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SUMMARY 

Flash flooding in the urban environment is a life-threatening phenomenon. One way to 

reduce the risk to life and to alleviate economic losses is to provide advance warnings to 

people affected by these flash floods. An effective flood warning must allow sufficient lead 

time for the people to respond (usually more than 1 hour). This poses a critical problem for 

flood warning systems in most urban catchments as these catchments are characterised by a 

fast hydrologic response due to the small catchment size and a high proportion of effective 

impermeable area. Flood forecasts produced solely with a rainfall-runoff model usually 

cannot provide a warning with sufficient lead-time for these fast responding catchments. 

Forecast of likely rainfall therefore is necessary to provide advance information in order to 

achieve the required lead-time for waming. 

Lettenmaier and Wood (1993) noted that if the hydrologic response time of a catchment is 

shorter than the required lead time for waming then forecasting of rainfall is required. This 

is necessary as some of the runoff included in the flood forecast has yet to fall as rainfall on 

the catchment at the time the forecast is made. Quantitative rainfall forecasting is thus an 

important element of a flood waming system for most urban catchments. The aim of the 

present study was to develop a model for forecasting short-term rainfalls and their spatial 

distribution over a catchment. 

There are two possible approaches to rainfall forecasting. One approach involves the study 

of the rainfall process in order to model the underlying physical laws. However, the 

complexity of the rainfall generation mechanism and the lack of available climatological 

data on the necessary temporal and spatial scales have limited the scope and applicability 

of this process-based modelling approach for urban catchments. An altemative approach is 

based on pattem recognition methodologies, which attempt to simulate the characteristics 

of rainfall patterns that are representative of the observed record. The logic behind this 

altemative approach is to find the spatial and temporal regularities in historical rainfall 

patterns and to use these regularities to reproduce the expected pattem for a new rainfall 

event. 

- vn -
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The rainfall forecasting model developed in this study is based on the application of two 

powerful computer software systems, namely artificial neural networks (ANNs) and 

geographic information systems (GISs). These two systems were integrated to form a 

powerful model which is able to provide a forecast of spatially distributed rainfall prior to 

its occurrence. In essence, an ANN was developed to forecast rainfall at a number of rain 

gauge positions, whereas a GIS was used to estimate the spatial distribution of the 

forecasted rainfall over the catchment. 

The application of GIS for modelling of the spatial distribution of rainfall is described in 

detail by Luk and Ball (1996). The focus of this report, therefore, is the forecasting of 

future rainfall which involves implementation of a pattern recognition methodology 

through an ANN. 

ANNs are a form of artificial intelligence. Artificial intelligence systems are concerned 

with implementation of computer systems that exhibit intelligent behaviour. In this respect, 

ANNs adopt the brain metaphor which suggests that intelligence emerges through the 

combined effort of a large number of processing elements connected together, each of 

which performs a simple computation. With this parallel distributed processing 

architecture, ANNs have proven to be very powerful computational tools which excel in 

pattem recognition and function approximation. It has been shown by Homik et al (1989) 

that an ANN with sufficient complexity is capable of approximating any smooth function 

to any desired degree of accuracy. In addition, ANNs are computationally robust, in the 

sense that they have the ability to leam and generalise from examples to produce 

meaningful solutions to problems even when input data contain errors or are incomplete. A 

further advantage of ANNs in relation to short-term rainfall forecasting is that ANNs can 

be designed to operate in real-time. 

The application of ANNs for solving any practical problems, however, requires a 

substantial development efforts. A four-stage network development procedure was adopted 

in this study, with stages being 

• network identification; 

• network complexity determination; 

• parameters estimation; and 

- viii -
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• performance evaluation. 

The Upper Parramatta River Catchment in the western suburbs of Sydney was used as a 

case study to illustrate the network development. It was shown that the rainfall forecasting 

model was capable of producing forecast of spatially distributed rainfall patterns for the 

study catchment with an acceptable level of accuracy. 

- IX -
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1. INTRODUCTION 
I.l An Overview 
Flash flooding is a life-threatening phenomenon which also results in huge economic 
losses. An indication of the magnitude of the economic losses associated with urban flood 
events can be obtained from Handmer et al (1988) who estimated the direct economic 
losses for residential property in the Toongabbie Creek catchment of New South Wales, 
Australia as being approximately A$ 5 million (1986 Australian dollars) for the 1% AEP 
(Annual Exceedance Probability) event with nearly 500 residential properties located 
within the predicted limits of the 1% AEP event. In addition to the residential losses, the 
economic losses associated with commercial and residential activities within the 
Toongabbie Creek catchment were estimated to be over A$ 5.1 million (1986 Australian 
dollars) for the same event. Substantial further development has occurred in this catchment 
since the study of Handmer et al (1988) which, with the general economic inflation that has 
occurred, would be expected to substantially increase the economic losses in this 
catchment. 

Development of an effective flood warning system can be expected to reduce these 
estimated losses. For an effective flood warning system there needs to be a sufficient time 
period between the recognition of a likely flood problem and its occurrence for the 
dissemination of flood warning messages. 

Urbanisation of a catchment, however, results in a decreased catchment response time to 
the occurrence of rainfall which is not a desirable effect from the viewpoint of the 
implementation of flood warning systems. This effect of catchment urbanisation can be 
countered, however, through accurate quantitative rainfall forecasts. These rainfall 
forecasts will increase the time period between recognition of a likely flood problem and its 
subsequent occurrence. This need prompts the development of a rainfall forecasting model. 

Rainfall is a dynamic process which varies in both space and time. Given the same amount 
of rainfall, the impact on flow within and from a catchment depends very much on the 
spatial and temporal patterns of rainfall. This variability must be considered in order to 
provide accurate input for modelling the hydrologic response of a catchment. 
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There are two possible approaches to rainfall forecasting. The first approach involves the 

study of rainfall processes in order to model the underlying physical laws. However, this 

physical approach may not be feasible because 

• rainfall is a complex dynamic system which varies both in space and time; 

• even if the rainfall processes can be described concisely and completely, the 

volume of calculations involved may be prohibitive; and 

• the data that is available to assist in definition of control variables for the 

models, such as pressure, evaporation, wind speed and direction are limited in 

both the spatial and temporal dimensions. 

A second approach to forecasting rainfall is to apply a transformation to the input data 

(present and past rainfall) for production of the desired output data (predicted future 

rainfall). This transformation can be considered as a mapping between the inputs and 

outputs without a detailed consideration of the internal structure of the physical processes. 

This approach is essentially a pattern recognition technique which involves the analysis of 

historical spatial and temporal rainfall pattems. Since all important information is 

embedded in the rainfall data, appropriate models are developed to extract the essential 

features from these historical rainfall pattems. 

ANNs, which emulate the parallel distributed processing of the human nervous system, 

have proven to be very successful in dealing with complicated problems, such as, function 

approximation and pattem recognition. It has been shown that an ANN with sufficient 

complexity is capable of approximating a smooth function to any desired degree of 

accuracy (Homik et al 1989). An ANN, therefore, was adopted in this study to carry out the 

complex mapping of the rainfall time series. The inputs and outputs of the ANN developed 

during the study were the recorded and future rainfall values at a number of rain gauges of 

within the study catchment. 

Rainfall forecasts at gauge positions, however, provide only scattered point values over a 

catchment. Although the rainfall forecasts may have a fine temporal resolution, the areal 

rainfall which produces runoff is not known. This highlights a critical problem in 
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conventional rainfall-runoff modeling where simplified approaches, such as Thiessen 

Polygons, are used without taking the spatial distribution nor the dynamic properties of the 

rainfall into account. These simplified approaches can result in large error in runoff 

estimation (Fontaine 1991; Urbonas 1992). 

Due to the rapid development in computer technology, it is increasingly feasible to provide 

more accurate descriptions of the rainfall in the spatial dimension. There also has been a 

pressing need for user-friendly, informative systems that water system managers can use to 

evaluate the economic, environmental and social consequences of flood events. In response 

to this need, Luk and Ball (1996) developed a GIS approach to model the spatial variability 

of rainfall using point measurements of rainfall as the input information. Within a GIS 

environment, the rainfall forecast information produced by the ANN can be input to a 

rainfall distribution model for the determination of future rainfall patterns over a 

catchment. 

With the integration of an ANN and a GIS, a powerful rainfall forecasting model has been 

developed in this study to provide forecasts of spatial distribution of rainfall over a 

catchment. The basic assumption of this forecast model, however, is that the future rainfall 

is a function of a finite number of past spatial and temporal patterns of rainfall. One of the 

important tasks in this study therefore was to determine how rainfall forecasts are 

influenced by knowledge of the past spatial and temporal patterns. To achieve this aim, a 

comparison test was made on the forecast accuracy among the ANNs configured with 

different temporal lags and different numbers of spatial inputs. The optimal number of 

temporal and spatial inputs was determined empirically from these tests. 

1.2 Outline of the Report 

Although the theory of ANNs has been developed for more than a decade and there are 

numerous applications of ANNs in many fields of science and engineering, the 

development of ANNs for forecasting rainfall at multiple spatial locations has not been 

attempted previously. To facilitate an understanding of the approach, therefore, an 

introduction to the fundamental theory of ANNs is given in Chapter 2. The intention is to 
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provide some background theory of ANNs in order to clarify the terminology used in 

subsequent chapters and to pave the way for further discussions. 

The Upper Parramatta River Catchment of Western Sydney was used as a case study for 

testing the rainfall prediction models. The catchment characteristics, hydrometric network 

and available data, therefore, are described in Chapter 3. 

A detailed discussion on the development of ANNs for rainfall forecasting is given in 

Chapter 4. First, a generic model for rainfall forecasting is formulated. Then, three 

alternative types of ANN are identified and developed to implement the rainfall forecasting 

model. Within this chapter, the properties of each individual ANN are discussed in detail. 

The altemative ANNs are compared with the rainfall data obtained from the catchment as 

described in Chapter 3. In addition, contained within this Chapter is a section describing an 

investigation of different combinations of temporal and spatial rainfall input. 

Presented in Chapter 5 is the integration of the GIS and ANN to forecast the spatial 

distribution of rainfall over the study catchment. The integrated model is able to produce 

rainfall forecasts for every pixel of the study catchment at 15 minute increments. By 

averaging the relevant pixel rainfalls, forecasts of subcatchment rainfall can be determined 

also. Artificial rainfall events were generated to ascertain the accuracy of the integrated 

model under ideal conditions. 

The main findings and conclusions are summarised in Chapter 6 which is the final chapter 

of this report. Following that are several appendices providing supplementary information 

from the study. 
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2. FUNDAMENTAL THEORY AND LITERATURE REVIEW 

2.1 Introduction 

An artificial neural network (ANN) is a computational approach inspired by studies of the 

brain and nervous systems in biological organisms. The human brain is an extremely 

powerful computational tool that has substantial pattern recognition abilities such as those 

necessary for speech. These tasks, however, are very difficult for conventional computers 

although their computational speed is much faster than human brains. In learning a 

language or recognising a face, a three year old child can do much better than any computer 

available at present. 

There is a strong motivation therefore to study how a biological neural system works in 

order to emulate its powerful functionality. It is believed that the powerful functionality of 

a biological neural system is attributed to the distributed parallel processing nature of a 

network of cells, known as neurons. An ANN emulates this structure by distributing the 

computation to small and simple processing units, called artificial neurons. With this 

architecture, an ANN has proven to be a powerful mathematical model which excels at 

function approximation and pattem recognition. 

In the following sections, the building blocks of an ANN are described by drawing an 

analogy to their biological equivalents. The mathematical formulation of an ANN is then 

explained in some detail. It is shown that an ANN is a general purpose mathematical 

model, which can be applied to solve a wide range of problems. Like developing a 

conventional model, a successful application of an ANN involves careful consideration of 

four stages of development which are 

• selecting an appropriate network; 

• determining network complexity; 

• estimating parameters; and 

• evaluating network performance. 
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There are various alternative approaches in each stage of the development. These 
alternative approaches are discussed in detail and guidelines are provided for selection 
among alternatives for different problems. 

2.2 Basic Structure and Functions 
An analogy between an ANN and a biological neuron is drawn in order to gain a better 
understanding of the structure and functions of an ANN. Presented in Figure 1 is a 
biological neuron. 

dendrites (inputs) 
synapse 
(connection to 
other neurons) 

Figure 1 - A Biological Neuron 

A neuron is composed of three major parts: a soma, an axon and dendrites. The soma is the 
central body of a neuron controlling the behaviour of the neuron. The dendrites act as a 
neuron's input receptors for signals coming from other neurons. The axon is the neuron's 
output channel and conveys signals to other neurons. The connection of a neuron's axon to 
the dendrite of another neuron is called a synapse. There are usually between 1000 and 
10,000 synapses on each neuron. 

The signal processing of a biological neural network involves three steps: First, the 
dendrites of a neuron receive signals (electric potentials) through its synaptic contacts with 
other neurons, and pass electric potentials to the soma. Second, the soma accumulates all 
incoming electric potentials over time. Note that some incoming electric potentials cause 
an increase in the soma potential, but others may lower the soma potential. Third, if the 
accumulated electric potential exceeds a threshold, the neuron is said to be "activated". 
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then an outgoing electric potential is triggered, and passed out through the axon. After 

transmitting the electric potential, the soma potential will fall to its resting potential level. 

An outside simulate will trigger the above process. The neural system makes a response 

through the activation of a large number of neurons, forming a pattern of activation. 

Different stimulates cause different patterns of activation. As such, a biological neural 

system distinguishes the outside stimulates based on different patterns of activation of the 

neurons. 

The essential features of neural processing are summarised by Schalkoff (1992) as: 

• the overall processing consists of a variable interconnection of neurons; 

• the processing is essentially parallel and distributed; 

• local computation is simple; and 

• biological neural networks are dynamic systems, whose state (e.g. neuron's 

outputs and inter-connection strengths) change over time, in response to 

external inputs or an initial state. 

An ANN is constructed to mimic the structure of a biological neural network. Shown in 

Figure 2 is a simple ANN which consists of three layers of artificial neurons. A single 

output is used here for clarity of illustration. It is straightforward to extend to multiple 

output. Like the biological neuron, an artificial neuron, or node, consists of three main 

parts: 

• a processing unit (soma); 

• outgoing connections (axons); and 

• incoming connections (dendrites). 
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input layer hidden layer output layer 

incoming processing outgoing 
connection unit connection 

nodej 

Figure 2 - A Three-layer Artificial Neural Network 

The structure of an ANN is formed by nodes connected together through their connections 

(synaptic contacts). Nodes with similar characteristics are arranged into a layer. A layer can 

be seen as a group of nodes, which share the same input and output connections, but do not 

interconnect with themselves. In other words, connections occur only between layers and 

not within a layer. There are basically three types of layers. The first layer connected to the 

input variables is called an input layer. The last layer connected to the output variables is 

called an output. Layers in between the input and output layers are called hidden layers; 

there can be one or more hidden layers within an ANN. Information is transmitted through 

the connections between nodes of each layer. 



WRL Research Report 194 9. 

Input and output nodes are used to store information. Computation relies mainly on hidden 
nodes, which usually contain a simple function to process information. In a simple 
situation, the information passes forward from the input to the output; a network of this 
type, therefore, is called a feedforward network with multiple layers, or simply a multi-
layer feedforward network (MLi'N). 

Although a MLFN has a simple structure, it is a very powerful mathematical model. It was 
shown by Homik et al, (1989) that given enough hidden nodes, a simple 3-layer MLFN can 
approximate any continuous function to any desired degree of accuracy. Mathematically, a 
three-layer MLFN with I input nodes, J hidden nodes, and one output node can be 
expressed as: 

y = si J f I \ \ 
j=0 Xwj-S2 Zwi'Xi i=0 (1) 

where y is the output from the ANN 
Xi are inputs to the ANN 
Wi are connection weights between nodes of input and hidden layers 
Wj are connection weights between nodes of the hidden and output 

layers 
Xo = 1.0 is a bias and WQ is weight for the bias (the bias is used to prevent 

the error surface from passing through the origin at all times) 
I is the total number of input nodes 
J is the total number of hidden nodes 
Si and S2 are activation functions 

The main control parameters of an MLFN and, in general, for any ANN, are the connection 
weights. The process of estimating these parameters is known as training where optimal 
connection weights are determined by minimising an objective function. 

An ANN, therefore, is a powerful yet flexible non-linear model, which has at its core 
simple processing elements that collectively produce complex non-linear behaviour. The 
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flexibility of an ANN is due to the fact that one can vary the number of hidden layers and 

the number of hidden nodes in each hidden layer to adjust the computational power of an 

ANN. This flexibility allows one to model complex systems even though one has little 

knowledge about the form of relationship between the independent and dependent 

variables. 

The non-linearity of an ANN comes from the use of non-linear activation function in the 

hidden nodes. The most conmionly used activation function is a sigmoid (S-shaped) 

function, and the most popular sigmoid function is the logistic function. 

= (2) 
1 + e 

One advantage of this function is that a derivative is easily found; this derivative is 

s'(x) = s(x)(l-s(x)) (3) 

Other sigmoid functions, such as the hyperbolic tangent 

ta„h(x) = 4 ^ (4) 
e +e 

and (scaled) arctangent, are sometimes used. 

Note that many other functions can be used as the activation function. The choice depends 

mainly on the application. The popularity of sigmoid functions are, however, due to the 

following properties: 

• they are continuous functions; 

• they have a real-valued domain and bounded range; and 

• their derivatives can be easily determined. 

For the output nodes, an activation function should be chosen to suit the distribution of the 

target values. If the target values have no known bounded range, an unbounded activation 
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function such as an identity function (y = x) may be more appropriate than a sigmoid 

function. 

2.3 Development of Artificial Neural Networks 

Like conventional time series model development as described by Box and Jenkins (1976), 

a successful application of an ANN involves careful consideration of the stages in its 

development. 

• selection of an appropriate network; 

• determination of network complexity; 

• estimation of parameters; and 

• evaluation of performance. 

The first stage of development involves the selection of a type of network appropriate to 

the problem. For example, a MLFN is suitable for function approximation while a network 

with feedback connections may be appropriate for modelling a dynamic system. Once an 

appropriate type of network is selected, the next stage is to determine the network 

complexity, namely to determine the number of hidden nodes and the number of hidden 

layers. The third stage is the estimation of the values of the parameters (connection 

weights). This involves the selection of an objective function, and an effective algorithm to 

adjust the connection weights to optimise the selected objection function. The final stage is 

the evaluation of the network performance. 

2.3.1 Network Type 

There are a considerable number of alternative types of ANN which have been developed 

due to the many different purposes to which they have been applied. According to Kosko 

(1990), an ANN can be classified by two criteria, namely, type of connection and mode of 

leaming. 

There are two main types of connections: (1) feedforward connections, and (2) feedback 

connections. The direction refers to the flow of information. A feedforward network only 

allows information to pass from input to output; whereas, a feedback network (also known 
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as a recurrent network) allows information to pass backwards. Feedback connections 

enable a recurrent network to retain information of the previous states. Thus, a recurrent 

network is sometimes referred to as a dynamic system containing memory. In general, 

feedforward networks are faster and provide a direct mapping between input and output 

while recurrent networks have memory and are better in simulating the dynamics of non-

linear systems. 

Learning is a technical term used in neural network literature. It refers to the process 

whereby an ANN adjusts its connection weights to achieve some predetermined criteria. 

There are two basic modes through which the learning process can be carried out. These 

are supervised and unsupervised leaming. 

In the supervised leaming mode, a set of training data, with input and desired output, is 

presented to the network. The desired output serves as a teacher providing the desired 

response to the network. The network is thus given an indication of how it performs, and 

the weights are adjusted to achieve the maximum performance. A child leaming to recite 

the alphabet at school is an example of this type of leaming. 

In the unsupervised leaming mode, the desired output is not given. Weight adjustments are 

based on the responses to inputs. Often, this results in self-organisation of weights, trying 

to recognise pattems, regularities or separating properties in the given input data. For 

example, a child leaming to ride a bicycle will do so with minimal help from outside. The 

child must leam independently how to find the balance required to ride the bicycle. 

An ANN can be generally classified in quadrants shown in Figure 3. The upper left comer 

depicts the most transparent networks which required supervised training, such as the 

MLFN whereas the lower right comer area depicts recurrent networks which can self-

organise to classify or associate input data, such as the Hopfield network. 
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Abbreviations: 
MLFN - Multilayer Feedforward Neural Network 
TDNN - Time Delay Neural Network 
PRNN - Partial Recurrent Network 

Figure 3 - Classification of ANN (after Kosko 1990) 

2.3.2 Network Complexity 
The network complexity is determined by the number of effective parameters within an 
ANN. The importance of determining the network complexity is due to the need to 
determine the optimal number of parameters (hidden nodes and connections) appropriate to 
the problem being investigated. This is similar to fitting data with a polynomial function 
where the order of the polynomial must be determined. Only a polynomial function with an 
appropriate order (complexity) can generalise the important data features and, 
consequently, will provide reasonable data interpolation or extrapolation. 
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Figure 4- Polynomial Fitting 
(a) Good Generalisation (b) Underfitting (c) Overfitting 

Illustrated in Figure 4 are data fitted by polynomials with different order. The polynomial 
shown in Figure 4(a) has the right order, and thus achieves good generalisation of the data. 
However, the order of the polynomial shown in Figure 4(b) is too low and therefore, it is 
not able to fit the data points, leading to underfitting. On the other hand, the order of the 
polynomial shown in Figure 4(c) is too high and it passes through all the data points and 
ends up overfitting the data. 
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In most cases, the input and output nodes of a network are fixed by the problem. The 

network complexity, therefore, is determined by the number of hidden layers and the 

number of hidden nodes. There are several approaches to determine the network 

complexity. 

• Trial and error; 

• Cascade correlation; 

• Pruning; and 

• Genetic method. 

In the trial and error approach, networks with different numbers of hidden nodes are tried 

and compared. The network with the best performance is finally adopted. One advantage of 

the trial and error approach is that it allows an observation of how the number of hidden 

nodes affects the performance of a network; this can be achieved by plotting the errors of 

the network against the number of hidden nodes to examine their relationship. The 

disadvantage of the trial and error method is that it is time consuming. Also this method 

does not guarantee to obtain the correct number of hidden nodes. Masters (1993) presented 

a detailed discussion on identifying the network complexity using a trial and error 

approach. 

The cascade correlation algorithm (CasCor) was developed by Fahlman and Lebiere 

(1991). The CasCor is an approach which automatically increases the network complexity 

by increasing one hidden node at a time. A network starts without any hidden nodes and 

grows automatically to a more complex form. By gradually increasing the number of 

hidden nodes, the complexity of the network is increased. The process is stopped either 

when the required performance is achieved or the number of hidden nodes reaches a 

predetermined maximum number. The main advantage of this approach is that a network is 

automatically constructed according to the complexity of the problem. Thus, the CasCor is 

often referred to as a constructive approach. The drawback of CasCor is that it is not good 

for function approximation problems (Hwang et al, 1996). 

Contrary to CasCor, the pruning method (LeCun et al, 1990) determines the network 

complexity in a destructive manner. It starts with an oversized network and gradually 
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deletes the unimportant nodes and connections. The main advantage of this approach is the 

discrimination of the important nodes and weights. This may help in analysing the 

properties of the network. However, in comparison with CasCor, the pruning method is 

slow and requires predetermination of a maximal network size. 

The genetic method (Braun and Weisbrod, 1993) is a technique which mimics the 

evolution theory. In this approach, a network with maximal complexity is first specified. 

Within this specified limit, a pool of networks are then selected and compared. Like the 

evolution theory, the networks with poor performance are rejected; the ones with good 

performance are retained. Next, a second pool of networks is evolved from the retained 

networks, a second round of selection is made. This process of evolution and selection is 

repeated a number of times. Finally, the network with the best performance is adopted. The 

main advantage of this approach is that the ultimate network is evolved and selected from 

the better networks attempted. Furthermore, the network is not selected randomly, nor 

mechanically like the trial and error approach. However, a major drawback of this approach 

is that it is slow and computationally costly. 

There are advantages and disadvantages in adapting any of the above methods. The choice 

depends on the available data, computer resources, time for completion of the task and 

expertise in using the alternative approaches. 

2.3.3 Training 

Training is a term used in the neural network literature to describe the selection of the 

connection weights. In conventional modelling terminology, training is similar to 

calibration of a model whereby the parameters of a model are adjusted to yield a desired, or 

target output. Hence, training is a process of determining the weights (parameters) of a 

network such that the network produces a particular response to a specific input. 

There are generally two types of training for neural networks; these are supervised and 

unsupervised training. For rainfall forecasting, the network is trained with historical data, 

and undergoes a supervised training process. Therefore, only supervised training will be 

discussed here. During a supervised training process, the network is presented with input 
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and output patterns. Given the input patterns, the network will produce some outputs which 

are then compared with the target outputs. The objective of the training is to minimise the 

discrepancies between the network outputs and the target outputs by adjusting the 

parameters of the network. 

An error function is a measure of the discrepancies between the network outputs and the 

desired outputs. The most commonly used error function is the sum of squared errors 

which is shown below: 

E = i i ( d n p - y n p ) ' (5) 

where E is the sum of squared errors 

N is the total number of outputs 

P is the total number of training samples 

dnp are the target outputs 

ynp are the outputs produced by the network 

The objective of training is to minimise this error function by adjusting the parameters. 

There are two important points to note: 

• the only parameters in the error function are the weight values (the network 

outputs depend only on the weights as shown in equation (1), discussed in 

Section 2.2), and hence training proceeds by modifying the weights; and 

• the error function defines an error surface in n dimensions (where n is the 

number of weights). This n-dimensional error surface contains many local 

minima which hinder the search for the global minimum point. 

In essence, training of an ANN is a form of numerical optimisation, which is the search of 

the global minima on the n-dimensional error surface defined by the connection weights of 

the ANN. The search requires 

• some starting positions; 

• a direction towards the minimum point; and 

• an appropriate step size. 
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Usually the starting positions are randomly selected. The direction and step size are the 

main concerns of all training algorithms. The most commonly used training algorithms 

include: 

• backpropagation, or gradient descent and its variants; 

• cascade correlation algorithm; and 

• global training methods. 

2.33.1 Backpropagation and its Variants 

The backpropagation training algorithm (BP) was introduced by McClelland et al (1986). It 

was the first practical and is still the most widely used training algorithm. The name 

backpropagation, however, is sometimes misleading. Backpropagation training is not 

related to the network containing feedback connections. In fact, backpropagation is a 

training algorithm that enables the errors from the output layer to be successively 

propagated backwards through the network for adjustment of the values of the connection 

weights. 

In essence, the BP algorithm is a gradient descent method. The search of a minimum point 

on the error surface is based on the direction of the steepest descent down the error surface, 

and the weights are modified by taking a step in this direction. 

The application of the BP algorithm involves two phases. During the first phase the input is 

presented to the network and propagated forward through the network to compute the 

output value for each output node. This output is then compared with the target, resulting 

in an error signal for each output node. The second phase involves a backward pass through 

the network during which the error signal is passed to each node in the network and the 

appropriate weight changes are made in order to minimise the error signal. 

The BP technique is a robust method which guarantees attainment of a local minimum 

point from a given starting position. However, it is slow and easily struck in local minima. 

In order to overcome its shortcomings, many variation algorithms have been developed. 
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One variant of the BP technique is the Quickprop algorithm developed by Fahlman (1988). 

The Quickprop speeds up training by using information about the curvature of the error 

surface. This requires the computation of second order derivatives of the error function. 

Quickprop assumes the error surface to be locally quadratic (approximated by a parabola) 

and attempts to jump in one step from the current position directly into the minimum of the 

parabola. However, Quickprop has the disadvantage of requiring a large number of 

parameters which require evaluation, and hence it can be hard to find the best parameter 

set. 

Another variant of gradient descent technique is the Rprop which stands for Resilient 

backpropagation. The Rprop was introduced by Riedmiller et al (1993) to avoid the use of 

a fixed step size in BP. To achieve this aim, the Rprop uses an adaptive learning parameter 

(LP) and the sign of gradient to adjust the step size. The LP increases if the sign of gradient 

remains the same; otherwise LP decreases. In so doing, the training speed increases 

dramatically and Rprop becomes one of the fastest variants of the gradient descent 

techniques. In addition, there are only a few parameters that require evaluation (in general 

only the initial LP value). Moreover, Rprop is fairly insensitive to choices of LP since it is 

quickly adapted. 

The last group of gradient descent variants are the methods using the rate of change of 

gradient, to improve the speed of convergence. These methods include the 

conjugate gradient method and the Levenberg-Marquardt method. Masters (1995) has a 

detailed discussion of these more advanced training algorithms. In brief, these methods are 

often faster than the classical BP. However, they demand and require more computational 

resources. 

2.3.3.2 Cascade Correlation Algorithm 

The variants of gradient descent techniques improve the training speed. However, one 

major problem remains unsolved - these algorithms cannot avoid being trapped in local 

minima. The cascade correlation algorithm (CasCor), discussed in the previous section, can 

overcome the problem of local minima. 
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In the CasCor, new nodes are added progressively to the network. Accordingly, the number 

of connections increase. This means that each time when a new node is added, the error 

surface changes. Consequently, this gives the network the opportunity to escape from local 

minima by re-defining the error surface. Another advantage of the CasCor is that it is very 

fast computationally as only two layers of nodes are trained each time. The process of error 

backpropagation is avoided. 

2.3.3.3 Global Training Algorithms 

Global training algorithms use techniques to explore the whole error surface and thus do 

not get caught in local minima. However, they are much slower than gradient descent 

approaches, especially for large networks which have high dimensional error surfaces. 

Genetic algorithms (GA) are one popular and efficient method of global searching for the 

optimal point. Masters (1993) has a detailed discussion on the use of GA to search for the 

optimal weights. The method involves three stages: 

• initialisation; 

• evaluation and selection; and 

• crossover and mutation. 

For a network with fixed number of hidden nodes, each weight (parameter) is treated as a 

gene. An initial population of weights is randomly generated. For a population size of n, 

there will be n networks. Next, the performance of each network is evaluated and the 

network with better performance will be assigned a higher probability for reproduction. 

Then, crossover and mutation are carried out from the networks. The process is repeated 

for a predetermined number of generations and at each generation the better parameters are 

preserved, and the worse die out. It can be seen that a GA involves a time consuming 

process, but has been shown to be an effective training approach for finding the global 

minimum (Braun and Weisbrod, 1993). 
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2.3.4 Evaluation of Performance 

The final stage of network development is the evaluation of the performance of the 

network. The purpose of evaluation is to ensure that the network has extracted adequate 

detail to enable it to generalise the relevant characteristics from the measured data which, 

in this study, is the rainfall pattern in space and time. 

A critical decision is when to stop training. In many reported studies, such as French et al 

(1992), training is stopped when a predetermined minimum error is reached. There are, 

however, two major problems of this approach. The first problem is that it is difficult to set 

a minimum error for training. The second problem is that this approach is inherently time 

consuming. After training has been completed, if an evaluation shows that the performance 

of the network is unsatisfactory, the network is required to be re-trained and then re-

evaluated. This involves a lengthy trial and error process. 

Two alternative approaches to solve this problem are discussed herein; these altematives 

are: (1) the early stopping technique and (2) régularisation. 

2.3.4.1 The Early Stopping Technique 

The first of the two approaches to solve the above problems is the early stopping technique 

presented by Sarle (1995). In essence, this technique aims to monitor the progress of the 

network training using a separate data set. Therefore, the available data is divided into three 

sets: (1) training set, (2) monitoring set, and (3) validation set. The training set is used to 

train the network, that is to determine its parameters (connection weights). The monitoring 

set is used to check the progress of training and decide when to stop training while the 

validation set is used for final evaluation of the network performance. 
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Figure 5 - Errors in Training and Monitoring 

The concept of early stopping is illustrated in Figure 5 where typical error curves of a 
training set and a monitoring set are illustrated. Training is stopped when the monitoring 
set error reaches a minimum value. At this point the network has achieved the optimal 
generalisation. If training is not stopped, the network may be over-trained and the 
performance of the network will deteriorate despite the error on the training data 
decreasing. The network performance is finally evaluated by the validation set, which is not 
used at all during the training process. 

The manner in which the early stopping technique avoids over-training is best explained 
through a discussion of the training of a network. Suppose a network is selected for 
training and initialised with small random parameter values. At the beginning of training, 
some parameters are adjusted to minimise the error between the target and network 
outputs. These adjusted parameters are called effective parameters because they contribute 
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to the performance of the network. As training progresses, the number of effective 

parameters grows. The error in both the training and the monitoring data set will gradually 

decrease as the network generalises features from the training data. As training progresses 

further and beyond a point, the network activates more parameters than necessary and starts 

to fit the noise of the training data. Consequently, a further decrease in the training error 

occurs but an increase in the validation error is observed. Therefore, the location of the 

minimum of the monitoring error determines when the network achieves an optimal 

number of effective parameters. 

2.3.4.2 Régularisation 

Another approach to ensure generalisation is régularisation (Chauvin, 1990) which is used 

to improve generalisation by constraining the network complexity. In most neural networks 

the weights are adjusted to minimise an error function which is commonly defined as the 

sum of squared errors. If a network pursues to minimise the sum of squared errors, it will 

eventually fit all the training data points. Consequently, the network will have poor 

performance when dealing with new data due to the problem of over-fitting. 

To overcome this problem, an error function can be modified as 

0 = E + A,C (6) 

where E is the sum of squared errors 

C is a function to penalise the complexity of the network 

X is a parameter specifying the importance of C relative to E 

The inclusion of the penalty term (kC) is to prevent the network from fitting exactly to the 

data points. The penalty term thus has a smoothing effect to the network's complexity. 

This approach requires the determination of the function C and the parameter X . As regards 

the first decision, one way is to penalise the change in weights. For example, C can be 

defined as: 
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where wj are the weights of the networks. The derivative to the objective function results in 

3w 

Recall that in the gradient descent method, the change in weight is based on the negative of 
3E/3w. Therefore, the penalty term reduces the change of weight proportional to the size of 
the weight. Consequently, this method is often referred to as weight decay. 

As regards the second decision, if the value of X is small, there is little penalty for 
complexity and the network is able to fit the training data closely. On the other hand, if the 
value of X is large, the network is prevented from developing a complex mapping, and 
excessive error may result. An optimal X must be carefully determined. One way is to try a 
series of X and use a validation sample to evaluate the results. However, this method is 
computationally intensive. 

Comparing the early stopping technique with the régularisation method, the former 
approach will usually be found to be computationally faster and easier to implement. For 
this reason, an early stopping technique was used in this study. 

2.4 Application of Artificial Neural Networks in Hydrology 
Recently enormous literature relating to the development and application of ANNs has 
evolved. From a review of this literature, it can be seen that ANNs have been successfully 
applied to many problems in civil engineering (Cheu et al, 1991; Moselhi et al, 1991; 
Furuta et al, 1991) and structural engineering (Kamarthi et al, 1992; Xihui et al, 1991) as 
well as time series predictions (Weigend et al, 1992; Wan, 1993). 



WRL Research Report 194 25. 

Although ANNs have wide application in many fields of science and engineering, the 

review given here is confined to the application of ANN in hydrology, with particular 

reference given to rainfall forecasting. A good general review of the application of ANNs 

in hydrology and water resources engineering is provided by Daniell (1991) who also 

presented examples where ANNs had been used to determine water consumption and 

regional flood estimates. 

With the rapid development of ANNs, there have been a growing number of studies 

applied ANN to solve problems in hydrology. These applications cover a wide range of 

areas, including rainfall forecasting (French et al, 1992; Tohma and Ando, 1995), river 

flow prediction (Karunanithi et al, 1994; Zhu and Fujita, 1994), modelling rainfall-runoff 

process (Hsu et al, 1995; Smith et al, 1995; Minns and Hall, 1996), hydraulic structure 

operation (Rasul and Paudyal, 1994), scheduling of hydroelectric power systems (Sadd et 

al, 1996), as well as geophysical log interpretation (Pezeshk et al, 1996). 

Flood (1994a, b) pointed that several factors have stimulated research in the application of 

ANNs. One factor is that an ANN is able to learn and generalise from examples, without a 

detailed study of the underlying principles. The other factor is an ANN is a powerful non-

linear model which in theory can approximate any continuous function to any degree of 

accuracy. Daniell (1991) also pointed out that the extremely uncertain nature of many 

hydrological data sets where a particular output is dependent on many unmeasurable 

variables results in many hydrological problems being suitable for analysis using neural 

networks. 

Although an ANN is a powerful tool, the successful application of an ANN must involve 

careful consideration of four stages of ANN development which are 

• Identification of network architecture; 

• Determination of network complexity; 

• Selection of training algorithms; and 

• Validation of network performance. 
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However, this systematic approach has not been adopted in most of the previous reported 

studies in hydrology. The review presented in the following sections highlights that these 

studies have not given sufficient emphasis to each stage of the network development 

resulting in poor network design in many cases. In line with the network development 

discussed above, the review is organised into four sections. 

It must be pointed out also that many hydrological applications have been illustrated only 

with synthetic data. In the present study, however, real data were used in order to evaluate 

the networks' performance for real life applications. 

2.4.1 Identification of Network Architecture 

The range of alternative ANNs is inmiense and growing rapidly. Each type has its own 

characteristics, often determining its suitability for solving certain classes of problems. For 

example, multi-layer feedforward networks (MLFN) are suitable for function 

approximation and static mapping of inputs and outputs (Sejnowski and Rosenberg, 1987; 

Pomerleau, 1989), while the radial basis function networks are more efficient in 

classification problems (Moody and Darken, 1989; Renals and Rohwer, 1989). Networks 

with feedback connections are more appropriate for modelling dynamic processes (Jordan, 

1986; Elman, 1990). Time Delayed Neural Networks are specially designed for modelling 

temporal sequences (Waibel, 1989). For large and complex problems. Modular Neural 

Networks consisting of a group of ANN modules are used to decompose the problems into 

smaller and manageable tasks (Jacobs et al, 1991 (a, b); Happel and Murre, 1994). 

Many reported studies in hydrology have used a multi-layer feedforward network (MLFN) 

without referencing other types of ANN. While a MLFN is a powerful non-linear model 

and has been shown to be an universal approximator, there are many other types of ANN 

which may have been more appropriate to the problem being considered. For example, 

Saad and Bigras (1996) applied a radial basis functions neural network (RBFN) to assist in 

determining the operating rules for reservoirs. They compared the RBFN with a MLFN 

trained with backpropagation technique and found that the RBFN outperformed the MLFN. 

They pointed out that the learning of the back propagation technique in the MLFN was 

time-consuming and that using the RBFN approach gave results at least 15 times faster. 
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A review on previously reported studies in rainfall forecasting showed that the only 

network type which had been applied to the problem was a MLFN. French et al (1992) 

applied a MLFN to forecast rainfall in space and time. They used the network to forecast 

artificial two-dimensional rainfall fields one time step ahead which was in one hour 

increments. The data were generated by a mathematical rainfall simulation model which 

was a modified version of the model developed Rodriguez-Iturbe and Eagleson (1987). 

They compared the rainfall forecast made by the MLFN with those obtained by the 

nowcasting technique and claimed that the MLFN could generalise and abstract the rainfall 

process. Their study, however, can be considered as a preliminary investigation only since 

there was a lack of consideration in various stages of development of the neural network 

and only artificial data were used. 

Although their study was one of the first attempts in applying ANN to forecast rainfall and 

paved the way for subsequent development, a number of key issues were not properly 

addressed. Firstly, a MLFN was adopted without referencing other types of network. 

Secondly, the input data considered only rainfall one time-step in the past. The inclusion of 

more information from the past as input was not considered. Thirdly, the network 

complexity was determined arbitrarily. 

Another problem was that the MLFN in their study was developed with a very large 

number of weights; a network with such a large number of weights was extremely difficult 

to optimise. In their study, the simulation domain was 100km x 100km at a resolution of 

4km, yielding a regular grid of 25 x 25 points (625 points). The number of input and output 

nodes was 625 which was determined by the size of grid. The number of hidden nodes was 

arbitrarily chosen from 15 to 100, resulting in a network containing more than 20,000 

connection weights. The training data set for the network, however, contained only 1000 

training data points. Similar to fitting three data points with a ten-order polynomials, the 

network was bound to overfit the training data, resulting in a network with poor 

generalisation. 
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Along similar lines, Tohma and Ando (1995) used a MLFN to produce a 1-hour lead time 

forecast of rainfall fields using simulated rainfall inputs. Again, their network was very 

large consisting of 576 input nodes and 576 output nodes. The numbers of hidden nodes 

attempted were 90, 120 and 150. Twenty rainfall events were used for training and ten 

events for validation. Each event contained 20 data points. Obviously there were 

insufficient data to train the network. In brief, Tohma and Ando did not achieve any 

improvements over the work of French et al (1992). They did not provide any discussion 

on the choice of networks nor did they provide information on how to optimise the network 

performance. 

In summary, there are various types of ANN developed to solve specific problems. One 

needs to identify a network architecture appropriate to the problem. Chapter 4 of this report 

contains a detailed discussion of the various types of networks and their suitability for 

rainfall forecasting. 

2.4.2 Network Complexity 

Given a particular type of network, say an MLFN, a critical problem is the determination of 

the number of hidden nodes. If there are too few hidden nodes, the network is not able to 

learn the features of a complex problem. On the other hand, if a network contains too many 

hidden nodes, it tends to learn not only the features but also the noise of the data. 

However, the important issue of network complexity has not been properly addressed in 

many previous reported studies. For example, French et al (1992) used an arbitrary number 

of hidden nodes, while Rasual and Paudyal (1994) and Minns and Hall (1996) did not state 

how many hidden nodes were included in their networks. This indicated that the networks 

may not have been designed according to the complexity of the problem. 

A study which took into account the network complexity was presented by Karunanithi et 

al (1994), who used the cascade correlation algorithm to train a MLFN for river flow 

prediction. The cascade correlation algorithm was an efficient training algorithm which 

combined the idea of incremental network building and learning in the training process. In 

essence, the training starts with a minimal network comprising only input and output 
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layers. Then, hidden nodes are added one at a time during the training process. The training 

is stopped when the specified error is reached. This ends up with an automatically 

structured network according to the complexity of the problem. 

However, it is difficult to set a minimum error for training. Therefore, in the present study 

a trial and error approach was adopted. A number of networks were constructed and their 

performance compared. Finally, the best performed network was selected. 

2.4.3 Selection of Training Algorithms 

The training of neural networks involves minimising the discrepancies between the target 

outputs and network outputs. This can be achieved by adjusting the weights between 

connections. The most popular algorithm for adjusting the weights is the backpropagation 

(BP) method which has been adopted in many hydrological applications. However, many 

studies failed to point out that the BP approach is a gradient descent algorithm, which is 

computationally inefficient and is usually trapped in a local minimum. 

Hsu et al (1995) was one of the first to avoid the use of BP. They applied a three-layer 

MLFN to model the rainfall-runoff process. A procedure (entitled linear least squares 

simplex, or LLSSM) was developed in their study to optimise the parameters of the three-

layer MLFN. The LLSSM method, which used a combination of linear least squares and 

multi-start simplex optimisation techniques, was claimed to obtain the global or near-

global solution of the problem. In addition, this study was one of the few hydrologie 

applications of ANN using real life data. 

There have been rapid developments on training algorithms for neural networks. The 

objectives are to improve training speed and avoid local minima. An excellent review of 

the BP and its variants is presented by Riedmiller (1994). In addition, the earlier discussion 

in Section 2.3.3.3 of this Chapter provides an overview of global search training 

algorithms. 
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2.4.4 Generalisation 

Even with the best training algorithms, the network may not be able to achieve good 

generalisation of the features of the system. In most cases, the better the network learns the 

training samples, the worse it will perform on the data it has not encountered during the 

training process. This problem is due to over-learning of the training samples. However, in 

many hydrologie applications, there is limited discussion about the important issue of 

generalisation. To some extent the networks were trained arbitrarily. For example, French 

et al (1992) trained the networks with 100-1000 iterations without specifying a reasonable 

stopping criterion. 

Smith and Eli (1995) trained their network with predetermined error tolerances and then 

evaluated the performance of the network by some test data set. The problem with their 

approach is that there is no efficient way of pre-defining an error tolerance, and that the 

error tolerance of training samples is not related to the problem of generalisation. 

In view of this, a strategy is required to make the best use of the available data to ensure 

generalisation. The early stopping technique discussed previously is one such strategy and 

was adopted in the present study. Our use of the early stopping technique in this study is 

thought to be one of the first attempts at its application in the field of hydrology. 

2.5 Summary 

From the above review, it can be concluded that the application of an ANN to solve a 

hydrological problem requires careful consideration at each stage of development, namely: 

selection of an appropriate network, identifying the network architecture, choosing 

appropriate training algorithms, and achieving good generalisation. A successful 

application requires sound engineering judgement and knowledge of the available 

techniques. The development of an ANN for rainfall forecasting is discussed in detail in 

Chapter 4 where a case study on forecasting rainfall at multi-locations in a catchment is 

included to illustrate the points discussed. 
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3. THE STUDY CATCHMENT 
The Upper Parramatta River Catchment (UPRC) is used as a case study for development of 
the rainfall forecasting model. This Chapter provides some details of the catchment 
characteristics, hydrometric network and available data for the study. 

3.1 Catchment Details 
The UPRC, shown in Figure 6, is located in the western suburbs of Sydney, Australia. 
Total area of the catchment is approximately 112 km^. The catchment is rather steep with 
the confining ridges being 180 metres Australian Height Datum (AHD) at Thompsons 
Comer, Castle Hill, and 100 metres AHD at Prospect. The average slope of the catchment 
is about 1.2%. 

ASTLEHILL 

BLACKT 

CAfflSTGFOKD 

PROSPECT 
CATCHMENT 
OUTLET 

7209 — r — ' ^ Y 7209 7263 7263 

L^end 
I I Stuify Catchment 
• Rain Gauge 

7257 Ref No. 

A / Main Stream 

N 
W - ^ E 

S 

5 kilometers 

Figure 6 - The Upper Parramatta River Catchment 

The Parramatta River drains into Sydney Harbour and is tidal to the Charles Street Weir 
located at the catchment outlet. The section of the Parramatta River immediately upstream 
of the Charles Street Weir passes through part of the Parramatta central business district. 
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There are two main tributaries, namely Toongabbie Creek and Darling Mills Creek. They 
join about 2.5 km upstream of the Charles Street Weir. 

