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Abstract 

In this thesis, fluid flow in naturally fractured reservoirs with arbitrarily oriented fractures is 

simulated and the flow mechanism in matrix and fracture and their interactions are studied. 

Three different algorithms are presented to simulate single and two phase fluid flows through 

naturally fractured reservoirs. These are a grid based effective permeability tensor model, a 

single phase fluid flow simulator, and a two phase flow simulator. In order to validate the 

numerical work, series of laboratory experiments are designed and conducted. The grid based 

effective permeability is a unique tool that allows the use of the actual geometry of the fracture 

networks in the calculation of block permeabilities. The tensors are obtained by the boundary 

element method along with periodic boundary conditions. This numerical model includes 

multi-scale fractures and uses an appropriate methodology for each type of fracture, i.e. short, 

medium and long fractures. The model incorporates fluid flow in matrix, at the matrix-fracture 

interface and from fracture to fracture. It also assesses the effect of disconnected fractures on 

fluid flow. The computational efficiency of the presented model is improved in this thesis. 

In the second algorithm, a simulation model based on the grid based effective permebailities is 

presented. This is a finite element model that calculates pressures and production rates in 

naturally fractured reservoirs with arbitrary oriented fractures. To demonstrate an application 

of this model, a slice of fracture networks from a fractured basement reservoir of the Amadeus 

Basin is simulated. First, the permeability tensor model is used to obtain the grid based 

permebailities. Then the flow simulator is fed by the grid block permeabilities to calculate 

pressure and velocity profiles throughout the reservoir. In one case, reservoir was depleted 

(depletion case), while in the second case, a five spot injection production scenario was 

modelled. Results show the importance of fracture networks in the fluid flow simulation, as 

flow is highly influenced by the connectivity of the fractures and the orientations.  
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A new laboratory-based glass bead model is introduced to visualize fluid flow through matrix 

and fractures as well as to measure absolute and relative permebailities of homogeneous and 

fractured porous media. In the experiments, the matrix and fracture are represented by two 

different sizes of glass beads. Single phase experiments are performed for single and multiple 

(two) fractures and the absolute permebailities are measured. These permeabilities are used to 

validate the permeability tensor model for single and multiple (two) fracture systems. 

Displacement tests for oil-water systems are conducted for homogeneous and heterogeneous 

systems. Pressures and productions are recorded for different realizations of fracture 

networks, and then the history matching technique is employed to obtain final relative 

permeability curves by using black oil simulator (CMG).  

In the third algorithm, a two phase fluid flow (oil-water) model is presented. This model uses 

the finite difference method and calculates the pressure and saturations for fractured 

reservoirs. The IMPES method is adopted to solve pressures implicitly and saturations 

explicitly. The aim of this model is to simulate the laboratory based homogeneous and 

heterogeneous systems. Finally, laboratory obtained relative permeabilities are fed to the two 

phase flow model to estimate and compare the pressures and productions for homogeneous 

and heterogeneous systems. A reasonable agreement between the results is found which 

ensured the efficiency and accuracy of the numerical model as laboratory experiments 

provide authentic validations for numerical models.  

In the final step, a new methodology is presented to upscale the laboratory-derived two-phase 

relative permeability relationship for different fracture systems to the reservoir scale. As an 

application, the proposed upscaling procedure is applied to a multi-fracture region of 

1000m×1000m of the Amadeus Basin. Results reveal that the laboratory-based relative 

relative permeability based on simplified fracture-matrix geometries can form the benchmark 

data which can be upscaled for the field applications.     
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       Chapter 1 

             Introduction 

The fluid flow mechanisms through naturally fractured reservoirs are not well understood. This 

is mainly because fluid flow process in such reservoirs includes complicated mass transfer 

between two different media. In addition arbitrary orientations of natural fractures with 

variable lengths and sizes inside the matrix make it computationally difficult to simulate the 

flow through fractured media.  

The study of flow and transport processes in fractured rock has recently received increased 

attention because of its importance to underground natural-resource recovery, waste storage, 

and environmental remediation.  Since the 1960s, significant progress has been made towards 

the understanding and modelling of flow and transport processes in fractured rock (Barenblatt 

et al. (1960); Warren and Root (1963); Kazemi (1969); Pruess and Narasimhan  (1985)). 

Despite these advances, modelling the coupled processes of multiphase fluid flow, heat 

transfer, and migration of chemical species in a fractured porous medium remains a conceptual 

and mathematical challenge. The difficulty stems primarily from (1) the nature of inherent 

heterogeneity, (2) the uncertainties associated with the characterization of a fracture-matrix 

system for any field-scale problem, and (3) the difficulties in conceptualizing, understanding, 

and describing flow and transport processes in such a system. Currently, the approaches to 

model fluid flow through naturally fractured reservoirs include dual porosity/permeability, 

discrete fracture approach and hybrid scheme. 

In dual porosity/permeability approach, matrix and fractures are considered as two interacting 

continua where matrix and fracture are two parallel layers with infinite length. Mathematical 

modelling describing dual porosity/permeability approach involves developing conceptual 
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models, incorporating the geometrical information of a given fracture-matrix system, and 

setting up the general mass and energy conservation equations for overlapping fracture matrix 

domains. The majority of the computational effort is used to solve the governing equations that 

couple fluid and heat flow either analytically or numerically. The key issue for simulating flow 

and transport in fractured rock is how fracture and matrix interact under different reservoir 

conditions. The commonly used mathematical methods for dealing with such interactions 

include: (1) an explicit discrete-fracture and matrix model (e.g., Snow (1969); Sudicky and 

McLaren (1992)), (2) the dual-continuum method [including double- and multi-porosity, dual-

permeability, or the more general "multiple interacting continua'' (MINC) method (e.g., 

Barenblatt et al. (1960); Warren and Root (1963); Kazemi (1969); Pruess and Narasimhan 

(Pruess 1985); Wu and Pruess (1988)], and (3) the effective-continuum method (ECM) (e.g., 

Wu (Wu 2000)). The main drawback with this approach is that it assumes a very simplified 

geometrical representation of matrix and fracture. 

In discrete fracture approach each fracture and matrix is discretized by a mesh system. 

Equations of fluid flow through matrix and fractures were solved by both exact and 

approximate methods, e.g. boundary element (Lough et al. (1998)), finite element (Kazemi et 

al. (1976)), finite volume methods (Niessner(2005)) and mixed finite element method (Hoteit 

and Firoozabadi 2008). These discrete models require extremely high computational time 

which limited its application to small blocks within a domain with few fractures. In order to 

overcome the computational problem associated with discrete fracture approach, hybrid 

schemes have been developed. In this method a grid based effective permeability tensor 

concept was developed (Lough et al. (1998), Castaing et al. (2002), Park and Sung (2000), 

Gupta et al. (2001), Detournay (2004)). Each grid block with fractures is replaced by a 

homogeneous grid block with an equivalent permeability tensor. Gupta et al. (2001), 

Castaing(2002) and Detournay(2004) have considered the fluid flow through fractures while 
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ignoring the contribution of matrix to flow. Lough et al. (1998) and Park and Sung (2000) on 

the other hand considered flow through both matrix and fracture, however, the authors ignored 

fluid flow interaction between matrix and fracture. Teimoori et al.[(2003); (2005)] presented a 

comprehensive grid based effective permeability tensor method in which authors accounted for 

the fluid flow through matrix, through fracture and matrix-fracture interface. In this study small 

to large fractures with their individual properties are taken into account. Boundary element 

technique was used to formulate the integral equations for fluid flow in which quadrature based 

formula was used to solve the integral equations. This approximation has made the solution 

unstable for medium to high density fracture system. 

Most of previous work to simulate fluid flow in naturally fractured reservoirs is limited to the 

fluid flow through interconnected fracture networks and the matrix contribution to the flow is 

ignored. Due to the geometrical complexities associated with the nature of fractured porous 

media, it is always required to develop a computationally efficient numerical model for flow 

simulations. Moreover, literature review shows that numerical models are being validated 

against analytical solutions and an authentic laboratory validation for fluid flow simulation 

models is still needed.    

In an effort to improve the understanding of simulation of fluid flow in naturally fractured 

reservoirs, this thesis aims to develop an efficient grid-based effective permeability tensor 

model for fractured reservoirs by using the most recent hybrid schemes while taking into 

account the actual geometry of fracture networks. To check the reliability of the numerical 

model, experimentally measured permeability of synthetic fractured networks is used. Next, to 

evaluate the production potential of a naturally fractured reservoir, the thesis presents a 

numerical model that can efficiently simulate the pressures and velocities using the grid-based 

permeability tensor of the fractured reservoirs.  
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Next, the thesis extends the single-phase simulation to two-phase fluid flow. For this purpose, 

an innovative laboratory model is designed and constructed. Drainage displacement tests (oil 

displacing water) allow us to derive the relative phase permeabilities for different synthetic 

fractured media. Then this oil-water flood is numerically simulated and the results are 

compared with the aim to assess the capability of the proposed numerical tool. 

Furthermore, a new methodology is proposed to upscale two-phase relative permeability of 

fractured systems from the laboratory (10cm×20cm) to the reservoir scale (1000m×1000m). A 

commercial black-oil numerical reservoir simulator (CMG IMEX) is used to history match the 

grid blocks from the lab scale to the reservoir scale. Procedure for upscaling is described and 

applied to a multi-fracture basement reservoir to show the application of laboratory-derived 

relative permeabilities for different fracture systems.  

This thesis is presented in five chapters according to the objective of the study. To achieve the 

aims of the study and present it clearly the objective is divided into two major parts; 

experimental and numerical studies. 

In chapter two, experimental determination of permeability for fractured porous media is 

presented.  This chapter contains a detailed literature survey, used experimental setups and 

adopted experimental procedures for conducting single and two phase fluid flow experiments. 

Results for single and two phase flow experiments are presented and discussion has been 

associated in this chapter. 

In chapter three, first, theoretical background and mathematical formulation for the calculation 

of effective permeability tensor model is presented. It contains the process of deriving 

boundary integral equations and provides details about discretising the problem using 

boundary element method. Results of the effective permeability tensor model are compared 

against the analytical solution as well as experimental results. Different numerical experiments 
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are presented to show the application of the model. Next, permeability tensors are incorporated 

in fluid flow model to estimate pressure and velocity profile throughout the reservoirs as well 

as estimation of well productivity. 

In chapter four, a numerical model for multiphase (two-phase) fluid flow in a laboratory scale (

10 20cm cm ) reservoir with single and multiple fractures (both intersected and non-

intersected) is formulated. The numerical results are compared against two phase flow 

laboratory results for validation. 

In chapter five, a new methodology to up-scale two phase relative permeability for fractured 

systems from laboratory scale (10cm×20cm) to reservoir scale (1000m×1000m) is presented. 

The upscaling procedure is well described and then applied to a multi-fracture 1000m×1000m 

region of the Amadeus reservoir. History matching results are presented for each step of 

upscaling and are discussed in detail. 

In chapter six, conclusion is drawn for the findings of this study. Also this chapter offers future 

recommendations in the area of the study.   
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                  Chapter 2 

Laboratory Determination of Absolute and Relative Permeability of 

Fractured Porous Media 

In this chapter, single and two phase flow visualisation experiments are presented. The 

objective of visualization study is to understand the flow interaction between matrix and 

fracture. The motivation behind this work is to investigate the effect of permeability 

heterogeneity on fluid flow. Numerical models have been commonly used as a tool to 

estimate permeability of naturally fractured reservoirs.  The results of these models are 

usually compared against analytical solutions and need for an authentic laboratory data for 

validation purpose is required. One of the objectives of this study is to provide a laboratory 

validation of numerical models to estimate permeability of fractured porous media. 

Another aim of this study is to investigate the interaction of more than one fluid phase on 

each other in the presence of natural fractures. In fact the effect of natural fractures on 

immiscible flow has been examined which provided an insight to understand heterogeneity 

effect on fluid relative phase permebailities. 

To achieve these objectives an innovative laboratory model is designed and built. 

Experimental set up and procedures for single and two phase flow are discussed throughout 

in this chapter. Absolute permeabilities have been measured for homogeneous and 

heterogeneous systems using single phase displacement experiments. Pressure and production 

data is obtained for two phase flow experiments and this data is tried to be matched using 

history matching technique. Laboratory based glass bead systems used for two phase flow are 

constructed using simulator CMG to obtain final relative permeability curves. A review of 

previous works about fluid flow behaviour in fractured porous media is presented next in this 
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chapter. Experimental results containing pressure and production profiles and relative 

permeability curves at two different constant flow rates are further discussed in this chapter.   

2.1 Literature Review 

Many laboratory based works have been done in the past on heterogeneous reservoirs. Dawe 

and Grattoni (2008) investigated the effect of heterogeneity on miscible and immiscible fluid 

flow displacements through 2D glass bead pack. A 2 2 quadrant block geometry was 

designed and built to observe the effect of permeability as well as wettability heterogeneity. 

Boundary effects were observed for immiscible flow which was caused by capillary pressure 

differences created by water saturation changes or wettability contrasts. However, as the 

resulting flow behaviour has not been much discussed in literature, it was concluded that 

experimental results can be used as a benchmark to test up-scaling methods as well as 

verification of simulation models for two phase flow.  

Li and Horne (2009) proposed a fractal technique to characterize the capillary pressure curve 

for Gaysers rock and concluded that values of fractal dimensions can be used to represent the 

heterogeneity of different rock samples quantitatively. Unlike the Berea sandstone, the 

capillary pressure curves of The Gaysers rock could not be represented using the frequently 

used Brooks and Corey model because of the presence of fractures (Li and Horne 2009). 

An experimental study of single and two phase flow through fractured granite specimen was 

performed by Ranjith (2010). Triaxial tests were conducted to find out the flow behaviour 

within rock fractures; e.g. laminar, turbulent. It was concluded that single and two phase flow 

through fractures can be characterized as laminar flow provided that the moderate inlet fluid 

pressures are applied. However an increase in inlet air pressures may cause a turbulent flow 

for single phase air flows (Ranjith 2010). 
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Relative permeability is a function of several key parameters that includes; pore scale 

geometry including porosity and permeability, pore distribution e.g. pore scale heterogeneity, 

rock fluid interaction e.g. capillarity and wettability, initial fluid saturation distribution and 

fluid velocity (Goda and Behrenbruch 2004). A new Brooks-Corey type approach was 

introduced by Goda and Behrenbruch (2004) to study relative permeability data for different 

rock types for Australian fields with a focus on geology of reservoirs. A number of fields and 

laboratory data were analysed and new and alternative formulation was applied and compared 

against Modified Corey Model. It was concluded that the new formulation matches the oil 

experimental results better than the MBC model results. 

 Kewen Li (2010) coupled three fluid saturation functions; resistivity index, capillary 

pressure and relative permeability, and concluded that these functions can be inferred from 

each other if one of these parameters is known. Abtahi and Torsaeter (1998) presented visual 

two dimensional model experiments for homogeneous and heterogeneous porous media. The 

objective was to investigate up-scaling of laboratory relative permeability and capillary 

pressure curves to a typical reservoir grid block. A three step up-scaling process was 

introduced to capture the effect of small scale heterogeneity to medium scale and finally to 

the large grid and results were compared against laboratory results. 

A balance between capillary, viscous, and gravitational forces during 2CO  injection into 

saline aquifers was investigated by Polak et al (2011). Quasi two dimensional glass bead pack 

experiments were performed to demonstrate the effect of mentioned three forces on the 

vertical flow of 2CO . It was concluded that gravitational forces are dominant for the case of 

low injection rate and high permeability causing less brine displacements. On the other hand 

higher injection rate caused more fingering but increased total brine displacement. 
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Relative permeability measurements for two phase flow for unconsolidated sands were 

carried out by S. Abaci et al. (1992)using steady state technique. The objective of this work 

was to generate two phase flow data for combination of liquids and gasses that could be used 

for numerical modelling studies. Effects of rock heterogeneities on the flow functions are 

demonstrated by one and two dimensional experimental study by Sylte et al. (1998). It was 

discussed how inaccurate modelling of heterogeneities can cause large errors in estimation of 

two phase flow functions even for moderate heterogeneity.  

A three dimensional , numerical simulator for single and two phase oil and water  simulation 

is presented by Kazemi et al. (1976). The simulator accounts for fluid relative mobilities, 

gravity effects and imbibition. Also uniformly and non-uniformly distributed fractures can be 

handled by the simulator. The interaction of two immiscible fluids within a deforming porous 

medium are studied and modelled by Zienkiewics  (1990). Finite element method is used to 

discretise the governing equations to solve for rock displacement, pressures and wetting 

phase saturations throughout the reservoir. Linear problems are illustrated in this work and 

authors recommend further research for highly no linear problems. Maier et al (1998) used 

lattice Boltzmann method to simulate viscous fluid flow through a column of glass beads. 

Simulated flow in bead packs are compared against experimental flow. 

The main conventional methods to simulate two phase fluid flow through fractured networks 

are finite difference (FD) method, finite element (FE) method and finite volume (FV) 

method. All the conventional methods have their inherent limitations such as FD method is 

restricted to only horizontal and vertical fractures. FE method can not capture the saturation 

discontinuity at matrix-fracture interface whereas accuracy of FV method depends on size of 

matrix grids next to fracture, for an acceptable accuracy the matrix grid size next to fracture 

should be small. Hotiet and Firrozabadi (2008) presented an efficient numerical model for 

incompressible two phase flow in fractured porous media. An additional feature of this work 
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is the use of mixed finite element (MFE) method to calculate matrix-fracture and fracture-

fracture-fracture fluxes. On the other hand, discontinuous Galerkin (DG) method is used to 

approximate the saturation equations. It was concluded that capillary pressure reduces water 

velocity in the fracture and therefore improves recovery (Hoteit and Firoozabadi 2008).  

