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Pole-Zero Diagram Approach to the Design of Ring
Resonator-Based Filters for Photonic Applications

Christopher J. Kaalund and Gang-Ding Peng

Abstract—The pole-zero diagram is a tool that has been widely
employed in digital and electronic filter design. It greatly facili-
tates filter design by producing a simple and direct visualization of
parametrical behaviors and general spectral characteristics. In this
paper, we propose new methods of applying pole-zero diagrams
to photonic filter design, aimed at tailoring spectral characteris-
tics. In particular, we demonstrate the effectiveness of this method
in designing ring resonator-based filters for application to optical
wavelength interleavers and deinterleavers. We show that there
exist close relations between the pole-zero diagram of an optical
filter and its wavelength response, and derive pole-zero diagrams
for filters with various ring resonator configurations. Further, we
propose a novel graphical technique using pole-zero diagrams for
optimizing filter performance. As a practical example to demon-
strate the effectiveness of the pole-zero approach, we present a new
wavelength interleaver design with low crosstalk. This design was
realized by superimposing the pole-zero diagrams of parallel and
series-coupled ring resonator arrays.

Index Terms—Integrated optics, optical planar waveguide com-
ponents, optical waveguide filters, resonator filters.

I. INTRODUCTION

VARIOUS photonic components, such as add–drop multi-
plexers and interleavers, are important in wavelength-di-

vision-multiplexed (WDM) fiber-optic networks. The growing
complexity of these systems is driving demand for photonic
components with lower cost, smaller footprint, lower power dis-
sipation, and, in particular, sophisticated spectral or wavelength
properties. One type of structure for photonic components is
the optical ring resonator. Ring resonators can be used to con-
struct various passive or active components in the form of fiber
or planar waveguide. In planar waveguide form, ring resonators
range in size from several micrometers to hundreds of microm-
eters, and can be cascaded or suitably configured to tailor the
spectral response and other relevant characteristics. Previously,
highly compact photonic components based on planar wave-
guide ring resonators have been fabricated for applications such
as add–drop multiplexing [1], [2] and switching [3].

Ring resonators, together with Mach–Zehnder interferome-
ters (MZIs), are fundamental building blocks for the construc-
tion of optical filters. A detailed analysis of these types of filters
has been done in [4], which employed the Z-transform to cal-
culate spectral and temporal response. Reference [4] presents
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sophisticated algorithms for optimizing MZI and ring resonator
arrays for bandpass, gain equalizing, and dispersion compen-
sating filters.

The spectral response of an optical filter based on MZIs
and ring resonators is usually derived from a transfer function,
calculated with the aid of the Z-transform. The transfer function
generally has a very complex dependence on various device
parameters, such as resonance frequencies and coupling coef-
ficients. Inspection of this function usually provides no clues
for optimizing a design. Further, the sophisticated synthesis
methods that have been developed for certain filter configu-
rations, such as in [4], are generally not applicable or easily
adaptable to other filter types or design objectives. However,
Z-transforms can be graphically represented using pole-zero
diagrams [4]–[9]. As we shall show, pole-zero diagrams allow
complex parametrical dependencies to be clearly visualized.
This suggests a simple graphical method of using pole-zero
diagrams to compare different filter configurations and opti-
mize their performance through manipulating the positions of
poles and zeros. In this paper, we present methods for adjusting
spectral response based on pole-zero diagrams to optimize
spectral characteristics such as crosstalk and passband shape.

To illustrate the use of pole-zero diagrams, we apply them in
this paper to the design of a wavelength interleaver. [10]–[12]
Wavelength interleavers combine two separate streams of chan-
nels into one stream with half the channel spacing, and dein-
terleavers perform the opposite function. They can be produced
using cascaded MZIs [10] and ring resonators [11], [12] in var-
ious configurations. In this paper we use pole-zero diagrams to
predict the performance of various interleavers designs.

This paper proposes the use of pole-zero diagrams for the de-
sign and optimization of filters for photonics applications. We
studied, compared, and optimized various filter structures for
wavelength interleaving. Starting with the known and simple
cases for interleavers proposed previously, we demonstrate that
the pole-zero diagram method proposed in this paper provides
insights that are difficult to ascertain using previous methods
based only on calculation of the spectrum in terms of a transfer
function. Close relations between the pole-zero diagram fea-
tures of a ring resonator-based filter and its spectral response
were observed. Further, we summarize a graphical technique
based on pole-zero diagrams for photonic filter design and op-
timization. As far as we know, this design technique is novel
and has not been previously proposed in the literature. Finally,
we used the pole-zero diagram method to produce a new de-
sign of wavelength interleaver consisting of both parallel and
series-coupled ring resonator filter arrays.

