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Abstract: El Niño—Southern Oscillation (ENSO) is regarded as the main driver of 

phytoplankton inter-annual variability. Remotely sensed surface chlorophyll-a (Chl-a), has 

made it possible to examine phytoplankton variability at a resolution and scale that allows 

for the investigation of climate signals such as ENSO. We provide empirical evidence of 

an immediate and lagged influence of ENSO on SeaWiFS and MODIS-Aqua derived 

global Chl-a concentrations. We use 13 years of Chl-a remotely sensed observations along 

with sea surface temperature (SST) observations across the Tropical and South Pacific to 

isolate and examine the spatial development of Chl-a anomalies during ENSO: its 

canonical or eastern Pacific (EP) mode, and El Niño Modoki or central Pacific (CP) mode, 

using the extended empirical orthogonal function (EEOF) technique. We describe how an 

EP ENSO phase transition affects Chl-a, and identify an interannual CP mode of variability 

induced spatial pattern. We argue that when ENSO is analysed as a propagating signal by 

the EEOF, CP ENSO is found to be more influential on Chl-a interannual to decadal 

variability than the canonical EP ENSO. Our results cannot confirm the independence of 

the two ENSO modes but clearly demonstrate that both ENSO flavors manifest a distinct 
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biological response. 

Keywords: Chl-a; phytoplankton; ENSO; CP ENSO; EP ENSO; Modoki; El Niño;  

La Niña; primary productivity; SeaWiFS; MODIS 

 

1. Introduction 

Prior to satellite observations, our understanding of changes in global phytoplankton was relatively 

poor. Since the advent of satellite remote sensing of surface chlorophyll-a (Chl-a) concentrations in the 

late 1970s, it has been possible to estimate surface phytoplankton biomass at near global scales. 

Remote sensing tools have proven to overcome the greatest limitations that classical observational 

methods suffer by providing global coverage and a continuous temporal sampling rate. Sensors such as 

the recently terminated SeaWiFS and the on-going MODIS-Aqua are passive ocean color instruments 

that measure surface water radiance that can be converted into near-surface Chl-a concentrations. Due 

to the presence of this pigment in all phytoplankton organisms, Chl-a is commonly used as a 

phytoplankton biomass indicator throughout the water column though the relationship between surface 

Chl-a and the biomass is indirect and non-linear [1]. The one to two day revisit cycle of the ocean 

color sensors on board these polar orbiting satellite platforms is ideal for large-scale quantitative 

studies of the spatial and temporal ocean productivity rates, and its relationship with climate modes  

of variability.  

At the interannual scale, El Niño—Southern Oscillation (ENSO) is not only the dominant global 

mode of climate variability, but also the determining mode in global ocean productivity [2,3]. As a 

natural mode of the climate system, ENSO represents the quasi-periodic oscillation that exists due to 

the “internal” coupling of the atmosphere and ocean on year-to-year time scales. However, recent 

ENSO discussions have focused on the differences between two El Niño types, the classic canonical 

(eastern Pacific) El Niño and the central Pacific (CP) El Niño (also known as El Niño “Modoki”) that 

has been observed more frequently over the past few decades (e.g., [4]). The eastern Pacific (EP) 

ENSO mode is commonly described in terms of a basin-wide coupling of the ocean and atmosphere 

across the tropical Pacific that manifests itself as a quasi-periodic variability of the climate system on a 

time scale of 2–8 years [5]. In the neutral “phase” of ENSO (i.e., neither El Niño nor La Niña 

conditions), the climatic conditions are characterized by high sea level pressure (SLP) over the  

central-eastern subtropical Pacific, with strong trade winds pushing the surface waters westward into 

the Western Pacific Warm Pool (WPWP) [6]. This statistically averaged state of the tropical Pacific 

climate provides deeper cooler waters to upwell along the eastern and equatorial boundaries creating a 

cold tongue that extends from the east to central Tropical Pacific. One effect of this cold tongue is to 

enrich the phytoplankton response around the equator as the upwelling brings nutrient rich waters into 

the euphotic zone where it is consumed by these organisms [7]. For the composite EP El Niño phase, 

SLP in the central-eastern subtropical Pacific tends to be reduced, the trade winds are weaker, and the 

central-eastern equatorial Pacific is anomalously warm and nutrient-depleted due to the reduction in 

upwelling. EP El Niño events tend to concomitantly show an anomalous decrease of phytoplankton in 

the Tropical Pacific [8], except in the WPWP region, where the deep nutrient rich waters have a 
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greater chance to surface due to a shoaling thermocline [9]. Conversely the La Niña phase of EP 

ENSO, which is associated with an enhancement of the trade winds, leads to an anomalous increase of 

phytoplankton in the central-eastern equatorial Pacific.  

