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Abstract 

Methods for comprehensive structural dynamic analysis generally employ input-output 

modal analysis with a mathematical model of structural vibration using excitation and 

response data.  Recently operational modal analysis methods using only vibration 

response data have been developed. In this thesis, both input-output and operational 

modal analysis, in the presence of significant unmeasured excitations, is considered. 

This situation arises when a test structure cannot be effectively isolated from ambient 

excitations or where the operating environment imposes dynamically-important 

boundary conditions.  

 

The limitations of existing deterministic frequency-domain methods are assessed. A 

novel time-domain estimation algorithm, based on the estimation of a discrete-time 

autoregressive moving average with exogenous excitation (ARMAX) model, is 

proposed. It includes a stochastic component to explicitly account for unmeasured 

excitations and measurement noise. A criterion, based on the sign of modal damping, is 

incorporated to distinguish vibration modes from spurious modes due to unmeasured 

excitations and measurement noise, and to identify the most complete set of modal 

parameters from a group of estimated models. 

 

Numerical tests demonstrate that the proposed algorithm effectively identifies vibration 

modes even with significant unmeasured random and periodic excitations. Random 

noise is superimposed on response measurements in all tests. Simulated systems with 

low modal damping, closely spaced modes and high modal damping are considered 

independently. The accuracy of estimated modal parameters is good except for degrees-

of-freedom with a low response level but this could be overcome by appropriate 

placement of excitation and response measurement points. 

 

These observations are reflected in experimental tests that include unmeasured periodic 

excitations over 200% the level of measured excitations, unmeasured random 

excitations at 90% the level of measured excitations, and the superposition of periodic 

and random unmeasured excitations. Results indicate advantages of the proposed 

algorithm over a deterministic frequency domain algorithm. Piezoceramic plates are 

used for structural excitation in one experimental case and the limitations of distributed 



 vi 

excitation for broadband analysis are observed and characterised in terms of actuator 

geometry and modal deformation. 

  

The ARMAX algorithm is extended for use with response measurements exclusively. 

Numerical and experimental tests demonstrate its performance using time series data 

and correlation functions calculated from response measurements. 
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Chapter 1  Introduction 

1.1 Introduction 

The work described in this thesis is motivated by the longer term goal of being able to 

predict the effects of structural modification on helicopter structures. In order to achieve 

this goal, it is essential to develop methodologies that could be used to establish a good 

dynamics model of a helicopter structure. The dynamic behaviour or vibration response 

of a helicopter fuselage is also a critical consideration in the design, operation, and 

ongoing maintenance of the helicopter. The general aim, therefore, is to develop 

experimental and analytical tools for more accurate and comprehensive analysis of 

helicopter structural dynamics, particularly during flight. This would ultimately allow a 

wider range of predictive work to be carried out with analytical or numerical models 

given that these models could initially be validated and updated using good quality 

experimental data. The work in this thesis is largely concerned with experimental 

methods that yield accurate structural dynamic properties and have the potential to be 

used for grounded helicopters or for helicopters in flight. 

 

A variety of experimental, analytical and numerical methods are currently used to study 

the dynamic behaviour of helicopter fuselage structures. Historically, the most basic 

requirement of structural dynamics analysis was to identify structural resonances and 

ensure they were not close to the frequency or harmonics of main-rotor excitation forces 

[1]. The main-rotor loads are periodic and occur at the rotor angular frequency (Ω) and 

its harmonics, as well as integer multiples of the blade pass frequency, denoted k⋅b⋅Ω, 

where k = 1, 2, 3, …,  and  b is the number of rotor blades. In addition to these loads, 

other sources of vibration are summarised by Bielawa [2]: excitation by pressure pulses 

from main-rotor blade downwash and trailing vortices, which also occur at frequencies 

of k⋅b⋅Ω; excitation due to other rotating components, for example, engines, gearboxes 

and tail-rotor drive shafts; and excitation by aerodynamic sources like buffeting from 

turbulent flow. The effect of these loads on the helicopter fuselage and the coupled 

dynamic behaviour of the rotor and fuselage are extremely complex phenomena and 

have attracted a range of experimental and numerical analysis methods [1, 2]. 
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Design and modification of helicopter fuselages usually relies on finite-element  models 

(FEMs) for detailed static and dynamic analysis [3-7]. FEMs are necessarily simplified 

models and in many cases do not include accurate parameter specifications for joints 

and other secondary structural elements, for example engines and drive train 

components, main and tail rotors. Model updating can be employed to improve the 

accuracy of FEMs and is obviously dependent on the accuracy of experimental data and 

the capacity of the FEM to account for boundary conditions and uncertainties in 

structural configurations. Several model updating methods have been developed over 

the last few years, ranging from manual modification of FEM parameters to more 

sophisticated techniques based on intelligent algorithms [8-14]. An issue with updating 

helicopter FEMs is obtaining experimental data that accurately represents the dynamic 

behaviour of helicopters, as this is dependent on the configuration and state (flying, 

grounded etc.) of the helicopter. A number of experimental techniques based on modal 

analysis can be used to obtain data for a grounded helicopter [5, 7, 15-18]; however, 

these techniques cannot be readily applied to a helicopter in flight. An alternative 

approach, termed response-only or operational modal analysis, only requires response 

measurements to estimate the dynamic behaviour of structures. To date, these methods 

have been applied successfully to civil structures, for example bridges and towers [19, 

20], as well as aircraft [20-24], including helicopters [25, 26]. Results from these 

response-only methods can be used in addition to input-output modal analysis results 

for updating of FEMs, or direct updating of modal parameters [27, 28].  

 

An area that has not been widely considered is the application of modal analysis 

methods to cases where significant unmeasured excitations are present in addition to 

measured excitations applied to the structure under test. Such a technique could be 

applied in the analysis of structures in their operational environment, given that a wide 

range of ambient (unmeasured) excitation types could be accounted for. This would be 

useful for the study of helicopter structural dynamics as it would allow modal analysis 

to be carried out in a wide range of operating conditions: while the helicopter is 

grounded and possibly stripped down or when the helicopter is in flight. A subsequent 

issue that arises is the application of a measurable excitation force. Existing methods 

include electrodynamic or hydraulic actuators, although the use of piezoceramic 

actuators could be advantageous because of their relatively small size. 
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Therefore, in this thesis, the problem of structural dynamics analysis in the presence of 

unmeasured excitations using experimental modal analysis is considered. Preliminary 

investigations of existing experimental and numerical methods are carried out before in-

depth analysis of a modal analysis algorithm for use with excitation and response data 

obtained in the presence of significant unmeasured excitations. Piezoceramic actuators 

are considered as an alternative method for structural excitation in experimental modal 

analysis; the unique characteristics of piezoceramic actuators could allow distributed 

excitation of a large structure in operational conditions.  

 

1.2 Thesis Outline 

In Chapters 2 and 3, existing experimental and numerical analysis methods are 

reviewed. Input-output modal parameter estimation algorithms, as well as signal 

processing methods used to enhance signal-to-noise ratio (s/n) of measured data, are 

discussed in Chapter 3. Two experimental case studies are considered: modal testing of 

an aluminium beam and modal testing of a helicopter-like structure. The experimental 

case studies demonstrate the use of an existing frequency-domain modal analysis 

technique used in conjunction with periodic excitation and synchronous averaging. The 

effect of unmeasured excitations on estimated results is investigated and the structural 

excitation of the aluminium beam using piezoceramic actuators is demonstrated as an 

alternative to typical excitation methods. 

 

In Chapter 3, FEM updating methods are reviewed and experimental results from the 

helicopter-like structure are used to gain insight into a number of common issues in 

FEM updating: correlation of experimental and FEM dynamic behaviour; FEM 

updating in the presence of non-linear behaviour and poor measurements; and the use of 

updated FEMs to predict the effects of structural modifications. 

 

A more formal analysis of piezoceramic plates for structural excitation in experimental 

modal analysis is presented in Chapter 4. An approximate analytical model is derived 

for pairs of actuators applied to an aluminium beam. The effectiveness of pairs of 

actuators in exciting vibration modes is assessed in order to gain insight into 

experimental results discussed in Chapter 2. In addition, the extraction of mode shapes 

from measured or estimated transfer functions is discussed. The approximate analytical 
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model is verified by FEM results and experimental measurements on a free-free 

aluminium beam. The approximate analytical model is then used to predict the 

effectiveness of actuator pairs in exciting modes of a cantilever aluminium beam used 

for experiments discussed in Chapter 6. 

 

In Chapter 5, the use of system identification techniques for modal parameter estimation 

is investigated. A novel algorithm is derived based on the estimation of an 

autoregressive moving average with exogenous excitation (ARMAX) model. This new 

algorithm explicitly models unmeasured excitations and is therefore appropriate for 

situations where the structure under test cannot be effectively isolated from other 

sources of excitation, or where the boundary conditions present during operation impose 

important dynamic constraints on the structure under test. As noted above, these 

situations are encountered in the study of helicopter structural dynamics. The algorithm 

includes tools to distinguish vibration modes from spurious modes, which arise in cases 

with significant measurement noise and also when unmeasured excitations include 

periodic components. In addition, a novel model selection criterion is incorporated into 

the algorithm. 

 

Numerical tests on a simple lumped mass system are discussed in Chapter 6 to 

demonstrate the performance of the ARMAX algorithm in identifying modal parameters 

in the presence of measurement noise and significant unmeasured periodic and random 

excitations. Further tests demonstrate the algorithm’s effectiveness for systems with 

high damping and also for cases with closely spaced modes where the frequency of an 

unmeasured periodic excitation is close to a modal natural frequency. A method to 

incorporate the frequencies of unmeasured periodic excitations into the estimation 

algorithm is also introduced and tested using simulated systems. Experimental testing of 

the algorithm is conducted using data obtained from a cantilever aluminium beam. 

Cases including unmeasured periodic and random excitation are considered and 

piezoceramic actuators are used for structural excitation in these cases.  

 

Further testing of the ARMAX algorithm is reported in Chapter 7. A helicopter-like 

structure is used as a representative case and the effect of unmeasured random and 

periodic excitations is again considered. Closely spaced modes, local modes, and 

unmeasured periodic excitations at frequencies close to vibration modes are 
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characteristics of this experimental case. Periodic measured excitation allows 

synchronous averaging of measured data and the effect of this method in improving the 

accuracy of estimated modal parameters is assessed. Results from an existing frequency 

domain modal analysis method are used to compare with results from the ARMAX 

algorithm. 

 

A preliminary investigation into the adaptation of the ARMAX estimation algorithm for 

use with response measurements in the absence of any measured excitation is reported 

in Chapter 8. Two adapted algorithms are proposed and tested with simulated and also 

experimental data.  

 

Concluding remarks, a summary of major work, and recommendations for future work 

are included in Chapter 9. 
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Chapter 2  Modal Analysis Techniques 

 

2.1 Introduction 

The introduction in Chapter 1 suggested that modal analysis is a principal experimental 

technique used for analysis of helicopter structural dynamics. In the following section, 

the theoretical concepts of modal analysis and some of the common algorithms for 

modal parameter estimation are reviewed. Time-domain or synchronous averaging is a 

method for improving signal-to-noise ratio (s/n) of measured data and the theory of 

time-domain averaging is reviewed in section 2.3. Two experimental case studies are 

discussed in sections 2.4 and 2.5. These studies investigate the use of periodic impulse 

excitation and synchronous averaging as a means of improving signal-to-noise ratio of 

measurements where a component of the excitation is not explicitly measured. The use 

of piezoceramic actuators for structural excitation in modal analysis is demonstrated in 

the first experimental case study.  

 

2.2 Review of Modal Parameter Estimation Techniques 

Experimental modal analysis is a method for comprehensive analysis of a structure’s 

dynamic behaviour. It involves measuring vibration response due to a known excitation 

force and processing these data to estimate a set of modal parameters (the modal 

model), namely natural frequencies, damping, and mode shapes, which summarise the 

structural dynamics in a given frequency range.  

 

The elastic dynamic behaviour of a structure is assumed to be governed by an n degree-

of-freedom (DOF) linear differential equation [29]: 

 

  )()()()( tttt fxKxDxM =⋅+⋅+⋅ ��� ,                   (2.1) 

 

which is also known as the physical or spatial model. f(t) is a vector of forces acting at 

each DOF and x(t) and its time derivatives correspond to the displacement, velocity, and 

acceleration at each DOF. M and K are the real, symmetric mass and stiffness matrices 

and D is the real, symmetric damping matrix that describes the equivalent viscous 
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damping of the system. A transfer function relating the excitation and response vectors 

is established by taking the Laplace transform of equation (2.1), assuming zero initial 

conditions: 

 

[ ] ( ){ } ( ){ }sFsXss =++ KCM 2 ,       (2.2) 

 

and rearranging; 

 

( ){ } ( ) ( ){ } [ ] ( ){ }sFsssFssX
12 −++== KCMH ,                (2.3)  

 

where ( )sH  is the transfer function matrix. The transfer function matrix can be 

factorised into [29] 

 

( ) [ ] [ ]
*

*

1 r

r
n

r r

r

s
R

s
R

s
λλ −

+
−

= ∑
=

H ;        (2.4) 

 

λr is a transfer function pole, [ ]rR  is the residue matrix, and (·)* denotes the complex 

conjugate. Frequency and damping information is extracted from the transfer function 

poles using the relation 21 ςωωςλλ −±−= rnrnr
*
rr j, ; rnω  and rς  are the undamped 

natural frequency and the damping ratio of the rth mode, respectively. 

 

The frequency response function (FRF) matrix is obtained by substituting s = jω into 

equation (2.4) 

 

( ) ∑
=









−

=
n

r
r

r
r j

j
1

1 LH
λω

ω .                   (2.5) 

 

The modal residue matrix is factorised into modal participation factors and mode shape 

vectors: [ ] T
rrrR L= ; or )()()( r

pq
r
pq

r
pq LR Φ=  for the participation factor and modal coefficient 

between points p and q for mode r. Mode shapes are defined as  
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where rpΦ  is the pth column of r , but can also be defined in terms of the modal 

residues 

 





















=Φ

pn

p

p

rp

R

R

R

�

2

1

.                  (2.7) 

 

 Equation (2.7) implies that the modal participation factor for that reference point 

(excitation or response) is normalised to unity. 

 

A range of methods to identify modal parameters from measured data have been 

developed, and these can be broadly grouped by the type of the mathematical model, 

equivalent to equations (2.1) - (2.5), that is used as a basis for modal parameter 

estimation.  

 

The simplest and perhaps most intuitively attractive method is the peak picking method 

[30, 31]. For a lightly damped structure with well-spaced modes, the resonant peaks will 

be easily identifiable in the FRF. An estimate of damping can be obtained by a number 

methods, for example, measuring half-power (3dB) bandwidth [30, 31], or by 

transforming a band-limited (about the resonant peak) FRF into the time domain and 

using logarithmic decrement relationships. For the case of light damping, equation (2.5) 

is approximated by  

 

( ) ∑
=

≈
n

r rr

rpq
r

R
j

1 ως
ωH ,              (2.8) 

 

which is solved for the modal residue Rpq r using the estimated natural frequency and 

damping. 
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This method is also categorised as a single degree-of-freedom (SDOF) method, which 

follows from the fact that it uses a SDOF model as a basis for identifying modal 

parameters. While this method is quick to implement with spectrum analysers, the 

accuracy of results suffers due to limited resolution of the FRF, the presence of closely 

spaced or coupled modes, and high modal damping.  

 

The complex modal indicator function (CMIF) [32, 33] is a modal parameter estimation 

method based on the singular value decomposition of the FRF matrix. The SVD of the 

FRF matrix is defined as [32] 

 

( ) ( ) ( ) ( )ωωωω jjjj HVUH = ,       (2.9) 

 

where U(jω) and V(jω) are the left and right singular vector matrices, ( )ωj  is a 

diagonal matrix of singular values, and (·)H is the complex conjugate transpose. 

Evaluating equation (2.9) at a natural frequency and comparing with equation (2.5) 

shows that the left singular vectors correspond to the mode shapes and the right singular 

vectors correspond to the modal participation factors. Plotting the singular values as a 

function of frequency reveals that local maxima correspond to natural frequencies. The 

CMIF also reveals the presence of repeated modes for the cases where the number of 

reference channels (columns of the LHS equation 2.9) is greater or equal to the degree 

of multiplicity of the repeated modes [32, 33]. Shih et al [32] demonstrated this 

technique in an experimental study of a circular plate. The multiple repeated roots were 

clearly shown by the CMIF, and estimated modal parameters compared well with 

results obtained from a polyreference time domain algorithm. The authors noted that 

initial pole estimates were limited by the resolution of the FRF and a second stage was 

required to obtain more accurate frequency and damping estimates, as well as properly 

scaled mode shapes. The SVD in the CMIF method rejects the effects of measurement 

noise and pre-processing of measured data, for example using spectral averaging, can 

enhance the accuracy of the CMIF when used with noisy measurements. 

 

Other approaches to modal parameter estimation have been inspired by system 

identification theory. These have been developed independently and are based on both 

frequency domain and time domain techniques. It has since been shown that these 
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methods can be derived from a general matrix polynomial model of a dynamic system 

[33, 34], and a summary of this approach is taken from Allemang and Brown [33].  

 

Consider a rational polynomial description of a FRF between points p and q on a 

structure: 
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Equation (2.10) is rewritten as a linear combination of the excitation and response, 

 

( ) ( ) ( ) ( )ωωβωωα jFjjXj q

kn

k
kp
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k
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==

=
00

,               (2.11) 

 

and further rearranged to yield an expression in terms of unknown coefficients and a 

FRF (which can easily be measured): 

 

( ) ( ) ( )
kn

k
kpq
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k
k jjHj ∑∑

==

=
00

ωβωωα .     (2.12) 

 

The single-input single-output (SISO) model in equation (2.12) can be generalised to 

the multiple-input multiple-output (MIMO) case 

 

[ ]( )[ ] ( )[ ] [ ]( )[ ]∑∑
==

=
n
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k
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m

k

k
k jjj

00

ωωω H .               (2.13) 

 

Equation (2.12) and (2.13) are the basis for a number of frequency domain estimation 

algorithms, for example rational fraction polynomial (RFP) [35] and orthogonal 

polynomial [36, 37]. It should be noted that frequency domain models like equation 

(2.13) can model the effects of out-of-band modes by increasing the order of the RHS 

polynomial, which effectively includes ‘residual’ terms in equation (2.10). It is well 

known [31] that this has a significant effect on the accuracy of estimated modal 

parameters within the analysis frequency band. 
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An analogous development can be carried out in the time domain. A rational polynomial 

representation of the discrete-time transfer function is [30] 
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or  
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Applying the inverse z-transform to equation (2.15) yields the time-domain expression 

 

[ ] [ ] [ ] [ ]mtxamtxatxatx mm −++−++−+ − 11 11 �                 (2.16) 

[ ] [ ] [ ] [ ]ntfbntfbtfbtfb nn −++−++−+= − 11 110 � , 

 

which can be generalised to the MIMO case 

 

[ ] [ ]∑∑
==

−⋅=−⋅
n

k
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k
k ktkt

00

fBxA .                (2.17) 

 

Equation (2.16) and its vector equivalent are referred to as autoregressive with 

exogenous excitation (ARX) models.  

 

Impulse response or free decay measurements are modelled by equation (2.16) after 

setting the RHS to zero. This is the starting point for the polyreference method, least 

squares complex exponential methods (LSCE), and Ibrahim Time Domain (ITD) 

method [34].  

 

The polyreference method solves the coefficients of the system [34] 
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( ) ( ) ( ) ( )kpkkk p ehAhAh =−++−+ − 01 1 � ,               (2.18) 

 

where ( )kh  is the kth sample of an impulse response function (IRF). The modal 

parameters are obtained from the eigenvalue decomposition of the companion matrix, 

which is formed from the estimated coefficients: 
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where P is a diagonal matrix of discrete-time eigenvalues corresponding to vibration 

modes, and srT
r eλµ =  is a diagonal element. ′  corresponds to noise eigenvalues, which 

result from setting the order of equation (2.18) higher than the number of modes 

represented in measured data. Mode shapes are obtained from 
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where iΠ  is the ith column of . 

 

The LSCE method is the same as the polyreference method, but can be derived from the 

fact that IRFs are sums of complex exponential functions [30]. The ITD method 

involves setting up a system of equations from impulse response data [30] 
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for a number of response measurement points, i, time instants t, and delays, τ, such that 
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or  

 

X =τ                             (2.24) 

 

The following system of equations is set up using IRF data at different time delays, τ = 

0,1,2  
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
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= ,               (2.25) 

 

 

and it can be shown [30] that the following eigenvalue problem exists if V1 is non-

singular and there are no repeated eigenvalues.  

 

   VV =−1
12                   (2.26) 

 

Mode shape information is obtained from the upper half of X, and global properties are 

extracted from the eigenvalues. 

 

The eigensystem realisation algorithm (ERA) is another time-domain modal parameter 

estimation algorithm, which has been shown to be a special case of state-space based 

modal parameter estimation [38]. The ERA algorithm is summarised from Petsounis 

and Fassois [39]. 
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A general state-space representation of a dynamic system relating excitation and 

response data is  

   [ ] ( ) [ ] ( ) [ ]ttt fBxAx +=+1 ,                

(2.27) 

   [ ] ( ) [ ] ( ) [ ]ttt xDxCy += , 

where x[t] is the state vector, A, B, C, D, are the state, input, output and direct 

transmission matrices, respectively, whose unknown elements are summarised by T, the 

parameter vector. f[t] is the m-dimensional excitation vector and y[t] is the s-

dimensional response vector. The ERA estimates modal parameters by relating the 

system matrices to a SVD of a Hankel matrix formed from impulse response data;  
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where [ ] [ [ ] [ ] [ ] ]tttt myyyY �
21=  is a vector containing impulse response data, 

yi[t], at time t due to an input at point i. α, β are chosen depending on the number of 

vibration modes and the expected level of noise present in the measured data. 

 

The SVD of the Hankel matrix is  

 

[ ] TSRH =0 ;                  (2.29) 

 

R and S are the matrices of left and right singular vectors, respectively, and 6 is a 

diagonal matrix of singular values. These matrices can be partitioned according to the 

magnitude of singular values; for ideal data, there will be n non-zero singular values 

corresponding to the n vibration modes. Matrices formed from the non-zero singular 

values and the corresponding left and right singular vectors are used in subsequent 

operations. 

 

The state-space system matrices are related to the SVD by the following equations 
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[ ] 2121 1 −− ⋅⋅⋅⋅= SHRA T  

m
T ESB ⋅⋅= − 21                     (2.30) 

21REC ⋅⋅= T
s . 

 

Em and Es are matrices containing zeros except for the top element, which contain 

identity matrices of dimension m × m and s × s, respectively. Modal parameters are 

obtained from the eigenvalue decomposition of a companion matrix formed from the 

state-matrices, similar to equations (2.19) – (2.21). The resulting eigenvector matrix is 

transformed to mode shape data at measurement points by pre-multiplication by the 

output matrix, C, and modal participation factors are obtained via the expression 

BL 1−= . 

 

Studies have shown the effectiveness of the ERA method for cases where the signal-to-

noise ratio (s/n) is favourable [39] and averaging of FRFs can be used to improve the s/n 

of data before transformation to IRFs. Modifications to the ERA method, for example 

the ERA/DC method introduced by Lew et al [40], attempt to address this problem by 

replacing the Hankel matrix by a new matrix with correlation function elements. This is 

similar to response-only methods based on state-space models (with the ERA as a 

special case), and will be discussed in Chapter 8. More recently, a range of subspace 

estimation algorithms have been compared by Abdelghani et al [41] using data 

simulating the dynamic behaviour of a mast structure. These algorithms are more robust 

than the ERA algorithm for non-white noise excitation sequences, and also perform 

more effectively in the presence of measurement noise. More information on state-space 

estimation algorithms can be found in Van Overschee and De Moor [42].  

 

Recall the ARX model in equation (2.17). It can be extended to include a stochastic 

component, w[t], which is white noise and can be considered as the model error or an 

unmeasured disturbance, as indicated in equation (2.31). 
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 An extension of the ARX model involves applying a moving average to w[t] to more 

effectively model non-white noise disturbances, resulting in an autoregressive moving 

average with exogenous excitation (ARMAX) model [43], which is described by 

equation (2.32). 
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A large body of work has been carried out in the area of system identification 

techniques applied to time-series models. In particular, the estimation of deterministic 

ARMA or ARX models, as well as ARMAX models, using a wide range of techniques 

for example least-squares, maximum likelihood, and instrumental variable estimation 

[43, 44]. Studies that apply these techniques to structural dynamics are considered here. 

 

Batill and Hollkamp [45] introduced a two stage algorithm for estimation of ARMA 

(ARX) models. The first stage estimated a higher-order backwards AR model from free 

decay (impulse) responses. The backwards AR model was estimated from reversed 

time-series data; i.e. decaying responses became responses with increasing amplitude. 

The backwards models are distinguished from standard or forwards AR (or ARX) 

models, which are estimated from non-reversed time-series data. The backwards AR 

model enabled vibration poles to be distinguished from spurious numerical poles and 

the vibration poles were used to form a reduced AR model. The MA (or X) matrix of 

the model was estimated using excitation and response data from a second test and the 

reduced AR model. This algorithm was adapted by Hollkamp and Batill [46] into a 

single-stage algorithm estimating a backwards ARMA (ARX) model. The effectiveness 

of the method was demonstrated using experimental data from a composite sailplane.  

 

Cooper [47] also studied the use of backwards models for estimation of modal 

parameters. A number of least-squares estimation schemes were applied to forwards and 

backwards autoregressive models and tested using simulated and experimental impulse 

response data. The experimental results showed that the use of backwards models 

produced accurate estimates of modal parameters with the additional benefit that 

vibration modes could be easily distinguished from numerical modes for models with 

over-specified model orders.  
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Yang et al [34] represented a multiple DOF vibrating system by a discrete-time state-

space model and derived an equivalent ARX model. It was shown that ARMAX-based 

and polyreference algorithms followed from the basic MIMO ARX representation by 

adopting a particular noise model and excitation. The relationships between the MIMO 

ARX representation and the ITD, and ERA were also established. 

 

Yun et al [48] discussed a sequential prediction error method for estimating ARMAX 

models. This is an iterative technique based on minimising the prediction error of the 

model and required initial guesses for unknown model parameters.  A number of 

different data-weighting methods were considered, as well as a square-root method for 

estimating the gain matrix. The authors concluded that these methods improve the 

convergence properties of the algorithm in conditions where initial parameter guesses 

were poor and where significant noise was present in measured excitation and response 

signals. A further conclusion was that the technique was appropriate for structures with 

many DOFs, when only a few measurements were taken; however, only a 2 DOF 

simulated system and an experimental study of a model 3-story building (considering 3 

modes) were discussed. 

 

Hu et al [49] derived the relationship between a physical model of a dynamic system 

and a discrete-time state-space representation. They applied an estimation algorithm 

using a matrix of covariance functions similar to the Modified Yule-Walker equations 

[43, 44]. One disadvantage of these types of algorithms is that the calculation of 

covariance matrices can decrease the conditioning of the linear system of equations due 

to the squaring of the data. These problems and alternative estimation schemes are well-

known, see for example Golub and Van Loan[50], and Ljung [43]. Hu et al [49] tested 

their algorithm with a 3-DOF system using measured excitation and response data and 

also for the case where excitation data were not explicitly measured but are assumed to 

be white noise. Accurate modal parameters were obtained for the I/O case and it was 

found the algorithm could identify modal parameters for the response-only case, but 

results were less accurate than the I/O analysis. A method to quantify the contribution of 

vibration modes to the vibration response, using ‘dispersion coefficients’, was discussed 

and it was noted that modes with a poor response were affected by measurement noise 

to a greater extent than modes with good vibration response. 
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Park and Kim [51] introduced two parameterisations of an ARMAX model structure for 

modal parameter estimation. One parameterisation followed from the fact that the AR 

matrix models the global modal parameters (frequency and damping) and therefore a 

scalar AR polynomial was used to describe global modal parameters for every 

measurement point. The second parameterisation estimated a different AR polynomial 

for each response measurement point, i.e. the MIMO problem was separated into a 

series of MISO problems. Parameters of the ARMAX model were estimated by an 

approximate maximum likelihood algorithm and this method required initial values for 

the model parameters, which were obtained by a least-squares method. The Akaike 

Information Criterion (AIC) was employed for model order selection. The performance 

of the algorithm using the two model structures was assessed with data simulating the 

behaviour of a 3-DOF structure. Results were found to be of good accuracy with 

approximately 5% random measurement noise added to the response measurements. It 

was found that separating the MIMO model into MISO models lead to a slight decrease 

in the accuracy of the estimated modal parameters. 

 

The development and study of a linear multistage (LMS) estimation algorithm for 

MIMO ARMAX model structures was reported by Fassois and colleagues [52-56]. The 

algorithm was based around least-squares estimation and a series of linear operations, 

which addressed the computational complexity of some maximum likelihood methods 

and included guaranteed stability of the estimated model. A feature of this method was 

the use of dispersion analysis [55, 57] to identify the contribution of an estimated mode 

to the vibration response, and this could be used as an aid for model order selection and 

for distinguishing between vibration and spurious numerical modes. This algorithm is 

discussed in more detail in Chapter 5. Variations of the algorithm applied to ARMA 

(ARX) [58] models; using correlation functions [59, 60], and a recursive least-squares 

variation [61, 62] have also been reported. These studies show the benefit of including a 

moving average (MA) description of the model noise, and the most recent work by 

Florakis et al [56] is one of the few studies to demonstrate the feasibility of ARX or 

ARMAX modelling of more complex structures that include difficult characteristics like 

closely spaced modes and local modes, which have poor responses at a number of 

measurement points. The performance of this method was further assessed by Petsounis 

and Fassois [39] using data simulating the behaviour of a train car and compared 

favourably with other stochastic methods, namely the prediction error method and 
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instrumental variable methods, and also deterministic methods, for example, the ERA. 

The effects of coloured measurement noise were also assessed and the LMS algorithm 

produced acceptable results. 

 

The modal analysis algorithms discussed above assume that the measured excitation is 

the only excitation of the system, and that the s/n of measured signals is favourable. 

Most studies have investigated the effects of added measurement noise and strategies to 

improve the signal-to-noise ratio are well known. Spectral averaging improves s/n for 

FRF-based modal analysis and similar improvements occur in correlation functions 

calculated with spectra. Model order over-specification accompanied by SVD or QR-

based LS estimation is used to account for noisy measurements used with time-domain 

algorithms. As noted above, ARMAX and state-space model structures are more robust 

to measurement noise because these models explicitly model the noise components. 

Maximum likelihood estimation has also been shown to perform well with noisy FRFs 

[63, 64]. 

 

More recently, operational modal analysis methods have been developed for cases 

where measurement of excitation forces is not possible. This is discussed in detail in 

Chapter 8. A situation that has not been widely considered is when modal analysis with 

measured excitations is carried out in the presence of unmeasured excitations. While 

operation modal analysis methods have been shown to be quite successful [65] they do 

not directly yield scaled mode shapes and make assumptions about the nature of the 

excitation sources [38]. In-flight testing of a fixed-wing aircraft was discussed by Mevel 

et al [24] and this is a situation where significant ambient (and unmeasurable) 

excitations were applied to a structure. This study concluded that if it was possible to 

apply a measurable excitation, then I/O modal analysis yielded more accurate modal 

parameters than operational modal analysis methods, but the difference in accuracy 

became less significant for longer data records. Stochastic subspace (state-space based 

estimation) and a frequency domain method were used for modal parameter estimation. 

A frequency domain method that explicitly modelled the effects of unmeasured 

excitation was developed by Cauberghe et al [66] and included terms to model transient 

effects in signals, which mitigated the effect of leakage in frequency-domain 

representation of non-periodic signals. Another frequency domain method was outlined 

by Vanlanduit et al [67]. This method used periodic measured excitation signals and 
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separated the response due to these signals from the response due to unmeasured 

excitation in the frequency domain. The periodic responses were represented on 

particular frequency lines, while the unmeasured excitations, assumed to be reasonably 

flat and correlated in the frequency domain (e.g. an impulse) produced responses that 

were represented at all frequency lines. This study used the estimated FRF matrix in an 

inverse problem to identify the unmeasured impulse excitation, assuming it was applied 

at a measurement point.  

 

2.3 Time-Domain Averaging 

This section introduces the concept of time-domain (synchronous) averaging and 

discusses its effectiveness in attenuating wide- and narrow-band random noise and also 

periodic components of a signal.  

 

It is well known that time-domain averaging is effective in improving the signal-to-

noise ratio of periodic signals. Ernst [68] carried out a theoretical analysis of time-

domain averaging using statistical methods applied to time-domain signals. For additive 

white noise, the signal-to-noise ratio was shown to improve by a factor of M/1 , 

where M is the number of averages. Analysis investigating the attenuation of non-white 

noise showed that the M/1  rule was “qualitatively” correct given that the noise 

exhibited a reasonably smooth power spectrum.  

 

Braun [69] analysed time-domain averaging using the concept of filtering in the 

frequency domain. A more intuitive model of time-domain averaging was introduced 

and results describing the attenuation of broad- and narrow-band random noise, and also 

periodic components, were derived. The effects of triggering error and jitter, which can 

arise in the extraction of periodic components of signals generated by rotating 

machinery including gear trains [70], were also discussed. In many cases the measured 

signal has to be re-sampled, which often requires interpolation between the original 

samples, or alternatively, the sampling of the original signal is governed by a trigger 

synchronised to a particular rotating element.  Liu et al [71] investigated the effects of 

period cutting error in cyclic-averaging (where no time elapses between averaged 

sections) and proposed a strategy to reduce the effects of period cutting error. 
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Triggering error, jitter, and period cutting error in general result in the attenuation of the 

periodic components of interest. For the case of modal analysis, these effects can be 

minimised by accurate triggering of the data acquisition system by the periodic 

excitation signal.  

 

McFadden [72] proposed an alternative frequency domain model for time-domain 

averaging for application in the frequency domain. This alternative model included the 

effects of a finite time series by applying a rectangular window and guaranteed a 

periodic averaged waveform by sampling in the frequency domain. 

 

The following discussion of the properties of synchronous averaging is based on that by 

Braun [69, 70]. 

 

Time-domain averaging of a discrete time signal x[t], t = 0, …, N-1, with sampling 

period Ts is described by 
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where y[t] is the averaged signal, M the number of averages, and Tp = p⋅Ts is the period 

of the signal component to be extracted. Note that no time elapses between the sections 

of record to be averaged, as shown in figure 2.1. 

 

 
Figure 2.1 Cyclic time-domain averaging. Tp is the period of the averaged record. 
 

The z-transform is used to derive the transfer function  
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which is evaluated along the unit circle, sTjez ω= , to obtain the frequency and phase 

response in terms of frequency f = ω/(2π) Hz: 
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 fp = 1/(p·Ts) is the frequency of the signal component to be extracted. A plot of the 

frequency response (equation (2.35)) is shown in figure 2.2 for M = 4 and M = 10. The 

frequency response is a comb filter with peaks of the main lobes located at integer 

multiples of fp Hz (up to the Nyquist frequency), which have unity gain and zero phase 

shift. Increasing M reduces the bandwidth of the main lobes, increases the number of 

side lobes, and also increases the attenuation of frequency components away from the 

side lobes. 

 
Figure 2.2 Frequency response of time-domain averaging: (a) 4 averages (top figure); 
(b) 10 averages. 
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Braun [69] calculated the equivalent noise bandwidth for the comb filter to be 1/M and 

it follows that the RMS level of broad-band noise is reduced by a factor of M . 

Therefore, for a desired reduction in noise, α , the number of averages is set to [70] 

 

  2

1
α

>M .                   (2.37)

  

The rejection of narrow-band noise and periodic signals is easily determined from 

equation (2.35). For a periodic noise at a single frequency, the number of averages can 

be set so that a zero of the comb filter occurs at the frequency of noise. For more 

complex signals, M can be chosen such that the attenuation of the noise components is 

set to a desirable level. The peaks of the side lobes are scaled by  ( )( )pffM /sin/1 ⋅⋅ π  

and the number of averages required for a desired noise reduction is therefore [70] 

 

( )( )pffM /sin/1 ⋅⋅> πα .                 (2.38) 

 

It should be noted that equation (2.38) applies to cyclic averaging; i.e. where no time 

elapses between consecutive time records. The attenuation of random components by 

time domain averaging does not change for the case where an arbitrary time period 

separates averaged record sections; however, the attenuation of periodic components is 

only approximated by equations (2.35) and (2.36), depending on the distribution of time 

separating sections of time record to be averaged. 

 

2.4 Experimental Case Study I 

The aim of this study was to investigate the feasibility of using measured periodic 

excitation and synchronous averaging for the purpose of modal analysis of a simple 

structure in the presence of unmeasured excitations. A further aim was to investigate the 

use of piezoceramic actuators for structural excitation. 

 

An aluminium beam of dimensions 1.050 × 0.05 × 0.003m was suspended with string to 

approximate free-free conditions in the transverse direction. Figure 2.3 shows the 

suspended beam and a schematic of the apparatus is shown in figure 2.4.   
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Figure 2.3 Aluminium beam suspended to approximate free-free conditions in the 
transverse direction in the horizontal plane. Piezoceramic actuators are located on the 
left-hand side and are covered by tape. 
 

 

 

 

 

 

 

 

Figure 2.4 Schematic of experimental apparatus. 
 

The two 70×25×1mm piezoceramic plates were bonded to each major surface of the 

beam; 60mm from one end, and centred in the lateral direction, as shown in figure 2.4. 

The surface of the beam was coated with etch primer and the plates were bonded with a 

thin layer of epoxy. For each experiment, response measurements were made at thirty 

equally spaced points along the length of the beam using a Brüel&Kjær (B&K) 4374 

accelerometer. B&K 2032 FFT analysers were used to calculate FRFs and also to 

generate the excitation signals for each experiment: either random noise or impulse 

signals. These signals were used as a measure of the excitation force for experiments 

using piezoceramic actuators for measured excitation. One of the aims of this set of 

experiments was to investigate whether this assumption allowed estimation of accurate 

modal parameters. A constant-gain high voltage amplifier was used to drive the 

piezoceramic actuators. Modal parameters were estimated using a global RFLS method, 

implemented in the Spectral Dynamics STAR Modal v. 5.23 software. This involved 

identifying resonant peaks from the averaged imaginary part of measured FRFs and 

selecting bands around these peaks for curve fitting. Estimates of global properties were 

Piezoceramic plates driven 
by high voltage amplifiers 
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obtained first, and the averaged estimates were used in a second stage that yielded 

transfer function residues. 

 

An impact hammer test was carried out to establish a baseline set of results that could be 

compared with modal parameters estimated using piezoceramic actuators for excitation. 

B&K 2635 charge amplifiers were used to condition (2 Hz high-pass filter, 3 kHz low-

pass filter) accelerometer and impact hammer signals. FRFs were calculated with a 

frequency range of 400 Hz and a resolution of 0.5 Hz. Up to twenty spectral averages 

were taken for each measurement point; a transient window was applied to the 

excitation signal, and an exponential window with time constant 0.5 seconds was 

applied to the response measurements. Equation (2.39) was used to correct estimated 

damping values for the additional damping imposed by the exponential window [73].  

 

windowmeasuredcorrected ςςς 111 −=                 (2.39) 

 

Table 2.1 lists estimated modal frequencies from the impact hammer test. 

 

Mode 1 2 3 4 5 6 7 
Frequency 

(Hz) 12.81 36.04 71.78 119.74 180.25 253.64 339.69 

Table 2.1 Modal frequencies estimated from impact hammer test. 
 

Further experiments were carried out using the piezoceramic plates for excitation and a 

summary of all experiments and noise conditions is included in table 2.2. The listed 

noise level is the RMS of the noise signal divided by the amplitude of the impulse 

excitation signal. As impulse excitation was used for the measured excitation, an 

exponential window (time constant 0.5 seconds) was applied to the response 

measurements and the estimated damping was corrected as for the impact hammer test. 

 

A finite element model (FEM) of the beam was developed in ANSYS to predict the 

undamped natural frequencies and normal mode shapes of the beam. The aluminium 

beam and piezoceramic actuators were modelled with 840 and 56 brick elements 

(solid95), respectively, and ideal bonding between the actuators and the beam was 

assumed. Material properties for the aluminium beam were density: 2650 kg/m3; 

Young’s modulus: 62 GPa; and Poisson’s ratio: 0.33. The piezoceramic actuators were 
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approximated as orthotropic materials with Young’ s modulus: Ex = Ey = 99 GPa; Ez = 

118 GPa; Poisson’ s ratio: νxy = νyz = νxz = 0.31; shear modulus: Gxy
 = 37.8 GPa; Gyz

 = 

Gxz
 = 4.5 GPa; and density: 7600 kg/m3.   

 

Experiment Description 
Hammer Impact hammer test, up to 20 averages 
Piezo 
(random) 

Random noise excitation using one piezoceramic actuator, 15 averages. 

Piezo 
(impulse) 

Impulse excitation using one piezoceramic actuator, 40 averages 

0.125/20 Measured impulse excitation by one piezoceramic actuator;  
unmeasured random excitation by second piezoceramic actuator; 
20 averages; unmeasured excitation level 0.125. 

0.125/40 Measured impulse excitation by one piezoceramic actuator;  
unmeasured random excitation by second piezoceramic actuator; 
40 averages; unmeasured excitation level 0.125. 

0.125/80 Measured impulse excitation by one piezoceramic actuator;  
unmeasured random excitation by second piezoceramic actuator; 
80 averages; unmeasured excitation level 0.125. 

0. 25/80 Measured impulse excitation by one piezoceramic actuator;  
unmeasured random excitation by second piezoceramic actuator; 
80 averages; unmeasured excitation level 0.25. 

Per/40 Measured impulse excitation by one piezoceramic actuator;  
unmeasured periodic excitation (95Hz) by second piezoceramic 
actuator; 
40 averages; unmeasured excitation level 0.354. 

Per/80 Measured impulse excitation by one piezoceramic actuator;  
unmeasured periodic excitation (95Hz) by second piezoceramic 
actuator; 
80 averages; unmeasured excitation level 0.354. 

Table 2.2 Summary of free-free aluminium beam experiments 
 

2.4.1 Impact Hammer and Piezoceramic Actuator Experiments 

Results from tests applying measured impulse and random excitation using one 

piezoceramic actuator were compared with impact hammer results in order to assess the 

effectiveness of using piezoceramic actuators for structural excitation. Differences in 

modal frequencies, compared to the hammer test, are plotted in figure 2.5. There is a 

small bias present between the FEM and experimental results and this was due to 

reference values of Young’ s modulus being used in the FEM. Results from the 

experiments show very good agreement except for the first mode and this trend is 

reflected in the damping estimates, shown in figure 2.6. Damping results from the 

impulse excitation and hammer experiments were corrected to account for the 
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exponential window. Differences can be seen when compared to random noise 

excitation for modes 1- 4 and the Hanning window used for the random excitation may 

have resulted in higher damping being estimated. 

 
Figure 2.5 Error in modal frequencies for random and impulse excitation (piezoceramic 
actuator), and FEM results compared to impact hammer results. 
 

 
Figure 2.6 Modal damping estimates for random and impulse excitation (piezoceramic 
actuator), and impact hammer experiments. 
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The modal assurance criterion is a measure of correlation between two mode shapes, 

and is defined in equation (2.40) for normal modes [74]. 
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Figure 2.7 shows MAC values comparing mode shape estimated from the piezo 

(random), piezo (impulse), and impact tests with FEM mode shapes. 

 

 
Figure 2.7 MAC comparing mode shapes from impact hammer, piezo (random), and 
piezo (impulse) experiments with FEM results. 
 

A disadvantage of the MAC value is that large differences in modal amplitude at a small 

number of measurement points can significantly lower the MAC, and this is the case for 

modes 5, 6, and 7 in the hammer test. MAC values for the first four modes show good 

agreement with FEM results. The modes 3 – 7 estimated in the piezo (random) 

experiments included errors at a small number of measurement points; however, this 

was not the case for mode 1 results obtained from piezo (random) and piezo (impulse) 

excitation. The poor mode shape estimates, combined with the relatively poor frequency 

and damping results suggested that the piezoceramic actuators did not effectively excite 

the beam for the first mode, and to a lesser extent the second mode. This was expected 
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because the piezoceramic actuators apply distributed moments to the beam over the 

contact area of the actuators. The contact area is small relative to the deflection of the 

first two transverse bending modes and the moment applied by the actuators will not 

effectively excite the first two modes. However, the results of these experiments 

suggested that the piezoceramic actuators could be used in further experiments 

investigating the effects of unmeasured excitations. The use of piezoceramic actuators 

in experimental modal analysis will be discussed in detail in Chapter 4. 

 

2.4.2 Unmeasured Random Excitation 

Figures 2.8 – 2.10 show modal parameters estimated for experiments involving 

unmeasured random excitation and different numbers of averages. Frequency and 

damping results agree reasonably well with impact hammer values, except for the first 

mode, and suggest that the RFLS modal parameter estimation algorithm is effective in 

estimating frequency and damping results for moderate levels of unmeasured random 

excitation. 

 

 
Figure 2.8 Modal frequency results from experiments with unmeasured random 
excitation compared with impact hammer results. 
 



 30 

 
Figure 2.9 Modal damping results from impact hammer test and experiments with 
unmeasured random excitation. 
 

 
Figure 2.10 MAC comparing mode shapes from experiments with unmeasured random 
excitation with FEM results. 
 

The MAC values shown in figure 2.10 more clearly show the effect of increasing 

numbers of averages. Mode shapes are estimated poorly for the 0.125/20 and 0.125/40 

experiments, but increasing the number of averages to eighty leads to acceptable 

accuracy of mode shapes for modes 2 - 7, as shown by the 0.125/80 results. Doubling 
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the level of noise while maintaining the number of averages leads to poorly estimated 

mode shapes. The attenuation of broad-band noise by synchronous averaging, discussed 

in section 2.3, suggests that the noise present in the 0.250/80 experiments is 

approximately equal in level to that of the 0.125/20 experiments, and mode shape 

estimates obtained from each experiment are similarly poor. The RFLS technique, like 

other modal parameter estimation algorithms discussed in section 2.2, does not 

explicitly model the effects of measurement noise or unmeasured excitations and 

therefore any amount of noise can be expected to bias results. 

 

2.4.3 Unmeasured Periodic Excitation 

Further tests were carried out using impulse excitation and synchronous averaging in the 

presence of unmeasured periodic excitation under the conditions described in table 2.2 

for Per/40 and Per/80 experiments. The estimated modal parameters are plotted in 

figures 2.11 – 2.13. Frequency and damping results reflect conclusions drawn in 

previous experiments and MAC values show accurate mode shapes were estimated for 

modes 3 – 7.  

 

 
Figure 2.11 Modal frequency results from experiments with unmeasured periodic 
excitation (40 and 80 averages) compared with impact hammer results. 
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Figure 2.12 Modal damping results from impact hammer test and experiments with 
unmeasured periodic excitation (40 and 80 averages). 
 

 
Figure 2.13 MAC comparing mode shapes from experiments with unmeasured periodic 
excitation (40 and 80 averages) with FEM results. 
 

Good accuracy was expected for per/40 and per/80 tests due to the high number of 

averages and because the unmeasured periodic excitation occurred midway between 
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modes three and four, and could be excluded from curve-fitting bands. The most 

significant difficulty in dealing with unmeasured periodic excitations is distinguishing 

the responses from responses due to vibration modes. In the absence of a priori 

knowledge of excitation frequencies, the RFLS provides no systematic means of 

identifying the effects of unmeasured periodic excitation.  

 

2.5 Experimental Case Study II 

The second experimental study involved modal testing of a ‘helicopter-like’  structure, 

which was suspended from elastic cord to approximate free-free conditions. The 

suspended structure is shown in figure 2.14 and two B&K 4809 shakers can be seen, 

which were used for applying measured impulse excitation and unmeasured random 

excitations. 

 
Figure 2.14 Suspended helicopter-like structure used for the second experimental case 
study. Two shakers can be seen: (1) measured impulse excitation; (2) unmeasured 
random excitation. 
 

The helicopter-like structure had approximate total dimensions of 986 × 366 × 223 mm; 

a mass of 11.53 kg; and was constructed of steel beams welded together.  

 

Three experiments were conducted using impulse excitation with different levels of 

unmeasured excitation and are summarised in table 2.3. The listed unmeasured 

excitation level is the RMS of the unmeasured excitation divided by the amplitude of 

the measured impulse excitation. 