Within the catchment, the dominant land use is typical of urban environments with a mix 
of residential, commercial, industrial and open space (parkland) areas. Considerable 
development as a result of rapid increase in population and dwellings has occurred within 
the catchment over the past two decades. Details are shown in Table 1 which was obtained 
from Australian Bureau of Statistics, Census of Population and Housing (personal 
communication). 

TABLE 1 
POPULATION AND DWELLINGS IN PARRAMATTA 

Year Total 
Population 

% Change to 
Previous 
5 Years 

Total Occupied 
Dwellings 

% Change to 
Previous 
5 Years 

1976 348398 ~ 100246 — 

1981 374190 7.4 111064 10.8 
1986 384601 2.8 119229 7.4 
1991 435478 13.2 140900 18.2 

Shown in Table 1 are five year census report figures for years 1976, 1981, 1986 and 1991. 
The increase in dwellings from 1986 to 1991 by 18% in 5 years is significant. A rough 
estimation of the increase in impervious areas can be made by assuming an average 
dwelling size of 200 square metres and allowing 50% for associated roads and courtyards. 
The increase in paved area would be 6.5 km^, which amounts to 6% of the total catchment 
area. 

The effect of urbanisation and rapid development has led to increases in estimates of the 
peak level for frequently occurring floods. To mitigate the social and economic losses 
associated with flood events in this catchment, the Upper Parramatta River Catchment 
Trust (UPRCT) was instituted in 1989 with the task of managing flood mitigation measures 
within the catchment, among other duties. 
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3.2 Available Data 

There are sixteen (16) telemetered rain gauges within the Upper Parramatta River 

Catchment; locations of these gauges are shown in Figure 6. The majority of these gauges 

have been installed by the UPRCT since its formation. Consequently, long-term records are 

not available from these gauges. 

With 16 gauges in an area of 112 km^ the study catchment has, on average, one point for 
rainfall sample for every seven (7) km^ of catchment. While this is a high density of 
information from rain gauges for most catchments, Urbonas et al (1992) suggest that an 
even higher density of spatial information is required if accurate predictions of catchment 
response are to be obtained for convective storm events. Reproduced in Table 2 are the 
peak flow accuracies obtained by Urbonas et al (1992); the deviations presented in this 
table are referenced to the maximum gauge density of 1.6 km^ of catchment per gauge. It is 
important to note that, while the mean error over a number of events may be within 
reasonable limits, the range of errors for individual events can be significant. 

TABLE2 
ACCURACY OF RAINFALL-RUNOFF MODELS 

(after Urbonas et al 1992) 

Gauge Density 
(km^/gauge) 

Range 
(%) 

Mean Deviation (%) 

8.0 -100.0 to 150.0 -24.2 

4.0 -75.3 to 94.5 0.5 

2.7 -32.2 to 63.66 15.8 

2.0 -32.2 to 18.8 -0.9 

1.6 0.0 to 0.0 0.0 

Records from the sixteen (16) rain gauges were obtained from January 1991 to September 

1996. During this period, thirty four (34) storm events occurred with daily rainfall total 

greater than 20 mm. These were the storm events selected for the study. Among the 

selected storms, more than 70% were identified as convective, and the rest were frontal 

storms. The convective storms occurred mostly during summer and autumn, while the 

frontal storms were more evenly distributed over the four seasons. A detailed list of the 

storm events is given in Appendix A. 
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The data series are rainfall amounts during 15-minute intervals which are compatible with 

the time step used by the UPRCT for modelling runoff from the catchment. The total 

number of 15-niinute rainfall values obtained was 1749. Shown in Table 3 are the number 

of events extracted for each year and the total number of events for the whole period of 

record. 

TABLE 3 
NUMBER OF STORM EVENTS EXTRACTED 

Year No. of events No. of 15-min rainfall values 

1992 2 105 

1993 5 205 

1994 6 302 

1995 11 533 

1996 (up to September) 10 604 

Total 34 1749 

Due to malfunctioning of gauges or errors in transmission, there were missing values in 

some events. These missing values were estimated from neighbouring rain gauges using 

the spatial rainfall model developed as part of this study and discussed by Luk and Ball 

(1996). Essentially, the model utilises the spline surface spatial interpolation method within 

the ARC/INFO geographic information system. 

3.3 Sub-catchments 

For catchment management purposes and particularly for flood management of the 

catchment, the UPRCT has been implementing a conceptual rainfall-runoff model for the 

catchment. This model is based on the RAFTS software package (WP Software, 1995) 

which uses the non-linear reservoir model of Laurenson (1964) to route flows through the 

catchment storage. For implementation of this model, the total catchment has been 

subdivided into twenty-four (24) sub-catchments. As expected, the area of each of these 

sub-catchments was not constant but rather differed according to the catchment 

characteristics. The largest sub-catchment was approximately 9 km^ while the smallest was 

approximately 1km . The remaining sub-catchment areas were evenly distributed between 
these limits. 
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4. RAINFALL FORECASTING—THE ANN APPROACH 

Presented in this chapter is the application of artificial neural networks to forecast rainfall 

at a number of gauge positions for the study catchment, as well as a comparison of various 

forms of artificial neural networks. In addition, an empirical test has been carried out for 

the networks constructed with different spatial and temporal architectures with a view to 

improving the accuracy of rainfall forecast. A number of further tests, such as those using 

more sophisticated training algorithms, incorporating time indices for the storm events, etc, 

have been carried out and the results of these tests are also detailed in this chapter. 

4.1 Artificial Neural Network for Rainfall Forecasting 

Rainfall is a natural process which has a high degree of variability in both time and space. 

For development of the proposed rainfall forecast model, the rainfall process was assumed 

to be a Markovian process, which means that the rainfall value at a given location in space 

and time is a function of a finite set of previous realisations. With this assumption, a simple 

model structure can be expressed as: 

X(t +1) = f(X(t), X(t -1), X(t - 2),..., X(t - k + D) + e(t) (9) 

where X(t) = [xu, X2t, •. •, xnJ^ represents a vector of rainfall values xu, X2t,.., XNt 

at N different gauge sites at time t, where T denotes the transpose 

operator 

f ( ) is a nonlinear mapping function which shall be approximated using 

an ANN 

e(t) is a mapping error (to be minimised) 

k is the unknown number of past realisations contributing to rainfall 

at the next time-step 

Usually, k is referred to as the lag of a model. If k is equal to 1, the future rainfall is related 

only to the present rainfall, representing a lag-1 model. 

A multi-layer feedforward neural network (MLFN) is a straightforward approach to 

represent the above rainfall model. The MLFN is presented with the current and past 
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rainfall values as inputs, e.g. X(t),.., X(t-k+l). The next rainfall value X(t+1) is used as 

output of the network. There are, however, several drawbacks associated with this 

approach. Firstly, since the model lag k is unknown, a lengthy trial process is required to 

determine the optimal value of k. Secondly, for a network with high order of lag, large 

numbers of input nodes are required. Consequently, the number of parameters will increase 

making the network unnecessary complex. Last but not least, the MLFN is a static model 

which may not be able to model the dynamic rainfall process. 

An alternative type of network which can effectively model the rainfall process while 

keeping a minimum of parameters is a time delay neural network (TDNN). A distinctive 

feature of a TDNN is the use of partial connections; this dramatically reduces the number 

of weights presented in the network compared with a fully connected MLFN architecture. 

In addition, the TDNN has been developed for detecting local features within a larger 

pattern; this feature detection ability is very useful for the task of rainfall forecasting. A 

TDNN, however, is still a static model. 

The need for a dynamic model leads to the consideration of a recurrent network which 

contains recurrent connections to feed past states of the system into the network. A 

recurrent network possesses the characteristic of a dynamic memory. In addition, a 

recurrent network reduces the number of inputs and consequently the number of 

parameters. 

Recurrent networks can be classified as fully and partially recurrent. Fully recurrent 

networks can have arbitrary feedforward and feedback connections with all of these 

connections trainable. The training of these networks is very complicated. For practical 

applications, partially recurrent networks (PRNNs) are more appropriate because the 

training of such networks is similar to MLFNs. In partially recurrent networks, the main 

network structure is feedforward. The feedforward connections are trainable. The feedback 

connections are formed through a set of "context" units and are not trainable. This 

simplifies the training process. The context units store some past states of the system, and 

so the outputs of the networks depend on an aggregate of the previous states as well as the 

current input. 
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All networks have their strengths and weaknesses. They are powerful tools when used 

appropriately. The PRNN and TDNN are specifically developed to model the structure in 

time series. They are considered to be the most suitable candidates for the current study. 

The MLFN, however, is the most popular model and has a relatively simple structure. The 

MLFN was included in this study to provide a base line for comparison. 

Other types of network were considered but were rejected because either the networks were 

not appropriate for rainfall forecasting or the networks required a large amount of data 

which the present study could not provide for. Two networks rejected were: 

• radial basis function network; and 

• modular neural network 

Radial basis function networks (RBFNs) have been developed and used by some research 

workers (Moody and Darken 1989). A RBFN usually consists of three layers. The first 

layer represents the inputs. They are fully connected to the neurons in the second (hidden) 

layer. A hidden node has a radial basis function (RBF) as the activation function. The RBF 

is a radially synmietric function (e.g. Gaussian function). 

The principal advantage of a RBFN is that the training speed is much faster than a MLFN 

trained with standard backpropagation technique. Training of a RBFN is carried out in two 

phases, first for the parameters of the hidden layer, then for the parameters of the output 

layer. The hidden-layer parameters control the centres and widths of the radial basis 

function. They can be trained by some unsupervised training algorithms, such as the 

Kohonen learning algorithm (Kohonen, 1990). The parameters of the output nodes are the 

values that produce the minimum error in the mapping function. They may be trained by 

gradient descent without any backpropagation since there is only one layer of weights to be 

trained. The speed of training is therefore much quicker. 

A second advantage of the network is that the behaviour of the hidden units and the output 

can be more easily interpreted in statistical terms. If confidence estimates for the output of 

the network are required, a RBFN is a suitable network. 
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However, a RBFN has three major limitations for rainfall forecasting. First, because of the 

way it uses radial basis functions around clusters of training data, its performance depends 

strongly on having a thoroughly representative training set. If only a few training samples 

are available, a MLFN having very few hidden neurons can be trained to generalise features 

from data points. The RBFN however, may not be able to achieve good generalisation 

because a data set with good coverage is required. The other disadvantages stem from the 

fact that the entire training set must be stored, as well as processed, each time an unknown 

case is classified. This means that memory requirements are large, and execution speed is 

poor. A RBFN is rarely suitable for real time applications. 

A RBFN would be chosen when the problem is one of classification and the training set is 

so extensive that training other models would be impracticably slow. This model would 

also be favourable when confidence is needed for classification decisions. However, for the 

nature of the current study, this model is excluded because the objective is rainfall 

forecasting, and the training data set is rather limited and contains noise. 

Another type of neural network gaining increasing popularity is the modular neural 

network. This network has a modular structure to represent a large problem divided into 

smaller subtasks. This network is suitable for complex system consisting of different 

components. Several small networks can be trained for the corresponding components and 

then combined. For example, there are different types of rainfall processes, eg. convective, 

frontal and orographic. In principle, it is more effective to construct three relatively simple 

networks for the individual situations and apply a suitable network according to the 

prevailing situation. 

In practice, the form of rainfall could be difficult to identify in real time. For the study 

catchment, some of the storms were a mixture of both frontal and convective storms. It was 

impractical to separate the data. In addition, in the current study, only 34 storm events are 

available. There is certainly not enough data for training a modular network. 
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4.2 Alternative Artificial Neural Networks 

From the review of alternative categories of ANNs, suitable types of networks for the task 

of rainfall forecasting have been assessed as being: 

• Multi-layer Feedforward Neural Network (MLFN); 

• Partial Recurrent Neural Network (PRNN); and 

• Time Delay Neural Network (TDNN). 

Although intuitively the TDNN and PRNN networks are better models than MLFN for 

rainfall forecasting, it was necessary to empirically compare the performance of the 

altemative networks. These three alternative types of ANN were developed and compared. 

Detailed design of the networks for rainfall forecasting is presented in the following 

sections. 

4.2.1 Multi-Layer Feedforward Neural Network 
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Figure 7 - A MLFN for Rainfall Forecasting 

Presented in Figure 7 is a generic structure of a MLFN designed for rainfall forecasting. 

The output nodes of the network consist of the rainfall values for the next time step at each 

of the (N) locations considered in this study. For example, if a forecast of rainfall at 16 
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points in space is needed, then (N) is equal to 16. The number of hidden nodes (H), which 

defines the complexity of the network, is a key variable to be estimated. Note that the 

number of hidden layers can be more than one but only one is shown in Figure 7 for the 

purpose of illustrating the concepts. The input layer contains (k) sets of input nodes. The 

value of (k) as previously noted is referred to as the lag of the network and is another key 

variable to be determined. 

As previously discussed, the MLFN is a very powerful nonlinear model despite its simple 

structure. In theory a 3-layer MLFN can approximate any continuous function to any 

desired degree of accuracy (Homik et al, 1989). There are many successful applications of 

MLFN in engineering and science. 

The crucial point for developing the MLFN is to determine the optimal complexity of the 

network to cope with the complex underlying rainfall process. 

4.2.2 Time Delay Neural Network 

The time delay neural network (TDNN) was developed by Waibel for speech recognition 

(Waibel, 1989). The main feature of a TDNN is the implementation of the concept of 

"invariance". In many practical applications it is known that the outputs in a classification 

or regression problem should be unchanged, or "invariant", when the input is subject to 

various transformations. An example is the classification of objects in two-dimensional 

images. A particular object should be assigned the same classification even if it is rotated 

or translated within the image or if it is linearly scaled (corresponding to the object moving 

towards or away from the camera). Such transformations produce significant changes in the 

raw data and yet should give rise to the same output from the classification system. One 

way to provide this invariance is to build the invariance properties into the neural network 

strucmre itself A TDNN network makes use of the technique of "shared weights" to 

achieve this purpose. The following illustration of the technique is based on Bishop (1996). 
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Output Layer 

Hidden Layer 

Figure 8 - Schematic Architecture of a Network for Translation-invariant 
Object Recognition in Two-dimensional Images (after Bishop, 1996) 

The diagram shown in Figure 8 helps to explain the technique of "shared weights". The 

network is presented in a two-dimensional form. The inputs to the network are given by the 

intensities at each of the pixels in a two-dimensional array. Instead of having full 

interconnections between adjacent layers, each hidden unit receives inputs only from units 

in a small region in the input layer, known as receptive field. The network architecture is 

typically chosen so that there is some overlap between adjacent receptive fields. 

The technique of shared weights can then be used to build in some degree of translation 

invariance into the response of the network (Lang et al, 1990). In the simplest case this 

involves constraining the weights from each receptive field of the other units in the same 

layer. Consider an object which falls within Receptive Field A shown in Figure 8, 

corresponding to a unit in the hidden layer, and which produces some activation level in 

that unit. If the same object falls at the corresponding position in Receptive Field B, then, 

as a consequence of the shared weights, the corresponding unit in the hidden layer will 

have the same activation level. The units in the output layer have fixed weights chosen so 

that each unit computes a simple average of the activations of the units that fall within its 

receptive field. This allows units in the output layer to be relatively insensitive to moderate 

translations within the input image. However, it does preserve some position information 

thereby allowing units in the output layer to detect more complex composite features. 
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Typically each successive layer has fewer units than previous layers, as information on the 

spatial location of objects is gradually eliminated. This corresponds to the use of a 

relatively high resolution to detect the presence of a feature in an earlier layer, while using 

a lower resolution to represent the location of that feature in a subsequent layer. 

Another distinctive feature of the use of receptive fields is that they can dramatically 

reduce the number of weights present in the network compared with a fully connected 

architecture. In addition, the use of shared weights means that the number of independent 

parameters in the network is less than the number of weights, which allows much smaller 

data sets to be used than would otherwise be necessary. 

The above technique can be applied to detect local features in time as well as space; time is 

simply a dimension in the same context as a co-ordinate system. The invariance of local 

features that occur in the time dimension is referred to as "time invariance". The time 

invariance property is relevant to rainfall forecasting because a rainfall time series usually 

contains local features, such as isolated peaks between prolonged periods with low to zero 

values of rainfall. Since these local features do not have a fixed position in time, a TDNN 

should be able to detect their occurrence. 

The architecture of a TDNN essentially is feedforward, but the connections between layers 

are modified in order to achieve time invariance. Instead of having full interconnections 

between adjacent layers, each hidden node receives inputs only from nodes in a small 

region in the previous layer. This small region is called a "time window" which consists of 

several time frames as shown in Figure 9. 
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Figure 9 - A TDNN for Rainfall Forecasting 

In this illustration of a TDNN, at the input layer there are three time windows, each of 
which consists of two time frames. At the hidden layer, however, there is only one time 
window consisting of three time frames. Presented in Equation (24) are the activations of 
the hidden nodes of the first time frame of the hidden layer which are connected to the 
input nodes of the first time window of the input layer. 
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Oi = S( Wi • X(t - 2) + Wi • X(t - 3)) 

where Oi are the activations of the hidden nodes connected 
to the time window of the input layer 

Wi is a weight matrix connected between inputs of the 
time window and hidden nodes of the time 

frame of the hidden layer 
S is an activation function 
X(t-2) and X(t-3) are rainfall at time t-2 and t-3 respectively; 

they constitute the time window of the input layer 

At the output layer, as with previous ANNs, the outputs are the rainfall depth at each gauge 
at time t+1. Algebraically, this is 

r 3 \ X(t + l) = S IWm-0 'm 
m=l 

(11) 

where X(t+1) are rainfall at time t+1 
Om are the activations of the hidden nodes 
Wm is a weight matrix connected between 

hidden layer and output layer 
S is an activation function 

With this partial connection architecture, the technique of shared weights can be used to 
build in some degree of time invariance into the response of the network. The technique of 
shared weights involves constraining the weights from a time window to be equal to the 
corresponding weights from all other time windows in the same layer. For example, at the 
connections between input layer and hidden layer, the entries in the weight matrix are set 
equal, namely, Wi=W2=W3. As a consequence of the shared weights, a feature that falls in 
different time windows of the input layer will produce the same activation in the hidden 
layer. For the TDNN shown in Figure 9, each hidden node has the ability to detect local 
features within the range of the three time windows at the input layer. A shift in position of 
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the features at the input can be detected by the hidden nodes and subsequently by the 

output nodes. 

The main variables of a TDNN that need to be defined are: 

• number of time frames for input and hidden layers; 

• size of time window; and 

• number of hidden nodes. 

4.2.3 Partial Recurrent Neural Network 

The MLFN and TDNN use a static representation of past rainfall inputs whereby the past 

states of the rainfall system have to be represented externally by including a fixed number 

of past rainfall values as input. This static representation has several drawbacks. Firstly, if 

the rainfall process has a long term memory, a large number of input nodes are required, 

resulting in a network containing a large number of free parameters. Secondly, the number 

of past rainfall inputs has to be determined experimentally. A lengthy trial and error 

process is required. A dynamic model may overcome this problem. A dynamic model can 

be represented by a neural network with feedback connections to feed past states of the 

system back to the network. Such a network with feedback connections is called recurrent 

network. A recurrent network possesses the characteristic of dynamic memory. In addition, 

a recurrent network reduces the number of inputs and consequently the number of 

parameters. 

As previously discussed, recurrent networks can be classified as fully and partially 

recurrent. A partially recurrent network (PRNN) is more appropriate for the present study 

because training of a PRNN is much easier than a fully recurrent network. In addition, a 

PRNN can be developed for real time applications. 

Among the available partially recurrent networks, the Elman network (Elman, 1990) is one 

of the simplest types that can be trained using standard backpropagation learning 

algorithms (McCelland et al, 1986). This type of network was adopted and customised for 
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the present study. Shown in Figure 10 is the structure of an Elman network as used in this 
study for rainfall forecasting. 
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Figure 10 - An Elman Network for Rainfall Forecasting 

As stated previously, an important feature of the Elman network is the inclusion of a 
special set of context units to receive feedback signals from the hidden nodes. The function 
of the context units is to store information about the previous time steps. To achieve this, 
the context units make a copy of the activation of hidden nodes in the previous time step. 
Therefore, at time (t) the context units have some signals related to the state of network at 
time (t-1). As a result, the rainfall at time (t+1) is a function of the rainfall at time (t) and 
the previous states of the system represented by the activation of the hidden nodes at time 
(t-1), as expressed in the following equation. 

X(t + l) = g(X(t),0(t-l))-i-e(t) (12) 

where X(t+1) are rainfall at time t+1, which are outputs of the network 
X(t) are rainfall at time t, which are inputs of the network 
O(t-l) are the activations of the hidden nodes at time t-1 and 

copied back to the context units for input at time t 
g() is a recurrent mapping function 
e(t) is the mapping error 
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As shown in Figure 10, the input nodes contain (N) elements, representing the spatial 

dimension of the rainfall. For example, if rainfall forecasts at 16 gauge positions are 

required, then the number N should be set to 16. The total number of hidden nodes is (H) 

which is the same as the number of context units. The key variable to be specified is (H). 

The number of hidden nodes controls the complexity of the network. 

4.3 Comparison of Alternative Networks 

The three alternative networks were developed and compared on their performance for 

forecasting the storm events collected from the UPRC. The following sub-section 

highlights the methodology for development of the network for rainfall forecasting. After 

that are the test results and discussions. 

4.3.1 Methodology 

The alternative networks were developed through the following major steps: 

• data preparation, including data pre-processing; 

• selection of training algorithm and performance indicators; and 

• determination of the number of inputs and outputs. 

It is necessary to select appropriate methods for each step of development. The various 

methods adopted in this study are summarised in Table 4. 
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TABLE4 
ADOPTED METHODS FOR NETWORK DEVELOPMENT 

Category Method Adopted in the Study Main Reasons 

Data preparation (1) The data were randomly 
selected and split into 3 parts 
in order to implement the 
early stopping technique. 
(2) Activation Functions: 

hidden nodes - logistic 
output nodes - linear 

(3) The data were transformed 
by a log function 

Straightforward, low 
computation cost. 

Logistic activation function to 
enable nonlinearity; linear 
activation function to avoid 
pre-setting a maximum value 
of rainfall. 

To meet the requirements of 
the logistic activation 
function, accelerate training 
speed and enhance 
convergence. 

Selection of Training 
algorithm and 
Performance Indicators 

(1) Training algorithm: 
Recilent propagation 

(2) Performance indicators: 
SSE andNMSE 

Fast, very few parameters 
require setting and the 
performance is insensitive to 
choices of parameters 

The most commonly used 
method for optimisation. It 
also yields a maximum 
likelihood estimation if the 
errors are normally 
distributed. 

Input and output 
representation 

The alternative networks are 
trained to forecast rainfall at 
16 gauges simultaneously. 

All the available information 
are used for forecasting. 

Software SNNSv4.1 Powerful and versatile. 

4.3.1.1 Data Preparation 

Data preparation includes: 

• separation of data sets; and 

• selection of activation function and data pre-processing. 
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It was necessary to separate the data into different data sets to implement the early stopping 

technique. In order to obtain unbiased samples for each of the data sets, the 34 storm events 

were divided randomly into three data sets which were: 

• training set - 16 storm events with a total of 748 rainfall periods (15-minutes); 

• monitoring set - 8 storm events with a total of 376 rainfall periods; and 

• validation set - 10 storm events with a total of 625 rainfall periods. 

As these events were randomly selected, they have similar characteristics. Presented in 

Table 5 below is a summary of the storm characteristics among the three data sets. A more 

detailed description is given in Appendix B. 

TABLES 
SUMMARY OF STORM CHARACTERISTICS 

Characteristics Training Monitoring Validation 

Storm Type 10 convective 
6 frontal 

4 convective 
4 frontal 

8 convective 
2 frontal 

Storm Duration 
(hour) 

3 to 22 2 to 21 6 to 24 

Maximum Rainfall 
(mm/lSmin) 

2to25 2.5 to 25 5 to 25 

Time to Maximum 
Rainfall 30 min to 10 hr 1 hrto 18 hr 45 min to 21 hr 

The training data set was used to calibrate the connection weights of the networks while the 

monitoring data set was used to check the performance of the training and provide an 

indication on when to stop training. Finally, the networks were evaluated by the validation 

data, which had not been involved in the training process. 

The next step was to pre-process the data sets to cope with the requirements of the neural 

networks. All three alternative types of networks considered in this study adopted a 

sigmoid activation function in the hidden nodes, but a linear function in the output nodes. 

The use of sigmoid function was to enable non-linearity of the network. The sigmoid 
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function, however, was not adopted for output nodes because the sigmoid function forces 

an output bounded over a range of 0.0 to 1.0. This means that the output variable has to be 

scaled by a known maximum value. This is undesirable for rainfall forecasting because it 

was not desirable to set a maximum rainfall value. If the probable maximum rainfall was 

chosen all the rainfall values would be scaled down to a narrow range. To overcome this 

situation an identity (linear) function was used. 

Since the sigmoid activation was used in the hidden nodes, the speed of training would be 

improved if the data were scaled down to the range between 0 and 1. The rainfall data, 

therefore, were transformed by the logarithmic function: 

y = a • logio(x+b) (13) 

where a is an arbitrary constant and a value of 0.5 was adopted in this study 

b was set to 1 to avoid the entry of zero rainfall in the log function 

The maximum rainfall value the data set used during in this study was 32.6 mm in a 15min 

period. Thus the rainfall values were in the range of [0, 32.6] and were transformed to a 

range of [0,0.763]. 

A more general Box-Cox transformation (Box and Cox, 1964) was attempted but found to 

be inappropriate for this application. 

A Box-Cox transformation is of the form of: 

y = -^—I— 

y = ln(x + c) ifX, = 0 

With a constant C of value 1.1, the parameter X was estimated as -1.7 by maximising the 

log likelihood of a linear multiple regression on the rainfall data. 
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However, a rainfall series usually contains a large number of low values with occasional 

jumps of high values. The Box-Cox transformation normalises the data by stretching low 

values and compressing high values. For example, rainfall values of 10 mm and 20 mm 

will be transformed to 0.578 and 0.584. The difference is 0.006. On the other hand, rainfall 

values of 0.5 mm and 1.0 nmi will be transformed to 0.324 and 0.422. The difference is 

0.098 which is 16 times greater than 0.006. Consequently, with the transformed data, a 

network is trained to optimise low rainfall values and hence will give poor results in 

predicting high rainfall values. 

4.3.1.2 Selection of Training Algorithm and Performance Indicators 

The Rprop (as described in Section 2.3) was used for training the networks where 

appropriate because this is one of the fastest training algorithms available and is insensitive 

to the choice of initial parameter. 

During training, the weights of the networks were adjusted in order to minimise the 

discrepancies between the network outputs and the target outputs. There are two general 

error functions, namely the sum of squared error and the cross entropy function to measure 

the network performance during training. 

(i) Sum of squared error 

SSE = XS(dnp-ynp) ' ^^^^ 
N P ^ 

where SSE is the sum of squared errors 

N is the total number of outputs 

P is the total number of patterns 

dnp are the target outputs 

ynp are the outputs given by the network 

The SSE is straightforward to compute. It also yields a maximum likelihood estimation if 

the errors are normally distributed. Because of its advantages, the SSE function was 

adopted in the study. 
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(ii) Cross entropy 

E = idilog(di/yi) (15) 
i=l 

where E is the cross entropy 

P is the number of patterns 

di are the target outputs 

yi are the outputs given by the network 

The cross entropy error function has a number of useful properties for pattern classification 

problems, however, it requires both the input and the output values in the range of [0,1] 

and therefore was considered inappropriate for this study. 

The normalised mean squared error (NMSE) was chosen as the performance indicator for 

the comparison of the alternative types of network. One problem with the use of SSE for 

network comparison is that the rainfall series had different lengths. This problem can be 

overcome by using a normalised version of the SSE, namely the normalised mean squared 

error (NMSE). Weigend et al (1993) defined the NMSE as 

I l (dnp-ynp) ' 1 
= . « — I I(dnp-ynp) (16) 
IX(dnp-dnp)' NPa'^ p 
N P ^ 

where N is the total number of output nodes 

P is the total number of data samples 

dnp are the target outputs 

ynp are the network's outputs 

o^ is the variance of the target outputs 

In essence, the NMSE is the sum of squared errors normalised by the number of data 

samples over all output nodes and the estimated variance of the data. A NMSE of 0 

indicates a perfect fit, while a NMSE of 1 implies that the network performance is no better 

than a simple model using the mean output as forecast. 
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4.3.1.3 Input and Output Representation 

For the study catchment, there are a number of possible ways to determine the input and 

output information. The three most feasible approaches are: 

• Divide the study catchment into grids (439 pixels of 500m x 500m) and use 

rainfall at the 439 pixels as inputs to forecast rainfall at all 439 pixels 

simultaneously. The resulting outputs will be rainfall at each pixel of the 

catchment. 

• Use rainfall at the 16 gauges as inputs to forecast rainfall for the 16 gauges 

simultaneously. In this case, one network represents rainfall for all 16 gauges. 

After the rainfall forecasts for the 16 gauges are obtained, a spatial rainfall 

model is used to generate the rainfall at every point of the catchment. 

• Use rainfall at the 16 gauges as inputs to forecast rainfall for a single gauge. 

This will end up with 16 networks for 16 gauges of the study catchment. Again, 

after the rainfall forecasts for the 16 gauges are obtained, a spatial rainfall 

model is used to generate the rainfall at every point of the catchment. 

A preliminary assessment of the three methods had been carried out and the option of using 

16 gauges for inputs and outputs was adopted. The reasons for this decision were: 

• Information from all measurement points are used simultaneously to produce 

forecasts for each of the measurement points. 

• The forecast results can be used readily in the spatial rainfall model developed 

by Luk and Ball (1996). 

The option of forecasting a single gauge was rejected because the same process was 

required once for each prediction location and 16 networks were needed. 

The option of using 439 pixels as both input and output also was rejected because it 

involved the use of a large number of input and output nodes; consequently, the network 

contained a large number of parameters (weights) to be estimated. For example, a 3-layer 

MLFN with 439 input nodes, 439 output nodes and 2 hidden nodes comprises 1756 
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connections (439x2 + 439x2, excluding the biases). The available rainfall data (max. 1749 

data points) are not sufficient to train the network. The large number of free parameters are 

prone to overfitting the data. Moreover, training of such a large network is extremely time 

consuming. 

4.3.1.4 Software for Implementation 

The SNNS (Stuttgart Neural Network Simulator) version 4.1 was selected to implement the 

altemative networks. The SNNS is a simulator for neural networks developed at the 

Institute for Parallel and Distributed High Performance Systems at the University of 

Stuttgart since 1989. The SNNS is distributed by the University of Stuttgart as free 

software in a licensing agreement similar in some aspects to the GNU General Public 

License. The software is available for anonymous ftp from ftp.informatik.uni-stuttgart.de 

[129.69.211.2] in directory/pub/SNNS as SNNSv4.1.tar.gz. 

The SNNS consists of four main components: 

• Simulator kemel 

• Graphical user interface 

• Batch simulator 

• Network compiler 

The simulator kemel operates on the intemal network data structures of the neural 

networks and performs all operations on them. The graphical user interface XGUI, built on 

top of the kemel, gives a graphical representation of the neural networks and controls the 

kemel during the simulation mn. The batch simulator is designed to carry out batch jobs 

without user interactions. The simulators were written ANSI-C, all source codes are freely 

distributed. The simulator can be mn on a variety of platforms, including SunSparc stations 

and IBM-Linux systems. The XGUI is based upon XI1 Release 5. It also works under 

X11R6. 
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4.3.2 Test Results and Discussions 

The three alternative types of networks considered in this study were trained and validated 

with rainfall data collected from the study catchment. There were a total of 34 storm events 

with each storm event divided into 15-minute intervals. Inputs from all 16 gauges were 

used in training the networks. After training, the networks were used to forecast future 

rainfall at the same 16 gauges during one time step or 15 minutes. 

Various network configurations were attempted in order to determine the effect of two key 

variables, which were: 

• lag of the network; and 

• number of hidden nodes. 

For the MLFN, networks with lags of 1,2, 3 and 4 were attempted. In addition, the number 

of hidden nodes tried were 2, 4, 8, 16, 24, 32, 64, and 128. Also attempted were networks 

with two-layers of hidden nodes. For the TDNN the size of input windows used were 2, 3 

and 4. Finally, for the Elman network, the lag was fixed at 1, while the numbers of context 

units tried were 2,4, 8,16, 24, 32 and 64. 

All the results are tabulated in Appendix C. Some representative results are selected and 

presented here for discussion. First, the effects of hidden nodes and order of lag are 

discussed; then, a comparison of the three alternative types of networks is presented. 

4.3.2.1 The Effect of Hidden Nodes 

It was observed that networks with more hidden nodes were able to produce less training 

error at the maximum pre-set training epoch (1000 epochs). An epoch was defined as a 

complete sweep through the training patterns; the connection weights of the network were 

updated after each epoch. Therefore, a maximum epoch of 1000 means that the weights 

were allowed to be updated 1000 times at most. After sufficient training, the networks 

adjusted all available parameters to minimise the discrepancies between the target and 

network outputs. The networks with more hidden nodes have more free parameters, thus 

resulting in less training errors. As expected, these networks had poorer performance in 

validation because the networks over-learned the training samples. 



WRL Research Report 194 56. 

This effect is clearly shown in Table 6 which shows a comparison of the results produced 

by a MLFN with 2 hidden nodes and a MLFN with 128 hidden nodes. The networks were 

trained to the maximum pre-set epoch (1000 epochs). It is noted that for all lags the MLFN 

with 128 hidden nodes have smaller NMSE in training but much higher NMSE in 

validation. For example, the lag-4 MLFN with 128 hidden nodes had the smallest training 

error where the NMSE was equal to 0.27, but the validation error was the highest with a 

value of 2.33. 

TABLE 6 
EFFECT OF fflDDEN NODES AND TIME LAG OF MLFN 

Network 
Normalised Mean Squared Error (NMSE) 

Network 
Training Validation 

Lag-1 MLFN with 2 hidden nodes 0.53 0.71 

Lag-1 MLFN with 128 hidden nodes 0.40 1.20 

Lag-2 MLFN with 2 hidden nodes 0.51 0.73 

Lag-2 MLFN withl28 hidden nodes 0.36 0.96 

Lag-3 MLI'N with 2 hidden nodes 0.49 0.72 
Lag-3 MLFN with 128 hidden nodes 0.32 1.26 
Lag-4 MI ,FN with 2 hidden nodes 0.49 0.78 
Lag-4 MLFN with 128 hidden nodes 0.27 2.33 

Note: the networks were trained to 1000 epochs. 

43.22 The Effect of Order of Lag 

Also shown in Table 6, given the same number of hidden nodes, the MLFNs with higher 

order of lag tended to better leam the training data series but did worse in validation. These 

results do not suggest that a network with higher order lag will give poorer results. Rather 

the results indicate that a network with higher order of lag contained more connection 

weights, and hence more free parameters. Therefore, like a network with more hidden 

nodes, the network with higher lag tended to overfit the training samples. 

It seemed that the performance of a network depended more on the network complexity 

than the inclusion of more information of the past time steps. The effect of using higher 

order of lag mainly increased the network complexity. It might suggest that the network 
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complexity depended on the combined effect of two variables: (1) number of hidden nodes 

and (2) order of lag. 

4.3.2.3 Comparison of Alternative Networks 

Shown in Table 7 are details of the eight best networks as determined by analysis of the 

results from testing of all the above network configurations as shown in Appendix C. 

Selection of the best network within a specific type was based on the minimum NMSE for 

the validation data. 

Each row of Table 7 represents a network with a specific lag. For example, the first row 

shows the lag-1 MLFN with 24 hidden nodes; second row shows the lag-2 MUFN with 8 

hidden nodes, and so on. The number of hidden nodes were determined as the optimum 

number for the network being considered. 

TABLET 
COMPARISON OF ALTERNATIVE NETWORKS 

Network 
Training 
(NMSE) 

Monitoring 
(NMSE) 

Validation 
(NMSE) 

Stopping 
epoch 

Training 
Error at 

1000 epoch 
(NMSE) 

MLFN Lag 1 
(16-24-16) 

0.50 0.68 0.64 200 0.49 

MLFN Lag 2 
(32-8-16) 

0.51 0.69 0.66 100 0.47 

MLFN Lag 3 
(48-4-16) 

0.48 0.69 0.67 700 0.47 

MLFN Lag 4 
(64-2-16) 

0.52 0.71 0.65 200 0.49 

Elman 
(16-4-16) 

0.49 0.67 0.64 300 0.48 

TDNN Lag 2 
(32-16-16) 

0.50 0.67 0.63 100 0.41 

TDNNLag3 
(48-32-16) 

0.50 0.69 0.64 100 0.41 

TDNN Lag 4 
(64-32-16) 

0.51 0.69 0.65 100 0.40 

Notation: The network configuration is denoted by 
nodes, y = no. of hidden nodes and z = no. 

three figures (x-y-z), where x= no. of input 
of output nodes. 
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In general, all three alternative types of networks showed comparable performance. The 

NMSE of the validation samples for all networks were in the range of (0.63 - 0.67) with 

only very small differences among the networks. The comparable performance among the 

various networks under consideration was due to the networks shown in Table 7 being 

developed to their optimal complexity. For example, the lag-1 MLFN requires more hidden 

nodes to achieve an optimal complexity, whereas the more complicated lag-4 MLFN only 

requires two hidden nodes to offset the large number of parameters introduced by the 

higher order of lag. The reduction in number of hidden nodes with the increase in lag may 

indicate the existence of an optimal complexity of network for the problem. 

It was noted also that networks with a lower lag had a slightly better performance, which 

suggests that the rainfall series does not have long time-dependence structures, although 

this is not conclusive since only limited data are available. While not conclusive, however, 

this result does tend to confirm the assumption outlined previously in Section 4.1 regarding 

the structure of rainfall time series. 

In order to give some indications of the performance of the networks, selective plots of the 

forecasts are given in Figures 11 and 12. Also shown in these Figures are comparisons of 

the three alternative types of networks for forecasting of rainfall depth one time-step ahead 

at a gauge during two validation storm events. The histogram in each figure shows the 

acmal rainfall temporal pattem at a gauge site. The forecast rainfalls of the three networks 

are represented by different symbols. There are similar plots for other gauges and storm 

events. 

From Figure 11 it can be seen that all three types of network closely matched the actual 

rainfall pattem. The networks especially produced a good forecast for the decreasing parts 

of the rainfall histogram. However, none of the networks could pick up the highest peak of 

rainfall. This might be attributed to the fact that the peak occurred randomly which 

suddenly jumped from a low value of rainfall. 
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Similar observations were noted for Figure 12. However, on this storm event, because the 
rainfall depth gradually increased and then decreased, the networks were able to make good 
predictions for both the rising and falling parts of the rainfall histogram. 

o 

o 

X Elman(16-4-16) 
^ MLFN(16-24-16) 
o TDNN(32-16-16) 

I 

10 15 

Ttme (15 min.) 

20 

Figure 11 - Forecasting Rainfall at Gauge No. 7253 
for the Storm Event on 2 Jan 1996 
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X Elman(16-4-16) 
^ MLFN(16-24-16) 
o TDNN(32-16-16) 
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Figure 12 - Forecasting Rainfall at Gauge No. 7253 
for the Storm Event on 6 Jan 1996 

Observation of the forecast errors shown in Figures 11 and 12 reveals that there exists a 
functional relationship between the forecast errors and the rate of change of rainfall 
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intensity. A plot of the forecast error versus the rate of change of rainfall intensity is 

therefore made for each 10 validation storm events. Such plots are presented in Figures 13 

and 14 for the storm events on 2 January 1996 and 6 January 1996 respectively. Similar 

figures for other storm events are given in Appendix D. 

Each figure has three plots corresponding to three alternative artificial neural networks. At 

each plot, the y-axis represents the error of forecast, i.e. the forecast subtracted by the 

actual rainfall. A positive value means over-prediction, and vice versa. The x-axis 

represents the rate of change of rainfall depth (mm) in 15 minutes. A positive value means 

that the rainfall increases in the next time step (15 minutes), and vice versa. The data points 

are shown in dots; a line of best fit for the data points is produced by the cubic smoothing 

spline method with three degrees of freedom. 

An interesting point to note from the figures is that there is a distinctive break of slope of 

the smoothing line at zero rate of change. The smoothing line slope is much steeper when 

the rate of change is positive (corresponding to the rising part of the rainfall hyetograph), 

whereas the slope is flatter when the rate of change is negative (corresponding to the 

decreasing part of the rainfall hyetograph). The following points are derived from 

observation of the figures: 

• The forecast error increases as the rate of change of rainfall intensity increases. 

Thus it is shown in the figures that the rainfall was under-predicted when the 

rate of change of rainfall intensity increases, whereas the rainfall was over-

predicted when the negative rate of change of rainfall intensity increases. 

• The networks made better predictions when the rainfall reduced from peak 
values. 

• The networks tended to under-predict the rainfall when the rate of change is 

positive, but over-predict the rainfall when the rate of change is negative. 
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Forecast Error vs. Rate of Chanae of Rainfall 
Modal: E l i m n ( 1 6 ^ 1 6 ) Evwi t HS. 6*02 

Rat* of Chang* (mm/ISmin) 

(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Modal: MLFN(ie-24-16) Ev*n l rC . 6a02 

Rat* of Chang* (mm/ISinin) 

(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Modal: TDNN(32-16-16) Evant t S . ea02 

Rat* of Chang* (mm/ISmin) 

(c) TDNN 

Figure 13 - Forecast Error Vs. Rate of Change of Rainfall: Date 2 Jan 1996 
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Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-»-16) Event No. 6a06 

0 2 4 

Rate of Change (mm/15mln) 

(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Event No. 6a06 

0 2 

Rate of Change (nmi/15min) 

(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event No. 6a06 

0 2 4 

Rate of Change (mm/ISmin) 

(c) TDNN 

Figure 14 - Forecast Error Vs. Rate of Change of Rainfall: Date 6 Jan 1996 
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In summary, the following points were observed from these comparison test results. 

• All three alternative types of networks have comparable performance. 

• MLFN with lower order of lag showed slightly better test results than that of higher 

order of lag. 

• MLFN with higher lags tended to over-leam the training data, resulting in smaller 

training but larger validation errors. 

• MLFN with lower lags required more hidden nodes, and vice versa. An optimal 

level of network complexity needed to be maintained to cope with the complexity 

of the data. 

• The Elman network showed comparable performance with the lag-1 MLFN and 

outperformed the MLFN with higher order of lag. 

• Among all the networks, the lag-2 TDNN yielded the minimum validation error. 

• For all three alternative networks, forecast errors increase as the rate of change of 

rainfall intensity increases. The networks tended to under-predict the rainfall when 

the rate of change is positive, but over-predict the rainfall when the rate of change is 

negative. Forecast errors are higher when the rate of change is positive. 

For this pattem recognition approach, improvement of prediction is expected by collecting 

more data for training. Additionally, in order to predict the occurrence of the rainfall peak 

more accurately, it might be necessary to identify more control variables, such as wind 

speed and direction, and incorporate them into the input of networks. 

4.4 Investigation of Optimal Spatial and Temporal Inputs 

In the previous section the three altemative types of networks were compared based on 

rainfall input and output at all 16 gauges. It was found that all three types of networks 

showed comparable performance, and that there existed an optimal network complexity 

which depended on a combined effect of the order of lag and number of hidden nodes. 

Apart from the order of lag and number of hidden nodes, it is of paramount importance to 

investigate how the spatial inputs affect the performance of the network. Tests on the effect 
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of spatial input can be undertaken by constructing networks with one single output, but 
with different numbers of neighbouring rainfall inputs added to the network. 

The procedure is illustrated in Figure 15. A gauge (ref. no. 7261) located at the centre of 
the catchment is selected to demonstrate the procedure. 

rain gauge 
7267 I gauge re£ no. 

8 llie eig}ith nearest 
ne i^ouro f gauge 
no. 7261 

N 
W E 

S 

5 kilometers 

Figure 15 - Sequence of Neighbour Gauges 

Shown in Figure 15 are the positions of the gauges and their distances relative to Gauge no. 
7261. Initially, the input and the output of the network was rainfall at the gauge itself. 
Then, inputs from neighbouring gauges were gradually added to the network, with the only 
output being Gauge no. 7261. The number of neighbouring gauges used as input to the 
ANNS were 2, 4, 6, 8, 10, 12 and 15 respectively. The sequence of neighbouring gauges 
being used as input of network is shown in Figure 15; the priority was according to the 
shortest distance between the gauge and Gauge 7261. For example, the first two gauges 
added to the input were Gauge nos. 7265 and 7269. 

The above procedure was carried out in turn for each of the 16 gauges. The results were 
summarized and are presented in Table 8. The value shown in Table 8 is the sum of 
normalised mean squared errors for the 16 gauges. 
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TABLES 
COMPARISON OF DIFFERENT SPATIAL AND TEMPORAL INPUTS 

Spatial variation 

Normalised Mean Squared Error on Validation Events 

Spatial variation Lagl Lag 2 Lag3 

No neighbouring inputs 0.679 0.686 0.678 

2 neighbouring inputs 0.641 0.650 0.655 

4 neighbouring inputs 0.635 0.642 0.662 

6 neighbouring inputs 0.631 0.656 0.663 

8 neighbouring inputs 0.630 0.659 0.665 

10 neighbouring inputs 0.639 0.676 0.685 

12 neighbouring inputs 0.650 0.682 0.691 

15 neighbouring inputs 0.644 0.683 0.719 

For ease of comparison and economy in computation, the network chosen for these tests 

was a MLFN with two hidden nodes. 

The following points were observed from the test results: 

• There existed an optimal limit of spatial information for inclusion into the 

network; and 

• For the temporal domain, the lag-1 networks in general showed the best 

performance. 

The inclusion of more neighbouring gauges may introduce the following side-effects: 

• Additional gauge inputs require additional connection weights, resulting in a 

more complicated network; and 

• More noise may be introduced to the network and this may undermine the 

network's performance. 

4.5 Further Testing 

Apart from temporal and spatial dependence of the rainfall inputs, there are many other 

factors which may improve the network performance. One of the possible ways to improve 
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the performance of networks is to use a more sophisticated training algorithm, like the 

cascade correlation algorithm to find the global minimum of the error function. The other 

way is to include additional variables to provide information about the pattern of rainfall. 