0733-8724/04$20.00 © 2004 IEEE
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II. POLE-ZERO DIAGRAMS

A. Theory of Pole-Zero Diagrams

In this section we explain pole-zero diagrams and relate them
to filter spectral response. The optical filters that we discuss in
this paper have periodic spectral responses. It is well known in
the field of digital signal processing that discrete time signals
have periodic spectra [5]. Therefore, it is appropriate to repre-
sent periodic optical spectra as discrete sequences. Given the
additional constraints of linearity and time invariance, it can be
shown that a filter’s time response is completely characterized
by a discrete impulse response function, which we denote
[5]. The index is a discrete time variable.

The frequency response of a filter can be derived from the
Z-transform, which is a generalization of the Fourier transform
for discrete time systems. Z-transforms are discussed exten-
sively in many books on digital signal processing, such as [5];
however, we shall introduce them briefly. The Z-transform con-
verts a discrete time signal into a complex-variable frequency
signal via

(1)

Here, is a complex variable. Each term in this equation repre-
sents a delay, with corresponding to a unit delay, cor-
responding to twice this, and so on. For a causal filter, in which
the output signal at time depends only on input values
for which , the summation begins at .

For a linear discrete system with input signal , the output
signal is

(2)

Comparing (1) and (2), it is evident that the Z-transform for this
filter is

(3)

The numerator and denominator can be factored to give the
zeros and poles , respectively, as follows:

(4)

A pole-zero diagram is a graph of pole and zero positions
on the complex -plane. In this diagram, the linear frequency
axis of the periodic spectrum is mapped to the unit circle in the
complex plane. That is, is related to the signal frequency by
setting , thereby restricting to the unit circle.
corresponds to and corresponds
to . In the case of ring resonator filters,

corresponds to resonant frequencies. A complete circuit
of the unit circle corresponds to the free spectral range (FSR) of
the filter.

Poles and zeros are related to the frequency spectrum by
their position on the complex plane. A zero positioned on
the unit circle results in zero transmission at the frequency
corresponding to the angle of that zero. Likewise, a pole on the
unit circle will cause unity transmission at the corresponding
frequency. As poles and zeros move away from the unit circle,
their effect on the magnitude spectrum diminishes. Figs. 1
and 2 show how the magnitude spectra of single poles and
zeros change as their distance from the unit circle varies. The
frequency scale is normalized, with zero corresponding to the
resonance frequency and one corresponding to half the FSR.
Also note that the outermost circle for all pole-zero diagrams
in this paper corresponds to the unit circle. Magnitude spectra
with flatter passbands and lower crosstalk can be synthesized
by adding poles and zeros at various locations on the complex
plane. This is discussed in detail in [4].

By using planar waveguide MZIs and ring resonators, filters
with arbitrary or approximate pole and zero positions can be
produced. Coherent light that is launched into a waveguide tra-
verses multiple MZI and ring resonator stages, resulting in trans-
mission resonances and nulls due to interference. These reso-
nances and nulls correspond to poles and zeros, with frequency
and magnitude determined by the path length differences and
splitting ratios of the MZIs and radii and coupling factors of the
rings.

A single MZI stage, which consists of two couplers with con-
necting waveguides of different lengths, introduces a single zero
in the complex plane for both the through and cross output ports.
Cascading MZI stages introduces additional zeros [4]. MZIs are
classified as finite impulse response (FIR) filters as they contain
only feedforward paths. Therefore the coefficients are zero
in (2) and (3) and there are no poles present. This limits the
crosstalk and passband flatness that can be obtained with MZI
filters. Ring resonators, on the other hand, introduce feedback
paths and therefore poles, so that the coefficients are nonzero
in (2) and (3). They are classified as infinite impulse response
(IIR) filters and usually have better crosstalk and passband flat-
ness than FIR filters. IIR filters usually have longer impulse
responses, however. This paper will focus on the magnitude
response of the filters, and defer detailed analysis of temporal
response to future investigations.

General architectures for arbitrary pole and zero positioning
on the complex plane have been proposed in [13] and [14].
These architectures consist of cascaded MZI and ring resonator
stages, in which the MZI sections introduce zeros and the ring
resonators introduce poles. However, in order to achieve a cer-
tain filter response, many stages would need to be cascaded as
each stage introduces only one pole and one zero. Coupling ring
resonators together, however, results in multiple poles and zeros
per resonator, as will be shown in Section III-C and III-D. This
reduces the number of ring resonators necessary to achieve a
given spectral response. In the following sections, Z-transforms
and pole-zero diagrams will be derived for various filters con-
taining ring resonators and coupled ring resonator arrays.

