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CHAPTER 1

INTRODUCTION

§1.1 SPECIFIC AIMS OF THE PRESENT STUDY

The specific objective of the present study is to investigate turbulent oscillatory 

boundary layers without and with currents, and the effect of the bed roughness on the 

mass transport velocity near the bed due to progressive waves. The detailed objectives 

of the present study can be divided into three parts as follows:

The first objective is to qualitatively and quantitatively study the eddy viscosity 

in turbulent oscillatory boundary layers without currents, and then to develop an eddy 

viscosity model to predict the velocity distribution and wave friction factor. The reason 

for this is that the concept of eddy viscosity in turbulent oscillatory boundary layers has 

not been fully understood, for example, some investigators [ Kajiura (1968), Brevik 

(1981) and Myrhaug (1982) ] assumed a time-independent eddy viscosity to model 

turbulent oscillatory boundary layers whereas other investigators [ Horikawa & 

Watanabe (1968) and Trowbridge & Madsen (1984) ] argued that the eddy viscosity 

should be considered to be time-dependent, and that on the other hand, eddy viscosity 

or momentum diffusion coefficient, the velocity distribution and wave friction factor in 

turbulent oscillatory boundary layers are important factors in determining the rate of 

sediment transport.



The second objective of the study is to experimentally examine the effect of bed 

roughness and wave height on the mass transport velocity or drift velocity near the bed 

due to progressive waves. Longuet-Higgins (1956) theoretically derived that the mass 

transport velocity was proportional to the square of the wave height H2 and possibly not 

affected by bed roughness even in turbulent boundary layers. On the other hand, 

Brebner (1966) found experimentally that in the smooth laminar boundary layer the 

mass transport velocity near the bed increased with increasing bed roughness while in 

the turbulent boundary layer the mass transport velocity decreased with increasing the 

bed roughness and was proportional to Hl2 rather than H2 predicted by Longuet 

Higgins (1956).

The final objective is to develop a model which distinguishes between the eddy 

viscosities for the steady component and the periodic component of combined 

wave—current flows, and to use this model to predict the velocity distributions of 

combined wave—current flows and bed friction factors.

§1.2 SUMMARY OF CONTENTS

In Chapter 2, based on the equation of motion and the definition of eddy viscosity, 

we will derive a formula to qualitatively examine whether the eddy viscosity is time 

dependent or time independent when only the first harmonic component is considered, 

and then according to the formula provided, the eddy viscosity in the boundary layer will 

be calculated from experimental data, and finally based on the calculated eddy viscosity 

data we will develop an analytical model and compare it with the models of Kajiura 

(1968) and Myrhaug (1982) and with the experimental data such as Jonsson & Carlsen 

(1976) Test No.l and Test No.2, van Doom (1981) VOORA, van Doom (1982) SOORAL 

andMOORAL, Sleath (1982) Test-3, Test-4, Test-5, Test-9 and Test—10, and Jensen 

(1989) Test-12 and Test-13.

Chapter 3 describes an experimental study of the variation of the maximum mass 

transport velocity or drift velocity near the bed with bed roughness due to progressive 

waves. Maximum drift velocities are measured over three different bed configurations;

2



a smooth bed, sand bed and gravel bed to examine whether the bed roughness increases 

the mass transport velocity as Brebner (1966) experimentally found, or has no effect on 

it as postulated by the theory of Longuet—Higgins (1956).

In Chapter 4, based on the equation of motion for the steady flow and the wave 

motion in the combined flow we will derive the formulas to calculate the eddy viscosities 

of waves and currents, and then according to the calculated eddy viscosity data we will 

quantitatively discuss whether the eddy viscosity for the steady flow is different from 

that for the wave motion. Finally we will develop an analytical model and compare it 

with experimental data such as van Doom (1981) V10RA & V20RA and van Doom 

(1982) S10RAL, S20RAL, M10RAL & M20RAL

Chapter 5 gives a simple example to demonstrate how to calculate wave friction 

factor and the current velocity profile in the combined wave—current flow.

In Chapter 6, the conclusions of the present study will be summarized, and 

suggestions are offered for further research.
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CHAPTER 2

OSCILLATORY BOUNDARY LAYERS 
WITHOUT CURRENTS

§2.1 INTRODUCTION

§2.1.1 OSCILLATORY BOUNDARY LAYERS

The aim of the present section is to give a general idea about what the oscillatory 

boundary layer is, and to answer these questions why the boundary layer needs to be 

studied and what kinds of problems will need investigating in the oscillatory boundary 

layer.

The bottom boundary layer is intuitively defined as a layer in which the flow is 

significantly influenced by the bed. The thickness of the layer has been defined in 

various ways, and the different definitions will lead to somewhat different results, e.g. 

one of the formulas for estimation of the thickness of the boundary layer is

« Je~T (2.1)

in which e is the eddy viscosity in the boundary layer, and T the period of oscillation. 

Thus, based on Eq.(2.1) the thickness of the boundary layer for tidal flow with a 

period of 12 hours will be approximately 66 times thicker than that of the wave motion



with a period of 10 seconds. Therefore, the tidal boundary layer thickness is often 

equal to the mean water depth while the wave boundary layer thickness is only a small 

fraction of the mean water depth, e.g. a few millimetres over a smooth solid bed, and 

a few centimetres over a flat mobile sand bed. Although the water motion induced by 

natural waves is generally not simple harmonic, it is instructive and useful to study 

a simple harmonic case, and to use it as an approximation to natural wave boundary 

layers.

For general wave fields, the orbital motion of a water particle is circular in deep 

water, and elliptical in intermediate and shallow water. If the wave is small and with 

long period, based on linear or Airy wave theory the horizontal and vertical 

displacements of a water particle from its mean position (.x, y) are respectively

Zx
//cosh lc(y 4- 
2 sinh kd

h) sin (cot — kx) (2.2)

//sinh&(y + h) 
2 sinh kd cos(a)t — kx) (2.3)

where

H : Wave Height,

0 TT

k : Wave number ( = — ),
1—j

L : Wave length,

T : Wave period,

co : Angular frequency ( = — ),

y : Elevation measured upward from the mean water level, 

x : Horizontal distance, 

t: Time variable.
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From Eqs.(2.2) and (2.3), the horizontal and vertical local fluid velocities can be 

determined as

U(x,yj) = %
Hw cosh k(y + h) 

2 sinh kd cos {cot — kx) (2.4)

W(x,y,t) tty
dt

Hco sinh k(y 4- h) 
2 sinh kd sin (cot — kx) (2.5)

and the horizontal and vertical semi-orbital amplitudes of the particle in motion 

from its mean position (x, y) are given respectively by

A(y)
//cosh k(y + h) 
2 sinh kd (2.6)

B(y)
H sinh k(y + h) 
2 sinh&d (2.7)

Eqs.(2.6) and (2.7) indicate that A(y) and Z?(y) both decrease with decreasing 

elevation, but A(y) decreases more slowly than B(y) as shown in Fig.2.1. 

Consequently, the orbit of the particle becomes flatter and flatter with decreasing 

elevation y until the vertical motion is almost zero and the particle near the bed moves 

back and forth in purely horizontal oscillatory motion, in which the horizontal 

displacement of the water particle can be estimated by taking y -* — h in Eq.(2.6)

2 sinh kd

and the horizontal velocity is

(2.8)

U(x, f)l y-*-h = Aa)cos(cot — kx) (2.9)

Assuming that a bottom boundary layer exists and that its thickness is much less than 

water depth, the horizontal velocity at the upper edge of the boundary layer is given 

by

Uoo(t) ~ Aco cos cot (2.10)

Here, denotes the outer edge of a layer as shown in Fig.2.1. Inside this layer, Airy 

wave theory derived under the assumption of an inviscid fluid can not be applied to

6



calculate local fluid velocities and accelerations due to the effects of bottom friction. 

Therefore, a different theory is required to describe the velocity distribution and 

shear stress in the boundary layer.

Mean Waler Level

Water Particle Orbit

{h - <5W} Potential Flow Region

U ^(t) = Ad) cos cot

Boundary Layer Flow Region
VTy/Z/y ////7//////7//77777;/////////////////////////y/,

Fig.2.1 Sketch of an oscillatory boundary layer generated by progressive waves

Although the thickness of the boundary layer dw is generally very small, the 

boundary layer has a significant effect on sediment transport which takes place 

mainly within this layer. Therefore, it is of interest to investigate the following 

features of the boundary layer.

1. The flow regimes of oscillatory boundary layers.

2. The boundary layer thickness dw.

3. The velocity field U(z, t) in the boundary layer.

4. The wave friction factor fw and bed shear stress rb.

7



§2.1.2 OSCILLATORY BOUNDARY LAYERS IN THE LABORATORY

Laboratory experiments can give useful insight into the nature of wave 

boundary layers induced by progressive waves. There are three different kinds of the 

laboratory facilities which can be used to produce oscillatory boundary layers in the 

laboratory.

The first and most commonly used kind is wave flumes and wave basins in which 

most aspects of wave motion outside the wave boundary layer can be modelled in 

accordance with Froudes model law. However, it is very difficult to obtain sufficiently

large Reynolds Numbers A^w/v for modelling boundary layer phenomena in the 

laboratory because the size of wave flumes and basins is limited. A general overview 

of a wave flume is shown in Fig.2.2.

Wave generator

Fig.2.2 An oscillatory boundary layer simulated in a wave flume

The second and now most commonly used type of facility is oscillating water tunnels. 

The oscillating water tunnel has a large U—tube in which the flow can be driven by 

a piston in one of the vertical legs. The general layout of an oscillating water tunnel 

is shown in Fig.2.3. The horizontal displacement produced in the test section of an 

oscillating water tunnel can be up to several meters, so that Reynolds Numbers

A20)/v in excess of 106 can be obtained. However, the orbital motion of a water 

particle produced by the wave flume differs from that made by the oscillating water 

tunnel in which there is no oscillatory component of vertical motion.

8



Piston
Open riser

Test section
h------------------------------------- H

2 ~ 10m

Fig.2.3 An oscillatory boundary layer simulated in an oscillating water tunnel

The third, but not often used kind is the oscillating flat plane in still water, which was 

suggested by Bagnold (1947). The oscillating flat plane in still water is similar to the 

oscillating water tunnel, but the velocity measured near a plate corresponds to the 

velocity defect in an oscillating water tunnel. The general structure of the apparatus 

is shown in Fig.2.4

Fig.2.4 An oscillatory boundary layer simulated by an oscillating tray in still water
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§2.1.3 FLOW REGIMES

The first step in discussing the characteristics of the oscillatory boundary layer 

flow is to determine the flow regimes. That is, determine if the flow in the boundary 

layer is laminar or turbulent. Oscillatory boundary layer flows, like steady flows, have 

very different characteristics depending on whether they are in laminar, transitional 

or turbulent regimes. The parameters which determine the flow regimes are the

Reynolds Number Re = A2co/v and the relative roughness KN/A, where KN is the 

Nikuradse roughness.

(1) For smooth beds, Jonsson (1980) suggested that the boundary layer is

Turbulent: if Re > 3 x 105

(2) For rough flat beds, the relative roughness KN/A of the bed needs to be 

considered. For example, for flat beds of sand or gravel of diameter d, Sleath (1984) 

suggested using the criterion

Laminar : if Re < d

Turbulent: if Re > d

(3) For rippled beds, Sleath (1984) defined the critical Reynolds number to be

Re = 108.2(4/A)/(?//A)U6 for 4/A > 0.38

where A and rj denote the length and height of the ripple.

§2.2 THE EQUATION OF MOTION

The horizontal motion of fluid in the turbulent oscillatory boundary layer flow 

is governed by the Navier-Stokes equation

dU , jjdU 
dt U dx + w^-dz

]_dP
Q dx + V

d2U 
dx2

+ d2U
dz2 (2.11)
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The continuity equation

o
II

^1 N+ (2.12)

and the boundary conditions

U(z,t) = 0 for z = 0 (2.13)

U(ZJ) = Uoo(t) for z —* cc (2.14)

In Eq.(2.11) U and W are the horizontal and vertical components of the instantaneous 

velocity, g the fluid density, v the kinematic viscosity of the fluid and P the pressure. 

Combining Eqs.(2.11) and (2.12) leads to

dU dlß , d( UW ) = dP_ fd2U <PU
dt dx dz Qdx v[dx2 * dz2 (2.15)

If we assume that the vertical velocity gradient is much greater than the horizontal 

velocity gradient, i.e. dU/dx ~ 0 in Eq.(2.15), we obtain

dU , d( UW ) = _ ]_dP d]V
dt dz Q dx V dz2 (2.16)

Furthermore, we assume that there is no net drift velocity inside the boundary layer, 

i.e. U = W = 0, and decompose the velocities U and W, and the pressure variable P 

into two parts, each namely, the periodic and random components, which are 

expressed by

U = Ü + u W = W + w' P = P -f p (2.17)

where the periodic component or phase average of the variable X is defined as 

N

X(z,t) = ^ X X(z’ 1 + nT) (2<18)

n= 1

Moreover, in the derivation the following relationships will be used 

X = XY = YX' = 0 XY = XY - XY £ = X (2.19)
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Substitution of Eq.(2.17) into Eq.(2.16) gives

d(U + u) , d(Ü + u')(W + w) _ 1 d(P+pJ) , _d20 + u') /onm
—Ft— + ------- Tz------- “ e dl + v F? { ’

Applying the phase average definition Eq.(2.18) and relationships Eq.(2.19) into 

Eq.(2.20), we obtain

dü , a( mV + üw) = _\dP , a2f> 
dr az Qdx dz2 (2.21)

Eq.(2.21) can be rewritten as

a^ = lap , iaf
ar P dx Q dz

where the shear stress r is given by

*-{-
u w UW\ + v dU

(2.22)

(2.23)

It is assumed that outside the boundary layer the shear stress f vanishes, so that 

Eq.(2.22) can be further simplified as

dUoo(t)
dt

IdP 
Q dx (2.24)

Furthermore, we assume that the pressure gradient dP/dx in the oscillatory 

boundary layer flow is hydrostatic which implies that the identity described by 

Eq.(2.24) also applies inside the boundary layer. Therefore, by substituting Eq.(2.24) 

into Eq.(2.22), it leads to

U° - "-('>} = Xgfz (225)

Eq.(2.25) is a governing equation of motion for a horizontally uniform oscillatory 

boundary layer flow, which will be often used in the following analysis. For simplicity

in the following sections where only U is considered, the ” ~ ” will be omitted.
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§2.3 LAMINAR OSCILLATORY BOUNDARY LAYER FLOWS

§2.3.1 INTRODUCTION

Before discussing turbulent oscillatory boundary layers, it is useful to review the 

laminar boundary layer briefly since although some characteristics of the laminar 

boundary layer are quite different from those of the turbulent oscillatory boundary 

layer, the methods and some phenomena, which have been used and discovered in the 

laminar boundary layer, may be applied to study turbulent boundary layers. For 

example, the velocity distribution in the laminar boundary layer may provide hints to 

the study of turbulent oscillatory boundary layers. This will be seen in the review of 

the laminar—like models in Section §2.4.2.

In order to simplify the mathematical treatment, the velocity in the boundary 

layer is assumed to be simply harmonic and is written in the form of the complex 

exponential

of which the real part represents the physical velocity. For laminar flow the shear 

stress given by Eq.(2.23) can be simplified to

§2.3.2 THE EQUATION OF MOTION

U(z, t) = U(z) eiwt Ua(t) = Aw eiu,t (2.26)

r(z,t) dU(z,t)
------------- = y------------------

Q dz (2.27)

By substituting Eq.(2.27) into the equation of motion Eq.(2.25), it leads to

d2U(z, t) 
v---------------^— (2.28)

We define a nondimensional velocity defect D(z) as

(2.29)

and substitute Eqs.(2.26) and (2.29) into Eq.(2.28), we get

(2.30)

13



with the boundary conditions corresponding to Eqs.(2.26) and (2.29)

o
II

/-—sNS' IIK
j

'—
^

QAII for z = 0 (2.31)

/"---N8
b
IIN = > D(z) -* 0 for z -* oo (2.32)

§2.3.3 THE VELOCITY DISTRIBUTION

The nondimensional velocity defect D(z) defined in Eq.(2.29) can be determined 

by solving the ordinary differential equation of the second order Eq.(2.30) with the 

boundary conditions expressed in Eqs.(2.31) and (2.32).

Re [D{z)} Re {1 - D(z)}

4.7 y/iv/cü

II - D(z) I

Fig.2.5 The relationship between D{z) and U(z, t) in a simple harmonic laminar boundary layer
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The solution of Eq.(2.30) is given in the complex form by

D(z) = e~(1+0yfe (2.33)

The locus of the complex number D(z) in the complex plane is a logarithmic spiral 

starting at D(z) = 1 and approaching D(z) = 0 as the elevation z increases. The 

profile of variation of D(z) is shown schematically in Fig.2.5 ED. Fig.2.5 [C] shows the 

relationship between {1 — D(z)} and U(z, t), which can be constructed geometrically 

by rotating the logarithmic spiral {1 - D(z)} at an angular speed w around O. The 

variation of the velocity amplitude II — D(z)l with elevation in the laminar flow is 

shown in Fig.2.5 [D].

(ot = 0

<5(0 = Ö

U(z,t)
Aw

Fig.2.6 The variation of the velocity U(z,t) with time and elevation in a laminar flow

Substituting the nondimensional velocity defect D(z) Eq.(2.33) into Eq.(2.29), we 

obtain the velocity distribution in the laminar flow

U(z, t) = Aw {1 - D(z)} emt = Aw { 1 - g~(1 + l)ßzj emt (2.34)

15



of which the physical velocity in the laminar flow is represented by the real part 

U(z, t) = A(x){ cos (vt - e~ßzcos{ü)t - ßz\ ) (2.35)

in which ß = The variation of U(z,t) in Eq.(2.35) with elevation and time

[0 < cut < is shown in Fig.2.6.

§2.3.4 THE VELOCITY PHASE SHIFT 0(z)

The velocity phase shift inside the boundary layer is defined as the difference 

between the local velocity phase and the free stream velocity phase. The velocity 

phase shift in the oscillatory boundary layer is one of the characteristics which make 

the oscillatory boundary layers different from the steady boundary layers.

(f){z) (in degrees)

Fig.2.7 The variation of the velocity phase shift 0(z) with elevation in a laminar boundary layer

16



We rewrite Eq.(2.29) as

U(z,t)
Unit) ~ D(z) (2.36)

of which the velocity phase shift (f){z) between U(z, t) and U 00(f) in the complex plane, 

see Fig.2.5 [C], is

0(z) = Arg{ 1 - D(z)} (2.37)

Fig.2.7 quantitatively demonstrates the variation of the velocity phase shift <p(z) with 

elevation in the laminar boundary layer.

§2.3.5 THE VELOCITY OVERSHOOT

It is shown in Fig.2.5 [D] that the local velocity amplitudes \U(z, f)l at certain 

levels are greater than the free stream velocity amplitude Aa>. This phenomenon 

\U(z,t)\ — Acu > 0 is called the velocity overshoot. This is another character which 

makes oscillatory boundary layers different from steady boundary layers.

Now, we try to determine the range over which \U(z, f)l > Acu based on the

velocity amplitude profile, see Fig.2.5 [DJ. Now when

\U(z,t)\ - Aw > 0 (2.38)

it follows that

II - D(z)I >1.0 (2.39)

Substituting the nondimensional defect velocity Eq.(2.33) into Eq.(2.39), we obtain 

e~ßz > 2cosßz (2.40)

which yields

1 . 4550 < ßz < 4.7165 (2.41)

This means that at the range of 1 . 4550 < ßz < 4.716, the velocity amplitude 

IU(z, t)\ is larger than the free stream velocity amplitude Aco. The maximum velocity

amplitude is 1 . 069Aco and occurs at z = 2.284 v 2v/co as shown in Fig.2.5 [D].
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§2.3.6 THE BOUNDARY LAYER THICKNESS

The boundary layer thickness of the oscillatory boundary layer, like the steady 

boundary layer, is defined from the velocity profile. However, one thing we should 

keep in mind is that there are three different ways to describe the velocity profiles in 

the oscillatory boundary layer. On the basis of Eq.(2.34)

U(z,t) = Am (1 - D(z)) emt (2.42)

we have :

(1) The instantaneous or time-dependent velocity profile U(z, t)

U(z,t) = Aw {1 - D(z)) emt (2.43)

of which the physical velocity is given by the real part, that is 

U(z,t) = /4a>{cos<x>r — e~ßzcos (cot — ßz)) (2.44)

The instantaneous velocity profiles U(z, t) described by Eq.(2.44) are shown in Fig.2.6.

(2) The time—independent velocity profile U(z)

U(z) = Aco {1 - D(z)} (2.45)

of which the physical velocity is given by the real part

The time-independent velocity profile U(z) given by Eq.(2.46) is shown in Fig.2.8.

(3) The velocity amplitude profile \U(z)\

= Ao>{ 1 — 2e ^zcosßz + e ^zcos2/?z}

It is shown in Fig.2.8 that the difference between U(z) and \U(z)\ is generally small,

(2.46)

\U(z)\ = AmII - D(z)l (2.47)

especially when z/ J2v/a) > 2, the time-independent velocity U(z) is equal to the 

velocity amplitude \U{z)\.
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m o '^)i
Am Aid

Fig.2.8 The variations of U(z), \U(z)\ and cos0(z) with elevation in a laminar flow

Based on the velocity profiles listed above, there are different definitions of the 

boundary layer thickness. For example,

Fredsoe (1984) defined a time-dependent boundary layer thickness d(t) as a 

minimum distance between the bed and a level at which the instantaneous velocity 

is equal to the free stream velocity Ucx>(t), which can be expressed as

U(z,t) = Uoo(t) (2.48)

The time-dependent boundary layer thickness d(t) determined from Eq.(2.48) can be 

simply described by a general expression

<5(0 J2v/co F< cot,

which is shown in Fig.2.6.

(2.49)

Jonsson & Carlsen (1976) defined the boundary layer thickness as a minimum 

distance Ö j between the bed and a level at which the local velocity is equal to the free 

steam velocity when the latter is maximum, which can be expressed as

U(z, 0 = Uoo(t) and cot = 0 (2.50)
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which gives

(5! * 1 . 6/2v/oj (2.51)

Sleath (1987) applied an intuitive definition of the boundary layer thickness, 

which is defined as a distance between the bed and a level at which the amplitude of 

the velocity defect is 5% of the free stream velocity amplitude, which can be expressed 

by the form

\D(z)\ = 0.05/ko (2.52)

which gives

<5S « 3.0 Jlv/co (2.53)

Kajiura (1968) worked with the displacement thickness dd defined as

00
r

= Ab'
{Uoo(t) ~ U(z, t) }dz

J
lo

(2.54)

The boundary layer thickness defined by Eq.(2.54) is fairly thin [dd < <3^. In the 

laminar case, the displacement thickness can be simplified as

(2.55)

The definition of the displacement thickness given in Eq.(2.55) provides a connection 

between dd and the other important boundary layer parameter, the friction factor. 

However, dd can not be determined directly from the velocity profiles.

Here, we will not discuss the time-dependent oscillatory boundary layer 

thickness <5 (t) since the equation of motion for the oscillatory boundary layer flow can 

be finally simplified as a time-independent equation in terms of U(z) when a simple 

harmonic solution is required. Therefore, the study of the boundary layer thickness 

defined through the time-independent velocity profile U{z) may be more useful.
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§2.3.7 BED SHEAR STRESS AND FRICTION FACTOR

In a two-dimensional laminar boundary layer, the shear stress is given by 

Eq.(2.27)

t(z, t) dU(z,t)
Q V dz (2.27)

Therefore, by combining the velocity distribution U{z, t) Eq.(2.35) with Eq.(2.27), the 

shear stress in the laminar oscillatory flow can be deduced as

= -~ßX--e ^zsin( cot — ßz + j ) (2.56)
^ /Re 4

where Re is the Reynolds number Re = A2co/v. Since the bed shear stress is of 

special interest in the study of sediment transport, it can be derived by inserting 

z = 0 in Eq.(2.56), as

Q
{Aw}2
/Re

sin( cot + ^ ) (2.57)

and the maximum bed shear stress rb is given by

h = {Am)2
(2.58)

On the other hand, the wave friction factor is commonly defined by an expression of 

the form

A

T-f = \U{Au>)2 (2.59)

So that, the wave friction factor fw in the laminar case is given by

U = -F= (2.60)
/Re
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§2.4 MODELS OF TURBULENT BOUNDARY LAYERS

§2.4.1 CLASSIFICATION OF EXISTING MODELS

Before developing a new model for turbulent oscillatory boundary layers, a brief 

survey will be given of existing models. In general, all the existing models can be 

classified into five major kinds, namely, Laminar—Like Models, e.g. Kalkanis (1968), 

Quasi Steady Models, e.g. Jonsson & Carlsen (1976), Eddy Viscosity Models, e.g. 