The CP El Niño [10]—otherwise known as El Niño “Modoki”—differs from the canonical El Niño 

in that it is characterized by a SST anomaly at the eastern edge of the WPWP, flanked zonally by two 

opposite signed anomalies [11]. It is thought that CP El Niño events are excited by anomalous westerly 

winds in the western Pacific, which push the warm surface layer waters from the off-equatorial 

western Pacific towards the equator, driving a downwelling equatorial Kelvin wave, which induces a 

deepening of the thermocline from the central to the eastern Pacific [11]. This is followed by easterly 

wind anomalies in the eastern Pacific creating convergence in the central Pacific, further deepening the 

central Pacific thermocline. Thus the SST warming in the central Pacific is further strengthened by 

downwelling equatorial Kelvin waves from the west, and Rossby waves from the east [11]. CP El Niño 

displays a strong decadal periodicity [11,12], and has increased in intensity in recent decades, unlike 

EP El Niño [13]. Recent works reveal that CP El Niño events induce low values of remotely sensed 

phytoplankton indicators in the eastern part of the WPWP [14–16] while the examination of the 

strongest CP and EP El Niños to date (i.e., 1997–1998 EP El Niño and 2009–2010 CP El Niño) 

suggests that horizontal processes (e.g., intrusion of nutrient-deficient warm pool waters) dominate 

during a CP event while vertical processes (e.g., nutricline suppression) and mixing play a larger role 

in an EP event [17]. 

These two ENSO mechanisms have been identified as the leading global Chl-a drivers at interannual 

time-scales in the past decade using the Empirical Orthogonal Functions (EOF) technique [3,14]. 

EOF analysis is a commonly used technique in climate and earth sciences, often used to isolate the 

leading modes of variability in the geo-data that typically relate to forcing climatic mechanisms and 

processes [18]. However, EOFs do not take into account propagating features [18]. This limitation has 

the potential to underestimate the importance of the driving mechanisms being examined. Here, we use 

a variant of this technique, the extended EOF (EEOF) that provides a dynamical expression of the 

traditional EOF.  

In this paper, we aim to describe and interpret the Tropical and South Pacific Chl-a patterns in the 

context of the dominant and dynamical interannual modes of Pacific and near-global climate 

variability—specifically the EP and CP ENSO modes. We characterize the variability associated with 

ENSO changes throughout the South Pacific and the Tropics. Further, we describe and illustrate how 

an ENSO transition affects Chl-a. Finally, we discuss decadal-scale changes in Chl-a concentrations in 

the context of recent increases in CP El Niño frequency—a mode with a clear and strong decadal peak. 

We demonstrate that at least since the late 1990s, the Chl-a signal has been more connected with the 

CP El Niño structure than with the classical EP ENSO mode—consistent with the increased frequency 

and intensity of the CP mode over the past 30 years [4,13,16]. 

2. Data 

The primary data investigated in this study are satellite remote sensed Chl-a estimates.  

These data were retrieved from the Oregon State University Ocean Productivity website [19] originally 

collected by NASA [20] and are a combination of r2009.1 SeaWiFS and MODIS-Aqua satellite Chl-a 
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products. The dataset comprises of monthly-averaged matrices (maps) of 1080 × 2160 pixels, resolved 

at 1/6° per pixel, increasing polewards in km resolution at a rate of cosine (latitude). Ocean color data 

here are only available to 45° latitude, as the lack of sunlight during wintertime limits the remotely 

sensed observations further poleward. The Chl-a observations were derived from SeaWiFS for the 

period October 1997–December 2007 after which there were significant gaps in the SeaWiFS dataset. 

Consequently MODIS-Aqua data were used from January 2008–October 2010. Chl-a observations 

from the two missions compare very well with correlations of r2 > 0.8 while the bias and  

root-mean-square deviation (RMSD) are within acceptable values (e.g., [21]) allowing for such a 

merger with minimal artifacts. Additionally, we have compared the SeaWiFS and MODIS-Aqua Chl-a 

data between July 2002 and December 2007, when there is overlap between the two missions and full 

coverage for the spatial domain of this study (Figure 1). We found a strong (r2 = 0.93) and significant 

(p << 0.01) correlation between the two datasets with a low RMSD = 0.10 and standard deviation 

(STD) < 0.001. Hence, we are confident that our merged Chl-a data set is free of any significant 

artifacts and that the results of the analysis are not affected by the data transition.  

Figure 1. Comparison of SeaWiFS and MODIS-Aqua Chl-a monthly data from  

July 2002–December 2007, 20°N to 45°S, 140°E to 210°E.  

 

The phases of the EP ENSO are characterized by several available indices derived from several 

geophysical variables. For the present study, we selected the Multivariate ENSO Index (MEI) since it 

is the most comprehensive index for basin-scale climate investigations of ENSO. It takes into account 

six observed atmosphere and ocean physical variables across the tropical Pacific: sea level pressure, 

zonal and meridional surface wind components, sea surface temperature, surface air temperature and 

total cloudiness fraction of the sky [22–24]. MEI data were obtained from the US National Oceanic 

and Atmospheric Administration [25]. 

The CP (or Modoki) El Niño has only recently been identified as a distinct climatic  

phenomenon [10,11]. Consequently, there are fewer simple metrics available to diagnose  

and/or monitor CP ENSO changes. Here we have adopted the Improved El Niño Modoki Index  

(IEMI) developed by [26], which we calculated using the UK Met Office Hadley Centre SST 

(HadISST) dataset [27]. We also use the same dataset for the additional SST analysis outlined in the 

following section.  
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3. Methods 

Before delving into the methodology, we first provide here a justification for the extent of the study 

domain and choice of analysis by providing some general statistical comparisons of the MEI and Chl-a 

data (first described in [28]). Figure 2 shows the spatial distribution of statistical significance, 

correlation coefficient and the time lag of the best correlation coefficient, between the MEI and Chl-a 

time series from 45°N to 45°S. It can be readily seen here that ENSO (represented by the MEI) has  

a more significant influence on Chl-a concentrations over the Pacific than in other ocean basins  