A fracture only model is introduced by Unsal et al. (2010) for simulation of multiphase flow 

through fractured porous media where fracture geometry is modelled explicitly, and fluid 

movement between matrix and fracture is modelled using empirical transfer functions. This 

hybrid scheme could capture the advantages of dual porosity as well as discrete 

fracture/discrete matrix (DFDM) approach. Shad and Gates (2010) derived an analytical 

theory to obtain relative permeability curves for multiphase flow in fractures. The results of 

their study showed that change in fluid saturations due to gravity effects can change a co 

current flow to a counter current one.  

2.2 Single Phase Flow Visualization Experiments 

2.2.1 Experimental Set-up 

A quasi 2-D glass bead model of size 221 21cm  was designed and built for flooding 

experiments (Fig. 2-1). Glass beads were sandwiched between two glass plates which were 

glued together with a gap of 0.2cm . A homogeneous model was prepared using glass beads of 

only one range of bead sizes while the heterogeneous model comprising of fractures and 

matrix was built using glass beads of two different ranges of bead sizes. The range of larger 

bead sizes represented the fracture whereas the small sizes range the matrix as shown in Fig. 

2-1. 
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  Figure 2-1: Schematic of glass bead model used for single phase flow experiments 

The range of mesh size used as matrix glass beads is -100+140 while -30+40 for fractures, 

which represent bead sizes of 105 149 m  and 420 590 m  for matrix and fractures, 

respectively. The model was designed in an efficient way that allowed us to not only to 

perform experiments with one realisation of fractured system but after that it could be 

unscrewed, cleaned, dried and made it ready for another experiment with a different 

realisation of the fractured system. A high accuracy piston pump was used to obtain various 

constant injection rates and the effluent was collected at the outlet by means of a tubing 

connected to the production points. A digital camera was used to take pictures of the fluid 

displacement process during the experiments. A fluorescent light source was placed 

underneath the model to enhance the picture quality. 

 



2.2.2 Experimental Procedure 

A schematic representation of the experimental setup is shown in Fig. 2-2. Firstly, the air in 

the glass bead model was displaced with carbon dioxide to avoid any air entrapment in the 

pore space. Then distilled water was injected into the model from bottom in a vertical 

position. The weights of the dry and wet model were taken and the difference in weight was 

used to estimate the pore volume using density of water at ambient conditions. It should be 

noted that the dead volume of water (water present in the mixing zone and tubings see Fig. 2-

1) was subtracted from the obtained volume to calculate original pore volume. Then porosity 

was calculated using the bulk volume of the model. The pressure drop was recorded for each 

constant flow rate which ranged from lcm3/min to 8cm3/min with an interval of lcm3/min. 

Collector 

Glass Beads 
Model 

Pressure 
Gauge 

Figure 2-2: Schematic ofthe experimental setup (Single Phase Flow) 

The permeability of the glass bead model was calculated using the Darcy's law by plotting 

Q M> 
- (m/sec) against - (Palm). Here, Q is the constant flow rate (m3/sec ), A is the cross 
A L 

12 
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sectional area (m2), and P (Pa) is pressure differential applied across the length L(m) of the 

model. The slope of the plot gives 
k


 (m2/Pa-sec) which is multiplied by the viscosity of 

water µ (Pa-sec) to obtain k (m2), here k is the permeability. The same procedure was adapted 

to measure the porosity and permeability of the single and multiple fracture systems with 

different fracture orientations. 

The base case, the homogeneous model was prepared using small range of bead sizes (

105 149 m ). The base case has the permeability (matrix permeability) of 3.4D. For the 

heterogeneous systems, the same size of glass beads was used for the matrix. The fracture 

permeability was calculated using the Kozeny Carmen Correlation (Carman 1937): 

2 3

2180 1
pD

k






     (2-1) 

where Dp is the diameter of glass beads (meters),  is the porosity of the system (%) for the 

base model. The calculated permeability (k) is in (m2). The calculated fracture permeability 

was 10 21.058 10 m (100 Darcy). 

2.2.3 Results and Discussion 

For the single fracture model, displacement tests were carried out for three different fracture 

orientations: 0°, 45º and 90° from the direction of flow. The matrix permeability of the single 

fracture glass bead model could be achieved as low as 3.37D. The length and aperture of the 

fracture were set at constant values of 10.5cm and 0.4cm, respectively. In each case, the 

injection rate was varied from 1cm3/min to 8cm3/min. Pressure drops were measured across 

the length of matrix-fracture system for eight constant flow rates with a stepwise increase of 

1cm3/min.  
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Figure 2-3 presents a relation between changes in velocity and pressure gradient for four 

different systems. Slope of each line leads to the calculation of the permeability using the 

viscosity of the injected fluid (water) at ambient temperature (0.001 Pa-sec). Results of the 

calculated permeability for single fracture models are presented in Table 2-1.  An error of 

0.021D was found in permeability measurements. This error was calculated using a general 

function for error propagation as given below. 

2 2 2 2 2
k k k k k

k q X A P
q X A P

     


                                        
 2-2 

where  represents error, k is the permeability, q  and  are flow rate and viscosity of the 

fluid, X is distance between injection and production points, A  is cross sectional area of 

injection and P is the pressure. 

The results show that, for a fracture oriented at 90° with respect to the direction of flow, the 

increase in permeability is negligible 0.05D (only 1.5% greater than the homogeneous 

model). The precent increase in permeability is calculated using formula given below: 

           
mod hom mod

fractured model
hom mod

( )
% 100fractured el ogeneous el

ogeneous el

k k
increaseink

k


 

  2-3 

 

A further small increase of 0.21D in permeability can be seen for a fracture oriented at 45º 

(by 6.2%). When the fracture is oriented at 0º (along the direction of fluid flow) permeability 

increases considerably by an amount of 0.38D (11.3%). Increase in permeability due to 

decrease in fracture orientation is plotted in Fig. 2-4. A negligible increase in permeability for 

fracture orientation of 90° is because the fracture contributes hardly any fluid through its 

aperture (0.4cm) which is 1.9% of the total block length (21cm).  An increase in permeability 

for the cases of 45º and 0° fracture orientations is primarily due to the fact that the fracture 
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Figure 2-4: Effect of fracture orientation on permeability 

 

 

Figure 2-5: Effect of the fracture orientation on fluid flow with respect to pore 

volume injected “PVI” (single fracture models) 
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This finding conforms with the camera images taken during the injection of dyed water (see 

Fig. 2-5). The figure shows that the injected dyed water breaks through the fracture, which is 

oriented at 0º to the flow direction, much quicker than the other two orientations. It is evident 

from Fig. 2-5 that for miscible flooding by passing of the injection fluid increases with 

decrease in orientation of fracture with respect to the flow direction. 

Three glass bead models each containing set of two fractures were designed and made. In the 

first model, fractures were placed parallel to each other and along the flow direction ( 0  ). 

In the second model, one fracture was placed along the flow direction and second fracture 

intersecting the first one at 45º to the direction of fluid flow. Finally in the third model two 

fractures were placed parallel to each other but oriented at 45º. Similar to the single fracture 

model displacement tests were carried out and flow patterns were captured as images.  

 

Table 2-2. Permeability of the heterogeneous systems, each containing set of two fractures 

Heterogeneous systems 

(set of two fractures) 

k(D) 

 

Porosity (%) 

2 fractures oriented at 45  3.78 0.021 40.3 

2 intersecting fractures 3.98 0.021 40.0 

2 fractures oriented at 0
 4.21 0.021 40.0 

 

Changes in the flow velocity with respect to the pressure gradient for each system are 

presented in Fig. 2-6. In Table 2-2, measured permeabilities and porosities for all multiple 

fracture models are presented. It can be observed that the parallel fracture model with 0° 

orientation gives the maximum increase in permeability 0.84D (25% increase over the 
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Figure 2-7: Effect of different set of fractures on fluid flow with respect to pore volume 

injected “PVI” (Multiple fracture models) 

 

2.3 Two Phase Flow Visualisation Experiments 

2.3.1 Experimental Setup 

A two dimensional glass model of size 212 24cm was designed and built to observe the two- 

phase flow behaviour through fractured porous media (see Fig. 2-8). It was decided to change 

the model size for immiscible flow tests to improve displacement. By decreasing the injection 

cross sectional area capillary effects were minimised and hence oil fingering was controlled. 

Matrix was represented by glass beads of mesh -100+140 (bead size105-149 m ) whereas the 

fracture was replaced by an especially designed glass strip of 3mm width which has a groove 

of 1mm aperture throughout at its centre. The grooved glass strip is used as fracture instead 

of glass beads to obtain a better matrix to fracture permeability ratio. The strip had cross 
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grooves of same aperture to allow cross flow between the matrix and fracture.  A piston 

pump was used to obtain various constant injection rates and the effluent was collected at the 

outlet by means of tubing connected to the production point. A digital camera was used to 

take pictures of the displacement process during the experiments. A fluorescent light source 

was placed underneath the model to enhance the picture quality. 

 

 

     Figure 2-8: The glass bead model used for two phase flow experiments  

 

2.3.2 Experimental Procedure 

A schematic of experimental setup used for two phase flow is presented in Fig. 2-9. Similar 

to the single phase experiments, in two phase flow experiments carbon dioxide was injected 

in the bead pack to displace air, and then the model was saturated with de-aired water by 



displacing carbon dioxide while model was kept in the vertical position. Porosity of the 

system was calculated using pore and bulk volumes of the beads pack in a similar way as 

mentioned in the experimental procedure of single phase flow. 

Collector 

Camera CCD 

() 

//I"-"-

Glass Beads Model 

Pressure 
Gauge 

Figure 2-9: Schematic of the experimental setup (Two Phase Flow) 

Pump 

A drainage test was conducted for a homogeneous bead pack of mesh ( -1 00+ 140) where oil 

was injected into the water saturated glass bead pack. Soltrol-130 oil (non-wetting phase) was 

used to displace water (wetting phase). The physical properties of oil and water at ambient 

conditions are given in Table 2-3. Pressure drops between injection and production points 

were measured for a constant flow rate. Effluents were collected and volumes of both phases 

were recorded for a constant time interval. Two pore volumes of oil were injected to produce 

the maximum water from the beads pack. The same procedure was adopted for two constant 

flow rates, lcm3 I min and 2cm3 I min. Once the pressure and production data was achieved 

for the homogeneous glass bead pack (the base case), the same procedure was repeated for 

21 
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five different realizations of fractured systems including single and multiple fractures (see 

Fig. 2-10).  The permeability of fracture is calculated using equation 2-4 where the fracture 

permeability is obtained from the fracture aperture (Hawkins 1959). 

   6 254 10k W       (2-4) 

where W is the fracture aperture in inches while the calculated fracture permeability k is in 

Darcy. 

Table 2-3: Physical properties of oil and water at ambient conditions 

 

Liquid 

Density 

3/gm cm  

Viscosity 

cp 

IFT 

N/m 

Soltrol 130 0.75 1.4  

0.037 

 

Water 0.998 1.002 

 

2.3.3 Results and Discussion 

Drainage displacement tests were carried out on homogeneous and different heterogeneous 

glass bead packs as shown in Fig. 2-10. This figure presents a homogeneous, two single 

fracture systems and three multiple fracture systems. Flow tests were carried out keeping the 

glass model in the horizontal plane to avoid any gravity effects. However in this figure, oil 

was injected from the top and effluent was collected at the bottom of the model. In this 

figure, ‘A’ shows a homogenous beads pack while B consisting of a fracture placed at 45 to 

the direction of flow (top to bottom in Fig. 2-10). A fracture at 0 to the direction of flow is 

presented in Fig. 2-10C. Multiple fracture systems are presented in Figs. 2-10D, 2-10E and 
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2-10F. Two fractures parallel to each other and oriented at 0 to the flow direction are 

presented in Fig. 2-10D (referred as “2 Frac’s at0 ” next in this study). The intersecting 

fracture system is presented in Figure 2-10E where one fracture oriented at 45  intersects 

another oriented at 0  to the direction of flow (referred as “2-Intersecting Frac’s” next in this 

study). Finally, in Fig. 2-10F another intersecting fracture system is shown where both 

fractures cross each other making shape of a cross (X), one placed at 45 and the other at 

135 to the flow direction (referred as “2-X Intersecting Frac’s” next in this study).  

The length and aperture of the fracture are set at constant values of 10cm and 0.01cm (groove 

aperture), respectively. 

                         

A B C

FED
 

             Figure 2-10: Glass bead packs used for two phase flow experiments 
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Figure 2-11 presents homogeneous and heterogeneous realizations after injection of 0.3 pore 

volume. This figure illustrates the bearings of fracture inclination as well as the density of 

fractures on fluid flow for drainage experiments. Red and light blue colours represent oil and 

water, respectively where oil is the displacing phase and water is the displaced (see Figure 2-

11). All the experiments in this study were performed keeping the flow of the   model in the 

horizontal direction to avoid the effect of gravity on fluid flow. 

 

    

           

         Figure 2-11: Effect of single and multiple fractures on fluid flow at 0.3 PVI 

 

Figures 2-12 and 2-13 present the injected pore volume at which breakthrough happens 

through all the discussed scenarios for 1 and 32 / mincm , respectively. Multiple fracture 
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systems show early breakthrough as compared to single fracture systems (see Figs. 2-12 and 

2-13). Flow through homogeneous glass beads pack shows a very late breakthrough after 

injection of 0.74 pore volumes (see Fig. 2-12 A). For the flow rate of 31 / mincm , an early 

breakthrough was observed for the case of 2 intersecting fractures; one 0 and other 45 to the 

direction of fluid flow, where oil could be seen at the production point after the injection of 

only 0.56 pore volumes (see Fig. 2-12 E). After the injection of 0.6 pore volumes, 

breakthrough was observed for the case the of two fractures parallel to each other and to the 

direction of flow (see Fig. 2-12 D) which was late as compared to the case of intersecting 

fractures in Fig. 2-12 E. A further delay in the breakthrough could be seen for the case of 2-X 

intersecting fractures where after injection of 0.62 pore volumes the breakthrough was 

observed (Fig. 2-12 F). After injection of 0.67 and 0.71 pore volumes, breakthrough was 

observed for the cases of single fracture oriented at 0  (Fig. 2-12 C) and single fracture 

placed at 45 to the flow direction (Fig. 2-12 B). 
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 Figure 2-12: PVI at breakthrough for different glass bead packs at 
31 / mincm  

 

Effect of the fracture orientation as well as the density of fractures on fluid flow is illustrated 

by Fig. 2-12. It is quite clear from this figure that the density of the fractures has strong 

effects on the behaviour of fluid flow which is evident in the early breakthroughs observed 

for the bead packs with the multiple fracture systems as compared to the single fracture beads 

systems. Effect of the fracture orientation on fluid flow could be observed by comparing the 

single fracture models in Figs. 2-12 B and 2-12C, where early breakthrough was observed for 

the low orientation of fracture (0°) as compared to the relatively high orientation (45°) to the 

direction of flow. Oil flowed much faster for the case of 2-intersecting fractures (Fig. 2-12 E) 

which is a combination of low orientation (0°) of fracture with an inclined fracture (45°) 
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crossing through it. This scenario gave the earliest breakthrough (after 0.56PVI) due to the 

fracture intersection where both fractures feed each other.  

Figure 2-13 shows similar trends of fluid flow for the same scenarios of homogeneous and 

heterogeneous glass bead packs at a constant injection rate of 
32 / mincm . Low fingering 

effects and a stable front were observed for the high flow rate injection as can be observed by 

comparing Figs. 2-12 and 2-13. 

 

          Figure 2-13: PVI at breakthrough for different glass bead packs at 32 / mincm  

 

Differential pressures between the injection and production points for the discussed 

homogeneous and heterogeneous systems at a constant injection rate of 31 / mincm are plotted 

in Fig. 2-14. As expected the highest pressure difference  is obtained for the homogeneous 
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case as it represents the lowest permeability compared to all the fractured systems (see Fig. 2-

14). Similarly it can be seen that the lowest pressure difference is obtained for the case of two 

horizontal fractures (both oriented at 0  to the direction of flow) as this fracture system 

contains the highest absolute permeability (see Fig. 2-14). 

The cumulative produced water for the discussed glass bead systems at 31 / mincm are shown 

in Fig. 2-15. It is observed that the maximum water volume was produced for the 

homogeneous case ( 312cm ) as the breakthrough was delayed in this case compared to all 

fractured glass bead systems. Glass bead systems containing fractures produced lower 

volumes of water as they show early oil breakthrough and oil at some points by passed the 

water as can be seen in Figures 2-12 and 2-13. 
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Figure 2-14: Differential pressures vs. PVI for the glass bead packs in Fig. 2-12 (at

31 / mincm ) 
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Figure 2-15: Cumulative produced water vs. injected pore volume for all glass bead packs at 

31 / mincm injection rate 

 

Similarly, the differential pressures between injection and production points for all glass bead 

packs at a constant injection rate of 32 / mincm are plotted in Fig. 2-16. As expected, all 

obtained differential pressures are high as compared to the differential pressures at 

31 / mincm (Fig. 2-14). 

The maximum pressure difference (the peak of the curves) for each glass bead pack 

represents the oil breakthrough (see Figs. 2-14 & 2-16). It is observed from Figs. 2-14 and 2-
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16 that earlier breakthrough is achieved for the multiple fracture system as compared to the 

single fracture systems at both constant injection rates of 31 / mincm and 32 / mincm , 

respectively. This early breakthrough can also be confirmed by the flow visulatizations 

shown in Figs. 2-12 and 2-13. 

