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Abstract

Methods for comprehensive structural dynamic analysis generally employ input-output
modal analysis with a mathematical model of structural vibration using excitation and
response data. Recently operational modal analysis methods using only vibration
response data have been developed. In this thesis, both input-output and operational
modal analysis, in the presence of significant unmeasured excitations, is considered.
This situation arises when a test structure cannot be effectively isolated from ambient
excitations or where the operating environment imposes dynamically-important

boundary conditions.

The limitations of existing deterministic frequency-domain methods are assessed. A
novel time-domain estimation algorithm, based on the estimation of a discrete-time
autoregressive moving average with exogenous excitation (ARMAX) model, is
proposed. It includes a stochastic component to explicitly account for unmeasured
excitations and measurement noise. A criterion, based on the sign of modal damping, is
incorporated to distinguish vibration modes from spurious modes due to unmeasured
excitations and measurement noise, and to identify the most complete set of modal

parameters from a group of estimated models.

Numerical tests demonstrate that the proposed algorithm effectively identifies vibration
modes even with significant unmeasured random and periodic excitations. Random
noise is superimposed on response measurements in all tests. Simulated systems with
low modal damping, closely spaced modes and high modal damping are considered
independently. The accuracy of estimated modal parameters is good except for degrees-
of-freedom with a low response level but this could be overcome by appropriate

placement of excitation and response measurement points.

These observations are reflected in experimental tests that include unmeasured periodic
excitations over 200% the level of measured excitations, unmeasured random
excitations at 90% the level of measured excitations, and the superposition of periodic
and random unmeasured excitations. Results indicate advantages of the proposed
algorithm over a deterministic frequency domain algorithm. Piezoceramic plates are

used for structural excitation in one experimental case and the limitations of distributed

Vv



excitation for broadband analysis are observed and characterised in terms of actuator

geometry and modal deformation.
The ARMAX algorithm is extended for use with response measurements exclusively.

Numerical and experimental tests demonstrate its performance using time series data

and correlation functions cal culated from response measurements.
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Chapter 1 Introduction

1.1 Introduction

The work described in this thesis is motivated by the longer term goal of being able to
predict the effects of structural modification on helicopter structures. In order to achieve
this goal, it is essential to develop methodologies that could be used to establish a good
dynamics model of a helicopter structure. The dynamic behaviour or vibration response
of a helicopter fuselage is also a critical consideration in the design, operation, and
ongoing maintenance of the helicopter. The general aim, therefore, is to develop
experimental and analytical tools for more accurate and comprehensive analysis of
helicopter structural dynamics, particularly during flight. This would ultimately allow a
wider range of predictive work to be carried out with analytical or numerical models
given that these models could initially be validated and updated using good quality
experimental data. The work in this thesis is largely concerned with experimental
methods that yield accurate structural dynamic properties and have the potential to be
used for grounded helicopters or for helicoptersin flight.

A variety of experimental, analytical and numerical methods are currently used to study
the dynamic behaviour of helicopter fuselage structures. Historically, the most basic
requirement of structural dynamics analysis was to identify structura resonances and
ensure they were not close to the frequency or harmonics of main-rotor excitation forces
[1]. The main-rotor loads are periodic and occur at the rotor angular frequency (Q) and
its harmonics, as well as integer multiples of the blade pass frequency, denoted k-b-€Q,
wherek =1, 2, 3, ..., and b isthe number of rotor blades. In addition to these loads,
other sources of vibration are summarised by Bielawa [2]: excitation by pressure pulses
from main-rotor blade downwash and trailing vortices, which aso occur at frequencies
of k-b-Q; excitation due to other rotating components, for example, engines, gearboxes
and tail-rotor drive shafts; and excitation by aerodynamic sources like buffeting from
turbulent flow. The effect of these loads on the helicopter fuselage and the coupled
dynamic behaviour of the rotor and fuselage are extremely complex phenomena and

have attracted a range of experimental and numerical analysis methods|[1, 2].



Design and modification of helicopter fuselages usually relies on finite-element models
(FEMs) for detailed static and dynamic anaysis [3-7]. FEMs are necessarily simplified
models and in many cases do not include accurate parameter specifications for joints
and other secondary structural elements, for example engines and drive train
components, main and tail rotors. Model updating can be employed to improve the
accuracy of FEMs and is obviously dependent on the accuracy of experimental data and
the capacity of the FEM to account for boundary conditions and uncertainties in
structural configurations. Several model updating methods have been developed over
the last few years, ranging from manual modification of FEM parameters to more
sophisticated techniques based on intelligent algorithms [8-14]. An issue with updating
helicopter FEMs is obtaining experimental data that accurately represents the dynamic
behaviour of helicopters, as this is dependent on the configuration and state (flying,
grounded etc.) of the helicopter. A number of experimental techniques based on modal
analysis can be used to obtain data for a grounded helicopter [5, 7, 15-18]; however,
these techniques cannot be readily applied to a helicopter in flight. An aternative
approach, termed response-only or operational modal analysis, only requires response
measurements to estimate the dynamic behaviour of structures. To date, these methods
have been applied successfully to civil structures, for example bridges and towers [19,
20], as well as aircraft [20-24], including helicopters [25, 26]. Results from these
response-only methods can be used in addition to input-output modal analysis results

for updating of FEMSs, or direct updating of modal parameters[27, 28].

An area that has not been widely considered is the application of modal analysis
methods to cases where significant unmeasured excitations are present in addition to
measured excitations applied to the structure under test. Such a technique could be
applied in the analysis of structures in their operational environment, given that a wide
range of ambient (unmeasured) excitation types could be accounted for. This would be
useful for the study of helicopter structural dynamics as it would allow modal analysis
to be carried out in a wide range of operating conditions. while the helicopter is
grounded and possibly stripped down or when the helicopter is in flight. A subsequent
issue that arises is the application of a measurable excitation force. Existing methods
include electrodynamic or hydraulic actuators, although the use of piezoceramic

actuators could be advantageous because of their relatively small size.



Therefore, in this thesis, the problem of structural dynamics analysis in the presence of
unmeasured excitations using experimental modal analysis is considered. Preliminary
investigations of existing experimental and numerical methods are carried out before in-
depth analysis of a modal analysis algorithm for use with excitation and response data
obtained in the presence of significant unmeasured excitations. Piezoceramic actuators
are considered as an alternative method for structural excitation in experimental modal
analysis, the unique characteristics of piezoceramic actuators could alow distributed

excitation of alarge structure in operational conditions.

1.2 ThesisOutline

In Chapters 2 and 3, existing experimental and numerical analysis methods are
reviewed. Input-output modal parameter estimation algorithms, as well as signal
processing methods used to enhance signal-to-noise ratio (s/n) of measured data, are
discussed in Chapter 3. Two experimental case studies are considered: modal testing of
an aluminium beam and modal testing of a helicopter-like structure. The experimental
case studies demonstrate the use of an existing frequency-domain moda analysis
technique used in conjunction with periodic excitation and synchronous averaging. The
effect of unmeasured excitations on estimated results is investigated and the structural
excitation of the aluminium beam using piezoceramic actuators is demonstrated as an

alternative to typical excitation methods.

In Chapter 3, FEM updating methods are reviewed and experimenta results from the
helicopter-like structure are used to gain insight into a number of common issues in
FEM updating: correlation of experimental and FEM dynamic behaviour; FEM
updating in the presence of non-linear behaviour and poor measurements; and the use of
updated FEM s to predict the effects of structural modifications.

A more formal analysis of piezoceramic plates for structural excitation in experimental
modal analysis is presented in Chapter 4. An approximate analytical model is derived
for pairs of actuators applied to an aluminium beam. The effectiveness of pairs of
actuators in exciting vibration modes is assessed in order to gain insight into
experimental results discussed in Chapter 2. In addition, the extraction of mode shapes
from measured or estimated transfer functions is discussed. The approximate analytical

3



model is verified by FEM results and experimental measurements on a free-free
aluminium beam. The approximate analytical model is then used to predict the
effectiveness of actuator pairs in exciting modes of a cantilever auminium beam used

for experiments discussed in Chapter 6.

In Chapter 5, the use of system identification techniques for modal parameter estimation
is investigated. A novel algorithm is derived based on the estimation of an
autoregressive moving average with exogenous excitation (ARMAX) model. This new
algorithm explicitly models unmeasured excitations and is therefore appropriate for
situations where the structure under test cannot be effectively isolated from other
sources of excitation, or where the boundary conditions present during operation impose
important dynamic constraints on the structure under test. As noted above, these
situations are encountered in the study of helicopter structural dynamics. The algorithm
includes tools to distinguish vibration modes from spurious modes, which arise in cases
with significant measurement noise and also when unmeasured excitations include
periodic components. In addition, a novel model selection criterion is incorporated into

the algorithm.

Numerical tests on a simple lumped mass system are discussed in Chapter 6 to
demonstrate the performance of the ARMAX algorithm in identifying modal parameters
in the presence of measurement noise and significant unmeasured periodic and random
excitations. Further tests demonstrate the algorithm’s effectiveness for systems with
high damping and also for cases with closely spaced modes where the frequency of an
unmeasured periodic excitation is close to a modal natural frequency. A method to
incorporate the frequencies of unmeasured periodic excitations into the estimation
algorithm is also introduced and tested using simulated systems. Experimental testing of
the algorithm is conducted using data obtained from a cantilever aluminium beam.
Cases including unmeasured periodic and random excitation are considered and

piezoceramic actuators are used for structural excitation in these cases.

Further testing of the ARMAX algorithm is reported in Chapter 7. A helicopter-like
structure is used as a representative case and the effect of unmeasured random and
periodic excitations is again considered. Closely spaced modes, local modes, and

unmeasured periodic excitations at frequencies close to vibration modes are
4



characteristics of this experimental case. Periodic measured excitation allows
synchronous averaging of measured data and the effect of this method in improving the
accuracy of estimated modal parameters is assessed. Results from an existing frequency
domain modal analysis method are used to compare with results from the ARMAX

algorithm.

A preliminary investigation into the adaptation of the ARMAX estimation a gorithm for
use with response measurements in the absence of any measured excitation is reported
in Chapter 8. Two adapted algorithms are proposed and tested with simulated and also

experimental data.

Concluding remarks, a summary of mgor work, and recommendations for future work

are included in Chapter 9.



Chapter 2 Modal Analysis Techniques

2.1 Introduction

The introduction in Chapter 1 suggested that modal analysis is a principal experimental
technique used for analysis of helicopter structural dynamics. In the following section,
the theoretical concepts of modal analysis and some of the common algorithms for
modal parameter estimation are reviewed. Time-domain or synchronous averaging is a
method for improving signal-to-noise ratio (s/n) of measured data and the theory of
time-domain averaging is reviewed in section 2.3. Two experimental case studies are
discussed in sections 2.4 and 2.5. These studies investigate the use of periodic impulse
excitation and synchronous averaging as a means of improving signal-to-noise ratio of
measurements where a component of the excitation is not explicitly measured. The use
of piezoceramic actuators for structural excitation in modal analysis is demonstrated in

the first experimental case study.

2.2 Review of Modal Parameter Estimation Techniques

Experimental modal analysis is a method for comprehensive analysis of a structure’s
dynamic behaviour. It involves measuring vibration response due to a known excitation
force and processing these data to estimate a set of modal parameters (the modal
model), namely natural frequencies, damping, and mode shapes, which summarise the

structural dynamics in a given frequency range.

The elastic dynamic behaviour of a structure is assumed to be governed by an n degree-

of-freedom (DOF) linear differential equation [29]:
M- X(t)+D-x(t)+K -x(t) =f(t), (2.1)

which is also known as the physical or spatial model. f(t) is a vector of forces acting at
each DOF and x(t) and its time derivatives correspond to the displacement, velocity, and
acceleration at each DOF. M and K are the real, symmetric mass and stiffness matrices

and D is the real, symmetric damping matrix that describes the equivalent viscous
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damping of the system. A transfer function relating the excitation and response vectors
is established by taking the Laplace transform of equation (2.1), assuming zero initial
conditions:

Ms? +Cs+K X (s)}={F(s)}, 2.2)
and rearranging;

{X()}=HE)HF ()= [M s?+Cs+K }l {F(s)}, (2.3)

where H(s) is the transfer function matrix. The transfer function matrix can be

factorised into [29]

H(s)= Z{ S[ﬂr + S[ﬂ ; (2.4)

.

A is a transfer function pole, [R ] is the residue matrix, and (-)" denotes the complex
conjugate. Frequency and damping information is extracted from the transfer function
poles using the relation A 4 =—¢ @, + jo, J1-¢*; @, and ¢, are the undamped

natural frequency and the damping ratio of the rth mode, respectively.

The frequency response function (FRF) matrix is obtained by substituting s = jw into

equation (2.4)

jo—A

v

H(jw)=il’(1){ }Lr . (2.5)

The modal residue matrix is factorised into modal participation factors and mode shape
vectors: [R ]=L, @7 ; or Ry = L%®Y) for the participation factor and modal coefficient

Pa ~ pq

between points p and q for mode r. Mode shapes are defined as



o ={ 7 (2.6)

where @, is the pth column of ®, , but can also be defined in terms of the modal

residues

d =4 2L (2.7)

Equation (2.7) implies that the modal participation factor for that reference point

(excitation or response) is normalised to unity.

A range of methods to identify modal parameters from measured data have been
developed, and these can be broadly grouped by the type of the mathematical model,
equivalent to equations (2.1) - (2.5), that is used as a basis for modal parameter
estimation.

The simplest and perhaps most intuitively attractive method is the peak picking method
[30, 31]. For alightly damped structure with well-spaced modes, the resonant peaks will
be easily identifiable in the FRF. An estimate of damping can be obtained by a number
methods, for example, measuring half-power (3dB) bandwidth [30, 31], or by
transforming a band-limited (about the resonant peak) FRF into the time domain and
using logarithmic decrement relationships. For the case of light damping, equation (2.5)

is approximated by

n

H(jo )= Zh, (2.8)

=1 61 @

which is solved for the modal residue Ry using the estimated natural frequency and

damping.
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This method is also categorised as a single degree-of-freedom (SDOF) method, which
follows from the fact that it uses a SDOF model as a basis for identifying modal
parameters. While this method is quick to implement with spectrum analysers, the
accuracy of results suffers due to limited resolution of the FRF, the presence of closely

spaced or coupled modes, and high modal damping.

The complex modal indicator function (CMIF) [32, 33] isamodal parameter estimation
method based on the singular value decomposition of the FRF matrix. The SVD of the
FRF matrix is defined as[32]

H(jo)=U(jo)z(jo)V" (jo), (2.9)

where U(jw) and V(jw) are the left and right singular vector matrices, X(jw) is a

diagonal matrix of singular values, and (-)" is the complex conjugate transpose.
Evaluating equation (2.9) at a natural frequency and comparing with equation (2.5)
shows that the left singular vectors correspond to the mode shapes and the right singular
vectors correspond to the modal participation factors. Plotting the singular values as a
function of frequency reveals that local maxima correspond to natural frequencies. The
CMIF also reveals the presence of repeated modes for the cases where the number of
reference channels (columns of the LHS equation 2.9) is greater or equal to the degree
of multiplicity of the repeated modes [32, 33]. Shih et al [32] demonstrated this
technique in an experimental study of a circular plate. The multiple repeated roots were
clearly shown by the CMIF, and estimated modal parameters compared well with
results obtained from a polyreference time domain algorithm. The authors noted that
initial pole estimates were limited by the resolution of the FRF and a second stage was
required to obtain more accurate frequency and damping estimates, as well as properly
scaled mode shapes. The SVD in the CMIF method rejects the effects of measurement
noise and pre-processing of measured data, for example using spectral averaging, can

enhance the accuracy of the CMIF when used with noisy measurements.

Other approaches to modal parameter estimation have been inspired by system
identification theory. These have been developed independently and are based on both

frequency domain and time domain techniques. It has since been shown that these
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methods can be derived from a general matrix polynomial model of a dynamic system

[33, 34], and a summary of this approach istaken from Allemang and Brown [33].

Consider a rational polynomia description of a FRF between points p and g on a

structure:

_ Xp(jw)= ,Bn(]COT+ n—l(jw)p_l"'"'+ﬁ1(jw)1+ﬂo(ja))o
) Fq(jw) am(jw)m+0‘m—1(jw)m_l+"'+a’l(ja))1+a0(jw)°' (2.10)

H,,(jo
Equation (2.10) is rewritten as a linear combination of the excitation and response,

g“k(iw)kxp(iwﬁ ;ﬁk(jw)qu(jw), (2.12)

and further rearranged to yield an expression in terms of unknown coefficients and a

FRF (which can easily be measured):

i“k(jw) Hpq(iw)=i/5k(1'w) : (2.12)

The single-input single-output (SISO) model in equation (2.12) can be generalised to
the multi ple-input multiple-output (MIMO) case

3 lu ]G0} G0l 3 10| (213)

k=0

Equation (2.12) and (2.13) are the basis for a number of frequency domain estimation
algorithms, for example rational fraction polynomia (RFP) [35] and orthogonal
polynomial [36, 37]. It should be noted that frequency domain models like equation
(2.13) can model the effects of out-of-band modes by increasing the order of the RHS
polynomial, which effectively includes ‘residual’ terms in equation (2.10). It is well
known [31] that this has a significant effect on the accuracy of estimated modal

parameters within the analysis frequency band.
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An anal ogous devel opment can be carried out in the time domain. A rational polynomial

representation of the discrete-time transfer function is[30]

)Xo _ b2 +0, @) e n Y +by Y
D T AT @ s a1 .

or

@@ +a,.@ "+ + @ +1)X, ()= b, +b,, @+ + b (@ + b, F, )
(2.15)
Applying the inverse z-transform to equation (2.15) yields the time-domain expression

Xt]+axft-1]+...+a xt-m+1]+a xft —m] (2.16)
=hflt]+bflt-1]+---+b, ,flt—n+1+b fft-n],

which can be generalised to the MIMO case
Y A xlt-k]=Y B, flt—Kk]. (2.17)
k=0 k=0

Equation (2.16) and its vector equivalent are referred to as autoregressive with

exogenous excitation (ARX) models.

Impulse response or free decay measurements are modelled by equation (2.16) after
setting the RHS to zero. This is the starting point for the polyreference method, least
squares complex exponential methods (LSCE), and lbrahim Time Domain (ITD)
method [34].

The polyreference method solves the coefficients of the system [34]

11



h(k)+A, _hk-1)+--+Ahk-p)=elk), (2.18)

where h(k) is the kth sample of an impulse response function (IRF). The modal

parameters are obtained from the eigenvalue decomposition of the companion matrix,

which isformed from the estimated coefficients:

[0 | 0 0 ]
0 0 | 0
A=| 1 rE (2.19)
0 0 0 |
L Ao A —A, -A p-1
A, = H{” 0,}11-1 (2.20)
O p

where p is a diagonal matrix of discrete-time eigenvalues corresponding to vibration
modes, and u, = e*™ isadiagonal element. p’ corresponds to noise eigenvalues, which

result from setting the order of equation (2.18) higher than the number of modes

represented in measured data. M ode shapes are obtained from

m=1 " (2.21)

AP
where IT, istheith column of IT.

The LSCE method is the same as the polyreference method, but can be derived from the
fact that IRFs are sums of complex exponential functions [30]. The ITD method

involves setting up a system of equations from impulse response data [30]
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2N
xt+7)=) ¢, " (2.22)
r=1

for a number of response measurement points, i, time instantst, and delays, r, such that

xt+7) ... x(t,+7) e™’ 0 (e .. ¢
=[x ... okl
X t+7) ... Xy +7) 0 gl | el glantan
(2.23)
or
X =WAA (2.24)

The following system of equationsis set up using IRF data at different time delays, 7=
0,1,2
X, X, b 4
V, = , V, = , V= : (2.25)
X, X, YA

and it can be shown [30] that the following eigenvalue problem exists if V1 is non-

singular and there are no repeated eigenval ues.
V,V, v =vA (2.26)

Mode shape information is obtained from the upper half of v, and global properties are

extracted from the eigenvalues.

The eigensystem realisation algorithm (ERA) is another time-domain modal parameter
estimation algorithm, which has been shown to be a special case of state-space based
modal parameter estimation [38]. The ERA agorithm is summarised from Petsounis

and Fassois[39].
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A general state-space representation of a dynamic system relating excitation and
response data is
xft+1]= A@)x[t]+ BO) [t],

(2.27)
y[t]=Cc@)x[t]+ DO)x[t].

where x[t] is the state vector, A, B, C, D, are the state, input, output and direct
transmission matrices, respectively, whose unknown elements are summarised by 6, the
parameter vector. f[t] is the mrdimensional excitation vector and y[t] is the s
dimensional response vector. The ERA estimates modal parameters by relating the

system matricesto a SVD of a Hankel matrix formed from impul se response data;

Y] Yik+1] ... Y]+p-1]

Yik+1] YR+2] .. Y+ 5]

Hlt-1]= : (2.28)

Yisa1] Yisal .. Yitasp_2]

where Y[t]=[ y*kt] y?[t] ... y™[t] ] is a vector containing impulse response data,
y'[t], at time t due to an input at point i. ¢, S are chosen depending on the number of

vibration modes and the expected level of noise present in the measured data.

The SVD of the Hankel matrix is
H[o]=RZS; (2.29)

R and S are the matrices of left and right singular vectors, respectively, and X is a
diagonal matrix of singular values. These matrices can be partitioned according to the
magnitude of singular values; for ideal data, there will be n non-zero singular values
corresponding to the n vibration modes. Matrices formed from the non-zero singular
values and the corresponding left and right singular vectors are used in subsequent

operations.

The state-space system matrices are related to the SVD by the following equations
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A=xY2.R".H[1] 5. 27¥2
B=x".9-E, (2.30)

C=E,-R".X"?,

Em and Es are matrices containing zeros except for the top element, which contain
identity matrices of dimenson m x m and s x s, respectively. Modal parameters are
obtained from the eigenvalue decomposition of a companion matrix formed from the
state-matrices, similar to equations (2.19) — (2.21). The resulting eigenvector matrix is
transformed to mode shape data at measurement points by pre-multiplication by the
output matrix, C, and modal participation factors are obtained via the expression

L=¥"B.

Studies have shown the effectiveness of the ERA method for cases where the signal-to-
noise ratio (s/n) is favourable [39] and averaging of FRFs can be used to improve the s/n
of data before transformation to IRFs. Modifications to the ERA method, for example
the ERA/DC method introduced by Lew et al [40], attempt to address this problem by
replacing the Hankel matrix by a new matrix with correlation function elements. This is
similar to response-only methods based on state-space models (with the ERA as a
special case), and will be discussed in Chapter 8. More recently, a range of subspace
estimation algorithms have been compared by Abdelghani et al [41] using data
simulating the dynamic behaviour of a mast structure. These algorithms are more robust
than the ERA algorithm for non-white noise excitation sequences, and also perform
more effectively in the presence of measurement noise. More information on state-space

estimation algorithms can be found in VVan Overschee and De Moor [42].

Recall the ARX model in equation (2.17). It can be extended to include a stochastic
component, w[t], which is white noise and can be considered as the model error or an

unmeasured disturbance, as indicated in equation (2.31).

Y A, ~x[t—k]:zn:Bk Flt—k]+wt] (2.31)
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An extension of the ARX model involves applying a moving average to w[t] to more
effectively model non-white noise disturbances, resulting in an autoregressive moving
average with exogenous excitation (ARMAX) model [43], which is described by
equation (2.32).

ZAk-x[t—k]:zn:Bk-f[t—k]+zp:Ck-W[t—k] (2.32)

k=0 k=0

A large body of work has been carried out in the area of system identification
techniques applied to time-series models. In particular, the estimation of deterministic
ARMA or ARX models, as well as ARMAX models, using a wide range of techniques
for example least-squares, maximum likelihood, and instrumental variable estimation

[43, 44]. Studies that apply these techniques to structural dynamics are considered here.

Batill and Hollkamp [45] introduced a two stage algorithm for estimation of ARMA
(ARX) models. The first stage estimated a higher-order backwards AR model from free
decay (impulse) responses. The backwards AR model was estimated from reversed
time-series data; i.e. decaying responses became responses with increasing amplitude.
The backwards models are distinguished from standard or forwards AR (or ARX)
models, which are estimated from non-reversed time-series data. The backwards AR
model enabled vibration poles to be distinguished from spurious numerical poles and
the vibration poles were used to form a reduced AR model. The MA (or X) matrix of
the model was estimated using excitation and response data from a second test and the
reduced AR model. This agorithm was adapted by Hollkamp and Batill [46] into a
single-stage algorithm estimating a backwards ARMA (ARX) model. The effectiveness

of the method was demonstrated using experimental datafrom a composite sailplane.

Cooper [47] also studied the use of backwards models for estimation of modal
parameters. A number of |east-squares estimation schemes were applied to forwards and
backwards autoregressive models and tested using simulated and experimental impulse
response data. The experimental results showed that the use of backwards models
produced accurate estimates of modal parameters with the additional benefit that
vibration modes could be easily distinguished from numerical modes for models with

over-specified model orders.
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Yang et a [34] represented a multiple DOF vibrating system by a discrete-time state-
space model and derived an equivalent ARX model. It was shown that ARMAX-based
and polyreference algorithms followed from the basic MIMO ARX representation by
adopting a particular noise model and excitation. The relationships between the MIMO
ARX representation and the ITD, and ERA were also established.

Yun et al [48] discussed a sequential prediction error method for estimating ARMAX
models. This is an iterative technique based on minimising the prediction error of the
model and required initial guesses for unknown model parameters. A number of
different data-weighting methods were considered, as well as a square-root method for
estimating the gain matrix. The authors concluded that these methods improve the
convergence properties of the algorithm in conditions where initial parameter guesses
were poor and where significant noise was present in measured excitation and response
signals. A further conclusion was that the technique was appropriate for structures with
many DOFs, when only a few measurements were taken; however, only a 2 DOF
simulated system and an experimental study of a model 3-story building (considering 3

modes) were discussed.

Hu et al [49] derived the relationship between a physical model of a dynamic system
and a discrete-time state-space representation. They applied an estimation algorithm
using a matrix of covariance functions similar to the Modified Yule-Walker equations
[43, 44]. One disadvantage of these types of agorithms is that the calculation of
covariance matrices can decrease the conditioning of the linear system of equations due
to the squaring of the data. These problems and alternative estimation schemes are well-
known, see for example Golub and Van Loan[50], and Ljung [43]. Hu et a [49] tested
their algorithm with a 3-DOF system using measured excitation and response data and
also for the case where excitation data were not explicitly measured but are assumed to
be white noise. Accurate modal parameters were obtained for the 1/O case and it was
found the algorithm could identify modal parameters for the response-only case, but
results were less accurate than the 1/0 analysis. A method to quantify the contribution of
vibration modes to the vibration response, using ‘dispersion coefficients’, was discussed
and it was noted that modes with a poor response were affected by measurement noise

to a greater extent than modes with good vibration response.
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Park and Kim [51] introduced two parameterisations of an ARMAX model structure for
modal parameter estimation. One parameterisation followed from the fact that the AR
matrix models the global modal parameters (frequency and damping) and therefore a
scaar AR polynomial was used to describe global modal parameters for every
measurement point. The second parameterisation estimated a different AR polynomial
for each response measurement point, i.e. the MIMO problem was separated into a
series of MISO problems. Parameters of the ARMAX model were estimated by an
approximate maximum likelihood algorithm and this method required initial values for
the model parameters, which were obtained by a least-squares method. The Akaike
Information Criterion (AlIC) was employed for model order selection. The performance
of the algorithm using the two model structures was assessed with data simulating the
behaviour of a 3-DOF structure. Results were found to be of good accuracy with
approximately 5% random measurement noise added to the response measurements. It
was found that separating the MIMO model into M1SO models lead to a slight decrease

in the accuracy of the estimated modal parameters.

The development and study of a linear multistage (LMS) estimation agorithm for
MIMO ARMAX model structures was reported by Fassois and colleagues [52-56]. The
algorithm was based around least-squares estimation and a series of linear operations,
which addressed the computational complexity of some maximum likelihood methods
and included guaranteed stability of the estimated model. A feature of this method was
the use of dispersion analysis [55, 57] to identify the contribution of an estimated mode
to the vibration response, and this could be used as an aid for model order selection and
for distinguishing between vibration and spurious numerical modes. This algorithm is
discussed in more detail in Chapter 5. Variations of the algorithm applied to ARMA
(ARX) [58] models; using correlation functions [59, 60], and a recursive |least-squares
variation [61, 62] have also been reported. These studies show the benefit of including a
moving average (MA) description of the modd noise, and the most recent work by
Florakis et a [56] is one of the few studies to demonstrate the feasibility of ARX or
ARMAX modelling of more complex structures that include difficult characterigtics like
closely spaced modes and local modes, which have poor responses at a number of
measurement points. The performance of this method was further assessed by Petsounis
and Fassois [39] using data simulating the behaviour of a train car and compared

favourably with other stochastic methods, namely the prediction error method and
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instrumental variable methods, and also deterministic methods, for example, the ERA.
The effects of coloured measurement noise were also assessed and the LMS algorithm

produced acceptable results.

The modal analysis algorithms discussed above assume that the measured excitation is
the only excitation of the system, and that the /n of measured signals is favourable.
Most studies have investigated the effects of added measurement noise and strategies to
improve the signal-to-noise ratio are well known. Spectral averaging improves s/n for
FRF-based modal analysis and similar improvements occur in correlation functions
calculated with spectra. Model order over-specification accompanied by SVD or QR-
based LS estimation is used to account for noisy measurements used with time-domain
algorithms. As noted above, ARMAX and state-space model structures are more robust
to measurement noise because these models explicitly model the noise components.
Maximum likelihood estimation has also been shown to perform well with noisy FRFs
[63, 64].

More recently, operational modal analysis methods have been developed for cases
where measurement of excitation forces is not possible. This is discussed in detail in
Chapter 8. A situation that has not been widely considered is when modal analysis with
measured excitations is carried out in the presence of unmeasured excitations. While
operation modal analysis methods have been shown to be quite successful [65] they do
not directly yield scaled mode shapes and make assumptions about the nature of the
excitation sources [38]. In-flight testing of afixed-wing aircraft was discussed by Mevel
et a [24] and this is a situation where significant ambient (and unmeasurable)
excitations were applied to a structure. This study concluded that if it was possible to
apply a measurable excitation, then 1/0O modal analysis yielded more accurate modal
parameters than operational modal analysis methods, but the difference in accuracy
became less significant for longer data records. Stochastic subspace (state-space based
estimation) and a frequency domain method were used for modal parameter estimation.
A frequency domain method that explicitly modelled the effects of unmeasured
excitation was developed by Cauberghe et a [66] and included terms to model transient
effects in signals, which mitigated the effect of leakage in frequency-domain
representation of non-periodic signals. Another frequency domain method was outlined

by Vanlanduit et al [67]. This method used periodic measured excitation signals and
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separated the response due to these signals from the response due to unmeasured
excitation in the frequency domain. The periodic responses were represented on
particular frequency lines, while the unmeasured excitations, assumed to be reasonably
flat and correlated in the frequency domain (e.g. an impulse) produced responses that
were represented at all frequency lines. This study used the estimated FRF matrix in an
inverse problem to identify the unmeasured impulse excitation, assuming it was applied

at a measurement point.

2.3 Time-Domain Averaging

This section introduces the concept of time-domain (synchronous) averaging and
discusses its effectiveness in attenuating wide- and narrow-band random noise and also

periodic components of asignal.

It is well known that time-domain averaging is effective in improving the signal-to-
noise ratio of periodic signals. Ernst [68] carried out a theoretical analysis of time-

domain averaging using statistical methods applied to time-domain signals. For additive

white noise, the signal-to-noise ratio was shown to improve by a factor of 1/ NIYR

where M is the number of averages. Anaysis investigating the attenuation of non-white

noise showed that the 1/4/M rule was “qualitatively” correct given that the noise

exhibited a reasonably smooth power spectrum.

Braun [69] analysed time-domain averaging using the concept of filtering in the
frequency domain. A more intuitive model of time-domain averaging was introduced
and results describing the attenuation of broad- and narrow-band random noise, and also
periodic components, were derived. The effects of triggering error and jitter, which can
arise in the extraction of periodic components of signals generated by rotating
machinery including gear trains [70], were also discussed. In many cases the measured
signal has to be re-sampled, which often requires interpolation between the original
samples, or alternatively, the sampling of the original signal is governed by a trigger
synchronised to a particular rotating element. Liu et al [71] investigated the effects of
period cutting error in cyclic-averaging (where no time elapses between averaged

sections) and proposed a strategy to reduce the effects of period cutting error.
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Triggering error, jitter, and period cutting error in general result in the attenuation of the
periodic components of interest. For the case of modal analysis, these effects can be
minimised by accurate triggering of the data acquisition system by the periodic

excitation signal.

McFadden [72] proposed an alternative frequency domain model for time-domain
averaging for application in the frequency domain. This aternative model included the
effects of a finite time series by applying a rectangular window and guaranteed a

periodic averaged waveform by sampling in the frequency domain.

The following discussion of the properties of synchronous averaging is based on that by
Braun [69, 70].

Time-domain averaging of a discrete time signal x[t], t = 0, ..., N-1, with sampling

period Ts is described by
1 M -1
yit] :sz[t—f p-Tl, (2.33)
r=0

where y[t] is the averaged signal, M the number of averages, and T, = p-Ts is the period

of the signal component to be extracted. Note that no time elapses between the sections

—_— Wmét

] I |
0 T, 2T, 3T, (M-1).T, M.T,

of record to be averaged, as shown in figure 2.1.

Figure 2.1 Cyclic time-domain averaging. T, is the period of the averaged record.

The z-transform is used to derive the transfer function

21



Y(2 1 1-z™
X(z20 M 1-z"°

H(2) = (2.34)

which is evaluated aong the unit circle, z=e!”", to obtain the frequency and phase
response in terms of frequency f = @/(27) Hz:

H(f/f):i‘sin(ﬂﬁ\/l-f/fp). 239
¥TM  sn@-fif) '

o(f1f)=-7-(M -1)-fi. (2.36)

p

fo = 1U(p'Ty) is the frequency of the signal component to be extracted. A plot of the
frequency response (equation (2.35)) is shown in figure 2.2 for M = 4 and M = 10. The
frequency response is a comb filter with peaks of the main lobes located at integer
multiples of f, Hz (up to the Nyquist frequency), which have unity gain and zero phase
shift. Increasing M reduces the bandwidth of the main lobes, increases the number of
side lobes, and also increases the attenuation of frequency components away from the
side |obes.
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Figure 2.2 Frequency response of time-domain averaging: (a) 4 averages (top figure);
(b) 10 averages.
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Braun [69] calculated the equivalent noise bandwidth for the comb filter to be /M and
it follows that the RMS level of broad-band noise is reduced by a factor of NIYR

Therefore, for adesired reduction in noise, a , the number of averagesis set to [70]
M > (2.37)

The rgection of narrow-band noise and periodic signals is easily determined from
eguation (2.35). For a periodic noise at a single frequency, the number of averages can
be set so that a zero of the comb filter occurs at the frequency of noise. For more
complex signals, M can be chosen such that the attenuation of the noise components is
set to a desirable level. The peaks of the side lobes are scaled by 1/(M -sin(z- /1))

and the number of averages required for a desired noise reduction is therefore [70]
M >1/(a-sinlz - f/f,)). (2.38)

It should be noted that equation (2.38) applies to cyclic averaging; i.e. where no time
elapses between consecutive time records. The attenuation of random components by
time domain averaging does not change for the case where an arbitrary time period
separates averaged record sections; however, the attenuation of periodic components is
only approximated by equations (2.35) and (2.36), depending on the distribution of time
separating sections of time record to be averaged.

2.4 Experimental Case Study |

The am of this study was to investigate the feasibility of using measured periodic
excitation and synchronous averaging for the purpose of modal analysis of a ssimple
structure in the presence of unmeasured excitations. A further aim was to investigate the

use of piezoceramic actuators for structural excitation.

An auminium beam of dimensions 1.050 x 0.05 x 0.003m was suspended with string to
approximate free-free conditions in the transverse direction. Figure 2.3 shows the

suspended beam and a schematic of the apparatusis shown in figure 2.4.
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Figure 2.3 Aluminium beam suspended to approximate free-free conditions in the
transverse direction in the horizontal plane. Piezoceramic actuators are located on the
left-hand side and are covered by tape.

/ Beam suspended with string

Accelerometer measuring
transverse motion

Piezoceramic plates driven To charge amplifier
by high voltage amplifiers

Figure 2.4 Schematic of experimental apparatus.

The two 70x25x1mm piezoceramic plates were bonded to each major surface of the
beam; 60mm from one end, and centred in the lateral direction, as shown in figure 2.4.
The surface of the beam was coated with etch primer and the plates were bonded with a
thin layer of epoxy. For each experiment, response measurements were made at thirty
equally spaced points along the length of the beam using a Briiel&Kjer (B&K) 4374
accelerometer. B&K 2032 FFT analysers were used to calculate FRFs and also to
generate the excitation signals for each experiment: either random noise or impulse
signals. These signals were used as a measure of the excitation force for experiments
using piezoceramic actuators for measured excitation. One of the aims of this set of
experiments was to investigate whether this assumption allowed estimation of accurate
modal parameters. A constant-gain high voltage amplifier was used to drive the
piezoceramic actuators. Modal parameters were estimated using a global RFLS method,
implemented in the Spectral Dynamics STAR Modal v. 5.23 software. This involved
identifying resonant peaks from the averaged imaginary part of measured FRFs and

selecting bands around these peaks for curve fitting. Estimates of global properties were
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obtained first, and the averaged estimates were used in a second stage that yielded
transfer function residues.

An impact hammer test was carried out to establish a baseline set of results that could be
compared with modal parameters estimated using piezoceramic actuators for excitation.
B&K 2635 charge amplifiers were used to condition (2 Hz high-pass filter, 3 kHz low-
pass filter) accelerometer and impact hammer signals. FRFs were calculated with a
frequency range of 400 Hz and a resolution of 0.5 Hz. Up to twenty spectral averages
were taken for each measurement point; a transient window was applied to the
excitation signal, and an exponential window with time constant 0.5 seconds was
applied to the response measurements. Equation (2.39) was used to correct estimated
damping values for the additional damping imposed by the exponential window [73].

]/goorrected :l/gmeasured _]/gwindow (239)

Table 2.1 lists estimated modal frequencies from the impact hammer test.

Mode 1 2 3 4 5 6 7

Fre(q#f)“cy 1281 | 3604 | 7178 | 11974 | 180.25 | 253.64 | 339.69

Table 2.1 Modal frequencies estimated from impact hammer test.

Further experiments were carried out using the piezoceramic plates for excitation and a
summary of all experiments and noise conditions is included in table 2.2. The listed
noise level is the RMS of the noise signal divided by the amplitude of the impulse
excitation signal. As impulse excitation was used for the measured excitation, an
exponential window (time constant 0.5 seconds) was applied to the response

measurements and the estimated damping was corrected as for the impact hammer test.

A finite element model (FEM) of the beam was developed in ANSY S to predict the
undamped natural frequencies and normal mode shapes of the beam. The aluminium
beam and piezoceramic actuators were modelled with 840 and 56 brick elements
(solid95), respectively, and ideal bonding between the actuators and the beam was
assumed. Material properties for the auminium beam were density: 2650 kg/m®

Young’s modulus: 62 GPa; and Poisson’s ratio: 0.33. The piezoceramic actuators were
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approximated as orthotropic materials with Young's modulus: Ex = E, = 99 GPa; E;, =
118 GPa; Poisson’s ratio: viy = W, = Vi = 0.31; shear modulus: G, = 37.8 GPa; Gy, =
Gy = 4.5 GPa; and density: 7600 kg/m®.

Experiment | Description

Hammer Impact hammer test, up to 20 averages

Piezo Random noise excitation using one piezoceramic actuator, 15 averages.
(random)

Piezo Impul se excitation using one piezoceramic actuator, 40 averages
(impulse)

0.125/20 Measured impul se excitation by one piezoceramic actuator;

unmeasured random excitation by second piezoceramic actuator;
20 averages; unmeasured excitation level 0.125.

0.125/40 Measured impul se excitation by one piezoceramic actuator;
unmeasured random excitation by second piezoceramic actuator;
40 averages, unmeasured excitation level 0.125.

0.125/80 Measured impul se excitation by one piezoceramic actuator;
unmeasured random excitation by second piezoceramic actuator;
80 averages; unmeasured excitation level 0.125.

0. 25/80 Measured impul se excitation by one piezoceramic actuator;
unmeasured random excitation by second piezoceramic actuator;
80 averages; unmeasured excitation level 0.25.

