
Revel8or: Model Driven Capacity Planning Tool Suite

Author:
Zhu, Liming; Liu, J; Bui, Ngoc Bui; Gorton, Ian

Publication details:
Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007)

Event details:
29th International Conference on Software Engineering (ICSE 2007)
Minneapolis, USA

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/394

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38535 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/https://doi.org/10.26190/unsworks/394
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38535
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

 1

Revel8or: Model Driven Capacity Planning Tool Suite

Liming Zhu1,2, Yan Liu1,2, Ngoc Bao Bui1,2,Ian Gorton3

1Empirical Software Engineering Program, National ICT Australia Ltd.
2School of Computer Science and Engineering, University of New South Wales, Australia

{ Liming.Zhu, Jenny.Liu, Betty.Bui}@nicta.com.au.au

3Pacific Northwest National Laboratory
ian.gorton@pnl.gov

Abstract
Designing complex multi-tier applications that must

meet strict performance requirements is a challenging
software engineering problem. Ideally, the application
architect could derive accurate performance predictions
early in the project life-cycle, leveraging initial
application design-level models and a description of the
target software and hardware platforms. To this end, we
have developed a capacity planning tool suite for
component-based applications, called Revel8tor. The tool
adheres to the model driven development paradigm and
supports benchmarking and performance prediction for
J2EE, .Net and Web services platforms. The suite is
composed of three different tools: MDAPerf, MDABench
and DSLBench. MDAPerf allows annotation of design
diagrams and derives performance analysis models.
MDABench allows a customized benchmark application
to be modeled in the UML 2.0 Testing Profile and
automatically generates a deployable application, with
measurement automatically conducted. DSLBench allows
the same benchmark modeling and generation to be
conducted using a simple performance engineering
Domain Specific Language (DSL) in Microsoft Visual
Studio. DSLBench integrates with Visual Studio and
reuses its load testing infrastructure. Together, the tool
suite can assist capacity planning across platforms in an
automated fashion.

1 Introduction

Capacity planning is a challenging software
engineering problem, especially in early life cycle when
only design diagrams and prototypes are available.
Various performance analysis techniques with prediction
capabilities have been proposed to evaluate architecture
designs [1]. However, they have not been widely adopted
in industry for a number of reasons. Probably the biggest
hurdle to adoption is the fact that strong performance
modeling and mathematical skills are required for
deriving analytical models from an application design.
This creates an extra learning curve as software engineers
must master the theories of performance modeling.
Moreover, obtaining parameter values in order to
populate an analytical model requires significant
engineering effort. In addition, these activities are not

integrated into day to day software development
environments.

We believe that Model Driven Development (MDD)
technologies and tight integration with development
environment can solve these problems. The design of
Revel8or addresses each of these problems as follows:
1) MDAPerf uses standards such as the UML

performance and scheduling profile for performance
annotations. This alleviates the need to learn a new
annotation for each new performance analysis
technique. Users work with their normal design
diagrams directly. Most of the complexity for
analytical performance modeling is hidden behind
model to model transformations.

2) MDABench and DSLBench allow benchmark
applications including test case data to be modeled
and generated rather than be built manually.
Performance data collection facilities are also
generated automatically.

3) The Revel8or toolkit is tightly integrated with the
most popular development environments. MDAPerf
is an Eclipse plug-in. MDABench works with any
UML modeling tool that can export XMI. DSLBench
is essentially a Visual Studio Plug-in utilizing the
Microsoft Domain Specific Language (DSL) toolkit.
DSLBench also integrates with the load testing
capability in Visual Studio by providing extra
modeling capabilities for wizard and script based
testing.

In addition to the above features, the Revel8or tool
suite has a number of unique benefits. In practice,
capacity planning is often done using industry standard
benchmark results rather than application specific models
and measurements. It is however difficult to use these
industry standard benchmark results to sensibly infer
useful performance characteristics about the application
under design. In Revel8or, both the generated benchmark
and the analysis model are based on a design that closely
corresponds to the application of interest, and hence it
captures the unique characteristics of the application. This
leads to the capacity planning producing more
representative measures and predictions of the eventual
application.