For example, the rainfall time series may have a seasonal behaviour. If a time index is 

added, it may help to improve the predictability of networks. 

The following additional tests, therefore, are considered relevant. 

• Use of more sophisticated training algorithms; and 

• Incorporation of additional variables. 

It is important also to compare ANNs with a multiple linear regression model to ascertain 

the advantage of using the more sophisticated non-linear ANNs. The results of these 

additional tests and the comparison with a multiple linear model are presented in the 

following sections. 

4.5.1 Use of Cascade Correlation Algorithm 

The cascade correlation algorithm (CasCor) as described in Section 2.3, is an effective 

training algorithm which automatically adds hidden nodes to the network to cope with the 

complexity of the problem. The CasCor, therefore, was applied to test whether it could 

improve the forecast performance. 

The CasCor required the setting of the maximum number of context units and the 

maximum output unit error. Training stopped if either the maximum number of context 

units was added to the network or the output unit error was less than the maximum pre-set 

value. In order to avoid stopping the training prematurely, a low value of 0.2 was adopted 

as the maximum output node error. In this way, the training proceeded until all context 

units were added to the network. A number of context units were tried for comparison. The 

results are shown in Table 9. 
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TABLE 9 
NETWORK ERROR USING 

CASCADE CORRELATION ALGORITHM 

Network 

Normalised Mean Squared Error (NMSE) 

Network Training Validation 
16-3CC-16 0.57 0.67 

16-5CC-16 0.51 0.65 

16-9CC-16 0.47 0.67 

16-17CC-16 0.52 0.61 

16-25CC-16 0.36 0.77 

16-33CC-16 0.32 0.81 

16-65CC-16 0.20 0.85 

Note: each network is denoted as (x-ycc-z), where x is the no. of input nodes, y is the 
no. of context units, and z is the no. of output nodes. 

These results were compared with those obtained from the network trained by early 

stopping technique as shown in Table 10. 

TABLE 10 
NETWORK ERROR USING 

EARLY STOPPING TECHNIQUE 

Network 

Normalised Mean Squared Error (NMSE) 

Network Training Validation 

16-2-16 0.59 0.64 

16-4-16 0.56 0.66 

16-8-16 0.59 0.64 

16-16-16 0.56 0.64 

16-24-16 0.56 0.64 

16-32-16 0.55 0.65 

16-64-16 0.54 0.65 

The following points were noted from comparison of the two tables. 

• CasCor networks could produce better results. The CasCor network with 17 

context units showed the smallest error in the validation tests. 
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• CasCor networks showed larger variations in performance. Networks trained 

with the early stopping technique showed a more consistent performance. The 

test results of CasCor range from 0.61 to 0.85, with a mean of 0.72 and a 

standard deviation of 0.091. The test results of early stopping range from 0.64 

to 0.65, with a mean of 0.65 and a standard deviation of 0.008. 

• The CasCor network has the ability to fit the data very closely, especially when 

a lot of context units are used. However, there is no objective way to set a 

correct error tolerance. If the error tolerance is set too low, the CasCor network 

will tend to overfit the data; on the other hand, if the error tolerance is set too 

high, the network will stop prematurely. 

4.5.2 Incorporation of an Indicator for Wet and Dry Periods 

Rainfall for the next time step may be forecast by two steps. Firstly, to determine whether 

there is some rain or no rain for the next time step, an additional binary node for each 

gauge can be added to the network to distinguish the wet and dry period for the next time 

step. A value of (1) indicates there is some rain, while a value of (0) indicates that there is 

no rain. Secondly, if there is rain, then the amount of rainfall will be determined. 

The advantage of this approach depends on the accuracy of the first step. If the wet and dry 

period of the next time step can be accurately predicted. The performance of the network 

will be enhanced. Otherwise, apart from the inaccuracy of prediction of wet and dry, the 

performance of networks would worsen by inclusion of more connection weights resulting 

from the additional nodes. 

Shown in Table 11 are the results of networks having one additional node at each of the 16 

gauges to predict the wet and dry of the next time step. The results show that the 

predications are generally less accurate than the networks without the indicators. The 

average NMSE was 0.78. 
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TABLE 11 
NETWORKS WITH WET/DRY INDICATOR 

MLFN 
Lagl 

SSE for the 32 outputs 
SSE and NMSE for 
16 output nodes on 

validation Stopping 
Epoch 

MLFN 
Lagl Training Monitoring Validation SSE NMSE 

Stopping 
Epoch 

(16-2-32) 1823 1053 1726 81.52 0.77 800 
(16-16-32) 1747 1088 1737 81.86 0.78 400 
(16-24-32) 1765 1081 1739 82.09 0.78 200 

4.5.3 Adding an Index to Indicate the Day of a Year 
Rainfall time series usually display seasonality which is due to the seasonal variation of 
global weather conditions. It was considered worthwhile, therefore, to include an indicator 
for the time of year of a storm event in order to model the long-range seasonal effects. The 
indicator may be constructed in the following way. For example, a storm event occurred on 
15 Feb 94. The position of this day was: 

d = 31 (Jan) + 15 (Feb) = 46 

This day can be represented by a set of sine and cosine indices using the following 
equations: 

r / ̂  % sine index = sin ^360^ - ^ 
365 180 

cos index = cos 
L \ A /-

360 TZ 
365 180 L V̂ —̂ A /-

These two indices define the position of the day of the year on which the storm occurred. 
By including the indices as additional inputs to an ANN, the seasonality will be modelled. 

Shown in Table 12 are the results from the network with the addition input of time indices. 
Although the results showed a comparable performance with those of the network without 
the time indices (NMSE of 0.64), they did not provide the expected better results. This may 



WRL Research Report 194 70. 

be due to the rainfall series being considered in this study having a 15-min interval. For 
such a short duration time series, the process is governed by local fluctuations. The long 
term seasonal effect is a secondary factor and hence will have only a secondary influence 
on the prediction. Another reason may be due to insufficient data to completely cover each 
day of the year for training the network. 

TABLE 12 
NETWORKS WITH INDICES OF THE DAY OF A YEAR 
Network NMSE 

Training Monitoring Validation 
Stopping 

Epoch 
MLFNLag 1 

(18-24-16) 0.49 0.70 0.65 400 

An index to indicate the month of an event was attempted also. The months were 
represented by a set of sine and cosine indices using the following equations: 

sine index = sin 

cos index = cos 

m ̂ 360 Y ^ 
A 

m 

12 

12 

180 
K 

/J 
\ 

180 

where m denotes the month of a year, with the value ranges from 1 to 12 representing 
January to December respectively. 

Presented in Table 13 are the results of the testing. The results show a small improvement 
over that of the network using day indices as input. There was, however, no significant 
improvement in predictability over the networks without the seasonal indicator. 

TABLE 13 
NETWORKS WITH INDICES OF THE MONTH OF A YEAR 

Network NMSE 
Training Monitoring Validation 

Stopping 
Epoch 

MLFN Lag 1 
(18-24-16) 0.49 0.69 0.64 400 
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4.5.4 Comparison with Multiple Linear Regression Model 

The neural networks were compared with a multiple linear regression model. The aim of 

this comparison is to evaluate the benefit of using nonlinear neural networks for the 

problem of rainfall forecasting. 

The rainfall of time (t+1) at a gauge was forecast by using a multiple linear regression 

based on the rainfall recorded at the 16 gauges during the previous time step (t). For the 16 

gauges in the catchment, there are a total of 16 linear multiple regression models. Presented 

in Table 14 are the prediction errors for the 16 gauges obtained from use of the multiple 

linear regression model. This model was calibrated with the training data set and validated 

with the validation data set. 

TABLE 14 
RESULTS OF MULTIPLE LINEAR REGRESSION 

Model Type 

Normalised Mean Squared Error (NMSE) 

Model Type Calibration Validation 
Multiple Linear 

Regression 
0.50 0.64 

It was found that the linear model had comparable performance with many of the ANNs. 

The two ANNs which yielded better results than the linear regression model were the 

TDNN with two input windows and the MLFN trained with CasCor algorithm; the NMSE 

for their validation tests were 0.63 and 0.61 respectively. 

The reasons why the other more complex non-linear networks do not show better results 

than the linear regression model may be due to the following factors. 

• The performance of a model largely depends on the nature of the data. The 

rainfall data contains a lot of noise which makes generalisation of the time 

series features with the more sophisticated ANNs difficult. Although they 

approximated the training data more closely, they did not perform better in 

validation tests. 
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• The rainfall data was transformed by a log function. This transformation 
linearises the data, thus facilitating the modelling of the data by a multiple 
linear regression model. 

4.6 Summary 
Rainfall forecasting for a number of rain gauge positions using ANNs was the focus of this 
chapter. Three alternative types of ANN suitable for this task were identified, developed 
and compared in a systematic manner. These networks were: 

• multilayer feedforward neural network (MLFN) 
• Elman partial recurrent neural network (Elman) 
• time delay neural network (TDNN) 

All the above alternative networks were found suitable for provision of forecasts of rainfall 
one time step (15 minutes) ahead. 

In addition, the following points were observed. 
• For each type of network, there existed an optimal complexity which was 

determined by a combined effect of the number of hidden nodes and the lag of 
the network. 

• All three altemative networks had comparable performance when they were 
developed and trained to reach their optimal complexities. 

• Based on the available data, the 15-min rainfall time series did not seem to 
possess a long term memory. Therefore the networks with lower lag slightly 
outperformed the ones with higher lag. 

An investigation of the effect of spatial inputs revealed that there existed an optimal limit 
of spatial information for inclusion into the network. Either too much or too little spatial 
information would result in a decreased performance. For the available rainfall data in this 
study, the optimal spatial input would be the eight nearest neighbouring gauges for a lag-1 
network. 
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Further tests were carried out to ascertain the feasibility of improving the network 

performance. The following points were derived from these test results. 

• The use of CasCor training algorithm showed an improvement of network 

performance. However, there is no objective way to set an optimal error 

tolerance. 

• The use of additional nodes to predict the wet or dry period for the next time 

step did not give better results. On the contrary, the performance of the network 

was decreased due to additional errors introduced by incorrect prediction in wet 

or dry period together with an increase of connection weights. 

• Adding an indicator for the time of year to model the seasonal effect was not 

successful because the short-term rainfall series is governed by local 

fluctuations rather than long term seasonal effects. 

• A multiple linear regression model showed better performance than some 

ANNs with higher orders of lag. The linear regression model was outperformed 

by the TDNN with two input windows and the MLFN trained by the CasCor. 

The reason the more sophisticated ANNs did not produce better results than the 

linear model was that the former networks would tend to overleam the training 

samples thus giving decreased performance in validation, and that the rainfall 

time series data had been linearised by a log function. 
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5. INTEGRATION OF AN ANN AND A GIS FOR RAINFALL 
FORECASTING 

The ANN models developed in Chapter 4 are integrated with a spatial model developed 

within a Geographic Information System (GIS) environment to form a spatial rainfall 

forecasting model, which provides a rainfall forecast for each pixel within a catchment. 

Subcatchment rainfalls are obtained by averaging the rainfall values at pixels within the 

corresponding subcatchments. The accuracy of the model is ascertained by predicting 

artificial storm events generated for the study catchment. 

5.1 Integrating an ANN and a GIS 

The integration of ANN and GIS provides a powerful spatial rainfall forecasting model by 

merging the merits of the two separate models. 

It is assumed that the rainfall measured at gauges is the only available rainfall data for the 

study catchment. In such a situation there are two alternate ways to integrate the two 

models. One approach is to use the GIS to estimate rainfall at each pixel of the study 

catchment based on measured rainfall at gauges. This generates hundreds of estimated 

pixel rainfall values within the catchment. The ANN is then used to map the estimates of 

rainfall at the pixels and to directly produce a rainfall forecast for each pixel within the 

catchment. The alternate approach is to use the ANN to forecast rainfall at the gauge sites 

and then to use the GIS to generate the forecast rainfall for all pixels within the study 

catchment. The latter approach was adopted in this study because the number of parameters 

for the ANN would be dramatically reduced as compared to the former approach. 

Moreover, the time required for training the ANN would be much faster. 

The first approach (of using catchment pixels as both input and output) is not feasible 

because it involves the use of a large number of input and output nodes and, consequently, 

the ANN contains a large number of parameters (weights) for which values need to be 

estimated. For example, the total number of pixels (500m x 500m) of the study catchment 

is 439. A 3-layer MLFN with 439 input nodes, 439 output nodes and 2 hidden nodes 

comprises 1756 connections (439x2+439x2, excluding the biases). Training such a large 
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network is extremely time consuming. Moreover, a network with so many free parameters 

requires a large number of data sets which generally are not available in practice. 

5.2 Methodology 

There are 16 rain gauges in the study catchment. As such, the ANN was designed to 

contain 16 inputs and 16 outputs for the 16 rain gauges. After the forecast of rainfall at the 

16 gauges were made, the information was passed forward to the GIS where a spline 

surface was generated to obtain rainfall at each pixel within the study catchment. 

In order to test the accuracy of the model, artificial storm events were generated. The 

forecast rainfall at each pixel then was compared with the actual value of rainfall to 

ascertain the forecast accuracy. 

5.2.1 Autoregressive Storm Events 

The artificial storm events were assumed to be a random process with some memory. 

Accordingly, they were generated by a mixmre of autoregressive and random equations 

which have the following characteristics. 

First, a storm centre was randomly started at a point close to or within the study catchment. 

According to long term records, the predominant wind direction of Sydney is North East, 

so in generating the starting points of a storm event, a higher weighting was given to the 

North-East comer of the catchment. Once the starting position was generated the storm 

would move towards the centre of the catchment. During the movement, the storm centres 

would deviate from the initial direction and be govemed by the following autoregressive 

equation: 

direction(t) = 0.8 • direction(O) + 0.2 • direction(t-l) + e(t) (17) 

where direction[t] is the direction of storm centre at time t 

direction[0] is the initial direction of storm movement 

e[t] is random deviation of storm movement which had a mean of 

0° and a standard deviation of 15° 
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The intensity of the storm centre also was an autoregressive process and governed by the 
following expression. 

Pmax(t) = 0.2 . Pn,ax(t-1) + 0.8 • e(t) 

where pmax(t) is the rainfall intensity at the storm centre (nmi/hr) at time t; 
e(t) is the random fluctuation of intensity which has a mean of 30 

mm/hr and a standard deviation of 5 nmi/hr. 

The spatial distribution of rainfall had a Gaussian pattern which was governed by the 
following expression: 

Pt(x,y) = P™ax(t)e-̂ z (19) 

where Pt(x,y) is the rainfall intensity (nmi/hr) at a pixel (x,y) at time t 
Pmax(t) is rainfall intensity at centre of storm (mm/hr) at time t 
a is a coefficient which controls the spread of the rainfall, a 

constant value of 2.25x10'® was adopted in this study to limit 
the spatial extent of the storm event to the study catchment 

z s a position variable defined as (x^+y )̂̂ '̂  

The speed of movement of the storm centre was a random process with a mean speed of 
12km/hr, and a standard deviation of 2km/hr. 

As an illustration, shown in Figure 16 is the storm centre track as a storm moves across the 
catchment. The catchment is coloured yellow while the initial position of the storm centre 
is labelled by 0, the next position is labelled by 1, and so on. This storm moved across the 
catchment form the north east comer to the south west comer during its life span which 
was 2.5 hours (15 min x 10 time steps). 
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Figure 16 - Track of Storm Centres 

In order to train and test the rainfall forecasting model, a total of 150 artificial storms were 

generated. Of these storm events, 100 were used for training, 25 for monitoring, and 25 for 

validation. 

The storm centre tracks for all 25 validation events are shown in Appendix E; these tracks 

are representative of all the generated storm events. 

5.2.2 Components of the Spatial Rainfall Forecasting Model 

As previously discussed, the spatial rainfall forecasting model consists of two major 

components; these are the artificial neural network and a geographic information system. 

The ANN adopted for this study was an Elman network with 16 inputs, 16 outputs and 4 

context units. This network was adopted to avoid the need for determining the time lag 

explicitly. 
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There were 16 input nodes and 16 output nodes in the Elman network representing the 

present and future rainfall values at the 16 gauges of the catchment. Based on the present 

rainfall information, the network would produce one time step ahead (15 minute) forecasts 

for the 16 gauges. The procedure was first to extract rainfall values at the 16 gauge 

positions from the artificial storms as if they were recorded during the storm events. Then, 

the rainfall values at gauges were input to the Elman network. After processing, the 

forecast rainfalls at the gauge positions were obtained from the outputs of the network. 

The rainfall forecasts at 16 gauges were then passed to the GIS where the spatial rainfall 

model was invoked to estimate the rainfall depth for each pixel within the catchment. The 

Spline model developed within the GIS environment was adopted since it was the best 

performed spatial model during the tests described in Luk and Ball (1996). Subcatchment 

rainfalls were determined by averaging pixel rainfall values within subcatchment 

boundaries. 

All the above procedures were automated thus simulating real time operation. 

5.3 Test Results and Discussions 

In ascertaining the accuracy of the spatial rainfall forecasts, both visual and arithmetic 
comparisons were established. The spatial rainfall forecasting model was validated on the 
following aspects. 

• Replicating the real rainfall patterns (visual inspection). 

• Tracking the movement of storm centres (visual inspection). 

• Predicted rainfall at individual pixels. 

• Predicted rainfall for subcatchments. 

5.3.1 Moving Storm Patterns (Visual Inspection) 

Shown in Figures 17 to 26 are the distribution of rainfall over the study catchment during 

the life span of validation storm event no. 138. Similar maps were obtained for other 

events. For each map, the rainfall intensity was colour-coded to facilitate visual inspection. 

Each figure consists of three pieces of information: the actual distribution of rainfall is 
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shown at the top of the figure, the forecast rainfall pattern is shown in the middle, while 

shown at the bottom of the figure is the distribution of error obtained from subtracting the 

forecast rainfall by actual rainfall at each pixel. 

As can be seen from the figures, the spatial rainfall forecasting model had good 

performance. The Gaussian spatial patterns were correctly preserved for all time steps. 
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Figure 17 - Artificial Storm Event No. 138 - Time Step 1 
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Figure 18 - Artificial Storm Event No. 138 - Time Step 2 
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Figure 19 - Artificial Storm Event No. 138 - Time Step 3 
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Figure 20 - Artificial Storm Event No. 138 - Time Step 4 
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Figure 21 - Artificial Storm Event No. 138 - Time Step 5 
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Figure 22 - Artificial Storm Event No. 138 - Time Step 6 
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Figure 23 - Artificial Storm Event No. 138 - Time Step 7 
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Figure 24 • Artificial Storm Event No. 138 - Time Step 8 
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Figure 25 - Artificial Storm Event No. 138 - Time Step 9 
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Figure 26 - Artificial Storm Event No. 138 - Time Step 10 
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5.3.2 Tracking of Storm Centres (Visual Inspection) 

Shown in Figure 27 is a comparison of the actual storm centre track with the predicted 

storm centre track. 
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Legend: Actual Represented by Number̂  Forecasted by Alphabet 
25 
2 4 
23 
22 
21 
20 
19 
18 
17 
16 
15 
1 4 
13 
12 
11 
lO 

9 
8 
7 
6 
5 
4 
3 
2 
1 
O 

l__l-J._X_L-l—I—I—I-I I I I I I I I I --J-4-4.-4.-1--I—I—I—I-
I I I I t I I I I 

I l l + —I—I-I I I I I I I I 1 —i-t-t-r-r-r-i—i—i-I I I I I I I I I -n--r-T-T-r-r-i—i—i-
- l - l - T - T T T T - n -' _1 J. i. i_ !_'_'_ r r I • I"I 'I 'I "I "I 

I I 

I 
- t 
-t I 
- r 
-f 
~T 

I I I I I .L_l I I-J I I I I I .U-\—I—I--I I I I I I -I--. I 1—I--Í-
-\--t--\--i—I-

J_J. I I 
I l l ._l_J._J.-i.-L_L.J_J_ I I I I I I I I -4-4.-4.-4.-L-L-I-4- I • 

I I I I I I I I ) I 
1 I I I 1 I I I I I I I I 

I I I I I I I I i I TT-T-r-r- r l - rTi-T-
T T - T T - r - r - n " • J.-L-L-LJ_ J_ J_I. 1"T I I I I I I 

1.2 l._L._I_ J _ J _ l . 

I I I I I T-i—rn--T I I I I I T - r - f i - T .'-_L_L_'-J. I I I I I .L_i._i__l_ J. I I I I I 

I I I X I - r - n - ^ T -

I I I I I I I I I Y I I I I I I I _l _ P>_ X _ J I I I I I L I T I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I L I > > • • > • • 
I I I I I I 

I I I I 
- T T - T - r -I I I I 
- J - l - l -L-I I 1 I _J-J.-i.-L-

I I I •I—I—I-I I I 
I I I I I t I—I-I I I 

r-r • I I I 

I I T — T I I 
I --J I I I I I I I - J-4-4.-L-L-

-4 

- 1 

"1 - J I 

-4- + --»--4--
I I I I 
I I I 1 

- t - f - r - r -
--r-T-T-4^-I I I I -TT-TT-_ J_J.-L-L_ I I I I I I lO I 

L-L-LJ_ I I I I 
¡-.LJ_J_ 
L.I I 1_ I I I I l-.l—I—1_ I I I I —I—I-I I I I I--I—I—I-I I I I I--I—I—I-I I I I r-i—I—i-|_-j__j_.j_ 
r9i I 
l . - L . - l _ J _ I I I I 

VT-T I 
- J - l -1_L-
- J_J.-1-L_ I I I I 

I I I I I I _______— - -
_i_L_L5L4LJ I I I "r I _l_|fc_l I I-J I I I I I I _4._|&-l—I—1-4 I I I I I I _4._ffi_l._l—1-4 I I I I I I -t-h-h-l-H-H 4 1 I I I I - r--r-I--1--I 
1- r ~ r T -r n- T T • T " T - r • 

L-LJ_J 
L-L J_ J 

l_ I _ ~i ~ T ~ _J_I_ I I _J_J_ 
-4-4-4.-L-L-L-l-4_4_4_ I I I I I I I I I I 

I I I I --t--r-r-r-

I I I I I I - | - r - r - r - r " i 
_t_L_«._l__J_4 I I I I I I I 

T T - T T ' 
_4_4. t I 

I I 
I I 

I I —l-H 
I I I I 
I I I I 
r-r-i—i-
r- 'r-rT i_ i_ I I I 'I T T U_l__i_ J. I I I I 

- i - i -I I •1-t-I I l-T-
l-T' I I . _ _ _. 
. J_l. I I 

r-

H H H H H H H H H H N N N N N N N N N N 

Figure 27 - Forecasting Movement of Storm Centres 

The actual track of storm centres was represented by numbers, whereas the forecast track is 

shown by alphabetic characters. As shown in Figure 27 both tracks had similar 

characteristics. In particular, the forecasting model did very well in tracking the storm 

centres from time steps 2 to 8. There were, however, larger errors in forecasting the centres 

at time steps 9 and 10. These errors resulted in an overestimation of the spatial rainfall 

distribution as shown in Figures 25 and 26 previously. 
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Presented in Table 15 is the error in the predicted storm centre for each time step during 

storm event 138 while presented in Table 16 is a summary of the characteristics of the 

errors. 

TABLE 15 
FORECAST ERRORS FOR STORM NO. 138 

Time Step Intensity 
(mm/15-min) 

Distance 
(km) 

Angle 
(degree) 

1 -4.0 0.11 -47.2 
2 -4.6 0.64 12.3 
3 -5.8 -0.61 28.3 
4 -1.5 -0.66 16.4 
5 -3.5 -0.56 -15.8 
6 1.8 -0.22 25.4 
7 -3.1 -1.05 -10.7 
8 1.8 -1.00 -1.5 
9 -2.0 -0.34 109.4 
10 -3.6 -0.17 74.8 

TABLE 16 

ERROR STATISTICS FOR STORM NO. 138 

Statistics Intensity 
(mm/15-min) 

Distance 
(km) 

Angle 
(degree) 

ffigh 1.8 -0.22 28.3 
Low -5.8 -1.05 -15.8 
Mean -1.7 -0.68 7.0 

Median -2.3 -0.63 7.4 
Standard Deviation 3.1 0.31 18.9 

Skewness 0.1 0.18 -0.1 

There are large errors in the first and the last two time steps. The errors might be due to 

initiation and boundary conditions for the model. Due to the uncertainty in these time steps, 

the error characteristics presented in Table 16 do not include values of the first and last two 

time steps. 

Considering the fact that the average intensity of storm no. 138 was 28.9mm/15-min, the 

error in the forecast rainfall intensity was small. In addition, the prediction in distance was 

excellent; the range of error was only from -1.05 to -0.22 km with a mean error of -0.68, 
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which means that the storm centre was predicted in an adjacent pixel to that where it 
actually occurred. However, there was significant error in predicting the direction of storm 
centres. The range of error of storm direction was between -15.8° and 28.3° with a standard 
deviation as high as 18.9°. 

Similar statistics were calculated for all 25 validation storm events and given in Appendix 
F. A summary of the results is presented in Table 17. 

TABLE 17 
ERROR STATISTICS FOR ALL 25 VALIDATION STORM EVENTS 
Statistics Intensity Distance Angle 

(mm/15-min) (km) (degree) 
High 8.2 0.73 178.3 
Low -16.8 -1.68 -172.5 
Mean -2.8 -0.62 -0.9 

Median -2.9 -0.62 0.6 
Standard Deviation 4.3 0.49 53.0 

Skewness -0.1 0.27 -0.03 

The error statistics show that the ANN produced excellent prediction on the rainfall 
intensity and distance of the storm centre. The network, however, was not able to provide 
accurate prediction of the storm direction. The range of error was between -172° and 178° 
with a mean of 0.6° and standard deviation of 53°. The skew of -0.03 suggests that the 
error in angle is normally distributed which may be interpreted as white noise. 

These results are encouraging because the mean distance error is 0.6 km which is only 
slightly larger than a pixel size of the catchment grid. 

5.3.3 Rainfall at Pixels 
The errors in forecast at each catchment pixel were quantitatively evaluated. Shown in 
Table 18 are the normalised mean squared errors of each time step for all 25 validation 
storm events. 
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TABLE 18 
NORMALISED MEAN SQUARED ERRORS FOR 

ALL 25 VALIDATAION STORM EVENTS 

Event 
NMSE at Each Time Step 

Event 1 2 3 4 5 6 7 8 9 10 Mean 
126 0.444 0.245 0.227 0.429 0.015 0.028 0.072 0.162 — 0.203 
127 0.063 0.875 0.506 0.482 0.042 0.083 0.101 0.027 0.055 — 0.248 
128 0.246 0.227 0.156 0.232 0.327 0.436 0.312 0.046 0.097 0.193 0.227 
129 0.362 0.046 0.177 0.161 0.341 0.156 0.254 0.617 0.587 0.163 0.286 
130 0.328 0.336 0.173 0.056 0.150 0.177 0.554 0.116 0.196 0.193 

0.326 
0.237 

131 0.16 0.512 0.305 0.01 0.015 0.031 0.185 0.066 0.098 — 0.154 
132 0.469 0.264 0.321 0.078 0.07 0.239 0.454 0.348 0.215 0.143 

0.645 
0.295 

133 0.703 0.123 0.267 0.199 0.206 0.074 0.161 0.299 0.124 — 0.240 
134 0.175 0.328 0.328 0.074 0.175 0.168 0.04 0.055 0.194 — 0.171 
135 0.145 0.092 0.266 1.643 0.167 0.307 0.241 0.132 0.176 — 0.352 
136 0.884 0.35 0.12 0.503 0.202 0.236 0.14 0.144 0.137 0.14 0.286 
137 0.07 0.443 0.213 0.224 0.615 0.375 0.063 0.221 — 0.278 
138 0.13 0.086 0.286 0.139 0.127 0.081 0.026 0.176 0.199 0.396 0.165 
139 0.15 0.245 0.301 0.427 0.062 0.054 0.082 0.08 — — 0.175 
140 1.561 0.165 0.388 0.244 0.419 0.21 0.237 0.41 0.101 0.059 

0.150 
0.189 

0.344 

141 4.422 0.026 0.826 0.147 0.217 0.199 0.278 0.053 0.048 0.113 
0.133 

0.587 

142 0.039 0.178 0.056 0.134 0.083 0.167 0.286 0.024 0.299 1.755 0.302 
143 0.416 0.028 0.383 0.07 0.809 0.441 0.224 0.117 0.165 0.147 0.280 
144 0.756 0.181 0.305 0.222 0.191 0.204 0.347 0.207 0.261 — 0.297 
145 0.703 0.112 0.132 0.651 0.103 2.333 0.211 0.226 0.115 0.094 

0.045 
0.430 

146 0.434 0.196 0.13 0.128 0.257 0.056 0.045 — — — 0.178 
147 0.093 0.655 0.104 0.402 0.355 0.069 0.071 0.009 0.059 — 0.202 
148 0.149 0.107 0.073 0.093 0.207 0.073 0.15 0.17 0.185 — 0.134 
149 0.063 0.186 0.09 0.102 0.476 0.12 0.285 0.041 0.051 — 0.157 
150 1.075 0.432 0.391 0.097 0.566 0.296 0.251 0.08 0.073 0.156 0.342 

Overall Mean NMSE 0.263 
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The overall mean NMSE is 0.263 which is considered remarkable. The spatial distribution 
of rainfall was accurately forecast. There were, however, several abnormal figures as 
summarised in the following table. 

TABLE 19 
ABNORMAL FORECAST ERRORS 
Event NMSE Time Step 

140 1.561 1 
141 4.422 1 
150 1.075 1 

It is noted that all these incidents occurred at the first time step. After these incidents, the 
ANN accurately forecast the remainder of the storm movement and intensities. It is 
believed that the errors were due to the ANN not being able to recognise the initial position 
of the storm centres. An inspection of the storm tracks shown in Appendix E revealed that 
Event 140 started from the North West direction, Event 141 from the West, and Event 150 
from the South East comer. These three initial positions received less weighting when 
generating the starting positions of the artificial storms. Consequently there is a lack of 
training samples for these events. 

Shown in Figures 28 to 32 are plots of the forecast rainfall as a function of actual rainfall 
for validation event number 138. Similar plots were obtained for other events. A measure 
of error can be obtained from the vertical distance of the plotted forecasts from the line of 
exact agreement. Also shown in the figure are ±20% error bars from the line of exact 
agreement. With the aid of these lines, the magnitude and distribution of errors can be 
derived from the plots. 

In general the forecasts showed good agreement with the actual rainfall. The best 
prediction was at time step no. 7 where the NMSE was 0.026, whereas the worst prediction 
occurred at time step no. 10 where the NMSE was 0.396. The error was due to incorrect 
prediction of the storm centre and as a result of this the distribution of rainfall intensity was 
forecast incorrectly. 
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Figure 28 - Predicted vs. Actual Rainfall Intensity for 
Storm Event No. 138 (time steps 1 and 2) 
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Figure 29 - Predicted vs. Actual Rainfall Intensity for 
Storm Event No. 138 (time steps 3 and 4) 
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Figure 30 - Predicted vs. Actual Rainfall Intensity for 
Storm Event No. 138 (time steps 5 and 6) 
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Figure 31 - Predicted vs. Actual Rainfall Intensity for 
Storm Event No. 138 (time steps 7 and 8) 
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Figure 32 - Predicted vs. Actual Rainfall Intensity for 
Storm Event No. 138 (time steps 9 and 10) 
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5.3.3 Mean Rainfall at Subcatchments 

In addition to the error measure based on pixel estimates, it is possible to obtain an error 

measure based on the forecast rainfall intensity at the centroid of each subcatchment. The 

subcatchment mean rainfalls forecasted by the spatial rainfall forecasting model for all 25 

validation events are given in Appendix G. 

Shown in Figures 33 and 34 are boxplots of relative errors of subcatchment rainfall for all 

25 validation events. The boxplots are based on the information given in Appendix G. A 

boxplot, as used previously, consists of a line in the middle of the box denoting the 50% 

quantile (median), the box with edges representing 25% and 75% quantiles, and whiskers 

that extend to the 5% and 95% quantiles of the error statistics. 

In general, over the 25 validation events the majority of relative errors are within ± 20%, 

which is considered a reasonable result. There are, however, quite a number of outliners. 

An inspection of the values shown in Appendix G revealed that these outliners occurred 

when the actual subcatchment rainfall values were very small. As such, a small error in 

estimation would result in a large percentage error. It should be noted that the small 

variation in absolute rainfall values would not severely affect the subsequent runoff 

estimation. 
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Figure 33 - Boxplots of Relative Error of Subcatchment Rainfall for 
Validation Event Nos. 126 -137 
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Storm No. 138 Storm No. 139 Storm No. 140 

Storm No. 141 Storm No. 142 Storm No. 143 

Storm No. 144 Storm No. 145 Storm No. 146 

Storm No. 147 Storm No. 148 Storm No. 149 

Storm No. 150 
Figure 34 - Boxplots of Relative Error for Validation Event Nos. 138 -150 



WRL Research Report 194 103. 

In addition to subcatchment rainfalls, total volumes of rainfall were determined and are 

summarised in Table 20 below. 

TABLE 20 
TOTAL VOLUME OF RAINFALL FOR 25 VALIDATION EVENTS 

Storm Event 
Total Volume of Rainfall 

(nmi-km^) % error Storm Event 

Actual Predicted 

% error 

126 13589.5 13435.0 -1.14 

127 16346.8 15370.2 -5.97 

128 17956.0 17647.5 -1.72 

129 17496.5 15855.9 -9.38 

130 18445.0 18166.7 -1.51 

131 16197.8 15996.1 -1.25 

132 18514.9 17684.5 -4.48 

133 13851.3 13058.7 -5.72 

134 16987.5 15804.5 -6.96 

135 15142.8 15691.8 3.63 

136 19046.4 17646.8 -7.35 

137 14781.8 14187.5 -4.02 

138 16482.0 16565.5 0.51 

139 14990.6 14740.4 -1.67 

140 18876.8 17643.8 -6.53 

141 16277.2 16949.6 4.13 

142 16823.8 17643.5 4.87 

143 18962.4 18262.0 -3.69 

144 15799.2 15694.5 -0.66 

145 18290.4 17132.6 -6.33 

146 12324.9 12278.4 -0.38 

147 17346.8 16535.3 -4.68 

148 14957.3 14837.1 -0.80 

149 15992.7 15869.4 -0.77 

150 16446.3 15086.7 -8.27 
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In general the neural network produced excellent forecast of the volume of rainfall for all 

25 validation events. The error ranges from -9.38% to +4.87%, with a mean of -2.81%. 

The closest prediction was -0.38% for storm event no. 146. 

5.4 Summary 

A spatial rainfall forecasting model was developed. The forecasting model integrated an 

artificial neural network and a geographic information system, producing forecasts of the 

rainfall spatial distribution over a catchment one time step or 15 minutes ahead. The 

accuracy of the spatial rainfall forecasting model was ascertained empirically by testing 

artificial storm events with random movement and Gaussian spatial patterns. 

The forecasting model accurately preserved the spatial rainfall patterns and produced 

forecasts with good agreement to the actual rainfall values. On forecasting rainfall at each 

pixel of the study catchment, the overall averaged normalised mean squared errors over 25 

validation events was 0.263. This result was considered remarkable. 

On forecasting subcatchment rainfalls, the model produced reasonable results. More than 

50% of the forecasts were within ± 20% relative errors in percentage. In predicting the 

volume of rainfall, the range of error was (-9.4%, +4.9%), with a mean of -2.8%. The 

most accurate forecast for a storm event had a relative error as small as -0.38%. 
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6. CONCLUSION 

Rainfall forecasting using Artificial Neural Networks (ANNs) has been the focus of this 

report. The ANNs are integrated with the thin plate spline spatial model developed within a 

Geographic Information System environment (Luk and Ball, 1996). The integrated model 

has enabled a reasonable forecast of the spatial distribution of rainfall over the study 

catchment for one time step into the future. The integrated model developed in this study 

has the following distinctive characteristics. 

• The model has a spatially and temporally distributed architecture. It receives 

present rainfall values at multiple gauge positions and produces rainfall 

forecasts at every pixel of the study catchment. The accuracy of the model was 

validated empirically by artificial storm events with a random movement and a 

Gaussian spatial pattern. 

• The model has been developed for real-time operation. The inputs to the model 

are ASCII rainfall data at multiple gauge positions. The output are ASCII 

rainfall values for each pixel as well as a plot of colour-coded rainfall pattern on 

the computer screen. 

• With collection of new rainfall data, the model can be re-trained to improve its 

accuracy. 

The accuracy of the model was good. The model accurately preserved the spatial rainfall 

patterns and produced forecasts with good agreement to the actual rainfall values. On 

forecasting rainfall at each pixel of the study catchment, the average normalised mean 

squared error over 25 validation events was 0.263. On forecasting subcatchment rainfalls, 

the model produced good results. More than 50% of the forecasts were within ±20% 

relative errors in percentage. In predicting the rainfall volume, the range of error was 

between -9.4% and 4.9%, with a mean of -2.8%. The most accurate forecast for a storm 

event had a relative error as small as -0.38%. 

Another major aspect of this study is the investigation of the impact of temporal and spatial 

rainfall inputs on the accuracy of the rainfall model. The investigation was carried out 

empirically by comparing the results of networks with different numbers of temporal and 
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spatial inputs. Based on the results of a validation test on 34 real storm events, the 

following points were observed: 

• there existed an optimal limit of spatial information for inclusion into the 

network. The optimal number of spatial inputs was rainfall values from eight 

gauges. Either too much or too little spatial information introduced to the 

network would result in decreased performance; and 

• for the temporal domain, a lag-1 network in general showed the best 

performance. 

During the development of the rainfall forecasting model, three alternative types of 

artificial neural networks were identified, developed and compared. These networks are: 

• multilayer feedforward neural network; 

• Elman partial recurrent neural network; and 

• time delay neural network 

It was found that with careful development all the above alternative networks were able to 

make reasonable forecast of rainfall one time step ahead for multiple locations of the study 

catchment. The following points were derived from the test results: 

• for each type of network, there existed an optimal complexity which was 

determined by a combined effect of the number of hidden nodes and the lag of 

the network; 

• all three alternative networks had comparable performance when they were 

developed and trained to reach their optimal complexities; and 

• based on analysis of the available data, the 15-min rainfall time series did not 

seem to posses a long term memory, therefore the networks with lower lag 

slightly outperformed the ones with higher lag. 

A systematic approach to develop the ANNs has been highlighted in the study. Four stages 

of development were identified: 

• selection of appropriate network; 

• determination of network complexity; 
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• estimation of parameters; and 

• evaluation of performance. 

A comprehensive review of the various alternative options/techniques for these four stages 

of development was presented in this study. A demonstration of the network development 

approach was made through a case study of forecasting rainfall for the Upper Parramatta 

River Catchment. 
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APPENDIX A 

REAL STORM EVENTS 

Table A. 1 - Storm Type 

No. Date Storm Type Remark 
1 5.11.92 Frontal 
2 6.12.92 Frontal 
3 17.2.93 Convective 
4 7.3.93 Frontal With convective cells 
5 15.4.93 Convective 
6 8.7.93 Convective 
7 20.11.93 Frontal With convective cells 
8 12.2.94 Convective 
9 15.2.94 Convective 
10 7.3.94 Convective 
11 13.4.94 Convective 
12 27.6.94 Frontal 
13 9.9.94 Convective 
14 2.3.95 Convective 
15 4.3.95 Convective 
16 5.3.95 Convective 
17 15.3.95 Frontal 
18 13.5.95 Frontal With convective cells 
19 17.5.95 Frontal 
20 16.6.95 Convective 
21 24.9.95 Convective 
22 25.9.95 Convective 
23 5.12.95 Frontal With convective cells 
24 10.12.95 Frontal With convective cells 
25 2.1.96 Convective 
26 6.1.96 Convective 
27 24.1.96 Convective 
28 11.4.96 Convective 
29 12.4.96 Convective 
30 2.5.96 Convective 
31 3.5.96 Convective 
32 4.5.96 Convective 
33 27.7.96 Frontal With convective cells 
34 31.8.96 Frontal 

Table A.2 Storm Type Statistics 

Season Frontal Storm Convective Storm 
Spring 3 3 

Summer 2 6 
Autumn 4 11 
Winter 3 2 
Total 12 22 
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APPENDIX A 
REAL STORM EVENTS 

Table A.3 - Detail of the Storm Events 

No. Date File name 
No. of 
15-mm 
rainfall 
values 

Remark 

1 5.11.92 2k05.16g 96 All gauges working. 
2 6.12.92 2106.16g 9 Gauge no. 7255 and 7285 not working. Use Spline to 

estimate the missing data. 
3 17.2.93 3bl7.16g 23 7209 not working. Use Spline to estimate missing data. 
4 7.3.93 3c07.16g 16 7209 not working. Use Spline to estimate missing data. 
5 15.4.93 3dl5.16g 76 7209 not working. Use Spline to estimate missing data. 
6 8.7.93 3K08.16g 53 7209 not working. Use Spline to estimate missing data. 
7 20.11.93 3k20.16g 37 All gauges working. 
8 12.2.94 4bl2.16g 72 All gauges working. 
9 15.2.94 4bl5.16g 24 All gauges working. 
10 7.3.94 4c07.16g 34 All gauges working. 
11 13.4.94 4dl3.16g 33 7209 not working. Use Spline to estimate missing data. 
12 27.6.94 4f27.16g 86 All gauges working. 
13 9.9.94 4i09.16g 53 All gauges working. 
14 2.3.95 5c02.16g 22 All gauges working. 
15 4.3.95 5c04.16g 70 All gauges working. 
16 5.3.95 5c05.16g 96 All gauges working. 
17 15.3.95 5cl5.16g 20 7287 not working. Use spline to estimate missing data. 
18 13.5.95 5el3.16g 33 7263 not working. Use spline to estimate missing data. 
19 17.5.95 5el7.16g 85 All gauges working. 
20 16.6.95 5fl6.16g 51 All gauges working 
21 24.9.95 5i24.16g 28 Gauges 7209,7255,7259 and 7299 not working. Use 

spline to estimate missing data. 
22 25.9.95 5i25.16g 83 Gauges 7209,7255,7259 and 7299 not working. Use 

spline to estimate missing data. 
23 5.12.95 5105.16g 31 Gauges 7209 and 7299 not working. Use spline to 

estimate missing data. 
24 10.12.95 5110.16g 14 Gauges 7209 and 7299 not working. Use spline to 

estimate missing data. 
25 2.1.96 6a02.16g 27 Gauge 7209 not working. Use Spline to estimate 

missing data. 
26 6.1.96 6a06.16g 87 Gauge 7299 not working. Use spline to estimate 

missing data. 
27 24.1.96 6a24.16g 44 All gauges working. 
28 11.4.96 6dll.l6g 26 All gauges working. 
29 12.4.96 6dl2.16g 36 All gauges working. 
30 2.5.96 6e02.16g 89 All gauges working. 
31 3.5.96 6e03.16g 79 All gauges working. 
32 4.5.96 6e04.16g 96 All gauges working. 
33 27.7.96 6g27.16g 68 r i y j not working. Use spline to estimate missing data. 34 31.8.96 6h31.16g 52 All gauges workinjj. 
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APPENDIX B SUBDmSON OF DATA FOR ARTIFICIAL NEURAL NETWORKS 
Table B.l - Training and Monitoring 

No. Ref. No. Date Duration Max. Rainfall 
(mm/15min) 

Time to Max. 
Rainfall̂ ^^ 

No. of 15-min 
Rainfall Values 

(purpose) 
1 6a24 24 Jan 96 l l h r 6 4 hr 30 min 44 

(training) 
2 5124 24 Sep 95 7hr 25 4hr 28 

(training) 
3 3k20 20 Nov 93 9 hr 15 min 8 1 hr 15 min 37 

(training) 
4 3c07 7 Mar 93 4hr 16 45 min 16 

(training) 
5 4f27 27Jun94 8hr 3 1 hr 30 min 86 

(training) 
6 3g08 8Jul93 13 hr 15 min 5 1 hr 45 min 53 

(training) 
7 6h31 31 Aug 96 13 hr 18 5 hr 30 min 52 

(training) 
8 4bl2 12 Feb 94 18 hr 20 10 hr 72 

(training) 
9 5c02 2 Mar 95 5 hr 30 min 25 3 hr 30 min 22 

(training) 
10 5fl6 16Jun95 12 hr 45 min 9 1 hr 30 min 51 

(training) 
11 6dl2 12 Apr 96 6 hr 30 min 10 1 hr 30 min 36 

(training) 
12 6e02 2 May 96 22 hr 15 min 10 2 hr 45 min 89 

(training) 
13 5cl5 15 Mar 95 5hr 8 30 min 20 

(training) 
14 4dl3 13 Apr 94 16hr30 min 10 3 hr 30 min 33 

(training) 
15 3dl5 15 Apr 93 3 hr 45 min 2 2 hr 45 min 76 

(training) 
16 5el3 13 May 95 3hr 15 30 min 33 

(training) 
17 4c07 7 Mar 94 8 hr 30 min 18 2 hr 15 min 34 

(monitoring) 
18 5el7 17 May 95 21 hr 15 min 5 18hr30 min 85 

(monitoring) 
19 4bl5 15 Feb 94 6hr 25 2 hr 30 min 24 

(monitoring) 
20 5110 10 Dec 95 7 hr 45 min 6 30 min 14 

(monitoring) 
21 2106 6 Dec 92 2 hr 15 min 20 Ihr 9 

(monitoring) 
22 5c05 5 Mar 95 24 hr 6 6 hr 15 min 96 

(monitoring) 
23 5125 25 Sep 95 20 hr 45 min 12 7 hr 30 min 83 

(monitoring) 
24 5105 5 Dec 95 7 hr 45 min 6 1 hr 15 min 31 

(monitoring) 
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APPENDIX B 
SUBDIVISON OF DATA FOR ARTIFICIAL NEURAL NETWORKS 

Table B.2 - Validation 

No. Ref. 
No. 