1 
2 
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Experiment Description 
Impulse Measured impulse excitation (shaker 1); 20 averages. 
0.125/20 Measured impulse excitation (shaker 1); unmeasured random excitation 

(shaker 2); 20 averages; unmeasured excitation level 0.125. 
0.625/30 Measured impulse excitation (shaker 1); unmeasured random excitation 

(shaker 2); 30 averages; unmeasured excitation level 0.625. 
Table 2.3 Summary of experiments on helicopter-like structure. 
 

The two shakers were each driven by a B&K 2706 power amplifier and a single B&K 

4374 accelerometer was used for taking acceleration response measurements at 179 

points on the structure. A B&K 2635 charge amplifier applied high and low pass 

filtering; 3db cut-offs 2Hz, and 1kHz, respectively. FRFs were calculated by a 

HP3566A FFT analyser and global RFLS modal parameter estimation of modal 

parameters was carried out using the STAR Modal v5.23 software.  

 

Table 2.4 lists the estimated modal frequencies from the impulse experiment, and figure 

2.15 shows the natural frequency error for the 0.125/20 and 0.625/30 experiments 

compared to the impulse experiment. Very little difference is observed in estimated 

frequencies between the experiments. Similarly, damping results from each experiment, 

plotted in figure 2.16, show good agreement. 

 

Mode 1 2 3 4 5 6 7 8 
Frequency 

(Hz) 74.360 76.886 85.147 143.14 159.71 185.76 199.28 238.31 

Mode 9 10 11 12 13 14 15 16 
Frequency 

(Hz) 244.14 262.47 276.03 277.80 281.88 297.49 313.93 317.84 

Mode 17 18 19 20 21 22   
Frequency 

(Hz) 322.26 341.73 356.81 363.73 367.26 380.35   

Table 2.4 Estimated natural frequencies from Impulse experiment. 
 

Mode shapes from 0.125/20 and 0.625/30 experiments are compared with results from 

the Impulse experiment in figure 2.17.  Better estimates are typically obtained from the 

0.125/20 experiment than for 0.625/30 experiment, which is expected given the relative 

levels of unmeasured excitation and the numbers of averages used in each test.  
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Figure 2.15 Frequency error for 0.125/20 and 0.625/30 experiments compared with 
Impulse experiment. 
 

 
Figure 2.16 Modal damping estimated from Impulse, 0.125/20, and 0.625/30 
experiments. 
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Figure 2.17 MAC comparing mode shapes from 0.125/20, and 0.625/30 experiments 
with results from Impulse experiment. 
 

The addition of the second shaker may have constrained the helicopter-like structure in 

the horizontal plane, due to the shaker’ s mass and rigid coupling. Both shakers were 

suspended using elastic cord to minimise this effect. The good agreement between 

frequency and damping results suggests that the addition of the second shaker did not 

significantly affect estimated dynamic properties. In order to further investigate this, 

modal parameters were calculated using measurements in the vertical direction only; i.e. 

in the direction of the excitations. Coupling between modal displacements in the three 

principal directions was expected, but discounting DOFs in the horizontal plane was an 

attempt to minimise the effect of any constrained motions in that plane and also to 

eliminate a number of measurement points that were observed to have poor responses. 

MAC values comparing modal displacements in the vertical (z) direction from 

experiments 0.125/20 and 0.625/30 experiments with those from the Impulse 

experiments are shown in figure 2.18. A pattern of results similar to that shown in figure 

2.17 (results for all measurement points) is apparent, although the well-correlated 

modes have marginally higher MAC values. This is most likely due to the omission of 

measurement points with poor responses, hence relatively inaccurate mode shape 

estimates.  
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Figure 2.18 MAC comparing z-direction modal displacements from 0.125/20, and 
0.625/30 experiments with results from Impulse experiment. 
 

Periodic impulsive excitation has been used in conjunction with synchronous averaging; 

however, any other periodic excitation could be used, for example a pseudo-random 

sequence, burst random, or a low crest-factor sum of sinusoids. An advantage of such 

signals over impulse signals is the distribution of power of over a wide frequency band 

accompanied by a relatively low crest factor (although it could be argued random 

signals may include outliers contributing to high crest-factor). In addition, measurement 

noise and unmeasured excitations will reduce the s/n uniformly across the time record 

compared to impulse response records, which obviously decay with time. The use of 

periodic excitation signals is an advantage with frequency domain methods as it reduces 

bias errors (leakage) in discrete Fourier transforms (DFT), given that an integer number 

of periods of the excitation signal (hence response signal) occur within the time record.  

 

2.6 Conclusions 

The theoretical concepts of modal parameter estimation have been summarised in a 

review of common techniques. A variety of mathematical models are used in the 

algorithms, and while a significant amount of literature discusses the application of 

techniques for cases where excitation and response measurements are corrupted with 
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measurement noise, only a few studies investigate techniques for dealing with cases 

where significant unmeasured excitation is present in addition to measured excitations. 

Time-domain averaging is a signal processing method commonly used for improving 

the signal-to-noise ratio in modal analysis and a frequency domain model of time-

domain averaging has been reviewed.  

 

Two experimental case studies applied periodic impulsive excitation and synchronous 

averaging in modal testing where unmeasured excitation is present. The first case 

considered a free-free aluminium beam excited with piezoceramic actuators. It was 

shown that piezoceramic actuators effectively excited higher order modes but did not 

excite the first mode well because of the limited deflection of the low-order modes in 

the contact area of the piezoceramic actuators. Approximating the excitation force by 

the applied voltage was found to yield accurate FRFs, hence estimated modal 

parameters. The use of piezoceramic actuators for structural excitation in modal analysis 

will be discussed in detail in Chapter 4.  

 

Global RFLS modal parameter estimation was found to yield reasonably accurate modal 

parameters for low levels of unmeasured random excitation, while averaging time 

records synchronised with the excitation signal improved the accuracy of the modal 

parameter estimates. Unmeasured periodic excitation at frequencies away from modal 

frequencies did not affect modal parameter estimates as long as the periodic response 

was not mistaken for a modal frequency. 

 

A second experimental case further demonstrated the use of periodic impulsive 

excitation and synchronous averaging for a more complex structure: a helicopter-like 

structure. Modal frequency and damping information could be accurately estimated for 

moderate levels of noise (0.625); though estimated mode shapes were typically poor. 

The coupling between the electrodynamic shakers and the structure was shown to only 

have a marginal influence on the estimated mode shapes. 

 

The experimental case studies in this chapter have shown that periodic impulsive 

excitation (or more generally, periodic excitation) is effective in improving the signal-

to-noise ratio, hence the estimated modal parameters. The RFLS modal parameter 

estimation algorithm assumes that all sources of structural excitation are measured and 
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noise present in excitation and response measurements is minimal. An alternative modal 

parameter estimation algorithm, which explicitly models the effect of unmeasured 

excitations, as well as measurement noise, will be introduced in Chapter 5. In the 

following chapter, the use of experimentally determined modal parameters for 

validation and updating of finite element models is investigated. 
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Chapter 3  Finite Element Model Updating of a Helicopter-

Like Structure 

 

3.1 Introduction 

Finite element models (FEMs) are typically used in the design process of helicopter 

structures and the introduction in Chapter 1 suggested that the correlation between an 

initial FEM and experimental data is often poor. This can arise due to inaccurate 

experimental data or an inadequate FEM. Some limitations of existing modal analysis 

methods were highlighted in Chapter 2. Factors that contribute to poor accuracy of 

FEMs include poor modelling of the physical components, for example omitting 

difficult-to-model components like structural joints. Changes in the values of physical 

parameters and material properties can alter FEM predictions significantly and are also 

a potential source of error. Nevertheless, FEMs present several advantages over 

experimental procedures and approximate analytical models. Experimentation is usually 

case specific and therefore multiple experiments are required to obtain results that fully 

describe the behaviour in a number of configurations or after structural modification. 

Furthermore, experiments are often expensive, time consuming and in some cases not 

practical due to safety issues or operational reasons. The flexibility of FEMs allows 

complex structures to be considered more efficiently than analytical models, and 

analytical models are typically limited to representative cases with relatively simple 

solutions. 

 

A necessary step to improve the accuracy of FEMs is the use of experimental results to 

validate or update the FEM. The most basic approach is the use of engineering 

judgement to modify modal parameters, based on the correlation of one or two 

properties, for example the natural frequencies of dominant modes. More systematic 

approaches to model updating have been proposed and these can be automated and 

implemented in software. In this chapter, three case studies using experimental modal 

parameters to update FEMs are discussed. 
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Mottershead and Friswell [75] produced a comprehensive review of model updating 

theory outlining some of the difficult issues encountered: incompleteness of 

experimental data; i.e. due to a finite frequency range, or poorly excited modes; limited 

numbers of experimental measurement points compared to numerical model DOFs; and 

numerical issues arising from the highly undetermined nature of the model-updating 

problem. Model updating methods were categorised as representation model techniques 

or penalty techniques. Representation model techniques modify the FEM such that it 

exactly models measured (therefore incomplete) modal data and penalty techniques 

maximise the correlation between experimental and FEM data by adjusting FEM 

parameters according to a penalty function.  

 

A series of studies have investigated the penalty technique applied to a simple structure 

[76]. The effect of different response parameters in the penalty (objective) function 

were reported: minimisation of natural frequency errors [77], natural frequency and 

mode shape errors [12], natural frequency and anti-resonance errors [8], mode shape, 

natural frequency and FRF data errors [9]. These methods effectively updated a FEM 

resulting in better correlation with experimental data. This was the first goal, and further 

assessment of the methods discussed in these studies involved predicting the effect of 

structural modification using the updated model. Improved correlation between 

experimental modal parameters from a modified structure and those from a similarly 

modified updated FEM was observed. This was compared with the correlation achieved 

by non-updated modified FEMs. Similar results were reported by Bohle and Fritzen 

[78], who used minimisation of natural frequency and mode shape errors for model 

updating. Identification of modelling errors in the FEM using error localisation 

techniques was also discussed in this study. 

 

Model updating based on genetic algorithms has been considered by Levin and Lievin 

[79], and Dunn [10], and Lu and Tu [80] introduced a neural network approach. These 

methods are an alternative way to deal with the complex relationship between FEM 

parameters and measured response data. Penalty methods, discussed above, typically 

linearise the sensitivity functions, which relate a change in a set of FEM parameters to a 

change in the measured response.  
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Göge [11] reported on model updating of a civil aircraft structure using the classical 

sensitivity approach, which minimised modal frequency and mode shape errors. Joints 

were identified as sources of error in the FEM due to the difficulty of modelling welded, 

riveted, and bolted joints, in such a large structure. The updating procedure was judged 

to be successful as good correlation between experimental and FEM modal parameters 

was achieved in the active frequency range as well as for modal parameters outside the 

active frequency range. The active frequency range included modes used in the updating 

process. The updated FEM also predicted driving point FRFs that showed good 

correlation with measured data. 

 

In this chapter, the use of experimental data to update a FEM of a helicopter-like 

structure is discussed. The experimental apparatus, instrumentation, the range of 

experiments, and curve fitting of experimental data are described in section 3.2. 

Formulation of the FEM and the updating procedure is described in sections 3.3 and 3.4, 

respectively. Results are discussed in section 3.5 and concluding remarks are made in 

section 3.6. 

 

3.2 Experimental Modal Analysis of a Helicopter-Like Structure 

The helicopter-like structure used for these experiments, shown in figure 3.1(a), 

consisted of a primary structure made up of bar and tube sections and a secondary 

structure consisting of steel sheet spot welded to the primary structure. Elastic cords 

were used to suspend the helicopter-like structure, as shown in figure 3.1(a), and 

preliminary testing indicated that the natural frequencies of the rigid-body vibration 

modes were less than 20% of the natural frequency of the first elastic vibrational mode. 

The structure was excited at 134 points using a B&K 8202 impact hammer and fixed 

response measurements in the direction of the three principal axes were taken using 

three B&K 4374 mono-axial accelerometers with preliminary signal conditioning 

applied using B&K 2635 charge amplifiers (high-pass filter cut-off 2Hz, low-pass filter 

cut-off 3kHz). A plastic tip was used on the impact hammer to provide a spectral input 

of up to approximately 2kHz [81]. The excitation points and position of the 

accelerometers are shown in figure 3.1(b). 
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Figure 3.1 (a) Helicopter-like structure used for case 1 (EMA1) experiments. (b) Wire-
frame model of helicopter-like structure showing excitation points (dots) and response 
measurement points (arrows).  
 

Data acquisition and signal processing was carried out using a Hewlett-Packard HP 

3566A FFT analyser. Measurement parameters for the test were: analysis bandwidth 

400Hz; frequency resolution 0.5Hz; transient and exponential weighting (time constant 

0.5 seconds) on excitation and response signals respectively, with 5 averages per 

measurement. The software package STAR Modal v. 5.23 was used to curve fit the FRF 

data and extract the modal parameters using a global RFLS algorithm. 

 

Three experiments were conducted with the helicopter-like structure in a different 

configuration for each experiment.  

3.2.1 Case 1: Helicopter-like structure with panels (EMA1) 

The first configuration was the helicopter-like structure with panels, shown in figure 

3.1(a). Modal frequency results are listed in table 3.1 for the first 19 modes.  

 

3.2.2 Case 2: Helicopter-like structure with panels removed (EMA2) 

Results for the first experiments were believed to be inaccurate due to the non-linear 

behaviour of the joints between the secondary structure panels and the primary 

structure. The panels were spot welded at points along the edges and the remaining parts 

of the panel in contact with the primary structure rattled against the primary structure. 

This interfered with the assumption that the dynamic behaviour of the structure was 

linear, and therefore limited the accuracy of the experimental data. In order to rectify 

(a) (b) 
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this situation the panels were removed, as shown in figure 3.2.  Modal frequencies for 

this configuration are listed in table 3.1. 

                                        
Figure 3.2 Helicopter-like structure with panels removed used for case 2 (EMA2) 
experiments. 
 

3.2.3 Case 3: Helicopter-like structure with additional mass, panels removed 

(EMA2_m) 

This configuration of the helicopter-like structure is shown in figure 3.3. A steel beam 

of mass 2.09kg, was bonded to the central longitudinal floor member using epoxy. 

Modal frequency results are shown in table 3.1. The steel beam resulted in significant 

changes to the dynamic properties of the structure and this is illustrated by comparing 

FRFs measured at the same point in EMA2 and EMA2_m experiments, which are 

plotted in figure 3.4. 

 

                                       
Figure 3.3 Helicopter-like structure with panels removed, used for case 3 (EMA2_m) 
experiments. Additional mass (thick steel beam) can be seen bonded to the central-
longitudinal floor member. 
 

 

Steel beam 
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 Modal Frequencies (Hz) 
Mode Case 1 

 (EMA1) 
Case 2 

(EMA2) 
Case 3 

(EMA2_m) 
1 100.1 73.92 68.04 
2 171.6 77.24 73.1 
3 195.3 85.1 80.75 
4 197.3 143.4 148.09 
5 222.6 164.87 152.48 
6 237.3 185.53 154.05 
7 247 201.14 188.99 
8 267.5 238.5 191.55 
9 273.4 244.3 220.44 
10 290.1 262.62 235.74 
11 303.6 280.38 247.48 
12 326.5 282.28 266.28 
13 328.5 297.58 274.96 
14 347.8 313.9 289.05 
15 352.9 317.14 292.47 
16 358.8 322.08 317.44 
17 371.4 341.22 339.98 
18 378.3 356.62 353.41 
19 387.5 363.6 356.84 

Table 3.1 Modal frequency results from experimental modal analysis, cases 1 – 3. 
 

 
Figure 3.4 FRFs for the same measurement points obtained in EMA2 and EMA2_m 
experiments. 
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3.3 FEM of Helicopter-Like Structure 

A preliminary FEM, denoted FEM0, was developed in ANSYS based on the work 

described by Endo and Randall [82]. Beam and solid elements were used for the 

primary structure and shell elements were used to model the floor, roof, and side plates 

of the cargo bay. On the physical structure, the panels were attached to the primary 

structure using spot welds at various points around the perimeter of the panels, however, 

the joints between the panels and the primary structure in FEM0 were modelled as 

continuous seam welds. These were modified to represent spot welds at various points 

around the perimeter of the panels as this was believed to be a significant source of error 

in the model updating work described by Endo and Randall [82]. This new model is 

referred to FEM1. Modifications were made to FEM1 to reflect the modifications made 

to the physical structure, as outlined in section 3.2. The different FEM configurations 

corresponding to each configuration of the physical structure were as follows: 

 

Case 1 (FEM1): Helicopter-like structure with top, side and floor panels, shown in 

figure 3.5. 

Element Types: 

1. Shell63 (679 elements) – Panels 

2. Solid73 (40 elements) – Mass below front floor 

3. Beam4 (978 elements) – Beam sections of primary structure 

 

Case 2 (FEM2): Helicopter-like structure with top, side and floor panels removed, 

shown in figure 3.6. Joints between beam elements modelled with separate elements.  

Element Types: 

1. Solid73 (40 elements) – Mass below front floor 

2. Beam4 (688 elements) – Beam sections of primary structure 

3. Beam4 (226 elements) – Joints of primary structure. 

 

Case 3 (FEM2_m): FEM from case 2 with additional mass, bonded to central 

longitudinal floor member, modelled with solid elements. The FEM for case 3 is shown 

in figure 3.7. 
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Element Types: 

1. Solid73 (96 elements) – Mass below front floor and steel beam bonded to 

central longitudinal floor member 

2. Beam4 (689 elements) – Beam sections of primary structure 

3. Beam4 (226 elements) – Joints of primary structure 

 

Note that the joints of the primary structure in FEM2 and FEM2_m were modelled with 

small beam elements to enable the parameters of these elements to be modified 

independently during model updating. 

 

                             
Figure 3.5 FEM of helicopter-like structure, case 1 (FEM1). 
 

 

                            
Figure 3.6 FEM of helicopter-like structure, case 2 (FEM2). 
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Figure 3.7 FEM of helicopter-like structure, case 3 (FEM2_m). 
 
The initial (i.e. prior to updating) models for cases 1–3 used the same material 

properties for each element type: density = 7850 kg/m3; Young’s modulus = 210 GPa; 

Poisson’s ratio = 0.3. 

 

The block Lanczos solution method was used to extract modal frequencies and mode 

shapes for all cases.  

 

3.4 Finite Element Model Updating 

The aim of the model updating procedure is to improve the correlation of FEM and 

experimental modal analysis (EMA) results. The model updating software package 

FEMtools v2.2 was used for this process. 

 

The model updating procedure involves a number of steps:  

1. Spatial correlation of nodes and points: Nodes from the FEM are paired with 

measurement points used during EMA. Figure 3.8 shows FEM1 of the helicopter-

like structure with coincident node/measurement-point pairs indicated by dots.  

 

2. Shape correlation: This procedure compares the FEM and EMA mode shapes. The 

MAC is a simple means of numerically comparing complex mode shapes, used in 

addition to the comparison of modal frequencies. Automatic mode shape pairing 

identified mode pairs with the highest MAC value above a threshold of 20%.  
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Figure 3.8 EMA model superimposed on FEM1. Coincident node/point pairs are 
indicated by dots. 
 

3. Response selection: Responses are selected from any quantity measured during 

experimental analysis, for example, mass, displacement, modal frequencies or 

stress. Modal frequencies were selected as response parameters as they are functions 

of both mass and stiffness parameters. Modal frequencies were also considered to be 

estimated with the greatest accuracy. 

 

4. Sensitivity analysis and parameter selection: Sensitivity defines the rate of change of 

a FEM response property, in this case modal frequency, as a function of the change 

of a FEM parameter. Sensitivity analysis identifies the most influential parameters 

to modify during model updating, and the inverse of the sensitivity matrix, the gain 

matrix, is used during model updating to calculate the magnitudes of parameter 

changes. Normalised relative sensitivities are independent of units for both the 

response properties and the model parameters, allowing comparison of several 

different parameters. Parameters identified by sensitivity analysis can be modified 

globally or locally; global parameter changes apply to sets of elements while local 

parameter changes apply to individual elements. It should be noted that sensitivity 

analysis identifies parameters that are most efficient to modify during model 

updating. These parameters are not necessarily the correct parameters to modify, or 

the parameters that have large errors with respect to the physical model. Therefore, 

parameter selection has to be tempered with engineering judgement using parameter 

weighting and the specification of upper and lower bounds. Parameter weighting is 

applied to individual parameters on the basis of expected accuracy, importance or 

other criteria, using confidence values.  Confidence values are calculated by taking 
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the inverse of the estimated error of a parameter and multiplying by 100. For 

example, if a parameter has an estimated error of 25%, the confidence value is 400. 

 

5. Parameter Estimation: The aim of model updating is to determine a new set of FEM 

parameters such that that the predicted response (natural frequencies and/or mode 

shapes; FRFs) correlates with the corresponding experimental response. This is 

approximated by a Taylor series expansion of the function relating experimental and 

FEM responses, and FEM parameters. The first term of this expansion is [83] 

 

   { } { } [ ] { } { }( )0uae PPSRR −+=        (3.1) 

 

where { }eR  is a vector of experiment responses; { }aR  is the predicted FEM 

response for the set of parameter values { }0P ; { }uP  is the set of updated FEM 

parameter values; and [ ]S  is the sensitivity matrix. Equation (3.1) can be expressed 

as [83] 

 

{ } [ ]{ }PSR ∆=∆          (3.2) 

 

and for the cases considered in this study, solved by finding the pseudo-inverse of 

the sensitivity matrix (i.e. the gain matrix). A number of iterations are required 

because only the first term of the Taylor series expansion was used to derive 

equations (3.1) and (3.2).  

 

6. Convergence criterion: The convergence criterion is the error function calculated 

during correlation analysis in model updating. The weighted absolute difference 

between experimental and FEM modal frequencies was used as the convergence 

criterion, with equal weighting assigned for all modes. 

 

7. Model updating iterative process: Figure 3.9 shows a block diagram of the model 

updating procedure. Note that the internal FEM solver in FEMtools was used rather 

than recalculating the FEM response values for each iteration in ANSYS. No 

significant differences in the natural frequencies obtained from each solver were 

observed for FEM2. The desired number of model updating iterations is determined 
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by the value of the convergence criterion required to end the updating process and 

the minimum change of convergence criterion required to progress to the next 

iteration.  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Flow chart of model updating procedure. 
 

 

8. The final model updating step is the MAC contribution analysis (MCA). MCA ranks 

DOFs with an adverse effect on MAC values so that they can be assessed in terms 

of the quality of experimental data. In some cases it is beneficial to remove the 

deflections at particular DOFs to improve MAC values. Another reason for removal 

of a DOF is that experimental data could not be recorded for a particular direction at 

a measurement point due to physical constraints on placing accelerometers or 

exciting the structure.  

Selection of parameters, 
responses, 

and convergence criteria 
 

No 
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Mode shape pairing 
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3.5 Model Updating Results 

3.5.1 Case 1 

The FEM used as a basis for model updating should ideally represent the physical 

arrangement of structural members reasonably accurately for updating to be a success, 

even if FEM parameters cannot be accurately specified. Simplifications are often 

necessary and this can limit the effectiveness of model updating and also inhibit the use 

of the model for predicting the effects of structural modification. Table 3.2 (a) lists 

mode pairs for FEM0 and EMA1 results. FEM0 assumed continuous seam welded 

panels, and results are similar to those obtained reported by Endo and Randall [82].  

 

Pair 
no. 

EMA 
Mode 

Frequency 
(Hz) 

FEM 
Mode 

Frequency 
(Hz) 

% Error  MAC 
(%) 

1 1 100.08 4 196.04 95.88 23.3 
2 3 195.35 6 246.4 26.14 68.8 
3 8 267.47 7 262.15 -1.99 63.8 
4 4 197.33 8 265.33 34.46 23.3 
5 12 326.49 15 318.56 -2.43 23.4 
6 13 328.55 16 332.08 1.07 36.8 
7 16 358.84 17 343.3 -4.33 28.3 
8 15 352.95 18 345.7 -2.05 44.8 
9 18 378.28 19 353.65 -6.51 41.1 

Average of absolute values 19.43 39.29 
Table 3.2 (a) FEM0/EMA1 mode pairs. 
 

Pair 
no. 

EMA 
Mode 

Frequency 
(Hz) 

FEM 
Mode 

Frequency 
(Hz) 

% Error  MAC 
(%) 

1 1 100.08 2 100.14 0.06 19.7 
2 3 195.35 3 124.48 -36.28 23 
3 4 197.33 7 253.41 28.42 61.4 
4 8 267.47 10 263 -1.67 66.3 
5 6 237.26 11 271.74 14.53 38 
6 9 273.43 13 288.14 5.38 29.4 
7 13 328.55 14 308.87 -5.99 21.5 
8 12 326.49 15 314.47 -3.68 27.5 
9 15 352.95 20 341.11 -3.35 33.4 

10 14 347.78 21 343.8 -1.15 42 
11 17 371.37 23 370.53 -0.23 25.1 

Average of absolute values  9.16 35.2 
Table 3.2 (b) FEM1/EMA1 mode pairs. 
 

Table 3.2 (b) lists mode pairs for FEM1/EMA1 and shows a large improvement in 

average frequency error accompanied by a small decrease in average MAC value 

compared to the results in table 3.2 (a). FEM1 was considered to be more suitable for 
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model updating because of the improved modelling of the joints between the panels and 

the primary structure. 

 

EMA1 experimental data were used to update FEM1. The updated FEM1 model is 

denoted FEM1_u and the details of each model updating iteration are shown in table 

3.3. The results of model updating are assessed using the frequency error and MAC of 

paired modes from FEM1_u and EMA1. These results are compared with results from 

FEM1/EMA1 in figures 3.10 and 3.11. Nine mode pairs were identified for the 

EMA1/FEM1_u case, which was two less than the non-updated model, EMA1/FEM1. 

However, updating significantly improved the correlation between the identified mode 

pairs: less than 5% difference between modal frequencies for eight of the nine mode 

pairs and average absolute frequency errors decreased from 9.16% to 2.1%. Large 

improvements in MAC values were also achieved and the average MAC value 

including all mode pairs increased from 35.21% to 71.97%. These results demonstrate 

the effectiveness of model updating in improving the correlation between experimental 

and numerical models. A more practical evaluation of model updating involves 

assessing how well the updated FEM predicts the effects of a structural modification, 

compared to the predictions of a non-updated FEM. This is discussed in the following 

section. 

 

Model Updating 
Step 

Parameter Variation Parameter Bounds and 
Confidence 

1 Elasticity matrix scaling: D 
Total Iterations = 5 

-10%<D<10% 
Confidence=400 

2 Young’ s modulus: E 
Total Iterations = 5 

-10%<E<10% 
Confidence = 400 

3 Mass parameter: RHO 
Total Iterations = 5 

-10%<RHO<10% 
Confidence = 400 

4 Cross-sectional area: AX 
Total Iterations = 5 

-10%<AX<10% 
Confidence = 400 

5 Moment of inertia: Ix,Iy,Iz 
Total Iterations = 3 

-10%< Ix,Iy,Iz <10% 
Confidence = 400 

6 Membrane thickness: H -10%<H<10% 
Confidence = 400 

7 Adjusting DOFs Pairing, 
fine-tuning D, E, H together 

-10%<X<10% 
Confidence = 400 

8 Adjusting DOFs Pairing, 
fine-tuning D,E together. 

-10%<X<10% 
Confidence = 400 

9 MAC Contribution Analysis  
Table 3.3 Model updating steps for case 1: FEM1/EMA1. 
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Figure 3.10 Comparison of frequency error (referenced to EMA1 results) for FEM1 
(before updating) and FEM1_u (after updating). 
 

 
Figure 3.11 Comparison of MAC (referenced to EMA1 results) for FEM1 (before 
updating) and FEM1_u (after updating). 
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3.5.2 Case 2 

The initial correlation between EMA1 and FEM1 was found to be quite poor and a 

number of factors were believed to account for this. Impact hammer testing of the 

helicopter-like structure involved exciting points on the primary structure (steel bars) as 

well as the spot-welded panels. It was noted that the panels rattled against the primary 

structure and were very compliant at some excitation points. As a result, experimental 

data for these points were of relatively poor accuracy and increasing numbers of 

averages typically failed to improve the quality of the measured FRFs, as indicated by 

the estimated coherence. Results in Chapter 2 suggest that the global RFLS parameter 

estimation algorithm would be relatively robust to these inaccuracies when estimating 

frequency and damping results; however, modal residues, hence mode shapes, could 

potentially be very poor.  

 

Another factor that potentially reduced the accuracy of results was the modelling of the 

panel/primary structure joints. As discussed above, FEM0 assumed perfect coupling at 

the interface of the primary structure and panels, and this assumption was subsequently 

modified in FEM1, which modelled the spot welds between the panels and primary 

structure. This improved results but lead to the condition where partial or intermittent 

contact between the panels and the primary structure was not explicitly taken into 

account. Therefore, while the updated FEM, FEM1_u, showed good correlation with 

experimental results, it did not necessarily predict physically realisable behaviour due to 

the way the panels were modelled. The panels were removed from the helicopter-like 

structure for cases 2 and 3 to eliminate this source of uncertainty, and as a result the 

model updating process could be better studied. 

 

Model updating of FEM2 using EMA2 experimental data was carried out according to 

the steps listed in table 3.4. Correlation between FEM2 and FEM2_u with EMA2 results 

is summarised in figures 3.12 and 3.13. 

 

Removing the panels resulted in very good correlation between the initial FEM and 

experimental results, but this decreased the scope for improvement by model updating. 

Despite this, model updating increased the number of identified mode pairs from ten to 

fourteen and correlation between natural frequencies was typically better for the 
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updated model. Average absolute frequency error decreased from 2.68% for 

EMA2/FEM2 pairs to 0.67% for EMA2/FEM2_u pairs. Average MAC values 

decreased marginally from 86.93% (EMA2/FEM2) to 84.36% (EMA2/FEM2_u); 

however, it should be remembered that four additional mode pairs were included for 

EMA2/FEM2_u. Figure 3.13 shows that updating produced little improvement or a 

marginal decrease in MAC values for the first 8 mode pairs, while frequency error for 

the corresponding mode pairs improves. This effect is probably due to the use of 

absolute difference in natural frequencies as the response property in model updating. 

Note that an alternative response property, for example MAC values or FRF data could 

be used in addition or as an alternative to natural frequencies. 

 

 

Model Updating 
Step 

Parameter Variation Parameter Bounds 
and Confidence 

1 Elasticity matrix scaling: D 
Total Iterations = 5 

-10%<D<10% 
Confidence=400 

2 Young’ s Modulus: E 
Total Iterations = 5 

-10%<E<10% 
Confidence = 400 

3 Mass parameter: RHO 
Total Iterations = 5 

-10%<RHO<10% 
Confidence = 400 

4 Cross-sectional area: AX 
Total Iterations = 5 

-10%<AX<10% 
Confidence = 400 

5 Moment of inertia: Ix,Iy,Iz 
Total Iterations = 3 

-10%< Ix,Iy,Iz <10% 
Confidence = 400 

6 Elasticity matrix scaling: D, 
Cross-sectional area: AX 
Total Iterations = 3 

-10%<AX,D<10% 
Confidence = 400 

7 Moment of inertia: Iz, 
Young’ s modulus: E 
Total Iterations = 3 

-10%<Iz,E<10% 
Confidence = 400 

8 Moment of inertia: Iy, 
Mass parameter: RHO 
Total Iterations = 3 

-10%<Iy, RHO<10% 
Confidence = 400 

9 Elasticity matrix scaling: D 
Moment of inertia: Ix 
Total Iterations = 3 

-10%<D,Ix<10% 
Confidence = 400 

10 Mass parameter: RHO 
Total Iterations = 3 

-10%<RHO<10% 
Confidence = 400 

 Table 3.4 Model updating steps for case 2: FEM2/EMA2. 
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Figure 3.12 Comparison of frequency error (referenced to EMA2 results) for FEM2 
(before updating) and FEM2_u (after updating). 
 

 

 
Figure 3.13 Comparison of MAC (referenced to EMA2 results) for FEM2 (before 
updating) and FEM2_u (after updating). 
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3.5.3 Case 3 

The previous two cases showed that model updating improved the correlation between 

experimental and FEM results. Case 3 investigates whether the updated FEM can better 

predict the effect of structural modification than a non-updated FEM. 

 

A steel beam was bonded to the central longitudinal floor member of the helicopter, as 

outlined in section 3.2.3. The steel beam could be modelled accurately and it was 

initially believed that the epoxy bonding would not have a significant effect on the 

dynamics of the structure in the frequency range of interest. The updated model 

FEM2_u was modified to include the added mass in a similar way to FEM2_m (the 

non-updated FEM with added mass) and this new model was denoted FEM2_u_m. 

Correlation between EMA2_m/FEM2_m and EMA2_m/FEM2_u_m is compared in 

figures 3.14 and 3.15. 

 
Figure 3.14 Comparison of frequency error (referenced to EMA2_m results) for 
FEM2_m (non-updated model with additional mass) and FEM2_u_m (updated model 
with additional mass). 
 

No clear trend is seen in the frequency results, plotted in figure 3.14, however mode 

pairs from EMA2_m/FEM2_u_m have a marginally lower average absolute frequency 

error (1.45%) compared to EMA2_m/FEM2_m (1.61%). Mixed results are also 

indicated by the MAC values; FEM2_u_m predicts modes 6 – 9 more accurately than 

FEM2_m but results are poorer by varying degrees for the remaining modes. Average 
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MAC values decrease marginally from 71.39% (EMA2_m/FEM2 _m) to 70.77% 

(EMA2_m/FEM2_u_m). Note one less mode-pair was identified in 

EMA2_m/FEM2_u_m. 

 
Figure 3.15 Comparison of MAC (referenced to EMA2_m results) for FEM2_m (non-
updated model with additional mass) and FEM2_u_m (updated model with additional 
mass). 
 

Comparison of either of the experimental/FEM model pairs considered in this case with 

EMA2/FEM2 illustrates the difficulties encountered in modelling the bonded steel 

beam. Better average absolute frequency errors are achieved: EMA2_m/FEM2_m, 

1.61%; EMA2_m/FEM2_u_m, 1.45%; EMA2/FEM2, 2.68%; however, average MAC 

values are considerably poorer: EMA2_m/FEM2_m, 71.39%; EMA2_m/FEM2_u_m, 

70.77%; EMA2/FEM2, 86.93%. This suggests that local modal parameters obtained 

from the experimental analysis may have adversely affected the quality of the 

experimental mode shapes. Removing selected DOFs in MAC contribution analysis 

(MCA) improved MAC values for modes with low initial MAC values but no set of 

problematic DOFs common to modes with low MAC were identified. For example, the 

MAC for mode pair five in EMA2_m/FEM2_u_m was improved from 55.29% to 70% 

after removing two measurement points (out of 134) from the calculation. The MAC for 

mode pair 10 in EMA2_m/FEM2_u_m was improved from 52.05% to 72.58% after 

removing ten measurement points from the calculation, but these points did not include 

the two points removed for mode pair five. 
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Explicitly modelling the epoxy joint between the added mass and the helicopter-like 

structure, and further updating did not lead to significant improvement of the results. 

This outcome raised questions about the quality of the experimental data, in particular 

the quality of mode shape data for some measurement points. The model updating cases 

considered above resulted in improvements in the agreement between natural 

frequencies, partly due to the use of natural frequencies as a response parameter in the 

objective function. On the other hand, MAC values were found to be variable and MCA 

identified a number of measurement points (different for each mode) that adversely 

affected the MAC, as noted above. The implication is that additional analysis is required 

to verify the accuracy of modal parameters estimated at each DOF, and to exclude 

problematic measurement points.  

 

3.6 Conclusions 

Finite element modelling is a powerful tool for carrying out analysis of structural 

dynamic behaviour. In many cases poor correlation between an initial FEM and 

experimental results can be improved using model updating. Three case studies have 

been considered to illustrate the potential of model updating. The first experimental case 

included non-linear behaviour in the form of contacting parts that rattled, which lead to 

a decrease in the quality of experimental data. Model updating significantly improved 

the correlation between the FEM and experimental results: average absolute frequency 

error between paired modes decreased from 9.16% to 2.1%, and average MAC value 

increased from 35.31% to 71.97%. The structural elements contributing to non-linear 

behaviour (i.e. the panels) were removed for the second case and this improved the 

initial correlation between FEM and experimental results. Model updating improved the 

correlation by identifying four additional mode pairs, accompanied by a marginal 

decrease in average MAC for mode pairs (86.93% to 84.36%), and a significant 

decrease in average absolute frequency error (2.68% to 0.67%). Verification of the 

model updating process was carried out by predicting the effects of a structural 

modification using the updated FEM. Results were not conclusive: average absolute 

frequency error was only marginally better than for the predictions using a non-updated 

FEM (1.61% compared to 1.45%) and average MAC values were very similar (71.39% 

for the non-updated FEM; 70.11% for the updated FEM). It was found that some 

measurement points adversely affected MAC values, though no clear trend could be 
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identified to detect poor experimental data. The modal parameter estimation algorithm 

introduced in Chapter 5 is aimed at estimating accurate modal parameters in the 

presence of unmeasured excitation, and provides multiple estimates of global modal 

parameters, which allows statistical analysis of these estimates to indicate the accuracy 

of the results.  
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Chapter 4  Piezoceramic Actuators for Multi-Point Structural 

Excitation in Experimental Modal Analysis 

 

4.1 Introduction 

Piezoelectric actuators and sensors have been widely studied in the area of structural 

vibration control [84-97] and more recently non-destructive damage detection [98-100]. 

The experimental case studies in Chapter 2 used piezoceramic actuators to excite a 

beam for modal analysis, and it was shown that FRFs relating voltage (applied to the 

piezoceramic plates) and acceleration response could be used to extract modal 

parameters. The FRFs estimated in this case differ from FRFs used in classical modal 

analysis, which relate a measured point force to vibration response (displacement, 

velocity, or acceleration). The piezoceramic actuators apply a distributed excitation, and 

point mobilities cannot be measured as for the case of point forces. Piezoceramic 

actuators offer a number of advantages over other excitation methods, for example, 

electrodynamic shakers, impact hammers or ambient excitation. Piezoceramic actuators 

are relatively small, robust and cheap, and can be easily bonded to many points on a 

structure or be integrated into smart composite structures. Thus, piezoceramic actuators 

are appropriate for permanent or long term installations. They can be driven with a wide 

range of excitation signals and have moderate power requirements [101]. A limitation of 

these actuators is that determining the effectiveness of piezoceramic actuators in 

exciting structures is much less intuitive than for point excitation. 

 

In this Chapter, the dynamic behaviour of piezoceramic plates bonded to a 

representative beam structure is discussed. The transfer function relating displacement 

response to the voltage applied to a pair of piezoceramic actuators bonded to a beam is 

derived in section 4.2, and the implications for modal parameter estimation are 

discussed. The approximate analytical model of the piezo-actuated beam is verified by 

comparison with FEM and experimental results in section 4.3. Section 4.4 presents a 

preliminary analysis of a cantilever beam to assess the performance of multiple actuator 

pairs in exciting transverse modes of the beam. 
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4.2 Excitation of an Aluminium Beam Using Piezoceramic Plates 

An aluminium beam with pairs of piezoceramic actuators bonded to the surface is 

studied as this case can be treated with approximate analytical methods [85-87, 89, 90, 

94, 97, 102], and has been considered in experiments discussed in Chapter 2.  

 

Piezoelectric materials have the property that the strain and the electric field in the 

material are coupled. Consequently, applying an electric field to a piezoelectric material 

results in the deformation of the material and the material acts as a mechanical actuator. 

Conversely, a change in the material’s electric field results from deforming the material 

and the material acts as a sensor. The work considered here deals with piezoceramic 

materials as actuators.  

 

The coupled electro-mechanical behaviour of piezoelectric materials can be fully 

specified by the following set of equations [86]: 

 

mmij
E
iji EdS += σε          (4.1) 

 

kikimim EdD σξσ +=          (4.2) 

 

where i,j = 1, …, 6, k, m = 1,2,3 refer to the principal and (shear) rotational directions;  

is a vector of strain (m/m); SE is the matrix of compliance coefficients (m2/N) measured 

at constant electric field;  is a stress vector (N/m2); d is the matrix of piezoelectric stain 

constants (m/V); E a vector of applied electric field (V/m); D a vector of electric 

displacement or flux density (C/m2); and  is the permittivity (F/m) under constant 

stress conditions. 

 

For the case where two piezoceramic plates are bonded to an aluminium beam, a one-

dimensional approximation of the coupled behaviour is used. This is justified due to the 

geometry of a slender beam, which leads to relatively high stiffness in the lateral-

transverse direction. Figure 4.1 shows a schematic of a piezoceramic plate with a 

voltage applied across the poles, which are located on the top and bottom faces. 
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Figure 4.1 Schematic of piezoceramic actuator with voltage applied to the poles located 
on the top and bottom surfaces. The solid lines indicate the deformed shape and the 
dashed outline shows the undeformed shape. 
 

The undeformed shape is represented by the dashed lines, and the deformed body, 

which results from the applied voltage, is represented by the solid lines. This two-

dimensional representation is further simplified by only considering O; from which the 

strain in direction 1 can be calculated. This is termed the free strain of the piezoceramic 

actuator, and is denoted p. Equation (4.3) is derived from equation (4.1) and describes 

the free strain (i.e. zero applied stress) for an actuator of thickness tp.  

 

( ) ( )
p

p t
tV

dt 31=ε          (4.3) 

 

Figure 4.2 shows the configuration of piezoceramic actuators bonded to a slender beam 

of uniform cross-section. The piezoceramic actuator is assumed to be perfectly bonded 

to the beam so that the strain is equal at the interface of the beam and the actuator, and 

the strain is considered to be a linear function of the thickness of the beam [86]. The 

effect of finite adhesive layer has been studied by Crawley and de Luis [89], among 

others [90, 94, 100]. Results suggest that for a thin and stiff bonding layer between the 

beam and the actuator, the assumption of perfect bonding is satisfactory. The effect of a 

finite adhesive layer is to limit the transfer of piezoelectric strain to the beam, through 

the effect of shear lag. 
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Figure 4.2 Strain distribution across top and bottom piezoceramic actuators bonded to 
an aluminium beam. The polarity of voltage applied to each actuator is shown, which 
results in a moment distributed over the contact area of the actuators being applied to 
the beam. 
 

The stress in the beam and actuators is written in terms of material properties [102] 

 

b
bbb t

z
E εσ = ,   -tb < z < tb         (4.4) 

 

pp
b
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t
p E

t
z

E εεσ −= ,  tb < z < tb + tp            (4.5) 

 

where bσ  and t
pσ  is the stress in the beam and the top actuator, respectively. E is the 

Young’s modulus and tb is the half-thickness of the beam (figure 4.2). The stress for the 

bottom actuator can be defined analogously to equation (4.5). Equation (4.5) implies 

that the resulting stress distribution in the top actuator is due to the superposition of the 

actuator free strain and the strain in the beam due to mechanical loading.  

 

The moment applied to the beam is calculated by integrating the stress distribution: 
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which yields the expression [86]  
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where  
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and I is the moment of inertia about the neutral axis. Equation (4.7) shows that the 

moment applied by the actuators is distributed between the ends of the actuators, which 

can be expressed using the Heaviside step function, H(x - a): 

 

( ) ( ) ( ) ( )[ ]21, xxHxxHtKIEtxM pbx −−−= ε .     (4.9) 

 

Equation (4.9) can be generalised to account for m pairs of actuators, as shown in 

equation (4.10). 
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         (4.10) 

 

Transverse vibrations of a beam are well-approximated by the Euler-Bernoulli beam 

equation given in equation (4.11) [103]. The beam is assumed to have a uniform cross 

section and its length much greater than either the width or height. In addition, small 

transverse deformations are assumed such that the rotational inertia is ignored and the 

beam cross-section is assumed to remain plane as shear deformation is neglected. 

 

The term on the RHS of equation (4.11) describes the moment applied by pairs of 

piezoceramic actuators. 
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, Ab are the density and cross-sectional area, respectively, of a beam. Equation (4.11) is 

solved using separation of variables, and for general initial conditions and boundary 

conditions, is assumed to be of the form [102]: 

 

( ) ( ) ( )∑
∞

=
=

1

,
n

nnn tqxWtxw φ .      (4.12) 

 

( )xnφ  is the nth normal mode shape of the beam and nW  is a scaling constant to be 

determined from boundary conditions. ( )tqn  is the temporal response of the structure, 

and is assumed to be of the form ( ) tj
n eqtq ωˆ=  for a sinusoidal excitation. The time 

derivative is represented as ( ) ( )
t
tq

tq n
n 2

2

∂
∂=�� . 

 

Equation (4.9) is substituted into equation (4.11) and evaluated using the following 

property of the Heaviside step function [104]: );()( xxH
dx
d δ=  
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and (x-a) is the Dirac Delta function, to yield 
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The mode shape function of an Euler-Bernoulli beam has the property [103] 
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where 
IE

A

b

b
nn

ρωβ 24 = , and nω  is the undamped natural frequency of the nth mode. 

The mode shape scaling constant is evaluated using orthogonality properties of the 

mode shapes; 

 

( ) ( ) nm

L

mn dxxx δφφ =∫0
,      (4.17) 

 

where mn is the Kronecker delta function. Multiplying equation (4.15) by ( )xmφ  and 

integrating along the length of the beam uncouples the equation, and further rearranging 

yields 
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The RHS of the preceding equation is further evaluated using fundamental properties of 

the Dirac Delta function [105]: 

 

( ) ( ) ( )( )∫∫ −

∂
∂−= dxx

x
f

dxxxf n)n( 1δδ      (4.19) 

 

( ) ( ) ( )afdxaxxf =−∫
∞

∞−

δ       (4.20) 

 

such that 
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The derivation of equation (4.21) has not included any damping term, which is required 

to model the damping present in real systems. Therefore, an equivalent viscous damping 

factor, n, is added to the LHS of equation (4.21) giving equation (4.22). 
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Applying the Laplace transform to equation (4.22), assuming zero initial conditions, 

substituting equation (4.3) and further rearranging yields 
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Including the spatial part of the solution, ( )xW nn φ , and summing all modes, a transfer 

function between applied voltage and displacement response is   
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or 
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( ) ( )[ ]12 xx nnn φφχ ′−′=       (4.27) 

 

Equations (4.25) - (4.27) show that the transfer function is dependent on the local slope 

of each mode in the contact area of the actuators. In particular, equation (4.27) describes 

how well the actuator pair couples to, and therefore excites, each mode. Of interest is 

when x1 and x2 are equidistant from the same node. The slope of the mode shape at x1 

and x2 will be the same and equation (4.27) shows that coupling between the actuator 

pair and this mode is impossible. This is analogous to exciting a structure with a point 

force at a node of a particular mode. It should be noted that equations (4.25) - (4.27) 
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may not be accurate if x2 – x1 is greater than a quarter wave length of a mode shape. In 

this case the effects of actuator stiffness will change the local deformation for each 

mode, which is not predicted by the Euler-Bernoulli beam equation.  

 

Equations (4.25) – (4.27) can be compared to an analogous transfer function derived for 

the case of point excitation, given in equation (4.28) [103]. The excitation is applied at a 

distance a/L along the beam, where L is the length of the beam. 
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The distributed excitation applied by piezoceramic actuators has implications for 

properly resolving the modal coefficients. Equation (4.28) can be written in a form 

typical in discussions on modal analysis of a general structure [31]: 
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Where )(i
nφ  is the modal coefficient at point i, the response measurement point, and )( j

nφ  

is the modal coefficient at point j, the excitation point. Extracting the modal coefficients 

requires taking a point receptance (mobility or inertance) measurement and computing 

the square root of the estimated modal residue before using this value to normalise 

estimated residues from transfer receptance measurements. That is, 
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This series of operations cannot be evaluated for distributed excitation. An alternative 

definition of mode shapes can, however, be used. For example, unscaled mode shapes 

can be defined as 
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where nΦ  is the nth mode shape and )n(
jiR  is the residue for the nth mode, calculated 

from the ijth element of a transfer function matrix.  

 

4.3 Experimental and Numerical Analysis of Piezoceramic Excitation 

of an Aluminium Beam 

The approximate model of an Euler-Bernoulli beam excited with a pair of piezoceramic 

actuators was verified using finite element modelling and experimental measurements. 

The aluminium beam used for experiments discussed in Chapter 2 was used as a 

representative case and the dimensions are shown in figure 4.3. 

 

 

 

 

 

 

 

Figure 4.3 Details of free-free aluminium beam with piezoceramic actuators. The 
actuators are shaded grey and the polarity of the driving voltages resulted in a 
distributed moment being applied by the actuators. Two measurement points are also 
indicated. 
 