Revel8or derives the benchmark application from the
same application model that the performance analysis

 2

model is derived from. This makes it possible to use the
performance measurement data for analytical model
validation and tuning model parameter values.

With MDAbench and DSLbench supporting design
models in UML and DSL respectively, we provide
alternatives for software architects and engineers in
benchmark application modeling and performance test
bed auto-generation. Notice that we do not favor either
UML or DSL in our modeling capability. Instead, either
can be used in the most appropriate context such as the
preference of architects or constraints of platforms.
2 Related Work

Some researchers have applied model driven
approaches in performance analysis [4, 6]and typically
focus on deriving analytical models from UML design
models through XSLT. This means the mapping and
transformation information is ad-hoc and tangled within
the XML query and transformation language, which has
limitations for representing and validating mapping
relationships. In Revel8or, the transformation from design
artifacts to analytical models is supported by a meta-
modeling framework. From an extensibility and
portability point of view, the persistent format of models
and its transformation follows the specification in [5], so
that this tool can be integrated with the different analysis
methods that support this specification.

Measurements in the form of benchmarking and
prototyping [2]are used to obtain valuable information for
populating analytical model parameters. Comprehensive
prototyping can however be expensive. To further
exacerbate the problem, multiple benchmarking and
prototyping applications need to be constructed for
different target platforms for comparison or deployment
considerations. Our approach integrates customized
benchmark generation and performance analysis model
transformation into a single model driven capacity
planning environment.

Some pioneering work has been done on generating
benchmark and prototyping applications using models, as
in [2]. However, these have several limitations:
• The code generators for the chosen technologies
are built from scratch by the researchers. Any change
to the chosen target technology or the introduction of a
new technology requires significant extra work from
the researchers. In contrast, Revel8or exploits existing
code generation “cartridges” from AndroMDA and
load testing infrastructure within Visual Studio.
• These methods do not usually follow standards
or they favor one environment (e.g. Eclipse) over
another (Visual Studio). The UML annotations in
Revel8tor are based on standards. Revel8or uses two
standard UML profiles on testing and
performance/scheduling. Revel8or supports both UML
and DSL modeling environments, including various

UML 2.0 modeling tools and Visual Studio across
J2EE, .Net and Web Services platforms.
• In these methods, the load testing part of the
benchmark suite can not be comprehensively modeled.
It usually relies on scripting or manual coding. Test
case data is either embedded in code or test cases rather
than specified using a data model. Revel8or
distinguishes different testing elements (e.g. test
context, test cases, data pool, data partition) by
tailoring the UML 2.0 Testing Profile. In addition, a
new simpler load testing DSL has been designed from
scratch using Visual Studio DSL.

3 Tool Design and Implementation
As shown in Figure 1, the Revel8or tool suite consists

of three individual tools: MDAPerf, MDABench and
DSLBench. They work together through a common
XML-based file exchange format. The demo will show
features of the individual tools and also their integration.
3.1 MDAPerf

MDAPerf is essentially a tool to annotate design
diagrams, along with a built-in engine responsible for
deriving and solving a performance analysis model,
currently a Queuing Network Model (QNM).

Software architects can annotate use case diagrams,
sequence diagrams and deployment diagrams with the
UML performance and scheduling profile. The tool then
navigates through the diagrams, scans annotations and
collects property values. These design specifications can
be exported to text-based XMI files, which capture the
semantics and tagged values in the UML diagrams. These
XMI files are then manipulated by the prediction engine
to derive a QNM and subsequently solve it.

MDAPerf is currently built as an Eclipse plug-in. It
includes three major components:
• QNM generator: this derives a QNM that represents

the structure of the application deployment based on
the type of resources and workload. The
transformation from UML diagrams to QNM utilizes
the UML Performance and Scheduling Profile, so
that this tool can be integrated with different
methods.

• Service demand calculator: this calculates the service
demand of each scenario on each resource

• QNM solver: this implements different algorithms to
solve different type of QNMs. We have implemented
exact and approximate algorithms for both open and
closed QNMs with single class or multiple-classes
workload.