Date Duration Max. Rainfall 
(mm/15min) 

Time to Max. 
Rainfall̂ ^^ 

No. of 15-min 
Rainfall Values 

(purpose) 

25 6a02 2 Jan 96 6 hr 45 min 20 1 hr 30 min 27 
(validation) 

26 6e04 4 May 96 24 hr 14 20 hr 45 min 96 
(validation) 

27 4i09 9 Sep 94 11 hr30 min 14 45 min 53 
(validation) 

28 3bl7 17 Feb 93 5 hr 45 min 25 Ihr 23 
(validation) 

29 6e03 3 May 96 19 hr 45 min 9 5hr 79 
(validation) 

30 5c04 4 Mar 95 17 hr 30 min 5 6 hr 30 min 70 
(validation) 

31 6dll 11 Apr 96 6 hr 30 min 14 1 hr 15 min 26 
(validation) 

32 6a06 6 Jan 96 21 hr 45 min 8 8 hr 45 min 87 
(validation) 

33 2k05 5 Nov 92 6hr 9 4 hr 30 min 96 
(validation) 

34 6g27 27 Jul 96 12 hr 30 min 14 2 hr 15 min 68 
(validation) 

Remark ^̂^ - the time to maximum rainfall is measured from the time that a gauge within the 
catchment started to receive rainfall to the time that maximum rainfall occurred at any rain gauge 
within the catchment. 

There are totally 748 values of 15-min rainfall for training, 376 for monitoring and 625 for 
validation. 
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APPENDIXE 
SUBDIVISON OF DATA FOR ARTIFICIAL NEURAL NETWORKS 

Table B.3 - Properties of the Data Sets 

Training data set Monitoring data set Validation data set 
Year 
92 0 1 1 
93 4 0 1 
94 3 2 1 
95 5 5 1 
96 4 0 6 

Total 16 8 10 

Month 
Jan 1 0 2 
Feb 1 1 1 
Mar 3 2 1 
Apr 3 0 0 
May 2 1 2 
Jun 2 0 0 
Jul 1 0 1 

Aug 1 0 0 
Sep 1 1 1 
Oct 0 0 0 
Nov 1 0 2 
Dec 0 3 0 

Total 16 8 10 

Duration From 3hr to 
22hr 15min 

From 2hr 15min 
to 21 hr 15 min 

From 6hr 
to24hr 

Max. Rainfall From 2mm/15niin to 
25mm/15min 

From 2.5mm/15min 
to 25mm/15min 

From 5mm/15min 
to 25mm/15min 

Time to Max. 
Rainfall From 30min 

to lOhr 
From Ihr to 
18hr BOmin 

From 45min to 
20hr 45min 

Table B.3 provides some further information about the 3 data sets. First, the number of storm 
events selected on a particular year and month are compared. Next, the duration of storm, 
maximum rainfall and the time to maximum are compared. Because the data sets were selected 
randomly, so these properties are very similar. 
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APPENDIX B 
SUBDmSON OF DATA FOR ARTIFICIAL NEURAL NETWORKS 

Table B.4 - Storm Type of the Data Sets 
Data Set Date Storm Type Remark 
training 24.1.96 Convective — 

training 24.9.95 Convective — 

training 20.11.93 Frontal With convective cells 
training 7.3.93 Frontal With convective cells 
training 27.6.94 Frontal — 

training 8.7.93 Convective — 

training 31.8.96 Frontal — 

training 12.2.94 Convective — 

training 2.3.95 Convective 
training 16.6.95 Convective — 

training 12.4.96 Convective — 

training 2.5.96 Convective — 

training 15.3.95 Frontal — 

training 13.4.94 Convective — 

training 15.4.93 Convective — 

training 13.5.95 Frontal With convective cells 
monitoring 7.3.94 Convective — 

monitoring 17.5.95 Frontal — 

monitoring 15.2.94 Convective — 

monitoring 10.12.95 Frontal With convective cells 
monitoring 6.12.92 Frontal — 

monitoring 5.3.95 Convective — 

monitoring 25.9.95 Convective — 

monitoring 5.12.95 Frontal With convective cells 
validation 2.1.96 Convective — 

validation 4.5.96 Convective 
validation 9.9.94 Convective 
validation 17.2.93 Convective 
validation 3.5.96 Convective 
validation 4.3.95 Convective 
validation 11.4.96 Convective — 

validation 6.1.96 Convective — 

validation 5.11.92 Frontal — 

validation 27.7.96 Frontal With convective cells 
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APPENDIX C 
COMPARISON OF ALTERNATIVE TYPE OF 

ARTIFICIAL NEURAL NETWORKS 

Table C.l - Variance of the Data Sets 

Lag 
Training Monitoring Validation 

Lag No. of 
values 

Variance No. of 
values 

Variance No. of 
values 

Variance 

1 732 0.01011933 368 0.01189492 615 0.01071373 
2 716 0.01021899 360 0.01201465 605 0.01081855 
3 700 0.01026982 352 0.01192159 595 0.01092872 
4 684 0.01036357 344 0.01130262 585 0.01102358 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Note: (1) Training errors were recorded at every 20 epochs; Monitoring errors were 
recorded at every 100 epochs. The values shown in the bracket () under the 
training and Monitoring columns indicates the range of errors. 

(2) The data are transformed with the log function so that results are also in the log 
domain. 

Table C.2 - Results of the Lag-1 MLFN 

Lag-l Sum of Squared Error NMSE Stopping 
MLFN Training Monitoring Validation Validation epoch 

16-2-16 62.6 
(77.3 at 20 epoch 
62.8 at 1000 epoch) 

48.5 
(48.7 at 100 epoch 
49.6 at 1000 epoch) 

67.7 0.642 300 

16-4-16 59.1 
(65.6 at 20 epoch 
55.6 at 1000 epoch) 

49.8 
(49.8 at 100 epoch 
55.3 at 1000 epoch) 

70.0 0.664 100 

16-8-16 61.7 
(119.6 at 20 epoch 
57.7 at 1000 epoch) 

49.5 
(49.5 at 100 epoch 
52.6 at 1000 epoch) 

67.9 0.644 100 

16-16-16 58.9 
(104.2 at 20 epoch 
58.9 at 1000 epoch) 

48.7 
(49.9 at 100 epoch 
48.7 at 1000 epoch) 

67.9 0.644 1000 

16-24-16 59.3 
(122.5 at 20 epoch 
57.7 at 1000 epoch) 

47.9 
(48.5 at 100 epoch 
49.3 at 1000 epoch) 

66.9 0.635 200 

16-32-16 58.2 
(154.7 at 20 epoch 
56.3 at 1000 epoch) 

48.9 
(50.1 at 100 epoch 
49.8 at 1000 epoch) 

68.4 0.649 300 

16-64-16 57.1 
(272.4 at 20 epoch 
52.8 at 1000 epoch) 

49.3 
(49.9 at 100 epoch 
52.7 at 1000 epoch) 

68.3 0.648 300 

16-128-16 60.4 
(717.0 at 20 epoch 
47.6 at 1000 epoch) 

53.7 
(53.7 at 100 epoch 
83.8 at 1000 epoch) 

74.4 0.706 100 

16-12-12-16 58.0 
(82.9 at 20 epoch 
52.5 at 1000 epoch) 

48.9 
(48.9 at 100 epoch 
54.4 at 1000 epoch) 

68.5 0.650 200 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Table C.3 - Results of the Lag-2 MLFN 

Lag-2 Sum of Squared Error NMSE Stopping 
MLFN Training Monitoring Validation Validation epoch 

32-2-16 59.9 
(81.7 at 20 epoch 
59.4 at 1000 epoch) 

48.6 
(50.2 at 100 epoch 
50.2 at 1000 epoch) 

69.1 0.660 300 

32-4-16 56.8 
(92.9 at 20 epoch 
55.4 at 1000 epoch) 

48.7 
(50.0 at 100 epoch 
49.3 at 1000 epoch) 

69.3 0.662 500 

32-8-16 59.5 
(127.3 at 20 epoch 
54.9 at 1000 epoch) 

48.0 
(48.0 at 100 epoch 
48.5 at 1000 epoch) 

69.0 0.659 100 

32-16-16 57.0 
(136.2 at 20 epoch 
52.1 at 1000 epoch) 

50.4 
(52.0 at 100 epoch 
57.3 at 1000 epoch) 

70.0 0.668 200 

32-24-16 54.0 
(164.4 at 20 epoch 
52.3 at 1000 epoch) 

49.1 
(51.3 at 100 epoch 
49.3 at 1000 epoch) 

70.9 0.677 500 

32-32-16 54.8 
(127.1 at 20 epoch 
49.6 at 1000 epoch) 

51.3 
(53.4 at 100 epoch 
57.1 at 1000 epoch) 

69.1 0.660 200 

32-64-16 53.6 
(350.0 at 20 epoch 
40.0 at 1000 epoch) 

54.9 
(55.6 at 100 epoch 
243.0 at 1000 epoch) 

78.0 0.745 200 

16-128-16 60.4 
(717.0 at 20 epoch 
47.6 at 1000 epoch) 

53.7 
(53.7 at 100 epoch 
83.8 at 1000 epoch) 

74.4 0.802 100 

16-12-12-16 58.0 
(82.9 at 20 epoch 
52.5 at 1000 epoch) 

48.9 
(48.9 at 100 epoch 
54.4 at 1000 epoch) 

68.5 0.696 200 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Table C.4 - Results of the Lag-3 MLFN 

Lag-3 Sum of Squared Error NMSE Stopping 
MLFN Training Monitoring Validation Validation epoch 

48-2-16 57.9 
(99.6 at 20 epoch 

56.9 at 1000 epoch) 

47.8 
(47.9 at 100 epoch 

48.6 at 1000 epoch) 

70.6 0.679 600 

48-4-16 54.8 
(138.0 at 20 epoch 

54.2 at 1000 epoch) 

46.0 
(47.5 at 100 epoch 

46.3 at 1000 epoch) 

69.9 0.672 700 

48-8-16 55.9 
(134.4 at 20 epoch 

53.3 at 1000 epoch) 

46.7 
(48.0 at 100 epoch 

47.2 at 1000 epoch) 

70.8 0.680 300 

48-16-16 53.1 
(138.8 at 20 epoch 

48.1 at 1000 epoch) 

49.5 
(50.8 at 100 epoch 

56.6 at 1000 epoch) 

75.3 0.724 200 

48-24-16 53.4 
(217.7 at 20 epoch 

51.1 at 1000 epoch) 

48.3 
(54.0 at 100 epoch 

48.3 at 1000 epoch) 

72.9 0.701 400 

48-32-16 51.5 
(257.3 at 20 epoch 

48.9 at 1000 epoch) 

49.1 
(57.0 at 100 epoch 

49.7 at 1000 epoch) 

71.1 0.683 500 

48-64-16 42.3 
(496.6 at 20 epoch 

40.1 at 1000 epoch) 

71.0 
(74.7 at 100 epoch 
75.3 at 1000 epoch) 

90.4 0.869 700 

48-128-16 44.2 
(1111.0 at 20 epoch 
37.0 at 1000 epoch) 

79.4 
(85.6 at 100 epoch 
84.9 at 1000 epoch) 

108.4 1.042 400 

48-2-2-16 58.2 
(69.6 at 20 epoch 

55.8 at 1000 epoch) 

48.3 
(48.3 at 100 epoch 

56.8 at 1000 epoch) 

70.6 0.679 100 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Table C.5 - Results of the Lag-4 MLFN 

Lag-4 Sum of Squared Error NMSE Stopping 
MLFN Training Monitoring Validation Validation epoch 

64-2-16 58.9 
(73.9 at 20 epoch 
55.1 at 1000 epoch) 

44.1 
(44.8 at 100 epoch 
48.4 at 1000 epoch) 

67.4 0.653 200 

64-4-16 54.6 
(66.8 at 20 epoch 
47.0 at 1000 epoch) 

51.5 
(51.5 at 100 epoch 
60.5 at 1000 epoch) 

75.1 0.728 100 

64-8-16 54.2 
(138.5 at 20 epoch 
48.9 at 1000 epoch) 

45.3 
(47.5 at 100 epoch 
48.6 at 1000 epoch) 

70.9 0.687 200 

64-16-16 51.0 
(at 20 epoch 
at 1000 epoch) 

48.5 
(52.8 at 100 epoch 
54.5 at 1000 epoch) 

75.7 0.733 300 

64-24-16 50.2 
(229.1 at 20 epoch 
46.0 at 1000 epoch) 

48.6 
(56.8 at 100 epoch 
53.1 at 1000 epoch) 

76.4 0.740 400 

64-32-16 46.5 
(253.7 at 20 epoch 
43.3 at 1000 epoch) 

54.2 
(63.3 at 100 epoch 
55.3 at 1000 epoch) 

74.0 0.717 600 

64-64-16 44.6 
(420.9 at 20 epoch 
37.7 at 1000 epoch) 

59.5 
(71.4 at 100 epoch 
67.3 at 1000 epoch) 

90.0 0.872 400 

64-128-16 44.2 
(1020.2 at 20 epoch 
30.4 at 1000 epoch) 

104.0 
(117.2 at 100 epoch 
138.6 at 1000 epoch) 

133.2 1.291 300 

64-1-1-16 60.0 
(68.7 at 20 epoch 
58.6 at 1000 epoch) 

47.2 
(47.2 at 100 epoch 
49.5 at 1000 epoch) 

70.7 0.685 100 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Table C.6 - Results of the Lag-1 Elman Network 

Lag-l Sum of Sauared Error NMSE Stopping 
Elman Training Monitoring Validation Validation epoch 

16-2-16 61.4 
(79.9 at 20 epoch 
61.3 at 1000 epoch) 

47.8 
(48.4 at 100 epoch 
48.2 at 1000 epoch) 

67.7 0.642 500 

16-4-16 58.5 
(78.1 at 20 epoch 
57.3 at 1000 epoch) 

46.8 
(46.9 at 100 epoch 
47.4 at 1000 epoch) 

67.1 0.636 300 

16-8-16 59.5 
(110.3 at 20 epoch 
54.6 at 1000 epoch) 

48.3 
(49.6 at 100 epoch 
49.3 at 1000 epoch) 

69.6 0.660 200 

16-16-16 61.1 
(115.4 at 20 epoch 
51.9 at 1000 epoch) 

63.0 
(63.0 at 100 epoch 
24601.3 at 1000 
epoch) 

71.5 0.678 100 

16-24-16 50.9 
(157.6 at 20 epoch 
48.9 at 1000 epoch) 

62.1 
(5412.3 at 100 epoch 
101.6 at 1000 epoch) 

85.7 0.813 300 

16-32-16 57.6 
(180.3 at 20 epoch 
42.3 at 1000 epoch) 

89.5 
(89.5 at 100 epoch 
1574.2 at 1000 
epoch) 

82.6 0.784 100 

16-64-16 77.3 
(683.3 at 20 epoch 
123.6 at 1000 epoch) 

73.5 
(73.5 at 100 epoch 
1605.4 at 1000 
epoch) 

153.0 1.451 100 

16-2-2-16 61.7 
(101.6 at 20 epoch 
59.3 at 1000 epoch) 

50.6 
(50.6 at 100 epoch 
51.8 at 1000 epoch) 

68.7 0.652 100 
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APPENDIX C 

COMPARISON OF ALTERNATIVE TYPE OF 
ARTIFICIAL NEURAL NETWORKS 

Table C.7 - Results of the TDNN with Linear Output Nodes 

Sum of Squared Error NMSE Stopping 
epoch Training Monitoring Validation Validation 

Stopping 
epoch 

TDNN with 2-
input windows 
(32-16-16) 

112.5 
(119.4 at 20 epoch 
109.6 at 1000 epoch) 

78.3 
(78.3 at 100 epoch 
80.9 at 1000 epoch) 

99.1 0.946 100 

TDNN with 3-
input windows 
(48-32-16) 

98.0 
(103.0 at 20 epoch 
97.2 at 1000 epoch) 

71.8 
(72.3 at 100 epoch 
72.1 at 1000 epoch) 

99.7 0.958 300 

TDNN with 4-
input windows 
(64-32-16) 

94.6 
(98.4 at 20 epoch 
91.9 at 1000 epoch) 

68.2 
(68.2 at 100 epoch 
73.6 at 1000 epoch) 

94.9 0.920 100 

Table C.8 - Results of the TDNN with Sigmoid Output Nodes 

Sum of Squared Error NMSE Stopping 
epoch Training Monitoring Validation Validation 

Stopping 
epoch 

TDNN with 2-
input windows 
(32-16-16) 

58.6 
(65.9 at 20 epoch 
48.2 at 1000 epoch) 

46.1 
(46.1 at 100 epoch 
52.0 at 1000 epoch) 

66.3 0.633 100 

TDNN with 3-
input windows 
(48-32-16) 

57.9 
(70.1 at 20 epoch 
47.8 at 1000 epoch) 

46.2 
(46.2 at 100 epoch 
51.7 at 1000 epoch) 

66.9 0.643 100 

TDNN with 4-
input windows 
(64-32-16) 

57.9 
(73.1 at 20 epoch 
45.8 at 1000 epoch) 

42.9 
(42.9 at 100 epoch 
49.7 at 1000 epoch) 

66.5 0.645 100 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-4-16) Evert No. 6a02 
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Rate o( Change (irnn/lSmln) 

(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Evert No. 6a02 
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Rate 0« Change (mm/ISmin) 

(b)MLFN 

Forecast En-or vs. Rate of Change of Rainfall 
Model:-rt>NN(32-16-16) Evert («.6a02 

-10 -5 0 5 

Rale of Change (mm/1 Smin) 

(c) TDNN 

Figure D.l - Event No. 1 : 2 Jan 1996 



WRL Research Report 194 D2. 

APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-i-16) Event No. 6e04 

0 5 

Rale ol Change (mm/1 Smin) 

(a) Elman Network 

Forecast En-or vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Event m. 6e04 

0 S 

Rate 01 Cliange (mmA Smln) 

(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event 6e04 

0 5 10 

Rate ol Change (mm/1 Smln) 

(c) TDNN 

Figure D.2 - Event No. 2 : 4 May 1996 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

£ 

£ 
1 
E in 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elm8n(16^16) Event No. 4109 

-5 0 5 

Rate of Change (mmn Smln) 

(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: hBJ=N(16-24-16) Event r f i . 4109 

0 5 

Rate ol Change (mm/15inln) 

(b)MLFN 

F o r e c a s t ^ ( X vs. Rate of Change of Rainfall 
Model: TDNN(32.16-16) Evert 4(09 

-5 0 5 

Rale of Change (mm/1 Smln) 

(c) TDNN 

Figure D.3 - Event No. 3 : 9 Sep 1994 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-4-16) Event Na3b17 
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Rate 01 Change (mm/ISmin) 

(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MU=N(l6-24-l6) Event No. 3bl7 
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(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event I^.3b17 

0 5 10 

Rate ol Change (mm/I Smin) 

(c) TDNN 

Figure D.4 - Event No. 4 : 17 Feb 1993 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-4-16) EvsntNo.6e03 
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(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Event No. 6e03 

(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event NR. 6a03 
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(c)TDNN 

Figure D.5 - Event No. 5 : 3 May 1996 



WRL Research Report 194 D6. 

APPENDKD 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-4-16) Event Ma Sc04 
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(a) Elman Network 

Forecast En'or vs. Rate of Change of Rainfall 
Model: ML5N(16-24-16) Event fe.5c04 
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(b)MLFN 

Forecast En-or vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event f«.5c04 

-2 0 

Rate ot Change (mmrt 5mln) 

(c)TDNN 

Figure D.6 - Event No. 6 : 4 Mar 1995 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Raitifall 
Modet Elinan(16-4-l6) Evert No. 6dl1 
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(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Event No. 6d11 
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(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Evert No. 6d11 
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Rate ol Change (mmrt Smh) 

(c) TDNN 

Figure D.7 - Event No. 7 : 11 Apr 1996 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elman(16-4-16) EventNaSaOS 
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(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Evert ^e.6a06 
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(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model:'n}NN(32-16-16) Event t«.6a06 
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(c)TDNN 

Figure D.8 - Event No. 8 : 6 Jan 1996 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall Model: Elman(16-4-16) Event No. 2k05 
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(a) Elman Network 

Forecast Error vs. Rate of Change of Rainfall Model: MLFN(16-24-16) Event No. 2K05 
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(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall Model: TDNN<32-16-16) Event he.2k05 
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(c) TDNN 

Figure D.9 - Event No. 9 : 5 Nov 1992 
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APPENDIX D 
FORECAST ERROR VS. RATE OF CHANGE OF RAINFALL INTENSITY 

FOR TEN REAL STORM EVENTS 

Forecast Error vs. Rate of Change of Rainfall 
Model: Elinan(16-4-16) Event N a 6g27 
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(a) Elman Network 

Forecast En-or vs. Rate of Change of Rainfall 
Model: MLFN(16-24-16) Event No. 6g27 
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Rate of Ctiange (mmn 5min) 

(b)MLFN 

Forecast Error vs. Rate of Change of Rainfall 
Model: TDNN(32-16-16) Event Mo. 6g27 
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(c) TDNN 

Figure D.IO - Event No. 10 : 27 Jul 1996 
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STORM CENTRE TRACKS FOR 25 ARTIFICIAL STORM EVENTS 
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STORM CENTRE TRACKS FOR 25 ARTIFICIAL STORM EVENTS 
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STORM CENTRE TRACKS FOR 25 ARTIFICIAL STORM EVENTS 
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APPENDIX F 
ERROR IN PREDICTION OF STORM CENTRES 

Event no. Error in Prediction 
126 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 3.71 0.90 -52.31 
2 -0.75 -1.01 -33.71 
3 -4.47 -0.13 -2.57 
4 2.28 -1.23 -6.62 
5 -0.34 -0.28 3.40 
6 -2.36 -1.23 -11.47 
7 -7.56 -0.34 -27.29 
8 -12.04 -0.39 44.71 

Event no. Error in Prediction 
128 Intensity Distance Angle 

Time Step (nim/15min) (km) (degree) 
1 3.67 0.88 -9.00 
2 -7.08 -0.70 -8.52 
3 1.07 0.30 26.72 
4 -5.64 -0.14 18.86 
5 -5.67 -0.54 33.80 
6 3.56 -0.61 28.85 
7 -9.96 -0.58 22.47 
8 -2.34 0.27 -9.57 
9 -1.20 -1.02 44.13 
10 -0.35 -0.20 174.62 

Event no. Error in Prediction 
130 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 5.08 0.26 -4.20 
2 0.44 1.99 -3.39 
3 -3.23 -0.85 251.93 
4 -3.29 -0.04 12.14 
5 -3.95 -0.30 7.48 
6 -2.53 -1.06 7.90 
7 4.09 -0.69 -10.88 
8 -2.18 -0.93 7.93 
10 -2.90 -0.91 187.53 
11 -5.87 -0.50 205.99 
12 -1.28 -0.91 192.64 

Event no. Error in Prediction 
127 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -4.65 0.58 -1.55 
2 6.24 -0.31 -28.01 
3 -7.32 -0.71 -25.62 
4 -8.13 -0.64 -41.09 
5 -2.78 -0.71 5.98 
6 -2.11 -1.34 10.95 
7 -5.46 0.43 22.83 
8 -4.28 -0.29 -14.98 
9 -6.89 -0.82 -88.85 

Event no. Error in Prediction 
129 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -6.80 -0.73 242.84 
2 -2.79 -0.36 -0.78 
3 -7.41 -0.39 -24.61 
4 -9.22 -1.06 -31.58 
5 -10.40 -0.87 13.62 
6 -4.59 0.73 29.13 
7 3.19 -1.06 -7.92 
8 -16.78 -0.87 224.04 
9 -0.14 0.86 215.69 
10 -2.58 -0.75 87.43 

Event no. Error in Prediction 
131 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 2.92 0.26 5.54 
2 -6.64 -0.50 -0.62 
3 -2.93 -0.89 -7.68 
4 0.12 -0.10 17.74 
5 -1.64 -0.32 -6.01 
6 -3.37 -0.97 -4.24 
7 3.08 -0.38 -15.98 
8 -6.10 -1.08 40.84 
9 -10.44 0.49 122.16 
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APPENDIX F 
ERROR IN PREDICTION OF STORM CENTRES 

Event no. Error in Prediction 
132 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -11.99 2.27 -28.18 
2 -3.94 -0.25 266.16 
3 -12.15 -0.05 -16.21 
4 0.12 -0.65 7.51 
5 -3.00 -0.11 -0.95 
6 -4.33 -1.24 -3.82 
7 -9.85 -0.66 -45.03 
8 -1.36 -1.43 204.69 
9 -3.82 -1.40 135.96 
10 -5.21 -0.82 177.91 
11 3.98 -0.75 156.13 

Event no. Error in Prediction 
134 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -4.31 -0.77 -27.32 
2 -6.79 -0.62 -3.97 
3 -4.05 -0.76 -7.01 
4 -0.78 -0.83 -4.68 
5 1.98 -0.77 -51.52 
6 -6.62 -0.44 -27.31 
7 -2.84 -1.07 -11.03 
8 -6.06 -0.39 -37.73 
9 -1.03 -0.69 -58.42 

Event no. Error in Prediction 
136 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -5.06 -0.24 246.23 
2 -6.16 -0.81 9.25 
3 0.73 -0.52 21.17 
4 -7.85 -0.45 -26.83 
5 0.00 -1.15 274.88 
6 -0.36 -1.47 293.97 
7 -3.81 -1.11 83.24 
8 -8.34 -0.55 178.29 
9 -12.58 -0.50 151.33 
10 -6.75 -1.18 81.97 

Event no. Error in Prediction 
133 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -7.04 -1.20 -5.37 
2 0.25 -0.86 -7.10 
3 -8.32 -0.06 -0.25 
4 2.54 -1.07 4.48 
5 0.88 -0.66 -27.42 
6 -2.18 -0.59 -16.48 
7 -11.17 -0.42 -5.91 
8 -0.68 -0.93 187.71 
9 -14.90 0.17 182.81 

Event no. Error in Prediction 
135 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -3.99 -0.59 94.60 
2 -0.95 -0.79 -16.79 
3 -5.69 0.15 9.98 
4 7.10 -0.81 -0.52 
5 -3.49 -0.46 31.19 
6 -0.13 -1.52 144.14 
7 -3.19 -1.40 154.07 
8 -6.60 -0.88 138.97 
9 -5.32 -1.40 45.85 

Event no. Error in Prediction 
137 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 1.04 0.32 40.46 
2 -2.03 -0.28 73.30 
3 -2.94 -0.62 23.82 
4 -2.26 -0.95 25.01 
5 3.11 -0.99 -70.45 
6 -10.18 -0.31 19.82 
7 -3.02 -1.04 32.51 
8 -2.68 -0.94 -79.95 
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APPENDIX F 
ERROR IN PREDICTION OF STORM CENTRES 

Event no. Error in Prediction 
138 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -4.04 0.11 -47.22 
2 •4.62 0.64 12.32 
3 -5.81 -0.61 28.31 
4 -1.47 -0.66 16.35 
5 -3.51 -0.56 -15.79 
6 1.78 -0.22 25.39 
7 -3.12 -1.05 -10.70 
8 1.82 -1.00 -1.52 
9 -1.98 -0.34 -250.62 
10 -3.64 -0.17 74.78 

Event no. Error in Prediction 
140 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -16.83 3.17 -22.79 
2 -3.72 1.26 -13.68 
3 -7.77 0.37 32.29 
4 -0.68 0.38 42.20 
5 5.05 -0.36 35.77 
6 -2.40 -0.44 47.25 
7 -5.04 -0.66 -37.88 
8 -10.61 -1.25 10.66 
9 -2.48 -1.05 -6.59 
10 -6.56 -0.12 -39.12 
11 -5.55 -0.14 -152.61 
12 -4.84 0.62 177.53 

Event no. Error in Prediction 
142 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -3.37 1.31 -23.45 
2 3.26 0.11 -30.32 
3 -3.17 0.29 -2.34 
4 1.72 -0.45 7.19 
5 -1.16 -0.72 10.67 
6 -4.05 -0.09 -9.79 
7 -5.15 -1.46 11.14 
8 -2.64 -0.22 0.06 
9 6.18 -0.57 -41.96 
10 4.99 -0.72 138.96 

Event no. Error in Prediction 
139 iQtensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 3.15 0.24 -0.63 
2 -4.04 -0.60 12.11 
3 2.22 -0.58 15.45 
4 -7.41 -0.79 -27.99 
5 -2.00 -0.41 -31.20 
6 -4.87 -1.14 2.07 
7 0.25 -0.73 -0.77 
8 -3.68 -0.21 -24.11 

Event no. Error in Prediction 
141 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 14.44 1.55 -9.42 
2 -1.74 -0.13 -18.68 
3 8.18 -0.55 7.92 
4 -5.65 -0.13 -38.03 
5 2.46 -0.90 20.01 
6 -7.76 0.25 -53.63 
7 4.31 -0.43 82.99 
8 -4.67 -0.29 -37.55 
9 -3.00 -0.33 4.78 
10 -2.32 -0.60 -31.35 
11 -2.85 -0.95 223.47 

Event no. Error in Prediction 
143 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 9.19 -0.15 -63.81 
2 -1.64 0.46 17.27 
3 -8.49 -0.18 -0.60 
4 0.19 0.41 37.81 
5 -10.95 -0.45 15.70 
6 -5.44 -1.18 15.12 
7 3.40 -0.61 -34.62 
8 2.33 -0.35 -47.03 
9 -7.53 -1.78 -9.16 
10 0.05 -1.62 17.49 
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ERROR IN PREDICTION OF STORM CENTRES 

Event no. Error in Prediction 
144 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -4.44 -0.52 333.76 
2 1.67 0.93 7.74 
3 -5.56 -1.06 331.24 
4 -4.48 -0.44 14.82 
5 2.08 -0.90 6.20 
6 -2.56 -1.61 -23.74 
7 2.53 -0.49 201.26 
8 -4.30 -1.41 165.64 
9 1.24 -0.89 153.32 

Event no. Error in Prediction 
146 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 5.89 -0.33 -4.42 
2 -1.09 -0.18 46.89 
3 -2.30 -1.00 6.27 
4 -2.51 -0.89 31.28 
5 -9.16 -0.77 41.17 
6 -6.05 -0.66 20.59 
7 -5.46 -0.92 64.23 

Event no. Error in Prediction 
148 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -5.68 -0.13 0.19 
2 0.96 -0.69 -26.47 
3 0.56 -0.42 9.88 
4 -2.01 -0.34 -14.17 
5 -5.86 -1.43 -58.98 
6 -4.59 -0.97 254.95 
7 -3.36 -1.52 262.39 
8 -9.17 -1.04 120.73 
9 -6.07 0.32 111.84 

Event no. Error in Prediction 
145 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -18.63 2.43 -19.96 
2 -5.42 0.74 35.04 
3 -1.92 0.56 41.12 
4 -6.06 0.04 77.26 
5 -2.28 -0.38 4.26 
6 7.87 -0.78 6.96 
7 -4.48 -0.66 -6.17 
8 1.55 -0.84 107.32 
9 -0.50 -0.56 89.10 
10 -7.56 -1.61 179.96 
11 -9.70 -0.62 -77.25 

Event no. Error in Prediction 
147 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 -2.74 -0.27 11.11 
2 -12.95 0.09 12.11 
3 1.11 0.35 23.58 
4 2.44 -0.89 -34.17 
5 -6.19 -0.27 1.21 
6 -2.83 -0.63 30.72 
7 1.34 -0.55 -29.83 
8 -1.47 -0.29 -10.56 
9 -1.87 -0.57 38.82 

Event no. Error in Prediction 
149 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 1.10 -0.60 -53.11 
2 -7.81 0.05 -19.07 
3 2.10 -0.43 -0.67 
4 -2.99 -0.31 -7.71 
5 3.44 -0.90 53.99 
6 -2.81 -0.39 14.13 
7 -8.52 -1.30 8.71 
8 -0.42 -0.14 29.80 
9 -4.76 -0.74 29.51 
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ERROR IN PREDICTION OF STORM CENTRES 

Event no. Error in Prediction 
150 Intensity Distance Angle 

Time Step (mm/15min) (km) (degree) 
1 3.10 4.27 -278.40 
2 -8.58 0.07 -9.14 
3 -3.95 -0.70 -228.88 
4 2.23 -0.38 -11.70 
5 -5.18 -1.20 -39.00 
6 1.33 -1.68 -309.87 
7 -8.91 -1.00 -99.67 
8 -7.27 -0.44 -99.57 
9 -9.02 -0.04 -103.96 
10 -12.26 0.29 -199.66 



APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No.126 

Sub- No. of Area Time step 1 Time step 2 Time step 3 Time step 4 Time step Timo Step 6 Time step 7 Time step 8 
Oatchmen Cell Actual Predicted % en'or Actual Predicted % error Actual Predicted % error Actual Predated % error Actual Predicted % error Actual Predicted % 6IT0r Actual Predicted % error Actual Predkited % error 

No. 

(no.) (km») (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) 

1 27 6.75 21.78 27.16 24.70 19.30 23.00 19.13 18.71 17.84 -4.67 10.84 16.83 55.17 6.31 5.83 •7.63 3.57 3.90 9.35 2.06 3.43 66.16 1.24 3.17 155.82 
2 35 8.75 22.85 24.83 8.67 24.17 23.61 -2.34 25.99 23.15 -10.95 18.49 23.73 28.33 13.60 14.37 5.67 9.36 11.21 19.81 6.28 7.87 25.45 4.26 5.30 24.42 
3 28 7.00 16.19 16.21 0.08 20.12 18.44 -8.35 23.70 21.76 -8.17 20.80 23.00 10.55 19.65 21.17 7.76 16.73 18.78 12.28 13.20 13.84 4.81 10.25 9.40 -8.37 
4 36 9.00 16.01 24.85 55.20 14.09 19.49 38.30 13.90 13.66 •1.70 7.47 12.45 66.72 3.91 2.71 •30.71 2.02 1.30 -35.49 1.10 1.24 12.74 0.64 1.59 147.15 
5 14 3.50 19.50 26.38 35.28 20.84 22.53 8.10 23.20 20.73 •10.64 15.05 21.46 42.60 9.67 9.44 •2.37 5.90 6.21 5.32 3.70 3.86 4.29 2.41 2.55 5.77 
6 23 5.75 17.75 19.49 9.80 23.39 20.66 -11.69 29.21 25.28 -13.47 25.01 28.09 12.31 22.35 23.31 4.29 18.04 20.00 10.87 13.95 13.98 0.23 10.77 9.27 -13.94 
7 13 3.25 18.69 24.02 28.51 22.95 21.97 -4.29 27.99 23.93 -14.49 20.86 26.42 26.63 15.62 15.99 2.36 10.82 11.93 10.27 7.55 7.34 -2.74 5.41 4.58 -15.18 
8 23 5.75 11.99 20.87 74.05 12.86 16.07 24.97 14.73 13.40 -9.02 8.91 13.47 51.28 5.18 3.84 •25.86 2.90 1.76 -39.39 1.74 0.75 •57.12 1.12 0.37 -67.32 
9 19 4.75 6.37 6.96 9.19 11.13 10.66 -4.23 16.48 16.01 -2.91 19.51 18.05 •7.52 25.27 25.26 •0.06 27.84 26.25 -5.71 27.44 23.20 •15.46 26.00 19.42 -25.29 
10 6 1.50 10.42 10.92 4.77 16.44 14.48 -11.88 22.83 20.85 -8.69 23.95 23.65 •1.26 26.96 27.32 1.31 26.36 26.47 0.39 23.62 21.23 -10.11 20.62 16.08 -21.99 
11 23 5.75 13.40 19.59 46.19 17.39 16.96 -2.44 22.46 19.12 -14.86 16.61 21.80 31.26 12.09 12.41 2.68 8.15 8.65 6.17 5.70 4.71 -17.31 4.16 2.67 -35.75 
12 17 4.25 12.11 13.22 9.23 19.05 15.69 •17.65 27.02 23.09 •14.52 26.56 27.36 3.01 27.30 27.69 1.44 24.68 25.80 4.55 21.23 19.34 -8.91 18.15 14.07 -22.47 
13 8 2.00 7.86 8.29 5.50 13.78 11.86 -13.91 20.77 18.76 •9.66 23.51 22.16 -5.73 28.53 28.05 -1.70 29.69 28.49 -4.06 28.41 24.15 -14.99 26.49 19.71 -25.59 
14 14 3.50 14.34 17.41 21.43 20.91 17.77 -15.01 28.58 23.91 -16.33 25.03 28.24 12.79 22.35 23.14 3.51 17.92 19.64 9.63 14.16 13.15 -7.12 11.34 8.82 -22.18 
15 10 2.50 7.40 7.70 4.04 13.62 10.81 -20.65 21.46 18.43 -14.14 24.26 22.82 -5.92 28.88 28.27 -2.10 29.43 28.64 •2.69 28.09 23.90 -14.91 26.36 19.60 -25.64 
16 4 1.00 12.59 16.40 30.27 18.70 15.93 -14.86 26.19 21.75 -16.95 22.42 26.20 16.84 19.26 20.25 5.17 14.89 16.55 11.13 11.58 10.48 -9.51 9.21 6.83 -25.88 
17 12 3.00 8.12 13.05 60.81 11.55 10.77 -6.78 16.19 13.33 -17.63 12.30 15.97 29.77 9.04 9.40 3.99 6.12 6.24 2.04 4.39 2.88 -34.39 3.33 1.38 •58.43 
18 12 3.00 3.09 3.51 13.39 6.70 6.S3 -2.42 11.58 11.17 -3.60 16.01 13.47 -15.89 24.15 23.03 -4.64 30.08 26.49 •11.92 33.47 26.35 -2157 35.65 25.08 -29.67 
19 17 4.25 5.97 6.11 2.29 11.50 8.22 -28.53 19.07 15.49 -18.77 21.61 20.37 -5.72 25.47 25.18 -1.13 25.76 25.67 •0.35 25.04 21.44 -14.40 24.26 18.18 -25.07 
20 18 4.50 7.88 10.82 37.38 12.71 10.18 •19.94 19.18 15.56 -18.90 16.79 19.79 17.88 14.49 15.84 9.38 11.21 12.75 13.78 8.92 7.71 -13.59 7.34 5.04 -31.39 
21 18 4.50 6.47 7.13 10.10 12.01 8.49 •29.25 19.62 15.71 -19.97 20.86 20.85 •0.05 22.75 23.27 2.28 21.56 22.59 4.80 20.08 17.63 -12.16 18.86 14.32 •24.09 
22 31 7.75 3.66 3.66 0.01 7.74 6.10 -21.19 13.60 11.69 -14.04 17.64 15.23 -13.64 24.53 23.29 -5.07 28.64 26.13 -8.75 31.04 24.98 -19.52 32.86 23.47 •28.57 
23 11 2.75 7.50 9.25 23.47 13.05 9.71 •25.62 20.57 16.58 •19.39 19.84 21.67 9.26 19.19 20.51 6.87 16.37 18.25 11.46 14.03 12.55 -10.54 12.29 9.24 •24.84 
24 19 5.00 3.21 2.92 -9.12 6.91 3.84 •44.42 12.67 9.59 -24.32 14.59 14.06 -3.63 16.99 17.83 4.92 16.92 17.98 6.26 16.75 14.49 -13.52 16.80 12.52 •2550 

i\rea (km^ 109.75 

Volume of Rainfal (mm-km^/hr) 1364.39 1696.37 24.33 1722.70 1657.15 -3.81 2211.86 1939.65 •12.31 1928.34 2189.07 13.52 1853.24 1863.17 0.54 1668.58 1699.85 1.87 1489.19 1331.35 -10.60 1351.22 1058.35 -21.67 
1 1 

Root Mean Square Error (mm/hr) 3.93 2.63 1 3.00 3.50 0.86 1.50 2.81 4.52 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No.127 1 

Sub- No. of Area 
Actual 

TImeatep Tlmaatep 2 Tlmaatap 3 Time atep 
Prsdk:ted 

4 
Actual 

Tlmaatap 
AMiial 

Time atep 6 TImeatep 7 TImeatep 8 Thwatep 9 

No. 
rraociau % error ACniai Predicted % error Actual % error Actual Predicted % error Actual Predicted % error 

(no.) (km») (mmnir) (mm'hr) (%) (mnVhr) (mmtir) (%) (mm/hr) (mm/hr) (%) (mn^r) (mn^r) (%) (mm/hr) (mmAir) (%) (mm/hr) (mnVhr) (*) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) 
1 27 8.75 31.10 26.53 -14.69 18.30 25.33 38.44 19^7 17.83 -7.46 16.30 17.15 5.19 9.43 9.17 •2.76 4.37 4.95 13.33 ¿26 2.86 26.41 1.13 2.88 154.36 0.56 3.46 514.59 
2 35 8.75 30.55 26.92 -11.90 21.98 27.17 23.58 26.97 21.10 -21.79 27.47 24.12 -12.19 19.53 20.10 2.94 10.80 14.15 31.01 6.25 6.24 -0.16 3.50 4.76 35.98 1.99 4.21 112.18 
3 28 7.00 19.65 19.02 -3.19 17.38 20.24 16.41 25.00 18.50 -26.00 30.81 23.89 •22.48 27.22 27.00 •0.78 18.02 23.36 29.64 11.67 11.18 •4.18 7.35 7.82 6.38 4.83 6.11 26 43 
4 36 9.00 26.64 23.68 -11.13 14.14 21.86 54.68 13.74 14.66 6.76 10.80 12.34 14.29 5.72 4.15 •27.43 2.61 1.37 -47.35 1.36 1.19 -12.17 0.67 1.89 181.79 0.32 2.75 755.11 
S 14 3.50 32.44 28.37 -12.54 20.49 28.00 36.62 22.70 20.00 -11.89 21.12 20.87 •1.19 13.46 13.14 •2.39 7.34 6.96 -5.13 4.30 3.35 -22.00 2.37 3.34 41.04 1.28 3.39 163.63 
6 23 5.75 25.58 23.89 •6.63 21.38 25.84 20.84 29.36 21.79 -25.77 35.18 27.90 -20.68 29.87 29.33 •1.79 20.42 23.50 15.11 13.70 11.85 -13.49 8.75 9.19 5.03 5.70 7.41 30.01 
7 13 3.25 31.25 28.08 -10.15 22.32 29.03 30.09 27.10 21.85 -19.37 28.52 25.44 •10.80 20.83 20.92 0.40 13.13 13.25 0.93 8.49 6.45 -23.98 S.14 5.76 12.01 5.06 63.71 
8 23 5.75 23.83 22.01 -7.65 13.49 20.72 53.66 13.73 14.00 1.97 11.90 12.60 5.87 6.99 4.83 -30.89 3.83 1.45 -62.12 2.30 0.76 -67.13 1.28 1.27 •0.27 1.66 144.23 
9 10 4.75 8.41 8.87 5.41 9.59 10.85 13.08 16.67 13.06 -21.65 26.75 18.63 •30.36 31.48 28.27 •10.19 28.68 29.87 a45 23.41 21.01 -10.29 18.04 17.07 •5.34 14.69 14.66 -0.20 
10 6 1.50 14.19 14.32 0.91 14.46 16.77 15.95 23.06 17.15 -25.63 33.19 23.98 •27.75 34.54 31.85 •7.80 28.24 30.52 8.06 21.21 18.67 -11.99 15.14 14.60 •3.56 11.26 11.97 6.24 
11 23 5.76 26.03 23.72 -8.86 17.76 24.45 37.72 20.81 17.85 -14.22 21.59 20.26 •6.15 15.48 15.33 •0.98 10.31 8.55 •17.08 7.04 4.54 -35.51 4.42 4.66 2.71 4.13 52.44 
12 17 4.25 19.09 18.25 -4.37 17.69 21.38 20.90 26.21 19.28 -26.43 35.38 26.60 •24.83 34.19 32.22 •5.76 27.84 28.54 2.51 21.23 17.52 -17.45 15.13 14.62 •3.36 11.01 12.10 9.85 
13 8 2.00 11.58 11.50 -0.68 12.35 14.30 15.78 20.39 15.29 •25.01 31.28 22.04 •29.54 34.93 31.40 -10.10 31.99 31.59 •1.27 26.22 22.24 •15.19 20.16 18.66 •7.43 16.14 15.96 -1.07 
14 14 3.50 24.66 22.96 -6.68 20.19 25.57 26.66 27.20 20.71 -23.87 33.00 26.84 •18.69 28.24 27.77 •1.66 21.19 21.22 0.15 15.44 12.04 -22.02 10.45 10.54 0.90 7.09 8.77 23.80 
IS 10 2.50 12.11 11.54 -4.73 12.63 14.79 17.15 20.43 15.07 •26.22 31.16 22.00 •29.41 34.41 31.00 •9.90 32.64 30.69 •5.97 27.66 22.65 -18.11 21.68 19.94 -8.04 17.46 17.28 •1.02 
16 4 1.00 23.68 21.98 -7.19 18.62 24.35 30.74 24.30 19.08 -21.50 28.79 24.38 •15.34 23.91 24.00 0.39 18.12 17.03 •6.06 13.42 9.93 -26.02 9.12 9.25 1.46 6.13 7.83 27.58 
17 12 3.00 18.32 16.84 -8.05 12.35 17.38 40.78 14.31 12.71 •11.21 15.12 14.16 -6.36 11.01 10.39 -5.64 8.02 5.19 •35.23 5.91 3.14 -48.84 a93 a73 -5.11 2.51 3.28 30.92 
IS 12 3.00 4.67 4.59 -1.73 5.93 6.63 11.86 11.16 9.24 •17.18 20.44 13.48 -34.06 27.74 23.82 •14.15 31.32 28.38 •9.38 29.60 25.63 •13.39 25.95 23.28 -10.29 23.99 21.48 •10.49 
ig 17 4.25 11.03 9.93 •9.95 11.09 13.13 18.34 17.48 12.81 •26.71 26.55 18.78 •29.25 29.18 26.63 •8.73 29.54 26.02 -11.89 26.68 21.35 •19.96 21.96 20.18 •8.12 17.93 -2.43 
20 18 4.50 17.08 15.68 -8.17 13.23 17.67 33.62 17.03 13.84 •18.69 20.45 17.65 •13.67 17.16 17.46 1.70 14.11 11.86 -16.01 11J!3 7.92 •29.45 8.05 8.14 1.15 6.96 23.60 
21 18 4.50 12.73 11.49 •9.68 11.89 14.62 22.93 17.72 13.18 •25.60 25.36 18.88 •25.55 26.07 24.77 •5.01 25.44 22.33 -12.22 22.59 17.76 •21.39 18.19 17.16 -5.64 14.72 15.12 2.68 
22 31 7.75 6.39 5.62 •12.13 7.24 8.17 12.83 12.59 9.68 •23.13 21.62 14.37 •33.53 27.45 23.76 •13.44 31.32 26.75 -14.61 30.44 25.02 •17.83 27.05 23.74 -12.25 24.91 21.93 •11.96 23 11 2.75 15.60 14.35 •7.99 13.28 17.17 29.32 18.39 14.25 •22.52 24.10 19.45 •19.32 22.36 22.35 •0.06 19.98 17.63 -11.78 16.73 12.73 •2a94 12.65 12.53 -0.94 10.78 14.08 24 19 5.00 7.34 6.00 -18.30 7.12 8.46 18.69 10.90 8.10 •25.67 16.65 11.98 -28.05 18.31 17.40 •4.94 20.41 16.33 -20.02 20.07 15.57 •22.44 17.50 16.13 -7.84 15.16 14.55 •4.08 