Kajiura (1968), Mixing Length Models, e.g. Bakker (1974), and x — e Models, e.g. 

Justesen (1988). All these five major kinds of models will be discussed briefly in the 

following sections.

§2.4.2 LAMINAR-LIKE MODELS

The laminar-like models are the models which use the solution of the laminar 

boundary layer, and then extend these results in a modified form to describe the 

phenomena of turbulent boundary layers. In this section, the models of Kalkanis 

(1966), Sleath (1982) and Nielsen (1985) will be briefly reviewed.

§2.4.2.1 The Model of Kalkanis (1966)

Kalkanis (1966) made use of the solution of the velocity distribution for the 

laminar oscillatory boundary layer

U{z, t) = /\o>{ cosau - e~ßzcos(cot - ßz) }

and then suggested that the velocity distribution in the turbulent oscillatory 

boundary layer could be

U{z,t) = /4<x>{ coscof -/j(z)cos{<x>r - /2(z) ) ) (2.61)

where /j(z) and /2(z) should be determined from experiments. Kalkanis (1966) 

analysed his experimental data, which were taken over a plate oscillating in still 

water, and found that over two-dimensional roughness elements, f\{z) and /2(z) 

were given by
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/l(z) = exp 103z
Aßd

and /2(z) = 1 . 550Sz)'/3

and over three-dimensional roughness elements, f^z) and /2(z) were determined as

fi(z) = 0.5 exp 133 z 1 
Aßd j and /2(z) = 0.5(ßz)2'3

where d is the diameter of the roughness element and ß = J(o/2v. As Kalkanis 

(1966) discussed, the expressions of fx{z) and /2(z) above are purely empirical and 

obtained by curve fitting to the actual measurements, so that the true distributions 

of fi(z) and /2(z) may follow some other law which conceivably would be described by 

an equation derived by a more rigorous analytical process.

§2.4.2.2 The Model of Sleath (1982)

Sleath (1982) carried out more experiments with flat sand and gravel beds 

oscillating in still water, and proposed the following revised relationship

U(z, t) — Acajcostof — U e *iCOsj(ot - ~ - (pßz
x7 (2.62)

in which Xl, X2, Ü and (f) are constants for given test conditions. For example, 

{Aa> d}/v > 700 and A/d > 70, the parameters were evaluated to be

0.2 \A(d d and *2 = 5.0

U = 0.48 and (f> = 22.5°

Eq.(2.62) is the velocity distribution from the bed. Very close to the bed, i.e. within 

a grain diameter or so of the bed, the velocities follow a different distribution, and 

therefore, there is no satisfactory empirical relationship although Sleath (1982) 

suggested that the laminar relationship might be used as a rough approximation.
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§2.4.2.3 The Model of Nielsen (1985)

Nielsen (1985) also made use of the laminar solution expressed in complex form 

U(z, t) = A(o\ 1 — D(z) )exp(/car) (2.63)

where the nondimensional velocity defect D(z) is given by

D{z) exp' - 0 + 0-

j2v/co

Hence, the following identity can be derived as

In ID(z)l = Arg{D(z)} = - -=L=
j2v/co

(2.64)

(2.65)

Analysing experimental data for turbulent boundary layers such as Josson & Carlsen 

(1976) Test No.l and Test No.2, van Doom (1980) V00RA, and van Doom (1982) 

S00RAL and M00RAL, Nielsen found an empirical distribution for the nondimen- 

sional velocity deficit

P
D(z) exp (1 + 0 (2.66)

where zk and p are given by

0.59exp< 0.59
1 - / 4

1.81

\3SKn}

1 +
1.8

_

and zk = 0.09

Nielsen’s model (1985) is compared with experimental data from Jonsson & Carlsen 

(1976) Test No.2 in Fig.2.9. From presently available experimental data, it appears 

that the quantitative description of zk and p describes U(z,t) well for turbulent and 

transitional oscillatory boundary layers with relative roughness KN/A greater than 

about 0.01. However, for turbulent boundary layers with small relative roughness 

like those investigated by Jensen (1989) Test-12 and Test-13, there is no longer 

identity between Arg D and ln IDI, see Fig.2.10. Nielsen’s model (1985) is simple and 

revealed an interesting analogy between laminar and fully turbulent oscillatory 

boundary layers. On the other hand, improvements of Nielsen’s model are still 

needed so as to give a good prediction for small relative roughness.
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Fig.2.9 Variations of lnIDI and Arg(D)in the turbulent boundary layer with large relative roughness
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Fig.2.10 Variations of lnIDI and Arg(D)in the turbulent boundary layer with small relative roughness
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§2.4.3 QUASI STEADY MODELS

§2.4.3.1 The Model of Jonsson & Carlsen (1976)

Based on the steady boundary layer solution, Jonsson & Carlsen (1976) assumed 

that the lower part of the velocity profile in a turbulent oscillatory boundary layer is 

logarithmic as shown in Fig.2.11,

Free stream velocity

0 = 1^302

Fig.2.11 The velocity profile assumed by the quasi steady model after Jonsson & Carlsen (1976)

so that

U(z,t)
U\t)

1 , 30z

where U (t) is the instantaneous bed friction velocity defined as

u\t) = ftb(t)\/Q

in which the bed shear stress tb(t) is evaluated from 

^| t/„« - U{z,t) Idz

*W30

Q

(2.67)

(2.68)

(2.69)
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where d(t) is the instantaneous boundary layer thickness determined from

= ilÄ (2.70)
U\t) * Kn

Based on the logarithmic velocity profile Eq.(2.67), Jonsson & Carlsen (1976) derived 

an implicit semi—empirical formula for the wave friction factor fw

>°gio
1

4 Ju
rrij- + log

10 kn
(2.71)

which was translated by Swart (1974) into an explicit formula

/w = exp 5 . 213 f2 . 5d)
0.194

- 5 . 977 (2.72)

which gives a good prediction of the wave friction factor fw as Myrhaug (1989) 

recently indicated.

Although Jonsson & Carlsen’s model (1976) is simple and gives a good 

prediction of the wave friction factor /*,, the logarithmic velocity profile assumed 

inside the turbulent oscillatory boundary layer can not hold for all wave phases. As 

Jensen (1989) indicated, the logarithmic layer in the oscillatory boundary layer comes 

into existence at cut > 15°, and is maintained up to cut < 160° which is very close to 

the near bed flow reversal, or in other words, the logarithmic distribution of the 

velocity U(z,t) can not exist when the flow is at these phases, 0 < cot < 15° and 

160° < a>t < 180° because the boundary layer is not thick enough to house the 

logarithmic layer in itself.

In addition, the quasi steady model can not model the nature of the velocity 

overshoot in the oscillatory boundary layer as Fig.2.11 shows, and it ignores the 

velocity phase shift in the boundary layer. However, the characteristics of the velocity 

overshoot and phase shift in the boundary layers make the oscillatory boundary layers 

quite different from the steady boundary layers. Therefore, the Quasi Steady Model 

of Jonsson & Carlsen (1976) has a limited ability of modelling the velocity distribution 

itself while related aspects like are surprisingly well modelled.
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§2.4.4 EDDY VISCOSITY MODELS

Eddy viscosity models are the models in which the relationship between the 

velocity U(z, t) and shear stress r(z, t) in the boundary layer is assumed to be of the 

form

r(z, t) dU(z, t)
(2.73)

and in which the velocity U(z, t) and shear stress t(z, t) in the boundary layer are then 

found on the basis of the governing equation

[U{z,t) - Uoo(t)} 1 dr(z, t) 
Q dz (2.25)

with the assumed distribution of £ and the boundary conditions.

§2.4.4.1 The Model of Kajiura (1968)

Kajiura (1968) divided the turbulent oscillatory boundary layer into three 

layers, namely, the inner, overlap and outer layers. For small relative roughness, the 

eddy viscosity was assumed to have the distribution

*
e(z) = 0.185xU KN Zo < z < D] (2.74)

*
A

e{z) = xU z Ol <z<D2 (2.75)

*
A

e(z) = xU D2 02 < z < dw (2.76)

*
A

where U is the maximum friction velocity at the bed, Dx is the level of the upper 

edge of the inner layer and D2 is the level of the upper edge of the overlap layer, which 

are defined by

0.5 Kh 0.05 U

The sketch of the eddy viscosity distribution in the boundary layer with small relative 

roughness described by Eqs.(2.74) to (2.76) is shown in Fig.2.12 [A].
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z z

Fig.2.12 The eddy viscosity model for turbulent oscillatory boundary layer flows after Kajiura (1968)

On the other hand, for turbulent oscillatory boundary layers with large relative 

roughness Kajiura (1968) suggested that when D2 < Dj, the overlap layer would 

disappear, so that the eddy viscosity distribution would be 

*
e(z) = 0. \%5xU KN z0 < z < Dl (2.77)

*

e(z) = xU D2 D1 < z < dw (2.78)

The eddy viscosity distribution in the boundary layer with large relative bed 

roughness described by Eqs.(2.77) and (2.78) is schematically shown in Fig.2.12 [B],

Christoffersen & Jonsson (1985) indicated that Kajiura’s model overestimated 

the thickness of the inner layer while the thickness of the overlap layer was 

underestimated. You et al. (1991c) also pointed out that the assumption of a constant 

eddy viscosity in the inner layer by Kajiura (1968) failed to accurately predict the 

velocity distribution in the boundary layer. Fig.2.13 shows that Kajiura’s (1968) 

model, in which the variation of eddy viscosity is shown in Fig.2.12 [A], overestimates 

the velocity in the inner layer measured in Jensen (1989) Test-12 with small relative 

roughness KN/A = 5.7 x 10 4, and Fig.2.14 demonstrates that Kajiura’s model, in 

which the variation of eddy viscosity is shown in Fig.2.12 [B], fails to give a good 

prediction of the velocity measured in Jonsson & Carlsen (1976) Test No.2 with large 

relative roughness KN/A = 3.6 x 10 ~2.
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Data from Jenssen (1989) Test-13

Z (mm)

You et al. (1991c)

Kajiura (1968)

o Measured Velocity Amplitude

80 100 120 140 160 180 200 220

U (cm/s )

Fig.2.13 The comparison of Kajiura’s model with Jensen (1989) Test-13 with small relative roughness

Data from Jonsson & Carlsen (1976) No.2100-

Z (mm)

You et al. (1991c)

Myrhaug (1982)

Kajiura (1968)

o Measured Velocity Amplitude

U (cm/s )

Fig.2.14 The comparison of Kajiura’s model with Test No.2 with large relative roughness
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§2.4.4.2 The Model of Brevik (1981)

Brevik (1981) modified Kajiura’s model (1968) and simplified it into a two-layer 

eddy viscosity model, in which the eddy viscosity was assumed to have the distribution

*

e(z) = xÜ z z0 < z < d (2.79)

*
e(z) = xU d d < z < dw (2.80)

in which d is the thickness of the inner layer, see Fig.2.15 and whose value is 

unknown.

xU d

xU z

Fig.2.15 The eddy viscosity model for turbulent oscillatory boundary layer flows after Brevik (1981)

After solving Eq.(2.25) with Eqs.(2.79) and (2.80) and the relevant boundary

conditions, Brevik compared his model with Jonsson & Carlsen (1976) Test No.l and

Test No.2 choosing an undetermined parameter d in Eq.(2.80) as

*
A

<5 = 0.5(5j and d = - ■ (2.81)

and found that the inner thickness ö = 0.5d j gave a better prediction of Jonsson & 

Carlsen’s (1976) Test No.l. As Sleath (1984) discussed, Brevik’s model (1981) had not 

been compared with a wide range of experimental data yet to show how well it works.
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§2.4.4.3 The Model of Myrhaug (1982)

In a similar way, Myrhaug (1982) developed an eddy viscosity model, in which 

the eddy viscosity was assumed to be

e(z) = \xU d 1 - (1 - z/Ö)
2i

z0 < z < (5 (2.82)

g(z) = ^xU d d < z < <5, (2.83)

in which d is an unknown parameter, but Myrhaug (1982) used d = 0.5^ and 

d = respectively to compare his model with Jonsson & Carlsen Test No.l and 

No.2. The variation of eddy viscosity described by Eqs.(2.82) and (2.83) is shown in 

Fig.2.16.

Fig.2.16 The eddy viscosity model for turbulent oscillatory boundary layers after Myrhaug (1982)

The comparison of the model of Myrhaug (1982) with the model of You et al. (1991c) 

and experimental data from Jonsson & Carlsen (1976) Test No.2 is shown in Fig.2.14. 

It is seen that the model of Myrhaug (1982) overestimates the boundary layer 

thickness. The further discussion of the difference between the models of Myrhaug 

(1982) and You et al. (1991c) will be given in the section §2.4.4.5.
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§2.4.4.4 The Model of Trowbridge & Madsen (1984)

Trowbridge & Madsen (1984) presented a time-dependent eddy viscosity model, 

in which the eddy viscosity was assumed to have the form

e(z,t) = xU*z Rejl + A2el2° j 0 < z < <5 (2.84)

e(z,t) = xTPd Rejl 4- A2el2e} d < z < dw (2.85)

in which

TT = { \xb(t)\/Q p 6 = cut — kx

A2 = 2e 120 {\zb(t)\/g}'12 <5 = 10 . \61xTP /(X)

where an overbar denotes a time average over one wave period. After comparing their 

model with Jonsson & Carlsen (1976) Test No.l & No.2 and van Doom (1981) VOORA, 

Trowbridge & Madsen (1984) concluded that the temporal variation of eddy viscosity 

with time did not provide a better prediction of the first harmonic velocity component 

in comparison with existing time-invariant eddy viscosity models, e.g. Kajiura 

(1968), Grant (1977), Brevik (1981) and Myrhaug (1982), and that on the other hand 

this model was only applied to predict velocity measurements of turbulent boundary 

layers with small relative roughness Kn/A <0.1. The model fails to predict the 

measurements of van Doom’s (1981) VOORA & S00RAL in which KN/A >0.1.

In the following section §2.4.4.5, it will be explained by You et al. (1991c) that 

the eddy viscosity should be time-independent when only the first harmonic 

component is considered. In other words, it is not necessary to assume a time 

dependent eddy viscosity as suggested by Trowbridge & Madsen (1984).
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§2.4.4.5 The Model of You et al. (1991c)

You et al. (1991c) based the analysis of eddy viscosity on the equation of motion 

Eq.(2.25) and derived an expression of the eddy viscosity given by

e(z)

00
r

ico j Aco — \U(z)\e^^}dz

z

■jfe[Aa> - \U(z)\e^)
(2.86)

where Acv is the free stream velocity amplitude, \U(z)\ the local velocity amplitude and 

(p{z) the phase shift of the local velocity relative to the free stream velocity. Based on 

Eq.(2.86), it was concluded that the eddy viscosity should be time independent when 

only the first harmonic component was considered.
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Fig.2.17 The eddy viscosity evaluated from van Doom (1982) MOORAL & MOORBL via Eq.(2.86)
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Furthermore, after analysing the eddy viscosity data calculated from van Doom 

(1982) experimental data MOORAL and MOORBL via Eq.(2.86). You et al. (1991c) 

suggested that the complex eddy viscosity could be treated as a real—valued variable 

because the argument of the complex eddy viscosity is small as shown in Fig.2.17. 

Consequently, the distribution of eddy viscosity in turbulent oscillatory boundary 

layer flows was suggested to be of the form 

*
e = xU (50{l — (1 - z/c3j)2} z0 < z < <3x (2.87)

*

e = xU d0 d x < z < 6W (2.88)

which are shown in Fig.2.18

xU (5„jl - (l — z/d

Fig.2.18 The eddy viscosity model for turbulent oscillatory boundary layer flows after You et al. (1991c)

where (5j is the boundary layer thickness defined by Jonsson & Carlsen (1976) and 

approximated by 

*

<5, = — or ' (2-89)

and d0 was evaluated from a wide range of experimental data and chosen as 

d0 = 0.4<51 (2.90)
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The comparison of the model of You et al. (1991c) with experimental data from 

Jonsson & Carlsen (1976) and Jensen (1989) is shown in Fig.2.13 and Fig.2.14. It is 

found that the model of You et al. (1991c) gives a better prediction of the velocity 

distribution than the models of Kajiura (1968) and Myrhaug (1982). In addition, 

Fig.2.19 shows that the model of You et al. (1991c) gives a good prediction of both the 

velocity distribution and the phase shift as well.

100 -1 — You et al. (1991c) 

o Measured Phase Shift

Measured Velocity Amplitude

Z (mm)

U (cm/s) & <j)(z) (degrees)

Flg.2.19 Comparison of the model of You et al. (1991c) with experimental data M00RAL

It is worthwhile to note here that the major differences between the models of 

Myrhaug (1982) and You et al. (1991c) have been made in the following aspects :

(1) In the model of You et al. (1991c), it was qualitatively proved that the eddy 

viscosity should be time—independent rather than time—dependent. In 

addition, an Eq.(2.86) was derived to calculate time—independent eddy 

viscosities from experimental data. These aspects are an advance on the model 

of Myrhaug (1982).
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(2) The procedure for formulating the eddy viscosity model in the two models is quite 

different. In the model of You et al. (1991c), the distribution of eddy viscosity 

described by Eqs.(2.87) and (2.88) was formulated on the basis of the time 

independent and real-valued eddy viscosity data calculated from experimental 

data via Eq.(2.86). It is shown in Fig.2.20 [A] that the eddy viscosity model of 

You et al. (1991c) fits eddy viscosity data quite well.

Eq.(2.88)

6 = 30 mm 

U = 21 . 1 cm/s
6, = 6 Ornm

<5 [ = 60 mm 

U = 21 . 1 cm/s • wl = 255°

Eq.(2.83)

Z(mm) -Eg.(2.87)
d = 30 mm

Eg.(2.82)

Jonsson & Carlsen (1976) Test No.l Jonsson & Carlsen (1976) Test No.l

Fig.2.20 Different procedures for formulating time-independent eddy viscosity models

However, in the model of Myrhaug (1982), the eddy viscosity distribution was 

assumed on the basis of the time-dependent eddy viscosity data calculated by 

Jonsson & Carlsen (1976) according to the eddy viscosity definition in the real 

formalism, see Fig.2.20 [B]. It is evident that at a fixed level [d = 30mm] the 

dependency of eddy viscosity with time [cut] is so strong that the
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time—independent eddy viscosity model suggested by Myrhaug (1982) could not 

fit data at all. On the other hand, it would be meaningless to compare the 

time—independent eddy viscosity model with the time—dependent eddy 

viscosity data in such a way as shown in Fig.2.20 [B].

(3) The parameters and the formulas used to evaluate these parameters in the two 

models are quite different. In the model of You et al. (1991c), the two 

parameters d 2 and d0 were used and based on a wide range of experimental data 

the formulas Eqs.(2.89) and (2.90) were provided to calculate dj and d0, 

respectively. However, in the model of Myrhaug (1982), only one undetermined 

parameter d was used and in the model of Myrhaug & Slaattelid (1989), a 

formula used to calculate d was adopted from Jonsson (1980), which is valid only 

for the range of 10 “3 < KN/A <0.1. It means that the model of Myrhaug & 

Slaattelid (1989) can not be applied for Jensen (1989) test-12 and Test-13 in 

which Kn/A < 10 “3 and van Doom (1981 & 1982) V00RA and S00RAL in 

which Kn/A >0.1.

§2.4.5 MIXING LENGTH MODELS

The mixing length models are the models which use Prandtl’s (1931) assumption 

/ = xz (2.91)

to connect the shear stress with the velocity gradient, that is 

l(£ii) = ,2 dU(z, t) I dU(z, t)
6 dz dz (2'92>

and then solve the equation of motion Eq.(2.25) with the relevant boundary 

conditions. We will see in the following section that the mixing length models may be 

classified as time—dependent eddy viscosity models.
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§2.4.5.1 The Model of Bakker (1974)

Bakker (1974) also started with the equation of motion Eq.(2.25)

- iMO) = ö-25>

but instead of using the eddy viscosity concept, he made use of Prandtl’s (1931) 

assumption Eq.(2.91) to rewrite the equation of motion Eq.(2.25) as

BU*(z,t) 02jU’(z,t) U\z,t)\
---------T----------  = XZ------------------------- Ö-------------------dt dz2

(2.93)

in which U*(z, t) is the instantaneous internal friction velocity

U\z,t) = xz\dU(?'t)\ (2.94)
OZ

The differential equation Eq.(2.93) for the instantaneous friction velocity was solved 

numerically by Bakker (1974). The numerical method was further refined and, in 

some respects, revised by Bakker & van Doom (1978). They used an implicit method 

in their mathematical model to calculate the velocity field. Furthermore, van Doom 

(1981) used a more effective implicit method to calculate the velocity. It can be seen 

from Fig.2.21 that the mixing length model tends to overestimate the boundary layer 

thickness.

It is worthwhile to mention here that the mixing length models may be classified 

as the time-dependent eddy viscosity models. We rewrite Eq.(2.92) as

t(z,t) 

Q XzU*(z, t)
dU(z, t) 

dz (2.95)

If we define

e(z, t) = XzU*(z,t) (2.96)

Eq.(2.95) can be rewritten as 

r(z, r) . . SU(z, t)
= e(z, t) dz~~ (2-97)

Therefore, it is seen from Eq.(2.96) that the eddy viscosity increases linearly with 

elevation z, but changes with time as U*(z, r) varies in time.
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Fig.2.21 The prediction of models on experimental data RA from van Doom & Godefroy (1978)

§2.4.6 x - £ MODELS

x — e models are the models which combine Prandtl’s (1931) assumption with 

the transport equation for the turbulent kinetic energy and dissipation equations for 

the energy dissipation to obtain an eddy viscosity distribution, and then solve the 

equation of motion 0q.(2.25) with appropriate boundary conditions to obtain 

distributions of velocity and shear stress across the flow field.

§2.4.6.1 The Model of Justesen (1988)

Based on Prandtl’s assumption, the transport and dissipation equations, 

Justesen (1988) developed a x — e model. The basic approach is as follows. The 

equation of motion was still used to describe the velocity field
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dU(z, t) 1 dP(x, z, t) a I dU{z,t) 
Q dx dz I dz (2.98)

in which the eddy viscosity £ was defined as

e = Jk l

where k is the turbulent kinetic energy defined as

1 ,2 ,2 ,2
+ v 4- w )

(2.99)

(2.100)

here u , v and w are the velocity random components. Then, the transport equation 

for the turbulent kinetic energy

dk _ d \ £ dk 
dt dz\Okdz + £

\dU(z,t) 1 
dz J - C k2^

(2.101)

was used to connect the turbulent kinetic energy k with the eddy viscosity £. Here the 

constant factors were chosen in accordance with Launder & Spalding (1972), as

ok = 1.0 Cx = 0.08 (2.102)

In x — £ models, the new feature is that the length—scale / is allowed to vary with 

time and space instead of being given by a linear relation / = xz as the mixing length 

model requires. However, the introduction of a new variable requires an extra 

equation as well. An extra variable, which Justesen (1988) used, is the dissipation

D kW
l (2.103)

in which the dissipation D was determined from the transport equation

2
dD = . r £>Jdf/(z,Q 1
dt dz\oDdz\ D1 k [ dz j cxc (2.104)

in which three constant factors were taken from steady boundary layer flows in 

accordance with Launder & Spalding (1972), as

CD\ = 1 • 44 CD2 = 1-92 oD = 1 . 3 (2.105)
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Justesen (1988) compared his model with the mixing length model of Bakker & van 

Doom (1978) and experimental data V10RA and V20RA of van Doom (1981). The 

results from the comparison with V10RA is shown in Fig.2.22. It is seen that the 

model of Justesen (1988) did not give any better prediction of the velocity distribution 

than either the mixing length model or the eddy viscosity model. The reason for this 

may be that all constant factors in the transport equation for the turbulent kinetic 

energy k and in the dissipation equation for the dissipation D are taken from the 

steady case, so it is unclear if x — e models can give a better prediction of the velocity 

field than does the eddy viscosity model.

---- Bakker & van Doom (1978)

Justesen (1988)

' ~ _ You e.l al. (1991a)

Measured Velocity Amplitude

Z (mm)

\U(z)\ (cm/s)

Fig.2.22 The comparison of the X — £ model with van Doom (1981) V10RA after Justesen (1988)
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§2.4.7 CONCLUSIONS ON FORMER MODELS

The general features of the eddy viscosity model, the mixing length model and 

the k — e model to model an oscillatory boundary layer are shown as follows

A basic equation of motion

dü_
dt

\dP_ 
Q dx + IJL

Qdz
dU

Eddy Viscosity Model: Assume e

Mixing Length Model : Use Prandtl’s assumption to obtain £

k — £ Model: Use Prandtfs assumption, the transport 
and dissipation equations to obtain £

. To obtain

1. velocity field U(z, t) 

I 2. shear stress ^ 

3. friction factor fw 

• 4. phase shift <p(z)'
L_ _ _ _ _ _ _ _ _ _ _ _ _ I

Therefore, the model used to describe the eddy viscosity will determine the possibility, 

complexity and difficulty of solving the equation of motion Eq.(2.25). However, the 

difficulty and complexity of a model does not automatically mean a good performance 

of that model. For example, the k — e model requires considerable computing effort 

and complicated mathematical treatment compared with the time—independent eddy 

viscosity model, but the prediction of the k — e model on experimental data such as 

V10RA is not as good as the time-independent eddy viscosity model [see Fig.2.22]. 

