA-DL) is applied to K from Example 4.16, it concludes

correctly that Tweety is a non-flying bird and that Chirpy is a bird. But it does not

conclude that Chirpy flies since it has discarded the statement bird ( flies. It therefore

does not exploit the structure of bird ( flies appropriately. Ideally, we should be able

to conclude that Tweety is an exception and that all birds other than Tweety (including

Chirpy) can fly.

For this to be possible we need to weaken TBox statements such as bird ( flies,

something that is not possible in the propositional approach (including the CMA ap-

proach) where we treat a TBox sentence as a single propositional sentence (e.g., bird (

flies is treated as p).

Corollary 4.17

Let K be a stratified DL knowledge base, B the DKB obtained from K by CMA-DL

in Algorithm 3, let lexicographic entailment for DLs be defined in terms of Definition

4.13, and let Φ be a DKB. Then K |=lex Φ if and only if K ′ |=lex Φ.

Proof. This result follows immediately from Proposition 4.15. "

4.5.2 Refined Conjunctive Maxi-adjustment

An element in the domain of an interpretation I violates a statement of the form C ( D

if it is CI but not in DI , i.e. if it is in CI ∩ (¬D)I .

Definition 4.18

Let π ∈ Φ, I ∈ Iπ, φ a DL statement, and Φ a multiset of DL statements. If φ is

an ABox statement, the number of φ-exceptions eφ(I) for an interpretation I is 0 if I
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satisfies φ and 1 otherwise. If φ is a TBox statement of the form C ( D, the number of

φ-exceptions for I is:

eφ(I) =







|CI ∩ ¬DI | if CI ∩ ¬DI is finite;

∞ otherwise.

The number of Φ-exceptions for I is eΦ(I) =
∑

φ∈Φ eφ(I). The ordering @π
Φ on Iπ is:

I @π,∗
Φ J if and only if eΦ(I) ≤ eΦ(J ).

So @π
X is a version of cardinality-based circumscription [LS95]: the more exceptions,

the less preferred an interpretation, while interpretations with an infinite number of

exceptions are all equally bad.

Using Definition 4.3 in our construction of lexicographic entailment will ensure that

we will be able to conclude, in Example 4.16, that Chirpy can fly. However, we are still

unable to express the conclusion that all birds, except for Tweety, can fly. The problem

is that the notion of an exception is not expressible in a DL. We cannot state that all

birds, with the exception of one, can fly. It is necessary to extend the level of expressivity

of the DL languages we are interested in.

An appropriate extension, adding cardinality restrictions on concepts, was proposed

in [BBH96]. There, its introduction was motivated by the use of DL systems for solving

configuration tasks. These restrictions are placed on statements in the TBox, allowing

one to express restrictions on the number of elements a concept may have: (≥ mC) and

(≤ nC) respectively express that the concept C has at least m elements and at most

n elements. For our purposes it is sufficient to consider cardinality restrictions of the

form (≤ nC). An alternative approach is to make use of nominals, which is a common

construct in more recently developed description logics such as SHOIQ, SROIQ and

EL++. In contrast to cardinality restrictions on concepts, expressing exceptions with

nominals require explicitly stating the individuals that violates the constraints. For

example, C ) ¬{a} ( D expresses that the individual a is an exception to the TBox

axiom C ( D. It should be noted that nominal does incur additional costs in terms

of reasoning. However, it is known that satisfiability checking in both SHOIQ and

SROIQ are decidable but not tractable, and subsumption checking in EL++ is tractable.
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In the following section, we will elaborate on the semantics of cardinality restrictions on

concepts.

An interpretation I is said to satisfy a restriction of the form (≤ nC) if and only if

|CI | ≤ n. The statement C ( D is equivalent to stating that the conceptC)¬D is empty,

i.e. that (≤ 0(C)¬D)). This demonstrates that the TBox statements we have considered

thus far can all be expressed as cardinality restrictions. Therefore, a TBox will from now

on be a finite multiset of cardinality restrictions. An interpretation I is a model of such

a TBox if and only if it satisfies each of its restrictions. Other semantic notions such as

entailment are extended in the obvious way. With the inclusion of cardinality restrictions

we can now rephrase S2 in Example 4.16 as {(≤ 0(bird ) ¬flies))}. Additionally, using

Definition 4.18, K now lexicographically entails that Tweety is a non-flying bird, that

Chirpy is a flying bird, and that there is at most one non-flying bird, (≤ 1(bird)¬flies)),

which is a weakening of S2. So it follows that, barring Tweety, all birds can fly.

The next step is to refine the CMA-DL strategy to coincide with the modified version

of lexicographic entailment for DLs. This strategy, referred to as refined CMA-DL (or

RCMA-DL for short), is described in Algorithm 4. The main difference between the two

algorithms is in the construction of δrcma−dl(Φ). ABox sentences are treated exactly as

in Algorithm 3.

The i-weakening δircma−dl(ΦA) of the ABox ΦA of a set of DL sentences Φ (where

i ≤ |A|), contains all those sub-multisets of ΦA where the size of ΦA is |ΦA| − i.

Equivalently, δircma−dl(ΦA) = {Φ′
A | Φ′

A ⊆ ΦA, |Φ′
A| = |ΦA| − i}. For example, for

ΦA = [C(a),D(a), E(a)] we have the following:

δ0rcma−dl(ΦA) = {[C(a),D(a), E(a)]}

δ1rcma−dl(ΦA) = {[C(a),D(a)], [C(a), E(a)], [D(a), E(a)]}

δ2rcma−dl(ΦA) = {[C(a)], [D(a)], [E(a)]}

δ3rcma−dl(ΦA) = -

The i-weakening δircma−dl(ΦT ) of the TBox ΦT of a set of DL sentences Φ (where
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i ≤ |T |), contains all those sets of TBox sentences that have been weakened |ΦT | − i

times.

More specifically, for a TBox sentence of the form (≤ nC) (where C can be a com-

plicated concept1), (≤ (n +m)C) is the weakened version of (≤ nC) where m indicates

that it has been weakened m times. In other words, m is the extent in which the original

TBox sentence is being weakened. The i-weakening δircma−dl(ΦT ) of the TBox ΦT is

defined as:

δircma−dl(ΦT ) = {Φ′
T | ΦT = [(≤ n1C1), . . . , (≤ nnCn)],

Φ′
T = [(≤ (n1 +m1)C1), . . . , (≤ (nn +mn)Cn)],

n
∑

j=1

mj = i}

For example, for ΦT = [(≤ 0C), (≤ 0D)], we have:

δ0rcma−dl(ΦT ) = {[(≤ 0C), (≤ 0D)]}

δ1rcma−dl(ΦT ) = {[(≤ 0C), (≤ 1D)], [(≤ 1C), (≤ 0D)]}

δ2rcma−dl(ΦT ) = {[(≤ 0C), (≤ 2D)], [(≤ 1C), (≤ 1D)], [(≤ 2C), (≤ 0D)]}

. . .

The i-weakening δircma−dl(Φ) of a set of DL sentences Φ is defined as follows:

δircma−dl(Φ) = {Φ′
A ∪ Φ′

T | Φ′
A ∈ δjrcma−dl(ΦA),

Φ′
T ∈ δkrcma−dl(ΦT ),

j < |ΦA|, i = j + k,

Φ =Φ A ∪ ΦT }

1A complicated concept or complex concept are concepts that are not primitive concepts (or concept
names). For example, conjunction, disjunction, existential or universal restrictions.
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For example, for Φ = [(≤ 0C), C(a), C(b)], then

δ2(Φ) = {[(≤ 1C), C(a)], [(≤ 1C), C(b)],

[(≤ 0C)], [(≤ 2C), C(a), C(b)]}

So δ2(Φ) contains those weakenings of Φ in which exactly two exceptions occur. The

j-weakenings of a set of DL sentences are used in the repeat loop of Algorithm 4 whereW

is set to the j-weakening of Si. As required, RCMA-DL is a compilation of lexicographic

entailments using Definition 4.18.

input : K = (S1, . . . , Sn)
output: A consistent DKB
B0 ← {∅};
for i← 1 to n do

foreach B ∈ Bi−1 do
j ← 0;
repeat

W ← {B ∪ Φ | Φ ∈W |Si|−j(Si) and B ∪ Φ 6|= ⊥};
j ← j + 1;

until W 6= ∅;
Bi ← Bi ∪W;

end

end
return Bn

Algorithm 4: The Refined CMA Algorithm for Description Logics (RCMA-DL).

The RCMA-DL algorithm in Algorithm 4 works similarly to the CMA-DL algorithm

in Algorithm 3. The major difference is how sentences are weakened in the most inner

repeat loop of the algorithm. This results in much more refined DKBs.

Example 4.19

This is an example demonstrating the RCMA-DL algorithm in Algorithm 4:

S1 = [Bird(tweety), Bird(chirpy)]

S2 = [¬Fly(tweety),¬Fly(chirpy), (≤ 0 (Bird ) ¬Fly))]

Let K = (S1, S2) where S1 and S2 are shown above. Initially, B0 is set to ∅. We
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consider the most outer loop with i set from 1 to n. When i is 1, we look at each

element of Bi−1 = B0. There is only element in B0 and that is the empty set, so we

set B to ∅. We also set j to 0. Next, we consider the most inner repeat loop. At

the first iteration, j is set to 0 and Wj(Si) = W0(S1) = {S1}. Since all elements of

S1 = [Bird(tweety), Bird(chirpy)] are consistent with B = ∅, so we have W = {S1}.

W 6= ∅ so we break out of the repeat loop and set B1 to S1. When i is 2, we look at each

element of Bi−1 = B1. B1 contains only one element, so we only need to consider the

case where B is S1. Again, we set j to 0 and consider the most inner repeat loop. At

the first iteration, j is 0 and Wj(Si) = W0(S2) = {S2}. However, S2 is not consistent

with B = S1, so W is ∅ and we cannot break out of the repeat loop. At the second itera-

tion, j is 1 and Wj(Si) = W1(S2) = {[¬Fly(tweety),¬Fly(chipy), (≤ 1(Bird)¬Fly))],

[¬Fly(tweety), (≤ 0(Bird ) ¬Fly))], [¬Fly(chirpy), ≤ 0(Bird ) ¬Fly))]}. Again, none

of the elements in W1(S2) are consistent with B, so W is ∅ and we cannot break out

of the repeat loop. At the third iteration, j is 2 and Wj(Si) =W2(S2) = {[¬Fly(tweety),

¬Fly(chirpy),(≤ 2(Bird)¬Fly))], [¬Fly(tweety),(≤ 1(Bird)¬Fly))], [¬Fly(chirpy),(≤

1(Bird)¬Fly))], [(≤ 0(Bird)¬Fly))]}. Now, all the elements in W2(S2) are consistent

with B so W contains B∪Ψ for every Ψ in W2(S2). Finally, the algorithm breaks out of

all loops and returns B2. The elements of B2 indicates that exactly one of the following

four cases hold: a) Tweety and Chirpy are the only two non-flying birds; b) Tweety is

the only non-flying bird; c) Chirpy is the only non-flying bird; d) All birds fly, including

Tweety and Chirpy.

Proposition 4.20 Let Φ =Φ A ∪ ΦT be a set of DL sentences, where ΦA is a set of

ABox sentences and ΦT is a set of TBox sentences. Also, let the number of Φ-exception

of an interpretation I be eΦ(I). An interpretation I satisfies δe
Φ(I)

rcma−dl(Φ) and does not

satisfy δjrcma−dl(Φ) for all j < eΦ(I).

Proof. By Def. 4.18, eΦ(I) is defined as the sum of eΦA(I) and eΦT (I) where eΦA(I)

is the number of ΦA-exceptions of I and eΦT (I) is the number of ΦT -exceptions of I.