Per/40 Measured impul se excitation by one piezoceramic actuator;

unmeasured periodic excitation (95Hz) by second piezoceramic
actuator;

40 averages, unmeasured excitation level 0.354.

Per/80 M easured impul se excitation by one piezoceramic actuator;

unmeasured periodic excitation (95Hz) by second piezoceramic
actuator;

80 averages; unmeasured excitation level 0.354.

Table 2.2 Summary of free-free aluminium beam experiments

2.4.1 Impact Hammer and Piezoceramic Actuator Experiments

Results from tests applying measured impulse and random excitation using one
piezoceramic actuator were compared with impact hammer results in order to assess the
effectiveness of using piezoceramic actuators for structural excitation. Differences in
modal frequencies, compared to the hammer test, are plotted in figure 2.5. There is a
small bias present between the FEM and experimental results and this was due to
reference values of Young's modulus being used in the FEM. Results from the
experiments show very good agreement except for the first mode and this trend is
reflected in the damping estimates, shown in figure 2.6. Damping results from the

impulse excitation and hammer experiments were corrected to account for the
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exponential window. Differences can be seen when compared to random noise
excitation for modes 1- 4 and the Hanning window used for the random excitation may
have resulted in higher damping being estimated.

Frequency Error (%)

—++ Piezo (random)
—%— Piezo (impulse) | -
—=~ FEM

14 1 1 I I I
1 2 3 4 5 6 7

Mode

Figure 2.5 Error in modal frequencies for random and impul se excitation (piezoceramic
actuator), and FEM results compared to impact hammer results.

T T T

[l - Hammer
1 —— Piezo (random) |
-~ Piezo (impulse)

Damping (%)

Figure 2.6 Modal damping estimates for random and impulse excitation (piezoceramic
actuator), and impact hammer experiments.

27



The modal assurance criterion is a measure of correlation between two mode shapes,
and is defined in equation (2.40) for normal modes [74].

(2.40)

ey
MAC(y,,v,)= v H v} v,

Figure 2.7 shows MAC values comparing mode shape estimated from the piezo
(random), piezo (impulse), and impact tests with FEM mode shapes.
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Figure 2.7 MAC comparing mode shapes from impact hammer, piezo (random), and
piezo (impulse) experiments with FEM results.

A disadvantage of the MAC valueisthat large differencesin modal amplitude at a small
number of measurement points can significantly lower the MAC, and thisis the case for
modes 5, 6, and 7 in the hammer test. MAC values for the first four modes show good
agreement with FEM results. The modes 3 — 7 estimated in the piezo (random)
experiments included errors at a small number of measurement points; however, this
was not the case for mode 1 results obtained from piezo (random) and piezo (impulse)
excitation. The poor mode shape estimates, combined with the relatively poor frequency
and damping results suggested that the piezoceramic actuators did not effectively excite
the beam for the first mode, and to a lesser extent the second mode. This was expected
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because the piezoceramic actuators apply distributed moments to the beam over the
contact area of the actuators. The contact area is small relative to the deflection of the
first two transverse bending modes and the moment applied by the actuators will not
effectively excite the first two modes. However, the results of these experiments
suggested that the piezoceramic actuators could be used in further experiments
investigating the effects of unmeasured excitations. The use of piezoceramic actuators
in experimental modal analysis will be discussed in detail in Chapter 4.

2.4.2 Unmeasured Random Excitation

Figures 2.8 — 2.10 show modal parameters estimated for experiments involving
unmeasured random excitation and different numbers of averages. Frequency and
damping results agree reasonably well with impact hammer values, except for the first
mode, and suggest that the RFLS modal parameter estimation algorithm is effective in
estimating frequency and damping results for moderate levels of unmeasured random

excitation.

Frequency Error (%)

-~ 0.125/20 averages
—4— 0.125/40 averages
-+ 0.125/80 averages
—&— 0.25/30 averages

3 4 5 6 7

Figure 2.8 Modal frequency results from experiments with unmeasured random
excitation compared with impact hammer results.
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Figure 2.9 Modal damping results from impact hammer test and experiments with
unmeasured random excitation.
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Figure 2.10 MAC comparing mode shapes from experiments with unmeasured random
excitation with FEM resuilts.

The MAC values shown in figure 2.10 more clearly show the effect of increasing
numbers of averages. Mode shapes are estimated poorly for the 0.125/20 and 0.125/40
experiments, but increasing the number of averages to eighty leads to acceptable

accuracy of mode shapes for modes 2 - 7, as shown by the 0.125/80 results. Doubling
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the level of noise while maintaining the number of averages leads to poorly estimated
mode shapes. The attenuation of broad-band noise by synchronous averaging, discussed
in section 2.3, suggests that the noise present in the 0.250/80 experiments is
approximately equal in level to that of the 0.125/20 experiments, and mode shape
estimates obtained from each experiment are similarly poor. The RFLS technique, like
other moda parameter estimation algorithms discussed in section 2.2, does not
explicitly model the effects of measurement noise or unmeasured excitations and

therefore any amount of noise can be expected to bias results.

2.4.3 Unmeasured Periodic Excitation

Further tests were carried out using impulse excitation and synchronous averaging in the
presence of unmeasured periodic excitation under the conditions described in table 2.2
for Per/40 and Per/80 experiments. The estimated modal parameters are plotted in
figures 2.11 — 2.13. Frequency and damping results reflect conclusions drawn in
previous experiments and MAC values show accurate mode shapes were estimated for
modes 3 - 7.

k4
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Figure 2.11 Modal frequency results from experiments with unmeasured periodic
excitation (40 and 80 averages) compared with impact hammer results.

31



T
& Hammer
—— 40 averages
—=~ 80 averages

Damping (%)

Figure 2.12 Modal damping results from impact hammer test and experiments with
unmeasured periodic excitation (40 and 80 averages).
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Figure 2.13 MAC comparing mode shapes from experiments with unmeasured periodic
excitation (40 and 80 averages) with FEM results.

Good accuracy was expected for per/40 and per/80 tests due to the high number of

averages and because the unmeasured periodic excitation occurred midway between
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modes three and four, and could be excluded from curve-fitting bands. The most
significant difficulty in dealing with unmeasured periodic excitations is distinguishing
the responses from responses due to vibration modes. In the absence of a priori
knowledge of excitation frequencies, the RFLS provides no systematic means of
identifying the effects of unmeasured periodic excitation.

2.5 Experimental Case Study |1

The second experimental study involved modal testing of a ‘helicopter-like’ structure,
which was suspended from elastic cord to approximate free-free conditions. The
suspended structure is shown in figure 2.14 and two B&K 4809 shakers can be seen,
which were used for applying measured impulse excitation and unmeasured random

excitations.

Figure 2.14 Suspended helicopter-like structure used for the second experimental case
study. Two shakers can be seen: (1) measured impulse excitation; (2) unmeasured
random excitation.

The helicopter-like structure had approximate total dimensions of 986 x 366 x 223 mm;

a mass of 11.53 kg; and was constructed of steel beams welded together.

Three experiments were conducted using impulse excitation with different levels of
unmeasured excitation and are summarised in table 2.3. The listed unmeasured
excitation level is the RMS of the unmeasured excitation divided by the amplitude of

the measured impulse excitation.
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Experiment | Description

Impulse M easured impulse excitation (shaker 1); 20 averages.

0.125/20 Measured impulse excitation (shaker 1); unmeasured random excitation
(shaker 2); 20 averages, unmeasured excitation level 0.125.

0.625/30 Measured impulse excitation (shaker 1); unmeasured random excitation
(shaker 2); 30 averages, unmeasured excitation level 0.625.

Table 2.3 Summary of experiments on helicopter-like structure.

The two shakers were each driven by a B&K 2706 power amplifier and a single B&K
4374 accelerometer was used for taking acceleration response measurements at 179
points on the structure. A B&K 2635 charge amplifier applied high and low pass
filtering; 3db cut-offs 2Hz, and 1kHz, respectively. FRFs were calculated by a
HP3566A FFT analyser and global RFLS modal parameter estimation of modal
parameters was carried out using the STAR Modal v5.23 software.

Table 2.4 lists the estimated modal frequencies from the impul se experiment, and figure
2.15 shows the natural frequency error for the 0.125/20 and 0.625/30 experiments
compared to the impulse experiment. Very little difference is observed in estimated
frequencies between the experiments. Similarly, damping results from each experiment,
plotted in figure 2.16, show good agreement.

Mode 1 2 3 4 5 6 7 8

Fre(qﬁf)”cy 74.360 | 76.886 | 85.147 | 143.14 | 150.71 | 185.76 | 199.28 | 238.31
Mode 9 10 11 12 13 14 15 16

Fre(‘i‘fgncy 244.14 | 262.47 | 276.03 | 277.80 | 281.88 | 297.49 | 313.93 | 317.84
Mode 17 18 19 20 21 22

Fre(‘i‘fgncy 322.26 | 341.73 | 356.81 | 363.73 | 367.26 | 380.35

Table 2.4 Estimated natural frequencies from Impul se experiment.

Mode shapes from 0.125/20 and 0.625/30 experiments are compared with results from
the Impulse experiment in figure 2.17. Better estimates are typically obtained from the
0.125/20 experiment than for 0.625/30 experiment, which is expected given the relative

levels of unmeasured excitation and the numbers of averages used in each test.

34



3.5 T T T T T T T

-+ 0.125/20
% ~-¥-- 0.625/30

-
53]
T

iy
T

Frequency Error (%)

=
tn
T

0 2 4 6 8 10 12 14 16 18 20 22
Mode

Figure 2.15 Frequency error for 0.125/20 and 0.625/30 experiments compared with
Impul se experiment.
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Figure 2.16 Modal damping estimated from Impulse, 0.125/20, and 0.625/30
experiments.
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Figure 2.17 MAC comparing mode shapes from 0.125/20, and 0.625/30 experiments
with results from Impul se experiment.

The addition of the second shaker may have constrained the helicopter-like structure in
the horizontal plane, due to the shaker’'s mass and rigid coupling. Both shakers were
suspended using elastic cord to minimise this effect. The good agreement between
frequency and damping results suggests that the addition of the second shaker did not
significantly affect estimated dynamic properties. In order to further investigate this,
modal parameters were calculated using measurementsin the vertical direction only; i.e.
in the direction of the excitations. Coupling between modal displacements in the three
principal directions was expected, but discounting DOFs in the horizontal plane was an
attempt to minimise the effect of any constrained motions in that plane and also to
eliminate a number of measurement points that were observed to have poor responses.
MAC values comparing modal displacements in the vertical (2) direction from
experiments 0.125/20 and 0.625/30 experiments with those from the Impulse
experiments are shown in figure 2.18. A pattern of results similar to that shown in figure
2.17 (results for all measurement points) is apparent, although the well-correlated
modes have marginally higher MAC values. This is most likely due to the omission of
measurement points with poor responses, hence relatively inaccurate mode shape
estimates.
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Figure 2.18 MAC comparing z-direction modal displacements from 0.125/20, and
0.625/30 experiments with results from Impul se experiment.

Periodic impulsive excitation has been used in conjunction with synchronous averaging;
however, any other periodic excitation could be used, for example a pseudo-random
sequence, burst random, or a low crest-factor sum of sinusoids. An advantage of such
signals over impulse signals is the distribution of power of over a wide frequency band
accompanied by a relatively low crest factor (although it could be argued random
signals may include outliers contributing to high crest-factor). In addition, measurement
noise and unmeasured excitations will reduce the /n uniformly across the time record
compared to impulse response records, which obviously decay with time. The use of
periodic excitation signals is an advantage with frequency domain methods as it reduces
bias errors (leakage) in discrete Fourier transforms (DFT), given that an integer number

of periods of the excitation signal (hence response signal) occur within the time record.

2.6 Conclusions

The theoretical concepts of modal parameter estimation have been summarised in a
review of common techniques. A variety of mathematical models are used in the
algorithms, and while a significant amount of literature discusses the application of

techniques for cases where excitation and response measurements are corrupted with
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measurement noise, only a few studies investigate techniques for dealing with cases
where significant unmeasured excitation is present in addition to measured excitations.
Time-domain averaging is a signal processing method commonly used for improving
the signal-to-noise ratio in modal analysis and a frequency domain model of time-

domain averaging has been reviewed.

Two experimental case studies applied periodic impulsive excitation and synchronous
averaging in modal testing where unmeasured excitation is present. The first case
considered a free-free aluminium beam excited with piezoceramic actuators. It was
shown that piezoceramic actuators effectively excited higher order modes but did not
excite the first mode well because of the limited deflection of the low-order modes in
the contact area of the piezoceramic actuators. Approximating the excitation force by
the applied voltage was found to yield accurate FRFs, hence estimated modal
parameters. The use of piezoceramic actuators for structural excitation in modal analysis
will be discussed in detail in Chapter 4.

Global RFLS modal parameter estimation was found to yield reasonably accurate modal
parameters for low levels of unmeasured random excitation, while averaging time
records synchronised with the excitation signal improved the accuracy of the modal
parameter estimates. Unmeasured periodic excitation at frequencies away from modal
frequencies did not affect modal parameter estimates as long as the periodic response

was not mistaken for amodal frequency.

A second experimental case further demonstrated the use of periodic impulsive
excitation and synchronous averaging for a more complex structure: a helicopter-like
structure. Modal frequency and damping information could be accurately estimated for
moderate levels of noise (0.625); though estimated mode shapes were typically poor.
The coupling between the electrodynamic shakers and the structure was shown to only

have a marginal influence on the estimated mode shapes.

The experimental case studies in this chapter have shown that periodic impulsive
excitation (or more generally, periodic excitation) is effective in improving the signal-
to-noise ratio, hence the estimated modal parameters. The RFLS moda parameter

estimation algorithm assumes that all sources of structural excitation are measured and
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noise present in excitation and response measurements is minimal. An aternative modal
parameter estimation algorithm, which explicitly models the effect of unmeasured
excitations, as well as measurement noise, will be introduced in Chapter 5. In the
following chapter, the use of experimentally determined modal parameters for
validation and updating of finite element models is investigated.

39



Chapter 3 Finite Element M odel Updating of a Helicopter-

Like Sructure

3.1 Introduction

Finite element models (FEMSs) are typically used in the design process of helicopter
structures and the introduction in Chapter 1 suggested that the correlation between an
initial FEM and experimental data is often poor. This can arise due to inaccurate
experimental data or an inadequate FEM. Some limitations of existing modal analysis
methods were highlighted in Chapter 2. Factors that contribute to poor accuracy of
FEMs include poor modelling of the physical components, for example omitting
difficult-to-model components like structural joints. Changes in the values of physica
parameters and material properties can alter FEM predictions significantly and are also
a potential source of error. Nevertheless, FEMs present several advantages over
experimental procedures and approximate analytical models. Experimentation is usualy
case specific and therefore multiple experiments are required to obtain results that fully
describe the behaviour in a number of configurations or after structural modification.
Furthermore, experiments are often expensive, time consuming and in some cases not
practical due to safety issues or operational reasons. The flexibility of FEMs allows
complex structures to be considered more efficiently than analytical models, and
analytical models are typically limited to representative cases with relatively ssmple

solutions.

A necessary step to improve the accuracy of FEMs is the use of experimental results to
validate or update the FEM. The most basic approach is the use of engineering
judgement to modify moda parameters, based on the correlation of one or two
properties, for example the natural frequencies of dominant modes. More systematic
approaches to model updating have been proposed and these can be automated and
implemented in software. In this chapter, three case studies using experimental modal

parameters to update FEM's are discussed.
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Mottershead and Friswell [75] produced a comprehensive review of model updating
theory outlining some of the difficult issues encountered: incompleteness of
experimental data; i.e. due to afinite frequency range, or poorly excited modes; limited
numbers of experimental measurement points compared to numerical model DOFs; and
numerical issues arising from the highly undetermined nature of the model-updating
problem. Model updating methods were categorised as representation model techniques
or penalty techniques. Representation model techniques modify the FEM such that it
exactly models measured (therefore incomplete) modal data and penalty techniques
maximise the correlation between experimental and FEM data by adjusting FEM

parameters according to a penalty function.

A series of studies have investigated the penalty technique applied to a simple structure
[76]. The effect of different response parameters in the penalty (objective) function
were reported: minimisation of natural frequency errors [77], natural frequency and
mode shape errors [12], natural frequency and anti-resonance errors [8], mode shape,
natural frequency and FRF data errors [9]. These methods effectively updated a FEM
resulting in better correlation with experimental data. This was the first goal, and further
assessment of the methods discussed in these studies involved predicting the effect of
structural modification using the updated model. Improved correlation between
experimental modal parameters from a modified structure and those from a similarly
modified updated FEM was observed. This was compared with the correlation achieved
by non-updated modified FEMs. Similar results were reported by Bohle and Fritzen
[78], who used minimisation of natural frequency and mode shape errors for model
updating. ldentification of modelling errors in the FEM using error localisation

techniques was also discussed in this study.

Model updating based on genetic algorithms has been considered by Levin and Lievin
[79], and Dunn [10], and Lu and Tu [80] introduced a neural network approach. These
methods are an alternative way to deal with the complex relationship between FEM
parameters and measured response data. Penalty methods, discussed above, typically
linearise the sensitivity functions, which relate a change in a set of FEM parametersto a

change in the measured response.
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Goge [11] reported on model updating of a civil aircraft structure using the classical
sensitivity approach, which minimised modal frequency and mode shape errors. Joints
were identified as sources of error in the FEM due to the difficulty of modelling welded,
riveted, and bolted joints, in such a large structure. The updating procedure was judged
to be successful as good correlation between experimental and FEM modal parameters
was achieved in the active frequency range as well as for modal parameters outside the
active frequency range. The active frequency range included modes used in the updating
process. The updated FEM also predicted driving point FRFs that showed good

correlation with measured data.

In this chapter, the use of experimental data to update a FEM of a helicopter-like
structure is discussed. The experimental apparatus, instrumentation, the range of
experiments, and curve fitting of experimental data are described in section 3.2.
Formulation of the FEM and the updating procedure is described in sections 3.3 and 3.4,
respectively. Results are discussed in section 3.5 and concluding remarks are made in
section 3.6.

3.2 Experimental M odal Analysis of a Helicopter-Like Structure

The helicopter-like structure used for these experiments, shown in figure 3.1(a),
consisted of a primary structure made up of bar and tube sections and a secondary
structure consisting of steel sheet spot welded to the primary structure. Elastic cords
were used to suspend the helicopter-like structure, as shown in figure 3.1(a), and
preliminary testing indicated that the natural frequencies of the rigid-body vibration
modes were less than 20% of the natural frequency of the first elastic vibrational mode.
The structure was excited at 134 points using a B&K 8202 impact hammer and fixed
response measurements in the direction of the three principal axes were taken using
three B&K 4374 mono-axial accelerometers with preliminary signal conditioning
applied using B&K 2635 charge amplifiers (high-pass filter cut-off 2Hz, low-pass filter
cut-off 3kHz). A plastic tip was used on the impact hammer to provide a spectral input
of up to approximately 2kHz [81]. The excitation points and position of the
accelerometers are shown in figure 3.1(b).
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(@) (b)

Figure 3.1 (a) Helicopter-like structure used for case 1 (EMAL) experiments. (b) Wire-
frame model of helicopter-like structure showing excitation points (dots) and response
measurement points (arrows).

Data acquisition and signal processing was carried out using a Hewlett-Packard HP
3566A FFT analyser. Measurement parameters for the test were: analysis bandwidth
400Hz; frequency resolution 0.5Hz; transient and exponential weighting (time constant
0.5 seconds) on excitation and response signals respectively, with 5 averages per
measurement. The software package STAR Modal v. 5.23 was used to curve fit the FRF
data and extract the modal parameters using aglobal RFLS agorithm.

Three experiments were conducted with the helicopter-like structure in a different

configuration for each experiment.

3.2.1 Case 1: Helicopter-like structure with panels (EMA1)

The first configuration was the helicopter-like structure with panels, shown in figure
3.1(a). Modal frequency results are listed in table 3.1 for the first 19 modes.

3.2.2 Case 2: Helicopter-like structure with panels removed (EMA2)

Results for the first experiments were believed to be inaccurate due to the non-linear
behaviour of the joints between the secondary structure panels and the primary
structure. The panels were spot welded at points along the edges and the remaining parts
of the panel in contact with the primary structure rattled against the primary structure.
This interfered with the assumption that the dynamic behaviour of the structure was

linear, and therefore limited the accuracy of the experimental data. In order to rectify
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this situation the panels were removed, as shown in figure 3.2. Modal frequencies for
this configuration are listed in table 3.1.

Figure 3.2 Helicopter-like structure with panels removed used for case 2 (EMA2)
experiments.

3.2.3 Case 3: Helicopter-like structure with additional mass, panels removed
(EMA2_m)

This configuration of the helicopter-like structure is shown in figure 3.3. A steel beam
of mass 2.09kg, was bonded to the central longitudinal floor member using epoxy.
Modal frequency results are shown in table 3.1. The steel beam resulted in significant
changes to the dynamic properties of the structure and this is illustrated by comparing
FRFs measured at the same point in EMA2 and EMA2_m experiments, which are
plotted in figure 3.4.

Steel beam

Figure 3.3 Helicopter-like structure with panels removed, used for case 3 (EMA2_m)
experiments. Additional mass (thick steel beam) can be seen bonded to the central-
longitudinal floor member.



Modal Freguencies (Hz)
Mode Casel Case2 Case3
(EMA1) (EMA2) | (EMA2 m)

1 100.1 73.92 68.04
2 171.6 77.24 73.1
3 195.3 85.1 80.75
4 197.3 143.4 148.09
5 222.6 164.87 152.48
6 237.3 185.53 154.05
7 247 201.14 188.99
8 267.5 238.5 191.55
9 273.4 244.3 220.44
10 290.1 262.62 235.74
11 303.6 280.38 247.48
12 326.5 282.28 266.28
13 328.5 297.58 274.96
14 347.8 313.9 289.05
15 352.9 317.14 292.47
16 358.8 322.08 317.44
17 3714 341.22 339.98
18 378.3 356.62 353.41
19 387.5 363.6 356.84

Table 3.1 Modal frequency results from experimental modal analysis, cases 1 — 3.
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Figure 3.4 FRFs for the same measurement points obtained in EMA2 and EMA2_m
experiments.



3.3 FEM of Helicopter-Like Structure

A preliminary FEM, denoted FEMO, was developed in ANSYS based on the work
described by Endo and Randall [82]. Beam and solid elements were used for the
primary structure and shell elements were used to model the floor, roof, and side plates
of the cargo bay. On the physical structure, the panels were attached to the primary
structure using spot welds at various points around the perimeter of the panels, however,
the joints between the panels and the primary structure in FEMO were modelled as
continuous seam welds. These were modified to represent spot welds at various points
around the perimeter of the panels as this was believed to be a significant source of error
in the model updating work described by Endo and Randall [82]. This new model is
referred to FEM 1. Modifications were made to FEM1 to reflect the modifications made
to the physical structure, as outlined in section 3.2. The different FEM configurations

corresponding to each configuration of the physical structure were asfollows:

Case 1 (FEM1): Helicopter-like structure with top, side and floor panels, shown in
figure 3.5.
Element Types:

1. Shell63 (679 elements) — Panels

2. Solid73 (40 elements) — Mass below front floor

3. Beam4 (978 elements) — Beam sections of primary structure

Case 2 (FEM2): Helicopter-like structure with top, side and floor panels removed,
shown in figure 3.6. Joints between beam elements modelled with separate elements.
Element Types:

1. Solid73 (40 elements) — Mass below front floor

2. Beam4 (688 elements) — Beam sections of primary structure

3. Beam4 (226 elements) — Joints of primary structure.
Case 3 (FEM2_m): FEM from case 2 with additional mass, bonded to central

longitudinal floor member, modelled with solid elements. The FEM for case 3 is shown
in figure 3.7.
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Element Types:
1. Solid73 (96 elements) — Mass below front floor and steel beam bonded to
central longitudinal floor member
2. Beam4 (689 elements) — Beam sections of primary structure

3. Beam4 (226 elements) — Joints of primary structure

Note that the joints of the primary structure in FEM2 and FEM2_m were modelled with
small beam elements to enable the parameters of these elements to be modified

independently during model updating.

Figure 3.5 FEM of helicopter-like structure, case 1 (FEM1).

Figure 3.6 FEM of helicopter-like structure, case 2 (FEM2).
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Figure 3.7 FEM of helicopter-like structure, case 3 (FEM2_m).

The initial (i.e. prior to updating) models for cases 1-3 used the same material
properties for each element type: density = 7850 kg/m®; Young’s modulus = 210 GPa;
Poisson’s ratio = 0.3.

The block Lanczos solution method was used to extract modal frequencies and mode

shapes for all cases.

3.4 Finite Element M odel Updating

The aim of the model updating procedure is to improve the correlation of FEM and
experimental modal analysis (EMA) results. The model updating software package

FEMTtools v2.2 was used for this process.

The model updating procedure involves a number of steps:
1. Spatial correlation of nodes and points: Nodes from the FEM are paired with
measurement points used during EMA. Figure 3.8 shows FEM1 of the helicopter-

like structure with coincident node/measurement-point pairs indicated by dots.

2. Shape correlation: This procedure compares the FEM and EMA mode shapes. The
MAC is a simple means of numerically comparing complex mode shapes, used in
addition to the comparison of modal frequencies. Automatic mode shape pairing
identified mode pairs with the highest MAC value above a threshold of 20%.
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Figure 3.8 EMA model superimposed on FEM1. Coincident node/point pairs are
indicated by dots.

3. Response selection: Responses are selected from any quantity measured during
experimental analysis, for example, mass, displacement, modal frequencies or
stress. Modal frequencies were selected as response parameters as they are functions
of both mass and stiffness parameters. Modal frequencies were also considered to be
estimated with the greatest accuracy.

4. Sensitivity analysis and parameter selection: Sensitivity defines the rate of change of
a FEM response property, in this case modal frequency, as a function of the change
of a FEM parameter. Sensitivity analysis identifies the most influential parameters
to modify during model updating, and the inverse of the sensitivity matrix, the gain
matrix, is used during model updating to calculate the magnitudes of parameter
changes. Normalised relative sensitivities are independent of units for both the
response properties and the model parameters, allowing comparison of several
different parameters. Parameters identified by sensitivity analysis can be modified
globally or locally; global parameter changes apply to sets of elements while local
parameter changes apply to individual elements. It should be noted that sensitivity
analysis identifies parameters that are most efficient to modify during model
updating. These parameters are not necessarily the correct parameters to modify, or
the parameters that have large errors with respect to the physical model. Therefore,
parameter selection has to be tempered with engineering judgement using parameter
weighting and the specification of upper and lower bounds. Parameter weighting is
applied to individual parameters on the basis of expected accuracy, importance or

other criteria, using confidence values. Confidence values are calculated by taking
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the inverse of the estimated error of a parameter and multiplying by 100. For

example, if aparameter has an estimated error of 25%, the confidence value is 400.

Parameter Estimation: The aim of model updating is to determine a new set of FEM
parameters such that that the predicted response (natural frequencies and/or mode
shapes, FRFs) correlates with the corresponding experimental response. This is
approximated by a Taylor series expansion of the function relating experimental and

FEM responses, and FEM parameters. The first term of this expansion is [83]

R =R+ SR -RD (3.1)

where {R.} is a vector of experiment responses;, {R,} is the predicted FEM
response for the set of parameter values {P,}; {P,} is the set of updated FEM

parameter values; and [S] is the sensitivity matrix. Equation (3.1) can be expressed

as|[83]

{AR}=[s]{aP} (3.2

and for the cases considered in this study, solved by finding the pseudo-inverse of
the sensitivity matrix (i.e. the gain matrix). A number of iterations are required
because only the first term of the Taylor series expansion was used to derive
equations (3.1) and (3.2).

Convergence criterion: The convergence criterion is the error function calculated
during correlation analysis in model updating. The weighted absolute difference
between experimental and FEM modal frequencies was used as the convergence

criterion, with equal weighting assigned for all modes.

Model updating iterative process. Figure 3.9 shows a block diagram of the model
updating procedure. Note that the internal FEM solver in FEMtools was used rather
than recalculating the FEM response values for each iteration in ANSYS. No
significant differences in the natural frequencies obtained from each solver were
observed for FEM2. The desired number of model updating iterations is determined



by the value of the convergence criterion required to end the updating process and
the minimum change of convergence criterion required to progress to the next

iteration.

Selection of parameters,

responses,
and convergence criteria

v

| Mode shape pairing |
v

| Sensitivity analysis |
v

| Parameter estimation |

|

Database updating;
FEM solution

:

Mode shape pairing

No

Convergence?

Yes

Database and results
output

Figure 3.9 Flow chart of model updating procedure.

8. The final model updating step isthe MAC contribution analysis (MCA). MCA ranks
DOFs with an adverse effect on MAC values so that they can be assessed in terms
of the quality of experimental data. In some cases it is beneficial to remove the
deflections at particular DOFs to improve MAC values. Another reason for removal
of a DOF isthat experimental data could not be recorded for a particular direction at
a measurement point due to physical constraints on placing accelerometers or

exciting the structure.
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3.5 Model Updating Results

351Casel
The FEM used as a basis for model updating should ideally represent the physical

arrangement of structural members reasonably accurately for updating to be a success,
even if FEM parameters cannot be accurately specified. Simplifications are often
necessary and this can limit the effectiveness of model updating and also inhibit the use
of the model for predicting the effects of structural modification. Table 3.2 (a) lists
mode pairs for FEMO and EMAL1 results. FEMO assumed continuous seam welded
panels, and results are similar to those obtained reported by Endo and Randall [82].

Pair| EMA |Frequency| FEM |Frequency| % Error | MAC
no. | Mode| (Hz) Mode| (H2) (%)
1 100.08 4 196.04 9588 | 23.3
3 195.35 6 246.4 26.14 | 68.8
8 267.47 7 262.15 -1.99 63.8
4 197.33 8 265.33 3446 | 233
12 326.49 15 318.56 -2.43 234
13 328.55 16 332.08 1.07 36.8
16 358.84 17 343.3 -4.33 28.3
15 352.95 18 345.7 -2.05 44.8
18 378.28 19 353.65 -6.51 41.1
Average of absolutevalues. 19.43 | 39.29
Table 3.2 (a) FEMO/EMA1 mode pairs.

OONOOOPAWN|F

Pair| EMA |Frequency| FEM |Frequency| % Error | MAC
Mode| (H2) Mode| (H2) (%)
100.08 2 100.14 0.06 19.7
195.35 3 12448 | -36.28 23
197.33 7 25341 2842 | 614
267.47 10 263 -1.67 66.3
237.26 11 271.74 14.53 38
27343 13 288.14 5.38 294
13 328.55 14 308.87 -5.99 215
12 326.49 15 314.47 -3.68 275
15 352.95 20 341.11 -3.35 334
14 | 347.78 21 343.8 -1.15 42
17 371.37 23 370.53 -0.23 25.1

Average of absolute values 9.16/ 35.2
Table 3.2 (b) FEM1Z/EMAL mode pairs.
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Table 3.2 (b) lists mode pairs for FEM1Z/EMA1 and shows a large improvement in
average frequency error accompanied by a small decrease in average MAC vaue
compared to the results in table 3.2 (). FEM1 was considered to be more suitable for
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model updating because of the improved modelling of the joints between the panels and

the primary structure.

EMA1 experimental data were used to update FEM1. The updated FEM1 model is
denoted FEM1 u and the details of each model updating iteration are shown in table
3.3. The results of model updating are assessed using the frequency error and MAC of
paired modes from FEM1_u and EMAL. These results are compared with results from
FEM1T/EMA1 in figures 3.10 and 3.11. Nine mode pairs were identified for the
EMALFEM1 _u case, which was two less than the non-updated model, EMAL/FEM 1.
However, updating significantly improved the correlation between the identified mode
pairs. less than 5% difference between modal frequencies for eight of the nine mode
pairs and average absolute frequency errors decreased from 9.16% to 2.1%. Large
improvements in MAC values were also achieved and the average MAC value
including all mode pairs increased from 35.21% to 71.97%. These results demonstrate
the effectiveness of model updating in improving the correlation between experimental
and numerical models. A more practical evaluation of model updating involves
assessing how well the updated FEM predicts the effects of a structural modification,
compared to the predictions of a non-updated FEM. This is discussed in the following

section.

Model Updating Parameter Variation Parameter Bounds and
Step Confidence
1 Elasticity matrix scaling: D -10%<D<10%
Tota Iterations=5 Confidence=400
2 Young's modulus: E -10%<E<10%
Tota Iterations=5 Confidence = 400
3 Mass parameter: RHO -10%<RHO<10%
Tota Iterations=5 Confidence = 400
4 Cross-sectional area: AX -10%<AX<10%
Tota Iterations=5 Confidence = 400
5 Moment of inertia: 1,1y, -10%< Iy,ly,1; <10%
Tota Iterations=3 Confidence = 400
6 Membrane thickness: H -10%<H<10%
Confidence = 400
7 Adjusting DOFs Pairing, -10%<X<10%
fine-tuning D, E, H together Confidence = 400
8 Adjusting DOFs Pairing, -10%<X<10%
fine-tuning D,E together. Confidence = 400
9 MAC Contribution Analysis

Table 3.3 Model updating steps for case 1. FEML/EMAL.
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Figure 3.10 Comparison of frequency error (referenced to EMA1L results) for FEM1
(before updating) and FEM1_u (after updating).
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Figure 3.11 Comparison of MAC (referenced to EMAL results) for FEM1 (before
updating) and FEM1 u (after updating).



3.5.2Case?2

The initial correlation between EMA1 and FEM1 was found to be quite poor and a
number of factors were believed to account for this. Impact hammer testing of the
helicopter-like structure involved exciting points on the primary structure (steel bars) as
well as the spot-welded panels. It was noted that the panels rattled against the primary
structure and were very compliant at some excitation points. As a result, experimental
data for these points were of relatively poor accuracy and increasing numbers of
averages typicaly failed to improve the quality of the measured FRFs, as indicated by
the estimated coherence. Results in Chapter 2 suggest that the global RFLS parameter
estimation algorithm would be relatively robust to these inaccuracies when estimating
frequency and damping results; however, modal residues, hence mode shapes, could

potentially be very poor.

Another factor that potentially reduced the accuracy of results was the modelling of the
panel/primary structure joints. As discussed above, FEMO assumed perfect coupling at
the interface of the primary structure and panels, and this assumption was subsequently
modified in FEM1, which modelled the spot welds between the panels and primary
structure. This improved results but lead to the condition where partial or intermittent
contact between the panels and the primary structure was not explicitly taken into
account. Therefore, while the updated FEM, FEM1 u, showed good correlation with
experimental results, it did not necessarily predict physically realisable behaviour due to
the way the panels were modelled. The panels were removed from the helicopter-like
structure for cases 2 and 3 to eliminate this source of uncertainty, and as a result the
model updating process could be better studied.

Model updating of FEM2 using EMA2 experimental data was carried out according to
the steps listed in table 3.4. Correlation between FEM2 and FEM2_u with EMAZ2 results

issummarised in figures 3.12 and 3.13.

Removing the panels resulted in very good correlation between the initial FEM and
experimental results, but this decreased the scope for improvement by model updating.
Despite this, model updating increased the number of identified mode pairs from ten to

fourteen and correlation between natural frequencies was typicaly better for the
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updated model. Average absolute frequency error decreased from 2.68% for
EMA2/FEM2 pairs to 0.67% for EMA2/FEM2 u pairs. Average MAC vaues
decreased marginally from 86.93% (EMA2/FEM2) to 84.36% (EMAZ2/FEM2 u);
however, it should be remembered that four additional mode pairs were included for
EMA2/FEM2_u. Figure 3.13 shows that updating produced little improvement or a
marginal decrease in MAC values for the first 8 mode pairs, while frequency error for
the corresponding mode pairs improves. This effect is probably due to the use of
absolute difference in natural frequencies as the response property in model updating.
Note that an alternative response property, for example MAC values or FRF data could
be used in addition or as an alternative to natural frequencies.

Model Updating Parameter Variation Parameter Bounds

Step and Confidence

1 Elasticity matrix scaling: D -10%<D<10%
Tota Iterations=5 Confidence=400

2 Young's Modulus: E -10%<E<10%
Tota Iterations=5 Confidence = 400

3 Mass parameter: RHO -10%<RHO<10%
Tota Iterations=5 Confidence = 400

4 Cross-sectional area: AX -10%<AX<10%
Tota Iterations=5 Confidence = 400

5 Moment of inertia: Iy,ly,l, -10%< I4,1y,1, <10%
Tota Iterations= 3 Confidence = 400

6 Elasticity matrix scaling: D, -10%<AX,D<10%
Cross-sectional area: AX Confidence = 400
Tota Iterations= 3

7 Moment of inertia: |, -10%x<I,,E<10%
Young's modulus: E Confidence = 400
Tota Iterations= 3

8 Moment of inertia: I, -10%<Il,, RHO<10%
Mass parameter: RHO Confidence = 400
Total Iterations= 3

9 Elasticity matrix scaling: D -10%<D,1,<10%
Moment of inertia: I« Confidence = 400
Tota Iterations= 3

10 Mass parameter: RHO -10%<RHO<10%
Total Iterations= 3 Confidence = 400

Table 3.4 Model updating steps for case 2: FEM2/EMA2.
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Figure 3.12 Comparison of frequency error (referenced to EMA2 results) for FEM2
(before updating) and FEM2_u (after updating).
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Figure 3.13 Comparison of MAC (referenced to EMA2 results) for FEM2 (before
updating) and FEM2_u (after updating).
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3.5.3Case3

The previous two cases showed that model updating improved the correlation between
experimental and FEM results. Case 3 investigates whether the updated FEM can better
predict the effect of structural modification than a non-updated FEM.

A steel beam was bonded to the central longitudinal floor member of the helicopter, as
outlined in section 3.2.3. The steel beam could be modelled accurately and it was
initially believed that the epoxy bonding would not have a significant effect on the
dynamics of the structure in the frequency range of interest. The updated model
FEM2_u was modified to include the added mass in a similar way to FEM2_m (the
non-updated FEM with added mass) and this new model was denoted FEM2 u_m.
Correlation between EMA2 m/FEM2 m and EMA2 m/FEM2 u m is compared in
figures 3.14 and 3.15.
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Figure 3.14 Comparison of frequency error (referenced to EMA2_m results) for
FEM2_m (non-updated model with additional mass) and FEM2_u_m (updated model
with additional mass).

No clear trend is seen in the frequency results, plotted in figure 3.14, however mode
pairs from EMA2_m/FEM2_u_m have a marginally lower average absolute frequency
error (1.45%) compared to EMA2 m/FEM2 m (1.61%). Mixed results are also
indicated by the MAC values, FEM2_u_m predicts modes 6 — 9 more accurately than

FEM2_m but results are poorer by varying degrees for the remaining modes. Average
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MAC vaues decrease marginaly from 71.39% (EMA2 m/FEM2 m) to 70.77%
(EMA2 m/FEM2 u m). Note one less modepair was identified in
EMA2 m/FEM2_u_m.
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Figure 3.15 Comparison of MAC (referenced to EMA2_m results) for FEM2_m (non-
updated model with additional mass) and FEM2_u_m (updated model with additional
mass).

Comparison of either of the experimental/FEM model pairs considered in this case with
EMA2/FEM?2 illustrates the difficulties encountered in modelling the bonded steel
beam. Better average absolute frequency errors are achieved: EMA2 m/FEM2_m,
1.61%; EMA2 m/FEM2_u_m, 1.45%; EMA2/FEM2, 2.68%; however, average MAC
values are considerably poorer: EMA2 m/FEM2 m, 71.39%; EMA2 m/FEM2 u m,
70.77%; EMA2/FEM2, 86.93%. This suggests that local modal parameters obtained
from the experimental analysis may have adversely affected the quality of the
experimental mode shapes. Removing selected DOFs in MAC contribution analysis
(MCA) improved MAC values for modes with low initial MAC values but no set of
problematic DOFs common to modes with low MAC were identified. For example, the
MAC for mode pair fivein EMA2_m/FEM2_u_m was improved from 55.29% to 70%
after removing two measurement points (out of 134) from the calculation. The MAC for
mode pair 10 in EMA2_m/FEM2_u_m was improved from 52.05% to 72.58% after
removing ten measurement points from the calculation, but these points did not include

the two points removed for mode pair five.
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Explicitly modelling the epoxy joint between the added mass and the helicopter-like
structure, and further updating did not lead to significant improvement of the results.
This outcome raised questions about the quality of the experimental data, in particular
the quality of mode shape data for some measurement points. The model updating cases
considered above resulted in improvements in the agreement between natura
frequencies, partly due to the use of natural frequencies as a response parameter in the
objective function. On the other hand, MAC values were found to be variable and MCA
identified a number of measurement points (different for each mode) that adversely
affected the MAC, as noted above. The implication is that additional analysisis required
to verify the accuracy of modal parameters estimated at each DOF, and to exclude

problematic measurement points.