Equations (4.25) – (4.27) were used to predict the vibration response (due to a 

sinusoidal excitation) at two points on the beam, which are shown in figure 4.3. The 

mode shape function ( )xnφ  and scaling constant were evaluated using free-free 

boundary conditions and the modal orthogonality conditions (equation 4.17). The 

response for the first twenty modes was initially used in the analysis to minimise the 

effects of out-of-band modes. It was observed that only the first 11 modes could be 

calculated for the response estimate for point 1, and 15 modes for point 2. This was due 

to the numerical properties of the mode shape function, in particular the hyperbolic sine 
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and cosine functions, which increase rapidly. As a consequence, the results for higher 

frequencies were assumed to be less accurate, and ultimately modal scaling was 

calculated as zero. Material properties for the aluminium beam and actuators were as 

follows: Eb = 62 GPa;  = 2650 kg/m2; d31 = -171×10-12 m/V. The frequency range 

considered was 5 – 516.5Hz, with a 0.5Hz resolution. The voltage applied to each of the 

plates was 11 volts, to correspond with settings in experimental tests. The vibration 

response spectra are shown in figures 4.4 and 4.5. 

 

4.3.1 Finite Element Model of Piezo-Actuated Beam 

The finite element model of the free-free aluminium beam, discussed in Chapter 2, was 

modified to model the piezoelectric characteristics of the actuators. The piezoelectric 

actuators were modelled with a volt DOF, which allowed harmonic response due to an 

applied voltage to be calculated. In addition, the piezoelectric material parameters in 

equations (4.1) and (4.2) could be explicitly defined in the FEM analysis, and were 

specified as follows:  
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Eb = 62 GPa;  = 2650 kg/m2.      (4.32) 

 

A modal analysis across a frequency range of 0 – 1600Hz, which included 32 modes, 

was carried out before the harmonic response analysis. The modal superposition 
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solution method was used for the harmonic response with the same frequencies (5 – 

516.5Hz) as used in the Euler-Bernoulli analysis. The relatively large frequency range 

in the modal analysis was employed to minimise the effect of out-of-band modes in the 

harmonic analysis. Results are plotted in figures 4.4 and 4.5. 

 
Figure 4.4 Vibration response measured at point 1 (see figure 4.3) due to an 11 volt 
(peak) swept sine excitation. 

 
Figure 4.5 Vibration response measured at point 2 (see figure 4.3) due to an 11 volt 
(peak) swept sine excitation. 
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4.3.2 Experimental Measurements 

Experimental measurements were made on the aluminium beam in a free-free 

configuration. An 11 volt (peak) swept sine excitation was applied to the beam in 0.5Hz 

steps, across a frequency range of 5 - 516.5Hz. A constant-gain voltage amplifier, which 

maintained a constant voltage output, was used to drive the plates. Voltage and 

electrical impedance measurements across each actuator verified the assumption of 

constant voltage excitation and only very small deviations from an ideal capacitative 

load (piezoceramic actuators are assumed to act like a capacitative load away from 

structural resonances [106]) were observed around structural resonances. Response 

measurements were made at two points in the transverse direction, as indicated in figure 

4.3. B&K 4374 accelerometers and B&K 2635 charge amplifiers were set as for 

experiments discussed in Chapter 2. An HP 3566A FFT analyser was used for data 

acquisition and also to generate the excitation signal. The measured results at points 1 

and 2 are compared with results from the Euler-Bernoulli and FEM analyses in figures 

4.4 and 4.5, respectively. 

 

4.3.3 Discussion of Results 

The results from each analysis show reasonable agreement for both measurements. 

Natural frequencies showed greater deviation for higher frequencies. The greatest 

deviations, observed for the 8th mode, were under 3%. As a consequence, anti-

resonances in figure 4.5 also show some deviation. Amplitudes about the resonant 

frequencies are affected by finite resolution; however, good correlation between each 

analysis is observed. Constant modal damping of 0.1% was applied in the Euler-

Bernoulli and FEM analyses and results show that this was probably too low, 

particularly for the higher modes. Large amplitude differences at the local minima are 

observed in figure 4.4, especially for higher frequencies. It is believed that this is due to 

the limitations of the mode shape function assumed in the Euler-Bernoulli analysis, as 

well as the assumptions listed in section 4.2. It is interesting to note that the FEM 

natural frequencies at higher modes are higher than those predicted by the Euler-

Bernoulli analysis. The inclusion of rotational inertia and shear deformation effects 

typically decreases the estimated natural frequencies [103, 107]. It is conceivable that 

the additional stiffness imposed by the piezoceramic actuators is increasing the natural 

frequencies for higher-order modes in the FEM analysis. No clear conclusions have 
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been reached as to why the Euler-Bernoulli analysis does not agree with experimental 

results at the local minima in the upper-half of the frequency range for measurement 

point 1. However, considering the good agreement achieved for measurement point 2, 

the effect is more significant close to the end of the beam and may be due to the 

assumed mode shape function, which assumes deflection in one direction only; i.e. 

ignores rotation. Torsional modes (165Hz, 335Hz, and 511Hz in FEM analysis) may 

also have influenced the experimentally determined results. The Euler-Bernoulli model 

only considered transverse modes.  

 

Figure 4.6 shows the absolute values of equation (4.27) calculated for the first fifteen 

modes of the free-free beam. It is clear that low order modes are not excited very 

effectively, relative to the higher order modes. The local minimum for mode 13 

corresponds to the case where the middle of the actuator pair is located close to a node, 

or more specifically, an inflexion point, of the mode shape. Therefore, the applied 

moment of the actuators does not couple well to that mode. 

 
Figure 4.6 Absolute values of equation (4.27) plotted for the first fifteen modes of the 
free-free aluminium beam.  
 

4.4 Preliminary Investigations of a Cantilever Aluminium Beam 

The experiments considered in Chapters 6 and 8 deal with multiple sources of excitation 

applied to a simple structure. In order to avoid the difficulties associated with coupling 

multiple shakers to a light structure, piezoceramic actuators were instead chosen for 

structural excitation. No steps were taken to optimise the placement of the actuator pairs 

on the cantilever beam as the aim of this brief study was to gain insight into the 
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performance of each actuator in exciting particular transverse modes so that modal 

analysis results could be better interpreted. A significant amount of literature is devoted 

to optimal actuator and sensor placement [84, 85, 87, 88, 91-93, 96, 108, 109]. 

 

Figure 4.7 Schematic of cantilever aluminium beam showing configuration of 
piezoceramic actuators pairs. Note the enumeration of the actuator pairs. 
 

Figure 4.7 shows a schematic of the cantilever aluminium beam and the configuration 

of actuators. The aluminium beam was 1000×50×6 mm, with 125 mm clamped between 

steel bars. 70×25×1mm PI ceramic PZT (lead zirconate titanate) PIC 151 piezoceramic 

plates were used as the actuators.  

 

The values of equation (4.27) were calculated for the cantilever aluminium beam and 

are plotted in figure 4.8. The results indicate the relative effectiveness of each actuator 

in exciting the first ten modes. As with the free-free beam, the lower order modes are 

excited relatively poorly. Also of note is that mode six is also excited relatively poorly 

by actuators 1-3. Similar comments apply to mode 9, actuator pair 2, and mode ten, 

actuator pair 3. The normalised mode shapes for the cantilever beam are shown in table 

4.1. Also shown are the positions of the actuator pairs. Note that for mode 6, actuator 
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pairs 1 - 3 are located about nodes, hence explaining the results shown in figure 4.8. It is 

expected that identification of poorly excited modes will be a problem, as was shown in 

the experiments discussed in Chapter 2. Therefore, in the absence of pre-test analysis to 

best locate actuators, the use of multiple actuators is advantageous. 

 
Figure 4.8 Absolute values of equation (4.27) plotted for the first ten modes of the 
cantilever aluminium beam. 
 

 

  

Table 4.1 (Continued over the page) Normalised mode shapes for cantilever aluminium 
beam. The positions of the four piezoceramic actuator pairs are indicated by the thick 
line. 
 

 

Mode 1 Mode 2 



 78 

  

  

  

  

Table 4.1 (cont.) Normalised mode shapes for cantilever aluminium beam. The 
positions of the four piezoceramic actuator pairs are indicated by the thick line. 
 

 

 

Mode 3 Mode 4 

Mode 5 Mode 6 

Mode 7 Mode 8 

Mode 9 Mode 10 
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4.5 Conclusions 

The use of piezoceramic actuators for exciting an aluminium beam has been 

investigated with an approximate analytical model and finite-element analysis, which 

are verified by experimental results. The approximate analytical model was based on 

Euler-Bernoulli beam theory and yielded an expression that described the effectiveness 

of a pair of actuators in exciting a transverse vibration mode. Reasonable agreement was 

shown between the analytical model, FEM harmonic analysis results, and experimental 

measurements on a free-free aluminium beam excited with a single pair of piezoceramic 

actuators. The analytical model provides a basis for explaining experimental 

observations discussed in Chapter 2. The distributed excitation applied by the pairs of 

actuators was shown to prevent scaled modes being estimated as would be possible with 

point excitation. Relatively scaled mode shapes can be extracted by considering residues 

obtained from a transfer function relating applied voltage to vibration response. 

A preliminary investigation for a cantilever aluminium beam was carried out to 

determine the relative effectiveness of multiple pairs of actuators in exciting transverse 

modes. Piezoceramic actuators allow multiple excitation sources to be applied to a small 

structure with minimal changes to the dynamic properties of the structure. The results 

suggest that low order modes will be excited relatively poorly and also indicated that 

particular modes will not be excited well if the centre of the actuator pair is located 

about a node. The cantilever aluminium beam considered is used for experimental 

verification of a modal parameter estimation algorithm introduced in Chapter 5 and 

tested in Chapter 6. The discussion in this chapter allows better interpretation of the 

results obtained from the proposed modal parameter estimation algorithm. 
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Chapter 5  ARMAX Modal Parameter Identification in the 

Presence of Unmeasured Excitation: Theoretical Background 

 

5.1 Introduction 

The recent development and improvement of many modal analysis techniques has been 

aimed at extending their applications to practical situations, for example the testing of 

machinery and mechanical systems while in operation. In many cases, for example the 

testing of machines with rotating elements, it is difficult to completely isolate the 

structure from ambient vibration caused by the operation of the machine. This is also a 

key problem in the study of helicopter structural dynamics, as noted in Chapter 1. 

Existing modal parameter estimation techniques do not account for unmeasured sources 

of excitation, as discussed in Chapter 2, although pre-processing of measured data, for 

example using synchronous averaging can reduce the effects of unmeasured excitations. 

 

Alternatives to input/output modal analysis include determining operational deflection 

shapes (ODS) [20], or the application of one of many operational (response-only) modal 

analysis techniques (see Brincker [65] for recent developments in theory and 

applications), which only require vibration response measurements. Operational modal 

analysis techniques generally assume that the unmeasured excitation force to be close to 

white noise [20, 38]; however, cases where periodic excitations of a known frequency 

are present in addition to broadband excitation have been  investigated [110-113]. In 

contrast to input-output modal analysis, operational modal analysis techniques do not 

directly yield scaled mode shapes because the excitation force is not measured, but 

additional strategies, which involve the structural modification using a known mass, 

have recently been investigated to overcome this problem [27, 114, 115]. Operational 

modal analysis methods will be discussed in more detail in Chapter 8.  

 

In this chapter, a new approach is presented to estimate modal parameters from 

excitation and response data obtained in the presence of significant unmeasured periodic 

and random excitations and also random measurement noise. This method yields scaled 

mode shapes and can be used with a variety of excitation signals, including periodic 



 81 

signals, which can be combined with synchronous (time-domain) averaging to attenuate 

unmeasured excitations. An autoregressive moving average with exogenous excitation 

(ARMAX) model is used to describe the dynamics of a structure and to take into 

account measurement noise and unmeasured excitation. A multistage estimation 

algorithm is devised to estimate the parameters of the ARMAX model, from which the 

modal parameters of a structure can be calculated. The ARMAX estimation algorithm 

includes a simple method based on the position of estimated poles on the z-plane to 

select the best model from a set of estimated models and also to distinguish between 

structural modes and spurious numerical poles. For moderate levels of measurement 

noise, modes estimated with positive damping are vibrational modes and spurious 

numerical modes are estimated with negative damping. The model selection criterion 

selects the model with the highest number of positively damped modes from a set of 

models of different order. A diagonal parameterisation of the autoregressive (AR) 

matrix, and consequently the moving average (MA) matrix, allows the MIMO ARMAX 

model to be estimated as a series of MISO models. In addition, the diagonal structure 

allows simple manipulation of the AR and MA matrices, including stabilisation, which 

can be achieved by reflecting unstable zeros about the unit circle. The performance of 

the ARMAX estimation algorithm is assessed using numerical and experimental data in 

Chapter 6 and further testing using a helicopter-like structure is discussed in Chapter 7. 

 

The following section introduces the discrete-time model and the estimation algorithm 

is presented in section 5.3. Notes on the implementation of the algorithm are included in 

section 5.4 and concluding remarks are made in section 5.5. 

5.2 ARMAX Model Structure 

The vibration of a general continuous structure can be described by an n degree-of-

freedom (DOF) linear differential equation [30]: 

 

  )()()()( tttt fxKxDxM =⋅+⋅+⋅ ���        (5.1) 

 

f(t) is a vector of forces acting at each DOF and x(t) and its time derivatives correspond 

to the displacement, velocity, and acceleration at each degree DOF. M and K are the 

real, symmetric mass and stiffness matrices and D is the real, symmetric damping 

matrix that describes the equivalent viscous damping of the system. An alternative 
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general representation of a linear dynamic system is an autoregressive moving average 

with exogenous (ARMAX) excitation model, which is described by equations (5.2) – 

(5.5) and shown in figure 5.1 [116]. 

 

  ][)(][)(][)( tqtqtq wCfByA ⋅+⋅=⋅ ,        (5.2) 

 where 
na

na qqq ⋅++⋅+≡ AAIA �1s)( , [s × s]     (5.3) 

 
nb

nb qqq ⋅++⋅+≡ BBBB �10)( , [s × m]     (5.4) 

 
nc

nc qqq ⋅++⋅+≡ CCIC �1s)( . [s × s]     (5.5) 

Figure 5.1 Block diagram of ARMAX model. 
 

The ARMAX model uses rational functions to relate an m dimensional force vector f[t] 

to an s dimensional response vector y[t], which are both sampled at discrete times t = 

k⋅Ts, k = 0, … , N – 1, and Ts is the sampling period. The response vector y[t] is assumed 

to be corrupted with zero-mean random measurement noise and the ARMAX model 

also includes an s-dimensional unmeasured disturbance w[t], which is assumed to be a 

zero-mean independent random variable (i.e. [ ]{ }tw  is white noise). w[t] is independent 

of f[t] but can have correlated components, i.e. a non-diagonal covariance matrix. A(q), 

B(q), and C(q) are the autoregressive (AR), exogenous (X) and moving average (MA) 

matrices respectively. The elements of these matrices are scalar polynomials in terms of 

q, the backshift operator: x[t]⋅q j = x[t-j]. The orders of the polynomial elements of the 

AR, X, and MA matrices are na, nb, and nc, respectively (equations (5.3) – (5.5)). Is is 

 C(q)/A(q) 

B(q)/A(q) 

w[t] 

f[t] y[t] 
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the s×s identity matrix. For the single-input single-output (SISO) case, the AR, X, and 

MA matrices reduce to scalar polynomials. The AR matrix represents the global 

properties of the structure, namely, the natural frequency and damping for each mode. 

The X matrix is dependent on the signal type used for structural excitation [61] and also 

the positions of the m excitations. 

 

The ARMAX model is adopted because it includes the stochastic component w[t], 

which accounts for noise present in the excitation and response measurements. The 

block diagram shown in figure 5.1 illustrates that the unmeasured disturbance is filtered 

by the rational function C(q)/A(q). The significance of this is that the unmeasured 

disturbance is filtered not only by the MA matrix, but also by the AR matrix, which 

describes the global properties of the system. Therefore, the filtered unmeasured 

disturbance can represent the effect of unmeasured excitations.  

Figure 5.2 Block diagram of ARX model. 
 

The ARMAX model is also capable of estimating modal parameters from multiple-input 

multiple-output (MIMO) measurements, which, compared to SISO testing, is useful for 

reducing measurement time, ensuring adequate excitation to all parts of large structures, 

and improving consistency in data sets. The autoregressive with exogenous excitation 

(ARX) model, which is shown in figure 5.2, can be derived from the ARMAX model by 

setting nc = 0 and the unmeasured disturbance w[t] corresponds to the error in a linear 

difference equation relating the input and output data: 

 

][][]1[][][]1[][ 101 tnbtttnattt nbna wfBfBfByAyAy +−⋅++−⋅+⋅=−⋅++−⋅+ �� . 

             (5.6) 

   1/A(q) 

B(q)/A(q) 

w[t] 

f[t] y[t] 
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The predictor for the ARX model corresponds to a linear regression problem, which can 

be efficiently solved using the least-squares criterion [116]. This will be discussed 

further in the next section. The deterministic case where w[t] is insignificant is 

equivalent to a discrete-time rational polynomial representation of the transfer function. 

 

The assumptions made about the physical structure, excitation, and vibration response 

are as follows. 

 

• The structure exhibits a linear, time-invariant, and causal response to an 

arbitrary excitation. 

• The vibration response is stable; i.e. positively damped. Therefore all vibrational 

modes are represented by zeros of the function in equation (5.7) that fall inside 

the unit circle on the z-plane [116]. 

 

na
nanana zzzzz AAAA ++⋅+=⋅= −

�
1

1
-1* )()(  [s × s]    (5.7) 

 

•  The MA matrix is assumed to be stable with all zeros of the function in 

equation (5.8) located inside the unit circle. 

 

nc
ncncnc zzzzz CCCC ++⋅+=⋅= −

�
1

1
-1* )()( .  [s × s]    (5.8) 

 

• The excitation is persistently exciting of order na + nb + 1. This implies that the 

spectrum of the excitation signal is non-zero for at least na + nb + 1 frequencies 

in the interval  – ���� ����  [116]. In practice, the excitation is usually a broad-

band signal, for example white noise, which satisfies the requirement for 

persistent excitation. It should be noted that na � nb and specific excitation 

signals can be created by the superposition of a minimum of na + 1 summed 

sinusoids, which will lead to a persistently exciting signal appropriate for the 

estimation of an ARMAX model of order na. A more detailed discussion of 

persistent excitation can be found in [44, 116]. 
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Figure 5.3 Block diagram of ARMAX estimation algorithm. 
 

5.3 ARMAX Parameter Estimation Algorithm 

As shown in Figure 5.3, the modal parameters are calculated from an ARMAX model, 

which is estimated by a multistage algorithm [43], implemented in an iterative loop. The 

first four stages are based on the work of Fassois et al [55, 117], with modifications to 

include the use of backwards ARX models, which allows spurious numerical modes and 

vibrational modes to be distinguished according to the position of the poles of the 

backwards ARX model in the z-plane. This is also the basis of a simple model selection 

criterion. A further modification is the use of a diagonal parameterisation for the AR, 

and consequently MA, matrices, which allows these matrices to be decomposed into 

scalar polynomials. The scalar polynomials can be stabilised easily by reflecting 

unstable zeros about the unit circle in the z-plane and the diagonal structure is desirable 

for numerical operations, such as taking the inverse.  

Stage 1 
 Estimation of higher-order backwards ARX model from 

input/output data using least-squares criterion. 

Stage 2 
 1st estimate of noise model (MA matrix) obtained from 

backwards AR matrix obtained in stage 1. 

Stage 3 
Estimation of lower order ARX model from input/output data 

filtered by noise model (MA matrix) obtained in stage 2. 

Stage 4 
 Estimation of new noise model using AR matrices obtained in 

stages 1 and 3 

Stage 5 
 Calculate modal parameters from ARMAX model 

Convergence 
criterion 
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5.3.1 Stage 1: Estimation of Higher Order ARX Model 

The first stage involves estimating a higher order ARX model from the input and output 

data. Ljung [116] pointed out that an ARX model of order p estimated using N data 

points will converge to represent the true system as N, p ��, and N > p. Hence, an 

ARX model with finite N and p will approximate a linear system relating the excitation 

data f[t] and response data y[t], which are corrupted with noise. Equations (5.9) – (5.11) 

describe an ARX model of infinite order, which can be related to the ARMAX model in 

equation (5.2) by pre-multiplying by the inverse of the MA matrix [55]. 

 

  ][][)(][)( ttqtq fy wfHyH +⋅=⋅ ,       (5.9) 

with 

)()()()(
1

1 qqqjq
j

j
ysy ∑

∞

=

− ⋅=⋅+≡ ACHIH , [s × s]              (5.10) 

  )()()()(
1

1 qqqjq
j

j
ff ∑

∞

=

− ⋅=⋅≡ BCHH . [s × s]              (5.11) 

 

In practice, the ARX model is limited to a finite order p, where p > na, and the choice 

of p, na, nb, and nc, which is dependent on model parameterisation [44, 116], is critical 

to the accuracy of the estimated ARX and ARMAX models. A brief description of 

model parameterisation, which is concerned with the structure of the AR, MA, and X 

matrices, is given below.  

 

Consider the SISO ARX model in equation (5.12). 

 

][][]1[][][]1[][ 101 tenbtfbtfbtfbnatyatyaty nbna +−⋅++−⋅+⋅=−⋅++−⋅+ ��  

            (5.12) 

A set of possible models with a particular structure can be obtained by varying the 

values of na and nb. The parameters to be identified in each model are the coefficients 

ai, i = 1, …, na, and bj, j = 0, …, nb. If f[t] and y[t] are ideal noise-free data then an 

appropriate choice for na is na = 2n, where n is the number of modes in the frequency 

band 0 – 1/(2Ts) Hz. This is due to the 2n complex conjugate poles of the AR 

polynomial, which describe the global properties of the structure; i.e. natural 

frequencies and damping. The choice of nb is dependent on the type of response data 
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used and the inter-sample behaviour of the data: for displacement response 

measurements, where data are assumed to be a train of impulses at the sampling 

instants, nb = na – 1 [61]. Real data typically includes components other than those 

caused by the structural dynamics and a higher order AR polynomial is necessary. An 

appropriate parameterisation of a set of SISO ARX models is therefore to set na = (2 × 

n) + k, where k = 2, 4, 6, … , r, and r is determined by a convergence criterion and 

limited by the number of samples in the input and output data records. The 

parameterisation of MIMO models is considerably more complex because the order of 

each element of the AR, MA, and X matrices has to be set. That is, for 
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naij and similarly nbij have to be chosen. Setting naij = na, nbij = nb, for all i, j results in 

full polynomial form [44, 116] and the theoretically required order of the AR matrix is 

na = 2n/s; n is the number of modes in the frequency range of interest, s the number of 

response measurements, and a set of candidate models is na = 2n/s + k, where k = 1, 2, 

… , r.  

 

The assumption of positively damped vibrations does not always hold for noisy data. 

Very lightly damped structures and noisy data may lead to the estimation of negatively 

damped modes. In addition, very noisy data and numerical operations in subsequent 

stages may lead to ill-conditioning of the regression matrix used to estimate ARX-

model parameters. For these reasons a diagonal structure is imposed on the AR matrix 

in the ARX and ARMAX models. A similar structure is also studied by Park and Kim  

[51]. From equation (5.13), this can be expressed as naii = na, naij = 0, i ��M: 
 

  ( ))()()()( 11 qaqaqadiagq ssii ��=A .              (5.14) 

 

This structure is a reasonable assumption for structural dynamics problems because the 

global properties of the structure can be modelled by the scalar polynomials that appear 

in the diagonal elements of the AR matrix: the AR matrix for a single-output case (SISO 
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or MISO) is a scalar polynomial and the superposition of multiple single-output models 

results in a diagonal AR matrix. The diagonal structure is less sensitive to numerical 

operations, such as taking the inverse of the AR matrix, and a simple procedure to 

stabilise the AR matrix involves reflecting the poles of each scalar polynomial about the 

unit circle. This stabilisation procedure can also be applied to the MA matrix, which 

inherits a diagonal structure from the AR matrix. As the MA matrix is used in filtering 

operations, reflecting unstable poles about the unit circle preserves the frequency-

domain properties of the filter. Alternative stabilisation strategies for matrix 

polynomials, see for example [55], involve more complex numerical operations such as 

solving systems of equations that include the correlation functions of polynomial 

coefficients. It has been suggested that this adversely affects the characteristics of the 

matrix polynomials and therefore the accuracy of parameter estimates [118].  The 

diagonal structure adopted in the present work also allows the MIMO ARX model to be 

decomposed into s MISO models, each with a scalar AR polynomial. The s estimates of 

the global properties can be reduced to a single estimate using weighted averaging or 

any other selection criterion. The order of the diagonal AR matrix is the same as for the 

single-output case; i.e. na =  (2n) + k, where k = 2, 4, 6, … , r.  

 

The MIMO ARX model of order p with a diagonal AR matrix is estimated as s MISO 

ARX models using the least squares criterion. Equation (5.9) can be rewritten as  

 

 ∑ ∑
= =

+−⋅=−⋅+
p
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1 0
1 ][][)(][)(][ fHyHy ,               (5.15) 

 

and subsequently separated into k, k = 1, … , s, MISO models: 
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where ][1 t  is the prediction error, ][)( tky , )()( qk
fH  and ][)(

1 tk  are the kth rows of ][ty , 

)(qfH  and ][1 t , respectively, and )()( qh k
y  is the kth diagonal element of )(qyH . The 

notation )( jyH , )( jfH , )()( jh k
y , etc. is used to indicate the jth coefficient of each 

(matrix) polynomial for terms that include other subscripts, as opposed to the notation 
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Ai that was used above, for example, in equations (5.3) – (5.6). The MISO ARX model 

can be rewritten as a linear regression problem  

 

  ][][][ )(
1

)( ttt k
k

T
k

k huy +⋅=                  (5.17) 

 

in terms of the regression vector ][tku  and parameter vector kh : 

 
TTTkkk

k pttptttt ]][][][]2[]1[[][ )()()( −−−−−−−≡ ffyyyu ��� ,        (5.18) 

[(p + p.m + m) × 1] 
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[(p + p.m + m) × 1] 

 

The s MISO linear regression problems are solved individually using a least-squares 

(LS) algorithm based on QR decomposition described by Ljung [116] and  outlined 

below. 

 

Define 

  [ ]T
kkk N ][]1[ 1uu �= ,  [N1 × (p + p.m + m)]             (5.20) 

 

  [ ]Tkk
k N ][]1[ 1

)()( yyY �= ,  [N1 × 1]              (5.21) 

 

where N1 = N - p - 1 and N is the number of samples in the input and output vectors. 

The ARX model is then rewritten in terms of kY  and k : 

 

  kkkk 1hY +⋅= ,                  (5.22) 

 

and the LS criterion, which minimises the quadratic norm of the prediction error k1 ,  

can be expressed as  
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An orthonormal transformation preserves the length of a set of vectors and the angle 

between them [119] and therefore the norm in equation (5.23) is not affected by 

applying an orthonormal transformation kQ [N1 × N1]: 

 

  ( )2)()( ),,( kkkk
k

k
k

LSJ hYQfyh ⋅−= ,                (5.24) 

 

where kQ is chosen such that 

 

  [ ] kkkk RQY ⋅= ,  [N1 × (p + p.m + m + 1)]             (5.25) 

 

which is a QR factorisation of [ ]kk Y  and 
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(R0k [(p + p.m + m + 1) × (p + p.m + m + 1)] is upper triangular; R1k is [(p + p.m + m) 

× (p + p.m + m)]; R2k is [(p + p.m + m + 1) × 1)]; R3k is scalar). The definition of an 

orthonormal matrix: IQQ =⋅ T
kk , hence 1−= k

T
k QQ  is used to rewrite equation (5.24): 
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Equation (5.28) is minimised when kkk 21
ˆ RhR =⋅ .  
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The LS estimate using QR factorisation has a number of useful properties as outlined by 

Ljung [116]. The algorithm is appropriate for problems with a high dimension and is 

numerically well-conditioned when compared with techniques based on solving the 

normal equations, which involve computing k
T
k ⋅ . LS estimates can be obtained for 

models with an order smaller than that used in the initial definition of the problem by 

setting the appropriate elements in the parameter vector kh to zero. 

 

The model order na of the ARMAX model is related to the number of structural modes 

in a given frequency range. The order p of the ARX model is chosen to be greater than 

na to account for noise present in the measurements and follows from the definition of 

)(qyH  in equation (5.8). In practice the number of structural modes in a given 

frequency range is not known a priori and it is well known that over-specifying the 

model order reduces the bias of estimates in the presence of noise [44, 116]. Therefore, 

a higher-order model is desirable. Two disadvantages associated with higher order 

models are the increase in computation time and memory requirements, and the 

introduction of spurious poles that do not correspond to structural modes. The 

computational complexity can be justified on the basis of improved accuracy, however, 

distinguishing between the poles that correspond to structural modes and spurious 

numerical poles can be a significant problem. 

 

A number of techniques has been developed to address this problem, for example, the 

use of stabilisation diagrams and dispersion analysis [57]. Stabilisation diagrams can be 

difficult to interpret for high order models as spurious numerical poles can exhibit only 

small amounts of scatter, particularly for LS estimates using singular value 

decomposition [47]. Dispersion analysis has been shown to be effective, but can only be 

calculated once the estimated ARX or ARMAX model has been estimated and 

factorised into pole-residue form. This can increase the computation time significantly if 

estimating a large number of high order models. Dispersion analysis also requires a 

threshold value to be defined that separates spurious numerical modes from vibration 

modes. An alternative method is the use of backwards ARX models, which distinguish 

between spurious numerical poles and vibration poles on the basis of their position on 

the complex z-plane. 
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Kumerasan et al. [120, 121] showed that the frequency and damping of sinusoids could 

be identified from the signal zeros of a linear prediction filter polynomial. If the order of 

the prediction filter was over-specified, the spurious numerical zeros of the linear 

prediction filter were shown to lie inside the unit circle if the prediction filter was a 

monic polynomial with coefficients chosen to have minimum Euclidean length. The 

result held for exponentially damped sinusoids with positive and negative damping and 

also for undamped sinusoids. A consequence of this result is that the frequency and 

damping of signals consisting of exponentially damped sinusoids could be estimated 

using a higher-order prediction error filter and distinguished from spurious numerical 

poles by first reversing the order of the signal samples. The reversal of the signal would 

transform the positively damped sinusoids to negatively damped sinusoids with poles 

that would lie outside the unit circle. 

 

 A number of studies has applied this technique to estimating modal frequencies and 

damping [45-47, 120-122], however, it should be noted that the prediction error 

approach utilises the response data only. The prediction error technique was used as the 

first stage of a two stage method to predict ARX models (referred to as ARMA models 

in the original study) by Batill & Hollkamp [45]. In a subsequent paper [46] Hollkamp 

& Batill proved that the minimum norm solution for backwards ARX models (again, 

referred to as ARMA models in the original study) resulted in the spurious numerical 

poles being located inside the unit circle on the complex z-plane and the system poles 

being located outside the unit circle.  

 

The use of backwards ARX models was adopted for the first and third stages of the 

ARMAX estimation algorithm. This was achieved by using forward time steps instead 

of backward time steps when defining the ARX model in equation (5.15) and 

subsequent LS estimation. An alternative approach is to simply reverse the order of the 

input and output data vectors. The resulting backwards AR and X matrices that are 

estimated are denoted  )(qByH  and )(qBfH , respectively. 
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5.3.2 Stage 2: 1st Estimate of Noise Model (MA matrix) 

The backwards AR matrix )(qByH  estimated in the first stage contains information 

describing the system dynamics and the noise dynamics, as shown by equation (5.10). 

The second stage estimates the noise model by separating the system dynamics from 

noise dynamics. One approach is to simply factorise )(qByH into two matrix 

polynomials; one with poles outside the unit circle and the second with poles inside the 

unit circle: 

 

   )()()()( 21
1 zzzzz By

p
By DDHH ⋅=⋅= −∗ .              (5.29) 

 

iDz 1  and iDz 2  are the complex zeros of )(1 zD and )(2 zD , respectively, such that 

 

   11 >iDz , i = 1, … , na ,                (5.30) 

 

   12 ≤iDz , i = 1, … , p – na .                (5.31) 

 

Then the following assignments can be made: 

 

   )()( 1 qqB DA =                  (5.32) 

 

   )()( 2 qqB DC =                  (5.33) 

 

Recall that the backwards ARX model will place system poles outside the unit circle, 

and the number of poles is related to the definition of )( 1−zyH  (or the backwards 

equivalent )( 1−zByH ). This factorisation is easily computed because of the diagonal 

structure of the AR matrix and each diagonal entry can be treated as a scalar 

polynomial.  

 

Another method to separate the system dynamics from noise dynamics is by 

deconvolution. The definition of )(qyH  is rewritten 
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and approximating A(q) = 0,  q > na,  a set of equations can be written for i = r – nc + 

1, … , r; r ��PD[�QD�QF����QF [55]: 
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          (5.35) 

 

Both of the above methods have been used in practice and further comments on their 

implementation are discussed below.  It should be noted that the first method yields an 

estimate of  )(1 q−C  and the second method )(qC , which has to be taken into account in 

the subsequent stages. The assumption of system stability implies that the MA matrix is 

stable and this is the case if the first method described above is used to extract the MA 

matrix. The assumption of A(q)=0,  q > na, used in the second method can lead to an 

unstable MA matrix being estimated, particularly when measurement data is corrupted 

with significant levels of noise. It is necessary to stabilise an unstable MA matrix for 

use in subsequent stages and this can be achieved by reflecting the unstable MA matrix 

zeros about the unit circle. Note that the diagonal structure imposed on the AR matrix 

leads to a diagonal MA matrix and each diagonal element can be treated as a scalar 

polynomial. 

 

5.3.3 Stage 3: Filtering Input & Output Data and Estimation of Lower-Order 

ARX Model 

The MA matrix estimated in the previous section (either as )(1 q−C  or )(qC ) describes 

the noise dynamics of the ARMAX model. Fassois [55] showed that an ARMAX model 

can be expressed as an ARX model relating filtered input and output data if the MA 

matrix is known. The ARX model is then easily solved using least-squares estimation. 
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 Pre-multiplying equation (5.2) by )(ˆ 1 q−C  and noting that A0 = Is leads to 
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where ][t2  is the prediction error. Pre-multiplication by )(ˆ 1 q−C  can be qualitatively 

thought of as pre-filtering the input and output data. Algebraically, Fassois [55] used the 

identity [44] 

 

  )()()( BACABC colcol T ⋅⊗= ,                (5.37) 

 

where col( · ) stacks the columns of a matrix into a vector with the first column at the 

top and ⊗  is the Kronecker product, to rewrite equation (5.36) in terms of a filtered 

input FF and filtered output YF : 

 

 ][)(][)(][][
1

nb

0j

tcoljtcoljtt
na

j
jFjFF 2AYBFy +⋅−−⋅−= ∑∑

==
,                 (5.38) 

 

where  

 

  ( ) )col()(ˆ][][ s
1 ICyy ⋅⊗≡ − qtt T

F  [s × 1]               (5.39) 

 

  )(ˆ][][ 1 qtt T
F

−⊗≡ CyY   [s × s2]                       (5.40) 

 

  )(ˆ][][ 1 qtt T
F

−⊗≡ CfF   [s × ms]              (5.41) 

 

 ∴ )col(][][ sIYy ⋅= tt FF                   (5.42) 

 

Equations (5.38) – (5.42) describe a MIMO ARX model and the definition of the 

Kronecker product permits this model to be separated into s MISO ARX models. This 

also leads to a convenient way to calculate the filtered excitation and response data. 

Equation (5.40) is expanded as  
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[ ])(ˆ][)(ˆ][)(ˆ][][ 111
1 qtqtqtt skF

−−− ⋅⋅⋅= CyCyCyY �� ,             (5.43) 

 

and the kth element in the right hand side of equation (5.43) is 

 

  )(ˆ][][ 1)( qtt k
k

F
−⋅= CyY  , [s × s]                (5.44) 

 

Equation (5.44) shows that ][)( tk
FY  is the output of )(1 q−C  being applied as a finite-

impulse response (FIR) filter [123] to the data series ][tky  (the kth response 

measurement channel). An alternative representation can be derived by post-multiplying 

equation (5.44) by )(qC : 

 

  sk
k

F Itqt ⋅=⋅ ][)(̂][)( yCY , [s × s]                (5.45) 

 

which is an infinite impulse response (IIR) implementation of the filter )(qC . The use 

of equation (5.44) or (5.45) depends on the method used to obtain the estimate of the 

MA matrix in stage 2. A similar procedure can be applied to the force measurements, 

yielding the filtered input data series ][tFF .  

 

The MIMO ARX model in equation (5.38) is separated into s MISO ARX models in 

terms of ][tFF  and ][)( tk
FY : 
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k
FFkF 2AYBFy +⋅−−⋅−= ∑∑

==
,               (5.46) 

where ][tkFy  is the kth row of ][tFy  and )(qkA  is the kth column of )(qA . 

Equation (5.46) can be rewritten as a linear regression problem: 

 

  ][][][ 22 ttt kkkFkF Uy +⋅=                  (5.47) 

 

using the parameter vector 
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  )]()0()()1([col2 nbnakkk BBAA ���≡ ,               (5.48) 

[(na.s + nb.m.s + m.s) × 1] 

 

and the regression vector 

 

  ]][][][]1[[][ nbttnattt FFkFkFkF −−−−−≡ FFYYU ��� .            (5.49) 

[s × (na.s + nb.m.s + m.s)] 

 

The least-squares criterion is used to solve equation (5.47) using the QR factorisation 

algorithm described in stage 1.  A backwards ARX model is also adopted for equation 

(5.46) using the same procedure described in stage 1 and the backwards AR and X 

matrices that are estimated are denoted )( jBA  and )(qBB , respectively. 

 

The separation of the MIMO model into MISO models was initially used to overcome 

difficulties with forming and manipulating the very large regression matrices required 

for the LS solution of high-order MIMO models. The size of the regression matrix 

required for a MIMO model is [s × (na.s2 + nb.m.s + m.s)] compared with [s × (na.s + 

nb.m.s + m.s)] for the MISO case.  

 

5.3.4 Stage 4: Estimation of New Noise Model (MA matrix) 

An improved estimate of the noise dynamics can be obtained using )(qByH estimated in 

stage 1 and )( jBA  estimated in stage 3. Starting with the definition of )(qByH  in 

equation (5.10), the definition of the convolution of two polynomials (polynomial 

multiplication) [124] 

 

 ),,min(,)),1(1,1max(,)1()()( 1 napknakjjkjk ByB −+−+=−+⋅= ∑ −
�ACH    (5.50) 

 

is used to set up a system of linear equations for k = 1, … , p, which is solved for 

)(1 q−C . 
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Stages 3 and 4 can be iterated until a convergence criterion has been satisfied and then 

modal parameters can be calculated from the estimated ARMAX model. 

 

5.3.5 Stage 5: Calculation of Modal Parameters from Estimated ARMAX Model 

The ARMAX model estimated in stages 1 - 4 yielded the backwards polynomial 

matrices )(qBA , )(qBB , and )(qBC . Recall that the transfer function relating the input 

and output data is )()(1 qq BA ⋅−  and this is used to determine the modal parameters of 

the system. Equations (5.51) – (5.52) are used to transform the backwards AR and X 

matrices into the forwards AR and X matrices. 
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The poles of the transfer function can be extracted by calculating the eigenvalues of the 

bottom companion matrix [125] of A(q) 
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which occur in complex conjugate pairs ( * denotes the conjugate of ). Note that an 

alternative approach is to calculate the zeros of each diagonal element (a scalar 

polynomial) of the AR matrix. The system natural frequencies and damping can be 

estimated for each pole using the following equations [30]: 

 

   *lnln
1

rr
s

rn T
µµω ⋅= ,                (5.54) 
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,                 (5.55) 

 

(r = 1, … , na) where sT is the sampling period. The transfer-function zeros for each 

input-output channel pair can be calculated by finding the zeros of znb·bij(z-1), where 

bij(z-1) is an element of the X matrix. 

 

Alternatively, the MIMO transfer function can be separated into s × m scalar transfer 

functions and factorised into partial fraction form [51]: 
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The residues are used to define the kth mode shape: 
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The diagonal AR matrix yields s sets of global modal parameters and these can be 

averaged. The sign of the damping for each estimated mode allows the structural modes 

to be distinguished from the spurious numerical modes and further reduction of the 

estimated model can be achieved by selecting the appropriate poles and residues.  

 

A number of subtle issues arise when using discrete models to describe continuous 

systems. The potential for magnification of errors when transforming the poles and 

residues of a discrete model into corresponding continuous-time poles and residues was 

discussed by Fassois et al. [126]. Using the definition of the z-transform, they derived 

the sensitivity of the global parameters to changes in the polar coordinates of the 

discrete-time poles as  
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where p
qs  is the sensitivity of parameter p to changes in parameter q. nω  is the natural 

frequency and ς  the damping of a discrete-time pole with complex modulus r and 

argument θ, and Ts is the sampling period.  Equation (5.58) clearly shows that the 

sensitivity of natural frequency and damping with respect to r approaches infinity as 

Ts→ 0. The effect of this is that small estimation errors of discrete-time poles can lead 

to very large errors in continuous-time modal parameters for very high sampling 

frequencies. Modal damping is particularly sensitive to complex-modulus errors of the 

discrete-time pole, especially for low levels of damping. These effects should be kept in 

mind when estimating discrete-time models for wide-frequency ranges, as is common in 

vibration analysis of structures.  

 

Fassois et al. [126] also noted that the transformation of discrete-time residues to the 

continuous residues, which are used to define mode shapes, depended on the inter-

sample behaviour of the excitation signal. Two common assumptions are impulse 

invariance and the step approximation method. The discrete and continuous-time 

residues are equal (hence their errors) under the assumption of impulse invariance, 

which assumes that the excitation is a train of impulses occurring at the sampling 

instants [123]. For the case of step approximation, Fassois et al. [126] showed that no 

sensitivity issues arise, except for the case where the argument of the continuous residue 

approaches zero. 

 

5.4 Implementation of ARMAX Estimation Algorithm 

A number of additional points need to be addressed when implementing the ARMAX 

parameter estimation algorithm: 

• Sampling rate and data record length; 

• Model orders na, nb, nc, and p; 

• Selection of ‘best’ model. 
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5.4.1 Sampling Rate and Record Length 

The number of samples in the input and output data vectors is important in stages 1 and 

3 where the LS criterion is used to estimate the parameters of ARX models. Equation 

(5.20) shows that the number of samples in the input (or output) data series determines 

the number of rows in the regression vector and it can be seen that this affects the level 

of over-determination of the regression problem. The minimum record length is 

determined by the size of the model, given that the regression problem should be 

overdetermined. 

 

The sampling rate is also of critical importance when estimating an ARMAX model and 

subsequent calculation of modal parameters from the ARMAX model. Ljung [116] 

discussed the effect of sampling interval on bias and variance of estimated models and 

pointed out that very high sampling rates can lead to numerical problems in discrete-

time models. Another issue is that the estimated model spreads into high frequency 

bands; the frequency range increases and the estimated model includes components to 

account for noise present in the frequency range. As Ts �� (i.e. increasing sampling 

rate), low frequency signal components are misrepresented due to the finite precision of 

sampled data; a quantisation step becomes larger than the amplitude change of a low 

frequency signal component over a sampling period. On the other hand, a very slow 

sampling rate relative to the system time constants results in a poor representation of the 

system dynamics. The conclusion is that the optimal choice of the sampling period will 

be within the range of system time constants. Another general specification given by 

Söderström and Stoica [44] is to set sampling period as approximately 10% of the 

settling time of the system’s step response. Both these specifications appear to be 

unsatisfactory for identifying models representing mechanical systems as the time 

constants (hence settling time) can become quite large due to very small damping. 

 

Another aspect related to choice of sampling rate is the transformation of the discrete 

ARMAX model into modal parameters discussed in section 5.3.5.  

 

5.4.2 Specifying Model Order (na, nb, and nc) 

The theoretically required model order, na, was discussed in section 5.3.1 and it was 

noted that the order of nb was determined by na and the type of response measurements; 
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i.e., displacement, velocity or acceleration data. The order p of the higher order ARX 

model used in stage one can be set arbitrarily; Fassois & Lee [117] and Fassois [55] 

suggested between 2.5 and 5 times the maximum of na, nb, and nc worked well for 

modal analysis problems. Alternatively, a statistical model order selection criterion may 

be used to help identify a suitable model order. Section 5.3.1 suggests a higher order 

model for measurements corrupted with noise but large models increase the 

computation time and numerical difficulties can be encountered in subsequent stages 

when estimating the noise model (MA matrix) and subsequent filtering of the input and 

output data. The order nc of the MA matrix is dependent on the noise present in the 

system and generally no information on the nature of this disturbance is available. An 

approach taken by Fassois [55] involves initially setting nc = na, selecting the best 

model using a particular criterion out of a set na = namin, … , namax and then testing the 

effectiveness of changing nc. The value of nc also affects the separation of the noise and 

system dynamics in stage 2 and 4. If nc = p – na, the first method discussed in stage 2 

(section 5.3.2) can be used where )(qByH  of order p is factorised into two polynomials, 

one of order na, the other of order nc (see equations (5.29) – (5.33)). If nc ��S�– na the 

second method is used as it allows an MA matrix of any order to be estimated 

(equations (5.34) and (5.35)). These comments also apply to the stage 4 estimation of 

the noise model.  

5.4.3 Model Selection 

The issue of defining a set of models of different orders and then selecting the most 

accurate model from that set is a difficult problem and a number of approaches has been 

studied in literature. Tests such as the Akaike Information Criterion (AIC) [44] and 

Bayesian Information Criterion (BIC) have been used in literature and are simple to 

implement once the innovations sequence (model error) ][tw  (see equation (5.2)) has 

been computed. The BIC is defined as [55] 

 

   ( ) 




+Σ=

N
N

d
)ln(ˆdetlnBIC ,                (5.59) 

 

where d is the number of scalar parameters in the ARMAX model, N the number of 

samples in the input (or output) data and  
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is the covariance matrix of the innovations sequence. The diagonal terms in the 

covariance matrix are the estimates of variance (or mean square value for a zero-mean 

sequence) of each element of the innovations and the non-diagonal terms estimate the 

covariance between elements. The BIC examines the magnitude of the innovations and 

the correlation between elements, and also includes a penalty for large models weighted 

by the number of data samples used in the estimation; a larger number of samples 

reduces the sensitivity of the BIC to the number of estimated parameters.  

 

Other tests can be applied to the innovations sequence to test the assumption that it is a 

random sequence (that can have correlated components) independent of all inputs to the 

system [44]. For example, testing the autocorrelation of each element of the innovations 

and also the cross-correlation between the innovations sequence and the input can help 

select the most accurate model. 

 

Another method is the use of stabilisation diagrams, which plot the estimated modal 

frequencies and damping for each model order. The consistency or stability of vibration 

modes helps distinguish between spurious numerical modes and vibration modes and 

also allows the model of minimum order with stable global parameters to be selected. In 

practice, stability diagrams can be difficult to interpret, particularly for higher order 

models with high modal density. Also, as mentioned in section 5.3.1, the LS estimation 

of ARX models can lead to spurious numerical poles being uniformly spread around the 

unit circle with little variation for different model sizes, which also contributes to the 

difficulty in interpreting stabilisation diagrams. A related method is to check the number 

of estimated modes with positive damping and select the smallest model that has the 

largest number of positively damped poles. This method is discussed further in Chapter 

6. 

 

Estimating a large number of models with varying order (na and nc) improves the 

chance of identifying a model that describes the behaviour of the structure accurately. A 

compromise has to be reached where a number of models can be estimated in a 

reasonable time and still describe the behaviour of the structure accurately. A subset of 
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data may be used to estimate a number of models and then the full set of data may be 

used to estimate a smaller number of models of appropriate order. Examining the power 

spectra of response data can also provide further information, for example, a rough 

estimate of the number of expected modes in a frequency band, which will aid the 

determination of model order. These issues will be discussed in more detail in Chapter 

6, which describes numerical testing of the ARMAX estimation algorithm and the 

analysis of experimental data. 

 

5.5 Conclusions 

An algorithm to estimate an ARMAX model from data that includes measurement noise 

and also unmeasured periodic and random excitations has been introduced. This 

addresses a case that has not been widely considered as was revealed in the review of 

modal parameter estimation methods in Chapter 2. Cases where unmeasured sources of 

excitation are present are likely to arise when analysing structures in their operating 

environments, for example investigating the structural dynamics of helicopters in-flight. 