B. Single Ring Resonator Pole-Zero Diagrams

To illustrate pole-zero diagram derivation for ring resonator
filters, we first derive the Z-transform for a simple case, a single
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Fig. 1. (a) Magnitude spectra for zeros positioned at various distances from
the origin. Curves a, b, and c correspond to zeros at z = 0:8; 0:9; and 0:95,
respectively. (b) The corresponding pole-zero diagram.

ring resonator, and follow the procedure given in [4]. The first
step is to assign delay terms to the optical waveguide paths
in the filter. Fig. 3 shows a schematic of a ring resonator coupled
to two straight waveguides. The circumference of the ring res-
onator corresponds to a unit delay length. A unit delay length
is defined as a multiple of the center resonant wavelength of
the ring and is represented in the Z-transform as , where

. Here, is the normalized frequency equal to
, where is the optical frequency, the

center frequency, the ring effective index, and the ring ra-
dius. To include the effect of power dissipation in the ring,
is multiplied by , where is the power attenuation per
cycle. Ring waveguide sections corresponding to half the cir-
cumference are labeled in Fig. 3.

The second step is to determine relations between the signal
amplitudes at various points within the filter. These relations
include both the delay paths and the matrix equations to describe
the directional couplers. As shown in Fig. 3, the signal enters
the input port. A portion of this signal is coupled over into the
ring at , and a portion passes to the through port. Coupling is
usually done using directional couplers, and is described by the
following matrix:

(5)

Fig. 2. (a) Magnitude spectra for poles positioned at various distances from
the origin. Curves a, b, and c correspond to poles at z = 0:8;0:9; and 0:95,
respectively. (b) The corresponding pole-zero diagram.

Fig. 3. Schematic of a ring resonator with two directional couplers K and
K .

p
z is the amplitude transmission from one coupler to another via the

curved ring waveguide.

where is the straight-through amplitude coupling factor,
is the crossover coupling factor, and . There is
likewise a second coupler that allows power to be coupled
to the drop port. The signal at this port is the sum of an infinite
number of terms

(6)

The first term in the series corresponds to the component of
the signal that couples into the ring, traverses half the ring cir-
cumference, and couples out again to the drop port. The second
term corresponds to that component that undergoes an addi-
tional cycle around the ring before coupling to the drop port,
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Fig. 4. (a) Magnitude spectrum for the drop port of the single ring-resonator
filter shown in Fig. 3. The power coupling factor is 0.7 at both couplers and the
power dissipation in the ring is 10% per cycle. (b) The corresponding pole-zero
diagram.

and so on for the other terms. Using the Taylor series expan-
sion, the above equation can be simplified to give the drop port
transfer function

(7)

It can be seen from this equation that there is a single pole at
. The term in the numerator results in a zero at the

origin, which simply introduces a delay in the overall response
but does not affect the spectrum. Fig. 4 shows the magnitude
spectrum and pole-zero diagram for a power coupling factor of
0.7 at both couplers, and power dissipation in the ring of 10%
per cycle. Note that since the signal is periodic and symmetrical,
only half of the FSR is plotted in Fig. 4.

The through port transfer function is likewise given by

(8)

It is evident from this equation that there is a pole at the same
location as in the through port signal and a zero at . Fig. 5
shows the resulting magnitude spectrum and pole-zero diagram.

C. Z-Transforms for Various Ring Resonator Filters

We shall study several types of ring resonator-based filters
using pole-zero diagrams. In order to produce these diagrams,

Fig. 5. (a) Magnitude spectrum and (b) pole-zero diagram for the through port
of the single ring-resonator filter shown in Fig. 3. The power coupling factor is
0.7 at both couplers and the power dissipation in the ring is 10% per cycle.

Fig. 6. Schematic of a parallel-coupled ring resonator filter.

however, we must first determine the Z-transforms for each
filter.

To illustrate the process of finding the Z-transform for
coupled ring resonator filters, we shall now derive the Z-trans-
form for parallel-coupled ring-resonator arrays. Fig. 6 shows
a schematic of this filter. As before, the first step is to assign
delay terms to the various optical waveguide paths in the filter.
The circumference of the rings was assigned a delay of .
Also, the spacing between the rings was chosen such that

, where is the bus propagation constant. This
ensures a periodic spectral response suitable for a wavelength
interleaver. [15]

The next step is to determine the relations between the signal
amplitudes at various points in the filter. The transfer functions
of a single ring resonator have already been derived, and so we
can write the transfer matrix of a single ring resonator as

(9)
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where

(10)

In this equation, , , , and correspond
to the signals at the ports labeled in Fig. 3. The transfer matrix
of the straight waveguide segments is given by

(11)

Now we must determine the overall filter response. To do this
we use the transfer matrix method outlined in [16]; however,
we substitute for . To obtain the transfer matrix of an
N-coupled array, the matrices for each ring and the connecting
straight waveguide segments are multiplied together

(12)

The drop port signal is calculated from matrix M as
and the through port signal as
by setting the signal from the

add port to zero. Note that in this paper, all signals
are referred to the input port. The equations for the drop and
through port signals can be put into the form of (4). That is,
the numerator and denominator terms can be factored to find
the zeros and poles, respectively. The final equations depend
on the number of rings in the array. We shall not present them
here since they are quite long, and pole-zero diagrams can be
used to clearly summarize the information contained in these
equations.