3.6 Conclusions

Finite element modelling is a powerful tool for carrying out analysis of structural
dynamic behaviour. In many cases poor correlation between an initial FEM and
experimental results can be improved using model updating. Three case studies have
been considered to illustrate the potential of model updating. The first experimental case
included non-linear behaviour in the form of contacting parts that rattled, which lead to
a decrease in the quality of experimental data. Model updating significantly improved
the correlation between the FEM and experimental results: average absolute frequency
error between paired modes decreased from 9.16% to 2.1%, and average MAC value
increased from 35.31% to 71.97%. The structural elements contributing to non-linear
behaviour (i.e. the panels) were removed for the second case and this improved the
initial correlation between FEM and experimental results. Model updating improved the
correlation by identifying four additional mode pairs, accompanied by a marginal
decrease in average MAC for mode pairs (86.93% to 84.36%), and a significant
decrease in average absolute frequency error (2.68% to 0.67%). Verification of the
model updating process was carried out by predicting the effects of a structura
modification using the updated FEM. Results were not conclusive: average absolute
frequency error was only marginally better than for the predictions using a non-updated
FEM (1.61% compared to 1.45%) and average MAC values were very similar (71.39%
for the non-updated FEM; 70.11% for the updated FEM). It was found that some
measurement points adversely affected MAC vaues, though no clear trend could be
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identified to detect poor experimental data. The modal parameter estimation algorithm
introduced in Chapter 5 is amed at estimating accurate modal parameters in the
presence of unmeasured excitation, and provides multiple estimates of global modal
parameters, which alows statistical analysis of these estimates to indicate the accuracy

of theresults.
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Chapter 4 Piezoceramic Actuatorsfor Multi-Point Structural

Excitation in Experimental Modal Analysis

4.1 Introduction

Piezoel ectric actuators and sensors have been widely studied in the area of structural
vibration control [84-97] and more recently non-destructive damage detection [98-100].
The experimental case studies in Chapter 2 used piezoceramic actuators to excite a
beam for modal analysis, and it was shown that FRFs relating voltage (applied to the
piezoceramic plates) and acceleration response could be used to extract moda
parameters. The FRFs estimated in this case differ from FRFs used in classical modal
analysis, which relate a measured point force to vibration response (displacement,
velocity, or acceleration). The piezoceramic actuators apply a distributed excitation, and
point mobilities cannot be measured as for the case of point forces. Piezoceramic
actuators offer a number of advantages over other excitation methods, for example,
electrodynamic shakers, impact hammers or ambient excitation. Piezoceramic actuators
are relatively small, robust and cheap, and can be easily bonded to many points on a
structure or be integrated into smart composite structures. Thus, piezoceramic actuators
are appropriate for permanent or long term installations. They can be driven with awide
range of excitation signals and have moderate power requirements [101]. A limitation of
these actuators is that determining the effectiveness of piezoceramic actuators in

exciting structures is much less intuitive than for point excitation.

In this Chapter, the dynamic behaviour of piezoceramic plates bonded to a
representative beam structure is discussed. The transfer function relating displacement
response to the voltage applied to a pair of piezoceramic actuators bonded to a beam is
derived in section 4.2, and the implications for modal parameter estimation are
discussed. The approximate analytical model of the piezo-actuated beam is verified by
comparison with FEM and experimental results in section 4.3. Section 4.4 presents a
preliminary analysis of a cantilever beam to assess the performance of multiple actuator

pairsin exciting transverse modes of the beam.
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4.2 Excitation of an Aluminium Beam Using Piezoceramic Plates

An aluminium beam with pairs of piezoceramic actuators bonded to the surface is
studied as this case can be treated with approximate analytical methods [85-87, 89, 90,
94, 97, 102], and has been considered in experiments discussed in Chapter 2.

Piezoelectric materials have the property that the strain and the éectric field in the
material are coupled. Consequently, applying an electric field to a piezoelectric material
results in the deformation of the material and the material acts as a mechanical actuator.
Conversely, a change in the material’s electric field results from deforming the material
and the material acts as a sensor. The work considered here deals with piezoceramic

materials as actuators.

The coupled electro-mechanical behaviour of piezoelectric materials can be fully

specified by the following set of equations [86]:

£ = SJ.EGj +d,E, 4.1)

D, =d0, +&iE, (4.2)

wherei,j =1, ..., 6, k, m=1,2,3 refer to the principal and (shear) rotational directions; &
is a vector of strain (m/m); S© is the matrix of compliance coefficients (m%N) measured
at constant electric field; ¢ is a stress vector (N/m?); d is the matrix of piezoelectric stain
constants (m/V); E a vector of applied electric field (V/m); D a vector of electric
displacement or flux density (C/m?); and &’ is the permittivity (F/m) under constant

stress conditions.

For the case where two piezoceramic plates are bonded to an aluminium beam, a one-
dimensional approximation of the coupled behaviour isused. Thisisjustified due to the
geometry of a slender beam, which leads to relatively high stiffness in the lateral-
transverse direction. Figure 4.1 shows a schematic of a piezoceramic plate with a

voltage applied across the poles, which are located on the top and bottom faces.
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Figure 4.1 Schematic of piezoceramic actuator with voltage applied to the poles located
on the top and bottom surfaces. The solid lines indicate the deformed shape and the
dashed outline shows the undeformed shape.

The undeformed shape is represented by the dashed lines, and the deformed body,
which results from the applied voltage, is represented by the solid lines. This two-
dimensional representation is further simplified by only considering 4/; from which the
strain in direction 1 can be calculated. Thisistermed the free strain of the piezoceramic
actuator, and is denoted ¢,. Equation (4.3) is derived from equation (4.1) and describes

thefree strain (i.e. zero applied stress) for an actuator of thicknesst,.

e, t)= d31\%t) (4.3
Figure 4.2 shows the configuration of piezoceramic actuators bonded to a slender beam
of uniform cross-section. The piezoceramic actuator is assumed to be perfectly bonded
to the beam so that the strain is equal at the interface of the beam and the actuator, and
the strain is considered to be a linear function of the thickness of the beam [86]. The
effect of finite adhesive layer has been studied by Crawley and de Luis [89], among
others [90, 94, 100]. Results suggest that for a thin and stiff bonding layer between the
beam and the actuator, the assumption of perfect bonding is satisfactory. The effect of a
finite adhesive layer is to limit the transfer of piezoelectric strain to the beam, through
the effect of shear lag.
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Figure 4.2 Srain distribution across top and bottom piezoceramic actuators bonded to
an aluminium beam. The polarity of voltage applied to each actuator is shown, which
results in a moment distributed over the contact area of the actuators being applied to
the beam.

The stress in the beam and actuators is written in terms of material properties[102]

Oy = Ebgbtiv h<z<ty (4.4)

b

z

b

where ¢, and a‘p is the stress in the beam and the top actuator, respectively. E is the

Young’s modulus and ty, is the half-thickness of the beam (figure 4.2). The stress for the
bottom actuator can be defined analogously to equation (4.5). Equation (4.5) implies
that the resulting stress distribution in the top actuator is due to the superposition of the

actuator free strain and the strain in the beam due to mechanical loading.

The moment applied to the beam is calculated by integrating the stress distribution:
~ty b ty ety
Lh % (2)zdz+ Lb o,(2)zdz+ '[tb o' (2)zdz=0, (4.6)

which yields the expression [86]
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Mx(x,t):{Ebl Ke,t)  x<x<x @4.7)
0 otherwise
where
3Ep((tb +t,f —12) “8)

) 2, (6, +t, F )+ E2)

and | is the moment of inertia about the neutral axis. Equation (4.7) shows that the
moment applied by the actuators is distributed between the ends of the actuators, which

can be expressed using the Heaviside step function, H(x - a):
M, (x,t)=E,l K&, {t)[H (x—x)-H(x—x,)]. (4.9)

Equation (4.9) can be generalised to account for m pairs of actuators, as shown in
equation (4.10).

M, ()= M, (xt) (4.10)

Transverse vibrations of a beam are well-approximated by the Euler-Bernoulli beam
eguation given in equation (4.11) [103]. The beam is assumed to have a uniform cross
section and its length much greater than either the width or height. In addition, small
transverse deformations are assumed such that the rotational inertia is ignored and the

beam cross-section is assumed to remain plane as shear deformation is neglected.

The term on the RHS of equation (4.11) describes the moment applied by pairs of
piezoceramic actuators.

| 9*z(x,t)

9°z(xt) 9°M (x,t)
9*x - '

9%t 9°X

E,

+pA (4.11)

66



p, A, are the density and cross-sectional area, respectively, of abeam. Equation (4.11) is
solved using separation of variables, and for general initial conditions and boundary

conditions, is assumed to be of the form [102]:
w(x,t)=} W¢,(x)a,(t). (4.12)
n=1

¢.(x) is the nth normal mode shape of the beam and W, is a scaling constant to be
determined from boundary conditions. q, (t) is the temporal response of the structure,

and is assumed to be of the form g, (t)=Ge'*" for a sinusoidal excitation. The time

0°g,(t)

derivative is represented as ¢, (t)= -

Equation (4.9) is substituted into equation (4.11) and evaluated using the following

property of the Heaviside step function [104]: % H(X) = d(X);

82M+(X’t)= E,l Kfp(t)%[5(x—><1)—5(><—x2)]; (4.13)

9°M (x,t , ,
a—é():Ebl K e, 05 (x— %)~ (x= %) (4.14)
and o(x-a) isthe Dirac Deltafunction, to yield

1YWt 00,0+ pA, T W0, (06, 0= B K e, O (-x)-0x-)]  (415)

The mode shape function of an Euler-Bernoulli beam has the property [103]

¢, ()= %9, (x), (4.16)
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where B = @} pE Alb and a, isthe undamped natural frequency of the nth mode.
b

The mode shape scaling constant is evaluated using orthogonality properties of the
mode shapes;

[} 8.0, (X)ex =5, (4.17)

where dmm, is the Kronecker delta function. Multiplying equation (4.15) by ¢, (x) and

integrating along the length of the beam uncouples the equation, and further rearranging
yields

@; 6, (t)+4,(t)= AJK«? (t)j¢n(><)[5 (x=% )= 8"(x = x, )]ox. (4.18)

The RHS of the preceding equation is further evaluated using fundamental properties of
the Dirac Delta function [105]:

[ 1608 (k=] 5-5"x)ex (4.19)

jf (x)5(x—a)ix= f (a) (4.20)
such that

o7 6,0+, 0= Ax K e, @)1} 0c)- ¢/ (x)]. (4.21)

The derivation of equation (4.21) has not included any damping term, which is required
to model the damping present in real systems. Therefore, an equivalent viscous damping
factor, ¢, isadded to the LHS of equation (4.21) giving equation (4.22).
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0, )+ 26, @, 6, ()+ @ 0, ()= K £ - Ol (x, ) ¢,()]- (4.22)
pAJ

Applying the Laplace transform to equation (4.22), assuming zero initial conditions,
substituting equation (4.3) and further rearranging yields

s’Q(s)+ 26, @,Q(s)+ &} Q(s)— 2

- ©) (4.23)

Including the spatial part of the solution, W, ¢n(x), and summing all modes, a transfer

function between applied voltage and displacement response is

6, 6c8)= Jo = K2 o)l e azn
o
G, (x,s):yn: = fz\;\’zg?wz (4.25)
where
y= % K ‘:—zl (4.26)
20 =606~ ¢, (0)] (4.27)

Equations (4.25) - (4.27) show that the transfer function is dependent on the local slope
of each mode in the contact area of the actuators. In particular, equation (4.27) describes
how well the actuator pair couples to, and therefore excites, each mode. Of interest is
when x; and x; are equidistant from the same node. The sope of the mode shape at x;
and x, will be the same and equation (4.27) shows that coupling between the actuator
pair and this mode is impossible. This is analogous to exciting a structure with a point
force at a node of a particular mode. It should be noted that equations (4.25) - (4.27)
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may not be accurate if x, — X1 is greater than a quarter wave length of a mode shape. In
this case the effects of actuator stiffness will change the local deformation for each

mode, which is not predicted by the Euler-Bernoulli beam equation.

Equations (4.25) — (4.27) can be compared to an analogous transfer function derived for
the case of point excitation, given in equation (4.28) [103]. The excitation is applied at a

distance a/L along the beam, where L is the length of the beam.

-5 iwwx)gs(j

(4.28)

s +2¢, 0,5+ @

The distributed excitation applied by piezoceramic actuators has implications for
properly resolving the modal coefficients. Equation (4.28) can be written in a form

typical in discussions on modal analysis of a general structure [31]:

i) 4(1)
H; (s)= Z 00 ¢ (4.29)

=S+ 26, 0,5+

Where ¢ is the modal coefficient at point i, the response measurement point, and ¢{"

is the modal coefficient at point j, the excitation point. Extracting the modal coefficients
requires taking a point receptance (mobility or inertance) measurement and computing
the square root of the estimated modal residue before using this value to normalise

estimated residues from transfer receptance measurements. That is,

H, @)= 6010 o0,

H, @) g0g0 — S0 50 (4.30)

¢(J)

This series of operations cannot be evaluated for distributed excitation. An alternative
definition of mode shapes can, however, be used. For example, unscaled mode shapes

can be defined as
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R(M rRM T
D =1 — - = (4.31)
Rij R;j

where @ is the nth mode shape andR'" is the residue for the nth mode, calculated

from theijth element of a transfer function matrix.

4.3 Experimental and Numerical Analysis of Piezocer amic Excitation
of an Aluminium Beam

The approximate model of an Euler-Bernoulli beam excited with a pair of piezoceramic
actuators was verified using finite element modelling and experimental measurements.
The aluminium beam used for experiments discussed in Chapter 2 was used as a

representative case and the dimensions are shown in figure 4.3.
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Figure 4.3 Details of free-free aluminium beam with piezoceramic actuators. The
actuators are shaded grey and the polarity of the driving voltages resulted in a
distributed moment being applied by the actuators. Two measurement points are also
indicated.

Equations (4.25) — (4.27) were used to predict the vibration response (due to a
sinusoidal excitation) at two points on the beam, which are shown in figure 4.3. The

mode shape function ¢, (x) and scaling constant were evaluated using free-free

boundary conditions and the modal orthogonality conditions (equation 4.17). The
response for the first twenty modes was initially used in the analysis to minimise the
effects of out-of-band modes. It was observed that only the first 11 modes could be
calculated for the response estimate for point 1, and 15 modes for point 2. This was due

to the numerical properties of the mode shape function, in particular the hyperbolic sine
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and cosine functions, which increase rapidly. As a consequence, the results for higher
frequencies were assumed to be less accurate, and ultimately moda scaling was
calculated as zero. Material properties for the duminium beam and actuators were as
follows: Ep = 62 GPa; p = 2650 kg/n?; ds1 = -171x10* m/V. The frequency range
considered was 5 - 516.5Hz, with a 0.5Hz resolution. The voltage applied to each of the
plates was 11 volts, to correspond with settings in experimental tests. The vibration

response spectra are shown in figures 4.4 and 4.5.

4.3.1 Finite Element Modédl of Piezo-Actuated Beam

The finite element model of the free-free aluminium beam, discussed in Chapter 2, was
modified to model the piezoelectric characteristics of the actuators. The piezoelectric
actuators were modelled with a volt DOF, which allowed harmonic response due to an
applied voltage to be calculated. In addition, the piezoelectric material parameters in
equations (4.1) and (4.2) could be explicitly defined in the FEM analysis, and were

specified as follows:

(164 -574 -7.22 ]
574 164 -7.22 0
722 -722 188
St = x[10%) (mN);
475 to™) (i)
0 475
I 475 |
i -171]
0 -171
74 1.531 0
d=| o 4 x[07?) (mv); &= 1531 x(10®) (F/m);
0 1.505
584
584 0
Ep = 62 GPa; p = 2650 kg/n*. (4.32)

A modal analysis across a frequency range of 0 — 1600Hz, which included 32 modes,

was carried out before the harmonic response analysis. The modal superposition
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solution method was used for the harmonic response with the same frequencies (5 —
516.5Hz) as used in the Euler-Bernoulli analysis. The relatively large frequency range
in the modal analysis was employed to minimise the effect of out-of-band modes in the

harmonic analysis. Results are plotted in figures 4.4 and 4.5.
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Figure 4.4 Vibration response measured at point 1 (see figure 4.3) due to an 11 volt
(peak) swept sine excitation.

-3

10 T T T T T T

— FEM
— — Experiment E
------ Euler-Bernoulli |

Displacement (m)

10 7

| | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 4.5 Vibration response measured at point 2 (see figure 4.3) due to an 11 volt
(peak) swept sine excitation.
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4.3.2 Experimental Measurements

Experimental measurements were made on the auminium beam in a freefree
configuration. An 11 volt (peak) swept sine excitation was applied to the beam in 0.5Hz
steps, across a frequency range of 5 - 516.5Hz. A constant-gain voltage amplifier, which
maintained a constant voltage output, was used to drive the plates. Voltage and
electrical impedance measurements across each actuator verified the assumption of
constant voltage excitation and only very small deviations from an ideal capacitative
load (piezoceramic actuators are assumed to act like a capacitative load away from
structural resonances [106]) were observed around structural resonances. Response
measurements were made at two points in the transverse direction, as indicated in figure
4.3. B&K 4374 accelerometers and B&K 2635 charge amplifiers were set as for
experiments discussed in Chapter 2. An HP 3566A FFT analyser was used for data
acquisition and also to generate the excitation signal. The measured results at points 1
and 2 are compared with results from the Euler-Bernoulli and FEM analyses in figures

4.4 and 4.5, respectively.

4.3.3 Discussion of Results

The results from each analysis show reasonable agreement for both measurements.
Natural frequencies showed greater deviation for higher frequencies. The greatest
deviations, observed for the 8" mode, were under 3%. As a consequence, anti-
resonances in figure 4.5 also show some deviation. Amplitudes about the resonant
frequencies are affected by finite resolution; however, good correlation between each
analysis is observed. Constant modal damping of 0.1% was applied in the Euler-
Bernoulli and FEM analyses and results show that this was probably too low,
particularly for the higher modes. Large amplitude differences at the local minima are
observed in figure 4.4, especialy for higher frequencies. It is believed that thisis due to
the limitations of the mode shape function assumed in the Euler-Bernoulli analysis, as
well as the assumptions listed in section 4.2. It is interesting to note that the FEM
natural frequencies at higher modes are higher than those predicted by the Euler-
Bernoulli analysis. The inclusion of rotational inertia and shear deformation effects
typically decreases the estimated natura frequencies [103, 107]. It is conceivable that
the additional stiffness imposed by the piezoceramic actuators is increasing the natural

frequencies for higher-order modes in the FEM analysis. No clear conclusions have
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been reached as to why the Euler-Bernoulli analysis does not agree with experimental
results at the local minima in the upper-haf of the frequency range for measurement
point 1. However, considering the good agreement achieved for measurement point 2,
the effect is more significant close to the end of the beam and may be due to the
assumed mode shape function, which assumes deflection in one direction only; i.e.
ignores rotation. Torsional modes (165Hz, 335Hz, and 511Hz in FEM analysis) may
also have influenced the experimentally determined results. The Euler-Bernoulli model

only considered transverse modes.

Figure 4.6 shows the absolute values of equation (4.27) calculated for the first fifteen
modes of the free-free beam. It is clear that low order modes are not excited very
effectively, relative to the higher order modes. The local minimum for mode 13
corresponds to the case where the middle of the actuator pair is located close to a node,
or more specifically, an inflexion point, of the mode shape. Therefore, the applied
moment of the actuators does not couple well to that mode.
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Figure 4.6 Absolute values of equation (4.27) plotted for the first fifteen modes of the
free-free aluminium beam.

4.4 Preliminary I nvestigations of a Cantilever Aluminium Beam

The experiments considered in Chapters 6 and 8 deal with multiple sources of excitation
applied to a simple structure. In order to avoid the difficulties associated with coupling
multiple shakers to a light structure, piezoceramic actuators were instead chosen for
structural excitation. No steps were taken to optimise the placement of the actuator pairs

on the cantilever beam as the aim of this brief study was to gain insight into the
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performance of each actuator in exciting particular transverse modes so that modal
analysis results could be better interpreted. A significant amount of literature is devoted
to optimal actuator and sensor placement [84, 85, 87, 88, 91-93, 96, 108, 109].

Piezoceramic actuator \

) )

- |
Copper tape/
N L
] |
/
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e \ 0] ]
; 30mm§’
3 ‘180 mm
) 330 mm i
" 500 mm

Figure 4.7 Schematic of cantilever aluminium beam showing configuration of
piezoceramic actuators pairs. Note the enumeration of the actuator pairs.

Figure 4.7 shows a schematic of the cantilever aluminium beam and the configuration
of actuators. The aluminium beam was 1000x50x6 mm, with 125 mm clamped between
steel bars. 70x25x1mm Pl ceramic PZT (lead zirconate titanate) PIC 151 piezoceramic

plates were used as the actuators.

The values of equation (4.27) were calculated for the cantilever aluminium beam and
are plotted in figure 4.8. The results indicate the relative effectiveness of each actuator
in exciting the first ten modes. As with the free-free beam, the lower order modes are
excited relatively poorly. Also of note is that mode six is also excited relatively poorly
by actuators 1-3. Similar comments apply to mode 9, actuator pair 2, and mode ten,
actuator pair 3. The normalised mode shapes for the cantilever beam are shown in table
4.1. Also shown are the positions of the actuator pairs. Note that for mode 6, actuator
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pairs 1 - 3 are located about nodes, hence explaining the results shown in figure 4.8. It is

expected that identification of poorly excited modes will be a problem, as was shown in

the experiments discussed in Chapter 2. Therefore, in the absence of pre-test analysisto

best locate actuators, the use of multiple actuators is advantageous.
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Figure 4.8 Absolute values of equation (4.27) plotted for the first ten modes of the
cantilever aluminium beam.
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Table 4.1 (Continued over the page) Normalised mode shapes for cantilever aluminium
beam. The positions of the four piezoceramic actuator pairs are indicated by the thick

line.
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Table 4.1 (cont.) Normalised mode shapes for cantilever aluminium beam. The
positions of the four piezoceramic actuator pairsare indicated by the thick line.
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4.5 Conclusions

The use of piezoceramic actuators for exciting an auminium beam has been
investigated with an approximate analytical model and finite-element analysis, which
are verified by experimental results. The approximate analytical model was based on
Euler-Bernoulli beam theory and yielded an expression that described the effectiveness
of apair of actuatorsin exciting a transverse vibration mode. Reasonabl e agreement was
shown between the analytical model, FEM harmonic analysis results, and experimental
measurements on a free-free aluminium beam excited with a single pair of piezoceramic
actuators. The analytical model provides a basis for explaining experimental
observations discussed in Chapter 2. The distributed excitation applied by the pairs of
actuators was shown to prevent scaled modes being estimated as would be possible with
point excitation. Relatively scaled mode shapes can be extracted by considering residues
obtained from atransfer function relating applied voltage to vibration response.

A preliminary investigation for a cantilever auminium beam was carried out to
determine the relative effectiveness of multiple pairs of actuators in exciting transverse
modes. Piezoceramic actuators allow multiple excitation sources to be applied to a small
structure with minimal changes to the dynamic properties of the structure. The results
suggest that low order modes will be excited relatively poorly and also indicated that
particular modes will not be excited well if the centre of the actuator pair is located
about a node. The cantilever aluminium beam considered is used for experimental
verification of a modal parameter estimation agorithm introduced in Chapter 5 and
tested in Chapter 6. The discussion in this chapter allows better interpretation of the

results obtained from the proposed modal parameter estimation algorithm.
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Chapter 5 ARMAX Modal Parameter |dentification in the

Presence of Unmeasured Excitation: Theoretical Background

5.1 Introduction

The recent development and improvement of many modal analysis techniques has been
aimed at extending their applications to practical situations, for example the testing of
machinery and mechanical systems while in operation. In many cases, for example the
testing of machines with rotating elements, it is difficult to completely isolate the
structure from ambient vibration caused by the operation of the machine. Thisis also a
key problem in the study of helicopter structural dynamics, as noted in Chapter 1.
Existing modal parameter estimation techniques do not account for unmeasured sources
of excitation, as discussed in Chapter 2, although pre-processing of measured data, for

example using synchronous averaging can reduce the effects of unmeasured excitations.

Alternatives to input/output modal analysis include determining operational deflection
shapes (ODS) [20], or the application of one of many operational (response-only) modal
analysis techniques (see Brincker [65] for recent developments in theory and
applications), which only require vibration response measurements. Operational modal
analysis technigues generally assume that the unmeasured excitation force to be close to
white noise [20, 38]; however, cases where periodic excitations of a known frequency
are present in addition to broadband excitation have been investigated [110-113]. In
contrast to input-output modal analysis, operational modal analysis techniques do not
directly yield scaled mode shapes because the excitation force is not measured, but
additional strategies, which involve the structura modification using a known mass,
have recently been investigated to overcome this problem [27, 114, 115]. Operational
modal analysis methods will be discussed in more detail in Chapter 8.

In this chapter, a new approach is presented to estimate modal parameters from
excitation and response data obtained in the presence of significant unmeasured periodic
and random excitations and also random measurement noise. This method yields scaled

mode shapes and can be used with a variety of excitation signals, including periodic
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signal's, which can be combined with synchronous (time-domain) averaging to attenuate
unmeasured excitations. An autoregressive moving average with exogenous excitation
(ARMAX) model is used to describe the dynamics of a structure and to take into
account measurement noise and unmeasured excitation. A multistage estimation
algorithm is devised to estimate the parameters of the ARMAX model, from which the
modal parameters of a structure can be calculated. The ARMAX estimation algorithm
includes a smple method based on the position of estimated poles on the z-plane to
select the best model from a set of estimated models and also to distinguish between
structural modes and spurious numerical poles. For moderate levels of measurement
noise, modes estimated with positive damping are vibrational modes and spurious
numerical modes are estimated with negative damping. The model selection criterion
selects the model with the highest number of positively damped modes from a set of
models of different order. A diagonal parameterisation of the autoregressive (AR)
matrix, and consequently the moving average (MA) matrix, allows the MIMO ARMAX
model to be estimated as a series of MISO models. In addition, the diagonal structure
alows simple manipulation of the AR and MA matrices, including stabilisation, which
can be achieved by reflecting unstable zeros about the unit circle. The performance of
the ARMAX estimation algorithm is assessed using numerical and experimental data in
Chapter 6 and further testing using a helicopter-like structure is discussed in Chapter 7.

The following section introduces the discrete-time model and the estimation algorithm
is presented in section 5.3. Notes on the implementation of the algorithm are included in

section 5.4 and concluding remarks are made in section 5.5.

52 ARMAX Model Structure

The vibration of a general continuous structure can be described by an n degree-of-
freedom (DOF) linear differential equation [30]:

M -X(t) + D x(t) + K -x(t) =f (¢) (5.1)

f(t) isavector of forces acting at each DOF and x(t) and its time derivatives correspond
to the displacement, velocity, and acceleration at each degree DOF. M and K are the
real, symmetric mass and stiffness matrices and D is the real, symmetric damping

matrix that describes the equivalent viscous damping of the system. An alternative
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general representation of a linear dynamic system is an autoregressive moving average
with exogenous (ARMAX) excitation model, which is described by equations (5.2) —
(5.5) and shown in figure 5.1 [116].

A(0)-y[t]=B(q)-f[t]+C(a)-w[t], (5.2)
where
A@=1l,+Aq++A,-q%, [sxs] (5.3)
B(q)=B,+B,-q+--+B_,-q™, [s x m] (5.4)
C(qg)=I,+C,-q+---+C,.-q™. [s x 9] (5.5)
w[t]
C(a)/A(g)
flf] ——»| B@/A(Q) |—» ylt]

Figure 5.1 Block diagram of ARMAX model.

The ARMAX model uses rational functions to relate an m dimensional force vector f[t]
to an s dimensional response vector y[t], which are both sampled at discrete timest =
kTg, k=0, ...,N-1, and Tsisthe sampling period. The response vector y[t] is assumed
to be corrupted with zero-mean random measurement noise and the ARMAX model
also includes an s-dimensional unmeasured disturbance w(t], which is assumed to be a
zero-mean independent random variable (i.e. {w[t]} is white noise). w[t] is independent
of f[t] but can have correlated components, i.e. a non-diagonal covariance matrix. A(q),
B(q), and C(q) are the autoregressive (AR), exogenous (X) and moving average (MA)
matrices respectively. The elements of these matrices are scalar polynomials in terms of
g, the backshift operator: x[t]-q’ = x[t-j]. The orders of the polynomial elements of the

AR, X, and MA matrices are na, nb, and nc, respectively (equations (5.3) — (5.5)). Isis
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the sxs identity matrix. For the single-input single-output (SISO) case, the AR, X, and
MA matrices reduce to scalar polynomials. The AR matrix represents the global
properties of the structure, namely, the natura frequency and damping for each mode.
The X matrix is dependent on the signal type used for structural excitation [61] and also
the positions of the m excitations.

The ARMAX model is adopted because it includes the stochastic component wi[t],
which accounts for noise present in the excitation and response measurements. The
block diagram shown in figure 5.1 illustrates that the unmeasured disturbance is filtered
by the rational function C(g)/A(g). The significance of this is that the unmeasured
disturbance is filtered not only by the MA matrix, but aso by the AR matrix, which
describes the global properties of the system. Therefore, the filtered unmeasured

disturbance can represent the effect of unmeasured excitations.

w(t]

l

VA(q)

fit] —»| B(@/A@) |—> ylt]

Figure 5.2 Block diagram of ARX model.

The ARMAX model is also capable of estimating modal parameters from multiple-input
multiple-output (MIMO) measurements, which, compared to SISO testing, is useful for
reducing measurement time, ensuring adequate excitation to al parts of large structures,
and improving consistency in data sets. The autoregressive with exogenous excitation
(ARX) model, which is shown in figure 5.2, can be derived from the ARMAX model by
setting nc = 0 and the unmeasured disturbance w[t] corresponds to the error in a linear

difference equation relating the input and output data:

yit]+ A, -y[t=1+---+A,, -y[t—na] =B, -f[t]+B, - f[t =1 +---+ B, - f[t —nb] + w[t] .
(5.6)
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The predictor for the ARX model correspondsto alinear regression problem, which can
be efficiently solved using the least-squares criterion [116]. This will be discussed
further in the next section. The deterministic case where w[t] is insignificant is

equivalent to adiscrete-time rational polynomial representation of the transfer function.

The assumptions made about the physical structure, excitation, and vibration response

areasfollows.

e The structure exhibits a linear, time-invariant, and causal response to an
arbitrary excitation.

e Thevibration response is stable; i.e. positively damped. Therefore all vibrational
modes are represented by zeros of the function in equation (5.7) that fall inside

the unit circle on the z-plane [116].

A (2)=z" - A(z)=2"+A,- 2" "+ + A [sx ] (5.7)
e The MA matrix is assumed to be stable with all zeros of the function in
equation (5.8) located insde the unit circle.

C(2)=2"-C(z")=2"+C,- 2" +---+C [s x 5] (5.8)

nc -

e Theexcitation is persistently exciting of order na + nb + 1. Thisimplies that the
spectrum of the excitation signal is non-zero for at least na + nb + 1 frequencies
intheinterval —r < @ < 7 [116]. In practice, the excitation is usually a broad-
band signal, for example white noise, which satisfies the requirement for
persistent excitation. It should be noted that na > nb and specific excitation
signals can be created by the superposition of a minimum of na + 1 summed
sinusoids, which will lead to a persistently exciting signal appropriate for the
estimation of an ARMAX model of order na. A more detailed discussion of

persistent excitation can be found in [44, 116].



Stage 1
Estimation of higher-order backwards ARX model from
input/output data using least-squares criterion.

|

A
Stage 2
1% estimate of noise model (MA matrix) obtained from
backwards AR matrix obtained in stage 1.

A 4
Stage 3
Estimation of lower order ARX model from input/output data
filtered by noise model (MA matrix) obtained in stage 2.

|

Stage 4
Estimation of new noise model using AR matrices obtained in
stages1and 3

!

Convergence
criterion

Stage 5
Calculate modal parameters from ARMAX model

Figure 5.3 Block diagram of ARMAX estimation algorithm.

5.3 ARMAX Parameter Estimation Algorithm

As shown in Figure 5.3, the modal parameters are calculated from an ARMAX model,
which is estimated by a multistage algorithm [43], implemented in an iterative loop. The
first four stages are based on the work of Fassois et al [55, 117], with modifications to
include the use of backwards ARX models, which allows spurious numerical modes and
vibrational modes to be distinguished according to the position of the poles of the
backwards ARX model in the z-plane. Thisis aso the basis of a smple model selection
criterion. A further modification is the use of a diagonal parameterisation for the AR,
and consequently MA, matrices, which alows these matrices to be decomposed into
scalar polynomials. The scalar polynomials can be stabilised easily by reflecting
unstable zeros about the unit circle in the z-plane and the diagonal structure is desirable

for numerical operations, such astaking the inverse.
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5.3.1 Stage 1. Estimation of Higher Order ARX Model

Thefirst stage involves estimating a higher order ARX model from the input and output
data. Ljung [116] pointed out that an ARX model of order p estimated using N data
points will converge to represent the true system as N, p — o, and N > p. Hence, an
ARX model with finite N and p will approximate a linear system relating the excitation
data f[t] and response data y[t], which are corrupted with noise. Equations (5.9) — (5.11)
describe an ARX model of infinite order, which can be related to the ARMAX model in
equation (5.2) by pre-multiplying by the inverse of the MA matrix [55].

H,(a)-y[t]=H( (a)-f[t]+w[t], (5.9)
with

Hy(Q)E|s+iHy(j)-qj=C’1(Q)-A(Q), [s 9] (5.10)

Hf(Q)Ein(j)-qj =C™(q)-B(q). [s > 9] (5.11)

In practice, the ARX model is limited to a finite order p, where p > na, and the choice
of p, na, nb, and nc, which is dependent on model parameterisation [44, 116], is critical
to the accuracy of the estimated ARX and ARMAX models. A brief description of
model parameterisation, which is concerned with the structure of the AR, MA, and X

matrices, is given below.

Consider the SISO ARX model in equation (5.12).

Vitl+a, - yit—-0+---+a,-yit—na]=b,- f[t]+b - f[t-2+---+b, - f[t—nb]+€t]

(5.12)
A set of possible models with a particular structure can be obtained by varying the
values of na and nb. The parameters to be identified in each model are the coefficients
a,i1=1,..naandb,j=0, .., nb. If f{t] and y[t] are ideal noise-free data then an
appropriate choice for na is na = 2n, where n is the number of modes in the frequency
band 0 — 1/(2Ty) Hz. This is due to the 2n complex conjugate poles of the AR
polynomial, which describe the global properties of the structure; i.e. natural

frequencies and damping. The choice of nb is dependent on the type of response data
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used and the inter-sample behaviour of the data for displacement response
measurements, where data are assumed to be a train of impulses at the sampling
instants, nb = na — 1 [61]. Real data typically includes components other than those
caused by the structural dynamics and a higher order AR polynomial is necessary. An
appropriate parameterisation of a set of SISO ARX modelsis therefore to set na = (2 x
n) + k, where k=2, 4,6, ..., r, and r is determined by a convergence criterion and
limited by the number of samples in the input and output data records. The
parameterisation of MIMO models is considerably more complex because the order of
each element of the AR, MA, and X matrices hasto be set. That is, for

a (@ - a0
A= i a@ i |, a@=1+a" -g+..+a"™ q™, (5.13)
ag(@ - ag0)

na;; and similarly nb;; have to be chosen. Setting na;; = na, nb;; = nb, for al i, j resultsin
full polynomial form [44, 116] and the theoretically required order of the AR matrix is
na = 2n/s; n is the number of modes in the frequency range of interest, s the number of
response measurements, and a set of candidate modelsisna = 2n/s+ k, wherek = 1, 2,

R

The assumption of positively damped vibrations does not always hold for noisy data.
Very lightly damped structures and noisy data may lead to the estimation of negatively
damped modes. In addition, very noisy data and numerical operations in subsequent
stages may lead to ill-conditioning of the regression matrix used to estimate ARX-
model parameters. For these reasons a diagonal structure is imposed on the AR matrix
in the ARX and ARMAX models. A similar structure is also studied by Park and Kim
[51]. From equation (5.13), this can be expressed as na; = na, na; = 0, i #:

A(q)=diag(a,(a) - a,(@ - ag(d)). (5.14)

This structure is a reasonable assumption for structural dynamics problems because the
global properties of the structure can be modelled by the scalar polynomials that appear
in the diagonal elements of the AR matrix: the AR matrix for a single-output case (SISO
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or MISO) is a scalar polynomial and the superposition of multiple single-output models
results in a diagonal AR matrix. The diagonal structure is less sensitive to numerical
operations, such as taking the inverse of the AR matrix, and a simple procedure to
stabilise the AR matrix involves reflecting the poles of each scalar polynomial about the
unit circle. This stabilisation procedure can also be applied to the MA matrix, which
inherits a diagonal structure from the AR matrix. As the MA matrix is used in filtering
operations, reflecting unstable poles about the unit circle preserves the frequency-
domain properties of the filter. Alternative stabilisation strategies for matrix
polynomials, see for example [55], involve more complex numerical operations such as
solving systems of equations that include the correlation functions of polynomia
coefficients. It has been suggested that this adversely affects the characteristics of the
matrix polynomials and therefore the accuracy of parameter estimates [118]. The
diagonal structure adopted in the present work also allows the MIMO ARX mode to be
decomposed into s MISO models, each with ascalar AR polynomial. The s estimates of
the global properties can be reduced to a single estimate using weighted averaging or
any other selection criterion. The order of the diagonal AR matrix is the same as for the

single-output case; i.e. na= (2n) + k, wherek=2,4,6, ..., .

The MIMO ARX model of order p with a diagonal AR matrix is estimated as s MISO
ARX models using the least squares criterion. Equation (5.9) can be rewritten as

P P
I+ Y H () -ylit=j1= Y H (i) -flt=jl+e,t], (5.15)
j=1 j=0
and subsequently separated intok, k=1, ..., s, MISO models:
P P
y® I +Y () - y“re-j1= Y HE (i) - flt - j1+¥[t], (5.16)
i=1 j=0

where ¢,[t] isthe prediction error, y®[t], H(q) and &[t] are the kth rows of y]t],
H, () and &,[t], respectively, and h{’(q) is the kth diagonal element of H (). The

notation H,(j), H,(j), h!(j), etc. is used to indicate the jth coefficient of each

(matrix) polynomial for terms that include other subscripts, as opposed to the notation
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A that was used above, for example, in equations (5.3) — (5.6). The MISO ARX model

can be rewritten as a linear regression problem
y“ltl=ugltl-h +&{[t] (5.17)

in terms of the regression vector u,[t] and parameter vector h, :

u tl=[-y®re-1 -y®re-21 - —y®-plift] - ft-p]l",  (5.18)
[(p+pm+m)x1]

he=h®@ 9@ - ) @ HP©E - HPp]. (5.19)
[(p+p.m+m)x1]

The s MISO linear regression problems are solved individually using a least-squares
(LS) algorithm based on QR decomposition described by Ljung [116] and outlined

below.

Define

O, =[u g - ulN]IT, [N1x (p + p.m+ m)] (5.20)

Y=o o y®ngT, [Ny x 1] (5.21)

where N; = N - p - 1 and N is the number of samples in the input and output vectors.

The ARX model is then rewritten in terms of Y, and ©,:
Y, =0,-h, +E,, (5.22)

and the LS criterion, which minimises the quadratic norm of the prediction error E,, ,

can be expressed as
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N 2
391 =Y, -0, h [ =Yy, [-ullt] h - (5.23)
t=1

An orthonormal transformation preserves the length of a set of vectors and the angle
between them [119] and therefore the norm in equation (5.23) is not affected by
applying an orthonormal transformation Q, [N1 x Ny]:

IO, y®,f) =[Q (Y~ 0, -h, ), (5.24)
where Q, is chosen such that
[0, Y.J=Q. R, [Ny x (p+p.m+m+ 1)] (5.25)

whichisa QR factorisation of [@, Y,]and

Rox
R.=| - |, [Ny x (p+p.m+m+ 1)] (5.26)
0
R, R
ROK:{ Olk RZK} (5.27)
3k

(Rok[(p+ pom+ m+ 1) x (p + p.m+ m+ 1)] isupper triangular; Ry is[(p + p.m + m)
X (p + p.m+ m)]; Rxis[(p + p.m+ m + 1) x 1)]; Ra is scalar). The definition of an

orthonormal matrix: Q, -Q; =1, hence Q, =Q;" is used to rewrite equation (5.24):

R Ry -h
J(k)(h ,y(k)’f):“: ZK} _ |: 1k k:|
s \Mk Ry, 0

Equation (5.28) is minimised when R, -h, = R, .