The estimation algorithm is an iterative multistage method, which incorporates the 

estimation of backwards ARX models, estimation of a noise model, filtering of the 

excitation and response data and estimation of a lower-order ARX model. The use of 

backwards ARX models allows vibrational modes and spurious numerical poles to be 

distinguished on the basis of the sign of modal damping. The number of positively 

damped poles has also been introduced as a method to select the best model from a set 

of estimated models. A diagonal parameterisation of the AR matrix, and consequently 

the MA matrix allows the MIMO ARMAX model to be estimated as a set of MISO 

models. The diagonal structure also allows simple manipulation and stabilisation of the 

AR and MA matrices. Numerical and experimental testing of the algorithm and model 

selection criterion is discussed in the following chapter and further experimental tests 

using the helicopter-like structure are described in Chapter 7. 
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Chapter 6  ARMAX Modal Parameter Identification in the 

Presence of Unmeasured Excitation: Numerical and 

Experimental Verification 

 

6.1 Introduction 

Chapter 2 revealed that existing experimental modal analysis techniques usually require 

excitation and response data with a high signal-to-noise (s/n) ratio and that all sources 

of excitation be measured and uncorrelated. In practice, unmeasured sources of 

excitation are likely to be present when analysing structures in their operating 

environment, for example helicopters in flight. Hence, a modal parameter estimation 

scheme based on the identification of parameters in an ARMAX model, which 

explicitly modelled sources of unmeasured excitation, was introduced in the previous 

chapter. In this chapter, numerical tests using data simulating the response of a two 

degree-of-freedom (DOF) system are used to assess the performance of the ARMAX 

estimation algorithm when data is corrupted with random measurement noise and 

unmeasured periodic and random excitations. Tests include the effect of unmeasured 

random and periodic excitations applied to systems with lightly damped modes, closely 

spaced modes, as well as a case with high levels of damping. A new model selection 

criterion based on the number of positively damped modes is also investigated and 

compared with the Bayesian Information Criterion (BIC) [55]. 

 

Further testing of the ARMAX estimation algorithm is carried out using experimental 

data obtained from a cantilever aluminium beam. Initial experiments applied 

independent random excitation using electrodynamic shakers. Subsequent experiments 

investigated the effect of unmeasured periodic and random excitations and employed 

pairs of piezoceramic plates to excite the beam as described in Chapter 4. Results 

obtained from the ARMAX estimation algorithm are compared with results obtained 

from frequency domain curve fitting of SIMO data and results from least-squares 

estimation of ARX models. 
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6.2 Numerical Testing 

A two degree-of-freedom system was used for numerical testing of the ARMAX 

algorithm. Figure 6.1 shows a schematic of the simulated system and three sets of mass, 

damping, and stiffness parameters used to simulate 3 systems; the first system having 

well-spaced, lightly damped modes; the second system having lightly-damped modes 

separated by 0.345 Hz; and the third system having well-spaced highly damped modes. 

The physical and modal parameters for each system are listed in table 1. Equation (6.1) 

is the time domain differential equation for the system and transfer function matrices are 

given in equations (6.2), (6.3), and (6.4) for systems 1, 2, and 3, respectively. 

 

 

 

 

 

 

Figure 6.1 Two DOF damped spring mass system. 
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The displacement response at each DOF was generated using the Matlab function 

lsim() to simulate the response of the system’s continuous-time transfer function 

when excited with independent random noise applied to each DOF. The function 

lsim() discretises the continuous-time transfer function using a zero-order-hold 

assumption. Ten seconds of excitation and response data sampled at 50 Hz was used for 

all tests except those investigating the effect of record length and sampling rate, 

described in sections 6.2.6 and 6.2.8, respectively. Frequency response functions (FRFs) 

for each system are shown in figures 6.2 (a), (b), and (c). A range of tests included 

unmeasured excitations added to the measured random excitations, and measurement 

noise could be applied by adding a zero-mean random sequence of appropriate mean-

square amplitude to each of the response measurements. A summary of the noise 

conditions and unmeasured excitations used for each numerical test is listed in table 6.2. 

 

 

 

System Physical 
Parameters Mode Frequency 

(Hertz) 
Damping 

(%) 
Magnitude 
(DOF 2) 

Phase° 
(DOF 2) 

1 1.485 0.4180 2.377 0.3211 
1 

m1 = 1; m2 = 2; 
c1=0.2; c2= 0.4; 
c3= 0; 
k1=500; k2= 300; 
k3= 0 

2 4.676 1.229 0.2104 179.0 

1 2.757 0.8658 1.002 2.479 
2 

m1 = 1; m2 = 1; 
c1=0.4; c2= 0.1; 
c3= 0.2; 
k1=300; k2= 40; 
k3= 300 

2 3.102 1.283 0.9982 177.2 

1 1.485 4.613 2.371 2.518 
3 

m1 = 1; m2 = 2 
c1=3; c2= 4;  
c3= 0; 
k1=500; k2= 300; 
k3=0 

2 4.673 13.86 0.2160 172.3 

Table 6.1 Physical and modal parameters of 2 DOF systems. Magnitude and phase is 
listed for DOF 2, relative to a unit displacement of DOF 1. 
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Figure 6.2 (a) Frequency response functions relating each degree-of-freedom for 2 
DOF system 1, calculated using the transfer function matrix in equation (6.2). 
 

 

 
Figure 6.2 (b) Frequency response functions relating each degree-of-freedom for 2 
DOF system 2, calculated using the transfer function matrix in equation (6.3). 
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Figure 6.2 (c) Frequency response functions relating each degree-of-freedom for 2 
DOF system 3, calculated using the transfer function matrix in equation (6.4). 
 

Fifty tests using independent realisations of excitation data and measurement noise were 

run to enable the mean and standard deviation of estimated modal parameters to be 

calculated. In addition, the unmeasured periodic excitations used for each test were 

generated using summed sinusoids with a random phase relationship. The selected 

model was often of higher order than theoretically necessary and the frequency response 

function of each estimated ARMAX model was used in addition to the sign of the 

damping to help identify the correct modal parameters. Figure 6.3 shows an example of 

the average of FRFs synthesised from the 50 ARMAX models from test 1 data, and the 

average of the exact FRFs for all DOFs is also plotted. Two peaks can be clearly 

identified and these were assumed to represent vibration modes. ARMAX model poles 

with a natural frequency within 5% of the selected peaks were assumed to represent 

structural modes, and were further assessed using the sign of the damping. The 5% 

tolerance was chosen on the basis of the resolution of the FRFs synthesised from the 

ARMAX models. Figure 6.4 plots the FRFs from all selected ARMAX models for a 

case where some models fail to identify the second mode, as indicated by the arrow in 

the figure.  
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Test System Noise conditions 

1 1 • 10% random noise added to the response measurements. 

2 1 
• 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite 

DOF 1 in addition to measured random excitation. 
• 10 % random noise added to the response measurements. 

3 1 
• 20% unmeasured random noise used to excite each DOF in 

addition to the measured random excitation. 
• 10% random noise added to the response measurements. 

4 1 

• 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite 
DOF 1. 

• 20% unmeasured random noise applied to each DOF in addition 
to the measured random excitation. 

• 10% random noise added to the response measurements. 

5 2 • 10% random noise added to the response measurements. 

6 2 
• 100% unmeasured periodic signals at 1, 2.50, & 4 Hz used to 

excite DOF 1 in addition to measured random excitation. 
• 10 % random noise added to the response measurements. 

7 2 
• 20% unmeasured random noise used to excite each DOF in 

addition to the measured random excitation. 
• 10% random noise added to the response measurements. 

8 2 

• 100% unmeasured periodic signals at 1, 2.50, & 4 Hz used to 
excite DOF 1. 

• 20% unmeasured random noise applied to each DOF in addition 
to the measured random excitation. 

• 10% random noise added to the response measurements. 

9 3 • 10% random noise added to the response measurements. 

10 3 
• 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite 

DOF 1 in addition to measured random excitation. 
• 10 % random noise added to the response measurements. 

11 3 
• 20% unmeasured random noise used to excite each DOF in 

addition to the measured random excitation. 
• 10% random noise added to the response measurements. 

12 3 

• 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite 
DOF 1. 

• 20% unmeasured random noise applied to each DOF in addition 
to the measured random excitation. 

• 10% random noise added to the response measurements. 
Table 6.2 Summary of noise conditions and unmeasured excitations for numerical tests. 
Listed noise (or unmeasured excitation) levels are the ratio of the RMS values of the 
noise and clean signals to which the noise is added. 
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Figure 6.3 Averaged frequency response functions of estimated ARMAX models for test 
1 data (Test 1) compared with averaged exact FRFs (Exact). 
 

 
Figure 6.4 Frequency response functions of 50 estimated ARMAX models for test 1 
data. The arrow indicates models that have not correctly identified mode 2. 
 

Note that s estimates (s is the number of response measurement points) of the global 

modal parameters, and m estimates (m is the number of excitation points) are obtained 

from each ARMAX model as the excitation and response measurements were taken at 

each DOF. The minimum set of measurements required corresponds to either a row or 

column of the transfer function matrix: in this case either one excitation and two 

response (SIMO) measurements or two excitation and one response (MISO) 

measurements.  

 



 112 

6.2.1 Model Selection Using BIC and NPDP Criterion 

The performance of the BIC and number of positively damped poles (NPDP) model 

selection criteria were compared using sets of ARMAX models estimated as discussed 

above from data generated under the conditions described by test 1 and test 2 (table 

6.2).  

 

The NPDP model selection criterion was implemented with the following rules:  

1. Select the model of smallest order with the greatest number of positively 

damped poles estimated with the minimum number of iterations over a particular 

threshold. This rule automatically penalises higher order models with large 

numbers of iterations. 

2. The iteration threshold is set to at least one depending on the variation of 

numbers of positively damped poles. Experience showed that approximately five 

iterations of stages 3 and 4 were beneficial for the accuracy of modal 

parameters. Therefore a minimum number of iterations can be imposed if no 

variation of the number of positively damped poles is observed in the set of 

estimated models. 

3. A subset of model orders can be used if little or no variation of the number of 

positively damped poles is observed. 

 

The mean and standard deviation were calculated for modal parameters obtained from 

the ARMAX models selected by the BIC and NPDP criterion. Results for models 

estimated from test 1 data are shown in figure 6.5 and results for models estimated from 

test 2 data are shown in figure 6.6. Figure 6.5 shows that the ARMAX algorithm is 

successful in identifying modal parameters from data corrupted with 10% random 

measurement noise. In particular, modal frequencies are very accurately estimated with 

results within 1% of their true value. Modal frequency results obtained by BIC and 

NPDP criterion are very similar. Modal damping results illustrate the negative bias on 

damping peculiar to backwards ARX models estimated from data corrupted with noise.  
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Figure 6.5 Modal parameters obtained from ARMAX models selected by BIC and 
NPDP criterion for test 1 data. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

 
Figure 6.6 Modal parameters obtained from ARMAX models selected by BIC and 
NPDP criterion for test 2 data. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
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Mode 1 damping values are within 10% of their true values and similar results are 

obtained for both model selection criteria. Mode 2 damping values show the effect of 

noise present in measurements obtained from DOF 2. Damping values obtained from 

the MISO model with DOF 2 as reference are poorer than those obtained from the 

MISO model with DOF 1 as reference. This pattern is reflected in the standard deviation 

of mode shape magnitude and phase results for mode 2. Mode shape results obtained 

from each model selection criterion are of acceptable accuracy, noting that the phase 

values are particularly sensitive to noise and unmeasured excitations, especially for 

mode 2, DOF 2. It should be emphasised that the BIC results were obtained for a subset 

of models na ≥ 8, estimated with 4 more iterations, because the BIC consistently 

estimated low-order models, which often did not identify modes. The NPDP was 

applied to the set of models with na ≥ 4 estimated with 4 more iterations. 

 

Figures 6.7 (a) and (b) show the 1-sided power spectra of clean response measurements 

and the added random noise for each DOF. The signal power at frequencies just below 5 

Hz (corresponding to the natural frequency of the second mode) measured at DOF 2 is 

less than an order of magnitude above the random noise. This explains the relatively 

poor results obtained for mode 2 obtained from models with DOF 2 as reference. 

 

 
Figure 6.7 (a) 1-sided power spectrum of clean response (no added noise) and random 
noise added to response measurement at DOF 1, system 1. 
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Figure 6.7 (b) 1-sided power spectrum of clean response (no added noise) and random 
noise added to response measurement at DOF 2, system 1. 

 

A similar pattern of results is obtained for test 2 data (figure 6.6), where DOF 1 was 

excited by unmeasured periodic excitations in addition to the measured random 

excitations. The unmeasured periodic excitation leads to many instances of modes being 

estimated with negative damping. The NPDP model selection criterion performs better 

than the BIC; the BIC damping results for mode 1 DOFs 1, 2 and mode 2 DOF 2 are 

negative, whereas NPDP damping results are all positive. The multiple estimates of 

global parameters can be reduced by averaging, ignoring negatively damped modes, and 

the relative standard deviation of parameters obtained for each response measurement 

point indicates the quality of the response for each mode at that particular measurement 

point. The addition of unmeasured periodic excitations reduces the effectiveness of the 

ARMAX estimation algorithm, however, accuracy remains acceptable. 

 

A limitation of the BIC is its poor sensitivity to different model orders and the effect of 

iterations in stages 3 and 4 of the ARMAX estimation algorithm. Figure 6.8 shows the 

BIC values corresponding to ARMAX models obtained for each model order and 

iteration for a typical realisation of data under test 1 conditions. The BIC decreases after 

the first iteration for all model orders but stabilises quickly after the second iteration. 

Models with a highly over-specified order have higher initial BIC values and take more 

iterations to stabilise, which is probably due to the effect of the higher number of  
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Figure 6.8 BIC calculated for each model and iteration for a typical realisation of test 1 
data. 

 

 

 
Figure 6.9 Modified BIC calculated for each model and iteration for a typical 
realisation of test 1data. The modified BIC does not include the term penalising larger 
models. 
 

spurious numerical poles. It was found that low-order models estimated after a few 

iterations were typically selected by the BIC but estimated modal parameters increased 

in accuracy for higher-order models and after a greater number of iterations. More 

accurate results were obtained by searching for the minimum BIC in a subset of models 

with na ��� with a minimum of four iterations, and this was adopted for all tests using 

the BIC. The effect of the second term in equation (5.59), which penalises higher-order 
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models, is illustrated by plotting a modified BIC value without that term in figure 6.9 

for the same set of models as those used to generate figure 6.8. The positive slope along 

the model order axis has been removed, which increases the likelihood of higher order 

models being selected by the modified BIC. Results showed that the modified BIC 

value was still not sufficiently sensitive to the effect of iterating stages 3 and 4, and 

subsequent results show that the number of positively damped poles (NPDP) criterion 

addressed this problem. 

 
Figure 6.10 Number of positively damped poles estimated for each model and iteration 
for a typical realisation of test 1 data. 

 

Figure 6.10 shows a plot of the number of positively damped poles estimated for each 

model order and iteration for a typical realisation of test 1 data. It can be seen that low-

order models only select a subset of the 8 possible positively damped modes. The 

maximum number is eight due to complex conjugate poles for two modes being 

estimated for 2 MISO models: 2×2×2=8. It is likely that the modes that are not 

identified correspond to the second mode in models using DOF 2 as a reference, due to 

the poor signal-to-noise ratio, as discussed above. Models of order 10, 12, and 14 

initially have only six modes identified with positive damping but further iterations 

improve the accuracy of the model and the maximum eight modes are estimated with 

positive damping. The BIC and NPDP are shown in figures 6.11 and 6.12 for typical 

realisations of test 2 data. The bias of the BIC towards lower-order models can clearly 

be seen and the plot of NPDP shows that low-order models fail to identify positively 

damped poles. All 8 positively damped poles are identified in an ARMAX model of 
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order 16, after 9 iterations of stages 3 and 4, and this model is selected by the NPDP 

criterion.  

 
Figure 6.11 BIC calculated for each model and iteration for a typical realisation of test 
2 data. 

 
Figure 6.12 Number of positively damped modes estimated for each model and iteration 
for a typical realisation of test 2 data. 

 

The second and third rules of the NPDP criterion outlined above can be imposed if extra 

iterations or larger models do not increase the number of positively damped poles as it 

is expected that to a certain extent larger models and a moderate number of iterations 

will improve the accuracy of the estimated modal parameters. As shown in figure 6.13, 

no model correctly identifies all eight positively damped poles. Note that both modes 

have still been correctly identified with positive damping and in this case these were 

probably identified for the MISO model with DOF 1 as a reference. Experience 
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suggests that using a moderate number of iterations, say between 4 and 10, and avoiding 

the models with lower order would improve the accuracy of the estimated modal 

parameters. Therefore, for sets of models like that shown in figure 6.13, the second and 

third rules of the model selection criterion could be imposed. Analysis of synthesised 

FRFs and pole-zero diagrams from models estimated from a representative set of data is 

useful in determining a suitable range of model orders. 

 
Figure 6.13 Number of positively damped poles estimated for each model and iteration 
for a different realisation of test 1 data. 
 

The advantage of using the NPDP criterion is that it directly assesses the sign of modal 

damping and this appears to be a good indicator of the accuracy of the other modal 

parameters of vibration modes. If the ARMAX model was intended for prediction of the 

vibration response, the BIC, modified BIC, or the correlation-based model selection 

criteria [44, 116] may be a better choice, as they assess the model prediction error or 

innovations sequence. A further benefit of using the NPDP criterion is that it avoids 

calculating the innovations sequence, which is calculated recursively using the 

estimated ARMAX model and the measured excitation and response data. Problems can 

be encountered during this operation if the estimated ARMAX model is unstable. The 

number of positively damped poles can be determined by calculating the roots of each 

scalar AR polynomial directly after the ARX model in stage 3 is estimated. Other model 

selection criteria based on testing the assumptions made about the innovations sequence 

and the correlation between the innovations sequence measured excitations were tested. 

Results are discussed in Appendix A, and show that the performance was comparable to 
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that of the BIC. Conditioning of the regression matrices used in the estimation scheme 

is also included in the discussion in Appendix A. 

 

6.2.2 Unmeasured Random and Periodic Excitation – 2DOF System 1 

The performance of the ARMAX estimation algorithm and NPDP criterion was 

assessed for the noise conditions described in tests 1 – 4 (table 6.2) and the mean and 

standard deviation of results are plotted in figures 6.14 and 6.15. Modal frequencies are 

estimated very accurately for all tests and all modal damping values are positive, but the 

negative bias is evident, especially for mode 2, DOF 2 estimates. Accuracy decreases 

and greater scatter is seen in damping results for higher levels of unmeasured excitation. 

Mode shape magnitudes are accurately estimated; the large standard deviation values 

for some results arising from residues corresponding to spurious poles, which are more 

prevalent for tests 2 and 4, which include unmeasured periodic excitations. Mode shape 

phase values for mode 2, DOF 2 are sensitive to measurement noise and unmeasured 

excitations.  

 

 
Figure 6.14 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 1-4. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
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Figure 6.15 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 1-4. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

The results show that the ARMAX parameter estimation algorithm and NPDP model 

selection criterion achieve acceptable accuracy for the 4 noise cases presented here 

noting that reasonable results are estimated for each mode using at least one DOF as a 

reference.  

6.2.3 Unmeasured Random and Periodic Excitation – 2DOF System 2 

The ARMAX algorithm was also tested using simulated data from 2 DOF system 2 

under noise conditions summarised in table 6.2, tests 5 - 8. System 2 exhibited modes 

separated by 0.345 Hz, and the unmeasured periodic noise used in tests 6 and 8 included 

a component at 2.50 Hz; 0.257 Hz below the first modal frequency. The number of 

models estimated was increased from 20 up to 30 for tests 6 and 8, which included 

unmeasured periodic excitation and unmeasured periodic and random excitation, 

respectively. Modal parameters estimated from tests 5 – 8 are summarised in figures 

6.16 and 6.17. Similar to tests 1 – 4, modal frequencies for both modes are the most 

accurately estimated modal parameters but the closely spaced modes lead to more 

scatter in the results. Unmeasured periodic excitations used in tests 6 and 8 lead to 

greater uncertainty in modal frequencies estimated at DOF 1; the DOF where the 

unmeasured periodic excitation was applied, and also affect the mean frequency value 

estimated for mode 1 at DOF 1. 
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Figure 6.16 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 5-8. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

 
Figure 6.17 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 5-8. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

This pattern is also reflected in the estimates of the other modal parameters; unmeasured 

periodic excitations generally lead to poorer estimates. Results also show that the 

negative bias on the damping estimates due to noise is more evident for systems with 
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closely spaced modes. Standard deviation results suggest mode shape estimates are 

quite sensitive to the unmeasured periodic excitation for this system. Overall, acceptable 

frequency and mode shape magnitude results are obtained for each mode using at least 

one DOF as reference. 

6.2.4 Unmeasured Random and Periodic Excitation – 2DOF System 3 

High levels of modal damping were imposed on system 3; 4.61% and 13.86% for 

modes 1 and 2, respectively. Figure 6.2 (c) shows that the response for mode 2 is 

relatively low amplitude, especially for DOF 2. The estimated modal parameters, 

plotted in figures 6.18 and 6.19 again show the increased uncertainty of results for 

increasing levels of unmeasured excitation. There is significant negative bias on 

damping estimates for mode 2 DOF 2, and it was noted that many models failed to 

identify mode 2 for the DOF 2 reference point. Mode 2 DOF 1 results are relatively 

good; however, there is still close to 50 % error for tests with unmeasured periodic 

excitations added. Mode shape results are of acceptable accuracy, but with higher 

standard deviations for mode 2 DOF 2. 

 
Figure 6.18 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 9-12. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
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Figure 6.19 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 9-12. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

The results for tests 1 - 12 show that the ARMAX algorithm performs reasonably well 

for cases with unmeasured excitations. Higher model orders are required to account for 

the unmeasured excitations, particularly when they include periodic components. The 

importance of selecting measurement points with good vibration response is illustrated 

by the relatively poor results obtained for mode 2, DOF 2. Closely spaced modes and 

high levels of damping increase the sensitivity of the ARMAX algorithm to 

measurement noise and unmeasured excitations. 

 

6.2.5 Effect of Data Record Length 

The role of the length of the data record was discussed in section 5.3.1. Three sets of 

tests were carried out to investigate whether increasing the number of samples used for 

estimating ARMAX models resulted in improved accuracy of modal parameters.  

 

The ARMAX estimation algorithm was used to estimate the modal parameters for 50 

realisations of the data generated for each of the tests. Settings for the estimation 

algorithm were as follows: 
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• System 1 used to generate response data for random excitations; 

• Sampling period 0.02 seconds; 

• Record length:  

o Test 13: 10 seconds; 

o Test 14: 20 seconds; 

o Test 15: 40 seconds. 

• 10% random noise added to the response measurements. 

• na = 4, 6, …, 20; nb = na – 1; p = 5⋅na; nc = p – na; 

• Ten iterations of stages 3 and 4; 

• Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4 

resulting in ninety-nine models being estimated for data realisation; 

• NPDP criterion used for model selection. 

 

The mean and standard deviations of the estimated modal parameters are shown in 

figures 6.20 and 6.21. 

 

 
Figure 6.20 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 13-15. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
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Figure 6.21 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 13-15. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
 

Improvement in the standard deviation of modal frequencies, damping, and mode shape 

amplitude and phase for mode 1 can be seen for increasing record length. This trend is 

not as evident in the results for mode 2; the poor results obtained for DOF 2 marginally 

improve for increasing record length. The results suggest that increasing record length is 

beneficial although this is accompanied by an increase in computational load. Ten 

seconds (500 samples) of data has been used for all other numerical tests because the 

mean value of modal parameters does not significantly improve for increased numbers 

of samples. 

6.2.6 Effect of Sampling Rate 

Specification of an appropriate sampling rate was discussed in section 5.4.1.  Nine tests 

estimating modal parameters from data corrupted with random measurement noise were 

carried out to investigate the effect of sampling rate on the accuracy of estimated modal 

parameters and to verify that the sampling rate used for all other numerical tests (0.02 

seconds) would not adversely affect the performance of the estimation algorithm.  
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The ARMAX estimation algorithm was used to estimate the modal parameters for 50 

realisations of the data generated for each of the nine tests. Settings for the estimation 

algorithm were as follows: 

 

• System 1 used to generate response data for random excitation; 

• 10% random noise added to the response measurements; 

• Sampling rate, record length, and the number of samples as listed in the table 

6.3.  

• na = 4, 6, …, 20; nb = na – 1; p = 5⋅na; nc = p – na; 

• Ten iterations of stages 3 and 4; 

• Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4 

resulting in ninety-nine models being estimated for each set; 

• NPDP criterion used for model selection. 

 

Test 16 17 18 19 20 21 19a 20a 21a 
Sampling 

Period 
(seconds) 

 
0.1 

 
0.05 

 
0.025 

 
1/80 

 
1/160 

 
1/320 

 
1/80 

 
1/160 

 
1/320 

Record 
Length 

(seconds) 

 
50 

 
25 

 
12.5 

 
6.25 

 
3.125 

 
1.5625 

 
10 

 
10 

 
10 

Number 
of 

Samples 

 
500 

 
500 

 
500 

 
500 

 
500 

 
500 

 
800 

 

 
1600 

 
3200 

Table 6.3 Sampling period, record length, and number of samples used for tests 16 – 21. 
 

Tests 16 – 21 involved fixing the number of samples for increasing sampling frequency. 

As a consequence, the record length (in seconds) decreased for increasing sampling rate. 

Tests 19a, 20a, and 21a used the same sampling rate as for tests 19 – 21 and employed a 

fixed record length (in seconds), hence the number of samples in a record increased for 

increasing sampling frequency. It was therefore expected that the trend identified in 

tests 13 – 15, i.e. higher numbers of samples improve accuracy of modal parameters, 

would affect tests 19a – 21a. 

 

Mean and standard deviation for estimated modal parameters are plotted in figures 6.22 

and 6.23 for tests 19 – 21. Increasing frequency and damping standard deviation is 

observed for increased sampling rate, however, this trend is not reflected in the mode 
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shape results, which are relativity insensitive to changes in sampling rate. The results of 

these tests do not allow the errors due to the estimation algorithm to be distinguished 

from the magnification of errors caused by the discrete-to-continuous transformation. 

According to literature [126] discussed in section 5.3.5, the error contributed by both 

will increase for higher sampling rates. It is also conceivable that the constant number 

of samples used lead to the increased standard deviations observed in frequency and 

damping results, due to the decreasing record length (in seconds). This argument is 

reinforced by the results in figures 6.24 and 6.25, which show estimated modal 

parameters for tests 19 – 21 and 19a – 21a. Increasing the record length (in seconds) 

appears to compensate for the decrease in accuracy observed in tests 19 – 21 for 

increasing sampling frequency. The results for tests 19a – 21a are reasonably consistent 

for increasing sampling frequency, although the accuracy of the frequency and damping 

obtained for DOF 2 show small decreases in accuracy for increasing sampling 

frequency. 

 

 
Figure 6.22 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 16 - 21. The true value of each parameter is indicated by the 
horizontal lines in each plot. 
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Figure 6.23 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 16 - 21. The true value of each parameter is indicated by 
the horizontal lines in each plot. 
 

 

 
Figure 6.24 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 19 - 21 & 19a - 21a. The true value of each parameter is 
indicated by the horizontal lines in each plot. 
 



 130 

 
Figure 6.25 Mode shape amplitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 19 - 21 & 19a - 21a. The true value of each parameter is 
indicated by the horizontal lines in each plot. 
 

The results of these tests suggest that the sampling frequency chosen for all other 

numerical tests (0.02 seconds) is a reasonable compromise between sampling frequency 

and record length and is sufficient for testing the performance of the ARMAX 

estimation algorithm. 

 

6.2.7 Known Noise Properties 

Results for tests 2, 4, 6, 8, 10, and 12 showed that the unmeasured periodic excitations 

affected the accuracy of the estimated modal parameters. The iteration of stages 3 and 4 

is aimed at reducing the effect of unmeasured excitations and measurement noise; 

however, results show that often selected models include poles with frequencies close to 

those of unmeasured periodic excitations. In many practical situations the frequency of 

rotating components causing periodic excitations is known or can be measured 

accurately and this information can be used in the ARMAX estimation algorithm. The 

tests described in this section investigate whether this improves the accuracy of the 

modal parameters obtained from the ARMAX estimation algorithm. 
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Figure 6.26 displays poles of the AR matrix obtained from stage 1 of the ARMAX 

estimation algorithm, when processing data from test 2 (100% unmeasured periodic 

excitations at 1, 2, and 4 Hz and 10% random measurement noise).  

 
Figure 6.26 AR matrix poles of stage 1 ARX model estimated from test 2 data. The 
dashed rectangle indicates the area shown in figure 6.27. 

 
Figure 6.27 AR matrix poles of stage 1 ARX model estimated from test 2 data. This 
figure corresponds to the area enclosed by the dashed rectangle shown in figure 6.26. 
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Poles have been paired according to their proximity on the z-plane and most of the poles 

are inside the unit circle (i.e. stable or positively damped). A subset of the poles is 

plotted in figure 6.27. The position of poles corresponding to modes 1 and 2 and also 

the unmeasured periodic excitations are marked and remaining poles correspond to 

noise components in the response signal. The poles corresponding to the noise 

components are inside the unit circle; the poles corresponding to the vibration modes 

are outside the unit circle (due to the backwards ARX model), but this is not always true 

for noisy data. The poles close to unmeasured periodic excitations are very close to the 

unit circle and can sometimes appear inside.  

 

The iteration of stages 3 and 4 applies the MA matrix as a filter to the excitation and 

response data and this attenuates signal components that do not have a strong linear 

relationship (in terms of the q operator) with the excitation. Figure 6.28 shows zeros of 

the MA matrix FIR filter obtained from stage 4 after a number of iterations of stage 3 

and 4, for the same set of data used to generate figures 6.26 and 6.27.  

 
Figure 6.28 Zeros of MA matrix FIR filter estimated in stage 4 from test 2 data. 
 

The MA matrix zeros are all inside the unit circle (i.e. the filter is stable) and there are 

zeros close to the poles corresponding to the unmeasured periodic excitations, which are 

marked. Note also that there are not any MA matrix zeros close to the vibration-mode 

poles. The fact that the MA matrix zeros are all inside the unit circle is a consequence of 

1 Hz 

2 Hz 

Mode 2 

4 Hz 

Mode 1 
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the backwards ARX model used in the estimation algorithm. As a result the MA matrix 

doesn’t have to be stabilised, although this could easily be carried out because of the 

diagonal structure of the MA matrix.  

 

Figure 6.29 shows the poles of the lower order AR matrix estimated in stage 3 after the 

excitation and response data has been filtered by the MA matrix. A subset of these poles 

is plotted in figure 6.30. All the spurious numerical poles are inside the unit circle (see 

figure 6.29) and there is one pole that is very close to the unit circle at approximately 4 

Hz (figure 6.30). This corresponds to one component of the unmeasured periodic 

excitation, which the MA matrix did not successfully attenuate. Three of the four 

vibration mode poles are outside the unit circle (i.e. one pole for mode 2, figure 6.30, is 

inside the unit circle), which shows the effect of noisy measurements. The poles in 

figures 6.29 and 6.30 have been paired according to their proximity in the z-plane. 

Vibration modes are typically very close together, as are poles corresponding to 

unmeasured periodic excitations. The remaining poles are distributed around the unit 

circle and their positions vary, although this is not always true for high order models, 

which has been observed in the higher-order ARX model estimated in stage 1 of the 

algorithm. 

 
Figure 6.29 AR matrix poles of stage 3 ARX model estimated from test 2 data. The 
dashed rectangle indicates the area shown in figure 6.30. 
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Figure 6.30 AR matrix poles of stage 3 ARX model estimated from test 2 data. This 
figure corresponds to the area enclosed by the dashed rectangle shown in figure 6.29. 
 

Poles that correspond to the unmeasured periodic excitations will appear as peaks in the 

synthesised FRFs and can be mistaken for vibration modes. Figure 6.31 shows summed 

FRFs from the 50 ARMAX models estimated from test 2 data.  

 
Figure 6.31 Averaged FRFs synthesised from the 50 ARMAX models estimated from 
realisations of test 2 data (Test 2), compared with averaged exact FRFs (Exact). 

2 Hz 

Mode 2 

4 Hz 

Mode 1 

1 Hz 
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The two major peaks correspond to the two vibration modes at 1.48 Hz and 4.67 Hz. 

The three other peaks at 1, 2 and 4 Hz are due to the unmeasured periodic excitations. In 

practice, the modal parameters estimated at poles that do not correspond to structural 

modes will typically have negative damping. The frequency and damping results in 

table 6.4 were obtained from the 50 ARMAX models estimated from realisations of test 

2 data. Many models did not identify any modes at these frequencies (see for example  

~ 2 Hz, DOF 1), while some models identified modes at these frequencies with very 

small positively damping values. 

 

Average Frequency Average Damping 
DOF 1 DOF 2 DOF 1 DOF 2 

0.988161 0.99658 -1.34075 -1.68461 

- 1.987136 - -0.60574 

4.0129 4.007796 -0.29705 -0.64746 

Table 6.4 Modal parameters identified at frequencies corresponding to unmeasured 
periodic excitations from test 2 data. 
 

Prior knowledge of the frequencies of any unmeasured periodic excitations allows zeros 

of the MA matrix to be placed close to those frequencies and this can improve the 

attenuation of these components in the stage 3 estimation of a lower-order ARX model. 

Equation (5.50) is rewritten as 

 

( ) ( )[ ] ( )( ),1)( 1∑ −+⋅= − jkjjk BpnyB ACCH   ( )( ) ( )nap,kmin,,nak,maxj −+−+= �111    

  (6.5) 

where  

( ) ( )( )∏
=

−− +−=
r

i
ipn qqcosq

1

22121 αοαC ,       (6.6) 

Cpn(q) is a diagonal matrix polynomial describing the unmeasured periodic excitation 

and its form is taken from Fernandes et al [127]. r is the number of sinusoids in the 

unmeasured excitation; α  is the damping factor; and οi is the frequency of the sinusoid 

normalised by the sampling frequency. Equation (6.5) is solved by setting up a system 

of equations in terms of the unknown ( )q1−C , which is of order nc - 2r. Equation (6.6) 

describes a notch filter, and the damping factor sets the width of the notches.  
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The ARMAX estimation algorithm with a modified MA matrix, which included 

information about the unmeasured periodic excitations, was used to estimate the modal 

parameters for 50 realisations of the data generated under the conditions outlined in 

tests 2 and 3 above. Settings for the estimation algorithm are as follows: 

 

• Test 22 used data simulated for conditions described for test 2: 

o 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite DOF 1 

in addition to measured random excitation. 

o 10 % random noise added to each response measurement. 

• Test 23 used data simulated for conditions described for test 4: 

o 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite DOF 1. 

o 20% unmeasured random noise applied to each DOF in addition to the 

measured random excitation applied to each DOF. 

o 10% random measurement noise added to the response measurements. 

• na = 4, 6, …, 20; nb = na – 1; p = 5⋅na; 

•  nc = p – na – 6;  

• ο1 = 1/50; ο2 = 2/50; ο3 = 4/50; 

• α = 0.999; 

• Ten iterations of stages 3 and 4; 

•  Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4 

resulting in ninety-nine models being estimated for each set; 

• NPDP criterion used for model selection; 

• Estimation algorithm applied to 50 independent realisations of the data for each 

test. 

 

The damping factor for tests 22 and 23 was chosen based on a number of preliminary 

tests in which the damping factor α was varied from 0.90 to 0.9999. The damping factor 

resulted in a different notch width at different frequencies and the modified algorithm 

was found to be less effective for lower values of α, and also very high values. The 

value α = 0.999 was found to yield the best results, which are plotted in figures 6.32 and 

6.33. Also shown in the figures are the results estimated for tests 2 and 4, which 

estimated modal parameters from data generated under the same conditions as tests 22 

and 23, respectively, using the standard ARMAX algorithm. The frequency and 



 137 

damping results obtained for the known noise algorithm (tests 22 and 23) are quite 

similar to those obtained by the standard ARMAX algorithm. There is a marginal 

improvement in the estimated mode shapes for the known-noise algorithm. 

 
Figure 6.32 Modal frequency and damping obtained from ARMAX models selected by 
NPDP criterion for tests 2 and 4 (standard ARMAX algorithm) and tests 22 and 23 
(known noise properties algorithm). The true value of each parameter is indicated by 
the horizontal lines in each plot. 

 
Figure 6.33 Mode shape magnitude and phase obtained from ARMAX models selected 
by NPDP criterion for tests 2 and 4 (standard ARMAX algorithm) and tests 22 and 23 
(known noise properties algorithm). The true value of each parameter is indicated by 
the horizontal lines in each plot. 
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A potential benefit of the known noise algorithm is that it reduces the number of 

spurious modes corresponding to unmeasured periodic excitations. This is illustrated in 

figure 6.34, which plots the average FRFs from tests 2, 22, and the exact analytical 

results. Similarly, figure 6.35 is produced for tests 4 and 23.  

 
Figure 6.34 Averaged synthesised FRFs from tests 2 and 22, as well as the averaged 
exact FRFs. 

 
Figure 6.35 Averaged synthesised FRFs from tests 4 and 23, as well as the averaged 
exact FRFs. 
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The averaged FRFs for tests 22 and 23 clearly show that no modes are present at 1, 2 or 

4 Hz, which is not the case for results obtained from tests 2 and 4. Therefore, the 

models with known noise properties would be more appropriate for prediction of the 

vibration response; however, the same results could be achieved by producing a reduced 

model from vibrational modes, as the spurious modes due to noise and unmeasured 

periodic components can be easily identified and removed, based on the sign of the 

estimated damping. 

 

6.2.8 Conclusions from Numerical Tests 

This section has described numerical tests carried out to assess the performance of the 

ARMAX estimation algorithm. Model selection criteria were investigated and the BIC 

and NPDP criteria were directly compared for a range of different noise conditions. 

Both criteria selected models with similar accuracy, although fewer instances of 

negative modal damping were present in NPDP-selected models. The NPDP also has 

the advantage that it can be calculated directly from the ARX parameters compared with 

the BIC, which requires recursive calculation of the innovations sequence using the 

estimated ARMAX model. The ARMAX algorithm successfully estimated modal 

parameters in the presence of measurement noise for each mode using at least one DOF 

as reference, although damping values were the least accurate. The sign of the damping 

was found to be useful in distinguishing vibration modes from numerical poles and 

provided an indication of the signal-to-noise ratio for each measurement point when 

comparing sets of estimated global parameters. Standard deviation of global parameters 

also reflected relative accuracy for each reference DOF. Unmeasured periodic and 

random excitations decreased the accuracy of modal parameters; however, modal 

parameters were still accurately estimated at DOFs with a high vibration response. The 

effect of data record length and sampling rate were investigated and results verified that 

a record length of 10 seconds and sampling rate of 50 Hz, used in all other tests, was 

appropriate for testing the performance of the ARMAX algorithm. The ARMAX 

estimation algorithm can be modified to account for unmeasured periodic excitation 

when the frequency of excitation is known. This modified algorithm yielded results of 

similar accuracy to the standard algorithm while preventing spurious modes 

corresponding to unmeasured periodic excitations being estimated. 
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6.3 Experimental Tests 

Experiments were carried out on a cantilever beam to further test the performance of the 

ARMAX estimation algorithm. The experiments included unmeasured random and 

periodic excitation, and the use of piezoceramic plates for structural excitation was 

investigated in addition to the more typical method of using electromagnetic shakers for 

excitation. 

 

6.3.1 Experiment 1: Single Input Using Electromagnetic Shaker 

A 1000×50×6 mm aluminium beam was securely clamped to a heavy steel structure, 

with 125mm of the beam being constrained by rectangular steel bars as shown in figure 

6.36. The aluminium beam was the same as that described in Chapter 4 before the 

piezoceramic actuators were bonded. A Brüel & Kjær (B&K) 4810 shaker was used to 

excite the beam at measurement point 5; the excitation signal was band-limited (0 – 

1600 Hz) random noise amplified by a B&K 2706 power amplifier. The excitation force 

was measured using a B&K 8001 impedance head and acceleration measurements were 

made with four B&K 4374 accelerometers at 34 equally spaced points along the beam. 

B&K 2635 charge amplifiers were used for signal preconditioning: high-pass filter cut-

off at 2 Hz, low-pass filter cut-off at 3 kHz. As the excitation point was fixed and 

response measurements were made at 34 points along the beam, 9 sets of SIMO data 

were used for modal analysis of the beam. A Hewlett-Packard 3566A FFT analyser was 

used for acquiring time records used by the ARMAX estimation algorithm and also for 

calculating averaged frequency response functions (FRFs), which were required for 

frequency domain curve fitting.  

 

Figure 6.36 Diagram of cantilever beam showing positions of 34 equally-spaced 
measurement points. Excitation was applied at point 5 for experiment 1, and points 5 
and 30 for experiment 2. 
 

Modal parameters for the cantilever beam were first calculated using frequency-domain 

curve fitting available in the STAR Modal v5.23 software package from Spectral 

34 1 2 … 5 30 

125 mm 875 mm 

… 
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Dynamics. A rational fraction least squares (RFLS) method was used to fit the FRFs 

and the results were used as a basis for comparison with the modal parameters obtained 

from the ARMAX algorithm and also least-squares estimated ARX models. FRFs over 

a frequency range of 0 – 1600 Hz and a resolution of 0.5 Hz were calculated from 

averaged time record data with 50 % overlap and scaled with a Hanning window. Up to 

10 averages were used based on the quality of the FRF and coherence results for each 

measurement. 

 

The ARMAX estimation algorithm used time record data sampled at 4096 Hz with 2048 

samples for each record. One set of SIMO data was first used to estimate a large set of 

models of order na = 40, 42, …, 80 and these results were then used to choose a smaller 

set of models that would yield acceptable results for all sets of SIMO data. The settings 

for the ARMAX estimation algorithm used to process all sets of data were as follows: 

 

• na =60, …, 80, nb = na, p = 5·na, nc = p – na; 

• Ten iterations of stages 3 and 4; 

• NPDP criterion used for model selection. 

 

Table 6.5 shows that modal frequencies estimated by FRF curve fitting and the 

ARMAX algorithm are within 1% of each other, except for the first mode. The poor 

results for the first mode are due to a number of factors. Firstly, the low response of the 

first mode, which was approximately 47 dB below the peak response in the FRF relating 

the response at the free end of the beam to the excitation point, is a consequence of the 

excitation location. Excitation of the transverse modes could be improved by moving 

the excitation point closer to the free end of the beam. The MIMO experiments 

discussed in the following section address this point by adding an additional shaker 

closer to the free end of the beam. The frequency resolution of 0.5 Hz in the FRFs was 

not ideal for identifying modal parameters at such low frequencies using the RFLS 

method, and similar problems arise in the ARMAX results, as the frequencies of the low 

order modes are small compared to the sampling frequency, which contributes to the 

poor accuracy [126]. Coupling between the shaker and the beam was indicated by peaks 

and troughs in the excitation power spectrum around modal frequencies, however, no 

other significant features were observed across the analysis frequency range. 
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 STAR Modal 
Results 

ARMAX Results Percentage Error  

Mode Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

MAC 
(%) 

1 5.76 -0.081 - - - - - 
2 37.6 0.007 37.32 - -0.748 - 6.94 
3 106.06 0.299 105.94 0.137 -0.116 -54.16 97.26 
4 207.19 0.114 206.98 0.199 -0.104 74.58 99.30 
5 344.21 0.173 343.82 0.279 -0.114 60.95 99.78 
6 511.85 0.194 511.91 0.235 0.011 20.88 98.71 
7 731.73 0.343 733.36 0.323 0.222 -5.84 99.43 
8 971.19 0.177 970.61 0.211 -0.060 19.41 99.36 
9 1240 0.168 1242.81 0.135 0.227 -20.05 96.96 

10 1550 0.260 1544.80 0.232 -0.336 -11.00 96.08 
Table 6.5 Comparison of curve-fitted and ARMAX results estimated from experiment 1 
data. 
 

Differences are seen in damping results obtained from each estimation method and 

greater differences are seen at lower frequencies suggesting the influence of the 

sampling rate, but there is no clear higher or lower bias in the damping results. The 

RFLS results might not be accurate, because it could be argued that the frequency 

resolution is insufficient to accurately determine modal damping for the lower order 

modes. This is shown by the negative damping value estimated for mode 1 and the very 

low damping value of 0.007 % estimated for mode 2 by FRF curve fitting. The MAC 

values comparing mode shapes obtained from each estimation method are satisfactory 

for modes 3 to 10.  

 

Least-squares estimation of SIMO ARX models was also carried out. A set of models of 

order parx = 5,6, … , 28 were estimated from 2048 samples of excitation and response 

data using the Matlab idarx()function. Since each data set included 4 response 

channels, a 4-dimensional ARX model was estimated for each data set, which lead to 

2·parx modes being estimated. Both the BIC and final prediction error (FPE) criterion 

[44] were used for model order selection. It was found that the BIC consistently selected 

models of order 5 – 8, which failed to identify many vibration modes. The FPE criterion 

typically selected models of order 25 – 28, which were found to be inaccurate due to the 

sensitivity of high-order multi-dimensional polynomial models to numerical operations. 

The problems with the ARX models were identified by pole-zero placement in the 

complex z-plane as well as FRFs synthesised from the estimated ARX models. In the 
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absence of a numerical criterion for model selection, the highest order ARX model that 

did not suffer from obvious scattering of poles and zeros around the low and high 

frequency ranges of the unit circle (on the z-plane) was chosen. The subset of vibration 

modes was selected on the basis of peaks in synthesised FRFs.  

 

Table 6.6 compares results from ARX models with FRF curve-fitted results. Similar to 

the ARMAX results, the ARX models failed to identify the first mode but frequency 

and mode shape results for modes 3 – 10 show very good agreement with the curve-

fitted results: MAC values are above 98 % except for mode 4 (89%) which was affected 

by a small number of poorly estimated points. Damping results show reasonable 

agreement for modes 6 – 10, but much poorer results were estimated for modes 2 – 5. 

 

 STAR Modal 
Results 

ARX Results Percentage Error  

Mode Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

MAC 
(%) 

1 5.76 -0.081 - - - -  
2 37.6 0.007 37.68 4.3512 0.206 63794 3.40 
3 106.06 0.299 105.86 0.0966 -0.192 -67.68 98.59 
4 207.19 0.114 206.99 8.5857 -0.097 7432 89.74 
5 344.21 0.173 343.33 1.8477 -0.256 965.9 99.41 
6 511.85 0.194 511.82 0.1789 -0.007 -7.94 99.89 
7 731.73 0.343 733.00 0.3587 0.174 4.57 99.62 
8 971.19 0.177 970.91 0.1873 -0.029 5.85 99.94 
9 1240 0.168 1242.6 0.1655 0.210 -1.70 99.33 

10 1550 0.260 1545.1 0.2348 -0.318 -9.81 99.92 
Table 6.6 Comparison of curve-fitted and ARX results estimated from experiment 1 
data. 

 

6.3.2 Experiment 2: Two Inputs Using Electromagnetic Shakers 

A B&K 4809 shaker was added to the experimental apparatus described above, and 

excited the cantilever beam at point 30 using independent band limited (0 – 1600 Hz) 

random noise. A B&K 8200 force transducer measured the excitation force applied by 

the second shaker and a B&K 2635 charge amplifier was used for signal 

preconditioning with the same settings described in experiment 1.  
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 ARMAX Results Percentage Error MAC (%) 
Mode Frequency 

(Hz) 
Damping 

(%) 
Frequency 

(Hz) 
Damping 

(%) 
Excitation 

Point 5 
Excitation 
Point 30 

1 - - - - - - 
2 39.22 0.430 4.309 6218 38.55 0.84 
3 105.70 0.138 -0.339 -53.90 98.29 3.62 
4 205.68 0.191 -0.730 67.91 98.51 98.33 
5 341.66 0.144 -0.740 -16.76 99.40 99.51 
6 509.50 0.191 -0.459 -1.97 99.57 99.57 
7 735.88 0.188 0.567 -45.19 98.91 98.83 
8 967.81 0.173 -0.348 -2.46 99.13 99.58 
9 1233.1 0.204 -0.557 21.11 73.32 83.75 
10 1531.4 0.494 -1.200 89.71 83.32 79.80 

Table 6.7 Comparison of ARMAX results estimated from experiment 2 data with curve-
fitted results from experiment 1 data. 
 