We know that the number of ΦA-exceptions of I is eΦA(I), it follows that I satisfies a

subset Φ′
A of ΦA which is of size |ΦA|−eΦA(I). Hence, I satisfies the DKB δe

ΦA (I)
rcma−dl(ΦA).
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Similarly, we know that the number of ΦT -exceptions of I is eΦT (I) =
∑

φ∈ΦT
eφ(I) =

∑n
i=1 |C

I
i ) ¬DI

i |, where ΦT = {C1 ( D1, . . . , Cn ( Dn}. It follows that I satisfies

(≤ |CI
i ) ¬DI

i |(Ci ) ¬Di)) for all 1 ≤ i ≤ n. Hence, I satisfies δe
ΦT (I)(ΦT ). Therefore

I satisfies δe
ΦA (I)+eΦT (I)(Φ) = δe

Φ(I)(Φ).

"

Lemma 4.21

Let Φ be a multiset of DL sentences [φ1, . . . ,φn], where |Φ| = n. A DL interpretation

I is a (@π,∗
Φ )-minimal model if and only if I satisfies δrcma−dl(Φ).

Proof. Similar to Proposition 4.8. We establish a connection between the (@Φ)-minimal

models and the weakened DL sentences.

(=⇒)

Suppose I is a (@π,∗
Φ )-minimal model. We need to show that I satisfies δrcma−dl(Φ).

This amounts to showing that there is some i, such that: (1) δjcma−dl(Φ) is inconsistent

for all j < i. That is, there does not exist an interpretation J such that J satisfies

δjcma−dl(Φ) for any j < i, and (2) I satisfies δicma−dl(Φ).

Consider case(1). To show (1), suppose there is an interpretation J that satisfies

δjrcma−dl(Φ) for some j < eΦA(I) + eΦT (I). By definition, δjrcma−dl(Φ) is a DKB that

contains all sets of DL sentences that corresponds to the j-weakening of Φ. δjrcma−dl(Φ)

can be decomposed into δjArcma−dl(Φ) and δjTrcma−dl(Φ) where j = jA+jT . Since J satisfies

δjArcma−dl(Φ), by definition it satisfies a subsetΦ′
A of ΦA where |Φ′

A| ≥ |ΦA|−jA. It follows

that eΦA(J ) ≤ jA. By definition, δjTrcma−dl(Φ) is a DKB that contains all sets of DL

sentences that correspond to the jT -weakening of ΦT . That is, J satisfies a set of TBox

sentences Φ′
T of the form (≤ e1(C1 ) ¬D1)), . . . , (≤ en(Cn )¬Dn)) where

∑n
i=1 ei ≤ jT .

We can then derive that |CJ
i ) ¬DJ

i | ≤ ei for all 1 ≤ i ≤ n, hence
∑

φ∈ΦT
eφ(J ) ≤

∑n
i=1 e

i ≤ jT . Therefore, eΦT (J ) ≤ jT . Hence, eΦ(J ) ≤ j < eΦA(I) + eΦT (I). That is

J ≺π,∗
Φ I, so I is not a minimal model, which is a contradiction, therefore (1) holds.

Consider case (2). This result follows immediately from Proposition 4.20. I satisfies

δe
Φ(I)

rcma−dl(Φ).
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(⇐=)

Suppose I satisfies δrcma−dl(Φ), and I is not a (@π,∗
Φ )-minimal model. We know that

δrcma−dl(Φ) = δircma−dl(Φ) for some i, and δjrcma−dl(Φ) is not consistent for all j < i.

Since I satisfies δrcma−dl(Φ), it also satisfies δircma−dl(Φ) for some i.

By Def.4.18, δircma−dl(Φ) = δiArcma−dl(ΦA)× δiTrcma−dl(ΦT ), where i = iA + iT . Hence,

I satisfies both δiArcma−dl(ΦA) and δiTrcma−dl(ΦT ). By definition δiArcma−dl(ΦA) contains a

set Φ′
A, where Φ′

A is a subset of of ΦA and |Φ′
A| = iA. Hence, I satisfies Φ′

A. Therefore

eΦA(I) ≤ iA. By definition δiTrcma−dl(ΦT ) contains the set of all iT -weakenings of ΦT . It

follows that I satisfies a set Φ′
T = {(≤ e1(C1 ) ¬D1)), . . . , (≤ en(Cn ) ¬Dn))} where

∑n
i=1 e

i = iT . Therefore eΦT (I) ≤
∑n

i=1 e
i = iT . Since eΦA(I) ≤ iA and eΦT (I) ≤ iT ,

so we have eΦ(I) ≤ i. But if eΦ(I) < i, then by Proposition 4.20 I satisfies δjrcma−dl(Φ)

for some j < i. It follows that δjrcma−dl(Φ) is consistent for some j < i which is a

contradiction. Hence eΦ(I) = i.

Suppose I is not a (@π,∗
Φ )-minimal model, then there is an interpretation J where

J ≺π,∗
Φ I, hence eΦ(J ) < eΦ(I). By Def. 4.18, we know that the number of Φ-exceptions

of J is eΦ(J ). Hence, by Proposition 4.20, it follows that J satisfies δe
Φ(J )(Φ). But

eΦ(J ) < i, so we have a contradiction.

"

Corollary 4.22 Let K be a stratified DL knowledge base, B the DKB obtained from K

by RCMA-DL in Algorithm 4, let lexicographic entailment for DLs be defined in terms

of Def. 4.18, and let Φ be a DKB. Then K |=lex Φ if and only if B |= Φ.

Proof. This corollary follows immediately from Lemma 4.21. "

4.6 Summary and Discussion

In this chapter, we presented knowledge integration strategies in propositional logic and

recasted them into the DL setting. In particular, we explored the adjustment strategies

that have been presented in [BKLBW04]. We showed that these adjustments strategies
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can be directly used in the DL context. However, this would sometimes lead to counter-

intuitive results as we have demonstrated with CMA-DL. We presented in this chapter

an original refinement of the CMA-DL that takes advantage of the additional structure

provided by DLs. We showed that this would lead to desirable results.



Chapter 5

Ontology Debugging

5.1 Chapter Introduction

In Chapter 3 and 4, the issues of semantic change and integration were discussed in the

context of ontologies and we devised a number of original algorithms to resolve incon-

sistencies by removing and weakening sentences. In this chapter, we study a practical

tableau algorithm for resolving inconsistencies in description logic knowledge bases. In

particular, we delve into the classical tableau algorithm for checking satisfiability of a

concept for given terminologies and incorporate propositional labels to establish a trace

to the expansion rules. Such trace is used to compile a propositional formula that can be

used to compute the maximally satisfiable subsets, as well as the minimally unsatisfiable

subsets of the terminologies.

The main results we present in this chapter are extensions of the labelled consistency

algorithm in [BH95]. We extend the labelled tableau-based algorithm for ALC to provide

support for General Inclusion Axioms (GCIs). We show that classical subset blocking

is inadequate for this purpose and does not guarantee completeness. We then present a

revised blocking condition, known as subset label blocking, and we prove that it ensures

both soundness and completeness. Moreover, we show that extending the labelled tableau

algorithm to ALCI and SI with GCIs would also lead to a similar problem, and we

present both a revised equality blocking and a pair-wise blocking for these algorithms.

Furthermore, we show that these algorithms preserve both soundness and completeness.

96
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Finally, we present a way to use the trace information constructed from the labelled

consistency algorithm to construct Binary Decision Diagrams (BDDs) that can be used

as a diagrammatic tool for debugging ontologies.

5.1.1 Motivation

Standard reasoning services in description logics, such as consistency and satisfiability

checking, provide a means to detect logical errors in ontologies. These services are useful

in many ways. However, there are fundamental limitations to what these services can do.

To understand these limitations, consider a knowledge engineer constructing an ontology

from scratch. The ontology engineer will start with an empty ontology that is consistent

and add sentences into the ontology one at a time until eventually the ontology becomes

inconsistent. That means the newly added sentence conflicts with some sentences in

the existing ontology. At that point, the ontology engineer is faced with a challenge:

whether to revise the newly added sentence, the existing sentences or both. To answer

this question, it would be useful to know which of the sentences actually caused the

logical errors and the available options to resolve them. However, standard reasoning

services do not provide such support.

In light of this challenge, we consider a well-known notion in classical propositional

and first-order logics, called maximal consistency. This notion is formally defined as

follows: Let Φ be a set of sentences, a maximally consistent subset (of Φ) is any consistent

subset Φ′ such that if φ ∈ Φ\Φ′ then Φ′∪{φ} is inconsistent. Loosely speaking, assuming

that Φ is inconsistent1, a maximally consistent subset of Φ ensures minimal loss of

information (in terms of number of sentences) from Φ in order to restore consistency.

Another closely related notion is called minimal inconsistency and it is formally defined

as follows: Let Φ be a set of sentences, a minimally inconsistent subset (of Φ) is any

inconsistent subset Φ′ such that if φ ∈ Φ′ then Φ′ \ {φ} is consistent. Both of these

notions can be reformulated in terms of concept satisfiability as follows:

Let Φ be a set of sentences, a maximally satisfiable subset (of Φ) for the concept

C (abbreviated as C-MSS or simply MSS) is any satisfiable subset Φ′ for C such that

1Φ itself is the maximally consistent subset if it is consistent
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if φ ∈ Φ \ Φ′ then Φ′ ∪ {φ} is unsatisfiable. Let Φ be a set of sentences, a minimally

unsatisfiable subset (of Φ) for the concept C (abbreviated as C-MUS or simply MUS) is

any unsatisfiable subset Φ′ for C such that if φ ∈ Φ′ then Φ′ \ {φ} is satisfiable.

Returning to our earlier example, it would seem useful that the knowledge engineer

considers C-MSSes and C-MUSes when trying to resolve logical errors of an ontology. A

naive way to compute all C-MSSes of an ontology is by considering all its subsets and

using a reasoner to check if each subset is satisfiable or not. However, this approach

does not scale well especially when the size of an ontology is large. This is particularly

inefficient in the case of DLs that are intractable because these languages are expressive

and concept satisfiability is generally an expensive operation. Therefore, our goal in this

chapter is to investigate an efficient approach to computing all MSSes (or MUSes) of an

ontology without the need to use a reasoner as a black-box. Instead, we delve into the

implementation of the classical tableau algorithm and propose to incorporate labels that

will enable us to find all the MSSes (or MUSes).

In contrast to earlier chapters, the aim of this chapter is not to present another

theoretical operation. Rather, we consider practical aspects of implementing two well-

known operations (MSS and MUS). Both MSS and MUS are closely related to the

operations we studied in earlier chapters, in particular Maxi-Adjustment proposed by

Benferhat et al. [BKLBW04]. One main difference between ontology debugging and

ontology revision is that we do not give preference to any sentence in ontology debugging.

That is, all sentences are treated equally. On the other hand, classical revision gives

preference to the newly added information.

In this section, we present a brief survey of the existing work.

5.1.2 Related Work

Approaches to resolving logical errors can roughly be divided into two categories. The

first seeks to pinpoint possible problematic statements and leaves it up to the modeller

to rectify them. Examples of this include the work of Schlobach et al. [SC03, Sch05a,

SHCvH07], Kalyanpur et al. [KPS05, KPSH05, KPSCG06] and Lam et al. [LSPV08].

The second aims to resolve the problem directly by weakening the available information
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to the extent that the errors are eliminated. Examples of this include the work of Baader

et al. [BH95], Schlobach et al. [Sch05b], work based on model-based diagnosis [Rei87],

and Meyer et al. [MLB05, MLBP06].

Baader et al. [BH95] considered the problem of finding maximally satisfiable and

minimally unsatisfiable ABoxes in a slightly different context from ours. The techniques

they used correspond closely to our approach if we assume that the terminologies are

unfoldable. Schlobach et al. [SC03] provide an algorithm that is closely related to ours

for finding Minimally Unsatisfiable Subsets (MUSes). Schlobach [Sch05b] considers the

problem of finding Maximally Satisfiable Subsets (MSSes) assuming that terminologies

unfoldable. His approach is to first find the MUSes of the terminologies and then to use

the minimal hitting-set algorithm described by Reiter [Rei87] to calculate the A-MSSes.