In most cases, if only the First-order solution for a two-dimensional oscillatory 

boundary layer flow is considered, a time-independent eddy viscosity model can 

describe the turbulent boundary layer more precisely and simply since the nature of 

the periodic boundary layer flow will reduce the equation of motion Eq.(2.25) into a 

time-independent equation.
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§2.5 DEVELOPMENT OF AN ANALYTICAL MODEL

§2.5.1 INTRODUCTION

In the section, based on the equation of motion Eq.(2.25) we are going to derive 

a formula to qualitatively discuss the nature of eddy viscosity in turbulent oscillatory 

boundary layer flows. Then, based on the formula provided and a wide range of 

experimental data, we will calculate the values of eddy viscosity and quantitatively 

study the eddy viscosity Finally, we will develop an analytical model and give a 

comparison of the present model with the former models and experimental data.

§2.5.2 THE EDDY VISCOSITY CONCEPT

The equation of motion as expressed in the form of Eq.(2.25) involves two 

variables, the shear stress t(z, t) and the velocity U(z,t). Therefore, a further 

relationship between t(z, t) and U{z, t) is needed so as to solve the equation of motion. 

The relation for laminar flows is well understood and is given by Newton’s formula 

Eq.(2.27), but not well understood for turbulent flows. Nevertheless, in turbulent 

boundary layer flows, the relationship between the shear stress and the velocity can 

be assumed to be of the form

— = o dU_ ^ _ T
Q dz gdU/dz

(2.106)

in which e is called turbulent eddy viscosity. For example, in the steady flow the shear

stress t/q = uw + v d(J/dz, so that the eddy viscosity can be expressed by

£ uw' 

dU / dz
+ v (2.107)

Similarly, for a horizontally uniform oscillatory boundary flow with zero net flow 

[U = 0], the analogous expression for the eddy viscosity becomes

£
- ÜW - uw 

dÜ/dz
+ V (2.108)
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in which t/q = — ÜW — uw is in accordance with Eq. (2.23). It seems that the eddy 

viscosity in an oscillatory boundary layer defined by Eq.(2.108) may be 

time—dependent. However, if we use different formalisms, either the real formalism 

or the complex formalism, to analyse the eddy viscosity, we may arrive at different 

expressions as pointed out by Nielsen (1985).

§2.5.2.1 A Real Formalism Definition

In the section, we use the real formalism to analyse the eddy viscosity defined 

in Eq.(2.106) assuming

U(z,t) = \U(z)\ cos cot (2.109)

r(z,t) = It(z)I cos{ cut 4- 0(z) } (2.110)

where 6{z) is the phase lead of r(z, t) relative to £/(z, t) at an arbitrary level. Therefore,

dU(z, t) 
dz

so that

d\U(z)\
cos cot (2.111)

t(z, t) _ lr(z)l cos{ ot 4- 0(z) } 
Q dU(z,t)/dz q d\(J(z)\/dz cosot

(2.112)

It(z)I
ai^i/az1 cosm ~ sine(z)tan“' I

which indicates that the eddy viscosity defined in the real formalism may be a function 

of elevation and time.

Horikawa & Watanabe (1968) used their experimental data and Eq.(2.106) to 

evaluate the spatial and temporal variation of eddy viscosity in the real formalism and 

found that the eddy viscosity was time-dependent. The variation of eddy viscosity 

with time calculated by Horikawa & Watanabe (1968) is shown in Fig.2.23.
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Fig.2.23 The variation of the time-dependent eddy viscosity at z = 19 . 1 mm above smooth bed

§2.5.2.2 A Complex Formalism Definition

Now, we apply the complex formalism to analyse Eq.(2.106) writing the velocity 

and shear stress in the form of complex exponential

U(z,t) = \U(z)\ em‘ (2.113)

tiz,t) = k(z)\ eml +i0<z) (2.114)

Hence

£(Z)
t(z, t)

gdU(z,t)/dz
fr(z)[ JO(z)

g\dU(z)\/dz (2.115)

which indicates that the eddy viscosity is time-independent, but may be complex. 

You et al. (1991c) studied the dependency of eddy viscosity with time in the complex 

formalism. It was concluded from Eq.(2.86) that the eddy viscosity should be 

time—independent when only the First harmonic component was considered. The 

variation of eddy viscosity derived from experimental data M00RAL & M00RBL of van 

Doom (1982) via Eq.(2.86) is shown in Fig.2.17.
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§2.5.2.3 Eddy Viscosities from the Two Formalisms

Through the simple mathematical derivation of eddy viscosity above, it is 

evident that the two forms of eddy viscosity derived in the real formalism and in the 

complex formalism are both correct, but quite different. Therefore, the following 

questions remain to be answered

(1) What formalism should be chosen for studying the eddy viscosity ?

(2) What is the relationship between the eddy viscosity defined in the real formalism

and the one defined in the complex formalism ?

The choice of the eddy viscosity definition in the complex formalism or in the real 

formalism depends on which formalism is used to solve the equation of motion 

Eq.(2.25). Normally, for the eddy viscosity models, the equation of motion Eq.(2.25) 

is solved analytically in the complex formalism, so that the eddy viscosity should be 

defined in the complex formalism. This is also the approach which is used in the 

present study.

The eddy viscosity defined in the complex formalism is time independent and 

may be considered as a real-valued finite parameter as You et al. (1991c) discussed, 

see Fig.2.17. However, the eddy viscosity defined in the real formalism is 

time—dependent and goes infinite at a certain phase as shown in Fig.2.23. Therefore, 

the values of eddy viscosity calculated from the real formalism definition are quite 

different from those from the complex formalism definition.

§2.5.3 DERIVATION OF A FORMULA FOR EDDY VISCOSITY

In this section, we are going to derive an eddy viscosity based on the equation 

of motion Eq.(2.25) and the definition of the eddy viscosity Eq.(2.106) in the complex 

formalism. Combining Eq.(2.25) with Eq.(2.106) leads to

dU(z,t) = dUoo(t) 3_\ dU(z, r)l 
dt dt dz j6’ dz J (2.116)

which can be rewritten as
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ft{ u„(t) - U(z,t) ) = j-z{efzl £/»(0 - U(z,t)) (2.117)

Now, writing a simple harmonic velocity component in the

exponential

form of complex

t/«(r) = Am eiw‘ (2.118)

U(z,t) = \U(z)\ e^z) eiM (2.119)

where </>(z) is the phase lead of U(z,t) relative to Uoo(t), Aco is the amplitude of the

free stream velocity U<»(£) and \U(z)\ the local velocity amplitude.

Therefore,

U„(t) - U(z, t) = { Am - lf/(z)l e*) eiwl (2.120)

and

(/„(l) - U(z,I) ) = im { Am - l(/(z)l e^(z) J emt (2.121)

£/„(r) - U(z,i) ) = Am - \U(z)\ e^z)} eiM (2.122)

Substituting (2.121) and (2.122) into (2.117) and simplifying it, we obtain

im[Am-\U(z)\e^z)\ = - \U(z)\e^z)] } (2.123)

Hence

ioj Aa> — \U(z)\ e1^ \dz

Am - \U(z)\ eW)
(2.124)

It is shown in Eq.(2.124) that the eddy viscosity must be time-independent, but may 

be complex when the first harmonic component is considered.
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§2.5.4 EDDY VISCOSITY VALUES EVALUATED FROM EXPERIMENTS

§2.5.4.1 Introduction to Experimental Measurements

Before calculating the values of eddy viscosity from Eq.(2.124), we briefly 

introduce experimental measurements in Table.2.1.

Jonsson & Carlsen 
(1976)

van Doom

(1981)& (1982)
Sleath (1987) Jensen (1989)

No.l No2 VRA SRAL MRAL Test3 Test4 Test5 Test9 TestlO Testl2 Testl3

Experimental Parameters Estimation

TESTS Ao) T Kn kn/a
*

A

u <3,
*

0.5 xU
ÜJ

(cm/s) (s) (mm) (cm/s) (mm) (mm)

No.l 211.0 8.39 21.0 7.4 x 10"3 21.1 60.0 56.4

No.2 153.0 7.20 63.0 3 . 6 x Kr2 21.5 57.0 49.3

VOORA 26.7 2.00 21.0 2.5 x 10'1 4.3 5.0 2.7

SOORAL 32.3 2.00 21.0 2.0 x 10"1 5.7 5.3 3.6

MOORAL 106.0 2.00 21.0 6.2 x 1()~2 15.3 10.0 9.8

Test3 68.6 4.54 3.3 6.9 x lO“3 7.6 9.0 11.0

Test4 61.7 4.58 3.3 7 . 3 x 10~3 5.6 8.0 8.1

Test5 49.0 4.48 3.3 9.4 x 10~3 4.6 6.5 6.6

Test9 62.1 4.55 16.2 3 . 6 x 10~2 7.6 11.5 11.2

TestlO 48.7 4.50 16.2 4.8 x 10~2 6.9 10.0 9.9

Test-12 95.5 9.72 0.8 5 . 7 x 10“4 6.2 20.0 19.2

Test—13 191.4 9.72 0.8 2.8 x 10~4 11.0 36.0 34.1

Table.2.1 Basic parameters measured in turbulent oscillatory boundary layer flows
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In Table.2.1, the friction velocity Ü is obtained by fitting a logarithmic profile to the 

experimentally determined velocity distribution as demonstrated in Fig.2.24 using 

van Doom (1981) experimental data VOORA, and the boundary layer thickness dj 

defined by Jonsson & Carlsen (1976) is approximated by dy defined in Fig.2.24.

\U(z)\ (cm/s) 0(z) (in degrees)

Fig.2.24 Determination of experimental parameters Aw, dy, <p„(z) and U in turbulent boundary layers

As we discussed in the smooth laminar flow, it is acceptable to have <51 ~ dy since 

d j = 1 . 6 J2v/(x) and öy = 1 . 5 J2v/a) as shown in Fig.2.8. For turbulent oscillatory 

boundary layer flows, it is still reasonable to have ^ ~ dy because as z > <5j, the 

velocity phase shift relative to the free stream velocity in the turbulent boundary layer 

is small, and therefore U(z)/\U(z)\ -* 1 . 0 as shown in Fig.2.25. This implies that 

defined from the velocity profile U(z) is approximately equal to dy defined from the 

velocity amplitude profile \U(z)\.
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U(z)/\U(z)\ U(z)/\U(z)\

Fig.2.25 Variation of U(z)/\U(z)\ with elevation and relative roughness in turbulent boundary layers

The reason for this approximation is that most of measurements in Table.2.1 directly 

give the velocity amplitude profiles \U(z)\ instead of the time independent velocity 

profiles U(z), so that it is convenient to measure dj directly from the velocity 

amplitude profile \U{z)\.

§2.5.4.2 Evaluation of the Eddy Viscosity from Data

Values of the eddy viscosity in a turbulent boundary layer can be calculated from 

Eq.(2.124), which for discrete data can be approximated by

£(zn)

ico — \Uj(z)\elHz)
j=N

zj-i

f zN+, ZN_,}

jV = 2, 3, 4, 5 (2.125)
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It is worthwhile to mention here that the eddy viscosity calculated from Eq.(2.125) 

will be affected by the following aspects :

(A) The elevation increments {zN+1 — z^}. The velocity gradient dU(z)/dz can be 

approximated by

» , V-i* - "»-■<*> (2.126)
OZ Z~ZN ZN+l ZN-1

only when [zN+l — zw_,} is relative small.

(B) The defect velocity [Aco — U(z)}. The defect velocity is the difference between 

the two quantities of the free stream velocity Aco and the local velocity U(z) 

Therefore, beyond a certain height fe.g. z > 13mm in Fig.2.24] the calculated 
defect velocities are not reliable because the local velocities are so close to the 
free stream velocity and show erratic behaviours.

In general, the eddy viscosity values determined from Eq.(2.125) in the region of 

z < dj are reliable since the defect velocity {Aco — U{z)} is a substantial fraction of 

Aco, see Fig.2.24, and the elevation increments are small. However, when z > 2d l the 

eddy viscosity evaluated from Eq.(2.125) may be not reliable since the the local 

velocity U{z) is so close to the free stream velocity Aco and shows erratic behaviours 

as shown in Fig.2.24. The eddy viscosity values estimated in the region of 

dx < z < 2d\ may be suspected in some tests, e.g. Jonsson & Carlsen Test No.l and 

Jensen (1989) Test-12 & Test-13. The reason for this may be that the elevation 

increments {zN+1 — zN_j} are too large to give true velocity gradients.

Therefore, estimated eddy viscosity values will not be given for the range of 

z > 2d j in Fig.2.26 to Fig.2.31, and in the range of (52 < z < 2dx caution should be 

taken when the eddy viscosity data are studied.
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36 mm

-1.5 -1.0 -0.5 0.0 0.5

Arg(s) (in radians)

Fig.2.26 The eddy viscosity evaluated from Jensen (1989) Test-13 via Eq.(2.125)

20 mm

-1.5 -1.0 -0.5 0.0

Arg(e) (in radians)

Fig.2.27 The eddy viscosity evaluated from Jensen (1989) Test-12 via Eq.(2.125)
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Arg(e) (in radians)

Fig.2.28 The eddy viscosity estimated from Jonsson & Carlsen (1976) test No.1 via Eq.(2.125)
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Fig.2.29 The eddy viscosity evaluated from van Doom (1982) M00RAL & MOORBL via Eq.(2.125)
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Fig.2.30 The eddy viscosity evaluated from van Doom (1982) SOORAL & SOORBL via Eq.(2.125)

1°1 —

A • A

- - • VOORA

A • a VOORB *

8-
A A •

•A • A

A • » A

At A •
6-

Aft • P

.» <5, = 5 . Omm Z(mm) •*
A • • A

• / •

^ / • VOORA 4- A

* /
* A /

A VOORB
•

•

P
• 1 \ - •

• A

• A / .
4

A

/ xU z 2-

/

/ -

/
/

-<■-------------- ,---------------- T---------------- T------------- 1 1 0-

0.5 1.0

le(z)l (cm2/s)
1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Arg(s) (in radians)

Fig.2.31 The eddy viscosity evaluated from van Doom (1981) VOORA & VOORB via Eq.(2.125)
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§2.5.5 THE EDDY VISCOSITY MODEL

Fig.2.26 through Fig.2.31 show the variation of the complex eddy viscosity with 

elevation. It is seen that the argument of the complex eddy viscosity Arg(e) is 

generally small in the region of z < d1? and in the region of dl<z<2dl the 

argument Arg(e) is considerable for some tests, e.g. Jonsson & Carlsen Test No.l, but 

we shall still assume that Arg(s) is small because the increase of Arg(e) in this region 

may be caused by too large elevation increments {zN — z„_,}. Consequently, as a first 

approximation, the imaginary part of the eddy viscosity will be neglected in the 

following and the eddy viscosity is assumed to be a real-valued function of elevation 

z only

Based on the analysis of the eddy viscosity in Fig.2.26 to Fig.2.31, the eddy 

viscosity distribution in the turbulent oscillatory boundary layer is described by the 

following functional form as suggested by You et cd. (1991c) [see Fig.2.18]

*

£(z) = xU do (l — (1 — z/6x): 0 < z < <5j (2.127)

e(z) = xU da dj < z < dw (2.128)

where 

do = Cdj

where C is constant which should be determined from the experiments. Based on all 

of the available experimental data from Jonsson & Carlsen (1976) Test No.l & No.2, 

van Doom (1981 & 1982) VOORA, SOORAL & MOORAL, Sleath (1987) Test-3, Test-4, 

Test-5, Test-9 & Test-10, and Jensen (1989) Test-12 & Test-13, it has been 

found that C ~ 0.4. The eddy viscosity model described by Eqs.(2.127) and (2.128),

in which the values of dj and y are taken from Table.2.1, is plotted against the eddy 

viscosities evaluated from the above experiments in Fig.2.32 to Fig.2.34.
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Fig.2.32 The comparison of the present eddy viscosity model with eddy viscosity data evaluated

5 . 3mm

• SOORAL

a SOORBL

Ao) — 32.3 cm/s

Kn/A = 0.2
5 . 3mm

Z(mm)

5.0mm

• VOORA 

A VOORB

Ao) = 26 . Icm/s

Kn/A = 0.25

5.0mm

Fig.2.33 The comparison of the present eddy viscosity model with eddy viscosity data evaluated
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\e(z)\ (cm2/s)

Fig.2.34 The comparison of the present eddy viscosity model with eddy viscosity data evaluated

It can be seen from Fig.2.32 to Fig.2.34 that the present eddy viscosity model is in 

reasonable agreement with the experimental data over a wide range of relative

roughness [2.8 x 10-4 < — 0.25].

However, application of the eddy viscosity model requires knowledge of the

unknown parameter in Eqs.(2.127) and (2.128). In other words, a further

*

relationship between dj and y is needed. In Fig.2.35, values of taken from 

Table.2.1 are plotted against predicted values. It is seen that the data from the 

oscillating water tunnel experiments are fitted quite well by the formula

<5, 0.5xU
(1) (2.129)

but the VOORA data from from a wave flume experiment is not so well predicted by 

Eq(2.129). The reasons for this are not clear and therefore further experimental data 

would be required to resolve this. Nevertheless, we assume that d j measured in wave
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flume experiments may be twice that predicted by Eq.(2.129). This relationship 

should be confirmed by more experimental data in future.

[mm] 10-

X Jonsson & Carlsen (1976) 

A. van Doom (1981,1982)
• Sleath (1987)

+ Jensen (1989)

Fig.2.35 The comparison between measured r5, and that predicted in oscillatory boundary layers

§2.5.6 SOLUTION OF THE EQUATION OF MOTION

The formalism used for solving the equation of motion is the complex notation 

since when only the first-order solution is required, the use of the complex 

formalism deletes the time dependency and simplifies the solution procedure. 

Expressing the velocities in complex form, we have

Uooit) = Am eiuH (2.130)

U(z,t) = U(z) em> = \U(z)\ e“p,I) e““‘ (2.131)

Similarly, the defect velocity Ud(z, t) is assumed to have the form

59



Ud(z, t) = Ud(z) e \Ud(z)\ el^z) eia)t (2.132)

By substituting Eq.(2.132) into Eq.(2-25), the equation of motion can be written in 

terms of Ud(z) as

r, d2Ud(z) de(z)dUd(z)
K) d2z dz dz

icoUd(z) = 0 (2.133)

The physical interpretation of the velocities and phase shifts in the complex plane are 

indicated in Fig.2.36.

— A(i)

Fig.2.36 The definitions of the velocities and phase shifts in a complex plane

Here, it would be better, we think, to explain the physical meaning of the velocity 

phase shift <p(z) in the real plane. As mentioned previously, the velocity phase shift 

(p(z) is defined as the difference between the phase of the free stream velocity and that 

of the local velocity, which is physically shown in Fig.2.37.
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17.(0 = Au) cos cot

Ux(z,t) = lt/1(z)lcos{ü>r + 0!(z)}

\<ot + <PN(Z))

'(JV+0(z,0 = !£/* + ,■! cosfort + 0(N+O(z))

Fig.2.37 The definition of local velocity phase shift relative to free stream velocity in a real plane

§2.5.6.1 Wave Motion in the Inner Layer

The defect velocity Ud(z) in Eq.(2.133) may be solved out analytically after 

appropriate substitutions are made for the vertical distribution of the eddy viscosity 

and boundary conditions. Substituting the previously determined distribution of the 

eddy viscosity e(z) in the inner layer

e(z) = xU d0 [ 1 - { 1 - z/dj ) ] (2.127)

into the equation of motion Eq.(2.133) and introducing the nondimensional variable

we obtain

(i - £2)
d2Ud(z) dUd(z)

4- A (A 4- 1 )Ud(z) 0 (2.134)
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where

d fa
A (A + 1) = - iß ß = —j— (2.135)

xU d0

Eq.(2.134) is known as Legendre’s differential equation. The general solution of 

Legendre’s equation was discussed by Gradshteyn & Ryzhik (1980), and given by

ujg) = + c2qx(I) (2.136)

where and C2 are unknown constants to be determined from the boundary 

conditions. The functions P;(£) and <2;(£), called Legendre’s function of the first and 

second orders respectively, are given by

PX<M) = H-A.1 + A.l.tyij 11-11 <2

- P*~ « ) 11 - < 2 

where the first order Legendre’s function is defined by

F(a, b; c; z) r(c) r(a 4- n) r(b 4- n) zn 
r(a) r(b) 2^ f(c + n) n\

n = 0

(2.137)

(2.138)

§2.5.6.2 Wave Motion in the Outer Layer

In a similar way, by substituting the suggested eddy viscosity distribution in the 

outer layer

A*

e(z) = xU d0 (2.128)

into Eq.(2.133), it leads to

a2t//z)
dz2 —%—U d(z) = 0 

xU d0
(2.139)

Eq.(2.139) is an ordinary differential equation of the second order, and has the 

particular solution
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C3 exp{ — rj{ 1 + i)z } (2.140)Ud(z) =

after applying the boundary condition

Ud(z) = 0 for z -» 00 (2.141)

where r) is defined as

0.5

V =
0) > (2.142)<

2xU

and C3 is an unknown constant, whose value is determined by the boundary 

conditions.

§2.5.6.3 The Boundary Conditions

In order to determine the unknown constants C1? C2 and C3 in Eqs.(2.136) and 

(2.140), the boundary conditions must be given properly and completely. The 

boundary conditions in the inner and outer layers are given as

i. The velocity U(z, t)at the bed should be equal to zero, that is

ii. The velocity calculated by Eq.(2.136) at z = dj in the inner layer should be equal 

to that calculated by Eq.(2.140) at z = dl just outside the inner layer, that is

iii. The continuity of the shear stress at z = dj, which implies the continuity of the 

velocity gradient Ud(z)/dz at z = <5 j, that is

CxP'k{0) + C2 cosXji + 1)^(0) = - C3rj(\ + 0dx <T’(1 + ,>ii (2.145)

( cos Xji Pß0) - PA(- £0)} = - Ao) (2.143)

{ cos2^ - 1)^(0) = C3 + (2.144)
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§2.5.6.4 Solution of the Equation of Motion

We now have got the velocity distributions in the inner layer and the outer layer, 

and the boundary conditions. Therefore, the unknown constants C1? C2 and C3 can 

be determined by combining Eqs.(2.143), (2.144) and (2.145) as

C, — A(d
n (?7(1 + Od^cosAjr - 1)PA(0) + (cos for + l)P^(0)j

2sinAjr D g*7(1 + l>h (2.146)

C2
»7(1 + 0 <5, Px(0) + P;(0)

A(0 D eiV + Wr (2.147)

C3
jt PA(0) PA(0) 

W 2sinAjr D

where D is the determinant of the matrix

(2.148)

Pißo) 0

pm 2 sin;.*“ - "^0)
_ e-T](\ + r)öl

p'm 2sinA*(c0sAjr + '^(0)
77(1 + f)dj e-iV + V

0y introducing C1? C2 and D in Eq. (2.136) and rearranging, the final expression of 

£/(£, t) in the inner layer is given by

u&t)
( p - cosAjt ) PA(g) + PA(- g)

( p - cos Ajt ) P^o) + Px( - £o) Uoo(t) (2.149)

where p is given by

_ r]{\ + i)dx( cos Att — 1 ) + ( cosXn -I- 1 )q 
P ^(1 + i)dl + q

and q is given by
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Q ^(0)
^(0)

^A2 sinAjr ( r (A/2) f (1/2 — A/2))

In a similar way, by substituting C3 and D into Eq.(2.140) and rearranging, the final 

expression of U(z, t) in the outer layer is given by

U(z,t) 1 -
( p — cosAjt 4- 1 ) /^(O)

( p - cosAjt ) Pk(£o) + Pk{ - Zo)
rjil+iKz-d,)} (2.150)

where A is given by

A = -1(1 -a) -»£ where {i(i + (1 + leys2)’}

§2.5.7 BED SHEAR STRESS AND FRICTION FACTOR

Although the forms of the velocity distribution in the inner and outer layers are 

given in Eqs.(2.149) and (2.150), we can not directly calculate the velocities unless the 

bottom shear stress, or alternatively wave friction factor are known. From Eq.(2.106), 

the maximum shear stress at the bed can be expressed as

rb(z0)
Q

dU&t)
dz

Max

(2.151)

On the other hand, the maximum bed shear stress rb{z0) is given by

^2 = I /„ [Aa>]2 (2.152)

By combining Eqs.(2.149), (2.151) and (2.152), wave friction factor fw can be written 

as

2
U = 0.0512(l - ||} Z(fe) Z(£„) (2.153)

where Z(£0) denotes the complex conjugate of Z(£0), which is given by
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( p - cosAtt ) P'k(£o) - P'x(- £o) 
( p - cosAjt ) Px(t;0) +

(2.154)Z(£o) =

In the calculation of fw, we have used

(2.155)

However, wave friction factor fw can not be obtained explicitly from Eq.(2.153) 

because fw is the function of f and p, however f and p are also functions of fw. 