The ARMAX algorithm was implemented as for experiment 1 to estimate the modal 

parameters from the sets of MIMO data. The results listed in table 6.7 show similar 

trends to those obtained from experiment 1 data: frequencies and mode shapes are quite 

similar for all except the low order modes; however, damping estimates differ 

significantly. The larger negative error of modal frequencies estimated by the ARMAX 

algorithm for experiment 2 data, compared to results from experiment 1 possibly reflect 

mass loading on the beam by the additional shaker. The fact that the first mode was not 

identified and the second mode was identified poorly in both experiments 1 and 2 

suggests that the ARMAX algorithm cannot adequately estimate modes for such a large 

frequency range. Over eight octaves separate the first modal frequency and the Nyquist 

frequency. Other studies of time-series system identification methods applied to modal 

analysis have limited the analysis frequency range to 5 octaves or less [39, 56, 117]. An 

alternative strategy is therefore to apply the ARMAX estimation algorithm over limited 

frequency ranges using appropriately filtered and sampled data. A number of 

applications of the algorithm could be employed when considering dynamic behaviour 

over a wide frequency range. 

 

An advantage of having multiple shakers, especially for large structures, is that 

excitation energy can be applied to the structure at different points to excite all modes. 

However, the use of two shakers to excite such a small structure in one direction 

resulted in mechanical coupling between the measured excitation signals, particularly 

around modal frequencies. It is typical to assume that excitation sources are completely 



 145 

independent when applying a MIMO modal parameter estimation technique and the 

results presented in this section demonstrate that the ARMAX algorithm achieves 

satisfactory accuracies (except for lower-order modes) even when this condition is not 

met. The ARMAX algorithm yields mode shape estimates for each excitation point and 

it is interesting to note that the MAC value for mode 3, excitation point 30 is quite poor 

and that point 30 is very close to a node for the third transverse mode. Slightly lower 

MAC values for modes 9 and 10 are due to poorly estimated residues at a small number 

of measurement points. 

 

Further tests using three shakers for exciting the beam were carried out, in particular 

using the third shaker to impose an unmeasured excitation on the beam. It was found 

that the addition of the third shaker lead to coupling of excitation forces and that the 

shakers affected the dynamics of the cantilever beam. Hence, experiments using three 

measured sources of excitation and one additional unmeasured excitation were carried 

out using piezoceramic plates and are described in the next section. 

6.3.3 Excitation Using Piezoceramic Plates 

Experiments discussed in Chapter 2, and work reported in Chapter 4 investigated the 

use of piezoceramic plates for exciting structures and showed that FRFs calculated from 

the voltage applied to the piezoceramic plates and the acceleration response could be 

used to extract modal parameters. An advantage of using piezoceramic plates is that 

they can be bonded to the structure and do not significantly change the structure’s 

dynamic characteristics if the dimensions of the plates are small compared to the 

structure under investigation. A disadvantage with using piezoceramic plates is that 

their ability to excite a particular vibration mode is related to the deflection of the mode 

shape where the piezoceramic patch is located. Modes that have little deflection are not 

effectively excited, as discussed in Chapter 4.  

 

Four experiments were carried out to assess the performance of the ARMAX estimation 

algorithm for different types of unmeasured excitation. Three pairs of piezoceramic 

plates were used to excite the beam using independent band-limited (0-1600 Hz) 

random noise and a fourth pair of plates were used to impose unmeasured excitation on 

the beam. Figure 6.37 shows the apparatus used and the schematic shown in figure 4.7 

shows detail of the actuator positions and applied voltages. The eight piezoceramic (PI 
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Ceramic, lead zirconate titanate (PZT), PIC 151) actuators, each 70×25×1 mm, were 

bonded to the aluminium beam used in the shaker experiments. The electrodes of the 

plates were on each major face and etch-primer was applied to coat the aluminium beam 

where the plates were bonded. 

 

 
Figure 6.37 Cantilever aluminium beam with four pairs of piezoceramic actuators used 
for excitation. The top actuator of each pair is covered by black tape. 
 

The plates were bonded to the beam with epoxy and a small piece of copper tape was 

used as a conductor to the bottom electrode of each plate. The combination of etch 

primer and epoxy formed an insulating layer between the piezoceramic plate and the 

aluminium beam. Excitation signals were amplified with a constant gain (0 – 1600 Hz 

frequency range) high-voltage amplifier and the typical peak-to-peak voltage applied to 

each plate was approximately 80 volts. The pairs of plates were connected in parallel 

with opposite polarity so that a distributed moment was applied between the ends of the 

plates. Note that applying the same polarity to each plate would result in axial excitation 

of the beam. 

6.3.4 Experiment 3: Single Measured Input  

This experiment was carried out to obtain a set of SIMO measurements for estimating 

the beam modal parameters using frequency-domain curve fitting. Band limited (0 – 

1600 Hz) random excitation was applied to actuator pair 1 and response measurements 

were taken using 3 B&K 4374 accelerometers with signal preconditioning using B&K 

2635 charge amplifiers as for the previous experiments. Response measurements were 

made at 34 points (as for experiments 1 and 2) along the aluminium beam resulting in 
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12 sets of SIMO data. The piezoceramic actuators applied a distributed moment to the 

beam and the voltage of the excitation signals fed into the voltage amplifier driving the 

actuators was recorded to represent this moment excitation. FRFs over a frequency band 

of 0 – 1600 Hz and with a resolution of 0.5 Hz were calculated using the HP3566A FFT 

analyser. A Hanning window and up to 10 averages (50% overlap) were used when 

calculated in the FRFs.  

 

The modal parameters were estimated from the FRFs using a RFLS curve-fitting 

method. These results were used to assess the results obtained by the ARMAX 

estimation for MIMO sets of data obtained from experiments described below. 

 

 STAR Modal Results 
Experiment 1 

STAR Modal Results 
Experiment 3 

Percentage Error  

Mode Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

MAC 
(%) 

1 5.76 -0.081 - - - - 0 
2 37.6 0.007 39.94 -0.163 6.223 -2497 88.36 
3 106.06 0.299 106.57 0.451 0.481 51.01 98.89 
4 207.19 0.114 210.64 0.317 1.665 178.51 97.68 
5 344.21 0.173 350.06 0.329 1.700 89.99 99.06 
6 511.85 0.194 520.92 0.270 1.772 38.88 99.65 
7 731.73 0.343 729.26 0.559 -0.338 62.83 96.81 
8 971.19 0.177 987.3 0.272 1.659 53.90 97.85 
9 1240 0.168 1260 0.276 1.613 63.88 96.1 

10 1550 0.260 1600 0.323 3.226 23.97 98.21 
Table 6.8 Comparison of estimated modal parameters from curve-fitting of experiment 
1 (electrodynamic shaker excitation) and experiment 3 (piezoceramic excitation) data. 
 

Frequency results for modes 3 - 10 obtained from experiment 3, listed in table 6.8, are 

up to 3.3% different from those obtained from experiment 1 data and typically higher 

frequency, which is probably due to the mass loading of the electromagnetic shaker and 

the additional stiffness of the piezoceramic plates. Note that experiments 1 and 2 were 

carried out before the piezoceramic plates were bonded to the beam. Some differences 

in damping values are observed; values for experiment 3 were typically higher than 

those for experiment 1. These differences may be due to the additional damping 

imposed on the structure by the piezoceramic plates, but it is also conceivable that 

electromagnetic shakers used in experiments 1 and 2 may have introduced some 

damping to the system. Mode shapes are similar for modes 2 to 10. As discussed in 

Chapter 4, the piezoceramic plates apply a distributed moment between parallel edges 
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of each plate and the action of a pair of plates as used for these experiments can be 

approximated by two point moments acting in opposing directions at the ends of the 

plates. This differs from the point force which is applied by an electromagnetic shaker. 

Because the piezoceramic plates apply a distributed moment, the ability of a pair of 

plates to excite a particular mode is related to the change in slope of the mode in the 

region of the piezoceramic plates. The effect of this is seen in the poor results obtained 

for experiment 3, modes 1 and 2 where there is not significant change in slope in the 

contact area of actuator pair 1. This is discussed further in section 6.3.6. 

 

 It should also be noted that the FRFs obtained from experiment 3 data have units 

vsm /. 2  instead of Nsm /. 2 , which are the units for FRFs in experiment 1 data. Mode 

shapes are normalised by the residue obtained at a particular measurement point, and 

this cancels out the differences in FRF scaling if the moment applied by the 

piezoceramic actuators is proportional to the applied voltage. MAC values in table 6.8 

suggest good correlation between mode shapes obtained from shaker excitation and 

piezoceramic plate excitation. However, as noted above, MAC values are not affected 

by mode shape scaling. For the purpose of this work, the piezoceramic plates were 

considered acceptable for exciting modes 3 – 10 and therefore could be used to apply 

multiple sources of excitation to the cantilever beam without the difficulties associated 

with coupling relatively large electromagnetic shakers to the beam.  

 

6.3.5 Experiment 4: Three Measured Inputs  

Three independent sources of band-limited random excitation were applied to actuators 

pairs 1, 2 and 3. Twelve sets of 3-input, 3-output time signals were recorded using the 

HP3566A FFT analyser at a sampling frequency of 4096 Hz. The ARMAX estimation 

algorithm was used to estimate a large set of models for one set of data. From these 

results a smaller range of model orders could be specified when the ARMAX algorithm 

was used to estimate modal parameters from all sets of data, with the following settings: 

 

• na =60, … , 80, nb = na, p = 5·na, nc = p – na; 

• Ten iterations of stages 3 and 4; 

• NPDP criterion used for model selection; 
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• Record length 2048 samples. 

 

 ARMAX Results Percentage Error MAC (%) 
Mode Frequency 

(Hz) 
Damping 

(%) 
Frequency 

(Hz) 
Damping 

(%) 
Actuator 

Pair 1 
Actuator 

Pair 2 
Actuator 

Pair 3 
1 - - - - - - - 
2 37.27 - -6.686 - 29.26 5.93 27.74 
3 106.13 0.168 -0.415 -62.80 5.29 1.03 1.53 
4 209.87 0.281 -0.366 -11.43 21.62 60.43 27.46 
5 349.63 0.161 -0.122 -51.21 97.64 90.85 64.43 
6 521.38 0.186 0.089 -31.01 93.79 2.86 42.43 
7 736.00 0.389 0.924 -30.43 98.47 98.36 97.73 
8 986.31 0.229 -0.100 -15.80 98.59 97.53 98.68 
9 1260.93 0.249 0.074 -9.72 94.89 95.26 94.74 
10 1587.90 0.230 -0.756 -28.68 85.20 84.03 14.38 

Table 6.9 Comparison of ARMAX results estimated from experiment 4 data with curve-
fitted results from experiment 3 data. 
 

Modal frequencies estimated by the ARMAX algorithm from experiment 4 data, listed 

in table 6.9, are similar to those identified by curve fitting experiment 3 data, except for 

the first two modes. Mode 1 is not identified by either method due to the limitations of 

the piezoceramic actuator pair, discussed above. Mode 2 results are also poor, and no 

positive damping values were identified for this mode. Damping values for all other 

modes are positive, however, comparison with curve-fitted results shows a negative bias 

on the ARMAX damping values. Numerical tests results suggested that negative bias of 

damping values resulted from noisy data. Three sets of mode shapes are estimated 

because three actuators were used to excite the structure but the ARMAX algorithm 

does not identify the first four mode shapes accurately. Given that the ARMAX 

algorithm yielded high MAC values for modes 3 – 10 using experiment 1 data (single 

input using shaker) and also experiment 2 data (two inputs using shaker excitation), 

these results suggest that resolving modes at low frequencies from data with a high 

sampling rate is more difficult when using this configuration of piezoceramic actuators. 

This limitation is important when considering the effect of unmeasured excitations, 

which is discussed below.  
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6.3.6 Experiments 5, 6 and 7: Three Measured Inputs with Unmeasured Periodic 

and Random Excitations. 

These experiments used the same configuration as experiment 4 with the addition of 

unmeasured excitations applied by the 4th pair of piezoceramic actuators. The 

unmeasured excitations were not included in the data set used in the estimation of 

modal parameters. The RMS levels of the measured and unmeasured excitation signals 

and the resulting signal-to-noise ratios for each experiment are listed in table 6.10. 

Experiment 6 employed unmeasured periodic and random excitations and figure 6.38 

shows the 1-sided power spectrum of the summed random excitations and the 

unmeasured excitations. The relative levels of the unmeasured periodic and random 

excitations can be seen in the lower part of the figure. 

 

Actuator Pair Experiment  

1 2 3 4 

RMS Level 
(volts) 

0.6492       0.5103    0.4105 3.4471 5 
• Unmeasured periodic 

excitation at 200, 500, 
900, and 1200 Hz Noise Level 

4/(1+2+3) 
2.1956 

RMS Level 
(volts) 

0.6468 0.5147 0.4159 3.2660 6 
• Unmeasured periodic 

excitation at 200, 500, 
900, and 1200 Hz. 

• Unmeasured random 
excitation 

Noise Level 
4/(1+2+3) 

2.0705 

RMS Level 
(volts) 

0.6372 0.5203 0.4144 1.4087 7 
• Unmeasured random 

excitation 
Noise Level 
4/(1+2+3) 

0.8962 

Table 6.10 RMS levels of un-amplified excitation signals applied to piezoceramic 
actuator pairs and resulting unmeasured excitation level for experiments 5, 6, and 7. 
Note that a fixed gain high voltage amplifier was used to drive the piezoceramic 
actuators. 
 

The ARMAX algorithm was used to estimate modal parameters from the measured data 

as described for experiment 4. Estimated modal parameters from experiments 4-7 are 

compared with those obtained from experiment 3 in figures 6.39 – 6.43. 
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Figure 6.38 1-sided power spectra of excitation signals used in experiment 6. The top 
plot shows the power spectrum for the summed measured excitation. Bottom plot shows 
the power spectrum for the unmeasured periodic excitation. 
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Figure 6.39 Modal frequency error for ARMAX results from experiments 4 – 7 
compared to curve-fitted results for experiment 3. 
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Figure 6.40 Modal damping error for ARMAX results from experiments 4 – 7 compared 
to curve-fitted results for experiment 3. 
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Figure 6.41 MAC comparing ARMAX mode shapes from experiments 4 – 7 (actuator 
pair 1) to curve-fitted mode shapes from experiment 3. 
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Figure 6.42 MAC comparing ARMAX mode shapes from experiments 4 – 7 (actuator 
pair 2) to curve-fitted mode shapes from experiment 3. 
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Figure 6.43 MAC comparing ARMAX mode shapes from experiments 4 – 7 (actuator 
pair 3) to curve-fitted mode shapes from experiment 3. 
 

Comparison of ARMAX results for experiments 4, 5, 6 and 7 shows that the addition of 

unmeasured excitations has very little effect on the accuracy of estimated modal 

frequencies (see figure 6.39). Modal damping (figure 6.40) and mode shape results 

(figures 6.41 – 6.43) indicate that the unmeasured periodic excitation (test 5) and the 

unmeasured periodic and random excitation (test 6) only lead to a marginal decrease in 

accuracy although a clear trend is hard to identify. Modal damping and mode shape 

results for experiment 7 data are significantly less accurate; 5 of the ten modes were 



 154 

estimated with negative damping and mode shapes are quite poorly estimated. The 

nature of the unmeasured excitation is clearly important and the high levels of periodic 

excitation do not affect the accuracy of the ARMAX estimation algorithm. The 

ARMAX algorithm is much more sensitive to broad-band unmeasured excitations and 

results are unsatisfactory for unmeasured excitation levels approaching 100% of the 

measured excitation level. 

 

The MAC values plotted in figures 6.41 – 6.43 further illustrate some of the limitations 

associated with using piezoceramic plates. The mode shapes for mode six, actuator pairs 

1 and 2 (figures 6.41 and 6.42), are poorly identified for all tests and similarly for 

modes six and ten, actuator pair 3 (figure 6.43). This was found to be due to the location 

of actuators with respect to the deflection of the modes in question: the middle of 

actuator pairs 1, 2 and 3 were located at nodes of mode 6, and similarly, the middle of 

actuator three was very close to a node of mode 10 (cf. table 4.1 for analytical results). 

The piezoceramic actuators do not effectively excite these modes as shown by figure 

4.8, which results in poorly estimated mode shapes. The ARMAX results from 

experiments 1 and 2 show that the ARMAX algorithm performs no worse for MIMO 

data than for SIMO data using electromagnetic shaker excitation. However, the 

ARMAX algorithm clearly has difficulty identifying mode shapes for a number of 

modes for noise-free data, compared to the curve fitted results using 1 pair of 

piezoceramic actuators. This suggests that multiple piezoceramic actuators may reduce 

the accuracy of some estimated mode shapes; however, MIMO data sets are still 

advantageous because of the multiple estimates of modal parameters.  

 

ARX models were estimated from experiment 5, 6, and 7 data as for experiment 1 data, 

described in section 6.3.1. As with the ARMAX results discussed above, modal 

parameters from ARX models are compared with curve-fitted results from experiment 3 

data. Modal frequency error is plotted in figure 6.44 and shows reasonable agreement 

for modes 3 – 10; however, frequency error is typically larger than ARMAX results 

shown in figure 6.39. The ARX models failed to identify the first mode and large errors 

were observed for frequency, damping and mode shape results for mode 2. Figure 6.45 

shows that ARX models suffer from positive bias on damping estimates in the presence 

of unmeasured excitations. The actual damping estimates were often above 3%. The 

ARMAX algorithm incorporates estimation of backwards ARX models, which suffer 
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from a negative bias on damping estimates but ARMAX damping estimates were 

typically under 1% for modes 3 – 10. MAC values indicate that the ARX models fail to 

adequately estimate mode shapes for a large number of modes. MAC results are 

generally worse than those obtained by the ARMAX algorithm (cf. figures 6.41 – 6.43). 

Note that both methods show poor results for mode six in experiments 5, 6 and 7. Mode 

six included anti-nodes in the contact area of actuators 1, 2, and 3, as discussed above. 
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Figure 6.44 Modal frequency error for ARX results from experiments 5 – 7 compared to 
curve-fitted results for experiment 3. 
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Figure 6.45 Modal damping error for ARX results from experiments 5 – 7 compared to 
curve-fitted results for experiment 3. 
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Figure 6.46 MAC comparing ARX mode shapes from experiments 5 – 7 (actuator pair 
1) to curve-fitted mode shapes from experiment 3. 
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Figure 6.47 MAC comparing ARX mode shapes from experiments 5 – 7 (actuator pair 
2) to curve-fitted mode shapes from experiment 3. 
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Figure 6.48 MAC comparing ARX mode shapes from experiments 5 – 7 (actuator pair 
3) to curve-fitted mode shapes from experiment 3. 
 

6.3.7 Discussion 

The large frequency range considered in the experiments highlighted a number of 

limitations of the ARMAX algorithm. The high sampling frequency relative to the 

natural frequencies of the low order modes has contributed to the poor accuracy of low 

order modes in experiments described above. This is in addition to the limited ability of 

piezoceramic plates to excite low order modes. A further problem that arises when 

dealing with large frequency ranges or large numbers of modes in a frequency range is 

the order of the ARMAX model required to adequately describe the behaviour of the 

structure. Very large models are time-consuming to estimate, which is a problem for 

complex structures or if a large range of model orders are to be tested. In addition, 

larger models are required to accurately describe the noise or unmeasured excitations 

and the resulting high-order MA matrix filter can introduce numerical problems. A 

solution is to limit the order of the MA matrix, however, choosing the best order for the 

MA matrix requires estimating larger sets of models. Experience has shown that the 

accuracy of the modal parameters is only marginally sensitive to MA matrix order and 

limiting the frequency range of interest, hence the number of modes, is a reasonable 

approach as it addresses all the issues described above.  
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6.4 Conclusions 

An algorithm to estimate modal parameters from excitation and response measurements 

obtained in the presence of unmeasured excitations was introduced in Chapter 5. The 

ARMAX estimation algorithm incorporates a model selection criterion based on the 

number of positively damped poles. The performance of the ARMAX estimation 

algorithm and model selection criterion was investigated using data simulating the 

behaviour of a two degree-of-freedom system as well as data obtained from 

experimental tests on a cantilever aluminium beam. Numerical test results demonstrated 

the effectiveness of the ARMAX algorithm in estimating modal parameters from data 

corrupted with 10% measurement noise, and also for cases where up to 100% 

unmeasured periodic excitations and 20% unmeasured random excitations were applied 

to the system. Accuracy of modal parameters decreased with increasing levels of 

unmeasured excitations, particularly for DOFs with a relatively low response. The 

ARMAX algorithm was more sensitive to noise and unmeasured excitations when 

estimating modal parameters of a simulated 2 DOF system with closely-spaced modes 

(separated by 0.345Hz), with a component of unmeasured periodic excitation 0.257Hz 

below the first modal frequency. Results for a highly damped 2 DOF system were also 

marginally less accurate than results for a lightly damped 2 DOF system. 

 

Experimental results verified the operation of the ARMAX estimation algorithm for 

SIMO and MIMO data sets obtained using electrodynamic shakers for excitation and 

modal parameter results were found to compare well with those from FRF curve fitting, 

except for the first two modes. Tests using electrodynamic shakers for excitation 

reflected numerical test results, which showed that the ARMAX algorithm has difficulty 

identifying low frequency modes when data is sampled at a high sampling rate. 

Numerical tests indicated that increasing the data record length could compensate for 

this, but with an associated increase in computational load. Over eight octaves separated 

the first modal frequency and Nyquist frequency and results suggest that between four 

and five octaves is a more appropriate frequency range. Piezoceramic actuators were 

used for MIMO tests including unmeasured periodic and random excitation. The ability 

to excite different modes was observed to be related to the position of the actuator pairs 

and the delflection of a particular mode over the contact area of the piezoceramic plates. 

Up to 200% unmeasured periodic excitations did not significantly reduce the accuracy 
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of the modal parameters estimated by the ARMAX estimation algorithm. Ninety 

percent unmeasured random excitations was observed to significantly reduce the 

capacity to accurately estimate modal damping and mode shapes. The ARMAX 

algorithm was found to yield more accurate modal parameters than ARX models 

estimated using the least-squares criterion in experiments that included unmeasured 

excitation.  

 

The cantilever beam used for experimental tests was characterised by well-spaced 

transverse vibration modes with light damping. In addition, the unmeasured periodic 

excitations were at frequencies away from modal frequencies. In the following chapter, 

the ARMAX estimation algorithm is applied to a more complex structure, which 

includes closely spaced modes and unmeasured periodic excitations close to modal 

frequencies.  
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Chapter 7  ARMAX Modal Parameter Estimation in the 

Presence of Unmeasured Excitation: Experimental Case 

Study 

7.1 Introduction 

Experimental tests carried out on a cantilever aluminium beam, discussed in Chapter 6, 

demonstrated the performance of the ARMAX algorithm for estimating modal 

parameters in cases where there were unmeasured excitations. In this chapter, the 

ARMAX estimation algorithm is applied to a more complex structure—a helicopter-like 

structure, which includes closely spaced modes and modes with poor responses at some 

measurement locations. The effect of unmeasured periodic and random excitations is 

investigated with unmeasured periodic excitation frequencies close to the structure’s 

natural frequencies. The performance of the ARMAX estimation algorithm is compared 

with the performance of a frequency domain RFLS curve fitting algorithm. In addition, 

periodic excitation and synchronous averaging, discussed in Chapter 2, is used as a 

means of improving signal-to-noise ratio (s/n) of measured time series data. 

 

Details of the experimental apparatus are outlined in the following section. In section 

7.3, the analysis of SIMO data using both the ARMAX and RFLS algorithms is 

described. Estimation of modal parameters in the presence of unmeasured excitation 

using the ARMAX algorithm is discussed in Section 7.4, and results are compared with 

those obtained from the RFLS algorithm in Section 7.5. A discussion of the coupling 

between excitation sources is contained in Section 7.6, and concluding remarks are 

made in Section 7.7. 

 

7.2 Modal Analysis of Helicopter-Like Structure 

The helicopter-like structure was suspended from a heavy steel frame using elastic cords 

to approximate free-free conditions. In this configuration, natural frequencies for the six 

rigid body modes were checked to be less than 10 Hz. Electromagnetic shakers were 

used to excite the structure: a single shaker was coupled to the tail boom of the structure 

for single-input experiments; a second shaker was coupled to the rotor-head area for 
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two-input experiments. The experimental setup is shown in figure 7.1. Response 

measurements were taken at 30 points over the structure at positions indicated in figure 

7.2. The set of axes in figure 7.2 show the global coordinate directions used for the 

analysis, and table 7.1 lists the position and direction of each measurement. 

Figure 7.1 Helicopter-like structure suspended with elastic cord to approximate free-
free conditions. Two shakers were used to excite the structure in this experiment. 
 

 

Figure 7.2 Helicopter-like structure excitation and measurement points. 
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Measurement 
Number Coordinate 

Measurement 
Number Coordinate 

Measurement 
Number Coordinate 

1 35 +z 11 72 -y 21 73 +z 

2 35 +x 12 97 +z’ 22 81 -x’ 

3 43 -y 13 97 -y’ 23 81 +z’ 

4 1 -x 14 98 +x’ 24 49 -y 

5 1 -y 15 98 -z’ 25 49 +z’ 

6 1 +z 16 98 -y’ 26 131 -y 

7 69 -y 17 19 +x 27 107 -y’ 

8 69 +z 18 19 -y 28 107 +z’ 

9 72 +z 19 19 -z 29 43 -z’ 

10 72 -x 20 80 +z 30 119 +x’ 
Table 7.1 Measurement coordinates for helicopter-like structure experiments. 
Coordinates marked with an apostrophe indicate a local set of axes rotated with respect 
to the axes shown in figure 7.2. 
 

The experimental set up employed for this range of experiments was similar to that 

discussed in Chapters 2 and 3. The dynamic properties of the free-free helicopter 

structure included a number of difficult-to-measure characteristics including very lightly 

damped modes, closely spaced modes, as well as local modes, which had a limited 

response at some measurement points. 

 

7.3 Single-Input Multiple-Output Experiments 

The SIMO experiments were carried out to enable an initial comparison between 

frequency domain curve fitting and the ARMAX estimation algorithm under conditions 

of minimal noise. A Hewlett Packard 3566A 8 channel FFT analyser was used for data 

acquisition, calculation of spectral data (FRFs, coherence, auto- and cross-spectral 

densities), and as a signal generator for band-limited random noise. Response 

measurements were made with B&K 4374 and 4393 accelerometers and the 

acceleration and applied force at the excitation point was measured by a B&K 8001 

impedance head. B&K 2635, 2626, and 2650 charge amplifiers conditioned the 

excitation and response signals with high-pass (2 or 3 Hz) and low-pass (1 kHz) 

filtering. A B&K 2706 power amplifier was used to drive a B&K 4809 electrodynamic 

shaker, which was securely clamped to the heavy steel structure supporting the 
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helicopter-like structure. Continuous random excitation was applied to the tail boom of 

the helicopter-like structure at the position indicated by ‘Excitation 1’ in figure 7.2. Six 

sets of 5 or 6 response measurements were made, which included one fixed reference 

measurement point (to allow data to be used for response-only modal analysis) at point 

43 –z. 180 seconds of time series data were measured. The shaker constrained the 

structure in the x-y plane, and to a lesser extent in the z direction. 

 

7.3.1 Modal Parameter Estimation by FRF Curve Fitting 

The STAR Modal software estimated modal parameters of the helicopter-like structure 

using a rational fraction least squares (RFLS) method to model the measured FRFs. 

FRFs were calculated from time series data under the following conditions: fs = 

1024Hz; frequency range 0 – 400Hz; f = 0.5Hz; Hanning window applied to segments 

of time record with 66% overlap; 20 averages. A global implementation of the RFLS 

technique was used, which first calculated an estimate of the frequency and damping 

values from all FRFs, and then used these frequency and damping values when 

calculating modal residues. A key part of this curve fitting technique is the 

identification of frequency bands containing resonant peaks. Examination of the 

measured FRFs and the averaged, squared imaginary part of all FRFs helped identify 

modal peaks and appropriate frequency bands required by the fitting process. 

Knowledge of the modal frequencies from experiments described in Chapters 2 and 3 

helped verify the presence of modes; however, a more thorough analysis identified extra 

modes in this case study. The different boundary conditions applied to the structure and 

shakers are likely to have affected the dynamic properties. A plot of the squared, 

averaged imaginary part of the FRFs is shown in figure 7.3.  

 

Figure 7.3 shows that there are a number of closely spaced sets of modes, for example 

around 75, 160, 280, and 315Hz. The lower peaks, for example around 113Hz and 

185Hz represent modes with a low response at many of the measurement points. Results 

from RFLS curve fitting are compared with those obtained from the ARMAX algorithm 

in Section 7.3.3. It should be noted that another curve fitting algorithm included in the 

STAR Modal software was used to verify the RFLS results. The second algorithm was 

based on the Polyreference Time Domain Method. No significant difference was 

observed in the estimated modal parameters.  
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Figure 7.3 Mean-square imaginary part of measured FRFs. The dotted lines indicate 
the peaks that were selected in the curve fitting processing. 
 

7.3.2 ARMAX Modal Parameter Estimation 

Time series data from the SIMO experiment were first filtered and then decimated 

before application of the ARMAX algorithm. These steps were carried out to reduce the 

frequency range, hence the number of modes to be estimated, which would therefore 

limit the size of the required ARMAX model. The data were low-pass filtered in the 

forward and reverse directions using an eighth-order Chebyshev Type 1 filter, cut-off at 

300 Hz, which resulted in zero phase-shift and effectively doubled the order of the filter. 

The Matlab resample() reduced the sampling rate to 600Hz and also applied a low 

pass FIR filter. As this filter is sensitive to the initial and final conditions of the data 

series (it assumes data before and after are zero) the filtering and resampling steps were 

applied to a long segment of the data before 2048 samples were extracted away from the 

end points for use with the ARMAX algorithm.  

 

The ARMAX algorithm was first applied to one set of single-input 2-output data to 

estimate a large range of models of order 40 – 90. Based on the results of this initial 

test, the ARMAX algorithm was applied to all data sets (grouped as single-input 2-

output data sets) with the following conditions: na = 80, 82, …, 90; eight iterations of 
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stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples. 

Vibration modes were selected by identifying modal peaks in individual and averaged 

FRFs synthesised from the fifteen (fifteen sets of single-input 2-output data) estimated 

ARX models. Figure 7.4 shows the averaged FRFs. The sign of estimated damping was 

used to verify that a selected mode was a structural vibration mode. ARMAX results are 

compared with RFLS results in the following section. 

Figure 7.4 Averaged FRFs synthesised from estimated ARX models. The dotted lines 
indicate modes selected as vibration modes. 
 

7.3.3 SIMO Experimental Results 

Modal frequencies estimated by the ARMAX algorithm are listed in table 7.2.  

 

Mode 1 2 3 4 5 6 7 
Frequency 

(Hz) 73.89 77.30 85.36 114.0 143.8 165.4 165.7 

Mode 8 9 10 11 12 13 14 
Frequency 

(Hz) 186.0 201.7 239.1 244.8 263.2 281.1 282.9 

Table 7.2 Estimated modal frequencies obtained by ARMAX algorithm from SIMO data. 
 

Percentage difference between RFLS and ARMAX modal frequencies are plotted in 

figure 7.5, which shows the very good agreement between the two sets of results.  
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Figure 7.5 Frequency error of RFLS results compared to ARMAX results. 
 

 

 
Figure 7.6 Modal damping estimated from SIMO experiments using ARMAX and RFLS 
methods. 
 

Figure 7.6 compares the modal damping obtained by each estimation method. A 

systematic difference between the two sets of estimates is evident, and reflects the 

limitations of each method. The RFLS technique models FRF data, which is affected by 
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the well-known limitations of the FFT, namely leakage and finite resolution (picket 

fence effect). These effects place a positive bias on damping results. It was suggested in 

Chapter 6 that the ARMAX estimation algorithm suffers from negatively biased 

damping results for non-ideal data; in extreme cases the damping is estimated as 

negative. Note that for the ARMAX algorithm, global modal parameters are averaged 

from estimates obtained for each measurement point, and in the case of damping, 

negative values are omitted.  

 

 
Figure 7.7 MAC value comparing modes obtained from ARMAX and RFLS algorithms. 
 

Figure 7.7 shows MAC values comparing corresponding modes from the RFLS and 

ARMAX results. Eight of the 14 mode pairs have MAC values of greater than 90%. The 

remaining modes that do not have high MAC values were found to have low-level 

responses at many of the measurement points. For example, mode 4 (114.0 Hz) was 

found to have no clear resonant peak in most of the measured FRFs. As a consequence, 

significant errors could be present in the RFLS curve fit results. Similarly, the ARMAX 

algorithm did not identify poles around 114 Hz for many of the measurement points. 

Both methods did show good agreement for a limited number of measurement points, as 

shown in figure 7.8, which compares normalised residues for mode 4. 
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Figure 7.8 Comparison of mode 4 mode shape estimated by ARMAX and RFLS 
algorithms. The calculated residues have been normalised by the residue calculated for 
point 29. Note the agreement between values for measurement points 1, 2, 3, 10, 11, 18, 
19 and 27. 
 

It is worth noting that earlier tests carried out on the helicopter structure, in particular 

the impact hammer test described in Chapter 2, did not identify the mode at 114 Hz, or 

the presence of closely spaced modes at around 164 Hz, where similar comments apply.  

 

While there was good agreement between modal parameters estimated by the ARMAX 

and RFLS algorithms, the ARMAX algorithm estimated models that fitted the measured 

FRF much more closely. This is illustrated in figures 7.9 – 7.12, which compare 

measured FRFs with those synthesised from the estimated RFLS and ARMAX models. 

An explanation of these results is that the STAR Modal software fits modes taking into 

account out-of-band modes, i.e. using residual terms; however, only in-band modes are 

used to synthesise FRFs. The ARMAX model fits all signal components in a frequency 

band, for example rigid body modes (seen below 10 Hz), and noise components. 

Figures 7.9 - 7.12 reflect this with very good agreement between ARMAX and 

measured FRFs. 
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Both the ARMAX and the RFLS FRFs have been plotted with the same resolution as 

the measured FRFs. The lower modal damping estimated by the ARMAX models is 

evident in the modal peaks, which are typically higher than the peaks in the measured  

Figure 7.9 Comparison of measured and synthesised FRFs for measurement point 14. 

Figure 7.10 Comparison of measured and synthesised FRFs for measurement point 18. 
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Figure 7.11 Comparison of measured and synthesised FRFs for measurement point 20. 
 

Figure 7.12 Comparison of measured and synthesised FRFs for measurement point 29. 
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and RFLS FRFs. Also of note is that a resonant peak corresponding to mode 4 (114 Hz) 

is only present in the point-inertance measurement (measurement point 29), shown in 

figure 7.12.  

 

In this section, the performance of the ARMAX and RFLS algorithms has been 

compared. It has been shown that there is good agreement between modal parameters 

estimated by the two different methods. The FRFs synthesised from the estimated 

ARMAX models compare very well with measured FRFs. The following section 

discusses the performance of both algorithms for experiments with two sources of 

excitation, one of which is unmeasured. 

 

7.4 Multiple Excitation Experiments 

A second source of excitation was added to assess the performance of the ARMAX 

algorithm when measurements were made in the presence of unmeasured excitation. 

The experimental apparatus was the same as that used for the SIMO experiments with 

an additional B&K 4809 shaker coupled to the helicopter-like structure. Applied force 

was measured with a B&K 8200 force transducer; a B&K 2626 charge amplifier was 

used to condition and filter the signal with settings used for the SIMO experiment. 

Response measurements were made with four B&K 4393 accelerometers and the 

accelerometer integrated into the B&K 8001 impedance head. 180 seconds of excitation 

and response data were measured in each experiment and the three experiments were 

carried out with different combinations of excitation signals.  

 

Experiment 1: 

• Pseudo-random sequence of length 2048 samples applied by excitation 1; 

• Periodic signal with summed sinusoidal components at 75.5, 120, 200, and 

281Hz applied by excitation 2; 

• Ratio of RMS levels of excitation 2 to excitation 1 (noise/signal ratio) = 2.04. 

 

Experiment 2: 

• Pseudo-random sequence of length 2048 samples applied by excitation 1; 

• Continuous random noise applied by excitation 2; 

• Ratio of RMS levels of excitation 2 to excitation 1 (noise/signal ratio) = 0.83. 
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Experiment 3:  

• Pseudo-random sequence of length 2048 samples applied by excitation 1; 

• Continuous random noise plus sinusoidal components at 75.5, 120, 200, and 

281Hz applied by excitation 2; i.e. the sum of the unmeasured excitation signals 

used in experiments 1 and 2. 

• Ratio of RMS levels of excitation 2 to excitation 1 (noise/signal ratio) = 2.11. 

 

Note that the frequencies of the unmeasured periodic excitations were close to the 

natural frequencies of modes 1, 2, 9, 6, and 7. In addition, the pseudo-random measured 

excitation signal allowed synchronous averaging of excitation and response records. 

One-sided power spectra of the excitation signals are plotted in figures 7.13 – 7.15. 

Some coupling between the two excitation signals used in experiments 1 and 3 can be 

seen around 75Hz, which is the frequency of the first sinusoidal component of 

excitation 2 and between the natural frequencies of the first two vibration modes (74Hz 

and 77Hz, respectively). The implications of coupling between the excitation signals 

will be discussed more in Section 7.5. Note that excitation 2 used in experiment 3 was 

the sum of the signals used for excitation 2 in experiments 1 and 2; i.e. periodic and 

random noise. 

Figure 7.13 1-sided power spectrum of excitation 1 (measured excitation) and 
excitation 2 (unmeasured excitation) used in experiment 1. 
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Figure 7.14 1-sided power spectrum of excitation 1 (measured excitation) and 
excitation 2 (unmeasured excitation) used in experiment 2. 
 

Figure 7.15 1-sided power spectrum of excitation 1 (measured excitation) and 
excitation 2 (unmeasured excitation) used in experiment 3. 
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7.4.1 Comparison of MIMO Experiment 2 and SIMO ARMAX Results 

Comparison of SIMO results discussed in the previous section and Experiment 2 results 

obtained by the ARMAX algorithm was carried out to assess whether the addition of the 

second shaker imposed constraints on the helicopter-like structure, which may have 

affected the estimated modal parameters. The ARMAX algorithm was used to estimate 

modal parameters from the Experiment 2 data using both excitation signals in the 

estimation. Details of the ARMAX algorithm setup are as follows: fifteen 2-input 2-

ouput data sets; na = 80, 82, …, 90; eight iterations of stages 3 and 4; NPDP criterion 

used for model selection; record length 2048 samples. An example of the Matlab code 

used for these tests is given in Appendix F. The results from this analysis of data are 

denoted ‘MIMO ARMAX E2’ to emphasise that both sources of excitation were used in 

the ARMAX estimation algorithm applied to Experiment 2 data. 

 

Figure 7.16 compares frequencies from SIMO ARMAX analysis (discussed in the 

previous section) and MIMO ARMAX E2 results and shows that the agreement is very 

good. 

 
Figure 7.16 Percentage difference between modal frequencies estimated from SIMO 
ARMAX and MIMO ARMAX E2 analyses. 
 

Similarly, modal damping values estimated from the same analyses are very close, as 

shown in figure 7.17. 
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Figure 7.17 Modal damping estimated from SIMO ARMAX and MIMO ARMAX E2 
analyses. 
 

 
Figure 7.18 MAC for mode pairs estimated from SIMO ARMAX and MIMO ARMAX E2 
analyses. 
 

Agreement between mode shapes is relatively poor, as shown by the MAC values 

plotted in figure 7.18. This shows the effect of constraints applied by coupling the 
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second shaker: both shakers theoretically apply no constraints in the axial direction (the 

global z direction shown in figure 7.2), but they do constrain the helicopter-like 

structure in the x-y plane, which clearly affects the mode shapes. The MIMO ARMAX 

E2 results were believed to be a satisfactory basis for comparison with results obtained 

from experiments 1 and 3, which were carried out with the same configuration as 

experiment 2. Comparison of results obtained from analysis of data from experiments 1, 

2 and 3 are discussed in the following section. 

 

7.4.2 Unmeasured Excitations 

Data from experiments 1, 2, and 3 were processed using the ARMAX algorithm to 

assess its performance when significant unmeasured excitations were present. The 

signals applied by excitation 2 were used to simulate unmeasured excitation and 

therefore were not used by the ARMAX estimation algorithm. The ARMAX algorithm 

estimated modal parameters for each experiment using the following conditions: fifteen 

single-input (excitation 1) 2-ouput data sets; na = 80, 82, …, 90; eight iterations of 

stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples. 

Results are denoted SIMO E1, SIMO E2, and SIMO E3, for results obtained from 

experiments 1, 2, and 3, respectively. The analysis names ‘SIMO E1’ etc. are used to 

emphasise that only a single excitation signal (excitation 1) was used for modal 

parameter estimation, but it should be noted that unmeasured excitations were applied 

by the second shaker (excitation 2). 

 

7.4.3 Synchronous Averaging 

The pseudo-random sequence used for excitation 1 in Experiments 1, 2, and 3 was two 

seconds in length and enabled synchronous averaging of the measured excitation and 

response data. Recall that 180 seconds of data were measured in each experiment 

resulting in a maximum of 90 synchronous averages. The averaging operations were 

found to be adversely affected by prior re-sampling, which reduced the sampling rate to 

600Hz (described in section 7.3.2), most likely due to sample jitter resulting from 

application of the FIR filter. Furthermore, re-sampling the averaged data resulted in a 

time-series with an insufficient number of samples for estimating high-order ARMAX 

models. A solution to this problem, which still applied the maximum number of 
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averages (90), involved synchronously averaging the data and then re-sampling a new 

time series created by concatenating the averaged time series. This solution allowed a 

2048 sample segment of re-sampled data to be used for the ARMAX algorithm, and this 

segment of data could be selected to avoid the inaccuracies at the end points of the re-

sampled data series (inaccuracies due to the FIR filter used in the re-sampling process). 

The 2048 samples of data used in the ARMAX algorithm spanned approximately 1.7 

periods of the pseudo-random excitation. The ARMAX algorithm was applied to the 

averaged, re-sampled data from Experiments 1, 2, and 3 with the following conditions: 

fifteen single-input (excitation 1) 2-ouput data sets; na = 80, 82, …, 90; eight iterations 

of stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples. 

Results are denoted SIMO E1 av, SIMO E2 av, and SIMO E3 av, for results obtained 

from Experiments 1, 2, and 3, respectively. The analysis names ‘SIMO E1 av’ etc. are 

used to emphasise that only a single excitation signal was used for modal parameter 

estimation and that synchronous averaging was used to pre-process the data. Recall that 

unmeasured excitations were applied by the second shaker (excitation 2) in Experiments 

1, 2, and 3.  

 

7.4.4 Experiment 1 Results: Unmeasured Periodic Excitation 

Modal parameters from SIMO E1 and SIMO E1 av are compared with the MIMO E2 

results in figures 7.19 – 7.23. 

 

Estimated modal frequencies show very good agreement with those obtained from the 

MIMO E2 experiments. No significant change is observed after synchronous averaging 

is applied to the data. Numerical and experimental results discussed in Chapter 6 

suggested that unmeasured periodic excitations do not significantly affect the ARMAX 

modal parameter estimates. Therefore, the effect of synchronous averaging in 

attenuating responses due to the unmeasured periodic excitations would not be clearly 

represented in the modal parameter results. These comments are reflected in the 

standard deviations for the modal frequencies estimated from each set of data (figure 

7.20), with an increase in standard deviation apparent in only a few modes estimated 

from data with unmeasured excitations. 
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Figure 7.19 Modal frequencies estimated from SIMO E1 and SIMO E1 av analyses 
compared with modal frequencies estimated from MIMO E2 analysis. 
 

 
Figure 7.20 Modal frequency standard deviation for SIMO E1, SIMO E1 av, and MIMO 
E2 analyses. 
 

As discussed in chapter 6, modal damping is more sensitive to the effects of 

unmeasured periodic excitation. Variation in damping estimates (figure 7.21) is seen to 

occur for modes where there is a poor response at a number of excitation points, for  
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Figure 7.21 Modal damping estimated from SIMO E1 and SIMO E1 av analyses 
compared with modal damping estimated from MIMO E2 analysis. 
 

 
Figure 7.22 Modal damping standard deviation for SIMO E1, SIMO E1 av, and MIMO 
E2 analyses.  
 

example, modes 4 and 8; closely spaced modes, for example mode 6 (which is < 1 Hz 

below mode 7); and closely spaced modes with a unmeasured periodic excitation close 

by, as in the cases of modes 2 and 13. This is also reflected in the standard deviation for 
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modal damping values estimated from each data set, shown in figure 7.22. It is 

interesting to note that the unmeasured periodic excitation at 200Hz does not 

significantly affect the damping estimates at mode 9 (201.7Hz), which was found to 

have a strong response at most measurement points. Overall, the ARMAX algorithm is 

observed to be effective in estimating modal damping from data obtained in the 

presence of unmeasured periodic excitations, even if the frequencies of unmeasured 

excitation are close to natural frequencies of the structure. This also accounts for the 

similarity between SIMO E1 and SIMO E1 av results as the averaging process will 

attenuate the unmeasured periodic excitations, which are not synchronous with the 

averaging period, and this will not be clearly reflected in the estimated modal 

parameters. 

 

The MAC values (figure 7.23) comparing mode shapes obtained from the SIMO E1 and 

SIMO E1 av analyses with mode shapes obtained from the MIMO E2 analysis show a 

similar pattern to the results obtained in the SIMO analysis, described in Section 7.2.  

 
Figure 7.23 MAC comparing mode shapes estimated from SIMO E1 and SIMO E1 av 
analyses with mode shapes estimated from MIMO E2 analysis. 
 

This further highlights the difficulty with using the MAC to compare modes where 

some measurement points have very poor response and therefore large amounts of 

uncertainty in mode shape estimates. Nine out of fourteen modes have been estimated 
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with MAC values higher than 0.9 and the differences between the SIMO E1 and SIMO 

E1 av results are typically due to a small number of measurement points with an 

inaccurate result. This is illustrated for mode 7, where the SIMO E1 MAC value is very 

close to 1, and the SIMO E1 av MAC value is just over 0.1. The normalised residue for 

mode 7 obtained from the SIMO E1 av analysis is compared with that from the MIMO 

E2 analysis in figure 7.24. There is a clear discrepancy at measurement points 1 and 18. 

The MAC value for mode 7 omitting points 1 and 18 was 0.99.  

 
Figure 7.24 Comparison of mode 7 mode shapes estimated from SIMO E1 av and 
MIMO E2 analyses.  
 

7.4.5 Experiment 2 Results: Unmeasured Random Excitation 

The estimated modal parameters from the SIMO E2 and SIMO E2 av analyses are 

compared with those from the MIMO E2 analysis in figures 7.25 – 7.29. As for the 

Experiment 1 results discussed in the previous section, modal frequencies are in good 

agreement with the MIMO E2 results. Synchronous averaging has no significant effect 

on the estimated natural frequencies. Similarly, no clear trend is seen in the standard 

deviation of the estimated modal frequencies, shown in figure 7.26. 

 

Unmeasured random excitation has a more significant effect on the modal damping than 

was observed for unmeasured periodic excitation. Figure 7.27 shows reasonable 

agreement between damping values except for modes 4, 8, and 12 where negative 
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damping has been estimated in the SIMO E2 analysis. Synchronous averaging improves 

the damping for modes 4 and 12; however, mode 8 is still estimated with negative 

damping. Similarly, the damping standard deviation values are relatively large for 

modes 4, 8, and 12 and synchronous averaging decreases the values for modes 4 and 12.  

 
Figure 7.25 Modal frequencies estimated from SIMO E2 and SIMO E2 av analyses 
compared with modal frequencies estimated from MIMO E2 analysis. 
 

 
Figure 7.26 Modal frequency standard deviation for SIMO E2, SIMO E2 av, and MIMO 
E2 analyses. 
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Figure 7.27 Modal damping estimated from SIMO E2 and SIMO E2 av analyses 
compared with modal damping estimated from MIMO E2 analysis. 
 

 
Figure 7.28 Modal damping standard deviation for SIMO E2, SIMO E2 av, and MIMO 
E2 analyses. 
 

Referring to figure 7.4, modes 4, 8, and 12 (114, 186, and 263Hz, respectively) have 

relatively low peaks, indicating that the responses are relatively poor at a number of 

measurement points. The signal-to-noise ratio around these frequencies is likely to be 
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lower than modal frequencies with a larger response due to measurement noise, and this 

adds to the poor signal-to-noise ratio due to the unmeasured excitations.  

 
Figure 7.29 MAC comparing mode shapes estimated from SIMO E2 and SIMO E2 av 
analyses with mode shapes estimated from MIMO E2 analysis. 
 

MAC values in figure 7.29 show a similar pattern to those obtained for unmeasured 

periodic noise discussed in the last section, that is, modes 4, 8, and 12 show the poorest 

agreement. The unmeasured random excitations were found to affect mode shape 

estimates uniformly across measurement points for modes with low MAC values, as 

opposed to a small number of poorly estimated points as was illustrated by the example 

discussed in section 7.4.4 (see figure 7.24).  