3.2 MDABench
MDABench follows OMG’s Model Driven

Architecture (MDA) to generate a deployable benchmark.
application from design artifacts. The OMG’s MDA
standard defines a way of transforming domain models
into Platform Independent Models (PIM) and then

 3

Platform Specific Models (PSM), and eventually to
executable code. PSMs can be used to generate

benchmark applications using specific technologies, such
as J2EE/EJB or Web Service

Figure 1. Revel8or Model Driven Capacity Planning Toolkit

Code Generation

A
ut

om
at

ed
 P

ar
am

et
er

P

op
ul

at
io

n

Figure 2 MDABench

As shown in Figure 2, the benchmark UML design
model begins with a PIM which reflects the application
logic. The benchmark UML design model is then
annotated with UML profiles for code generation, and a
load testing suite is modeled using the UML 2.0 Testing
Profile. The resulting UML model is then exported using
XMI and becomes an input to the open source
AndroMDA code generation framework. We have
extended the AndroMDA framework with a new cartridge
to generate a load testing suite including default test cases
and associated performance monitoring functionality. The
same design model is also used for deriving the analysis
model. Such integration enables better analysis model
parameter population and consequently provides more
accurate capacity planning results.
3.3 DSLBench

DSLBench is the counterpart of MDAbench
implemented using Visual Studio DSL. A DSL language
defines domain concepts, rules, and constraints that

govern the use of the domain concepts and graphical
notations associated with them. The conceptual part of the
DSL for benchmarking has been abstracted from the
performance testing domain through extensively
surveying existing benchmarking frameworks, such as
ECPerf, Grinder and Visual Studio load testing features.
The common concepts and best practices from these are
then grouped together to form the basis for our DSL, as
shown in Figure 3. Though requiring a new syntax, the
semantics of this DSL are designed to be compliant with
the UML 2.0 Testing profile, and thus comparable with
MDABench.

Figure 3: Meta-model for performance testing domain

 4

DSLBench integrates with Visual Studio and supports
the following activities:

• Modeling key scenarios and test cases
• Specifying the metrics to be collected
• Work load and load simulation
• Test case generation
• Specifying resource utilization threshold
The performance testing metamodel of DSLBench is

generic and not particularly specific to Visual Studio
environment. However, DSLBench only currently
supports benchmark code generation in C# and
deployment in .Net platform.
4 Evaluation

An evaluation of the Revel8or suite was done through a
field trail of each individual tool, as described in the
following.
MDAPerf

In MDAPerf, the accuracy of the performance analysis
and prediction relies on several aspects, including

1. Design models that accurately capture the
performance characteristics of the system to be
implemented and deployed.

2. The transformation of design models to QNMs.
3. The solution of QNMs.
The first aspect is application specific and depends on

the architect’s expertise and knowledge of the overall
architecture of the application and its performance
characteristics. The next two aspects are generic and
validated by our previous work in [3], from which the
implementation of model transformation and solutions are
reused. MDAPerf enhances [3] by providing an IDE for
both architecture design and performance prediction, and
automating the process.
MDABench

MDABench has been evaluated to generate deployable
benchmark applications using J2EE and Web Services
technologies on different application servers, including
JBoss Application Server, BEA’s WebLogic Server and
Apache’s Tomcat/Axis Web server.

We recently had the opportunity to test MDABench in
a Web service-based e-Government project. The system
allowed Australian tax payers to retrieve their medical
costs for a given tax year directly from a Web service for
lodging a tax return. Our aim was to assess the
performance potential of the Web services involved. We
were able to use the MDABench prototype in the
measurement planning phase. We created test data models
and specified the transaction mix, exception mix and
measurement requirements. We then used the model to
communicate the essential measurements to system’s
software engineers. This exercise has given us
considerable insights into using such a tool in real world.

DSLBench
The same sets of benchmark applications have been

implemented in DSLBench. The integration with
Windows platform utilities such as performance counters
through Visual Studio provides monitoring and reporting
capability for DSLBench.

Both MDABench and DSLBench have been validated
by deploying and running the generated benchmark
applications. Performance measurements are obtained and
they are consistent with results collected from manually
implemented benchmark applications.