 

 

Figure 2-16: Differential Pressures vs. Time for glass bead packs in Fig. 2-13 (at 32 / mincm ) 
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Figure 2-17: Cumulative produced water vs. injected pore volume for all glass bead packs at 

32 / mincm injection rate 

 

Figures 2-17 shows the cumulative water production for glass bead systems at 32 / mincm . 

The water volumes produced are close to the water volumes produced at 31 / mincm in Fig. 

15. The calculated pore volume of the glass bead system was 316cm . Water production for the 

case of 2-X Intersecting Frac’s is less than single fracture oriented at 45° to the flow direction 

due to the water volume trapped right before the fracture intersection (see Figure 2-13F).  

Residual water saturations for all cases were calculated based on the cumulative produced 

water after two pore volumes of injection (see Table 4). 

 

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

C
u

m
u

la
ti

ve
 W

at
er

 P
ro

d
u

ce
d

 (
cc

)

PVI

Produced Water vs PVI at 2cc/min

Homo Single frac Single frac

Multi frac's Multi frac's Multi frac's



33 
 

Table 2-4: Irreducible water saturations for glass bead models at 1 and 32 / mincm  

Glass Bead Packs Homo Single 

45° frac 

Single 

0° frac 

2 Frac’s 

at 0° 

2Intersecting 

frac’s 

2X Intersecting 

frac’s 

Swi( 31 / mincm ) 0.25 0.29 0.32 0.37 0.39 0.40 

Swi( 32 / mincm ) 0.22 0.27 0.28 0.31 0.34 0.35 

 

 

2.4 Relative Permeability (Oil-Water) 

2.4.1 Numerical Reservoir Simulation 

History matching technique was employed to obtain relative permeabilities for oil and water 

phases in homogeneous and fractured glass bead models. For this purpose a commercial 

black oil simulator was used. The laboratory glass bead models were first built using the 

simulator with same physical dimension of 10 20 0.2cm cm cm  . The model was then 

discretised into 50 100 1  blocks in the x, y, and z directions (Figure 2-18), which makes 

the length of each grid block as 0.2cm in each direction. Matrix block permeabilities were 

kept constant values of 3.4D whereas the fracture permeability as 41 10 D  as calculated 

using equation 2-4. Permeability for each grid block was kept constant in the x, y, and z 

directions. 
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cm

10cm

 

Figure 2-18: Simulator model, designed for the two phase flow study, representing matrix 
and fracture 

 

Laboratory obtained residual water saturations were used to initiate relative permeability 

curves which were fed to the simulator in order to match the pressures and productions data 

obtained in the laboratory. Corey-type power law was used to parameterize relative 

permeability for different glass bead models as expressed below Corey (1954).  
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max 1

wn

w ir
rw rw

ir

S S
k k

S

 
   

    (2-5)  

max 1
1

on

w ir
ro ro

ir

S S
k k

S

 
   

    (2-6)  

where rwk  and rok  are the water and oil relative permeabilities, respectively, wS is water the 

phase saturation, irS represents the irreducible water saturation, and wn and on  are the water 

and oil Corey exponents, respectively.  

The oil and water relative permeability curves for which laboratory based pressure and 

production data matched for 31 / mincm  are shown in Figs. 2-19 and 2-20, respectively. 
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Figure 2-19:  Oil relative permeability for the glass bead models at 31 / mincm  

 

In Fig. 2-19, for a particular value of water saturation, the maximum oil relative permeability 

is obtained for the intersecting fracture system, which is followed by the system of 2 fractures 

oriented at 0° to the direction of flow. Single fracture systems show lower oil relative 

permeabilities for a particular oil or water saturation as compared to multiple fracture 

systems. Furthermore, the lowest oil relative permeability is obtained by the homogeneous 

bead pack which is because of the fact that the fractures help the oil phase to pass through the 

fractured medium much faster as compared to homogeneous bead pack. 
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Figure 2-20: Water relative permeability for glass bead models at 31 / mincm  

 

For a particular value of water saturation in Fig. 2-20, the homogeneous model showed a 

maximum water relative permeability.  Water relative permebailities for fractured models are 

lower than homogeneous model which is explained by bypassing of a larger volume of water 

in the fractured models. 
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Figure 2-21:  Oil relative permeability for glass bead models at 32 / mincm  

 

Similarly, oil and water relative permeabilities for the 32 / mincm constant injection rate are 

presented in Figs. 2-21 and 2-22. Figure 2-21 shows a similar trend of oil relative 

permeability as at low flow rate in Fig. 2-19. It is observed that, at higher flow rate (

32 / mincm ), oil relative permeabilities are high as compared to the low flow rate ( 31 / mincm

) (see Figs. 2-19 and 2-21). It is found that at high flow rate ( 32 / mincm ), relative 
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permeabilities at a particular water saturation for different bead systems are relatively close to 

each other as compared to the low flow rate ( 31 / mincm ). This can be explained by the fact 

that in high rate ( 32 / mincm ) experiments it is hard to differentiate between contribution of 

different fracture realizations because the flow is rate dominant. Figure 2-22 showed similar 

trend of water relative permebailities for glass bead models as for 31 / mincm in Fig. 2-20.  

 

 

Figure 2-22: Water relative permeability for glass bead models at 32 / mincm  
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2.4.2 Comparison between Laboratory and Simulator Results 

Pressure and production matches between laboratory and simulator results are presented in 

Figs. 2-23 to 2-26. Laboratory results are in good agreement with the simulator results for the 

relative permeability curves shown in Figs. 2-19 to 2-22. 

Laboratory based displacement profiles after 0.4PVI are compared against the simulator oil 

saturation profiles and are presented in Figs. 2-27 to 2-32. In these figures oil is injected from 

the top and effluent in collected at the bottom (for figure reference only). Also, for laboratory 

flow profiles, oil and water are represented by red and light blue colours, respectively. 

Similarly, for simulator flow profiles, oil is represented by red/orange colour and water by 

green. Flow profiles for simulator and laboratory observations are in close agreement. Due to 

capillary effects, small fingering effects can be observed at the oil front in laboratory profiles, 

whereas it is not the case for simulator profiles where effect of capillary pressure is ignored. 
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Figure 2-23: Matches between simulator and laboratory differential pressure results at

31 / mincm  
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Figure 2-24: Matches between simulator and laboratory production results at 31 / mincm  

 



43 
 

0

4

8

12

16

20

0 5 10 15 20

P
re

s
s
u
re

 D
if

fe
re

n
c
e
 (

k
P

a
)

Time(min)

Homogeneous

SIM

LAB

0

4

8

12

16

20

0 5 10 15 20

P
r
e

s
s
u
r
e

 D
if

fe
r
e

n
c
e

(k
P

a
)

Time(min)

Single Fracture at 45 Degree

SIM

LAB

0

4

8

12

16

20

0 5 10 15 20

P
re

s
s
u
re

 D
if

fe
re

n
c
e

 (
k

P
a

)

Time(min)

Single Fracture at 0 Degree

SIM

LAB

0

4

8

12

16

0 5 10 15 20

P
re

s
s
u
re

 D
if

fe
re

n
c
e

(k
P

a
)

Time(min)

2 Fractures at 0 Degree

SIM

LAB

0

4

8

12

16

0 5 10 15 20

P
r
e

s
s
u
r
e

 D
if

fe
r
e
n

c
e

(k
P

a
)

Time(min)

2 Intersecting Fractures

SIM

LAB

0

4

8

12

16

20

0 5 10 15 20

P
r
e

s
s
u

r
e

 D
if

fe
r
e

n
c
e

 (
k

P
a

)

Time(min)

2 X-Intersecting Fractures

SIM

LAB

 

Figure 2-25: Matches between simulator and laboratory differential pressure results at

32 / mincm  
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 Figure 2-26: Matches between simulator and laboratory production results at 32 / mincm  
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(a) Simulator   (b) Laboratory 

        Figure 2-27: Fluid flow profiles for homogeneous pack at 0.4PVI 
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(b) Simulator   (b) Laboratory 

Figure 2-28: Fluid flow profiles for 0 fracture system at 0.4PVI 
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(c) Simulator   (b) Laboratory 

                   Figure 2-29: Fluid flow profiles for 45 fracture system at 0.4PVI 
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(d) Simulator   (b) Laboratory 

Figure 2-30: Fluid flow profiles for 2 X-Intersecting fractures system 
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(e) Simulator   (b) Laboratory 

Figure 2-31: Fluid flow profiles for 2 Intersecting fracture system at 0.4PVI 
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(f) Simulator   (b) Laboratory 

Figure 2-32: Fluid flow profiles for 2 fractures at 0°, at 0.4PVI  
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Results of drainage tests for the homogeneous and heterogeneous systems have been analysed 

to find a relationship expressing effect of heterogeneity e.g. number of fractures, orientation 

of fracture, on oil relative permeabilities. Correlation given in equation 2-5 has been found 

based on the observations of oil relative permeability changes by changing the fracture 

system. Oil relative permeability for the homogeneous case was taken as the reference for 

this purpose and relative permebailities of heterogeneous systems are calculated using the 

equation below: 

  2 4.01(1 in( ))1 ( 0.015 0.155 ) 0.16 0.085S
ro f f refk n n e Sin k                    (2-7) 

In this equation rok is the oil relative permeability, while refk is the reference oil relative 

permeability which is rok of the homogeneous glass bead pack, fn represents the number of 

fractures in the system and,  is the angle between a fracture with a reference fracture. A 

fracture close to the top left corner of the system is assumed as the reference fracture and its 

orientation towards the flow direction is expressed as  in this equation. It can be seen from 

this correlation that the number of fractures, orientation of fracture with respect to other 

fracture as well as with respect to the flow direction, have been successfully incorporated to 

build this correlation. Results of this correlation have been compared against the laboratory 

obtained oil relative permeabilities for heterogeneous systems (see Fig. 2-33) and an error of 

0.03% was found. Though the available information has been intelligently utilised to 

incorporate the effect of heterogeneity on oil relative permeability, this correlation is limited 

to the glass bead sizes used in this study (fracture to matrix permeability ratio) and the length 

of fracture. 
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Figure 2-33: Oil relative permeability: a comparison between laboratory and correlation 

results 
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Chapter 3 

Fluid Flow Simulation in Arbitrarily-Oriented 

     Naturally Fractured Reservoirs 

 

3.1 Calculation of Grid based Permeability Tensors for Fractured Porous Media 

3.1.1 Literature Review 

Simulation of fluid flow and estimation of pressure and velocity profiles in naturally 

fractured reservoirs have always been a challenge for reservoir engineers for the past decades. 

Three different approaches have been used to model fluid flow through naturally fractured 

reservoirs: Single continuum approach, dual continuum approach and discrete fracture 

approach. 

 

Continuum Approaches 

Continuum approaches are well known for simulating fluid flow through naturally fractured 

reservoirs over last few decades. These approaches are comprised of single, dual and multiple 

continuum approaches. 

In single continuum approach fractured medium is represented by an equivalent porous 

medium while the bulk macroscopic properties of fracture are replaced by averaging the point 

to point variations in petro-physical properties over a representative volume. Defining 

representative elementary volume (REV) is challenging in this approach (Fig. 3-1).  
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   Figure 3-1: REV in a rock mass (Chen et al. 1999)   

 

REV is determined by measuring the permeability of samples with different volumes of a 

rock achieving statistically a volume for which the permeability is constant and observing 

that even the sample volume is increased, the permeability remains the same (Fig. 3-2). It’s 

easy to achieve REV for homogeneous rocks (Fig. 3-2(a)) but for heterogeneous rocks it’s 

hard to achieve a volume of sample (Figure 3-2(b)) for which the permeability remains 

constant because of complex nature of discontinuities present inside the samples. 
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Figure 3-3: Size of REV for different rocks (a) Non-Fractured rock (b) high density of 

fractures (c) low density of fractures (REV is large or non-existent) (Kunkel et al. 1988); (Lee 

and Farmer 1993) 

 

The dual-continuum method is conceptually appealing and computationally much less 

demanding than the discrete-fracture approach. In particular, it is able to handle fracture-

matrix interactions more easily than the discrete-fracture model. For these reasons, the dual-

continuum approach has currently become the main approach for modelling fluid flow, heat 

transfer, and chemical transport through fractured reservoirs. Based on the dual continuum 

approach, a conceptual model of original fractured rock is presented in Fig. 3-4 where based 

on the finite element method, a technique was suggested for a heterogeneous porous medium 

and each fracture element is sandwiched between matrix (Park and Sung 2000).  
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Figure 3-4: Conceptual model of fractured rock (Park and Sung 2000) 

 

The classical dual-porosity model for single phase systems emerged as an initial dual-

continuum approach in early 1960s (Barenblatt et al. (1960); Warren and Root (1963)). In this 

model rectilinear prisms of matrix are separated by an orthorhombic continuum representing 

fractures (i.e. the suger-cube-model) as shown in Fig. 3-5. Dual porosity approach involves 

discretisation of a reservoir into two domains, matrix and fracture however, flow occurs 

through fractures and matrix provide fluid storage. Interconnected fractures provide a flow 

path between the injection and production wells and are assumed to be completed in the 

fracture domain. The model treats matrix blocks as spatially distributed sinks or sources to the 

fracture system without accounting for global matrix-matrix flow. However, the model does 

account for fracture-matrix interflow, based on a quasi-steady state assumption. 
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Figure: 3-5: Dual porosity model description of a naturally fractured reservoir (Warren and 

Root 1963) 

 

In an attempt to incorporate additional matrix-matrix interactions, a dual-permeability model 

was developed (Pruess 1991). This model considers global flow occurring not only between 

fractures but also between matrix grid blocks. In this approach, the fractures and matrix are 

represented by separate grid blocks that are connected to each other. The same quasi-steady 

state flow assumption as in the dual-porosity model is used to handle the fracture-matrix 

interflow. 

As a generalization to the dual-porosity model, a more rigorous dual-continuum method, the 

Multiple Interacting Continuum (MINC) concept (Pruess and Narasimhan (1985)), describes 

gradients of pressures, temperatures, and concentrations between fractures and matrix by 

further subdividing individual matrix blocks. This approach provides a better approximation 

for transient fracture-matrix interactions than the quasi-steady state flow assumption used by 

Warren and Root (1963) for the dual-porosity or dual-permeability model. Fluid and heat 

flow and transport from the fractures into the matrix blocks can be modelled by means of 

one- or multidimensional strings of nested grid blocks. 
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As an alternative method, the Effective Continuum Method (ECM) represents fractures and 

rock matrix as a single effective continuum. ECM models have long been used for modelling 

fracture-matrix flow because of their simplicity in data requirements and their computational 

efficiency. This approach may be applicable to modelling multiphase, no isothermal flow and 

solute transport in fractured porous media under thermodynamic equilibrium conditions (Wu 

2000). When rapid flow and transport processes occur in many subsurface fractured 

reservoirs, however, thermodynamic equilibrium conditions can not be satisfied in general. 

The main drawback of the dual-continuum approach is the concern for fluid flow while 

ignoring characteristics of individual fractures and their geometry. In fact, majority of the 

computational effort is used to solve simple mathematical formulations for simulation of fluid 

flow in fractured reservoirs by assuming matrix and fractures as parallel layers with an 

infinite length. Based on the geometrical assumptions, the continuum approaches are not 

considered the best suitable for detailed modelling of naturally fractured reservoirs.  

 

Discrete Fracture Approach 

The discrete fracture model (DFM) approach, an alternative to the dual continuum approach, 

has received considerable interest over last few years in the field of reservoir simulation and 

hydrology. Outcrop characterization studies have shown that natural fractures vary 

substantially in height, length, and aperture and fracture networks are complicated due to 

varying fracture spacing as well as connectivity (Marrett and laubach (1997); Gillespie et al. 

(1993); Odling (1997); and Odling et al. (1999) This understanding of fracture 

characterisation emphasizes on the large discrepancy between reality and the assumed 

inherent uniformity of dual continuum approach. Therefore, the discrete fracture models have 

been developed to reduce the number of non-physical abstractions inherent in dual continuum 

models. Most of the DFMs are based on unstructured grids to explicitly represent a fracture 
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network. A 3D conceptual model representation of DFM approach is shown in Fig. 3-6, in 

which disc-shaped original fracture network with their actual length, orientation, spacing and 

connectivity are presented (Park and Sung 2000). 

 

Figure 3-6: Conceptual model of fractured rock (DFM) (Park and Sung 2000) 

 

Depending on the source and availability of information of fracture properties, discrete 

models are presented in three different forms: deterministic, stochastic and heuristic. Each 

technique is based on a theoretical, numerical, exact or approximate method. 

The deterministic method is based on the geological model of reservoir which is simplified 

enough to be able to find an exact analytical solution. On the other hand stochastic methods 

assume an approximate knowledge of the reservoir model and are based on probability to 

study random functions in the space. Finally the widely used heuristic discrete methods 

propose rules for calculating reasonable equivalent permeability. The mainly implemented 

heuristic methods are sampling, averaging means, power average and flexible grid methods.  

The discrete fracture model approach offers several advantages as compared to the dual-

continuum approach. This approach can simulate the realistic fracture system geometry, and 

hence accounts explicitly for the effect of individual fracture on fluid flow simulation. Also 
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this approach is not bound by the grid defined fractured geometry constraints so the fracture 

network can easily be updated and adapted. And last but not the least advantage of this 

approach is the simplicity of its implementation for flow interaction between matrix and 

fracture as it depends directly on fracture geometry. On the other hand, a disadvantage 

associated with DFMs is complex discrete system of equations which is difficult to solve 

numerically. Though discrete fracture models account for fracture geometry and the 

formulations are based on properties of fracture, however, this approach does not account for 

the effect of matrix permeability and isolated fractures. 