Therefore, fw can be obtained by iterating Eq.(2.153).

The definition of wave friction factor fw given by Eq.(2.153), or defined by 

Kajiura (1968) and Jonsson & Carlsen (1976), corresponds to the level z = KN/?>0, 

at which the velocity is assumed to be zero. Therefore, the friction factor fw(zA) at 

z = zA, which as shown in Fig.2.38, would be significantly different from that at 

z = Kn/30 if the relative roughness KN/A > 1.

Z U

Fig.2.38 Sketch of a sand layer attached to a flat plate
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The reason for this can be explained as follows. We use the simplified equation of 

motion which has been given in Eq.(2.25)

dU = dUoo I dr
dt dt Q dz (2.25)

Hence, the shear stress at z = zA is obtained by integration of the above equation with 

respect to z between zA and oo , so that

r(zA)
T I Udt 1 — U oo dz

ZA

U oo ) dz 4- s'“
— U oo \ dz

Zo

-Iar 1 — U oo \ dz + -ä-l u — U oo dz

z0

(2.156)

ft{ - U„}dz + r(z0)

so that

*(za)
-I — U oo dz + r(z0) (2.157)

Moreover, if we assume that

Uoo(t) = Aco cos cut (2.158)

and consider the maximum bed shear stress rb{z0), and then apply the definition of 

the bed friction factor
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(2.159)Tb(Zo) _ 1 r, w,
Q — }

it follows that

j.Mza){A(d}
r> 1

Acoz dz 4- -fw(z0){Aco}

which can be rewritten as

2(z0 - zA)
U(ZA) = f„(l0) + -^—A--------^

r / \ . 2Afw(z0) 4 ^

(2.160)

(2.161)

As we see from Eq.(2.161), when the bed is made of coarse sands or covered with sand 

ripples, i.e. A is increased, the friction factor fw(za) at z0 will be quite different from 

the friction factor fw(zA) at zA. On the other hand, from Eq.(2.161), we realize that the 

friction factor measured by Kamphuis(1975) corresponds to the level zA rather than 

the level z0. Therefore, when one compares the measured friction factor fw(zA) with 

a theoretical prediction, e.g. by Kajiura (1968) or Jonsson & Carlsen (1976) one thing 

he should keep in mind that there is difference 2A /A between the measured friction 

factor fw(zA) and the predicted friction factor fw(z0).

§2.5.8 THE PROCEDURES OF CALCULATION

Calculation of velocity amplitude \U(z)\, bed friction factor fw and maximum 

shear stress Tb(z0) can be easily performed by a short computer program. The input 

parameters of the program are Aco, T, KN, where Aa> is the free stream velocity 

amplitude, T the wave period, KN the Nikuradse roughness. The order of calculation 

is shown in Fig.2.39.
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£ = g(fw, z) & Boundary Conditions

fw [Eq (2.153)]

U(fw, z, t) [ Eqs.(2.149) & (2.150) ]

Fig.2.39 The procedures of calculating the velocity field and shear stress in the boundary layers

§2.5.9 COMPARISON WITH EXPERIMENTS

The present model has been compared with laboratory data such as Jonsson & 

Carlsen (1976) Test No.l and Test No.2, van Doom (1981) V00RA, van Doom (1982) 

S00RAL and MOORAL, Sleath (1987) Test-3, Test—4, Test—5, Test—9 and Test—10, 

and Jensen (1989) Test—12 and Test-13. The regimes of the boundary layer flows 

in all these experiments above are turbulent. The relative roughness KN/A in these

experiments are at the range of2.8x 10 ~4 ~ 2.5 x 10-1. The eddy viscosity 

models of Kajiura (1968) and Myrhaug (1982) have also been compared with the 

experimental data. The results from the comparison show that the present model 

gives a better prediction of the velocity measured in the above mentioned experiments 

than the models of Kajiura (1968) and Myrhaug (1982).
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§2.5.9.1 Comparison with Jonsson & Carlsen (1976) Test No.1

The experimental data from Test No.l of Jonsson & Carlsen (1976) has been 

widely used to compare with the former models, e.g. by Brevik (1981), Myrhaug 

(1982) and You et cd. (1991a). Data from Test No.l is compared with the present 

model and the models of Kajiura (1968) and Myrhaug (1982) to examine how well the 

present model performs. The input parameters in the present model are 

Aco = 2\\cm/s, T = 8 . 39s and KN = 2.3cm. It is evident from Fig.2.40 that 

Kajiura’s model underestimates the velocity in the inner layer and overestimates the 

value of the velocity overshoot. Myrhaug’s model overestimates the boundary layer 

thickness. In contrast, the present model gives a better prediction of the velocity 

distribution in Test No.l than the models of Kajiura (1968) and Myrhaug (1982).

100- Data from Jonsson & Carlsen (1976) No.l

Z (mm)

Present Model

Myrhaug (1982) 

Kajiura (1968)

o Measured Velocity Amplitude

I 1 1 '

U (cm/s )

Fig.2.40 The comparison of the present model with the models of Kajiura and Myrhaug and Test No.1
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§2.5.9.2 Comparison with Jensen (1989) Test-12

Jensen (1989) undertook experiments to investigate the turbulent oscillatory 

layer in an oscillating water tunnel. The instantaneous velocity U(z, t) near the sand 

bed was measured with a laser doppler anemometer. Here, we use the harmonic 

analysis on U(z, t) to obtain the first and higher harmonic components, but only the 

first harmonic component will be used to compare with the eddy viscosity models since 

the higher harmonic components are small in comparison with the first component. 

The input parameters in the present model are Aco = 95.5cm/s, T = 9.2s and 

Kxj = 0.0084cm. The comparison of the present model with the model of Kajiura 

(1968) and Jensen Test-12 has been shown in Fig.2.41. It can been seen that 

Kajiura’s model still overestimates the velocity in the inner layer and underestimates 

the boundary layer thickness. In contrast, the present model really gives a better 

prediction of the velocity distribution in Jensen’s (1989) Test-12.

Data from Jenssen (1989) Test-12

Z (mm )

Present Model

Kajiura (1968)

o Measured Velocity Amplitude

U (cm/s)

Flg.2.41 The comparison of the present model with Kajiura’s model and Jensen (1989) Test-12
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§2.5.9.3 Comparison with van Doom (1981) VOORA

van Doom (1981) did experimental work to investigate the turbulent oscillatory 

boundary layer over the artificially roughened bed in a wave flume. The bed 

roughness consisted of 2mm x 2mm cubes spaced 18/71/72 apart. The instantaneous 

velocity was measured over the trough between two elements with a laser doppler 

anemometer. The harmonic analysis was used to obtain the first, the second and 

higher components, and the phase shift. The input parameters in the present model 

are Act) = 26.5 .cm/s, T = 2 s and KN = 2,1 cm. The comparison of the present 

model with experimental data from van Doom (1981) VOORA is shown in Fig.2.42, and 

it can be seen that the present model give an accurate prediction of both the velocity 

amplitude and the phase shift in this experiment.

------ Present Model

o Measured Phase Shift

Measured Velocity Amplitude

Z (mm )

i I r

U ( cm/s ) & (J)(z) ( degrees )

Fig.2.42 The comparison of the present eddy viscosity model with van Doom (1981) VOORA
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§2.5.9.4 Comparison with van Doom (1982) SOORAL

van Doom (1982) extended his previous work to continue investigating the 

turbulent oscillatory boundary layer over the artificially roughened bed in an 

oscillating water tunnel. The bed roughness was similar to that of VOORA. The 

instantaneous velocity was measured over the trough between two elements with a 

laser doppler anemometer, and again harmonic analysis was used to determine the 

first, the second and higher components, and the phase shift. The input parameters 

are Aco = 32.2cm/s, T = 2s and KN = 2.1cm. The comparison of the present 

model with experimental data SOORAL is shown in Fig.2.43, and it is found that the 

present model again gives an accurate prediction of both the velocity amplitude and 

the phase shift of SOORAL.

100- ------Present Model

o Measured Phase Shift

Measured Velocity Amplitude

Z (mm)

U (cm/s) & 4>(z) (degrees)

Fig.2.43 The comparison of the present eddy viscosity model with van Doom (1982) SOORAL
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§2.5.9.5 Comparison with Sleath (1987) Test-3

Sleath (1987) carried out an experimental investigation on the turbulent 

oscillatory boundary layer over a roughened sand bed in an oscillating water tunnel. 

The bed roughness in Test-3 consisted of a single layer of 1 . 6 mm sand glued to the 

flat bottom surface. The horizontal and the vertical velocity components and the 

phase shift were measured vertically up from the mean sand surface with a laser 

doppler anemometer. The input parameters are Aco = 68.6cm/s, 7 = 4.54s and 

Kn = 2 .Od = 0 .33 cm. The theoretical bed level was located 0.15 d below the 

mean sand surface. A comparison of the present model with the experimental data 

is shown in Fig.2.44. In addition, Test-4, Test-5, Test-9 and Test-9 are also 

compared with the presented model in Fig.2.45 to Fig.2.48. The input parameters for 

each test are shown in Table.2.1 [see, pp. 491.

Data from Sleath (1987) Test-3

Z (mm)

* Measured Velocity Amplitude

A Measured Phase Shift

U (cm/s) & 4>(z) (degrees)

Fig.2.44 The comparison of the present eddy viscosity model with Sleath (1987) Test-3
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300

Z (mm )

100-

10-

1-

-5 0

* Measured Velocity Amplitude

A Measured Phase Shift

80

U (cm/s) & (J)(z) (degrees)

Fig.2.45 The comparison of the present eddy viscosity model with Sleath (1987) Test-4

100-

Dala from Sleath (1987) Test-5

Z (mm )

Measured Velocity Amplitude

Measured Phase Shift

-5 0

U (cm/s) & <j>(z) (degrees)

Fig.2.46 The comparison of the present eddy viscosity model with Sleath (1987) Test-5
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Data from Sleath (1987) Test-9

Z (mm)

A Measured Phase Shift

* Measured Velocity Amplitude

-5 0

U (cm/s) & (j>(z) (degrees)

Fig.2.47 The comparison of the present eddy viscosity model with Sleath (1987) Test-9

Data from Sleath (1987) Test-10

Z (mm )

A Measured Phase Shift

* Measured Velocity Amplitude

U (cm/s) & <j)(z) (degrees)

Fig.2.48 The comparison of the present eddy viscosity model with Sleath (1987) Test-10
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§2.5.10 CONCLUSIONS

(1) Examination of experimental data on the eddy viscosity e indicates that e can be 

considered as a time—independent and real—valued parameter in turbulent 

oscillatory boundary layer flows.

(2) The shape of e(z) is reasonably described by the functional form 

e(z) = xU (50j 1 - (l - z/<5j} I z0 < z < dx

A

e(z) = xU d0 dx < z < dw

with the vertical length scaling parameters

*
A

<5, = ----- and d0 = 0.4(5,

(3) The present model gives better prediction of the velocity distribution and bed 

shear stress than former models.
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CHAPTER 3
MASS TRANSPORT VELOCITY UNDER 

PROGRESSIVE WAVES

§3.1. INTRODUCTION TO MASS TRANSPORT

§3.1.1. THE CONCEPT OF MASS TRANSPORT

In chapter 2, we have studied in detail the velocity distribution, local velocity 

phase shift, bed shear stress and friction factor in a turbulent oscillatory boundary 

layer. If we look for a time-averaged velocity, we will find it to be zero. This is not 

surprising since when we discussed the characteristics of the turbulent oscillatory 

boundary layer, we have already assumed that the flow was purely periodic or 

sinusoidal. However, in nearly all practical cases, the time-averaged velocity induced 

by progressive waves is not zero. This comes obvious if we inject dye tracer into the 

water beneath gravity waves. The dye streak, which is originally straight and vertical, 

will become curved after a period of time, see Fig.3.1 . Similarly, if we watch a 

neutrally buoyant particle moving under waves, we will typically find that the particle 

has not a closed orbital path and experiences a net movement after one wave period as 

shown in Fig.3.1 . The phenomena demonstrated by the dye tracer and neutrally 

buoyant particle indicate that there is a net drift or mass transport induced under 

progressive waves.



Dye inserted here

1

Dye Streak
\ Particle Locus

Fig.3.1 Mass transport velocity induced by gravity waves

Although the mass transport velocity is generally small in comparison with the 

wave—induced orbital velocity, its effect on sediment transport is often of great 

importance since sediments swept into suspension by the relatively large wave 

induced orbital velocity are subsequently transported by the mean flow. Thus, it is 

important to study the mass transport induced by progressive waves in order to 

understand the mechanism of wave —induced sediment transport.

§3.1.2. METHODS USED TO STUDY MASS TRANSPORT 

§3.1.2.1. Lagrangian Velocity Measurements

Before going further, we shall examine the concept of mass transport velocity. 

The motion of a fluid can be studied either by the method of Lagrange or the method 

of Euler. The Lagrangian method addresses the question of what occurs to a certain 

fluid particle while it is moving along its own path. This method involves following 

the fluid particle during the course of time, and giving the path, velocity and pressure 

in terms of its original position and the time elapsed since the particle occupied its 

original position. Accordingly, the Lagrangian mass transport velocity U is obtained 

experimentally by tracking a given particle and measuring the net distance AS after a 

few wave periods, A t = nT. Therefore, the Lagrangian mass transport velocity is 

determined as

U AS
At (3.1)
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§3.1.2.2. Eulerian Velocity Measurements

In contrast, the Eulerian method addresses the question of what occurs at a 

fixed point. This is the most frequently adopted approach, partly because most of the 

available measuring equipments can only measure ” Eulerian velocities The 

Eulerian mean velocity U is thus obtained experimentally by measuring the velocity at 

a fixed point and taking a time average over several wave periods

(3.2)

§3.1.2.3. Difference Between Lagrangian and Eulerian Velocities

The difference between the Lagrangian mass transport velocity U and the 

Eulerian mean velocity U is quantified by means of the following derivation.

Fig.3.2 A particle P moving around its own path from its original position C(x,j)

Analytically, assuming that P in Fig.3.2 is at an arbitrary position on its orbit, the 

instantaneous velocity U of a particle at P(x 4- Ax,y + Ay) will, to the second 

approximation, differ from u at C(x,y) by an amount

u - u = Ax + I±Ay (3.3)

where Ax, Ay are the horizontal and vertical displacements of P from C(x,y) as 

shown in Fig.3.2 . These displacements are approximately given by
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Ax udt Ay wdt
J J

Hence, Eq.(3.3) can be rewritten as

U - u (3.4)

Therefore, the difference between the Lagrangian mass transport velocity of the 

particle at P(x + Ax,y + Ay) and the Eulerian mean velocity at C(x,y) is given, to the 

second approximation, by time averaging Eq.(3.4) over one wave period

U ü + + (3.5)

This shows that there may still be a Lagrangian mass transport velocity even if the 

Eulerian mean velocity ü = 0, and thus in general, U ^ U

§3.2. LITERATURE REVIEW

§3.2.1. INTRODUCTION

The present section is a brief review of previous theoretical and experimental 

work on mass transport induced by progressive waves. The purpose is to give a 

general overview of how much work has been done theoretically and experimentally, 

and which problems are still unsolved. On the theoretical side, we will review a few 

basic theories which are of importance for explaining the mechanism of the mass 

transport induced by progressive waves and providing formulas to quantitatively 

calculate the mass transport velocity. On the experimental side, we will review some 

typical experiments which have revealed some new aspects, which are not accounted 

for by the existing theories.
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§3.2.2. REVIEW OF PREVIOUS THEORETICAL WORK

§3.2.2.1. Stokes (1847)

Stokes’ (1847) inviscid wave theory indicated that the individual fluid particles 

do not have closed orbital paths. The particles have a second—order Lagrangian mean 

velocity, the mass transport velocity, in the direction of wave propagation. It can be 

explained physically by the fact that the horizontal orbital velocity increases with 

elevation. Consequently, a particle at a top of the orbit moves faster in the forward 

direction than the particle at the bottom of the orbit does in the backward direction. 

As a result, there is a net drift in the direction of wave propagation.

According to Stokes’s theory, the mass transport under progressive waves can be 

determined by examining the horizontal and vertical displacements of a fluid particle 

from its original position.

a
cosh k(y + h) 

cosh kh sin (kx — cot) a2k 1 
4 sinh2 kh

1 3COsh2/:(y + h) 
2 sinh 2kh

x s\x\2(kx — cot)
^2£cosh2/c(y + h) 

2 sinh2/:/!
(3.6)

sinh/:(y + h) 
sinh kh cos(kx — cot) + h2k sinh2£(y + h) 

sinh2/:/z
cos 2(kx — cot) (3.7)

In the right side of Eq.(3.6), the first two terms are periodic whereas the third term is 

not periodic but a linear function of time. Consequently, after one wave period T, the 

fluid particle has travelled a net distance in the horizontal direction

2 cosh 2 k(y 4- h) 
a (ok-—--Ti-- T 

2 sinh lkh

and a nil drift in the vertical direction

(3.8)

A^y = 0 (3.9)
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Hence, the horizontal mass transport velocity can is given by

u = ^
9 , cosh 2k(y + h) 

ao)k- (3.10)
2 sinh 2 kh

According to Eq.(3.10), the mass transport velocity at the mean surface level can be 

obtained simply by substituting y = 0 in Eq. (3.10) to give

Us n2fs)h cosh 2kh 
2 sinh 2kh

(3.11)

and the mass transport velocity very close to the bed can be derived by substituting 

y —* — h in Eq.(3.10)

Ub a2cok 
2 sinh 2 kh

(3.12)

Since a volume of fluid is continuously carried in the direction of wave propagation 

due to the positive second—order Lagrangian mean velocity over the depth as shown 

in Eq.(3.10), a net flow is produced. However, if the co-ordinate system is shifted at 

a certain speed, the condition of no net flow across a section such as in a laboratory 

wave tank can be satisfied. This leads to

U
2 . cosh 2k(y + h)

ao>k-^MT ^-TfCoth kh 2 n
(3.13)

which is shown in Fig.3.3 , and it is found that the mass transport velocity near the 

free water surface is always in the direction of wave propagation while the mass 

transport near the bed is always in the opposite direction of wave propagation and the 

vertical gradient of the mass transport velocity is always equal zero.

The mass transport velocity distributions close to the bed as shown in Fig.3.3 

differ markedly from those observed in laboratory experiments, especially in water of 

moderate depth. For example, Vincent (1958), Russell & Osorio (1958), Brebner et al. 

(1966), Bijker, et al. (1974) and You et al. (1991b) all found that the drift velocity near 

the bottom was in the direction of wave propagation. However, apart from these 

discrepancies between Stokes’ theory and laboratory experiments close to the bed, 

Stokes’s drift theory gives a good prediction of the mass transport velocity near the
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free water surface as shown Fig.3.6 , and can be applied to predict the mass transport 

velocity in the interior flow when kh > 3.0 as suggested by Russell & Osorio (1958).

kh = 18

kh = 0.5

kh = 3.0

u
a2(ok

Fig.3.3 Variation of mass transport velocity with depth under progressive waves after Stokes (1847)

§3.2.2.2. Longuet-Higgins (1953)

Longuet-Higgins (1953) realized that the irrotational flow assumed by Stokes 

(1847) was not valid close to the bed where there is strong vorticity due to the large 

velocity gradient.

Longuet-Higgins produced a new theory starting with the equation of motion 

for a viscous, incompressible interior fluid, which in component form is given by

du , tdu , du
dt dx dy

1 dP , I dhl , d2u
Q dx \dx2 dy2

(3.14)

dw . ,, dw . dw
“TT + U-r- + W~rdt dx dy

1^ - a + v\S^L +
Qdy * I dx2 dy2

(3.15)
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Differentiating Eq.(3.14) with respect to y and Eq.(3.15) with respect to x and then 

subtracting each other, we obtain

d_
dt 4- U~T— + W_dx dyI - rV2jvV = 0 (3.16)

(3.17)

in which ip is the stream function defined by 

dip dip
U = -r— W =-------- T—dy dx

and the operator V2 is defined as

Y72 _ _d}_ , _d^_
dx2 dy2

The mean value of Eq.(3.16) with respect to time over a complete period is given by

u± + w± - „V2
dx dy V2ip (3.18)

The first two terms in the left side of Eq.(3.18) represent the rate of change of the

ö Svorticity at a fixed point due to convection i ujj^ + w-^J. The last term, which is

similar to a term in the equation of heat conduction, represents the rate of change of 

the vorticity due to viscous diffusion [vV2].

§3.2.2.2.1. The conduction solution

Longuet-Higgins considered the case [a2 Ö2] in which the conduction term

(vV2) in Eq.(3.18) is dominant and gave the conduction solution

a2(ok
4sinh2£/z {2cosh2£/z(- y/h - 1) + 3 + kh sinh 2kh{% - y/h)2 - 4(- y/h) + l)

, o fsinh 2A:/z , 3
1 2 kh 2 j (- y/h)2 - l) j (3.19)

where a is the wave amplitude [H = 2a] and d the Stokes length j2v/co. The 

variation of the mass transport velocity with the normalised depth y/h outside the 

wave boundary layer described by Eq.(3.19) is shown in Fig.3.4 .
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-0.2 -

-0.4 -

-0.6 -

-0.8 ‘

Fig.3.4 Variation of mass transport velocity outside the boundary layer after Longuet-Higgins (1953)

Based on Eq.(3.19), the mass transport velocity near the free wave surface can be 

deduced by taking y = 0

Us
a2cok 

4 sinh2 kh Icoshlkh + 3 + khs\nh2kh [sinh 2 kh + I1[ 2kh 2j (3.20)

and the mass transport velocity just outside the water boundary layer is given by 

substituting y -* — h in Eq.(3.19)

p _ 5 a2cok 5 {Aco}
4 sinh2 kh 4 C

in which

(3.21)

Aco aco
sinh kh C L

T
co
k (3.22)
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Longuet—Higgins (1956) derived the distributions of the Lagrangian mass transport 

velocity and the Eulerian mean velocity inside a laminar wave boundary layer, given 

respectively by

TJ = 5 - &e~ßzcosßz + 3e~2ßz j (3.23)

U — ^j~L{3 + 4cos/3z + 2s'mßz + e~^‘ - 2/Jzsinßz — 2/?zcos/?z] j (3.24)

in which ß = Ja>/2v. The variations of U and U with ßz inside the wave boundary 

layer are shown in Fig.3.5 .

Eulerian Mean Velocity

Lagrangian Drift Velocity

Fig.3.5 The Lagrangian and Eulerian mean velocities in the laminar boundary layer
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The Lagrangian mass transport velocity U at the outer edge of the boundary layer is 

given by

— _ 5 (Aoj)2
Ub ~ 4 C

while the Eulerian mean velocity U is given by

(3.25)

3 (Aaj)2
4 C

(3.26)

It is worthwhile to mention here that the mass transport velocity inside wave 

boundary layer given in Eq.(3.23) does not depend critically on the assumption that 

a2 < d2, which is required specially for the conduction solution in the interior flow.

§3.2.2.2.2. The convection solution

Under normal wave conditions one would expect that a2 > d2, so that the

convective term + w-^J in Eq.(3.18) is dominant. Longuet-Higgins (1953)

gave the convection solution for the mass transport velocity induced by progressive 

waves as

U a^-co Ck2
4sinh 2kh \ r2

+ 4k2
4 k2 +

sinh2/:(— y — h) 4- F(z) (3.27)

in which

_ + 5r2)/:sin(- ry) [2k2 + r2)8/:2 . cos r( — y - h)
Z (4^2 _|_ r2y cos rh + (4k2 + r2)r2 S1° cos rh

and

,2 = 4^2 +

hz

in which C is the wave celerity and m is a positive integer. Eq.(3.27) has an infinite 

number of solutions, each corresponding to a different integer m, or in other words, 

the convection solution for progressive waves is not unique. It can be proven that the
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expression in big brackets in Eq.(3.27) can not vanish when kh > 0. Therefore, the 

convection solution given by Eq.(3.27) does not satisfy the condition of no net mean 

flow across a section. Until now, a complete convection solution has not been found.

Although Longuet-Higgins conduction solution is derived under the assumption 

of a2 < d2, it does give a good agreement with some experiments where a2 > d2, for 

example, Russell & Osorio (1958). However, the conduction solution fails to give a 

better prediction of the mass transport velocity near the free water surface than 

Stokes drift theory (1847). This is illustrated in Fig.3.6 .