(Figure 2a). Furthermore, significant relationships are found to exist not only in the tropical region of 

the Pacific but further poleward to 35°N and 45°S. These extra-tropical regions also display high 

correlation coefficients, albeit with an inverse relationship to that observed throughout the Tropical 

Pacific, with the exception of the Western Pacific where a positive correlation coefficient is observed 

(Figure 2b). Direct and highly significant relationships are also found in the subtropical regions while 

the mid-latitudes of the South Pacific also stand out with a consistently positive relationship. This is in 

stark contrast to the northern hemisphere equivalent latitudes where correlation coefficients change 

sign. Most interesting of these results is that while all observed Chl-a regions track well with the MEI, 

they display different timing with respect to a best fit with the ENSO signal (Figure 2c). The results 

indicate that the ENSO index is significantly coupled and synchronous with Chl-a patterns that occur 

off the equatorial belt (shaded in black in Figure 2c) but lagged with the patterns at the equator (shaded 

in red in same figure). It is also noteworthy that Chl-a variability over the Equatorial Pacific and also 

at the west coast of Java and Sumatra in the Indian basin (with either a direct or inverse relationship to 

the MEI) has a positive (leading) best fit to the MEI, and in some regions at three or more months 

earlier. This best fit is delayed towards the poles.  

Based on our focus on ENSO signals, and the above results, we selected the tropical and South 

Pacific basin-wide area extending meridionally from 20°N to 45°S, zonally from 140°E to 70°W, and 

coarsened to a 1° grid-scale. The aim of this paper is to study the ENSO related Chl-a propagating 

patterns in the South Pacific. Hence, we have included both the South Pacific and the Tropical Pacific 

regions within the study area. The North Pacific to 20° N is included in our analysis in order to ensure 

that tropical processes are captured including near-equatorial wave dynamics; however our primary 

focus is the Chl-a variability in the South Pacific. Slow moving mid-latitude Rossby waves are known 

to play an important role in ENSO dynamics and setting the timing of lagged relationships [29].  

We therefore included much of the mid-latitude South Pacific in our domain as we hypothesize that 

ENSO related Chl-a variability will be found well outside of the tropical region. Also excluding the 

mid-latitudes of the North Pacific provides the advantage of faster computation without compromising 

the study domain of interest. Chl-a anomalies (Chl-aA) were calculated by removing the log-normal 

monthly average at each pixel. That is, we calculate the monthly mean using log values, convert back 

to normal distribution, and then remove this value from the original monthly data. All data were also 

de-trended in time, using linear regression. The power spectra for both climate indices (MEI and IEMI) 

were calculated for the same period as the Chl-a record to determine the periodicity of the ENSO 

signals. Peaks with maximum power above the mean red noise spectrum, and at the 95% confidence 

levels [4], corresponded to 28- and 128-month periodicities for the MEI and IEMI respectively  

(Figure 3a,b). These power spectra maxima indicate the dominant propagating frequencies in the 
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ENSO signal which were taken as the relevant lag (L) periods for an EEOF analysis of Chl-aA to 

explore whether its propagating variability is well explained by these periodicities. This analysis is 

described below. 

Figure 2. (a) Significance (p-value) of the probability that the Multivariate  

El Niño—Southern Oscillation Index (MEI) has the same distribution as the Chl-a time 

series calculated, with reduced number of intervals. Green values are between 0.01 and 0.1; 

(b) Correlation coefficient (r) when testing the relationship between the MEI and Chl-a 

time series; (c) Time lag (months) of best correlation coefficient (r) between the MEI and 

Chl time series. Positive values mean that Chl-a leads.  

 

The standard EOF analysis is a commonly used technique in geophysical research since it can 

summarize large datasets in space and time into only a few distinct modes that may be linked to 

important mechanisms [30]. A limitation of EOF analysis is that it is unable to account for leads and 

lags in propagating features, which may be incorrectly identified as two (or more) modes in 

quadrature, when in fact they are simply part of a single dynamically propagating process [30]. 

Because the technique yields a standing wave-like pattern, propagating signals are often isolated into 

different modes with a similar temporal series. Figure 2 and further analysis by [28] demonstrate that 

propagations and lags exist between ENSO and Chl-a variability and provides the motivation for 

utilizing a methodology which accounts for this. 
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Figure 3. Variance-preserving spectra of Multivariate El Niño—Southern Oscillation 

Index (a) and Improved El Niño Modoki Index (IEMI) (b) with power spectra density 

(grey line), red noise spectra (solid black line), and 95% confidence line (dashed black 

line). The power spectra density (PSD) is normalized by the frequency (f) as indicated on 

the y-axis. Periodicity (months) of major peaks is also indicated. These maxima are 

significant against the background red noise and at the 95% confidence level. 