 

7.4.6 Experiment 3 Results: Unmeasured Periodic and Random Excitation 

Modal parameters from SIMO E3 and SIMO E3 av are compared with the MIMO E2 

results in figures 7.30 – 7.34. As expected, the estimated modal frequencies are not 

significantly affected by the unmeasured periodic and random excitations, as shown in 

figure 7.30 and similar comments apply to the standard deviation for modal frequency 

plotted in figure 7.31. 

 

Modal damping results show a similar trend to that observed for unmeasured random 

excitations, discussed in the previous section. Synchronous averaging improves the 
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accuracy of damping for modes 4 and 12, which were estimated with negative damping 

in the SIMO E3 analysis.   

 
Figure 7.30 Modal frequencies estimated from SIMO E3 and SIMO E3 av analyses 
compared with modal frequencies estimated from MIMO E2 analysis. 

 
Figure 7.31 Modal frequency standard deviation for SIMO E3, SIMO E3 av, and MIMO 
E2 analyses. 
 

The large standard deviation value for mode 8, SIMO E3 av, reflects the poor damping 

estimate for that mode. This is due to a pole with a frequency very close to the natural 
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frequency of mode 8, but with a high value of negative damping. The mode-selection 

method used for the analyses discussed in this chapter is based only on modal 

frequency; alternatively, damping could be considered and modes with very large 

negative damping could be easily identified and removed. 

 
Figure 7.32 Modal damping estimated from SIMO E3, SIMO E3 av, and MIMO E2 
analyses. 

 
Figure 7.33 Modal damping standard deviation for SIMO E3, SIMO E3 av, and MIMO 
E2 analyses. 
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MAC values for the SIMO E3 and SIMO E3 av analyses are very similar to those 

obtained for the SIMO E2 and SIMO E2 av analyses, which was expected due to the 

limited effect of unmeasured periodic excitations. Synchronous averaging leads to a 

significant improvement in the MAC values for modes 1, 12 and 13, however, little or 

no improvement is seen for the modes with very poor correlation, namely, modes 4, 7, 

and 8.  

 
Figure 7.34 MAC comparing mode shapes estimated from SIMO E3 and SIMO E3 av 
analyses with mode shapes estimated from MIMO E2 analysis. 
 

Mode shape correlation between different tests has been consistently poor for modes 4 

and 8, and as noted above, these modes have a limited response at a number of 

measurement points. The poor mode shape estimates at a number of measurement 

points will contribute to low MAC values. These comments also apply to the results 

from the SIMO experiments obtained using the ARMAX and RFLS algorithms, 

discussed in section 7.3.  

 

Closely spaced modes were also more sensitive to the presence of unmeasured 

excitations, for example modes 6 and 7, which were separated by approximately 0.5 Hz 

or less, and modes 13 and 14, which were separated by less than 2 Hz. This is in 

agreement with conclusions from numerical tests discussed in Chapter 6. The presence 
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of an unmeasured periodic excitation at 280 Hz further affected the mode shape 

estimates of mode 13 in the analysis of data from experiment 1 and 3.  

 

In terms of estimated modal parameters, the most significant effect of synchronous 

averaging was the improvement in damping values for modes 4 and 12, which were 

estimated with negative damping in the SIMO E2 and SIMO E3 analysis. The review in 

section 2.3 showed that synchronous averaging attenuates signal components that are 

not synchronous with the averaging period, and the quality of the FRFs synthesised 

from the estimated ARMAX models more clearly illustrate this. Plots of synthesised 

FRFs at measurement points 14, 18, 20 and 29 are shown in Appendix B for all analyses 

discussed in this section. The models synthesised from averaged data are in much better 

agreement with results from the MIMO E2 analysis (i.e. 2-input 2-output with no noise, 

see section 7.4.1) and peaks due to poles modelling the unmeasured periodic excitation 

are less prominent. As discussed in section 7.4.4, the ARMAX algorithm produces 

accurate modal parameters in the presence of purely unmeasured periodic excitations, 

therefore the effect of averaging is not as obvious when analysing frequency, damping, 

and mode shape results. 

 

The ARMAX algorithm successfully identifies the modal frequencies of all modes in 

the presence of significant unmeasured periodic and random excitation, while modal 

damping and mode shapes are less accurate for modes with a poor response at many 

measurement points. The ARMAX algorithm achieves acceptable accuracy for very 

short data records; in this case study 2048 samples, and synchronous averaging 

improves damping estimates for modes with low responses at many measurement 

points. Modes where poor accuracy is achieved are common to all the analyses, 

including noise-free conditions and this reflects a significant limitation of the ARMAX 

algorithm, namely, that it cannot properly identify modes at measurement points with a 

poor response. Synchronous averaging has the greatest impact on modal parameters 

estimated in the presence of unmeasured random excitations (see for example 

Experiment 2 and Experiment 3 results), as the ARMAX algorithm is most sensitive to 

unmeasured random excitations, as opposed to unmeasured periodic excitations. The 

following section compares the performance of the ARMAX algorithm with the RFLS 

algorithm for Experiments 1- 3.  
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7.5 Comparison of ARMAX and RFLS Modal Parameter Estimation 

in the Presence of Unmeasured Excitations 

The RFLS FRF curve fitting method was used to process data measured in Experiments 

1, 2, and 3. FRFs were calculated between response measurements and excitation 1. 

Excitation 2 was treated as an unmeasured excitation as for the ARMAX analyses 

discussed in the previous section. Modal parameters were estimated using the RFLS 

method for experiments 1, 2 and 3 under the following conditions: fs = 1024 Hz; 

frequency range 0 - 400 Hz; f = 0.5 Hz; uniform window (i.e. no weighting) applied to 

segments of time record 2048 samples long synchronised to the pseudo-random 

excitation. Two sets of modal parameters were estimated from data processed using 

different numbers of averages: RFLS E1, RFLS E2, and RFLS E3, refer to RFLS curve 

fitting of Experiment 1, 2 and 3 data, respectively, using 20 synchronous averages; 

RFLS E1 av, RFLS E2 av, and RFLS E3 av, refer to RFLS curve fitting of Experiment 

1, 2 and 3 data, respectively, using 89 synchronous averages. Estimated modal 

parameters for each of the tests are compared with modal parameters from the MIMO 

ARMAX E2 analysis in Appendix C. The higher numbers of averages generally 

produced marginally better results for all combinations of unmeasured excitations. 

Frequency results are typically within 1% of the values estimated in the MIMO 

ARMAX E2 analysis. Negative damping is estimated for at least one mode in each 

analysis, and synchronous averaging does lead to an improvement in one negative 

damping value for unmeasured periodic excitation in RFLS E1 av analysis. For the case 

where unmeasured random excitation is present, synchronous averaging does not 

improve negative damping estimates. Results from the RFLS FRF curve fitting are 

compared with the ARMAX results in the following sections.  

 

7.5.1 Comparison of ARMAX and RFLS Results for Experiment 1 Data: 

Unmeasured Periodic Excitation 

Results from the SIMO E1 analysis (ARMAX estimation, 2048 samples, unmeasured 

periodic noise) were compared with those obtained from the RFLS E1 av analysis 

(RFLS estimation, unmeasured excitation, 89 synchronous averages). Note that because 

a higher number of averages yielded slightly better results for the RFLS algorithm, 

RFLS E1 av results were compared with the SIMO E1 results to illustrate that the 
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ARMAX algorithm can use significantly less data. The results from the MIMO E2 

analysis (MIMO ARMAX estimation) were used as a basis for calculating frequency 

error and MAC values, as well as providing an estimate of damping in noise-free 

conditions. Figure 7.35 shows that there is no significant difference in the estimated 

modal frequencies, while modal damping estimates (figure 7.36) are also quite similar 

for most of the modes except mode 4, which had a poor response at many measurement 

points. Note that no standard deviation data is produced by the RFLS algorithm for the 

frequency and damping estimates. The MAC values in figure 7.37 indicate good 

correlation between RFLS E1 av and MIMO E2 mode shapes for only modes 2 and 3, 

while the SIMO E1 analysis shows much better agreement for a greater number of 

modes.  

 

 

 

 
Figure 7.35 Comparison of modal frequencies from RFLS FRF curve fitting of 
Experiment 1 data and SIMO E1 analysis with modal frequencies from ARMAX MIMO 
E2 analysis. 
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Figure 7.36 Comparison of modal damping from RFLS FRF curve fitting of Experiment 
1 data, SIMO E1 analysis, and ARMAX MIMO E2 analysis. 
 

 
Figure 7.37 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment 
1 data and SIMO E1 analysis with mode shapes from ARMAX MIMO E2 analysis. 
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7.5.2 Comparison of ARMAX and RFLS Results for Experiment 2 Data: 

Unmeasured Random Excitation 

Modal parameters from SIMO E2 and RFLS E2 av analyses are compared with the 

noise-free results from the MIMO E2 analysis and plotted in figures 7.38 – 7.40. As 

with the results presented in the previous section, SIMO E2 and RFLS E2 av results 

were compared to illustrate that the ARMAX algorithm can perform well using short 

data records. The pattern of results is also quite similar to those discussed in the 

previous section; however, the unmeasured random excitation has a greater effect on the 

accuracy of both estimation methods when compared with unmeasured periodic 

excitation. While the ARMAX algorithm estimates negative damping for three modes, it 

was shown in section 7.3.5 that averaging improved the results for two of the three 

modes. It is interesting to note the ARMAX and RFLS algorithms estimate negative 

damping for different modes using synchronously averaged data: mode 8 (186Hz) for 

the ARMAX algorithm, and mode 13 (280Hz) for the RFLS algorithm. Mode 13 is 

separated from mode 14 by approximately 1 Hz, while mode 8 had relatively low-level 

response at many measurement points.  

 

 
Figure 7.38 Comparison of modal frequencies from RFLS FRF curve fitting of 
Experiment 2 data and SIMO E2 analysis with modal frequencies from ARMAX MIMO 
E2 analysis. 
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Figure 7.39 Comparison of modal damping from RFLS FRF curve fitting of Experiment 
2 data, SIMO E2 analysis, and ARMAX MIMO E2 analysis. 
 

 

 
Figure 7.40 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment 
2 data and SIMO E2 analysis with mode shapes from ARMAX MIMO E2 analysis. 
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7.5.3 Comparison of ARMAX and RFLS Results for Experiment 3 Data: 

Unmeasured Periodic and Random Excitation 

Comparison of results from the SIMO E3 and RFLS E3 av analyses reflect comments 

made in the previous two sections and are shown in figures 7.41 – 7.43, using results 

from MIMO E2 analysis as a basis for calculating frequency error and MAC value. 

Both the ARMAX and RFLS algorithms have difficulty with low amplitude modes and 

share a similar pattern of MAC values.  

 

The results in this section have shown that ARMAX algorithm typically yielded a more 

accurate set of modal parameters in conditions where unmeasured periodic and/or 

random excitations were present. The ARMAX algorithm also required less 

measurement data to achieve these results; 2048 samples, as opposed to 89×2048 

samples used in the RFLS analyses that included synchronous averaging. It should be 

noted when drawing conclusions from the MAC values that comparison of the two 

algorithms for noise-free data, discussed in section 7.3.3, showed large differences in 

the mode shape results for modes 4, 7, and 13.  

 

 
Figure 7.41 Comparison of modal frequencies from RFLS FRF curve fitting of 
Experiment 3 data and SIMO E3 analysis with modal frequencies from ARMAX MIMO 
E2 analysis. 
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Figure 7.42 Comparison of modal damping from RFLS FRF curve fitting of Experiment 
3 data, SIMO E3 analysis, and ARMAX MIMO E2 analysis. 
 

 

 
Figure 7.43 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment 
3 data and SIMO E3 analysis with mode shapes from ARMAX MIMO E2 analysis. 
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7.5.4 Comparison of Mode Selection for ARMAX and RFLS Algorithms 

An important distinction can be made between the roles of mode selection in the two 

estimation algorithms. The ARMAX algorithm fits a model to the time-series data and 

mode selection involves identifying poles of the model that represent vibration modes. 

The true vibration modes are typically a subset of modes modelled by the ARMAX 

model due to model order over-specification. The RFLS method fits a model to bands of 

the measured FRF, which are selected on the basis of some mode selection criteria. 

Figure 7.44 shows the averaged, squared imaginary part of the measured FRFs obtained 

from the RFLS E3 av analysis. The dotted lines in the figure mark the modal 

frequencies of the identified vibration modes, which were based on the results of the 

noise free analysis. There are many additional peaks in the plot, which are due to 

measurement noise and unmeasured excitations, even after 89 averages. In the case 

where no prior knowledge of the structure was available, mode selection would be a 

time consuming task. Figure 7.45 shows the averaged synthesised FRFs from the 

ARMAX results selected by the NPDP model selection criterion, for the SIMO E3 

analysis (estimated using 2048 samples). The dotted lines indicate the natural 

frequencies of the selected modes, which are clearly represented, except for mode 4 at 

approximately 114 Hz, which had a poor response at a number of measurement points. 

It is emphasised that these results were estimated from 2048 data points in contrast to 

the 89 × 2048 samples used by RFLS algorithm with synchronous averaging. 

  

A peak at 120 Hz is evident in both figure 7.44 and 7.45, and could easily be mistaken 

for a structural mode without the knowledge that the peak is due to the unmeasured 

periodic excitation. The use of backwards ARX models in the ARMAX estimation 

algorithm provides a means to help distinguish between spurious modes and vibration 

modes, based on the sign of the damping. Figure 7.46 shows the damping estimated for 

a mode at 119.5 Hz (SIMO E3 analysis), which corresponds to a frequency present in 

the unmeasured periodic excitations.  
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Figure 7.44 Averaged, squared imaginary part of measured FRFs from the RFLS E3 av 
analysis. The dotted lines indicate the peaks that were selected in the curve fitting 
processing. 
 

Figure 7.45 Averaged FRFs estimated in the SIMO E3 analysis. The dotted lines 
indicate the peaks that were selected as vibration modes. 
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Figure 7.46 SIMO E3 analysis damping estimates at each measurement point for a 
spurious mode at 120 Hz, which corresponds to a component of the unmeasured 
periodic excitation. 
 

The damping estimated at every measurement point is negative, which indicates that 

either the estimation is heavily biased by noise, or the mode is not a true vibration 

mode. FRFs synthesised from the estimation ARMAX model show a very narrow peak 

around 119 Hz for most measurement points. The sign of the damping is not a strong 

criterion when used in isolation, as SIMO E3 analysis yielded three vibration modes 

with negative damping (averaging reduced the number of negatively damped vibration 

modes to two). Synthesised FRFs revealed that the vibration modes estimated with 

negative damping had relatively poor responses at some measurement points, which 

contrasts to the way the unmeasured periodic excitations are modelled by the ARMAX 

model, i.e. with prominent narrow peaks. An advantage with using the ARMAX 

algorithm is that FRFs can be synthesised with any resolution. However, measured 

FRFs, used by the RFLS algorithm, have resolution determined by the experimental set-

up, and can be subject to leakage effects, which would increase the difficulty of 

distinguishing between a vibration mode and a spurious mode on the basis of the shape 

of the peak in the FRF. Effectively distinguishing between spurious modes and 

vibrational modes requires a number of different tools. The ARMAX algorithm 

estimates a model that accurately fits the measured data and the mode selection process 
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is aided by the sign of the modal damping, smooth synthesised FRFs and multiple 

estimates of global parameters allowing statistical analysis of the results. 

 

7.6 Coupling of Structural Excitation Sources 

In Chapter 6, the performance of the ARMAX algorithm was tested under a similar set 

of noise conditions using experimental data obtained from an aluminium beam. It was 

shown that the addition of unmeasured random noise had a significant effect on the 

accuracy of damping values. A major difference between the tests discussed in Chapter 

6 and those carried out on the helicopter-like structure was the source of excitation and 

the measurement of the excitation signal. Applied voltage was used as the excitation 

signal for the beam experiments and applied force was measured for the helicopter-like 

structure testing. The beam experiments using piezoceramic actuators for excitation 

satisfied the requirement that the excitation sources were uncorrelated, therefore the 

unmeasured excitation sources were truly unmeasured. This was not the case for the 

helicopter-like structure, which involved coupling between the structure and the shakers 

as well as between the measured excitation signals. The coupling was due to the rigid 

mounting of the shakers and because the shakers were not small compared with the 

helicopter-like structure. 

 

Figures 7.47 – 7.49 plot an estimate of the coherence function for the two excitation 

signals used in Experiments 1 – 3, respectively. The coherence function is defined as 

[128] 
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where ( )fG11 , ( )fG22  are the estimates of the auto-spectra for excitation 1 and 

excitation 2, respectively, and ( )fG12  is an estimate of the cross-spectrum between 

excitation 1 and excitation 2. The coherence functions were calculated using a Hanning 

window, 66% overlap, and 268 averages. 
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Figure 7.47 Estimated coherence function between excitation 1 (pseudo-random 
excitation) and excitation 2 (periodic excitation, 75.5Hz, 120Hz, 200Hz, and 281Hz), 
for Experiment 1. Vertical dotted lines mark frequencies of periodic excitation. 
 

 

 
Figure 7.48 Estimated coherence function between excitation 1 (pseudo-random 
excitation) and excitation 2 (continuous random excitation), for Experiment 2. 
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Figure 7.49 Estimated coherence function between excitation 1 (pseudo-random 
excitation) and excitation 2 (continuous random and periodic excitation, 75.5Hz, 
120Hz, 200Hz, and 281Hz), for Experiment 3. Vertical dotted lines mark frequencies of 
periodic excitation. 
  

Coupling between the shakers and structure is indicated by peaks in the coherence 

functions, and a number of peaks can be seen in figure 7.47. These are located at the 

frequencies of the unmeasured periodic excitation, especially at 75.5 Hz. In addition to 

these peaks, there is significant coupling at low frequencies in the experiment 1 data, 

and also around the first two modes (74Hz & 77Hz). This can clearly be seen in figure 

7.48, as Experiment 2 used unmeasured random noise, and little correlation between the 

excitation signals can be seen at other frequencies. While some correlation between the 

excitation signals exists, in particular around the frequencies of the unmeasured 

excitation, the assumption of unmeasured excitation is still considered to be valid. 

 

7.7 Conclusions 

Experimental tests on a helicopter-like structure were carried out in order to test the 

performance of the ARMAX estimation algorithm for a structure with a more complex 

dynamic behaviour. Closely spaced modes, DOFs with poor vibration responses for at a 

number of measurement points, and significant unmeasured excitations including 
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periodic components close to natural frequencies were characteristics of the tests 

discussed in this chapter. The ARMAX algorithm was shown to achieve acceptable 

accuracy under noise-free conditions and results were in agreement with a RFLS 

estimation algorithm except for three of the fourteen modes, which were found to have 

poor mode shape correlation. The ARMAX algorithm also estimated reasonably 

accurate results in the presence of 200% periodic excitation, 89% random excitation, 

and the superposition of random and periodic excitation. Systematic inaccuracies were 

observed in all tests for modes with low vibration response at a number of 

measurements points, and the MAC value, which was used to compare mode shape 

results, was found to be sensitive to poor results at a small number of measurement 

points. The use of a pseudo-random excitation signal allowed excitation and response-

measurements to be synchronously averaged. Synchronous averaging improved 

ARMAX damping estimates for modes estimated with negative damping for cases with 

unmeasured excitation; though little improvement was observed in other modal 

parameters. Similarly, the RFLS curve-fitting algorithm did not appear to significantly 

benefit from increased numbers of averages (20 to 89). The ARMAX algorithm was 

found to obtain more accurate mode shape results for cases with unmeasured 

excitations, compared to the RFLS algorithm; however this is qualified by the results 

for noise-free data, where three of the fourteen modes showed poor mode shape 

correlation. The accuracy of frequency and damping results was comparable for cases 

with unmeasured excitation, although the ARMAX algorithm used 2048 data samples to 

achieve these results, compared with the 89×2048 samples used by the RFLS algorithm 

applied to synchronously averaged data.  

 

The following chapter presents a preliminary study of an adapted ARMAX algorithm 

aimed at identifying modal parameters from response measurements. This work is 

carried out with the broad aim of developing a general modal parameter estimation 

algorithm that utilises vibration response data obtained under any condition: with 

measured excitation data; with measured and unmeasured excitation; and using response 

measurements exclusively. 
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Chapter 8  Modal Parameter Identification from Vibration 

Response Measurements 

8.1 Introduction 

In chapter 5, an ARMAX-based algorithm was introduced to estimate modal parameters 

from excitation and response measurements in the presence of significant unmeasured 

excitation. The testing of the algorithm was discussed in Chapter 6 and it was 

demonstrated that the algorithm performed reasonably well in the presence of 

unmeasured excitation, although the accuracy of estimated modal parameters decreased 

for increasing levels of unmeasured excitation. It is therefore expected that for very high 

levels of unmeasured excitation, the ARMAX algorithm would yield inaccurate results. 

An algorithm that estimates modal parameters from response measurements could 

potentially be of benefit in these cases, and may provide insight into, or lead to 

improvements for the I/O algorithm. Therefore, a preliminary investigation of the 

adaptation of the ARMAX algorithm for use with response measurements is presented 

in this chapter. Two different algorithms are adapted from the ARMAX I/O algorithm 

and their performance is assessed using simulated vibration data from a 2 DOF system 

and experimental data obtained from a cantilever aluminium beam.  

 

In the following section, a range of existing response-only modal analysis algorithms 

are reviewed. Issues which arise in adapting the ARMAX algorithm for use with 

response measurements are discussed in section 8.3 and two adapted algorithms are 

presented in section 8.4. Numerical and experimental tests are discussed in section 8.5 

and section 8.6, respectively, and concluding remarks are made in section 8.7. 

 

8.2 Review of Response-Only Modal Analysis Algorithms 

Response-only modal analysis methods estimate modal natural frequencies, damping 

and mode shapes from vibration response data measured from a structure without any 

explicit knowledge of the excitation. Many of the techniques have been adapted from 

classical input/output modal analysis methods and assume the excitation applied to the 

structure approximates white noise. 
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The most  basic method is the peak-picking method [38, 128, 129], which involves 

identifying resonant peaks in a spectrum and subsequently identifying modal 

parameters. As discussed in section 2.2, the peak picking method was originally applied 

to frequency response function (FRF) data (cf. equations (2.5) and (2.8)). The response-

only version of the peak-picking method is applied to the matrix of auto- and cross-

spectra of the response measurements, 

 

  )()()( ωωω jjj T
uy −= HRHS ,  [s × s]                (8.1) 

 

where Sy is the matrix of auto- and cross-spectra of the response measurements, H is the 

transfer function matrix, and Ru is the spectral density matrix of the unmeasured white-

noise excitations. Natural frequency and damping estimates can be obtained from the 

peaks in the response spectra and at these points equation (8.1) can be approximated as 

[38]  

 

  H
iiiiy j ΦΦ≈ αω )(S ,                    (8.2) 

 

and is used to determine iΦ , the mode shape of the ith mode. (⋅)H is the conjugate 

transpose of a matrix and iα is a constant determined by the natural frequency, 

damping, modal participation factor, and excitation spectral density matrix. Note that 

proper scaling of mode shapes cannot be resolved because the contribution of the 

excitation spectral density matrix is unknown.  

 

The peak picking method can be applied very quickly, particularly as FFT analysers, 

which are widely used in I/O modal analysis, typically calculate auto- and cross-spectra. 

Bendat & Piersol [128] demonstrate that the phase and coherence data associated with 

cross-spectra may be used to confirm the presence of modes: the coherence around 

resonant peaks should approach 1, reflecting the high signal-to-noise ratio and the linear 

relationship between response measurements; the phase of lightly damped modes will 

be close to zero or 180°. 
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The peak-picking method is limited by the resolution of the spectra, and results will be 

poor if the assumptions of lightly-damped and well-spaced modes are not valid. 

Operational deflection shapes, as opposed to mode shapes, will be estimated at 

frequencies where more than one mode contributes to the response. Cases where the 

excitation is not white will also cause problems. It is noted by Bendat and Piersol [128] 

that narrow band excitation may be identified by peaks in the cross-spectra that have 

phases other than zero and 180°. A further issue is the subjective nature of picking 

resonant peaks; however, good knowledge of the system under test is a critical factor 

and an advantage for all modal analysis techniques. 

 

A variation of the peak picking method is the frequency domain decomposition (FDD) 

method [38, 129-131], which identifies modal parameters from the singular value 

decomposition (SVD) of the spectrum matrix. Peeters & De Roeck [38] noted that the 

FDD method is a renamed version of the complex modal indicator function (CMIF), 

which has been applied to both response measurements and FRF data (see section 2.2), 

and is useful for identifying the presence of closely spaced vibrational modes.  

 

The SVD of the spectrum matrix (equation (8.1)), is written as [38] 

 

  ( ) ( ) ( ) ( )ωωωω jjjj H
y UUS = ,          (8.3) 

 

where ( )ωjU  (s × s) is the matrix of singular vectors, which correspond to the singular 

values that are the elements of the diagonal matrix ( )ωj . The singular values indicate 

the rank of the spectrum matrix at a particular frequency, and the rank is determined by 

the number of modes that significantly contribute to the response at that frequency. A 

resonant frequency of a well-spaced mode will be indicated by a local maximum of one 

singular value at the resonant frequency. Closely spaced modes will be indicated by 

local maxima in separate singular values. This characteristic addresses a limitation of 

the classical peak-picking method described above, which assumes well-spaced modes. 

Re-writing equation (8.3) as 
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and comparing with equation (8.2) shows that the singular vector for a dominant 

singular value at a resonant peak is an estimate of the mode shape vector.  

 

The basic version of the FDD method determines modal frequencies to the resolution of 

the spectrum matrix and does not directly yield damping values. As with the classical 

peak-picking method, SDOF curve-fitting techniques can be applied to a region around 

the local maximum of a singular value spectrum to yield an improved frequency 

estimate and modal damping. The enhanced frequency domain decomposition (EFDD), 

outlined by Gade et al [131], isolates a SDOF ‘bell function’ in the singular value 

spectrum using the modal assurance criterion (MAC) to ensure mode shapes at 

frequencies within the frequency band correlate with a given threshold value. The 

isolated bell function is transformed into the time-domain to yield a correlation function 

and the damped natural frequency is estimated by counting zero-crossings per unit time. 

Modal damping is estimated by curve-fitting the logarithmic envelope of the correlation 

function. The FDD and EFDD techniques have been implemented in the ARTeMIS 

operational modal analysis software package produced by Structural Vibration 

Solutions. Numerous applications of both techniques are discussed by Brincker & 

Møller [65]. 

 

Correlation functions between response measurements are the starting point for a 

number of other methods, broadly referred to as the Natural Excitation Technique 

(NExT) [19, 20, 113, 132, 133], which involves calculating auto- and cross-correlation 

functions between response measurements, estimating global modal parameters from 

correlation functions using time-domain modal parameter identification, and finally 

estimating mode shapes. The basis of the technique is that the correlation functions 

between response measurements are a sum of decaying sinusoids with the same natural 

frequencies and damping ratios as the system’s impulse response functions. A summary 

of the derivation by James et al [132] is given below. 

 

The impulse response of a system measured at point k due to an input at point i can be 

written  
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where r
nω , rς , are the natural frequency and damping of the rth mode, respectively; 

( )2
1 rr

n
r
d ςωω −= ; mr the rth modal mass; and r

iφ  is the rth, mode shape at point i. The 

response due to an arbitrary force applied at point k, fk, is 
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where  
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The cross correlation between response measurements at points i and j, due to an input 

at point k is 

 

   [ ( ) ( ) ]txTtxE)T(R jkikijk += ,       (8.8) 

 

where E is the expectation operator. Substituting equation (8.6) into (8.8) gives 
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which can be further simplified noting that the autocorrelation for a white noise input is 

 

  ( ) ( ) ( )[ ] ( )στδαστστ −==− kkk
k
ff ffER .    (8.10) 

 

The last equality in the above equation is a scaled Dirac Delta function; the scaling 

constant kα  can be pulled outside the integrals in equation (8.9) and the delta function 

evaluated by the first integral: 
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Equation (8.11) is written as a definite integral by substituting τλ −= t  and changing 

the variable of integration 
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Expanding ( )Tg r +λ  using the trigonometric addition formulas gives 
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and the expressions for ( )λrg  and ( )Tg r +λ  are substituted into equation (8.12) and 

functions of T are separated from those of λ: 
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Equation (8.14) shows that the correlation function between two response 

measurements is a sum of scaled sinusoidal functions in terms of the natural frequencies 

and damping of the system. Evaluating the integral in equation (8.15) and further 

manipulation yields 
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which clearly shows the summation of damped sinusoidal components. r
jA  and rΘ are 

the scaling and phase factors. 

 

A number of studies has shown that correlation functions between response 

measurements can be used as inputs into existing I/O modal analysis algorithms. James 

et al. [132] applied the Polyreference technique and Eigensystem Realisation Algorithm 

(ERA) to correlation functions calculated form simulated and experimental data 

obtained from a wind turbine. Details of the Polyreference technique and ERA can be 

found in [30]. Results were generally good; however, some difficulty was encountered 

when trying to identify closely spaced modes. Estimates of some modal parameters 

were less accurate when amplitudes of correlation functions at particular modes were 

low compared to the noise level. It was demonstrated that NExT successfully identified 

total damping due to structural and aero-elastic effects while the wind turbine was in 

operation. This is a key feature of operational modal analysis. In a subsequent study 

investigating the dynamic properties of a bridge excited by traffic loading, Farrar and 

James [19] first isolated peaks in the cross-spectrum by zero-padding the remaining 

spectrum before calculating the filtered correlation function using the inverse Fourier 

transform. The filtered correlation functions were curve fitted for frequency and 

damping results using the complex exponential curve fitting method, which could also 

be set to fit multiple modes for cases where closely spaced modes were present. Mode 

shapes were determined from amplitude and phase data in the cross-spectra. 

 

Hermans and Van der Auweraer [20] applied the NExT using least squares exponential 

(LSCE) modal parameter estimation to three industrial cases: analysis of the rear 

suspension of a car; flight flutter data from a commercial aircraft; and data obtained 

from a bridge under ambient excitation. Results from the first case identified a 

problematic mode in the rear suspension and comparison of NExT and I/O modal 

analysis results showed good correlation of the mode shape, a small decrease in natural 

frequency but a significant increase in damping, which reflected the role of mounting 

the suspension and operating test conditions. The second case analysed response data 

from the wing tip of a commercial aircraft. The test utilised burst swept sine excitation 

and modal parameters obtained from NExT were compared with a maximum-likelihood 

frequency domain algorithm applied to both the excitation and response data. The NExT 
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results showed moderate variability compared to the I/O results and state-space 

response-only modelling (discussed below). The final case considered in this study was 

vibration response data obtained from a bridge. The results of the NExT were 

apparently sensitive to the number of reference measurements used when calculating the 

correlation functions; results were less accurate for a larger number of references, but 

overall a reasonable correlation between synthesised auto-spectra and measured auto-

spectra was achieved. 

 

Peeters and De Roeck [38] noted that autoregressive (AR) modelling of correlation 

functions is one method in the class of instrumental variable (IV) methods. The 

correlation-driven polyreference time domain technique is another IV method, which 

also includes the LSCE and Ibrahim Time Domain (ITD) techniques as special cases. 

 

An AR model describing the correlation functions of vibration response measurements 

can be derived from an autoregressive moving average (ARMA) model describing the 

vibration of a structure [38]: 

 

][e]1[][e][]1[][ 11 nbtttnattt nbna −++−+=−++−+ BeByAyAy �� , (8.17) 

 

where ][ty  is the s dimensional response vector and ][te  is an s dimensional white 

noise sequence representing the unmeasured excitation. The coefficients of the response 

vector are s × s matrices and termed the AR coefficients. Similarly, those of the white 

noise sequence are termed MA coefficients. nb = na for a vibrating structure and na is 

the order of the ARMA model; na = n/s for ideal white noise excitation and noise-free 

response data, where n is the number of modes to be modelled. IV methods reformulate 

a model in terms of a new data vector, termed the instruments, which are assumed to 

fulfil certain conditions. For the case considered here, @>WH  is assumed to be 

uncorrelated with past response data, i.e. ][ it −y , i > na , which means that post-

multiplying equation (8.17) by ][ inatT −−y  and taking the expectation yields 

 

  0AA =+++ −++ inainaina RRR �11 .  i > 0   (8.18) 
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Equation (8.18) is solved by writing an over-determined system of equations for all 

possible time lags and finding the least-squares (LS) solution. The modal parameters of 

the system are calculated from eigenvalue decomposition of the bottom companion 

matrix of AR coefficients [38]: 
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where �Λ is a diagonal matrix of the discrete-time eigenvalues, iµ , and V is the matrix 

of mode shapes taken from the first s rows of the eigenvector matrix. The natural 

frequencies and damping are related to the discrete-time eigenvalues by the following 

equations [38] 

 

  )exp( sii Tλµ =        (8.20) 

 

  2* 1, iiniiii j ςωωςλλ −±−=       (8.21) 

 

Desforges et al. [134] fitted the correlation functions of response measurements using 

an autoregressive (AR) model and developed a strategy for accounting for coloured 

input noise in a subsequent paper [135]. If the excitation signal is corrupted by white 

noise, the AR model can be estimated from correlation functions at lags other than zero, 

as the zeroth lag would be affected by the corrupting white noise. Similarly, a coloured 

excitation described by a moving average sequence containing a finite number of terms 

would have a correlation sequence corrupted at a finite number of lags and these could 

be avoided when estimating an AR model. The case where periodic excitations are 

present is also considered and in this case the AR model would identify poles at the 

frequencies of the periodic excitation. These spurious poles could be identified by the 

variability of the damping estimates or the phase of the correlation functions. 
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Correlation functions have also been used in the estimation of state-space models, 

which can be used to represent a vibrating structure. An early implementation involved 

applying the ERA algorithm to correlation functions [132] and further studies have 

pointed out that the ERA is a particular case of the subspace identification method [38, 

129]. A state space model is represented by  

 

   ][][]1[ ttt wAxx +=+       (8.22) 

 

   ][][][ ttt vCxy += ,      (8.23) 

 

where ][tx  is the 2n dimension state vector (n the number of vibration modes), A is the 

state transition matrix, ][tw  the contribution from unmeasured excitation and noise, C 

the output matrix relating the state vector to measured outputs, and ][tv  is another 

disturbance term representing measurement noise and unmeasured excitations. The two 

disturbance terms are assumed to be zero-mean white noise sequences, but it has been 

shown that subspace modelling of systems with non-stationary white noise (i.e. having a 

time varying covariance matrix) inputs is possible [136]. 

 

The estimation of state-space models (see for example [20, 26, 38, 129, 133, 137-139]) 

involves constructing Toeplitz matrix (a matrix with constant negative-sloping 

diagonals) from the correlation functions of response measurements: 
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The second equality follows from the decomposition of the covariance matrix: 

GCAR 1−= i
i ; [ ]][]1[ tytxE T+=G . iO  and i  are the extended observability and 

reverse extended controllability matrices, respectively, and it can be shown that these 

can be obtained from the singular value decomposition of the covariance matrix [137]. 

iO  and i  are subsequently used in a set of equations involving the unknown A and C 
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matrices and modal parameters are then calculated by the eigenvalue decomposition of 

the state transition matrix 

 

   1−=A d ,       (8.25) 

 

where  is the eigenvector matrix and d  a diagonal matrix of eigenvalues. Natural 

frequencies and damping are obtained from equations (8.20) and (8.21), and mode 

shapes are related to the eigenvectors by 

 

   CV =        (8.26) 

 

The size of the Toeplitz matrix in equation (8.24) is determined by i, however, its rank 

is 2n. The singular value decomposition of the Toeplitz matrix is calculated and a new 

truncated matrix (hence the name subspace methods) can be formed of dimension 2n. 

However, n is rarely known accurately so methods such as determining a significant 

drop in the singular values, statistical tests, or stabilisation diagrams are used to 

determine the correct size (rank) of the state transition matrix. 

 

Weighting of the Toeplitz matrix leads to particular cases of subspace estimation 

algorithm; for example, canonical variate analysis (CVA), which may help identify 

poorly excited modes [20]. Balanced realisation (unweighted principal components 

(UPC)) involves no weighting. 

 

A number of studies has used subspace estimation to identify modal parameters of real 

and simulated structures, for example, steel mast structures [137], and also bridges, cars 

and planes [20]. The quality of estimated modal parameters demonstrates the 

effectiveness of the algorithm in identifying lightly damped and in some cases closely 

spaced modes. The use of long data records allows averaging to be used when 

calculating correlation functions and this improves the s/n ratio. Stabilisation diagrams 

were found to be most useful for model order selection and selected models typically 

differed in order for each set of data used for a particular analysis. 
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Mevel et al [24] applied covariance driven subspace algorithms to vibration data from 

an aircraft during flight. Comparisons between I/O and response only algorithms 

suggested that if good quality excitation data is available, I/O modal parameter 

estimates were generally more accurate, particularly for short data records; however, if 

excitation data is of poor quality, response-only algorithms were more effective. 

Stabilisation diagrams were the main tool for model selection in this study. Another 

study of subspace identification of vibration data obtained from an airplane during flight 

was reported by Abdelghani et al [22]. Some difficulties were encountered when 

identifying very closely spaced modes and estimated damping for some modes was 

noted to be incorrect. In general, the results compared well with ground test results. The 

number of modes (approximately 27) modelled in this study was relatively large. The 

size of the model was therefore large and it was observed that modelling data from a 

large number of sensors did not have any advantage over a limited number of sensors 

(e.g. 4 – 6). 

 

Basseville et al [26] investigated in-flight modal analysis of a helicopter and noted that 

periodic excitations due to main and tail rotors were modelled as poles by the subspace 

estimation algorithm. The vibration modes were distinguished from spurious modes due 

to rotating components by use of stabilisation diagrams and prior knowledge of the 

angular velocity of rotating components. In addition, modes modelling rotating 

components generally are found to have very low damping. 

 

Another study investigating in-flight modal analysis of a helicopter was reported by 

Hermans et al [25]. Subspace estimation was used to estimate modal parameters from 

vibration measurements and results were shown to be sensitive to the sampling rate of 

the signals. Low frequency modes were poorly identified for data sampled at high 

frequencies. An additional consideration was the increased time taken to estimate 

correlation functions and the larger number of time lags (size of Toeplitz matrix in 

equation (8.24)) required to estimate subspace models from data sampled at high 

frequencies. Results demonstrated a significant amount of scatter in estimated damping 

values for all modes and the number of modes identified was sensitive to the sampling 

rate. Mode shapes did not correlate well with ground test results with MAC values 

below 50%. LSCE curve fitting of vibration response measurements yielded 
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significantly better MAC values indicating the limitations of the subspace algorithms 

for this particular case.  

 

The above discussion was limited to modal parameter estimation algorithms which 

utilised time-domain correlation functions as input data. Similar mathematical models 

that are identified from frequency domain data exist [33], and Shen et al [140] discussed 

the use of a polyreference frequency domain estimation algorithm for use with auto- and 

cross-spectra of response measurements. This technique is aimed at overcoming the 

well-known limitations of the peak-picking methods described above. Another 

frequency domain method is the PolyMAX technique [141], which identifies a 

frequency-domain model from auto- and cross-spectra. The latter algorithm is included 

in commercial software from LMS International, and application of the technique was 

reported in a number of studies [65]. 

 

The random decrement technique [30, 134, 142, 143] produces a signal, the random dec 

signature, which is similar to the free vibration response of a structure. The most basic 

form is calculated from the vibration responses due to a random excitation. For a given 

trigger condition, ( )itTx , records of length τ  are ensemble-averaged. That is, 
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are the auto and cross random dec signature, respectively, calculated from M averages. 

 

The random dec signatures are proportional to the correlation functions of the responses 

under the assumptions of Gaussian zero-mean stationary excitation and a linear 

structure. Given these properties, all the modal parameter identification algorithms that 

can be applied to correlation functions can similarly be applied to random dec 

signatures or their Fourier transform. Rodrigues [142] pointed out that the random 

decrement technique is a more efficient computation than direct calculation of 

correlation functions, or under some circumstances, methods using auto- and cross-

spectra. The use of FDD and stochastic subspace algorithms to estimate modal 

parameters from random dec signatures from ambient vibration tests of a bridge were 
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reported by Rodrigues [142]. Both methods produce similar results and good quality 

mode shapes; however, comparisons with other techniques were not discussed. 

 

Data driven state-space identification methods estimate a state-space model (equations 

(8.22) and (8.23)) directly from response data as opposed to the approach that utilises 

correlation functions, described above. Van Overschee and De Moor [42] outlined a 

method that applied QR decomposition to a matrix of response measurements. This 

technique was adapted by Peeters and De Roeck [137] to use a set of reference sensors, 

thereby reducing the dimension of matrices used in the estimation and improving 

computation time. Another benefit is that the reference sensors can be chosen to include 

the best response from all vibration modes, which may improve the quality of estimated 

modal parameters. Experimental studies that apply these techniques include testing a 

steel antenna mast [137], and wind turbine wing [130]. Data-driven subspace estimation 

results from the first study are in good agreement with the covariance-driven subspace 

algorithm, and in the second study results compare well with FDD and EFDD. It was 

pointed out that the reference-sensor based technique is faster in terms of computation 

time, though prediction errors were slightly higher at measurement points that were not 

used as reference sensors. Neither study compared the use of smaller numbers of 

response measurements in each measurement set with the use of reference sensors in a 

measurement set containing a larger number of response measurements. A version of 

the data-driven subspace identification is included in the ARTeMIS software from 

Structural Vibration Solutions. Different weighting methods can be applied in the 

subspace algorithms: unweighted principal components (UPC) (balanced realisation/no 

weighting), principal components (PC), or canonical variate analysis. Reference 

channels can also be selected. 

 

As noted above, it can be shown that an ARMA model (equation (8.17)) can represent 

the dynamic behaviour of a mechanical system. He and De Roeck [144] and He and Fu  

[30] derived an ARMA model directly from the continuous-time transfer function and 

Peeters [38] reported that this result can be arrived at by establishing a relationship 

between an ARMA model and a state-space model. Estimation of an ARMA model 

directly from response measurements, as opposed to correlation functions, has been 

discussed by Desforges and Cooper [134]. They used a two-stage least squares method 

to first estimate a higher-order AR model and then solve for the coefficients of an 
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ARMA model with a least squares method. The required correlation functions between 

the measured response and unmeasured excitation were calculated by approximating the 

autocorrelation of the excitation as a scaled delta function (i.e. assuming the excitation 

is white noise) and using the AR coefficients obtained in the first stage. The authors 

noted that this method was very sensitive to model order. Prediction error methods can 

be used to estimate ARMA models [43], however, these solutions require non-linear 

optimisation and the application to structural dynamics problems have not been widely 

reported. 

 

Papakos and Fassois [118] proposed another multistage algorithm to estimate ARMA 

models, which also started with estimation of a higher-order AR model. Their algorithm 

outperformed AR modelling of the response measurements, but they reported 

difficulties in estimating weak modes and anti-resonances. The algorithm included 

guaranteed stability of the estimated model. 

 

Use of higher-order AR models in isolation has been reported in [47, 134, 144, 145]. It 

is well known that finite-order AR models cannot truly model the dynamics of a 

structure, however, high order AR models are able to produce very good 

approximations [43]. A subsequent difficulty is then distinguishing between vibration 

modes and spurious numerical modes. Cooper  [47] and Hung & Ko [122] used a 

property of backwards AR models first reported by Kumaresan [120] to distinguish 

vibrational modes from numerical modes based on the position of AR model poles on 

the complex z plane. These studies modelled impulse response functions or correlation 

functions, which are approximately deterministic responses. Backwards ARX models 

were used in the I/O version of the ARMAX modal parameter estimation algorithm 

introduced in Chapter 5. 

 

Gao & Randall [146, 147] discussed the estimation of FRFs from the cepstra of 

response measurements. The complex cepstrum is defined as the inverse Fourier 

transform applied to the logarithm of a complex spectrum [148], i.e. 

 

  ( ) ( )( ){ }fXC log1−ℑ=τ .      (8.28) 
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An important characteristic of the cepstrum is that the convolution of time domain 

functions is represented as an addition in the cepstral domain [148]. 

 

Time domain convolution becomes a multiplication in the frequency domain: 

 

  ( ) ( ) ( ) ( ) ( ) ( )fHfAfBthtatb ⋅=⇔∗= ,     (8.29) 

 

which becomes an addition after taking the logarithm: 

 

  ( ) ( ) ( )fHfAfB logloglog += .     (8.30) 

 

Equation (8.30) is transformed into the cepstral domain by inverse Fourier transform: 

 

  ( ){ } ( ){ } ( ){ }fHfAfB logloglog 111 −−− ℑ+ℑ=ℑ .   (8.31) 

 

This allows excitation and transfer function properties to be separated as they are often 

in different parts (quefrency bands) of the cepstrum. Examples of the method were 

given by Gao & Randall [146, 147], demonstrating the use of two curve-fitting methods 

to extract transfer function data. It was also shown that the effects of double impact 

excitation can be removed. It should be noted that the technique assumes vibration 

response measurements are a result of a single dominant excitation source, however, 

techniques such as principal components analysis may be used to obtain appropriate 

responses [27]. Broad-band excitation (e.g. impulse excitation or random noise) is 

particularly effective for cepstral methods as it is represented only at very low 

quefrencies in the cepstrum and can be separated easily from transfer function 

components. An advantage of this technique is that it theoretically yields a correctly 

scaled FRF; hence, mode shapes will be correctly scaled. This contrasts with other 

response-only modal analysis methods, which produce relatively scaled mode shapes. 

Some solutions proposed to overcome this limitation include adding a known mass and 

scaling mode shapes using sensitivity relationships. This method requires the 

knowledge of the mass change and the resulting shift in natural frequencies [114]. 

Another technique was introduced by Bernal [115], which allowed more general 

modifications and eased computational requirements. 
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The response-only modal analysis methods discussed above make assumptions about 

the nature of the unmeasured excitation signal. The most common is that the excitation 

has a flat auto-spectrum. As discussed above, Cooper [135] investigated selectively 

choosing correlation function lags when modelling correlation functions. Mohanty and 

Rixen [110-113] adapted the eigensystem realisation algorithm (ERA), Ibrahim time 

domain method (ITD), single station time domain method (SSTD), and the least-squares 

complex exponential method, to account for periodic excitations with known 

frequencies. Other studies that have encountered significant periodic components 

superposed on broadband measurements [25, 26, 128] used damping and phase to 

identify spurious modes, or simply prior knowledge of the system under test. 

 

In this section, well-known response-only modal analysis methods have been reviewed 

and aspects of their application, advantages, and limitations have been discussed. 

 

8.3 Adaptation of ARMAX Estimation Algorithm for use with 

Response Measurements 

The adaptation of the ARMAX estimation algorithm to estimate modal parameters from 

vibration response measurements is discussed in this section.  

 

The ARMAX estimation algorithm has a number of desirable features including a 

special diagonal structure for the AR and MA matrices and also the estimation of 

backwards ARX models. The diagonal AR and MA matrices allow simple manipulation 

and stabilisation of the model elements and the use of backwards ARX models helps 

distinguish spurious numerical modes from vibration modes.  

 

The ARMAX estimation algorithm could be modified to process response-only 

measurements simply by omitting the excitation data and replacing the estimation of 

backwards ARX models with the estimation of backwards AR models. The adapted 

estimation algorithm would therefore estimate an ARMA model subsequently used to 

calculate modal parameters. Initial numerical tests demonstrated that estimation of 

backwards AR models describing a system’ s response due to a random excitation did 

not allow spurious numerical modes to be distinguished from vibration modes. It was 
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also noted that the diagonal structure of the AR matrix did not include any information 

on system zeros, which are needed for the complete characterisation of a mechanical 

system, and an additional stage would be required to calculate zeros, for example using 

Shanks’  method [121, 149]. In addition, it was found that the estimation of AR models 

was sensitive to the model order and high-dimension high-order models were often 

unstable. These points are discussed in more detail below. 

 

8.3.1 Estimation of Backwards AR Models 

Kumerasan [120] showed that sinusoids could be modelled as the zeros of a linear 

prediction filter and that a higher-order filter with coefficients chosen to have minimum 

Euclidean length would have extraneous zeros, i.e. those not corresponding to a 

sinusoid in the modelled signal, located inside the unit circle on the complex z-plane. 

This result was demonstrated for undamped, negatively, or positively damped sinusoids 

and therefore could be used as a method to distinguish between spurious numerical 

poles and poles corresponding to oscillating system components. An alternative proof 

for this result was given by Hollkamp & Batill [46] and was extended to apply to ARX 

models.  