An excellent comparison between dual continuum approach and new discrete fracture models 

is recently provided by Moinfar et al. (2011). To study the behaviour of NFR’s they 

introduced two different and independent DFMs where one model is based on an unstructured 

gridding with local refinement around fractures while, in the other model, fractures are 

embedded in a structured matrix grid. They concluded that both DFMs captured the 

complexity of a typical fractured reservoir better than conventional dual permeability models. 

They claimed that DFMs can be used as basis for defining the dual permeability model 

parameters for a very sparse fractured system relative to the grid spacing. 

 

Models using Effective permeability Tensor 

Concept of effective permeability tensor was introduced to complete the task of modelling 

naturally fractured reservoirs which have not been succeeded in the previous works. 

Continuum models do not take into account the actual geometry of individual fractures, while 

discrete fracture approaches don’t account for matrix permeability and ignore the effect of 

isolated/disconnected fractures. A complete task of modelling NFRs can be achieved by 

employing the concept of grid based effective permeability tensor which enables to replace a 

fractured grid block with a homogeneous block of equivalent permeability. This concept 
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includes the actual geometry of fracture networks as well as the matrix permeability while 

ignoring the complexities involved in previously mentioned approaches and hence becomes 

the best suitable method for modelling NFRs. 

Several methods have been proposed to calculate effective permeability tensor. Oda 

(1985)introduced a method for calculating equivalent permeability tensor of a fractured 

reservoir using the geometry of fracture network. The method does not require a flow 

simulator to obtain the permeability tensor; also it does not account for the fracture 

connectivity; and thus, it is limited to well-connected fracture networks. In other words, it 

would underestimate equivalent fracture permeability when fracture density is low. 

Long and Witherspoon (1985) and Cacas et al. (1990)developed 3D fracture flow models and 

then Massonnate and Manisse (1994) introduced a 3D fracture flow model which takes into 

account the matrix permeability. Lough et al. (1998) developed a 2D fracture flow model 

taking into account the contribution of 3D matrix flows. Odling (1992) introduced a 2D 

model by considering the matrix permeability. Later, Bourbiaux et al. (1998) proposed a 

method to calculate the equivalent permeability by applying a pressure drop between the two 

sides of the parallelepiped network with a specific boundary condition. Using their model, the 

equivalent permeability for incompressible steady-state flow through the actual 3D fracture 

network can be calculated. 

Fracture connectivity controls many principle properties of fractured reservoirs and the 

permeability is the most critical one (Berkowitz 1995). For example, Long and Billaux 

(1987) observed that, due to low fracture connectivity at a field site in France, roughly 0.1% 

of fractures contribute to the overall fluid flow (i.e., permeability). This parameter, however, 

is difficult to quantify and embedded in the fracture network permeability correlations. Other 

parameters including fracture length, density, aperture and orientation also affect the 

equivalent fracture network permeability. 
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Semi-quantitative analyses have shown that fracture network characteristics have direct 

implications on the fracture network permeability. Basically, fracture connectivity, length, 

density, aperture, and orientation are the crucial parameters of each fracture network 

controlling the permeability of the network. For instance, Babadagli (Babadagli 2001) 

speculated that perpendicular fractures to the direction of the flow probably reduce the 

permeability. Also, as fracture length and density increase, the connectivity of a fracture 

network will increase (Rossen et al. (2000)); and the hydraulic properties of fractured 

reservoirs are primarily dependent on the degree of fracture interconnection. A fracture 

network must have a percolating cluster to be permeable. Hence, the connectivity is of the 

primary importance in this analysis. Zhang et al (1996) showed that with an increase in 

fracture aperture and density, permeability of the network also increases. 

Min et al. (2004) presented a method to calculate equivalent fracture permeability tensor of 

fractured rocks using stochastic representative elementary volume (REV) approach. In their 

method, the equivalent permeability values were calculated using the two-dimensional 

distinct element code UDEC (Itasca 2000). Nakashima et al. (2000; Nakashima et al. 2001) 

presented an up-scaling technique by the boundary element method to estimate the effective 

permeability of naturally fractured reservoirs. Teimoori et al. (2003) used the same method to 

improve the computation of effective permeability tensor in naturally fractured reservoirs. 

It was mentioned that some previous works did not include fluid flow in the matrix as well as 

flow interaction between matrix and fracture such as snow’s model (1969) . On the other 

hand some methods (Dual porosity / Permeability approach) do not take into account the 

properties of individual fractures such as orientation, aperture and size of fracture. One of the 

most efficient method was presented by Lough et al. (1998)  where fractures were treated as 

planer sources inside the matrix. The drawback associated with this method is that it can be 

applied to only medium sized fractures because it needs discretisation of the whole matrix 
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block. Also Teimoori et al. (2003) improved the work and presented an extended numerical 

work including properties of individual fracture as well as computational efficiency. But the 

solution was unstable because of the use of quadrature based formula to solve integral 

equations. 

In this study, the solution process for integral equations has been significantly improved by 

employing weighted residual method, e.g. the collocation method. Boundary element 

technique is applied efficiently as a numerical method to calculate full effective permeability 

tensor for different fracture systems with variable lengths, size and orientation present in a 

grid block. In this approach the reservoir is divided into small grid blocks of fixed lengths 

and widths. Short fractures are considered as part of matrix for each grid block. Laplace 

equation is used to simulate fluid flow through matrix and periodic boundary conditions are 

applied across the boundary of the grid block to calculate matrix (local) permeability. Next 

Poison’s equation is used to simulate fluid flow at matrix fracture interface and cubic law is 

used to calculate the effective permeability for medium and long fractures. Use of periodic 

boundary conditions around the boundary of grid block and different boundary conditions for 

short and medium fractures makes the numerical model efficient in calculating a symmetric, 

positive-definite permeability tensor. 
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3.1.2 Mathematical Formulation 

Effective Permeability Tensor 

Permeability tensor is an equivalent, effective, or homogenised permeability of a fractured 

grid block. Effective permeability tensor is expressed as the directional permeability for a 

block containing fractures. For a three dimensional reservoir it is described as: 

xx xy xz

yx yy yz

zx zy zz

k k k

k k k k

k k k

 
   
  


        (3-1) 

In this study, effective permeability tensor for two-dimensional fractured reservoir is 

calculated and presented, which is expressed as: 

 

xx xy

yx yy

k k
k

k k

 
  
 


      (3-2) 

where, xxk and yyk are the diagonal components and xyk & yxk are the off diagonal 

components of permeability tensor. The effective permeability tensor needs to be symmetric 

and positive definite to have physical meaning, i.e. xy yxk k and
2

xx yy xyk k k , 0x xk  &

0y yk  (Durlofsky 1991). 

 

Calculation of Effective Permeability 

In this approach a grid block containing arbitrarily oriented fractures is replaced by a 

homogeneous grid block with an equivalent permeability. To achieve this, effective grid 

block permeability should be computed taking into account the actual geometry of arbitrary 



66 
 

fractured system in the grid block. In this way, the calculated effective grid block 

permeability will retain the information about the complexity of fractured network that was 

initially present in the grid block.  

It is acknowledged that in reservoir simulation the homogenized matrix-fracture system may 

lead to imprecise predictions of quantities such as breakthrough times. However, it should be 

remembered that even if an exact calculation was possible, a precise computation of the 

breakthrough time would require detailed knowledge of actual fracture system. Such 

knowledge is seldom, if ever available. Consequently, it is felt that, on average, the 

homogenized fracture-matrix system will provide meaningful predictions of the important 

quantities in reservoir simulation (Lough et al. (1998) ). 

 

In this section all the equations related to the calculation of effective permeability tensor are 

presented. Effective permeability tensor for fractured porous media is calculated by solving 

single phase fluid flow equations where periodic boundary conditions are applied over the 

boundaries of a grid block. Darcy’s law for fluid flow through porous media is expressed as: 

k P
v

x


 




       (3-3) 

where v represents the velocity, k


is the effective permeable tensor,  is the fluid viscosity 

and P is the pressure. Assuming unit fluid viscosity ( 1  ) i.e. for water, the equation can be 

written as: 

v k P  


       (3-4) 

In fluid dynamics, the continuity equation states that, in any steady state process, the rate at 

which mass enters a system is equal to the rate at which mass leaves the system. The 

differential form of the continuity equation is: 
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.( ) 0v
t

 
 


      (3-5) 

where   is the fluid density, t  is the time, and v  is the flow velocity vector field. If density (

 ) is a constant, as in the case of incompressible flow, the mass continuity equation 

simplifies to a volumetric continuity equation as follows: 

   . 0v         (3-6) 

This means that the divergence of velocity field is zero everywhere in the field. 

If Q represents the flow rate through any source / sink available in the field, then the 

continuity equation will be written as follows: 

.v Q         (3-7) 

Now the equation representing single phase flow for incompressible fluid can be obtained by 

combining Darcy’s law (3-4) and continuity equation (3-7) as follows: 

. ( ) 0k P Q      


      (3-8) 

For an isotropic medium this equation can be rewritten in an expanded three dimensional 

form as: 

2 2 2

2 2 2
0x y z

P P P
k k k Q

x y z

  
   

  
    (3-9) 

 

Rasmussen et al. (1987) presented a method to calculate the effective permeability for 

fractured blocks, but matrix and fracture were treated as two separate systems. Then Lough et 

al. (1998) improved the work in several ways whereby matrix and fracture systems have a 

common interface. The common interface is made up of those parts of fracture boundaries 
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that are contained in the matrix (Lough et al. (1998)). Fluid flow and pressure equations for 

matrix as defined by Lough et al. (1998) are as follows: 

( ) ( )m m mv x k P x         (3-10) 

( ) 0mv x         (3-11) 

where mv represents the velocity in matrix, mk the matrix permeability, and mP the matrix 

pressure. 

Figure 7 shows a discretization of matrix and fractures present in a block using the boundary 

element method for a two-dimensional problem. 

The final equation for flow through matrix (region 3) can be obtained by combining equation 

10 and 11 which is a well-known Laplace’s equation: 

2 2

2 2
0m m

m m

P P
k k

x y

 
 

 
     (3-12) 

 

Figure 3-7. Discretization of grid block and different fractures present in it in two dimensions 
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The interface between matrix and fracture (medium and long fractures), region 2 in Fig. 3-7 

is named as Poisson’s region, where fluid flow is modelled separately as flow in this region is 

affected due to the high conductivity of fracture. Equation 3-11 can be modified for medium 

fractures by applying source term of Poisson’s equation to the matrix porous media around 

the medium sized fractures (Poisson’s region), so equation 3-11 is rewritten as follows 

(Lough et al.(1998)): 

1

. ( ) ( ( )) ( )
i

N

m j o z
j F

v x q x z x z dA


        (3-13) 

where jq is the flow interaction between matrix and fracture in element j of fracture iF . (.)

is the Dirac delta function and A  is the area of element j . Equations 8 and 13 can be 

combined to achieve a final equation for a medium sized fracture (region 2 in Fig. 3-7) as 

given below: 

2 2

2 2
( ) 0m m

m m

P P
k k Q x

x y

 
  

 
    (3-14) 

where mk is the matrix permeability while ( ) mQ x Q  where mQ represents the flow from 

matrix to fracture. Flow through medium and long fractures (region 1 in Fig. 3-7) is modelled 

by a modified equation 3-14 such as fracture permeability and its source strength 
if

Q  is used 

as given below (Teimoori et al.(2003) ): 

2

2
( ) 0if

f

P
k Q x

L


 


      (3-15) 

In this equation 
if

P represents the pressure for fracture i , fk is the fracture permeability, L is 

the length of fracture and ( )
if

Q x Q  where mQ represents the flow from fracture to matrix. 

Flow through medium and long fractures is considered similar to the flow between a pair of 
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parallel plates as fracture aperture is assumed very small. Cubic law defines the permeability 

of fracture (Binder, 1958). Fracture permeability fk is defined by Teimoori et al.(2003) & Lee 

at al. (2001) as;  

2

12
f

f

h
k         (3-15a) 

where fh is fracture aperture ( m ) and fk is fracture permeability ( 2m ). 

For this fracture if intersected by many different fractures, ( )Q x will be equal to i ffQ q , 

where ffq represents the flow from intersected fracture to the fracture i . Now equation 3-15 

can be rewritten for intersecting fractures as: 

2

2
0if

f i ff

P
k Q q

L


  


      (3-16) 

If a medium fracture i is intersected by other fractures for an instance at im intersection 

points on a line of intersection L  then ffq is expressed as (Lough et al.(1998)): 

   
1

( ) ( ) ( )
i

j
i

m
j

ff i o o o
j L

q q x x x dl x


       (3-17) 

where x and ox represent the position vectors for points on fracture i  , (.) represents the 

Dirac delta function and j is the number of intersections on line L . 

Short fractures (see Fig. 3-7) are treated as large pores inside matrix and hence source term 

( )Q x  is ignored, and Laplace’s equation for short fractures becomes: 

2 2

2 2
0f f

f f

P P
k k

x y

 
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 
     (3-18) 
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Boundary Conditions 

Interface boundary conditions are applied to the boundaries of short fractures, which are 

expressed as (Teimoori et al. 2003; Teimoori et al. 2005): 

i im fP P  

i im fv v   

where 
ifP is the pressure at boundary of fracture i and

imP the corresponding matrix pressure 

as matrix and fracture are sharing same node at matrix-fracture interface. 

    .
im mv v n

 

  

    .
if fv v n

 

  

where mv


and fv


are the normal velocity vectors at matrix-fracture interface. 

Long fractures are the fractures which have the length exceeding the block length. Following 

are the boundary conditions for medium and long fractures (Teimoori et al. 2005): 

fi avP P  

mi mi iv v Q    

where .mmiv v n
 

  , .mmiv v n
 

  , mv


 and mv


 are the velocity vectors on the opposite 

nodes of fracture faces with miv  and miv  as their corresponding normal, respectively. Qi is 

the flow interaction between the matrix m and fracture i which depends on the source strength 
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of the fracture. Pav is the average pressure inside the fracture and Pfi is the pressure along 

boundaries of fracture i. 

Considering all kind of discontinuities present inside a grid block, we apply periodic 

boundary conditions along the boundaries of grid block as described by Lough et al. (1998). 

Figure 3-8 shows periodic boundary conditions where, 1 and 2 are the two opposite 

boundaries of grid block in the x2 direction, while 3 and 4 are the opposite boundaries in 

the x1 direction.  

 

1n 1x

1

3n

3

2
2n2x

4

4n

1 20, 0x xj j 

1 20, 0x xj j 

 

Figure 3-8: Periodic boundary conditions over a grid block 

 

If x0 is the centre point of grid block, and pressure at this center point is P0 then pressure at 

any given point 1 2( , )x x x inside the grid block is defined as: 

0 0( ) ( )P x P J x x         (3-19) 
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where, J is the local pressure gradient for a unit cell ( 1 1x  & 2 1x  ) defined in two 

directions 1 2,x x  as: 
1xJ the pressure gradient in the 1x direction, 

2xJ the pressure gradient in 

the 2x direction: 

 
1 1 2 1 2( 1, ) ( 0, )xJ P x x P x x                        (3-20a)     For 3 and 4  

 
2 1 2 1 2( , 1) ( , 0)xJ P x x P x x                       (3-20b)    For 1 and 2  

Also, velocities normal to the grid block boundaries are: 

 1 2 3 1 2 4( 0, ). ( 1, ).v x x n v x x n
 

                      (3-20c)   For 3 and 4  

 1 2 1 1 2 2( , 0). ( , 1).v x x n v x x n
 

                      (3-20d)   For 1 and 2  

Durlofsky(1991) presented a solution for the calculation of average velocity through a unit 

cell after applying periodic boundary conditions as mentioned above: 

 3

1 3 2.v v n dx




      (3-21) 

 1

2 1 1.v v n dx




      (3-22) 

Once 1v and 2v are calculated then it becomes easy to calculate permeability tensor using the 

explicit form of equation 3-4 for pressure gradient in the 1x , 2x directions: 

 1 1 2( )xx x xy xv k J k J       (3-23) 

 2 1 2( )yx x yy xv k J k J       (3-24) 
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Applying periodic boundary conditions 1 20, 0x xJ J   in above equations ,xx yxk k  are 

calculated. Applying the conditions of 1 0xJ   and 2 0xJ   gives ,xy yyk k . 

 

Boundary Integral Equations 

To solve the above two dimensional equations using any numerical technique, it is necessary 

to solve the related integral equations in an efficient way to achieve reasonable accuracy for a 

heterogeneous grid block with large number of fractures. Boundary integral equations are 

solved using Green’s second identity for a regular function which is a fundamental solution. 

A fundamental solution is a function that satisfies a differential equation with zero right hand 

side at any point of an infinite domain except at points known as source or sink, where the 

right hand side is infinite (Beer 1992).  

   

                               





x

r


n




 

              Figure 3-9: Arbitrary point on domain,   
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In order to explain this further let’s consider a domain   as shown in Fig. 3-9 and 1 2( , )    

is an arbitrary point present on the boundary of domain . Fundamental solution as defined 

by Gaul et al. (2004) is given by: 

 
1

( , ) ln
2

u x x 


   
     (3-25) 

 2

1
( , ) ( ).

2

q x x n

x

 
 

    


 
  


 (3-26) 

The boundary integral equation for the linear Poisson’s equation when applying to an 

arbitrary point 1 2( , )   on the boundary of domain  is: 

( ). ( ) ( ) ( , ) ( ) ( , ) ( ) ( , )x x xc u u x q x d q x u x d Q x u x d    
           

  

  

          (3-27)  

where, ( ) ( ).q x k u x n
  

  , n


 is the exterior normal vector of at   and k  is the permeability. 