Meyer et al. [MLBP06] also provide a method for finding MSSes if Γ is unfoldable.

Their mechanism for labelling concept assertions is slightly different from ours (they

use sets of indices). Instead, they employ a version of the ⊥-rule to determine which

TBox sentences to exclude. None of these techniques can deal with GCIs and cyclic

terminologies and none of them, except for Meyer et al., consider approaches to provide

incrementally better approximations of MSSes. Kalyanpur et al. [KPS05] provide an

algorithm for finding a single MUS for a TBox expressed in the more expressive DL

SHIF .

In [KPGS05], Kalyanpur et al. described a tableau-based algorithm for finding

MUSes for an unsatisfiable concept in SHION . In contrast to our approach, they have

used multisets as labels to keep track of dependencies while we use propositional formulas

as shown in [BH95]. This has a number of advantages. Firstly, propositional formula is a

more compact representation than multiset. It retains structural information generated

during rule applications and consumes very little memory. Secondly, there is a close re-

lationship between propositional formulas and binary decision diagrams (BDDs). There

are established methods to convert propositional formulas to various types of BDDs. As

we shall see in this chapter, BDD is a nice diagrammatic tool for debugging ontologies.

A recent line of research has examined the problem of computing justifications for

entailments, including the work by Horridge et al. [HPS08, HBPS08] and Kalyanpur et
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al. [KPHS07]. They considered the problem of identifying a minimal set of axioms that

is sufficient for a given entailment to hold. This problem is similar to that of finding

minimal set of axioms that explains an unsatisfiable concept in the sense that entailment

can be reduced to satisfiability checking.

The problem of axiom pinpointing has also been explored in automata-based reason-

ing [BPn10], as well as for the description logic EL++ [BS08].

5.2 Labelled Consistency Algorithm

In this section we present a procedure known as labelled consistency algorithm that can

be used to establish a trace to the classical tableau algorithm and representing this trace

as a propositional formula. The labelled consistency algorithm can be seen as an exten-

sion to the classical tableau algorithm. It is composed of a number of expansion rules

that look similar to the expansion rules in the classical (or unlabelled) tableau algorithm.

As with the (unlabelled) tableau algorithm, each rule consists of a precondition and an

action. The action is triggered if the precondition is satisfied. An action transforms a

labelled ABox A into either one ABox A′ or two ABoxes A′ and A′′.

In contrast to the classical tableau algorithm, each sentence (axiom or assertion)

in the labelled consistency algorithm is associated with a label. C(x)φ and R(x, y)ψ

denote assertions labelled with propositional formulas φ and ψ respectively. Similarly,

(C ( D)φ and (C
.
= D)ψ denotes axioms labelled with the propositional formulas φ and

ψ respectively. We refer to an ABox with all its assertions labelled a labelled ABox, and

similarly, a TBox with all its axioms labelled a labelled TBox. In general, the labelled

consistency algorithm does not require labels to be in a particular representation.

As demonstrated in [Sch05b] and [MLBP06], labels can be represented as multisets

of indices. However, we have adopted the representation used in [BH95] where labels are

propositional formulas. We argue that this is a more desirable representation for labels

than multisets for a number of reasons. Firstly, a propositional formula is a more compact

way of representing information compared to multisets and its semantics and properties

are well-understood. For example, a sentence with the label p ∨ (p ∧ q) can simply be
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reduced to p since they are logically equivalent. In contrast, the formula (p ∧ (q ∨ r))

would be represented as {{p, q}, {p, r}} with multisets. This multisets have the implicit

meaning that the outer set is a disjunction and the inner multisets are conjunctions of

indices. Secondly, there is a large body of literatures relating to propositional logic. In

particular, there exists highly optimised and efficient solver to check for satisfiability

(hence also entailment) of propositional formulas, and there are efficient data structures

for representing propositional (boolean) formulas and functions, such as the various types

of Binary Decision Diagrams (BDDs). As we shall see in later sections, BDDs can be a

useful tool to visualise ways to repair an ontology.

The labelled consistency algorithm uses labels as a means to keep track of rela-

tionships among sentences. More specifically, each expansion rule is triggered by some

sentences (usually one), which in turns generates other new sentences. It is, therefore,

useful to retain this information so that once an inconsistency is identified we could trace

back to its sources and act on them to restore consistency. A sentence labelled with p∧q

is interpreted as the sentence that originates from sentences labelled with both p and q,

which means if either p or q is disregarded then the sentence labelled with p∧ q will also

disappear. We shall now describe how the labelled consistency algorithm operates.

The algorithm starts by labelling each axiom in the TBox with a unique propositional

variable, hence this results in a labelled TBox T with elements taking the form of (C (

D)p and (C
.
= D)p. These variables simply serve as unique identifiers so we could

distinguish between the axioms. Next, we construct a labelled ABox A that contains

only the labelled assertion A(x)&, where A is the concept that we want to check for

satisfiability and x is an individual name. Labelling A(x) with - simply indicates that

this instance of A(x) is not attributable to any of the TBox axioms. It also indicates

that A(x) cannot be disregarded and that its presence does not depend on any other

sentences. Therefore, removing A(x) as a way to restore consistency is not an option.

The next step is then to apply the labelled expansion rules in Figure 5.1. First, we

check if any of the rules is applicable to A. If so, we proceed to the ABoxes created

subsequently and again check if they are applicable to any of the labelled rules and so

on. We continue until there is an ABox to which none of the rules can be applied and
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which does not contain any clashes. Then we have generated a clash-free model and

so A is satisfiable. Otherwise, we have encountered a clash and we have to try other

alternatives. But before we do so, we have to store information that leads to this clash.

Note that for ALC, a clash in A is defined as a subset {A(x)φ,¬A(x)ψ} of A. 2

The culprit of the clash is therefore φ ∧ ψ and we store this globally for later use.

It should be noted that the use of disjunction in the label is merely for the purpose of

having a more compact representation. It is possible to restrict ourselves to use only

conjunctions in our labels and allow concept assertions with the same concept description

but different labelling to present in the ABox. For example, C(s)p∨q can be represented

as C(s)p and C(s)q.

The algorithm presented in Figure 5.1 is identical to that in [BH95] with the exception

that the ∃-rule is inserted with a condition to check if an individual is (label) blocked.

This is necessary to ensure termination and completeness. We shall see in later parts

that classical blocking is not adequate and a stronger blocking condition is necessary

to ensure completeness in the case where cyclic definitions are permitted in the TBox.

We have simplified the notations to make the expansion rules appear like the ones in

the classical tableau algorithm. We introduce two additional operators ∈̃ and ∪̃ . The

former is a variant of the set containment operator it considers not only set membership

but also takes into account the label attached to the assertion.

Roughly speaking, a labelled concept assertion C(s)φ is label contained in A if either

A contain the concept assertion C(s) and this concept assertion is attached with a label

that is logically weaker than φ. The latter is a variant of the union operator. Again,

this operator takes the labels of the assertions into account. It either adds the concept

assertion together with the label if the concept assertion is not already in the labelled

ABox or it updates the label of the concept assertion by taking disjunction of the new

label with the existing label. These two operators are formally defined as follows:

Definition 5.1

2We assume that concept assertions added to these ABoxes have all been converted to the negation
normal form.
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A set of labelled assertions Φ label contains a labelled assertion αφ, or αφ ∈ Φ, if and

only if αψ 6∈ Φ for any ψ or there exists αψ ∈ Φ and φ implies ψ.

This definition applies to both concept assertions and role assertions. A labelled

ABox A label contains a labelled concept assertion C(x)φ, or C(x)φ ∈̃A, if A contains

a concept assertion C(x)ψ such that φ implies ψ. Similarly, a labelled ABox A label

contains a labelled role assertion R(s, t)φ, or R(s, t)φ ∈̃A, if A contains a role assertion

R(s, t)ψ such that φ implies ψ.

Definition 5.2

A function ∪̃ that extends a labelled ABox A by a set of labelled assertions is induc-

tively defined as follows:

A ∪̃ {α1, . . . ,αn} = (A ∪̃ {α1}) ∪̃ {α2, . . . ,αn}

A ∪̃ {α} =



















(A \ {α}) ∪ {C(x)φ∨ψ} if α = C(x)ψ and C(x)φ ∈ A;

(A \ {α}) ∪ {R(x, y)φ∨ψ} if α = R(x, y)ψ and R(x, y)φ ∈ A;

A ∪{ α} otherwise.

)-rule if (C1 ) C2)(x)φ ∈ A, and either C1(x)φ ˜6∈A or C2(x)φ ˜6∈A,
then A′ := A ∪̃ {C1(x)φ, C2(x)φ}.

*-rule if (C1 * C2)(x)φ ∈ A, and both C1(x)φ ˜6∈A and C2(x)φ ˜6∈A,
then A′ := A ∪̃ {C1(x)φ}, A′′ := A ∪̃ {C2(x)φ}.

∃-rule if (∃R.C)(x)φ ∈ A, x is not label blocked, and there does not exist an
individual y such that R(x, y)φ ∈̃A and C(y)φ ∈̃A,
then A′ := A ∪̃ {R(x, y)φ, C(y)φ}, where y is a new individual name and
y > y′ for all individual names y′ in A.

∀-rule if {(∀R.C)(x)φ1 , R(x, y)φ2} ⊆ A, and C(y)φ1∧φ2 ˜6∈A,
then A′ := A ∪̃ {C(y)φ1∧φ2}.

Figure 5.1: Labelled consistency algorithm for ALC with GCIs
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To understand how the expansion rules work, a number of comments are in order.

Firstly, observe that each assertion in A, and in subsequent ABoxes, has attached to

it a propositional formula. These formulas encode the conditions (or reasons) for the

assertion appearing in the ABox. For example B(x)p means that B(x) appears in the

ABox because of the TBox sentence labelled with p. Disjunctions represent multiple

occurrences of the same assertion, while conjunctions represent the dependence of the

assertion on more than one TBox sentence. For example, B(x)(p∨q) can be seen as short-

hand for both B(x)p and B(x)q occurring in the ABox. On the other hand, B(x)(p∧q)

means that B(x) appears in the ABox because of the simultaneous presence of the sen-

tences labelled with p and q in the TBox.

An mentioned earlier, a labelled rule is similar to that of the unlabelled version where

each rule is composed of a precondition and an action. For example, the precondition

of the labelled )-rule has two parts. The first part checks whether the labelled concept

assertion (C1)C2)(x)φ is contained in the labelled ABox A where C1 and C2 can be any

concept descriptions. The second part makes use of Def. 5.1. It checks whether C1(x)φ

and C2(x)φ are label contained in A. If the precondition is satisfied then the action is

triggered. In this case we trigger the generation of a new labelled ABox A′ where A′

incorporates both C1(x)φ and C2(x)φ using the label union operator in Def. 5.2. The

other labelled rules operate in a similar fashion as the )-rule. Next, we will introduce

the notion of Maximally Satisfiable Subsets (MSS) and its dual Minimally Unsatisfiable

Subsets (MUS).

5.2.1 Supplementary Labelled Consistency Rules

The classical tableau algorithm is often augmented with a number of additional expan-

sion rules. These rules serve to provide a form of optimisation known as absorption

to the reasoning algorithm. In particular, they are often used to avoid cases where

non-deterministic branches are introduced. As we shall see below, the expansion rules

presented in Figure 5.1 are sufficient to guarantee both soundness and completeness.

