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ABSTRACT 

 

 

Integrated GPS and INS systems have been in existence for many years now and offer a compelling advantage for 

precise location applications and machine automation. The short term accuracy and high availability of the INS system 

combines well with the long term accuracy of GPS to provide a more robust and reliable outcome than either individual 

system can alone. The improvements in INS systems are also allowing better dynamic modelling at lower costs 

allowing much more widespread adoption of these types of systems. The use of integrated INS/GPS systems in machine 

automation is a growing field and of increasing importance is the ability of such systems to detect, isolate and remove 

erroneous measurements before they are incorporated into a position solution. The application examined in this paper 

will be the use of an automated tractor for crop farming.  

 

 

While there are many techniques developed for quality control of GPS receivers, integrated systems for machine 

automation, and more specifically for crop farming, present some unique challenges through the inherent kinematic 

properties of the application. Typically, a lot of focus has been put on the integer ambiguity resolution problem in 

integrated systems. However, once the integer ambiguity has been resolved it is still necessary to monitor the quality of 

the measurements to ensure that the position solution stays within predetermined limits for accuracy, integrity and 

availability. In the situation of crop farming, the majority of benefits that can be realized through the use of machine 

automation include the production of high quality yield maps and the reduction in overlapping across rows amongst 

other benefits, however all these factors are reliant on having a high quality position solution whose integrity can be 

trusted.  

 

 

Simulations for the identification and detection of faults present in an integrated system will be presented with the faults 

occurring as both single system instantaneous faults in both the GPS system and the INS system and then as a 

682



 

2 

simultaneous multiple system failure across both systems. The use of the non-holomic properties of a land based 

automated system will also be investigated in these scenarios to lower the detection threshold for faults. 

 

 

INTRODUCTION 

 

 

GNSS systems, including GPS, have been increasingly combined with inertial navigation systems (INS) in order to 

provide positioning and location functionality for a number of different applications. With the continuing maturity of 

this technology there is an increasing focus on the quality of the position solution and hence, an increasing focus on 

methodologies for ensuring that any errors in either of the underlying systems can be detected and where possible 

excluded from the final position calculation. 

 

 

This paper is concerned with looking at various strategies to implement integrity monitoring on a tightly integrated 

carrier phase GPS and INS system and discussing the most effective way of dealing with various forms of faults that 

can occur in either system. Faults that can occur in such a system include but aren’t limited to; slow growth errors, 

instantaneous faults and cycle slip detection amongst others. The faults that will be discussed here include single system 

faults and failures that occur across multiple systems and ways to detect and exclude these from the position solution 

calculations.  

 

 

The operating environment that is being considered in this paper is an agricultural vehicle that will operate in a low 

dynamic environment. While the data used to implement the quality control algorithms is not an agricultural vehicle, its 

low dynamic behaviour will be adequate to simulate an agricultural vehicle in normal operation. It is important to note 

the vehicle will be operating with low dynamics that will allow the use of a simplified dynamic model to be discussed 

later. 

 

 

INS systems, while autonomous and, depending on the implementation, largely immune to signal interference, can 

suffer from time dependent unbounded navigation errors that increase exponentially. Alternatively, while GPS is 

limited by signal quality, potentially suffering from interference effects and satellite availability, it does exhibit very 

good long term stability. The advantages of integrating the two systems utilizing the carrier phase GPS range include 

dramatically improved short term and long term accuracy over what either individual system can provide as well as 

providing a higher frequency position update than standalone GPS thanks to the update rates of most INS systems. 

 

 

Currently, research into quality control methods has found that the most effective procedures are generally based on the 

prediction residuals (innovations) in a Kalman filter or a derivation of the maximum solution separation method. 

Tuenisson (1990) presents an algorithm for quality control in integrated systems using a combination of innovations and 

recursive filtering while an algorithm adapted to the integrated case based on the GPS solution separation method is 

presented in Brenner (1995). Gillesen & Elema (1996) present the results of an innovation based detection, 

identification and adaption (DIA) procedure with a  reliability analysis in an integrated navigation system while Lee & 

O’Loughlin (2000) present the findings from two integrity procedures, the extrapolation and separation methods, with 

respect to the detection of the presence of slow growth errors. Wang, Stewart and Tsakiri (1997) presented the results 

from a measurement mean shift model, applicable to any dynamic Kalman filter integrated system. More recently, 

Nikiforov (2002) present fault, detection and exclusion algorithms for multi-sensor integrated navigation systems based 

on Kalman filter innovations while Hewitson & Wang (2006) presented their research into detection, identification and 

exclusion based on the adaptation of the RAIM algorithms to integrated systems utilizing multiple GNSS constellations. 