( , )u x 
 

 is the fundamental solution mentioned above, ( , )q x 
 

 is the flux corresponding to 

the fundamental solution and is obtained by taking derivative of fundamental solution, 

u
q k

n


 



. ( )Q x



is equal to the Dirac Delta function ( )x 
 

 . ( )c   is a co-efficient which 

is a function of the internal angle of the boundary at point , and is defined as (Gaul et al. 

2004): 

1
2

( ) 1

0 ,

for

c for

for




 
 

  


 
  

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As short fractures are treated as pores inside matrix porous media boundary integral equation 

of Laplace equation can be obtained by omitting the last source term in equation 3-27. So this 

equation can be re-written for short fractures as: 

( ). ( ) ( ) ( , ) ( ) ( , )x xc u u x q x d q x u x d   
       

 

 

       (3-28) 

 

Boundary Element Formulation 

Boundary Element method (BEM) is developed in the shadow of FEM and FDM to provide 

an  efficient approach for solving boundary integral equations numerically (Brebbia and 

Walker 1978). BEM treats the problem as a boundary value problem, solves for all the 

integrals present in the equations for each boundary and reduces complexities associated with 

meshing (Beer 1992). The advantage of using this method is that it reduces the problem to 

one dimension and requires the solution of integrals only on the boundary of the domain and 

sub-domains present inside the domain which is simpler than applying the solution for the 

whole the domain using FEM or FDM. The disadvantage associated with this numerical 

method is that it requires the fundamental solution of governing partial differential equations 

to be known (Gaul et al. 2004). 



77 
 

 



j

j

 

    Figure 3-10: Boundary and interior discretization of the domain,   

 

As presented in Fig. 3-10 domain,   has been divided into NT triangular elements, 

1 2, ,......., NT   with centers, 1 2, ,......, NTx x x . Boundary  of this domain has been divided 

into NB  intervals, 1 2, ,......., NB   . Equation 28 for short fractures will be re-written in 

discretized form as: 

1 1

( ). ( ) ( ) ( , ) ( ) ( , )
j j

j NB j NB

x x
j j

c u u x q x d q x u x d   
        

 

  

       (3-29) 

The Poisson’s region around medium to large fractures is well described in Fig. 3-11 where 

flow is affected by the fluid flow through fractures. The thickness of this zone ‘L2’ is 

assumed to be 1% of the length of element on fracture edge ‘L1’. Though it was 

experimented to change the aspect ratio between 1-4% however, the error in the result never 

found to be more than 1%.   
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              Figure 3-11: Description of aspect ratio representing thickness of Poisson’s region 

Equation 3-27 for medium to large fractures and region around these fractures (Poisson’s 

Region) can be written in discretised form as: 

1 1 1

( ). ( ) ( ) ( , ) ( ) ( , ) ( ) ( , )
j j i

j NB j NB i NT

x x x
j j i

c u u x q x d q x u x d Q x u x d    
             

  

    

          (3-30) 

So far these equations are written for an arbitrary point on the boundary  of a domain,  . 

Now the point is shifted to the middle of each element of j  (see Fig. 3-10). Let’s suppose 

j  is the midpoint of j and the values of ,u q and Q  at these midpoints of each element are 

constant, so ( ) ( )i ju u u      , ( ) ( )i jq q q      and ( ) ( )i jQ Q Q      . 

If all the constant values are taken out of integrals, the last equation can be re-written as: 

1 1 1

. ( , ) ( , ) ( , )
j j l

j NB j NB l NT

i i j i x j i x i l x
j j l

c u u q x d q u x d Q u x d  
          

  

    

           (3-31) 

where, 
1

2ic   by substituting interior angle    
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( , )
j

i xu x d
  





 and ( , )
j

i xq x d
  





  represent a relation between node i  and element j  over 

which the integral is going to be calculated.u , q  and Qare the pressure, velocity and matrix-

fracture flow interaction, respectively, for each element of j . Equation 21 can be written in 

a matrix form as: 

 H u G q b
 

    (3-32) 

Solving these equations by applying periodic boundary conditions around grid block 

boundary in conjunction with boundary conditions along the fracture boundaries, all the 

unknowns, therefore pressure and normal velocity at grid block boundaries, pressure and 

velocity at fracture boundaries, flow rate inside fracture and at the line of intersection of 

fractures can now be calculated. 

 

3.1.3 Results and Discussion 

Validation of Numerical Results 

First the numerical results are checked for consistency using an analytical formula. Next the 

results are validated using new laboratory studies (see chapter 2).  

The purpose of this section is to analyse comparatively the results of the written numerical 

algorithm against an analytical formula which is believed to be a useful tool for measuring 

the consistency of the variation in the effective permeability by varying the angle of fracture 

(Lough et al. (1998)). The same analytical method has been used by Lough et al. (1998) and 

Teimoori et al. (2003) and its use in their studies is the same to show the accuracy in 

numerical results. 
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As it is known that effective grid block permeability is dependent on the fracture orientation 

so it is written as: 

    
( ) ( )

( )
( ) ( )

xx xy

yx yy

K K
K

K K

 


 
 

  
 

     (3-33) 

   

However, for a horizontal fracture 0  , the effective permeability tensor is written as: 

1

2

0
(0)

0

K
K

K

 
  
 

     (3-34) 

Now the components of permeability tensor in equation 33 can be written as follows: 

2 2
1 2( ) cos sinxxK K K       (3-35) 

1 2( ) ( ) ( ) sin cosxy yxK K K K        (3-36) 

2 2
1 2( ) sin cosyxK K K       (3-37) 

In order to produce consistent numerically estimated permeabilities for different fracture 

orientations following analytical equation is used (Lough et al. (1998)): 

2 2

2 2

cos sin ( ) sin cos

( ) sin cos sin cos
xx yy xx yy

xx yy xx yy

k k k k
K

k k k k

   
   

  
     

   (3-38) 

where xxk and yyk  are the x and y components of the effective permeability tensor for a 

horizontal fracture, respectively and   is the rotation angle (Lough et al.(1998)). 
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

 

Figure 3-12: single fracture rotating inside a matrix block 

The numerical experiments were carried out using a single fracture with a length of 0.6 units 

and an aperture of 1×10-4 units while fluid viscosity is taken 1cp. The orientation of fracture 

was varied from 0° to 90°. The matrix permeability of the block is set at 1 mD and the 

fracture permeability 
62 10 mD . In Fig. 3-12 fracture geometry and matrix block 

dimensions are presented. The diagonal and off-diagonal components of effective 

permeability as a function of orientation angle are presented in Figs. 3-13 and 3-14 

respectively. From these figures it can be seen that the diagonal component, xxk decreases 

while the diagonal component, yyk increases with the increase in fracture orientation (see Fig. 

3-13). Similarly the off-diagonal components ( xyk and yxk ) of effective permeability increase 

until the fracture orientation reaches 45º and then decrease to 0 when it reaches 90° (see Fig. 

3-14). This comparative study shows that numerical results agree well with the analytical 

solution presented in Eq. 3-38. 
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Effective Permeability vs Fracture Orientation
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Figure 3-13: Comparison of analytically and numerically calculated diagonal elements of 

permeability tensor 

Effective Permeability vs Fracture Orientation
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Figure 3-14: Comparison of analytically and numerically calculated off-diagonal elements of 

permeability tensor 
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Validation of Numerical Results against Laboratory Results 

In the numerical experiments the model parameters block size, fracture length, aperture and 

orientation as well as matrix and fracture permeabilities were kept the same as those of 

laboratory experiments. Numerical results are presented in Table 3-1. From the results it can 

be seen that the numerical results are in good agreement with those of the experimental 

results. 

Table3-1. Comparison between numerical and experimental results (single fracture models) 

Angle of Fracture k (D) Experimental (Error 

0.021 ) (see chapter 2) 

k (D)Numerical 

90  yyk  3.42 3.44 

45  xx yyk k  3.58 3.60 

0
 xxk  3.75 3.78 

 

Numerical results for multiple-fracture system are presented in Table 3-2. From the results it 

can be seen that the numerical results are in good agreement with the experimental results. 

Table 3-2. Comparison between numerical and experimental results (multiple fracture 

models) 

Heterogeneous systems 

(set of two fractures) 

k(D) Experimental (Error 

0.021 ) (see chapter 2) 

k (D) Numerical 

2 fractures oriented at 45  3.78 3.8 

2 intersecting fractures 3.98 4.0 

2 fractures oriented at 0
 4.21 4.2 
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Evaluation of Numerical Results 

Analytically validated permeability tensor model is used to calculate grid based effective 

permeability of multiple fracture systems. Results of the numerical model are presented in 

different examples as follows: 

Effect of Short Fractures on Effective Permeability  

In this example, numerical model is run for short fractures only. Four blocks with different 

numbers of regularly spaced short fractures in each block are presented in Fig. 3-15.  Each 

block is of size 215 15 ft . First block (bottom left) contains 15 numbers of fractures, 

similarly 5, 25 and 15 are the number of fractures in second, third and fourth blocks, 

respectively. Matrix permeability for this example is set as 0.1 md  and fracture permeability 

as 62 10 md using equation 3-15a. Also length and aperture of fracture are set constant 

values of 0.5 ft  and 41 10 ft , respectively. 

 

       Figure 3-15: Regularly spaced short fractures  
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Off diagonal components of grid based permeability tensor are ignored for short fractures and 

grid based permeability enhancement due to presence of short fractures is expressed as: 

2 21
( ) ( )
2 xx yyk k k        (3-39) 

Figure 3-16 represents the permeability enhancement due to the presence of short fractures, 

which shows that the magnitude of grid based permeability depends on the number of short 

fractures present in that grid block. 

 

  

Figure 3-16: Equivalent permeability (equation 3-39) for short fracture’s system presented in 

Fig. 3-15 

Effect of Multiple Fractures on Effective Permeability 

Purpose of this example is to show contribution of medium and long fractures in permeability 

enhancement of a grid block. Figure 3-17 shows a fracture network which is divided into 

4 4  blocks. Matrix permeability is set as 1md while fracture as 62 10 md  using equation 3-

15a. Co-ordinates of the fractures presented in Fig. 3-17 are given in Table 5. The resultant 

grid-based permeability tensors are offered in Fig. 3-18. 
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Table 3-3. Co-ordinates for the fractured system presented in Fig. 3-17 

( 1, 1)x y  ( 2, 2)x y   ( 1, 2)x x ( 2, 2)x y

(1,4) (11,13)  (16,31) (26,41) 

(4,18) (14,22)  (31,10) (42,22) 

(1,20) (14,28.5)  (31,46) (36,53) 

(2,31) (12,38)  (31,43) (48,58) 

(2,40) (22,55)  (33,31) (44,44) 

(16,7) (46,38)  (49,40) (57,56) 

(16,22) (33,33)  (49,31) (54,37) 

(46,13) (55,25)  (49,10) (58,20) 
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   Figure 3-17: Medium and long fractures system 
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      Figure 3-18: Effective permeability Tensor for fractured system presented in Fig. 3-17 
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Figure 3-18 shows the effect of orientation and length of fracture on grid based permeability 

tensors. It can be seen from block (1, 1) by comparing Figs. 3-17 and 3-18 that the magnitude 

of x and y components of permeability tensor depends on the fracture orientation. This block 

contains only one fracture at 42
 from the horizontal axis which makes the resultant x-

component of k tensor slightly higher than the y-component as x and y components of k 

tensor are equal for a fracture oriented at 45 . It is also clear from Figs. 3-17 and 3-18 that 

fractures crossing a number of grid blocks have strong bearing on the magnitude of 

permeability and direction of flow as can be seen for blocks (2,1), (2,2), (3,2) and (3,3).  

 

Effect of Intersecting Fractures on Effective Permeability 

 

In this example, the permeability tensor model is used to calculate grid-based effective 

permeability of a multiple fracture system as presented in Fig. 3-19. This fracture system 

with 4 grid blocks was generated in a manner that the effect of fracture orientation and 

intersection on the permeability tensor can be studied.  For example, bottom left block 

incorporates two parallel fractures. Then, in the bottom right, a fracture intersecting two 

initial fractures is added. Next in top left block another horizontally oriented fracture is 

added. Finally, in top right block, a fifth vertical fracture intersecting the bottom one is 

added. Permeability tensors of these blocks are presented in Fig. 3-20. The co-ordinates of 

fractures in top right block are given in Table 3-4, whereas the co-ordinates of fractures 

present in remaining blocks can be obtained by subtracting (0,1), (1,0) or (1,1) from the 

appropriate co-ordinates in Table 3-4. In this study, matrix and fracture permeabilities are set 

at 1 and 62 10 mD , respectively. 
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Figure 3-19: Multiple fracture system with successive addition of a fracture one by 

one in each grid block 
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Table 3-4. Fracture co-ordinates for the upper right grid block in Fig. 3-19 

1x  1y  2x  2y

1.25 1.44 1.55 1.96 

1.288 1.388 1.712 1.812 

1.732 1.697 1.168 1.903 

1.21 1.122 1.79 1.278 

1.445 1.08 1.455 1.68 

 

Major and minor axes of an ellipse represent the magnitude of dominant component by an 

arrow and non-dominant component (diagonal permeability) by a fixed line, while the 

direction of ellipse represents the direction of flow in each grid block. From Figs. 3-19 and 3-

20 it can be observed that the effect of x or y-component of k-tensor and resulting flow 

direction depends on the fracture intersections and orientations. As fractures are added to 

individual blocks, the size and orientation of the ellipse change to reflect the changes in 

permeability tensor and flow direction accordingly. 

 

 

 

 

 

 

 



91 
 

 

0
0

1.81.61.41.21.00.80.60.40.2

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

2.0

1.8

2.0
 

Figure3-20: Elliptical representation of k-tensor for fracture system presented in Fig. 

3-19  
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Potential Application 

In the final example, the fracture system of Soultz geothermal reservoir in France is 

considered. Figure 3-21 represents about 106 fractures at a depth of 4,480m in an areal space 

of 500m by 1200m of Soultz reservoir. This 2D fracture system is obtained by altering the 

fractal dimension of 3D realization ((Sausse et al.(2007), Gentier et al. (2010), Joshua Koh et 

al. (2010)). The entire region is divided into 50m×50m blocks. The matrix permeability for 

each grid block is 0.01md and fracture aperture 100µm. Figure 3-21 shows an elliptical 

representation of effective permeability tensor for each grid block. By comparing the 

permeabilities in different blocks it becomes clear that effective permeability tensor is a 

function of many parameters: fracture orientation, length, density and more importantly 

connectivity. It is also evident from Fig. 3-21 that fracture length and density have a strong 

impact on effective permeability (see blocks (5, 13) and (5, 15)) while small and 

disconnected fractures have limited effect (see blocks (1, 5) and (9, 11)). Furthermore 

fracture orientations have a significant bearing on flow direction. 
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Figure 3-21: Elliptical representation of grid based k-tensors for 2-D fracture network of 

Soultz reservoir 
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3.2 Fluid Flow Simulation through Naturally Fractured Reservoirs 

3.2.1 Literature Review 

Estimating pressure and velocity profiles are the major interest in the simulation of fluid flow 

for heterogeneous porous media. Continuum approaches as well as discrete fracture approach 

used for simulations are discussed earlier in this chapter with their advantages and 

limitations. 

A  number of theoretical and numerical methods have been developed using the control  

volume  method  in  the  calculation  of  fluid  flow  from  homogeneous reservoirs. Chou and 

Kwak (2000) outlined the necessity of these methods in fluid flow simulation and 

employed them for the calculation of fluid velocity.  The control volume approach for the 

mixed formulation of t h e  linear elliptic problem was first developed by Russell (Russell 

1995) .This technique has been widely used as discretisation techniques for conservation 

of mass by Ohlberger (1997); Feistauer et al. (1995); Durlofsky et al. (1992); Weiser and 

Wheeler (1988); Suli (1991); Cai et al. (1997). Control volume discretisation in finite 

difference and mixed finite element methods have been used by engineers in the simulation 

of fluid flow in petroleum reservoirs. 

A number of models have been developed using the block-centred finite difference method 

with continuity of velocity between blocks (Thomas and Trujillo,(1995); Aavatsmark et al., 

(1998)).   Lee et al. [(1997); (2002)] further improved the simulation of naturally fractured 

reservoirs (NFRs)  using  the  full  tensor  effective  permeability  in  a  flux-continuous  

finite difference method.  Lee et al. [(1997); (1999)] developed a flux-continuous finite 

difference model in the simulation of production from heterogeneous reservoirs by 

applying a full tensor effective permeability.   One of the advantages of this method is the 
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applicability of the model to the simulation of fractured reservoirs where the 

heterogeneity is described by permeability tensor. 

Combining the finite difference method with control volume permits the direct 

calculation  of  fluid velocity,  whereas  in  the  previous  methods  velocity  is calculated  

by differentiating  the pressure which is not very accurate in the simulation of NFRs. 

However, the finite difference formulation is valid for uniform grids and creates error in 

the case of fractured reservoirs with complex geometry.  For heterogeneous reservoirs  with  

non- uniform  grids,  the finite  difference  formulation  is not effective and one needs  to  

use  other  methods  such  as the finite  element  which  is capable  of  handling  the complex 

geometry in the simulation of fluid flow in NFRs. 

Furthermore, control volume and mixed finite element techniques are used in modelling 

of fluid flow in heterogeneous and fractured reservoirs (Edwards and Rogers 1994; 

Edwards and Rogers 1998) ; Naji and Kazemi (1996); Nakashima et al. (2000); and Cia et 

al. (1997)).  Cia et a l . (1997) theoretically formulated this method for heterogeneous 

reservoirs with irregular geometry and outlined its technical success and applicability.  

They used a block- centred approach to calculate pressure at the centre and velocity at the 

middle of the grid block edges. They claimed that their method is more accurate than the 

methods utilised by Aavatsmark et al. (1998)in which dual velocity grids are associated 

with the corners of pressure  block. The use of control volume mixed finite element 

method enables us to simulate fluid flow in reservoirs with irregular geometry while 

maintaining many of the familiar properties of block-centred finite difference methods for 

rectangular grids. 