2

:|R2k_R1k'hk|2+|R3k|- (5.28)
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The LS estimate using QR factorisation has a number of useful properties as outlined by
Ljung [116]. The algorithm is appropriate for problems with a high dimension and is

numerically well-conditioned when compared with techniques based on solving the
normal equations, which involve computing ®; - @, . LS estimates can be obtained for

models with an order smaller than that used in the initial definition of the problem by

setting the appropriate elements in the parameter vector h, to zero.

The model order na of the ARMAX model is related to the number of structural modes
in a given frequency range. The order p of the ARX model is chosen to be greater than
na to account for noise present in the measurements and follows from the definition of

H,(q) in equation (5.8). In practice the number of structural modes in a given

frequency range is not known a priori and it is well known that over-specifying the
model order reduces the bias of estimates in the presence of noise [44, 116]. Therefore,
a higher-order model is desirable. Two disadvantages associated with higher order
models are the increase in computation time and memory requirements, and the
introduction of spurious poles that do not correspond to structural modes. The
computational complexity can be justified on the basis of improved accuracy, however,
distinguishing between the poles that correspond to structural modes and spurious

numerical poles can be asignificant problem.

A number of techniques has been developed to address this problem, for example, the
use of stabilisation diagrams and dispersion analysis [57]. Stabilisation diagrams can be
difficult to interpret for high order models as spurious numerical poles can exhibit only
small amounts of scatter, particularly for LS estimates using singular value
decomposition [47]. Dispersion analysis has been shown to be effective, but can only be
caculated once the estimated ARX or ARMAX model has been estimated and
factorised into pole-residue form. This can increase the computation time significantly if
estimating a large number of high order models. Dispersion analysis also requires a
threshold value to be defined that separates spurious numerical modes from vibration
modes. An aternative method is the use of backwards ARX models, which distinguish
between spurious numerical poles and vibration poles on the basis of their position on

the complex z-plane.
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Kumerasan et al. [120, 121] showed that the frequency and damping of sinusoids could
be identified from the signal zeros of alinear prediction filter polynomial. If the order of
the prediction filter was over-specified, the spurious numerical zeros of the linear
prediction filter were shown to lie inside the unit circle if the prediction filter was a
monic polynomia with coefficients chosen to have minimum Euclidean length. The
result held for exponentially damped sinusoids with positive and negative damping and
also for undamped sinusoids. A consequence of this result is that the frequency and
damping of signals consisting of exponentially damped sinusoids could be estimated
using a higher-order prediction error filter and distinguished from spurious numerical
poles by first reversing the order of the signal samples. The reversal of the signal would
transform the positively damped sinusoids to negatively damped sinusoids with poles

that would lie outside the unit circle.

A number of studies has applied this technique to estimating modal frequencies and
damping [45-47, 120-122], however, it should be noted that the prediction error
approach utilises the response data only. The prediction error technique was used as the
first stage of a two stage method to predict ARX models (referred to as ARMA models
in the original study) by Batill & Hollkamp [45]. In a subsequent paper [46] Hollkamp
& Batill proved that the minimum norm solution for backwards ARX models (again,
referred to as ARMA models in the original study) resulted in the spurious numerical
poles being located inside the unit circle on the complex z-plane and the system poles

being located outside the unit circle.

The use of backwards ARX models was adopted for the first and third stages of the
ARMAX estimation algorithm. This was achieved by using forward time steps instead
of backward time steps when defining the ARX model in equation (5.15) and
subsequent LS estimation. An alternative approach is to simply reverse the order of the
input and output data vectors. The resulting backwards AR and X matrices that are

estimated are denoted H g (q) and H () , respectively.
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5.3.2 Stage 2: 1% Estimate of Noise Model (MA matrix)
The backwards AR matrix Hg (q) estimated in the first stage contains information

describing the system dynamics and the noise dynamics, as shown by equation (5.10).
The second stage estimates the noise model by separating the system dynamics from

noise dynamics. One approach is to simply factorise Hg (q)into two matrix

polynomials; one with poles outside the unit circle and the second with poles inside the

unit circle:
Hy (2)=2°H (") =D,(2)-D,(2). (5.29)
z,,; and z,,, arethecomplex zerosof D,(z)and D,(z), respectively, such that

2o >1,1=1, ..., na, (5.30)

|Zopi|<1,i=1,..,p-na. (5.31)

Then the following assignments can be made:
Ag(a)=D,(a) (5.32)

Cg(a)=D,(a) (5.33)

Recall that the backwards ARX model will place system poles outside the unit circle,
and the number of poles is related to the definition of H y(z‘l) (or the backwards

equivalent HBy(z‘l)). This factorisation is easily computed because of the diagonal

structure of the AR matrix and each diagonal entry can be treated as a scalar

polynomial.

Another method to separate the system dynamics from noise dynamics is by

deconvolution. The definition of H (q) isrewritten
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min(i,nc)

C.-H

iTTya-i =
j=0

A, i=0,12,... (5.3)

and approximating A(g) =0, g> na, aset of equations can be written fori =r —nc +

1, .., r; r >max(na,nc) + nc [595]:

T T T A T
H y (r-nc) H y(r-nc-1) 7 H y (r-2nc+1) Cl H y (r-nc+1)
T T aT A aT
H y (r—-nc+1) H y (r-nc) - H y (r—=2nc+2) Cz — H y (r-nc+2) (5 35)
aT T T A T
Hy Hyco - Hyeng J[Ci Hy

Both of the above methods have been used in practice and further comments on their
implementation are discussed below. It should be noted that the first method yields an
estimate of C™'(q) and the second method C(q)) , which hasto be taken into account in
the subsequent stages. The assumption of system stability implies that the MA matrix is
stable and this is the case if the first method described above is used to extract the MA
matrix. The assumption of A(q)=0, g > na, used in the second method can lead to an
unstable MA matrix being estimated, particularly when measurement data is corrupted
with significant levels of noise. It is necessary to stabilise an unstable MA matrix for
use in subsequent stages and this can be achieved by reflecting the unstable MA matrix
zeros about the unit circle. Note that the diagonal structure imposed on the AR matrix
leads to a diagonal MA matrix and each diagonal element can be treated as a scalar

polynomial.

5.3.3 Stage 3: Filtering Input & Output Data and Estimation of Lower-Order
ARX Model

The MA matrix estimated in the previous section (either as C™(q) or C(q)) describes

the noise dynamics of the ARMAX model. Fassois [55] showed that an ARMAX model
can be expressed as an ARX model relating filtered input and output data if the MA
matrix is known. The ARX model isthen easily solved using |east-squares estimation.
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Pre-multiplying equation (5.2) by C™(q) and noting that Ao = I s leads to

~ ~ nb . . ol 02 . .

CH(a)-y[t]=C (@)} B(J)-f[t— j1-CHa) ) A())-ylt— j1+&,[t] (5.36)
j=0 j=1

where ¢,[t] is the prediction error. Pre-multiplication by é‘l(q) can be qualitatively

thought of as pre-filtering the input and output data. Algebraically, Fassois [55] used the
identity [44]

col (ABC) =(C" ® A) -col(B), (5.37)
where col( - ) stacks the columns of a matrix into a vector with the first column at the

top and ® is the Kronecker product, to rewrite equation (5.36) in terms of a filtered
input Fr and filtered output Y :

yelt] = i&[t — i -col(Bj)—_”ZiYF[t — j]-col(A ) +4,[t], (5.39)
where
V=l tec (@)l  [sx1 (5.39)
Y [tl=y'[t]®C™(q) [sx & (5.40)
F.[t]=f"[t]® C(q) [sXx ms] (5.41)
yelt] = Y,[t]-col(l,) (5.42)

Equations (5.38) — (5.42) describe a MIMO ARX model and the definition of the
Kronecker product permits this model to be separated into s MISO ARX models. This
also leads to a convenient way to calculate the filtered excitation and response data.

Equation (5.40) is expanded as
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Yeltl=[ yilt]-CH@) ... yilt]-CHa) ... vdtl-Ca) ], (5.43)
and the kth element in the right hand side of equation (5.43) is
YOt =y,[t]-C (), [sx g (5.44)

Equation (5.44) shows that Y{[t] is the output of C™(q) being applied as a finite-
impulse response (FIR) filter [123] to the data series y,[t] (the kth response

measurement channel). An alternative representation can be derived by post-multiplying
equation (5.44) by C(q) :

YOI-Cla) =y,tl- 1, [sxd (5.45)
which is an infinite impulse response (IIR) implementation of the filter C(q) . The use
of equation (5.44) or (5.45) depends on the method used to obtain the estimate of the
MA matrix in stage 2. A similar procedure can be applied to the force measurements,

yielding the filtered input data series F.[t] .

The MIMO ARX model in equation (5.38) is separated into s MISO ARX models in
termsof F.[t] and Y[t]:

Vet =Y Folt— 110l B(1) - Y. VIt - 1-A(i) + et (5.46)

where y . [t] isthekth row of y[t] andA,(q) isthe kth column of A(q).

Equation (5.46) can be rewritten as a linear regression problem:
Yeltl =Ug,[t]-0,, +&,,[t] (5.47)

using the parameter vector
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0,, =Col[A, (1) A, (na) : B(0) --- B(nb)], (5.48)

[(na.s+ nb.m.s+ m.s) x 1]
and the regression vector

UFk[t] E[_YFk[t_l] "'_YFk[t_na] : FF[t] FF[t_nb]]' (5-49)

[sx (na.s+ nb.m.s+ m.s)]

The least-squares criterion is used to solve equation (5.47) using the QR factorisation
algorithm described in stage 1. A backwards ARX model is also adopted for equation
(5.46) using the same procedure described in stage 1 and the backwards AR and X
matrices that are estimated are denoted A;(j) and B;(q), respectively.

The separation of the MIMO model into MISO models was initially used to overcome
difficulties with forming and manipulating the very large regression matrices required
for the LS solution of high-order MIMO models. The size of the regression matrix
required for aMIMO model is [s x (na.s” + nb.m.s + m.s)] compared with [s x (na.s +

nb.m.s + m.s)] for the MI1SO case.

5.3.4 Stage 4: Estimation of New Noise Model (MA matrix)
An improved estimate of the noise dynamics can be obtained using H g (q) estimated in
stage 1 and Ag(]) estimated in stage 3. Starting with the definition of Hg (q) in

eguation (5.10), the definition of the convolution of two polynomials (polynomial
multiplication) [124]

HBy(k)=ZC’1(j)~AB(k+1—j), j =max(Lk +1-(na+1)),...,min(k, p—na), (5.50)

is used to set up a system of linear equations for k = 1, ..., p, which is solved for
Ca)-
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Stages 3 and 4 can be iterated until a convergence criterion has been satisfied and then
modal parameters can be calculated from the estimated ARMAX model.

5.3.5 Stage 5: Calculation of Modal Parameters from Estimated ARMAX Model

The ARMAX model estimated in stages 1 - 4 yielded the backwards polynomial
matrices A;(q), B;(g), and C,(q). Recall that the transfer function relating the input

and output datais A™(q)-B(q) and thisis used to determine the modal parameters of
the system. Equations (5.51) — (5.52) are used to transform the backwards AR and X

matrices into the forwards AR and X matrices.

A(q) =Aélna(q)'(ABna +AB(na—l) 'ql+AB(na—2) ‘qZ +'“+AB(1) 'qna_l—l— Is 'qna) (551)

B(q) :A_Blna(Q)'(BBnb +BB(nb—1) 'ql"‘BB(nb—Z) 'q2 +"'+BB(1) 'qnb_l"‘BB(O) 'qnb) (5-52)

The poles of the transfer function can be extracted by calculating the eigenvalues of the

bottom companion matrix [125] of A(q)

"0 I, 00 0
0O 0 1.0 - 0
it i =g , (5.53)
0 0 00 - I
L™ na _Ana—l _Al_

which occur in complex conjugate pairs (¢~ denotes the conjugate of x). Note that an
alternative approach is to calculate the zeros of each diagonal element (a scalar
polynomial) of the AR matrix. The system natural frequencies and damping can be

estimated for each pole using the following equations [30]:

com:_l_iwllnur-lnu: : (5.54)

S
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—In(ur :u:) (5.55)
2'a)nr'-rs ’ .

o =
(r =1, .., na) where T,is the sampling period. The transfer-function zeros for each

input-output channel pair can be calculated by finding the zeros of z”b-bi,-(z‘l), where
bij(z") is an element of the X matrix.

Alternatively, the MIMO transfer function can be separated into s x m scalar transfer

functions and factorised into partial fraction form [51]:

(q) na R(k) Rf(k)
! 5.56
&; (Q) ;[l i -q 1 1 - qw ( )

The residues are used to define the kth mode shape:

(®) (K
_ J ]
q)k =1 Ri(k) T Ri(k) . (5.57)
J J

The diagonal AR matrix yields s sets of global moda parameters and these can be
averaged. The sign of the damping for each estimated mode allows the structural modes
to be distinguished from the spurious numerical modes and further reduction of the

estimated model can be achieved by selecting the appropriate poles and residues.

A number of subtle issues arise when using discrete models to describe continuous
systems. The potential for magnification of errors when transforming the poles and
residues of a discrete model into corresponding continuous-time poles and residues was
discussed by Fassois et al. [126]. Using the definition of the z-transform, they derived
the sensitivity of the global parameters to changes in the polar coordinates of the
discrete-time poles as
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), ), - l_g
S| S| Tzw , (5.58)
s s ¢ -1 c2-1
g'Ts' n

where qu is the sengitivity of parameter p to changes in parameter q. @, is the natural
frequency and ¢ the damping of a discrete-time pole with complex modulus r and
argument 6, and Ts is the sampling period. Equation (5.58) clearly shows that the
sensitivity of natural frequency and damping with respect to r approaches infinity as
Ts— 0. The effect of thisis that small estimation errors of discrete-time poles can lead
to very large errors in continuous-time modal parameters for very high sampling
frequencies. Modal damping is particularly sensitive to complex-modulus errors of the
discrete-time pole, especially for low levels of damping. These effects should be kept in

mind when estimating discrete-time models for wide-frequency ranges, asis commonin
vibration analysis of structures.

Fassois et al. [126] also noted that the transformation of discrete-time residues to the
continuous residues, which are used to define mode shapes, depended on the inter-
sample behaviour of the excitation signal. Two common assumptions are impulse
invariance and the step approximation method. The discrete and continuous-time
residues are equal (hence their errors) under the assumption of impulse invariance,
which assumes that the excitation is a train of impulses occurring at the sampling
instants [123]. For the case of step approximation, Fassois et al. [126] showed that no
sensitivity issues arise, except for the case where the argument of the continuous residue
approaches zero.

5.4 Implementation of ARMAX Estimation Algorithm

A number of additional points need to be addressed when implementing the ARMAX
parameter estimation algorithm:

e Sampling rate and data record length;
e Model orders na, nb, nc, and p;

e Selection of ‘best’ model.
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5.4.1 Sampling Rate and Record Length

The number of samples in the input and output data vectors is important in stages 1 and
3 where the LS criterion is used to estimate the parameters of ARX models. Equation
(5.20) shows that the number of samples in the input (or output) data series determines
the number of rows in the regression vector and it can be seen that this affects the level
of over-determination of the regression problem. The minimum record length is
determined by the size of the model, given that the regression problem should be
overdetermined.

The sampling rate is also of critical importance when estimating an ARMAX model and
subsequent calculation of modal parameters from the ARMAX model. Ljung [116]
discussed the effect of sampling interval on bias and variance of estimated models and
pointed out that very high sampling rates can lead to numerical problems in discrete-
time models. Another issue is that the estimated model spreads into high frequency
bands; the frequency range increases and the estimated model includes components to
account for noise present in the frequency range. As Ts — 0 (i.e. increasing sampling
rate), low frequency signal components are misrepresented due to the finite precision of
sampled data; a quantisation step becomes larger than the amplitude change of a low
frequency signal component over a sampling period. On the other hand, a very slow
sampling rate relative to the system time constants results in a poor representation of the
system dynamics. The conclusion is that the optimal choice of the sampling period will
be within the range of system time constants. Another general specification given by
Soderstrom and Stoica [44] is to set sampling period as approximately 10% of the
settling time of the system’s step response. Both these specifications appear to be
unsatisfactory for identifying models representing mechanical systems as the time

constants (hence settling time) can become quite large due to very small damping.

Another aspect related to choice of sampling rate is the transformation of the discrete

ARMAX model into modal parameters discussed in section 5.3.5.

5.4.2 Specifying Model Order (na, nb, and nc)

The theoretically required model order, na, was discussed in section 5.3.1 and it was

noted that the order of nb was determined by na and the type of response measurements;
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i.e., displacement, velocity or acceleration data. The order p of the higher order ARX
model used in stage one can be set arbitrarily; Fassois & Lee [117] and Fassois [55]
suggested between 2.5 and 5 times the maximum of na, nb, and nc worked well for
modal analysis problems. Alternatively, a statistical model order selection criterion may
be used to help identify a suitable model order. Section 5.3.1 suggests a higher order
model for measurements corrupted with noise but large models increase the
computation time and numerical difficulties can be encountered in subsequent stages
when estimating the noise model (MA matrix) and subsequent filtering of the input and
output data. The order nc of the MA matrix is dependent on the noise present in the
system and generally no information on the nature of this disturbance is available. An
approach taken by Fassois [55] involves initially setting nc = na, selecting the best
model using a particular criterion out of a set na = nagin, ..., Namax and then testing the
effectiveness of changing nc. The value of nc also affects the separation of the noise and
system dynamics in stage 2 and 4. If nc = p — na, the first method discussed in stage 2

(section 5.3.2) can be used where H g (q) of order p isfactorised into two polynomials,

one of order na, the other of order nc (see equations (5.29) — (5.33)). If nc # p — na the
second method is used as it alows an MA matrix of any order to be estimated
(equations (5.34) and (5.35)). These comments also apply to the stage 4 estimation of
the noise model.

5.4.3 Modd Selection

The issue of defining a set of models of different orders and then selecting the most
accurate model from that set is a difficult problem and a number of approaches has been
studied in literature. Tests such as the Akaike Information Criterion (AIC) [44] and
Bayesian Information Criterion (BIC) have been used in literature and are smple to

implement once the innovations sequence (model error) wt] (see equation (5.2)) has

been computed. The BIC is defined as [55]
BIC = In{de$])+ d(%l (5.59)
/)

where d is the number of scalar parameters in the ARMAX model, N the number of
samplesin the input (or output) data and
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o %XN:VA\/[t] Wt [sxg (5.60)

is the covariance matrix of the innovations sequence. The diagona terms in the
covariance matrix are the estimates of variance (or mean square value for a zero-mean
sequence) of each element of the innovations and the non-diagonal terms estimate the
covariance between elements. The BIC examines the magnitude of the innovations and
the correlation between elements, and also includes a penalty for large models weighted
by the number of data samples used in the estimation; a larger number of samples

reduces the sensitivity of the BIC to the number of estimated parameters.

Other tests can be applied to the innovations sequence to test the assumption that it is a
random sequence (that can have correlated components) independent of all inputs to the
system [44]. For example, testing the autocorrelation of each element of the innovations
and also the cross-correlation between the innovations sequence and the input can help

select the most accurate model.

Another method is the use of stabilisation diagrams, which plot the estimated modal
frequencies and damping for each model order. The consistency or stability of vibration
modes helps distinguish between spurious numerical modes and vibration modes and
aso allows the model of minimum order with stable global parameters to be selected. In
practice, stability diagrams can be difficult to interpret, particularly for higher order
models with high modal density. Also, as mentioned in section 5.3.1, the LS estimation
of ARX models can lead to spurious numerical poles being uniformly spread around the
unit circle with little variation for different model sizes, which aso contributes to the
difficulty in interpreting stabilisation diagrams. A related method is to check the number
of estimated modes with positive damping and select the smallest model that has the
largest number of positively damped poles. This method is discussed further in Chapter
6.

Estimating a large number of models with varying order (na and nc) improves the
chance of identifying a model that describes the behaviour of the structure accurately. A
compromise has to be reached where a number of models can be estimated in a

reasonable time and still describe the behaviour of the structure accurately. A subset of
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data may be used to estimate a number of models and then the full set of data may be
used to estimate a smaller number of models of appropriate order. Examining the power
spectra of response data can aso provide further information, for example, a rough
estimate of the number of expected modes in a frequency band, which will aid the
determination of model order. These issues will be discussed in more detail in Chapter
6, which describes numerical testing of the ARMAX estimation agorithm and the

analysis of experimental data.

5.5 Conclusions

An algorithm to estimate an ARMAX model from data that includes measurement noise
and also unmeasured periodic and random excitations has been introduced. This
addresses a case that has not been widely considered as was reveaed in the review of
modal parameter estimation methods in Chapter 2. Cases where unmeasured sources of
excitation are present are likely to arise when analysing structures in their operating
environments, for example investigating the structural dynamics of helicopters in-flight.
The estimation algorithm is an iterative multistage method, which incorporates the
estimation of backwards ARX models, estimation of a noise model, filtering of the
excitation and response data and estimation of a lower-order ARX model. The use of
backwards ARX models allows vibrationa modes and spurious numerical poles to be
distinguished on the basis of the sign of modal damping. The number of positively
damped poles has also been introduced as a method to select the best model from a set
of estimated models. A diagonal parameterisation of the AR matrix, and consequently
the MA matrix alows the MIMO ARMAX model to be estimated as a set of MISO
models. The diagonal structure also allows simple manipulation and stabilisation of the
AR and MA matrices. Numerical and experimental testing of the algorithm and model
selection criterion is discussed in the following chapter and further experimental tests

using the helicopter-like structure are described in Chapter 7.
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Chapter 6 ARMAX Modal Parameter |dentification in the
Presence of Unmeasured Excitation: Numerical and

Experimental Verification

6.1 I ntroduction

Chapter 2 revealed that existing experimental modal analysis techniques usually require
excitation and response data with a high signal-to-noise (s/n) ratio and that all sources
of excitation be measured and uncorrelated. In practice, unmeasured sources of
excitation are likely to be present when analysing structures in their operating
environment, for example helicopters in flight. Hence, a modal parameter estimation
scheme based on the identification of parameters in an ARMAX model, which
explicitly modelled sources of unmeasured excitation, was introduced in the previous
chapter. In this chapter, numerical tests using data simulating the response of a two
degree-of-freedom (DOF) system are used to assess the performance of the ARMAX
estimation algorithm when data is corrupted with random measurement noise and
unmeasured periodic and random excitations. Tests include the effect of unmeasured
random and periodic excitations applied to systems with lightly damped modes, closely
spaced modes, as well as a case with high levels of damping. A new model selection
criterion based on the number of positively damped modes is also investigated and
compared with the Bayesian Information Criterion (BIC) [55].

Further testing of the ARMAX estimation algorithm is carried out using experimental
data obtained from a cantilever auminium beam. Initia experiments applied
independent random excitation using electrodynamic shakers. Subsequent experiments
investigated the effect of unmeasured periodic and random excitations and employed
pairs of piezoceramic plates to excite the beam as described in Chapter 4. Results
obtained from the ARMAX estimation algorithm are compared with results obtained
from frequency domain curve fitting of SIMO data and results from |east-squares
estimation of ARX models.
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6.2 Numerical Testing

A two degree-of-freedom system was used for numerical testing of the ARMAX
algorithm. Figure 6.1 shows a schematic of the simulated system and three sets of mass,
damping, and stiffness parameters used to simulate 3 systems; the first system having
well-spaced, lightly damped modes; the second system having lightly-damped modes
separated by 0.345 Hz; and the third system having well-spaced highly damped modes.
The physical and modal parameters for each system are listed in table 1. Equation (6.1)
isthe time domain differential equation for the system and transfer function matrices are
given in equations (6.2), (6.3), and (6.4) for systems 1, 2, and 3, respectively.

k2 k3
~ A
mz m mp m

o AF o BE e N

Figure 6.1 Two DOF damped spring mass system.

ki

— k -k
M Olm|®T% ~% o+t % Lot (6.1)
0 m -C, C,+¢C -k, k,+k;
1 28> +0.4s+300  0.4s+300
H(S): 2 3 2 2 (6.2)
2s” +1.6s° +1900.08s” + 260s+ 150000 0.4s+300 s“ +0.6s+800 J

) (6.3)

/

H(s)= 1 s+03s+340  0.1s+40
s*+0.8s® +680.14s° + 264s+114000| 0.1s+40  s?+0.55+340

1 2s? +4s+300  4s+300
© [ | 6o

S)=
2s* +18s® +1912s? + 2900s+150000|  4s+300 s% +7s+800 ,
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The displacement response at each DOF was generated using the Matlab function
I si m() to simulate the response of the system’s continuous-time transfer function
when excited with independent random noise applied to each DOF. The function
| si m() discretises the continuous-time transfer function using a zero-order-hold
assumption. Ten seconds of excitation and response data sampled at 50 Hz was used for
all tests except those investigating the effect of record length and sampling rate,
described in sections 6.2.6 and 6.2.8, respectively. Frequency response functions (FRFs)
for each system are shown in figures 6.2 (a), (b), and (c). A range of tests included
unmeasured excitations added to the measured random excitations, and measurement
noise could be applied by adding a zero-mean random sequence of appropriate mean-
square amplitude to each of the response measurements. A summary of the noise

conditions and unmeasured excitations used for each numerical test is listed in table 6.2.

Physical Frequency | Damping | Magnitude | Phase®
System Parameters Mode (Hertz) (%) (DOF 2) | (DOF 2)
m=1; my=2;
01=0.2: Cy= 0.4: 1 1.485 0.4180 2.377 0.3211
1 c3=0;
ki=500; ko=300; | 2 4.676 1.229 0.2104 179.0
k3= 0
m=1my=1;
01=0.4- Cy= 0.1 1 2.757 0.8658 1.002 2.479
2 |c3=0.2;
k1=300; ko= 40; 2 3.102 1.283 0.9982 177.2
ks= 300
m=1m,=2
C1=3; co=4; 1 1.485 4,613 2.371 2.518
3 c3=0;
tlfg‘)(’; k=300, | 4673 | 1386 | 02160 | 172.3
=

Table 6.1 Physical and modal parameters of 2 DOF systems. Magnitude and phase is
listed for DOF 2, relative to a unit displacement of DOF 1.
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Figure 6.2 (a) Freguency response functions relating each degree-of-freedom for 2
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DOF system 1, calculated using the transfer function matrix in equation (6.2).

Figure 6.2 (b) Frequency response functions relating each degree-of-freedom for 2
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DOF system 2, calculated using the transfer function matrix in equation (6.3).
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Figure 6.2 (c) Frequency response functions relating each degree-of-freedom for 2
DOF system 3, calculated using the transfer function matrix in equation (6.4).

Fifty tests using independent realisations of excitation data and measurement noise were
run to enable the mean and standard deviation of estimated modal parameters to be
calculated. In addition, the unmeasured periodic excitations used for each test were
generated using summed sinusoids with a random phase relationship. The selected
model was often of higher order than theoretically necessary and the frequency response
function of each estimated ARMAX model was used in addition to the sign of the
damping to help identify the correct modal parameters. Figure 6.3 shows an example of
the average of FRFs synthesised from the 50 ARMAX models from test 1 data, and the
average of the exact FRFs for all DOFs is aso plotted. Two peaks can be clearly
identified and these were assumed to represent vibration modes. ARMAX model poles
with a natural frequency within 5% of the selected peaks were assumed to represent
structural modes, and were further assessed using the sign of the damping. The 5%
tolerance was chosen on the basis of the resolution of the FRFs synthesised from the
ARMAX models. Figure 6.4 plots the FRFs from all selected ARMAX models for a
case where some models fail to identify the second mode, as indicated by the arrow in

thefigure.

109



Test | System Noise conditions

1 1 ¢ 10% random noise added to the response measurements.

e 100% unmeasured periodic signalsat 1, 2, & 4 Hz used to excite
2 1 DOF 1 in addition to measured random excitation.
e 10 % random noise added to the response measurements.

e 20% unmeasured random noise used to excite each DOF in
3 1 addition to the measured random excitation.
e 10% random noise added to the response measurements.

e 100% unmeasured periodic signalsat 1, 2, & 4 Hz used to excite
DOF 1.

4 1 e 20% unmeasured random noise applied to each DOF in addition
to the measured random excitation.

e 10% random noise added to the response measurements.

5 2 e 10% random noise added to the response measurements.
e 100% unmeasured periodic signalsat 1, 2.50, & 4 Hz used to
6 2 excite DOF 1 in addition to measured random excitation.

e 10 % random noise added to the response measurements.

e 20% unmeasured random noise used to excite each DOF in
7 2 addition to the measured random excitation.
e 10% random noise added to the response measurements.

e 100% unmeasured periodic signalsat 1, 2.50, & 4 Hz used to
excite DOF 1.

8 2 e 20% unmeasured random noise applied to each DOF in addition
to the measured random excitation.

e 10% random noise added to the response measurements.

9 3 e 10% random noise added to the response measurements.
e 100% unmeasured periodic signalsat 1, 2, & 4 Hz used to excite
10 3 DOF 1 in addition to measured random excitation.

e 10 % random noise added to the response measurements.

e 20% unmeasured random noise used to excite each DOF in
11 3 addition to the measured random excitation.
e 10% random noise added to the response measurements.

e 100% unmeasured periodic signalsat 1, 2, & 4 Hz used to excite
DOF 1.

12 3 e 20% unmeasured random noise applied to each DOF in addition
to the measured random excitation.

e 10% random noise added to the response measurements.

Table 6.2 Summary of noise conditions and unmeasured excitations for numerical tests.
Listed noise (or unmeasured excitation) levels are the ratio of the RMS values of the
noise and clean signals to which the noise is added.
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Figure 6.3 Averaged frequency response functions of estimated ARMAX models for test
1 data (Test 1) compared with averaged exact FRFs (Exact).

Figure 6.4 Frequency response functions of 50 estimated ARMAX models for test 1
data. The arrow indicates models that have not correctly identified mode 2.

Note that s estimates (s is the number of response measurement points) of the global
modal parameters, and m estimates (m is the number of excitation points) are obtained
from each ARMAX model as the excitation and response measurements were taken at
each DOF. The minimum set of measurements required corresponds to either a row or
column of the transfer function matrix: in this case either one excitation and two
response (SIMO) measurements or two excitation and one response (MISO)

measurements.

111



6.2.1 Model Selection Using BIC and NPDP Criterion

The performance of the BIC and number of positively damped poles (NPDP) model
selection criteria were compared using sets of ARMAX models estimated as discussed
above from data generated under the conditions described by test 1 and test 2 (table
6.2).

The NPDP model selection criterion was implemented with the following rules:
1. Select the model of smallest order with the greatest number of positively

damped poles estimated with the minimum number of iterations over a particular
threshold. This rule automatically penalises higher order models with large
numbers of iterations.

2. Theiteration threshold is set to at least one depending on the variation of
numbers of positively damped poles. Experience showed that approximately five
iterations of stages 3 and 4 were beneficial for the accuracy of modal
parameters. Therefore a minimum number of iterations can be imposed if no
variation of the number of positively damped polesis observed in the set of
estimated models.

3. A subset of model orders can be used if little or no variation of the number of

positively damped polesis observed.

The mean and standard deviation were calculated for modal parameters obtained from
the ARMAX models selected by the BIC and NPDP criterion. Results for models
estimated from test 1 data are shown in figure 6.5 and results for model s estimated from
test 2 data are shown in figure 6.6. Figure 6.5 shows that the ARMAX algorithm is
successful in identifying modal parameters from data corrupted with 10% random
measurement noise. In particular, modal frequencies are very accurately estimated with
results within 1% of their true value. Modal frequency results obtained by BIC and
NPDP criterion are very similar. Modal damping results illustrate the negative bias on
damping peculiar to backwards ARX models estimated from data corrupted with noise.
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Figure 6.5 Modal parameters obtained from ARMAX models selected by BIC and
NPDP criterion for test 1 data. The true value of each parameter is indicated by the
horizontal linesin each plot.
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Figure 6.6 Modal parameters obtained from ARMAX models selected by BIC and
NPDP criterion for test 2 data. The true value of each parameter is indicated by the
horizontal linesin each plot.
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Mode 1 damping values are within 10% of their true values and similar results are
obtained for both model selection criteria. Mode 2 damping values show the effect of
noise present in measurements obtained from DOF 2. Damping values obtained from
the MISO model with DOF 2 as reference are poorer than those obtained from the
MISO model with DOF 1 asreference. This pattern is reflected in the standard deviation
of mode shape magnitude and phase results for mode 2. Mode shape results obtained
from each model selection criterion are of acceptable accuracy, noting that the phase
values are particularly sensitive to noise and unmeasured excitations, especially for
mode 2, DOF 2. It should be emphasised that the BIC results were obtained for a subset
of models na > 8, estimated with 4 more iterations, because the BIC consistently
estimated low-order models, which often did not identify modes. The NPDP was
applied to the set of models with na >4 estimated with 4 more iterations.

Figures 6.7 (@) and (b) show the 1-sided power spectra of clean response measurements
and the added random noise for each DOF. The signal power at frequencies just below 5
Hz (corresponding to the natural frequency of the second mode) measured at DOF 2 is
less than an order of magnitude above the random noise. This explains the relatively

poor results obtained for mode 2 obtained from models with DOF 2 as reference.

10 T T T
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Figure 6.7 (a) 1-sided power spectrum of clean response (no added noise) and random
noise added to response measurement at DOF 1, system 1.
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Figure 6.7 (b) 1-sided power spectrum of clean response (no added noise) and random
noise added to response measurement at DOF 2, system 1.

A similar pattern of results is obtained for test 2 data (figure 6.6), where DOF 1 was
excited by unmeasured periodic excitations in addition to the measured random
excitations. The unmeasured periodic excitation leads to many instances of modes being
estimated with negative damping. The NPDP model selection criterion performs better
than the BIC; the BIC damping results for mode 1 DOFs 1, 2 and mode 2 DOF 2 are
negative, whereas NPDP damping results are all positive. The multiple estimates of
global parameters can be reduced by averaging, ignoring negatively damped modes, and
the relative standard deviation of parameters obtained for each response measurement
point indicates the quality of the response for each mode at that particular measurement
point. The addition of unmeasured periodic excitations reduces the effectiveness of the

ARMAX estimation algorithm, however, accuracy remains acceptable.

A limitation of the BIC is its poor sensitivity to different model orders and the effect of
iterations in stages 3 and 4 of the ARMAX estimation algorithm. Figure 6.8 shows the
BIC values corresponding to ARMAX models obtained for each model order and
iteration for atypical realisation of data under test 1 conditions. The BIC decreases after
the first iteration for al model orders but stabilises quickly after the second iteration.
Models with a highly over-specified order have higher initial BIC values and take more
iterations to stabilise, which is probably due to the effect of the higher number of
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Figure 6.8 BIC calculated for each model and iteration for a typical realisation of test 1
data.
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Figure 6.9 Modified BIC calculated for each model and iteration for a typical
realisation of test 1data. The modified BIC does not include the term penalising larger
models.

spurious numerical poles. It was found that low-order models estimated after a few
iterations were typically selected by the BIC but estimated modal parameters increased
in accuracy for higher-order models and after a greater number of iterations. More
accurate results were obtained by searching for the minimum BIC in a subset of models
with na > 8 with a minimum of four iterations, and this was adopted for all tests using
the BIC. The effect of the second term in equation (5.59), which penalises higher-order
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models, is illustrated by plotting a modified BIC value without that term in figure 6.9
for the same set of models as those used to generate figure 6.8. The positive slope along
the model order axis has been removed, which increases the likelihood of higher order
models being selected by the modified BIC. Results showed that the modified BIC
value was dill not sufficiently sensitive to the effect of iterating stages 3 and 4, and
subsequent results show that the number of positively damped poles (NPDP) criterion
addressed this problem.

Number of Stable Poles

20 e
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127
4
Model Order 4 Iteration Number

Figure 6.10 Number of positively damped poles estimated for each model and iteration
for a typical realisation of test 1 data.

Figure 6.10 shows a plot of the number of positively damped poles estimated for each
model order and iteration for atypical redisation of test 1 data. It can be seen that low-
order models only select a subset of the 8 possible positively damped modes. The
maximum number is eight due to complex conjugate poles for two modes being
estimated for 2 MISO models. 2x2x2=8. It is likely that the modes that are not
identified correspond to the second mode in models using DOF 2 as a reference, due to
the poor signal-to-noise ratio, as discussed above. Models of order 10, 12, and 14
initially have only six modes identified with positive damping but further iterations
improve the accuracy of the model and the maximum eight modes are estimated with
positive damping. The BIC and NPDP are shown in figures 6.11 and 6.12 for typical
realisations of test 2 data. The bias of the BIC towards lower-order models can clearly
be seen and the plot of NPDP shows that low-order models fail to identify positively

damped poles. All 8 positively damped poles are identified in an ARMAX model of
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order 16, after 9 iterations of stages 3 and 4, and this model is selected by the NPDP
criterion.

BIC

D0 e

T I

i ——
20
: 12

Model Order

0 2 Iteration Number

Figure 6.11 BIC calculated for each model and iteration for a typical realisation of test
2 data.
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Figure 6.12 Number of positively damped modes estimated for each model and iteration
for atypical realisation of test 2 data.

The second and third rules of the NPDP criterion outlined above can be imposed if extra
iterations or larger models do not increase the number of positively damped poles as it
is expected that to a certain extent larger models and a moderate number of iterations
will improve the accuracy of the estimated modal parameters. As shown in figure 6.13,
no model correctly identifies all eight positively damped poles. Note that both modes
have till been correctly identified with positive damping and in this case these were

probably identified for the MISO model with DOF 1 as a reference. Experience
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suggests that using a moderate number of iterations, say between 4 and 10, and avoiding
the models with lower order would improve the accuracy of the estimated modal
parameters. Therefore, for sets of models like that shown in figure 6.13, the second and
third rules of the model selection criterion could be imposed. Analysis of synthesised
FRFs and pole-zero diagrams from models estimated from a representative set of datais
useful in determining a suitable range of model orders.
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Figure 6.13 Number of positively damped poles estimated for each model and iteration
for a different realisation of test 1 data.

The advantage of using the NPDP criterion is that it directly assesses the sign of modal
damping and this appears to be a good indicator of the accuracy of the other modal
parameters of vibration modes. If the ARMAX model was intended for prediction of the
vibration response, the BIC, modified BIC, or the correlation-based model selection
criteria [44, 116] may be a better choice, as they assess the model prediction error or
innovations sequence. A further benefit of using the NPDP criterion is that it avoids
caculating the innovations sequence, which is calculated recursively using the
estimated ARMAX model and the measured excitation and response data. Problems can
be encountered during this operation if the estimated ARMAX model is unstable. The
number of positively damped poles can be determined by calculating the roots of each
scaar AR polynomial directly after the ARX model in stage 3 is estimated. Other model
selection criteria based on testing the assumptions made about the innovations sequence
and the correlation between the innovations sequence measured excitations were tested.

Results are discussed in Appendix A, and show that the performance was comparable to
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that of the BIC. Conditioning of the regression matrices used in the estimation scheme
isalso included in the discussion in Appendix A.

6.2.2 Unmeasured Random and Periodic Excitation — 2DOF System 1

The performance of the ARMAX estimation algorithm and NPDP criterion was
assessed for the noise conditions described in tests 1 — 4 (table 6.2) and the mean and
standard deviation of results are plotted in figures 6.14 and 6.15. Modal frequencies are
estimated very accurately for all tests and all modal damping values are positive, but the
negative bias is evident, especially for mode 2, DOF 2 estimates. Accuracy decreases
and greater scatter is seen in damping results for higher levels of unmeasured excitation.
Mode shape magnitudes are accurately estimated; the large standard deviation values
for some results arising from residues corresponding to spurious poles, which are more
prevalent for tests 2 and 4, which include unmeasured periodic excitations. Mode shape
phase values for mode 2, DOF 2 are sensitive to measurement noise and unmeasured

excitations.
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Figure 6.14 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 1-4. The true value of each parameter is indicated by the
horizontal linesin each plot.
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Figure 6.15 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 1-4. The true value of each parameter is indicated by the
horizontal linesin each plot.
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The results show that the ARMAX parameter estimation algorithm and NPDP model
selection criterion achieve acceptable accuracy for the 4 noise cases presented here
noting that reasonable results are estimated for each mode using at least one DOF as a

reference.