Area (km') 109.75 

Volunw o( Rainfall (mm-km'/hr) 2188.32 1988.85 -9.12 1642.89 2120.80 29.09 2145.86 1742.05 •18.82 2579.42 2116.93 -17.93 2318.17 2181.63 •5.89 1897.63 1835.83 -3.26 1515.71 1249.00 •17.60 1149.67 1128.37 -1.85 909.08 1006.78 10.75 
1 1 

Rool Mean Square Error 2.03 4.69 4.53 5.91 1.96 2.57 3.29 1.27 1.62 
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K ) 



APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AitifidiilE ventNo.12 S 1 
1 

No.ol AfM TltTMlItpl TmwMap TinMitap3 Tlimatap4 Tinta (tap 5 T1nMataD6 Tima «tap TlmaataoS Tlmaatap Tlmaatap 10 l^tchman C«l Actual Pradict« Actiii< Pradlctad %«nor Actual Pradielad %aiior Actual Pradictad %«TOC Actual Predictad %anor Actual Pradldad %anor Actual Prad tetad %um Actual Pradlctad %aiit>t Actual %anor Actual %aiTor 

(no.) (ton') (mMir) (im/hr) (*) (mmAir) (fnm/hf) (*) (imnAtr) (mmAit) (*) (mmAir) (imiAii) (*) (tnmlhr) (mMir) (*) (mm/hr) (mmAii) (%) (mm/hr) (miMii) (%) (mmAii) (mm/ht) (K) (mm/hr) (nvnAir) (%) (mm/hr) (mm/hr) (%) 
1 27 S.7S 24.68 28.18 14.23 31.53 26.39 -16.32 21.96 23.73 8.06 20.05 19.40 
2 35 8.7S 18.83 24.27 22J3» 27.78 23.29 -16.15 21.28 25.21 18.45 21.58 20.08 -7.06 20.46 

1750 
19.59 

4.42 
•458 

958 
12.57 

13.04 
17X)5 

40.53 
35.71 

7.33 
11.38 

5.77 
9.44 

•2158 
-17.01 

451 
852 

2.50 
5.01 

•48.04 
•39.77 

254 
4.40 

155 
458 

-16.51 
-^80 

1.48 
2.79 

050 
1.94 

•45.50 
-30.54 28 7.00 10.58 14.43 36.36 1 5 M 14.33 -9.54 13.05 18.13 38.92 14.47 13.49 •6.73 15.81 14.14 •10.58 10.77 8.78 5.51 •37.22 4.97 5.12 3.02 3.14 2.70 36 9.00 22.11 27.18 SZM 29.80 24.94 -15.74 21.33 21.25 -0.35 19.68 19.04 •3.24 15.52 16.81 8.3S 8.73 1 2 ^ 6.14 -12.07 4.49 3.64 •18.81 2.91 Z755 151 14 3.S0 22.00 27.81 25.54 33 JO 26.03 -21.85 27.01 27 J7 1.35 27.99 24.50 -12.48 2559 24X)1 •5.06 15£S 20.41 3156 1459 11.98 -18.73 850 •14.03 5.76 754 3.93 5.16 3156 23 S.7S 13.50 17.6» 31.01 22.23 18.01 -19.00 19«) 24.43 23 j a 23.05 20.25 -12.13 25.10 22.01 •1Z32 17.10 15.70 -15.04 

•19.75 
15.13 
18.14 

1258 
14.17 

•18.83 
•12.21 

852 
9.93 

11.48 
1258 

24.52 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

èub. An* Tkrwit ipl T1in«tt«p2 T)nw«t«p3 Tlm*il ip4 Thrwittp Unwdap TIlMtttp Tinwttap Tim* Map TkMattpIO 
UtchTMn C«l AdUÉl Prudfctid %* in r Aedal Predidtd %«nor AduH Pradtcttd %*nor Adial %im Achat Pradldad %«nDr Aetial Pradlel*d %«fror AehMl Pndldtd Xme AOu*l Pi«dle(«d %*ftor Aduil Pradicltd %Mn>r Aduil Pmjlcl*d %*frar 

No. •• 

<08.) (km«) (imVhO (mn^i) (%) (irmAi) ( * ) ((Tvn^r) (mMir) (%) (flWlVhl) (mn^r) (*1 (iniMir) (mMii) (*) (fTvn^f) (mmftr) (*) (nvntii) (mmffiO (*) (nvnAir) (mrMii) {*) (nvn^f) (mtMir) W (imMir) (mmAii) (%) 

27 8.7E 2.t6 • 1J0 • •SS.06 4j88 4Aa •«.20 « J 2 7.10 -14.69 «51 9.13 -455 13.1« 958 •27.45 16.20 1455 •458 1650 A I 9 -0.05 3451 165« -64.21 24.9« 2152 •13.39 2451 24.17 •0.20 
35 (.75 e . i i 3JOO -S0.>1 «.49 •j63 -23.00 12.16 t J S •18.98 1158 10.12 -13̂ 24 13.00 7/49 -425« 135« 1150 •18.68 12.94 14/48 115« 2659 1653 -40.09 17J22 2159 2250 14.10 1759 24.74 
a 7JOO t j n 6.«S •28J2 9.12 « J t -30.01 10.74 tso -20J2 «57 8/41 -23.41 7M 250 •«•54 7M 4.17 855 7.78 1«/47 12J08 9.84 -20.1« 75« 13.04 70.17 5.45 75« 4458 
M •• tjOO 2vt1 OM • « O J « 4 J 9 6.03 14i« «.25 7.73 -«.24 1050 11.20 2.77 1«58 14.24 •1450 1«.72 1951 4.73 18.12 1«.74 3/H 3751 17.88 -63.03 2857 2157 •17.9« 25.98 2851 051 
14 3 J0 «.4« za •n.40 10.01 9 M •3.60 1«.1t 13M -14.22 1«.72 1858 -9.98 2358 1758 -2«.83 2454 2254 •9.4« 2058 2250 952 37.90 2151 -4^97 2459 28.87 952 1950 23.98 2254 
23 S.7S" 12J0 axff •38.M 16.1« 12.78 •16.95 t«.99 18M -16.29 i«.e7 145« •11.98 1650 9/M -3955 145« 10.90 -28.72 11.76 1450 2359 1950 15.15 -22.30 1158 1953 7151 7.71 1150 4957 
13 3.2S I I J U SM -C3.44 16.72 14.22 •9.63 22.82 1«J1 -1«J« 23.72 KM •13.82 265« 185« •2«.«8 245« 21.15 •1493 1941 2 2 5 9 1754 3252 21.71 -32.20 19.11 28.77 4057 135« 195« 4257 
23 S.75 4.S3 1J0 •73.«S «.23 tso ÎM UM 12J7 -14.91 1951 18.91 -13.36 TtM 20.99 -22.54 28.97 25.70 2 l i 5 »4.16 1257 38.73 21.93 -40.30 22.78 23.98 555 i«.4a 23.80 2755 
I t 4.7S 14.61 I t M •J» 12.89 11J» •11.0« 11.92 10.82 -10.93 751 8.82 -1855 653 2.0« •«0.12 4.41 159 •76.20 350 9.10 351 453 447 654 251 657 16853 1.14 152 69.76 
« 1J0 1S.20 i 3 j a -11.M 14.94 12.63 -18.12 16J«3 1 3 ^ -14.(» UM 9.72 •16.23 «51 450 -63.66 753 355 •53.60 651 « 5 3 2047 858 852 -2.93 452 10.42 13051 254 3.97 66.95 
23 S.7S 12.43 SM •68.t0 17.22 1«.10 •8.65 25.88 20M -20.13 2953 23.4« •20.47 33.13 23.74 -2«54 30.12 255« -15.0« 2158 26.47 195« 3259 22.99 -2S.34 1859 25.93 4351 1255 1850 5153 
17 •• 20JM 14JM .2a.K 21.76 19.25 •11.4« 24.88 21.10 -14.45 2054 1«52 • l l i l 1859 115« •«1.46 1455 958 •325« 959 1250 295« 1458 1257 •8.49 74« 1851 1175« 453 851 6852 
a 20.1* 1S.24 19.68 1«j88 -10.21 1«>M 18J8 -11.3« 13/42 12.14 •9.64 9/M 6.78 750 353 •53.63 559 6.11 2050 «59 8.98 151 352 «.95 154.10 151 255 4857 
14 3.S0 1».1t IIJO« -42.14 22.68 20.29 -10.08 2B.C9 23.74 -H.97 ztx 2351 -14 ja 2559 18/44 •ZtM 2258 1759 •20.69 16/41 1951 2857 2259 18.82 •18.82 12.1« 22.72 «851 740 11.M 8155 
10 2S.S8 20.70 -19.01 S3M 2 1 ^ -«.34 24.32 21.39 • I Z O S 1«54 1750 -7.10 13/41 10.4« -22.01 10.8« «51 •3«.91 »M «53 3254 «.12 «50 4.74 3.96 1059 18759 1.93 256 47.7« 
4 IJOO 10.S3 -48.4« 23M 21J0 •«.74 31J9 2BM -19.09 315« 2«.16 -17.9« 3057 2253 •2557 28.40 21.70 i7M 29.72 2456 20/4« •16.67 1254 2353 8653 7.85 1258 ««53 
12 13.1S SM -« .4» 17J7 18.73 •«.90 2e j « 20M -24.08 32.98 235« -2754 3854 2852 -21.79 30.94 2855 •14.1« 1951 24.9« 2754 2«57 2159 -1«.tO 1353 2251 81.43 «49 1 4 5 S 7451 
12 3JOO 20.10 23.23 1S.M 16.47 18.42 «.12 13.14 13M 1J>1 8/43 9.12 «.17 454 451 •17 .14 3.81 0.79 -7a.08 253 •7.70 258 2/t1 257 15« 3.23 19948 046 0.45 •0.90 
17 •• 30Ja 22.S2 -2«J4 2»M 2847 -«.7« 29J4 2651 -13.07 245« 2252 17/43 1«.2« •«.69 13.18 10.10 •2358 754 1052 47/M «55 95« 11.94 3.99 1150 18350 15« 359 «4.17 

20 1« 4JU aojsi 10JÎ7 •48.74 2BM 22.77 -9.09 33.22 25.49 -23.25 38.20 27.14 -25.03 3453 28.13 •24.54 27.7« 2359 •16.0« 1«54 22.73 3958 2056 1949 -3.76 9.9« 2053 10558 650 10/45 8954 
21 18 30.22 20J04 -33.87 2»JK 27 J 4 •«J1 32JB1 27 J1 -18.7« 2959 2654 -12.7« 22.70 2055 

T « 
175« 1457 •175« 954 14/4« 49.94 1150 1248 10.19 552 14.16 188.14 251 459 7951 

22 31 7.7S 27.7« 26.2S -•.0» 22.80 22.77 0.74 20J86 19J1 -4.11 16.10 16.99 657 951 1058 «55 «.95 452 -34.99 3.76 5.11 3851 453 4.72 1158 1.93 651 200.72 057 1.17 34.16 
23 11 2.7B 1SJ8 -41.77 2I.9S 28.20 •9.60 36.12 27.7« •20.«9 34.7« zi.n -20.1« » J O O 2451 •1«.98 23.45 19.72 •16.93 13.42 19/4« 45.19 18.10 18.70 3.74 7.71 1850 13750 3.98 754 89.14 
24 1« SJOO S I M 20J1 -38.47 29.94 2 7 ^ •«.23 31.93 28.27 -17.73 2950 2554 -14.13 2153 2151 1.7« 14.92 14.13 -5.32 7.1« 12.7« 7(55 7.17 10.08 40.82 3.03 1050 23854 159 258 107.18 

Antpvn^ 10Î.7S 

VatinMol FWnMlbn 1462^ 11S1.22 -30.74 1777J9 1830.4« •«.2« 216457 1817.90 •1(.«3 208959 1797^7 -13.1« 200852 1620.93 -245« 182053 1520.95 -1«.47 136451 1«33.05 2058 2227.92 16685« •30.14 1383.99 1886.8« 3856 1068.97 1342.08 28.97 r 1 -•«j« 1.«7 4.08 3.97 557 3/48 3.47 8.1« 757 3.61 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AfMcM Ennt No.130 1 1 1 1 1 1 1 
I 1 1 1 1 1 

Sub- No.o( A M Tkmtkal TlnMilv Tkratlw TkMatai4 nnM«l«> 1 TkMtlMiS niwtl tp TkMtlip T I tmtM« TlnwitiplO T1m*il4>l1 
CMsitmn C«l Mmi PrxloM %«iT«r MdUÊà PradctM %«nar A o M Pmiofcd % « f m AOKAL Pt « ioM %«rar AOKIRF PradoM %«T8r MuK PradoM %« i « r AOKML PradoM %aim Ackal PradoM %«T0« Mud PradoM %«not A o M PradoM %«ror Aomri PradoM %«nw 

No. 

(ne.) (to«») (mm^ir) (tmlhn ( * ) (mMhr) (mm/h) (%) (mmta) (mm«!) (* ) (mmAr) (mMvt (* ) (rnmhr) (nvMir) (%) (nvn^v) (mm/M (%) (nm/h) (ininA») (*» (nwiAir) (miMir) (%) (iim/hr) (nvMv) (* ) (inn/tir) (mm«») (* ) (mm^v) (mm4v) ( * ) 

27 «75 0.84 0.9» 48.52 1.80 3.84 145.33 3.10 ¿ «1 •15.«7 5.«8 529 •10.1« 9.47 7.«1 •19,«» 1425 11,53 •1«,9« 132« 18,4« 18.78 19,14 15.35 -18.80 24.0« 19,14 -20.44 29.30 20.5« -29.41 2S.«0 24.42 -4,«2 
as 8.75 1.8« OM •88.12 4.24 8.35 120.31 7i1 4.59 -38.40 11.«« 10.35 -1120 15.«4 13,57 •1325 1«.74 1«.49 -12.04 15.30 19.11 24.8« 1«.S0 15.«0 -15.89 19,«4 19.5« -0,30 2206 1«.«7 -15.33 17.30 20.9« 212« 
28 7.00 3.88 0.52 -8«.88 7.42 14.17 80.85 10.99 7.19 -34.57 14.84 13.4« -9.90 1«.40 15,55 •«,19 15.40 14,«« •4,83 10.43 13,92 33 . « 11.17 9.99 •10.5« 10.07 12,«0 2720 10.«9 10.45 -229 7,77 11.82 5213 
M 8.00 0.42 1.78 327J1 1.07 2.07 82.54 2.14 2.02 -5.48 4.31 3.58 •1«.«« 7.70 5,5« •27.44 12.8« 10,4« •18,17 13.«« 15,99 15.34 19,41 1«.72 •1327 25.79 19.53 -242« 30.01 22,01 25,13 24.51 -2,4« 
14 3.60 1.48 0.01 •98.52 3.3« «80 104.27 5.97 4.10 -31J2 10.40 8.09 .1256 1«.01 12«4 -19.77 22,18 1«.55 •18,3« 20.3« 23.48 1522 24,94 21.57 •13.52 2«27 24,90 -11.91 29.51 2524 -14.47 21,60 25.«« 2029 
23 5.75 5.21 0.4« -81.1« 8.75 17.40 78.42 14.4« 9.«4 -33.47 20.18 18.09 •10.«7 23.«1 21.4« •9.a7 23,82 22.50 •5,«1 17.10 2222 29 « 8 17 J7 1«,«4 •««4 1«2S 19,53 20,1« 1521 1«,«7 5.4« 10,40 1«.60 6«,42 
13 3.2S 3.33 0.04 -««.85 «75 1 2 ^ 81.95 10.79 7.0« -34.as 18.78 14.«2 -127« 23,0« 19.12 -17.14 27.82 23.93 •132« 22.8« 25.79 1«2« 25.11 22,7« -92« 25.3« 25,75 1.5« 24.51 2425 -0.«« 1«22 23.47 44,«« 
23 5.75 0.80 o.ao <S3EE ^0« m 43.9« 3.70 228 .38.44 «.7« 5.09 •25.55 »M 7,91 -3149 17,«7 13.88 •21.7« 1729 19.71 9.57 2228 20,«3 •720 2«.6« 22.5« -15,4« 2«.40 23,97 -9.19 1«21 23.14 2«,39 
1» 4.75 10.«4 8.81 -1«.2« 15.7« 21.55 sa.65 18.85 1«.«1 -1«.5« 20.32 19.12 •5.«« 17.8« 1«,82 2«9 12«1 13.7« 9,13 «,«2 9.45 3«.84 5.79 5.77 •028 4.04 «29 55,74 3.4« 4,12 19.04 1,82 427 127,4« 
E I.SO «.81 4.00 -SS.12 14.52 21.85 51.21 18.87 14.0« -25.77 22.51 20.4« •9:01 2220 21,53 -3,01 17.79 1«27 271 10,«« 14,«« 37.74 9.77 «.«0 •1,73 7.51 10.8« 4525 «.74 7,97 1«27 3,88 7.88 88,19 
23 5.75 3.1» 0.07 -87.«« «.24 10.42 « « M 9.79 «.«4 -3220 152» 13.1« •13.52 21.8« 17,37 •20.«9 2727 22.83 •19.S7 2321 2«.12 120« 25,09 23,«9 -5,69 25.43 25.34 •0,35 22.77 24.37 7.05 13,91 21.80 6523 
17 4 ; » 8.75 3.41 •«5.07 1«.1« 23.7« 4«.8« 21.5« 15.«3 -27.52 2«.79 23.89 •10.80 29.00 2829 •9,32 25,«« 2529 •1,44 1«,«« 2221 33.07 15,4« 15.«4 1.11 1248 1«.«8 3522 10,72 1325 23.«0 8,0« 11,«1 80.81 
8 2.00 1^8• 8.70 -31.41 18.0« 25.04 31.20 2326 1«.34 -21.1« 25.7« 23.41 •9.19 24,41 23.81 -325 1«24 19,49 « 2 « 10,51 14.«0 18.90 «.97 92« 3.40 « 4 « 8.73 50,07 5,3« «.75 2«.ao 21« «.15 113.47 
14 3.50 7.02 1.23 -«2.51 12.52 18.8« 57.1« 17.«4 12.44 -3027 242« 21.47 •11.5« 29,5« 25.41 •14.05 30.0« 27,ao •7.91 21,81 27.1« 24.52 21.47 21.19 -127 19.00 22.81 20,0« 1«,57 19.72 19. « 9.«7 17.18 7728 
10 2.60 14.57 8.8« •32.18 21.«« 28.89 24.19 2«. l « 20.«2 -2125 29,0« 28.05 •10.45 2«.47 2«.53 - « M 21.8« 23,14 529 1288 17.«4 35.73 I0,«9 11.71 8.53 7.«« 11.5« 50,99 5,97 8.31 3824 3,00 8.81 120.41 
4 1.00 «.4« 0.8« •«4.81 11.5« 17.89 54.8« 1«.5« 11.78 -2a.8« 22.97 2025 •1141 2923 24,4« -152« 31.04 27.«3 •10,3« 23,33 2«.0C 202« 22.82 22.80 0.33 20.4« 24.00 1720 1720 2125 23.55 9.«4 17.8« «3.3« 
12 3.00 3.11 0J7 •«1.43 5.85 «.«« 4«.3« «.«0 « 2 -28.3« 1329 11.33 •14.7« 19.57 t4,«3 •24.19 24.44 19,93 •18.45 20.85 22.83 «.«« 2124 21.82 270 21.09 22.10 5,10 17,11 2124 24.17 9.40 1«.«1 78.8« 
12 3.00 17.00 20.33 18.55 21.84 24,04 9.57 23.27 21.94 -5.89 21,95 21.50 -204 17.«2 18,17 7.5« 10,89 13.5« 24,0« 5.3« «.0« 50.53 3.8« 4.55 15.10 242 3,82 «1,«« 1.77 220 » .18 021 215 183.8« 
17 4.2S 10.24 1^20 •24.87 23.12 2«.40 14.17 2«.97 22.00 -18.44 29.47 28.50 •10.0« 29.«« 27.02 -«.«a 23,33 24,71 5,81 13.87 19.45 3920 112« 13.43 18.01 «.10 12,40 53,0« 5.93 9.35 57.75 2.«1 « 6 « 133.74 

20 18 4.50 «J2 1.52 •75.80 10.80 15.44 42.89 14.87 1127 •2425 20.12 17.8« •10.«4 2«20 21.42 •1«23 2«,03 24,77 •11,84 2120 24.93 17^1 19.80 21.53 8.71 172« 21.1« 21.«« 1320 18.82 4224 «75 13,81 10«24 
21 18 4.S0 13.80 8.85 -35.81 20.47 24.3« 19.02 24.«« 19.7« •19.7« 2*24 2527 •10.19 M.41 28,8« •ll.«7 25,80 2«,17 1.0« 1«.54 22.07 33.44 13.7« 1528 18.01 10.42 1522 45.9« 7.«« 1215 55.73 3.«« «,43 13027 
22 31 7.75 18.52 20.0S 2.70 25.20 25.«« 2.«« 2888 23.91 -11.04 2521 24.53 -«.43 21.17 22,97 •«.a« 15,85 1«,S3 1«.41 «.3« 1259 50.15 «.32 72« 24.«0 4.17 • •8 «0.«« 2,9« 4.82 55.17 127 3,32 141.8« 
23 11 zn 8.7« 4.14 -57.04 15.«0 20.«4 3^28 20.19 15.«« •22J4 2524 22.8« •1021 29,99 25,4« -15,09 2«,71 25,99 •«.00 20.09 24.9« 24.«1 17.«2 19.91 13.02 14.33 1923 34.19 10.«« 1529 523« 522 11,57 121.52 
24 18 5.00 14.74 10.82 -25.82 20.10 21.25 5.70 22.5« 19.2« •14.71 242« 22.38 •7.94 2S,«3 22,93 •10,55 20,80 2220 «.72 12.8« 17.97 39,7« 9.78 13.87 39.72 «,«9 11.47 ««.47 4.44 9.14 106.56 1.13 5,09 17522 

10S.75 

Votim <X rwnM (imvlni'/l«) 782.80 525.20 -33.76 1221.51 1««0.72 35.8« 18«3.«7 121«.90 -22.0« 1897.14 174123 •10.11 2223.34 18«0,«0 •11.51 2225,50 208020 •«.0« 1871.15 20*1.42 24,55 1759.54 170425 -3.14 1748,81 1851,42 5.51 1715.91 1704.35 -0.«7 I6a4.«« 1S2«,07 274 
1 1 

noolMMnSaumEirai 1 3.8« 4.94 3.8« 209 3,0« 255 .,10?.. 3.59 5.0« 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No.131 1 1 

1 1 

Sub- No. of Area Time atap 1 Time atap 2 Time atap 3 Time atap 4 Tima atap Time atap Time atap 7 Time atap 8 Tima atap 9 

^•tchnwfV Can Actual Predictad % error Actual Pradk:tad %anor Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Prwliclad % error Actual Predicted % error Actual Pradk:ted % error Actual Predicted % error 

No. 

(no.) (km') (mm/hr) (mm/hr) (%) (mrrVhr) (mm/hr) (%) (mm/hr) (mnVhr) (%) (mrrVhr) (mm/hr) (%) (mm/hr) (mnVhr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (*) (nuiVhr) (mmrtir) (%) 

1 27 6.75 22.17 25.57 15.34 21.47 20.04 -6.64 15.69 18.99 21.05 10.66 10.59 -0.70 7.29 7.06 •3.13 4.75 4.09 •13.96 1.81 1.91 5.70 0.99 3.21 225.14 0.78 2.39 205.36 

2 35 8.75 25.50 28.79 12.89 26.89 23.33 -13.25 22.86 24.32 6.42 17.47 18.18 4.07 13.62 13.94 2.36 10.07 10.23 1.61 4.48 5.54 23.77 2.67 4.52 69.65 2.18 2.15 -1.25 

3 28 7.00 19.16 22.93 19.66 21.74 19.31 -11.14 21.40 20.93 -2.18 18.4« 19.83 7.38 16.48 17.16 4.11 13.86 14.78 6.61 7.24 9.29 28.33 4.67 6.11 30.86 3.90 2.80 -28.29 

4 36 9.00 17.93 21.02 17.20 17.66 16.74 -5.22 12.52 15.53 24.09 8.16 7.65 -6.23 5.36 4.86 •9.17 3.42 2.43 •28.91 1.27 1.24 •2.76 0.72 2.96 308.30 0.60 2.84 376.86 

5 14 3.50 25.30 28.03 10.77 27.53 23.09 -16.14 22.65 24.50 8.18 16.44 16.66 1.36 12.19 12.31 0.94 8.83 8.49 •3.77 3.80 5.06 33.10 2.40 4.85 101.91 2.06 3.21 56.00 
6 23 5.75 24.59 27.99 13.64 29.34 24.03 -18.09 29.25 27.67 -5.39 24.89 25.84 3.80 22.02 22.26 1.10 18.76 19.25 2.62 9.90 13.15 32.84 6.84 8.90 30.04 6.00 5.09 -15.10 
7 13 3.25 27.07 29.73 9.83 31.75 25.24 -20.50 29.21 28.72 -1.70 23.01 23.37 1.57 18.75 18.86 0.60 15.01 14.87 •0.93 7.33 9.89 35.04 5.09 7.45 48.36 4.56 4.72 3.44 
8 23 5.75 17.53 19.53 11.39 19.58 16.45 -15.99 15.75 17.30 9.82 11.01 10.41 -5.49 7.90 7.37 -6.70 5.69 4.54 -20.17 2.44 2.88 17.97 1.65 3.36 103.09 1.49 2.78 86.02 
9 19 4.75 10.34 13.07 26.46 14.17 12.69 -10.43 17.98 14.68 -18.36 18.45 19.43 5.29 20.16 19.89 •1.33 21.16 20.94 -1.03 14.43 18.10 25.42 11.65 13.58 16.58 10.79 10.68 •1.07 

10 6 1.50 15.95 19.42 21.75 20.75 17.70 -14.71 24.05 20.87 -13.25 23.01 24.02 4.38 23.19 23.00 -0.82 22.43 22.50 0.32 13.81 17.67 27.94 10.42 12.20 17.09 9.40 8.23 -12.41 

11 23 5.75 22.34 24.19 8.29 27.54 21.14 -23.23 25.90 25.03 -3.38 20.36 20.56 0.99 16.69 16.83 0.86 13.78 13.57 •1.50 6.98 9.95 42.51 5.31 7.42 39.68 5.04 5.26 4.77 

12 17 4.25 20.37 23.44 15.03 27.03 21.29 -21.22 30.61 26.51 -13.39 28.28 28.68 1.44 27.60 26.83 -2.80 26.44 25.79 -2.45 16.09 20.81 29.34 12.82 14.34 11.90 12.06 10.24 -15.08 

13 8 2.00 13.74 16.51 20.18 19.14 15.83 -17.31 23.92 19.53 -18.37 23.96 24.45 2.05 25.59 24.50 -4.28 26.68 25.36 •4.92 18.02 22.10 22.63 15.08 16.24 7.67 14.37 12.86 -10.50 
14 14 3.50 24.11 26.79 11.10 31.07 23.84 -23.28 32.64 29.39 -9.98 28.24 28.57 1.17 25.68 25.33 •1.36 23.14 22.84 •1.31 13.06 17.61 34.77 10.21 12.16 19.13 9.63 8.47 -11.99 
15 10 2.50 14.39 16.57 15.16 20.83 16.23 •22.09 26.54 21.15 •20.31 26.59 26.59 0.01 28.53 26.74 •6.26 30.32 27.96 •7.78 20.93 25.39 21.31 18.55 18.81 1.43 18.34 15.66 •14.60 

16 4 1.00 22.77 24.90 9.34 29.97 22.45 -25.09 31.46 28.30 -10.04 26.89 27.23 1.25 24.21 24.10 •0.43 21.87 21.63 •1.12 12.36 17.15 38.74 10.00 11.93 19.24 9.67 8.68 -10.29 

17 12 3.00 16.03 16.48 2.84 21.17 15.34 -27.53 20.95 19.33 -7.77 16.78 16.83 0.27 14.17 14.38 1.54 12.34 12.16 -1.49 6.68 9.93 48.62 5.67 7.13 25.73 5.74 5.61 -2.32 
IB 12 3.00 6.45 7.93 22.93 10.07 8.81 -12.56 14.82 10.80 -27.12 16.67 17.10 2.59 20.36 19.23 -5.54 24.50 22.43 •8.43 19.72 23.21 17.71 18.93 19.63 3.74 19.17 18.91 •1.36 
19 17 4.25 13.02 14.02 7.68 19.70 14.38 -27.03 25.76 19.98 •22.45 25.95 25.76 -0.72 28.27 26.32 -6.88 31.27 28.10 •10.14 22.76 27.24 19.68 22.29 20.75 -6.89 23.43 18.73 •20.08 
20 18 4.50 16.68 17.38 4.21 23.40 16.66 -28.80 25.71 22.35 •13.08 22.32 22.71 1.73 20.62 20.78 0.79 19.60 19.43 •0.84 11.78 16.89 43.33 10.63 11.77 10.77 10.98 9.49 •13.51 
21 18 4.50 14.29 15.15 8.00 21.38 15.30 •28.42 26.87 21.43 •20.27 26.12 26.09 •0.10 27.42 26.02 -5.09 29.47 27.04 •8.23 20.72 25.76 24.32 20.29 19.11 -5.85 21.50 16.92 •21.33 
22 31 7.75 8.25 9.09 10.19 13.05 10.10 -22.57 18.70 13.70 •26.75 20.36 20.36 0.01 24J22 22.27 •8.05 29.15 25.49 -12.57 23.57 26.67 13.16 24.28 22.12 -8.89 25.87 21.56 •16.65 
23 11 2.75 16.36 17.33 5.69 23.77 16.95 •28.70 27.95 23.38 •16.34 25.65 25.92 1.05 25.21 24.69 •2.05 25.40 24.35 -4.13 16.42 22.05 34.24 15.33 15.65 2.14 15.96 13.09 -17.99 
24 19 5.00 8.76 8.29 -5.40 14.44 9.63 -33.33 19.87 14.97 •24.67 20.25 20.62 1.81 22.58 21.68 •3.99 26.38 23.85 -9.60 20.47 24.89 21.55 22.75 18.93 -16.78 25.82 18.19 -29.58 

Araa (km') 109.75 

Volums of Rainfall (mnt-km'/lir) 1960.60 2203.90 12.41 2390.53 1948.30 -18.50 2436.29 2263.25 -7.10 2123.92 2154.90 1.46 1997.82 1948.95 -2.45 1917.95 1816.50 •5.29 1218.13 1522.93 25.02 1072.91 1179.25 9.91 1079.66 958.15 •11.25 1 1 
Root Mean Squara Efror 2.41 4.68 3.55 0.55 0.68 1.49 3.64 1.87 2.58 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

ArWIoWE wit No. 132 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 Sub- No.o« A M Hmoilipl T1motlm2 Tkrwitwl T1nwilop4 Urn* Mm Tlmottw 1 IkMil ip T1mo«lH>8 Tkiwitop TtnoiMlO TknoiMl l 

Col Acklil Pradota % « n c Aokai PradoM %tn«r Aokm ProdolM %ma AaM ProdoM %«ior AoM ProdoM % « n r ActlMl ProdcM %Êim Muà PradetMl %Mnr /MNI ProdoM Honor Aduol ProdoM %otror MtM ProdoM %otror MuH ProdcM %0tT0( 
No. 

(no.) (nvMv) (nvnAv) (*) (nvMv) (nm/)<) (* ) (inniA») (imMir) (%1 (nm*r) (niMM (*) (mtMir) (iniiAir) {*) <tlim)v) (nvn^) (*) (nm/hr) (nwMv) (%) (fflmAir) (itimM (%) (mmAv) (nvriAir) (%) (mm/ht) (mmAv) (%) (rrm/tv) (nvMv) (%) 
27 •.7t 0.72 7.88 884.88 i n 1.71 29.88 1.74 4.11 10.07 4.88 2.43 •S1.01 8.88 8.00 •8.88 14.80 11.08 •21.75 22,og 15J5 •25.81 22.88 18.11 -18.80 18.47 •2521 27.41 22.78 •18.81 18.45 25.81 11.84 
IS 8.7S 2.14 8.08 121.81 1.15 1.18 •St.54 7.80 5.82 •24.08 8.81 5.20 •41.81 11.07 11.11 •15.00 18.05 14.44 •18.88 21.54 18.41 •21.70 18.41 18.88 1.12 18.88 17.44 •7.81 17.44 18.54 8.11 11.10 84.81 
28 7.00 4.14 8.11 120.40 5.40 £S2 -SI.» 10.28 8.78 •14.07 8.84 8.88 •12.7* 12.10 8.71 -20M 11.84 i i . n •14.87 18.41 12.84 •18.82 10.14 11.05 28.1» 8.88 728 721 8.14 2».45 422 8.04 
M t.OO 0.S0 8.71 1217.12 1.02 £00 88.71 1.01 1.88 11.82 4.11 2.87 •17.87 7.81 8.18 4.88 14.08 11.04 •21.47 22.81 18.81 •27.05 24.80 28.48 21.52 •24.4« 29.78 •18.08 20.84 27.17 
14 l.SO 1.7» 8.85 is4.as 1.17 1.77 -44.18 7.88 7.18 •10.02 8.88 7.28 •naa. 15.51 14.88 •5.51 »117 18.17 •20.72 12.18 21.88 28.71 25.40 •11.80 2789 •8.81 24.8S 25.17 15.1» 58.11 
Z3 S.7C S.tl 11.81 104.78 8.11 1.80 •51.88 15.82 I I J « -28.84 15.84 1181 •20.78 18.88 17 J 8 •1Z71 22.74 18.88 •12.8« 25.81 2120 •17.81 17.40 21.81 24.12 11.78 18.01 18.14 10.78 1424 333« 5.»2 1128 »2.15 
11 3.2t 4.00 10.88 171.80 8.41 2.88 -54.81 14.04 10.78 •21.18 15.81 12.48 -21.08 21.78 18.85 •8.55 28.15 21.05 •18.11 18.18 28.82 •24.72 27.00 27.81 1.07 22.80 2427 8.44 18.55 22.18 20.74 10.50 18.18 82.70 
2* «.7t 1.17 8.80 404.81 2.28 1.« •41.44 S.82 8.41 -8.10 7.87 8.05 -21.08 12.85 12.42 •1.84 18.85 15.55 •21.84 28.40 20.74 •28.48 27.71 2iU •18.02 28.87 24.B8 •7.80 21.82 24.40 2.48 14.4« 21.(8 «2.8» 
1« 4.7S 11.41 11.10 14.78 12.12 11.51 •«.47 17.82 11.08 •25.85 11.81 11.81 •2.07 11.28 11.41 •11.80 10.88 10.81 •1.81 8.77 825 •15.51 4.70 7.48 6820 2.85 1.55 24.42 1.82 2.82 55.12 0.85 1.72 102.88 • 1.M •.S7 11.01 14.78 11.51 8.08 •28.81 18.82 12.88 •10.28 18.15 14.12 •11.14 17.07 14.S5 •14.78 15.88 15.01 •5.82 15.55 11.1S •14.17 8.48 1^80 5125 5.88 7.» 28.8« 1.88 5.88 51.81 121 1.78 87.81 
n «7« 4.0« 8.11 128.07 8.77 1.04 -55.08 14.81 11^1 •21.25 18.78 14.40 •14.25 22.74 20.88 •8.05 2827 21.48 •18.84 18.87 28.88 •28.15 28.08 27.88 •1.44 22.50 2S.18 11.80 17.42 22.09 28.41 8.41 17.81 8028 
17 4.2S 11.1S 14.80 10.4S 14.84 8.88 -18.18 24.88 17.18 •10.27 22.88 20.58 •8.11 24.78 22.01 •llJil 24.42 22.85 •lia 24.84 21.01 •15.78 1421 20.84 44.09 11.12 51.17 1.18 81.07 • 2.00 UJ» 1S.11 rja 18.12 12.88 •21.11 24.08 17.08 •28.11 18.84 18.18 •1.40 18.18 17.18 •11.17 18.85 18.41 -1J8 1SJ0 1124 •11.48 7.81 1^15 «1.75 4.82 8.41 18.00 2.82 4.51 54.85 1.14 2.18 75.72 
14 1.60 S.S2 11.80 88.47 12.18 8.28 •48.51 22.7S 18.24 •28.82 22.88 20J1 •11.88 27.11 24.44 •10.51 10.00 28jl -12.81 11.18 28.54 •20.82 2147 28.81 24.88 15.44 20.02 28.88 11.05 18.02 45.04 5.81 1127 100.87 
10 2.S0 17.20 18.71 -2.74 20J0 15.00 •28.10 28.88 20.78 •10.41 24.n 24.45 •1*4 24.12 21.82 -8.14 20.58 20.58 •0.07 18.82 18.58 •12.10 822 15.58 8725 5.17 8.18 («25 121 52» 81.51 141 2.14 84.18 
4 1.00 8.IC 1Z88 cs.st 12.11 8.10 -48.71 21.00 18.58 •37M ».7» 21.41 •8.78 28.82 25.73 •10.11 11.84 27J5 •14J8 38.12 27.83 •32.88 21.81 2820 18.84 1«.51 22.10 11.04 11.84 17.15 48.04 5.7» 11.88 108.88 
12 1.00 4.10 7X nas 72* »3a -S5J8 14.85 10.88 •28.5S 17M 15.88 -8J8 22.05 18.81 •8.82 27.20 21.78 •18.85 » . ta 21.77 •2821 2417 24.57 0.78 17.88 22.81 27.51 12.82 18.(0 44.12 «4« 11.72 11Z48 
w 1.00 18.28 18.28 •18.81 18.21 20.51 8.85 21.18 18.80 -aoj8 18.71 18.88 18.81 11.71 11.71 -0.18 8.84 11.18 18.08 7.82 8.87 •8.81 1.07 8.80 82.48 1.52 2.08 15.44 0.82 1.10 14.10 0.11 0.11 1.01 
17 4.2S 20.44 18.87 •18.87 24.41 17.18 -28.81 14.81 21.70 -11.87 28J8 M.84 OM 27.15 25.41 •«.12 22.7* 21.28 t » 20.81 18M •10.88 10.11 17.4« 7£11 8.88 8.88 78.70 128 8.80 81.51 1.1» 2.40 72.88 
I t 4.(0 8.84 10.87 24.81 12.81 8.88 •48.a 21.81 18.51 •28.71 24.18 •8.88 27.85 28.08 28.70 •14.80 2521 •24.18 21.82 51.0« 14.88 87.71 4.12 
1« 4.W 18.01 1S.88 •11.08 22.78 14.84 •14,87 14.01 21.04 •».28 28J0 28JT •1.78 28.10 27.07 •7.81 28.01 28.42 •2.10 24.88 21.48 •14.04 12.87 20.81 58.11 7.41 11.18 77.08 4.41 8.18 84.(0 1.89 1.7» 

22 11 7.7« 21.78 17.8S •»32 25.24 21.88 •11.01 I I J * 22.78 •27 J 8 21.S4 28.82 8.88 18.84 18.78 •024 14.81 18.88 14.08 12JI1 11.51 521 1021 84.01 2.74 4.88 77.17 1.51 255 88.57 0.84 0.87 15,(1 
23 11 2.7S 12.80 11.44 4.14 17.88 10J4 •42.4« 28.81 20.45 •11.42 28.42 27.18 •4.14 10.44 27.48 •8.72 28.81 27.08 •8jt7 10,84 2421 •18.4» 17.57 24.48 18.38 10.87 17.88 85.a 8.82 11.88 78.82 2.88 8.18 115.77 
24 1* S.00 20.28 11.80 •12.87 25.23 18.05 •18.18 14.87 22.70 •14.51 2»a2 28.70 1.81 28.50 2S.17 •4J8 21.54 22.81 4.84 18.51 17.78 •8.80 8.18 18.77 81.08 4.5« 10.57 111.8» 2.41 5.80 112.78 0.»4 1.78 8»,82 

100.7S 

Vokm 01 ( M i M (mn-liin'4ii) 884.80 12S8.7S 10.45 1207.24 818.27 •MM 1818.88 1411.82 •27.12 1805.51 1840.25 •8.1S 2098.08 1887.85 •8.41 2228.7» 1878.57 •11.27 2581.15 2018.71 -21.08 187128 207825 10.80 1887.18 1704.51 8.72 1M8.80 1518.8« 12.88 811,78 1110.80 45.85 
1 1 

RoolMMnSoumEirar 4,78 4.75 8.51 Z18 2.05 1.24 5.87 4.8» 4,15 3.81 528 

O <j 



APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Evtnt No. 133 1 
1 

Sub- No. of Araa Tknaatapl Tlmaatap2 TIma atap 3 TIma atap 4 TIma atap TIma atap TIma atap 7 TIma atap 8 T Imai tep 9 
.^cnnwrT C « l Actual PrMllclad %arror Actual Pradletad % error Actual Pradletad %»rror Actual Pradletad %arror Actual Pradletad % arror Actual Pradletad % arror Actual Pradletad % arror Actual Pradletad % error Pradletad % error 

No. 

<no) (Km') ( m n ^ r ) (mm/hr) (*) (mnVhr) (tnnVhr) (%) (tnnVhr) (mnVhr) (*) (mm/hr) (mrrVhr) (%) (mnVhr) (mirVhr) (*) (mmffir) (mrrVhr) (%) (mrrVhr) (mm^r ) (*) (rrtmnir) (mnVhr) (%) (mirVhr) (nmVhr) (%) 
1 27 6.75 2.S5 1.83 -28.30 4.27 1.79 •58.01 7.37 6.93 •6.99 7.54 7.28 •3.48 7.93 10.36 30.60 7.81 0.00 2>.B3 8.43 •8.04 5.67 9.63 60.70 5.11 4.55 -10.93 
2 3S 8.75 8.77 2.44 -63.04 9.14 6.96 •23.68 13.51 11.27 •16.67 11.51 12.35 7.33 9.90 12.32 24.37 8.44 10.06 10.12 8.60 7.61 •11.46 4.58 5.73 25.01 3.50 4.83 38.05 
3 28 7.00 12.00 5.49 -54.27 12.70 13.71 7.93 15.79 12.33 •21.96 10.87 13.04 19.94 7.40 9.21 24.49 5.28 6.02 13.88 4.47 3.82 •14.61 2.00 0.78 -61.04 1.23 3.55 168.56 
4 36 9.00 1.61 1.11 •30.99 3.08 0.55 •82.15 5.82 5.65 -2.84 6.83 6.21 •9.19 8.45 11.20 32.56 9.58 12.74 33.04 13.10 12.46 •4.85 0.20 16.60 78.74 9.97 8.51 -14.59 
S 14 3.50 4.96 0.77 •84.45 8.03 3.94 •50.88 13.34 11.71 •12.24 13.59 13.57 •0.16 14.46 17.19 18.91 14.78 17.06 15.48 18.13 15.54 •14.20 11.65 16.01 45.15 11.10 10.85 -2.26 
6 23 5.75 14.73 5.12 -65.24 17.26 16.11 -6.64 22.83 18.28 -19.93 17.51 20.26 15.68 13.62 16.75 22.92 10.90 12.63 14.86 10.54 0.40 •10.88 5.37 5.30 0.30 3.87 6.69 72.77 
7 13 3.25 9.66 1.82 -81.14 13.77 9.35 -32.08 20.78 17.11 •17.69 19.09 19.88 4.14 18.18 20.87 14.76 17.24 18.02 0.75 10.40 16.36 •15.95 11.64 15.10 30.53 10.11 11.48 13.60 
8 23 5.75 2.80 0.01 -99.53 5.19 1.12 •78.48 9.41 7.84 -16.72 11.04 9.71 -12.03 13,90 15.67 12.75 16.45 18.44 12.00 23.44 10.20 •18.12 17.53 24.30 30.12 19.99 16.17 •19.12 » 19 4.75 23.69 16.44 -30.59 19.79 24.37 23.15 20.46 16.10 •21.30 11.73 15.88 35.37 6.65 8.69 30.66 4.26 4.73 11.04 3.20 2.72 •16.11 1.30 0.00 -100.00 0.71 2.84 300.62 
10 6 1.50 21.94 11.77 -46.36 20.83 23.45 12.56 23.64 18.35 •22.37 15.08 19.13 26.85 9.58 12.13 26.67 6.65 7.48 12.61 5.43 4.77 •12.26 2.38 0.42 -62.48 1.42 4.22 106.08 
11 23 5.75 8.33 0.91 •89.09 12.71 7.78 •38.80 19.95 18.24 •18.57 19.89 19.49 •2.01 21.04 22.14 5.22 22.05 22.10 0.10 27.61 21.01 •23.92 18.36 22.03 20.01 18.13 16.55 •8.70 
12 17 4.2S 22.97 9.68 •57.88 24.61 24.21 -1.63 30.20 23.47 •22.28 21.82 25.66 17.62 16.08 19.41 20.68 12.70 14.04 10.50 11.86 10.47 •11.73 5.05 -0.38 4.19 7.42 77.21 
13 8 2.00 27.41 16.11 •41.23 24.98 27.50 10.10 27.31 21.10 •22.74 17.10 21.79 27.38 10.76 13.73 27.60 7.53 8.51 13.11 6.10 5.64 -8.99 2.75 0.06 •65.01 1.87 4.30 157.24 
14 14 3.50 17.34 5.06 -70.83 21.46 18.27 -14.88 29.12 23.02 •20.94 23.98 26.23 9.37 20.46 23.32 14.01 18.10 10.32 6.77 10.01 16.01 •15.79 10.66 12.36 15.03 8.56 11.26 31.32 
IS 10 2.50 29.72 16JÎ3 -45.38 28.49 29.29 2.81 32.05 24J6 •23.32 21.25 25.94 22.07 14.35 17.86 24.46 10.75 12.11 12.70 0.47 8.75 .7.65 4.52 3.60 •20.42 a o o 5.05 08.56 
i e 4 1.00 15.45 3.80 -75.40 20.32 16.20 •20.27 28.62 22.73 •20.60 2S.08 26.38 5.15 23.04 24.98 8.38 21.77 22.1S 1.78 24.43 10.60 •20.17 14.85 17.13 16.02 12.75 14.30 12.13 
17 12 3.00 7.24 0.46 •93.67 11.47 6.70 •41.60 18.28 14.43 •21.04 19.23 17.88 •7.06 21.88 21.23 •2.96 24.72 22.85 •7.55 33.34 23.42 •29.76 24.00 26.13 8.84 25.99 20.83 •10.84 
i s 12 3.00 30.36 24.48 •19.40 23.23 28.24 21 £ 6 22.25 18.40 -17.31 12.14 17.58 44.87 6.62 0.77 47.40 4.23 6.33 26.06 a i 6 3.18 0.42 1.20 0.22 •83.23 0.71 1.80 166.64 
19 17 4.25 29.61 15.92 -46.24 29.56 28.62 •3.18 33.96 26.14 •23.03 23.85 28.11 17.85 17.39 21.08 21^7 14.04 15.63 11.33 13.35 12.34 •7.62 6.01 7.65 10.70 5.03 8.03 50.75 
20 18 4.50 13.39 3.08 -77.01 18.34 14.17 •2Z71 26.30 20.66 •21.47 24.43 24.46 0.12 24.30 24.34 0.20 24.93 23.35 •6.32 30.42 22.28 •26.74 10.99 21.83 0.23 19.41 18.22 •6.10 
21 18 4.50 25.66 11.98 -53.30 27.82 25.60 •7.S9 33.84 26.07 •22.95 25.70 28.83 12.15 20.49 23.39 14.13 17.79 18.73 5.31 18.23 15.73 •13.71 10.14 11.74 15.77 8.06 10.83 34.30 
22 31 7.75 32.63 22.79 -30.16 27.73 29.59 6.71 28.46 22.67 •20.36 17.47 22.95 31.34 11.05 15.14 37.02 8.06 0.06 23.48 6.04 7.17 3.38 3.28 3.13 -4.71 2.16 4.13 90.07 
23 11 2.75 19.48 6.78 -«5.19 23.87 20.44 •14.38 31.63 24.55 -22.37 26.65 28.13 5.53 23.80 25.18 5.79 22.50 22.10 •1.70 25.21 10.78 •21.52 15.26 17.17 12.54 13.41 14.82 10.46 
24 19 5.00 23.40 11.58 -50.54 25.15 23.07 •8.27 30.04 23.31 •22.40 23.20 25.95 11.85 19.14 21.66 12.61 17.49 16J2S 4.33 18.86 16.35 •13.20 11.15 13.80 23.71 9.51 11.81 24.13 

Araa Qtm'] 109.75 

VoluiTM 01 Rainfall (mm-km /hO 1658.59 820.02 -50.56 1790.73 1630.60 •8.94 2265.80 1813.03 •19.98 1790.64 1991.28 11.20 1531.14 1797.17 17.37 1403.89 1530.10 0.63 1571.20 1323.45 •15.77 959.62 1174.42 22.38 879.71 069.67 10.23 
1 1 

Root Maan Square Error 9.54 3.22 5.17 2.99 2.61 1.51 3.60 2.99 2.43 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No. 134 1 1 
Sub- No. of Area Tknat tap l Tim* atap 2 TknaatapS T lm«atap4 TImaatap S Time atep 6 Time atep 7 Time atep 8 Tltna atep 9 

~«tchm*n c«a Actual PrwIkiM %*rTOr Actual PradlctaO %arror Actual Pndleta«! %arror Actual Pradlctad %arror Actual Pradlctad % error Actual Predicted % error Actual Pradlcted % error Actual Predicted % error Actual Predicted % error 
No. 