(a) (b) 

The extended EOF technique takes account of lag sequences in the time series, and hence 

propagation within individual modes—by truncating the data into several subsets of predefined time 

lengths (also known as “lag-sequence lengths”) and concatenating these prior to applying the EOF 

analysis. Prior to calculating the anomaly values and reshaping the data into space × time, a time lag 

(L) is predefined. L represents the cycle of the period of events that the analysis will focus on. Then 

the matrix is rearranged and concatenated into the following form: 

F =

F1 1( ) F1 2( )  F1 N − L( )
F2 1( ) F2 2( )  F2 N − L( )
   
FM 1( ) FM 2( )  FM N − L( )
F1 2( ) F1 3( )  F1 N − L +1( )
F2 2( ) F2 3( )  F2 N − L +1( )
   
FM 2( ) FM 3( )  FM N − L +1( )
   
   
F1 L +1( ) F1 L + 2( )  F1 N( )
F2 L +1( ) F2 L + 2( )  F2 N( )
   
FM L +1( ) FM L + 2( )  FM N( )























































 

Data matrix F, which consists of a time series of geographical locations, has dimensions  

[M × (L + 1)] × (N − L) where M represents locations, and N time increments. The EOF is then 

computed as per usual. For a comprehensive explanation of the EOF or EEOF technique, the reader is 
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referred to [18]. Example applications of the technique are also provided by [31–33]. We use the 

monthly data directly as our time increment for the analysis. The EEOF analysis was then applied 

using two predefined lag-sequence lengths. These are: lag-sequence length L = 28 months, based on 

the frequency of maximum power (above red noise) in the MEI that characterizes the EP ENSO 

(Figure 3a); and L = 128 months, corresponding to the maximum power in the IEMI (Figure 3b). Each 

EEOF analysis is independent of the other, i.e., the modes yielded by the L28 analysis explain all of 

the variability in the data, as do the modes produced by the L128 analysis. The sum of all the modes in 

each analysis adds up to 100% with the first mode explaining the most variance and then less for each 

subsequent mode thereafter. However, not all modes describe large, coherent structures and generally 

most of the secondary modes will contain random, stochastic variability explaining a very small 

percentage (e.g., 1%–2%) of the variance. The aim of an EOF analysis is to utilize only a small 

(physically meaningful) number of modes, which should explain most of the variance and discard the 

rest. Because Chl-a variability is strongly dominated by the seasonal cycle and higher frequencies,  

the individual modes here, even the leading ones, are not expected to explain a large amount of 

variability (<<20%). In other words, the variance at these timescales makes a much smaller 

contribution to the total Chl-a variability in the region. The large study area is also likely to contribute 

to the lower variance in each mode, as smaller scale variability cannot account for the variance in the 

greater spatial domain.  

The EEOF component time series or Principal Components (PCs) and the two ENSO-type climate 

indices were then comparatively tested for any statistical relationships. Significances of the 

correlations were determined against the effective number of degrees of freedom according to [34], 

taking into account the autocorrelation in the time series which provides a more conservative but also 

more robust result. Finally, the Chl-aA PCs were projected onto SST anomaly (SSTA) fields for the 

same spatial and temporal domain as the Chl-a, with the aim of characterizing the climate that couples 

these variables. SSTA is also computed by removing the monthly climatology. The SST data are then 

concatenated in the same manner as the Chl-a data prior to the EOF analysis, as dictated by the 

assigned lag. Projecting the PCs onto the concatenated SSTA data yields SST spatial variability maps 

that complement the Chl-aA modes for each respective EEOF analysis. Since no information regarding 

ENSO is directly added to this analysis, where the SSTA patterns derived from the Chl-aA PCs 

resemble ENSO phases provides strong evidence for a connection between Chl-a variability and 

ENSO. Furthermore, we also compare the correlation with the climate indices and examine the total 

percentage of variance explained by the first 10 modes in each analysis to determine which ENSO type 

each analysis relates to, if any.  

4. Results 

4.1. The Extended Empirical Orthogonal Function (EEOF) L = 28 Month 

For the L = 28-month lag-sequence (L28) EEOF analysis, the first 10 modes explain about 30% of 

the total Chl-aA variance, with the two leading modes (EEOF1 = 7%, and EEOF2 = 5%) being 

independent [35] (Figure 4). Although this specific lag was chosen to target Chl-a variability related to 

EP ENSO, the leading mode significantly relates to CP ENSO variability, and EEOF2 to EP ENSO. 



Remote Sens. 2013, 5 4075 
 

The EEOF1 time series (PC1) correlates significantly (r2 = 0.40, p < 0.01) with the IEMI (Figure 5a). 

The r2 increases to 0.73 (p < 0.01) when compared to a 28 month smoothed index, and to r2 = 0.96  

(p < 0.01) if PC1 is lagged +9 months when compared to the smoothed IEMI. The correlation between 

PC1 and the EP ENSO was negligible. In contrast, PC2 is weakly, but not significantly, correlated with 

the MEI (r2 = 0.26, p = 0.94). This increases to r2 = 0.77 (p = 0.19) when compared to a 28 month 

smoothed MEI time series. Note also, that these two time-series are out of phase (MEI leading PC1) by 

27 months (Figure 5b) and this is accounted for in the correlation. All results take into account serial 

correlations according to [34].  

Figure 4. Variance and cumulative variance explained by the first 10 extended empirical 

orthogonal functions (EEOFs) (L = 28). The error bars test modal independency—if these 

do not overlay any other mode error bars, the mode is considered significantly independent 

from others. 

 

Figure 5. (a) The Improved El Niño Modoki Index monthly time series (thin black) and 

Principal Components 1 (PC1) (grey) time series and (b) the Multivariate  

El Niño—Southern Oscillation Index monthly time series (thin black) and Principal 

Components 2 (PC2) (grey) time series, both from the EEOF analysis of Chl-aA at L = 28 

months. PC1 and PC2 lines are inverted for ease of comparison. The bold black line in 

each figure is the respective ENSO index smoothed at 28 months. All values are normalized. 