However, we introduce here a number of supplementary labelled rules. Similarly to the

classical tableau algorithm, these rules can be used to improve the performance of the
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algorithm. Recall that, Γ is unfoldable if and only if the left-hand side of every γ ∈ Γ

contains a concept name A, that there are no other γs with A on the left-hand side,

and that the right-hand side of γ contains no direct or indirect references to A (i.e. no

cycles).

We divide Γ into an unfoldable part Γu and a general part Γg, such that Γg = Γ \Γu.

U+.
=
-rule if (A

.
= C)φ ∈ Γu, A(x)ψ ∈ A, and C(x)φ∧ψ ˜6∈A,

then A′ := A ∪̃ {C(x)φ∧ψ}.

U−.
=
-rule if (A

.
= C)φ ∈ Γu, ¬A(x)ψ ∈ A and ¬C(x)φ∧ψ ˜6∈A,

then A′ := A ∪̃ {¬C(x)φ∧ψ}.

U)-rule if (A ( C)φ ∈ Γu, A(x)ψ ∈ A and C(x)φ∧ψ ˜6∈A,
then A′ := A ∪̃ {C(x)φ∧ψ}.

(-rule if (C ( D)φ ∈ Γg and (¬C *D)(x)φ ˜6∈A for some individual name x,
then A′ := A ∪̃ {(¬C *D)(x)φ}.

.
=-rule if (C

.
= D)φ ∈ Γg and ((¬C *D) ) (C * ¬D))(x)φ ˜6∈A for some individual

name x,
then A′ := A ∪̃ {((¬C *D) ) (C * ¬D))(x)φ}.

Figure 5.2: Supplementary rules of the labelled consistency algorithm

The set of supplementary labelled rules composed of five rules. The first three rules

are only applicable to unfoldable terminologies and they are targeted towards concept

definitions, which often constitute a large portion of the terminologies. It should be

noted that each of these rules transform one ABoxA into another ABox A′, and does not

introduce any non-determinism. The last two rules are applied to general terminologies

and they are necessary for terminologies that are not unfoldable to ensure completeness

of the algorithm. Similar to the previous rules, these two rules also transform one

ABox A into a new ABox A′ but they do introduce non-determinism by incorporating

disjunctions. This will eventually trigger the *-rule in Figure 5.1, which in turn creates

two ABoxes. For convenience, we have adopted the supplementary labelled rules in our

examples.
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5.2.2 Maximally Satisfiable Subsets and Minimally Unsatisfiable Sub-

sets

The notion of Maximally Satisfiable Subset (MSS) 3 has been introduced in various

contexts, most notably in propositional logic. Here, we introduce MSS as a criterion for

repairing ontologies. The idea is consistent to the principle of minimal change where

information change is kept to a minimal. In the course of restoring consistency to an

ontology, there are many ways in which this can be performed but not all ways are

necessarily useful. For example, one could choose to remove every axiom in an ontology

in order to restore its consistency. This would make it consistent but it is not useful at

all. A maximally satisfiable subset guarantees that an axiom of the ontology is not to

be removed unless this is necessary to restore consistency. The dual of MSS is that of

a Minimally Unsatisfiable Subset (MUS). It is possible to compute all the MUSes given

all the MSSes, and vice versa. The formal definition of MSSes and MUSes are stated

below.

Definition 5.3

A subset T ′ of terminologies T is a C-MSS or a maximally satisfiable subset of T with

respect to a concept C if and only if C is satisfiable, and every T ′′ such that T ′ ⊂ T ′′ ⊆ T

is unsatisfiable. A subset T ′ of terminologies T is a C-MUS or a minimally unsatisfiable

subset of T with respect to a concept C if and only if C is unsatisfiable, and every T ′′

such that T ′′ ⊂ T ′ is satisfiable.

It is conventional to refer to A-MSS and A-MUS as MSS and MUS respectively. We will

adopt this convention in situations where it is clear which concept we are referring to.

Note that MUS is more commonly referred to as MUPS 4 in the literature [SC03].

Next, we describe how to make use of the information encoded in the propositional

formulas associated with clashes to generate the MSSes or the MUSes of a TBox T .

Consider a clash {A(x)φ,¬A(x)ψ} occurring in an ABox A and recall that φ is an

3The concept of Maximally Satisfiable Subsets of terminologies is also known as Maximally Satisfiable
Sub-terminologies.

4MUPS is used as an abbreviation for minimal unsatisfiability-preserving sub-TBoxes.
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encoding of the reasons for A(x) occurring in A (and similarly for ψ and ¬A(x)). So

the formula φ ∧ ψ can be seen as an encoding of the reasons for both A(x) and ¬A(x)

occurring in A, and therefore ¬(φ ∧ ψ) encodes the reasons for A(x) and ¬A(x) not

occurring simultaneously in A. That is, ¬(φ ∧ ψ) expresses the different ways in which

we can remove the clash. So, letA1, . . . ,An be the completely expanded ABoxes obtained

from running the labelled consistency algorithm. Recall that these ABoxes represent the

different paths generated by the expansion rules. Now suppose there are ki clashes in Ai

with φj
i and ψj

i the propositional formulas associated with the two concept assertions in

clash j.

Now, recall that running a tableau algorithm on an unsatisfiable concept results in

ABoxes where each ABox contains at least one clash. That is, for an ABox Ai that

contains clashes Cφ1

1 ,¬Cψ1

1 ,. . .,Cφn
n , ¬Cψn

n , at least one of φj ∧ ψj evaluates to true, or

equivalently
∨mi

j=1(φ
j
i∧ψ

j
i ) evaluates to true. Since each of the ABoxes is required to have

at least one clash for a concept to be unsatisfiable, we have the clash formula as stated in

[BH95]. The clash formula is
∧n

i=1

∨mi
j=1(φ

j
i ∧ ψj

i ) where n is the number of ABoxes and

mi is the number of clashes in the i-th ABox. Furthermore, primes implicates and prime

implicants of the clash formula correspond to the MSSes and MUSes of the terminologies

respectively. The following example illustrates a simple application of the algorithm. We

note that, in this case, classical blocking happens to be sufficient.

Example 5.4

This example demonstrates a straight application of the labelled tableau algorithm (with

the supplementary expansion rules). Consider a TBox T with the following axioms:

Tu











(A
.
= (∀R.¬C) )D)p

(D
.
= ¬E)q

Tg











(∀R.¬C ( ¬D ) ¬E)r

The axioms are labelled with the propositional variables p, q and r. The axioms
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A(x)!

((∀R.¬C) " D)p

(∀R.¬C)pDp

¬E(x)p∧q

(∀R.¬C # (¬D " ¬E))(x)r

(¬∀R.¬C)(x)r ≡ (∃R.C)(x)r

C(y)r R(x, y)r

¬C(y)p∧r

(A
.
= (∀R.¬C) " D)p

(D
.
= ¬E)q

(∀R.¬C & ¬D " ¬E)r

A(x)!

((∀R.¬C) " D)p

(∀R.¬C)p Dp

¬E(x)p∧q

(∀R.¬C # (¬D " ¬E))(x)r

((¬D " ¬E)(x)r

¬D(x)r ¬E(x)r

(A
.
= (∀R.¬C) " D)p

(D
.
= ¬E)q

(∀R.¬C & ¬D " ¬E)r

Figure 5.3: The two implication graphs (top and bottom) correspond to the labelled
ABoxes generated in Example 5.4. Diamond is the starting point, rectangles are the
axioms and filled ellipses are the clashes.

labelled with p and q are in Tu and the axiom labelled with r is in Tg. Recall that Tu is

the unfoldable part of T , with which the supplementary expansion rules can be applied.

Our goal is to compute the MSSes and MUSes for T .

SupposeA is the concept (or concept name) that we wish to check for satisfiability and

also give “reasons” if it is unsatisfiable. That is, A is the input to our algorithm. We be-

gin by initialisingA to {A(x)&}. Applying the U+.
=
-rule to A& followed by the )-rule gives

the new ABox {A(x)&, ((∀R.¬C))D)p, (∀R.¬C)(x)p, D(x)p}. Applying the U+.
=
-rule to

D(x)p adds ¬E(x)p∧q to the ABox. Now, apply the (-rule to (∀R.¬C ( (¬D)¬E))r for

x to add (¬∀R.¬C * (¬D )¬E))(x)r to the ABox. The *-rule now becomes applicable.

Applying it creates two new ABoxes. One branch adds (¬∀R.¬C)(x)r to A′, but this is



5.3 Refined Blocking 109

not in the negation normal form, so we add (∃R.C)(x)r instead to obtain the new ABox

A′. Applying the ∃-rule to (∃R.C)(x)r adds C(y)r and R(x, y)r to A′. Now, applying the

∀-rule to (∀R.¬C)(x)p adds ¬C(y)p∧r to A′. The other branch adds (¬D)¬E)(x)r to ob-

tain the new ABox A′′. Applying the )-rule adds ¬D(x)r and ¬E(x)(p∧q)∨r to A′′. None

of the expansion rules are now applicable and we are left with the two ABoxes: {A(x)&,

((∀R.¬C) ) D)(x)p, (∀R.¬C)p, D(x)p, (¬∀R.¬C * (¬D ) ¬E))(x)r, ∃R.C(x)r, C(y)r,

R(x, y)r, ¬C(y)p∧r} and {A(x)&, ((∀R.¬C) ) D)(x)p, (∀R.¬C)p, D(x)p, (¬∀R.¬C *

(¬D ) ¬E))(x)r, (¬D ) ¬E)(x)r, ¬D(x)r, ¬E(x)(p∧q)∨r}. The set of clashes in A′ is

{C(y)r,¬C(y)p∧r}, and the set of clashes in A′′ is {D(x)p,¬D(x)r}. The clash formula

for these ABoxes is (r ∧ (p ∧ r)) ∧ (p ∧ r), which is logically equivalent to p ∧ r and so

the prime implicates are p and r. Hence, there are two MSSes for T . One in which the

sentence labelled with p is removed, and one in which the sentence labelled with r is

removed. Similarly, p ∧ r has only one prime implicate which is p ∧ r itself. So T has

one MUS: the set containing the two sentences labelled with p and r.

5.3 Refined Blocking

As pointed out in Chapter 2, blocking in classical ALC tableau reasoning ensures cor-

rectness and termination. In the case of our algorithm, classical blocking still ensures

termination, but it does not always block correctly at the right point, as the following

example shows.

Tu











































(A
.
= ¬C )D ) E ) F ) ∃R.A)p

(D
.
= C)q

(E
.
= ∀R.C)r

(F
.
= ∀R.∀R.C)s
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Example 5.5

Let T = Tu. To compute the MSSes and MUSes for T we initialise the ABox A to

{A(x)&}. An application of the U+.
=
-rule followed by the )-rule adds (C ) D ) E )

F ) ∃R.A)p, ¬C(x)p, D(x)p, E(x)p, F (x)p, and (∃R.A)(x)p. Applying the U+.
=
-rule to

D(x)p, E(x)p and F (x)p adds C(x)p∧q, (∀R.C)(x)p∧r, and (∀R.∀R.C)(x)p∧s. Applying

the ∃-rule to ∃R.A(x)p will then add A(y)p and R(x, y)p, where y is a new individual.

Applications of the ∀-rule then adds C(y)p∧r, (∀R.C)(y)p∧s. An application of the U+.
=
-

rule to A(y)p followed by the )-rule adds (C ) D ) E ) F ) ∃R.A)p, ¬C(y)p, D(y)p,

E(y)p, F (y)p, and (∃R.A)(y)p. Applying the U+.
=
-rule to D(y)p, E(y)p and F (y)p adds

C(y)(p∧q)∨(p∧r), (∀R.C)(y)(p∧r)∨(p∧s), and (∀R.∀R.C)(y)p∧s. If we now attempt to apply

the ∃-rule to (∃R.A)(y)p, using the classical blocking condition for ALC, then y will

be blocked by x since {C | C(y)φ ∈ A} ⊆ {C ′ | C ′(x)ψ ∈ A}, and the algorithm will

terminate. The set of clashes in this ABox is {¬C(x)p, C(x)p∧q}. The clash formula is

therefore p ∧ (p ∧ q) and so the prime implicates of the formula are p and q. According

to this, the two MSSes of T are obtained by (i) removing the sentence indexed by p,

and (ii) removing the sentence indexed by q. But while the first of these is indeed an

MSS, it is easy to verify that the second one isn’t. Similarly, the sole prime implicant

of the formula p ∧ (p ∧ q) is p ∧ q and according to this T thus has one MUS: the set

{(A
.
= ¬C )D ) E ) F ) ∃R.A)p, (D

.
= C)q}. But in fact T has two other MUSes as

well.