6.2.3 Unmeasured Random and Periodic Excitation — 2DOF System 2
The ARMAX algorithm was also tested using ssmulated data from 2 DOF system 2

under noise conditions summarised in table 6.2, tests 5 - 8. System 2 exhibited modes
separated by 0.345 Hz, and the unmeasured periodic noise used in tests 6 and 8 included
a component at 2.50 Hz; 0.257 Hz below the first modal frequency. The number of
models estimated was increased from 20 up to 30 for tests 6 and 8, which included
unmeasured periodic excitation and unmeasured periodic and random excitation,
respectively. Moda parameters estimated from tests 5 — 8 are summarised in figures
6.16 and 6.17. Similar to tests 1 — 4, modal frequencies for both modes are the most
accurately estimated modal parameters but the closely spaced modes lead to more
scatter in the results. Unmeasured periodic excitations used in tests 6 and 8 lead to
greater uncertainty in modal frequencies estimated at DOF 1; the DOF where the
unmeasured periodic excitation was applied, and also affect the mean frequency value

estimated for mode 1 at DOF 1.
121



276k = = _ il ] NI
~ l = 1 I Mode 1
T 272 B
3 268 -
§ Testb Test6 Test7 Test8
El 3.15 T T T T T T T
g —
Y2 = { = 1 I L Mode 2
305 Il 1 1 Il Il 1 _I Il
DOF 1 DOF 2 DOF 1 DOF 2 DOF 1 DOF 2 DOF 1 DOF 2
N T T T T T
or i E { j 1 Mode 1
g ap .
o
g_ Test5 Test6 Test7 Test 8
§ 15[ _ T ]
1 - -
ool 1 i 1 1 j } J[ } 7 Mode 2
0 L -

Figure 6.16 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 5-8. The true value of each parameter is indicated by the
horizontal linesin each plot.
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Figure 6.17 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 5-8. The true value of each parameter is indicated by the
horizontal linesin each plot.

This pattern is also reflected in the estimates of the other modal parameters; unmeasured
periodic excitations generally lead to poorer estimates. Results also show that the
negative bias on the damping estimates due to noise is more evident for systems with
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closely spaced modes. Standard deviation results suggest mode shape estimates are
quite sensitive to the unmeasured periodic excitation for this system. Overall, acceptable
frequency and mode shape magnitude results are obtained for each mode using at |east

one DOF as reference.

6.2.4 Unmeasured Random and Periodic Excitation — 2DOF System 3

High levels of modal damping were imposed on system 3; 4.61% and 13.86% for
modes 1 and 2, respectively. Figure 6.2 (c) shows that the response for mode 2 is
relatively low amplitude, especially for DOF 2. The estimated modal parameters,
plotted in figures 6.18 and 6.19 again show the increased uncertainty of results for
increasing levels of unmeasured excitation. There is significant negative bias on
damping estimates for mode 2 DOF 2, and it was noted that many models failed to
identify mode 2 for the DOF 2 reference point. Mode 2 DOF 1 results are relatively
good; however, there is still close to 50 % error for tests with unmeasured periodic
excitations added. Mode shape results are of acceptable accuracy, but with higher
standard deviations for mode 2 DOF 2.
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Figure 6.18 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 9-12. The true value of each parameter is indicated by the
horizontal linesin each plot.

123



4
39 R
= = = I T T Mode 1
E— of T T l I n ode
[+

1
“g Test9 Test10 Test 11 Test12
= 3F T T T T T T T 3
i T ]
i S .

1k | 1 1 | | 1 1 | =
_ DOF1 DOF2 DOF1 DOF2 DOF1 DOF2 DOF1 DOF2
w
s 3of
g 2 }{ } | Mode 1
R . :
o
'§ Test9 Test10 Test 11 Test12
% 200_ = E E :|: - B
i =
%]
2 100} i j —J[ j _|Mode 2
[=]
=

Figure 6.19 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 9-12. The true value of each parameter is indicated by the
horizontal linesin each plot.

The results for tests 1 - 12 show that the ARMAX algorithm performs reasonably well
for cases with unmeasured excitations. Higher model orders are required to account for
the unmeasured excitations, particularly when they include periodic components. The
importance of selecting measurement points with good vibration response is illustrated
by the relatively poor results obtained for mode 2, DOF 2. Closely spaced modes and
high levels of damping increase the sensitivity of the ARMAX agorithm to

measurement noise and unmeasured excitations.

6.2.5 Effect of Data Record Length

The role of the length of the data record was discussed in section 5.3.1. Three sets of
tests were carried out to investigate whether increasing the number of samples used for

estimating ARMAX models resulted in improved accuracy of modal parameters.
The ARMAX estimation algorithm was used to estimate the modal parameters for 50

realisations of the data generated for each of the tests. Settings for the estimation

algorithm were as follows:
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System 1 used to generate response data for random excitations;
Sampling period 0.02 seconds;
Record length:

0 Test 13: 10 seconds;

0 Test 14: 20 seconds,

0 Test 15: 40 seconds.
10% random noise added to the response measurements.
na=4,6,...,20;nb=na-1;p=>5na;nc=p-na,
Ten iterations of stages 3 and 4;
Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4
resulting in ninety-nine models being estimated for data realisation;

NPDP criterion used for model selection.

The mean and standard deviations of the estimated modal parameters are shown in
figures 6.20 and 6.21.
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Figure 6.20 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 13-15. The true value of each parameter is indicated by the
horizontal lines in each plot.
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Figure 6.21 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 13-15. The true value of each parameter is indicated by the
horizontal linesin each plot.

Improvement in the standard deviation of modal frequencies, damping, and mode shape
amplitude and phase for mode 1 can be seen for increasing record length. This trend is
not as evident in the results for mode 2; the poor results obtained for DOF 2 marginaly
improve for increasing record length. The results suggest that increasing record length is
beneficial although this is accompanied by an increase in computational load. Ten
seconds (500 samples) of data has been used for all other numerical tests because the
mean value of modal parameters does not significantly improve for increased numbers

of samples.

6.2.6 Effect of Sampling Rate

Specification of an appropriate sampling rate was discussed in section 5.4.1. Nine tests
estimating modal parameters from data corrupted with random measurement noise were
carried out to investigate the effect of sampling rate on the accuracy of estimated modal
parameters and to verify that the sampling rate used for al other numerical tests (0.02
seconds) would not adversely affect the performance of the estimation algorithm.
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The ARMAX estimation algorithm was used to estimate the modal parameters for 50
realisations of the data generated for each of the nine tests. Settings for the estimation

agorithm were asfollows:

e System 1 used to generate response data for random excitation;

e 10% random noise added to the response measurements,

e Sampling rate, record length, and the number of samples as listed in the table
6.3.

e na=4,6,...,20;nb=na—1;p=>5na; nc=p-—na,

e Teniterations of stages 3 and 4;

e Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4
resulting in ninety-nine models being estimated for each set;

e NPDP criterion used for model selection.

Test 16 17 18 19 20 21 19a 20a | 2la

Sampling
Period 0.1 0.05 | 0.025 | 1/80 | /160 | 1/320 | 1/80 | 1/160 | 1/320
(seconds)

Record
Length 50 25 125 | 6.25 | 3.125 |1.5625| 10 10 10
(seconds)

Number
of 500 500 500 500 500 500 800 | 1600 | 3200
Samples

Table 6.3 Sampling period, record length, and number of samples used for tests 16 —21.

Tests 16 — 21 involved fixing the number of samples for increasing sampling frequency.
As a consequence, the record length (in seconds) decreased for increasing sampling rate.
Tests 19a, 20a, and 21a used the same sampling rate as for tests 19 — 21 and employed a
fixed record length (in seconds), hence the number of samplesin arecord increased for
increasing sampling frequency. It was therefore expected that the trend identified in
tests 13 — 15, i.e. higher numbers of samples improve accuracy of modal parameters,
would affect tests 19a— 21a.

Mean and standard deviation for estimated modal parameters are plotted in figures 6.22
and 6.23 for tests 19 — 21. Increasing frequency and damping standard deviation is
observed for increased sampling rate, however, this trend is not reflected in the mode
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shape results, which are relativity insensitive to changes in sampling rate. The results of
these tests do not allow the errors due to the estimation algorithm to be distinguished
from the magnification of errors caused by the discrete-to-continuous transformation.
According to literature [126] discussed in section 5.3.5, the error contributed by both
will increase for higher sampling rates. It is also conceivable that the constant number
of samples used lead to the increased standard deviations observed in frequency and
damping results, due to the decreasing record length (in seconds). This argument is
reinforced by the results in figures 6.24 and 6.25, which show estimated modal
parameters for tests 19 — 21 and 19a — 21a. Increasing the record length (in seconds)
appears to compensate for the decrease in accuracy observed in tests 19 — 21 for
increasing sampling frequency. The results for tests 19a— 21a are reasonably consistent
for increasing sampling frequency, although the accuracy of the frequency and damping

obtained for DOF 2 show small decreases in accuracy for increasing sampling

frequency.
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Figure 6.22 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 16 - 21. The true value of each parameter is indicated by the
horizontal linesin each plot.
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Figure 6.23 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 16 - 21. The true value of each parameter is indicated by
the horizontal linesin each plot.
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Figure 6.24 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 19 - 21 & 19a - 2la. The true value of each parameter is
indicated by the horizontal linesin each plot.
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Figure 6.25 Mode shape amplitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 19 - 21 & 19a - 21a. The true value of each parameter is
indicated by the horizontal linesin each plot.

The results of these tests suggest that the sampling frequency chosen for al other
numerical tests (0.02 seconds) is a reasonable compromise between sampling frequency
and record length and is sufficient for testing the performance of the ARMAX
estimation algorithm.

6.2.7 Known Noise Properties

Results for tests 2, 4, 6, 8, 10, and 12 showed that the unmeasured periodic excitations
affected the accuracy of the estimated modal parameters. The iteration of stages 3 and 4
is amed at reducing the effect of unmeasured excitations and measurement noise;
however, results show that often selected models include poles with frequencies close to
those of unmeasured periodic excitations. In many practical situations the frequency of
rotating components causing periodic excitations is known or can be measured
accurately and this information can be used in the ARMAX estimation algorithm. The
tests described in this section investigate whether this improves the accuracy of the
modal parameters obtained from the ARMAX estimation algorithm.
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Figure 6.26 displays poles of the AR matrix obtained from stage 1 of the ARMAX
estimation algorithm, when processing data from test 2 (100% unmeasured periodic

excitations at 1, 2, and 4 Hz and 10% random measurement noise).
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Figure 6.26 AR matrix poles of stage 1 ARX model estimated from test 2 data. The
dashed rectangle indicates the area shown in figure 6.27.
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Figure 6.27 AR matrix poles of stage 1 ARX model estimated from test 2 data. This
figure corresponds to the area enclosed by the dashed rectangle shown in figure 6.26.
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Poles have been paired according to their proximity on the z-plane and most of the poles
are inside the unit circle (i.e. stable or positively damped). A subset of the poles is
plotted in figure 6.27. The position of poles corresponding to modes 1 and 2 and also
the unmeasured periodic excitations are marked and remaining poles correspond to
noise components in the response signal. The poles corresponding to the noise
components are inside the unit circle; the poles corresponding to the vibration modes
are outside the unit circle (due to the backwards ARX model), but thisis not always true
for noisy data. The poles close to unmeasured periodic excitations are very close to the

unit circle and can sometimes appear inside.

The iteration of stages 3 and 4 applies the MA matrix as a filter to the excitation and
response data and this attenuates signal components that do not have a strong linear
relationship (in terms of the q operator) with the excitation. Figure 6.28 shows zeros of
the MA matrix FIR filter obtained from stage 4 after a number of iterations of stage 3
and 4, for the same set of data used to generate figures 6.26 and 6.27.
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Figure 6.28 Zeros of MA matrix FIR filter estimated in stage 4 from test 2 data.

The MA matrix zeros are all insgde the unit circle (i.e. the filter is stable) and there are
zeros close to the poles corresponding to the unmeasured periodic excitations, which are
marked. Note also that there are not any MA matrix zeros close to the vibration-mode

poles. The fact that the MA matrix zeros are all inside the unit circle is a consequence of
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the backwards ARX model used in the estimation algorithm. As a result the MA matrix
doesn’t have to be stabilised, although this could easily be carried out because of the

diagonal structure of the MA matrix.

Figure 6.29 shows the poles of the lower order AR matrix estimated in stage 3 after the
excitation and response data has been filtered by the MA matrix. A subset of these poles
is plotted in figure 6.30. All the spurious numerical poles are inside the unit circle (see
figure 6.29) and there is one pole that is very close to the unit circle at approximately 4
Hz (figure 6.30). This corresponds to one component of the unmeasured periodic
excitation, which the MA matrix did not successfully attenuate. Three of the four
vibration mode poles are outside the unit circle (i.e. one pole for mode 2, figure 6.30, is
inside the unit circle), which shows the effect of noisy measurements. The poles in
figures 6.29 and 6.30 have been paired according to their proximity in the z-plane.
Vibration modes are typically very close together, as are poles corresponding to
unmeasured periodic excitations. The remaining poles are distributed around the unit
circle and their positions vary, although this is not always true for high order models,
which has been observed in the higher-order ARX model estimated in stage 1 of the

algorithm.
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Figure 6.29 AR matrix poles of stage 3 ARX model estimated from test 2 data. The
dashed rectangle indicates the area shown in figure 6.30.
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Figure 6.30 AR matrix poles of stage 3 ARX model estimated from test 2 data. This
figure corresponds to the area enclosed by the dashed rectangle shown in figure 6.29.

Poles that correspond to the unmeasured periodic excitations will appear as peaks in the
synthesised FRFs and can be mistaken for vibration modes. Figure 6.31 shows summed
FRFs from the 50 ARMAX models estimated from test 2 data.
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Figure 6.31 Averaged FRFs synthesised from the 50 ARMAX models estimated from
realisations of test 2 data (Test 2), compared with averaged exact FRFs (Exact).
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The two major peaks correspond to the two vibration modes at 1.48 Hz and 4.67 Hz.
The three other peaks at 1, 2 and 4 Hz are due to the unmeasured periodic excitations. In
practice, the modal parameters estimated at poles that do not correspond to structural
modes will typically have negative damping. The frequency and damping results in
table 6.4 were obtained from the 50 ARMAX models estimated from realisations of test
2 data. Many models did not identify any modes at these frequencies (see for example
~ 2 Hz, DOF 1), while some models identified modes at these frequencies with very

small positively damping values.

Average Frequency Average Damping
DOF 1 DOF 2 DOF 1 DOF 2
0.988161 0.99658 -1.34075 -1.68461

- 1.987136 - -0.60574
4.0129 4.007796 -0.29705 -0.64746

Table 6.4 Modal parameters identified at frequencies corresponding to unmeasured
periodic excitations fromtest 2 data.

Prior knowledge of the frequencies of any unmeasured periodic excitations allows zeros
of the MA matrix to be placed close to those frequencies and this can improve the
attenuation of these components in the stage 3 estimation of a lower-order ARX model.

Equation (5.50) isrewritten as

Hg, (K) =Z([C(j)-Cpn(j)}lAB(k+1— j)) j =max(Lk +1- (na+1))...,min(k,p-na)
(6.5)

where
Conl@=] - al2cos0)a* + a’q?), (66)

Cpn(q) is a diagonal matrix polynomial describing the unmeasured periodic excitation
and its form is taken from Fernandes et a [127]. r is the number of sinusoids in the
unmeasured excitation; « is the damping factor; and o is the frequency of the sinusoid
normalised by the sampling frequency. Equation (6.5) is solved by setting up a system
of equations in terms of the unknown C™(q), which is of order nc - 2r. Equation (6.6)

describes a notch filter, and the damping factor sets the width of the notches.
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The ARMAX estimation agorithm with a modified MA matrix, which included
information about the unmeasured periodic excitations, was used to estimate the modal
parameters for 50 realisations of the data generated under the conditions outlined in

tests 2 and 3 above. Settings for the estimation algorithm are asfollows:

e Test 22 used data smulated for conditions described for test 2:
0 100% unmeasured periodic signals at 1, 2, & 4 Hz used to excite DOF 1
in addition to measured random excitation.
0 10 % random noise added to each response measurement.
e Test 23 used data ssimulated for conditions described for test 4:
0 100% unmeasured periodic signalsat 1, 2, & 4 Hz used to excite DOF 1.
0 20% unmeasured random noise applied to each DOF in addition to the
measured random excitation applied to each DOF.
0 10% random measurement noise added to the response measurements.
e na=4,6,..,20;nb=na—1;p=5na;
® nc=p—na—o;
e 0,=1/50; 0, = 2/50; 03 = 4/50;
e =0.999;
e Teniterations of stages 3 and 4;
e Models were saved after stage 1 and each of the 10 iterations of stages 3 and 4
resulting in ninety-nine models being estimated for each set;
e NPDP criterion used for model selection;
e Estimation algorithm applied to 50 independent realisations of the data for each
test.

The damping factor for tests 22 and 23 was chosen based on a number of preliminary
tests in which the damping factor a was varied from 0.90 to 0.9999. The damping factor
resulted in a different notch width at different frequencies and the modified algorithm
was found to be less effective for lower values of ¢, and aso very high values. The
value = 0.999 was found to yield the best results, which are plotted in figures 6.32 and
6.33. Also shown in the figures are the results estimated for tests 2 and 4, which
estimated modal parameters from data generated under the same conditions as tests 22

and 23, respectively, using the standard ARMAX algorithm. The frequency and
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damping results obtained for the known noise algorithm (tests 22 and 23) are quite
similar to those obtained by the standard ARMAX algorithm. There is a marginal

improvement in the estimated mode shapes for the known-noise algorithm.
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Figure 6.32 Modal frequency and damping obtained from ARMAX models selected by
NPDP criterion for tests 2 and 4 (standard ARMAX algorithm) and tests 22 and 23
(known noise properties algorithm). The true value of each parameter is indicated by
the horizontal linesin each plot.
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Figure 6.33 Mode shape magnitude and phase obtained from ARMAX models selected
by NPDP criterion for tests 2 and 4 (standard ARMAX algorithm) and tests 22 and 23
(known noise properties algorithm). The true value of each parameter is indicated by
the horizontal linesin each plot.
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A potential benefit of the known noise agorithm is that it reduces the number of
spurious modes corresponding to unmeasured periodic excitations. Thisisillustrated in
figure 6.34, which plots the average FRFs from tests 2, 22, and the exact analytical
results. Similarly, figure 6.35 is produced for tests 4 and 23.
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Figure 6.34 Averaged synthesised FRFs from tests 2 and 22, as well as the averaged
exact FRFs.
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Figure 6.35 Averaged synthesised FRFs from tests 4 and 23, as well as the averaged
exact FRFs.
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The averaged FRFs for tests 22 and 23 clearly show that no modes are present at 1, 2 or
4 Hz, which is not the case for results obtained from tests 2 and 4. Therefore, the
models with known noise properties would be more appropriate for prediction of the
vibration response; however, the same results could be achieved by producing a reduced
model from vibrational modes, as the spurious modes due to noise and unmeasured
periodic components can be easily identified and removed, based on the sign of the
estimated damping.

6.2.8 Conclusions from Numerical Tests

This section has described numerical tests carried out to assess the performance of the
ARMAX estimation algorithm. Model selection criteria were investigated and the BIC
and NPDP criteria were directly compared for a range of different noise conditions.
Both criteria selected models with similar accuracy, although fewer instances of
negative modal damping were present in NPDP-selected models. The NPDP also has
the advantage that it can be calculated directly from the ARX parameters compared with
the BIC, which requires recursive calculation of the innovations sequence using the
estimated ARMAX model. The ARMAX agorithm successfully estimated modal
parameters in the presence of measurement noise for each mode using at least one DOF
as reference, although damping values were the least accurate. The sign of the damping
was found to be useful in distinguishing vibration modes from numerical poles and
provided an indication of the signal-to-noise ratio for each measurement point when
comparing sets of estimated global parameters. Standard deviation of global parameters
aso reflected relative accuracy for each reference DOF. Unmeasured periodic and
random excitations decreased the accuracy of modal parameters, however, modal
parameters were still accurately estimated at DOFs with a high vibration response. The
effect of data record length and sampling rate were investigated and results verified that
a record length of 10 seconds and sampling rate of 50 Hz, used in all other tests, was
appropriate for testing the performance of the ARMAX algorithm. The ARMAX
estimation algorithm can be modified to account for unmeasured periodic excitation
when the frequency of excitation is known. This modified agorithm yielded results of
similar accuracy to the standard algorithm while preventing spurious modes

corresponding to unmeasured periodic excitations being estimated.
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6.3 Experimental Tests

Experiments were carried out on a cantilever beam to further test the performance of the
ARMAX estimation algorithm. The experiments included unmeasured random and
periodic excitation, and the use of piezoceramic plates for structural excitation was
investigated in addition to the more typical method of using electromagnetic shakers for

excitation.

6.3.1 Experiment 1: Single Input Using Electromagnetic Shaker

A 1000x50x6 mm aluminium beam was securely clamped to a heavy steel structure,
with 125mm of the beam being constrained by rectangular steel bars as shown in figure
6.36. The aluminium beam was the same as that described in Chapter 4 before the
piezoceramic actuators were bonded. A Briel & Kjer (B&K) 4810 shaker was used to
excite the beam at measurement point 5; the excitation signal was band-limited (0 —
1600 Hz) random noise amplified by a B&K 2706 power amplifier. The excitation force
was measured using a B&K 8001 impedance head and acceleration measurements were
made with four B&K 4374 accelerometers at 34 equally spaced points along the beam.
B&K 2635 charge amplifiers were used for signal preconditioning: high-pass filter cut-
off at 2 Hz, low-pass filter cut-off at 3 kHz. As the excitation point was fixed and
response measurements were made at 34 points along the beam, 9 sets of SIMO data
were used for modal analysis of the beam. A Hewlett-Packard 3566A FFT analyser was
used for acquiring time records used by the ARMAX estimation algorithm and also for
calculating averaged frequency response functions (FRFs), which were required for

frequency domain curve fitting.
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Figure 6.36 Diagram of cantilever beam showing positions of 34 equally-spaced
measurement points. Excitation was applied at point 5 for experiment 1, and points 5
and 30 for experiment 2.

Modal parameters for the cantilever beam were first calculated using frequency-domain

curve fitting available in the STAR Modal v5.23 software package from Spectral
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Dynamics. A rational fraction least squares (RFLS) method was used to fit the FRFs
and the results were used as a basis for comparison with the modal parameters obtained
from the ARMAX algorithm and also least-squares estimated ARX models. FRFs over
a frequency range of 0 — 1600 Hz and a resolution of 0.5 Hz were calculated from
averaged time record data with 50 % overlap and scaled with a Hanning window. Up to
10 averages were used based on the quality of the FRF and coherence results for each

measurement.

The ARMAX estimation algorithm used time record data sampled at 4096 Hz with 2048
samples for each record. One set of SIMO data was first used to estimate a large set of
models of order na = 40, 42, ..., 80 and these results were then used to choose a smaller
set of models that would yield acceptable results for all sets of SIMO data. The settings
for the ARMAX estimation algorithm used to process all sets of data were asfollows:

e na=60, ..., 80,nb=na, p=>5na nc=p-—na;
e Teniterations of stages 3 and 4;

e NPDP criterion used for model selection.

Table 6.5 shows that modal frequencies estimated by FRF curve fitting and the
ARMAX algorithm are within 1% of each other, except for the first mode. The poor
results for the first mode are due to a number of factors. Firstly, the low response of the
first mode, which was approximately 47 dB below the peak response in the FRF relating
the response at the free end of the beam to the excitation point, is a consequence of the
excitation location. Excitation of the transverse modes could be improved by moving
the excitation point closer to the free end of the beam. The MIMO experiments
discussed in the following section address this point by adding an additional shaker
closer to the free end of the beam. The frequency resolution of 0.5 Hz in the FRFs was
not ideal for identifying modal parameters at such low frequencies using the RFLS
method, and similar problems arise in the ARMAX results, as the frequencies of the low
order modes are small compared to the sampling frequency, which contributes to the
poor accuracy [126]. Coupling between the shaker and the beam was indicated by peaks
and troughs in the excitation power spectrum around modal frequencies, however, no

other significant features were observed across the analysis frequency range.
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STAR Modal ARMAX Results Percentage Error
Results

Mode| Frequency | Damping | Frequency | Damping | Frequency | Damping | MAC
(H2) (%) (H2) (%) (Hz) (%) (%)

1 5.76 -0.081 - - - - -
2 37.6 0.007 37.32 - -0.748 - 6.94
3 106.06 0.299 105.94 0.137 -0.116 -54.16 | 97.26
4 207.19 0.114 206.98 0.199 -0.104 74.58 99.30
5 344.21 0.173 343.82 0.279 -0.114 60.95 | 99.78
6 511.85 0.194 511.91 0.235 0.011 20.88 | 98.71
7 731.73 0.343 733.36 0.323 0.222 -5.84 99.43
8 971.19 0.177 970.61 0.211 -0.060 19.41 99.36
9 1240 0.168 1242.81 0.135 0.227 -20.05 | 96.96
10 1550 0.260 1544.80 0.232 -0.336 -11.00 | 96.08

Table 6.5 Comparison of curve-fitted and ARMAX results estimated from experiment 1
data.

Differences are seen in damping results obtained from each estimation method and
greater differences are seen at lower frequencies suggesting the influence of the
sampling rate, but there is no clear higher or lower bias in the damping results. The
RFLS results might not be accurate, because it could be argued that the frequency
resolution is insufficient to accurately determine modal damping for the lower order
modes. Thisis shown by the negative damping value estimated for mode 1 and the very
low damping value of 0.007 % estimated for mode 2 by FRF curve fitting. The MAC
values comparing mode shapes obtained from each estimation method are satisfactory

for modes 3 to 10.

L east-squares estimation of SIMO ARX models was also carried out. A set of models of
order pax = 5,6, ..., 28 were estimated from 2048 samples of excitation and response
data using the Matlab i dar x() function. Since each data set included 4 response
channels, a 4-dimensional ARX model was estimated for each data set, which lead to
2-parx Modes being estimated. Both the BIC and final prediction error (FPE) criterion
[44] were used for model order selection. It was found that the BIC consistently selected
models of order 5— 8, which failed to identify many vibration modes. The FPE criterion
typically selected models of order 25 — 28, which were found to be inaccurate due to the
sensitivity of high-order multi-dimensional polynomial models to numerical operations.
The problems with the ARX models were identified by pole-zero placement in the

complex z-plane as well as FRFs synthesised from the estimated ARX models. In the
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absence of a numerical criterion for model selection, the highest order ARX model that
did not suffer from obvious scattering of poles and zeros around the low and high
frequency ranges of the unit circle (on the z-plane) was chosen. The subset of vibration
modes was selected on the basis of peaksin synthesised FRFs.

Table 6.6 compares results from ARX models with FRF curve-fitted results. Similar to
the ARMAX results, the ARX models failed to identify the first mode but frequency
and mode shape results for modes 3 — 10 show very good agreement with the curve-
fitted results: MAC values are above 98 % except for mode 4 (89%) which was affected
by a small number of poorly estimated points. Damping results show reasonable

agreement for modes 6 — 10, but much poorer results were estimated for modes 2 — 5.

STAR Modal ARX Results Percentage Error
Results

Mode| Frequency | Damping | Frequency | Damping | Frequency | Damping | MAC
(Hz) (%) (Hz) (%) (H2) (%) (%)

1 5.76 -0.081 - - - -
2 37.6 0.007 37.68 4.3512 0.206 63794 3.40
3 106.06 0.299 105.86 0.0966 -0.192 -67.68 | 98.59
4 207.19 0.114 206.99 8.5857 -0.097 7432 89.74
5 344.21 0.173 343.33 1.8477 -0.256 965.9 99.41
6 511.85 0.194 511.82 0.1789 -0.007 -7.94 99.89
7 731.73 0.343 733.00 0.3587 0.174 4.57 99.62
8 971.19 0.177 970.91 0.1873 -0.029 5.85 99.94
9 1240 0.168 1242.6 0.1655 0.210 -1.70 99.33
10 1550 0.260 1545.1 0.2348 -0.318 -9.81 99.92

Table 6.6 Comparison of curve-fitted and ARX results estimated from experiment 1

data.

6.3.2 Experiment 2: Two Inputs Using Electromagnetic Shakers

A B&K 4809 shaker was added to the experimental apparatus described above, and
excited the cantilever beam at point 30 using independent band limited (0 — 1600 Hz)
random noise. A B&K 8200 force transducer measured the excitation force applied by
the second shaker and a B&K 2635 charge amplifier was used for signd

preconditioning with the same settings described in experiment 1.
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ARMAX Results Percentage Error MAC (%)
Mode| Frequency | Damping | Frequency | Damping | Excitation | Excitation

(H2) (%) (H2) (%) Point 5 Point 30
1 - - - - - -
2 39.22 0.430 4.309 6218 38.55 0.84
3 105.70 0.138 -0.339 -53.90 98.29 3.62
4 205.68 0.191 -0.730 67.91 98.51 98.33
5 341.66 0.144 -0.740 -16.76 99.40 99.51
6 509.50 0.191 -0.459 -1.97 99.57 99.57
7 735.88 0.188 0.567 -45.19 98.91 08.83
8 967.81 0.173 -0.348 -2.46 99.13 99.58
9 1233.1 0.204 -0.557 21.11 73.32 83.75
10 1531.4 0.494 -1.200 89.71 83.32 79.80

Table 6.7 Comparison of ARMAX results estimated from experiment 2 data with curve-
fitted results from experiment 1 data.

The ARMAX agorithm was implemented as for experiment 1 to estimate the modal
parameters from the sets of MIMO data. The results listed in table 6.7 show similar
trends to those obtained from experiment 1 data: frequencies and mode shapes are quite
similar for al except the low order modes, however, damping estimates differ
significantly. The larger negative error of modal frequencies estimated by the ARMAX
algorithm for experiment 2 data, compared to results from experiment 1 possibly reflect
mass |oading on the beam by the additional shaker. The fact that the first mode was not
identified and the second mode was identified poorly in both experiments 1 and 2
suggests that the ARMAX algorithm cannot adequately estimate modes for such alarge
frequency range. Over eight octaves separate the first modal frequency and the Nyquist
frequency. Other studies of time-series system identification methods applied to modal
analysis have limited the analysis frequency range to 5 octaves or less [39, 56, 117]. An
alternative strategy is therefore to apply the ARMAX estimation algorithm over limited
frequency ranges using appropriately filtered and sampled data. A number of
applications of the algorithm could be employed when considering dynamic behaviour

over awide frequency range.

An advantage of having multiple shakers, especially for large structures, is that
excitation energy can be applied to the structure at different points to excite al modes.
However, the use of two shakers to excite such a small structure in one direction
resulted in mechanical coupling between the measured excitation signals, particularly

around modal frequencies. It istypical to assume that excitation sources are completely
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independent when applying a MIMO modal parameter estimation technique and the
results presented in this section demonstrate that the ARMAX algorithm achieves
satisfactory accuracies (except for lower-order modes) even when this condition is not
met. The ARMAX algorithm yields mode shape estimates for each excitation point and
it isinteresting to note that the MAC value for mode 3, excitation point 30 is quite poor
and that point 30 is very close to a node for the third transverse mode. Slightly lower
MAC values for modes 9 and 10 are due to poorly estimated residues at a small number

of measurement points.

Further tests using three shakers for exciting the beam were carried out, in particular
using the third shaker to impose an unmeasured excitation on the beam. It was found
that the addition of the third shaker lead to coupling of excitation forces and that the
shakers affected the dynamics of the cantilever beam. Hence, experiments using three
measured sources of excitation and one additional unmeasured excitation were carried

out using piezoceramic plates and are described in the next section.

6.3.3 Excitation Using Piezoceramic Plates
Experiments discussed in Chapter 2, and work reported in Chapter 4 investigated the

use of piezoceramic plates for exciting structures and showed that FRFs calculated from
the voltage applied to the piezoceramic plates and the acceleration response could be
used to extract modal parameters. An advantage of using piezoceramic plates is that
they can be bonded to the structure and do not significantly change the structure’s
dynamic characteristics if the dimensions of the plates are small compared to the
structure under investigation. A disadvantage with using piezoceramic plates is that
their ability to excite a particular vibration mode is related to the deflection of the mode
shape where the piezoceramic patch is located. Modes that have little deflection are not

effectively excited, as discussed in Chapter 4.

Four experiments were carried out to assess the performance of the ARMAX estimation
algorithm for different types of unmeasured excitation. Three pairs of piezoceramic
plates were used to excite the beam using independent band-limited (0-1600 Hz)
random noise and a fourth pair of plates were used to impose unmeasured excitation on
the beam. Figure 6.37 shows the apparatus used and the schematic shown in figure 4.7
shows detail of the actuator positions and applied voltages. The eight piezoceramic (Pl
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Ceramic, lead zirconate titanate (PZT), PIC 151) actuators, each 70x25x1 mm, were
bonded to the aluminium beam used in the shaker experiments. The electrodes of the
plates were on each major face and etch-primer was applied to coat the aluminium beam

where the plates were bonded.

Figure 6.37 Cantilever aluminium beam with four pairs of piezoceramic actuators used
for excitation. The top actuator of each pair is covered by black tape.

The plates were bonded to the beam with epoxy and a small piece of copper tape was
used as a conductor to the bottom electrode of each plate. The combination of etch
primer and epoxy formed an insulating layer between the piezoceramic plate and the
aluminium beam. Excitation signals were amplified with a constant gain (0 — 1600 Hz
frequency range) high-voltage amplifier and the typical peak-to-peak voltage applied to
each plate was approximately 80 volts. The pairs of plates were connected in parallel
with opposite polarity so that a distributed moment was applied between the ends of the
plates. Note that applying the same polarity to each plate would result in axial excitation
of the beam.

6.3.4 Experiment 3: Single Measured Input

This experiment was carried out to obtain a set of SIMO measurements for estimating
the beam modal parameters using frequency-domain curve fitting. Band limited (0 —
1600 Hz) random excitation was applied to actuator pair 1 and response measurements
were taken using 3 B&K 4374 accelerometers with signal preconditioning using B&K
2635 charge amplifiers as for the previous experiments. Response measurements were
made at 34 points (as for experiments 1 and 2) along the aluminium beam resulting in
146



12 sets of SIMO data. The piezoceramic actuators applied a distributed moment to the
beam and the voltage of the excitation signals fed into the voltage amplifier driving the
actuators was recorded to represent this moment excitation. FRFs over a frequency band
of 0— 1600 Hz and with aresolution of 0.5 Hz were calculated using the HP3566A FFT
analyser. A Hanning window and up to 10 averages (50% overlap) were used when
calculated in the FRFs.

The modal parameters were estimated from the FRFs using a RFLS curve-fitting
method. These results were used to assess the results obtained by the ARMAX
estimation for MIMO sets of data obtained from experiments described bel ow.

STAR Modal Results | STAR Modal Results Percentage Error

Experiment 1 Experiment 3

Mode| Frequency | Damping | Frequency | Damping | Frequency | Damping | MAC
(H2) (%) (H2) (%) (H2) (%) (%)
5.76 -0.081 - 0

37.6 0.007 39.94 -0.163 6.223 -2497 | 88.36
106.06 0.299 106.57 0.451 0.481 51.01 | 98.89
207.19 0.114 210.64 0.317 1.665 17851 | 97.68
344.21 0.173 350.06 0.329 1.700 89.99 | 99.06
511.85 0.194 520.92 0.270 1.772 38.88 | 99.65
731.73 0.343 729.26 0.559 -0.338 62.83 | 96.81
971.19 0.177 987.3 0.272 1.659 53.90 | 97.85

1240 0.168 1260 0.276 1.613 63.88 96.1
10 1550 0.260 1600 0.323 3.226 23.97 | 98.21
Table 6.8 Comparison of estimated modal parameters from curve-fitting of experiment
1 (electrodynamic shaker excitation) and experiment 3 (piezoceramic excitation) data.

OO N U WNEF-

Frequency results for modes 3 - 10 obtained from experiment 3, listed in table 6.8, are
up to 3.3% different from those obtained from experiment 1 data and typically higher
frequency, which is probably due to the mass loading of the electromagnetic shaker and
the additional tiffness of the piezoceramic plates. Note that experiments 1 and 2 were
carried out before the piezoceramic plates were bonded to the beam. Some differences
in damping values are observed; values for experiment 3 were typically higher than
those for experiment 1. These differences may be due to the additional damping
imposed on the structure by the piezoceramic plates, but it is also conceivable that
electromagnetic shakers used in experiments 1 and 2 may have introduced some
damping to the system. Mode shapes are similar for modes 2 to 10. As discussed in

Chapter 4, the piezoceramic plates apply a distributed moment between parallel edges
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of each plate and the action of a pair of plates as used for these experiments can be
approximated by two point moments acting in opposing directions at the ends of the
plates. This differs from the point force which is applied by an electromagnetic shaker.
Because the piezoceramic plates apply a distributed moment, the ability of a pair of
plates to excite a particular mode is related to the change in slope of the mode in the
region of the piezoceramic plates. The effect of thisis seen in the poor results obtained
for experiment 3, modes 1 and 2 where there is not significant change in slope in the

contact area of actuator pair 1. Thisisdiscussed further in section 6.3.6.

It should also be noted that the FRFs obtained from experiment 3 data have units

ms®/v instead of ms®/ N, which are the units for FRFs in experiment 1 data. Mode
shapes are normalised by the residue obtained at a particular measurement point, and
this cancels out the differences in FRF scaling if the moment applied by the
piezoceramic actuators is proportional to the applied voltage. MAC values in table 6.8
suggest good correlation between mode shapes obtained from shaker excitation and
piezoceramic plate excitation. However, as noted above, MAC values are not affected
by mode shape scaling. For the purpose of this work, the piezoceramic plates were
considered acceptable for exciting modes 3 — 10 and therefore could be used to apply
multiple sources of excitation to the cantilever beam without the difficulties associated

with coupling relatively large el ectromagnetic shakers to the beam.

6.3.5 Experiment 4: Three Measured Inputs

Three independent sources of band-limited random excitation were applied to actuators
pairs 1, 2 and 3. Twelve sets of 3-input, 3-output time signals were recorded using the
HP3566A FFT analyser at a sampling frequency of 4096 Hz. The ARMAX estimation
algorithm was used to estimate a large set of models for one set of data. From these
results a smaller range of model orders could be specified when the ARMAX algorithm

was used to estimate modal parametersfrom all sets of data, with the following settings:

e na=60,..,80,nb=na, p=>5na nc=p-—na;
e Teniterations of stages 3 and 4;

e NPDP criterion used for model selection;
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¢ Record length 2048 samples.

ARMAX Results Percentage Error MAC (%)

Mode| Frequency | Damping | Frequency | Damping | Actuator | Actuator | Actuator
(Hz) (%) (Hz) (%) Pair 1 Pair 2 Pair 3
37.27 -6.686 29.26 5.93 27.74

106.13 0.168 -0.415 -62.80 5.29 1.03 1.53

209.87 0.281 -0.366 -11.43 21.62 60.43 27.46

349.63 0.161 -0.122 -51.21 97.64 90.85 64.43

521.38 0.186 0.089 -31.01 93.79 2.86 42.43

736.00 0.389 0.924 -30.43 98.47 98.36 97.73

986.31 0.229 -0.100 -15.80 98.59 97.53 98.68

OO NOOOBRWN -

1260.93 0.249 0.074 -9.72 94.89 95.26 94.74

10 | 1587.90 0.230 -0.756 -28.68 85.20 84.03 14.38

Table 6.9 Comparison of ARMAX results estimated from experiment 4 data with curve-
fitted results from experiment 3 data.

Modal frequencies estimated by the ARMAX algorithm from experiment 4 data, listed
in table 6.9, are similar to those identified by curve fitting experiment 3 data, except for
the first two modes. Mode 1 is not identified by either method due to the limitations of
the piezoceramic actuator pair, discussed above. Mode 2 results are also poor, and no
positive damping values were identified for this mode. Damping values for al other
modes are positive, however, comparison with curve-fitted results shows a negative bias
on the ARMAX damping values. Numerical tests results suggested that negative bias of
damping values resulted from noisy data. Three sets of mode shapes are estimated
because three actuators were used to excite the structure but the ARMAX algorithm
does not identify the first four mode shapes accurately. Given that the ARMAX
algorithm yielded high MAC values for modes 3 — 10 using experiment 1 data (single
input using shaker) and also experiment 2 data (two inputs using shaker excitation),
these results suggest that resolving modes at low frequencies from data with a high
sampling rate is more difficult when using this configuration of piezoceramic actuators.
This limitation is important when considering the effect of unmeasured excitations,
which is discussed below.
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6.3.6 Experiments 5, 6 and 7: Three Measured Inputs with Unmeasured Periodic

and Random Excitations.