 

 

In this paper, the algorithms described in Hewitson et al (2004) and Hewitson and Wang (2006) detailing the adaptation 

of RAIM quality control procedures to integrated systems will be extended to apply to GPS/INS systems utilizing 

carrier-phase precision. The algorithms are derived from the least squares estimators of the state parameters in a Guass-

Markov Kalman filter (Wang et al., 1997) and are applied to a tightly integrated Kalman filter solution for outlier 

detection. The measurement mean shift model is also evaluated as to its performance in a low dynamic environment 

utilizing carrier phase measurements. The use of a vehicle dynamic model is discussed to limit the growth and aid 

detection of errors in the inertial measurement system while the combination of the two approaches is discussed to 

detect and isolate instantaneous errors in both systems. 
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GPS/INS INTEGRATION 

 

 

The integration between the GPS and INS systems used here is performed by a 24 state tightly coupled Kalman filter, 3 

states each are used for position, velocity and attitude errors for the first 9 states, the next 9 states are used as INS error 

states to store the accelerometer bias and scale errors as well as the gyro bias errors. The final states are used to model 

the gravity vector, 3 states, and another 3 to model the error for the lever arm offset of the GPS receiver centre from the 

centre of the INS unit. In this case, the INS unit used is a tactical grade C-MIGITS unit with three accelerometers and 

three gyroscopes. The input to the Kalman filter is the error between the GPS Calculated double difference 

measurements and the INS predicted double difference measurements which will be explained in greater detail later. 

Irrespective of this, we consider the state evolution model of the Kalman filter to be as follows: 

 

kkkkk
wxx +!= ""

"

11,
ˆˆ  (1) 

 

And the linearized measurement model relating the measurements to the systems states can be written as: 

 

kkkk
xHz !+=  (2) 

 

Where Phi !  can be considered the mk x mk-1 state transition matrix from epoch k-1 to epoch k such that if xk-1 is the 

m x 1 updated state parameter for epoch k-1 then xk is the m x 1 predicted state parameter for the epoch k made at 

epoch k - 1. wk can then be considered to be the mk x 1 random error vector at epock k representing the dynamic process 

noise. Zk is the nk x 1 measurement vector at epoch k while Hk is the nk x mk design matrix relating the measurement 

vector zk to the state vector xk at epock k. !k is the nk x 1 error vector representing the measurement noise values at 

epoch k. 

 

 

The Kalman filter implementation used in this paper is slightly different to the norm in that at the start of each epoch the 

INS bias errors are feed back to the raw INS measurements such that the predicted state is always zero. The following 

diagram demonstrates this arrangement. 
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Figure 1: Kalman Filter Structure 

 

 

The net effect of this arrangement is that the Kalman filter can be considered to be a 6 state Kalman filter at the GPS 

update step as the velocity and attitude states are derived from INS, the only states that are updated from new GPS 

measurements are the three position error states and the three lever arm error states. However due to the fact that the 

Kalman filter’s input is the difference between the GPS double difference measurement and the predicted double 

difference measurement derived from the INS system the net effect of having the predicted INS biases set to zero (ie, 

feed back into the raw INS measurement) at the start of each update epoch is that this information is captured within a 

different section of the design matrix relating the measurement vector zk to the state vector xk. The net effect of this 

mechanism is to set the entries in the design matrix, relating the measurement vector zk to the INS error states in the 

state vector xk to zero. The input to the Kalman filter can be represented as in equation 3 where GPSDD is the double 

difference measurements calculated from the GPS satellites and INSPDD is the predicted GPS double differences from 

the INS estimated position. 