Stokes theory (1847)

Eq.(3-ll) Longuet-Higgins theory (1953)

Eq.(3-20)

▲ Russel & Osorio (1958) 

♦ Mei etal. (1972)

■ Dye & Barsto (1981)

X Swan & Slcath (1990)

Fig.3.6 Comparison of theoretical predictions of surface mass transport velocity with experimental data
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§3.2.2.3. Johns (1970)

Johns (1970) calculated the mass transport velocity in a turbulent wave 

boundary layer using the concept of eddy viscosity

v K(z) (3.28)

and the equation of motion

M + ute + WM
dt dx dz

l^p \dr
Q dx Q dz (3.29)

where K(z) is a dimensionless function, which is analogous to the eddy viscosity. The 

distribution of K(z) was assumed to have the form

K(z) = K„ + (X — /«Too} e~^ (3.30)

with K oo = 1 and K «> = 100 for the laminar and turbulent cases respectively, see 

Fig.3.7 .

Fig.3.7 Variations of eddy viscosity in laminar and turbulent boundary layers after Johns (1970)
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Eventually, Johns found that the mass transport velocities for both laminar and 

turbulent boundary layers were approximately equal, and the maximum mass 

transport velocity in the turbulent boundary layer was found to be

(3.31)

in which H(ßz) is a function of ßz. The magnitude of the imaginary part Im{H(ßz)} 

just outside the turbulent boundary layer was

which is approximately equal to that in Eq.(3.21) predicted by the conduction solution 

of Longuet-Higgins (1953) .

Although Johns (1970) confirmed the conclusion of Longuet—Higgins (1956) 

that the mass transport velocity distribution derived from the laminar boundary layer 

could be used for the turbulent boundary layer provided that the eddy viscosity was a 

function of z only, he did not discuss the questions of how the mass transport velocity 

would vary if the eddy viscosity distribution was changed, and how the mass transport 

velocity would be affected if different specified values K «> were used. Therefore, the 

model of Johns (1970) is incomplete.

§3.2.2.4. Sleath (1973)

Sleath (1973) undertook a theoretical and experimental investigation of mass 

transport induced by very small waves [H = 1 ram, T = Is] in order to confirm the 

validity of the conduction solution of Longuet-Higgins (1953). Sleath applied the 

concept of a damping coefficient of wave propagation in the longitudinal direction, 

previously introduced by Hunt (1952) and obtained the following expression for the 

distribution of the mass transport velocity over the depth

Im[H(ßz)} = I (3.32)

U = u + a2wk cosh 2 kz 
2 sinh 2kh (3.33)
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where u is the Eulerian mean velocity. There are three possible solutions of Eq.(3.33) 

for the Eulerian mean velocity TL under very small waves. The solutions of the mean 

velocity u for a few values of kh are shown in Fig.3.8 .

Fig.3.8 Three possible theoretical distributions of Eulerian mean velocity U after Sleath (1973)

The type I profiles in Fig.3.8 are similar to those given by the conduction 

solution of Longuet-Higgins (1953). However, on no occasion was a mass transport 

velocity profile of the type I observed in Sleath (1973) experiments in which the 

minimum amplitude was 1 mm for both 1-second and 2-second waves.

The Types II and III in Fig.3.8 are quite different distributions from that 

predicted by Longuet-Higgins (1953) conduction solution as shown in Fig.3.4 . The 

most striking difference of the types II and III from the conduction solution of 

Longuet—Higgins (1953) is the strong peak in the mass transport velocity close to the 

bed. With the type II, the peak mass transport velocity is in the direction of wave 

propagation, while with the type III, it is in the opposite direction to that of wave 

propagation.
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Sleath (1973) found in his experiments that for the first two or three hours after the 

wave generator was started, mass transport velocity profiles of the type II were 

usually observed whiles after four hours or more the profiles of mass transport 

velocity had invariably switched to the type III, and the mass transport velocity 

profile showed no further change.

§3.2.2.5. Wang & Liang (1975)

Wang & Liang (1975) derived a mass transport solution similar to the 

conduction solution of Longuet-Higgins (1953) except that an empirically 

determined turbulent boundary layer solution was used as a bottom matching 

condition. Their solution takes the form

a2cok
4 sinh2 kh

2cosh2£/zj^ 4- 1 + 3 sinh 2kh 
2 kh { (y/hf - i

+ a2a>2k
4 v(E2 + 0.09/32)

1 . 2ßE
E2 + 0.09ß2 °'075l} (f^)2 - 2 (3.34)

where

E 133 sinh

in which d is the diameter of the bed roughness. For the case of a smooth bottom, the 

mass transport velocity predicted by Wang & Liang can be written as

U a2cok 
4 sinh2 kh

2 cosh 2kh\ + ( (y/h)2 - i) (3.35)

The comparison of theoretical work by Stokes (1847), Longuet—Higgins (1953), Dean 

(1965), and Wang & Liang (1975) with experimental data from Wang & Liang (1982) is 

shown in Fig.3.9 . It is evident that the solutions of Longuet—Higgins and Wang & 

Liang are similar, but Wang & Liang ’s solution is closer to experimental data. It may
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be reasonable to conclude here that the bed roughness does have effect on the mass 

transport velocity near the bed.

Stokes (1847) 

Longuet-Higgins (1953) 

Dean (1965)

Wang & Liang (1975)

-0.2-

Wang & Liang (1982)

1 . 65s H = 13.6cm
-0.6-

h = 40.0cm Hb = 16.5cm

HJhb = 0.9020.067

-0.8-

- 1.0 4

U
a2koj

Fig.3.9 Comparison of theoretical predictions on mass transport velocity with experimental data

§3.2.2.6. Johns (1977)

As discussed in the section §3.2.2.3., Johns (1970) assumed the eddy viscosity 

inside the boundary layer to be function of elevation but independent of time 

Eq.(3.30) and derived that the mass transport velocity in the turbulent wave 

boundary layer was approximately equal to that in the laminar boundary layer as 

predicted by Longuet-Higgins (1953). However, as Johns (1977) indicated, the 

theoretical result given by Eq.(3.31) appeared to be contradicted by Collins (1963) 

experimental study which indicated that the mass transport velocity in a turbulent 

boundary layer was much less than that in a laminar boundary layer.

Johns (1977) adopted different approach from his previous one (1970). He 

started with the equation of motion
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^ + 4-u2 + -fuw =dt dx dz
dU, + £/, at/« + -£■ 

dzdt ' ÖJC

and the equation for turbulent kinetic energy density E

is dll
KTz

(3.36)

f + + £<w£> = + Ty{Kf}\-D (3'37)
in which

K = Ci*zP D = ^-§2 (3.38)

where c = 0.08 and « = 0.4. Johns (1977) solved Eqs.(3.36) and (3.37) 

numerically with the appropriate boundary conditions. Fig.3.10 shows the variation 

of U/ {Aco } with elevation for a few values of kA, where A is the semi—excursion of the 

orbit just outside the boundary layer, k the wave number and KN = 30z0.

3 x 10

0.075

0 . 100

kA = 0 . 125

X 10

Fig.3.10 The mass transport velocities induced in a turbulent boundary layer after Johns (1977)
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Johns (1977) found that the Eulerian mean velocity at the edge of the boundary layer 

was given by

jl _ 0.30 _ 1
iiL 0.75 2.5

(3.39)

where JZL is the Eulerian mean velocity given by Longuet—Higgins (1956) in the 

laminar boundary layer. Eq.(3.39) indicates that the Eulerian mean velocity derived 

by Johns (1977) in the turbulent boundary layer is appreciably less than that 

predicted by Longuet—Higgins (1956) conduction solution for the laminar boundary 

layer.

For the model of Johns (1977), several points should be noted here. Firstly, 

when Johns (1977) chose the boundary conditions near the bed, he adopted Jonsson & 

Carlsen’s (1976) assumption that the instantaneous velocity profile near the bed in 

the turbulent boundary layer was logarithmic. However, as Jensen (1989) indicated in 

his test No. 10, the assumption was valid only for a certain range of the wave phase, 

but not correct when ()° < cot < 15° and 165ö < cot < 180ö. In addition, the 

assumption adopted from steady boundary layers did not take account of the phase 

shift between the velocity and the shear stress, which normally occurs in the wave 

boundary layer as Nielsen (1985) pointed out. Secondly, as Trowbridge & Madsen 

(1984) discussed, the boundary conditions just outside the wave boundary layer 

employed by Johns (1977) were not physically realistic and did not allow the Eulerian 

mean velocity to appear at the outer edge of the boundary layer as shown in Fig.3.10 . 

Thirdly, as Trowbridge & Madsen (1984) pointed out, the eddy viscosity used in the 

equation of motion should be a time dependent parameter if the second-order 

velocity components are taken into account. Fourthly, the diffusion coefficient, which 

is analogous to eddy viscosity, used in Eqs.(3.36) and (3.37) was assumed to be the 

same for both momentum and energy fluxes based on the hypotheses used for the 

steady flows by Launder & Spalding (1972). Finally, the relationship given by 

Eq.(3.38) is also adopted from the steady flows. Consequently, it is questionable 

whether the theoretical results given by Johns (1977) are realistic.
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§3.2.2.7. Jacobs (1984)

Jacobs (1984) used the turbulence model of Saffman (1970 & 1974) to 

investigate the mass transport velocity in turbulent oscillatory boundary layers and 

obtained an expression for the mass transport velocity at the outer edge of the 

turbulent boundary layer

Q (3.40)

in which Q denotes a ratio of the mass transport velocity at the outer edge of the 

turbulent boundary layer predicted by Jacobs (1984) to that at the outer edge of the 

laminar boundary layer given by Longuet—Higgins (1953), and the parameter cx was 

approximately given by

Cl H 1 4sinh2&/i } <3'41>

by substituting Eq.(3.41) into Eq.(3.40), the ratio Q can be derived as

e = f - ds (3-42)
Jacobs (1984) compared his theoretical solution Eq.(3.42) with the experimental data 

from Bijker et al. (1974), and found that there was a good agreement between the 

calculated and observed values of Q as shown in Fig.3.11 .

Therefore, Jacobs (1984) concluded that Longuet—Higgins conduction solution 

(1953) would overestimate the mass transport velocity at the outer edge of a turbulent 

boundary layer by about a factor of two. However, this conclusion is only correct when 

kh > 0.7 because as kh > 0.7, the ratio \/Q is approximately equal to 1.5 whereas 

when kh < 0.7, it is unlikely that Eq. (3.42) can be used to predict the mass 

transport velocity as shown in Fig.3.11 .
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25

Bijker et al. (1974)

Fig.3.11 Variation of \/Q with kh at the outer edge of the boundary layer after Jacobs (1984)

§3.2.2.8. Swan & Sleath (1990)

Swan & Sleath (1990) attempted to investigate the influence of the 

higher—order terms, which are neglected in Longuet—Higgins (1953) second—order 

solution for mass transport velocity under progressive waves. They derived a 

fourth—order solution for the mass transport velocity and found that the 

fourth—order conduction solution generally agreed better with available experimental 

data from Swan (1987) and Russell & Osorio (1958) than did the second order solution 

given by Longuet-Higgins (1953) as shown in Fig.3.12 .

Particularly, they showed that the fourth-order solution predicts the observed 

tendency of the surface mass transport velocity as shown in Fig.3.6 . Moreover, Swan 

& Sleath found that the agreement of the fourth—order solution with the
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measurements of mass transport velocity in the interior of the flow is inferior to those 

with the measurements of mass transport velocity near the free water surface. 

Therefore, Swan & Sleath (1990) suggested that the discrepancy between the 

fourth—order solution and the experimental data in the interior of flow might be 

eliminated if the solution was continued to still higher orders of approximation.

Although the fourth—order solution by Swan & Sleath (1990) gave a better 

prediction of the mass transport velocities near the water surface and in the interior of 

flow in comparison with Longuet- Higgins (1953) conduction solution, the theory is 

only a higher order version of Longuet-Higgins conduction solution, and thus still

depending on the assumption that a2 d2.

Stokes (1847)-100-

Longuet-Higgins (1953)

Swan & Sleath (1990)

Ressell & Osorio (1957)
y [mm]

a = 58.4mm o) = 2.09s
-300-

h = 0.51m kh = 0.50

-400-

U [mm/s]

Fig.3.12 Comparison of theoretical predictions on mass transport velocity with experimental data
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§3.2.3. REVIEW OF PREVIOUS EXPERIMENTAL WORK

§3.2.3.1. Bagnold (1947)
Bagnold (1947) first recognised that the mass transport could have an important 

effect on the sediment transport by progressive waves. Bagnold’s experiments were 

made in a glass—sided wave flume, 11m long, 0.30m wide and 0.30m deep.

Dye inserted here

After one wave peorid

After ten wave peorids

Fig.3.13 Existence of mass transport velocity observed by Bagnold (1947)

The observation of the mass transport for the smooth bed was made using hygroscopic 

particles impregnated with fluorescence. These particles were dropped into the wave 

field where they sank leaving a laminar dye streak which gradually deformed with 

time, giving a direct picture of the drift velocity profile. Fig.3.13 illustrates the 

successive drift profiles observed by Bagnold.

It was observed that in no case was a forward drift observed near the water 

surface. Moreover, motions in the upper part of the interior region were unsteady and 

inconsistent. Best results were observed when the channel was freshly filled with 

water, but after a few hours of exposure to the air, a Film was found to form on the 

water surface, which was sufficiently strong to completely suppress the surface drift.
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§3.2.3.2. Russell & Osorio (1958)

Russell & Osorio (1958) conducted a comprehensive set of experiments on mass 

transport in a wave flume, which was 56m long, 1 . 2m wide and 0.56m deep. A wave 

filter was installed in the front of the wave generator. In order to minimize wave 

reflection from the beach and keep the conditions steady, Russell & Osorio installed a 

flexible plastic curtain near the beach, which hung from a floating wooden bar at its 

upper edge and carried an iron bar at its lower edge. This instrument was moored by 

thin elastic threads. The device had no apparent effect on waves, but ensured that 

there was zero drift at the point where the plastic curtain was installed. In the 

experiment, Russell & Osorio used small particles to measure the mass transport 

velocity at different levels, and chose vertical dye tracers to observe the general profile 

of mass transport velocity across the test section. Through the experiments, Russell 

& Osorio found that

(1) The net drift near the free water surface was in the direction of wave 

propagation in all tests.

(2) The net drift near a horizontal bed was invariabably in the direction of wave

propagation, and quantitatively in good agreement with that predicted by the 

conduction solution of Longuet-Higgins (1953).

(3) When 0.7 < kh < 1 . 5, the conduction solution of Longuet-Higgins (1953)

could be applied to predict the drift velocity in the interior flow whereas when 

kh > 3.0, the Stokes theory (1847) could be used .

§3.2.3.3. Brebner et ai (1966)

Brebner et al. (1966) carried out experiments to investigate the effect of the bed 

roughness on the mass transport velocity near the bed. The experimental bed 

consisted of sand grains and six different grain sizes in the range of 0.5 ~ 2 .2mm 

were used in different experiments. Experiments were also conducted with a smooth 

bed. The general profile of the mass transport velocity across a test section was
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observed by using fluorescent tracer—sand, and the mass transport velocity near the 

bed was measured by using neutrally buoyant beads. Brebner et al. (1966) defined the 

Reynolds Number in the boundary layer as

where d is the Stokes length Jlv/co and Aco is the free stream velocity amplitude just 

outside the boundary layer, which was calculated from the first order theory as

Aco Hco
2 sinh kh

Brebner et al. (1966) experiments indicated that

(1) When Rö < 160, the boundary flow was laminar. The maximum mass 

transport velocity near the bed increased with increasing bed roughness.

(2) The boundary layer flow became quite turbulent over the smooth bed and the 

sand beds when R^ > 160. The maximum mass transport velocity near the 

bed decreased with increasing bed roughness, and was found to be 

proportional to H1,2 rather than A/2 as predicted by Longuet — Higgins (1953).

§3.2.3.4. Mei et al. (1972)

Mei et al. (1972) carried out a detailed and comprehensive experiment to 

investigate the mass transport under progressive waves. The experiment was 

conducted in a wave flume of 12m long, 0.76m wide and 0.20m deep over a smooth 

horizontal bed. The wave absorber consisted of a piece of foam material of fairly high 

porosity with holes. From their experiments, Mei et al. (1972) found that in most 

cases a stable state was achieved after a period of about one hour. At that time it was 

found that the mass transport velocity profile measured at the center line of the flume 

agreed with Longuet-Higgins (1953) conduction solution for 0.9 < kh < 1.5, but 

for larger kh, the mass transport velocity profile was close to Stokes’ (1847) second 

order solution.
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§3.2.3.5. Sleath (1973)

Sleath (1973) did an experiment to investigate the mass transport velocity under 

small waves [H = 1 mm, T = Is]. The experiment was conducted in a wave flume of 

17.50m long and 0.56m wide. Waves were generated at one end by a simple hinged 

paddle, and absorbed at the other by a single beach of slope 1 : 20. A wave filter was 

placed 1.0m from the wave generator. The bed of the test section consisted of a glass 

sheet of 3.0m long. The minimum wave amplitude in this experiment was 1mm for 

wave periods of 1—second and 2—second, respectively. From the experiments, Sleath 

(1973) found that

(1) The mass transport velocity near the free water surface was predicted very 

well by Stokes (1847) solution, as shown in Fig.3.6 .

(2) On no occasion was a mass transport velocity profile predicted by Longuet 

Higgins (1953) conduction solution.

(3) There was a negative peak mass transport velocity near the bed.

§3.2.3.6. Bijker et al. (1974)

Bijker et al. (1974) investigated the effect of the bottom slope on the mass 

transport velocity under gravity waves. Their experiment was conducted in a wave 

flume of 30.0m long, 0.80m wide and 0.60m deep. Three different slopes of 1 : 10, 

1 : 25 and 1 : 40 were used in the experiment. The slope surface was rigid, but its 

roughness was varied from a painted smooth concrete to glued sand grain and 

artificial ripple beds, respectively. The diameter of the sand grains was between 

1.6 — 2.0mm, and the length and height of the symmetrical ripples were 80mm and 

18mm. All waves broke on the beach. The reflection from the beach was always less 

than 6%. Curtains were installed at both ends of the wave flume to minimize the 

wave reflection from both the beach and wave generator. From the experiments, 

Bijker et al. (1974) found that
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(1) The bottom mass transport velocity was primarily determined by wave height,

wave period and local water depth while the slope of the bottom has no 

significant influence.

(2) The bottom mass transport velocity predicted by Longuet-Higgins (1953)

conduction solution for a horizontal bottom was larger than the measured 

velocity. The discrepancy between Longuet—Higgins conduction solution 

and experimental data increased with decreasing depth and increasing 

relative wave length.

(3) The drift velocity changed slightly with increasing bottom roughness, but 

considerably with the presence of a ripple-like roughness.

§3.2.3.7. You et al. (1991b)

You et al. (1991b) studied experimentally the effect of bed roughness on the mass 

transport velocity near the bed under progressive waves. The experimental set-up is 

shown in Fig.3.16. The maximum mass transport velocity near the bed was measured 

with neutrally buoyant liquid particles, consisting of oil—based white paint and two 

different kinds of hydrocarbon solvents, one lighter than water and the other denser 

than water. The distribution of the maximum mass transport velocities measured 

near different bed configurations are shown in Fig.3.19 . It was concluded that

(1) The maximum mass transport velocity measured near the bed decreased with

increasing the bed roughness when Rö < 160, which is at variance with 

Brebner et al. (1966). The reasons for this difference are unclear.

(2) The direction of the mass transport velocity near the bed was always observed

to be in the direction of wave propagation rather than in the opposite 

direction as Sleath (1973) observed.

(3) The mass transport velocity measured over the smooth bed was approximately

proportional to the wave height instead of the square of the wave height as 

predicted by Longuet-Higgins (1953).
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§3.3. EXPERIMENTAL STUDY

§3.3.1. OBJECTIVES OF THE PRESENT EXPERIMENT

The maximum mass transport velocity at the outer edge of the laminar 

boundary layer as determined by Longuet-Higgins (1953) is given by

u„ 5a2k(o 
4 sinh 2kh

(3.44)

and later [Longuet-Higgins (1956)] showed that Eq.(3.44) could be used to predict 

the maximum mass transport velocity at the edge of the turbulent boundary layer if 

the eddy viscosity was assumed to be a function of elevation only. This implies that 

the bed roughness has no effect on the mass transport velocity near the bed. However, 

Brebner et al. (1966) found from his experimental study that when R^ < 160 

increasing bed roughness would increase the mass transport velocity while for 

Rö > 160 the mass transport velocity decreased with increasing bed roughness. On 

the other hand, Sleath (1973) found in his experiments that the direction of the 

maximum mass transport velocity near the smooth bed was opposite to that of the 

wave propagation rather than in the direction of wave propagation as 

Longuet—Higgins (1953) predicted and Brebner et al. (1966), Russell & Osorio (1958) 

and Bijker et al. (1974) observed. Therefore, in order to settle these disparities the 

present study was undertaken with the specific aims

(1) To examine the validity of the conduction solution of Longuet—Higgins (1953)

under the condition of a2 < d2.

(2) To review the effect of bed roughness on the mass transport reported by 

Brebner et al. (1966) when Rö < 160.

(3) To investigate Sleath’s (1973) finding that the mass transport velocity near a

smooth bed was in the opposite direction of wave propagation.
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§3.3.2. EXPERIMENTAL APPARATUS

§3.3.2.1. Wave Flume

The measurements were carried out in a wave flume at Water Research 

Laboratory of The University of New South Wales. The length of the wave flume is 

about 35 . Ora, the width 0.9m, the total depth 1 . 5m, and the slope of the beach 

1 : 14. The walls are made of rendered brick except for a glass panelled section 

covering over half of the front. This working section is used for observations, 

photography and video. The bed is horizontal for 20ra, and then has a fixed slope of 

about 1:14 for 6ra, and finally has a horizontal section 4ra long and 0.65ra above the 

bed level. Re—circulation of water from the beach end to the wave maker end of the 

flume is possible via Pipes fitted underneath the bed. The pipes can be closed if not 

required. The flume is fitted with a 40kw hydraulically powered, piston type wave 

generator that can be fed with either a sine wave signal to produce simple harmonic 

waves or with a recorded or synthesized signal to generate random or spectrally 

defined waves. The signal generators used normally allow both the amplitude and 

period of wave to be changed while the wave generator is operating. Wave periods are 

generally in the range 0.5s- 3 . Os. The range of wave height that can be generated 

depends on the water depth and wave period used.

§3.3.2.2. Bed Configurations

[11 A smooth false bottom was made of perspex of 8 . Ora long, 0.89ra wide and 

5 . Orara thick. The perspex bed was raised up to 7.5cra from previous bed level so as 

to clearly observe the motion of particles and to make it more convenient to take 

photos. One end of the perspex bed was located in the front of the beach toe. The 

other end of the perspex was slightly bent into a curve to join the concrete bed 

smoothly. In order to protect the perspex from bending along the wave flume 

direction, a frame was used to ensure that the smooth bed was always horizontal 

during testing. The construction of the smooth bed is shown in Fig.3.14 .

[21 A rough bed consisted of a layer sand grains of 2mm diameters glued to the 

perspex surface. In order to ensure that the thickness of the sand layer was equal
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everywhere, a piece of wood with a horizontal surface was used to level the surface of 

the sand layer. Sand grains on the bed were painted black to reduce the light 

reflection and assisting with the tracking of white neutrally buoyant oil droplets 

which were used as flow markers.

[3] In a further series of experiments a very rough bed was made using 2.5cm 

average diameter gravel. A layer of gravel was put on the surface of sand bed, and 

then a piece of straight wood was used to level the gravel surface to ensure that the 

thickness of the gravel layer was uniform. The weight of the gravel was pretty heavy 

that it was not necessary to glue it to the sand bottom.

/ ' / 6.0m
/-----------------------T---------------------------------------------------------------/

0.89 m. Perspex 7.5 cm

0.5cm
7 x lem

Beam
Floor of the wave tank

Fig.3.14 Configuration of the smooth bed for measurement of mass transport velocity

§3.3.2.3. A Plastic Curtain

Following Russell & Osorio (1958) and Bijker et al. (1974), a plastic curtain was 

used to isolate the test section from the turbulence generated at the beach and this 

was found to keep mass transport velocity in a stable condition during tests.

Recently, Swan & Sleath (1990) also demonstrated that the installation of a 

curtain in the front of the beach was of great effect helping mass transport velocity 

reach a stable condition. Otherwise the mass transport velocity tends to be unstable. 

The curtain used in the present experiment consisted of a floating foam bar, a thin 

plastic sheet and an iron bar, see Fig.3.15 .
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a floating foam bar

a plastic sheet

an iron bar

Fig.3.15 Construction of the plastic curtain used in the present study

§3.3.2.4. Tracking Particles

Measurement of the Lagrangian mean velocity induced by progressive waves 

was accomplished using neutrally buoyant oil droplets. Previous investigators used 

neutrally buoyant plastic beads as tracking particles. However, these small solid 

beads tend not to be neutral under waves. For example, Russell & Osorio (1958) found 

that small particles rose and fell more than 2 . Ocm during measuring period. In the 

present experiments, liquid droplets were used as tracers. The advantages of this are 

that the density of liquid particles can be easily adjusted to account for temperature 

effects on water density by a method of trial and error, and the diameter of liquid 

particles can be made as small as required by simply changing the diameter of the 

injector. The liquid particles were made of a mixture of xylene [ g = 0.80 ] and 

carbon tetrachloride [ g = 1 . 15 ]. A white oil based paint was used to pigmentation. 