 

Chou and Kwak (2000) developed a mathematical control volume model in a same 

manner as Cia et al. (1997) and proved its first order optimal rate of convergence for the 
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approximate velocities as well as for the approximate pressures.  Arihara et al. (2001) 

applied Cia et al. (1997) model for the simulation of NFR with two-phase flow and regular 

fracture pattern.  In Cia et al.’s method permeability was assumed to be a scalar term 

whereas in the simulation of NFRs permeability is usually defined in a tensor form. 

However, it should be noted that in the mixed methods pressure is not a continuous 

function and is calculated in the block centres. 

For detailed modelling one needs to calculate pressures at as many points as possible inside a 

heterogeneous reservoir instead of just block centred pressures. Also block centred pressures 

need to be interpolated to get a pressure profile throughout the reservoir where accuracy is 

meant to be lost for pressure profile inside the reservoir. Based on this drawback associated 

with mixed approaches, it was decided to use finite element modelling to obtain pressure and 

velocity profiles in heterogeneous reservoirs as used for decoupled problem by Hodge (2006) 

and Aghighi (2007) . Finite element method (FEM) enables us to calculate reasonably 

accurate nodal pressures and velocities for each element inside the reservoir which is 

advantageous over control volume mixed approaches.  

 

3.2.2 Mathematical Formulation of Simulation Model 

Fluid flow equations are solved based on the finite element discretization. Permeability 

tensors obtained from the tensor model are fed to the simulation model to calculate pressure 

and velocity distribution throughout the reservoir. Reservoir is discretised into small elements 

(blocks) and four noded elements are described. Two dimensional discritization of the fluid 

flow problem using decoupled flow equation is discussed further.  
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Square Elements 

We can divide a square element by placing regularly spaced nodes as shown in Fig. 3-22. 

Using the Lagrange polynomial we have a shape function for the square element as given by 

Zienkiewicz (2000). 

( ) ( )n m
ij i jN L L          (3-40) 

 

Figure 3-22: A general square element with regularly spaced nodes. 

 

Four Nodded Square Element 

Zienkiewicz (2000) uses a term local co-ordinates to position the centre of an element at the 

origin. The four nodded square element as defined by Zienkiewicz (2000) by using local co-

ordinates is shown in Fig. 3-23: 
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Figure 3-23: four noded square element in local co-ordinates 

On this element we have two linear Lagrange equations (Zienkiewicz 2000): 

1
0

1
( )

2
L

 
  & 1

1

1
( )

2
L

 
        (3-41) 

Using equation (3-40) and starting with the bottom left hand corner and working 

anticlockwise around the element we have four shape functions: 

1 2 3 4

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )
, , ,

4 4 4 4
N N N N

              
     (3-42) 

Mapping 

Simple elements such as square elements can be mapped onto elements of any arbitrary 

shape. Figure 3-24 represents mapping of a four noded square with local co-ordinates ( , )   

onto an arbitrary four noded quadrilateral with global co-ordinates ( , )x y . Mapping leads to 

the following relationships for this element: 

1 1 2 2 3 3 4 4x N x N x N x N x           (3-43) 

1 1 2 2 3 3 4 4y N y N y N y N y           (3-44) 
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where shape functions 1N to 4N are given in equation (3-42) 

1 1( , )x y
2 2( , )x y

3 3( , )x y
4 4( , )x y

( 1, 1)  (1, 1)

(1,1)( 1,1)





1

4

2

3

 

Figure 3-24: Mapping onto the four noded quadrilateral 

 

General Two Dimensional Transformation 

We have shape functions in terms of local co-ordinates. In order to operate on derivatives in 

the global co-ordinates ( ,x y ), transformations are required. Using the rules of partial 

differentiation Zienkiewics (2000) wrote transformations of the shape function iN from local 

to global co-ordinates: 

i i

ii

N N

x
J

NN
y







   
       

   
      

         (3-45) 

where Jacobian J


is defined as: 

x y

J
x y

 

 



  
   
  

   

          (3-46) 
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By differentiating the relationships J


 can be found explicitly. To calculate the global co-

ordinates we can re-write equation (3-45) as follows: 

1
ii

i i

NN

x
J

N N
y







  
       

   
       

          (3-47) 

For area integrals we require a relationship between the area in local co-ordinates ( )d d   

and the area in global co-ordinates ( )dxdy . Zienkiewics (2000) presented such a relation for 

area transformations from local to global co-ordinates: 

det det

x y

dxdy d d J d d
x y

 
   

 



 
 

 
 
 

       (3-48) 

where det J


represents the determinant of Jacobian. 

For line integrals, in global co-ordinates we have n dS


 where n


 is the unit vector normal to 

line S . To express this in local co-ordinates Zienkiewics (2000) presented a relationship as 

follows: 

x

y

y
n

n dS dS d
n x








 
            

         (3-49) 
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Four Noded Element Transformation 

For the four noded element we need to know shape functions iN , their derivatives with 

respect to global co-ordinates iN

x

 
  

 and iN

y

 
  

, and area dxdy in terms of local co-ordinates

,  . 

Shape functions are defined in terms of local co-ordinates in equation (3-42). Also equations 

(3-43) and (3-44) relate global co-ordinates to the local co-ordinates. In order to obtain 

derivatives of the shape functions with respect to local co-ordinates ( iN





) and iN





 we can 

differentiate equation (3-42) as follows: 

       31 2 41 1 1 1
, ,

4 4 4 4

NN N N
and

      
   

     
    

   
   (3-50) 

       31 2 41 1 1 1
, ,

4 4 4 4

NN N N
and

      
   

     
    

   
   (3-51) 

Derivatives of the x  component of global co-ordinates with respect to the local co-ordinates 

can be obtained by differentiating equation (3-43) and then by combining with equation (3-

50) will give us: 

4

1 2 3 4
1

1 1 1 1
( )

4 4 4 4
i

i
i

Nx
x x x x x

   
 

    
    

      (3-52) 

4

1 2 3 4
1

1 1 1 1
( )

4 4 4 4
i

i
i

Nx
x x x x x

   
 

    
    

      (3-53) 

Similarly derivative of y component of global co-ordinate with respect to local co-ordinates 

are obtained by differentiating equation (3-44) and then combining with equation (3-51) will 

give: 
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4

1 2 3 4
1

1 1 1 1
( )

4 4 4 4
i

i
i

Ny
y y y y y

   
 

    
    

       (3-54) 

4

1 2 3 4
1

1 1 1 1
( )

4 4 4 4
i

i
i

Ny
y y y y y

   
 

    
    

       (3-55) 

Using equations (3-52) to (3-55), we can calculate Jacobian J


as defined in equation (3-46). 

Combining Jacobian and equations (3-50) and (3-51) with equation (3-47), shape functions 

with respect to global co-ordinates ( iN

x




 and iN

y




 ) can be calculated. Combining Jacobian 

with equation (3-48), we have the area integral as a function of local co-ordinates. 

Gaussian Quadrature 

Gauss quadrature is used to exactly integrate a polynomial using a sum. As given 

Zienkiewicz (2000), the Gauss quadrature formula is: 

   
1

11

n

i i
i

I f d H f  


          (3-56) 

where n  is the number of points, H  is the weighting factor and is exact for a polynomial of 

degree (2n-1) or less. This formula can be extended to an area integral by: 

1 1 1

1 1 11 1 1

( , ) ( , ) ( , )
n n n

i i i j i j
i j i

I f d d H f d H H f        
    

         (3-57) 

The integration points for accurate integration are listed below (Zienkiewicz 2000) in Table 

3-5: 
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    Table 3-5: Weighing factor and integration points for Gauss quadrature 

n  
i  iH  

1 0  2  

2  1 1

3 3
and  

1 1and  

3  0.6,0, 0.6  5 8 5
,

9 9 9
and  

 

 

FEM Formulation for Decoupled Fluid Flow 

Decoupled two dimensional balance of fluid momentum equation is given as: 

. .f T

k k dp
P C P P C

dt


 

   
        
   
   

  

        (3-58) 

where k


is the effective permeability tensor expressed in two dimensions as follows: 

xx xy

yx yy

k k
k

k k

 
  
 


          (3-59) 

Assuming constant viscosity, equation (3-58) can be rewritten as: 

   . .f T

dp
k P C P k P C

dt
     

  
       (3-60) 

Expanding this equation will give: 
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2 2 2

2 2

22

( )

( )

xy yx yyxx
xx xy yx yy

f xx xy yx yy T

k k kk P P P P P P P
k k k k

x x x x y x y y x y y y

P P P P dp
C k k k k C

x x y y dt


          
                    

                    

 (3-61) 

Assuming, 

2 2

2f

P P
C

x x

      
 

2

f

P P P
C

x y x y

  


   
 and 

2 2

2f

P P
C

y y

  
   

 

Now from equations (3-60) and (3-61) we can write: 

. T

k dp
P C

dt




 
   
 
 



         (3-62) 

Expanding this equation using equation (3-59) gives: 

xy yx yyxx
T

k k kk P P P P dp
C

x x y y x y dt


   
        

              
     (3-63) 

Introducing the variational formulation we have: 

xy yx yyxx
T

k k kk P P P P dp
w d w C d

x x y y x y dt


    

         
                  

    (3-64) 

where ( , )w w x y is a trial function and  is a domain. 

After applying the integration in equation (3-64) we have, 
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xy yx yyxx
x y

xy yx yyxx
T

k k kk P P P P
w n n d

x y x y

k k kkw P P w P P p
d w C d

x x y y x y t

   


   



 

       
               

         
                 



 
  (3-65) 

 

where  is the boundary and n is the normal to the boundary 

Setting a constant pressure on some boundaries and no flow on others, the boundary integral 

can be omitted and after rearranging we will get: 

0xy yx yyxx
T

k k kkw P P w P P p
d w C d

x x y y x y t


    

         
                 

    (3-66) 

Using the finite difference implicit method to discretise with respect to time and assuming 

porosity and permeability changes for each time step are negligible we can write: 

1 1 11 1
1 1 0

i i ii i i i i i i
xy yx yy i ixx

T i

k k kkw P P w P P P P
d w C d

x x y y x y t


   

   
 

 

         
                    

   

(3-67) 

where subscript i represents the current time step and 1i   the previous time step. Pressure 

and displacement are described at material location for the given time. 

Rearranging equation (3-67) we have, 

1 1 11
1 1 1( ) 0

i i ii i i i i
xy yx yyi i i i ixx

T

k k kkw P P w P P
t d w C P P d

x x y y x y


   

  
  

 

         
                         

 
           (3-68) 

Using the finite element discretisation with respect to space we can write as: 
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1 1 11

1
1 1 ( ) 0

T T
i i i ii

xy yx yyi xx

T i i
i i

T

k k kkN N N N N N
t d P

x x y y x y

N N C d P P d

   



        



   
 



                           
     

 
    

 





  (3-69) 

where, 

 1 2........
T

nP P P P


  

 1 2........ nN N N N


  

The numbered subscripts represent each nodes, while n is the number of nodes and N  is a 

basis function. 

Equation (3-69) can be written as: 

1

1( ) 2 0
i i i

iM P P t M P
  

   
  

       (3-70) 

where M  is the mass matrix. 

Adding and subtracting 
1

2
i

it M P





 

1 1 1

1( ) 2 2 2 0
i i i i i

i i iM P P t M P t M P t M P
      

       
      

  (3-71) 

Re-arranging we can write as: 

1 1 1

1( ) 2 2 0
i i i i i

i iM P P t M P P t M P
       

       
 

    
   (3-72) 
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  1 1

1 2 2 0
i i i

i iM t M P P t M P
    

      
 

    
    (3-73) 

  1 1

1 2 2
i i i

i iM t M P P t M P
    

     
 

    
     (3-74) 

i

M P f
 

 


          (3-75) 

where, 

 1 2iM M t M 
    

 

1i i i

P P P
   

   
 

 

1

2
i

if t M P
 

 


 

The mass matrix M can be obtained by: 

1 2
e e e

i

e e

M M M t M
     
 

 
      

       (3-76) 

where superscript e represents the element 

From equation (3-69) we can write: 

1 11
e

Te
e e i i

TM N N C d
 

 



 


      (3-77) 

Where, for a four-nodded element, 
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 1 2 3 4
eN N N N N



      (3-78) 

Taking compressibility and porosity constant for each element we can write as: 

1 1

1
i i

e

Te
e e e e

TM C N N d
 

 



 


      (3-79) 

Transforming the global co-ordinates ( , )x y  into local co-ordinates ( , )   and substituting 

equation (3-48) into this equation: 

1 1
1 1

1 1

1
i i

Te
e e e e

TM C J N N d d  
 

 

 

  


      (3-80) 

where J represents the determinant of Jacobean while Jacobian J  is defined by equation (3-

46). Using the Gauss quadrature from equation (3-57), equation (3-80) becomes: 

1 1

, , ,1
i i

Tn ne
e e e e

T i j i j i j i j
i j

M C H H J N N
 

 

 


     (3-81) 

where n is the number of gauss points and H is the weighting factor. Using equation (3-7) we 

have: 

   

   
,

, ,

, ,

i j i j

i j

i j i j

x y

J
x y

   
 

   
 



  
   
  

   

      (3-82) 

Using equation (3-78), we can write: 

 , 1 2 3 4( , ) ( , ) ( , ) ( , )e
i j i j i j i j i jN N N N N       


  (3-83) 
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For four-nodded elements the global derivatives are given in equations (3-52) to (3-55) and 

shape functions are given in equation (3-42). 

Also from equation (3-69), 2
e

M


 for an element e  is written as: 

1 1 11

2

e e ee

e

T T
i i iie e e e e ee
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Taking permeability and viscosity of the fluid constant it becomes: 
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Transforming the global co-ordinates in this equation into local co-ordinates and combining 

with equation (3-48) we obtain: 
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 (3-86) 

Using the Gauss quadrature from equation (3-57), this equation can be written as: 
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where n is the number of gauss points while H  is the weighting factor. 

The derivation with respect to x of the shape functions for a four-nodded element is: 
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     (3-88) 

Expanding based on local co-ordinates this equation will take the form: 
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  (3-89) 

Then we have: 
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Similarly, we have the derivative of the shape function with respect to y : 
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  (3-91) 

The derivatives of the local coordinates can be obtained by inverting the Jacobian J . The 

derivatives of the shape functions for four nodded elements are given by equations (3-50) and 

(3-51). 
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The load vector f can be obtained by: 

e
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f f
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where 
e

f


is described earlier as: 
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While pressure for four-nodded element is described as: 

 1 1 1 1
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Once the nodal pressures for four noded elements have been calculated, nodal velocities can 

easily be calculated based on the pressures. For this purpose Darcy’s law is employed and 

discretisation of the equation is done as follows: 
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where 1
e
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is the same as described earlier, whereas 3M
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Time-Dependent Analytical Solution for Decoupled Fluid Flow 

 

In the following solution the rock is linear elastic, porous, uniform and has isotropic rock 

properties, while the fluid is single phase and slightly compressible. 

 

wP
wr x axis

y axis

RP P

wP
wr x axis

y axis

( , , )P P x y t

 

 

Figure 3-25: Decoupled fluid flow with constant wellbore pressure 

 

Figure 3-25 shows a wellbore in an infinite domain of rock. The borehole radius is wr  and 

pressure is wP . The initial pore pressure of the rock is RP . The solution is given as: 

 

( ) ( , )R w RP P P P g r t       (3-99) 

where, 
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where, 
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0J  and 0Y are the zero order Bassel functions of first and second kind, respectively, also: 
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By comparing this with the solution of a similar problem given by Detournay (1988), we 

have: 
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where, g


is the Laplace transformation of g and: 
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The Laplace transformation can be inverted using: 
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where ln represents the natural logarithm and: 
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where  is floor function and min () is the minimum. A good value of use of N is 10. Also 

the use of equation (3-103) is considered more stable instead of equation (3-100) (Hodge 

2006). 
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Comparison between Numerical and Analytical Solution 

 

A simple example is conducted for a comparison between numerical and analytical solutions. 

A region of unit length is divided into 10 10 blocks where the size of each block is 0.1 0.1

units. A wellbore at (0,0)  co-ordinates is pressurized at unit pressure. Unit permeability and 

unit viscosity were considered for this case. Radius of investigation ‘r’ was set as 1 for an 

analytical solution which is the same as setting unit block parameter in the x and y directions. 

Total compressibility TC was set as 9 11.45 10 Pa  .  

Nodal pressures are calculated for 10 10 elements and pressure values for the nodes present 

on x axis or y axis (the same because of the symmetric problem) are compared with the 

pressure values obtained from the analytical solution for changing radius from 0.1 unit to 1. 

Figure 3-26 shows the comparison between numerical and analytical results for this case. 
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Figure 3-26: Numerical vs. analytical results for unit size region at time step of 10 and 60sec  

 

Numerical results are compared against analytical results for two different time steps 10 

seconds and 60 seconds and the plot shows a good match between the two results. 

Numerically calculated pressure and velocity profiles for 10seconds time step are presented 

in Figs. 3-27 and 3-28, respectively. 
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Figure 3-27: Pore pressure distribution at time step of 10sec (Numerical result) for well 

reference at (0, 0) 

 

Figure 3-28: Velocity distribution at time step of 10sec (Numerical result) for well reference 

at (0, 0) 
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3.2.3 Results and Discussion 

A 2D fracture network presented by Gholizadeh and Rahman (2012) is chosen to simulate 

fluid flow through Amadeus Basin (in Australia) within an area of 1000 1000m m  (see Fig. 