The above example illustrates the method for determining the
Z-transforms and pole-zero diagrams of an array of coupled ring
resonators. The Z-transforms of the MZI with ring resonator and
the series-coupled ring array are derived in [4].

We calculated the Z-transforms of various filter structures
using Mathematica to multiply the matrices and perform sym-
bolic manipulations to simplify the equations. This method is
more accurate than substituting numerical values before multi-
plying the matrices. Putting the equations in the form of (3) al-
lowed the and coefficients to be easily determined. These
coefficients were imported into Matlab to enable plotting of
pole-zero positions and other standard signal-processing rou-
tines to be done. It was thus not necessary to factor the equations
in Mathematica to find the poles and zeros.

In summary, the process of determining the pole-zero dia-
grams for optical filters is as follows.

1) Assign delay terms to optical paths in the filters.
2) Find equations relating the signal amplitudes between

various points in the filter array.
3) Calculate the overall filter response (Z-transform) for

each output port using matrix multiplication.
4) Put the resulting equations in a form suitable for deter-

mining the poles and zeros.

III. POLE-ZERO DIAGRAMS FOR WAVELENGTH

INTERLEAVER FILTERS

In this section, we work out pole-zero diagrams for several
different filter types for wavelength interleaving. This will illus-
trate several uses of pole-zero diagrams, including selection of
the most suitable filter structure for a given application, graph-
ical optimization, and synthesis of new filters by superimposing
pole-zero diagrams.

A. Target Filter Response

The performance requirements of interleaving filters with
50-GHz channel spacing includes low insertion loss ( 1 dB),
low crosstalk ( 23 dB), and box-like passband shape, among
other things [15]. We designed a minimum order filter using
the filter design and analysis tool in Matlab. This filter has the
least number of poles and zeros necessary to meet the above
performance requirements, and they are optimally located to
achieve minimum crosstalk. We designate this filter as the
“target” filter.

An IIR Chebyshev type II was chosen since it is free of pass-
band ripple. The 3 dB passband width was set as 50% of the
FSR, and the stopband frequency was set as 80% of the FSR.
We defined crosstalk as the maximum value of the filter mag-
nitude response in the stopband. We varied the crosstalk, and
Matlab produced minimum-order filter designs that satisfied
these crosstalk levels.

It was found that for crosstalk higher than 26 dB, the re-
sulting filter design was second order. For values between 26
and 40 dB, the filter was third order, and for crosstalk lower
than 40 dB the filter was fourth order. Since a second-order
filter can barely satisfy the crosstalk requirements of an inter-
leaver, a third-order filter was selected. A fourth-order filter
would introduce unnecessary complexity, since a third-order
filter has sufficient crosstalk performance. Fig. 7 shows the
target filter response in the drop port of an interleaver. An
interleaver ideally has symmetrical response in the drop and
through ports, and the corresponding pole-zero plots are
likewise symmetrical. The through port spectrum is identical
to the drop port’s, but shifted by half the FSR. The poles and
zeros for the through port are obtained by reflecting the poles
and zeros of the drop port about the imaginary axis. To save
space, the through port diagrams are not shown.

In Fig. 7, it can be seen that there are three zeros at roughly
148 , 180 , and 212 . The zeros at 148 and 212 are comple-
mentary pairs, and the first of these is responsible for the null
in the magnitude spectrum at a normalized frequency value of
0.82. The zero at 180 is responsible for the transmission null
at a frequency of one. There are three poles. The pole near the
origin can be ignored, as its close proximity to the origin implies
that it has little influence on the magnitude response. The other
two poles at 90 and 270 , however, result in improved pass-
band flatness. It is also evident from Fig. 7(a) that the crosstalk
is 40 dB, the best that can be attained with a third-order filter
for the given bandwidth. Subsequently, we refer to the position
of the poles and zeros of this third-order Chebyshev filter, shown
in Fig. 7(b), as the target positions.
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Fig. 7. (a) Target filter magnitude response and (b) the corresponding
pole-zero diagram for the drop port. This filter is third-order Chebyshev type II,
with �3 dB passband width equal to 50% of the FSR and stopband frequency
equal to 80% of the FSR. Crosstalk is �40 dB.