In order to produce a few droplets near the bed, a syringe was used to inject the mixed 

white hydrocarbon solvent into water. The syringe needle was extended to reach the 

bed and produced a few fine droplets near the bed.
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Fig.3.16. Sketch of wave flume for measurement of mass transport velocity near the bed 



§3.3.2.5. Other Equipments

In order to watch such small white droplets moving under waves in the 

experiments, a video camera and monitor screen were used to enlarge the droplets and 

show their locus on the monitor screen. The video camera was set 0.5m from the 

glass wall in the front of the test section. The wave height was recorded by using two 

wave gauges located in the middle of the test section 0.3m apart, see Fig.3.16 .

§3.3.3. METHOD OF MEASUREMENT

§3.3.3.1. The Level of Velocity Measured

The velocity measured near the bed is a maximum mass transport velocity in a 

laminar boundary [Rö < 160] according to the criterion defined by Brebner et al. 

(1966). In a laminar boundary layer the mass transport velocity distribution is given 

by

Ü = ~ 8e-/3zcosßz + 3e_2^z)

in which the maximum mass transport velocity inside the laminar boundary layer is

jt = 1 . 376/12 
C

corresponding to the elevation

zy - 2-34/f ».45)

as shown in Fig.3.5 . Eq.(3.45) shows that the level z ■ corresponding to the maximum 

mass transport velocity is a function of wave period only. However, it was found in the 

present experiment that the level z- also depended on wave height as shown in 

Fig.3.18 . Therefore, how to determine the level of the maximum velocity is a 

practical subject in the present study. A more readily distinguishable point of 

maximum mass transport velocity in the present experiment was chosen as the level 

at which the velocity of a given particle was moving faster than others near the bed, 

which is shown in Fig.3.17 .

110



////9//}}///)////////

Fig.3.17 Determination of the level z; of maximum mass transport velocity in the present study

§3.3.3.2. Determination of Mass Transport Velocity

The mass transport velocity is defined as a time averaged velocity of a given 

particle averaged over several wave periods, which is

U AS
At (3.1)

where AS is a net displacement which a droplet travels in the period of time At. 

Therefore, the measurement of mass transport velocity involved measuring a net 

displacement A S during a time period A t. The procedure adopted for measurements 

of the drift velocity was to inject a few droplets near the bed with a syringe after the 

waves had been running for about an hour. At the same time, the video camera was 

set to record the locus of the small droplets moving under waves. Then, watching a 

chosen particle on the monitor screen, which was moving faster than others near the 

bed, passing a certain distance AS, e.g. 5cm or 10cm, i.e. one grid or two grids marked 

on the glass wall and recording the time period At with a stop watch. The 

measurement of the drift velocity for each wave condition was repeated at least ten 

times to get an averaged value of the maximum drift velocity near the bed. During the 

experiment, the mean water depth was 0.3m, and the wave period T = \ . Os. The 

measurements of maximum mass transport velocity over different bed configurations 

are shown in Appendix I.
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§3.3.4. EXPERIMENT RESULTS AND ANALYSIS

§3.3.4.1. The Vertical Distribution

The vertical distribution of mass transport velocity was observed by using a 

vertical dye streak. Fig.3.18 shows the vertical profiles of the mass transport velocity 

measured in the two tests in which the boundary layers were laminar (A) with 

Rö ~ 2.3 and (B) with R<> ~ 44.6 according to the criterion defined by Brebner et 

al. (1966).

0.30m
K5 = 2.3

U [mm/s]

// = 58mm 
T = 1 . 05 
h = 0.30m 

Rd = 44.6

-6 -4
U [mm/s]

Fig.3.18 Observed vertical variation of mass transport velocity along the depth over smooth bed

The general profiles of the mass transport velocity over the depth in the two tests are 

similar, however the level of the maximum mass transport velocity with a small wave 

steepness [H/L] is much higher than that with a large wave steepness. The general 

distribution of the mass transport velocity outside the boundary layer in both 

experiments [A] and [B] is quite similar to that predicted by Longuet—Higgins (1953) 

conduction solution, see Fig.3.4. It should be noted here that the profile of the mass 

transport velocity induced by small waves as shown Fig.3.18 [A], is different from that
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observed in Sleath (1973) experiments and the type III of Sleath (1973) three possible 

solutions [Fig.3.8], and that the maximum mass transport velocity is in the direction 

of wave propagation rather than the opposite direction observed by Sleath (1973). 

The reason for this is unclear.

§3.3.4.2. Variation of Drift Velocity with Bed Roughness

The effect of bed roughness on maximum mass transport velocity near the bed

was investigated using a water depth h = 0.30m and wave period T = 1.05, and 

systematically changing the wave height in the range of 2mm < H < 60mm. The 

boundary layer regimes generated in the present experiments were laminar according 

to the criterion defined by Brebner et al. (1966).

UM [mm/s]

PRESENT STUDY

• Perspex bed
4- 2mm sand bed
♦ 2.5cm gravel bed

H [mm]

Fig.3.19 The variation of maximum mass transport velocity near the bed with bed roughness
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The variation of maximum mass transport velocity near the bed with wave height and 

bed roughness is shown in Fig.3.19 . It can be seen that the maximum mass transport 

velocity near the smooth bed is only slightly greater than that near the rough bed 

when the wave height is not so large, e.g. H < 20mm. However, if the wave height is 

increased, the maximum mass transport velocity near the smooth bed is much greater 

than those near the rough beds. On the other hand, the maximum mass transport

4
velocities near the beds with different roughness are approximately proportional to Hs 

rather than the square of the wave height H2 as shown in Fig.3.19 .

§3.3.4.3. Comparison with Longuet-Higgins (1953) Solution

Longuet—Higgins (1953) conduction solution for the mass transport velocity at 

the outer edge of the laminar boundary layer yields

5a2tok 
4 sinh 2 kh

(3.46)

Fig.3.20 shows the variation of the ratio U„/UL of the measured maximum mass 

transport velocity to that estimated from Eq.(3.46) with the Reynolds number 

Rö = Ao)d/v. It can be seen in Fig.3.20 fA] that the ratio UM/UL decreases with 

increasing Rö. When Rö < 25 Longuet-Higgins (1953) conduction solution fails to 

agree with the experimental data. However, when R^ > 25 the ratio UM/UL is close to 

1, which indicates that Longuet-Higgins (1953) conduction solution may give a 

rough estimation of the mass transport velocity at large Renolds numbers. This 

conclusion is also supported by Brebner et al. (1966) experimental data as shown in 

Fig.3.20 [B].

Therefore, doubt is cast on the adequacy of Longuet-Higgins (1953) conduction

solution since it was derived under the assumption of a2 < d2, which corresponds to 

a small R(y
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Fig.3.20 Comparison of Longuet-Higgins (1953) conduction solution with experimental data

§3.3.4.4. Discussions

The relationship between the maximum mass transport velocity UM measured 

near the bed and the free stream velocity amplitude Acu is investigated in Fig.3.21 

which shows the ratio UM/{Aco} plotted as a function of the Renolds Number Rö.

However, as Fig.3.21 shows, the ratio UM/ {Aco } indicates no systematical sensitivity 

to the Renolds Number Rö. For example, for the present experiments, the ratio 

Um/{A(d } decreases with increasing the Renolds number whereas for Brebner et al. 

(1966) study the ratio Um/{Aü)} increases with increasing the Renolds number. On 

the other hand, as Brebner & Collins (1961) concluded in their experiments 

[H > 30mm], the maximum mass transport velocity measured near the smooth bed 

was quite well predicted by Longuet-Higgins (1953) conduction solution Eq.(3.46).
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However, in the present study [ 2.5mm < H < 60mm] the maximum mass transport 

velocity measured near the smooth bed is not well predicted by Eq.(3.46) when the 

wave height is very small, but getting better when the wave height increases as shown 

in Fig.3.20 [A], Therefore, it is still unclear whether the conclusion made by Brebner 

& Collins (1961) is correct or not if the maximum mass transport velocities near the 

smooth bed were measured under very small waves [ H < 30mm].

1.00-r

IK 
Aco 

0.10-1

0.01-

PRESENT STUDY

• Perspex bed 

+ 2mm sand bed

+ 2.5cm gravel bed

• M

♦ ♦ + + *

♦ + +. x.*x
▲

.V"

"+ A "

BREBNER et al. (1966)

■ Smooth bed

▲ 0.8mm sand bed

X 2.2mm sand bed

........................ 10
I ! I 1 I 755" Töbo

Fig.3.21 Variation of UM/[A(o) with the Renolds Number and bed roughness

116



§3.3.5. CONCLUSIONS

(1) Maximum mass transport velocity near the bed decreases with increasing bed

roughness. The conclusion that increasing bed roughness would increase the 

mass transport velocity for R& < 160 made by Brebner et al. (1966) is not 

supported by the present study.

(2) The effect of the bed roughness on the maximum mass transport velocity near 

the bed is getting more significant as wave steepness increases.

(3) The conduction solution of Longuet-Higgins (1953) fails to give a good 

prediction of the maximum mass transport velocity measured near the bed in 

the present experiments when the wave height is very small [/^ < 20].

(4) The maximum mass transport velocity near a smooth bed measured under 

waves of very low steepness was found to be in the direction of wave 

propagation rather than in the opposite direction as reported by Sleath 

(1973).

(5) The mass transport velocity was found to be proportional to tfi instead of H2 

as Longuet—Higgins (1953) conduction solution predicts.
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CHAPTER 4

OSCILLATORY BOUNDARY LAYERS 
WITH CURRENTS

§4.1 INTRODUCTION TO COMBINED FLOWS

§4.1.1 THE COMBINED WAVE-CURRENT FLOWS

In former chapters, we have studied the velocity distribution, bed shear stress, 

friction factor, and mass transport velocity in the wave boundary layer in the absence 

of currents. However, the water motion in coastal and estuarine areas is generally a 

combination of waves and currents instead of a pure wave motion.

It is worthwhile to consider, from a qualitative view, the different roles of waves 

and currents in the sediment transport process. Often, the near bed orbital velocities 

due to waves are of the same magnitude as the stronger coastal currents. However, the 

boundary shear stress associated with the wave motion may be an order of magnitude 

larger than the shear stress related to the current of comparable magnitude. This is due 

to the small vertical scale of the wave boundary layer in comparison with that of the 

current boundary layer. Thus, waves are capable of entraining significant amounts of 

sediment from the sea bed when the current of comparable magnitude may be unable



to even initiate sediment motion. On the other hand, waves are an inefficient 

transporter of sediment. Therefore, it is important to study the combined 

wave—current flow in order to understand the mechanism of sediment transport and 

quantitatively determine the rate of sediment transport.

§4.1.2 THE STUDY OF COMBINED FLOWS IN THE LABORATORY

Detailed studies of the combined wave—current flows have been conducted in the 

laboratory by many investigators. For example, van Doom (1981) & (1982) conducted 

comprehensive experimental study of the combined wave—current flow in wave flumes 

and oscillating water tunnels in the laboratory, see Fig.4.1.

TESTS Facility
Ad)

[cm/s]

T

[s]

K»

1cm]

<U>

[cm/s]

A *

u

[cm/s]

IT

[cm/s]

VOORA Flume 26.7 2.0 2.1 0.0 4.3 0.00

V10RA Flume 25.3 2.0 2.1 10.0 5.6 1.70

V20RA Flume 24.3 2.0 2.1 20.0 5.2 2.60

SOORAL Tunnel 32.3 2.0 2.1 0.0 5.7 0.00

S10RAL Tunnel 32.3 2.0 2.1 10.0 5.7 2.03

S20RAL Tunnel 32.3 2.0 2.1 20.0 5.7 3.18

MOORAL Tunnel 106.0 2.0 2.1 0.0 15.3 0.00

M10RAL Tunnel 106.0 2.0 2.1 10.0 15.3 2.36

M2 ORAL Tunnel 106.0 2.0 2.1 20.0 15.3 3.30

Table.4.1 Measurements of combined wave-current flows conducted by van Doom (1981 & 1982)

The instantaneous velocities were measured with a laser doppler anemometer, and the 

steady velocity component and the periodic component were obtained by using a 

harmonic analysis on U(z, t). Table.4.1 shows the series tests carried out by van Doom 

(1981) and (1982)
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30.0m

Wave Maker

Currents 0.30m

Currents Currents

Fig.4.1 The study of the combined wave-current flow in a wave flume by van Doom (1981)

§4.1.3 THE SCOPE OF THE PRESENT STUDY

(1) To calculate the current velocity in the presence of waves ;

(2) To calculate the wave—induced orbital velocity in the presence of currents ;

(3) To evaluate the bed shear stresses of combined wave—current flow.

§4.2 THE EQUATION OF MOTION

The horizontal motion of fluid in a combined wave—current flow is governed by 

the Navier—Stokes equation

'd2U d2u]
dx2 dz2J

and the continuity equation

dU . TfdU . iw d \J _ 1 dP ,
dt dx dz Q dx

(4.1)

OLL , dW = 0 (4.2)
dx dz

By combining Eqs.(4.1) and (4.2), the momentum equation can be expressed as

dU d(UU) d(UW) = j_dP_ \d2U d2U
dt dx dz Q dx V| dx2 dz2
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In Eq.(4.3), If the combined flow is assumed to be horizontally uniform, the terms 

d(UU)/dx and v d2U/dx2 can be omitted. Therefore, Eq.(4.3) can be rewritten as

dU , d(UW) = _\dP PU (4 4)
dt dz Qdx dz2

On the other hand, the velocity components U and W, and the pressure component P 

in Eq.(4.4) can be decomposed into three components, namely, the steady, the periodic 

and the random turbulent components

U = U + U + u (4-5)

W = W + W + w' (4-6)

P = P + P + p (4-7)

in which the steady and the periodic components are defined respectively as

N

X(Z) = <4-8>
/ = 1

N

X(z,t) = + tT) - X(z) (4-9>
i = 1

where T is the wave period, t the time variable and N the number of waves. Based on 

the definitions above, it can be readily shown that

F = x= fy=xF = x?’ = o x = x (410)

X' = J = XY' = XY' = o i = X (4-11)

XY = XY - XY XY = XY (4,12)

Substituting Eqs.(4.5), (4.6) and (4.7) into Eq.(4.4) leads to

jt(U + Ü + u) + ^{(U + Ö + u')(W + W + w')} (4-13)

= - 7Z-L(P + p + P ) + V^(U + Ü + U')
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§4.2.1 THE GOVERNING EQUATION FOR U

Using the time—average definition Eq.(4.8) and considering the identities given 

by Eq.(4.10), we obtain from Eq.(4.13)

j~z[u W + ÜW + u'w'

which can be rewritten as

IdP 
Q dx

+ (4.14)

_d_
dz

U W - ÜW - u'w' \dP_ 
Q dx

(4.15)

where all the terms in the bracket represent the vertical transfer of momentum in the 

horizontal direction, it is therefore reasonable to define them as the shear stress

£ = - U W - Ow - u'w' (416)
Q dz

Hence, combining Eqs.(4.15) and (4.16), we obtain a governing equation for the steady 

component of the combined flow

df _ dP (4.17)
dz dx

The governing equation Eq.(4.17) for the steady component of the combined flow is 

similar to that for a pure steady flow.

§4.2.2 THE GOVERNING EQUATION FOR 0

Using the phase average definition Eq.(4.9) and taking Eqs.(4.11) and (4.12) into 

account, we obtain

dO , _d_
dt dz

UW + ÜW + uw + u'w'

which can be rewritten as

J_d£
Q dx

+ (4.18)

dO
dt

\dP_ 
Q dx

UW - ÜW - ÜW - u'w' * (4.19)
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in which all terms in the bracket stand for the vertical transfer of momentum in the 

horizontal direction, it is therefore reasonable to define them as the shear stress

£ = V^Hr - UW - UW - ÜW - uw'
0 dz2

Hence, Eq.(4.18) can be rewritten as

(4.20)

di/ _ IdP , l dr (4.21)
dt Qdx Qdz

Outside the boundary layer where U = Ux and f = 0, Eq.(4.21) can be simply

written as

dU oo _ _ 1 dP (4.22)
dt Q dx

Furthermore, if we assume that the distribution of the pressure gradient dP/dx in

Eq.(4.21) is hydrostatic, or in other words dP/dx is constant with elevation, Eq.(4.22) 

will be valid inside the boundary layer. Therefore, The governing equation for the wave 

motion in the boundary layer can be written as

dÜ _ dU oo I dT (4.23)
dt dt Q dz

Eq.(4.23) is the governing equation for the wave motion in the combined flow.

§4.3 STEADY FLOW

§4.3.1 THE VELOCITY DISTRIBUTION

Prandtl (1927) found empirically that the current velocity distributions for 

turbulent steady flows are logarithmic

U(z)

TT
^rln z + C (4.24)

where U is the current friction velocity and x von Karman’s constant (~ 0.4). 

Normally, Equation(4.24) is written in the form
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U(z)
TT

(4.25)

in which KN = 30z0 and KN is the equivalent sand grain roughness or the Nikuradse 

roughness.

MWL

= P(z) + ggArj

Fig.4.2 Variation of the pressure in a steady flow with horizontal and vertical directions

§4.3.2 SHEAR STRESS AND FRICTION FACTOR

The governing equation for steady flow is

df(z) = dP(x, z) (4.26)
dz dx

The physical meaning of Eq.(4.26) is that the shear stress gradient in the vertical 

direction is balanced by the pressure gradient in the horizontal direction. For a uniform 

steady flow, the pressure gradient in the horizontal direction must come from a slope 

of the mean water surface, see Fig.4.2. Therefore,

dP(x, z) 
dx q g tana (4.27)

where a is the slope of the mean water level. Hence, combining Eq.(4.26) with (4.27) 

leads to
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df{z)
dz Q g tana (4.28)

Therefore, the distribution of the shear stress with elevation can be obtained from 

Eq.(4.28) as

t(z) (4.29)

where rb is the bed shear stress given by

q gh tan a (4.30)

If a current friction factor fc is defined by

T = <u> 4- = TrlT (4.31)

where U* is the current friction velocity, and < U > is a depth—averaged mean 

current velocity given by

h

< U > = x f U(z)dz = (4-32)h J * Kn
Zo

and then the bed friction factor fc can be determined from Eqs.(4.31) and (4.32) as

fc IllnJ ll/l]
j X ^N

-2
(4.33)

§4.3.3 THE EDDY VISCOSITY DISTRIBUTION

The eddy viscosity in turbulent steady flows is defined as

m _ „ dU(z) (4.34)

e ~ £c dz
Then, substituting the shear stress distribution Eq.(4.29) into Eq.(4.34) we will obtain 

the well-known eddy viscosity profile of the steady flow as shown in Fig.4.3.

125



z

£c(z) = xU*z{l - z/h)

Fig.4.3 Variation of the eddy viscosity with elevation in a steady turbulent flow

§4.4 MODELS OF COMBINED WAVE-CURRENT FLOWS

§4.4.1 THE MODEL OF BIJKER (1967)

Bijker (1967) was the first to present a model for a combined wave—current 

boundary layer flow. The model was developed before many theoretical insights into 

oscillatory boundary layers were available. Therefore, the model of Bijker (1967) relies 

very much on the concepts derived from steady flows.

Bijker (1967) assumed that the current velocity profile was not affected by the 

presence of waves, see Fig.4.4, and then based on Prandtl’s mixing length hypothesis, 

Bijker (1967) derived the time-averaged resultant bed shear stress fi(z, t) at z = ezQ as

r(z, t)

qTTTT
1 + 0.5 0 . 16 Aco/IT

2 1
(4.35)

Eq.(4.35) implies that the time—averaged bed shear stress with the presence of waves 

is larger than that in a pure steady flow. For general combined wave-current flows, 

Eq.(4.35) was suggested to be
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T(z,0 !
errzr / Aa>/U*, <P (4.36)

where <£> is an angle between the current and the direction of wave propagation.

Current Velocity

Wave orbital velocity,

Fig.4.4 Assumptions of velocity profiles of currents and waves in a combined flow after Bijker (1967)

§4.4.2 THE MODEL OF LUNDGREN (1972)

Lundgren (1972) presented a detailed model to examine the influence of waves on 

the current profile. He divided the combined flow into the four regions as shown in 

Fig.4.5 and discussed qualitatively how the current eddy viscosity would be affected in 

each zone by the presence of waves.

It was assumed that in Zx zone the presence of waves had no influence on the 

current eddy viscosity while in Z2 zone the presence of waves had a slight influence on 

the current eddy viscosity. Therefore, the current eddy viscosity eco,c induced in a 

combined wave-current flow was suggested to be the same as that in a steady flow
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xTT z- 1 (4.37)
€co, c

Z_

h

but the current velocity was reduced by the presence of waves

(4.38)

in comparison with that in a pure steady flow as shown in Fig.4.6. In Eq.(4.38), zx was 

described by an expression of the form

li = F
Zo

A Aco 0 (4.39)

wave height H = 3m

wave period T = \0s

water depth h = 10m

bed roughness KN = 0.1 m

current velocity < TJ > = 0.5m/s

Zi £ CO, c £ c

Z2 ° CO, c e c

Z3 £ CO, C £ C *f” £ w

Fig.4.5 Influence of the presence of waves on the current eddy viscosity in a combined flow

In Z3 and Z4 zones, it was assumed that the current eddy viscosity was determined by 

the waves and currents together. The wave-produced eddy viscosity was of the same 

order of magnitude as the current - produced eddy viscosity. In the current - dominated 

flows, the Z4 zone may vanish, and the Z3 zone extends all ways to the bed. Lundgren 

(1972) suggested that the current eddy viscosity would be calculated by the means of 

the formula
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£c d" £w
(4.40)

' CO, c

and then the current velocity in Z3 and Z4 zones could be derived from the equation

(441)
Z0

where ec is the current eddy viscosity for the steady flow alone and ew the wave 

produced eddy viscosity for the wave motion alone.

§4.4.3 THE MODEL OF BAKKER & VAN DOORN (1978)

Based on the mixing length theory of Prandtl (1934) and the equation of motion 

Bakker & van Doom (1978) presented a model to study the current velocity profile with 

the presence of waves. It was suggested that the current velocity profile consisted of two 

logarithmic parts with a transition zone between as shown in Fig.4.6.

With Waves

Without Waves

Fig.4.6 The influence of waves on the current profile after Bakker & van Doom (1978)
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AB (4.42)

BC

W

m = F(z*) - F(z‘0)\ (4.43)

In Eq.(4.43)

* _ z * _ Zq

Z ~ xßbT Z° - *PbT

where pb is the time-averaged resultant shear stress velocity at the bed and pb is the 

amplitude of the periodic shear stress velocity at the bed. pb and pb were determined 

numerically from the differential equation

dp d2{ p \p\ )— = xz------- -----dt dz2
(4.45)

Fig.4.7 schematically shows the variation of the time—averaged resultant shear stress 

r(z, t) calculated by van Kesteren & Bakker (1986).

Fig.4.7 Variation of computed r(z,0 schematically after Kesteren & Bakker (1986)
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§4.4.4 THE MODEL OF GRANT & MADSEN (1979)

Grant & Madsen (1979) presented an analytical model to study the velocity 

profiles of waves and currents in the combined flow based on the concept of eddy 

viscosity The model of Grant & Madsen (1979) was developed before detailed 

measurements of combined flows were available. The model was developed on the basis 

of the assumed distributions of the current eddy viscosity ec and the wave eddy viscosity 

ew in the combined wave—current flow. The wave—induced orbital velocity U(z, t) was 

obtained by solving the equation of wave motion

dü(z,t) _ dUoo(t) , a j dü(z,t) 1 (4 46)
dt ~ dt + dz J

and the current velocity U(z) was then obtained from the equation

(4.47)

§4.4.4.1 The Eddy Viscosity Model

Grant & Madsen (1979) assumed that the distribution of eddy viscosity for the 

steady component of the combined flow was given by

£c00

♦
A

X U cw 2 z0 < z < d
(4.48)

£c(z) = X TP z d < z < h (4.49)

and the distribution of eddy viscosity for the wave motion in the combined flow was

*
A

£w(z) = * f/cw Z Z0 < Z
(4.50)

*
A

where Ucw is the friction velocity associated with waves and currents and d was defined 

as

(3

*

2x U cw 
co

(4.51)
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The vertical distributions of eddy viscosity for waves and currents according to 

Eqs.(4.48), (4.49) and (4.50) are shown in Fig.4.8.