3-29). The reservoir is discretised into 10,000 grid blocks and the permeability tensor model 

is run to obtain block permeabilities. In this case, due to the higher number of grid blocks the 

permeability tensor is presented in a form of permeability map (see Fig. 3-30) instead of 

elliptical representation as mentioned previously (see Fig. 3-21).  Results of the permeability 

tensor are fed to decoupled fluid flow model to obtain pressure and velocity profiles 

throughout the reservoir.  

Firstly, depletion flow mechanism is modelled for a well bore at the centre of the reservoir 

(500m, 500m). Well bottom-hole pressure is set to be 3,500psi whereas the reservoir pressure 

is 4,500psi. Pressure and velocity distribution profiles over the reservoir are shown in Figs. 3-

31 and 3-32. Changes in pressure from the boundaries to the centre of the reservoir (wellbore) 

can be observed from Fig. 3-31. In this figure, pressure at boundaries is lower than the given 

reservoir pressure ( 4500 psi ) due to depletion mechanism in a close boundary system to 

achieve steady state flow. Velocities from the boundaries of the reservoir to the centre point 

(well bore) indicate the flow path which follows the fracture network (see Fig. 3-32). 

Next, a five-spot injection production scenario is modelled to evaluate the pressure losses for 

the reservoir. For this purpose an injection well in the centre of the reservoir (500m, 500m) 

and four corner production wells are specified. Production wells A, B, C and D are located at 

(0, 0), (1000, 0), (1000, 1000), and (0, 1000) in meters, see Fig. 3-29. First, the injection well 

pressure is set to be 5,000psi whereas each production well at 4,000psi (pressure drop 

1000psi). Pressure and velocity profiles are presented in Figs. 3-33 and 3-34 where fluid 

flows through the fracture network path between the injector and producers. Furthermore, 

simulation for the injection production scenario is rerun for pressure drops of 1,500, 2,000 
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and 3,000 psi. Individual well production rates and total production rates for each pressure 

drop are plotted in Fig. 3-35.  It is observed that well A produces at relatively high flow rates 

for the applied pressure drops which are followed by production rates of well C (see Fig. 3-

35). This behaviour can be confirmed by the density and orientation of fractures between the 

injection and these production wells. Similarly, well B and D show lower production rates for 

the applied pressure drops (see Fig. 3-35) which are expected as there are no fractures 

oriented towards these wells.  It is observed that well A produces at a flow rate 38.7% of the 

total flow rate, where as well C at 33.9%. Similarly, well B and D produce at 14.2% and 

13.2% of the total flow rate (calculated from Fig. 3-35), respectively. 
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    Figure 3-29: Fracture network of a slice from Amadeus Basin  
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   Figure 3-30: Permeability map of fracture network in Fig. 3-29 
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Figure 3-31: Pressure profile (Psi) of depletion case at steady state, for

Re 4500sP psi , 3500wP psi  
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Figure 3-32: Velocity profile (m/sec) of depletion case at steady state for Re 4500sP psi ,

3500wP psi  

 

 

 

 

 

X in m

Y
in

m

0 200 400 600 800 1000
0

200

400

600

800

1000

V

5.06E-07
3.40E-07
2.29E-07
1.54E-07
1.04E-07
7.01E-08
4.72E-08
3.18E-08
2.14E-08
1.44E-08
9.72E-09
6.54E-09
4.41E-09
2.97E-09
2.00E-09



123 
 

 

 

 

 

 

Figure 3-33: Pore pressure (Psi) distribution for five spot pattern at pressure drop of 1000psi  
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             Figure 3-34: Velocity (m/sec) profile for five spot pattern at pressure drop of 1000psi  
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Figure 3-35: Pressure losses vs. individual well production rates and total production rates 
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Chapter 4 

Multiphase Fluid Flow Simulation in Arbitrarily-Oriented 

Naturally Fractured Porous Media 

 

This chapter aims to present modelling of the behaviour of two phase fluid flow for fractured 

porous media. A comprehensive literature review on modelling of two phase flow is 

presented in Chapter 2. Mathematical formulation, boundary and initial conditions as well as 

discretization of the two phase fluid flow problem are discussed in this chapter. Similar to the 

laboratory study, several examples are presented to illustrate the performance and capability 

of the approach. The ultimate objective to model numerically the laboratory two-phase 

observations has been achieved successfully for a few number of fractures present inside a 

matrix. 

4.1 Mathematical Formulation 

A two dimensional, two phase fluid flow numerical simulation model is presented. Finite 

difference method is used to formulate the oil and water equations. A MATLAB code was 

written to present the solution process and run efficiently. Two-phase fluid flow modelling 

includes flow equations for all the fluid phases present in the porous media, as well as 

additional relationship between fluid phases and initial and boundary conditions. Flow 

equations used for this modelling are obtained by combining the appropriate forms of the 

mass-conservation equation, the equation of state and the Darcy’s law.  

In water oil flow system, it is assumed that there are only two phases which are immiscible; 

therefore there is no mass transfer between the oil and water phases. In addition it is assumed 
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that flow is isothermal and fluid phases are in thermodynamic equilibrium.  By substituting 

the Darcy’s law for multiphase flow into the mass-conservation equation, following two-

dimensional fluid flow equations can be obtained. 
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          (4-2) 

where c is the transmissibility conversion factor which is constant 1.127 as given by Ertekin 

et al. (2001), xA and yA  are the cross sections normal to the x and y directions ( 2ft ), 

respectively, rok and rwk are the oil and water relative permebailities, respectively, o and w

are oil and water viscosities (cp), respectively, oB  and wB  are oil and water formation 

volume factors (RB/STB), respectively, bV is the grid block bulk volume ( 3ft ), ca is the 

volume conversion  factor and equals to 5.615,  is the porosity, oS and wS are the oil and 

water phase saturations, respectively, and oscq and wscq are the oil and water production rates 

at standard conditions (STB/D), respectively. Transmissibilities for oil and water in the x and 

y directions are by Ertekin et al. (2001).  
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The oil and water occupy the whole pore space as expressed by equation 4-7. Capillary 

pressure effects are neglected as indicated in equation 4-9. 

1o wS S        (4-7) 

cow o wP p p        (4-8) 

For 0cowP  , 

o wp p       (4-9) 

In equations 4-1and 4-2 there are four unknowns: wp , op , wS , and oS , but using the saturation 

and pressure relationships in equations 4-7 and 4-9, the number of unknowns can be reduced 

to two; one saturation and one pressure. Once the saturation and pressure for one phase are 

calculated, equations 4-7 and 4-9 are used to calculate the second phase saturation and 

pressure. 

Substituting equations 4-7 and 4-9 into equations 4-1 and 4-2 and knowing the initial and 

boundary conditions for the problem, one may calculate the unknowns oS and op . To solve 

the two-phase flow problem for laboratory experiments (see chapter 2), the same initial and 

boundary conditions are assumed. The initial pressure of the laboratory system is set to be 

14.7psi and initially the system is saturated fully with water, i.e. the oil saturation is zero. 
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Similar to the laboratory model two opposite boundaries of the domain are no flow as shown 

in Fig. 4-1. An injection well is specified in each grid block of first layer, and the same flow 

rate as used in the experimental study is distributed equally to the grid blocks with injection 

wells. The whole system is discretised into 50100 grid blocks the in x and y directions. 

 

 

Figure 4-1: Boundary conditions for modelling two phase fluid flow 

 

Block transmissibilities for the current time step are calculated using the oil and water 

relative permeabilities and oil saturation for the same time step. Then the calculated block 

transmissibilities are used to obtain pressure and saturations for the next time step. 

IMPES method Aziz and Settari (1979) is used to obtain single pressure equations for each 

grid block in its first step by combining all flow equations to eliminate saturation unknowns. 

To achieve this, transmissibilities are evaluated explicitly at time level n+1. IMPES is used 

when the saturation changed from one time step to next. Pressure equations for each grid 
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block are written and resulting set of equations is solved iteratively for the oil phase pressure 

distribution. In the next step of IMPES method, saturations are explicitly solved by 

substituting pressures at 1nt  into the flow equation. Figure 4-2 describes grid blocks 

discretization only in the x direction. Based on this discretization final oil and water fluid 

flow equations in the x and y directions are expressed below.  
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  Figure 4-2: Discretization in the x direction 
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In these equations pressures are block-centred whereas transmissibilities are calculated on the 

boundary of each grid block (see equations 4-10, 4-11 and Fig. 4-2). In this model, oil and 

water relative permeability curves are generated using the Corey type power law as 

mentioned in chapter 2 (see equations 2-5 and 2-6). 

Total and grid block pore volumes of the domain are calculated using the equations below. 

p BV V         (4-12)  

i ip bV V        (4-13) 

where BV is total bulk volume of the system and 
ibV the bulk volume of grid i .  is 40% , the 

same as laboratory models (see chapter 2). Cumulative water production is calculated using 

the equations given below. 

Cum. water production = Initial water volume – Current water volume  (4-14) 

Initial water volume = Initial water saturation   pV      (4-15) 

Current water volume = 
1

(1 )
i

n

o p
i

S V


        (4-16) 

Here n  is the total number of grid blocks and initial water saturation is 1. 

Pore volume injection at any time is calculated based on the cumulative water production. 

Before breakthrough, the injected oil volume is equal to the produced water volume so PVI 

can be calculated as; 

.

Total

before BT
p

Cum water production
PVI

V
     (4-17) 
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After breakthrough, injected volume is not equal to the produced water volume and following 

equation is used to calculate PVI. 

   
( )

Total

inj b
afterBT at BT

p

q t t
PVI PVI

V


      (4-18) 

4.2 Results and Discussion: 

The two-phase flow simulation is run for experimentally designed homogeneous and 

heterogeneous glass bead systems of dimension 10 20 0.2cm cm cm  . All parameters are 

kept the same as the laboratory study to check the efficiency of the numerical model. 

Laboratory measured relative permeabilities are input to the numerical model and pressures 

and productions are calculated. Pressure and production plots are presented in Figs. 4-3 and 

4-4. Similar to the laboratory study, it is found that single fracture models show relatively late 

breakthrough as compared to two fracture systems. It is very clear observation from 

numerical results of single-fracture models that a single fracture oriented at 0 degree to the 

direction of flow shows a quick breakthrough among single fracture models which is 

followed by single fracture at 45 degree (see Figure 4-3). A comparison between numerically 

and experimentally obtained pressure and productions are shown in Figs. 4-5 and 4-6.  The 

numerical model predicts the experimental observations well.  
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Figure 4-3: Differential pressures vs. PVI for the glass bead packs at 31 / mincm  (Numerical 

results) 
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Figure4-4: Cumulative produced water vs. injected pore volume for the glass bead packs at 

31 / mincm injection rate (Numerical results) 
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Figure 4-5: Comparison between numerical and experimentally obtained pressure differences 

for fractured systems at 31 / mincm injection rate 
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Figure 4-6: Comparison between numerical and experimentally obtained cumulative water 

productions for fractured systems at 31 / mincm injection rate 
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Table 4-1: A comparison for breakthrough times between experimental and numerical results 

at injection rate of 31 / mincm  

Homogeneous/ 

Heterogeneous systems 

Breakthrough Time (min)   

Experimental Model Numerical Model 

Homogeneous 11.84 11.96 

Single fracture at 45  11.36 11.20 

Single fracture at 0  10.72 10.32 

2 X-Intersecting fractures 9.92 9.40 

2 Intersecting fractures 8.96 8.70 

2 fractures at 0  9.60 9.20 

 

Table 4-2: A comparison for pressures at breakthrough between experimental and numerical 

results at injection rate of 31 / mincm  

Homogeneous/ 

Heterogeneous systems 

Pressure difference at breakthrough (kPa) 

Experimental Model Numerical Model 

Homogeneous 11.6 11.70 

Single fracture at 45  10.5 10.20 

Single fracture at 0  9.75 9.52 

2 X-Intersecting fractures 9.68 9.20 

2 Intersecting fractures 8.50 8.38 

2 fractures at 0  7.25 7.19 
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Table 4-1 shows a comparison of breakthrough times between experimental and numerical 

observations for all discussed homogeneous and heterogeneous systems. It is observed that 

breakthrough times for homogeneous case in experimental and numerical study are quite 

close (see table 4-1). On the other hand, numerical experiments for all heterogeneous systems 

show a slightly early breakthrough as compared to experimental breakthrough times. This 

difference in breakthrough times is probably because of the use of equation 2-4 for 

calculation of fracture permeability, which seems to be a higher than actual fracture 

permeability in laboratory experiments, causing an early breakthrough for numerical 

experiments. 

Furthermore, a comparison of pressures at breakthrough times for all discussed glass bead 

systems are presented in table 4-2. It can be observed that for all the fractured systems, 

pressure difference between injection and production points for numerical estimation is 

slightly lower than the experimental measurement. This is a confirmation of use of slightly 

high fracture permeability in numerical experiments which is causing low pressure drops 

between injection and production points for only fractured systems (not for homogeneous 

case). 

Fluid flow profiles obtained from the numerical model and laboratory experiments are 

compared at the same pore volumes of oil injection. Figure 4-7 to 4-12 show fluid flow 

profiles for the discussed glass bead systems in chapter 2 and numerically obtained flow 

profiles at constant injection of 0.4 pore volumes. Similar to chapter 2, oil is injected from 

top and produced at the bottom (reference for figures only). In these figures red colour 

represents oil. The water phase for experimental profiles is shown by light blue colour 

whereas in numerically obtained profiles it is in dark blue. Flow profiles for numerical and 

experimental model of homogeneous case (Fig. 4-7) are in good agreement which is expected 

from table 4-1 and 4-2. From Fig. 4-8, in numerical experiment for single fracture oriented at 
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0  to the direction of flow, high oil saturation is visualized at the production end of fracture 

as compared to the laboratory experiment. This difference is probably expected because of 

the high fracture permeability used in numerical study. Similar observations are found in Fig. 

4-11 and 4-12 where at least one fracture along the direction of flow is placed. The flow 

profile comparisons provided in Figs. 4-9 and 4-10 are in reasonable agreement where single 

and two fractures are oriented at 45 to the direction of flow, respectively.  By comparing Fig. 

4-9 and 4-11, it is observed that a fracture placed at 45 contributes differently in different 

situations. In fact, in Fig. 4-11 because of the presence of second fracture oriented at 0  to 

the direction of flow, 45  degree fracture contributes flow to the 0  fracture, resulting in 

relatively less oil saturation in this fracture as compared to the 45  fracture in Fig. 4-9. This 

feeding of flow from one fracture to another intersected fracture is the reason of early 

breakthrough for intersected fracture and hence shows high oil relative permeability. 
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(a) Experimental                                 (b) Numerical  

Figure 4-7: Oil-water drainage profiles for homogeneous system at 0.4PVI 
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(a) Experimental                             (b) Numerical 

Figure 4-8: Oil-water drainage profiles for 0 fracture system at 0.4PVI 
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(a) Experimental                                 (b) Numerical 

Figure 4-9: Oil-water drainage profiles for 45 fracture system at 0.4PVI 
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(a) Experimental                         (b) Numerical 

Figure 4-10: Oil-water drainage profiles for 2 X-Intersecting fractures system at 0.4PVI 
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(a) Experimental                                (b) Numerical 

Figure 4-11: Oil-water drainage profiles for 2 Intersecting fractures system at 0.4PVI 
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(a) Experimental                             (b) Numerical 

Figure 4-12: Oil-water drainage profiles for system of 2 fractures at 0  at 0.4PVI 
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Chapter 5 

Upscaling Two-Phase Relative Permeability Relationship 

In this chapter, a procedure is given to upscale relative permeabilities of different fracture 

networks from the laboratory scale (10cm×20cm) to the reservoir scale (1000m×1000m). In 

order to achieve this, a two-dimensional slice of 1000m×1000m region from the Amadeus 

Basin is considered as an example as shown in Figure 5-1. A commercial black oil simulator 

(CMG IMEX) is used to perform upscaling of two-phase relative permeabilities.  

 

               

         Figure 5-1: Fracture network used to upscale from laboratory scale. 
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5.1  Upscaling Procedure 

Steps involved in the upscaling procedure are described below: 

Step 1: Divide the whole reservoir (1000m×1000m) into 100×100 grid blocks of 10m×10m 

size of each grid block acquiring the knowledge of fracture network co-ordinates in each 

block of size 10m×10m. 

Step 2: Nominate five different blocks of random fracture orientation from 10m×10m blocks 

obtained in Step 1. These blocks can be nominated based on the fracture system present in an 

individual block that appears most commonly in the whole reservoir to avoid any repetition 

of history matching for the same orientation of fracture or fracture system present in other 

grid blocks. The nominated grid blocks of size 10m×10m from Figure 5-1 are described in 

six cases below. In this study, the angle of fracture is presented with respect to the direction 

of flow whereas the direction of flow is along the y-axis of each grid block.  

Case-1: Homogeneous grid block (with no fracture present in the block) or a single 

fracture present at greater than 70˚ to the direction of flow (see Figure 5-2a). 

Case-2: A most commonly appeared single fracture in a grid block at an orientation 

ranging 20˚-70˚ to the direction of flow e.g. 59˚ in the reservoir under study (see Figure 5-

2b) 

Case-3: A most commonly appeared single fracture of orientation ranging 0˚- 20˚ to the 

direction of flow e.g. 19˚ in the reservoir under study (see Figure 5-2c) 

Case-4: A most commonly appeared multi-fracture system at inclination close to each 

other and not intersecting, i.e. two-fracture system, where one fracture oriented at 30˚and 

other at 32˚ to the direction of the flow in the reservoir under study (see Figure 5-2d). 
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Case-5: A most commonly appeared multi-fracture system where one fracture is oriented 

between 20˚-70˚ to the direction of flow and other fracture is oriented at an angle between 

0˚-20˚ whereas fractures do not intersect each other. For example, a fracture oriented at 

64˚ and the other fracture oriented at 19˚ to the flow direction (see Figure 5-2e).   