(a) (b) 
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One should take caution when interpreting values of the cross correlation, since it possibly results 

from differences inherent to the nature of both time series. For example, the IEMI is the product of  

the average of three distinct areas across the Tropical Pacific, which does not necessarily take  

into account any existing propagation across the basin, while PC1 describes the amplitude of a 

propagating Chl-a pattern throughout the study region. This discrepancy between the two variables 

being correlated may partially explain why correlations are optimized at a lag. In addition, IEMI as an 

SST index, instantaneously reflects climate variability, while chlorophyll is also dependent on other 

physical variables which vary at a different rate from SST. Finally, the smooth nature of the PC time 

series from the EEOF as well as the removal of autocorrelations through [34] both act to decrease 

degrees of freedom and consequently raise p-values, providing a highly conservative estimate of 

statistical significance. 

Figure 6. Chl-aA amplitudes from extended empirical orthogonal function (EEOF)-1  

(L = 28) spatial lag-sequence overlaid with projected sea surface temperature anomaly 

(SSTA) contours in steps of 3. Units are non-dimensional [18]. Positive SSTA values are 

solid and negative values are dashed, while the zero line is bold. Months displayed are 1, 5, 

9, 13, 16, 20 and 28, respectively. Panels are plotted on a Lambert projection. 
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Figure 6 illustrates the Chl-aA amplitudes from L28 EEOF1. At the basin scale, the most salient 

features consist of large positive amplitudes in Chl-aA in the western tropical and southern  

extra-tropics, flanked by weaker negative amplitudes in the WPWP region, eastern equatorial and 

South Pacific mid-latitudes. There is no discernible equatorial productive region analogous to a SST 

“cold tongue”. In month 1, large positive Chl-aA amplitudes are observed at the eastern edge of the 

WPWP which extend eastward through the sequence, then start to dissipate from around month 20. 

Concurrently, small positive Chl-a amplitudes in the central South Pacific (160°W–100°W) are seen in 

month 1 that intensify through the 28 month sequence. While this feature mainly remains in the same 

region throughout the cycle, there is a weak westward extension of the feature over time, which joins 

with the equatorial anomaly and then dissipates with it. The contour lines in the figure denote  

the SSTA amplitudes when Chl-aA PC1 is projected onto the SSTA field. It can be readily seen that 

Chl-aA and SSTA are generally anti-correlated, as might be expected. Negative SSTA amplitudes in 

the central Pacific, are bounded by positive Chl-aA amplitudes in the WPWP, southwest Pacific and 

eastern Pacific. The positive SSTA amplitudes in the western Pacific appear to be more stable than in 

the eastern Pacific—where the region of positive amplitudes contract from month 5 and then expand 

again between months 20 and 28. However, the anti-correlation between the two variables is not 

consistent across the entire study domain. For all the timesteps except month 28, in the tropical Pacific, 

SST anomalies are mostly negative across the Tropical Pacific (between 170°E and 90°W). Conversely, 

positive anomalies of Chl-aA are more localized in this area and follow a chevron shape with weakly 

negative anomalies east of 150°W –160°W of the tropical Pacific. Sometimes, strongly negative SST 

anomalies coincides with strongly negative Chl-aA such as at the front of the chevron while positive 

Chl-aA anomalies are found within regions of negative SST anomalies such as in month 28. 

The L28 EEOF2 Chl-aA spatial pattern sequence is shown in Figure 7. Here, the Chl-aA amplitudes 

are largely negative in the central and eastern Tropical Pacific and positive in the WPWP region and 

across the South Pacific in the first month of the cycle. From month 1 to 9, positive amplitudes 

develop along the equator, while the negative amplitudes persist in the Tropics off the equator. From 

months 9 to 16, a strong positive Chl-aA pattern develops in the western-central equatorial Pacific 

(~170°E), while negative Chl-aA amplitudes along the southern tropical region persist until the final 

month. From months 16 to 28, the positive Chl-aA pattern in the western-central equatorial Pacific 

strengthens further and propagates slowly westward in the last six months of the lag sequence. 

Projecting PC2 onto the SSTA field yields a similar spatial pattern to Chl-aA, albeit with the sign 

reversed (Figure 7) implying an anti-correlated relationship between the two variables. The sequence 

commences with positive SSTA values in the central-eastern equatorial Pacific (between ~15°N and 

~15°S), while negative SSTAs exist in the subtropical gyre centre, WPWP, and Tasman Sea regions. 

At the equator, the warm waters cool from the west, eventually reaching the eastern tropical Pacific  

(in month 11). Meanwhile, a negative anomaly pattern starts to develop in the central equatorial Pacific 

from month 9 until month 13 of the 28-month sequence, with the lowest minimum values of SSTA, 

found in the 22–28 month period, slowly propagating westward. This sequence ends with negative 

SSTAs, flanked by warm anomalies in the northern corner of the Western Tropical Pacific (which 

developed in month 13), in the central extra-tropical South Pacific (which developed from month 16), 

and in the eastern tropical and southeast Pacific (which developed northwards from the southeast from 

month 20). 
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Figure 7. Chl-aA amplitudes from extended empirical orthogonal function (EEOF)-2  

(L = 28) spatial lag-sequence overlaid with projected SSTA contours in steps of 3. Units 

are non-dimensional [18]. Positive sea surface temperature anomaly values are solid and 

negative values are dashed, while the zero line is bold. Months displayed are 1, 5, 9, 13, 16, 

20 and 28, respectively. Panels are plotted on a Lambert projection. 