From our experience in evaluation, one advantage of
Revel8or is that it significantly reduces the engineering
effort in comparing an application’s performance using
different architectures, implementation technologies or
platforms. This is due to the fact that such changes can be
reflected by modifications to the design models, and the
changes can be transformed into analytical models or
benchmark code with minimal engineering activities.
5 Conclusion

In this paper we have described a model driven capacity
planning tool suite, Revel8or for component and web
service based applications. The core principle behind this
research is to automatically transform design artifacts of
an application into platform specific solutions for
analyzing and predicting its performance. These solutions
include performance models and benchmark applications.
The unique feature of Revel8or is that it integrates
performance analysis with automated benchmark
generation. It provides architects with tool support to
predict performance from a design in the early stage of
software development, which reduces the engineering
effort involved in capacity planning. Our future works
includes applying Revel8or to more realistic case studies.

6 Reference
[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, "Model-
based performance prediction in software development: a survey," IEEE
Transactions on Software Engineering, vol. 30 (5), pp. 295-310, 2004.
[2] J. Grundy, Y. Cai, and A. Liu, "Generation of distributed system test-
beds from high-level software architecture descriptions," in Proceedings
of the 16th Annual International Conference on Automated Software
Engineering (ASE), 2001.
[3] Y. Liu, A. Fekete, and I. Gorton, "Design-Level Performance
Prediction of Component-Based Applications," IEEE Transactions on
Software Engineering, vol. 31 (11), pp. 928-941, 2005.
[4] M. J. Rutherford and A. L. Wolf, "Integrating a Performance
Analysis Kit into Model-Driven Development," in Proceedings of the the
5th GPCE Young Researchers Workshop 2003, Erfurt, Germany, 2003.

[5] C. U. Smith and L. G. Williams, "Performance Model Interchange
Format (PMIF 2.0): XML Definition and Implementation," in
Proceedings of the 1st Int. Conference on the Quantitative Evaluation of
Systems, 2004.
[6] C. Yilmaz, A. M. Memon, A. A. Porter, A. S. Krishna, D. C.
Schmidt, A. Gokhale, and B. Natarajan, "Preserving distributed systems
critical properties: a model-driven approach," Software, IEEE, vol. 21
(6), pp. 32-40, 2004.

 5

7 Appendix

Structure of the Demo

Introduction (Slides)

• Model driven capacity planning
• Model Driven approaches - DSL vs. UML
• Why do we need domain specific languages?

• Designing DSMLs using UML profiles.
• Designing DSMLs using Microsoft DSL

MDAPerf (Demonstration)

• Introduction of UML Performance and
Scheduling Profile

• Introduction of EclipseUML
• Annotating use case, sequence and

deployment diagrams
• Deriving Queuing Network Model (QNM)
• XML-based QNM
• Populating parameters
• Performance prediction results

MDABench (Demonstration)

• Introduction of UML 2.0 Testing Profile

• Introduction of AndroMDA
• Internal design of MDABench
• Modeling core benchmark logic
• Modeling load testing using UML 2.0

Testing profile
• Test data modelling
• Benchmark generation and data collection
• Benchmark report

DSLBench (Demonstration)

• Introduction of Microsoft DSL
• Meta modeling in DSL for performance

testing domain
• Internal design of DSLBench
• Modeling performance testing using DSL
• Integration with VS load testing
• Configuring counter threshold for capacity

planning
• Test data modeling
• Benchmark generation
• Running Benchmark within Visual Studio
• Benchmark Report

 6

Design pattern used

The name of software/hardware resource
hosting the computing of the object, which
is mapped to a QNM service center

Specify the performance properties
of the network used

Design pattern that this
operation involves in.

A 'Role' indicates the role that
the object's operation takes in
the design pattern.

Figure 4. Annotating Sequence Diagram in MDAPerf

The node of <<PAhost>> is mapped to
a service center in the QNM.

Figure 5. Annotating Deployment Diagram in MDAPerf

 7

Figure 6. MDAPerf Analysis Results

Figure 7. Performance Testing Modeling in MDABench

 8

Figure 8 Benchmarking Results in MDABench

Figure 9 Performance Modeling in DSLBench

 9

Figure 10 Benchmarking Results in DSLBench (integrated with VS load testing)