Case-6: A most commonly appeared intersecting multi-fracture system where one fracture 

oriented at an angle between 20˚-70˚ intersects another fracture oriented at an angle 

between 0˚-20˚ to the direction of flow. For example, in this study, a fracture at 20° 

intersects another fracture which is oriented at 64˚ to the direction of flow (see Figure 5-

2f).  

A description of six nominated cases is summarised in Table 5-1. 

Table 5-1: Six nominated fractured systems of size 10m×10m from Figure 5-1 

Single-Fracture System Case 1 Case 2 Case 3 

Angle of Fracture θ 

w.r.t. the flow direction 

Homogeneous 

or θ > 70˚ 
70˚ ≥ θ > 20˚ 20˚ ≥ θ > 0˚ 

Multi-Fracture System Case 4 Case 5 Case 6 

Angle of Fracture θ 

w.r.t. the flow direction 

70˚ ≥ θ1 > 20˚ 

70˚ ≥ θ2 > 20˚ 

70˚ ≥ θ1 > 20˚ 

20˚ ≥ θ2 > 0˚ 

70˚ ≥ θ1 > 20˚ 

20˚ ≥ θ2 > 0˚ 

 

Step 3: Divide each nominated 10m×10m grid block into 100×50 blocks each of 0.1m×0.2m 

size, equivalent to the laboratory scale (10cm×20cm). 

Step 4: In order to obtain an up-scaled absolute permeability of the fracture system, single 

phase simulation of the model was run. This involved estimating pressure drop across the 

model with the fracture system present in the grid block of 10m×10m size. Next, single phase 
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flow simulation was performed for a homogeneous block of same size and the permeability 

of homogenous block was changed to match the pressure drop. The absolute permeability of 

the homogeneous block, for which pressure drop of a fractured system matched, was taken as 

an up-scaled absolute permeability of the fractured grid block. 
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Figure 5-2: Grid blocks of 10m×10m size nominated in step 2 from Figure 5-1 

  

a – Case 1 b – Case 2 

c – Case 3 d – Case 4 

e – Case 5 f – Case 6 
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Step 5: History match each 10m×10m grid block nominated in Step 2 (see Figure 5-2) in 

order to achieve an up-scaled two-phase relative permeability relationship for each fracture 

system. This involved obtaining pressure drops across the model as well as pore volume of 

water produced for a drainage test. Then re-run the simulation for the same model without 

any fracture system (homogeneous block) to match pressure drops and pore volume of water 

produced. The relative permeability for which the history of a fractured system matched was 

taken as an upscaled relative permeability of the block. Mathematical functions presented by 

Hussain et al. (2010; 2012) are used to obtain reliable history matches. In this process up-

scaled absolute permeability obtained in Step4 was used and injector and producer wells were 

placed along bottom x-axis and top x-axis of each grid block, respectively given in Figure 5-

2. 

Step 6: After achieving up-scaled relative permeability relationship for all nominated grid 

blocks (see step 2), distribution of these blocks in whole reservoir (100×100 blocks) was 

found and up-scaled absolute and relative permeabilities were assigned to the blocks with 

similar fracture realizations. 

Step7: History match the whole reservoir 1000m×1000m (100×100 blocks) to obtain two 

phase relative permeability relationship as described in step 5. 

 

5.2 Results and Discussion 

The procedure described in section 5.1 is applied to two dimensional fracture network in an 

area of 1000m×1000m taken from Amadeus Basin (see Figure 5-1). The nominated fracture 

systems of 10m×10m size are shown in Figure 5-2. The results of history matching for six 

nominated cases are presented in Figures 5-3 to 5-14.  
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Pore volume injected at breakthrough, peak pressure drop and pore volume injected at peak 

pressure drop for all nominated cases are compared in Table 5-2. As expected, a very late oil 

breakthrough (0.665 PVI) was seen in case 1 (see Table 5-2) where there is no fracture 

present in the matrix block to carry the fluid to producer quick enough.  

In Case 2 even there is a fracture present in the grid block but the angle of fracture (59˚ to the 

direction of flow) is not favourable for fluid flow and hence presence of fracture could not 

contribute to a very early breakthrough. In this case, oil breakthrough happens after injection 

of 0.65 pore volumes of oil which is not too different from 0.665 pore volumes of injection 

for homogeneous block (case 1).  

Table 5-2: Pore volume Injected at breakthrough & peak pressures for case 1 to case 6 

 

It can be clearly seen from Table 5-2 that from case 3 till case 6 each grid block has at least 

one fracture along the direction of flow which starts from injector well and ends in 

production well and hence these 4 cases show very quick oil breakthrough (see Table 5-2). It 

was found that among these four cases an earliest oil breakthrough happened for case 3 (after 

injection of 0.00012 pore volumes) which was due to the angle of fracture (19˚) to the 

direction of flow as almost whole length of fracture contributes to the fluid flow.  

Case ID Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

PVI at 
breakthrough 

0.665 0.65 0.00012 0.11 0.0028 0.0004 

Peak Pressure 
Drop (kpa) 

213.4 199.9 42.7 87.5 161.5 132 

PVI at Peak 
Pressure Drop 

0.67 0.68 2.51 1.28 0.73 0.76 
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After case 3, second earliest breakthrough (after injection of 0.0004 pore volumes), among 

the four cases, happened for case 6 where angle of fracture increases from 19˚ (Case2) to 21˚ 

(Case 6) to the direction of flow and hence delays the oil breakthrough (see Table 5-2). 

After case 6, third quickest breakthrough happened for case 5 (after injection of 0.0028 pore 

volumes) which consists of two fractures that are not intersecting each other (see Figure 5-2). 

By comparing case 3 and case 5 it is found that even case 5 contains two fractures it shows 

late break through as compared to case 3 because second fracture is also connected to injector 

and hence part of oil injection flows through second fracture and delays breakthrough. 

A very late breakthough (after injection of 0.11 pore volumes) was found for case 4 among 

last four cases (case3-case6) which was due to the increase in angle of fracture to 30˚ and 32˚ 

with respect to the direction of flow as compared to low angle of fracture (19˚-20˚) to the 

direction of flow for other three cases.  

A comparison of maximum pressure drops between injector and producer and pore volume 

injection at maximum pressure drop for different fracture systems is also presented in Table 

5-2 (see Figures 5-2 to 5-15 for details). It can be seen in the table that pressure drop is 

highest (213.4kpa) for a homogeneous grid block. It is found that, for homogeneous block 

(case 1), pressure drop is peaking at injection of almost same pore volume (0.67 PVI) as oil 

breakthrough (0.665 PVI). This behaviour is typical as there is no fracture present in the 

block and hence injection fluid (oil) cannot bypass the initial fluid in place (water).  

It can be clearly seen that pressure difference between injector and producer, for a fracture 

oriented at 59˚ to the direction of the flow (case 2), is the highest (119.9kpa) among all the 

cases of fracture systems (case 2 – case 5). The higher pressure drop is due to the fracture 

inclination of 59˚ and due to the fact that, unlike other fracture systems in comparison, the 

fracture does not reach/intersect the production well. This forces the flow through matrix to 
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reach production well which requires extra pressure drop. As some water stays trapped 

behind fracture (due to faster injection fluid flow through fracture), this is why it requires 

injection of few more pore volumes (0.68) to reach peak pressure as compared to 0.65 PVI 

where oil breakthrough happens. It is found that presence of fracture in the grid block shows 

an early breakthrough but requires injection of extra pore volumes to achieve maximum 

pressure drop and hence to stabilize the pressure across the system.  

Furthermore, case 3 shows a minimum pressure drop (42.7kpa) as compared to all other cases 

which is due to the favourable inclination of fracture (19˚ to the direction of flow). As oil 

breakthrough happened quickest due to the favourable inclination, it required injection of 

extra pore volumes (2.51 PVI), the highest required PVI among all six cases, to obtain the 

peak pressure for the system. It also means that initial fluid in place (water) was seen in 

production till 2.51 pore volumes of oil injection.  

Further increase in pressure drop was observed for case 4 (87.5kpa) as an angle of fracture 

increased to 30˚ and 32˚ to the direction of flow. Also with increase in fracture inclination to 

the direction of flow, the amount of fluid trapped behind the fracture is less and hence less 

pore volume injection is required (1.28 PVI) to obtain the peak pressure for the system as 

compared to case 3 (2.51 PVI). 

It was also found, that even though case 5 and case 6 have at least one fracture connecting 

from injector to the producer, the maximum pressure drop is not less than a single fracture 

system at an approximate similar inclination (19˚) to the direction of flow (case 3). This is 

due to the presence of second fracture in the grid block at a higher inclination to the direction 

of flow which forces the oil flow through matrix and hence pressure drop increases. Among 

the two cases (case 5 and case 6), case 6 shows a lower pressure drop (132kpa) as compared 

to case 5 (161.5kpa) which is due to fact that both fractures in case 6 are intersecting each 
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other and hence feed fluid flow to each other unlike case 5. It is clear that as breakthrough 

happens early in case 6 (0.0004 PVI) than case 5 (0.0011 PVI), it requires injection of extra 

pore volumes (0.76 PVI) for case 6 as compared to case 5 (0.73PVI) to obtain maximum 

pressure drop for the system. 

It was observed that at injection of infinite pore volumes (11.9PVI) all the grid blocks have 

very similar produced pore volumes of water between 0.74 and 0.75 except for case 3 where 

total produced pore volume of water is 0.67 at injection of 11.9 pore volume injection (see 

Figures 5-3 to 5-16. This shows high volume of water trapped in the pores for case 3 due to 

favourable inclination of fracture for injection fluid flow that leads to an early breakthrough 

(see Figures 5-3 to 5-16). 

Relative permebailities used to history match different realizations of fracture networks (case 

1 – case 6) are presented in Figures 5-17 to 5-22. These are upscaled relative permeabilities 

from the lab scale (0.1m×0.2m) to the 10m×10m reservoir scale. These upscaled relative 

permeabilities were then used to perform upscaling to a next level (1000m×1000m). History 

match pressure drop across injector and producer for 1000m×1000m region (see Figure 5-1) 

is shown in Figure 5-15. The maximum pressure drop is obtained as 2E6kpa after injection 

of 0.674 pore volumes. Also, pore volume of water produced for the whole reservoir 

(1000m×1000m) is presented in Figure 5-16 which shows that a maximum of 0.74 pore 

volumes of water can be produced after 9 pore volumes of oil injection. The final upscaled 

relative permeability for which the history match was obtained for a region of 1000m×1000m 

(see Figure 5-1) is presented in Figure 5-23. This is an upscaled relative permeability from 

the lab scale (0.1m×0.2m) to the reservoir scale (1000m×1000m) and can be used to model 

two-phase fluid flow particularly for this fracture network presented in Figure 5-1. 
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Case1- Homogeneous Block 

 

Figure 5-3: Pressure difference across injector and producer for a homogeneous block of size 

10m×10m

 

Figure 5-4: Pore volumes of water produced vs. injected pore volumes of oil for a 
homogeneous block of size 10m×10m 
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History Matching for Case2 

 

Figure 5-5: Comparison of pressure difference across injector and producer between single 

fracture system (fracture oriented at 59˚) and upscaled case (10m×10m) 

 

Figure 5-6: Comparison for pore volume (PV) of water produced between original single 

fracture (oriented at 59˚) and upscaled case (10m×10m) 
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History Matching for Case3 

 

Figure 5-7: Comparison of pressure difference across injector and producer between original 

single fracture (oriented at 19˚) and upscaled case (10m×10m) 

 

Figure 5-8: Comparison for pore volume (PV) of water produced betweenoriginal single 

fracture (oriented at 19˚) and upscaled case (10m×10m) 
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History Matching for Case4 

 

Figure 5-9: Comparison of pressure difference (across injector and producer) between 

original multi fracture system (one fracture oriented at 30˚ and other at 32˚) and upscaled 

case (10m×10m) 

 

Figure 5-10: Comparison for pore volume (PV) of water produced for multi fracture system 

(one fracture oriented at 30˚ and other at 32˚) and upscaled case (10m×10m) 
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History Matching for Case5 

 

Figure 5-11: Comparison of pressure difference (across injector and producer) between 

original multi fracture system (one fracture oriented at 19˚ and other fracture at 64˚) and 

upscaled case (10m×10m) 

 

Figure 5-12: Comparison of pore volume of water produced for original multi fracture 

system (one fracture oriented at 19˚ and other fracture at 64˚) and upscaled case (10m×10m) 
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History Matching for Case6 

 

Figure 5-13: Comparison of pressure difference (across injector and producer) between 

original multi fracture system (one fracture oriented at 20˚ and other fracture at 64˚) and 

upscaled case (10m×10m) 

 

Figure 5-14: Comparison of pore volume of water produced for original multi fracture 

system (one fracture oriented at 20˚ and other fracture at 64˚) and upscaled case (10m×10m) 
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History Matching for Whole Reservoir (1000m×1000m)  

 

Figure 5-15: Comparison of pressure difference across (injector and producer) for original 

multi fracture reservoir and up-scaled case (1000m×1000m) 

 

Figure 5-16: Comparison of pore volume (PV) of water produced for original multi fracture 

reservoir and up-scaled case (1000m×1000m) 
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      Relative Permeability Relationships 

Case1: 

 

Figure 5-17: Up-scaled relative permeability relationship for homogeneous block of size 

10m×10m 

Case2: 

 

Figure 5-18: Up-scaled relative permeability relationship for single fracture system (oriented 

at 59˚) in a block of size 10m×10m 
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Case3: 

 

Figure 5-19: Up-scaled relative permeability relationship for single fracture system (oriented 

at 19˚ to the direction of flow) in a block of size 10m×10m 

Case4: 

 

Figure 5-20: Up-scaled relative permeability relationship for multi fracture system (oriented 

at 30˚ and 32˚) in a block of size 10m×10m 
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Case5: 

  

Figure 5-21: Up-scaled relative permeability relationship for multi fracture system (oriented 

at 64˚ and 19˚ non intersecting fracture system) in a block of size 10m×10m 

Case6: 

 

Figure 5-22: Up-scaled relative permeability relationship for multi fracture system (oriented 

at 20˚ and 64˚ intersecting fracture system) in a block of size 10m×10m 
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Figure 5-23: Up-scaled relative permeability relationship for multi fracture system (whole 

reservoir) in a block of size 1000m×1000m 

 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R
e
la
ti
ve
 P
e
rm

e
ab

ili
ty

Sw

Relative Permeability Upscaled to 
Reservoir Scale 1000m×1000m

krw

kro



167 
 

Chapter 6 

Conclusion and Future Work Recommendations 

 

6.1 Conclusions and Perspectives 

In this thesis, an innovative numerical and laboratory methodology was developed to study 

the mechanism of fluid flow in arbitrarily-oriented naturally fractured reservoirs. As part of 

the numerical study a grid-based permeability tensor model was developed and then used to 

predict pressure and fluid flow velocity profiles throughout the reservoir and well 

deliverability. As for the laboratory study, single and multiple (two) fractures with different 

orientations were constructed in 10 20cm cm  glass bead model and effective permeability 

tensor for single phase flow and relative permeability for two phase flow were measured. 

These data were used to confirm the numerically derived effective permeability tensor and 

relative permeability. From the results of this study following conclusion can be drawn: 

Results of effective permeability tensor are in consistent with the expectation. The effective 

permeability tensors have been found to be the highest when the fractures (single or multiple) 

are in line with the flow direction due to the contribution of full length of fracture. As for the 

two phase flow, the results of oil relative permeability for single fracture systems provided 

highest when the fracture is along the direction of flow, while for multiple fracture systems 

the oil relative permeability is highest for intersecting fracture networks. This is expected 

because the intersecting fractures were feeding the flow to each other causing an early 

breakthrough. It is also observed that laboratory derived effective permeability tensors and 

the relative permeabilities are in consistent with the numerically derived data. This 

consistency provides a mutual validation for the two procedures. A realistic laboratory and 
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numerical procedure of simulating fluid flow in arbitrary fracture systems have allowed 

reaching a high level consistency of the results.  

Further, the grid based effective permebailities were used to simulate pressure and velocity 

profiles throughout the reservoir and to estimate well deliverability. This result again showed 

quite a good consistency with the expected results. For example, flow is highly influenced by 

the connectivity of the fractures and the orientations. In an injection production scenario, 

wells that are placed along the direction of fracture orientations provided the highest 

production rate at low pressure drawdown. Also in a depletion drive situation it was clear 

from velocity plots that flow towards the wellbore was taking place through interconnected 

fractures. 

In addition, a new methodology is proposed to upscale two-phase relative permeability (oil-

water) from the laboratory to the reservoir scale. It was concluded that laboratory 

experiments can provide a benchmark for relative permeability which can then be upscaled to 

the reservoir scale by using the proposed upscaling methodology. 
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6.2 Recommendations for Future Studies 

The major limitation of the permeability tensor model is that the block permebailities are 

representing average flow for the block and to capture the fracture contribution effectively, 

grid block size has to be chosen as small as possible. This brings extra computational load; 

therefore, it is recommended to improve the technique by using any other appropriate 

technique that can capture the flow through fractures for any size of grid blocks without 

losing accuracy and at the same time incorporates flow through matrix. 

In the laboratory work, more experiments are recommended with low matrix permeability to 

generate variety of data that can be used as benchmark. The effect of length of fracture on 

relative permeability can be studied. Furthermore, the size of the experimental model can be 

increased to have more flexibility for the geometry of the fractured media, i.e. number of 

fractures, sizes and orientations of fractures.  
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