 

4.2. The Extended Empirical Orthogonal Function (EEOF) L = 128 Month 

In the L128 EEOF analysis, the 10 leading low frequency modes explain twice as much of the 

interannual Chl-aA variance (~60%) (Figure 8) compared to the corresponding 10 high frequency 

EEOFs from the L = 28-month analysis. EEOF1 explains 13% of the total decadal Chl-aA variance 

and is significantly correlated with the IEMI (r2 = 0.36, p < 0.01) but not to the MEI (r2 = 0.01,  

p = 0.27). We note, however, that the leading modes are degenerate, as defined by [35], since the 

eigenvalue errors overlap (Figure 8). This means that mode 1 is not formally independent from  

mode 2. This is a consequence of the limited length dataset with respect to the low frequency timescale 

being investigated, as only one cycle is resolved. However, since both mechanisms, EP and CP ENSO, 

have a strong decadal component, it is worth reporting that the Chl-a signal also approaches this time 

scale as suggested by the EEOF L128 analysis though a longer dataset is required to adequately 
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resolve this. Further, PC1 is very smooth compared with the IEMI (Figure 9). This is due to the fact 

that the EEOF time series represents the 128-month lag-sequence evolution based on several month 

steps (30) across the complete Chl-a record (n = 157). For consistency with Figure 5, the 128-month 

smoothed IEMI index is also provided for comparison.  

Figure 8. Variance and cumulative variance explained by the 10 leading extended 

empirical orthogonal functions (EEOFs) (L = 128 months). EEOF1, which is highly 

significantly correlated with the Improved El Niño Modoki Index (IEMI), explains 13% of 

the interannual Chl-aA variance. The error bars were calculated according to [35]. We note 

that there is mode degeneracy according to this test.  

 

Figure 9. The Improved El Niño Modoki Index (IEMI) time series (thin black) and 

Principal Components 1 (PC1) time series (grey) for the L = 128 months extended 

empirical orthogonal function (EEOF) analysis. The bold black line is the IEMI smoothed 

at 128 months. All values are normalized.  

 

Selected months from the L128 EEOF1 Chl-aA spatial pattern lag sequence are illustrated in  

Figure 10. The sequence is characterized by high variability within the tropical Pacific region, and is 

strongest in the western and southern parts. In month 1, the eastern tropical Pacific comprises of 

negative Chl-aA amplitudes. In the western equatorial Pacific, a pattern of positive Chl-aA amplitudes 
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is evident whereas across most of the South Pacific, there is a mixture of positive and negative 

amplitudes, being smaller than for the Tropics. Following month 1, the eastern tropical Pacific 

negative pattern disappears in the first couple of months, and the western tropical Pacific positive 

amplitude feature extends eastward. At the same time that the eastward positive Chl-aA signature 

reaches the eastern side of the basin, a positive Chl-aA signature also develops along the eastern 

Pacific boundary. From month 11 onwards, a pattern of positive amplitudes develops along this eastern 

boundary and extends westward in the extra-tropics, seemingly joining with the positive feature in the 

western Pacific (see month 13 in Figure 10). This branched pattern remains for 10 months, until the 

eastern tropical Pacific feature reaches its maximum positive amplitude. From month 24, in the 

western tropical Pacific, a negative Chl-aA pattern starts to develop around 170°E and just south of the 

equator, and intensifies until month 46. Then this negative Chl-aA pattern starts to extend eastward 

along the latitude 15°N during the following months. At this point in the sequence, the eastern tropical 

Pacific is characterized by a pattern of small positive Chl-aA amplitudes. From month 56 to 74, two 

negative Chl-aA quasi-elliptical “cells” are clearly observed—one centered in the western equatorial 

Pacific between 160°E and 170°E and extending northeastward, and the other centered in the central 

Pacific extending southeastward from just south of the equator. These patterns have changed sign by 

about month 110 (see month 115 in Figure 10). Interestingly, the southern Chl-aA pattern is clearly 

seen to propagate west-northwestward over the period of about 40 months, from around month 59 to 

month 104. 

Projection of L128 EEOF1 onto the SSTA field (contour lines in Figure 10) firstly indicates that the 

inverse relationship between Ch-aA and SSTA that was found in the L28 results is somewhat 

maintained here in the low frequency modes as well though not as consistently. Chl-aA amplitudes are 

also generally weaker than in the L28 results. The lag-sequence of maps shows the largest SSTA 

oscillating between the west-central and eastern tropical Pacific. The SSTA sequence commences with 

a cool anomaly in the central equatorial region, flanked by warmer SSTAs in the eastern Tropics, 

western flank of the South Pacific gyre, and northwest Pacific. As this cooling pattern intensifies and 

expands eastward along the equator, eventually connecting to the American continent (well visible by 

month 13 in Figure 10), a positive SST anomaly develops from the western subtropical South Pacific 

all the way to the southern Chilean coast from months 1 to 13 of the cycle. Both, the equatorial cooling 

pattern, and the sub-tropical warming pattern intensify until month 15. From month 15 the equatorial 

cooling pattern fades starting from the western region, and is gone by month 68. The subtropical 

warmth, however, starts to intensify on the southern east region of the South Pacific. Meanwhile by 

month 34, a positive SST anomaly in the western region of the equatorial meridian develops, 

resembling the inverse pattern of the initial month. By month 93, this has intensified and developed 

eastward along the equatorial line, and also connected with the east side of the basin. From month 96 

to month 104, a cool anomaly starts developing in the central equatorial Pacific, flanked by warmer 

signals in the east and west side. This cooler pattern intensifies until month 109, and propagates 

westward until the end of the cycle, month 128. Meanwhile the eastern equatorial anomalous warming 

intensifies and spreads westward. 
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Figure 10. Chl-aA amplitudes from the extended empirical orthogonal function (EEOF)-1 