Fig.4.8 Variations of £c(z) and ew(z) in a combined wave-current flow after Grant & Madsen (1979)

§4.4.4.2 The Bed Shear Stresses

In order to establish the relationship between the shear stress and the velocity 

field, the instantaneous bed shear stress was defined as

Q l/i(r) + 2U(t)U(a) cos <P + u\a) (4.52)

where fcw is a friction factor associated with the waves and currents, U(a) is an 

undetermined reference current velocity at z = a from the bed, and <P an angle 

between the current and the direction of wave propagation. The time—averaged bed 

shear stress was derived from Eq.(4.52) as

2Ji

Tjtr = \ 2^ jtb(t) dt and Zjir = ^ <4'53)

o

The maximum bed shear stress due to the combined waves and currents was found from 

Eq.(4.52) as
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J/CVV

tt2.{Ao)Y 4- 2Aa> U(a)cos<P 4- U (a) and w UrJJ, (4.54)

in which Aco is the amplitude of the free stream velocity Unit).

§4.4.4.3 The Velocity Distributions

By substituting the current eddy viscosity given in Eqs.(4.48) and (4.49) into 

Eq.(4.47), the current velocity profile was derived as

in which

z0 < z < d

d < z < h

(4.55)

(4.56)

(4.57)

In a similar way, by substituting the wave eddy viscosity given in Eq.(4.50) into 

Eq.(4.46) the wave-induced orbital velocity was given by

U(z,t)
Ker 2^/2 4- i Kei 2£1/2 ' 
Ker 2^J2 4- i Kei 2^

U„(t) (4.58)

in which Kerl^ and Keit; are Kelvin functions of zeroth order and £ = [2z)/d. In 

Fig.4.9, the model of Grant & Madsen (1979) is compared with van Doom (1981) 

experimental data V20RA and with the model of You et al. (1991a). It can be seen that 

the model of Grant & Madsen (1979) can not accurately predict the wave-induced 

velocity in the boundary layer in comparison with the model of You et al. (1991a).
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§4.4.4.4 Summary

The model of Grant & Madsen (1979) has some weaknesses as followings :

(1) Because of a somewhat awkward definition of friction factor /^ in Eq.(4.52), the 

model has to introduce a reference velocity Uc(a) at an unknown level z = a, 

which greatly increases the complexity of the model.

(2) The thickness d of the boundary interaction zone was estimated too thick as was 

pointed out by Christoffersen & Jonsson (1985) and as indicated in Fig.4.9.

(3) The assumption that ew « z in Eq.(4.50) is only valid for the immediate vicinity 

of the bed, not throughout the boundary layer, see Figs.2.26 to 2.31 in Chapter2.

(4) It may not be correct to assume that the same eddy viscosity is felt by the waves 

and currents in the boundary interaction zone. The reason for this was explained 

partly by You et al. (1991a) and will be explained quantitatively in Section §4.5.4.

Grant & Madsen Model (1979)

You etal. Model (1991a)

Z (mm)

*: Measured Wave Velocity 
A: Measured CurrentVelocity

U (cm/s)

Fig.4.9 Comparison of the model of Grant & Madsen (1979) with experimental data V20RA
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§4.4.5 THE MODEL OF CHRISTOFFERSEN & JONSSON (1985)

Christoffersen & Jonsson (1985) modified and in some respects refined the model 

of Grant & Madsen (1979). The following aspects are different from those of Grant & 

Madsen’s (1979) model.

§4.4.5.1 The Eddy Viscosity Model

ChristofTersen & Jonsson (1985) suggested that the distributions of eddy viscosity 

were determined by the relative roughness KN/A of the boundary layer.

For large relative roughness 0.02 < KN/A < 0.78 the current eddy viscosity 

could be assumed as

ec(z) = 0.0747 KN Ucw z0 < z < b (4.59)

ec(z) '-I d < z < h (4.60)

as indicated in Fig.4.10, while the wave eddy viscosity was assumed as

£w(z) 0.0747 Ku Uf z0 < i < d, (4.61)

XZ\ \ — T

0.0747K„(/,

£c(z)

z

0.0141KnUc

£w(z)

Fig.4.10 Eddy viscosity distributions of ec and £w in a combined flow with a large relative roughness

135



For small relative roughness KN/A < 0.02, Christoffersen & Jonsson assumed that 

the current eddy viscosity was given by

ec{z) = x z Uc z0 < z < d (4.62)

£c(z) 1 - f w'
d < z < h (4.63)

while the wave eddy viscosity was

£w(z) = XZUC z0 < z < d, (4.64)

in which

^ _ 0.367x6/^

The assumed eddy viscosity distributions of £c and £*, for a small relative roughness is 

very similar to that of Grant & Madsen (1979), see Fig.4.11.

Fig.4.11 Eddy viscosity distributions of ec and £w in a combined flow with a small relative roughness
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§4.4.5.2 The Bed Shear Stresses

In the model of Christoffersen & Jonsson (1985), the shear stresses due to waves 

and currents at the bed were given by, respectively

T-f = \fc<U><U> and f = TPTT (4.65)

\ fw {Aw}2 and 'wb

Q U U (4.66)

The total maximum bed shear stress was given by

^ cb ^ wb and f
* A 

A A

UrwUr (4.67)

The definitions of the friction factors fc and fw in Eqs.(4.65) and (4.66) avoid the need 

to introduce an unknown reference velocity U(a) as used by Grant & Madsen (1979).

§4.4.5.3 The Zone of the Boundary Interaction Layer

Table.4.2 shows the effect of different values of d on fw, fc, U* and Kx. All the 

calculations are based on the model of Grant & Madsen (1979), and wave height 

H = 2.0m, wave period T = 8.05, water depth h = 10.0m, the bed roughness 

Kn = 0.032m and the depth-averaged current mean velocity < U > = 0.5m/s.

0
A

d = n xUcw/(D fc U (cm/s) Kx (cm) KJK„

n=0.367 0.0343 0.00868 3.29 25.5 8.0
n = 2.00 0.0350 0.01230 3.90 67.2 21.0

^2 - *,l „ .(VW

2% 30% 16% 62% 62%Y a i yj\j /oX2

Table.4.2 The influence of different values of d on fw, fc, U and Kx

Table.4.2 shows that although the choice of n has a slight influence on the wave friction 

factor/w, the current friction factor fc calculated with n = 0.367, which was chosen
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by Christoffersen & Jonsson (1985) is about 30% smaller than that estimated with 

n = 2, which was adopted by Grant & Madsen (1979), and the apparent roughness Kx

calculated with n = 0.367 is smaller than that calculated with n = 2 by a factor 3. 

This implies that the current profile is significantly affected by the vertical length 

scaling parameter d.

§4.4.5.4 Summary

Christoffersen & Jonsson (1985) improved the model of Grant & Madsen (1979) 

in some aspects, but there are still some weaknesses

(1) The assumption that ew z for small relative roughness is only valid in the 

immediate vicinity of the bed, not throughout the boundary layer as shown 

Fig.2.32 to Fig.2.34 in Chapter 2.

(2) It may be not correct to assume the same eddy viscosity felt by waves and currents 

in the boundary layer. This point was examined by You et al. (1991a) and will be 

quantitatively studied in Section §4.5.4.

§4.4.6 THE MODEL OF COFFEY & NIELSEN (1986)

Coffey & Nielsen (1986) studied the reasons behind the reduction of the current 

velocity in the presence of waves. They suggested that this was due to the increase of 

current eddy viscosity near the bed, see Fig.4.12. Coffey & Nielsen suggested that the 

current eddy viscosity could be assumed as

£c(z) = XTPL z < L (4.68)

£c(z) = XÜ* Z z > L (4.69)

in which L is a level above which the presence of waves has no effect on the current eddy 

viscosity, see Fig.4.12. Therefore, it was suggested as a first simple approximation that 

L/z0 was a function of the friction velocities only
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With Waves

Current Alone

Fig.4.12 The influence of waves on the current velocity profile after Coffey & Nielsen (1986)

(4.70)

Based on experimental data from van Doom (1981) and Kemp & Simons (1982, 1983), 
*

A ____ %

F(UW/U ) was suggested as 

. ^ 3

F ÜJÜ* (4.71)

By assuming a constant shear stress near the bed, the current velocity was derived as

m — - 1z„ z < L (4.72)

U(z) = ln^ z > L (4.73)

By equalling Eqs.(4.72) and (4.73) at z = L, z1 was approximately simplified as

1+0.06
>>3

UJTT (4.74)
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The comparison of the model of Coffey & Nielsen (1986) with experimental data is 

shown in Fig.4.13. It is found that the model of Coffey & Nielsen (1986) can not

A *

generally predict z1 very well, especially when Uw/U* > 5.

x Asano & Iwagaki

• van Doom (1981,1982)

a Kemp & Simons (1982)

Fig.4.13 Comparison of the model of Coffey & Nielsen (1986) with experimental data

§4.4.7 THE MODEL OF MYRHAUG & SLAATTELID (1989)

Myrhaug & Slaattelid (1989) presented an analytical model describing the 

boundary interaction between waves and currents. Their approach was similar to that 

of Christoffersen & Jonsson (1985) except for the assumed distributions of eddy 

viscosity. In the model of Myrhaug & Slaattelid (1989), the current eddy viscosity was 

assumed as

£c(z)

£c(z)

£c(z)

5* tfoA 1 - (z/<5, - lj' z0 < z < öl (4.75)

XÜ* Z

dj < z < <5

d < z < h

(4.76)

(4.77)
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which are shown schematically in Fig.4.14.

Fig.4.14 Eddy viscosity distributions of £c and £w after Myrhaug & Slaattelid (1989)

The wave eddy viscosity was given by

£w(z) 2^ Ucw& \ 1 - [z/dj - l) z0 < z < c (4.78)

£w(2) z > dj (4.79)

in which <5j was evaluated by Jonsson’s (1980) formula

dl = 0.072 A{Kn/A]
1/4 (4.80)

and <5 is the thickness of the boundary interaction zone as defined by Myrhaug & 

Slaattelid to be

(5
A

% U cw 

OJ

(4.81)

Equation (4.81) was used by Grant & Madsen (1979) except for a factor 2 that appears 

in their expression. Actually, the model of Myrhaug & Slaattelid (1989) is an extension 

of the model of Myrhaug (1982). The comparison of the model of Myrhaug & Slaattelid 

(1989) with experimental data was given in Fig.2.15, and it was shown that Myrhaug 

& Slaattelid (1989) model overestimates the boundary layer thickness.
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§4.4.8 THE MODEL OF SLEATH (1991)

Sleath (1991) developed an analytical model which is in some respects similar to 

the model of Grant & Madsen (1979), but different with respect to the eddy viscosity 

distribution. It was assumed that the eddy viscosity induced in the combined 

wave—current flow could be estimated by means of the formula

e = ec 4- £w (4-82)

in which ec is the eddy viscosity for the steady current alone, defined as

ec = xU z

and £w is the eddy viscosity for the wave motion alone, and was analyzed to be

(4.83)

£w — 0.0025 A2a> Jkn/A

Hence, the current velocity was derived from the equation

(4.84)

m = (4.85)

and the wave-induced orbital velocity in the boundary layer was obtained by solving 

the equation of motion

dU(z,t) = dUoo(t) , d_[ dÜ(z,t)
dt dt dz dz

In Eqs.(4.85) and (4.86), Sleath used the same eddy viscosity for the steady flow and the 

wave motion, see Fig.4.15.

§4.4.8.1 Summary

After reviewing the model of Sleath (1991), we find some weakness in the model:

(1) A constant eddy viscosity suggested by Eq.(4.84) may be valid only for boundary 

layers with very large relative roughness as Sleath acknowledged. Fig.2.32 to 

Fig.2.34 in Chapter 2 have shown that the eddy viscosity for the wave motion 

alone is not constant with elevation.
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(2) The eddy viscosity for the steady flow should be different from that for the wave 

motion as You et al. (1991a) qualitatively discussed, and this will be studied 

quantitatively in Section §4.5.4.

(3) The eddy viscosity for the steady flow outside the boundary interaction zone may

be affected little by the wave motion and the eddy viscosity for the wave motion 

may be dominated by the wave motion itself as experimental data shows in 

Section §4.5.4.

Fig.4.15 (A) Eddy viscosity for the steady flow (B) Eddy viscosity for the wave motion

§4.4.9 THE MODEL OF YOU ET AL. (1991a)

You et al. (1991a) qualitatively discussed the eddy viscosities of ec and ew in a 

combined wave-current flow based on the Navier-Stokes equation. The eddy 

viscosity for the steady component of combined wave-current flow was derived as

-UW- UW - UW (4.87)
dU/dz

and the eddy viscosity for the oscillatory component

v + - ÜW - UW - ÜW - u'w'
dü/dz

(4.88)
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Based on Eqs.(4.87) and (4.88), You et al. (1991a) concluded that the current eddy 

viscosity should be different from the wave eddy viscosity.

Fig.4.16 Eddy viscosity distributions of eJ^z) and eJ^z) after You et al. (1991a)

In the model of You eZa/. (1991a) [see Fig.4.16], the current eddy viscosity was assumed 

to have the following form

*
A

£c(z) = xUcwZ z0 < z < d i
(4.89)

*
A

£c(z) MUcw& y <5j < z < <5
(4.90)

£c(z) = XÜ* Z d < z < h
(4.91)

and the wave eddy viscosity was assumed to be dominated by the wave motion only so 

that

*
A

£w(z) = xUwz z0 < z < do
(4.92)

*
A

£w(z) XUyfio ö Q — Z < Ö W
(4.93)

in which dw, dj and d0 are given respectively as

A * A *
« 4xUw x 0.5xUw x

~ (0 Ö\ ~ (X) d° = 0.5(5,
(4.94)
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Velocity profiles predicted by this model are compared with those from the model of 

Grant & Madsen (1979) in Fig.4.17.

100- Grant & Madsen (1979)

You et cd. (1991a)

Z (mm)

*: Measured Wave Velocity 

A: Measured Current Velocity

U (cm/s )

Fig.4.17 The prediction of You et ad. (1991a) model on the experimental data S10FIAL

§4.4.9.1 Summary

In comparison with the previous eddy viscosity models [Grant & Madsen (1979), 

Christoffersen & Jonsson (1985), Myrhaug & Slaattelid (1989) and Sleath (1991)], the 

model of You et ctl. (1991a) made following improvements on the former models.

(1) It was pointed out from Eqs.(4.87) and (4.88) that the eddy viscosities for the steady

flow and for the wave motion should be different.

(2) The assumed distribution of ew [ see Eqs.(4.92) and (4.93) ] made it much simpler

to calculate the velocities and bed shear stresses. In Section §4.5.3, the 

experimental data will support this assumption.
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§4.5 DEVELOPMENT OF AN ANALYTICAL MODEL

§4.5.1 INTRODUCTION

In this section, we are going to quantitatively evaluate the eddy viscosities for the 

steady component and for the oscillatory component of combined wave—current flows 

from experimental data. Then, on the basis of the calculated eddy viscosity data, a new 

eddy viscosity model is developed. Finally, the new model will be compared with 

experimental data.

§4.5.2 THE EDDY VISCOSITY FOR THE STEADY FLOW

§4.5.2.1 Calculation of ec(z) from Measurements

In analogy with the eddy viscosity definition for a pure steady flow, the eddy 

viscosity for the steady component of a combined wave—current flow is defined as

r(z)
Q (4.95)

In Eq.(4.95), the steady component of a combined wave—current flow can be described 

by the equation

dr(z) = dP 
dz dx (4.17)

If dP/dx is assumed to be constant like in a pure steady flow, the shear stress in 

Eq.(4.17) can be derived as

qTF\ 1 z_
h (4.96)

in which U can be determined from the velocity profile plotted in semi-log paper as 

shown in Fig.4.18.
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Crest Level

m/fb

M20RALfrom van Doom (1982)

16 20 24

U (cm/s)

Fig.4.18 Estimation of the bed shear stress from the current velocity profile in a combined flow

Therefore,

(Ve) x U(dc)
In dr — In z (4.97)

On the other hand, the velocity gradient can be approximated by

mzd AU
Az

U(zi+\) ~ U(zi_l)
(4.98)Zi+1 Z/-l

Based on Eq.(4.95) the eddy viscosity ec(z) for the steady flow in the combined 

wave-current flow can be estimated as

£c(Zj)
U(zi+l) ~ UjZjj

Z, + i %i-\

(4.99)

Fig.4.19 to Fig.4.24 show the variations of ec(z) calculated from smoothed velocity data 

via Eq.(4.99).
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• Measured velocity

Smoothed value •

Z (mm)

V10RA from van Doom (1981) 

U* = 1 . 68cm/s

Fig.4.19 The current eddy viscosity calculated from van Doom (1981) V10RA via Eq.(4.99)

• Measured velocity

Smoothed value

Z (mm)

V20RA from van Doom (1981) 

TT = 2.83cm/s

U(z) (cm/s)

Fig.4.20 The current eddy viscosity calculated from van Doom (1981) V20RA via Eq.(4.99)
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S10RAL from van Doom (1982) 

TT = 2.03cm/s

Z (mm)

Measured current velocity 

— Smoothed value

Fig.4.21 The current eddy viscosity calculated from van Doom (1982) S10RAL via Eq.(4.99)

S20RAL from van Doom (1982) 

XT = 3 . 18an/s

Z (mm)

• Measured current velocity

Smoothed value

0 2 4 6 8 10 12 14 16 18 20

Fig.4.22 The current eddy viscosity calculated from van Doom (1982) S20RAL via Eq.(4.99)
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55
- •

50- •
100;

45- / Ml ORAL from van Doom (1982)
•

- / - JT — 2.36cm/s
40- f
35- /• -

30- / - S'
- / Z (mm) X

25- / • 10; /
20- / • _ X

/ - 7

15- /
/ - /• • Measured current velocity

“ / • _ r
10- / • A Smoothed value

- / *. . -

5- /
_ k • •

0- / 1-
0 1 2345 02468 10 12

£c(z) (cm2/s) U{z) (cm/s)

Fig.4.23 The current eddy viscosity calculated from van Doom (1982) M10RAL via Eq.(4.99)

M20RAL from van Doom (1982) 

U* = 3 . 3cm/s

Z (mm)

• Measured current velocity

Smoothed value

Fig.4.24 The current eddy viscosity calculated from van Doom (1982) M20RAL via Eq.(4.99)
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§4.5.2.2 Analysis of the Eddy Viscosity Data ec(z)

§4.5.2.2.1 The influence of current strength on ec(z) and <5

Fig.4.25 [A], in which the wave conditions are fixed while the depth-averaged 

current velocity < Ü > is increased from 10cm/s to 20cm/s, shows that £c(z) inside 

the interaction zone [z < d] varies little with increasing the current strength while 

outside the interaction zone [z > <5] £c(z) increases apparently with the current 

strength. On the other hand, the thickness d of the interaction zone changes little with 

current strength in the tests M10RAL and M20RAL. However, this should be examined 

later on because the effect of current strength on d may be overshadowed by the wave 

A *
motion due to U„/TJ* = 4.6~6.5>1 in the MRAL tests.

60-,
TAl

40-j
[B]

X M10RAL 35- X S10RAL •
50- • M20RAL X • • S20RAL

45- 30- X •

40- X • -
- 25- X •

35- X •
- Z(mm) X •

30- • 20-
- •

25- X •
- 15- X •

20- X •
_ • X •

15-
X 10- x •

X
—

10- X,
• X

> ö ~ 20 mm - 4 •
«X

- XX x
• 5- X • <5 ~ 10mm

5- X • X •*
x*x* x •

o- ---- 1---- 1---- 1---- 1 1 1 0-
0 1 2 3 4 5 0 1 2 3 4 5

£c(z) (cm2/s) £c(z) (cm2/s)

Fig.4.25 The influence of the current strength on the current eddy viscosity in the combined flow
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Fig.4.25 [B], in which UW/TF = 1.8 — 2.8, also shows that £c(z) outside the 

interaction zone increases with the current strength while the current strength has 

little effect on ec(z) inside the interaction zone. On the other hand, Fig.4.25 [B] 

supports the hypothesis that the thickness d of the interaction zone is independent of 

the current strength. The only difference between [A] and [B] in Fig.4.25 is that the 

thickness d of the interaction zone in [A] is d ~ 20mm while in [B] it is d ~ 10mm, 

and the magnitudes of ec(z) near the bed in [A] is larger than those in [B].

§4.5.2.2.2 The influence of the wave motion on ec(z) and d

For the data shown in Fig.4.26 in which < U > is constant, it can can be seen 

that outside the interaction zone [z > d] the current eddy viscosity ec is little affected 

by the wave motion even when Aco = 32.3cm/s in SRAL is increased to 

Aco = 106.0cm/s inMRAL.

55-

50-

45-

40-

35-

30-

25-

20-

15-

10-

5-

0

x S10RAL 

• M10RAL

<5

*< 1

x • 

x •

X

- X •
* ••

X •
x^ •*

ö ~ 20mm

I I I I I T

1 2 3

£c(z) (cm2/s)

I r
4

Z(mm)

60-,

55

50-1

45

40-1

35

30-

25-

20-

15

10

5-

0-

x S20RAL 

• M20RAL
[B]

<5
' * x **X X #

^ •xx

(3 ~ 20mm

I I I I I I I I I

2 3 4 5

£c(z) (cm2/s)

Fig.4.26 The influence of the wave motion on the current eddy viscosity in the combined flow
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However inside the interaction zone [z < <5], £c(z) increases with increasing Aa>. On 

the other hand, Fig.4.26 indicates that the thickness d of the interaction zone is 

dominated by the wave motion because d increases little with increasing current 

strength as was shown in Fig.4.25, but does increase with increasing the free stream 

velocity amplitude Aco as indicated in Fig.4.26.

§4.5.2.2.3 The influence of 0 on ec(z)

The general effects of the relative orientations of the current and the direction of 

wave propagation 0 on the current eddy viscosity have not been able to be studied in 

the present study. Kemp & Simons (1982-83) found experimentally that the apparent 

roughness Kl = 30z! with the superposition of waves propagating on the current

[0 = 0°] is three times smaller than that with the superposition of waves propagating 

against the current [0 = 180°], in other words, 0 may have a significant effect on the 

current profile. However, the effect of 0 on the current eddy viscosity can not be 

quantitatively discussed in the present study due to the lack of suitable experimental 

data.

§4.5.2.2.4 Conclusions on ec(z)

Combining the findings from Fig.4.19 to Fig.4.24, we may draw the conclusions 

on the behavior of the current eddy viscosity £c(z) in the combined wave—current flows.

(1) £c(z) outside the boundary interaction layer [z > d] is affected little by the wave 

motion, but dominated by current strength Ü*.

(2) £c(z) inside the boundary interaction layer [z < d] is increased by the presence 

of waves in comparison with that in a pure steady flow.

(3) The thickness d of the boundary interaction layer is dominated by the wave 

motion.
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§4.5.3 THE EDDY VISCOSITY FOR THE WAVE MOTION

§4.5.3.1 Calculation of ew from measurements

In analogy with the eddy viscosity definition for a pure wave motion, the eddy 

viscosity for the wave motion in the combined wave—current flow is defined by

f(z, t) _ dÜ (z,t)
~T~ - Ew Tz

and then, using the equation of equation

dU (z,r) _ dU * (0 1 df(z, t)
dt ~ dt + Q dz

we obtain

(4.100)

(4.23)

dÜ(z,t) dUaoÜ) 1 a f dO(z,t) I
dt dt edzj£yv dz j (4.101)

If we are interested in only the main harmonic component of U(z, t) in Eq.(4.101), we 

may assume

0(z,t) = U(z) e^(z) e“' t/»(f) = toe“1 (4.102)
A

in which Aco is the amplitude of the free stream velocity, U(z) the amplitude of 

wave—induced local velocity and </>(z) the velocity phase shift between the free stream
~ A

velocity U x(t) and the local velocity U(z,t). All these parameters Aco, U{z) and (p(z) can 

be obtain from presently available experimental data, e.g. V10RA & V20RA from van 

Doom (1981) and S10RAL, S20RAL, M10RAL & M20RAL from van Doom (1982). 

Hence, ew in Eq.(4.101) can be be calculated by the formula

Aco — U{z) e*0(z) ■dz

_d_
dz Aco — U{z) e1^

(4.103)

From Eq.(4.103), it can be seen that the eddy viscosity, which corresponds to the first

harmonic component of U(z, t), should be time-independent in the combined wave 

current flows. Fig.4.27 to Fig.4.29 show the vertical distributions of eddy viscosity 

calculated from the experimental data via Eq.(4.103).
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• MOORAL
♦ Ml ORAL 
a M20RAL

Z (mm)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

l£(z)l (cm2/s) Arg(e) (in radians)

Fig.4.27 The eddy viscosity for the wave motion evaluated from van Doom (1982) MRAL via Eq.(4.103)

Z (mm)

• S00RAL

♦ S10RAL

* S20RAL

-1.5 -1.0 -0.5 0.0

l£(z)l (cm2/s) Arg(s) (in radians)

Fig.4.28 The eddy viscosity for the wave motion evaluated from van Doom (1982) SRAL via Eq.(4.103)
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Z (mm) *

• VOORA

♦ V10RA

a V20RA

\e(z)\ (cm2/s) Arg(e) (in radians)

Fig.4.29 The eddy viscosity for the wave motion evaluated from van Doom (1981) VRA via Eq.(4.103)

§4.5.3.2 Analysis of the Eddy Viscosity Data ew

§4.5.3.2.1 The influence of current strength on ew

Fig.4.27, in which the wave parameters are constant, shows that the eddy 

viscosity ew for the wave motion in the combined wave—current flows changes little 

when the depth—averaged current velocity is increased from 0.0cm/s to 20cm/s. 