5.3.1 Subset Label Blocking

We now introduce the notion of label subset blocking. For convenience, we define

LA(s) = {Cφ|C(x)φ ∈ A}, or we simply use L(s) instead of LA(s) where it is clear

which ABox we are referring to.

The reason that classical blocking does not work in the above example, is that the

labels (the propositional formulas associated with sentences) are not taken into account

when blocking is performed. So, in the example above, blocking occurs despite the fact

that the label of C(y)(p∧q)∨(p∧r) differs from that of C(x)p∧q.

What we need to do is take the label into account in an appropriate way. This is
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achieved by replacing the existential rule in Figure 5.4 by our subset label blocking.

Subset label blocking is formally defined as follows:

Definition 5.6

Let Φ and Ψ be sets of labelled assertions. Φ ⊆̃Ψ if and only if for each labelled assertion

α̃ ∈ Φ implies α̃ ∈̃Ψ. Equivalently, Φ ⊆̃Ψ if and only if it satisfies:

1. if αφ ∈ Φ then αψ ∈ Ψ (φ and ψ may be different)

2. For each assertion α such that αφ ∈ Φ and αψ ∈ Ψ, φ implies ψ

Definition 5.7 (Subset Label Blocking)

Let π(x) = {Cφ(x)|Cφ(x) ∈ A}. An individual x subset label blocks an individual y

if and only if π(x) ⊆̃ π(y) and x is an ancestor of y.

An individual x is an ancestor of y if x is created before y by the existential rule

given in Figure 5.4.

Informally, the justification for this refinement is the following: the blocking of an

individual y is intended to capture the case where every possible expansion of a concept

assertion involving y will mirror an expansion applied to concept assertions involving its

parent individual x. Now, suppose an ABox A contains the labelled concept assertions

C(x)φ and C(y)ψ. If ψ does not imply φ, it means that the reasons for C(y) occurring

in A are not contained in the reasons for C(x) occurring in A, therefore the expansion

of C(y) might yield results that will not be mirrored by an expansion of C(x). On the

other hand, if ψ implies φ it means that every reason for C(y) occurring in A will also

be a reason for C(x) occurring in A, and so every expansion of C(y) would be mirrored

by an expansion of C(y). We return to the previous example.

Example 5.8 (Example 5.5 revisited)

SinceC(y)(p∧q)∨(p∧r) and C(x)p∧q are inA, but (p∧q)∨(p∧r) 6|= p∧q, y will not be blocked

by x when we apply the ∃-rule to (∃R.A)(y)p using subset label blocking. Applying the

∃-rule will add A(z)p and R(y, z)p, where z is a new individual. Applications of the

∀-rule then adds C(z)(p∧r)∨(p∧s), (∀R.C)(z)p∧s. An application of the U+.
=
-rule to A(z)p
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followed by the )-rule adds ¬C(z)p, D(z)p, E(z)p, F (z)p, and (∃R.A)(z)p. Applying the

U+.
=
-rule to D(z)p, E(z)p and F (z)p adds C(z)(p∧q)∨(p∧r)∨(p∧s), (∀R.C)(z)(p∧r)∨(p∧s), and

(∀R.∀R.C)(z)p∧s. Since C(z)(p∧q)∨(p∧r)∨(p∧s) and C(y)(p∧q)∨(p∧r) are in A, but (p ∧ q) ∨

(p ∧ r) ∨ (p ∧ s) does not imply (p ∧ q) ∨ (p ∧ r), z will not be blocked by y when we

apply the ∃-rule to (∃R.A)(z)p using subset label blocking. It can then be readily verified

that continued expansion will result in the following being added to the ABox (with z′

being a new individual): A(z′)p, R(z, z′)p, C(z′)(p∧q)∨(p∧r)∨(p∧s), (∀R.C)(z′)(p∧r)∨(p∧s),

¬C(z′)p, D(z′)p, E(z′)p, F (z′)p, (∃R.A)(z′)p, and (∀R.∀R.C)(z′)p∧s. When attempting

to apply the ∃-rule to (∃R.A)(z′)p, the subset label blocking ensures that z′ is blocked

by z, and so the algorithm terminates. The set of ABox clashes is {¬C(x)p, C(x)p∧q,

¬C(y)p, C(y)(p∧q)∨(p∧r), ¬C(z)p, C(z)(p∧q)∨(p∧r)∨(p∧s)}. Therefore, the clash formula is

(p∧ (p ∧ q))∨ (p ∧ ((p ∧ q)∨ (p∧ r)))∨ (p ∧ ((p ∧ q)∨ (p∧ r)∨ (p∧ s))) which is logically

equivalent to (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s). The prime implicates of this formula are p and

q ∨ r ∨ s. Therefore, the two MSSes of T are obtained by (i) removing the sentence

indexed by p, and (ii) removing the sentences indexed by q, r, and s. Similarly, the

prime implicants of the clash formula are p∧ q, p∧ r and p∧ s, which correspond to the

MUSes of T .

5.3.2 Soundness, Completeness and Termination

We study in this section a number of important properties of the labelled consistency

algorithm for ALC with GCIs. Results of soundness and completeness for the ALC

case without GCIs have been proven in [BH95]. The soundness proof is very similar

between the non-GCI and GCI cases and the completeness proof differs mainly in the

labelled ∃-rule. We present results on soundness, completeness and termination below.

We introduce some notations used in [BH95]. Let w be a valuation5. The unlabelled

ABox w(A) is a w-projection of the labelled ABox A, such that if C(s)φ ∈ A and w(φ)

evaluates to true, then C(s) ∈ w(A). Details of the notation can be found in [BH95].

Lemma 5.9 (Soundness )-, ∃-, ∀-rule [BH95])

5w is the classical valuation as in the propositional setting.
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Let A′ be the labelled ABox generated by applying the )-rule (resp. ∃-rule, ∀-rule) to

a labelled ABox A. Then we either have w(A) = w(A′), or w(A′) is obtained from w(A)

by application of the (unlabelled) )-rule (resp. modified ∃-rule, ∀-rule).

Lemma 5.10 (Soundness *-rule [BH95])

Let A′ and A′′ be the labelled ABox generated by applying the *-rule to a labelled ABox

A. Then we either have w(A) = w(A′) = w(A′′), or w(A′) and w(A′′) are obtained from

w(A) by application of the (unlabelled) modified *-rule.

Lemma 5.11 (Soundness ∃-rule)

Let A′ be the labelled ABox generated by applying the ∃-rule to a labelled ABox A. Then

we either have w(A) = w(A′), or w(A′) is obtained from w(A) by application of the

(unlabelled) ∃-rule.

Proof. Suppose that the labelled ∃-rule is applied to the assertion ∃R.C(a) and its label

in A0 is φ. The case where w(φ) = false is trivial. We consider w(φ) = true. Since

w(φ) = true, so ∃R.C(s) is in w(A0). Application of the ∃-rule to ∃R.C(a) creates a

new individual b and adds R(a, b) and C(b) to A where these assertions have label φ.

Hence, both R(a, b) and C(b) are in w(A1). We can obtain A1 by application of the

modified (unlabelled) ∃-rule from w(A0). Notice that blocking has to be removed from

the modified ∃-rule, because otherwise a might be blocked and so we will not be able

to obtain w(A1) from w(A0). This proof is identical to that presented in [BH95], we

present this proof to show that the addition of blocking in the ∃-rule does not destroy

soundness. "

Lemma 5.12 (Completeness)

If none of the rules of the labelled consistency algorithm forALC with GCIs are applicable

to A then none of the unlabelled rules for ALC with GCIs are applicable to w(A).

Proof. Elements of A are of the form C(s) or R(s, t) where C is a conjunction, disjunc-

tion, existential quantifier, universal quantifier or primitive. Therefore it suffices to show

for each of the concept types mentioned that if C(s) does not satisfy the precondition(s)
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of the labelled rules then C(s) also does not satisfy the precondition(s) of unlabelled

)-rule (resp. *-, ∃- and ∀-rule). The cases where C (or R) is a primitive does not have

to be considered because they do not trigger any of the rules.

1. Suppose (C )D)(s) is in A and its label φ satisfies w(φ) = true. Since this case

does not satisfy the labelled )-rule, so A contains C(s) and D(s), and their labels,

φ1 and φ2 respectively, are implied by φ. So w(ψ1) = w(ψ2) = true, thus C(s) and

D(s) are in w(A). Therefore, the (unlabelled) )-rule is not applicable.

2. Suppose (C *D)(s) is in A and its label φ satisfies w(φ) = true. Since this case

does not satisfy the labelled *-rule, so A contains at least one of C(s) or D(s) and

its label ψ is implied by φ. So w(ψ) = true, thus at least one of C(s) or D(s) is in

w(A). Therefore, the (unlabelled) )-rule is not applicable.

3. Suppose ∀R.C(s) and R(s, t) are in A for some individual t, and their labels, φ1

and φ2 respectively, satisfy w(φ1) = w(φ2) = true. Since this case does not satisfy

the labelled ∀-rule, so A contains C(t) and its label ψ is implied by φ1 ∧ φ2. So

w(ψ) = true, thus C(t) is in w(A). Therefore, the (unlabelled) ∀-rule is not

applicable.

4. Suppose ∃R.C(s) is in A and its label φ satisfies w(φ) = true. Now, assume

that ∃R.C(s) is not applicable to A, then it follows from the labelled ∃-rule that

either s is label blocked or A contains R(s, t) and C(t) such that their labels,

ψ1 and ψ2 respectively, are implied by φ. There are two cases to consider. In

the first case, s is label blocked by some individual s′. Suppose C1(s), . . . , Cn(s)

are all the concept assertions of s in A such that their labels, φ1, . . . ,φn respec-

tively, satisfy w(φ1) = · · · = w(φn) = true. That is, C1(s), . . . , Cn(s) are in

w(A). By definition of subset label blocking, it follows that the corresponding con-

cept assertions C1(s′), . . . , Cn(s′) of s′, with labels ψ1, . . . ,ψn respectively, satisfy

w(ψ1) = · · · = w(ψn) = true. Note that, s′ may contain other labelled concept

assertions but this doesn’t affect the fact that s′ is subset label blocked. That is

C1(s′), . . . , Cn(s′) are in w(A). Therefore, for any conceptD ifD(s) is in w(A) then

D(s′) is in w(A). So s is (unlabelled subset) blocked by s′. It follows that ∃R.C(s)
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is not applicable to the unlabelled ∃-rule. In the second case, since w(φ) = true,

and φ imples both ψ1 and ψ2, so w(ψ1) = w(ψ2) = true. Thus, both R(s, t) and

C(t) are in w(A).

For each of the cases above, we assume that the label φ of C(s) satisfies w(φ) = true.

In the cases where w(φ) = false, C(s) is simply not in w(A), so none of the unlabelled

rules are applicable to it.

"

Lemma 5.13

The labelled consistency algorithm for ALC with GCIs (as shown in Figure 5.1) termi-

nates in a finite number of steps.

To show that the algorithm in Figure 5.1 ensures termination. We consider a number

of factors. Firstly, each labelled rule can only be applied to the same fact only once.