(L = 128) spatial lag-sequence overlaid with projected sea surface temperature anomaly 

(SSTA) amplitude contours in steps of 3. Units are non-dimensional [18]. Positive values 

are solid and negative values are dashed, while the zero line is bold. Month number is 

indicated to the left of each plot. Panels are plotted on a Lambert projection. 
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5. Discussion 

5.1. El Niño—Southern Oscillation Quasi-Periodicity 

As we are testing the hypothesis that ENSO propagation drives interannual Chl-a variability, we 

used the spectral peaks from the two ENSO indices time series to set the time scale for the lag in our 

EEOF analysis. The dominant and significant spectral peaks of the MEI and the IEMI were found to be 

28 and 128 months respectively, for the period October 1997 to August 2010. While the literature 

typically shows that ENSO has a quasi-periodicity of between 2 and 8 years, it is not uncommon  

for spectral peaks to be in the range of around 3.5–4.5 yr for long time series (e.g., [5,36]). For  

the shorter record here (1997–2010), the dominant 2.3-yr period in the MEI demonstrates the  

relatively high frequency that has characterized ENSO in recent years. ENSO quasi-biennial cycles are 

often treated as noise [37]. “Noise” in the ENSO signal refers to higher frequency forcing and smaller 

time scale processes, such as Kelvin wave propagation, which can determine, for example, the 

initialization or termination of an ENSO event [37], and have enormous implications for phytoplankton 

populations [38]. Indeed a preliminary comparison of our EEOF analysis of Chl-a distribution to sea 

surface height anomalies (SSHA) (not shown) suggests that zonal phytoplankton communities react in 

different phases to the shoaling/deepening of the thermocline. We caveat here that our study period 

commences with the very large 1997/98 El Niño event, and its phase transition, which contributes to 

the shorter 28-month (2.3-yr) ENSO period. Secondary spectral peaks were also found in the MEI at 

the 36, 51 and 85-month periodicity (7.1 yr)—but only the 36 month peak was significant against the 

background red noise and at the 95% confidence level. A more comprehensive comparison of SSHA 

and the secondary peaks in the Chl-a power spectra is warranted.  

5.2. Chl-aA Signature Propagation Induced by El Niño Flavors 

Our results confirm that much of the interannual to decadal Chl-aA variance can be (statistically 

significantly) explained by ENSO propagation and twice as much (~60%) in the first 10 low frequency 

modes, with the timing determined by the dominant CP ENSO spectral peak (EEOF L128), than the 

first 10 higher frequency modes determined by the EP ENSO spectral peak (EEOF L28). The leading 

modes of Chl-aA correlate with ENSO indices, but more strongly and significantly with the IEMI than 

the MEI. Projection of the Chl-aA EEOF time series onto SSTA fields confirms, firstly, that the anti-

correlated relationship between Chl-a and SST is generally maintained for all analyses, and secondly, 

that the SSTA patterns associated with the Chl-aA results correspond to descriptions of ENSO induced 

SST patterns and corroborates previous reports in the literature of specific phases or events. 

Similarities between the L = 28-month EEOF2 Chl-aA pattern propagation and its projected SSTA 

field indicate that the spatial patterns are consistent with published studies of the evolution of the 

classical cold-tongue ENSO [2]. Examples that confirm this are: the strongly negative values of Chl-

aA from the Costa-Rica Dome in the eastern equatorial Pacific during classical ENSO events [7], the 

opposite signed Chl-aA in the WPWP; and the substantial projected warm SSTA pattern that 

corresponds to the cold tongue region in the first month of the sequence. 

The influence on Chl-aA of a transition from a canonical eastern Pacific El Niño to a La Niña event 

was first reported in the literature following the very strong El Niño event transition that occurred in 
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1997/98 (e.g., [8]). Mode 2 of the EEOF L28 analysis of the Chl-aA fields yielded a spatial pattern 

sequence (Figure 7) that not only resembles a classical “composite”-like ENSO in the leading month, 

but by month 8 the evolving spatial pattern is quite similar to reports in the literature describing the 

difference between the La Niña to El Niño observations [8]. The projected SST pattern of this mode 

matches the transition from a strong classic El Niño to normal SST conditions. However, after this 

transition it appears that the SST pattern evolves to a central Pacific type of El Niño (Modoki)/La Niña 

phase, with the anomalous warm SST in the tropical Pacific flanking a cool pattern. This suggests 

interdependence between the two ENSO modes at least in this limited dataset, which is dominated in 

recent years by CP events. This is further discussed in the following section. 