Fig. 8. Schematic of a filter consisting of a ring resonator coupled to one arm of
an MZI. The delay in the through arm is z , and the delay in the ring resonator
is z .

In order to characterize the passband flatness we define a
shape factor as the 1 dB bandwidth divided by the 10 dB
bandwidth. For the case of the target filter, in Fig. 7(a), this is
0.78. A higher shape factor implies a more box-like spectrum.

Although this paper concerns tailoring of filter magnitude re-
sponse, we note that poles and zeros significantly influence the
wavelength dispersion and group delay of filters and refer the
reader to [4] for details. Dispersion introduces an additional con-
straint on pole and zero positions, since acceptable dispersion
requires that there be no poles or zeros in the vicinity of the pass-
band. The dispersion of commercial interleaver devices with
50-GHz channel spacing is typically less than 30 ps/nm over
a 10-GHz passband width. For the target device, assuming
50-GHz channel spacing, we calculated a dispersion of around

50 ps/nm over this passband for both output ports. Referring
to the pole-zero diagram for the drop port [Fig. 7(b)], if the cir-

Fig. 9. (a) Magnitude response (solid line) and (b) pole-zero diagram for the
MZI/ring resonator filter illustrated in Fig. 8. The splitting factor of the couplers
is 50:50. The coupling factor of the ring resonator to the straight waveguide is
86.2%, and the power loss per cycle in the ring is 10%. The dashed line in (a)
corresponds to the response of the target filter in Fig. 7(a) and is shown for
reference.

cumference corresponds to an FSR of 100 GHz, then a 10 GHz
passband corresponds to the region between 36 and 324 . The
dispersion in this passband is mainly influenced by the two poles
at 90 and 270 , since they are closer to the passband than the
zeros.

B. MZI Containing Ring Resonator

An MZI containing a ring resonator is illustrated in Fig. 8.
It can operate as a deinterleaver, splitting channels at the input
port and sending the odd channels to the cross port and the even
channels to the bar port. In addition, the filter can operate as
an interleaver, combining wavelength signals from the add and
input ports. Fig. 9 shows the pole-zero diagrams and spectral
response for the cross port. The bar port is identical but shifted
in frequency by half the FSR. This filter is discussed in detail in
[4] and [12].

The splitting factor of the MZI was set to 50:50, and a power
loss of 10% per cycle assumed for the ring resonator. Crosstalk
was found to be minimal at a ring resonator coupling power cou-
pling ratio of 86.2%. As can be seen, the pole positions cor-
respond closely to the target positions of the Chebyshev filter;
however, the zeros have moved away from the unit circle due
to loss. When loss is removed the zeros move back to their op-
timal target locations, and the pole-zero diagram becomes iden-
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Fig. 10. (a) Magnitude spectrum and (b) pole zero diagram for the MZI/ring
resonator filter with varying coupling ratio between the ring and straight
waveguide. Power coupling is varied from 0.82 to 0.87 in steps of 0.01, and
the arrows indicate the movement of the curves and pole-zero positions as this
ratio increases.

tical to Fig. 7(b). Fig. 9 shows that loss diminishes the effect
of the zeros, causing the sidelobe to increase in magnitude and
broaden.

Fig. 10 illustrates the effect of changing the ring power cou-
pling ratio. In this figure, the arrows indicate the directions that
the poles or zeros move as the coupling ratio is increased. In
Fig. 10 the coupling ratio increases from 0.82 to 0.87 in steps
of 0.01, and as it does so the zero at 180 moves away from
the unit circle, so that the effect of this zero on the shape of the
spectral response diminishes. The other zeros move toward the
real axis and away from the unit circle. Both of these changes
are reflected in the magnitude spectrum [Fig. 10(a)]. The poles
move only slightly as power coupling changes.

It is interesting to observe from these diagrams that crosstalk
is lowest when the zeros are closest to their target positions.
Therefore, optimization of the power coupling ratio can be
done simply by varying this parameter while observing both
the pole-zero and magnitude spectrum diagrams. Optimal
crosstalk is obtained when the pole and zero positions most
closely approximate their target positions. In particular, the
zeros predominately determine the crosstalk. This example
suggests a useful graphical optimization technique of adjusting
parameters in order to match pole and zero positions to their
target locations.

Fig. 11. (a) Magnitude spectrum and (b) pole-zero diagram for the drop
port of the four-ring parallel-coupled ring resonator array illustrated in Fig. 6.
The coupling prefactor is 0.7 and the apodization 0.125.