 

The use of backwards AR models (linear prediction filters) is  limited to deterministic 

signals, e.g. sums of sinusoids, because the estimation of the AR model can be 

formulated as an over-determined set of linear equations with an infinite set of 

solutions. The proofs discussed by Hollkamp & Batill [46] and Kumerasan [120] 

showed that the minimum norm solution resulted in numerical poles (a subset of zeros 

of the AR matrix) being located inside the unit circle.  

 

In the case of arbitrary non-deterministic excitation, the vibration response of a 

mechanical system will also be non-deterministic and the above result does not hold. 

More specifically, an AR model will converge to the true system as the data set and the 

AR model order approaches infinity [43] and therefore an over-determined AR model 

can never be estimated. 

 

A number of approaches exist to obtain an approximately deterministic vibration 

response from a mechanical system in response-only modal analysis: 
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• Excitation of the structure using impulse or step loads allowing the free response 

to be modelled as a sum of decaying sinusoids. The magnitude of the applied 

load does not need to be measured but this technique still places significant 

constraints on the nature of testing. 

• Application of the random decrement technique to long records of vibration 

response data obtained with random excitation. 

• Auto- and cross-correlation functions of vibration response obtained with white 

noise excitation can be expressed as sums of decaying sinusoids as shown in 

section 8.2. 

 

The use of the random dec signature or correlation functions requires long data records 

but has the advantage of significant rejection of uncorrelated noise through the 

averaging operations. 

8.3.2 Limitations of the Diagonal AR Matrix Structure 

The diagonal structure was adopted for the AR and consequently MA matrices in the 

ARMAX estimation algorithm to enable simple manipulation of these matrices, 

including stabilisation of the matrix polynomials, and the decomposition of MIMO 

ARX models into SIMO ARX models. Numerical testing comparing the performance of 

scalar AR and multi-dimensional AR models (the response-only analogue of ARX 

models) showed that the multi-dimensional models more accurately represented the 

simulated system. However, further tests using experimental data showed that high-

order high-dimension AR models were often unstable. All models were estimated using 

least-squares estimation. 

 

An additional limitation of adopting the diagonal AR structure is that no system zero 

information is included and therefore needs to be estimated in further stages. In contrast, 

the inverse of a MIMO AR model structure includes zero information. 

 

8.4 Combined AR-ARMAX Estimation Algorithm 

In response to the issues discussed above, two algorithms have been adapted from the 

I/O ARMAX algorithm to estimate modal parameters from vibration response 
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measurements. The new algorithms are referred to as MISO AR-ARMAX and MIMO 

AR-ARMAX and the stages are summarised in the block diagram in figure 8.1. 

 

The AR-ARMAX algorithms start by estimating a higher-order multidimensional AR 

model from the response measurements using a standard least-squares solution of an 

equivalent regression problem. The AR model innovations are then calculated and used 

as the ‘excitation’  in subsequent stages of the algorithm. A diagonal representation of 

the AR matrix estimated in stage 1 is also used in subsequent stages of the MISO AR-

ARMAX algorithm. The MIMO AR-ARMAX algorithm estimates a fully 

parameterised MIMO ARMAX model from the AR model error and response 

measurements. 

 

Figure 8.1 Block diagram of adapted estimation algorithm. 

Stage 1  Estimation of higher-order MIMO AR model from 
response data using least-squares criterion. Calculation of 

model innovations sequence. 

Stage 2  1st estimate of noise model (MA matrix) obtained from 
AR matrix obtained in stage 1. 

Stage 3  Estimation of lower order ARX model from 
innovations sequence and response data filtered by noise model 

(MA matrix) obtained in stage 2. 

Stage 4   Estimation of new noise model using AR matrices 
obtained in stages 1 and 3 

Stage 5  Calculation modal parameters from ARX model 

Convergence 
criterion 
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The reasoning behind these adaptations is that a linear system excited with white noise 

can be modelled using an AR model. Ljung [43] noted that an AR model of order p 

estimated using N data will converge to the true system as N, p �∞, N > p. In practice, 

p is restricted to a finite order, which is required to be large enough such that system 

dynamics and noise present in measurements are modelled adequately. It is assumed 

that if this condition is met then the AR model innovations will approximate white 

noise, which is then used as an excitation in the I/O ARMAX estimation algorithm. 

Initial numerical tests revealed that fitting lower-order backwards ARX models (as part 

of the I/O ARMAX algorithm) allowed poles due to vibration modes to be distinguished 

from numerical poles according to their position on the unit circle, as discussed above. 

 

The estimation of a higher order AR model, model innovations, and diagonal AR matrix 

for use with the I/O ARMAX algorithm is outlined in the following section. 

 

8.4.1 Stage 1: Estimation of Higher-Order AR Model 

A discrete-time AR model of order p is defined as 

 

  ][][)( ttqy wyH =⋅        (8.32) 

 

y[t] is the s dimensional response vector, w[t] is the innovations sequence, and )(qyH  

is the fully parameterised s × s AR matrix; the elements are polynomials of order p, in 

terms of q,  the backshift operator: x[t]⋅q j = x[t-j]. 

 

The AR model can be rewritten as 

 

  ∑
=

=−⋅+
p

j
y tjtjt

1
1 ][][)(][ yHy      (8.33) 

 

and then as a corresponding regression problem [118]: 

 

  ][][][ 1 ttt T hy +⋅=          (8.34) 
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where 

 

  ][][ tt T
s

T uI ⊗= ,  [s × p⋅s2]    (8.35) 

 

  Tptttt ]][]2[]1[[][ −−−−−−≡ yyyu � , [p⋅s × 1] (8.36) 

          

  [ ]Tyyy pHHHcol )()2()1( �≡h . [p⋅s2 × 1]  (8.37) 

 

The regression problem in equation (8.34) is solved using a method discussed in section 

5.3.1 and described in Ljung [43]. 

 

Once the AR matrix has been estimated the model innovations sequence can be 

calculated. The innovations and measured response are then used in subsequent stages 

of the estimation algorithm. 

 

The AR matrix estimated in the first stage is also used in subsequent stages and is 

reformulated with a diagonal structure for the MISO AR-ARMAX algorithm. This is 

achieved by calculating the roots of the matrix polynomial, which are then expressed as 

a scalar AR polynomial. The new diagonal AR matrix has the scalar AR polynomial in 

its diagonal elements. The following stages of the MISO AR-ARMAX algorithm are 

taken directly from the ARMAX estimation algorithm, using ][1 t  (equation (8.34)) as 

the excitation, y[t] as the response and the diagonal AR matrix described above in place 

of )(qyH , which is estimated in stage 1 of the I/O ARMAX estimation algorithm. Note 

that the algorithm name ‘MISO AR-ARMAX’  is used to emphasise that a diagonal 

structure is adopted for the AR matrices, and this allows decomposition of the model 

into a series of MISO models. In contrast, the MIMO AR-ARMAX algorithm estimates 

MIMO ARX models instead of MISO models, and therefore does not use the diagonal 

parameterisation of the AR and MA matrices in subsequent stages. The significance of 

the MIMO method is that it uses all response channels when estimating a model, i.e. a 

model is fitted to more data points. A disadvantage is that in the event an unstable 
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model is estimated, it cannot be stabilised easily as is the case for the MISO algorithm. 

Details of the subsequent stages are discussed in sections 5.3.2 – 5.3.5. 

 

In this section the adaptation of the I/O ARMAX algorithm to estimate modal 

parameters from vibration response measurements has been discussed. A number of 

issues prevent the algorithm from being directly applied to response measurements 

while maintaining the desirable properties of mode verification based on the sign of 

estimated damping, and simple stabilisation of unstable models. The proposed method 

overcomes these difficulties by using the innovations sequence from a high-order AR 

model as an excitation, which can be used with the response measurements in the I/O 

ARMAX algorithm. 

8.5 Numerical Tests 

This section discusses the testing of the AR-ARMAX modal parameter estimation 

algorithms using data simulating the response of a two degree-of-freedom system. 

8.5.1 Two Degree-of-Freedom Damped Spring Mass System 

Details of the simulated system are the same as those listed for System 1 introduced in 

Section 6.2. Table 8.1 lists the physical and modal parameters. 

 

System Physical 
Parameters Mode Frequency 

(Hertz) 
Damping 

(%) 
Magnitude 
(DOF 2) 

Phase° 
(DOF 2) 

1 1.485 0.4180 2.377 0.3211 
1 

m1 = 1; m2 = 2; 
c1=0.2; c2= 0.4; 
c3= 0; 
k1=500; k2= 300; 
k3= 0 

2 4.676 1.229 0.2104 179.0 

Table 8.1 Physical and modal parameters for 2 DOF system used in numerical testing 
of adapted ARMAX algorithm. 
 

The simulated response records were corrupted with random noise approximating the 

effects of measurement noise. The level of noise is specified as the ratio of RMS 

measurement noise to RMS system response expressed as a percentage.  
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8.5.2 AR-ARMAX Numerical Tests 

Four tests were carried out to assess the performance of the MISO and MIMO versions 

of the AR-ARMAX algorithm. Each version of the algorithm was used to estimate 

modal parameters from time series data and also correlation functions calculated from 

the raw data. In addition, AR models were calculated from time-series data using least-

squares estimation.  

 

The correlation functions used for two of the tests were calculated using response 

spectra rather than from raw time-series data. The discrete Fourier transform (DFT) was 

applied to overlapping (66%) blocks of time series data, which were then zero-padded 

to twice the number of time-series samples. Auto- and cross-spectra were then 

calculated and averaged. Unbiased correlation functions were obtained by an inverse 

DFT of the averaged spectra and application of bow-tie compensation, which accounted 

for the zero padding of time-series data [128]. 

 

The details of each test are as follows: 

Test 1 

• MISO AR-ARMAX algorithm;  

• 500 samples of time-series data, sampling frequency 50 Hz; 

• 10% random measurement noise; 

• Stage 1 AR model order = 2⋅na; na = 4, …. , 10; nb = na - 1; nc = na;   

• 8 iterations of stages 3 and 4; 

• Model selection using NPDP.  

 

Test 2 

• MISO AR-ARMAX algorithm;  

• Correlation function data; block size 1024 samples; sampling frequency 50 Hz; 

190 averages (32768 samples of time-series data used); 

• 10% random measurement noise added to time series data, i.e. before calculation 

of correlation functions; 

• Stage 1 AR model order p  = 2⋅na; na = 4, …. , 10; nb = na - 1; nc = na;  

• 8 iterations of stages 3 and 4; 

• Model selection using NPDP. 
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Test 3 

• Multivariate AR model; least-squares estimation;  

• 500 samples of time-series data, sampling frequency 50 Hz; 

• 10% random measurement noise; 

• AR model order; p = 2, … . , 40; 

• Model selection using BIC. 

 

Test 4 

• MIMO AR-ARMAX algorithm;  

• 500 samples of time-series data, sampling frequency 50 Hz; 

• 10% random measurement noise; 

• Stage 1 AR model order = 2⋅na; na = 4, … . , 10; nb = na - 1; nc = na;   

• 6 iterations of stages 3 and 4; 

• Model selection using NPDP. 

 

Test 5 

• MIMO AR-ARMAX algorithm;  

• Correlation function data; block size 1024 samples; sampling frequency 50 Hz; 

190 averages (32768 samples of time-series data used); 

• 100% random measurement noise added to time series data, i.e. before 

calculation of correlation functions; 

• Stage 1 AR model order p = 2⋅na; na = 4, … . , 8; nb = na - 1; nc = na;  

• 6 iterations of stages 3 and 4; 

• Model selection using NPDP 

 

Each test was repeated 50 times with independent realisations of response data and 

measurement noise. The mean and standard deviations of the estimated modal 

parameters are plotted in figures 8.2 and 8.3. The MISO AR-ARMAX algorithm 

produces s (i.e. the number of response measurements) estimates of modal parameters 

and these are marked DOF 1 and DOF 2 to indicate the measurement point. In contrast, 

only one set of modal parameters are estimated by the MIMO AR-ARMAX algorithm 

and the multivariate AR models, and these are denoted DOF 1. 
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Figure 8.2 Mean and standard deviation of estimated modal frequencies and damping, 
tests 1 – 5. True parameter values are indicated by the horizontal line. 
 

Modal frequencies are within 1.6% of true values for both modes in each test. It is 

worth noting that the estimates for mode 2, DOF 2 in tests 1 and 2 are relatively poor 

compared to other natural frequency estimates of these tests. This is due to the relatively 

low response of the second mode measured at DOF 2, as shown by figure 6.2 (a). 

Comparison of frequencies from Test 3 and Test 4 show only marginal improvement by 

the MIMO AR-ARMAX algorithm over the AR results, which demonstrates the effect 

of the extra stages (the first stage of the MIMO AR-ARMAX algorithm is estimation of 

a higher order AR model). Similarly, the most accurate results (obtained with DOF 1 as 

a reference) for each mode in Test 1 are only marginally better than the Test 3 results. 

Tests 2 and 5 clearly show that calculating correlation functions is beneficial if large 

amounts of data are available. Test 5 achieves significantly better results given that 

100% random measurement noise was added to the response measurements. Recalling 

that 190 averages were used in the calculation of the correlation functions, the random 

noise would be attenuated by approximately 20dB, which equates to approximately 7% 

noise present in the correlation functions used for test 5, and less than 1% for test 2. 

 

Similar comments apply to the modal damping estimates and it is interesting to note that 

the negative bias on results observed in tests described in Chapter 6 for the I/O 

ARMAX algorithm are not observed to the same degree for the response-only 
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algorithms. The damping results also show the benefit of calculating correlation 

functions, but little improvement is gained by applying the ARMAX-based algorithms 

over the AR modelling apart from a marginal improvement in damping. 

 

Mode shape results, shown in figure 8.3 are generally more accurate for the MIMO AR-

ARMAX models and mode shape phase is relatively poorly estimated for the MISO 

AR-ARMAX algorithm. 

 
Figure 8.3 Mean and standard deviation of estimated mode shape magnitude and 
phase, tests 1 – 5. True parameter values are indicated by the horizontal line. 
 

Mode shape results reveal significant errors associated with the MISO AR-ARMAX 

algorithm when estimating modal parameters from correlation functions. This is 

possibly due to leakage when calculating the correlation functions using the spectral 

method. Note that no window was applied to data in these tests, however, other 

numerical tests showed no improvement when a Hanning window was used. The 

MISO-ARMAX algorithm was found to estimate multiple poles around a resonant 

frequency, presumably due to leakage effects. This could potentially increase numerical 

sensitivity when transforming the discrete-time transfer function into pole-residue form 

and subsequently calculating modal parameters. This point needs to be further 

investigated for the response-only algorithm as well as the I/O algorithm because of the 

high order models that are estimated to account for the large frequency ranges 

commonly considered in structural dynamics analysis. 
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Comparing results from tests 1 and 4 shows that both the MISO and MIMO AR-

ARMAX algorithms produce frequency and damping estimates of similar accuracy; that 

is, the best estimates from the MISO algorithm are similar to the results of the MIMO 

algorithm. Mode shape magnitudes and phase results are significantly better for the 

MIMO algorithm. This is due to the extra data points used in the estimation of the 

MIMO as opposed to the MISO model, which estimates a separate MISO model for 

each output.  This reason, as well as the observations relating to the use of correlation 

functions discussed in the previous paragraph, are likely to have contributed to the poor 

mode shapes results estimated from correlation functions using the MISO AR-ARMAX 

algorithm. 

 

The NPDP was found to be particularly sensitive to model order. In the most favourable 

cases, vibration-mode poles were found to be positively damped and all other poles (due 

to noise) were found to be negatively damped. This trend did not hold when the number 

of poles in the ARMAX model approached that of the stage 1 AR model. Therefore, 

distinguishing between vibration modes and numerical modes was not possible using 

the sign of the damping. Stabilisation diagrams assessing the stability of all modal 

parameters (i.e. frequency, damping and mode shape estimates) may be a more effective 

tool for model order selection and distinguishing between vibration modes and 

numerical modes. 

 

The numerical testing of the AR-ARMAX algorithms has been described in this section. 

The MIMO AR-ARMAX algorithm produces the most accurate results from both time-

series data and correlation functions. A benefit of using correlation functions is that 

averaging can be employed to attenuate random noise in the measurements. 

 

8.6 Experimental Testing 

Further testing of the AR-ARMAX estimation algorithm was carried out using vibration 

response data measured from a cantilever aluminium beam. In this section, the 

experimental apparatus, experiments to record time-series data and the processing of 

data using the AR-ARMAX estimation algorithm are described. For comparison 

purposes, the ARTeMIS commercial response-only modal analysis software, produced 

by Structural Vibration Solutions, was also used to estimate modal parameters. 
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8.6.1 Experimental Apparatus and Data Collection 

Vibration response measurements were made on the cantilever aluminium beam used 

for experimental tests described in Chapter 6, and shown in figures 4.7 and 6.35. The 

beam was excited by independent random noise (band-limited to 0–1600Hz) applied to 

each of the four pairs of piezoceramic actuators. The actuators in each pair were driven 

in parallel with opposite polarity so that a distributed moment was applied to the beam. 

  

Response measurements were made at 34 evenly-spaced locations along the beam using 

two B&K 4374 and two B&K 4393 accelerometers. As multiple sets of measurements 

were taken, a reference accelerometer was required to enable mode shape information 

from each set of measurements to be correctly scaled. The reference accelerometer is 

best placed at a location that experiences deflection for each mode of interest and 

therefore was placed at the free end of the beam for all experiments.  

 

B&K 2635 charge amplifiers were used for accelerometer signal pre-conditioning, 

which included high and low-pass filtering with 2 Hz and 3 kHz (-10%) cut-off, 

respectively. A HP 3566A eight channel FFT analyser was used to record excitation and 

response time series data. 

 

8.6.2 Experiment 1: Single-Input Multiple-Output 

The first experiment used one pair of piezoceramic actuators to apply random excitation 

to the cantilever beam. Sixty seconds of excitation and response data were recorded 

with a sampling rate of 4096 Hz and modal parameters calculated from the excitation 

and response data were used to verify the results of the response-only algorithms. The 

HP 3566A FFT analyser calculated FRFs with the following characteristics: 

 

• Frequency range: 0 – 1600 Hz; 

• Resolution (line-spacing): 0.5 Hz; 

• Hanning window; 

• Up to 10 averages, 50% overlap. 
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Curve fitting of the FRFs was carried out with a rational fraction least squares (RFLS) 

algorithm, which is part of the Spectral Dynamics STAR Modal v5.23 software 

package. The second through to tenth transverse bending modes were successfully 

identified in the 0 – 1600 Hz frequency range. As expected, the first mode was not 

identified due to the poor excitation of this mode by one pair of piezoceramic actuators. 

The results are compared with results obtained from the FDD, EFDD, and SSI-UPC 

methods (discussed below) in Appendix D. 

 

8.6.3 Experiment 2: Multiple-Excitation Response-Only Modal Analysis 

The second experiment employed independent random excitation (band-limited to 0 – 

1600Hz) applied by each of the four actuator pairs. Excitation and response data were 

measured in sixty second time records sampled at 4096 Hz. The response data from 

Experiment 2 were processed using the AR-ARMAX estimation algorithms, AR models 

and three algorithms available in the Structural Vibration Solutions ARTeMIS v 3.5 

software. 

 

8.6.4 FDD, EFDD and SSI-UPC Estimation 

These methods were introduced in section 8.2 and the estimated modal parameters are 

compared in Appendix D. The FDD and EFDD methods require auto- and cross-spectra 

and these were calculated from the time records using blocks of data with 4096 samples 

and 66% overlap. The resulting spectra had a frequency range of 0 - 2048 Hz, 0.5 Hz 

frequency resolution. 

 

The FDD is the quickest and simplest method and yields modal frequency and mode 

shape estimates. The accuracy of the modal frequency is dependent on the resolution of 

the auto- and cross spectra. FDD was the only method to identify all eleven transverse 

bending modes in the selected frequency range, even though the response of the first 

mode was relatively poor. The EFDD technique identified the second through to 

eleventh bending modes with a greater frequency resolution and also yielded modal 

damping estimates. 
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The SSI-UPC technique identified modes 3 - 11. The SSI-UPC method is a parametric 

method and identified a number of candidate models of differing order for each data set 

and a number of tools were available to help identify the model that best fitted the data 

[150]: 

 

• Stabilisation diagrams based on the stability of frequencies, damping and mode 

shapes; 

• Singular values (rank) of input-data matrix; 

• Model stability;  

• Stability of vibration modes and noise modes; 

• Final prediction error criterion; 

• Synthesised auto- and cross-spectra and correlation functions. 

 

The combined use of the above tools for model selection produced the most accurate 

modal parameters as no single tool provided a robust criterion for model selection. A 

smaller frequency range would probably have aided the identification of the lower order 

modes as even very high order models failed to identify these modes. Note that different 

weighting matrices were used as part of the principal components (SSI-PC) and 

canonical variate analysis (SSI-CVA) SSI algorithms and similar results were obtained 

as for the SSI-UPC algorithm.  

 

Results for the three ARTeMIS response-only algorithms are compared with the STAR 

results and plotted in Appendix D. Frequency and damping estimates obtained from 

EFDD (except for mode 1) are listed in table 8.2 and corresponding mode shapes are 

shown in Appendix D. Results from all tests show good agreement, except for the 

modes that were not identified as discussed above. It is worth noting that no difficulty 

was encountered identifying the eleventh bending mode even though the excitation was 

band-limited to 0 – 1600 Hz.  
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Mode Frequency (Hz) Damping (%) 
1 (FDD) 6 - 

2 36.69 0.85 
3 105.49 0.28 
4 208.02 0.28 
5 346.54 0.26 
6 515.89 0.62 
7 728.34 0.35 
8 977.93 0.33 
9 1248.49 0.29 
10 1578.69 0.32 
11 1907.12 0.30 

Table 8.2 Frequency and damping results from EFDD (except mode 1, which was 
estimated by the FDD method). 
 

8.6.5 AR-ARMAX Results 

Both the MISO and MIMO versions of the AR-ARMAX algorithm were used to 

estimate modal parameters from response measurements and correlation functions. In 

addition, AR models were also estimated from the response data and correlation 

functions. The correlation functions were calculated using the signal spectra as for 

numerical tests, outlined in section 8.5, with the exception that a Hanning window was 

applied to the blocks of response data before zero padding and transformation to 

spectral data. Application of the Hanning window produced smoother spectra and 

preliminary tests showed that estimated modal parameters were more accurate.  

 

The details of each test are as follows: 

 

MISO AR-ARMAX algorithm with time series data (MISO TS): 

• 1024 samples of time-series data, sampling frequency 4096 Hz; 

• Stage 1 AR model order = 2⋅na; na = 20, … . , 26; nb = na; nc = na;   

• 8 iterations of stages 3 and 4; 

• Model selection using NPDP. 

 

MISO AR-ARMAX algorithm with correlation functions (MISO corr): 

• Correlation function data; block size 1024 samples; sampling frequency 4096 

Hz; 718 averages (245760 samples of time-series data used); 

• Stage 1 AR model order = 2⋅na; na = 20, … . , 26; nb = na; nc = na;   
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• 8 iterations of stages 3 and 4; 

• Model selection using NPDP. 

 

MIMO AR-ARMAX algorithm with time series data (MIMO TS):  

• 1024 samples of time-series data, sampling frequency 4096 Hz; 

• Stage 1 AR model order = 2⋅na; na = 5, … . , 12; nb = na; nc = na;   

• 10 iterations of stages 3 and 4; 

• Model selection using NPDP 

 

MIMO AR-ARMAX algorithm (MIMO corr):  

• Correlation function data; block size 1024 samples; sampling frequency 4096 

Hz; 718 averages (245760 samples of time-series data used); 

• Stage 1 AR model order = 2⋅na; na = 5, … . , 12; nb = na; nc = na;   

• 10 iterations of stages 3 and 4; 

• Model selection using NPDP 

 

Multivariate AR model with time series data (AR TS): 

• 1024 samples of time-series data, sampling frequency 4096 Hz; 

• Model order = 10 - 24 ; 

• Model selection using BIC. 

 

Multivariate AR model with time series data (AR corr): 

• Correlation function data; block size 1024 samples; sampling frequency 4096 

Hz; 718 averages (245760 samples of time-series data used); 

• Model order = 10 - 24; 

• Model selection using BIC. 

 

Results from the experimental tests reflect the observations in numerical test results, 

discussed in section 8.5.2. In particular, the MISO AR-ARMAX algorithm was found to 

yield good accuracy for frequency and damping results and the use of correlation 

functions improved the accuracy of estimates, and reduced the standard deviation of 

global parameter estimates. Mode shapes estimates were poor, though the results 

estimated from time series data were found to be slightly better than mode shapes 
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estimated from correlation functions. The reasons discussed in section 8.5.2 regarding 

the sensitivity of the MISO AR-ARMAX algorithm to correlation functions also apply 

to these experimental results. The estimated modal parameters from the MISO AR-

ARMAX algorithm are compared with results from EFDD in Appendix E. 

 

Results obtained from the MIMO AR-ARMAX and AR algorithms are compared with 

EFDD results and plotted in figures 8.4 – 8.8. As with the SSI-UPC results, only modes 

3 – 11 were identified by all tests. Frequency results are generally good, however, errors 

for mode 3 were greater than all other modes, suggesting that a smaller frequency range 

is appropriate for both MIMO AR-ARMAX and AR estimation. The limited ability of 

the piezoceramic actuators to excite low order modes is likely to have also contributed 

to these results.  

 

  

Figure 8.4 Frequency error estimated from MIMO AR-ARMAX and AR algorithms, 
compared with EFDD results. 
 

  

Figure 8.5 Frequency standard deviation estimated from MIMO AR-ARMAX and AR 
algorithms, compared with EFDD results. 
 

Damping results for MIMO AR-ARMAX estimation are comparable to those obtained 

from EFDD results, accompanied by larger standard deviations. AR results estimated 

from time series data were found to have positive bias. Estimation of modal parameters 



 237 

from correlation functions improved the standard deviation of frequency and damping 

results with values approaching those obtained from EFDD results, which were 

estimated from the same amount of data as the correlation functions used for MIMO 

AR-ARMAX and AR estimation. 

 

  

Figure 8.6 Modal damping estimated from MIMO AR-ARMAX and AR algorithms, 
compared with EFDD results. 
 

  

Figure 8.7 Modal damping standard deviation estimated from MIMO AR-ARMAX and 
AR algorithms, compared with EFDD results. 
 

  

Figure 8.8 MAC values comparing mode shapes from MIMO AR-ARMAX and AR 
algorithms with results from EFDD. 
 

The mode shapes estimated by the MIMO AR-ARMAX and AR algorithms were found 

to be in good agreement with EFDD results, except for mode 3 for the AR results 
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estimated from correlation functions. This is due to a small number of poorly estimated 

measurement points, and potentially reflects the limitations of the BIC model selection 

criterion. It was found that the BIC consistently selected models of low order and in 

many cases model selection was limited to higher-order models. This generally lead to 

better results, however, numerical difficulties were sometimes encountered with high 

order AR models resulting in many spurious noise poles in the low and high frequency 

ranges. The numerical difficulties encountered with higher-order polynomial models 

suggests that a different model parameterisation or model structure (e.g. state-space 

representation) may be appropriate for high-order, large dimension problems, although 

the SSI-UPC algorithm also failed to properly model low order modes, as discussed 

above. 

The results of the AR-ARMAX algorithm were observed to be sensitive to the model 

order of the stage 1 AR model and also the order of the ARX models estimated in the 

subsequent stages. In particular, the positively damped poles estimated in the ARX 

models did not always correspond to the vibration modes; hence the NPDP model 

selection criterion was ineffective. A disadvantage associated with the AR-ARMAX 

algorithm is that the orders of the stage 1 AR model (p) and the order of the AR (na) 

and MA (nc) matrices in the subsequent stages can be set independently, which leads to 

a large set of possible models. The range of models to be estimated in above tests was 

limited by setting p and nc as a function of na. It was found that if the order of the stage 

1 AR model was set very high the quality of this model was typically poor as indicated 

by spurious poles in the high and low frequency ranges of the z-plane. In these cases 

iterations of stages 3 and 4 improved the results to a certain extent. When the order of 

the AR model was more appropriately set, further iterations had less of an effect, and as 

shown by the comparison of results in figures 8.4 – 8.8, little improvement over basic 

AR estimation is seen. A benefit of the MIMO AR-ARMAX algorithm over AR 

modelling is the elimination of positive bias on damping estimates when estimating 

results from time series data. In some cases, iterations of stages 3 and 4 lead to poorer 

estimates of some modes. This was often accompanied by positively-damped spurious 

poles being estimated, which also invalidated the NPDP model selection criterion. 

Therefore, model order specification and model selection remain a significant problem. 

A combination of model selection criteria, as used in the SSI-UPC algorithm, could 

potentially improve the quality of the estimated modal parameters.     
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An interesting result is that modes 3 – 11 were accurately estimated, which contrasts to 

the results obtained for the I/O ARMAX algorithm, presented in section 6.3.5. The low 

s/n at frequencies around poorly excited modes was suggested as a reason for the 

observed I/O ARMAX results. The response-only algorithms, on the other hand, assume 

independent sources of excitation and for these experiments four pairs of actuators were 

used to apply independent random excitation. Results in Chapter 4 showed that each 

actuator pair excited the low-order modes poorly and some actuators did not couple well 

to one or two higher modes. The estimation of fully parameterised ARMAX models in 

the MIMO AR-ARMAX and AR algorithms is likely to have contributed to the good 

results, as the model is estimated using all response data points. The adoption of the 

diagonal AR matrix in the I/O algorithm was partly based on the ease of stabilising and 

manipulating diagonal matrix polynomials and tests in Chapters 6 and 7 demonstrated 

that acceptable accuracy of modal parameters was achieved. These tests also showed 

that for data with moderate levels of noise, instability issues were rare due to the use of 

backwards ARX models and the fact that model selection could be carried out without 

having to recursively calculate the innovations sequence. An investigation into a MIMO 

ARMAX I/O algorithm is therefore suggested as future work. 

 

In this section, the performance of a number of response-only modal parameter 

estimation methods has been assessed using vibration response data obtained from a 

cantilever aluminium beam. The non-parametric FDD and EFDD methods were found 

to be the simplest analysis tools and yielded good results, which correlated well with 

I/O modal testing results. The SSI-UPC, AR, and AR-ARMAX methods only identified 

modes 3 – 11 and each method yielded good accuracy for these modes.  

 

8.7 Conclusions 

This study has reviewed response-only modal analysis techniques and introduced a new 

method, the AR-ARMAX algorithm, which is adapted from an ARMAX I/O modal 

parameter estimation algorithm introduced in Chapter 5. 

 

Numerical tests using data simulating the response of a two degree-of-freedom system 

demonstrated the MIMO AR-ARMAX algorithm could accurately estimate modal 

parameters from time series data and correlation functions with 10% and 100% added 
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random measurement noise, respectively. The use of averaged correlation functions has 

the advantage of attenuating random noise present in the original time-series data; the 

attenuation is dependent on the number of averages used when calculating the 

correlation functions. 

 

Experimental data obtained from a cantilever aluminium beam was used to assess the 

performance of the AR-ARMAX algorithm, as well as FDD, EFDD, SSI-UPC, and AR 

model estimation techniques. The FDD and EFDD non-parametric methods were found 

to be most effective; FDD was the only method to identify all modes but did not 

estimate modal damping. EFDD identified modes 2 – 11 and results correlated well 

with modal parameters obtained from I/O modal analysis. The parametric identification 

methods tested included SSI-UPC, AR modelling of time series and correlation 

functions, and the MISO and MIMO AR-ARMAX algorithm applied to time series data 

and correlation functions. Only modes 3 – 11 were identified by these methods and 

model order specification and model selection criteria were found to be critical to the 

accuracy of these methods. The NPDP model selection criterion was found to be 

sensitive to model order specification and was often ineffective due to positively-

damped spurious numerical modes. Other model selection criteria, such as stabilisation 

diagrams based on stability of frequency, damping and mode shape results, could 

potentially improve the quality of estimated modal parameters. The numerical and 

experimental tests only investigated the effect of random measurement noise and 

suggested little benefit in using the more complex AR-ARMAX algorithm over basic 

AR modelling. Further tests using a more complex structure investigating the effect of 

localised excitation, non-white excitation and the presence of periodic components in 

the excitation would provide a better indication of the limitations of the methods. It is 

emphasised that this work is presented as a preliminary study into the adaptation of the 

I/O ARMAX algorithm presented in Chapter 5. Further insight has been gained into the 

operation of the algorithm with the recommendation to investigate the use of fully 

parameterised ARMAX models in the I/O ARMAX algorithm. 
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Chapter 9  Conclusions 

9.1 Conclusions 

The major focus of this thesis is the experimental determination of structural dynamic 

properties in cases where significant unmeasured excitation is present. This has been 

motivated by structural dynamics analysis of helicopters. In this application, modal 

analysis is a common method used for experimentally determining the structural 

dynamic behaviour and the reviewed literature suggested that boundary conditions of 

the helicopter under test significantly affect the results. Therefore, it is desirable to carry 

out testing while the helicopter is in flight. In Chapter 2, a literature review of existing 

modal analysis techniques revealed an extensive range of algorithms for classical input-

output modal analysis under favourable noise conditions, assuming the measured 

excitation is the only source of excitation. More recently operational modal analysis or 

response-only modal analysis methods, reviewed in Chapter 8, have been developed, 

which only require vibration response measurements and assume the unmeasured 

excitation to be reasonably flat. The case where input-output modal analysis is carried 

out in the presence of unmeasured excitations has not been widely researched. 

 

In Chapter 2 a preliminary study was carried out to assess the performance of an 

existing modal parameter estimation algorithm applied to representative structures with 

measured impulse excitation and unmeasured periodic and random excitation, which 

approximately corresponds to conditions present in a helicopter during flight. The first 

experimental case study involved a free-free aluminium beam, and piezoceramic plates 

were employed as an alternative means of applying multiple independent sources of 

structural excitation. The second experimental case study involved a steel helicopter-

like structure, which exhibited a more complex dynamic behaviour. Synchronous 

averaging was employed to improve the signal-to-noise ratio of the measured excitation 

and response data and to attenuate unmeasured excitations. The results of these 

experimental case studies demonstrated that the existing RFLS modal parameter 

estimation algorithm was able to identify modal parameters in the presence of 

unmeasured excitation and synchronous averaging was effective in improving the 

accuracy of the results. A limitation of this approach was that the algorithm did not 

explicitly account for any noise in the data, which lead to practical problems of 
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identifying vibration modes in poor quality FRFs and selecting appropriate frequency 

bands for curve fitting. A novel modal parameter estimation algorithm was therefore 

proposed in Chapter 5 to address these issues. 

 

Advances in finite element modelling have produced powerful tools for the prediction 

of dynamic behaviour and the resulting structural loading. An initial step is model 

validation and updating using experimental data, which typically includes accurately 

determined modal parameters. Chapter 3 presented three case studies to demonstrate the 

performance and limitations of a sensitivity-based model updating strategy. The first 

case study showed that model updating significantly improved correlation between 

experimental and FEM results when experimental data was obtained under non-ideal 

conditions, for example when the structure exhibited non-linear behaviour. This case 

study also demonstrated the importance of having an initial FEM that adequately 

modelled the physical structure, in particular the joints and contacting surfaces. The 

remaining case studies reflected this in a situation where the initial FEM was very 

accurate, resulting in less scope for updating. The final case study demonstrated that 

apparently simple modifications can be difficult to model. In addition, an updated FEM 

yielded only very marginal improvements in terms of modal assurance criterion when 

predicting the effect of a significant modification, compared to a non-updated FEM. 

These results generally suggested that assessing the accuracy of experimental data at 

every measurement point is important to the outcome of FEM updating, and that the 

expected accuracy of experimental data should be used to better interpret the correlation 

of experimental and FEM results. 

 

The use of piezoceramic actuators for structural vibration control has been widely 

reported and the aim is often to excite specific modes using a set of actuators, while 

minimising excitation of other modes. Experimental modal analysis typically requires 

excitation of a large number of modes and piezoelectric actuators have not been widely 

used in this application. The experimental case studies in Chapter 2 demonstrated that 

accurate modal parameters could be obtained using piezoceramic plates for structural 

excitation. An approximate analytical model of pairs of actuators bonded to a beam was 

reviewed in Chapter 4 to illustrate the characteristics of this type of actuation. The 

model showed that the effectiveness of a pair of actuators in exciting a particular 

vibration mode is related to the derivative of the mode shape at the edges of the actuator 
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pairs; i.e. the slope of the mode shape at the edges of the actuator pairs. Modes with 

little change in slope over the actuator contact area were poorly excited. This has 

implications for exciting low order transverse modes of an aluminium beam and 

explains the results obtained in Chapter 2. Another issue considered was the extraction 

of mode shape information from estimated transfer functions when using piezoceramic 

actuators for structural excitation. Transfer functions cannot be measured at a point (e.g. 

point mobility) as for modal analysis with a point force, but it was shown that unscaled 

mode shapes can be obtained from transfer function residues, which verified 

observations made in the experimental case studies discussed in Chapter 2.  

 

A novel algorithm to estimate modal parameters was presented in Chapter 5. The 

algorithm is based on the estimation of a discrete-time ARMAX model, which explicitly 

models unmeasured excitations and measurement noise. The algorithm included least-

squares estimation of backwards ARX models, which allowed vibration modes and 

spurious numerical modes to be distinguished. It was also suggested that the number of 

positively damped poles (NPDP) estimated by a model could be used as a method to 

select the best model from a set of models of different order. The backwards ARX 

model resulted in the MA matrix of the ARMAX model being stable, which reduced the 

need for further operations to stabilise the MA matrix. A diagonal structure was used for 

the AR matrix and consequently for the MA matrix. This was adopted to limit the size 

of matrices used during least-squares estimation, with the benefit of simple stabilisation 

of unstable models. The diagonal structure also allowed simple manipulation of the 

model.  

 

Extensive testing of the ARMAX estimation algorithm was described in Chapter 6. 

Simulated data from three two degree-of-freedom systems was used to test the ARMAX 

algorithm under different noise conditions: 10% random noise added to response 

measurements; and combinations of 100% periodic and 20% random unmeasured 

excitations with 10% random measurement noise. The results showed that the ARMAX 

algorithm and the NPDP model selection criterion performed reasonably well even in 

the presence of significant unmeasured excitations. It was also shown that results were 

poor when referenced to DOFs with relatively low response. Experimental testing 

carried out on a cantilever beam excited with pairs of piezoceramic actuators reflected 

the observations of the numerical tests. Unmeasured random excitation was found to 
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affect the accuracy of the results to a greater extent than similar levels of unmeasured 

periodic excitation due to the differences in the way the ARMAX algorithm accounts 

for each type of unmeasured excitation. The unmeasured periodic excitation was often 

modelled as mode, however, the estimated damping was typically estimated as negative, 

as a consequence of the backwards ARX models, and this allowed these spurious modes 

to be distinguished from vibration modes. The ARMAX algorithm was found to be 

sensitive to poorly excited modes, which were due to the characteristics of the 

piezoceramic actuators, as discussed in Chapter 4. An additional observation was that 

wide frequency ranges resulted in low-order modes being estimated poorly.  

 

Chapter 7 revisited the helicopter-like structure as a representative case for testing of the 

ARMAX estimation algorithm. A range of experiments incorporating unmeasured 

periodic and random excitation were carried out and the use of periodic measured 

excitation allowed synchronous averaging of the measured data. The ARMAX 

algorithm successfully identified modal parameters for cases where 200% unmeasured 

periodic excitations were present, which included components within 2 Hz of vibration 

modes. In addition, the algorithm was found to perform well when close to 90% 

unmeasured random excitation was present, as well as in a case with both unmeasured 

periodic and random excitation. Closely spaced modes were identified by the ARMAX 

algorithm although results reinforced the observation that modes with low response at 

particular measurement points were poorly identified. The sign of damping was again 

shown to be useful in distinguishing between spurious modes and vibration modes. The 

ARMAX algorithm was found to perform well when compared to a frequency domain 

RFLS algorithm, in particular using significantly less data. Mode identification was also 

found to be easier due to smoother synthesised FRFs produced as part of the ARMAX 

estimation procedure.  

 

The experimental case studies presented in Chapters 6 and 7 suggested that while the 

ARMAX algorithm performed well for cases with moderate levels of unmeasured 

excitation, increasing the level of unmeasured excitation lead to a decrease in the quality 

of modal parameter estimates. A natural extension of this is when the unmeasured 

excitations are dominant and this corresponds to the case of operational or response-

only modal analysis. Chapter 8 presented a review of existing response-only modal 

analysis methods and it was noted that most were adapted from input-output estimation 
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algorithms. A preliminary study investigating the adaptation of the ARMAX estimation 

algorithm was undertaken. A number of factors limiting the direct application of the 

ARMAX algorithm to response measurements were identified, namely, the lack of zero 

information in a scalar AR model and the inability of backwards AR models to 

distinguish between vibration and spurious modes for non-deterministic vibration 

responses. Two algorithms were proposed to overcome these limitations while still 

maintaining the features to enable model selection and distinguish between spurious and 

vibration modes. Numerical tests demonstrated that the MIMO version of the algorithm 

performed reasonably well, and correlation functions calculated from response 

measurements were of benefit as averaging of correlation functions attenuated random 

noise present in the response measurements. Experimental tests verified the numerical 

test results; however, a number of observations were made that limited the practical 

implementation of the adapted algorithm in its current form. Results were found to be 

sensitive to model order specification, which was a potentially difficult task because the 

orders of three separate model components could be specified separately. The 

algorithm’s sensitivity to model order had implications for the NPDP model selection 

criterion, which was found to be ineffective as spurious modes could be estimated with 

positive damping. This also prevented spurious modes being distinguished from 

vibration modes. Experimental results for the MIMO AR-ARMAX algorithm were 

found to compare well with results from an enhanced frequency domain decomposition 

method, and used considerably less data. However, AR modelling of the experimental 

data also yielded very good results, suggesting that the extra stages involved in the AR-

ARMAX algorithm were of limited benefit. An exception to this was that damping 

estimates from AR modelling showed positive bias. The preliminary study presented in 

Chapter 8 nevertheless provided considerable insight into the development of a general 

algorithm for estimating modal parameters under all possible excitation conditions: 

measured excitation; measured excitation with unmeasured components; and ambient or 

fully unmeasured excitation. 

9.2 Recommendations for Further Work 

The ARMAX estimation algorithm incorporated a diagonal model structure, which 

allowed MIMO measurements to be decomposed into a series of MISO estimation 

problems. The work in Chapter 8 showed that MIMO AR(MAX) models had some 

benefits in terms of improved accuracy of modal parameters. Therefore, a study into 
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MIMO estimation of ARMAX models using a diagonal structure for the AR matrix (as 

opposed to separation into a series of MISO models) as well as estimation of a fully 

parameterised ARMAX model could potentially yield improvements in the accuracy of 

the ARMAX algorithm. This could also address the problems encountered with 

measurement points having low level responses for some modes.  

 

Piezoceramic actuators have many advantages over other types of excitation used in 

modal analysis, particularly for permanent applications. Chapter 4 and experimental 

results in Chapter 6 demonstrated limitations of piezoceramic actuators when applied to 

beams. Studies of different actuator configurations applied to more complex structures 

in modal analysis are needed to better demonstrate their advantages and limitations. The 

consideration of piezoceramic actuators for experimental modal analysis of plates and 

cylinders would be a natural extension to the study on beams presented in Chapter 4. A 

general goal is the development of piezoceramic actuator configurations that could be 

applied to an arbitrary structure for effective excitation of a large number of vibration 

modes. 

 

The literature reviews presented in Chapters 2 and 8 noted that many operational modal 

analysis algorithms had been adapted from input-output algorithms, although studies 

into their applications considered either measured excitation and response or response-

only situations separately. Of interest is the adaptation of algorithms for dealing with 

any level of measured excitation in the presence of unmeasured excitation. In this thesis 

one such algorithm has been considered and similar studies could be applied to other 

algorithms. For example, state-space based modal parameter estimation may have more 

desirable numerical properties when considering models of high order and large 

dimension. 
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Appendix A 

A.1 Statistical Testing of Innovations Sequence 

Section 5.3.3 discussed some statistical methods that can be used to test the assumptions 

made about the nature of innovations sequence and the correlation between the 

innovations sequence and the measured excitations. The BIC uses the covariance matrix 

of the innovations sequence to detect correlation between elements and also asses the 

magnitude of the innovations sequence. The auto- and cross-correlation functions can be 

used to extend this concept for different time lags, which potentially increases 

sensitivity to periodic components in the innovations sequence. The correlation 

functions were calculated for all combinations of innovations elements and two 

approaches to map the matrix of correlation functions to a scalar value were tested. The 

first approach calculated the sum of mean-square values for each correlation sequence 

and the second approach calculated the determinant of a matrix containing the mean-

square of each correlation sequence. Figure A.1 shows values calculated using the first 

approach plotted for each iteration and model estimated from the same realisation of 

data as the BIC plots above. Figure A.2 shows values calculated by the second 

approach. 

 
Figure A.1 Summed mean-square values of innovations correlation sequences for each 
model order and iteration estimated from a typical realisation of test 1 data. 
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Figure A.2 Determinant of matrix of mean-square values calculated from each 
innovations correlation sequence for each model order and iteration estimated from a 
typical realisation of test 1 data. 
 

Figures A.1 and A.2 both show similar topography to the modified BIC plot in figure 

6.9 and similar conclusions apply.  

 

The correlation between the innovations sequence and the measured input was tested 

using the two approaches discussed above. Figure A.3 shows the sum of mean square-

values of the correlation sequence and figure A.4 shows the determinant of the matrix 

containing mean-square values of the correlation sequences.  

 
Figure A.3 Summed mean-square values of innovations-excitation correlation 
sequences for each model order and iteration estimated from a typical realisation of test 
1 data. 
 

The results in figure A.3 are similar to the innovations correlation tests shown in figures 

A.1 and A.2, however, the results for the determinant of the mean-square correlation 
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sequence matrix shown in figure A.4 show an improved sensitivity to and a marginal 

improvement in the sensitivity to the iterations of stages 3 and 4. 

 

 
Figure A.4 Determinant of matrix of mean-square values calculated from innovations-
excitation correlation sequences for each model order and iteration estimated from a 
typical realisation of test 1 data. 
 

A.2 Condition Number of Regression Matrix 

The conditioning of the regression matrix formed when solving the LS problems in 

stage 1 (see for example equation (5.20)) and stage 3 can give indications of the 

accuracy of the LS solution. Very high order models can lead to poor conditioning of 

the regression matrix and large numbers of iterations of stages 3 and 4 for large order 

models can also result in poor conditioning of the regression matrices due to filtering of 

the excitation and response sequences with an excessively high-order MA matrix. The 

use of the conditioning of the regression to indicate the best model order was 

investigated as this information could be easily calculated as part of the estimation 

procedure.  

 

The condition number of the regression matrices used in each LS estimate in stage 1 and 

the iterations of stages 3 and 4 is shown in figure A.5 and A.6. Recall that the ARMAX 

estimation algorithm separates the MIMO model into s MISO models and solves each 

using the LS criterion. 



 268 

 
Figure A.5 Condition number of regression matrix for each model order and iteration 
used in LS estimate of ARX model, DOF 1 reference point. 

 

 
Figure A.6 Condition number of regression matrix for each model order and iteration 
used in LS estimate of ARX model, DOF 2 reference point. 
 

The plots in figures A.5 and A.6 clearly show the poor conditioning of the regression 

matrix for higher order models. The condition number also increases relatively slowly 

for increasing numbers of iterations and this did not reflect the improvement in accuracy 

of the modal parameters after a number of iterations of stages 3 and 4.  
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Appendix B 

This section shows FRFs synthesised from ARMAX models estimated in presence of 

unmeasured excitations, as discussed in section 7.4. The MIMO E2 results are used as a 

basis for comparing the ARMAX results obtained for different types of unmeasured 

excitations, and also for the analyses that included synchronous averaging of data 

records. FRFs are synthesised for four response measurement points (14, 18, 20, 29) 

well-separated on the structure (see figure 7.2 and table 7.1), including a point-inertance 

measurement (measurement point 29). 

 

 
Figure B.1 Comparison of synthesised FRFs for measurement point 14 obtained from 
MIMO E2 (noise free), SIMO E1, and SIMO E1 av analyses.  
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Figure B.2 Comparison of synthesised FRFs for measurement point 18 obtained from 
MIMO E2 (noise free), SIMO E1, and SIMO E1 av analyses. 
 

 

 
Figure B.3 Comparison of synthesised FRFs for measurement point 20 obtained from 
MIMO E2 (noise free), SIMO E2, and SIMO E2 av analyses. 
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Figure B.4 Comparison of synthesised FRFs for measurement point 29 obtained from 
MIMO E2 (noise free), SIMO E1, and SIMO E1 av analyses. 
 