The Chl-aA pattern linked to the CP SST pattern in the EEOF L28 analysis is identified as positive 

amplitudes in the WPWP that extend eastward just north of the equator. We can also see this Chl-aA 

pattern evolution in the EEOF analysis designed to examine CP ENSO propagation (EEOF1 L128) 

twice, from month 1 to 15, and from 115 to 128. In between, there is an El Niño phase of CP. A recent 

study of CP influence on Chl-a distribution is in agreement with our negative amplitude evolution of 

Chl-aA in the western side of the tropical Pacific [16]. Further, following the pattern described by [14], 

we observe a propagating negative (positive) Chl-aA pattern, in the case of an El Niño (La Niña) 

event, linked to the central Pacific and focused on the western and central Tropical Pacific. Differences 

between the Chl-aA patterns in the ENSO modes suggest that the biological response differs during EP 

and CP ENSO. This result corroborates previous work [17] suggesting that different underlying 

mechanisms dominate in the two ENSO types leading to distinct biological signatures. However, 

further work is required with the inclusion of subsurface data to fully understand the role of ENSO 

driven propagation and its associated dynamics on interannual phytoplankton variability.  

5.3. Eastern Pacific and Central Pacific El Niño—Southern Oscillation Contribution  

and Modal Independence  

It is important to note that while the L28 EEOF2 timing is characteristic of EP ENSO, the pattern 

sequence also includes CP ENSO characteristics as described above. The authors of [39] argue that the 

first two modes of tropical Pacific SST do not represent distinct phenomena as has been reported in 

other studies, i.e., canonical EP ENSO and El Niño Modoki (or CP El Niño), but rather represents the 

nonlinear evolution of ENSO. Results from our EEOF analysis (keeping in mind that this is an analysis 

of Chl-a) also cast doubt on an outright independence between EP and CP ENSO—since individual 

propagating modes contain both of these so-called phenomena, at both the 28-month and 128-month 

lag-sequence time scales. However, it is not yet clear whether this is actually the case or whether the 

signals are not well separated due to data limitations. Indeed, the limited length of the dataset (in only 

being able to resolve one 128 month cycle) does impact on the results here, namely that the analysis 

cannot confirm the independence of the modes in the L128 EEOF analysis as indicated by [35]. The 

implications of this is that we cannot confirm the uniqueness of the Chl-a signal to this time span, but 

we are still able to examine the equivalent projected SST spatial pattern for known mechanisms with 

distinct characteristics, such as ENSO, that exist at similar frequencies. Since the SST pattern found is 

corroborated by the ENSO literature, we have some confidence that we are looking at a physically 
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meaningful signal. In the absence of a longer dataset, this is a good reference point and provides 

direction for future research.  

While our analysis has identified a quasi-decadal time scale characteristic of CP El Niño, we also 

capture a second, higher frequency, spectral maximum in the IEMI time series, which has been 

previously reported as a CP periodicity [11]. This second peak of 32 months, with >95% confidence 

above red noise, is close to the dominant peak in the MEI of 28 months. This result further suggests 

some connection between both modes of variability, and here between both ENSO flavors. Further 

investigation of this and other secondary peaks is warranted. Finally, it is interesting to note that both 

EEOF analyses produced modes that were more strongly and significantly linked to CP than to EP 

ENSO. We interpret this as reflecting the greater influence of CP ENSO during this study period.  

6. Conclusions 

In the present study, using an Extended Empirical Orthogonal Function (EEOF) analysis approach 

applied to the most recent 13-yr satellite record of Chl-a, in combination with sea surface temperature 

(SST) records and El Niño—Southern Oscillation (ENSO) indices based on various climatic 

parameters, we have shown that ENSO driven propagation can explain interannual Chl-a variability in 

the South Pacific. This paper demonstrates the usefulness of the EEOF, an underutilized method in the 

literature, in examining propagating signals. We identified the power spectra maximum periodicity in 

the Multivariate ENSO Index (MEI) and Improved ENSO Modoki Index from October 1997–October 

2010 as being 28 months (L28) and 128 months (L128), respectively. For the recent record that 

comprised of four central Pacific (CP) El Niño events, the classical eastern Pacific (EP) ENSO, whose 

influence on phytoplankton is far more widely reported in the literature, explained less Chl-a 

variability and less significantly (L28 Principal Components (PC) 2 at r2 = 0.26, p = 0.94; negligible 

for L28 and L128 PC1) than the CP mode (L28 PC1 at r2 = 0.40, p < 0.01; L128 PC1 at r2 = 0.36,  

p < 0.01).We found that the MEI power spectral maximum of 28 months relates to ENSO high 

frequency processes, which might represent a transition between phases, and is observed in the EEOF 

Mode 2 Chl-aA pattern.  

The existence and independence of CP ENSO is a highly topical contemporary issue within the 

ENSO community. Our results add further evidence to the debate and outline some important outcomes: 

namely that (i) whether the CP mode is independent or not, it also manifests in the South Pacific Chl-a 

data with real consequences for ocean biology and is not merely a methodological artifact in the SST or 

sea level pressure (SLP) data, and (ii) there is indeed a low frequency (decadal) signal in the South 

Pacific Chl-a with CP characteristics, but a longer time series is required to sufficiently test the 

independence of this signal from EP ENSO. The implications of the differing roles of EP ENSO and CP 

ENSO on phytoplankton variability is that the prevalence of one flavor of ENSO over another can 

potentially lead to varied impacts on ocean ecology and ocean carbon fluxes, making this a key issue 

warranting further investigation as longer datasets and subsurface data become available. 
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