C. Four-Ring Parallel-Coupled Ring Resonator Array

Pole-zero diagrams were found for parallel-coupled ring res-
onator arrays with various numbers of rings. It was found that
the pole-zero diagram for a four-ring array best approximates
the target case, as we will show. The four-ring parallel-coupled
array is illustrated in Fig. 6. This filter can operate as a deinter-
leaver, sending odd channels to the drop port and even channels
to the through port. It can also operate as an interleaver, com-
bining channels from the input and add ports and sending the
combined signal to the through port.

The procedure used to optimize the coupling coefficients be-
tween the rings and the straight waveguides [15] is summa-
rized here. The coupling is exponentially apodised, according
to , where is the ring number,

is equal to half the total number of rings, is the coupling
prefactor, and is the apodization coefficient. The input and
output ring-bus coupling coefficients are equal. Optimization of
the output spectra was done by varying and by small incre-
ments and calculating the crosstalk in the drop and through ports
for each parameter combination. The optimum was achieved
when the crosstalk levels in both output ports were a minimum.
The optimal values of the coupling prefactor and apodization
were 0.7 and 0.125, respectively.

Fig. 11 shows that in the drop port pole-zero diagram, as for
the target case, there is a zero at 180 and zeros at around 148
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Fig. 12. (a) Magnitude spectrum and (b) pole zero diagram for the through
port of the four-ring parallel-coupled ring resonator array illustrated in Fig. 6.
The coupling prefactor is 0.7 and the apodization 0.125.

and 212 . The drop port of the parallel-coupled ring array dif-
fers from the target case in two regards. First, it is evident that
there are three poles in the negative real plane, whereas for the
target design they are positioned on the imaginary axis. Sec-
ondly, there are three poles and three zeros overlapping at a po-
sition close to . Since they overlap, the resulting magni-
tude spectrum is flat at the center frequency.

The pole-zero diagram and magnitude spectrum of the
through port differs considerably from the target case for this
type of filter, as Fig. 12 shows. There are four zeros and three
poles at close to , and so there is one extra zero at this
point. There are no zeros at 32 or 328 , and so the shape of
the magnitude spectrum is significantly different for this port
compared to the target case. Also, the pole positions are the
same as for the drop port. However, since the poles have moved
away from the imaginary axis, the shape factor is degraded. It
can be seen that the spectrum is far from the target case due
to the different number of zeros and different positioning of
the poles. The utility of pole-zero diagrams for filter design is
evident. Since the number of zeros does not correspond to the
target case, it is impossible to attain the crosstalk levels and
passband shape required by simply adjusting parameters. This
is not evident from looking at the magnitude spectrum alone.

We now examine pole and zero dynamics for this filter. First,
apodization is varied, as shown in Fig. 13. Apodization increases
from 0.075 to 0.15 in steps of 0.025, with coupling prefactor

Fig. 13. (a) Magnitude spectrum and (b) pole zero diagram for the drop port
of the four-ring parallel-coupled ring resonator filter for variable apodization.
Apodization is increased from 0.075 to 0.15 in steps of 0.025, with coupling
prefactor fixed at 0.7 and the loss in the ring set to 10%. Arrows indicate the
direction of increasing apodization.

fixed at 0.7. The arrows indicate the directions that the poles and
zeros and magnitude spectrum move as apodization increases. It
is clear that the pole and zero positions cannot be adjusted inde-
pendently, as both move simultaneously when the apodization
parameter is varied. It can also be seen that the zeros overlap
the target positions at around 148 and 212 for an apodiza-
tion of 0.0125. This in fact corresponds to a minimum in the
crosstalk versus apodization. This is similar to the case for the
MZI with ring resonator in that optimal crosstalk was attained
with zeros closest to the target positions. For larger apodiza-
tion, the sidelobe is smaller but the main peak is broader, in-
creasing crosstalk. For smaller apodization, crosstalk is higher
due to a larger sidelobe. The pole positions change slightly but
have a minor impact on the drop port spectrum. The crosstalk
in the through port spectrum is determined mainly by the poles,
as shown in Fig. 14. As apodization increases, the poles move
away from the unit circle and crosstalk so increases.

We now consider pole and zero dynamics as the coupling
prefactor is varied. Fig. 15 shows the effect on the drop port of
increasing the coupling prefactor from 0.3 to 0.8 in steps of 0.1.
As the coupling prefactor increases, the main peak in the drop
port spectrum becomes broader. The sidelobe height initially in-
creases and then decreases. As before, the lowest crosstalk oc-
curs if the zeros are at their target locations. In the through port
(not shown), a higher prefactor decreases crosstalk, at the ex-



1556 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 6, JUNE 2004

Fig. 14. (a) Magnitude spectrum and (b) pole zero diagram for the through port
of the four-ring parallel-coupled ring resonator filter for variable apodization.
Parameters are those used in Fig. 13. Arrows indicate the direction of increasing
apodization.

pense of a much narrower passband. Although lower crosstalk
in the drop port is obtained with lower prefactor, this compro-
mises crosstalk in the throughport. Thus, when varying param-
eters such as prefactor, crosstalk in both the through and drop
ports must be considered, as they are interrelated via their de-
pendence on those parameters.