 

 
Figure B.5 Comparison of synthesised FRFs for measurement point 14 obtained from 
MIMO E2 (noise free), SIMO E2, and SIMO E2 av analyses. 
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Figure B.6 Comparison of synthesised FRFs for measurement point 18 obtained from 
MIMO E2 (noise free), SIMO E2, and SIMO E2 av analyses. 
 

 

 
Figure B.7 Comparison of synthesised FRFs for measurement point 20 obtained from 
MIMO E2 (noise free), SIMO E2, and SIMO E2 av analyses. 
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Figure B.8 Comparison of synthesised FRFs for measurement point 29 obtained from 
MIMO E2 (noise free), SIMO E2, and SIMO E2 av analyses. 
 

 

 
Figure B.9 Comparison of synthesised FRFs for measurement point 14 obtained from 
MIMO E2 (noise free), SIMO E3, and SIMO E3 av analyses. 
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Figure B.10 Comparison of synthesised FRFs for measurement point 18 obtained from 
MIMO E2 (noise free), SIMO E3, and SIMO E3 av analyses. 
 

 

 
Figure B.11 Comparison of synthesised FRFs for measurement point 20 obtained from 
MIMO E2 (noise free), SIMO E3, and SIMO E3 av analyses. 
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Figure B.12 Comparison of synthesised FRFs for measurement point 29 obtained from 
MIMO E2 (noise free), SIMO E3, and SIMO E3 av analyses. 
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Appendix C 

The figures in this section illustrate the effect of synchronous averaging of excitation 

and response data before estimating modal parameters using a RFLS algorithm, as 

described in section 7.5. The modal parameters were estimated from excitation and 

response data corrupted by unmeasured excitations and are compared with results 

obtained under noise-free conditions using the ARMAX algorithm (ARMAX MIMO 

E2). 

 

 
Figure C.1 Comparison of modal frequencies from RFLS FRF curve fitting of 
experiment 1 data with modal frequencies from ARMAX MIMO E2 analysis. RFLS E1 
20 averages; RFLS E1 av 89 averages.  
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Figure C.2 Comparison of modal damping from RFLS FRF curve fitting of experiment 
1 data with modal damping from ARMAX MIMO E2 analysis. RFLS E1 20 averages; 
RFLS E1 av 89 averages. 
 

 
Figure C.3 MAC values comparing mode shapes from RFLS FRF curve fitting of 
experiment 1 data with mode shapes from ARMAX MIMO E2 analysis. RFLS E1 20 
averages; RFLS E1 av 89 averages. 
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Figure C.4 Comparison of estimated modal frequencies from RFLS FRF curve fitting of 
experiment 2 data with modal frequencies from ARMAX MIMO E2 analysis. RFLS E2 
20 averages; RFLS E2 av 89 averages. 
 

 
Figure C.5 Comparison of modal damping from RFLS FRF curve fitting of experiment 
2 data with modal damping from ARMAX MIMO E2 analysis. RFLS E2 20 averages; 
RFLS E2 av 89 averages. 
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Figure C.6 MAC values comparing mode shapes from RFLS FRF curve fitting of 
experiment 2 data with mode shapes from ARMAX MIMO E2 analysis. RFLS E2 20 
averages; RFLS E2 av 89 averages. 
 

 
Figure C.7 Comparison of estimated modal frequencies from RFLS FRF curve fitting of 
experiment 3 data with modal frequencies from ARMAX MIMO E3 analysis. RFLS E3 
20 averages; RFLS E2 av 89 averages. 
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Figure C.8 Comparison of modal damping from RFLS FRF curve fitting of experiment 
3 data with modal damping from ARMAX MIMO E2 analysis. RFLS E3 20 averages; 
RFLS E3 av 89 averages. 
 

 
Figure C.9 MAC values comparing mode shapes from RFLS FRF curve fitting of 
experiment 3 data with mode shapes from ARMAX MIMO E2 analysis. RFLS E3 20 
averages; RFLS E3 av 89 averages. 
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Appendix D 

Modal parameters estimated using the FDD, EFDD, and SSI-UPC response-only modal 

analysis algorithms (included in the Structural Vibration Solutions ARTeMIS software), 

as discussed in section 8.6.4, are shown in this Appendix. Also shown are I/O modal 

analysis results obtained from a RFLS algorithm (implemented in the commercial 

STAR Modal software), discussed in section 8.6.2. 
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Figure D.1 Frequency Error for FDD, SSI-UPC & STAR results compared with EFDD 
results. 
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Figure D.2 Frequency standard deviation for EFDD & SSI-UPC results. 
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Figure D.3 Damping estimated from EFDD,SSI-UPC, & STAR algorithms. 
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Figure D.4 Damping standard deviation for EFDD & SSI-UPC results. 
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Figure D.5 MAC comparing mode shapes estimated from FDD,SSI-UPC, & STAR 
algorithms with mode shapes estimated from EFDD algorithm. 
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Figure D.6 (Continued over the page) Mode shapes estimated by EFDD (except mode 
1, which was estimated by FDD). 
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Figure D.6 (cont.) Mode shapes estimated by EFDD (except mode 1, which was 
estimated by FDD). 
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Appendix E 

Modal parameters estimated by the MISO AR-ARMAX response-only modal analysis 

algorithm are shown in this section. Modal parameters were estimated from response 

measurements obtained from a cantilever aluminium beam excited with piezoceramic 

actuators, as discussed in section 8.6.5. 

 
Figure E.1 Frequency Error for MISO AR-ARMAX results compared with EFDD 
results. 
 

 
Figure E.2 Frequency standard deviation for MISO AR-ARMAX and EFDD results. 
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Figure E.3 Damping estimated from MISO AR-ARMAX and EFDD. 
 

 

 
Figure E.4 Damping standard deviation for MISO AR-ARMAX and EFDD results. 
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Figure E.5 MAC values comparing mode shapes from MISO AR-ARMAX results and 
EFDD results. 
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Appendix F 

Matlab code for MIMO E2 analysis, described in section 7.4.1. The following code 

loads and resamples data, before calling functions that implement the stages of the 

ARMAX estimation algorithm (see Chapter 5). A function to calculate the innovations 

sequence for an estimated ARMAX model is included, and the final section of code 

details the calculation of modal parameters from the estimated ARMAX model. 

 
%ARMAX model estimation for MIMO E2 analysis 
  
for ii = 1:14 
    %Load data 
    load([’HT212_m’ int2str(ii)]) 
    eval([’dat_temp = HT212_m’ int2str(ii) ’;’]) 
     
    %resample 
    dat_temp = resample(dat_temp,300,512); 
     
    %form excitation and response data vectors 
    fn = [dat_temp(1025:3072,1) dat_temp(1025:3072,2)]’; 
    yn = [dat_temp(1025:3072,3) dat_temp(1025:3072,4)]’; 
     
    %sampling rate and record length (seconds) 
    Ts = (512/300)*1/1024; 
    Tt = Ts*2048; 
     
    %set order and iterations 
    min_ord = 80; 
    max_ord = 90; 
    arm34_iters = 8; 
     
    %file name 
    data_name = [’MISO_ARMAX_HT212_1_v1_m’ int2str(ii)]; 
     
    %ARMAX estimation control 
    RC_arm_ctrl(Tt,Ts,fn,yn,min_ord,max_ord,arm34_iters,data_name) 
    clear 
end 
 
for ii = 15:15 
    %Load data 
    load([’HT212_m’ int2str(ii)]) 
    eval([’dat_temp = HT212_m’ int2str(ii) ’;’]) 
     
    %resample 
    dat_temp = resample(dat_temp,300,512); 
     
    %form excitation and response data vectors 
    fn = [dat_temp(1025:3072,1) dat_temp(1025:3072,2)]’; 
    yn = [dat_temp(1025:3072,3) dat_temp(1025:3072,4) 
dat_temp(1025:3072,5)]’; 
 
    %sampling rate and record length (seconds) 
    Ts = (512/300)*1/1024; 
    Tt = Ts*2048; 
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    %set order and iterations 
    min_ord = 80; 
    max_ord = 90; 
    arm34_iters = 8; 
     
    %file name 
    data_name = [’MISO_ARMAX_HT212_1_v1_m’ int2str(ii)]; 
     
    %ARMAX estimation control 
    RC_arm_ctrl(Tt,Ts,fn,yn,min_ord,max_ord,arm34_iters,data_name) 
    clear 
end 
 
%_______________________________________________________________ 
 
%Notes: Data files 1 - 14: 2 input, 2 output; data file 15: 2 input, 3 
output. 
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function RC_arm_ctrl(Tt,Ts,fn,yn,min_ord,max_ord,arm34_iters,data_name) 
tic 
 
%Define cell structures to store parameters and results 
ord_numbers = 1  + (max_ord - min_ord)/2; 
 
ls_stat1_cell = cell(ord_numbers,1); 
ls_stat2_cell = cell(ord_numbers,arm34_iters); 
 
BICrevmat = zeros(ord_numbers,arm34_iters + 1); 
incovmsmat = zeros(ord_numbers,arm34_iters + 1); 
incovmsdet = zeros(ord_numbers,arm34_iters + 1); 
wtrevcell = cell(ord_numbers,arm34_iters + 1); 
BICrev2mat = zeros(ord_numbers,arm34_iters + 1); 
parmatcell = cell(ord_numbers,arm34_iters + 1,3); 
stArootsmat = zeros(ord_numbers,arm34_iters); 
freqdampmodemat2_cell = cell(ord_numbers,1); 
 
save wt_data wtrevcell 
clear wtrevcell 
 
ind1  = 1; 
prog_ind = 1; 
for jj = min_ord:2:max_ord 
    prog_ind 
    %Model order 
    itind = jj; 
     
    %set nc 
    nc = 2*round(0.25*itind); 
     
    stage_ = ’arm1234’ 
    %Stages 1,2, and first iteration of stage 3 
    [Amat, Bmat, Cmat, Hyestvec, ls_stat1] = RC_arm1234(yn,fn,itind,nc); 
    ls_stat1_cell{ind1,1} = [ls_stat1{:}]; 
    %save system matrices estimated from first iteration of stage 3 
    parmatcell{ind1,1,1} = Amat; 
    parmatcell{ind1,1,2} = Bmat; 
    parmatcell{ind1,1,3} = Cmat; 
     
    %Calculate innovations sequence (for testing purposes, calculation of 
    %BIC etc. 
    stage_ = ’innov4 1’ 
     [wtbac,inncovrev,BICrev,BICrev2,inn_cov_ms_av_b,inn_cov_ms_det_b]  = 
RC_innov4(Amat,Bmat,Cmat,yn,fn,Ts,Tt); 
    BICrevmat(ind1,1) = BICrev; 
    incovmsmat(ind1,1) = inn_cov_ms_av_b; 
    incovmsdetmat(ind1,1) = inn_cov_ms_det_b; 
    BICrev2mat(ind1,1) = BICrev2; 
         
    load wt_data 
    wtrevcell{ind1,1} = wtbac; 
     
    save wt_data wtrevcell 
    clear wtrevcell 
     
    %Stage 3,4 
    for ii = 1:arm34_iters 
        stage_ = ’arm34’ 
        %iterations of stages 3 and 4 
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         [Amat, Bmat, Cmat, no_st_roots, ls_stat2] = 
RC_arm34(Cmat,Hyestvec,yn,fn,itind); 
        ls_stat2_cell{ind1,ii} = [ls_stat2{:}]; 
        stage_ = ’innov4 2’ 
        %Calculate innovations sequence (for testing purposes, calculation 
of 
        %BIC etc. 
        [wtbac,inncovrev,BICrev,BICrev2,inn_cov_ms_av_b,inn_cov_ms_det_b] 
= RC_innov4(Amat,Bmat,Cmat,yn,fn,Ts,Tt); 
         
        %store and save system matrices and other data 
        BICrevmat(ind1,ii + 1) = BICrev; 
        incovmsmat(ind1,ii + 1) = inn_cov_ms_av_b; 
        incovmsdetmat(ind1,ii + 1) = inn_cov_ms_det_b; 
        BICrev2mat(ind1,ii + 1) = BICrev2; 
        parmatcell{ind1,ii + 1,1} = Amat; 
        parmatcell{ind1,ii + 1,2} = Bmat; 
        parmatcell{ind1,ii + 1,3} = Cmat; 
        stArootsmat(ind1,ii) = no_st_roots; 
         
        load wt_data 
        wtrevcell{ind1,ii + 1} = wtbac; 
        save wt_data wtrevcell 
        clear wt_data wtrevcell 
    end 
 
    load wt_data 
    save(data_name,’wtrevcell’); 
    clear wtrevcell 
     
    ind1 = ind1 + 1; 
    prog_ind = prog_ind + 1; 
end 
 
altime = toc 
 
f_name = strcat(data_name,’_full’) 
 
load wt_data 
save(f_name) 
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function [Amat, Bmat, Cmat, Hyestvec, ls_stat] = 
RC_arm1234(yn,fn,itind,nc) 
%Function to estimate the system matrices of an ARMAX dynamic model 
% 
% Amat: [s x s x na] AR matrix polynomial of order na 
% Bmat: [s x m x nb] X matrix polynomial of order nb 
% Cmat: [s x s x nc] MA matrix polynomial of order nc 
% s: number of response channels  
% m: number of excitatoin channels 
% yn: response data series [s x N], including additive noise and the 
% effects of unmeasureed excitations 
% fn: excitation data series [m x N], including any excitation measurement 
% noise 
% itind: order of model ie itind = f(na,nb,nc) 
% 
% 
fid =1; 
%Define N,s,m 
N = size(yn,2); 
s = size(yn,1); 
m = size(fn,1); 
 
 
%-------------------------------------------------------------------------
- 
 
%Stage 1 of ARMA(X) model representation: Initial estimation of truncated 
%AR(X) model 
 
%set order p of ARX model: 
p1 = 4*itind; 
% p1: order of AR matrix polynomial in the stage 1 ARX model 
% p2: order of X matrix polynomial in the stage 1 ARX model 
p2=p1; 
p = max(p1,p2); 
 
%Check to see if there is sufficient data points for estimation of 
%model of size itind 
if N-(p + 1) < p + p*m + m  
    error(’Insufficient data points in excitation and response vectors. 
Use smaller model order or longer input data series.’) 
end 
 
 
%Form regression vector from excitation and response signals  
fnvec = reshape(fn(:,1:N),m*N,1); 
 
%Define matrix to store regression matrix statistics (size,condition, 
%rank) for each iteration of stages 1, 3. 
ls_stat = cell(2,s); 
 
 
%LS estimation of ARX model using QR factorisation (see Ljung, 1999) 
%This estimates s different MISO problems to avoid ill conditionin of 
%the regression matrices. Results are stored in the Hyfest cell array. 
Hyfest = cell(1,s); 
for ii = 1:s 
    PHIblok_k = cell(N-(p+1),1); 
        for jj = 0:N-(p+2) 
        ut_k = [-yn(ii,jj+2:jj+1+p1), fnvec(m*jj+1:m*(p2+jj+1),1)’];     
        PHIblok_k{jj+1,1} = ut_k; 
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    end 
 
    PHIblok_k = cell2mat(PHIblok_k); 
 
%   ls_stat{1,ii} =  [size(PHIblok_k,2); 
%                     rank(PHIblok_k); 
%                     cond(PHIblok_k)]; 
 
    Ykvec = yn(ii,1:N-(p+1))’; 
     
    R0k = triu(qr([PHIblok_k Ykvec])); 
     
    R1k = R0k(1:p1 + p2*m +m,1:p1 + p2*m +m); 
 
    R2k = R0k(1:p1 + p2*m +m,p1 + p2*m +m +1); 
     
    hest_k = R1k\R2k; 
     
    Hyfest{1,ii} = hest_k; 
end 
 
%Extract AR and X matrix polynomials 
Hyfest = cell2mat(Hyfest); 
 
%Hy matrix append identity matrix for Hy(0) 
Hyestrev = Hyfest(1:p1,:); 
Hyestrev = [ones(s,1) Hyestrev’]; 
 
%Hf matrix 
Hfestrev = Hyfest(p1+1:p1+p2*m +m,:); 
Hfestrev = reshape(Hfestrev’,s,m,p2+1); 
 
%Similarly, reverse order of Hyest 
Hyest(:,1:p1+1) = Hyestrev(:,p1+1:-1:1); 
 
 
%Calculate roots of Hy matrix. Note that the iterative estimation scheme 
%assumes that the Hy matrix polynomial has diagonal matrix 
%coefficients. 
 
Hyroots = cell(s,1); 
for ii = 1:s 
    Hyroots{ii,1} = roots(Hyest(ii,:)); 
end 
Hyroots = cell2mat(Hyroots’); 
 
%Form Hy matrix to be used in subsequent stages. The iterative estimation 
%method assumes a diagaonal structure for each coefficient matrix in the 
Hy 
%matrix polynomial.  
 
Hyestmatrev = cell(1,p1+1); 
Hyestmatrev(1:p1+1) = {zeros(s,s)}; 
for ii = 1:p1+1 
    for jj = 1:s 
        Hyestmatrev{1,ii}(jj,jj) = Hyestrev(jj,ii); 
    end 
end 
Hyestmatrev = cell2mat(Hyestmatrev); 
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%-------------------------------------------------------------------------
- 
 
%Stage 2 of ARMA(X) model representation: Initial estimation of MA 
%matrices. 
 
%Define matrix polynomial orders 
na = itind; 
nb = itind; 
 
%Limits for creating matrices 
r = max(na,nc) + nc; 
 
ist2 = r-nc+1; 
 
%form Hy matrix (toeplitz matrix) using Hyest matrices  
Hyestvec = reshape(Hyestmatrev,s,s,p1+1); 
     
blokH = cell(nc+1,nc+1); 
for i4 = 1:nc+1 
    for i3 = 1:nc+1 
       if i4 - i3 <= p1 + 1 - ist2 
          blokH{i4,i3} = Hyestvec(:,:,ist2+i4-i3)’; 
       else 
          blokH{i4,i3} = zeros(s,s); 
       end 
    end 
end 
     
blokHyest = cell2mat(blokH); 
 
clear blokH 
 
%form matrix and vector and construct system of equations to solve for C 
%matrix 
 
Hymat = blokHyest(:,s+1:s*(nc+1)); 
Hyvec = -blokHyest(:,1:s); 
 
clear blokHyest 
 
Cest = Hymat\Hyvec; 
 
clear Hymat 
clear Hyvec 
 
Cest3D = reshape(Cest’,s,s,[]); 
 
 
%------------------------------------------------------------------------- 
%Stage 2s: Stabilise first estimate for MA matrix 
 
%This procedure takes advantage of the diagonal structure of the 
%Cmat matrix polynomial coefficients 
tempC = cell(1,s); 
Cest3D = cat(3,eye(s,s),Cest3D); 
staCmat = zeros(size(Cest3D)); 
for ii = 1:s 
    tempC{1,ii} = reshape(Cest3D(ii,ii,1:nc+1),1,nc + 1); 
    tempC{1,ii} = polystab(tempC{1,ii}); 
    staCmat(ii,ii,1:nc+1) = reshape(tempC{1,ii},1,1,nc+1); 
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end 
 
Cmat = staCmat; 
 
Cest3D = Cmat(:,:,2:nc + 1); 
 
%create cell array from Cest3D poly coefficients 
Cestcell = cell(1,nc+1); 
for i2s = 1:nc + 1 
    Cestcell{1,i2s} = Cmat(:,:,i2s); 
end 
 
 
%set C matrix to Is: used for testing and dealing with unstable high 
%order systems 
%Cest3D = zeros(size(Cest3D)); 
 
%-------------------------------------------------------------------------
- 
%Stage 3: Estimation of AR and X polynomial matrices 
 
%Construct Yfk matrices 
Yf = zeros(s,s^2,N); 
for i5 = 1:N 
    Yft3D = zeros(s,s,s); 
    for i6 = 1:s 
        i7=1; 
        YiCestsum = zeros(s,s); 
        while (i5-i7>0)&(i7<=nc) 
             YiCest = Yf(:,(i6-1)*s+1:i6*s,i5-i7)*Cest3D(:,:,i7)’; 
             YiCestsum = YiCestsum + YiCest; 
             i7=i7+1; 
        end 
        Yft3D(:,:,i6) = yn(i6,i5)*eye(s) - YiCestsum; 
    end 
    Yft = reshape(Yft3D,s,s^2); 
    Yf(:,:,i5) = Yft; 
 end 
 
%Construct Ff matrix 
Ff = zeros(s,s*m,N); 
for i5 = 1:N 
    Fft3D = zeros(s,s,m); 
    for i6 = 1:m 
        i7 = 1; 
        FiCestsum = zeros(s,s); 
        while (i5-i7>0)&(i7<=nc) 
            FiCest = Ff(:,(i6-1)*s+1:i6*s,i5-i7)*Cest3D(:,:,i7)’; 
            FiCestsum = FiCestsum + FiCest; 
            i7=i7+1; 
        end 
        Fft3D(:,:,i6) = fn(i6,i5)*eye(s) - FiCestsum; 
    end 
    Fft = reshape(Fft3D,s,s*m); 
    Ff(:,:,i5) = Fft; 
end 
 
%Construct Uf  
n1 = max(na,nb); 
 
hest2mat = cell(1,s); 
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for ii = 1:s 
    PHI2kblok = cell(N-n1,1); 
     
    yf2kvec = cell(N-n1,1); 
     
    for j1 = 1:N-n1  
        Yfkvec = -reshape(Yf(:,(ii-1)*s+1:ii*s,j1+1:j1+na),s,na*s); 
     
        Ffkvec = reshape(Ff(:,:,j1:j1+nb),s,[]); 
         
        Ufk = [Yfkvec Ffkvec]; 
             
        PHI2kblok{j1,1} = Ufk; 
             
        yftkvec = Yf(:,(ii-1)*s+ii,j1); 
             
        yf2kvec{j1,1} = yftkvec; 
             
    end 
  
    PHI2kblok = cell2mat(PHI2kblok); 
         
    %Information on the regression matrix 
%   ls_stat{2,ii} = [size(PHI2kblok,2); 
%                     rank(PHI2kblok); 
%                     cond(PHI2kblok)]; 
                
    yf2kvec = cell2mat(yf2kvec); 
     
    %QR factorisation 
    R02k = triu(qr([PHI2kblok yf2kvec])); 
     
    R12k = R02k(1:na*s + nb*m*s + m*s,1:na*s + nb*m*s + m*s); 
 
    R22k = R02k(1:na*s + nb*m*s + m*s,na*s + nb*m*s + m*s + 1); 
     
    hest2_k = R12k\R22k; 
     
    hest2mat{1,ii} = hest2_k; 
end 
 
hest2mat  = cell2mat(hest2mat); 
 
%Separate estimates into AR and X matrices 
Aest3D = reshape(hest2mat(1:na*s,1:s)’,s,s,na); 
 
%Append identity matrix to AR matrix; ie A(0) = I 
Aest3D = cat(3,eye(s,s),Aest3D); 
 
Amat = Aest3D; 
 
%Extract X matrix polynomial coefficients 
Bestvec = nonzeros(hest2mat(na*s+1:na*s + nb*m*s + m*s,:)’); 
 
if size(Bestvec,1)*size(Bestvec,2) ~= s*m*(nb+1) 
    error(’Incorrect structure estimated for X matrix’) 
end 
 
Best3D = reshape(Bestvec,s,m,nb+1); 
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%set very small elements to zero as these will contribute to very large 
%roots, hence algorithmic instabilities ... 
if length(find(abs(Best3D) < 1e-10)) > 0 
%   Best3D(find(abs(Best3D) < 1e-10)) = 0; 
    sprintf(’X matrix coefficients < 1e-10 set to zero in arm1234’) 
end 
 
Bmat = Best3D; 
 
%-------------------------------------------------------------------------
- 
%Stage 4: Estimation of the MA polynomial matrix and innovations 
 
Hsize = size(Hyestvec,3); 
 
%form matrix of V coefficients 
blokAmat = cell(Hsize,nc+1); 
blokAmat(:) = {zeros(s,s)}; 
 
for ii = 1:Hsize 
    %define limits of convolution 
    aa = max(1,ii + 1 - (na+1)); 
    bb = min(ii,nc+1); 
    jj = aa; 
    while (jj <= ii)&&(jj <= bb) 
        blokAmat{ii,jj} = Aest3D(:,:,ii + 1 - jj); 
        jj = jj+1; 
    end 
end 
 
blokAmat = cell2mat(blokAmat); 
 
Hyestvec_2 = reshape(Hyestvec,s,Hsize*s)’; 
 
Cmat = blokAmat\reshape(Hyestvec,s,Hsize*s)’; 
 
Cmat = reshape(Cmat’,s,s,nc+1); 
 
%Stabilise Cmat 
%This procedure takes advantage of the diagonal structure of the 
%Cmat matrix polynomial coefficients 
tempC = cell(1,s); 
staCmat = zeros(size(Cmat)); 
for ii = 1:s 
    tempC{1,ii} = reshape(Cmat(ii,ii,1:nc+1),1,nc + 1); 
    tempC{1,ii} = polystab(tempC{1,ii}); 
    staCmat(ii,ii,1:nc+1) = reshape(tempC{1,ii},1,1,nc+1); 
end 
 
Cmat = staCmat; 
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function [Amat, Bmat, Cmat, no_st_roots, ls_stat] = 
RC_arm34(Cmat,Hyestvec,yn,fn,itind) 
%This function carries out stages 3 and 4 of the ARMAX parameter 
estimation 
%algorithm.  
 
%Function to estimate the system matrices of an ARMAX dynamic model 
% 
% Amat: [s x s x na] AR matrix polynomial of order na 
% Bmat: [s x m x nb] X matrix polynomial of order nb 
% Cmat: [s x s x nc] MA matrix polynomial of order nc 
% s: number of response channels  
% m: number of excitatoin channels 
% yn: response data series [s x N], including additive noise and the 
% effects of unmeasureed excitations 
% fn: excitation data series [m x N], including any excitation measurement 
% noise 
% itind: order of model ie itind = f(na,nb,nc) 
% 
% 
%Define N,s,m 
N = size(yn,2); 
s = size(yn,1); 
m = size(fn,1); 
 
%Define Cest23D 
Cest23D = Cmat; 
 
%Define matrix polynomial orders 
na = itind; 
nb = itind; 
nc = size(Cest23D,3) - 1; 
 
%Define matrix to store regression matrix statistics (size,condition, 
%rank) for each iteration of stages 1. 
 
ls_stat = cell(1,s); 
 
%Check to see if there is sufficient data points for estimation of 
%model of size itind 
if N-2 < itind*(6 + 3*m) + m 
    error(’Insufficient data points in excitation and response vectors’) 
end 
 
%---------------------------------------------------------------------- 
%Stage 3 estimate A and B matrices 
 
%Stabilise Cest23D 
tempC = cell(1,s); 
staCest23D = zeros(size(Cest23D)); 
for ii = 1:s 
    tempC{1,ii} = reshape(Cest23D(ii,ii,1:nc+1),1,nc + 1); 
    tempC{1,ii} = polystab(tempC{1,ii}); 
    staCest23D(ii,ii,1:nc+1) = reshape(tempC{1,ii},1,1,nc+1); 
end 
 
%Filtering stage 
c0_inv = inv(staCest23D(:,:,1)); 
for ii = 1:nc + 1 
    staCest23D(:,:,ii) = c0_inv*staCest23D(:,:,ii); 
end 
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Cest3D = staCest23D; 
 
%Construct Yf matrix 
Yf = cell(1,s); 
for kk = 1:s 
    Yfi = zeros(s,s,N); 
    for ii = 1:N 
        jj = 1; 
        while (jj <= nc+1)&&(jj <=ii) 
            Yfi(:,:,ii) = Yfi(:,:,ii) + yn(kk,ii - jj + 1)*Cest3D(:,:,jj); 
            jj = jj + 1; 
        end 
    end 
    Yf{1,kk} = Yfi; 
end 
Yf = cell2mat(Yf); 
 
%Construct Ff matrix 
Ff = cell(1,m); 
for kk = 1:m 
    Ffi = zeros(s,s,N); 
    for ii = 1:N 
        jj = 1; 
        while (jj <= nc+1)&&(jj <=ii) 
            Ffi(:,:,ii) = Ffi(:,:,ii) + fn(kk,ii - jj + 1)*Cest3D(:,:,jj); 
            jj = jj + 1; 
        end 
    end 
    Ff{1,kk} = Ffi; 
end 
Ff = cell2mat(Ff); 
 
 
%Construct Uf  
n1 = max(na,nb); 
 
hest2mat = cell(1,s); 
 
for ii = 1:s 
    PHI2kblok = cell(N-n1,1); 
     
    yf2kvec = cell(N-n1,1); 
     
    for j1 = 1:N-n1  
        Yfkvec = -reshape(Yf(:,(ii-1)*s+1:ii*s,j1+1:j1+na),s,na*s); 
         
        Ffkvec = reshape(Ff(:,:,j1:j1+nb),s,[]); 
         
        Ufk = [Yfkvec Ffkvec]; 
         
        PHI2kblok{j1,1} = Ufk; 
         
        yftkvec = Yf(:,(ii-1)*s+ii,j1); 
         
        yf2kvec{j1,1} = yftkvec; 
         
    end 
 
    PHI2kblok = cell2mat(PHI2kblok); 
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    %Information on the regression matrix 
%    ls_stat{1,ii} = [size(PHI2kblok,2); 
%                      rank(PHI2kblok); 
%                      cond(PHI2kblok)]; 
                
    yf2kvec = cell2mat(yf2kvec); 
     
    %QR factorisation 
    R02k = triu(qr([PHI2kblok yf2kvec])); 
     
    R12k = R02k(1:na*s + nb*m*s + m*s,1:na*s + nb*m*s + m*s); 
 
    R22k = R02k(1:na*s + nb*m*s + m*s,na*s + nb*m*s + m*s + 1); 
     
    hest2_k = R12k\R22k; 
     
    hest2mat{1,ii} = hest2_k; 
end 
 
hest2mat  = cell2mat(hest2mat); 
 
%Separate estimates into AR and X matrices 
Aest3D = reshape(hest2mat(1:na*s,1:s)’,s,s,na); 
 
%Append identity matrix to AR matrix; ie A(0) = I 
Aest3D = cat(3,eye(s,s),Aest3D); 
 
Amat = Aest3D; 
 
Aestcell = cell(1,na+1); 
for ii = 1:na+1 
    Aestcell{1,ii} = Aest3D(:,:,ii); 
end 
 
%Calculate roots of the AR matrix polynomial. Note that the polyeig 
%function will calculate roots with the correct damping sign when the 
%order of coefficient of the function argument not changed  
Aestroots = polyeig(Aestcell{:}); 
 
%Calculate the number of roots with positive damping (ie, that appear 
%within the unit circle) 
 
no_st_roots = length(find(abs(Aestroots) < 1)); 
 
Aestroots = reshape(Aestroots,na,s); 
 
%Extract X matrix polynomial coefficients 
Bestvec = nonzeros(hest2mat(na*s+1:na*s + nb*m*s + m*s,:)’); 
 
if size(Bestvec,1)*size(Bestvec,2) ~= s*m*(nb+1) 
    error(’Incorrect structure estimated for X matrix’) 
end 
 
Best3D = reshape(Bestvec,s,m,nb+1); 
 
Bmat = Best3D; 
 
%---------------------------------------------------------------------- 
%Stage 4 extract updated C matrix 
 
Hsize = size(Hyestvec,3); 
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%form matrix of V coefficients 
blokAmat = cell(Hsize,nc+1); 
blokAmat(:) = {zeros(s,s)}; 
 
for ii = 1:Hsize 
    %define limits of convolution 
    aa = max(1,ii + 1 - (na+1)); 
    bb = min(ii,nc+1); 
    jj = aa; 
    while (jj <= ii)&&(jj <= bb) 
        blokAmat{ii,jj} = Aest3D(:,:,ii + 1 - jj); 
        jj = jj+1; 
    end 
end 
 
blokAmat = cell2mat(blokAmat); 
 
Hyestvec_2 = reshape(Hyestvec,s,Hsize*s)’; 
 
Cmat = blokAmat\reshape(Hyestvec,s,Hsize*s)’; 
 
Cmat = reshape(Cmat’,s,s,nc+1); 
 
 
%Stabilise Cmat 
tempC = cell(1,s); 
staCmat = zeros(size(Cmat)); 
for ii = 1:s 
    tempC{1,ii} = reshape(Cmat(ii,ii,1:nc+1),1,nc + 1); 
    tempC{1,ii} = polystab(tempC{1,ii}); 
    staCmat(ii,ii,1:nc+1) = reshape(tempC{1,ii},1,1,nc+1); 
end 
 
Cmat = staCmat; 
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function [wtbac,inncovrev,BICrev,BICrev2,inn_cov_ms_av_b,inn_cov_ms_det_b]  
= RC_innov4(Amat,Bmat,Cmat,yn,fn,Ts,Tt) 
 
%Function to calculate the innovations covariance, BIC, modified BIC and 
%covariance functions of innovations sequence 
 
%Define system matrices 
Aest3D = Amat; 
Best3D = Bmat; 
Cest23D = Cmat; 
 
%Define N,s,m 
N = size(yn,2); 
s = size(yn,1); 
m = size(fn,1); 
 
%Define order of system matrices 
na = size(Aest3D,3) - 1; 
nb = size(Best3D,3) - 1; 
nc = size(Cest23D,3) - 1; 
 
Ccell_tempbac = cell(nc+1,1); 
for ii = 1:nc+1  
    Ccell_tempbac{ii,1} = Cest23D(:,:,ii); 
end 
 
%Construct Yf matrix 
Yf = cell(1,s); 
for kk = 1:s 
    Yfi = zeros(s,s,N); 
    for ii = 1:N 
        jj = 1; 
        while (jj <= nc+1)&&(jj <=ii) 
            Yfi(:,:,ii) = Yfi(:,:,ii) + yn(kk,ii - jj + 
1)*Cest23D(:,:,jj); 
            jj = jj + 1; 
        end 
    end 
    Yf{1,kk} = Yfi; 
end 
Yf = cell2mat(Yf); 
       
 
%Construct Ff matrix 
Ff = cell(1,m); 
for kk = 1:m 
    Ffi = zeros(s,s,N); 
    for ii = 1:N 
        jj = 1; 
        while (jj <= nc+1)&&(jj <=ii) 
            Ffi(:,:,ii) = Ffi(:,:,ii) + fn(kk,ii - jj + 
1)*Cest23D(:,:,jj); 
            jj = jj + 1; 
        end 
    end 
    Ff{1,kk} = Ffi; 
end 
Ff = cell2mat(Ff); 
 
%---------------------------------------------------------------------- 
%Recursive estimation of ARMAX prediction errors for BACKWARDS ARMAX model 
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%i.e using the original estimated parameter matrices and REVERSED time 
%series. Note that the estimated system modes will be unstable and may 
lead 
%to numerical instability 
 
%Construct Pt  
n1 = max(na,nb); 
 
Avec = reshape(Amat,na*s^2+s^2,1); 
Bvec=  reshape(Bmat,nb*m*s + m*s,1); 
 
wtbac = zeros(s,N-n1); 
AYfbac = zeros(s,N-n1); 
BFfbac = zeros(s,N-n1); 
 
%Calculate innovations sequence 
for tt = 1:N-n1  
    Yfvec = reshape(Yf(:,:,tt:tt+na),s,na*s^2 + s^2); 
 
    Ffvec = reshape(Ff(:,:,tt:tt+nb),s,nb*m*s + m*s); 
     
    AYfbac(:,tt) = Yfvec*Avec; 
     
    BFfbac(:,tt) = Ffvec*Bvec; 
     
    wtbac(:,tt) = BFfbac(:,tt) - AYfbac(:,tt); 
end 
 
%---------------------------------------------------------------------- 
 
%innovations covariance for reverse innovations covariance 
 
inncovsumrev = zeros(s,s); 
for tt = 1:N-max([na,nb,nc]) 
    inncovsumrev = inncovsumrev + wtbac(:,tt)*wtbac(:,tt)’; 
end 
 
inncovrev = inncovsumrev/(N-(max([na,nb,nc])+1)); 
 
 
%Calculation of BIC for reverse innovations covariance 
 
dbicrev = na*s^2 + nb*s*m + nc*s^2; 
BICrev = log(det(abs(inncovrev))) + dbicrev*(log(N)/N); 
BICrev2 = log(det(abs(inncovrev))); 
 
%---------------------------------------------------------------------- 
 
%Calculate sum of mean-square covariance sequence and determinant of 
%mean-square covariance sequence matrix 
 
%wtbac: 
inn_cov_b = xcorr(wtbac’); 
inn_cov_ms_b = mean(inn_cov_b.^2); 
inn_cov_ms_av_b = sum(inn_cov_ms_b’) - trace(reshape(inn_cov_ms_b,s,s)); 
inn_cov_ms_det_b = det(reshape(inn_cov_ms_b,s,s)’); 
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%Synthesise FRFs and calculate modal parameters from estimated ARMAX 
models 
 
%set the number of measurement files 
n_fils = 15; 
 
%set file name for loading ARMAX model data and for saving FRF and mode 
%shape data 
dat_file_name = [’MISO_ARMAX_HT212_1_v1_m’]; 
FRF_file_name = [dat_file_name ’_FRFs’]; 
Mod_file_name = [dat_file_name ’_modes’]; 
load([dat_file_name ’1_full’]) 
 
%arrange columns of mod_par_cell into order of measurement points 
pos_vec = 1:31; 
 
%set driving pt vector, which should be a 1xm vector with elements 
%corresponding to the excitation points 
drv_pt = [29 9]; 
 
%variables to store FRF magnitude and phase data 
magcell = cell(1,n_fils); 
phacell = cell(1,n_fils); 
 
s = size(Amat,1); 
m = size(Bmat,2); 
 
%initialise cell array to store modal parameters 
n_meas = 31; 
pol_res_cell = cell(1,n_meas,m); 
 
%model selection for each results file 
res_cell_ind = 0; 
for kk = 1:n_fils 
    %load file 
    file_name = [dat_file_name num2str(kk) ’_full’] 
    load(file_name) 
     
    [n_mods, n_iters, d_v] = size(parmatcell); 
     
    %NPDP 
    [ia,ib] = max(stArootsmat(:,:)’); 
    [ic,id] = max(ia); 
 
    [id,ib(id)] 
     
    Amat = parmatcell{id,ib(id) + 1,1}; 
    Bmat = parmatcell{id,ib(id) + 1,2}; 
    Cmat = parmatcell{id,ib(id) + 1,3}; 
     
    na = size(Amat,3) - 1; 
    nb = size(Bmat,3) - 1; 
    s = size(Amat,1); 
    m = size(Bmat,2); 
     
    %reverse AR matrix 
    Ana_inv = inv(Amat(:,:,na + 1)); 
    Amat_rev = zeros(size(Amat)); 
    for jj = 1:na + 1 
        Amat_rev(:,:,jj) = Ana_inv*Amat(:,:,na + 2 - jj); 
    end 
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    %set the reverse A(0) to Is 
    Amat_rev(:,:,1) = eye(s,s); 
 
    %reverse X matrix  
    Bmat_rev = zeros(size(Bmat)); 
    for jj = 1:nb + 1 
        Bmat_rev(:,:,jj) = Ana_inv*Bmat(:,:,nb + 2 - jj); 
    end 
     
    %Calculate natural frequencies, damping, and mode shapes for each SISO 
    %system 
    freqdamprescell = cell(1,s,m); 
    for mm = 1:s 
        Apoly = reshape(Amat_rev(mm,mm,:),1,na + 1); 
        for nn = 1:m 
            Bpoly = reshape(Bmat_rev(mm,nn,:),1,nb + 1); 
            [ttr,ttp,ttk] = residuez(Bpoly,Apoly); 
            nroots = size(ttr,1); 
            wr = zeros(nroots,1); 
            damp = zeros(nroots,1); 
            for i2 = 1:nroots 
               wr(i2,1) = 
(1/Ts)*sqrt(log(ttp(i2,1))*log(conj(ttp(i2,1)))); 
                damp(i2,1) = -
100*log(ttp(i2,1)*conj(ttp(i2,1)))/(2*wr(i2,1)*Ts); 
            end 
            freqdamprescell{1,mm,nn} = [wr/(2*pi),damp,ttr]; 
        end 
         
        for nn = 1:m 
           freqdamprescell{1,mm,nn} = 
sortrows(freqdamprescell{1,mm,nn},1); 
        end 
    end 
     
    pol_res_cell(1,res_cell_ind + 1:res_cell_ind + s,:) = freqdamprescell; 
    res_cell_ind = res_cell_ind + s; 
     
    %Create Matlab sysID ARX model 
    Piezo_1_arx = idarx(Amat_rev,Bmat_rev,Ts); 
     
    %Calculate FRF for specified frequency scale 
    wscale = [0:0.25:0.5/Ts - 0.25]; 
    [mag,phase] = ffplot(Piezo_1_arx,wscale); 
    mag_cell{kk,1} = mag; 
    pha_cell{kk,1} = phase; 
    %dimensions of arguments are as follows (number of outputs)x(number of 
inputs)x(length of w) 
end 
 
%save FRF data 
save(FRF_file_name,’wscale’,’mag_cell’,’pha_cell’) 
 
%form matrices for FRF magnitude data (this only uses data for the first 
%measured excitation 
 
mag_temp = []; 
for kk = 1:n_fils 
    n_outputs = size(mag_cell{kk,1},1); 
    for mm = 1:n_outputs 
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        mag_temp = [mag_temp reshape(mag_cell{kk,1}(mm,1,:),1200,1)]; 
    end 
end 
 
n_resps = size(mag_temp,2); 
 
%form matrices for FRF phase data 
pha_temp = []; 
for kk = 1:n_fils 
    n_outputs = size(mag_cell{kk,1},1); 
    for mm = 1:n_outputs 
        pha_temp = [pha_temp reshape(pha_cell{kk,1}(mm,1,:),1200,1)]; 
    end 
end 
 
%plot FRF data 
figure 
semilogy(wscale,mag_temp) 
xlabel(’Frequency (Hz)’) 
ylabel(’Magnitude ms^{-2}/N’) 
title(’Estimated FRF magnitudes’) 
   
% figure 
% semilogy(wscale,sum(abs(mag_temp’.*sin(pha_temp’)))/n_resps) 
% xlabel(’Frequency (Hz)’) 
% ylabel(’Magnitude m.s^{-2}/N’) 
% title(’Averaged FRF Imaginary Part’) 
%  
% figure 
% semilogy(wscale,sum(abs(mag_temp’.*cos(pha_temp’)))/(n_resps)) 
% xlabel(’Frequency (Hz)’) 
% ylabel(’Magnitude m.s^{-2}/N’) 
% title(’Averaged FRF Real Part’) 
 
figure 
semilogy(wscale,sum((mag_temp’))/(n_resps)) 
xlabel(’Frequency (Hz)’) 
ylabel(’Magnitude m.s^{-2}/N’) 
title(’Averaged FRF Magnitudes’) 
 
 
% %select frequency ranges for modes 
% display([’Select modal peaks, press enter when finished’]) 
% [c_freq,amp] = ginput 
 
%Results estimated for MIMO E2 data (used for testing purposes, i.e. to 
%ensure repeatability of results) 
c_freq = [73.89; 77.3; 85.38; 113.62; 143.6; 164.2; 165.85; 186.05; 
201.63; 239.03; 244.78; 263.05; 281.06; 282.9]; 
 
n_bands = size(c_freq,1); 
%use selected frequency ranges to collect modal data 
mod_par_cell = cell(n_bands,n_resps,m); 
for mm = 1:m 
    for nn = 1:n_resps 
        freq_temp = pol_res_cell{1,nn,mm}(:,1); 
        for kk = 1:n_bands 
            [inda,indb] = min(abs(freq_temp - c_freq(kk,1))); 
            %if there is no pole within 2% then set damping and residues 
            %to zero 
            if abs(inda/c_freq(kk,1)) < 0.02 
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                mod_par_cell{kk,nn,mm} = pol_res_cell{1,nn,mm}(indb,:); 
            else 
                mod_par_cell{kk,nn,mm} = [NaN NaN NaN]; 
            end 
        end 
    end 
end 
 
mod_par_mat = cell2mat(mod_par_cell); 
 
%sort data according to measurement position 
pos_vec2 = pos_vec; 
[pos_vec2,ind_s] = sort(pos_vec2); 
 
mod_par_cell_temp = mod_par_cell; 
 
for mm = 1:m 
    for kk = 1:size(pos_vec2,2) 
        mod_par_cell(:,kk,mm) = mod_par_cell_temp(:,ind_s(kk),mm); 
    end 
end 
 
drv_pt_ind = zeros(1,m); 
for mm =1:m 
    drv_temp = find(pos_vec2 == drv_pt(1,mm)); 
    drv_pt_ind(1,mm) = drv_temp(1); 
end 
 
mod_par_mat = cell2mat(mod_par_cell); 
 
%calculate average modal parameters and variance 
av_freq = zeros(n_bands,1); 
std_freq = zeros(n_bands,1); 
 
av_damp = zeros(n_bands,1); 
std_damp = zeros(n_bands,1); 
 
av_damp2 = zeros(n_bands,1); 
std_damp2 = zeros(n_bands,1);  
 
for kk = 1:1 
    for mm = 1:n_bands 
       %modal frequency 
       av_freq(mm,kk) = nanmean(mod_par_mat(mm,[1:3:3*n_resps],kk)); 
       std_freq(mm,1) = nanstd(mod_par_mat(mm,[1:3:3*n_resps],kk)); 
       temp_damp_vec = mod_par_mat(mm,[2:3:3*n_resps],kk); 
       %only positive damped modes 
       av_damp(mm,kk) = nanmean(temp_damp_vec(find(temp_damp_vec > 0))); 
       std_damp(mm,1) = nanstd(temp_damp_vec(find(temp_damp_vec > 0))); 
       %all identified modes 
       av_damp2(mm,kk) = nanmean(temp_damp_vec); 
       std_damp2(mm,1) = nanstd(temp_damp_vec); 
   end 
end 
 
[av_freq av_damp av_damp2] 
     
%scaled mode shapes. If no point-mobility residue is calculated for a 
%particular mode then the mode is left unscaled. 
unsc_mod_cell = cell(n_bands,m); 
sc_mod_cell2 = cell(n_bands,m); 
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figure 
for kk = 1:m 
    for mm = 1:n_bands 
        if mod_par_mat(mm,drv_pt_ind(kk)*3,kk) == 0; 
            mod_scale = 1; 
            d2c_scale = 1; 
        else 
            mod_scale = (mod_par_mat(mm,drv_pt_ind(kk)*3,kk)); 
        end 
        %scaled shapes  
        mod_temp3 = mod_par_mat(mm,[3:3:3*n_resps],kk)/mod_scale; 
        mod_temp3 = abs(mod_temp3).*cos(angle(mod_temp3)); 
        %unscaled shapes 
        mod_temp1 = mod_par_mat(mm,[3:3:3*n_resps],kk); 
        mod_temp1 = abs(mod_temp1).*cos(angle(mod_temp1)); 
        unsc_mod_cell{mm,kk} = mod_temp1; 
        sc_mod_cell2{mm,kk} = mod_temp3; 
        plot(reshape(mod_temp3’,n_meas,1)) 
        title([’Mode ’ int2str(mm) ’: ’ num2str(av_freq(mm,1)) ’ Hz’]) 
        pause 
    end 
end 
 
% plot estimated frequency values for each mode and model 
 
% figure 
% for kk = 1:m 
%     for mm = 1:n_bands 
%         plot(pos_vec2,mod_par_mat(mm,[1:3:3*n_resps],kk)) 
%         xlabel(’Measurement Point’) 
%         ylabel(’Modal Frequency (Hz)’) 
%         title([’Mode ’ int2str(mm) ’: ’ num2str(av_freq(mm,1)) ’ Hz’]) 
%         pause 
%     end 
% end 
%  
%  
% %plot estimated damping values for each mode and each model 
% figure 
% for kk = 1:m 
%     for mm = 1:n_bands 
%         plot(pos_vec2,mod_par_mat(mm,[2:3:3*n_resps],kk)) 
%         xlabel(’Measurement Point’) 
%         ylabel(’Modal Damping (%)’) 
%         title([’Mode ’ int2str(mm) ’: ’ num2str(av_freq(mm,1)) ’ Hz’]) 
%         pause 
%     end 
% end 
 
save(Mod_file_name,’n_bands’,’pos_vec2’,’mod_par_mat’,’av_freq’,’av_damp’,
’av_damp2’,’std_freq’,’std_damp’,’std_damp2’,’unsc_mod_cell’,’sc_mod_cell2
’)
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