These experiments used the same configuration as experiment 4 with the addition of
unmeasured excitations applied by the 4™ pair of piezoceramic actuators. The
unmeasured excitations were not included in the data set used in the estimation of
modal parameters. The RMS levels of the measured and unmeasured excitation signals
and the resulting signal-to-noise ratios for each experiment are listed in table 6.10.
Experiment 6 employed unmeasured periodic and random excitations and figure 6.38
shows the 1-sided power spectrum of the summed random excitations and the
unmeasured excitations. The relative levels of the unmeasured periodic and random

excitations can be seen in the lower part of the figure.

Experiment Actuator Pair
1 2 3 4
5 RMSLevel | 0.6492 | 0.5103 | 0.4105 | 3.4471
e Unmeasured periodic (volts)
excitation at 200, 500
! ’ Noise Level 2.1956
900, and 1200 Hz 4(1+2+3)
[ | |
6 RMSLevel | 0.6468 | 0.5147 | 0.4159 | 3.2660
e Unmeasured periodic (volts)
excitation at 200, 500, -
900, and 1200 Hz. Nﬁ'i IZ_S?/,eI 2.0705
e Unmeasured random ( )
excitation
7 RMSLevel | 0.6372 | 0.5203 | 0.4144 | 1.4087
e Unmeasured random (volts)
excitation Noise Level 0.8962
4/(1+2+3)

Table 6.10 RMS levels of un-amplified excitation signals applied to piezoceramic
actuator pairs and resulting unmeasured excitation level for experiments 5, 6, and 7.
Note that a fixed gain high voltage amplifier was used to drive the piezoceramic
actuators.

The ARMAX algorithm was used to estimate modal parameters from the measured data
as described for experiment 4. Estimated modal parameters from experiments 4-7 are
compared with those obtained from experiment 3 in figures 6.39 — 6.43.
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Figure 6.38 1-sided power spectra of excitation signals used in experiment 6. The top
plot shows the power spectrum for the summed measured excitation. Bottom plot shows
the power spectrum for the unmeasured periodic excitation.
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Figure 6.39 Modal frequency error for ARMAX results from experiments 4 — 7
compared to curve-fitted results for experiment 3.
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Figure 6.40 Modal damping error for ARMAX results from experiments 4 — 7 compared
to curve-fitted results for experiment 3.
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Figure 6.41 MAC comparing ARMAX mode shapes from experiments 4 — 7 (actuator
pair 1) to curve-fitted mode shapes from experiment 3.
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Figure 6.42 MAC comparing ARMAX mode shapes from experiments 4 — 7 (actuator
pair 2) to curve-fitted mode shapes from experiment 3.

100

80

60

MAC (%)

Mode

Figure 6.43 MAC comparing ARMAX mode shapes from experiments 4 — 7 (actuator
pair 3) to curve-fitted mode shapes from experiment 3.

Comparison of ARMAX results for experiments 4, 5, 6 and 7 shows that the addition of
unmeasured excitations has very little effect on the accuracy of estimated modal
frequencies (see figure 6.39). Modal damping (figure 6.40) and mode shape results
(figures 6.41 — 6.43) indicate that the unmeasured periodic excitation (test 5) and the
unmeasured periodic and random excitation (test 6) only lead to a marginal decreasein
accuracy although a clear trend is hard to identify. Modal damping and mode shape

results for experiment 7 data are significantly less accurate; 5 of the ten modes were
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estimated with negative damping and mode shapes are quite poorly estimated. The
nature of the unmeasured excitation is clearly important and the high levels of periodic
excitation do not affect the accuracy of the ARMAX estimation algorithm. The
ARMAX algorithm is much more sensitive to broad-band unmeasured excitations and
results are unsatisfactory for unmeasured excitation levels approaching 100% of the
measured excitation level.

The MAC values plotted in figures 6.41 — 6.43 further illustrate some of the limitations
associated with using piezoceramic plates. The mode shapes for mode six, actuator pairs
1 and 2 (figures 6.41 and 6.42), are poorly identified for all tests and similarly for
modes six and ten, actuator pair 3 (figure 6.43). This was found to be due to the location
of actuators with respect to the deflection of the modes in question: the middle of
actuator pairs 1, 2 and 3 were located at nodes of mode 6, and similarly, the middle of
actuator three was very close to a node of mode 10 (cf. table 4.1 for analytical results).
The piezoceramic actuators do not effectively excite these modes as shown by figure
4.8, which results in poorly estimated mode shapes. The ARMAX results from
experiments 1 and 2 show that the ARMAX algorithm performs no worse for MIMO
data than for SIMO data using electromagnetic shaker excitation. However, the
ARMAX algorithm clearly has difficulty identifying mode shapes for a number of
modes for noise-free data, compared to the curve fitted results using 1 pair of
piezoceramic actuators. This suggests that multiple piezoceramic actuators may reduce
the accuracy of some estimated mode shapes, however, MIMO data sets are ill

advantageous because of the multiple estimates of modal parameters.

ARX models were estimated from experiment 5, 6, and 7 data as for experiment 1 data,
described in section 6.3.1. As with the ARMAX results discussed above, modal
parameters from ARX models are compared with curve-fitted results from experiment 3
data. Modal frequency error is plotted in figure 6.44 and shows reasonable agreement
for modes 3 — 10; however, frequency error is typically larger than ARMAX results
shown in figure 6.39. The ARX models failed to identify the first mode and large errors
were observed for frequency, damping and mode shape results for mode 2. Figure 6.45
shows that ARX models suffer from positive bias on damping estimates in the presence
of unmeasured excitations. The actual damping estimates were often above 3%. The

ARMAX algorithm incorporates estimation of backwards ARX models, which suffer
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from a negative bias on damping estimates but ARMAX damping estimates were
typically under 1% for modes 3 — 10. MAC values indicate that the ARX models fail to
adequately estimate mode shapes for a large number of modes. MAC results are
generally worse than those obtained by the ARMAX agorithm (cf. figures 6.41 — 6.43).
Note that both methods show poor results for mode six in experiments 5, 6 and 7. Mode

six included anti-nodes in the contact area of actuators 1, 2, and 3, as discussed above.
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Figure 6.44 Modal frequency error for ARX results from experiments 5 — 7 compared to
curve-fitted results for experiment 3.
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Figure 6.45 Modal damping error for ARX results from experiments 5 — 7 compared to
curve-fitted results for experiment 3.

155



100 ‘
- Exp't5
—— Exp't6
80+ —X— EXp’t? il
= 60r
S
(@)
<
= 40t
20+
& ‘ ‘ )
2 4 6 8 10
Mode

Figure 6.46 MAC comparing ARX mode shapes from experiments 5 — 7 (actuator pair
1) to curve-fitted mode shapes from experiment 3.
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Figure 6.47 MAC comparing ARX mode shapes from experiments 5 — 7 (actuator pair
2) to curve-fitted mode shapes from experiment 3.
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Figure 6.48 MAC comparing ARX mode shapes from experiments 5 — 7 (actuator pair
3) to curve-fitted mode shapes from experiment 3.

6.3.7 Discussion

The large frequency range considered in the experiments highlighted a number of
limitations of the ARMAX algorithm. The high sampling frequency relative to the
natural frequencies of the low order modes has contributed to the poor accuracy of low
order modes in experiments described above. Thisis in addition to the limited ability of
piezoceramic plates to excite low order modes. A further problem that arises when
dealing with large frequency ranges or large numbers of modes in a frequency range is
the order of the ARMAX model required to adequately describe the behaviour of the
structure. Very large models are time-consuming to estimate, which is a problem for
complex structures or if a large range of model orders are to be tested. In addition,
larger models are required to accurately describe the noise or unmeasured excitations
and the resulting high-order MA matrix filter can introduce numerica problems. A
solution is to limit the order of the MA matrix, however, choosing the best order for the
MA matrix requires estimating larger sets of models. Experience has shown that the
accuracy of the modal parameters is only marginally sensitive to MA matrix order and
limiting the frequency range of interest, hence the number of modes, is a reasonable
approach as it addresses all the issues described above.
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6.4 Conclusions

An algorithm to estimate modal parameters from excitation and response measurements
obtained in the presence of unmeasured excitations was introduced in Chapter 5. The
ARMAX estimation algorithm incorporates a model selection criterion based on the
number of positively damped poles. The performance of the ARMAX estimation
algorithm and model selection criterion was investigated using data simulating the
behaviour of a two degree-of-freedom system as well as data obtained from
experimental tests on a cantilever aluminium beam. Numerical test results demonstrated
the effectiveness of the ARMAX algorithm in estimating modal parameters from data
corrupted with 10% measurement noise, and also for cases where up to 100%
unmeasured periodic excitations and 20% unmeasured random excitations were applied
to the system. Accuracy of modal parameters decreased with increasing levels of
unmeasured excitations, particularly for DOFs with a relatively low response. The
ARMAX algorithm was more sensitive to noise and unmeasured excitations when
estimating modal parameters of a simulated 2 DOF system with closely-spaced modes
(separated by 0.345Hz), with a component of unmeasured periodic excitation 0.257Hz
below the first modal frequency. Results for a highly damped 2 DOF system were also
marginally less accurate than results for alightly damped 2 DOF system.

Experimental results verified the operation of the ARMAX estimation algorithm for
SIMO and MIMO data sets obtained using electrodynamic shakers for excitation and
modal parameter results were found to compare well with those from FRF curve fitting,
except for the first two modes. Tests using electrodynamic shakers for excitation
reflected numerical test results, which showed that the ARMAX algorithm has difficulty
identifying low frequency modes when data is sampled at a high sampling rate.
Numerical tests indicated that increasing the data record length could compensate for
this, but with an associated increase in computational |oad. Over eight octaves separated
the first modal frequency and Nyquist frequency and results suggest that between four
and five octaves is a more appropriate frequency range. Piezoceramic actuators were
used for MIMO tests including unmeasured periodic and random excitation. The ability
to excite different modes was observed to be related to the position of the actuator pairs
and the delflection of a particular mode over the contact area of the piezoceramic plates.

Up to 200% unmeasured periodic excitations did not significantly reduce the accuracy
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of the modal parameters estimated by the ARMAX estimation algorithm. Ninety
percent unmeasured random excitations was observed to significantly reduce the
capacity to accurately estimate modal damping and mode shapes. The ARMAX
agorithm was found to yield more accurate modal parameters than ARX models
estimated using the least-squares criterion in experiments that included unmeasured
excitation.

The cantilever beam used for experimental tests was characterised by well-spaced
transverse vibration modes with light damping. In addition, the unmeasured periodic
excitations were at frequencies away from modal frequencies. In the following chapter,
the ARMAX estimation algorithm is applied to a more complex structure, which
includes closely spaced modes and unmeasured periodic excitations close to modal

frequencies.
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Chapter 7 ARMAX Modal Parameter Estimation in the
Presence of Unmeasured Excitation: Experimental Case
Sudy

7.1 Introduction

Experimental tests carried out on a cantilever aluminium beam, discussed in Chapter 6,
demonstrated the performance of the ARMAX algorithm for estimating modal
parameters in cases where there were unmeasured excitations. In this chapter, the
ARMAX estimation algorithm is applied to a more complex structure—a helicopter-like
structure, which includes closely spaced modes and modes with poor responses at some
measurement locations. The effect of unmeasured periodic and random excitations is
investigated with unmeasured periodic excitation frequencies close to the structure’s
natural frequencies. The performance of the ARMAX estimation algorithm is compared
with the performance of a frequency domain RFLS curve fitting algorithm. In addition,
periodic excitation and synchronous averaging, discussed in Chapter 2, is used as a

means of improving signal-to-noise ratio (s/n) of measured time series data.

Details of the experimental apparatus are outlined in the following section. In section
7.3, the analysis of SIMO data using both the ARMAX and RFLS algorithms is
described. Estimation of modal parameters in the presence of unmeasured excitation
using the ARMAX algorithm is discussed in Section 7.4, and results are compared with
those obtained from the RFLS algorithm in Section 7.5. A discussion of the coupling
between excitation sources is contained in Section 7.6, and concluding remarks are

made in Section 7.7.

7.2 Modal Analysisof Helicopter-Like Structure

The helicopter-like structure was suspended from a heavy steel frame using elastic cords
to approximate free-free conditions. In this configuration, natural frequencies for the six
rigid body modes were checked to be less than 10 Hz. Electromagnetic shakers were
used to excite the structure: a single shaker was coupled to the tail boom of the structure

for single-input experiments; a second shaker was coupled to the rotor-head area for
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two-input experiments. The experimental setup is shown in figure 7.1. Response
measurements were taken at 30 points over the structure at positions indicated in figure
7.2. The set of axes in figure 7.2 show the global coordinate directions used for the

analysis, and table 7.1 lists the position and direction of each measurement.

Figure 7.1 Helicopter-like structure suspended with elastic cord to approximate free-
free conditions. Two shakers were used to excite the structure in this experiment.

Excitation 1

Excitation 2

M)

Figure 7.2 Helicopter-like structure excitation and measurement points.
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M easurement M easurement M easurement
Number Coordinate Number Coordinate Number Coordinate
1 35+z 11 72 -y 21 73 +z
2 35 +x 12 97 +7 22 81-x'
3 43 -y 13 97 -y’ 23 81 +7
4 1-x 14 98 +x’ 24 49 -y
5 1l-y 15 98 -7 25 49 +7
6 1+z 16 98 -y’ 26 131 -y
7 69 -y 17 19 +x 27 107 -y’
8 69 +z 18 19 -y 28 107 +7
9 72 +z 19 19-z 29 43-7
10 72 -x 20 80 +z 30 119 +x’

Table 7.1 Measurement coordinates for helicopter-like structure experiments.
Coordinates marked with an apostrophe indicate a local set of axes rotated with respect
to the axes shown in figure 7.2.

The experimental set up employed for this range of experiments was similar to that
discussed in Chapters 2 and 3. The dynamic properties of the free-free helicopter
structure included a number of difficult-to-measure characteristics including very lightly
damped modes, closely spaced modes, as well as local modes, which had a limited

response at some measurement points.

7.3 Single-Input Multiple-Output Experiments

The SIMO experiments were carried out to enable an initial comparison between
frequency domain curve fitting and the ARMAX estimation algorithm under conditions
of minimal noise. A Hewlett Packard 3566A 8 channel FFT analyser was used for data
acquisition, calculation of spectral data (FRFs, coherence, auto- and cross-spectral
densities), and as a digna generator for band-limited random noise. Response
measurements were made with B&K 4374 and 4393 accelerometers and the
acceleration and applied force at the excitation point was measured by a B&K 8001
impedance head. B&K 2635, 2626, and 2650 charge amplifiers conditioned the
excitation and response signals with high-pass (2 or 3 Hz) and low-pass (1 kHz)
filtering. A B&K 2706 power amplifier was used to drive a B&K 4809 electrodynamic
shaker, which was securely clamped to the heavy steel structure supporting the
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helicopter-like structure. Continuous random excitation was applied to the tail boom of
the helicopter-like structure at the position indicated by ‘Excitation 1’ in figure 7.2. Six
sets of 5 or 6 response measurements were made, which included one fixed reference
measurement point (to allow data to be used for response-only modal analysis) at point
43 —z. 180 seconds of time series data were measured. The shaker constrained the

structure in the x-y plane, and to a lesser extent in the z direction.

7.3.1 Modal Parameter Estimation by FRF Curve Fitting

The STAR Modal software estimated modal parameters of the helicopter-like structure
using a rational fraction least squares (RFLS) method to model the measured FRFs.
FRFs were calculated from time series data under the following conditions: fs =
1024Hz; frequency range 0 — 400Hz; Af = 0.5Hz; Hanning window applied to segments
of time record with 66% overlap; 20 averages. A global implementation of the RFLS
technigue was used, which first calculated an estimate of the frequency and damping
values from all FRFs, and then used these frequency and damping values when
calculating modal residues. A key part of this curve fitting technique is the
identification of frequency bands containing resonant peaks. Examination of the
measured FRFs and the averaged, squared imaginary part of all FRFs helped identify
modal peaks and appropriate frequency bands required by the fitting process.
Knowledge of the modal frequencies from experiments described in Chapters 2 and 3
helped verify the presence of modes; however, a more thorough analysis identified extra
modes in this case study. The different boundary conditions applied to the structure and
shakers are likely to have affected the dynamic properties. A plot of the squared,

averaged imaginary part of the FRFs is shown in figure 7.3.

Figure 7.3 shows that there are a number of closely spaced sets of modes, for example
around 75, 160, 280, and 315Hz. The lower peaks, for example around 113Hz and
185Hz represent modes with a low response at many of the measurement points. Results
from RFLS curve fitting are compared with those obtained from the ARMAX algorithm
in Section 7.3.3. It should be noted that another curve fitting algorithm included in the
STAR Modal software was used to verify the RFLS results. The second algorithm was
based on the Polyreference Time Domain Method. No significant difference was
observed in the estimated modal parameters.
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Figure 7.3 Mean-sgquare imaginary part of measured FRFs. The dotted lines indicate
the peaks that were selected in the curve fitting processing.

7.3.2 ARMAX Modal Parameter Estimation

Time series data from the SIMO experiment were first filtered and then decimated
before application of the ARMAX algorithm. These steps were carried out to reduce the
frequency range, hence the number of modes to be estimated, which would therefore
limit the size of the required ARMAX model. The data were low-pass filtered in the
forward and reverse directions using an eighth-order Chebyshev Type 1 filter, cut-off at
300 Hz, which resulted in zero phase-shift and effectively doubled the order of thefilter.
The Matlab r esanpl e() reduced the sampling rate to 600Hz and aso applied alow
pass FIR filter. As this filter is sensitive to the initial and final conditions of the data
series (it assumes data before and after are zero) the filtering and resampling steps were
applied to along segment of the data before 2048 samples were extracted away from the
end points for use with the ARMAX algorithm.

The ARMAX algorithm was first applied to one set of single-input 2-output data to
estimate a large range of models of order 40 — 90. Based on the results of this initial
test, the ARMAX algorithm was applied to all data sets (grouped as single-input 2-

output data sets) with the following conditions: na = 80, 82, ..., 90; eight iterations of
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stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples.
Vibration modes were selected by identifying modal peaks in individual and averaged
FRFs synthesised from the fifteen (fifteen sets of single-input 2-output data) estimated
ARX models. Figure 7.4 shows the averaged FRFs. The sign of estimated damping was
used to verify that a selected mode was a structural vibration mode. ARMAX results are

compared with RFLS results in the following section.
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Figure 7.4 Averaged FRFs synthesised from estimated ARX models. The dotted lines
indicate modes selected as vibration modes.

7.3.3 SIMO Experimental Results
Modal frequencies estimated by the ARMAX algorithm are listed in table 7.2.

Mode 1 2 3 4 5 6 7

Fre(qﬁze)n Y| 7389 77.30 85.36 114.0 143.8 165.4 165.7

Mode 8 9 10 11 12 13 14
Fre(q#f)“cy 186.0 | 2017 | 2391 | 2448 | 2632 | 2811 | 2829

Table 7.2 Estimated modal frequencies obtained by ARMAX algorithm from SMO data.

Percentage difference between RFLS and ARMAX moda frequencies are plotted in
figure 7.5, which shows the very good agreement between the two sets of results.
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Figure 7.6 Modal damping estimated from SMO experiments using ARMAX and RFLS

methods.

Figure 7.6 compares the modal damping obtained by each estimation method. A

systematic difference between the two sets of estimates is evident, and reflects the
limitations of each method. The RFL S technique models FRF data, which is affected by
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the well-known limitations of the FFT, namely leakage and finite resolution (picket
fence effect). These effects place a positive bias on damping results. It was suggested in
Chapter 6 that the ARMAX estimation algorithm suffers from negatively biased
damping results for non-ideal data; in extreme cases the damping is estimated as
negative. Note that for the ARMAX algorithm, global modal parameters are averaged
from estimates obtained for each measurement point, and in the case of damping,

negative values are omitted.

0.9-

0.8+

07+

06+

05+

MAC

041

031

0.2r

01

Mode

Figure 7.7 MAC value comparing modes obtained from ARMAX and RFLS algorithms.

Figure 7.7 shows MAC values comparing corresponding modes from the RFLS and
ARMAX results. Eight of the 14 mode pairs have MAC values of greater than 90%. The
remaining modes that do not have high MAC values were found to have low-level
responses at many of the measurement points. For example, mode 4 (114.0 Hz) was
found to have no clear resonant peak in most of the measured FRFs. As a consequence,
significant errors could be present in the RFLS curve fit results. Similarly, the ARMAX
agorithm did not identify poles around 114 Hz for many of the measurement points.
Both methods did show good agreement for alimited number of measurement points, as

shown in figure 7.8, which compares normalised residues for mode 4.
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Figure 7.8 Comparison of mode 4 mode shape estimated by ARMAX and RFLS
algorithms. The calculated residues have been normalised by the residue calcul ated for
point 29. Note the agreement between values for measurement points 1, 2, 3, 10, 11, 18,
19 and 27.

It is worth noting that earlier tests carried out on the helicopter structure, in particular
the impact hammer test described in Chapter 2, did not identify the mode at 114 Hz, or

the presence of closely spaced modes at around 164 Hz, where similar comments apply.

While there was good agreement between modal parameters estimated by the ARMAX
and RFLS algorithms, the ARMAX algorithm estimated models that fitted the measured
FRF much more closely. This is illustrated in figures 7.9 — 7.12, which compare
measured FRFs with those synthesised from the estimated RFLS and ARMAX models.
An explanation of these results is that the STAR Modal software fits modes taking into
account out-of-band modes, i.e. using residual terms; however, only in-band modes are
used to synthesise FRFs. The ARMAX model fits all signal components in a frequency
band, for example rigid body modes (seen below 10 Hz), and noise components.
Figures 7.9 - 7.12 reflect this with very good agreement between ARMAX and
measured FRFs.
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Both the ARMAX and the RFLS FRFs have been plotted with the same resolution as
the measured FRFs. The lower modal damping estimated by the ARMAX models is
evident in the modal peaks, which are typically higher than the peaks in the measured
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Figure 7.9 Comparison of measured and synthesised FRFs for measurement point 14.
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Figure 7.10 Comparison of measured and synthesised FRFs for measurement point 18.
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Figure 7.11 Comparison of measured and synthesised FRFs for measurement point 20.
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Figure 7.12 Comparison of measured and synthesised FRFs for measurement point 29.
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and RFLS FRFs. Also of note isthat a resonant peak corresponding to mode 4 (114 Hz)
is only present in the point-inertance measurement (measurement point 29), shown in
figure 7.12.

In this section, the performance of the ARMAX and RFLS algorithms has been
compared. It has been shown that there is good agreement between modal parameters
estimated by the two different methods. The FRFs synthesised from the estimated
ARMAX models compare very well with measured FRFs. The following section
discusses the performance of both algorithms for experiments with two sources of
excitation, one of which is unmeasured.

7.4 Multiple Excitation Experiments

A second source of excitation was added to assess the performance of the ARMAX
agorithm when measurements were made in the presence of unmeasured excitation.
The experimental apparatus was the same as that used for the SIMO experiments with
an additional B&K 4809 shaker coupled to the helicopter-like structure. Applied force
was measured with a B&K 8200 force transducer; a B&K 2626 charge amplifier was
used to condition and filter the signal with settings used for the SIMO experiment.
Response measurements were made with four B&K 4393 accelerometers and the
accelerometer integrated into the B& K 8001 impedance head. 180 seconds of excitation
and response data were measured in each experiment and the three experiments were

carried out with different combinations of excitation signals.

Experiment 1.
e Pseudo-random sequence of length 2048 samples applied by excitation 1;
e Periodic signal with summed sinusoidal components at 75.5, 120, 200, and
281Hz applied by excitation 2;
e Ratio of RMS levels of excitation 2 to excitation 1 (noise/signal ratio) = 2.04.

Experiment 2:
e Pseudo-random sequence of length 2048 samples applied by excitation 1;
e Continuous random noise applied by excitation 2;

e Ratio of RMSlevelsof excitation 2 to excitation 1 (noise/signal ratio) = 0.83.
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Experiment 3:
¢ Pseudo-random sequence of length 2048 samples applied by excitation 1;
e Continuous random noise plus sinusoidal components at 75.5, 120, 200, and
281Hz applied by excitation 2; i.e. the sum of the unmeasured excitation signals
used in experiments 1 and 2.
e Ratio of RMSlevels of excitation 2 to excitation 1 (noise/signal ratio) = 2.11.

Note that the frequencies of the unmeasured periodic excitations were close to the
natural frequencies of modes 1, 2, 9, 6, and 7. In addition, the pseudo-random measured
excitation signal allowed synchronous averaging of excitation and response records.
One-sided power spectra of the excitation signas are plotted in figures 7.13 — 7.15.
Some coupling between the two excitation signals used in experiments 1 and 3 can be
seen around 75Hz, which is the frequency of the first sinusoidal component of
excitation 2 and between the natural frequencies of the first two vibration modes (74Hz
and 77Hz, respectively). The implications of coupling between the excitation signals
will be discussed more in Section 7.5. Note that excitation 2 used in experiment 3 was

the sum of the signals used for excitation 2 in experiments 1 and 2; i.e. periodic and

random noise.
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Figure 7.13 1-sided power spectrum of excitation 1 (measured excitation) and
excitation 2 (unmeasured excitation) used in experiment 1.
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Figure 7.14 1-sided power spectrum of excitation 1 (measured excitation) and

excitation 2 (unmeasured excitation) used in experiment 2.
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Figure 7.15 1-sided power spectrum of excitation 1 (measured excitation) and

excitation 2 (unmeasured excitation) used in experiment 3.
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7.4.1 Comparison of MIMO Experiment 2 and SIMO ARMAX Results

Comparison of SIMO results discussed in the previous section and Experiment 2 results
obtained by the ARMAX algorithm was carried out to assess whether the addition of the
second shaker imposed constraints on the helicopter-like structure, which may have
affected the estimated modal parameters. The ARMAX algorithm was used to estimate
modal parameters from the Experiment 2 data using both excitation signals in the
estimation. Details of the ARMAX algorithm setup are as follows: fifteen 2-input 2-
ouput data sets; na = 80, 82, ..., 90; eight iterations of stages 3 and 4; NPDP criterion
used for model selection; record length 2048 samples. An example of the Matlab code
used for these tests is given in Appendix F. The results from this analysis of data are
denoted ‘MIMO ARMAX E2’ to emphasise that both sources of excitation were used in
the ARMAX estimation algorithm applied to Experiment 2 data.

Figure 7.16 compares frequencies from SIMO ARMAX analysis (discussed in the
previous section) and MIMO ARMAX E2 results and shows that the agreement is very
good.
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Figure 7.16 Percentage difference between modal frequencies estimated from SMO
ARMAX and MIMO ARMAX E2 analyses.

Similarly, modal damping values estimated from the same analyses are very close, as

shown in figure 7.17.
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Figure 7.18 MAC for mode pairs estimated from SMO ARMAX and MIMO ARMAX E2

analyses.

Agreement between mode shapes is relatively poor, as shown by the MAC values

plotted in figure 7.18. This shows the effect of constraints applied by coupling the
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second shaker: both shakers theoretically apply no constraints in the axial direction (the
global z direction shown in figure 7.2), but they do constrain the helicopter-like
structure in the x-y plane, which clearly affects the mode shapes. The MIMO ARMAX
E2 results were believed to be a satisfactory basis for comparison with results obtained
from experiments 1 and 3, which were carried out with the same configuration as
experiment 2. Comparison of results obtained from analysis of datafrom experiments 1,

2 and 3 are discussed in the following section.

7.4.2 Unmeasured Excitations

Data from experiments 1, 2, and 3 were processed using the ARMAX algorithm to
assess its performance when significant unmeasured excitations were present. The
signals applied by excitation 2 were used to simulate unmeasured excitation and
therefore were not used by the ARMAX estimation algorithm. The ARMAX algorithm
estimated modal parameters for each experiment using the following conditions: fifteen
single-input (excitation 1) 2-ouput data sets; na = 80, 82, ..., 90; eight iterations of
stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples.
Results are denoted SIMO E1, SIMO E2, and SIMO E3, for results obtained from
experiments 1, 2, and 3, respectively. The analysis names ‘SIMO E1’ etc. are used to
emphasise that only a single excitation signal (excitation 1) was used for modal
parameter estimation, but it should be noted that unmeasured excitations were applied

by the second shaker (excitation 2).

7.4.3 Synchronous Averaging

The pseudo-random sequence used for excitation 1 in Experiments 1, 2, and 3 was two
seconds in length and enabled synchronous averaging of the measured excitation and
response data. Recall that 180 seconds of data were measured in each experiment
resulting in a maximum of 90 synchronous averages. The averaging operations were
found to be adversely affected by prior re-sampling, which reduced the sampling rate to
600Hz (described in section 7.3.2), most likely due to sample jitter resulting from
application of the FIR filter. Furthermore, re-sampling the averaged data resulted in a
time-series with an insufficient number of samples for estimating high-order ARMAX

models. A solution to this problem, which still applied the maximum number of
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averages (90), involved synchronously averaging the data and then re-sampling a new
time series created by concatenating the averaged time series. This solution allowed a
2048 sample segment of re-sampled data to be used for the ARMAX algorithm, and this
segment of data could be selected to avoid the inaccuracies at the end points of the re-
sampled data series (inaccuracies due to the FIR filter used in the re-sampling process).
The 2048 samples of data used in the ARMAX algorithm spanned approximately 1.7
periods of the pseudo-random excitation. The ARMAX algorithm was applied to the
averaged, re-sampled data from Experiments 1, 2, and 3 with the following conditions:
fifteen single-input (excitation 1) 2-ouput data sets; na = 80, 82, ..., 90; eight iterations
of stages 3 and 4; NPDP criterion used for model selection; record length 2048 samples.
Results are denoted SIMO E1 av, SIMO E2 av, and SIMO E3 av, for results obtained
from Experiments 1, 2, and 3, respectively. The analysis names ‘SIMO E1 av’ etc. are
used to emphasise that only a single excitation signal was used for modal parameter
estimation and that synchronous averaging was used to pre-process the data. Recall that
unmeasured excitations were applied by the second shaker (excitation 2) in Experiments
1,2,and 3.

7.4.4 Experiment 1 Results: Unmeasured Periodic Excitation

Modal parameters from SIMO E1 and SIMO E1 av are compared with the MIMO E2
results in figures 7.19 —7.23.

Estimated modal frequencies show very good agreement with those obtained from the
MIMO E2 experiments. No significant change is observed after synchronous averaging
is applied to the data. Numerical and experimental results discussed in Chapter 6
suggested that unmeasured periodic excitations do not significantly affect the ARMAX
modal parameter estimates. Therefore, the effect of synchronous averaging in
attenuating responses due to the unmeasured periodic excitations would not be clearly
represented in the modal parameter results. These comments are reflected in the
standard deviations for the modal frequencies estimated from each set of data (figure
7.20), with an increase in standard deviation apparent in only a few modes estimated

from data with unmeasured excitations.
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Figure 7.19 Modal frequencies estimated from SMO E1 and SMO E1 av analyses
compared with modal frequencies estimated from MIMO E2 analysis.
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Figure 7.20 Modal frequency standard deviation for SMO E1, SMO E1 av, and MIMO
E2 analyses.

As discussed in chapter 6, modal damping is more sensitive to the effects of
unmeasured periodic excitation. Variation in damping estimates (figure 7.21) is seen to

occur for modes where there is a poor response at a number of excitation points, for
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Figure 7.21 Modal damping estimated from SMO E1 and SMO E1 av analyses
compared with modal damping estimated from MIMO E2 analysis.
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Figure 7.22 Modal damping standard deviation for SMO E1, SMO E1 av, and MIMO
E2 analyses.

example, modes 4 and 8; closely spaced modes, for example mode 6 (whichis< 1 Hz
below mode 7); and closely spaced modes with a unmeasured periodic excitation close

by, asin the cases of modes 2 and 13. Thisis also reflected in the standard deviation for
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modal damping values estimated from each data set, shown in figure 7.22. It is
interesting to note that the unmeasured periodic excitation at 200Hz does not
significantly affect the damping estimates at mode 9 (201.7Hz), which was found to
have a strong response at most measurement points. Overall, the ARMAX algorithm is
observed to be effective in estimating modal damping from data obtained in the
presence of unmeasured periodic excitations, even if the frequencies of unmeasured
excitation are close to natural frequencies of the structure. This also accounts for the
similarity between SIMO E1 and SIMO E1 av results as the averaging process will
attenuate the unmeasured periodic excitations, which are not synchronous with the
averaging period, and this will not be clearly reflected in the estimated modal

parameters.

The MAC values (figure 7.23) comparing mode shapes obtained from the SIMO E1 and
SIMO EL1 av analyses with mode shapes obtained from the MIMO E2 analysis show a
similar pattern to the results obtained in the SIMO analysis, described in Section 7.2.
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Figure 7.23 MAC comparing mode shapes estimated from SMO E1 and SMO E1 av
analyses with mode shapes estimated from MIMO E2 analysis.

This further highlights the difficulty with using the MAC to compare modes where
some measurement points have very poor response and therefore large amounts of
uncertainty in mode shape estimates. Nine out of fourteen modes have been estimated
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with MAC values higher than 0.9 and the differences between the SSIMO E1 and SIMO
E1l av results are typicaly due to a small number of measurement points with an
inaccurate result. Thisisillustrated for mode 7, where the SIMO E1 MAC value is very
closeto 1, and the SIMO E1 av MAC valueisjust over 0.1. The normalised residue for
mode 7 obtained from the SIMO E1 av analysis is compared with that from the MIMO
E2 analysisin figure 7.24. There is a clear discrepancy at measurement points 1 and 18.
The MAC vaue for mode 7 omitting points 1 and 18 was 0.99.
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Figure 7.24 Comparison of mode 7 mode shapes estimated from SMO E1 av and
MIMO E2 analyses.

7.4.5 Experiment 2 Results: Unmeasured Random Excitation

The estimated modal parameters from the SIMO E2 and SIMO E2 av analyses are
compared with those from the MIMO E2 analysis in figures 7.25 — 7.29. As for the
Experiment 1 results discussed in the previous section, modal frequencies are in good
agreement with the MIMO E2 results. Synchronous averaging has no significant effect
on the estimated natural frequencies. Similarly, no clear trend is seen in the standard

deviation of the estimated modal frequencies, shown in figure 7.26.

Unmeasured random excitation has a more significant effect on the modal damping than
was observed for unmeasured periodic excitation. Figure 7.27 shows reasonable

agreement between damping values except for modes 4, 8, and 12 where negative
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damping has been estimated in the SIMO E2 analysis. Synchronous averaging improves

the damping for modes 4 and 12; however, mode 8 is still estimated with negative

damping. Similarly, the damping standard deviation values are relatively large for

modes 4, 8, and 12 and synchronous averaging decreases the values for modes 4 and 12.
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Figure 7.25 Modal frequencies estimated from SMO E2 and SMO E2 av analyses
compared with modal frequencies estimated from MIMO E2 analysis.
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Figure 7.26 Modal frequency standard deviation for SMO E2, SMO E2 av, and MIMO

E2 analyses.
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Figure 7.27 Modal damping estimated from SMO E2 and SMO E2 av analyses
compared with modal damping estimated from MIMO E2 analysis.
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Figure 7.28 Modal damping standard deviation for SMO E2, SMO E2 av, and MIMO
E2 analyses.

Referring to figure 7.4, modes 4, 8, and 12 (114, 186, and 263Hz, respectively) have
relatively low peaks, indicating that the responses are relatively poor at a number of

measurement points. The signal-to-noise ratio around these frequencies is likely to be
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lower than modal frequencies with alarger response due to measurement noise, and this

adds to the poor signal-to-noise ratio due to the unmeasured excitations.
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Figure 7.29 MAC comparing mode shapes estimated from SMO E2 and SMO E2 av
analyses with mode shapes estimated from MIMO E2 analysis.

MAC values in figure 7.29 show a similar pattern to those obtained for unmeasured
periodic noise discussed in the last section, that is, modes 4, 8, and 12 show the poorest
agreement. The unmeasured random excitations were found to affect mode shape
estimates uniformly across measurement points for modes with low MAC values, as
opposed to a small number of poorly estimated points as was illustrated by the example
discussed in section 7.4.4 (seefigure 7.24).

7.4.6 Experiment 3 Results: Unmeasured Periodic and Random Excitation

Modal parameters from SIMO E3 and SIMO E3 av are compared with the MIMO E2
results in figures 7.30 — 7.34. As expected, the estimated modal frequencies are not
significantly affected by the unmeasured periodic and random excitations, as shown in
figure 7.30 and similar comments apply to the standard deviation for modal frequency
plotted in figure 7.31.

Modal damping results show a similar trend to that observed for unmeasured random

excitations, discussed in the previous section. Synchronous averaging improves the
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accuracy of damping for modes 4 and 12, which were estimated with negative damping
in the SIMO E3 analysis.
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Figure 7.30 Modal frequencies estimated from SMO E3 and SMO E3 av analyses
compared with modal frequencies estimated from MIMO E2 analysis.
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Figure 7.31 Modal frequency standard deviation for SMO E3, SMO E3 av, and MIMO
E2 analyses.

The large standard deviation value for mode 8, SIMO E3 av, reflects the poor damping

estimate for that mode. This is due to a pole with a frequency very close to the natural
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frequency of mode 8, but with a high value of negative damping. The mode-selection
method used for the analyses discussed in this chapter is based only on modal
frequency; aternatively, damping could be considered and modes with very large
negative damping could be easily identified and removed.
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Figure 7.32 Modal damping estimated from SMO E3, SMO E3 av, and MIMO E2
analyses.
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Figure 7.33 Modal damping standard deviation for SMO E3, SMO E3 av, and MIMO
E2 analyses.
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MAC values for the SIMO E3 and SIMO E3 av anayses are very similar to those
obtained for the SIMO E2 and SIMO E2 av analyses, which was expected due to the
limited effect of unmeasured periodic excitations. Synchronous averaging leads to a
significant improvement in the MAC values for modes 1, 12 and 13, however, little or
no improvement is seen for the modes with very poor correlation, namely, modes 4, 7,
and 8.
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Figure 7.34 MAC comparing mode shapes estimated from SMO E3 and SMO E3 av
analyses with mode shapes estimated from MIMO E2 analysis.

Mode shape correlation between different tests has been consistently poor for modes 4
and 8, and as noted above, these modes have a limited response at a number of
measurement points. The poor mode shape estimates at a number of measurement
points will contribute to low MAC values. These comments also apply to the results
from the SIMO experiments obtained using the ARMAX and RFLS algorithms,
discussed in section 7.3.

Closely spaced modes were also more sendtive to the presence of unmeasured
excitations, for example modes 6 and 7, which were separated by approximately 0.5 Hz
or less, and modes 13 and 14, which were separated by less than 2 Hz. This is in

agreement with conclusions from numerical tests discussed in Chapter 6. The presence
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of an unmeasured periodic excitation at 280 Hz further affected the mode shape

estimates of mode 13 in the analysis of data from experiment 1 and 3.

In terms of estimated modal parameters, the most significant effect of synchronous
averaging was the improvement in damping values for modes 4 and 12, which were
estimated with negative damping in the SIMO E2 and SIMO E3 analysis. The review in
section 2.3 showed that synchronous averaging attenuates signal components that are
not synchronous with the averaging period, and the quality of the FRFs synthesised
from the estimated ARMAX models more clearly illustrate this. Plots of synthesised
FRFs at measurement points 14, 18, 20 and 29 are shown in Appendix B for all analyses
discussed in this section. The models synthesised from averaged data are in much better
agreement with results from the MIMO E2 analysis (i.e. 2-input 2-output with no noise,
see section 7.4.1) and peaks due to poles modelling the unmeasured periodic excitation
are less prominent. As discussed in section 7.4.4, the ARMAX algorithm produces
accurate modal parameters in the presence of purely unmeasured periodic excitations,
therefore the effect of averaging is not as obvious when analysing frequency, damping,

and mode shape resullts.