When obtaining the optimum values of the prefactor and
apodization parameters, it should be realized that the parameter
values for which the zero positions correspond to their target
positions are not unique. However, the parameter values for
which crosstalk in the through and drop ports are equal are
unique in this example. The utility of the pole-zero diagrams is
that it allows optimization of parameter values by graphically
locating zeros at their target positions. It is only necessary
to check from the magnitude spectrum graphs whether the
crosstalk levels in the drop and through ports are equal for
parameter combinations with correctly positioned zeros.

We now remark on the dispersion of this filter. Looking at
Fig. 11(b), it can be seen that for the drop port the poles are
well away from the passband, which is between 36 and 324 .
The calculated dispersion of 12 ps/nm is therefore acceptably
small. However, as Fig. 12(b) shows for the through port, the
poles are closer to the passband region between 144 and 216 .
The dispersion in the passband for this port is therefore very
high, around 110 ps/nm.

Fig. 15. (a) Magnitude spectrum and (b) pole zero diagram for the drop port
of the four-ring parallel-coupled ring resonator filter for coupling prefactor
varying from 0.3 to 0.8 in steps of 0.1. Arrows indicate the direction of
increasing prefactor. The apodization is set to 0.125 and the loss per cycle in
the ring is set to 10%.

Fig. 16. Schematic of a filter with three ring resonators coupled in series.

D. Three-Ring Series-Coupled Ring Resonator Array

A series-coupled ring resonator array with three rings is il-
lustrated in Fig. 16. Fig. 17 shows the through port pole-zero
diagram and magnitude spectrum for this filter. The ring–ring
power-coupling coefficients were 0.39, the ring–straight wave-
guide-coupling coefficients were 0.80, and power dissipation in
each ring was 10%. The drop port spectrum is not shown. For
the drop port there are only poles, and so there is a poor match
between the magnitude spectrum of this filter and the target filter
spectrum. The through port, on the other hand, has three zeros
closely matching the target positions. Although the poles are
not ideally positioned, the zeros dominate the spectrum. A good
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Fig. 17. (a) Magnitude spectrum and (b) pole-zero diagram for the through
port of the three-ring series-coupled ring resonator array illustrated in Fig. 16.
The ring–ring power-coupling coefficients are 0.39 and the ring–straight
waveguide-coupling coefficients are 0.80. Power loss per cycle in each ring is
10%.

match between the through port and target spectrum can there-
fore be obtained, and we use this to produce a new filter design
in the next section.

E. Filter With Parallel-Coupled and Series-Coupled Ring
Array Stages

Cascading filters is equivalent to superimposing their
pole-zero diagrams if no new feedback paths are created.
This is because the transfer functions of two filters are simply
multiplied together. For example, if the output signal from a
filter is sent to a ring resonator, the signal at the drop port of
the ring will have a pole-zero diagram consisting of poles and
zeros from the first filter plus poles and zeros from the drop
port transfer function of the ring.

This convenient feature of pole-zero diagrams can be ex-
ploited to design filters. For example, Fig. 11 shows that the
drop port of the parallel-coupled array with four rings has the
correct number of zeros in the desired locations. The through
port, however, has a far from optimal pole-zero diagram, as
there is only one zero responsible for the transmission null in
the spectrum, as Fig. 12 shows. Therefore, the output from this
port must be modified by adding two zeros, one at 32 and
another at 328 . Inspection of Fig. 17 shows that the through
port of the three-ring series-coupled array has the desired zeros.
Therefore, superimposing the four-ring parallel and three-ring

Fig. 18. Schematic of a new ring resonator filter design consisting of a
three-ring series filter coupled to the through port of a four-ring parallel filter.

Fig. 19. (a) Magnitude spectrum and (b) pole-zero diagram for the through
port of the filter illustrated in Fig. 18. For the parallel stage, the optimal coupling
prefactor was 0.5 and the optimal apodization was 0.176. For the series stage,
the ring–straight waveguide coupling was 0.8 and the ring–ring coupling was
0.39.

series array through port pole-zero diagrams should result in a
filter with a magnitude spectrum close to the target spectrum.
That is, the through port should have zeros at 0 , 32 , and 328 ,
and the drop port should have zeros symmetrically located at
180 , 148 , and 212 . Fig. 18 shows how the filters should be
connected for operation as a deinterleaver. Note that for this
filter to operate as an interleaver, the odd and even channels
should be sent to the drop and through ports, respectively, and
the combined signal will emerge from the input port.