Fig.4.27 and Fig.4.29, in which the wave parameters are also constant, again show that 

ew is little affected by current strength. Therefore, it seems reasonable to assume that 

ew is independent of current strength in wave dominated combined flows as suggested 

by You et al. (1991a).
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§4.5.3.2.2 The effect of wave motion on ew

If we compare the values of ew evaluated from S10RAL [ S20RAL ] in Fig.4.28 

with that calculated from M10RAL [M20RAL ] in Fig.4.27, we find that the eddy 

viscosity for the wave motion in the combined wave—current flows increases with 

increasing the amplitude of the free stream velocity Aa>.

§4.5.3.2.3 Conclusions on ew

Combining the findings from Fig.4.27 to Fig.4.29 [ 1 . 8 < UJÜ < 6.5], we may 

draw the following conclusions regarding ew in the combined wave-current flows :

(1) ew is best described in terms of a time-independent and real-valued parameter.

(2) £w is dominated by the wave motion and affected little by the current strength in

the wave-dominated combined flows.

§4.5.4 COMPARISON BETWEEN ew AND ec FROM DATA

Grant & Madsen (1979), Christoffersen & Jonsson (1985), Myrhaug & Slaattelid 

(1989) and Sleath (1991) all assumed that inside the boundary interaction zone [z < d] 

the eddy viscosity for the wave motion was the same as that for steady flow. However, 

Coffey & Nielsen (1986) claimed that the eddy viscosity for the steady component of the 

combined wave—current flow was much larger than the eddy viscosity for the 

oscillatory component. Recently, You etal. (1991a) argued on the theoretical grounds 

that the eddy viscosity for the steady flow should be different from that for the wave 

motion in the combined flows, see Section §4.4.9. Fig.4.30 and Fig.4.31 suggest that ec 

and ew are not the same in the boundary interaction zone [z < <5] in terms of their 

magnitudes or distribution profiles. The other data sets V10RA, V20RA, S20RAL & 

M20RAL all indicates that ec is quite different from inside the boundary interaction 

layer.
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Fig.4.30 A comparison between ec and ew in the boundary interaction zone
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Fig.4.31 A comparison between ec and ew in the boundary interaction zone
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§4.5.5 THE PRESENT EDDY VISCOSITY MODEL

It was concluded in Section §4.5.2.2.4 that inside the boundary interaction layer 

[z < d] ec increases in the presence of waves while outside the boundary interaction

zone [z > d] ec is dominated by current strength Ü*. The distributions of ec shown 

in Fig.4.19 to Fig.4.24, may be described by the functional form

*

ec(z) = xUcwZ z0 < z < dx (4.104)

*
A

ec(z) = xUcJ>x d x < z < d (4.105)

ec(z) = xU* z d < z < h (4.106)

as suggested by You et al. (1991a). Eq.(4.106) yields a logarithmic distribution of the 

current velocity outside the boundary interaction zone [z > d], so that ec is similar to 

that in pure steady flow whereas inside the interaction zone [z < d] ec exceeds that 

in pure steady flow as shown in Fig.4.32.

Fig.4.32 The eddy viscosities of the currents and waves suggested in the present model
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In Section §4.5.3.2, it was argued that the eddy viscosity ew for the wave motion is 

independent of current strength jj* in the wave—dominated combined flow. Therefore, 

the eddy viscosity £w for the wave motion in the combined wave—current flow may be 

assumed as

ew(z) *UJ>0 1 |i z0 < z < (4.107)

£w(z) = xUJSq dw < z < dx (4.108)

as suggested by You et al. (1991c). The eddy viscosity model for the wave motion 

described by Eqs.(4.107) and (4.108) is in close agreement with the eddy viscosity data 

derived from experimental data with the relative roughness at a wide range of

2.8 x 10 ~4 < A/Kn < 2.5 X 10-1 in pure wave motion as discussed in Chapter 2. 

A comparison of the present eddy viscosity model with eddy viscosity data calculated 

from experimental data via Eq.(4.103) is shown in Fig.4.33 to Fig.4.36.

ZT = 1 .10cm/s 

< U > = 10cm/s

Aw = 25.3cm/s

(3, = 5.0mm

0 1 2 3 4 5 0 0.5 1.0 1.5 2.0

£c(z) (cm2/s) le(z)l (cm2/s)

Fig.4.33 Comparison of the present eddy viscosity model with eddy viscosity data derived from V10RA
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Aü) = 25.3cm/s
Kn/A = 0.25TT — 1.6cm/s 

< U > = lOcm/s
<3, = 5.0mm

Fig.4.34 Comparison of the present eddy viscosity model with eddy viscosity data derived from V20RA

Z(mm) -

Au) = 32 . 'icm/s
KJA = 0.2

U* = 2.0cm/s 
< U > = 10cm/s 5.3 mm

Fig.4.35 Comparison of the present eddy viscosity model with eddy viscosity data derived from S10RAL
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ZT* = 3.2cm/s 
< U > = 20cm/s

Z (mm)

Aa> = 32.3cm/s
Kn/A =0.2

5 . lcm/s
5 . 3 mm

Fig.4.36 Comparison of the present eddy viscosity model with eddy viscosity data derived from S20RAL

§4.5.6 SOLUTION FOR U(z)

Combining Eqs.(4.95) and (4.96), we will obtain

U(z) Q ec(z) dz (4.109)

Furthermore, if we assume that the shear stress near the bed is constant, Eq.(4.109) can 

be further simplified to give

U(z)
Q £c(z)

dz (4.110)

Substituting the current eddy viscosity distributions given in Eqs.(4.104) and (4.105) 

into Eq.(4.110), and using the boundary conditions, we will obtain the current velocity 

profile inside the interaction zone [ z < <5 ]
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Z0 < Z < (3 2 (4.111)U(z) = ^ ► \x\y~£ n

U(z) = £ t + - 1 (52 < z < <5 (4.112)

Similarly, substituting the eddy viscosity outside the interaction zone given by 

Eq.(4.106) into Eq.(4.110) and using the boundary conditions, we will obtain the 

current velocity profile outside the boundary interaction zone [z > d]

U(z) = ^-ln j- & < z £ dc

in which zx is given by

zi 2d
'l. 718<3! 

T0

rr
ö'cw

Eq.(4.114) can be rewritten in no-dimensional form as

(4.113)

(4.114)

------V----

II

u*
Zo2 x 2.718 öl (4.115)

The effect of waves on the current outside the interaction zone can be explained from 

Eq.(4.113), which can be rewritten as

U(z) = iZIlnA _ 2:ln!l z > Ö (4.116)

From Eq.(4.116), it is found that the first term represents the current velocity without 

waves while the second term indicates a reduction of the current velocity with waves. 

The amount of current reduction can be evaluated by

AUr (4.117)

which implies that the reduction in the current velocity results from an effective 

increase in the roughness from the Nikuradse roughness KN = 30z0 to the apparent

roughness Kx = 30zv
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§4.5.7 SOLUTIONS FOR U(z,t)

The wave-induced velocity inside the wave boundary layer can be worked out by 

solving the equation for the wave motion

dÜ(z,t) _ d£/00(f) a f dÜ(z, t)
dt ~ dt + dz\£w dz (4.46)

with an assumed eddy viscosity distribution e w(z). Since the eddy viscosity distribution 

£vv given by Eqs.(4.107) and (4.108) and the equation for the wave motion (4.46) in a 

combined wave—current flow are identical to those in a pure wave motion, the 

procedures for derivation of the wave-induced velocity in a combined wave—current 

flow are exactly the same as were followed in Section §2.5.6 of Chapter2. Therefore, 

the wave-induced velocity in the inner layer can be expressed as

O&t) (4.118)ip ~ cosAjr)/>A(£0) + Px(- £0)

where £ = z/dx — 1 and the wave-induced velocity in the outer layer is given by 

(p - cosAjt + 1)^(0)1 - -exp(- »7(1 + i)(z - <h)l
(P ~ cos ht)Pxito) + Px(~ U 

in which /^(f) is called Legendre’s function of the first order, and

rj(\ 4- Od^cosA — 1) 4- (cosAjt 4- 1 )q 
p = ----------------------- —----------------------- and rj = <

t/„(0 (4.119)

77(1 -I- /)(31 4- q 2 xUj> OJ

An1
A2sinAjr r 2 r I 2l

2 2 2J

^ {1 — a} — / ^ and a ijl + |l + j
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§4.5.8 THE BED FRICTION FACTORS 

§4.5.8.1 The Wave Friction Factor

In order to evaluate the wave—induced velocities from Eqs.(4.118) and (4.119), it
*

is necessary to first specify the friction velocity Uw or alternatively wave friction factor 

/w. The maximum bed shear stress can be expressed by

h(zo)
Q £w(z) dz

Max

(4.120)

Substituting the wave—induced orbital velocity near the bed Eq.(4.118) and the wave 

eddy viscosity Eq.(4.107) into Eq.(4.120), it leads to

*b(Zo)
Q 0.8xt/*(l - Ii}{z(|0) Z(|0) Aa> (4.121)

in which Z(ga) denotes the complex conjugate of Z(g0), which is given by

ku
where

(P - COS2jl)Pk(g0) - Pk{~ g0) 

(p - cos fot)Pk(g0) + Pk{- go)
(4.122)

P'M = + - XPX(X)\ (4.123)

The maximum bed shear stress can also be expressed as

rh(z0) jfw{A(o}2 and h(zo)
(4.124)

Q J — Q

Combining Eqs.(4.121) and (4.124) and simplifying, the wave friction factor fw can be 

written as

fw = 0.0512(1-^1} Z(£0)Z(£o) (4.125)

Although the wave friction factor fw is explicitly expressed in Eq.(4.125), fw can not be 

directly obtained since the variables g and p are a function of the wave friction factor. 

The wave friction factor must be obtained by iterating Eq.(4.125) based on the required 

accuracy of the iteration.
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§4.5.8.2 The Current Friction Factor

★
A

After evaluating the wave friction velocity Uw, it is necessary to determine the

current friction velocity Ü* in order to determine the current velocity by using 

Eqs.(4.111), (4.112) and (4.113). We define the current friction factor fc as

y = \fc< UJc ><Udc> and Tf = mr (4.126)

as suggested by Christoffersen & Jonsson (1985), Myrhaug & Slaattelid (1989) and You 

et al. (1991a). The depth-averaged current velocity < Udc > is defined as a velocity 

averaged from the bed level z = z0 to a upper level z = dc which the current velocity 

profile still follows a logarithmic distribution, see Fig.4.37.

Z[ mm]

M20RALfrom van Doom (1982) 

• Measured current velocity

U [cm/s]

Fig.4.37 The definition of the depth-averaged current velocity in a combined flow
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Therefore, the depth—averaged current velocity in a combined flow can be evaluated 

in terms of Eqs.(4.111), (4.112) and (4.113)

< Vdc > dc ! U{z)dz +

d-

U(z)dz +
.

dc

U{z)dz
j

6

(4.127)

The sum of the first two terms in the right side of Eq.(4.127) is considerably smaller 

than the last term when d < dc. Therefore, Eq.(4.127) can be approximated by

dc

< Um, > if
dc)

U{z) dz

zi

(4.128)

Substituting Eqs.(4.113) into (4.128) and simplifying, the depth-averaged current 

velocity in the range of zx < z < dc is given by

< Udc > (4.129)

Based on Eqs.(4.129) and (4.126), the current friction factor can be determined by

(2l 5 .. < Uäc > — 1 1n, 'll dc
1/cJ u*

X ln Ki

which can be rewritten as

(4.130)

fc 2.0
-2

(4.131)

In Eq.(4.131), the current friction velocity fc can not be explicitly calculated since the 

apparent roughness K1 is a function of fc and therefore must be evaluated iteratively.

§4.5.9 THE PROCEDURES OF CALCULATION

The velocities U(z,t) and U(z) can be evaluated assuming that the following 

parameters are known
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Aw, T, Kjy, Udc, dc

where Aoj is the free stream wave—induced velocity amplitude, or the first harmonic 

component, T the wave period, KN the Nikuradse roughness, Udc the reference current 

velocity at the level z = dc, see Fig.4.37. The calculation proceeds as follows

(1) Calculate the wave friction factor fw by iterating Eq.(4.125) until the required 

accuracy of fw is obtained.

(2) Calculate the current friction factor fc by iterating Eq.(4.131) until the current 

velocity calculated from Eq.(4.113) at the level z — dc is approximately equal to 

the reference current velocity Udc.

(3) Calculate the wave and current velocities by using Eqs.(4.118), (4.119), (4.111), 

(4.112) and (4.113) respectively.

§4.5.10 COMPARISON WITH EXPERIMENTS

The present model described above has been compared with the following 

experimental data, V10RA & V20RA from van Doom (1981), S10RAL & S20RAL and 

M10RAL & M20RAL from van Doom (1982). The input parameters used in the present 

model are listed in Table.4.3 .

TESTS Facility
Am

(cm/s)

T

(s)

Kn

(cm)

U*
(cm/s)

dc
(cm)

V10RA Flume 25.3 2.0 2.1 9.0 9.0

V20RA Flume 24.3 2.0 2.1 24.9 10.0

S10RAL Tunnel 32.3 2.0 2.1 9.5 3.5

S20RAL Tunnel 32.3 2.0 2.1 18.0 4.2

M10RAL Tunnel 106 2.0 2.1 12.0 5.5

M20RAL Tunnel 106 2.0 2.1 22.5 7.0

Table.4.3 Measurements of combined wave-current flows conducted by van Doom (1981 & 1982)
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300

Data from van Doom (1981) VI ORA

Z (mm)

*: Measured Wave Velocity 

A: Measured Current Velocity

U (cm/s)

Fig.4.38 The comparison of the present model with experimental data V10RA from van Doom (1981)

Data from van Doom (1981) V20RA

Z (mm)

*; Measured Wave Velocity 

A: Measured Current Velocity

(cm/ s )

Fig.4.39 The comparison of the present model with experimental data V20FIA from van Doom (1981)
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100 —

Z (mm)

Data from van Doom (1981) S10RAL

*: Measured Wave Velocity 
A: Measured Current Velocity

(cm/s)

Fig.4.40 The comparison of the present model with experimental data S10RAL from van Doom (1982)

Z ( mm )
Data from van Doom (1982) S20RAL

*: Measured Wave Velocity 
A: Measured Current Velocity

0 10 20 30 40

U (cm/s)

Fig.4.41 The comparison of the present model with experimental data S20RAL from van Doom (1982)
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Data from van Doom (1982) M20RAL

mm)

*: Measured Wave Velocity 

A: Measured Current Velocity

0 20 40 60 80 100 120

U (cm/s)

Fig.4.42 The comparison of the present model with experimental data M10RAL from van Doom (1982)

Data from van Doom (1982) M20RAL

: Measured Wave Velocity

A: Measured Current Velocity

0 20 40 60 80 100 120

U (cm/s)

Fig.4.43 The comparison of the present model with experimental data M20FIAL from van Doom (1982)
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§4.5.11 CONCLUSIONS

From the study of the eddy viscosities in combined wave—current flows within the

. A*

range 1.8 < U /Uw <6.5, the following conclusions can be drawn :

(1) The current eddy viscosity outside the interaction layer is affected little by the 

wave motion while inside the interaction layer it is increased by the presence of 

the waves.

(2) The wave eddy viscosity inside the wave boundary layer is independent of current

strength Ü*

(3) The current eddy viscosity is quite different form the wave eddy viscosity in the 

boundary interaction layer either from a qualitative view or from a quantitative 

view.

(6) The present eddy viscosity model gives a good prediction of the velocity fields of 

combined wave—current flows.
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CHAPTER 5

A PRACTICAL EXAMPLE

An Example

As an example, consider the experiment V20RA from van Doom (1981). The 

parameters of the combined wave-current flow are : wave height H — 9.64cm, wave 

period T = 2 .Os, water depth h = 30 cm, current friction velocity U* = 2.6cm/s and 

the bed roughness KN = 2 . 1cm.

[1] What is the amplitude of the free stream velocity just outside the 

boundary layer?

Based on small-amplitude wave theory, the amplitude of the free stream velocity can 

be evaluated from the formula

\Uoo(t)\ = Aco Ho
2 sinh kh

(5.1)

Iterating the equation



we obtain L ~ 330cm. Therefore,

lt/oo(r)l = Aw
2sinh 330 x 300

~ 26 . 3 cm/s

[2] What is wave friction factor /*, ?

The wave friction factor in the combined flow can be obtained by iterating 

Eq.(4—125), but here we directly use an explicit formula, which was deduced by You et 

al. (1991a)

i , ,-0.343 a* ,----------  (5 3)
f„ = 0. lOSjA/^] U = J0.5fwAo>

Fig.5.1 shows that the wave friction velocity is well predicted by Eq.(5.3). The details 

of the measurements given in Fig.5.1, see Table.5.1.

Measured

A Jonsson

♦ van Doom

• SI eat h

■ Jensen

Predicted

Fig.5.1 The wave friction velocity U in oscillatory boudnary layer flows calculated via Eq.(5.3)
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INVESTIGATORS TESTS

Log-Fit {j

[cm/s]

Integrated fw U = 0. ios/a/a:*)-0-343

0 = Jo . 5fwA(o

[cm/s]

Ü = Jo . 5fwAo)

[cm/s]

Jonsson & Carlsen

(1976)

Test No.l 21.1 21.3

Test No.2 21.5 20.2

Doom (1981 &1982)

V00RA 4.3 4.8

S00RAL 5.7 5.7

M00RAL 15.3 15.4

Sleath (1986)

Test—3 6.6 6.2 6.8
Test-4 5.6 5.5 6.2

Test-5 4.6 4.5 5.1

Test—6 3.7 3.6

Test-7 2.9 2.7

Test-9 7.6 7.2 8.2

Test-10 6.9 6.7 6.7

Test-11 3.7 2.9

Test-14 10.7 11.4

Test-15 9.8 9.7

Jensen (1989)

Test-12 6.2 6.2

Test-13 11.0 11.1

Test-14 6.0 7.1

Test-15 14.0 15.7

Table.5.1 Comparison of measured wave friction velocities with those predicted by Eq.(5.3)

Therefore,

/w = 0 . 108 x 26.3 x x 1
2ji 2.1 0 . 0672

70.5fwAco = /0.5 x 0.0672 x 26.4 = 4 . 88 cm/s

[3] What is the apparent roughness A^in the combined flow ?

The apparent roughness Kj = 30zj can be evaluated from Eq.(4-115)

l-VL
z 1 ~2L f<5,l "l
^ = 2 x 2.718 öl j ^

in which

175



0.5xU
= a)

Since,

A
♦

U CW {4.882 + 2 .602)4 05 = 5 . 52 cm/s

<5,
0.5 xU 0.5x0.4x4. 88 x = 0.31 cm

An

Therefore,

z
z
1
o

Z60
2x2.718"l52i 0.31 x 30 

2 . 1

2.60
5.52

= 2.74

That is

K] = 30zj = 2.74 x 2 . 1 = 5 . 76 cm

[4] The current velocity profile in the combined flow ?

The current velocity profile can be calculated from Eqs.(4—111) to (4—113)

z0 < z < (5j

U(z) <5! < z < 2(3 j

U(z) = 2(5 j < z < h

The comparison of current velocities calculated by Eqs.(4—111) to (4—113) with 

experimental data V20RA from van Doom (1981) is shown Fig.5.2. It is shown that a 

simple application used above gives a good prediction on the current velocity profile of 

V20RA for the lower 25% of the water depth.
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• Measured current velocity 

------------ Predicted

Z [mm]

Fig.5.2 A simple application of the present model on experimental data van Doom (1981) V20RA
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CHAPTER 6

CONCLUSIONS AND FURTHER
RESEARCH SUGGESTIONS

§6.1. CONCLUSIONS

Through the study of turbulent oscillatory boundary layers without and with 

currents, new insights into oscillatory boundary layers have been obtained. The 

conclusions reached in each chapter are as follows:

§6.1.1 OSCILLATORY BOUNDARY LAYERS WITHOUT CURRENTS

(1) The eddy viscosity in turbulent oscillatory boundary layers can be taken as 

a time-independent and real-valued parameter when a simple harmonic 

solution is sought for the equation of motion.

(2) For the presently available experimental data with relative roughness KN/A 

in the range of 2.8xl0_4~2.5xl01, the eddy viscosity in the boundary 

layer has been found to have a distribution which is reasonably described 

by

e(z) = xÜ 1 - 1 -

d1 < z < dwe{z) = xU d0



in which

dj = 05aU and <5„ = O.'kS,

(3) This eddy viscosity model gives an improved prediction of measured velocity 

fields and bed shear stress in comparison with the former models.

§6.1.2 MASS TRANSPORT VELOCITY UNDER PROGRESSIVE WAVES

(1) The experiments indicated that the maximum Lagrangian mass transport 

velocity near the bed decreases with increasing bed roughness when 

Rd < 160. This is opposite trend to that found by Brebner et al. (1966).

4
(2) The maximum mass transport velocity is approximately proportional to i/s 

rather than H2 as predicted by Longuet-Higgins (1953) for laminar flow.

§6.1.3 OSCILLATORY BOUNDARY LAYRS WITH CURRENTS

(1) Based on experimental data, the current eddy viscosity outside the 

boundary interaction zone has been found to be independent of the wave 

motion while inside the boundary interaction zone the current eddy 

viscosity is increased by the presence of waves.

(2) For presently available experimental data [ 1.8 < U /Ü <6.5 and 0 = 0], 

the wave eddy viscosity in the boundary interaction zone is found to be 

independent of the current strength.

(3) The current eddy viscosity is quite different from the wave eddy viscosity in 

the boundary layer with respect to both magnitudes and distribution 

shapes.

(4) Based on experimental data [1.8 < Ü /Ü <6.5 and <P = 0], the current 

eddy viscosity has been found to have a distribution which is reasonably 

described by

£c(z) = xU^z z0 < z <
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£c(z) = xUj)x di < z < 2d

£c(z) — XU 1 2dx < z < dc

and the wave eddy viscosity

2

£w(z) = xÜ d0> 1 - ' 1 - j- z0 < z < d

di < z < dw

(5) The present eddy viscosity model gives better predictions of t/(z) and t/(z, t) 

than the former models.

Through the present study, it is found that there are still many aspects worthwhile 

investigating in the areas of turbulent oscillatory boundary layers. The following 

suggestions for further research work may be suggested.

(1) For a pure wave motion, good measurements of the velocity amplitude 

\U(z, 01 and phase shift (p(z) are needed in order to obtain more reliable eddy 

viscosity data in the region of z > dx from the formula

(2) For the mass transport due to progressive waves, there is an urgent need to 

develop a model for finite amplitude wave conditions in the interior flow.

(3) For the combined wave-current flows, more measurements are needed in 

order to study the effect of <P on ec and the apparent roughness Kx.

§6.2. FURTHER RESEARCH SUGGESTIONS

oo

-£^(Aw - \U(z,r)le^<z>)
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APPENDIX

Smooth Bed 
[ perspex ]

Sand Bed 
[ d = 2mm ]

Gravel Bed 
[ d = 25mm ]

H [mm] U [mm/s] H [mm] U [mm/s] H [mm] U [mm/s]

2.4 0.8 2.5 0.6 2.5 0.5

2.5 0.7 3.3 0.8 3.1 0.6

3.4 1.1 4.0 0.8 3.7 0.7

3.7 1.2 4.9 1.0 5.1 0.8

4.1 1.1 5.6 1.2 7.0 1.2

4.6 1.2 7.5 1.5 8.9 1.4

5.0 1.4 8.2 1.6 10.0 1.7

6.8 1.6 9.1 1.8 14.0 2.0

8.7 2.0 10.0 2.0 21.0 2.7

12.0 2.5 11.5 2.2 29.0 3.0

12.3 2.7 12.0 2.3 35.0 3.8

14.9 3.1 13.0 2.4 39.0 4.0

15.0 3.4 14.0 2.5 50.0 4.0

21.0 4.0 17.0 2.9 55.0 4.1

24.0 4.4 21.0 3.4

27.0 5.3 26.0 3.6

31.0 5.4 34.0 4.4

38.0 5.9 39.0 4.7

38.3 6.7 45.0 4.8

44.0 8.0 51.0 5.0

52.0 8.6 60.0 4.5

Wave Period T = 1.0s Water Depth h = 0.30m
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