The ARMAX agorithm successfully identifies the modal frequencies of all modes in
the presence of significant unmeasured periodic and random excitation, while modal
damping and mode shapes are less accurate for modes with a poor response at many
measurement points. The ARMAX algorithm achieves acceptable accuracy for very
short data records; in this case study 2048 samples, and synchronous averaging
improves damping estimates for modes with low responses at many measurement
points. Modes where poor accuracy is achieved are common to all the analyses,
including noise-free conditions and this reflects a significant limitation of the ARMAX
algorithm, namely, that it cannot properly identify modes at measurement points with a
poor response. Synchronous averaging has the greatest impact on modal parameters
estimated in the presence of unmeasured random excitations (see for example
Experiment 2 and Experiment 3 results), as the ARMAX algorithm is most sensitive to
unmeasured random excitations, as opposed to unmeasured periodic excitations. The
following section compares the performance of the ARMAX algorithm with the RFLS
algorithm for Experiments 1- 3.
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7.5 Comparison of ARMAX and RFLS Modal Parameter Estimation
in the Presence of Unmeasur ed Excitations

The RFLS FRF curve fitting method was used to process data measured in Experiments
1, 2, and 3. FRFs were calculated between response measurements and excitation 1.
Excitation 2 was treated as an unmeasured excitation as for the ARMAX analyses
discussed in the previous section. Modal parameters were estimated using the RFLS
method for experiments 1, 2 and 3 under the following conditions: fs = 1024 Hz;
frequency range O - 400 Hz; Af = 0.5 Hz; uniform window (i.e. no weighting) applied to
segments of time record 2048 samples long synchronised to the pseudo-random
excitation. Two sets of modal parameters were estimated from data processed using
different numbers of averages: RFLS E1, RFLS E2, and RFLS E3, refer to RFLS curve
fitting of Experiment 1, 2 and 3 data, respectively, using 20 synchronous averages;
RFLSE1 av, RFLS E2 av, and RFLS E3 av, refer to RFLS curve fitting of Experiment
1, 2 and 3 data, respectively, using 89 synchronous averages. Estimated modal
parameters for each of the tests are compared with modal parameters from the MIMO
ARMAX E2 analysis in Appendix C. The higher numbers of averages generally
produced marginally better results for all combinations of unmeasured excitations.
Frequency results are typically within 1% of the values estimated in the MIMO
ARMAX E2 analysis. Negative damping is estimated for at least one mode in each
analysis, and synchronous averaging does lead to an improvement in one negative
damping value for unmeasured periodic excitation in RFLS E1 av analysis. For the case
where unmeasured random excitation is present, synchronous averaging does not
improve negative damping estimates. Results from the RFLS FRF curve fitting are
compared with the ARMAX resultsin the following sections.

7.5.1 Comparison of ARMAX and RFL S Results for Experiment 1 Data:
Unmeasured Periodic Excitation

Results from the SIMO E1 analysis (ARMAX estimation, 2048 samples, unmeasured
periodic noise) were compared with those obtained from the RFLS E1 av analysis
(RFLS estimation, unmeasured excitation, 89 synchronous averages). Note that because
a higher number of averages yielded slightly better results for the RFLS a gorithm,
RFLS E1 av results were compared with the SIMO EL1 results to illustrate that the
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ARMAX agorithm can use significantly less data. The results from the MIMO E2
analysis (MIMO ARMAX estimation) were used as a basis for calculating frequency
error and MAC values, as well as providing an estimate of damping in noise-free
conditions. Figure 7.35 shows that there is no significant difference in the estimated
modal frequencies, while modal damping estimates (figure 7.36) are also quite similar
for most of the modes except mode 4, which had a poor response at many measurement
points. Note that no standard deviation data is produced by the RFLS algorithm for the
frequency and damping estimates. The MAC values in figure 7.37 indicate good
correlation between RFLS E1 av and MIMO E2 mode shapes for only modes 2 and 3,
while the SIMO E1 anaysis shows much better agreement for a greater number of

modes.
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Figure 7.35 Comparison of modal frequencies from RFLS FRF curve fitting of
Experiment 1 data and SMO E1 analysis with modal frequencies from ARMAX MIMO
E2 analysis.
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Figure 7.36 Comparison of modal damping from RFLS FRF curve fitting of Experiment
1 data, SMO E1 analysis, and ARMAX MIMO E2 analysis.
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Figure 7.37 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment

1 data and MO E1 analysis with mode shapes from ARMAX MIMO E2 analysis.
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7.5.2 Comparison of ARMAX and RFL S Results for Experiment 2 Data:
Unmeasured Random Excitation

Modal parameters from SIMO E2 and RFLS E2 av analyses are compared with the
noise-free results from the MIMO E2 analysis and plotted in figures 7.38 — 7.40. As
with the results presented in the previous section, SSIMO E2 and RFLS E2 av results
were compared to illustrate that the ARMAX agorithm can perform well using short
data records. The pattern of results is also quite similar to those discussed in the
previous section; however, the unmeasured random excitation has a greater effect on the
accuracy of both estimation methods when compared with unmeasured periodic
excitation. While the ARMAX algorithm estimates negative damping for three modes, it
was shown in section 7.3.5 that averaging improved the results for two of the three
modes. It is interesting to note the ARMAX and RFLS algorithms estimate negative
damping for different modes using synchronously averaged data: mode 8 (186Hz) for
the ARMAX algorithm, and mode 13 (280Hz) for the RFLS algorithm. Mode 13 is
separated from mode 14 by approximately 1 Hz, while mode 8 had relatively low-level

response at many measurement points.
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Figure 7.38 Comparison of modal frequencies from RFLS FRF curve fitting of

Experiment 2 data and SMO E2 analysis with modal frequencies from ARMAX MIMO
E2 analysis.
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Figure 7.39 Comparison of modal damping from RFLS FRF curve fitting of Experiment
2 data, IMO E2 analysis, and ARMAX MIMO E2 analysis.
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Figure 7.40 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment
2 data and SSMO E2 analysis with mode shapes from ARMAX MIMO E2 analysis.
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7.5.3 Comparison of ARMAX and RFL S Results for Experiment 3 Data:

Unmeasured Periodic and Random Excitation

Comparison of results from the SIMO E3 and RFLS E3 av analyses reflect comments
made in the previous two sections and are shown in figures 7.41 — 7.43, using results
from MIMO E2 analysis as a basis for calculating frequency error and MAC value.
Both the ARMAX and RFLS algorithms have difficulty with low amplitude modes and
share a similar pattern of MAC values.

The results in this section have shown that ARMAX algorithm typically yielded a more
accurate set of modal parameters in conditions where unmeasured periodic and/or
random excitations were present. The ARMAX algorithm also required less
measurement data to achieve these results; 2048 samples, as opposed to 89x%2048
samples used in the RFLS analyses that included synchronous averaging. It should be
noted when drawing conclusions from the MAC values that comparison of the two
algorithms for noise-free data, discussed in section 7.3.3, showed large differences in

the mode shape results for modes 4, 7, and 13.
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Figure 7.41 Comparison of modal frequencies from RFLS FRF curve fitting of
Experiment 3 data and SMO E3 analysis with modal frequencies from ARMAX MIMO
E2 analysis.
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Figure 7.42 Comparison of modal damping from RFLS FRF curve fitting of Experiment
3 data, IMO E3 analysis, and ARMAX MIMO E2 analysis.
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Figure 7.43 MAC comparing mode shapes from RFLS FRF curve fitting of Experiment
3 data and SSMO E3 analysis with mode shapes from ARMAX MIMO E2 analysis.
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7.5.4 Comparison of Mode Selection for ARMAX and RFLS Algorithms

An important distinction can be made between the roles of mode selection in the two
estimation algorithms. The ARMAX algorithm fits a model to the time-series data and
mode selection involves identifying poles of the model that represent vibration modes.
The true vibration modes are typically a subset of modes modelled by the ARMAX
model due to model order over-specification. The RFLS method fits a model to bands of
the measured FRF, which are selected on the basis of some mode selection criteria
Figure 7.44 shows the averaged, squared imaginary part of the measured FRFs obtained
from the RFLS E3 av analysis. The dotted lines in the figure mark the modal
frequencies of the identified vibration modes, which were based on the results of the
noise free analysis. There are many additional peaks in the plot, which are due to
measurement noise and unmeasured excitations, even after 89 averages. In the case
where no prior knowledge of the structure was available, mode selection would be a
time consuming task. Figure 7.45 shows the averaged synthesised FRFs from the
ARMAX results selected by the NPDP model selection criterion, for the SIMO E3
analysis (estimated using 2048 samples). The dotted lines indicate the natura
frequencies of the selected modes, which are clearly represented, except for mode 4 at
approximately 114 Hz, which had a poor response at a number of measurement points.
It is emphasised that these results were estimated from 2048 data points in contrast to
the 89 x 2048 samples used by RFLS algorithm with synchronous averaging.

A peak at 120 Hz is evident in both figure 7.44 and 7.45, and could easily be mistaken
for a structural mode without the knowledge that the peak is due to the unmeasured
periodic excitation. The use of backwards ARX models in the ARMAX estimation
algorithm provides a means to help distinguish between spurious modes and vibration
modes, based on the sign of the damping. Figure 7.46 shows the damping estimated for
a mode at 119.5 Hz (SIMO E3 analysis), which corresponds to a frequency present in

the unmeasured periodic excitations.
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Figure 7.44 Averaged, squared imaginary part of measured FRFs from the RFLSE3 av
analysis. The dotted lines indicate the peaks that were selected in the curve fitting
processing.
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indicate the peaks that wer e selected as vibration modes.
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Natural frequency: 119.5365 Hz; mean damping: -0.2232 %
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Figure 7.46 SMO E3 analysis damping estimates at each measurement point for a
spurious mode at 120 Hz, which corresponds to a component of the unmeasured
periodic excitation.

The damping estimated at every measurement point is negative, which indicates that
either the estimation is heavily biased by noise, or the mode is not a true vibration
mode. FRFs synthesised from the estimation ARMAX model show a very narrow peak
around 119 Hz for most measurement points. The sign of the damping is not a strong
criterion when used in isolation, as SIMO E3 analysis yielded three vibration modes
with negative damping (averaging reduced the number of negatively damped vibration
modes to two). Synthesised FRFs revealed that the vibration modes estimated with
negative damping had relatively poor responses at some measurement points, which
contrasts to the way the unmeasured periodic excitations are modelled by the ARMAX
model, i.e. with prominent narrow peaks. An advantage with using the ARMAX
algorithm is that FRFs can be synthesised with any resolution. However, measured
FRFs, used by the RFL S algorithm, have resolution determined by the experimental set-
up, and can be subject to leakage effects, which would increase the difficulty of
distinguishing between a vibration mode and a spurious mode on the basis of the shape
of the peak in the FRF. Effectively distinguishing between spurious modes and
vibrational modes requires a number of different tools. The ARMAX algorithm

estimates a model that accurately fits the measured data and the mode selection process
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is aided by the sign of the modal damping, smooth synthesised FRFs and multiple
estimates of global parameters allowing statistical analysis of the results.

7.6 Coupling of Structural Excitation Sour ces

In Chapter 6, the performance of the ARMAX algorithm was tested under a similar set
of noise conditions using experimental data obtained from an aluminium beam. It was
shown that the addition of unmeasured random noise had a significant effect on the
accuracy of damping values. A mgjor difference between the tests discussed in Chapter
6 and those carried out on the helicopter-like structure was the source of excitation and
the measurement of the excitation signal. Applied voltage was used as the excitation
signal for the beam experiments and applied force was measured for the helicopter-like
structure testing. The beam experiments using piezoceramic actuators for excitation
satisfied the requirement that the excitation sources were uncorrelated, therefore the
unmeasured excitation sources were truly unmeasured. This was not the case for the
helicopter-like structure, which involved coupling between the structure and the shakers
as well as between the measured excitation signals. The coupling was due to the rigid
mounting of the shakers and because the shakers were not small compared with the

helicopter-like structure.

Figures 7.47 — 7.49 plot an estimate of the coherence function for the two excitation
signals used in Experiments 1 — 3, respectively. The coherence function is defined as
[128]

G, (f )

Ya(f)=

where G,,(f),G,,(f) are the estimates of the auto-spectra for excitation 1 and
excitation 2, respectively, and G, (f) is an estimate of the cross-spectrum between

excitation 1 and excitation 2. The coherence functions were calculated using a Hanning

window, 66% overlap, and 268 averages.
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Figure 7.47 Estimated coherence function between excitation 1 (pseudo-random
excitation) and excitation 2 (periodic excitation, 75.5Hz, 120Hz, 200Hz, and 281Hz),
for Experiment 1. Vertical dotted lines mark frequencies of periodic excitation.
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Figure 7.48 Estimated coherence function between excitation 1 (pseudo-random
excitation) and excitation 2 (continuous random excitation), for Experiment 2.
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Figure 7.49 Estimated coherence function between excitation 1 (pseudo-random
excitation) and excitation 2 (continuous random and periodic excitation, 75.5Hz,
120Hz, 200Hz, and 281Hz), for Experiment 3. Vertical dotted lines mark frequencies of
periodic excitation.

Coupling between the shakers and structure is indicated by peaks in the coherence
functions, and a number of peaks can be seen in figure 7.47. These are located at the
frequencies of the unmeasured periodic excitation, especially at 75.5 Hz. In addition to
these peaks, there is significant coupling at low frequencies in the experiment 1 data,
and also around the first two modes (74Hz & 77Hz). This can clearly be seen in figure
7.48, as Experiment 2 used unmeasured random noise, and little correlation between the
excitation signals can be seen at other frequencies. While some correlation between the
excitation signals exists, in particular around the frequencies of the unmeasured

excitation, the assumption of unmeasured excitation is till considered to be valid.

7.7 Conclusions

Experimental tests on a helicopter-like structure were carried out in order to test the
performance of the ARMAX estimation algorithm for a structure with a more complex
dynamic behaviour. Closely spaced modes, DOFs with poor vibration responses for at a

number of measurement points, and significant unmeasured excitations including
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periodic components close to natural frequencies were characteristics of the tests
discussed in this chapter. The ARMAX algorithm was shown to achieve acceptable
accuracy under noise-free conditions and results were in agreement with a RFLS
estimation algorithm except for three of the fourteen modes, which were found to have
poor mode shape correlation. The ARMAX agorithm aso estimated reasonably
accurate results in the presence of 200% periodic excitation, 89% random excitation,
and the superposition of random and periodic excitation. Systematic inaccuracies were
observed in al tests for modes with low vibration response at a number of
measurements points, and the MAC value, which was used to compare mode shape
results, was found to be sensitive to poor results at a small number of measurement
points. The use of a pseudo-random excitation signal allowed excitation and response-
measurements to be synchronously averaged. Synchronous averaging improved
ARMAX damping estimates for modes estimated with negative damping for cases with
unmeasured excitation; though little improvement was observed in other modal
parameters. Similarly, the RFLS curve-fitting algorithm did not appear to significantly
benefit from increased numbers of averages (20 to 89). The ARMAX agorithm was
found to obtain more accurate mode shape results for cases with unmeasured
excitations, compared to the RFLS algorithm; however this is qualified by the results
for noise-free data, where three of the fourteen modes showed poor mode shape
correlation. The accuracy of frequency and damping results was comparable for cases
with unmeasured excitation, although the ARMAX algorithm used 2048 data samplesto
achieve these results, compared with the 89%2048 samples used by the RFLS algorithm

applied to synchronously averaged data.

The following chapter presents a preliminary study of an adapted ARMAX algorithm
aimed at identifying modal parameters from response measurements. This work is
carried out with the broad aim of developing a general modal parameter estimation
algorithm that utilises vibration response data obtained under any condition: with
measured excitation data; with measured and unmeasured excitation; and using response

measurements exclusively.
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Chapter 8 Modal Parameter |dentification from Vibration

Response M easurements

8.1 Introduction

In chapter 5, an ARMAX-based algorithm was introduced to estimate modal parameters
from excitation and response measurements in the presence of significant unmeasured
excitation. The testing of the algorithm was discussed in Chapter 6 and it was
demonstrated that the algorithm performed reasonably well in the presence of
unmeasured excitation, although the accuracy of estimated modal parameters decreased
for increasing levels of unmeasured excitation. It is therefore expected that for very high
levels of unmeasured excitation, the ARMAX algorithm would yield inaccurate results.
An agorithm that estimates modal parameters from response measurements could
potentially be of benefit in these cases, and may provide insight into, or lead to
improvements for the 1/O algorithm. Therefore, a preliminary investigation of the
adaptation of the ARMAX algorithm for use with response measurements is presented
in this chapter. Two different algorithms are adapted from the ARMAX 1/O agorithm
and their performance is assessed using simulated vibration data from a 2 DOF system

and experimental data obtained from a cantilever auminium beam.

In the following section, a range of existing response-only modal analysis algorithms
are reviewed. Issues which arise in adapting the ARMAX algorithm for use with
response measurements are discussed in section 8.3 and two adapted agorithms are
presented in section 8.4. Numerical and experimental tests are discussed in section 8.5

and section 8.6, respectively, and concluding remarks are made in section 8.7.

8.2 Review of Response-Only Modal Analysis Algorithms

Response-only modal analysis methods estimate modal natural frequencies, damping
and mode shapes from vibration response data measured from a structure without any
explicit knowledge of the excitation. Many of the techniques have been adapted from
classical input/output modal analysis methods and assume the excitation applied to the

structure approximates white noise.
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The most basic method is the peak-picking method [38, 128, 129], which involves
identifying resonant peaks in a spectrum and subsequently identifying modal
parameters. As discussed in section 2.2, the peak picking method was originally applied
to frequency response function (FRF) data (cf. equations (2.5) and (2.8)). The response-
only version of the peak-picking method is applied to the matrix of auto- and cross-
spectra of the response measurements,

S,(jo)=H(jo)R,H' (-ja), [sx ] (8.1)

where S, is the matrix of auto- and cross-spectra of the response measurements, H isthe
transfer function matrix, and Ry, is the spectral density matrix of the unmeasured white-
noise excitations. Natural frequency and damping estimates can be obtained from the
peaks in the response spectra and at these points equation (8.1) can be approximated as
[38]

Sy(ja%)“aicDicDiH’ (8.2)

and is used to determine ®,, the mode shape of the ith mode. ()" is the conjugate

transpose of a matrix and ¢;is a constant determined by the natural frequency,

damping, modal participation factor, and excitation spectral density matrix. Note that
proper scaling of mode shapes cannot be resolved because the contribution of the

excitation spectral density matrix is unknown.

The peak picking method can be applied very quickly, particularly as FFT analysers,
which are widely used in 1/0 modal analysis, typically calculate auto- and cross-spectra.
Bendat & Piersol [128] demonstrate that the phase and coherence data associated with
cross-spectra may be used to confirm the presence of modes: the coherence around
resonant peaks should approach 1, reflecting the high signal-to-noise ratio and the linear
relationship between response measurements; the phase of lightly damped modes will

be close to zero or 180°.
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The peak-picking method is limited by the resolution of the spectra, and results will be
poor if the assumptions of lightly-damped and well-spaced modes are not valid.
Operational deflection shapes, as opposed to mode shapes, will be estimated at
frequencies where more than one mode contributes to the response. Cases where the
excitation is not white will also cause problems. It is noted by Bendat and Piersol [128]
that narrow band excitation may be identified by peaks in the cross-spectra that have
phases other than zero and 180°. A further issue is the subjective nature of picking
resonant peaks; however, good knowledge of the system under test is a critical factor

and an advantage for all modal analysis techniques.

A variation of the peak picking method is the frequency domain decomposition (FDD)
method [38, 129-131], which identifies modal parameters from the singular value
decomposition (SVD) of the spectrum matrix. Peeters & De Roeck [38] noted that the
FDD method is a renamed version of the complex modal indicator function (CMIF),
which has been applied to both response measurements and FRF data (see section 2.2),
and is useful for identifying the presence of closely spaced vibrational modes.

The SVD of the spectrum matrix (equation (8.1)), is written as [38]
S,(jw)=U(jo)Z(jo) V" (jo), (83)

where U(jw) (s x 9) is the matrix of singular vectors, which correspond to the singular
values that are the elements of the diagonal matrix £(jw). The singular values indicate
the rank of the spectrum matrix at a particular frequency, and the rank is determined by
the number of modes that significantly contribute to the response at that frequency. A
resonant frequency of a well-spaced mode will be indicated by alocal maximum of one
singular value at the resonant frequency. Closely spaced modes will be indicated by
local maxima in separate singular values. This characteristic addresses a limitation of
the classical peak-picking method described above, which assumes well-spaced modes.
Re-writing equation (8.3) as

syuw):gur(jw)cf,uw)ur(jw) (8.4)
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and comparing with equation (8.2) shows that the singular vector for a dominant

singular value at a resonant peak is an estimate of the mode shape vector.

The basic version of the FDD method determines modal frequencies to the resolution of
the spectrum matrix and does not directly yield damping values. As with the classical
peak-picking method, SDOF curve-fitting techniques can be applied to a region around
the loca maximum of a singular value spectrum to yield an improved frequency
estimate and modal damping. The enhanced frequency domain decomposition (EFDD),
outlined by Gade et a [131], isolates a SDOF ‘bell function’ in the singular value
spectrum using the modal assurance criterion (MAC) to ensure mode shapes at
frequencies within the frequency band correlate with a given threshold value. The
isolated bell function is transformed into the time-domain to yield a correlation function
and the damped natural frequency is estimated by counting zero-crossings per unit time.
Modal damping is estimated by curve-fitting the logarithmic envelope of the correlation
function. The FDD and EFDD techniques have been implemented in the ARTeMIS
operational modal analysis software package produced by Structural Vibration
Solutions. Numerous applications of both techniques are discussed by Brincker &
Mgller [65].

Correlation functions between response measurements are the starting point for a
number of other methods, broadly referred to as the Natural Excitation Technique
(NEXT) [19, 20, 113, 132, 133], which involves calculating auto- and cross-correlation
functions between response measurements, estimating global modal parameters from
correlation functions using time-domain modal parameter identification, and finally
estimating mode shapes. The basis of the technique is that the correlation functions
between response measurements are a sum of decaying sinusoids with the same natural
frequencies and damping ratios as the system’s impulse response functions. A summary

of the derivation by James et al [132] is given below.

The impulse response of a system measured at point k due to an input at point i can be
written

X, (t) = i‘,%exp(— ¢ wit)sin(@it), (8:5)

d

206



where @), ¢', are the natura frequency and damping of the rth mode, respectively;

O = 01— (gr)2 ; m' the rth modal mass; and ¢’ is the rth, mode shape at point i. The
response due to an arbitrary force applied at point k, fy, is

%= Y06 [ 1,@)g" ¢ -e)ee. ©6)
where
9 () = ——expl- " @}t )sin(at). 67)
m

d
The cross correlation between response measurements at points i and j, due to an input
atpointkis

Ri(T)=E[ x,t+T)x, @) ]. (8.8)

where E is the expectation operator. Substituting equation (8.6) into (8.8) gives

t t+T

Ry (=YY 0/00070; [ [0'€+T -0)g*-0)ELf, (0)1, @)ldo dr (89)

r=1 s=1
which can be further smplified noting that the autocorrelation for a white noise input is
R (r-0)=E[f, () (0)]=, 5(r-0). (8.10)

The last equality in the above equation is a scaled Dirac Delta function; the scaling
constant a, can be pulled outside the integrals in equation (8.9) and the delta function
evaluated by the first integral:

Ri(T) = zn‘,zn‘,ak(bfﬁ(bfﬁ J. 9't+T-7)g°t-7)dr. (8.11)

r=1 s=1 —o0

Equation (8.11) is written as a definite integral by substituting 4 =t —z and changing
the variable of integration
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R (M) =YY o000 o' +T)g*(2) 2. (8.12)

r=1 s=1 0
Expanding g (A +T) using the trigonometric addition formulas gives

s' ) A)sinle; 2)

9" (A+T)= expl- "o T )cosle; T)IEP e
d

)] exp(— s'ay) ﬂ)cos(w; /1) (8.13)

+ EED(F)(__ é;r‘Z); 'T')si 71(;215 T rr1’¢2)é

and the expressions for g"(1) and g'(1+T) are substituted into equation (8.12) and

functions of T are separated from those of A:

Ric (T)= i [Gi;k exp(— ¢ o, T)cos(a)(’, T)"’ Hi;k eXp(_ ' o, T)sin(co(’, T)]’ (8.14)
r=1
where
G| _ @l 0ot oy [sin(@))
{Hi;k} = ;—mrwg — '([exp( c'wl - )/lsn(wdﬂ){cos(wél)}dﬂ. (8.15)

Equation (8.14) shows that the correlation function between two response
measurements is a sum of scaled sinusoidal functions in terms of the natural frequencies
and damping of the system. Evaluating the integral in equation (8.15) and further

manipulation yields

n A" A
R,(T)= qu:']r—w'rexp(—gw; T)sin(w,T+0©"), (8.16)

r=1 d
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which clearly shows the summation of damped sinusoidal components. A and ©" are

the scaling and phase factors.

A number of studies has shown that correlation functions between response
measurements can be used as inputs into existing 1/0 modal analysis algorithms. James
et al. [132] applied the Polyreference technique and Eigensystem Realisation Algorithm
(ERA) to correlation functions calculated form simulated and experimental data
obtained from a wind turbine. Details of the Polyreference technique and ERA can be
found in [30]. Results were generally good; however, some difficulty was encountered
when trying to identify closely spaced modes. Estimates of some modal parameters
were less accurate when amplitudes of correlation functions at particular modes were
low compared to the noise level. It was demonstrated that NEXT successfully identified
total damping due to structural and aero-elastic effects while the wind turbine was in
operation. This is a key feature of operational modal analysis. In a subsequent study
investigating the dynamic properties of a bridge excited by traffic loading, Farrar and
James [19] first isolated peaks in the cross-spectrum by zero-padding the remaining
spectrum before calculating the filtered correlation function using the inverse Fourier
transform. The filtered correlation functions were curve fitted for frequency and
damping results using the complex exponential curve fitting method, which could also
be set to fit multiple modes for cases where closely spaced modes were present. Mode

shapes were determined from amplitude and phase datain the cross-spectra

Hermans and Van der Auweraer [20] applied the NEXT using least squares exponential
(LSCE) modal parameter estimation to three industrial cases. analysis of the rear
suspension of a car; flight flutter data from a commercial aircraft; and data obtained
from a bridge under ambient excitation. Results from the first case identified a
problematic mode in the rear suspension and comparison of NEXT and 1/O modal
analysis results showed good correlation of the mode shape, a small decrease in natural
frequency but a significant increase in damping, which reflected the role of mounting
the suspension and operating test conditions. The second case analysed response data
from the wing tip of a commercial aircraft. The test utilised burst swept sine excitation
and modal parameters obtained from NEXT were compared with a maximum-likelihood

frequency domain agorithm applied to both the excitation and response data. The NEXT
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results showed moderate variability compared to the 1/O results and state-space
response-only modelling (discussed below). The final case considered in this study was
vibration response data obtained from a bridge. The results of the NEXT were
apparently sensitive to the number of reference measurements used when cal culating the
correlation functions; results were less accurate for a larger number of references, but
overall a reasonable correlation between synthesised auto-spectra and measured auto-

spectrawas achieved.

Peeters and De Roeck [38] noted that autoregressive (AR) modelling of correlation
functions is one method in the class of instrumental variable (IV) methods. The
correlation-driven polyreference time domain technique is another IV method, which

also includes the LSCE and Ibrahim Time Domain (ITD) techniques as special cases.

An AR model describing the correlation functions of vibration response measurements
can be derived from an autoregressive moving average (ARMA) model describing the

vibration of astructure [38]:

yitl+Ay[t-4+ - + A y[t—-na] =€t]+Bdt-1+ --- +B, gt—nb], (8.17)

where y[t] is the s dimensional response vector and €t] is an s dimensional white
noi se sequence representing the unmeasured excitation. The coefficients of the response
vector are s x s matrices and termed the AR coefficients. Similarly, those of the white
noise sequence are termed MA coefficients. nb = na for a vibrating structure and na is
the order of the ARMA model; na = n/s for ideal white noise excitation and noise-free
response data, where n is the number of modes to be modelled. 1V methods reformulate
a model in terms of a new data vector, termed the instruments, which are assumed to

fulfil certain conditions. For the case considered here, ¢[¢] is assumed to be

uncorrelated with past response data, i.e. y[t—i], i > na , which means that post-

multiplying equation (8.17) by y'[t —na—i] and taking the expectation yields

Rna+i +A1Rna+i—l+ +AnaR =0. i>0 (818)
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Equation (8.18) is solved by writing an over-determined system of equations for all
possible time lags and finding the least-squares (LS) solution. The modal parameters of
the system are calculated from eigenvalue decomposition of the bottom companion
matrix of AR coefficients [38]:

0 I, - 0 v Y,
0 0 - 0 | VA, VA,
=L Ay, (8.19)
0 0 I, | VAR? | | VAR
-A, -A_, - —A |VA®T] [vA™?

where A ,is adiagonal matrix of the discrete-time eigenvalues, u,, and V is the matrix

of mode shapes taken from the first s rows of the eigenvector matrix. The natural
frequencies and damping are related to the discrete-time eigenvalues by the following
eguations [ 38]

H =exp(4T,) (8.20)

A ’/1: =—G o T ja)ni\/l_gi2 (8.21)

Desforges et al. [134] fitted the correlation functions of response measurements using
an autoregressive (AR) model and developed a strategy for accounting for coloured
input noise in a subsequent paper [135]. If the excitation signal is corrupted by white
noise, the AR model can be estimated from correlation functions at lags other than zero,
as the zeroth lag would be affected by the corrupting white noise. Similarly, a coloured
excitation described by a moving average sequence containing a finite number of terms
would have a correlation sequence corrupted at a finite number of lags and these could
be avoided when estimating an AR model. The case where periodic excitations are
present is also considered and in this case the AR model would identify poles at the
frequencies of the periodic excitation. These spurious poles could be identified by the

variability of the damping estimates or the phase of the correlation functions.
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Correlation functions have also been used in the estimation of state-space models,
which can be used to represent a vibrating structure. An early implementation involved
applying the ERA algorithm to correlation functions [132] and further studies have
pointed out that the ERA is a particular case of the subspace identification method [ 38,
129]. A state space model is represented by

X[t +1] = AX[t] + w[t] (8.22)

ylt] = Cx[t] + V[t], (8.23)

where x[t] isthe 2n dimension state vector (n the number of vibration modes), A is the
state transition matrix, w[t] the contribution from unmeasured excitation and noise, C
the output matrix relating the state vector to measured outputs, and V[t] is another
disturbance term representing measurement noise and unmeasured excitations. The two
disturbance terms are assumed to be zero-mean white noise sequences, but it has been
shown that subspace modelling of systems with non-stationary white noise (i.e. having a

time varying covariance matrix) inputsis possible [136].

The estimation of state-space models (see for example [20, 26, 38, 129, 133, 137-139])
involves constructing Toeplitz matrix (a matrix with constant negative-sloping

diagonals) from the correl ation functions of response measurements:

R, R, R, C
R. R - R CA _

T, = 2 |- A7G - AG G)=OI, (8.24)
RZi—l RZi—Z Ri CAH

The second equality follows from the decomposition of the covariance matrix:
R, =CA™'G; G=E[ {t+1] y'[t] ]. O, and I, are the extended observability and
reverse extended controllability matrices, respectively, and it can be shown that these
can be obtained from the singular value decomposition of the covariance matrix [137].

O, and I'; are subsequently used in a set of equations involving the unknown A and C
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matrices and modal parameters are then calculated by the eigenvalue decomposition of
the state transition matrix

A=YA ¥, (8.25)

where ¥ is the eigenvector matrix and A, a diagonal matrix of eigenvalues. Natural

frequencies and damping are obtained from equations (8.20) and (8.21), and mode
shapes are related to the eigenvectors by

V =C¥ (8.26)

The size of the Toeplitz matrix in equation (8.24) is determined by i, however, its rank
is 2n. The singular value decomposition of the Toeplitz matrix is calculated and a new
truncated matrix (hence the name subspace methods) can be formed of dimension 2n.
However, n is rarely known accurately so methods such as determining a significant
drop in the singular values, statistical tests, or stabilisation diagrams are used to

determine the correct size (rank) of the state transition matrix.

Weighting of the Toeplitz matrix leads to particular cases of subspace estimation
agorithm; for example, canonical variate analysis (CVA), which may help identify
poorly excited modes [20]. Balanced realisation (unweighted principal components
(UPC)) involves no weighting.

A number of studies has used subspace estimation to identify modal parameters of real
and simulated structures, for example, steel mast structures [137], and also bridges, cars
and planes [20]. The quality of estimated modal parameters demonstrates the
effectiveness of the algorithm in identifying lightly damped and in some cases closely
spaced modes. The use of long data records allows averaging to be used when
calculating correlation functions and this improves the g/n ratio. Stabilisation diagrams
were found to be most useful for model order selection and selected models typically
differed in order for each set of data used for a particular analysis.
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Mevel et a [24] applied covariance driven subspace algorithms to vibration data from
an aircraft during flight. Comparisons between 1/0O and response only algorithms
suggested that if good quality excitation data is available, 1/O modal parameter
estimates were generally more accurate, particularly for short data records; however, if
excitation data is of poor quality, response-only algorithms were more effective.
Stabilisation diagrams were the main tool for model selection in this study. Another
study of subspace identification of vibration data obtained from an airplane during flight
was reported by Abdelghani et al [22]. Some difficulties were encountered when
identifying very closely spaced modes and estimated damping for some modes was
noted to be incorrect. In general, the results compared well with ground test results. The
number of modes (approximately 27) modelled in this study was relatively large. The
size of the model was therefore large and it was observed that modelling data from a
large number of sensors did not have any advantage over a limited number of sensors
(e.g. 4-6).

Basseville et al [26] investigated in-flight modal analysis of a helicopter and noted that
periodic excitations due to main and tail rotors were modelled as poles by the subspace
estimation algorithm. The vibration modes were distinguished from spurious modes due
to rotating components by use of stabilisation diagrams and prior knowledge of the
angular velocity of rotating components. In addition, modes modelling rotating

components generally are found to have very low damping.

Another study investigating in-flight modal analysis of a helicopter was reported by
Hermans et al [25]. Subspace estimation was used to estimate modal parameters from
vibration measurements and results were shown to be sensitive to the sampling rate of
the signals. Low frequency modes were poorly identified for data sampled at high
frequencies. An additional consideration was the increased time taken to estimate
correlation functions and the larger number of time lags (size of Toeplitz matrix in
equation (8.24)) required to estimate subspace models from data sampled at high
frequencies. Results demonstrated a significant amount of scatter in estimated damping
values for all modes and the number of modes identified was sensitive to the sampling
rate. Mode shapes did not correlate well with ground test results with MAC values

below 50%. LSCE curve fitting of vibration response measurements Yyielded
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significantly better MAC values indicating the limitations of the subspace algorithms

for this particular case.

The above discussion was limited to modal parameter estimation algorithms which
utilised time-domain correlation functions as input data. Similar mathematical models
that are identified from frequency domain data exist [33], and Shen et al [140] discussed
the use of a polyreference frequency domain estimation algorithm for use with auto- and
cross-spectra of response measurements. This technique is aimed at overcoming the
well-known limitations of the peak-picking methods described above. Another
frequency domain method is the PolyMAX technique [141], which identifies a
frequency-domain model from auto- and cross-spectra. The latter algorithm is included
in commercia software from LMS International, and application of the technique was

reported in a number of studies[65].

The random decrement technique [30, 134, 142, 143] produces a signal, the random dec
signature, which is similar to the free vibration response of a structure. The most basic
form is calculated from the vibration responses due to a random excitation. For a given

trigger condition, Tx(t, ), records of length z are ensemble-averaged. That is,

D ()= YoM +2)ITX) D, ()= 103y I 827)

1
M i=1
are the auto and cross random dec signature, respectively, calculated from M averages.

The random dec signatures are proportional to the correlation functions of the responses
under the assumptions of Gaussian zero-mean stationary excitation and a linear
structure. Given these properties, all the modal parameter identification algorithms that
can be applied to correlation functions can similarly be applied to random dec
signatures or their Fourier transform. Rodrigues [142] pointed out that the random
decrement technique is a more efficient computation than direct calculation of
correlation functions, or under some circumstances, methods using auto- and cross-
spectra. The use of FDD and stochastic subspace algorithms to estimate modal

parameters from random dec signatures from ambient vibration tests of a bridge were
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reported by Rodrigues [142]. Both methods produce similar results and good quality

mode shapes; however, comparisons with other techniques were not discussed.

Data driven state-space identification methods estimate a state-space model (equations
(8.22) and (8.23)) directly from response data as opposed to the approach that utilises
correlation functions, described above. Van Overschee and De Moor [42] outlined a
method that applied QR decomposition to a matrix of response measurements. This
technique was adapted by Peeters and De Roeck [137] to use a set of reference sensors,
thereby reducing the dimension of matrices used in the estimation and improving
computation time. Another benefit is that the reference sensors can be chosen to include
the best response from all vibration modes, which may improve the quality of estimated
modal parameters. Experimental studies that apply these techniques include testing a
steel antenna mast [137], and wind turbine wing [130]. Data-driven subspace estimation
results from the first study are in good agreement with the covariance-driven subspace
algorithm, and in the second study results compare well with FDD and EFDD. It was
pointed out that the reference-sensor based technique is faster in terms of computation
time, though prediction errors were dightly higher at measurement points that were not
used as reference sensors. Neither study compared the use of smaler numbers of
response measurements in each measurement set with the use of reference sensors in a
measurement set containing a larger number of response measurements. A version of
the data-driven subspace identification is included in the ARTeMIS software from
Structural Vibration Solutions. Different weighting methods can be applied in the
subspace algorithms: unweighted principal components (UPC) (balanced realisation/no
weighting), principal components (PC), or canonical variate analysis. Reference

channels can also be selected.

As noted above, it can be shown that an ARMA model (equation (8.17)) can represent
the dynamic behaviour of a mechanical system. He and De Roeck [144] and He and Fu
[30] derived an ARMA model directly from the continuous-time transfer function and
Peeters [38] reported that this result can be arrived at by establishing a relationship
between an ARMA model and a state-space model. Estimation of an ARMA model
directly from response measurements, as opposed to correlation functions, has been
discussed by Desforges and Cooper [134]. They used a two-stage least squares method

to first estimate a higher-order AR model and then solve for the coefficients of an
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ARMA model with aleast squares method. The required correlation functions between
the measured response and unmeasured excitation were cal culated by approximating the
autocorrelation of the excitation as a scaled delta function (i.e. assuming the excitation
is white noise) and using the AR coefficients obtained in the first stage. The authors
noted that this method was very sensitive to model order. Prediction error methods can
be used to estimate ARMA models [43], however, these solutions require non-linear
optimisation and the application to structural dynamics problems have not been widely

reported.

Papakos and Fassois [118] proposed another multistage agorithm to estimate ARMA
models, which also started with estimation of a higher-order AR model. Their algorithm
outperformed AR modelling of the response measurements, but they reported
difficulties in estimating weak modes and anti-resonances. The algorithm included
guaranteed stability of the estimated model.

Use of higher-order AR models in isolation has been reported in [47, 134, 144, 145]. It
is well known that finite-order AR models cannot truly model the dynamics of a
structure, however, high order AR models are able to produce very good
approximations [43]. A subsequent difficulty is then distinguishing between vibration
modes and spurious numerical modes. Cooper [47] and Hung & Ko [122] used a
property of backwards AR models first reported by Kumaresan [120] to distinguish
vibrational modes from numerical modes based on the position of AR model poles on
the complex z plane. These studies modelled impulse response functions or correlation
functions, which are approximately deterministic responses. Backwards ARX models
were used in the 1/0O version of the ARMAX modal parameter estimation algorithm
introduced in Chapter 5.

Gao & Randall [146, 147] discussed the estimation of FRFs from the cepstra of

response measurements. The complex cepstrum is defined as the inverse Fourier

transform applied to the logarithm of a complex spectrum [148], i.e.

C(z)=3{og(X (f))}. (8.28)
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An important characteristic of the cepstrum is that the convolution of time domain

functionsis represented as an addition in the cepstral domain [148].