For example, the labelled )-rule can be applied to the same label concept assertion

(C ) D)(s)φ only once and this can happen only if Cφ
1
˜6∈A or Cφ

2
˜6∈A. After applying

the labelled )-rule, a new ABox A′ that incorporates both Cφ
1 and Cφ

2 is generated,

resulting in Cφ
1 ∈̃A and Cφ

2 ∈̃A and falsifying the precondition of the labelled )-rule.

Secondly, the description of the concept assertions being generated by applying a rule

is shorter than or the same as the description of the concept assertion that triggers the

rule. This means concept assertions will eventually break down into atomic concept

assertions. Moreover, the ∪̃ operator ensures that only concept assertions with strictly

weaker labels are incorporated into the ABoxes.

5.4 More Expressive Description Logics

So far, we have only considered ontology debugging forALC with GCIs. In the following

section, we consider extensions of the labelled consistency algorithms for more expressive

description logics ALCI and SI. The former extends ALC with inverse roles and the

latter further extends it with transitive roles. It is important to note that (unlabelled)

tableau algorithms for ALCI and SI with GCIs employ different blocking conditions
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)-rule if (C1)C2)(x)φ ∈ A, x is not indirectly label blocked, and either C1(x)φ ˜6∈A
or C2(x)φ ˜6∈A,
then A′ := A ∪̃ {C1(x)φ, C2(x)φ}.

*-rule if (C1*C2)(x)φ ∈ A, x is not indirectly label blocked, and both C1(x)φ ˜6∈A
and C2(x)φ ˜6∈A,
then A′ := A ∪̃ {C1(x)φ}, A′′ := A ∪̃ {C2(x)φ}.

∃-rule if (∃R.C)(x)φ ∈ A, x is not directly label blocked, and there does not exist
an individual y such that R(x, y)φ ∈̃A and C(y)φ ∈̃A,
then A′ := A ∪̃ {R(x, y)φ, C(y)φ}, where y is a new individual name and
y > y′ for all individual names y′ in A.

∀-rule if {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, x is not indirectly label blocked and
C(y)φ∧ψ ˜6∈A,
then A′ := A ∪̃ {C(y)φ∧ψ}.

∀′+-rule if {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, x is not indirectly label blocked, Trans(R)
and (∀R.C)(y)φ∧ψ ˜6∈A,
then A′ := A ∪̃ {(∀R.C)(y)φ∧ψ}.

Figure 5.4: Labelled consistency algorithm for SI with cyclic definitions

than the one used in ALC. The former requires equivalence blocking and the latter

requires pair-wise blocking.

5.4.1 Equivalence Label Blocking and Pair-wise Label Blocking

Definition 5.14 (label equivalence)

Let Φ and Ψ be sets of labelled assertions. Φ is label equivalent to Ψ or Φ =̃Ψ if and

only if Φ ⊆̃Ψ and Ψ ⊆̃Φ. Equivalently, it satisfies:

1. αφ ∈ Φ if and only if αψ ∈ Ψ (φ and ψ may be different)

2. For each assertion α such that αφ ∈ Φ and αψ ∈ Ψ, φ is logically equivalent to ψ

Definition 5.15 (equivalence label blocking)

An individual x equivalent label blocks y if and only if L(x) =̃L(y) and x is an ancestor

of y.
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We propose below that the pair-wise label blocking is a revised version of the pair-

wise blocking in [HS99]. This is almost identical to pair-wise blocking except that set

equivalence is replaced with label equivalence defined in Def. 5.14.

Definition 5.16 (pair-wise label blocking)

An individual is label blocked if and only if it is directly or indirectly label blocked6.

A node x is directly label blocked if and only if none of its ancestors are label blocked,

and it has ancestors x′, y and y′ such that:

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) =̃L(y) and L(x′) =̃L(y′) and

3. L(〈x′, x〉) =̃L(〈y′, y〉)

5.4.2 Soundness, Completeness and Termination

Similar to the results we have obtained for ALC, we prove soundness, completeness and

termination for SI. The proofs provided are extensions of the proofs for Theorem 5.11.

Lemma 5.17 (Soundness)

Let A′ be the labelled ABox generated by applying the ∀′+-rule to a labelled ABox A.

Then we either have w(A) = w(A′), or w(A′) is obtained from w(A) by application of

the (unlabelled) ∀′+-rule.

Proof. Suppose the labelled ∀′+-rule is applicable, then there exists

{∀R.C(x)φ1 , R(x, y)φ2} ⊆ A. If w(φ1) = false or w(φ2) = false (that is, w(φ1 ∧ φ2) =

false), then either ∀R.C(x) 6∈ w(A) or R(x, y) 6∈ w(A) so the unlabelled ∀′+-rule is not

applicable. Hence, we have w(A′) = w(A). Let w(φ1) = true and w(φ2) = true (i.e.

w(φ1 ∧ φ2) = true), so ∀R.C ∈ w(A) and R(x, y) ∈ w(A). Therefore the unlabelled

∀-rule is applicable.

"

6A node is indirectly label blocked if at least one of its ancestors is directly label blocked.
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The two theorems below are for equivalent label blocking and pair-wise label blocking.

Lemma 5.18 (Completeness)

If none of the rules of the labelled consistency algorithm for ALCI with GCIs are appli-

cable to A then none of the unlabelled rules for ALCI with GCIs are applicable to w(A).

Proof. To show that ALCI labelled rules are complete, it suffices to redo the existential

case with the stronger equality label blocking (as defined in 5.15). Proofs for the other

cases are the same as that of ALC. The proof for the existential case is adapted from

the earlier proof for ALC. Suppose ∃R.C(s) is in A and its label φ satisfies w(φ) = true.

Now, assume that ∃R.C(s) is not applicable to A, then it follows from the labelled ∃-rule

that either s is label blocked or A contains R(s, t) and C(t) such that their labels, ψ1

and ψ2 respectively, are implied by φ. There are two cases to consider. In the first case,

s is label blocked by some individual s′. Suppose C1(s), . . . , Cn(s) are all the concept

assertions of s in A such that their labels, φ1, . . . ,φn respectively, satisfy w(φ1) = · · · =

w(φn) = true. That is, C1(s), . . . , Cn(s) are in w(A). By definition of equality label

blocking, it follows that the corresponding concept assertions C1(s′), . . . , Cn(s′) of s′, with

labels ψ1, . . . ,ψn respectively, satisfy w(ψ1) = · · · = w(ψn) = true and s′ has no other

labelled concept assertions. That is C1(s′), . . . , Cn(s′) are in w(A). Therefore, for any

concept D, D(s) is in w(A) if and only if D(s′) is in w(A). So s is (unlabelled equality)

blocked by s′. It follows that ∃R.C(s) is not applicable to the unlabelled ∃-rule. In the

second case, since w(φ) = true, and φ imples both ψ1 and ψ2, so w(ψ1) = w(ψ2) = true.

Thus, both R(s, t) and C(t) are in w(A). "

Lemma 5.19 (Completeness)

If none of the rules of the labelled consistency algorithm for SI with GCIs are applicable

to A then none of the unlabelled rules for SI with GCIs are applicable to w(A).

Proof. Analagous to the proof in Lemma 5.12, we show that the labelled consistency

algorithm is complete for SI by proving that if an assertion C(s) does not satisfy the

precondition(s) of an labelled rule then the corresponding assertion will also not satisfy
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the unlabelled rule. Again, we leave out the cases where the assertions are primitives.

We begin by considering a concept assertion of the form (C ) D)(s) with its label φ

satisfying w(φ) = true. Since the precondition of the labelled )-rule is not satisfied so

either: (1) s is indirectly label blocked; or (2) C1(x)φ ∈̃A and C2(x)φ ∈̃A. For (2), this

case is identical to that of Lemma 5.12 and we have w(φ1) = w(φ2) = true, and so

C(s) and D(s) are in w(A). For (1), s is indirectly label blocked. By Definition 5.16,

it implies that there is an ancestor s′ such that s′ is directly label blocked. Hence, by

Definition 5.16, s′ has ancestors s′′, t′ and t′′ where s′ is a successor of s′′ and t′ and is a

successor of t′′. It is then easy to see that s′ is (directly) pair-wise blocked by s′′. This

means the unlabelled ∃-rule is not applicable to w(A). The other cases including *-rule,

∃-rule, ∀-rule and ∀′+-rule can be shown in a similar manner. "

Proposition 5.20 (Termination) The labelled consistency algorithm (in Figure 5.1)

for ALCI with GCIs using equality label blocking terminates in finite number of steps.

Proof. (sketch) This proof is very similar to that of Proposition 5.13 since bothALCI and

ALC employ the same set of labelled consistency rules in Figure 5.1. The only difference

is that ALCI adopts the equality label blocking, whereas ALC adopts the subset label

blocking. Therefore, it suffices it show that the use of equality label blocking does not

destroy termination. The labelled algorithm will terminate in finite number of steps if

it does not generate an infinitely long chain. We know that it is not possible to generate

an infinitely long chain because: (1) For the same concept assertion with the same label,

it can be applied to each labelled rule only once. In fact, for the same concept assertion

only the ones with a weaker label (than previous rule application) will trigger a rule.

(2) A node will eventually be blocked because the number of propositional variables or

labels is fixed (same size as the number of axioms). "

Proposition 5.21 (Termination) The labelled consistency algorithm (in Figure 5.4)

for SI with GCIs using pair-wise label blocking terminates in finite number of steps.
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Proof. (sketch) Again, this is similar to the earlier proofs on termination for ALC and

ALCI with the exception that SI has a slightly different set of labelled rules as well as

a different label blocking condition. The key of this proof is to show that there is no

path of infinite length. From Horrocks et al.’s paper [HS99], we know that the classical

(unlabelled) rules can create a path with at most 2mn nodes in length where m is the

number of concept and n is the number of roles. Since our labelled algorithm attaches

a propositional label to each of the concept and role assertions, hence for each concept

assertion we can attach 2p labels to it, where p is the number of propositional variables

(or number of axioms). Therefore, the maximum length of a path is 2mnp. A path with

this length will necessarily have a pair of individuals that are pair-wise label blocked. "

5.5 Binary Decision Diagram (BDD)

The labelled consistency algorithm constructs trace information and allows such infor-

mation to be used in ontology debugging. As we have seen in the previous section, one

way to make use of this trace information is to compute the MSSes and MUSes. However,

there are at least two major drawbacks to this approach. Firstly, finding prime implicates

(or prime implicants) of a propositional formula is an NP-hard problem. That means

finding them is time-consuming, especially when the original formula is complicated and

involves a large number of variables. Secondly, the number of prime implicates (or prime

implicants) can be exponential to the length of the original formula, which means that

there can potentially be a large number of MSSes or MUSes presenting to the user and

this is certainly not desirable. In [KPSCG06], the authors proposed a way to rank the

variables appearing in the MUSes based on the frequency of each variable appearing in

the MUSes. A variable with higher frequency is given a higher rank over a variable with

lower frequency. The rationale behind this is that a repair corresponds to picking at least

one variable from each of the MUSes, hence a variable with higher frequency is one that

makes more of the MUSes satisfiable. However, this solution still requires finding the

MUSes first and so it still suffers from the first drawback mentioned above. It should be
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noted that multisets of indices were used in [Sch05b] to store trace information instead

of propositional formulas, but finding MUSes for them is still an NP-hard problem.

As we have mentioned in earlier sections, adopting propositional formulas as la-

bels in the labelled consistency algorithm has a number of advantages. There are effi-

cient algorithms to check for satisfiability and entailment of propositional formulas, and

there are efficient data structures that represent propositional formulas (or functions).

A data structure that is of particular interest to us is the Binary Decision Diagram

(BDD) [Bry86, Bry92], and we propose to use BDD as a means for ontology debugging.