The resulting pole-zero and magnitude spectrum diagrams for
the through port are shown in Fig. 19. It is evident that this filter
provides close to the target transfer characteristics in this port.
The drop port is not shown; however, its spectrum is similar.
The crosstalk in the through port is 37 dB, and the crosstalk
in the drop port is 35 dB. The dispersion for both output ports
is imporoved over the target case, around 25 ps/nm.
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This filter design was obtained by superimposing the
pole-zero diagrams of the parallel-coupled and series-coupled
through ports in order to obtain a pole-zero diagram close
to that for the target filter. This design would not have been
apparent without pole-zero diagrams to visualize the spectral
characteristics of the filters. Simply comparing the magnitude
spectra of filters is insufficient for estimating the spectra that
result when those filters are cascaded. This example, therefore,
illustrates clearly the utility of pole-zero diagrams for optical
filter design.

F. Summary of the Application of Pole-Zero Diagrams to
Optical Filter Design

In this section we summarize our approach to designing op-
tical filters using ring resonators and MZI structures, as illus-
trated in the previous sections.

In order to design a filter, it is useful to first produce a
pole-zero diagram for a classical filter, such as a Chebyshev
filter. The poles and zeros for this filter are optimally located
according to given design criteria, and serve as a target for op-
timization of an actual filter structure. This target filter design
does not correspond to any particular physical structure. Its
purpose is to determine the best performance that is achievable
with a filter of a given order. If a specific value of crosstalk is
required, for example, then a classical filter can be designed
with crosstalk equal to or exceeding that specification with
a minimal number of poles and zeros. Minimization of filter
order is important since it simplifies filter design, allowing
fewer MZI and ring resonator stages to be used.

Pole-zero diagrams are useful for determining whether a
given filter structure can attain desired levels of performance, in
the sense of matching the spectrum of a classical filter design.
If the pole and zero positions cannot be made to overlap the
positions for a target filter, then performance will be less than
optimal. Additional poles and zeros may also be present, which
can cause undesirable features in the spectrum. Also, poles
and zeros may be missing at certain points. By comparing the
pole-zero diagrams for a filter structure with the diagrams for
a target filter, the usefulness of a filter structure for a given
application can be quickly assessed. Furthermore, pole-zero
diagrams for different filter structures can be compared to see
which offer superior performance. For the interleaver example
in this paper it is clear that the poles and zeros of the filter with
an MZI coupled to a ring resonator more closely match those of
the target filter than either the series or parallel-coupled arrays.
This filter therefore has a spectral response closer to the target
response.

Pole and zero dynamics, or the behavior of poles and zeros as
parameters are varied, can be visualized easily using pole-zero
diagrams. This has several applications. First, by varying
parameters over a wide range, the full extent of pole and zero
positions can be seen and compared to the target pole and zero
positions, as in Figs. 13–15. This helps in determining whether
a filter can potentially offer good spectral characteristics.
Secondly, parameter values can be optimized by adjusting the
parameters until overlap of the poles and zeros with their target
positions occurs. Note that in this case pole-zero diagrams pro-
vide a rough visual guide for optimization, and the magnitude

spectrum must be concurrently monitored as parameters are
adjusted. This method, however, can be applied to any filter
structure and avoids the difficulty of deriving filter synthesis
algorithms.

Finally, pole-zero diagrams can be superimposed by cas-
cading filter structures to achieve a desired filter response
function, as when we added a series-coupled ring array to
the through port of a parallel-coupled ring array. This is not
possible by simply observing the magnitude spectrum of each
filter and illustrates clearly the utility of pole-zero diagrams.

IV. CONCLUSION

In this paper, we proposed the application of pole-zero dia-
grams to the design of ring resonator-based filters for photonics
applications. We studied optical filter structures consisting of
ring resonators as well as MZIs using pole-zero diagrams. We
showed that pole-zero diagrams provide additional and impor-
tant information for obtaining optimal photonic filter designs.
This information cannot be provided by conventional methods
that concern mainly spectral characteristics. We proposed new
methods for optimization and summarized guidelines for their
use in photonic filter design. Further, we proposed a new filter
structure for wavelength interleaving and deinterleaving con-
sisting of parallel and series-coupled filter array stages. This
filter structure was obtained by studying pole-zero diagrams,
demonstrating that pole-zero diagrams can be very useful for
photonic filter design.
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