(t>0.) (km') (mcn/lir) (mnVhr) (%) (mm/hr) (mrVhr) (%) (tn^V^r) (mm/hr) (*) (imVhr) (mnVhr) (%) (mtn/hr) ( m n ^ t ) (%> (rmWhr) (rtmVhr) (%) (mir^r ) (mm/hr) (%) (mrrVhr) (mrrVhr) (%) (mm/hr) (miWhr) (%) 
1 27 6.7S 18.85 15.23 •9.58 18.74 15.27 -18.50 16.64 16.15 •2.93 12.57 13.09 4.11 9.53 7.83 •19.95 8.82 6.85 •22.35 4.96 5.10 2.96 2.81 4.32 53.53 1.13 4.21 273.90 
2 35 8.75 14.81 13.34 -8.70 19.03 15.07 -20.82 20.68 18.16 •12.20 19.01 18.91 •0.54 17.21 15.79 •8.27 18.44 15.37 •16.63 12.62 14.94 18.35 8.34 10.09 20.98 4.04 8.70 115.39 
3 2S 7.00 7.56 6.93 -8.41 11.80 8.98 •23.94 16.12 12.76 •20.85 18.44 17.48 -5.20 20.52 19.55 •4.74 25.89 21.38 •17.45 22.00 24.05 9.33 17.21 17.51 1.75 10.34 15.00 45.07 
4 36 9.00 20.48 19.22 •6.10 20.02 17.73 •11.47 15.23 16.61 9.08 10.01 11.32 13.13 6.46 5.07 •21.54 5.40 3.53 •34.68 2.72 1.51 •44.83 1.42 1.31 •7.28 0.50 1.52 202.30 
5 14 a s o 25.09 21.84 •12.96 27.65 22.45 •18.81 24.55 23.45 -4.50 18.81 20.19 7.35 13.74 13.56 •1.30 12.87 10.69 -16.93 7.65 7.90 3.23 4.51 4.29 •4.76 1.85 3.79 104.29 
« 23 S.75 14.55 12.10 -16.86 20.46 15.71 •23.19 24.71 20.45 -17.26 25.42 24.61 -3.17 24.63 24.74 0.45 28.78 23.98 •16.69 22.80 25.05 9.86 16.81 16.47 •2.00 9.22 14.10 52.89 
7 13 3.25 24.49 20.57 -16.00 29.44 23.16 -21.32 29.23 25.96 •11.18 24.99 25.56 2.27 19.84 20.83 4.99 20.15 17.27 -14.30 13.51 15.01 11.11 8.71 8.02 •7.92 3.99 6.83 71.36 
S 23 S.7S 27.30 24.91 -8.75 26.25 22.99 -12.41 19.78 21.17 8.99 13.09 16.32 17.03 8.02 8.08 0.88 6.76 4.72 •30.17 3.61 1.95 •46.11 1.95 0.57 •71.08 0.71 0.49 •30.78 
0 1 » 4.7S 3.98 1.92 -51.84 7.17 4.20 -41.45 11.89 7.62 •35.94 16.59 14.29 •13.88 21.06 21.15 0.43 30.66 24.47 •20.69 33.29 30.04 •9.77 31.15 26.29 •15.56 22.97 24.14 5.09 
10 6 1.50 7.10 4.72 -33.56 11.73 8.02 -31.66 17.37 12.62 •27.35 21.69 19.65 -9.42 24.97 25.02 0.19 33.63 26.98 •19.76 32.26 31.35 -2.82 27.54 24.50 •11.05 18.12 21.80 20.32 
11 23 5.75 28.71 23.66 -17.61 31.68 25.17 -20.55 28.50 26.18 -8.13 22.42 23.94 6.79 15.85 18.43 16J27 15.16 13.55 •10.73 9.73 10.29 5.78 8.04 4.34 •28.11 2.60 3.65 40.69 
12 17 4.25 13.34 9.32 •30.13 19.55 14.19 -27.44 25.09 19.60 -21.89 27.59 25.83 -6.38 27.34 28.83 5.46 33.58 27.88 •16.97 29.31 30.31 3.39 23.20 21.19 •8.66 13.70 18.65 36.15 
13 t 2.00 8.96 3.71 -46.63 11.55 7.43 -35.69 17.31 12.01 •30.60 22.07 19.48 -11.76 25.15 25.85 2.78 34.47 27.54 •20.11 34.73 32.41 •6.66 30.73 26.58 •13.51 20.91 24.25 15.96 
14 14 3.50 20.7S 16.10 -22.40 27.13 20.72 -23.83 30.16 25.22 •18.36 28.94 28.41 •1.88 24.99 27.43 9.77 27.72 23.95 •13.61 21.32 23.50 10.22 1SJi7 13.91 •6.69 7.91 12.00 51.76 
IS 10 2.50 9.26 5.07 •45.25 14.55 9.81 •32.56 20.46 14.81 •27.60 24.70 22.06 •10.69 28.03 27.83 8.93 34.27 27.90 -18.59 33.43 31.98 -4.33 28.74 25.18 •12.39 18.65 23.09 23.83 
18 4 1.00 24.25 18.93 •21.97 29.93 23.15 -22.84 31.02 26.60 -14.24 27.97 28.20 0.82 22.31 25.96 16.45 23.62 21.20 -10.25 17.38 19.46 12.18 11.97 10.33 •13.77 5.86 8.88 51.51 
17 12 3.00 28.24 23.93 -15.27 29.39 24.28 •17.40 24.76 23.72 •4.20 18.48 20.88 11.95 11.91 15.63 31.18 10.98 10.24 •6.70 6.92 6.78 -2.14 4.23 1.92 •54.65 1.75 1.55 -11.21 
IS 12 3.00 3.00 0.51 •83.08 5.57 i 7 2 -51.20 9.66 S.69 -41.07 14.28 11.70 -18.07 18.17 18.99 4.52 27.86 22.01 •20.99 33.28 28.16 •15.38 33.51 27.78 -17.12 26.58 26.78 0.77 
19 17 4.25 11.11 6.S6 -40.95 16.36 11.81 -27.82 21.36 16.35 •23.46 24.27 22.29 •8.15 23.34 26.81 14.87 29.44 24.95 •15.27 27.98 27.72 •0.93 23.54 21.05 •10.59 14.66 19.61 33.77 
20 I t 4.50 24.44 19.57 -19.92 28.28 22.69 -19.77 27.30 24.35 -10.80 23.26 24.45 5.10 16.91 22.13 30.90 17.22 16.SS -3.89 12.43 14.16 13.94 8.42 6.54 •22.27 3.96 5.69 43.58 
21 18 4.50 14.67 9.88 -32.83 20.10 15.28 •24.07 24.01 19.38 •19.29 25.12 23.99 •4.48 22.18 26.74 20.56 26.34 23.32 •11.48 23.32 24.48 4.94 18.56 16.69 •10.09 10.74 15.37 43.16 
22 31 7.75 5.74 2.32 -59.57 9.30 S.96 •35.90 13.86 9.82 •30.60 18.02 15.65 •13.18 19.80 21.95 10.85 27.84 22.58 -18.88 30.62 27.31 •10.83 28.91 24.99 •13.55 20.90 24.12 15.42 
23 11 2.75 20.27 15.15 -25.28 25.47 19.94 •21.73 23.19 •15.02 25.70 25.75 0.22 20.52 25.90 26.23 22.51 20.97 -6.64 17.94 20.13 12.20 13.13 11.45 •12.75 6.82 10.24 50.15 
24 19 S.00 11.94 8.54 -28.51 15.88 13.12 •17.37 18.49 15.80 -14.56 19.11 19.07 •0.23 15.95 21.69 35.92 16.85 17.73 -5.95 17.22 18.27 6.10 13.96 12.41 -11.13 8.13 11.81 45.18 

kraa (km') 100.75 
1 

Volum* <* Ralnfdl (mm-km'/hr) 1748.75 1420.23 -18.79 2131.82 1674.37 •21.46 2255.14 1949.12 •13.67 2156.54 2125.20 •1.45 1941.92 2073.13 6.78 2277.47 1907.20 •16.26 1950.16 1957.73 0.39 1563.14 1413.02 -9.60 962.57 1284.48 33.44 

1 1 
Root M« «n Square Error I 3.62 4.65 3.80 1.63 2.78 4.09 2.02 2.54 3.36 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

ArtH)el.lEv.nt 1^0.135 1 1 1 
1 1 1 

Sub- No.o« Ar«« Tlme«t*p 1 Tlm*tt«p2 Thnaatap Tlmaatep4 TbTM (tap > Tlmaitap6 Tbna atap 7 TIma atap 8 TIma atap 9 
^AtchlTWlV C«< Actual PradlcMd %«rror Actual Pradkied %*rror Actual Pradlctad %arror Actual Pradkrted %*rror Actual Pradk:tad %anar Actual Pradlctad %arror Actual Pradkrtad % arror Actual Pradlctad % arror Actual Pradkrtad % arror 

No. 

(no.) (km') (mm^t) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mmnir) (mmnir) (*) (fTwrVhr) (mnVhr) (*) (mm/hr) (mnVhr) (%) (mni'hr) (mm'hr) (%) (mtn'hr) (mn^r) (*) (mm/br) (mnVhr) (%) (mm/hr) (mnVhr) (*) 

1 27 6.7S 3.02 5.19 71.62 6.54 5.51 ' •15.76 12.31 10.58 -14.05 12.17 14.85 21.98 18.09 15.12 •16.44 22.20 19.22 •13.44 26.07 20.38 •21.83 28.50 23.17 -18.71 23.58 26.02 10.35 
2 3S 8.75 7.47 7.26 -2.87 12.62 11.50 •8.82 19.75 16.56 -16.15 15.96 21.00 31.65 20.81 18.95 •18.54 20.59 21.91 6.37 19.71 19.47 -1.23 18.16 18.91 4.10 11.71 18.30 56.25 
3 28 7.00 12.39 9.38 -24.32 15.87 16.13 1.63 20.39 17.23 •15.47 13.24 19.34 46.09 15.19 12.67 •16.59 12.05 16.46 36.59 9.52 11.82 24.15 7.54 9.72 28.81 3.83 7.88 105.66 
4 36 9.00 1.87 3.87 107.57 4.65 3.03 -34.83 9.57 7.99 -16.42 10.57 11.88 12.40 16.26 14.81 •8.90 22.16 17.79 •19.74 27.41 20.91 •23.71 30.75 24.34 •20.83 28.41 27.50 •3.20 
S 14 3.50 5.32 5.96 12.11 10.83 8.37 -22.70 18.97 15.75 -16.97 17.66 21.19 19.95 23.97 20.53 •14.36 27.07 24.89 •8.05 27.41 25.08 •8.52 25.77 25.03 •2.86 18.98 24.30 28.03 
6 23 6.75 14.59 11.34 •22.26 20.62 19.19 •6.95 27.82 23J!1 -16.67 19.37 26.70 37.82 22.21 18.98 •14.53 18.63 23.37 25.46 14.58 18J!9 25.45 11.17 14.59 30.65 5.92 11.13 88.16 
7 13 3.25 9.66 8.52 -11.76 16.90 13.80 -18.33 26.25 2130 -18.08 21.64 26.85 24.61 26.62 22.80 •14.36 26.25 27.31 4.05 23.03 25.03 8.68 19.15 22.26 16.28 12.08 18.93 56.76 
8 23 5.75 2.90 3.17 9.42 6.78 3.61 •46.74 12.92 9.96 -22.98 13.44 14.50 7.84 18.79 17.63 -6.70 23.67 20.26 •14.41 25.27 22.83 •9.66 24.41 23.66 •3.10 20.42 23.41 14.65 
9 19 4.75 20.76 16.05 •22.67 19.84 22.00 10.91 19.97 17.71 -11.34 10.10 16.27 60.99 9.42 8.86 •5.91 6.65 9.80 73.54 3.21 5.45 69.50 1.89 3.21 69.71 0.69 1.65 140.31 
10 6 1.50 20.22 14.93 •26.15 22.41 23.00 2.63 25.19 21.53 -14.63 14.34 21.82 52.10 14.44 12.95 •10.33 9.78 16.32 66.66 6.24 9.70 55.43 4.03 6.28 55.78 1.67 3.58 114.94 
11 23 5.75 7.88 6.94 •11.94 14.69 11.12 •24.31 23.45 18.95 •19.17 20.19 23.92 18.44 24.72 22.09 •10.64 25.40 25.37 •0.13 22.06 24.46 10.91 17.87 21.43 19.90 11.80 17.49 48.21 
12 17 4.25 20.62 15.64 •24.14 25.90 24.46 •5.55 31.40 26.25 •16.40 19.73 27.98 41.77 20.44 18.46 •9.67 15.22 21.32 40.06 10.19 1SJ!4 49.63 6.75 10.12 49.96 3.11 5.84 87.87 
13 S 2.00 23.57 17.96 •23.79 24.65 25.30 2.63 26.19 22.56 •13.85 14.21 21.83 63.60 13.50 12.65 •6.29 8.65 13.96 61.31 5.07 8.53 68.04 3.03 4.91 62.27 1.18 2.24 89.70 
14 14 3.50 15.90 12.57 •20.96 23.48 20.51 -12.61 31.83 26.23 -17.60 22.73 29.93 31.64 25.19 22.46 •10.63 21.37 26.02 21.77 15.87 21.26 33.99 11.39 16.01 40.56 6.06 10.93 80.48 
IS 10 2.50 24.68 19.16 -22.38 27.04 26.62 -1.54 29J!S 24.96 •14.66 16.36 24.39 49.12 15.38 14.81 -3.68 10.05 15.82 S7.36 5.78 10.21 76.62 3.34 5.64 68.79 1.32 2.22 68.60 
16 4 1.00 13.89 11.30 -18.62 21.78 18.38 -15.64 30.52 25.10 •17.76 22.79 29.05 27.47 25.40 23.08 •9.14 22.39 26.13 16.66 16.75 22.45 34.02 11.96 17.05 42.58 6.60 11.53 74.67 
17 12 3.00 6.39 5.38 •15.81 12.23 8.63 -29.48 19.45 15.3« -20.90 16.99 19J28 13.47 20.11 19.18 •4.66 20.74 20JM 1.00 17.12 20.93 22.21 13.07 17.52 34.01 8.63 13.16 52.51 
IS 12 3.00 23.60 20.32 -13.90 19.99 23.21 16.13 17.94 16.96 -S.62 8.17 13.93 70.48 6.78 7.34 8.22 3.59 6.78 87.87 1.71 3.48 103.22 0.85 1.53 80.65 0.27 0.40 50.82 
19 17 4.25 23.17 19.05 •17.81 28.30 25.28 -3.89 28.74 24.74 -13.M 16.56 24.18 46.00 15.36 15.65 1.90 10.33 15.81 53.03 6.88 11.07 88.26 3.34 6.09 82.22 1.37 2.26 64.40 
20 18 4.50 11.26 9.51 -15.53 18.20 14.97 -17.72 25.51 20.98 •17.77 19.41 24.05 23.89 20.99 20.36 •3.02 18.68 21.84 16.92 13.37 19.54 46.16 9.04 14.22 57.24 5.02 8.71 73.53 
21 18 4.50 20.19 16.77 -16.92 25.10 23.25 -7.35 29.20 24.87 •14.81 18.12 25.34 39.85 17.43 17.64 1.22 12.66 18.09 42.91 7.65 13.72 79.46 4.55 8.17 79.80 2.04 3.56 ^3.90 
22 31 7.75 24.45 21.01 -14.05 23.11 24.51 6.04 22.21 20.26 •8.79 11.16 17.87 60.14 9.57 10.45 9.20 5.69 9.89 70.50 2.95 6.01 104.03 1.58 2.92 85.03 0.61 0.85 40.68 
23 11 2.75 15.89 13.27 •16.49 22.64 19.88 -12.19 29.00 24.26 •16.32 19.97 26.30 31.70 20.36 20.08 •1.3» 16.37 21.25 28.75 10.74 17.51 63.10 6.77 11.53 70.21 3.37 6.01 78.18 
24 19 5.00 16.90 14.90 •11.85 20.40 19.25 •5.66 22.68 20.06 •11.54 13.64 19.59 43.57 12.27 14.07 14.70 8.50 13.09 53.97 4.61 10.21 121.16 2.45 5.45 122.33 1.03 1.59 53.46 

ATM {km') 109.75 

Volum« o( n«lnl»ll (mm-km'/hr) 1427.86 1225.40 •14.18 1847.76 1713.30 •7.28 2384.71 2018.40 •15.36 1695.55 2262.73 33.46 1947.85 1782.97 •8.46 1818.50 2043.05 12.35 1604.83 1785.40 11.25 1410.81 1542.12 9.31 1004.91 1318.45 31.20 
1 1 

Root Main Squw* Eiror 3.24 2.26 3.83 5.94 2.08 4.14 4.36 3.45 3.63 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AitlficWE v« i lNa.136 
1 

Sub- No.e( ATM TlirMtttpl TlfTi««t«p2 'n iMt t tp3 ' n n M i l « 4 ThmMtp Tlmcalipa Tim* d t p Tlnwittp Tim« tttp 9 Tim* attp 10 
^ICNIMT Cil Actud Pradid« %«ITOf Aclual Pradldfd K « r o r AOual Pndidcd %tnt Actud Pradidxl % « r a r Actu.! Pradlcltd % * n w Aeluri Pradlctod 1 % Miof ACUMI Pradlcttd %«Tar Adutl * « r o r Aetud Prwiictad Swror Aetud Him 

No. 

(no.) ( W ) (nniAit) (tnMiO (*) (mMi f ) (nwn^r) (*) (infMir) (mnAii) (*) (nvnAif) (fivn/hr) (*) (nvn/hr) (mm/hr) (*) (mMir ) (nvn/hr) ( K ) (mmAn) (nwMti) (%) (mm/hr) (mm^r) (%) (mmAir) (mmAir) (mmAit) (mm^r) (%) 
27 «.76 4.81 0.14 •97.03 958 3.48 •83.06 1251 11.19 -11J7 2052 18.13 -20.81 21.98 1853 •14.26 23.22 2058 •1251 2659 2158 •17.68 22.19 30.19 -20.70 26.47 9.SS 
3S 8.76 954 0.81 •93.86 18.28 952 •40.93 1850 18.23 -12.78 26.28 20.96 -17.07 2352 2254 •4.94 20.94 2159 453 1959 1852 18.18 9.22 10.83 16.91 4957 
2a 7M 12^80 2.97 -78.46 17.94 13.83 -24.07 17.48 14.88 •18.16 19.78 1751 •9.93 1858 1741 8.29 11.96 1658 953 11.48 23.13 8.18 958 17.43 858 41.14 3.23 6.1« 59.94 
M »M 357 0.03 -9950 750 2.28 -70.29 1058 958 •6.08 1850 13.90 •24.02 20.23 1751 •16.90 23.18 1951 •18.73 2746 2153 •21.23 3251 •28.11 28.77 •1.01 
14 SM 9.21 0.40 •9S.8S 18.8« 9.11 -46.34 19.28 18.43 -4.39 2953 22.46 -23.46 2850 2658 -9.28 2747 27.77 •9.82 28.91 24.97 28.73 24.78 •750 17.77 2359 3158 
23 6.76 18.40 4.74 -74.26 28.40 1957 -24.72 24.93 23.14 •7.16 29.74 26.19 -1650 24.21 2656 8.76 18.29 2243 2259 14.87 1754 12.78 14.93 18.78 9.40 1253 88.90 
i a 3.26 16.78 2.74 -8Z85 26.08 18.68 -33.98 26.43 2447 •3.78 34.71 28.94 •22.40 30.26 2950 -2.47 2854 2756 650 2459 3.71 22.23 22.73 2.24 1850 20.98 1448 10.72 18.96 68.07 
23 6.76 8.48 051 •96.22 12X)7 6>«) -66.23 13.94 13.74 -1.43 23.18 18.74 •2750 22.76 20.18 •11.29 2450 2156 -11.04 28.19 2846 2351 24.01 19.78 2458 2342 
1» 4.76 20.11 1458 -28.69 21.72 2058 •8.18 16.70 UÀ3 -8.08 14.29 13/16 -6.89 957 1144 22.13 650 853 80.78 3.26 656 6641 2.28 353 1JÌ7 2.26 7844 051 •68.78 • 150 21 >49 10.70 -60i1 26.92 2250 -13.19 20.78 19.10 -8.08 20.90 1953 -8.91 1456 1752 18.80 953 1352 4852 ' 9 5 2 4.78 8.62 38.77 2.93 450 150 140 7.91 
23 6.76 1659 358 -76.12 2452 18.29 •33.02 23.49 asf 052 33.23 24.81 •26.9S 28.28 2750 •1.7» 24.97 2658 246 23.06 2356 251 21.74 2253 2.72 18.18 20.28 1156 1054 67.76 
17 4.2S 27.20 1258 -64.47 33.92 27.91 -17.73 2750 28.78 •1.96 29.72 2658 •14.80 2149 26.18 17.14 1453 19.98 3748 1047 14.12 1058 32.00 8.16 6121 249 352 
8 2iX) 2856 1856 -38.78 2950 2925 •11.02 2157 20.79 •2.73 2057 1858 •9.89 13.83 18.98 2441 8.12 1253 6453 6.20 7.79 49.76 3.73 650 2.18 3.66 83.21 0.68 
14 3.60 24.74 851 •«4.40 3352 2658 •23.48 2951 29.10 •0.73 36.49 2850 •19.70 2741 2954 856 2054 26.24 22.29 1843 2058 2259 1358 18.97 22.26 1052 8.74 72.73 
10 250 3156 20.2S -38.41 3458 3058 •1^96 24.40 ISM 2.44 2450 2158 •12.26 1657 19.88 ZTM 958 1444 6452 853 9.20 6253 4.27 852 4759 248 8456 1.00 059 •30.73 
4 l i » 24 JS 9J>3 -«2.94 3350 26.46 -24.28 2856 2956 1.76 38.16 28.13 -22Jn 2758 29.98 758 2158 26.80 18.78 1758 21.16 14.94 1850 10.97 3747 950 7850 
12 3A> 16J02 SM •83.96 2251 1658 •30.18 1959 2052 458 2852 20J8 -28.48 22.92 22.92 •0.03 2058 21.10 6.10 1854 19.91 18.76 11.83 13.78 18.44 1946 754 13.14 72.08 
12 3:00 2458 2456 •2.13 22.92 23.07 053 13.72 1450 754 1158 10.93 •3.77 848 8.93 3756 3.28 656 7940 1.78 3.13 7653 1.11 1.72 83.18 0.19 050 •100.00 
17 4.2S 3S.07 2351 -3151 37.12 32.16 •1357 2458 2758 10.22 2458 21.13 •1458 1651 2051 3158 954 14.74 6458 8.24 758 251 7659 156 1.12 7.18 » 18 450 23.48 10.99 -63.19 30.98 24.17 •21.96 2456 XM 7.29 31.22 2359 •24.42 2259 2642 1057 17.73 2144 20.98 1458 ' 18.18 11.91 16.72 31.96 852 1252 4.19 7.93 

21 18 450 33.99 2IM -38.97 37.88 3154 -16.49 2653 2851 10.76 2750 2253 -17.28 1857 22.93 28.94 11.78 17.17 4852 8.18 1258 6158 854 959 6648 3.78 7152 150 241 50.08 
22 31 7.76 3153 7TM •13.83 29.96 28.08 •8.28 1759 2051 1454 1856 1458 •8.63 9.40 13.19 4051 6.18 851 7053 3.12 ' 6 5 4 71.10 2.09 343 1.17 2.04 7459 0.4« 050 
23 11 2.76 2954 1 8 M •40.20 38.26 29.48 •18.88 2854 29.18 858 31J7 24.70 •21.02 21.70 26.78 18.74 1658 2050 3344 1151 1854 3954 8.99 1353 4457 8.03 9.86 2.72 4.90 7958 
24 19 6.00 3251 24.00 •28.40 33.12 29.42 -11.18 20.11 24.78 23.17 2051 17/I9 -16.97 1249 1751 40.16 7.71 1243 81.29 657 8.99 7751 8.87 9042 256 4.20 0.78 1.12 4250 

^ ( k m * ) 109.76 

V o h m tt M n M (imvton'/hi) 205757 1083.42 -4851 268458 1991.92 -22.93 217457 2inM 0.21 288228 2170.16 -18.48 218654 2276.42 658 179850 201350 11.94 1836.13 172856 6.73 180251 167940 -141 142352 1447.10 1.87 94251 1198.18 27.08 
1 1 • 

Root M M H Squira Enor 1054 658 152 B2T 3.03 351 3.19 3.45 353 3.29 

O 



APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No.l 37 

Sub- No. of Area Time step 1 Time step 2 Time step 3 Time step 4 Time step 5 Time step 6 Time step 7 Time step 8 
iïatchmen Cell Actual Predicted %enor Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Pr^icted %enror Actual Predicted % error 

No. 

(no.) (km*) (mcnrtir) (nrn/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hO (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) 

1 27 6.75 8.38 6.26 -3759 12.72 5.44 -6754 13.68 12.30 •10.07 15.26 13.41 -12.12 10.44 16.23 66.46 10.14 8.85 •12.70 6.40 8.32 30.00 3.38 6.12 51.61 
2 35 8.76 17.66 14.72 •16.69 23.09 15.27 -33.86 22.60 21.63 -4.76 21.99 21.06 •4.22 13.90 20.77 49.36 13.12 10.70 -18.43 7.87 8.55 8.68 3.90 4.83 24.10 
3 28 7.00 25.73 25.19 -2.11 28.30 24.91 -11.98 24.62 26.48 3.94 20.31 22.02 8.41 11.48 17.46 62.18 10.18 8.34 •18.09 6.69 4.81 -13.92 2.46 2.35 -4.61 
4 36 9.00 4.32 1.86 -57.08 7.73 1.94 -74.94 9.69 7.29 -24.72 12.31 9.37 -23.90 9.74 13.96 43.19 10.64 9.98 -651 7.62 11.19 46.93 4.76 8.86 86.52 
S 14 3.50 9.64 6.74 -30.11 15.78 7.95 -49.62 19.09 16.97 -16.34 22.10 18.49 •16.35 17.02 22.30 31.01 18.79 15.32 -18.48 13.28 16.97 20.26 8.14 12.04 47.93 
6 23 5.75 23.27 21.63 -7.49 29.80 23.66 -20.62 30.19 28.12 -6.86 28.02 27.42 -2.16 18.41 24.80 36.21 18.60 16.00 -19.39 11.65 12.37 6.19 6.09 7.91 29.84 
7 13 3.25 14.03 11.31 -19.40 21.85 13.81 -36.82 26.08 22.15 -15.04 28.35 24.62 -13.16 21.69 26.70 23.67 24.22 18.73 -22.68 17.07 18.87 10.63 10.41 14.02 34.71 
8 23 5.75 4.08 2.27 -44.27 8.06 2.67 -66.83 11.66 7.76 -33.50 16.55 10.84 •3059 14.12 16.46 16.62 17.82 14.60 -18.06 14.46 17.40 20.31 10.62 15.90 49.80 
9 19 4.75 24.38 27.24 11.71 25.25 27.90 10.49 22.46 23.74 6.70 16.93 19.98 18.02 9.92 13.41 36.25 9.62 8.35 -13.15 5.56 6.03 -9.43 2.61 3.32 27.16 
10 6 1.50 26.91 28.12 4.60 30.13 29.48 •2.16 28.05 28.02 •0.10 22.79 24.92 9.34 13.86 18.83 36.92 13.56 11.26 -17.03 8.01 7.63 •4.73 3.87 4.82 24.46 
11 23 5.75 8.66 6.94 •19.83 15.41 9.37 •3921 21.17 16.75 -20.91 26.34 20.46 •1955 22.09 24.29 9.98 27.95 20.42 •26.93 22.18 22.78 2.70 16.83 19.39 22.61 
12 17 4.25 22.66 22.65 0.00 29.61 26.35 •11.02 31.92 28.93 •9.38 29.29 28.82 -1.61 20.49 26.22 23.10 22.47 17.76 •21.03 14.98 16.71 4.88 8.49 11.19 31.74 
13 8 2.00 23.91 25.81 7.96 27.80 28.36 2.01 27.67 26.68 •3.24 22.68 24.56 8.29 14.68 18.69 26.63 16.42 12.84 -16.73 9.67 9.94 2.79 5.06 6.96 37.91 
14 14 3.50 17.42 16.06 •7.76 26.87 20.09 •22.33 30.82 26.41 •14.31 31.62 28.69 •0.30 24.11 28.29 17.33 28.00 21.22 -24.21 20.01 21.06 6.21 12.42 15.91 28.17 
IS 10 2.50 20.76 22.02 6.07 26.41 26.10 -1.17 28.83 26.14 •9.32 26.30 26.88 2.30 17.98 21.16 17.66 20.53 16.60 •19.16 13.99 15.06 7.64 8.16 11.28 38.26 
16 4 1.00 13.29 12.08 -9.14 21.66 16.18 -24.96 27.99 23.13 •17.39 30.53 26.68 -12.96 26.29 27.90 10.31 31.39 22.98 •26.81 23.98 24.43 1.86 16.23 19.75 21.68 
17 12 3.00 5.04 4.31 -14.51 10.13 6.35 •37JÍ9 16.»4 11.43 -28.33 20.62 15.41 -2559 20.44 19.83 -2.98 29.16 20.23 •30.62 26.89 24.16 -6.69 21.39 23.03 7.67 
18 12 3.00 17.27 20.03 16.98 18.77 22.39 19.31 18.40 18.63 1.20 13.96 16.74 19.97 9.01 11.27 26.04 9.82 9.34 -4.85 6.23 7.47 19.86 3.30 5.58 68.96 
19 17 4.25 14.92 15.25 2.23 21.21 20.41 -3.81 26.09 22.02 -15.67 24.71 23.96 •3.02 19.65 21.32 8.61 24.88 19.63 •21.10 18.74 20.37 8.72 12.47 16.42 31.69 
20 18 4.60 7.93 7.49 •5.53 14.40 11.22 •22.10 21.30 16.61 •22.02 26.12 20.78 •1758 23.66 23.30 •1.63 33.17 22.95 -30.82 28.62 26.42 •7.37 22.61 23.88 5.60 
21 18 4.50 12.69 12.64 -0.39 19.42 17.79 -8.39 26.67 20.96 •18.01 26.92 24.00 -7.41 21.93 22.94 4.68 28.99 21.82 -24.74 22.94 23.64 3.08 16.28 19.71 21.07 
22 31 7.76 14.51 16.69 8.14 18.33 19.81 8.06 20.80 18.68 •10.18 17.79 19.07 7.19 13.22 15.09 14.08 16.18 14.23 -12.04 11.60 14.03 20.88 7.26 11.12 63.39 
23 11 2.75 10.50 10.25 -2.31 17.66 16.09 -14.56 24.75 19.92 -19.61 27.13 23.81 •1255 24.28 24.60 1.31 33.06 23.55 -28.78 27.25 26.30 -3.50 20.40 22.70 11.28 
24 19 5.00 7.19 7.10 -1.22 12.14 11.80 -2.84 18.04 13.93 •22.82 19.25 17.60 -8.68 18.35 17.64 •3.89 27.38 L 20.45 -25.31 24.16 24.14 -0.06 19.77 21.78 10.16 

Area (Km*) 109.75 

Volume of Rainfall (mm-km'/hr) 1642.93 1450.48 -6.09 2093.22 1694.80 -19.03 2364.45 2079.78 -11.67 2349.78 2191.88 -6.72 1780.97 2162.18 21.40 2093.69 1650.95 -21.14 1542.98 1650.93 7.00 1023.94 1306.56 27.60 1 1 
Root Mean Square Error 1.80 4.65 3.30 2.92 3.89 6.43 1.68 2.89 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AilificW Evwit N0.13S 1 1 
1 1 

Sub- No.al A I M T k m s M p I T1fTwit<p2 Tlnw«t«p3 T l i M i t i p 4 TIIIMittp T l imMape TbiMttip TInw (lap 8 T l fMt l i p T I n w i l i p I O 
^IchnMn C « l ActuD PradlcM %Mier Aeki*! PradlcM %mt Adud PradleM %Mn)r AeliMl Pradldad % « n r AdiMl % « r e r Adud Pndksttd % « r e r Aetial P n d l e M * » ( r e f AdiMl Predlelad A d w l Pradldad %*nor Adud Pradldod S w r o r 

No. 

(no.) (ton*) (imwhi) (nvMir) (%) (fivn^f) (fnnnAir) (*) (mmAir) (mm/hf) (*) (flwMir) (nvMii) (*) (mMir ) (nvn/hf) (*) (nvn/hr) (nrn/hi) (*) (mmAir) (nvn/hf) (nvMit) (irmAir) (*) (nvn/hf) (mmAir) {*) (nvMir) (mMir ) (*) 

1 27 «.7S 2t .S8 26.21 -11 JS 2 8 M 23.14 -12.78 2048 2042 0.6S 13.24 184S 25.78 8.81 8.74 -2.00 5.64 4.27 •24.28 348 3.14 -7.22 148 0.78 •44.80 0 4 8 2.00 180.67 041 348 885.48 
2 a s 8.7S 22.t2 20.43 - 1 0 M 24.18 23.11 -4.41 22.74 22.21 •244 18.78 1841 16.17 1343 1248 -8.03 8.77 1040 241 6.88 6.88 0.28 3.23 2 4 4 •24.40 1.85 2 4 5 45.78 1.07 4 4 3 277.87 
3 28 7 J » 1 1 ^ 10.18 -10 J8 13.83 15.28 8.6« 1546 1547 13.16 1444 8.71 13.43 11.44 •14.82 1040 12.80 2144 8.20 8 4 5 3.07 4.73 4.16 •12.01 3.82 344 6.24 2.47 5.28 11347 
4 36 »M 30.11 27.7t •7.83 26.42 22.18 •16.11 20.23 18.88 •1.86 1246 18.08 27.2S 7.78 8 4 7 1444 4 4 2 3 4 3 •26.64 2 4 8 3.28 1344 1.14 145 840 0 4 0 2 4 5 41244 0.20 3.18 148243 
S 14 i£0 30M »SO -13.54 31.81 26.88 -14.63 2848 26.24 •10.67 21.17 23.72 1246 15.48 1541 2 4 5 10.72 10.48 -2.16 7 4 4 8 4 2 18.12 3.40 4 4 8 32.28 1.73 441 16044 041 4.22 421.57 
a 23 5.7S 17J01 1 3 J 7 •21.42 2 1 J 3 21J1 •0.10 2444 2242 •8.35 2148 2257 5 4 5 20.74 1840 •10.80 1844 18.10 15.45 13.23 1440 8.11 7 4 5 8.88 1744 5.28 7.43 4046 3 4 2 748 12543 
7 13 3.2S 20.02 21.61 -16.87 30.18 27.00 -10.54 3248 27.78 •14.27 26.00 27.05 4 4 2 21.74 2043 -5.11 16.41 1748 541 1244 13.87 1148 6 4 3 8.80 34.15 3 4 2 740 80.96 2.02 6.14 204.02 
6 23 S.7S 27 J 4 26.20 •4.20 27.53 2243 -17.05 2S42 22.07 •12.86 1746 18.88 11.28 12.02 13.74 14.26 8.25 7 4 7 -7.08 5.78 7.18 2444 2.63 4 4 2 7148 1.18 4.10 248.45 0 4 0 2 4 8 47840 
• I t 4.7S 3 . t0 1.83 -53.00 8.28 7xa 11.73 8 4 5 8.18 •17.18 10.88 8 4 3 -1041 14.24 1145 -20.28 1342 1747 2744 13.47 13.88 3.75 10.28 12.27 1t .1t 841 11.27 1441 848 12.80 53.72 
10 • 1.50 7ja 4.43 •40.63 11.00 12.02 8.28 15.44 1348 •12.02 1543 14.80 -Z78 18.17 1545 -17.18 16.20 2045 23.78 14.71 1543 4.82 1046 1140 17.40 848 10.03 1848 6.42 10.83 70.27 
11 23 5.7S 2434 20.53 -15.64 28.84 24.77 -14.40 3240 26.06 •18.75 2640 2642 -141 2140 21 >43 -1.70 1648 1740 4,40 1348 1547 1440 7.43 11.70 5747 4.02 8.72 118.76 2.03 5 4 8 1 t 0 4 t 
12 17 4.2S 1 1 M 6.85 •42.25 17X)7 17.08 0.11 2348 1841 •16.35 23.12 22.25 -3.78 25.28 21.70 -14.21 2241 2S43 1447 20.48 21.27 3 4 5 13.74 1748 26.64 1045 13.72 32.53 7.11 1248 74.18 
13 t 2 X 0 tsa 2M •«1J2S 8.80 10.05 4.71 14.85 12.15 •18.74 16.00 1446 -8.88 20.20 WM •18.64 18.18 2244 1848 18.08 18.18 0 4 2 1448 1 7 j a 18.87 1243 14.74 16.71 1046 14.85 4847 
14 14 3S0 18.08 12M -2t .1t 24.11 22.71 •5.83 30.72 2544 •17.54 28.02 27.25 •Z7S 27.18 24.42 -10.15 22.72 2S41 10.07 18.77 21.16 7 4 2 12.18 18.58 36.12 8.03 1247 5644 4 4 5 1046 107.26 
I S 10 2M 6.77 2.08 •88.26 11J)7 11.10 OJ24 1747 14.03 •21.83 18.68 1742 •10.47 24.44 20.15 •17.56 2348 26.72 13J28 2442 23.76 •Z28 1842 22.83 2142 1548 1842 1840 11.80 17.11 4343 
1« 4 1M 1 8 M I S M •27.66 25.17 22.83 •8.82 32.43 2S43 •20.37 2845 2S48 •540 2741 25.48 •8.38 23.27 25.13 7.86 2043 22.18 8.02 12.62 18.28 4445 7 4 5 1340 70.78 441 8.70 11548 
17 12 3J00 18.S2 16.43 •11J0 23.32 18.73 •15.37 MM 2140 •24.08 24.78 ZtiOO -7.17 2041 2048 148 16.43 1743 5 4 3 1442 1647 14.88 8 4 4 14.28 7148 4 4 7 8 4 0 124.15 2.18 5 4 8 15448 
I t 12 3M 2.08 0.11 -84.73 3.80 3.80 0.10 7 4 0 548 •28.18 »ÂO 7.72 -1747 14.28 1 M 1 -2048 1544 1845 2147 1748 1743 - 1 J 7 16.17 18.61 21.26 16.76 18.46 10.14 15.74 1843 2448 
I t 17 4SS 6.75 2J02 •70.04 1 1 J » 1042 -4.11 18.13 1448 -24.82 2148 1846 -1Z15 2646 22.45 -1&44 26.44 2847 8 4 8 2844 27.18 -847 2347 27.88 18.14 18.04 2242 1840 14.28 1842 31.73 
20 I S 4M 14.71 10.87 -27.46 20.73 18.45 •11.02 2846 2147 -24.80 27.74 2 4 4 t •10.2S 2848 2 4 ^ -6.21 22.77 24:26 6 4 0 2147 22.83 5 4 2 14.15 21.24 5048 8.48 1448 75.68 4.76 8.45 88.84 
21 18 4S0 aj86 3.68 •57.38 1347 13.12 -5.41 23.48 18.81 •24.82 2440 2143 -11.74 28.15 2448 •13.48 2741 2848 6 4 0 2843 Z741 •5.17 22.77 28.10 2340 17.12 21.72 2648 11.88 1641 4 0 J » 
22 31 7.7S 3y43 0.55 •83.t4 6.16 5 4 6 -4.87 11.48 841 •27.72 1448 1242 •14.65 18.76 1847 •17.18 21.14 2340 1142 25.17 2322 •7.77 22.78 25.84 1343 2148 22.77 5.82 18.68 2144 14.22 
23 11 2.7S 11.87 6.84 •42.04 I S X S 1646 •7.68 27.18 2040 -24.57 2740 24.72 -11.10 2842 25.78 •10.53 28.45 28.11 8.26 28.61 2648 •0.12 1840 2648 38.10 1244 18.70 48.17 7 4 0 13.12 6848 
24 I t S.00 5.14 1 « •70.42 8.14 8 4 3 •8.65 16.a8 12.16 •2848 20.26 1747 -14.28 2442 21.81 •10.66 2543 26.75 4 4 0 3048 2742 •10.38 2646 30.21 1548 18.71 23.08 17.11 14.04 16.75 1840 

» « • ( t o n l 10t.7S 

V o k m d F W n M (inn4iiii*/hi) 1810.48 1452:06 • I t J O 206548 1810.40 •8.41 2367.24 2024.22 •14.48 2078.21 2064.73 041 2028.13 1841.22 •8.13 175247 188642 8.20 165046 168640 0.88 116742 1438.77 23.25 882.86 1183.12 3341 650.67 1058.10 62.62 

1 1 
i r V x K M M n S q u m E n e r 3.75 2 4 6 4.28 2.13 2 4 0 2.24 144 3 4 0 344 4.13 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No.139 

Sub- No. of Area Time step 1 Time step 2 Time step 3 Time step 4 Time step 5 Time step 6 Time step 7 Time step 8 
Catchmm' Cell Actual Predicted % error Actual Predicted % error Actual Predicted % 6rror Actual Predicted % error Actual Predicted % error Actual Predicted % eiTor Actual Predicted % error Actual Predicted % error 

No. 