BDD is most well known for its application in fault tree analysis and in the area of

formal verification. The main advantage of using BDD for ontology debugging is that it

presents a compact representation for indicating logical errors and repairs of an ontology,

thus it is a user friendly approach for ontology debugging especially when the ontology

is large and complex.

A binary decision diagram is a directed acyclic graph that has a root. It has two

terminal nodes with out-degree 0 that are labelled with 0 or 1, and it contains non-

terminal nodes with out-degree 2. In the literature, outgoing edges of a non-terminal

node are commonly referred to as low(n) and high(n), and the propositional variable

associated with the node as var(n). In what follows, we study a special type of BDD

known as Reduced Ordered Binary Decision Diagram (ROBDD), which we propose to

use in ontology debugging. A ROBDD assumes an ordering on the variables over the

formula. However, computing the best ordering is an NP-Complete problem [BW96].

An important property of ROBDD is that formulas that are logically equivalent would

result in the same ROBDD. This is a useful property because it indicates that ROBDD

is a representation that captures the semantics of a formula and not just the syntax.

Note that, a (normal) BDD does not have this property.

5.5.1 Constructing ROBDDs from Propositional Formulas

There are two established approaches to construct an ROBDD [Bry86, Bry92] from a

propositional formula. One approach is to build a Binary Decision Tree (BDT) from

a propositional formula and then apply reduction rules exhaustively to transform the
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BDT into a BDD. The other approach [BRB90] is to build the ROBDD directly from

the propositional formula. The best known algorithm is a bottom-up construction that

applies a number of operations recursively to sub-BDDs of a formula.

We describe below an example that makes use of the first approach to construct an

ROBDD for the propositional formula in Example 5.8. We begin by building a binary

decision tree using the well-known Shannon expansions.

Example 5.22

In Example 5.8, we have a propositional (clash) formula (p∧(p∧q))∨(p∧((p∧q)∨(p∧r)))

∨(p ∧ ((p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s))). This formula consists of 4 variables {p, q, r, s} and

we assume an ordering on these variables: p < q < r < s. The ordering is not necessary

for constructing a BDT but it is necessary to construct an Ordered Binary Decision

Diagram. The notation p < q denotes that the binary variable p is assigned with values

(0 or 1) before an assignment is made to q. By selecting variables based on the defined

ordering, we derive the following expressions using Shannon expansions:

t = p→ t1, 0

t1 = q → 1, t10

t10 = r → 1, t100

t100 = s→ 1, 0

These expressions can be diagrammatically shown as a binary decision tree and we can

further develop it into a binary decision diagram by merging nodes (both branch nodes

and terminal nodes) that are identical. To do that, we create two terminal nodes for the

values 0, 1 (typically shown as boxes with the corresponding values written on them). For

each expression above, in a bottom-up manner (i.e., starting with the last expression),

we create a node for each variable and draw a directed arrow (broken arrow for assigning

a value of 0 and solid arrow for 1) from this node to its successor nodes (i.e., those that

corresponds to the right-hand side of the → in each expression above).

We show below a construction of ROBDD based on the expressions above:

An interesting point to note is that the formula (p∧ (p∧ q))∨ (p∧ ((p∧ q)∨ (p∧ r)))
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Figure 5.5: Binary Decision Diagram for (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s) with p < q < r < s

∨(p ∧ ((p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s))) and (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s) are equivalent to each

other, and they produce ROBDDs that are isomorphic to each other.

5.5.2 Debugging with ROBDD

Here we describe how ROBDD can be used for ontology debugging. Any path from the

root node to terminal node 1 is a repair to the ontology. Paths starting at the root node

and leading to the terminal node 0 corresponds to a non-repair and can be omitted.

In fact, nodes that do not have any paths that leads to terminal node 1 can be safely

disregarded. Similarly, any edges that do not lie on paths leading to terminal node 1 can

also be removed.

By following the assignments along such a path we can restore the consistency of the

ontology. Hence the task of debugging an ontology becomes simply a navigation through

the paths and selecting the one that suits the user’s need.

Figure 5.5 describes the propositional formula (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s) displayed

as a ROBDD. The diagram is rooted at p (the least variable in the ordering), has two
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terminal nodes 0 and 1, and four non-terminal nodes p,q,r and s. It has two paths

leading to terminal 0 and three paths leading to terminal 1. This indicates that there

are two ways to make assignments to the variables such that the formula evaluates to

false, and three ways evaluates to true. Note that, all paths in the diagram adheres to

the variable ordering p < q < r < s. Now, suppose (p ∧ (p∧ q))∨ (p ∧ ((p ∧ q)∨ (p∧ r)))

∨(p∧((p∧q)∨(p∧r)∨(p∧s))) is the clash formula as shown in Example 5.8. It may not be

immediately clear, but this formula is logically equivalent to (p∧q)∨(p∧r)∨(p∧s). That

is, the ROBDD of the clash formula is isomorphic to the one in Figure 5.5. Now, finding

a repair of the ontology amounts to finding a valuation that evaluates the formula to

false. This corresponds to selecting (at least) a path from the root node to the terminal

node 0. As shown clearly in the diagram, there are two alternatives. One is to remove

p, the other is to keep p and remove p, q and r.

Both of these solutions turn out to be prime implicants, but they do not necessarily

have to be so. However, it is possible to generate the prime implicants (hence prime

implicates) for a propositional formula given its ROBDD through a series of reductions.

Though computing an ROBDD is computationally as expensive as finding prime

implicates and implicants, ROBDD presents a much more user-friendly interface for

debugging ontologies. Moreover, the presentation of an ROBDD is usually much more

compact than that of prime implicates and implicants that often contain a large amount

of redundant information.

5.6 Summary and Discussion

In this chapter, we studied the problem of ontology debugging by presenting algorithms

with desirable properties that guide ontology engineers to construct and repair ontologies.

We presented extensions to a well known tableau-based algorithm known as labelled con-

sistency algorithm that builds traces as propositional formulas to obtain the necessary

information to resolve logical inconsistencies by computing the Maximally Satisfiable

Subsets (MSSes) (and Minimally Unsatisfiable Subsets (MUSes) of terminologies). In

particular, we extended the labelled consistency algorithm for ALC to handle General



5.6 Summary and Discussion 125

Inclusion Axioms (GCIs). We showed that classical blocking is not sufficient to guaran-

tee completeness in the presence of cyclic definitions and we proposed a refined blocking

condition called subset label blocking for circumventing this problem. In addition, we

proved that the labelled consistency algorithm for GCIs preserve a number of desir-

able properties, including soundness, completeness and termination. Furthermore, we

presented the labelled consistency algorithm for both ALCI and SI with GCIs, and

we showed that these algorithms also ensures soundness, completeness and termination.

Finally, we argued that building traces as propositional formulas has a number of advan-

tages over building traces as multisets of indices. We described how these propositional

formulas can be represented as Reduced Ordered Binary Decision Diagrams (ROBDDs)

and that ROBDDs are suitable diagrammatic tools for repairing ontologies. In the fol-

lowing chapter, we will present implementation details and some experimental results of

the labelled consistency algorithms described in this chapter.



Chapter 6

Conclusion

In this final chapter, we provide a summary of the research results we have presented in

the earlier chapters.

6.1 Ontology Contraction

In Chapter 3 we considered the problem of ontology contraction in a setting where there

is a finite set of description logic sentences A and we are to contract a DL sentence α

from it in a logically consistent manner. This problem is similar to the problem of belief

contraction in the AGM framework, but AGM theory is defined under propositional

assumptions for belief sets, whereas we are considering the problem in description logic

and adopting the belief base approach. It is well-known [MLB05, FHP+06] that DL

lacks the expressive power to apply some of the AGM theory directly. In particular, the

well known Levi identity cannot be used without negation being defined for all sentences

in the language, while negation of axioms cannot be expressed in DL. We showed that

classical remainder set, as used in the belief contraction framework to construct partial

meet construction, has limitations when applied in the description logic setting.

Though we showed through example that partial meet contraction can be directly

used by treating DL sentences as propositional sentences (hence satisfying the partial

meet contraction postulates for belief bases), we also demonstrated that this would lead

to counter-intuitive results.

126



6.1 Ontology Contraction 127

6.1.1 Remainder Set for Description Logics

Realising this limitation, we introduced the notion of exceptions first published in our

work [MLB05] and later extended by Qi et al. [QLB06]. We presented a construction of

the remainder set for DL A⊥dlα using the notion of exceptions and we showed that it is a

refinement of the classical remainder set A⊥α, in the sense that our construction would

lead to more refined solutions than that of the classical remainder set when being applied

to DL sentences. We argued that this is a desirable result because it is consistent with the

Principle of Minimal Change, which is widely adopted in the Belief Change community.

6.1.2 Revised Partial Meet Contraction Postulates for Ontology Bases

In addition, we extended the construction of the remainder set of DL to partial meet

contraction for belief bases similar to that of classical remainder set, and we observed

that our contraction operator no longer satisfies the classical partial meet contraction

postulates for belief bases. We realised that this is due to the fact that we are no

longer building remainder set based on subsets, so we presented weakened versions of

the contraction postulates. More specifically, we revised the inclusion and relevance

postulates and we showed that our construction satisfies all of the revised postulates.

(Success) If α 6∈ Cn(∅), then α 6∈ Cn(A÷ α)

(Inclusion’) If β′ ∈ A÷ α then β′ ∈ Cn({β}) for some β ∈ A

(Relevance’) If β ∈ A and β 6∈ A÷α, then there is a set A′ such that A÷α ( A′ ( A

and that α 6∈ Cn(A′) but α ∈ Cn(A′ ∪ {β})

(Uniformity) If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈

Cn(A′), then A÷ α = A÷ β.

(Success’) ensures that the contraction operation does in fact have the sentence re-

moved, except in the case where the sentence a tautology. (Inclusion’) captures the
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notion that every weakened sentence must originate from the original set of sentences.

It is a weakened version of the classical inclusion postulate in the sense that every con-

traction operator that satisfies the classical inclusion postulate must also satisfy (Rele-

vance’) ensures that every weakened sentence must have a good reason, i.e., a sentence

is not to be weakened if it is not necessary to ensure consistency. (Uniformity’) imposes

a view that sentences which are the same from the perspective of A are treated equally

and produce the same results.

Moreover, we introduced the notion of multiple contraction for DL. We presented

both the notion of partial meet package contraction and partial meet choice contraction,

as well as a revised set of multiple contraction postulates for each of them.

6.2 Ontology Integration

In Chapter 4, we extended our framework to knowledge integration where we considered

integration of stratified DL knowledge bases. Our work was motivated by Benferhat

et al. [BKLBW04] where they presented the notion of adjustment in the propositional

setting. In the propositional setting, the problem of knowledge integration concerns with

the integration of a stratified knowledge base where each stratum is a set of propositional

sentences.

6.2.1 Conjunctive Max-Adjustment (CMA)

We introduced the notion Conjunctive Maxi-Adjustment (CMA) in the propositional

setting, similar to (whole) Disjunctive Maxi-Adjustment (DMA) in [BKLBW04]. The

idea is to traverse through the stratified knowledge base one sentence by one sentence to

accumulate a set of consistent sentences, from the stratum with the highest preference

to the stratum with the lowest preference. At each stratum, we collect sentences that

do not conflict with the accumulated set of sentences. If a sentence conflicts then we

weaken it until it is consistent and then collects it into the accumulated set.

In addition, we showed that the lexicographic entailment relation constructed from

the lexicographic ordering of the set of propositional interpretations corresponds exactly
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to the CMA construction.

K |=lex φ if and only if δcma |= φ

We recasted the notion of adjustment into the DL setting. For this reason, we intro-

duced the notion of disjunctive knowledge bases that allows disjunction of DL sentences

to be expressed adequately. We did this because disjunction of sentences generally cannot

be expressed in description logics. In particular, disjunctions of combinations of concept

assertions and role assertions are not syntactically valid DL sentences and therefore they

have no proper semantics. We introduced this notion so that we could express the results

of adjustment adequately in DL.