 

INSPDDGPSDDz
k

!=  (3)  
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GPS OUTLIER DETECTION 

 

 

The adoption of least squares principles for the state estimation in the Kalman filter solution the single epoch snapshot 

solution algorithms can be adapted for integrity monitoring see Hewitson (2006). By then including the predicted state 

parameters into the measurement parameter this allows the detection of outliers in the predicted states and hence 

potential errors in the system transition matrix. The inclusion of the predicted states also increases the redundancy of the 

system which has a significant effect on quality control. For a detailed background to this method, known as the 

detection, identification and adaption algorithms see Wang and Chen (1994), Hewitson et al (2004) and Hewitson and 

Wang (2006). 

 

 

Wang et al. (1997) showed that by combining the predicted states 
!

k
x̂  with the measurement vector 

k
z  optimal 

estimates of the state parameter can be obtained by using least squares principles. The corresponding model is (e.g. 

Wang et al 1997) 
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The corresponding stochastic model is therefore comprised of the ( )
kk
nn ! measurement covariance matrix 

k
R and 

the ( )
kk
mm ! predicted state covariance matrix !

kx
Q
ˆ

 combined to give the following variance covariance matrix: 
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Therefore, by using the least squares methodology to determine the optimal state parameter estimate and the covariance 

matrix can be determined by the following equations: 

 

( )
kl

T

kkl

T

xk
lCAACAx

kk

1
1

1
ˆ

!!!=  (6) 

 

( )kl

T

xx ACAQ
kk

1

ˆ

!=  (7) 

 

The filtering residuals can thereby be determined from least squares such that: 
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And further, the cofactor matrix for the filtering residues can be calculated using least squares methods such that: 

 
T
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W-STATISTIC TEST RESULTS 

 

 

In order to detect a measurement as being an outlier in any particular epoch, especially one where the presence of an 

outlier has been detected using a global detection algorithm such as the variance factor test, the w-statistic test has been 

utilized. The w statistic is given by equation (9) and should have a normal distribution under the null hyposthesis and in 

the case of the presence of an outlier has distribution with the non centrality detailed in equation (10)  (Hewitson & 

Wang 2006) 
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Where 
i
e is the unit vector whose purpose is to isolate each test measurement for analysis. 

 

 

The data collected for this analysis was collected from a ground vehicle operating in a clear area. Figure 1 shows the 

trajectory of the vehicle while figure 2 shows the ground track without the height component.  
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Figure 3: Ground Track of Vehicle 

 

 

The initial results for the w-statistic test in this instance reveals some interesting behaviour when the predicted 

measurement states are included as part of the measurement vector for the least squares analysis. Figure 3 shows that 

for the first 50 epochs the w-statistic test fails in this instance while passing when the predicted states are not included 

in the measurement vector. This is due to the initial convergance of the Kalman filter states brought about by the 

training of the Kalman filter. In this example 5 double difference measurements are used for precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Vehicle Trajectory 
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INS OUTLIER DETECTION 

 

 

 Outliers that occur within the INS measurement model are much harder to detect using the w-statistic test in this 

instance as the INS measurements are input into the Kalman filter after being converted into the range domain and 

differenced with the GPS double difference measurements. As such, an instantaneous error in the INS will manifest 

itself in every input measurement. As such, the problem becomes detecting the difference between an outlier in the GPS 

double differences and the INS measurements as it manifests itself in a manner similar to an outlier in the reference 

satellite for the double differences. Figure 4 shows the w-statistic test with an instantaneous INS error injected into 

epoch 334 while table 1 shows the individual w-statistic test values for epoch 334. 
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Figure 5: W-Statistic test results with INS outlier injected at 

epoch 334 and (alphaw = 0.1%) 

 

 

 

We can see from table 1 that the INS error manifests itself in the position error state corresponding to height when the 

measurement vector is augmented with the predicted state vector. This would typically be congruent with detecting an 

error in the dynamic model of the system, however the w-statistic test for the measurement inputs are also inflated 

leading to a possible false detection of an outlier in the GPS measurements. The w-statistic test for the case where the 

measurement vector is not augmented by the predicted states also shows that the INS measurement causes two of the 

  

[ Zk Xk] 

k=1,..,6 

[ Zk Xk] 

k=1,..,3 [ Zk] 