(no.) (loti') (mm/hr) (mm/hr) (%) (mm/hr) (mmihr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (*) (mm/hr) (mm/hr) (%) (mm/hr) (mrT)/hr) (%) (mm/hr) (mm/hr) (%) 

1 27 6.75 22.38 24.94 11.46 22.14 22.27 0.62 14.50 19.15 32.02 11.52 10.21 -11.35 8.44 5.57 -33.97 5.28 4.35 -17.58 2.06 3.78 83.67 1.07 4.24 298.24 
2 35 8.75 21.56 24.99 15.90 24.57 23.24 -5.39 19.11 22.95 20.08 19.27 16.13 -16.30 16.97 14.58 -14.09 12.91 12.82 -0.73 6.18 9.70 56.90 3.77 7.37 95.39 
3 28 7.00 13.36 16.78 25.55 17.30 16.29 -5.84 16.00 18.04 12.74 20.79 16.63 •20.03 22.59 20.35 •9.94 21.39 20.44 -4.44 12.90 17.04 32.08 9.46 11.89 25.68 
4 36 9.00 20.61 23.75 15.26 20.17 20.81 3.18 12.43 17.08 37.48 8.75 8.46 •3.28 5.58 2.91 -47.93 3.08 1.55 -49.69 1.06 1.09 2.66 0.50 2.18 335.51 
S 14 3.50 25.36 28.54 12.52 28.77 26.35 -8.42 20.78 25.27 21.62 17.95 16.26 •9.42 13.18 11.29 •14.36 8.46 7.76 -8.41 3.45 4.44 28.71 1.87 3.95 111.73 
6 23 5.75 18.93 22.20 17.29 25.41 22.31 •12.22 23.08 25.44 10.25 27.94 22.44 •19.68 27.22 25.33 -6.94 23.47 22.89 •2.48 12.98 16.90 30.15 8.95 11.81 31.97 
7 13 3.25 24.67 28.04 13.66 31.20 27.11 -13.11 25.34 28.62 12.94 25.46 21.73 •14.65 20.65 19.57 -5.23 14.85 14.76 -0.57 6.83 8.69 27.33 4.08 6.45 58.07 
8 23 5.75 20.24 24.35 20.27 22.86 21.70 -5.10 15.57 19.71 26.60 11.93 11.79 •1.20 7.58 5.48 •27.69 4.28 2.46 -42.65 1.54 0.73 -52.71 0.77 0.93 21.04 
9 19 4.75 6.07 6.74 11.00 10.19 8.24 -19.16 12.13 11.47 -5.49 21.39 15.71 •26.56 27.74 24.63 •11.21 32.42 27.18 -16.16 24.74 26.12 5.58 22.09 20.47 -7.35 
10 6 1.50 10.32 12.08 17.14 15.95 13.47 -15.55 17.18 17.48 1.75 26.34 19.90 •24.46 30.75 27.83 •9.47 32.04 28.50 -11.05 21.61 24.70 14.30 17.45 18.12 3.82 
11 23 5.75 22.12 25.48 15.19 29.04 24.60 •15.30 23.44 26.22 11.87 22.50 20.13 •10.53 16.76 16.96 1.15 11.26 11.32 0.47 4.89 5.32 8.77 2.82 4.00 41.91 
12 17 4.25 14.87 16.66 12.05 22.84 18.54 •18.81 23.33 23.95 2.63 32.15 24.70 •23.18 33.10 31.25 •5.59 30.78 29.09 -5.48 18.64 22.37 19.99 13.92 16.12 15.80 
13 8 2.00 8.79 9.35 6.36 14.72 11.51 -21.80 16.91 16.28 •3.73 27.63 20.24 •26.76 32.75 29.56 •9.73 35.23 30.48 •13.50 24.85 27.14 9.22 20.94 20.91 •0.15 
14 14 3.50 19.92 22.59 13.39 28.72 23.64 •17.71 26.68 28.29 6.02 31.74 25.66 •19.17 28.64 28.26 •1.30 23.31 23.44 0.57 12.31 15.35 24.65 8.26 10.84 31.21 
15 10 2.50 9.69 9.82 1.33 16.77 12.54 -25,24 19.28 18.40 •4.58 30.64 22.43 •26.79 34.26 31.74 •7.37 35.14 31.28 •10.98 23.74 26.51 11.66 19.42 20.46 5.34 
16 4 1.00 19.96 22.65 13.49 29.08 23.63 -18.75 26.54 28.10 5.86 30.14 25.10 -16.73 25.50 26.35 3.32 19.60 20.43 4.19 9.81 11.05 21.81 6.33 8.53 34.72 
17 12 3.00 16.78 20.03 19.37 23.52 19.47 •17.25 19.47 21.42 9.98 18.58 17.45 •6.10 13.06 14.33 9.78 8.43 8.53 1.18 3.56 3.00 •15.63 2.02 2.22 9.77 
18 12 3.00 3.63 2.69 -25.90 7.15 4.89 •31.58 9.71 8.26 -14.92 19.59 13.68 -30.21 26.60 23.43 •11.90 33.43 26.90 •19.54 28.00 27.98 •0.09 27.21 24.13 •11.32 
19 17 4.25 9.36 9.04 -3.51 16.76 12.07 •28.00 19.31 18.27 •5.39 29.90 22JJ7 •25.53 31.41 30.64 •2.48 30.77 28.70 •6.72 20.09 23.08 14.88 16.16 18.31 13.33 
20 18 4.50 15.48 17.76 14.73 23.96 18.87 -21.26 22.32 23.29 4.35 25.07 21.78 -13.12 19.96 22.53 12.84 14.72 16.23 10.30 7.15 8.36 16.91 4.54 6.08 33.87 
21 18 4.50 11.10 11.39 2.60 19.24 14.22 •26.13 21.01 20.44 •2.74 29.92 23.19 •22.49 29.04 29.84 2.75 26.34 26.13 -0.80 15.93 18.96 19.01 12.09 14.72 21.79 
22 31 7.75 5.32 4.15 -21.91 10.23 6.90 •32.55 13.08 11.62 •11.18 23.78 16.95 •28.72 28.65 26.37 -7.96 32.50 27.57 •15.15 24.82 26.20 5.58 22.64 22.44 -0.88 
23 11 2.75 13.92 15.35 10.23 22.86 17.52 •23.37 23.06 23.30 1.06 29.08 23.85 -17.99 25.49 27.72 8.75 20.76 22.14 6.61 11.20 13.66 21.97 7.74 10.15 31.04 
24 19 5.00 6.93 6.56 -5.41 13.37 9.30 •30.49 15.62 14.89 -4.73 23.35 18.74 •19.74 22.24 24.81 11.53 20.26 21.04 3.86 12.49 14.85 18.88 9.71 12.07 24.24 

AreaCkm^ 109.75 

Volume of Ralnfal (mm-km^i) 1713.87 1934.18 12.85 2250.73 1950.05 •13.36 1993.11 2182.10 9.48 2395.76 1944.60 •18.83 2295.34 2150.65 •6.30 2072.06 1920.30 •7.32 1274.40 1486.48 16.64 995.30 1172.05 17.76 1 1 
Root Mean Square Error 2.43 3.65 2.43 5.17 2.18 2.63 2.40 2.11 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AtWeWEv OTtNo.141 1 1 1 1 1 
1 1 1 1 

Sub- No.ol A m T k l M t l n l UnMtWp Tkrwalap TkMt lw4 Tkiwalap TkraiMp T k m i l w T1nMtl«p Tktwitw Ttmt lH i lO T U m t l w I I 
^«tolwMn CM Aokitl PradcM % « n r AeUri PrwMMl %*irar A o M PradoM H«ro( M M I Pr«do1ad %«Tor Aoklll P itdoM %«rar MM PrwfoM %«mr MuH Pradottd %«TW AoMI AolUid PradotK) %«Tor Mutt Prtdolid %«rot ActUil Pr«doM %air(ir 

No. 

(r».> (ton^ (imM») (nrn/hr) ( * ) (rnii/lw) (tnm îr) ( * ) (mml*) (mm^) (%) {fivn/lv) (mni4v) ( * ) (inmAiO (imMir) ( * ) limUt) (mrotir) ( * ) (nvMv) (mm/hr) (%) (fiHn/tv) (miMirl (%) (mmAir) (mmta) (%) (tnm^) (mm^) ( * ) (imnM) (mmAr) (%1 

1 27 S.7S 1.8S 3.43 B1.21 3.77 3.97 8.16 4.31 3.63 •6.82 8.82 6.66 24.19 8.41 3.91 •zr.n 6.42 7.80 16.63 8.20 4.41 •18.12 6.84 7.88 18.60 73» 7.36 1.76 6.36 9.14 43.76 8.82 6.16 8.64 
2 3S S.7S S.32 12.S3 141.10 9.03 9.30 3.0« 9.18 12.01 31.18 11.18 12.14 8.66 9.81 9.67 0.86 10.68 10.08 -8.87 7.69 6.99 •9.0« Bsa 6.61 4.68 7.68 6.67 •10.64 8.76 7.77 34.77 423 829 28.17 
t 2S 7.00 10.47 23.71 126.S8 14.69 18.13 Zt7 12.92 19.61 83.32 14.64 18.13 3.34 10.76 13.66 26.96 10.94 8.96 -16i4 6.62 6.71 -1.71 6.04 6.08 0.14 4.66 3.40 •27.07 269 3.49 20.63 1.68 261 6827 
4 M • 00 O.SO o.as 6.71 2.14 Z36 11.18 2.79 1.48 •47.67 3.96 4.62 21.83 4.47 2.41 •46.16 8.62 7.77 33.88 8.27 8.38 1.88 7.88 9.63 27.87 6.29 11.04 16.76 9.38 13.68 48.88 10.00 10.81 6.02 
6 14 3.S0 2.S3 8.83 121.82 6.70 6.07 6.89 6.90 7.12 3.M 9.87 10^7 6.28 10.09 6.27 •16.02 12.64 13.36 8.63 10.84 10.91 3.88 13.38 14.3« 7.64 14.32 14.62 2.06 12.61 16.34 27.81 11.43 1282 1217 
« S.7S ».37 22.3« 136.47 18.81 18.07 •2.79 18.39 21.38 36.78 19.40 16.86 -4.19 16.26 18.83 13.66 16.06 18.70 -13.06 12.42 13.67 11A3 12.22 12.73 4.21 1021 9.64 -8.66 7.08 6.90 26.66 4.88 6.60 44.87 
7 13 3.2S 4.71 11.94 183.62 9.66 9.73 0.73 11.21 13.40 19.84 18.71 18.10 •3.90 18.68 14.49 •6.97 16.09 17.76 -6.96 18.00 16.09 7.26 17.32 17.60 1.02 16.73 18.40 -1.96 13.88 16.86 21 .S2 10.82 12.96 22.01 
» S.7S 1.04 1.73 68. i a 2.77 3.46 24.96 3.69 2.80 •38.66 6.14 6.04 •1.62 7.49 4.80 •40.02 10.36 11.47 10.46 a.73 lOJM 6.32 14.0« 18.14 7.60 16.81 17.73 8.46 17J0 20.68 16.37 16.06 16.43 207 
9 1« 4.78 1S.S1 29.09 66.38 20.80 19.86 -4.49 i7.oa 26.08 82.42 20.13 16.46 •626 13.91 20.37 46.80 13.94 11.02 -20.94 7.9« 10.70 34.36 «08 a.6a 6.68 3.68 3.42 -11.34 2.08 1.91 •7.4« 0.89 1.72 88.67 
to I.EO 14.43 29.SS 107.06 20.64 19.72 -4.47 16.33 27.10 47.67 22:06 20.28 •6.21 16.33 21.78 33.3» 16.94 13.67 •19.a3 10.34 12.78 23.38 8.61 9.06 8.46 6.06 6.40 •10.62 3.88 3.98 1122 1.61 3.17 78.11 
11 S.78 2.n S.I9 176.10 7.03 7.67 12.08 S.06 10.32 14.« i4.oa 12.09 •7.34 18.8« 13.43 -13.66 20.60 18.77 -6.99 17.82 16.76 7.18 21.98 20.88 •6.40 22.42 21.17 •8.69 20.02 21.49 7.33 17.02 18.42 
12 17 11.3S 2«.ei 133.72 19.28 16.18 -8.74 18.34 26.64 36.78 28.73 22.39 •13.00 21.60 28.33 16.17 24.67 20.14 •16.3« 16.69 20.41 22.30 18.64 18.96 2.16 12.12 1218 024 8.06 9.40 16.64 4.72 722 6289 
13 a 2.00 14.08 29.se 102.00 21.80 20.13 •7.66 » .89 26.80 43.31 28.16 21.69 •13.67 19.18 24.94 30.19 20.40 16.11 •21.02 1Z82 16.8« 32.28 10.32 11.06 732 7.03 7.16 2oa 4.10 4.61 10.00 2.03 3.88 78.92 
14 14 7.4a 19.81 160.66 14.66 14.24 •2.23 16.20 21.27 31.29 22.94 20.26 -11.6a 21.70 22.49 3.67 26.16 22.14 -18.38 19.41 22.39 18.32 20.48 20.00 •1.76 17.71 17.62 -1.08 1328 16.34 18.73 9.01 1209 34.16 
IS 10 2.S0 12.S7 27.68 114.76 21.14 19.31 •6.67 20.73 26.70 36.46 2s.oa 23.03 •16.01 23.11 27.62 20.37 28.97 20.41 -21.40 16.64 2 i17 8^61 14.67 18.39 4.68 10.37 11J7 a.62 6.43 728 14.31 3.38 8.74 71.10 
16 4 1.00 S.«1 18.70 179.96 1^00 12.30 2.49 14.31 16.40 28.61 21.47 18.78 •12.8« 21.68 21.80 -1.60 27.«2 a»M -18.73 21.62 24.46 13.10 24.14 22.60 -6.37 21.68 21.18 •323 17.36 19.03 9.48 24.66 
17 12 3.00 i .as 8.98 222.66 8.00 6.66 33.oa 7.06 6.ca 13.84 12.0« 10.68 -11.68 14.79 12.17 -17.76 20.96 16.17 -13.42 18.98 20.07 878 28.0« 21.88 •13.96 2827 23.68 •9.66 24.92 24.03 -3.86 22.13 22.46 1.66 
11 3.00 14.29 24M 71.74 19.73 17.73 •10.18 17.00 24.62 46.01 21.68 18.47 -14.78 18.46 22.88 48.66 16.06 13.44 -18J» 9.17 14.63 61.64 «.72 8.37 24.89 3.69 8.13 28.60 206 208 •022 0.66 1.81 74.78 
1» 17 212» 13^22 17.77 16.84 •6.88 16.99 28.72 38.44 29.0« 22.11 •21JS 28.32 26.36 11.99 30.32 23.63 •22.07 a o j a 27.21 30.24 19.2« 19.81 1JN 14.0« 16.11 14.36 9.32 10.73 18.18 8.18 8.84 68.73 
20 1« 11.42 221.63 6.60 10.07 17.0« 1 1 ^ 14.63 30.38 16.84 18.76 -18.02 20.64 19.84 •622 26.38 22.88 -19.21 23.68 2892 9.62 26.06 24.0a •14.38 2624 2424 -7.69 22.36 21.97 •1.60 17.18 19.67 
21 IS 7.47 19.30 186.31 18.13 14.60 - z i a 17.28 2327 34.69 M.63 21.11 •20.76 28.76 37M 6.16 32.17 24.96 -22.40 23.47 28.66 23.06 23.28 22.14 •4.76 16.16 19.84 7.82 12.98 1429 10.39 7.68 11.74 49.62 
22 7.7S 11.48 22.04 •2.83 18.86 16.84 •10.91 16.00 24.60 37.76 28J8 20.10 •20.60 20.66 28.6» 28.33 23.41 16.66 •19.43 14.76 21.90 46.32 12.18 13.91 14.88 7.96 10.80 31.90 4.78 8.71 20.00 4.31 
23 11 zn S.41 ia9.»3 12.03 12.77 8.14 14.72 19.74 34.oa 23.82 162« •16.03 24.86 24.88 -0.06 32.01 28.16 -21.38 28.04 26.76 14.66 27Î1 2423 •10.66 23.33 22.66 -1.93 1822 18.82 326 16.10 2924 
24 IS s.oo 4.94 13.71 177.48 11.01 11.S6 8.04 13.43 16.46 37.40 22.67 17J3 •23.86 23.89 24.46 3.74 31.19 23.83 -24.87 23.69 29.09 22.76 24.08 22.00 •6.84 16.69 20.69 10.09 13.76 14.94 6.42 8.41 13.01 

AfMlton^ ia».7s 

V<*m o( IWnM (rrniMonM«) 74a.ae 1670.63 123.74 12ai.80 1267.0« •1.13 1329.97 1766.60 3276 1644.23 1848.83 -10.88 1679.17 1796.80 7.11 2012.89 1728.72 -14^7 147927 1732.98 17.18 1668.21 167123 0.48 1393.87 1417.30 1.70 11182» 1294.60 16.06 1629.38 1068.80 •42.30 
1 1 

BomM—nSqmwEm» 10.44 1.06 8.86 3.14 3.41 4.18 1.62 1 : » 227 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

ArMdalEv«itNo.W 1 
1 

Sut>- N0.0I An* TkiwMtpl TkiWiltp TlmaatapS T1iiMatap4 TImaatap TImaatap Thnaatap TImaatap Thnaatap Thnaatap 10 
L̂ lchmOT Cti Aetuid PradlcM %«rDr Actual Pradidad «atrar Aehial Pradidad %arrer Actual Pradidad %amr Adual Pradidad %airer Adual Pradidad %ainr Adual Pradidad «airer Adual Pradidad Nairer Actual Pradidad %afior Adual Pradidad *anor 

No. 

(no.) (tan^ (n¥n^r) (nvn îr) ( * ) (nMii) (nvn/hr) {%) (inMii] (imn^r) { * ) (mnAit) (tnMii) ( * ) (nvMir) (iraMir) ( * ) (mMii) (mnrfii) ( * ) (nwMir) (nnvhr) r*i (tivMir) (n«Mir) (N) (nvn/hi) (mmAiO (%) (nmMtr) (mnvhi) (%) 

t 27 6.7S »sr 20.tS -11.S4 22.7S 26J0 16.46 24 J 2 21.70 •1051 195« 22.90 1856 I S M 1759 11.78 1453 13.40 -8.46 854 12.18 40.73 454 2.11 -61.48 154 386.16 
2 3S S.7S 23JS3 22.43 -S.87 21JE9 24.62 13J>2 24.74 22.42 •9.38 21.88 2452 11.88 19.97 21.24 85« 1«.«7 1853 -8.71 14.03 17.91 2 7 . ^ 8 5 2 6.09 • -24.05 • 357 252 -39.98 1 5 8 5.08 221.48 
3 2S 7JOO i z n 13.6S 6.S1 13.64 16.16 18:81 16.46 1888 2.81 1851 1858 12.67 1654 17.96 «.«1 17.87 1751 -2.59 1458 18.99 19.10 9.18 8.73 -4.68 6 5 6 3.48 •3157 2 5 8 8.16 16856 
4 3S SJOO »JO 2S.SS -2.4S 19.20 24.13 26.68 20.82 19.19 -6.97 18.14 20.13 24.74 1356 14.94 12.76 12.13 11/42 -6.86 7/46 1057 3759 356 2.11 -45.37 1 5 9 150 1357 0 5 8 51658 
S 14 3£0 2 B J 0 2S.94 -1.40 22.41 26 J 7 17.66 26.97 23.06 •11J» 23.20 2658 10.80 2150 21.96 2.16 21/43 1«41 •9.46 15.54 1852 21.14 956 7.82 -17.72 453 553 2059 1.72 6.99 30659 • 23 S.7S 16.1S 1S.10 -0.37 17.1S 19.93 16.99 21.41 20.62 -4.18 22.11 2352 858 23.21 23>»7 1.11 2658 23.47 -8.27 2257 2451 8.78 16.17 14.92 -1.66 8/41 858 259 4.00 1057 17155 
7 13 3.2S 21.87 22.1s 0.99 20.96 24.56 17.18 26.61 23XIT -9.93 2 s j a 2851 550 2S50 24.96 •266 2756 2456 •11.77 2258 2457 7.91 16.19 1358 -8.57 756 9.70 2354 351 10.90 21052 • 23 S.75 20.14 23 J S 1S.9S 16.13 20.99 30.14 I S M 1756 •6.97 18.93 19.46 145« 16.97 1858 2.68 16.«2 1459 •9.81 11.99 13.78 14.79 753 852 •1756 3.46 8.04 7358 159 8.10 33856 
9 I S 4.7E 3 M 4.11 SM 5J7 7.1s 33.74 7M 9.66 2952 953 1027 lOi» 1159 12JI7 8.74 14.73 14.14 •4.00 1853 1657 •7.68 13.92 15.67 115« 957 1058. 753 6.74 12.17 11218 
10 6 1M 7J3 7 « 3.03 9J23 I I J S 22 J 3 12.29 13.77 12.02 1458 16.48 752 1653 1752 4.11 20.16 18.98 •6.80 2056 19.98 •151 1651 18.97 754 9.97 1053 250 6.44 12.43 12859 
11 23 S.75 17.92 t9.S4 9.03 16.96 20.44 20.69 21M 19.23 -9.86 2157 22.73 3.96 2350 22.00 -6.67 26.42 2254 •1358 2251 2256 •0.88 18.71 16.76 -6.78 859 1353 62.13 4.13 1257 19954 
12 17 4.2s 10.24 9.24 -9.76 12.21 14.09 16/tO 1 8 J S 16J9 0.06 19.16 1958 2.28 22.69 21.96 -3.27 27.13 2453 -10.88 28.00 25.98 •7.19 22.73 2352 2.17 14.16 18.94 19.89 7.69 17.18 12355 
13 S 2M 6.47 4.63 -1S.43 7J0 S.S1 20.79 10.18 1151 14.24 1250 13.29 3.79 16.20 18.18 •050 205« 1856 •8.66 23.08 2050 •li.«6 20.18 2155 652 13.72 16.89 1456 8.18 18.43 10059 
14 14 3M 14J1 14.21 -2.79 16JS 18.46 16.18 20.7B 19.44 -8.48 23.06 23.46 1.76 28.18 24.72 -6.66 30.16 2854 •1264 29/40 2752 •6.03 2258 2252 •1.66 1356 1752 29.78 850 18.78 148.80 
IS 10 2J0 5.66 3.77 -32.24 7.46 8.49 13.79 10M 11.46 756 1359 13.77 -0.SS 18.26 1758 •6.43 2342 20.72 •11.63 28.03 2359 •17.84 2851 28.40 151 17.98 2159 2158 10.94 2052 8753 
ie 4 IJOO 14.04 14.10 0.42 I S M 17M 17M 19.91 1856 -751 2258 2253 0.87 2S.87 23.93 •7.52 29.98 2653 •13.86 3058 2>5S -8.34 24.13 2356 •238 1456 1953 4155 7.18 17.70 146.69 
17 12 3JOO l i j a 14.4S 21.67 11/49 14.06 22/tS 16.12 13.84 -9.76 1854 1854 0.60 18.94 1758 -8.77 2151 18/48 •14.13 2158 1*58 -10.20 17.70 17.10 -3.41 8.90 16.90 70.84 4.91 1352 18954 
I S 12 3X10 1.78 0.S0 •66.37 2J1 3.74 33.34 4.26 8.10 4358 6.1s tA» 4.78 8.97 95« 151 12.44 1158 •«.«8 17.12 1358 •22.66 1756 1950 10.«4 14.02 1753 27.17 9.79 1750 76.8« 
1» 17 4.2E 4.9S ^76 -44.61 6JB4 ISSt 6.66 S.70 9.76 0.46 13.10 125S •6.88 18.00 1S.21 •«.«3 235« KM •13.71 30.77 23.44 •2353 3158 3021 •3.43 2251 28.42 2653 1453 24J07 «652 
20 I S 450 9.81 10JM 4.E5 10.4S 12.12 16M 14.44 13.18 •8.89 17.24 18.73 -Z92 2151 1«57 •10.4« 2654 2157 •14.71 28.80 2357 •18.68 2S54 24.89 -3.72 1658 23.78 6151 8.63 18.72 118.48 
21 I S 4S0 SJOS 4.16 •3i.es IKt »2S 7M I I X M 1053 -4.11 1458 13.n •6.68 19.6S 1751 •10.92 26.40 21.74 •14.40 3256 24.78 -23.22 3254 30.73 -4.«7 2257 2956 30.09 14.16 24.09 7058 
22 31 7.7S 2.S3 0.96 -63.49 SJO 4.19 10J6 6.73 852 16.80 8.24 75« -451 12.02 11.1« -8.91 1851 14.76 •1152 2359 1759 -28.72 2S57 26.98 054 2051 2656 2457 1457 22.03 6358 
23 11 2.7S S i x 7M •12.2S «.46 10.69 11.92 13J9 12.49 •«.76 1854 16.16 •4.06 21.78 1«.43 •10.7« 27.18 23.17 •14.70 3257 2651 •20.02 3046 2957 -4,53 19.78 2754 39.72 11/46 2253 «3.98 
24 I S SM 3.11 1.41 •54.69 4.21 3M •7.66 8.60 8.01 •7.48 9.47 851 -12.29 14.18 1252 •13.86 1«52 1854 •13.76 2854 2051 •3051 3356 30.48 -6.64 2S.13 32.16 27.94 1753 2457 4158 

KTM (km* 109.7S 

Vokm d M n M (mmW/hi) 166SM 1S09.90 -3.66 1471.70 173S.63 17.83 1800.72 1718.48 -4.88 1828.98 1S6«.a8 7.18 197250 1«5653 456 223851 200847 •10.19 221551 209957 -6.22 186452 1782.70 -4.»4 118652 1477.93 2453 69159 141757 10454 
1 1 

Root M m Square EIIOT 1.64 2.81 158 154 1.40 251 4.19 1 5 8 4.38 7.78 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Ai«MalEv«itNo.14j 1 1 1 1 
1 1 1 1 

3<i>- Nao( A I M Tknaalapl Tkiwalip TknoMN>3 T1nMaltp4 Tknoilml Thwilip Tkmilw Tlmotlwl Tim* •Op! 1 r i iMtiw 0 
CUdniM M Ackltl PrxfcWd %«Ter Ackal P n d c M *»m>f Acuta PradkMd %*inr Aekal PradeM %êmr Acta) Pi»JcHd %wrer ADUTL PnwfcKd %Mcr Ackal %wrer Actud PiwicM %wior Ackal Pr»dcl»d %wmr Aekal PwJcl id %wnir Aekal 

No. 

(no.) Cmfi (mMhi) (imMii) ( * ) (mm^ (nMn4>i) (mm«») (mmM (*» (mm«») (nrnwhi) «*) (min*<i) (imMii) (%) (NMRFII) (mmlhi) (* ) (mm^ (fiMn̂ N) (%) (miMii) (nwn/hit (* ) (mmlhi) (mnrfH) (%) (fnfn^r) (mnvhi) (* ) (miMti) 

1 27 «.7S 20.12 28.54 31.96 22.08 21.85 -a98 25.19 19.98 -20.79 18.41 19.88 7.87 17.22 15.64 -9.77 12.61 13.68 8.41 8.90 8.77 •24.87 7.42 8.78 -8.94 5.49 6.98 27.03 2.38 4.14 74.10 0.00 
2 3$ «.7S 13.51 17.M 30.18 17.47 19.44 11J!7 24.88 19.36 -21.64 19J8 22.86 14.03 21J8 17.67 •17.74 18.94 17.00 •9.80 15.88 14J0 •9.83 14.33 14.50 1.19 13.4« 14.36 8.83 7.31 11.87 82.23 0.00 

2« 7.00 S.M S.C0 10.85 8.70 11.66 32.78 16.13 12.02 •KM 1 3 M 18.58 24.25 18.37 12.88 •22J7 18.14 13.33 •28.63 18J4 17.35 •4.88 18J4 19J0 4.72 22.53 19.42 •13.81 16.81 20.93 32.40 0.00 
38 ».CO 21 .<7 30.17 39.24 23.83 22.41 •6.96 25.14 20.67 -18.18 18.12 18.83 2.80 18.68 16.88 •6.31 10.61 1337 28.28 8.40 4.85 •25.21 4.90 4.00 •18.44 3.06 3.92 28.47 1.13 0.97 •14.60 0.00 
14 3.S0 1S2i 25.73 33.81 25.35 24.40 -174 32.63 24.88 -23.52 26.87 28.39 2.00 27.14 22.21 -18.18 20.21 21.24 6.13 13.81 13.48 •2.64 11.08 11.31 2.09 8.28 10.38 25.22 3.86 4.90 38.40 0.00 
23 Î.7S «.85 0.10 2.87 14.« 18.01 14.14 23.82 18.28 •23.26 21.31 24.43 14.61 28.83 20.« -24.82 28.70 21.88 •18.13 23.46 23.84 1.88 21.80 23.11 8 . « 23.41 22.07 -6.74 14.5« 20.03 37.25 0.00 
13 3.2S 14.88 18.87 25.83 22.25 22.61 1.14 32.91 24.88 •24.38 28.16 29.08 3.24 32.81 24.83 •24.31 27.44 26.88 •8.48 20.08 21.05 4.80 18.77 17.96 7.08 14.21 18.20 14.01 7.09 9.98 40.84 0.00 
23 S.7S 18.18 28.10 54.60 24.11 22.80 •8.27 28.60 22.79 •20.08 22.44 21.74 •3.14 23.17 19.57 •16.61 16.01 17.87 19.07 8.80 8.81 •0.88 8.33 6.88 •7.61 3.94 4.84 22.78 1.48 0.70 •62.40 0.00 
19 4.7S 1.82 0.28 •82.83 3.32 4.46 33.92 7.88 5.51 -29.99 8.21 9.63 18.02 12.80 8.27 •36.41 17.67 10.62 •40.18 10.49 19.96 2.38 20.78 22.33 7.57 32.13 22.75 •20.10 28.40 29.16 2.85 0.00 
• 1 M 3.37 1J8 -58.91 6.20 7.93 28.22 13.19 9.77 •25.98 13.01 15.50 19.13 18.88 12.96 •30.69 22.84 15.60 •32.16 23.30 23J0 2.14 23.82 25.12 8 J 3 3 1 M 24.87 •22.03 24.88 28.32 14.78 
23 S.7S 14.07 18.94 34.80 22.28 21.38 -4.02 32.43 24.40 •24.75 2 8 J » 27.41 •3.08 33.78 24.73 •28.81 2820 25.58 •2.43 17.10 19.84 14.86 13.37 16.12 13.08 10.21 12.80 25.4« 4.88 5.75 23.26 0.00 
17 *JS 5.82 3.13 •44.32 10.53 11.48 9.08 20.68 15.18 -28.24 20.07 22.62 12.18 28.30 19.67 -30.85 30.87 23.43 •23.80 27.13 29.00 7.24 25.33 27.51 8.82 20.23 26.87 •11.40 19.87 25.17 27.90 0.00 
8 2 . » 2.80 0.38 -88.06 5.35 8.15 14.88 12.08 8.48 •29.72 12.51 14.28 14.07 19.29 12.83 •34.66 24.30 18.18 •33.49 24.34 26.54 4.02 24.42 28.23 7.39 33.72 25.70 -23.78 28.88 29.91 11.28 0.00 
14 »M 93» 8.84 •4.77 18.28 18.91 3.(8 28.21 21.12 -25.14 28.32 27J9 6.96 34.71 24.66 •29.27 32.84 27.75 •15.49 25.87 28.30 10.82 22.28 24.73 10.98 21.70 22.20 2.88 12.45 17.22 38.31 
10 2S0 2.»1 0.15 -94.85 8.32 8.81 4J5 14^4 10.06 •29.42 15.04 18.83 10.57 23.70 16.38 -36.19 28.40 20.08 •20.37 28.32 28.71 9.10 25.24 27.66 9.18 32.42 26.10 -10.21 24.28 28.48 17.30 
4 1.00 0.80 10.18 3.88 17.64 17.80 0.32 29.75 22.30 •26.04 27.84 28.28 1.68 38.77 25.86 -30.25 32.81 28.73 •12.44 23.77 27.86 18.34 19.74 22.70 16.« 17.72 10.80 11.73 9.45 13.08 
12 3.00 10.58 15.83 49.92 18.28 17.66 -3.99 27.26 21.02 -22.88 24.89 23.01 -8.80 31.07 22.10 •28.87 23.08 23.08 0.03 13.71 1 7 M 28.32 10.14 12.28 20.88 7.20 0.70 34.80 3.10 2.97 •4.22 
12 3.00 0.77 0.00 -1CO.OO 1.94 1.96 0.84 6.34 3.27 -38.82 8.17 8.68 8.78 11.07 8.70 •39.49 18.31 9.83 •30.71 17.83 10.28 8.08 18.86 20.85 10.82 31.05 21.18 -31.88 29.40 29.03 •1.67 0.00 
17 4.2S 2 . M 0.58 -80.20 8.88 8.68 -1.44 14.87 10.78 •27.70 18.00 17.08 8.7D 25.94 18.78 •36 JO 29.48 22.25 •24.62 24.96 29.14 18.79 22.70 25.91 14.13 28.98 23.88 •12J3 18.08 23.74 25.17 

20 1« 4.S0 7.58 8.5S 12.73 14.77 14.64 •1.63 25.60 19.49 -23.68 24.71 24.04 -2.71 34iS 23.23 -32.17 29.12 28.34 •9.64 10.18 24.70 28.80 16.08 18.76 2437 12.68 15.63 8.68 0.00 
21 1( 4.S0 3.S6 1.88 •63.06 8.85 8.68 •0.7* 18.01 13.42 -26.62 18.94 19.78 4.46 29.83 19.43 •34.44 31X6 24.78 •20.28 24 JO 29.60 21J0 21.13 24.93 17.98 22.72 22.07 •2.87 14.57 19.30 33.10 0.00 
22 31 7.75 1.41 0.29 -79.84 3.38 3.14 -7.12 8.40 6.80 -32.28 9.51 10.15 8.85 18.89 10J2 21.74 16.00 -30.58 20.87 23.80 14.17 20.17 22.72 12.82 28.73 21.81 -24.08 24.00 28.44 9.75 
23 11 2.75 5.80 4.SS -21.58 12.03 11.96 .0.86 22.85 17.30 -24^7 23.08 23.33 1.08 33.98 22 JO •33.62 31.90 27.11 -15J8 22.90 28.87 26.21 18.90 23.03 21.85 17.83 10.80 10.46 10.07 14.08 39.78 
24 1» 5.00 2.23 0.01 -60.34 5.82 6.48 -2.52 12.86 9.91 •21.88 14.19 14.84 3.14 24.24 15.86 •34.83 25 J 8 21.17 •18.66 18.81 26.29 35.88 15.80 19.97 28.01 18.48 17.01 10.60 14.18 35.07 

AiMOrni*) 1C0.7S 

Vokan* ol M n M (nvMan'/h) 1088«! 129855 21J8 153824 1688.15 1.81 2308.78 1789.00 •23.31 2042J38 2180.40 5.78 2682.22 1908.43 •28.17 2435.07 2088.88 •14.23 1985.88 2121 JtO 7.99 1783.75 1930.87 9.48 1940J8 1801M •7.14 1318.17 1818.70 22.80 0.00 
1 1 

Root MMH SOJARA Enor 3.97 1.09 6.31 1.59 7.67 6.14 3.10 4.39 3.45 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Evant No.144 1 
1 

Sub- No.o( Araa Tlmaalap 1 Tlinoatap 2 TImaatap 3 TlmaHap 4 Tlnwitap TImaatap Tima atap TImaatap 8 Tima «tap 1 i 

No. 
ACTUai rraaiciaa % arrer Aciuai % afTor Actual Pradlctad % arror Actual Pradlctad % arror Actual Pradlctad % arror 

(no.) (km') (mn^r) (mm/hr) (%) (mm/hr) (mnVhr) (%) (nwn/hr) (mnVhr) (%) (mm/hr) (mnVhr) (%) (miMir) (mnVhr) (%) (mnVhr) (mmnir) (%) (mmftir) (mm/lir) {%) (mntirtir) (mmrtir) {* ) (mmftir) (mnVhr) (*) 

1 27 6.7S 2.89 1.63 •43.61 4.10 6.60 60.85 8.33 4.43 -46.77 13.00 10.04 -22.75 15.13 15.00 -0.86 22.29 16.87 -24.34 21.65 20.99 •3.07 27.76 21.21 •23.62 24.06 26.60 10.54 
2 35 8.75 5.62 0.05 -99.09 7.43 10^8 38.38 13.43 8.09 •39.76 18.06 14.07 •22.08 18.19 18.54 1.90 22.54 19.11 •15.19 19.68 22.10 12.30 21.24 19.73 •7.14 16.14 21.37 32.38 
3 28 7.00 6.71 0.00 -100.00 8.33 9.93 19.09 13.47 9.18 •31.91 15.61 12.22 •21.68 13.71 14.36 4.78 14.45 13.99 •3.15 11.43 15.21 33.05 10.67 12.22 14.M 7.24 11.60 60.37 
4 36 9.00 Z61 4.05 54.97 3.60 6.56 82.94 7.33 4.48 •38.82 11.82 9.69 •18.00 14.02 14.26 1.70 21.11 16.48 •21.95 20.88 20.15 •3.48 26.56 21.27 •19.99 23.30 26.19 12.44 
S 14 3.50 6.64 2.74 -58.72 8.44 13.24 56.91 15.28 10.16 •33.48 21.36 17.39 -18.58 21.95 22.38 1.87 27.69 23.16 -16.36 24.59 26.10 6.15 25.82 24.31 •5.83 19.64 25.24 28.53 
6 23 5.75 11.48 0.31 -97.27 13.55 17.50 29.17 21.31 15.46 •27.46 24.57 20.47 •16.71 21.13 22.86 8.17 21.56 21.15 •1.69 16.79 21.93 30.55 14.54 17.45 19.97 9.49 14.93 57.34 
7 13 3.25 11.48 2.87 -74.96 13.52 18.89 39.69 22.23 15.62 •29.75 27.78 22.80 •17.93 25.56 26.61 4.^0 28.24 25.66 •9.13 23.19 27.25 17.48 21.25 23.44 10.28 14.67 21.29 45.10 
8 2 3 5.75 5.56 6.10 9.84 6.74 10.88 61.51 , 12.06 8.43 •30.16 1 7 i 6 14.19 •17.76 17.91 18.35 2.43 22.88 19.83 •13.33 20.65 22.11 7.11 21.39 21.67 1.27 16.46 22.02 33.76 
S 19 4.75 11.48 2.11 •81.67 11.99 12.83 6.94 15.59 13.61 •12.72 14.13 12.26 •13.20 9.65 10.79 11.87 7.47 8.76 17.30 4.92 7.81 58.57 3.25 5.58 71.43 1.73 4.00 130.76 
10 6 1.50 12.57 0.23 -96.14 13.83 15.75 13.88 19.39 15.58 •19.65 19.27 16.43 •14.74 14.37 16.03 11.59 12.33 13.72 11^4 8.64 13.03 50.91 6.29 9.42 49.61 3.60 6.60 88.87 
11 23 5.75 13.15 7.17 •45.47 14.56 19.94 36.98 22.91 16.88 •26.32 28.03 23.04 •17.81 24.98 25.92 3.74 26.56 24.87 •6.35 21.45 25.56 19.14 18.43 22.08 19.78 12.36 18.40 48.81 
12 17 4.25 18.50 4.07 -77.99 19.62 23.16 18.07 27.35 21.73 •20.56 27.63 24.17 •13.15 21.00 23.83 13.48 18.26 20.06 9.70 13.00 18.65 45.00 9.40 13.67 45.51 6.44 9.12 67.87 
13 8 ZOO 16.89 4.49 •7143 1 7 Î 3 18.84 9.36 22.33 16.96 -15.07 20.57 18.25 •11.27 14.16 16.39 15.73 11.06 13.00 17.58 7.35 11.45 55.75 4.81 7.93 64.82 2.57 4.89 90.08 
14 14 3.50 18.35 5.56 •69.68 19.82 24.84 25.31 29.05 22.16 -23.64 31.66 27.07 •15.02 25.72 28.19 9.63 24.27 24.93 2.73 18.16 24.37 34.20 14.05 18.93 34.72 8.62 13.87 61.00 
IS 10 2.50 22.38 9.72 -56.57 21.87 23.77 8.68 27.53 23.43 -14.89 24.96 22.71 •9.02 16.75 19.96 19.28 12.64 15.37 21.57 6.26 13.07 58.19 5.10 8.82 73.00 2.64 4.64 75.69 
1« 4 1.00 19.65 6.55 •56.50 20.71 25.93 25.19 30.03 23.15 -22.92 33.05 27.96 •15.36 26.56 28.90 8.80 24.88 25.68 3.21 18.59 24.83 33.56 14.01 19.55 39.50 6.51 13.73 61.28 
17 12 3.00 14.67 11.46 -21.91 15.01 19.47 29.72 22.11 17.18 •22.29 25.77 21.35 -17.14 21.63 22.78 5.33 21.38 21.61 1.09 16.63 21.10 26.85 12.91 17.99 39.31 8.19 12.99 58.60 
16 12 3.00 16.07 11.72 -27.11 14.75 15.60 5.79 16.64 16.68 0.28 13.06 13.09 0.25 7.66 9.68 26.45 4.92 6.61 34.22 2.K 4.88 67.41 1.55 3.30 113.05 0.71 1.83 155.40 
19 17 4.25 28.16 17.91 -36.42 25.71 27.39 6.54 30.74 26.68 •13.21 27.04 KM •5.77 17.50 21.74 24.16 12.71 16.22 27.64 8.18 13.23 61.71 4.60 8.93 86.06 2.44 4.01 64.45 
20 18 4.50 22.01 14.27 •35.16 21.43 25.47 16.66 29.16 23.31 •20.06 30.68 28.26 •14.39 23.32 25.88 10.97 20.42 22.57 " 1 0 . 5 6 14.75 20.74 40.66 10.12 16.17 59.67 " 5 . 8 5 9.63 64.60 
21 18 4.50 29.03 18.42 -36.53 26.57 28.74 6.18 32.48 27.48 •15.39 29.69 27.37 -7.81 19.68 ¿ U é 15.05 18.71 24.28 9.96 16.72 57.86 6.05 10.99 81.7é 3.17 5.18 63.17 
22 31 7.75 23.99 16.92 -21.11 21.02 21.90 4.16 23.39 22.26 •4.82 18.72 18.96 1.33 11.13 14.65 31.56 7.35 10.06 36.82 4.49 7.49 66.96 2.46 4.97 102.29 1.19 • 2.15 79.68 
23 11 2.75 26.65 16.22 -39.14 25.26 28.55 12.99 32.70 26.65 •18.50 32.15 28.36 •11.77 22.95 26.60 15.88 18.66 21.91 17.40 12.88 19.31 49.93 8.26 14.20 71.93 4.52 7.48 65.47 
24 19 5.00 31.89 24.94 -21.79 26.55 27.19 2.38 29.61 26.46 •10.63 24.89 24.53 •1.46 15.14 20.07 32.55 10.16 14.63 44.00 6.28 11.09 76.51 3.25 7.49 130.09 1.55 2.20 42.33 

^ a a (Itm') 109.7S 
1 

VolufTM of Rainfall (mm-km'/hr) 1559.06 842.55 -45.96 1577.19 1891.40 19.92 2191.45 1725.32 •21.27 2351.45 2032.60 •13.56 1936.68 2131.95 10.08 1982.54 1945.92 •1.65 1601.67 1970.28 23.01 1504.19 1667.23 10.84 1094.95 1487^7 35.83 
1 1 

Root Maan Squara Error 8.82 3.36 4.76 3.40 2.44 2.83 4.36 3.99 3.99 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

AiMoWEv«nlNo.14S — [ 1 1 1 
1 1 1 1 

Sub- No.0« Aim T k M t l M l T k m i l i p U n w t l m 'nnwt l ip4 Tkmalap i n m i t w Tlnwstip T l r a t l t p T1nwtli|>9 T t m M w l O T t M a l w l l 
MDhmm C«l AckMl pUddtKl %mi AotMl PradcM % « r a A c M P n d o M %im ActuH PiWMtd « • m r Aetwl P rw IoM %«rar MM PradoM %«ni r Aekal P t«MMl Aotm PradoM K « t w Matk Pndcfcd N t m r Aomn Piwict id %«rar man PrwIctM« % « m 

No. 