6.2.2 Knowledge Integration in Description Logics

We addressed the problem of knowledge integration in the DL setting where DL sentences

are presented as a stratified knowledge base, with each stratum being a multiset of DL

sentences. We made use of the notion of disjunctive knowledge base to express the

result of integrating a stratified knowledge base. We presented the construction for

CMA-DL based on the idea of CMA but adapted into DL. We made use of the notion of

exceptions again to construct weakened DL sentences as we did in Chapter 3. In addition,

we introduced the semantics of exceptions by defining the number of exceptions of an

interpretation I for a TBox sentence of the form C ( D.

eI(C ( D) = |CI ∩ ¬DI |

Similarly, we extended this notion to sets of TBox sentences and then to sets of ABox

sentences. These notions were refined by [QLB06] based on our work in [MLB05]. We

presented the notion of lexicographic ordering of DL interpretations using the notion of

exceptions and based on the minimal models of the lexicographic ordering we introduced

lexicographic entailment for DL. Moreover, we proved that CMA-DL corresponds exactly
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to lexicographic entailment for DL and we obtained the following property:

K |=lex φ if and only if δcma−dl |= φ

We then showed on examples that there are limitations to CMA-DL, in particular it does

not exploit the structure of DL sentences properly. In response to this, we made use of a

construct (invented in [BBH96]) called cardinality restriction on concepts, to produce a

refinement of CMA-DL called RCMA-DL. Similarly, we established the correspondence

of RCMA-DL with lexicographic entailment:

K |=lex∗ φ if and only if δrcma−dl |= φ

It is important to note that there is a close connection between nominals and cardinality

restriction on concepts. It is possible to express one in terms of the other and vice versa.

6.3 Ontology Debugging

In Chapter 5 we investigated on a tableau-based algorithm for computing Maximally Sat-

isfiable Subsets (MSSes) of a TBox. It should be noted that there is a close relationship

between MSSes and Minimally Unsatisfiable Subsets (MUSes) and it has been showed in

the literature [Sch05b] that one could convert from one to another using the hitting set

algorithm. This problem was first explored in the DL context by Baader et al. [BH95]

and later in Schlobach et al. [Sch05b]. There is also a large body of work in this area

using various strategies, including automata based methods and structural subsumption.

Baader et al. used the name labelled consistency algorithm in their work [BH95], so we

followed this convention.

6.3.1 Labelled Consistency Algorithm for Cyclic Definitions

We discovered a problem with the labelled consistency algorithm in the presence of

cyclic definitions. In particular, we showed that the labelled consistency algorithm with
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classical subset blocking will not guarantee completeness. However, the procedure will

still terminate and the results it produces will still be sound. We produced examples

that demonstrated this behaviour. In addition, we showed that a more refined blocking

is needed for the labelled consistency algorithm in the presence of cyclic definitions. We

named this blocking condition labelled subset blocking and we showed that it is suitable

for description logics that use subset blocking.

Let Φ and Ψ be sets of labelled assertions. Φ ⊆̃Ψ if and only if for each labelled assertion

α̃ ∈ Φ implies α̃ ∈̃Ψ. Equivalently, Φ ⊆̃Ψ if and only if it satisfies:

1. if αφ ∈ Φ then αψ ∈ Ψ (φ and ψ may be different)

2. For each assertion α such that αφ ∈ Φ and αψ ∈ Ψ, φ implies ψ

We extended the proof by Baader et al. [BH95] and showed that under the labelled

subset blocking, the labelled consistency algorithm is both sound and complete.

6.3.2 Reduced Ordered Binary Decision Diagram (ROBDD)

We argued that the labelled consistency algorithm has an advantage over other existing

approaches. In particular, the labelled consistency algorithms keeps track of the trace as

a propositional formula. Propositional formula is not just a more compact representation

to keep track of the trace but also has the advantage of being able to convert to a Reduced

Ordered Binary Decision Diagram (ROBDD) that can be used directly as a diagrammatic

tool to debug an ontology. We showed that a repair to an ontology corresponds to

choosing one path in the ROBDD. In addition, we argued that conversion to ROBDD

is desirable because there are efficient algorithms to convert a propositional formula to

ROBDD and from ROBDD to other compact and useful representations. For example,

the problem of ranking axioms mentioned in [KPSCG06] relates closely to optimising

ordering of variables in ROBDDs [BW96].
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6.4 Future work

6.4.1 On the Relation of Partial Meet Contraction and Kernel Con-

traction for DL

We presented in Chapter 3 the notion of remainder set for DL, which takes advantage of

the structure of DL sentences and produces more refined solutions than that of classical

remainder set. We showed also that the notion of remainder set for DL allows us to

produce the partial meet contraction for DL that satisfies a set of refined contraction

postulates. In classical belief contraction, it is possible to establish a relation between

partial meet contraction and kernel contraction. In fact, it has been shown that kernel

contraction is more general than partial meet contraction [RW08]. It has also been shown

that remainder sets can be obtained from incision functions by finding the minimum

hitting sets [Rei87, FFI06]. However, we argued also in Chapter 3 that it is difficult

to apply the same technique to produce kernel contraction for DL. In particular, it is

unclear how one could perform set subtraction on a set A \ σ(B ⊥⊥ α), where σ(B ⊥⊥ α)

is a weakened set of DL sentences. We believe it is possible to make use of the work on

concept description subtraction [Tee94]. However, this work only talks about concept

description subtraction, whereas we need subtraction of DL sentences in our case. We

will explore this issue in our future work.

6.4.2 Performance Evaluation of the Labelled Consistency Algorithm

We studied in Chapter 5 the labelled consistency algorithm, which was first introduced by

[BH95] and we defined new notion of blocking that ensures completeness of the algorithm

in the presence of cyclic definition. A major criticism of this work, however, is that the

labelled consistency requires that the labelled algorithm is completely saturated, and

therefore it is believed to be computationally expensive. It was also argued in [Kal06] that

computing a single solution and then using the hitting set algorithm can be more efficient.

We believe it is possible to obtain results that are comparable to existing approaches.

We argue that most experimental results on ontology debugging were obtained from

ontologies with artificially created inconsistencies, and these ontologies contain relatively
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small number of inconsistencies compared to the size of the whole ontology. We believe

that this is not sufficient to show the actual performance of the existing approaches. We

argue that the labelled consistency algorithm could produce equally good results.

In response to this, we have implemented a prototype for the labelled consistency

algorithm described in Chapter 5 and have run our implementation against a number

of well-known ontologies including: (1) the Camera ontology with 12 axioms and 14

concepts; (2) the Koala ontology with 29 concepts and 19 axioms; and (3) a simplified

version of the DICE terminology with 527 concepts and 536 axioms, and with the 21

disjointness axioms disabled.

In each case, we execute our labelled consistency algorithm to find the A-MSSes

for every concept name occurring in the ontology and our algorithm would return a

propositional formula for each input concept indicating what is needed to make the

concept satisfiable. If a concept is already satisfiable then our algorithm would return

-, meaning that every valuation would result in a satisfiable concept. In other words, no

repair is required. On the other hand, if a concept is not satisfiable then each evaluation

of the output formula corresponds to a repair of the intput concept. For example,

an output of ¬p ∧ ¬q means that we need to remove both sentences tagged with the

propositional variables p and q.

We conducted our experiments on a standard Linux (Debian) machine with a 2.53GHz

Intel Pentium 4 processor, 512KB cache and 512MB of physical memory. Our implemen-

tation was developed in Java (JDK 1.5.0) without using any of the existing reasoners.

That is, we developed our own tableau algorithm, as well as the modification needed to

turn it into a labelled algorithm. However, this also means that we did not inherit any

implementation of optimisations from existing reasoners. Instead, we implemented our

own ordering heuristics which allows any ordering of expansion rules to be specified, and

such optimisation can have a significant impact on performance. In our evaluation, we

performed all experiments using the following fixed ordering of expansion: (1) )-rule (2)

D+- and D−-rules; (3) *-rule; (4) ∃-rule; (5) ⊥-rule.

In comparison to using FACT++ as a black box for finding the A-MSSes of DICE,

it takes 527 satisfiability checks to determine that 109 concepts are satisfiable, then
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Ontology Name Parsing Finding A-MSSes No. of Unsatisfiable Concepts

Camera 83ms 83ms 3/14
Koala 86ms 131ms 3/29
DICE 282ms 7017ms 109/527

Figure 6.1: Experimental Results of Finding A-MSSes with the Labelled Consistency
Algorithm

additional 109× 515 checks to determine all A-MSSes for all concepts in which exactly

one axiom is excluded, and then 2 × (515 × 514/2) to find the A-MSSes in which two

axioms are excluded. In total, this required 321, 372 satisfiability checks. The algorithm

takes about 0.2ms for FACT++, implemented on the same machine as our algorithm,

to perform a satisfiability check for one of the DICE concepts. This means it takes

FACT++ 64.274 seconds to find all A-MSSes, but without a guarantee that all A-MSSes

have been found. At this stage it is too early to draw any meaningful conclusions, but

the results obtained so far merit a more detailed investigation.

Our next step is to create artificial ontologies with a large number of inconsistencies,

which would allow us to make comparisons with existing approaches.
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entailments in Protégé 4. In Proceedings of the 7th International Semantic

Web Conference (Posters & Demos), 2008.

[HS99] Ian Horrocks and Ulrike Sattler. A description logic with transitive and

inverse roles and role hierarchies. Journal of Logic and Computation,

9(3):385–410, June 1999.

[HS07] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ.

Journal of Automated Reasoning, 39(3):249–276, October 2007.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for

expressive description logics. In Proceedings of the 6th International Con-

ference on Logic Programming and Automated Reasoning, pages 161–180.

Springer, 1999.



BIBLIOGRAPHY 141

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for

very expressive description logics. Logic Journal of the IGPL, 8, 2000.

[HVHT05] Zhisheng Huang, Frank Van Harmelen, and Annette Ten Teije. Reason-

ing with inconsistent ontologies. In Proceedings of the 19th international

joint conference on Artificial intelligence, IJCAI’05, pages 454–459. Mor-

gan Kaufmann Publishers Inc., 2005.

[HWK06] Christian Halaschek-Wiener and Yarden Katz. Belief base revision for ex-

pressive description logics. In Proceedings of The International Workshop

on OWL: Experience and Directions, volume 216 of CEUR Workshop Pro-

ceedings. CEUR-WS, 2006.

[Kal06] Aditya Kalyanpur. Debugging and repair of owl ontologies. PhD thesis,

University of Maryland at College Park, 2006. AAI3222483.

[KH08] Uwe Keller and Stijn Heymans. The SAT-tableau calculus. In Proceedings

of the 21st International Workshop on Description Logics, volume 353.

CEUR-WS, May 2008.

[KKIM02] Kouji Kozaki, Yoshinobu Kitamura, Mitsuru Ikeda, and Riichiro Mi-

zoguchi. Hozo: An environment for building/using ontologies based on

a fundamental consideration of “role” and “relationship”. Knowledge En-

gineering and Knowledge Management: Ontologies and the Semantic Web,

pages 155–163, 2002.

[Kli08] Pavel Klinov. Pronto: a non-monotonic probabilistic description logic rea-

soner. In Proceedings of the 5th European semantic web conference on

The semantic web: research and applications, ESWC’08, pages 822–826.

Springer, 2008.

[KPGS05] Aditya Kalyanpur, Bijan Parsia, Bernardo C. Grau, and Evren Sirin.

Tableaux tracing in SHOIN . Technical Report UMIACS-TR 2005-66,

University of Maryland at College Park, 2005.



BIBLIOGRAPHY 142

[KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Find-

ing all justifications of OWL DL entailments. In Proceedings of the 6th

International Semantic Web Conference, pages 267–280. Springer, 2007.
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