Z1 2.3327 2.4854 0.39269 

Z2 3.2306 3.045 3.5215 

Z3 2.8678 2.8242 -1.7708 

Z4 2.6748 2.5781 3.5175 

Z5 2.7727 2.8551 0.66047 

X1 -0.06892 0.0036091   

X2 -0.97484 -1.088   

X3 -3.6722 -3.6868   

X4 0.18636     

X5 0.96919     

X6 3.7177     

Table 1: W-statistic test for epoch 334 with INS outlier injected 

Figure 4: W Test results for the case where Lk = zk, for Lk = [zk xpos ypos zpos] and Lk = [zk x]. 
(alphaw = 0.1%) 
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GPS measurements (Z2 and Z4) to be flagged as potential outliers. This indicates that differentiating between a true GPS 

outlier and an instantaneous fault in the INS system becomes critical in this system architecture and will be discussed in 

the next section. 

 

 

NON-HOLOMIC VEHICLE CHARACTERISTICS 

 

 

The use of a non-holomic vehicle model for the detection of INS errors is an area that hasn’t received a great deal of 

attention due to the fact that INS errors can usually be compensated for when handling the biases inherent in all INS 

systems. However, due to the nature of this implementation detecting instantaneous INS errors becomes important in 

order that the GPS double difference measurements are not incorrectly flagged as outliers. A non-holomic vehicle is one 

where the dynamic behaviour of the vehicle is bounded and has limited degrees of freedome. This additional 

information on the vehicles behaviour can be used to provide an upper bound on the expected measurements from the 

INS unit. 

 

 

In this instance, as the vehicle in question is an agricultural tractor, a simple vehicle model derived from Fierro & Lewis 

(1996) can be used such that at each instantaneous epoch the vehicle motion can be considered to be only in the forward 

direction with the movement of the vehicle in any other direction bounded by the measurement noise parameter. A 

model such as this allows us to detect and bound the raw INS measurements in each direction such that any 

instantaneous fault in the INS system can be detected as well as bounded so the INS measurements can still be used in 

the position calculation. The following three equations can be used as a simple model to describe the vehicles motion in 

such a system. 

 

wz

wy

wvx

=

=

+=

&

&

&

 (12) 

 

Where x,y,z is the vehicle velocity in the x,y and z directions in the body frame and w is white noise parameter. By 

using this dynamic model of the vehicle motion to bound the position solution from the INS measurements it is possible 

to flag the case where the INS measurement has suffered an instantaneous fault and either bound the measurement to 

the magnitude of the measurement noise or the measurement noise plus the maximum velocity of the vehicle. 

Preliminary results suggests that this approach may offer advantages if the instantaneous fault occurs in the y or z 

directions however it’s effectiveness in the x direction is dependent on the actual speed of the vehicle. 

 

 

CONCLUSION AND FUTURE WORK 

 

 

In this paper a fault detection algorithm has been investigated for use in a tightly integrated INS/GPS system utilizing 

carrier phase precision. Results have shown that the w-statistic test is effective in detecting instantaneous single satellite 

outliers that don’t occur in the base satellite. It has also been shown that instantaneous errors that occur in the INS 

system appear in the w statistics similar to the effect an instantaneous error in the reference satellite has on this statistic. 

A method to distinguish between a reference satellite outlier and an instantaneous error in the INS system has been 

suggested based on extended knowledge of the vehicle dynamics and bounds of motion utilizing a kinematic model for 

the nonholomic restricted movement possible for an agricultural land vehicle. 

 

 

More work needs to be done to investigate the variance matrices both for the measurements including the GPS double 

differences as well as the variance for the state parameters utilized within the Kalman filter. By increasing the accuracy 

of the variance matrices the reliability of the w-statistic test can be improved. Further investigation also needs to occur 

into the relationship between the design matrix of the system and the method of feedback that allows the predicted INS 

error states to be set to zero at the start of each epoch. Further investigation also needs to occur into other types of 

systematic errors such as slow growth errors. The use of multiple solution systems to detect base satellite errors could 

also be investigated to help provide resolution between instantaneous INS errors and reference satellite outliers. 

 

 

The full implementation of the kinematic model of the vehicle dynamics also needs to be more fully investigated as well 

as further developing this model. In the non homogenous environment that is the typical operating environment of an 

agricultural tractor a vehicle model that considers factors such as tyre slippage and loose soil slips should provide for a 

more accurate description of the vehicles motion. 
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