(no.) (ton^ (mm«*) (irniAv) ( *1 (mmAv) (umAir) ( * ) fnvMv) (nvnAv) t%) (inn/t<) ( m m M (mmAr) (mm/ht) (%) (mwhr) (miMiO ( * ) (n«n«ir) (mm/hr) ( * ) (mni4>) (mMv) (%) (mnulv) ( m M v ) (%) (iraMv) (imuht) ( * ) (nmAvl (mmAir) ( * ) 

1 27 6.7S 4.71 s.9a 27.02 8.37 4.78 •24.9S 9.98 4.88 •47.79 18.02 8.64 •69.17 17.32 18.08 •7.15 1323 17.94 35.87 15.89 14.83 •7.97 16.41 18.80 8.98 15.35 16.49 0.88 1625 16.49 1.68 1322 14.42 9.12 
2 X •.7S 12S3 9.68 -32.31 14.85 11.87 •20.03 1825 13.13 -28.07 27.12 15.70 •42.12 25.74 23.97 •8.87 19.80 24.17 43.88 17.80 18.64 •8.09 1524 1821 19.48 13.35 16.19 13.70 11.39 13.88 21.76 8.34 9.79 17.48 

» 7.00 24.93 13.06 -47.89 24.33 19.78 -18.77 25.70 22.08 -14.11 31.11 23.83 •23.41 2527 25.34 029 13.73 22.85 85.04 1217 13.17 9.19 928 12.67 35.78 7.02 9.18 30.83 4.93 7.31 48.15 294 257 •1287 
M 9.00 1.S1 S.1S 193.98 2.88 3.00 4.94 4.83 221 -5226 9.70 3.14 •87.87 1228 10.92 •11.90 10.95 13.62 23.48 15.32 13.81 -9.88 18.32 17.01 424 17.95 17.37 •322 21.31 18.58 •1279 21.80 20.88 •524 
14 4.M S.74 29.7* 8.87 8.90 3.60 9.93 7.19 -27.80 18.33 924 -49.82 21.82 1923 -11.08 17.37 22.04 28.99 22.30 18.77 •15.81 21.85 23.17 8.08 21.77 21.82 028 23.45 21.85 •8.84 21.32 2128 •0.19 
21 S.7< 17.07 9.90 -47.84 19.17 18.38 -14.57 22.99 19.81 •13.84 31.85 22.91 •28.08 30.10 29.13 •8.54 19.78 27.87 47.83 19.14 1820 •4.95 16.74 19.84 28.09 1290 15.80 22.48 10.71 13.49 26.97 7.41 824 1122 
13 723 S.90 -21.88 9.97 9.92 0.43 14.08 11.71 -18.71 23.91 14.58 -39.03 27.07 24.05 •11.19 2029 28.42 3020 24.81 20.72 •16.81 22.71 2521 11.01 21.08 2281 727 21.15 21.53 1.81 17.68 18.98 7.93 
23 S.7S t J 9 S.11 287.74 Z40 4.73 97.60 4.19 3.70 •11.83 925 4.12 •65.44 13.07 10.71 -19.05 1248 13.99 1228 18.91 16.43 -18.41 20.60 20.65 024 22.70 21.54 •5.11 29.82 2324 •21.53 32.13 28.83 -18.47 
19 4.7S 2S.33 12.13 -82.11 22.94 19.52 •14.92 22.77 23.85 3J7 24.03 25.03 4.13 18.84 20.68 9.10 »XI 1722 86.81 7.88 9.74 28.84 629 7.68 42.99 3.54 4.88 37.82 231 3.02 30.70 122 0.09 •9222 
« 1.M 24.S1 11.S7 -82.81 24.09 20.65 •14,70 25.87 2S.00 •zto 29.98 27.15 •9.39 25.13 26.67 1.74 13.« 22.77 8922 11.99 13.32 11.08 9.79 1223 39.13 8.33 8.55 36.17 4.47 8.18 38.38 268 1.43 •44.53 
23 S.7« 3.48 4.33 24.27 6.38 7.57 40.85 8.67 8.68 •CM 18.34 10.43 •38.18 21.14 18.35 •1320 17.82 21.83 21.43 2427 19.32 -20.73 23.98 24.99 423 23.71 23.94 1.00 27.42 23.88 •1291 25.78 24.18 •829 
17 1S.e3 -65.37 17.78 18.04 •9.81 21.69 21.18 •1.98 2924 24.60 •1822 28.50 28.82 •5.87 17.84 28.45 49.98 18.13 17.44 -3.83 14.52 18.78 29.18 11.45 14.68 27.12 9.58 11.76 22.83 8.48 8.71 3.94 
• 2.00 20.05 8.9« •65.30 20.33 17.84 •1325 2229 22.98 3.03 2828 25.60 •298 23.09 23.33 129 1268 21.16 88.14 11.64 1279 10.82 8.48 11.88 38.07 8.04 8.18 35.14 4.41 5.70 29.16 2.59 1.48 •43.04 
14 9.S» 5.00 -47.85 1Z40 1231 •0.72 18.85 18.18 •3.98 2828 19.69 •26.48 28.78 25.89 •10.08 2021 27.54 38.31 23.33 20.30 •1299 20.30 24.08 18.80 17.54 20.60 15.88 18.89 18.30 9.85 12.87 14.44 1228 
10 14.7S -80.07 18.24 14.40 •11.33 19.18 20.19 62* 24.40 2324 •4.34 23.39 22.48 •3.88 13.81 21.70 67.09 13.74 1421 3.41 10.60 1422 35.46 721 10.51 35.68 827 7.87 25.48 3.99 3.70 •724 
4 1.00 921 3.7S •39.80 8.74 10.03 14.70 1280 13.18 2.89 21.88 18.16 -25.43 25.83 22.85 •11.53 19.80 26.48 29.99 24.43 20.35 •18.72 2221 2525 13.88 20.08 2253 1231 20.81 20.90 0.44 17.32 18.58 724 
12 i . a o 123.87 2.77 8.34 128.55 4.89 8.83 35.78 1025 7.43 •27.48 14.98 1229 •17.92 13.91 16.65 11.80 21.07 18.18 •23.19 21.70 22.12 1.92 22.37 22.48 0.49 29.02 2325 •19.87 29.98 25.93 -13.18 
12 8.78 •57.80 16.04 1200 -20.19 16.44 18.93 9.84 1823 19.09 1721 13.62 14.88 9.80 8.78 1274 88.53 5.79 7.95 »728 3.93 5.84 48.88 258 273 45.88 1.73 1.95 1247 0.92 0.13 
17 a.s9 Z84 •89.23 10.60 9.48 -9.72 13.81 14.94 9.08 19.02 19.05 •5.08 20.35 1828 •9.71 1321 1923 45.81 14.47 14.19 •128 11.81 15.53 33.79 9.08 1251 38.09 8.12 9.98 2272 5.88 8.87 212« 

20 1( 4.E0 •14.80 4.87 7.37 57.84 7.60 9.57 27.65 13.87 11.44 •17.65 18.68 16.91 -14.37 15.63 18.95 22.08 21.47 1727 •19.64 20.49 2287 10.85 19.38 21.58 11.39 22.74 20.90 •8.09 20.98 2122 125 
21 1« 1.9S •88.88 8.30 8.33 0.33 11.68 13.08 13.15 17.82 18.12 •«.62 2028 17.93 •11.95 1422 19.71 37.88 18.91 15.51 •822 1420 1824 27.58 11.82 15.53 31.41 11.65 1325 14.89 8.79 10.83 2322 
22 31 7.7S 10.31 •88.85 11.11 8.90 •19.95 1294 14.08 8.83 15.73 18.81 8.88 1621 14.87 •3.53 8.81 1424 8280 8.76 10.12 16.87 8.83 9.42 44.41 4.72 7.01 48.82 3.84 4.89 27.13 245 234 -4.45 
23 11 Z7S 4.S0 ^06 •54.68 8.61 8.03 23.35 9.78 11.76 20.11 18.49 14.41 •1281 20.81 17.99 •1270 15.85 20.90 29.97 2022 1728 •15.04 1828 21.88 18.69 18.19 19.62 20.69 1728 17.85 272 14.68 i 8 . a 1284 
24 1» s.ao 0.M •81.94 428 4.74 10.67 8.40 8.35 M J 4 1029 10.48 1.81 13.12 10.89 -17.00 9.88 12.97 31.48 12.81 11.85 •8.05 10.93 14.83 33.85 9.19 1323 43.88 9.88 11.88 18.18 8.03 1120 39.33 

A i M d m ^ 109.7S 

V o k m o l rMon'/hi) 107927 853.97 -39.41 121624 1119.48 -7.88 1494.19 1393.16 •8.78 2154.05 1831.85 •2424 2229.87 2082.70 •7.60 1542.32 2169.82 40.04 1797.80 1865.52 •7.91 1820.37 1895.05 18.95 1485.52 1888.17 1230 1639.32 1645.72 0.42 2132.43 1347.15 -38.83 
1 1 

Roo lMMnSoumEmc 8.78 2.31 217 5.85 2.05 829 2.83 2.91 2.32 2.48 1.84 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No. 146 

Sut)- No. of Area Time step 1 Time step 2 Time step 3 Time step 4 Time step 5 Time step 6 Time step 7 
Catchmen Celt Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error Actual Predicted % error 

No. 

(no.) (km*) (mm/hr) (mm/hr) (%) (mm^r) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) 

1 27 6.75 22.11 28.70 29.83 19.75 20.05 1.50 16.89 18.96 12.24 12.22 14.97 22.55 8.89 9.03 1.58 4.42 4.50 1.70 2.37 0.73 -69.10 
2 35 8.75 22.95 28.90 25.92 20.56 22.29 8.42 19.13 20.85 9.01 14.84 17.77 19.72 11.94 11.07 -7.31 6.81 5.72 -15.96 3.99 2.07 -48.14 
3 28 7.00 15.72 21.27 35.27 13.70 18.29 33.56 13.53 15.43 13.98 11.00 13.56 23.31 9.58 8.42 •12.10 6.16 4.18 -32.12 3.87 2.76 -28.60 
4 36 9.00 17.94 24.63 37.30 17.90 16.99 •5.11 16.13 17.67 9.54 12.35 14.64 18.53 9.35 10.43 11.58 4.75 6.79 42.84 2.67 2.39 •10.55 
S 14 3.50 22.64 28.33 25.15 23.79 21.78 •8.45 23.96 23.71 -1.06 20.17 21.69 7.50 17.15 16.26 •5.15 10.08 11.55 14.61 6.25 5.96 -4.63 
6 23 5.75 19.50 24.37 24.97 19.55 21.67 10.82 21.21 21.63 1.98 18.87 20.93 10.92 17.71 15.57 -12.10 12.11 11.05 -8.71 8.16 7.81 •4.26 
7 13 3.25 22.33 27.22 21.89 24.46 22.80 •6.80 26.84 25.47 •5.12 24.38 24.90 2.11 22.79 19.88 -12.78 15.12 15.55 2.83 10.25 10.27 0.23 
8 23 5.75 15.64 20.60 31.69 18.72 15.77 -15.72 20.14 19.32 •4.08 18.21 18.47 1.44 16.34 15.84 •3.04 10.00 13.13 31.23 6.60 8.32 25.94 
9 19 4.75 6.96 9.97 43.27 7.08 11.61 64.09 8.81 9.29 5.51 8.80 9.51 8.08 9.72 7.94 -18.26 8.30 6.73 -18.86 6.46 7.77 20.21 
10 6 1.50 11.40 15.25 33.77 11.51 15.85 37.75 13.58 14.15 4.19 12.94 14.32 10.61 13.38 11.22 -16.17 10.44 8.65 -17.13 7.63 8.27 8.30 
11 23 5.75 17.83 21.24 19.10 22.13 18.66 •15.69 26.53 23.47 •11.54 26.35 24.42 •7.31 26.70 21.97 •17.70 19.15 19.86 3.72 14.14 15.50 9.62 
12 17 4.25 14.57 17.45 19.78 16.36 18.17 11.04 20.38 19.42 •4.72 20.60 20.93 1.60 22.25 18.25 -17.98 17.92 16.46 -8.10 13.81 15.42 11.71 
13 8 2.00 9.23 11.69 26.65 10.16 13.70 34.82 13.17 12.90 •2.04 13.72 14.10 2.79 15.61 12.66 -18.87 13.59 11.98 -11.89 10.94 13.10 19.74 
14 14 3.50 18.01 21.12 17.28 21.10 20.39 •3.37 25.88 23.76 •8.22 25.97 25.37 •2.32 27.32 22.34 -18.26 20.96 20.14 -3.92 15.85 17.24 8.75 
15 10 2.50 9.39 10.66 13.49 11.32 13.39 18.33 16.67 14.41 •8.06 17.42 16.89 -3.07 21.02 16.67 -20.70 19.33 17.61 -8.92 16.50 19.46 17.95 
16 4 1.00 16.82 19.13 13.69 21.13 18.90 •10.54 27.03 23.80 •11.95 28.29 26.18 •7.47 30.77 24.35 •20.86 24.24 23.38 -3.57 18.96 20.63 8.81 
17 12 3.00 12.12 13.34 10.11 17.19 13.13 -23.67 22.98 19.10 •16.90 25.38 21.63 •14.79 28.49 22.03 -22.68 22.69 22.50 -0.85 18.58 20.21 8.75 
18 12 3.00 3.84 4.89 27.47 4.56 7.67 68.27 6.75 6.54 •3.10 7.92 7.87 •0.66 10.39 8.66 •16.68 10.79 10.43 -3.42 9.91 14.07 41.97 
19 17 4.25 8.26 7.94 •3.98 11.03 11.25 2.05 16.49 14.27 •13.44 19.85 18.13 •8.67 25.90 19.96 -22.91 25.90 23.45 -9.49 24.19 26.58 9.89 
20 18 4.50 11.72 11.93 1.80 16.74 13.50 •19.35 23.78 19.66 •17.33 27.62 23.45 •15.10 33.24 24.58 -26.07 29.08 26.43 -9.11 25.29 25.91 2.45 
21 18 4.50 9.27 8.77 •5.36 12.80 11.88 •7.18 19.13 16.24 •15.13 23.13 20.54 •11.22 29.98 22.58 -24.69 29.44 26.18 •11.09 27.46 28.63 4.26 
22 31 7.75 4.96 4.82 •2.89 6.52 8.08 23.97 10.10 9.02 -10.71 12.53 11.80 •5.84 17.20 13.89 •19.24 18.58 17.61 -5.22 18.16 22.07 21.53 
23 11 2.75 11.02 10.84 •1.62 15.56 13.35 -14.19 22.75 19.03 -16.35 26.98 23.31 •13.59 33.63 24.85 -26.09 31.00 27.55 •11.13 27.73 28.41 2.43 
24 19 5.00 5.21 3.25 -37.73 8.36 6.87 •17.86 14.38 11.62 •19.17 19.80 16.70 •15.70 29.22 21.26 -27.25 32.88 27.58 •16.13 34.63 32.11 •7.28 

t \rea (km*) 109.75 

Volume of Rainfall (mm-km*/hr) 1584.04 1937.85 22.34 1724.44 1749.60 1.46 1979.78 1909.65 -3.54 1936.99 1950.57 0.70 2053.12 1712.15 -16.61 1668.94 1577.10 •5.50 1377.55 1441.53 4.64 
1 1 

Root Mean Square Error 3.72 2.66 2.16 2.15 4.65 2.07 1 1.88 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Event No. 147 1 1 
Sub- No. of Aral rinMataol Tlmaatap2 TknaatapS Timaatap4 TImaatap TImaatap Tima atap IknaatapS TImaatap S 

c*a Actual Pradictad %airor Actual Pradictad %arror Actuai' Pradictad % #nt>f Actual Piadictad %arror Actual Pradictad Sarrer Actual Pradictad %anor Actual Pradictad %arror Actual Pradictad %arror Actual Pradictad %anor 
No. 

(no.) (ton') (mnVhr) (min/hr) (%) (mnVhr) (mm'hr) ( * ) (mirVhr) (mnVhr) (%) (mm/hr) (mm/hr) ( * l (mm/hr) (mmlir) (*) (mnVbr) (mm/hr) (%) (mnVhr) (mn^r) (*) (mm/hr) (mnVhr) (%) (mm/hr) (mm/hr) (%) 

1 27 e.7S 30.86 28.25 -5.21 34.12 24.72 -27.56 21.50 22.56 4.84 13.71 16.41 34.25 11.83 10.07 •15.65 8.10 7.87 •1.60 3.67 2.88 -18.77 1.85 1.84 5.18 0.83 2.72 182.20 
2 35 8.7S 27.12 26.70 -1.54 34.67 25.36 -26.85 24.47 27.08 10.68 18.15 21.20 16.77 18.88 15,61 -16.75 14.85 16.24 8.34 6.17 6.83 8.07 4.75 4.81 1.32 2.61 4.26 63.18 
3 28 7.00 15.51 17J» 11.48 22.60 17.82 -21.17 17.71 21.64 22.22 15.35 16.12 5.02 18.45 16.60 •14.63 17.54 18.85 13.21 11.87 13.45 13.35 8.03 8.17 1.76 4.81 6.38 32.67 
4 36 S.00 28.42 27.18 •4.33 30.83 22.35 -27.74 18.26 18.02 •1.24 11.51 16.85 46.35 8.25 6.24 •10.84 6.12 5.18 •15.18 2.58 1.78 -30.78 1.26 1.34 6.37 0.64 2.30 25624 
S 14 3.50 31.62 28.67 -8.32 40.05 27.50 -31.33 28.04 28.08 0.20 18.20 23.88 24.88 16.15 15.52 -14.48 13.62 13.85 0.87 6.86 7.71 10.70 3.67 4.2S 10.86 2.18 4.11 88.58 
< 23 5.75 21.23 20.22 -4.76 32.00 23.40 -26.88 25.70 28.08 13.21 21.64 23.21 7.25 26.38 21.67 •17.84 24.10 25.34 5.16 15.66 18.46 16.38 10.68 11.18 4.67 6.66 8.67 33.15 
7 13 3.25 28.61 25.58 -10.56 40.40 27.77 -31.27 30.64 31.58 Z41 23.33 26.75 14.68 24.80 20.58 -17.35 21.16 21.41 1.18 12.24 14.40 17.68 7.58 8.16 7.53 4.65 6.77 45.43 
8 23 6.75 25.15 23.55 -6.37 31.47 21.63 •31.28 21.88 20.57 -6.00 14.05 18.08 35.78 12.30 11.15 -8.32 8.25 6.06 •12.68 4.40 4.27 -3.0S 2.40 2.40 •0.16 1.40 2.48 77.12 
» IS 4.7S 5.88 5.87 1.48 11.14 8.83 -20.76 10.71 13.26 23.80 11.45 10.44 •8.84 18.65 15.71 -15.81 21.48 21.58 0.47 18.35 20.70 6.87 16.50 17.07 3.42 11.88 14.75 23.16 
10 6 1.50 10.55 10.43 •1.08 18.38 14.18 -22.64 16.53 20.23 22.38 16.18 15.73 -2.80 23.67 18.57 -17.34 24.83 25.53 2.42 18.80 22.08 10.86 15.46 15.82 2.87 10.52 12.88 23.38 
11 23 S.7S 24.88 21.21 •14.74 36.26 24.11 -33.48 28.43 27.72 •Z48 21.13 24.74 17.08 22.08 18.80 •14.81 18.32 18.80 •2.65 11.18 13.85 23.84 7.08 8.04 13.62 4.61 6.53 41.48 
12 17 4.25 15.18 12.50 •17.70 26.13 18.78 •28.11 23.31 26.71 14.57 21.55 21.80 1.61 28.40 23.61 -18.71 30.48 28.60 •ZK 23.04 26.15 13.48 17.48 18.11 aS3 12.24 14.64 18.55 
13 8 2.00 8.50 6.88 -17.78 15.88 11.80 -25.60 15.31 18.38 20.08 15.72 14.84 •5.64 24.40 18.70 -18.26 27.80 26.54 •4.54 24.08 25.66 6.58 20.18 20.26 0.38 14.81 1724 15.58 
14 14 aso 21.13 17.50 -17.18 34.03 23.58 -30.72 28.83 30.86 7.11 24.40 26.17 7.25 28.68 24.18 •18.07 28.81 28.20 •2.45 18.58 23.26 18.77 13.81 14.60 7.20 8.38 11.81 25.81 
IS 10 2.50 8.11 6.00 -34.16 17.68 12.51 -28.27 17.34. 20.14 16.13 17.68 16.88 •3.86 27.11 21.40 •21.08 31.53 28.68 •8.03 27.25 28.01 6.4S 23.08 23.05 -0.13 17.70 18.62 10.87 
16 4 1.00 20.84 16.60 -20.71 33.88 22.86 -32.40 28.87 28.88 3.46 23.88 26.23 8.31 28.56 23.43 •17.88 27.67 26.65 •3.68 18.36 22.48 22.41 12.86 14.25 10.60 8.81 11.30 26.82 
17 12 3.00 17.84 14.38 •18.80 27.80 17.86 •35.76 22.80 21.28 -7.03 17.18 20.33 18.30 18.16 16.08 •11.43 16.78 15.73 •6.32 10.05 13.18 31.16 6.66 7.85 18.35 4.68 6.20 32.10 
IS 12 3.00 3.15 1.73 •45.18 6.87 5.13 •26.33 7.58 8.88 16.58 8.87 7.83 -11.51 16.50 13.47 -18.40 22.02 18.70 •10.55 23.15 23.22 0.30 22.64 22.68 0.22 18.88 21.18 1224 
IS 17 4.25 8.58 4.35 -48.36 17.11 11.41 -33.35 17.21 18.05 10.68 17.38 17.18 •1.22 26.47 20.83 •21.30 31.82 27.76 •13.03 28.12 30.06 6.68 24.71 24.65 •0.24 20.33 2128 4.73 
20 18 4.S0 15.50 10.86 •28.86 26.60 17JÎ3 -35.22 23.73 23.50 •0.S6 18.76 21.84 11.06 23.67 20.08 •15.18 24.13 22.58 •6.38 16.48 21.13 28.15 12.05 13.86 15.85 8.01 10.88 2 1 M 
21 18 4.50 10.37 5.66 •45.48 18.87 13.17 -34.03 18.55 21.02 7.54 18.76 1824 2.45 26.80 21.4« •20.16 31.38 27.62 •11.88 26.08 28.21 11.84 22.11 22.76 2.85 18.04 1821 6.47 
22 31 7.75 4.67 1.80 •58.35 8.88 6.70 -^^82 10.67 12.08 13.21 11.85 11.18 -5.66 20.35 16.08 •20.86 26.82 22.84 •15.16 27.15 27.14 •0.03 26.34 25.38 -3.67 22.81 23.31 1.76 
23 11 2.75 13.43 8.40 -37.44 24.48 16.08 -34.30 22.82 23.83 3.84 20.50 21.88 6.78 26.81 22.00 •17.85 28.17 26.62 •8.75 21.80 26.40 20.57 17.14 18.80 8.66 13.32 1524 14.42 
24 18 5.00 5.86 1.75 •70.73 12.76 7.80 •38.00 13.58 14.15 4.15 13.66 14.32 4.81 20.66 17.05 •17.46 26.35 22.42 •14.80 23.68 26.78 13.08 21.66 22.17 2.34 18.44 18.86 -2.45 

ArMOan'l 108.75 

VolutiM d Ralnfdl (mm-ion'/hi) 1865.52 1745.53 •12.08 2831.37 1881.72 •28.65 2243.48 2381.88 6.61 1828.84 2048.40 11.84 2237.45 1854.43 •17.12 2236.83 2128.33 •4.81 1670.18 1842.37 10.31 1317.11 1357.60 3.07 884.86 1174.05 16.00 
1 1 

Rool Mean Squtr* Etror 3.03 8.25 2.08 2.63 4.07 2.07 2.50 0.80 1.81 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificid Ev*nt No.148 j 
1 

Sub- No. of Araa Tim* •t*p 1 Thm stap 2 TlmadapS Tlmaitap4 TImattap 5 TknaitapO TIma Stan 7 Tknaitap TIma atap O 
^chnwn Cal Actual Predicted %*rror Actual Pradlctad %arrof Actual Prwllctad %arror Actual PrMflctad %arrai Actual Pradlctad %arror Actual Pradlctad %arror Actual Pradlctad %arrof Actual Pradlctad %anDr Actual Pradlctad %arror 

No. 

(no.) (km') (mni/hr) (mm/hr) (%) (mm/hr) (mm/hr) (%) (mtiVhr) (mm^r) (%) (mnVhr) (mnVhr) {%) (rrnn/hr) (mm/hr) (%) (mm/hr) (mmAir) (*) (mm/hr) (mm/hr) ( * ) (mnVhr) (mm/hr) (%) (mm/hr) (mm/hr) (%) 

1 27 8.7S 2.03 3.70 26.03 4.87 2.70 -44.53 7.48 8.48 13.40 11.00 0.08 •18.70 17.80 14.37 -10.25 10.01 16.71 •12.13 20.58 17.12 •16.70 24.50 16.60 -23.72 20.81 20.10 -3.30 
2 35 8.75 5.80 3.80 -32.03 7.05 5.42 -31.78 10.83 10.24 •5.42 14.07 13.33 •10.03 17.70 16.30 •7.42 18.30 15.77 •3.70 14.62 14.07 2.35 14.47 14.01 3.04 10.45 14.07 34.65 
3 28 7.00 7.08 2.60 •50.22 7.87 6.50 -18.20 0.84 7.58 •21.31 11.47 11.33 •1.26 10.88 11.60 0.82 8.51 6.57 0.75 6.32 7.31 15.75 5.25 6.48 23.41 3.26 4.88 40.07 
4 38 0.00 2.S0 S.46 110.88 4.87 3.15 •32.46 7.08 0.70 38.22 11.77 10.24 -13.01 10.85 14.06 •23.00 22.54 10.17 •14.05 25.64 20.44 •20.66 32.61 22.56 -30.76 20.40 24.80 •15.65 
S 14 3.50 6.65 6.16 22.66 10.12 7.68 -22.17 13.80 15.56 14.45 10.56 17.06 -12.70 28.68 21.50 -10.70 27.21 23.86 •12.31 25.00 23.87 •6.14 27.53 24.14 -12.20 21.35 24.07 12.73 
8 23 S.7S 11.85 8.13 -31.43 13.76 12.87 -7.04 16.17 15.24 -5.73 10.15 18.51 •3.37 10.11 10.37 1.30 15.86 16.23 2.32 11.83 14.25 20.44 0.00 12.41 25.44 6.23 10.06 61.42 
7 13 3.25 11.53 11.12 -3.50 15.33 13.06 •14.81 16.63 10.53 4.64 23.03 21.30 -10.81 26.44 24.44 •14.06 26.25 24.53 •6.55 21.02 23.35 6.50 20.48 22.05 7.71 14.28 20.32 42J2 
8 23 S.75 5.42 6.00 63.08 8.85 6.07 -21.30 11.81 14.88 28.02 17.10 15.02 •12.17 26.48 10.52 •26.25 28.81 23.03 •16.07 20.17 25.20 •13.84 32.02 26.32 -20.05 27.32 27.28 •0.17 
0 10 4.75 12.15 7.35 •30.54 10.32 12.78 23.00 10.02 6.27 •17.46 0.31 10.40 11.85 8.40 7.03 22.26 4.30 3.02 -8.85 2.37 2.53 6.81 1.40 1.42 -4.00 0.73 0.36 •51.05 
10 8 1.50 13.20 7.83 •42.15 12.64 13.80 0.20 13JJ4 11.28 •14.70 13.50 14.27 5.66 10.72 12.45 16.12 7.70 7.87 2.13 4.74 5.03 25.16 3.30 4.15 25.88 1.77 2.17 22.66 
11 23 5.75 12.06 14.25 0.70 17.47 15.23 •12.84 20.07 21.73 8.31 25.26 22.13 -12.42 31.51 24.07 •20.74 20.01 26.41 •11.70 24.06 25.63 3.40 23.43 24.45 4.37 16.61 22.00 37.64 
12 17 4.25 16.00 13.08 -26.30 10.42 20.22 4.16 20.00 10.07 -4.65 20.00 21.01 0.54 18.44 10.53 5.88 14.13 14.03 5.85 0.16 12.10 33.14 6.73 0.28 37.05 3.82 8.46 60.56 
13 8 2.00 17.61 11.08 -31.06 1S.67 18i6 16.52 15.05 13.81 •0.58 14.24 15.38 7.80 10.87 12.51 17.23 7.30 7.65 3.54 4.22 5.46 20.70 2.75 3.41 24.11 1.40 1.53 8.66 
14 14 3.50 16.54 15.70 •14.62 21.21 20.36 -3.00 22.85 22.03 0.33 25.78 24.30 •5.86 26.14 24.60 •5.86 21.84 22.00 0.75 15.66 10.50 25.03 12.70 16.80 30.76 7.68 13.71 74.05 
IS 10 2.50 23.01 17.36 •24.57 20.71 23.54 13.64 10.13 16.46 -3.52 17.80 18.05 6.43 13.72 15.60 14.36 0.63 10.60 10.05 5.44 7.80 45.06 3.51 5.06 44.10 1.70 2.75 53.70 
18 4 1.00 10.83 18J» -7.27 23.08 21.80 •5.58 24.44 25.06 2.60 27.84 25.48 -7.83 20.34 26.13 •10.05 25.15 24.63 •2.08 16.26 22.50 23.20 15.00 10.43 20.50 0.48 16.50 74.38 
17 12 3.00 14.23 18.12 13.24 18.76 16.58 •11.64 10.01 21.70 0.46 23.87 21.03 •11.00 30.01 22.07 •23.46 28.53 25.07 •12.15 22.01 24.07 6.07 20.85 23.42 12.20 14.56 21.68 50.26 
18 12 3.00 16.85 13.85 •17.82 12.47 18.06 44.84 10.35 10.45 0.03 8.34 10.25 22.03 5.12 6.81 32.02 3.12 3.00 -1.01 1.47 1.53 3.50 0.60 0.40 •36.66 0.35 0.03 •00.53 
IB 17 4.25 26.40 23.26 -18.37 25.36 28.10 10.70 22.03 22.68 2.06 10.02 21.21 6.47 15.70 17.86 11.65 11.28 13.25 17.41 6.34 10.33 62.06 4.10 8.02 66.80 2.12 4.46 110.23 
20 18 4.50 21.56 20.60 -3.21 24.07 23.32 -6.80 24.46 25.40 4.21 26.45 24.31 •6.12 28.40 24.33 •14.56 24.57 23.08 •2.41 17JÎ7 22.42 20.88 13.82 10.20 30.57 6.83 16.56 01.81 
21 18 4.50 20.06 24.30 -16.07 27.40 28.77 4.85 24.32 25.12 3.27 22.67 23.34 2.06 10.60 20.51 4.16 14.81 16.00 14.10 6.62 14.02 58.00 6.05 10.25 80.35 3.30 7.43 125.01 
22 31 7.75 24.61 20.52 -18.82 10.18 24.44 27.43 15.55 18.66 7.12 12.82 15.05 17.41 8.84 11.13 25.60 5.64 7.02 20J!1 3.01 4.77 58.87 1.82 2.58 40.87 0.00 1.32 48.75 
23 11 2.7S 26.41 23.40 •11.04 27.78 27.24 -1.07 25.06 26.66 2.70 26.24 25.17 -4.07 25.32 23.74 •6.25 20.41 21.53 5.48 13.10 10.06 44.52 0.76 15.25 56.22 5.60 12.13 113.27 
24 IS 5.00 31.47 26.43 •16.03 28.05 20.20 4.10 22.31 24.26 8.72 10.30 20.76 7.67 15.04 17.40 0.14 11.63 14.77 26.05 6.35 12.34 04.10 4.03 6.74 118.66 2.08 6.38 208.87 

^ • a (km') 100.75 

VoluiTw 0» Rdnlall (mm-lon'/hr) 1578.50 1367.68 -13.25 1648.00 1634.53 •0.88 1701.78 1764.42 3.68 1013.44 1841.55 -3.76 2065.21 1600.75 -8.01 1855.80 1778.68 •4.15 1548.32 1640.35 6.66 1513.33 1513.80 0.02 1136.02 1387.60 22.15 
1 1 

Root Maan Squar* Etrof 3.68 1 2.30 1.50 1.78 3.42 2.07 3.35 3.68 4.21 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

Artificial Evant No.149 

Sub- No. of Araa Tlmaatapl Tima (tap 2 TImaatapS Tlmaatap4 Tlmaatap5 Tlniaatap6 TImaatap TImaatap 8 Tlrrwatapg 
k/CtChfTWff Call Actual Ptwflctad %anor Actual Ptadietad Narrar Actual Pradlctad % arror Actual Pradlctad % arror Actual Pradk:tad % amr Actual Pradlctad % arror Actual Pradlctad %arrer Actual Predfctad % arror Actual Pradkrtad % arror 

No. 

(no.) (km') (mnVhr) (imiVhr) (*) (mmftir) (mm/hr) (%) (mmrtir) (mmnir) (%) (mm/hr) (mmfhr) (%) (mm/hr) (mmfhr) (%) (mtiAr) (mnVhr) (%) (mm/hr) (mrr^r) (%) (mtnOir) (mnVhr) (%) (mnVhr) (mtnftir) (*) 

1 27 6.75 27.02 28J!7 4.63 32.66 25.88 -20.76 23.36 26.50 13.46 22.13 22.03 •0.45 15.83 20.38 28.74 12.47 14.10 13.14 9.25 10.37 12.19 4.59 4.30 -6.40 2.48 2.27 •8.53 
2 35 8.75 21.82 22.58 3.49 30.14 23.71 -21.34 24.93 27.20 9.11 25.63 23.96 -6.52 18.71 24.23 29.46 15.86 17.15 8.18 13.00 13.89 6.83 6.91 6.22 -10.04 4.20 3.60 •1457 
3 28 7.00 11.60 12.S8 6.66 18.39 15.80 -14.09 17.43 19.87 14.00 19.25 18.58 -3.53 14.03 19.80 41.15 12.53 14.04 12.01 11.07 11.95 7.90 6.16 5.32 -13.56 4.15 3.31 -20.25 
4 36 9.00 23.48 27.44 16.82 27.78 23.50 -15.39 19.26 22.79 18.35 18.33 18.92 3.22 14.14 17.21 21.70 11.69 13.25 13.40 9.18 10.39 1352 4.86 5.98 23.11 2.68 4.34 61.61 
5 14 3.60 23.14 25.71 11.09 31.45 24.85 -20.98 25.24 27.48 8.87 26.33 24.31 •7.66 21.41 24.71 16.38 19.48 19.69 1.07 17.31 17Ì4 •0.37 10.02 1151 11.90 6.27 8.31 32.69 
6 23 5.7S 14.49 14.96 3.24 23.15 18.72 -19.14 22.29 24.45 9.69 25.52 2 3 i l •9.06 20.S4 25.73 25.27 19.92 20.21 1.43 19.39 18.94 •2.34 11.82 12.37 4.68 8.41 9.04 7.56 
7 13 3.25 19.22 20.96 8.99 28.76 22.62 -21.35 25.61 27.48 7.33 28.57 25.42 -11.02 24.26 2735 13.53 23.83 22.79 •4.37 23.44 21.55 -8.07 14.68 15.85 7.97 1052 1255 19.92 
a 23 5.75 17.17 22.18 29.19 22.84 19.37 -15.18 17.80 19.96 12.13 18.78 17.83 -5.04 16.70 17.97 7.60 16.18 16.10 -0.47 15.50 14.91 •3.83 9.74 11.87 21.84 6.35 ^ 1058 61.88 
s 19 4.75 3.50 3.93 12.04 6.89 7.36 6.83 8.33 10.40 24.86 10.87 11.13 2.32 9.10 12.77 40.33 0.96 10.63 6.66 11.43 10.77 -5.80 7.81 8.51 8.94 6.74 7.31 8.46 
10 6 1.50 6.60 6.72 1.84 12.05 10.98 -8.84 13.41 15.72 17.17 16.68 16.03 •3.89 13.73 18.50 34.76 14.32 14.90 4.03 15.36 14.70 •4.32 9.99 10.53 5.49 7.95 8.38 5.43 
11 23 5.7S 15.24 17.43 14.38 23.26 18.23 -21.65 21.02 22.27 S.91 24.28 21.23 -12.58 22.60 23.78 5.21 24.08 21.69 •9.93 26.21 21.94 •16.27 18.12 19.54 7.84 13.57 16.81 23.90 
12 17 4.25 8.98 8.14 -9.39 16.08 12.93 -19.60 17.42 19.22 10.37 21.82 19.68 •10.35 19.33 23.38 20.93 21.21 20.21 -4.75 24.20 21.15 •12.63 16.84 18.42 9.38 13.66 15.29 10.33 
13 8 2.00 4.84 4.28 -11.60 9.41 8.55 -9.15 11.19 13.06 16.77 14.71 13.94 -5.24 13.00 16.78 29.06 14.77 14.60 -1.12 17.69 15.56 -12.01 12.65 14.13 11.63 11.14 1250 9.55 
14 14 3.50 12.65 12.61 -0.34 21 16.56 -22.13 21.42 22.99 7.33 25.98 22.70 -1Ì64 23.50 28.61 13.21 25.49 23.45 -8.00 28.52 2459 -14.84 19.77 21.36 8.04 15.63 17.78 13.71 
IS 10 2.50 4.62 3.36 -30.28 9.60 7.89 -17.63 11.63 12.96 11.43 15.73 14.18 -9.87 14.85 17.82 19.99 17.91 16.69 -6.79 23.07 18.89 -18.11 17.68 19.83 12.18 16.35 17.74 8.49 
16 4 1.00 11.95 12.13 1.46 20.16 15.40 •23.60 20.29 21.43 5.62 24.93 21.48 •13.87 23.68 25.58 7.99 26.67 23.68 •11.24 31.20 25.25 -19.07 22.61 24.10 6.61 18.32 20.88 13.92 
17 12 3.00 9.80 11.60 18.34 15.67 11.97 -23.65 14.79 14.85 0.39 18.00 15.14 •15.88 18.54 17.96 •3.13 21.81 18.68 -14.37 26.67 20.55 •23.52 20.82 21.68 4.11 17.17 20.43 18.95 
18 12 3.00 1.56 1.19 -23.67 3.51 4.10 16.93 4.86 6.28 29.27 7.08 7.39 4.47 6.72 8.87 31.87 8.60 8.78 2.15 12.02 1057 •14.59 9.70 12.37 27.49 9.96 11.84 18.84 
19 17 4.2S 4.23 2.35 -44.34 8.54 6.21 -27.24 10.47 10.91 4.16 14.59 12.49 •14.42 14.89 16.45 10.53 19.31 17.15 •11.18 27.38 20.76 •24.16 23.07 25.38 9.99 23.15 23.73 2.48 
20 18 4.50 7.96 7.77 -Z22 13.97 10.09 -27.79 14.60 14.61 0.01 18.83 15.61 -17.14 19.72 19.70 •0.12 24.45 20.63 •15.62 32.32 23.72 •26.62 2658 26.S6 1.04 23.48 24.85 5.82 
21 18 4.50 5.11 3.37 •34.08 9.96 6.98 -29.88 11.74 11.96 1.88 16.11 13.50 •16.22 16.77 17.84 6.38 21.77 18.87 •13.32 30.85 22.78 •26.14 2650 27.69 5.70 25.93 25.94 0.02 
22 31 7.75 2.25 1.02 •54.60 4.81 4.08 -15.20 6.36 7.07 11.23 9.25 8.48 -8.31 9.43 11.03 16.94 12.65 11.88 •«.06 18.84 14.76 •21.65 16.37 19.61 19.79 17.57 18.84 7.21 
23 11 2.75 6.69 5.48 -18.09 12.45 8.80 -29.30 13.86 14.04 1.26 18.49 15.43 -16.67 19.37 20.01 a33 24.60 20.93 -14.93 33.62 24.58 •26.88 27.84 28.45 2.18 26.01 26.51 1.93 
24 19 5.00 2.53 0.95 -62.38 5.38 2.94 -45.45 6.91 6.17 -10.72 10.26 8.08 •21.25 11.99 11.82 •1.4S 17.62 14.93 •15.27 29.10 19.93 -31.53 2852 28.59 1.31 31.52 2851 •10.51 

Araa (km') 109.75 

Voiutiw o( Rainfall (ltlm-l(m'^r) 1382.30 1458.02 5.48 2021.17 1627.10 -19.50 1818.40 1998.58 9.91 2075.02 1908.83 •8.01 1798.56 2110.50 17.34 1891.69 1832.00 •3.16 2129.86 1843.07 -13.47 1544.45 1655.38 7.18 133152 1435.98 7.87 
1 1 

Root Maan Squara Error 1.79 3.95 1.80 2.13 3.20 1.95 4.66 1.49 1.88 1 
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APPENDIX G 
Forecast of Spatial Distribution of Subcatchment Rainfall 

ArWicUlEvwitNa.lSO 1 
1 

Su6- No.a( Atm Tkmttapl Tlm*««p Thiwat«p4 TkmXip Tim* «tip 6 Ttonerttp Tim* dtp T1m«ttap9 TlmeMap 10 
:^tcl¥iMn M Actuid %«Tor Adml %«n>r ACUMI PradlcM *»ITOf M u d PradlcM %Mrar Adinl PradicM %«Tor AeliMl PradUad %«ier Actual Pradiettd %«TDr Aduiy Pradlctad %im Aduil PndldMl Actual Pradletad %WTer 

No. 

(tie.) (tan*) (iraMti) (mnlhit (*) (mm/hi) (mmAii) {*) (mMir) (mmffif) (nrnAii) (mm/hi) (%) (mmlhft (nin/hi) (*) (mn/hf) JmnVhi]^ (*) (mm/hi) (irvnAii) {*) (nwMirt (fwMii) (*) (mm/hr) (mm/hr) (*) (mmAii) (inMir) (*) 

1 27 «.7S 6.71 11.10 »457 7M 2.64 •6627 8/43 7 M •8.88 723 8.17 -14.69 1 1 « 6.48 •62.61 12X15 10.19 -15.47 1348 10.18 •26.71 10.71 1044 •1.65 744 9.74 32.72 5.11 846 6949 
2 35 B.7S 6.C7 6.00 •1141 8.48 4 J 8 •48.37 10.63 7.74 -27i1 10.73 10.21 •4.88 19.19 1120 •41.62 2141 1943 -10.56 2848 1946 •28.53 22.58 1943 •14.40 1649 1625 -3.83 12.77 13.12 2.74 

28 7 M 3.10 OJO •tOJO SJS 4J»4 •11.67 8.01 4 J 9 -4267 9 M 10.36 4.73 20.62 1333 •34.38 25.94 22/44 -13.49 35.14 2429 -30.87 33.17 26.03 •21.52 2742 2243 -17.79 2240 18.18 -20.26 
M » M S.27 20j80 149.06 9.98 SJB •46.68 9.04 11.22 24.14 6 M 6 J 3 4 J 7 8JB8 4 M -44.02 747 641 -13.83 746 548 -27.17 6.19 622 0.49 345 649 7640 149 6.14 22428 
14 3 J 0 12.32 17.91 45 J 6 16.60 BM •43J3 16.66 14.98 •4.43 12J6 13.31 5.14 17.61 11J88 •32.62 15.77 18/49 447 15.98 1347 -18.08 1122 1147 •144 6.73 849 29.12 441 7.99 8525 
23 S.7S 7 M 2sr -6241 11.41 BJO •27.20 14M 10J» •31.08 15.79 16.63 527 2729 1920 -29.87 28.78 28.12 •241 3346 25.90 -22.81 27.72 24/19 -11.67 1944 1847 -4.95 14.42 1349 •5.76 
13 3.2S UJO? 13/«S -4.24 18.42 11.33 -38.48 19.90 16.54 •16J9 17J7 1827 6.16 24.72 17.98 -2729 2245 24.18 947 2222 18.96 •14.70 1544 16.58 •1.61 9/46 1047 14.96 6.11 841 4042 
23 6.7S 16.43 28.72 7 4 « 18.11 12/47 •31.14 16.18 18.17 19.73 10.24 12J64 22.41 11.66 9.36 -19.04 842 946 943 729 5.76 -21.14 448 347 -11.72 2.18 344 6242 121 523 330.68 
1» 4.7S 2.68 0.19 -9264 4.43 6.83 31J8S 7.39 3.66 -60.43 10.12 11.18 10.41 20.62 16.86 •23.11 2449 2229 -7.48 30.89 24.48 -2040 2849 28A3 -8.93 2244 2220 -0.64 1827 15.94 •1274 
e t i n 4.19 OJM •100.00 6M 7.20 4£7 1057 6.93 •43.87 1324 14X0 8.74 26J64 18.97 -26.74 2846 27.12 •6.01 35.84 2745 -22.41 31.76 28.02 •11.75 2345 2247 -4.96 18.73 16.18 -13.56 
23 S.7B 20.M 21.62 2.77 24.66 16J6 -36.41 23.28 20.96 •10.00 17.90 2 0 M 11.98 21.53 18.18 •15.53 1843 20.68 2644 1446 1342 •3.68 947 942 449 447 5.99 2825 2.72 547 104.77 
17 4.2S »J3» 1.60 •84.03 13.66 11.11 •18.68 17JB6 11.72 •34J8 19.11 20.44 6.94 30 J 4 23.95 •22.34 2948 3125 647 31.97 27/44 -14.17 26.11 2446 •222 1627 17.10 5.08 11.46 10.93 -4.63 
8 2X10 5A7 OM -100.00 BM 8.20 2 i 4 12.01 6.81 -43.26 14.74 16M 7AT 28.43 20.58 -2216 27.44 2748 •029 3146 26.73 -15.31 28.68 26.05 •248 1847 19.96 7/46 1341 12.91 -7.20 
14 3.60 14.78 7.92 -46J9 19.72 13JB2 •29.91 22.68 18.91 -25.47 21.24 22.71 8.90 30/41 24.09 -20.77 2643 3028 14.15 2828 23.78 •9.60 1843 19.14 144 1147 1222 10.45 7.19 849 1241 
10 2 M 8.06 0.28 -96.62 11.79 10.73 -9.02 16.14 10.04 •37.81 18.18 19/44 7J04 29.00 23M •18.49 28.96 29.12 8.03 2823 2543 -8.60 22.02 23.07 4.79 1346 1647 1440 9.69 9.13 •5.76 
4 1 M 1»J7 12.96 -33.14 24.23 IBM -31.91 2 S M 20.20 -21.33 22.14 24M 8.72 2S«7 2425 -16.41 22.73 28.43 26.03 20.73 2040 -205 13.78 14.73 846 748 848 1620 4/46 545 3046 
12 3 M 28.81 2BM •0.80 28.70 20.02 •30.27 24.62 23 J 8 -4.74 17M 20.69 20.94 17.48 17:68 1.19 1129 1648 4641 844 923 845 448 4.95 1.93 2.14 2.68 25.17 1.12 3.46 208.09 
12 3 M 2.83 OM •98.82 4.61 6.66 20.48 7J1 3.96 -47.41 10.12 11.06 922 18/45 16JS -16.80 1844 19.11 1/44 2149 2048 •6.23 1849 2049 1047 12.70 15.97 2548 946 9.19 •4.89 
17 4.2S I I M 2.18 -81.70 16.97 13J8 •18.23 19.76 13.61 -31.65 20.14 21.77 8J09 27.92 24.71 -11.49 2249 2748 2246 21.04 21.49 2.18 1441 1642 1345 820 9.89 18.18 524 443 •13.53 

20 1« 4.60 26.71 1 8 M -27.49 29.00 20.27 •30.12 27/43 22M -18.67 21.23 2426 1423 23/45 23.08 -1.67 16.93 2328 46.11 12.77 1447 1245 743 842 12.96 347 4.13 1649 1.98 3.12 5741 
21 ia 4M 18.14 6.88 •84.92 2 0 ^ 16.91 •2^26 23.29 16J8 •27.62 21J1 23.76 8.93 27J7 25.61 •8.13 2145 2741 31.16 18/47 1943 747 1224 14.13 15.46 843 742 1641 343 348 •11.72 
22 31 7.76 8 j a 0.43 -93J1 9.12 8 M •2.92 12.62 8.10 -36.82 14.62 16.78 8 M 22.14 19.44 -1217 192S 2248 1442 19.10 1949 141 1442 16.99 1745 849 1120 28.97 5.96 529 -11.14 
23 11 2.76 21.78 11«> -45.77 28J02 18.78 • 2 7 « 26.96 20.72 -23.15 22.90 26J34 10«6 27.14 26;67 •6.42 1947 2745 3946 16.16 1841 11/43 10.11 11.76 16.13 4.94 5.70 15/46 244 3.13 10.12 
24 1» S M 18M 8X)0 •66.76 21J06 16.96 •19.64 22.11 17.26 •21.99 itja 22il7 14.77 21^3 22J1 6.93 1345 21.42 6444 1048 1340 2446 649 742 2224 248 2.90 0.72 149 0.79 -60.72 

itiMflan': 108.7S 

V o h m <K M n M (mnHm'/M) 1219.35 1041J2 -14.80 1646.13 1109.18 •28.16 1700.68 1361.02 •19.97 1577.11 1705.00 8.11 2295/45 1814J3 -20.94 210222 2272.00 8.08 223447 191947 -14.10 1748.90 169140 •341 1171.71 12E045 6.75 85123 92147 821 

1 1 
Reel MMH Saura Error I 6.93 6.14 4.44 1.72 4.99 3.99 443 223 140 226 
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