Time domain convolution becomes a multiplication in the frequency domain:

bt)=alt)=ht) < B(f)=A(f) H(f), (8.29)

which becomes an addition after taking the logarithm:

log B(f )=1og A(f )+ logH (f). (8.30)

Equation (8.30) is transformed into the cepstral domain by inverse Fourier transform:

3 logB(f )}= 3 *{log A(f )}+ 3 {logH (f )}. (8.31)

This allows excitation and transfer function properties to be separated as they are often
in different parts (quefrency bands) of the cepstrum. Examples of the method were
given by Gao & Randall [146, 147], demonstrating the use of two curve-fitting methods
to extract transfer function data. It was also shown that the effects of double impact
excitation can be removed. It should be noted that the technique assumes vibration
response measurements are a result of a single dominant excitation source, however,
techniques such as principal components analysis may be used to obtain appropriate
responses [27]. Broad-band excitation (e.g. impulse excitation or random noise) is
particularly effective for cepstral methods as it is represented only at very low
quefrencies in the cepstrum and can be separated easily from transfer function
components. An advantage of this technique is that it theoretically yields a correctly
scaled FRF; hence, mode shapes will be correctly scaled. This contrasts with other
response-only modal analysis methods, which produce relatively scaled mode shapes.
Some solutions proposed to overcome this limitation include adding a known mass and
scaling mode shapes using sensitivity relationships. This method requires the
knowledge of the mass change and the resulting shift in natural frequencies [114].
Another technique was introduced by Bernal [115], which allowed more general

modifications and eased computational reguirements.
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The response-only modal analysis methods discussed above make assumptions about
the nature of the unmeasured excitation signal. The most common is that the excitation
has a flat auto-spectrum. As discussed above, Cooper [135] investigated selectively
choosing correlation function lags when modelling correlation functions. Mohanty and
Rixen [110-113] adapted the eigensystem realisation algorithm (ERA), lbrahim time
domain method (ITD), single station time domain method (SSTD), and the |east-squares
complex exponential method, to account for periodic excitations with known
frequencies. Other studies that have encountered significant periodic components
superposed on broadband measurements [25, 26, 128] used damping and phase to

identify spurious modes, or simply prior knowledge of the system under test.

In this section, well-known response-only modal analysis methods have been reviewed

and aspects of their application, advantages, and limitations have been discussed.

8.3 Adaptation of ARMAX Estimation Algorithm for usewith
Response M easur ements

The adaptation of the ARMAX estimation algorithm to estimate modal parameters from

vibration response measurementsis discussed in this section.

The ARMAX estimation algorithm has a number of desirable features including a
special diagonal structure for the AR and MA matrices and also the estimation of
backwards ARX models. The diagonal AR and MA matrices allow simple manipulation
and stabilisation of the model elements and the use of backwards ARX models helps

distinguish spurious numerical modes from vibration modes.

The ARMAX estimation algorithm could be modified to process response-only
measurements simply by omitting the excitation data and replacing the estimation of
backwards ARX models with the estimation of backwards AR models. The adapted
estimation agorithm would therefore estimate an ARMA model subsequently used to
calculate modal parameters. Initial numerical tests demonstrated that estimation of
backwards AR models describing a system’s response due to a random excitation did

not allow spurious numerical modes to be distinguished from vibration modes. It was
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also noted that the diagonal structure of the AR matrix did not include any information
on system zeros, which are needed for the complete characterisation of a mechanical
system, and an additional stage would be required to calculate zeros, for example using
Shanks' method [121, 149]. In addition, it was found that the estimation of AR models
was sensitive to the model order and high-dimension high-order models were often

unstable. These points are discussed in more detail below.

8.3.1 Estimation of Backwards AR Models

Kumerasan [120] showed that sinusoids could be modelled as the zeros of a linear
prediction filter and that a higher-order filter with coefficients chosen to have minimum
Euclidean length would have extraneous zeros, i.e. those not corresponding to a
sinusoid in the modelled signal, located inside the unit circle on the complex z-plane.
This result was demonstrated for undamped, negatively, or positively damped sinusoids
and therefore could be used as a method to distinguish between spurious numerical
poles and poles corresponding to oscillating system components. An alternative proof
for this result was given by Hollkamp & Batill [46] and was extended to apply to ARX

models.

The use of backwards AR models (linear prediction filters) is limited to deterministic
signals, eg. sums of snusoids, because the estimation of the AR model can be
formulated as an over-determined set of linear equations with an infinite set of
solutions. The proofs discussed by Hollkamp & Batill [46] and Kumerasan [120]
showed that the minimum norm solution resulted in numerical poles (a subset of zeros
of the AR matrix) being located inside the unit circle.

In the case of arbitrary non-deterministic excitation, the vibration response of a
mechanical system will also be non-deterministic and the above result does not hold.
More specifically, an AR model will converge to the true system as the data set and the
AR model order approaches infinity [43] and therefore an over-determined AR model

can never be estimated.

A number of approaches exist to obtain an approximately deterministic vibration
response from a mechanical system in response-only modal analysis:
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e Excitation of the structure using impulse or step loads allowing the free response
to be modelled as a sum of decaying sinusoids. The magnitude of the applied
load does not need to be measured but this technique still places significant
constraints on the nature of testing.

e Application of the random decrement technique to long records of vibration
response data obtai ned with random excitation.

e Auto- and cross-correlation functions of vibration response obtained with white
noise excitation can be expressed as sums of decaying sinusoids as shown in
section 8.2.

The use of the random dec signature or correlation functions requires long data records
but has the advantage of significant reection of uncorrelated noise through the

averaging operations.

8.3.2 Limitations of the Diagonal AR Matrix Structure

The diagonal structure was adopted for the AR and consequently MA matrices in the
ARMAX estimation algorithm to enable simple manipulation of these matrices,
including stabilisation of the matrix polynomials, and the decomposition of MIMO
ARX modelsinto SIMO ARX models. Numerical testing comparing the performance of
scaar AR and multi-dimensional AR models (the response-only analogue of ARX
models) showed that the multi-dimensional models more accurately represented the
simulated system. However, further tests using experimental data showed that high-
order high-dimension AR models were often unstable. All models were estimated using

| east-sguares estimation.

An additional limitation of adopting the diagonal AR structure is that no system zero
information is included and therefore needs to be estimated in further stages. In contrast,

the inverse of aMIMO AR model structure includes zero information.

8.4 Combined AR-ARMAX Estimation Algorithm

In response to the issues discussed above, two algorithms have been adapted from the
/O ARMAX algorithm to estimate modal parameters from vibration response
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measurements. The new algorithms are referred to as MISO AR-ARMAX and MIMO
AR-ARMAX and the stages are summarised in the block diagram in figure 8.1.

The AR-ARMAX algorithms start by estimating a higher-order multidimensional AR
model from the response measurements using a standard least-squares solution of an
equivalent regression problem. The AR model innovations are then calculated and used
as the ‘excitation’ in subsequent stages of the algorithm. A diagonal representation of
the AR matrix estimated in stage 1 is also used in subsequent stages of the MISO AR-
ARMAX algorithm. The MIMO AR-ARMAX algorithm estimates a fully
parameterised MIMO ARMAX model from the AR model error and response

measurements.

Stage 1 Estimation of higher-order MIMO AR model from
response data using least-squares criterion. Calculation of
model innovations sequence.

!

Stage 2 1% estimate of noise model (MA matrix) obtained from
AR matrix obtained in stage 1.

A

A\ 4
Stage 3 Estimation of lower order ARX model from
innovations sequence and response data filtered by noise model
(MA matrix) obtained in stage 2.

!

Stage4 Estimation of new noise model using AR matrices
obtained in stages 1 and 3

'

Convergence
criterion

Stage 5 Calculation modal parameters from ARX model

Figure 8.1 Block diagram of adapted estimation algorithm.
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The reasoning behind these adaptations is that a linear system excited with white noise
can be modelled using an AR model. Ljung [43] noted that an AR model of order p
estimated using N data will converge to the true systemas N, p — o, N > p. In practice,
p is restricted to a finite order, which is required to be large enough such that system
dynamics and noise present in measurements are modelled adequately. It is assumed
that if this condition is met then the AR mode innovations will approximate white
noise, which is then used as an excitation in the /O ARMAX estimation algorithm.
Initial numerical tests revealed that fitting lower-order backwards ARX models (as part
of the /O ARMAX algorithm) allowed poles due to vibration modes to be distinguished

from numerical poles according to their position on the unit circle, as discussed above.

The estimation of a higher order AR model, model innovations, and diagonal AR matrix
for use with the /O ARMAX algorithm is outlined in the following section.

8.4.1 Stage 1: Estimation of Higher-Order AR Model

A discrete-time AR model of order p is defined as
H, (a) - ylt] = w(t] (8.32)

y[t] is the s dimensional response vector, w[t] is the innovations sequence, and H ,(q)

is the fully parameterised s x s AR matrix; the elements are polynomials of order p, in

terms of g, the backshift operator: x[t]~qj = X[t+].

The AR model can be rewritten as
p - -
yltl+ Y H, () ylt— 1 =[t] (8.33)
j=1

and then as a corresponding regression problem [118]:

ylt] =@ [t]-h+e]t] (8.34)
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where

O'[t]=1_®u'[t], [sx ps’] (8.35)
uftl=[-y[t-1 -y[t-2] - -ylt-pl]", [psx1] (8.36)
h=colH,@® H,2 - HM]. [ps’x1 (8.37)

The regression problem in equation (8.34) is solved using a method discussed in section
5.3.1 and described in Ljung [43].

Once the AR matrix has been estimated the model innovations sequence can be
calculated. The innovations and measured response are then used in subsequent stages
of the estimation a gorithm.

The AR matrix estimated in the first stage is also used in subsequent stages and is
reformulated with a diagonal structure for the MISO AR-ARMAX algorithm. This is
achieved by calculating the roots of the matrix polynomial, which are then expressed as
a scalar AR polynomial. The new diagonal AR matrix has the scalar AR polynomial in
its diagonal elements. The following stages of the MISO AR-ARMAX agorithm are
taken directly from the ARMAX estimation algorithm, using &,[t] (equation (8.34)) as
the excitation, y[t] as the response and the diagonal AR matrix described above in place
of H (q), whichis estimated in stage 1 of the /O ARMAX estimation algorithm. Note

that the algorithm name ‘MISO AR-ARMAX' is used to emphasise that a diagonal
structure is adopted for the AR matrices, and this allows decomposition of the model
into a series of MISO models. In contrast, the MIMO AR-ARMAX algorithm estimates
MIMO ARX models instead of MISO models, and therefore does not use the diagonal
parameterisation of the AR and MA matrices in subsequent stages. The significance of
the MIMO method is that it uses all response channels when estimating a model, i.e. a

model is fitted to more data points. A disadvantage is that in the event an unstable
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model is estimated, it cannot be stabilised easily as is the case for the MISO algorithm.
Details of the subsequent stages are discussed in sections 5.3.2 — 5.3.5.

In this section the adaptation of the 1/O ARMAX algorithm to estimate modal
parameters from vibration response measurements has been discussed. A number of
issues prevent the algorithm from being directly applied to response measurements
while maintaining the desirable properties of mode verification based on the sign of
estimated damping, and simple stabilisation of unstable models. The proposed method
overcomes these difficulties by using the innovations sequence from a high-order AR
model as an excitation, which can be used with the response measurements in the 1/0
ARMAX algorithm.

8.5 Numerical Tests

This section discusses the testing of the AR-ARMAX modal parameter estimation

algorithms using data simulating the response of a two degree-of-freedom system.

8.5.1 Two Degree-of-Freedom Damped Spring Mass System

Details of the simulated system are the same as those listed for System 1 introduced in

Section 6.2. Table 8.1 lists the physical and modal parameters.

Physical Frequency | Damping | Magnitude | Phase®
System Parameters Mode (Hertz) (%) (DOF 2) | (DOF 2)
mi=1; mp=2;
,=0.2: C,= 0.4: 1 1.485 0.4180 2.377 0.3211
1 c3=0;
E1=5(§)0; ko= 300; 2 4.676 1.229 0.2104 179.0
3:

Table 8.1 Physical and modal parameters for 2 DOF system used in numerical testing
of adapted ARMAX algorithm.

The simulated response records were corrupted with random noise approximating the
effects of measurement noise. The level of noise is specified as the ratio of RMS

measurement noise to RMS system response expressed as a percentage.
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8.5.2 AR-ARMAX Numerica Tests

Four tests were carried out to assess the performance of the MISO and MIMO versions
of the AR-ARMAX algorithm. Each version of the algorithm was used to estimate
modal parameters from time series data and also correlation functions calculated from
the raw data. In addition, AR models were calculated from time-series data using least-

squares estimation.

The correlation functions used for two of the tests were calculated using response
spectra rather than from raw time-series data. The discrete Fourier transform (DFT) was
applied to overlapping (66%) blocks of time series data, which were then zero-padded
to twice the number of time-series samples. Auto- and cross-spectra were then
calculated and averaged. Unbiased correlation functions were obtained by an inverse
DFT of the averaged spectra and application of bow-tie compensation, which accounted
for the zero padding of time-series data[128].

The details of each test are as follows:
Test 1
e MISO AR-ARMAX algorithm;
e 500 samples of time-series data, sampling frequency 50 Hz;
¢ 10% random measurement noise;
e Stagel ARmodel order =2-na; na=4, ...., 10; nb =na- 1; nc = na;
e 8iterations of stages 3 and 4;
e Model selection using NPDP.

e MISO AR-ARMAX algorithm;

e Correlation function data; block size 1024 samples; sampling frequency 50 Hz;
190 averages (32768 samples of time-series data used);

e 10% random measurement noise added to time series data, i.e. before calculation
of correlation functions,

e Stagel ARmodel orderp =2na; na=4,....,10; nb=na-1; nc =na,;

e 8iterations of stages 3 and 4;

e Model selection using NPDP.
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Test 3
e Multivariate AR model; least-squares estimation;
e 500 samples of time-series data, sampling frequency 50 Hz;
e 10% random measurement noise;
e AR model order; p= 2, ...., 40,

e Model selection using BIC.

e MIMO AR-ARMAX algorithm;

e 500 samples of time-series data, sampling frequency 50 Hz;

e 10% random measurement noise;

e Stage1 ARmodel order =2:na; na= 4, ...., 10; nb=na- 1; nc = ng;
e Giterations of stages 3 and 4;

e Model selection using NPDP.

e MIMO AR-ARMAX algorithm;

e Correlation function data; block size 1024 samples; sampling frequency 50 Hz;
190 averages (32768 samples of time-series data used);

e 100% random measurement noise added to time series data, i.e. before
calculation of correlation functions;

e Stage1 ARmodel order p=2na; na= 4, ....,8, nb=na-1; nc= na;

e Giterations of stages 3 and 4;

e Model selection using NPDP

Each test was repeated 50 times with independent realisations of response data and
measurement noise. The mean and standard deviations of the estimated modal
parameters are plotted in figures 8.2 and 8.3. The MISO AR-ARMAX algorithm
produces s (i.e. the number of response measurements) estimates of modal parameters
and these are marked DOF 1 and DOF 2 to indicate the measurement point. In contrast,
only one set of modal parameters are estimated by the MIMO AR-ARMAX algorithm
and the multivariate AR models, and these are denoted DOF 1.
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Figure 8.2 Mean and standard deviation of estimated modal frequencies and damping,
tests 1 — 5. True parameter values are indicated by the horizontal line.

Modal frequencies are within 1.6% of true values for both modes in each test. It is
worth noting that the estimates for mode 2, DOF 2 in tests 1 and 2 are relatively poor
compared to other natural frequency estimates of these tests. Thisis due to the relatively
low response of the second mode measured at DOF 2, as shown by figure 6.2 ().
Comparison of frequencies from Test 3 and Test 4 show only marginal improvement by
the MIMO AR-ARMAX algorithm over the AR results, which demongtrates the effect
of the extra stages (the first stage of the MIMO AR-ARMAX algorithm is estimation of
a higher order AR model). Similarly, the most accurate results (obtained with DOF 1 as
areference) for each mode in Test 1 are only marginally better than the Test 3 results.
Tests 2 and 5 clearly show that calculating correlation functions is beneficia if large
amounts of data are available. Test 5 achieves significantly better results given that
100% random measurement noise was added to the response measurements. Recalling
that 190 averages were used in the calculation of the correlation functions, the random
noise would be attenuated by approximately 20dB, which equates to approximately 7%
noise present in the correlation functions used for test 5, and less than 1% for test 2.

Similar comments apply to the modal damping estimates and it is interesting to note that
the negative bias on results observed in tests described in Chapter 6 for the 1/0O
ARMAX agorithm are not observed to the same degree for the response-only
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agorithms. The damping results also show the benefit of calculating correlation
functions, but little improvement is gained by applying the ARMAX-based algorithms

over the AR modelling apart from a marginal improvement in damping.

Mode shape results, shown in figure 8.3 are generally more accurate for the MIMO AR-
ARMAX models and mode shape phase is relatively poorly estimated for the MISO
AR-ARMAX algorithm.
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Figure 8.3 Mean and standard deviation of estimated mode shape magnitude and
phase, tests 1 — 5. True parameter values are indicated by the horizontal line.

Mode shape results reveal significant errors associated with the MISO AR-ARMAX
agorithm when estimating moda parameters from correlation functions. This is
possibly due to leakage when calculating the correlation functions using the spectral
method. Note that no window was applied to data in these tests, however, other
numerical tests showed no improvement when a Hanning window was used. The
MISO-ARMAX algorithm was found to estimate multiple poles around a resonant
frequency, presumably due to leakage effects. This could potentially increase numerical
sensitivity when transforming the discrete-time transfer function into pole-residue form
and subsequently calculating modal parameters. This point needs to be further
investigated for the response-only algorithm as well as the 1/0 algorithm because of the
high order models that are estimated to account for the large frequency ranges

commonly considered in structural dynamics analysis.
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Comparing results from tests 1 and 4 shows that both the MISO and MIMO AR-
ARMAX algorithms produce frequency and damping estimates of similar accuracy; that
is, the best estimates from the MISO agorithm are similar to the results of the MIMO
algorithm. Mode shape magnitudes and phase results are significantly better for the
MIMO algorithm. This is due to the extra data points used in the estimation of the
MIMO as opposed to the MISO model, which estimates a separate MI1SO model for
each output. This reason, as well as the observations relating to the use of correlation
functions discussed in the previous paragraph, are likely to have contributed to the poor
mode shapes results estimated from correlation functions using the MISO AR-ARMAX
algorithm.

The NPDP was found to be particularly sensitive to model order. In the most favourable
cases, vibration-mode poles were found to be positively damped and all other poles (due
to noise) were found to be negatively damped. This trend did not hold when the number
of poles in the ARMAX model approached that of the stage 1 AR model. Therefore,
distinguishing between vibration modes and numerical modes was not possible using
the sign of the damping. Stabilisation diagrams assessing the stability of all modal
parameters (i.e. frequency, damping and mode shape estimates) may be a more effective
tool for model order selection and distinguishing between vibration modes and
numerical modes.

The numerical testing of the AR-ARMAX algorithms has been described in this section.
The MIMO AR-ARMAX algorithm produces the most accurate results from both time-
series data and correlation functions. A benefit of using correlation functions is that

averaging can be employed to attenuate random noise in the measurements.

8.6 Experimental Testing

Further testing of the AR-ARMAX estimation algorithm was carried out using vibration
response data measured from a cantilever aluminium beam. In this section, the
experimental apparatus, experiments to record time-series data and the processing of
data using the AR-ARMAX estimation algorithm are described. For comparison
purposes, the ARTeMIS commercial response-only modal analysis software, produced
by Structural Vibration Solutions, was also used to estimate modal parameters.
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8.6.1 Experimental Apparatus and Data Collection

Vibration response measurements were made on the cantilever aluminium beam used
for experimental tests described in Chapter 6, and shown in figures 4.7 and 6.35. The
beam was excited by independent random noise (band-limited to 0-1600Hz) applied to
each of the four pairs of piezoceramic actuators. The actuators in each pair were driven

in parallel with opposite polarity so that a distributed moment was applied to the beam.

Response measurements were made at 34 evenly-spaced locations along the beam using
two B&K 4374 and two B&K 4393 accelerometers. As multiple sets of measurements
were taken, a reference accelerometer was required to enable mode shape information
from each set of measurements to be correctly scaled. The reference accelerometer is
best placed at a location that experiences deflection for each mode of interest and

therefore was placed at the free end of the beam for all experiments.

B&K 2635 charge amplifiers were used for accelerometer signal pre-conditioning,
which included high and low-pass filtering with 2 Hz and 3 kHz (-10%) cut-off,
respectively. A HP 3566A eight channel FFT analyser was used to record excitation and

response time series data.

8.6.2 Experiment 1: Single-Input Multiple-Output

The first experiment used one pair of piezoceramic actuators to apply random excitation
to the cantilever beam. Sixty seconds of excitation and response data were recorded
with a sampling rate of 4096 Hz and modal parameters calculated from the excitation
and response data were used to verify the results of the response-only algorithms. The
HP 3566A FFT analyser calculated FRFs with the following characteristics:

e Frequency range: 0 — 1600 Hz;
e Resolution (line-spacing): 0.5 Hz;
e Hanning window;

e Up to 10 averages, 50% overlap.

231



Curve fitting of the FRFs was carried out with a rational fraction least squares (RFLS)
algorithm, which is part of the Spectra Dynamics STAR Modal v5.23 software
package. The second through to tenth transverse bending modes were successfully
identified in the 0 — 1600 Hz frequency range. As expected, the first mode was not
identified due to the poor excitation of this mode by one pair of piezoceramic actuators.
The results are compared with results obtained from the FDD, EFDD, and SSI-UPC
methods (discussed below) in Appendix D.

8.6.3 Experiment 2: Multiple-Excitation Response-Only Modal Analysis

The second experiment employed independent random excitation (band-limited to O —
1600Hz) applied by each of the four actuator pairs. Excitation and response data were
measured in sixty second time records sampled at 4096 Hz. The response data from
Experiment 2 were processed using the AR-ARMAX estimation algorithms, AR models
and three algorithms available in the Structural Vibration Solutions ARTeMIS v 3.5

software.

8.6.4 FDD, EFDD and SSI-UPC Estimation

These methods were introduced in section 8.2 and the estimated modal parameters are
compared in Appendix D. The FDD and EFDD methods require auto- and cross-spectra
and these were calculated from the time records using blocks of data with 4096 samples
and 66% overlap. The resulting spectra had a frequency range of 0 - 2048 Hz, 0.5 Hz

frequency resolution.

The FDD is the quickest and simplest method and yields modal frequency and mode
shape estimates. The accuracy of the modal frequency is dependent on the resolution of
the auto- and cross spectra. FDD was the only method to identify all eleven transverse
bending modes in the selected frequency range, even though the response of the first
mode was relatively poor. The EFDD technique identified the second through to
eleventh bending modes with a greater frequency resolution and aso yielded modal
damping estimates.
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The SSI-UPC technique identified modes 3 - 11. The SSI-UPC method is a parametric
method and identified a number of candidate models of differing order for each data set
and a number of tools were available to help identify the model that best fitted the data
[150]:

e Stabilisation diagrams based on the stability of frequencies, damping and mode
shapes,

e Singular values (rank) of input-data matrix;

e Model stability;

e Stability of vibration modes and noise modes,

e Final prediction error criterion;

e Synthesised auto- and cross-spectra and correlation functions.

The combined use of the above tools for model selection produced the most accurate
modal parameters as no single tool provided a robust criterion for model selection. A
smaller frequency range would probably have aided the identification of the lower order
modes as even very high order models failed to identify these modes. Note that different
weighting matrices were used as part of the principa components (SSI-PC) and
canonical variate analysis (SSI-CVA) SSI agorithms and similar results were obtained
asfor the SSI-UPC algorithm.

Results for the three ARTeMIS response-only algorithms are compared with the STAR
results and plotted in Appendix D. Frequency and damping estimates obtained from
EFDD (except for mode 1) are listed in table 8.2 and corresponding mode shapes are
shown in Appendix D. Results from all tests show good agreement, except for the
modes that were not identified as discussed above. It is worth noting that no difficulty
was encountered identifying the eleventh bending mode even though the excitation was
band-limited to 0 — 1600 Hz.
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Mode Frequency (Hz) Damping (%)
1 (FDD) 6 -
2 36.69 0.85
3 105.49 0.28
4 208.02 0.28
5 346.54 0.26
6 515.89 0.62
7 728.34 0.35
8 977.93 0.33
9 1248.49 0.29
10 1578.69 0.32
11 1907.12 0.30

Table 8.2 Frequency and damping results from EFDD (except mode 1, which was

estimated by the FDD method).

8.6.5 AR-ARMAX Results

Both the MISO and MIMO versions of the AR-ARMAX agorithm were used to
estimate modal parameters from response measurements and correlation functions. In
addition, AR models were also estimated from the response data and correlation
functions. The correlation functions were calculated using the signal spectra as for
numerical tests, outlined in section 8.5, with the exception that a Hanning window was
applied to the blocks of response data before zero padding and transformation to
spectral data. Application of the Hanning window produced smoother spectra and

preliminary tests showed that estimated modal parameters were more accurate.

The details of each test are as follows:

MISO AR-ARMAX algorithm with time series data (MISO TS):

e 1024 samples of time-series data, sampling frequency 4096 Hz;

e Stage 1 AR model order = 2:-na; na= 20, ...., 26; nb = na; nc = na;

e 8iterations of stages 3 and 4;
e Model selection using NPDP.

MISO AR-ARMAX algorithm with correlation functions (MISO corr):
e Correlation function data; block size 1024 samples; sampling frequency 4096

Hz; 718 averages (245760 samples of time-series data used);

e Stage 1 AR model order = 2:na; na= 20, ...., 26; nb = na; nc = na;
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e 8iterations of stages 3 and 4;
e Model selection using NPDP.

MIMO AR-ARMAX agorithm with time series data (MIMO TS):
e 1024 samples of time-series data, sampling frequency 4096 Hz;
e Stagel1 ARmodel order =2-na; na=5, ...., 12; nb = na; nc = na;
e 10iterations of stages 3 and 4;
e Model selection using NPDP

MIMO AR-ARMAX agorithm (MIMO corr):
e Correlation function data; block size 1024 samples, sampling frequency 4096
Hz; 718 averages (245760 samples of time-series data used);
e Stagel1 ARmodel order =2-na; na=5, ...., 12; nb = na; nc = na;
e 10iterations of stages 3 and 4;
e Model selection using NPDP

Multivariate AR model with time seriesdata (AR TS):
e 1024 samples of time-series data, sampling frequency 4096 Hz;
e Model order =10-24;

e Model selection using BIC.

Multivariate AR model with time series data (AR corr):
e Correlation function data; block size 1024 samples, sampling frequency 4096
Hz; 718 averages (245760 samples of time-series data used);
e Model order = 10 - 24;

e Model selection using BIC.

Results from the experimental tests reflect the observations in numerical test results,
discussed in section 8.5.2. In particular, the MISO AR-ARMAX algorithm was found to
yield good accuracy for frequency and damping results and the use of correlation
functions improved the accuracy of estimates, and reduced the standard deviation of
global parameter estimates. Mode shapes estimates were poor, though the results
estimated from time series data were found to be dightly better than mode shapes
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estimated from correlation functions. The reasons discussed in section 8.5.2 regarding
the sensitivity of the MISO AR-ARMAX algorithm to correlation functions also apply
to these experimental results. The estimated modal parameters from the MISO AR-
ARMAX algorithm are compared with results from EFDD in Appendix E.

Results obtained from the MIMO AR-ARMAX and AR algorithms are compared with
EFDD results and plotted in figures 8.4 — 8.8. As with the SSI-UPC results, only modes
3—-11 wereidentified by all tests. Frequency results are generally good, however, errors
for mode 3 were greater than all other modes, suggesting that a smaller frequency range
is appropriate for both MIMO AR-ARMAX and AR estimation. The limited ability of
the piezoceramic actuators to excite low order modes is likely to have also contributed

to these results.

Figure 8.4 Frequency error estimated from MIMO AR-ARMAX and AR algorithms,
compared with EFDD results.

Figure 8.5 Frequency standard deviation estimated from MIMO AR-ARMAX and AR
algorithms, compared with EFDD results.

Damping results for MIMO AR-ARMAX estimation are comparable to those obtained
from EFDD results, accompanied by larger standard deviations. AR results estimated

from time series data were found to have positive bias. Estimation of modal parameters
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from correlation functions improved the standard deviation of frequency and damping
results with values approaching those obtained from EFDD results, which were
estimated from the same amount of data as the correlation functions used for MIMO
AR-ARMAX and AR estimation.

Figure 8.6 Modal damping estimated from MIMO AR-ARMAX and AR algorithms,
compared with EFDD results.

Figure 8.7 Modal damping standard deviation estimated from MIMO AR-ARMAX and
AR algorithms, compared with EFDD results.

Figure 8.8 MAC values comparing mode shapes from MIMO AR-ARMAX and AR
algorithms with results from EFDD.

The mode shapes estimated by the MIMO AR-ARMAX and AR algorithms were found

to be in good agreement with EFDD results, except for mode 3 for the AR results
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estimated from correlation functions. Thisis due to a small number of poorly estimated
measurement points, and potentially reflects the limitations of the BIC model selection
criterion. It was found that the BIC consistently selected models of low order and in
many cases model selection was limited to higher-order models. This generally lead to
better results, however, numerical difficulties were sometimes encountered with high
order AR models resulting in many spurious noise poles in the low and high frequency
ranges. The numerical difficulties encountered with higher-order polynomial models
suggests that a different model parameterisation or model structure (e.g. state-space
representation) may be appropriate for high-order, large dimension problems, although
the SSI-UPC algorithm also failed to properly model low order modes, as discussed
above.

The results of the AR-ARMAX algorithm were observed to be sensitive to the model
order of the stage 1 AR model and also the order of the ARX models estimated in the
subsequent stages. In particular, the positively damped poles estimated in the ARX
models did not always correspond to the vibration modes; hence the NPDP model
selection criterion was ineffective. A disadvantage associated with the AR-ARMAX
algorithm is that the orders of the stage 1 AR model (p) and the order of the AR (na)
and MA (nc) matrices in the subsequent stages can be set independently, which leads to
alarge set of possible models. The range of models to be estimated in above tests was
limited by setting p and nc as afunction of na. It was found that if the order of the stage
1 AR model was set very high the quality of this model was typically poor as indicated
by spurious poles in the high and low frequency ranges of the z-plane. In these cases
iterations of stages 3 and 4 improved the results to a certain extent. When the order of
the AR model was more appropriately set, further iterations had less of an effect, and as
shown by the comparison of results in figures 8.4 — 8.8, little improvement over basic
AR estimation is seen. A benefit of the MIMO AR-ARMAX algorithm over AR
modelling is the elimination of positive bias on damping estimates when estimating
results from time series data. In some cases, iterations of stages 3 and 4 lead to poorer
estimates of some modes. This was often accompanied by positively-damped spurious
poles being estimated, which also invalidated the NPDP model selection criterion.
Therefore, model order specification and model selection remain a significant problem.
A combination of model selection criteria, as used in the SSI-UPC algorithm, could
potentially improve the quality of the estimated modal parameters.
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An interesting result is that modes 3 — 11 were accurately estimated, which contrasts to
the results obtained for the /O ARMAX algorithm, presented in section 6.3.5. The low
s/n at frequencies around poorly excited modes was suggested as a reason for the
observed 1/O0 ARMAX results. The response-only algorithms, on the other hand, assume
independent sources of excitation and for these experiments four pairs of actuators were
used to apply independent random excitation. Results in Chapter 4 showed that each
actuator pair excited the low-order modes poorly and some actuators did not couple well
to one or two higher modes. The estimation of fully parameterised ARMAX models in
the MIMO AR-ARMAX and AR agorithms is likely to have contributed to the good
results, as the model is estimated using al response data points. The adoption of the
diagonal AR matrix in the I/O algorithm was partly based on the ease of stabilising and
manipulating diagonal matrix polynomials and tests in Chapters 6 and 7 demonstrated
that acceptable accuracy of modal parameters was achieved. These tests also showed
that for data with moderate levels of noise, instability issues were rare due to the use of
backwards ARX models and the fact that model selection could be carried out without
having to recursively calculate the innovations sequence. An investigation into aMIMO
ARMAX 1/O algorithm is therefore suggested as future work.

In this section, the performance of a number of response-only modal parameter
estimation methods has been assessed using vibration response data obtained from a
cantilever aluminium beam. The non-parametric FDD and EFDD methods were found
to be the simplest analysis tools and yielded good results, which correlated well with
I/0 modal testing results. The SSI-UPC, AR, and AR-ARMAX methods only identified

modes 3 — 11 and each method yielded good accuracy for these modes.

8.7 Conclusions

This study has reviewed response-only modal analysis techniques and introduced a new
method, the AR-ARMAX algorithm, which is adapted from an ARMAX [/O modal
parameter estimation algorithm introduced in Chapter 5.

Numerical tests using data simulating the response of a two degree-of-freedom system
demonstrated the MIMO AR-ARMAX agorithm could accurately estimate modal
parameters from time series data and correlation functions with 10% and 100% added
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random measurement noise, respectively. The use of averaged correlation functions has
the advantage of attenuating random noise present in the original time-series data; the
attenuation is dependent on the number of averages used when calculating the

correlation functions.

Experimental data obtained from a cantilever aluminium beam was used to assess the
performance of the AR-ARMAX algorithm, as well as FDD, EFDD, SSI-UPC, and AR
model estimation techniques. The FDD and EFDD non-parametric methods were found
to be most effective; FDD was the only method to identify all modes but did not
estimate modal damping. EFDD identified modes 2 — 11 and results correlated well
with modal parameters obtained from I/O modal analysis. The parametric identification
methods tested included SSI-UPC, AR modelling of time series and correlation
functions, and the M1SO and MIMO AR-ARMAX algorithm applied to time series data
and correlation functions. Only modes 3 — 11 were identified by these methods and
model order specification and model selection criteria were found to be critical to the
accuracy of these methods. The NPDP model selection criterion was found to be
sensitive to model order specification and was often ineffective due to positively-
damped spurious numerical modes. Other model selection criteria, such as stabilisation
diagrams based on stability of frequency, damping and mode shape results, could
potentially improve the quality of estimated modal parameters. The numerical and
experimental tests only investigated the effect of random measurement noise and
suggested little benefit in using the more complex AR-ARMAX algorithm over basic
AR modelling. Further tests using a more complex structure investigating the effect of
localised excitation, non-white excitation and the presence of periodic components in
the excitation would provide a better indication of the limitations of the methods. It is
emphasised that this work is presented as a preliminary study into the adaptation of the
I/0 ARMAX algorithm presented in Chapter 5. Further insight has been gained into the
operation of the algorithm with the recommendation to investigate the use of fully
parameterised ARMAX modelsin the /O ARMAX agorithm.
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Chapter 9 Conclusions

9.1 Conclusions

The mgor focus of this thesis is the experimental determination of structural dynamic
properties in cases where significant unmeasured excitation is present. This has been
motivated by structural dynamics analysis of helicopters. In this application, modal
anaysis is a common method used for experimentally determining the structural
dynamic behaviour and the reviewed literature suggested that boundary conditions of
the helicopter under test significantly affect the results. Therefore, it is desirable to carry
out testing while the helicopter is in flight. In Chapter 2, a literature review of existing
modal analysis techniques revealed an extensive range of algorithms for classical input-
output modal analysis under favourable noise conditions, assuming the measured
excitation is the only source of excitation. More recently operational modal analysis or
response-only modal analysis methods, reviewed in Chapter 8, have been developed,
which only require vibration response measurements and assume the unmeasured
excitation to be reasonably flat. The case where input-output modal analysis is carried

out in the presence of unmeasured excitations has not been widely researched.

In Chapter 2 a preliminary study was carried out to assess the performance of an
existing modal parameter estimation algorithm applied to representative structures with
measured impulse excitation and unmeasured periodic and random excitation, which
approximately corresponds to conditions present in a helicopter during flight. The first
experimental case study involved a free-free aluminium beam, and piezoceramic plates
were employed as an alternative means of applying multiple independent sources of
structural excitation. The second experimental case study involved a steel helicopter-
like structure, which exhibited a more complex dynamic behaviour. Synchronous
averaging was employed to improve the signal-to-noise ratio of the measured excitation
and response data and to attenuate unmeasured excitations. The results of these
experimental case studies demonstrated that the existing RFLS modal parameter
estimation algorithm was able to identify modal parameters in the presence of
unmeasured excitation and synchronous averaging was effective in improving the
accuracy of the results. A limitation of this approach was that the algorithm did not
explicitly account for any noise in the data, which lead to practical problems of
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identifying vibration modes in poor quality FRFs and selecting appropriate frequency
bands for curve fitting. A novel modal parameter estimation algorithm was therefore

proposed in Chapter 5 to address these issues.

Advances in finite element modelling have produced powerful tools for the prediction
of dynamic behaviour and the resulting structural loading. An initial step is model
validation and updating using experimental data, which typically includes accurately
determined modal parameters. Chapter 3 presented three case studies to demonstrate the
performance and limitations of a sensitivity-based model updating strategy. The first
case study showed that model updating significantly improved correlation between
experimental and FEM results when experimental data was obtained under non-ideal
conditions, for example when the structure exhibited non-linear behaviour. This case
study also demonstrated the importance of having an initial FEM that adequately
modelled the physical structure, in particular the joints and contacting surfaces. The
remaining case studies reflected this in a situation where the initial FEM was very
accurate, resulting in less scope for updating. The final case study demonstrated that
apparently simple modifications can be difficult to model. In addition, an updated FEM
yielded only very marginal improvements in terms of modal assurance criterion when
predicting the effect of a significant modification, compared to a non-updated FEM.
These results generally suggested that assessing the accuracy of experimental data at
every measurement point is important to the outcome of FEM updating, and that the
expected accuracy of experimental data should be used to better interpret the correlation
of experimental and FEM results.

The use of piezoceramic actuators for structural vibration control has been widely
reported and the aim is often to excite specific modes using a set of actuators, while
minimising excitation of other modes. Experimental modal analysis typically requires
excitation of a large number of modes and piezoelectric actuators have not been widely
used in this application. The experimental case studies in Chapter 2 demonstrated that
accurate modal parameters could be obtained using piezoceramic plates for structural
excitation. An approximate analytical model of pairs of actuators bonded to a beam was
reviewed in Chapter 4 to illustrate the characteristics of this type of actuation. The
model showed that the effectiveness of a pair of actuators in exciting a particular

vibration mode is related to the derivative of the mode shape at the edges of the actuator
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pairs; i.e. the slope of the mode shape at the edges of the actuator pairs. Modes with
little change in slope over the actuator contact area were poorly excited. This has
implications for exciting low order transverse modes of an aluminium beam and
explains the results obtained in Chapter 2. Another issue considered was the extraction
of mode shape information from estimated transfer functions when using piezoceramic
actuators for structural excitation. Transfer functions cannot be measured at a point (e.g.
point mobility) as for modal analysis with a point force, but it was shown that unscaled
mode shapes can be obtained from transfer function residues, which verified

observations made in the experimental case studies discussed in Chapter 2.

A novel agorithm to estimate modal parameters was presented in Chapter 5. The
algorithm is based on the estimation of a discrete-time ARMAX model, which explicitly
models unmeasured excitations and measurement noise. The algorithm included least-
squares estimation of backwards ARX models, which allowed vibration modes and
spurious numerical modes to be distinguished. It was also suggested that the number of
positively damped poles (NPDP) estimated by a model could be used as a method to
select the best model from a set of models of different order. The backwards ARX
model resulted in the MA matrix of the ARMAX model being stable, which reduced the
need for further operations to stabilise the MA matrix. A diagonal structure was used for
the AR matrix and consequently for the MA matrix. This was adopted to limit the size
of matrices used during least-squares estimation, with the benefit of simple stabilisation
of unstable models. The diagonal structure also allowed simple manipulation of the
model.

Extensive testing of the ARMAX estimation algorithm was described in Chapter 6.
Simulated data from three two degree-of-freedom systems was used to test the ARMAX
algorithm under different noise conditions: 10% random noise added to response
measurements; and combinations of 100% periodic and 20% random unmeasured
excitations with 10% random measurement noise. The results showed that the ARMAX
agorithm and the NPDP model selection criterion performed reasonably well even in
the presence of significant unmeasured excitations. It was also shown that results were
poor when referenced to DOFs with relatively low response. Experimental testing
carried out on a cantilever beam excited with pairs of piezoceramic actuators reflected

the observations of the numerica tests. Unmeasured random excitation was found to
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affect the accuracy of the results to a greater extent than similar levels of unmeasured
periodic excitation due to the differences in the way the ARMAX algorithm accounts
for each type of unmeasured excitation. The unmeasured periodic excitation was often
modelled as mode, however, the estimated damping was typically estimated as negeative,
as a consequence of the backwards ARX models, and this allowed these spurious modes
to be distinguished from vibration modes. The ARMAX agorithm was found to be
sensitive to poorly excited modes, which were due to the characteristics of the
piezoceramic actuators, as discussed in Chapter 4. An additional observation was that

wide frequency ranges resulted in low-order modes being estimated poorly.

Chapter 7 revisited the helicopter-like structure as a representative case for testing of the
ARMAX estimation algorithm. A range of experiments incorporating unmeasured
periodic and random excitation were carried out and the use of periodic measured
excitation alowed synchronous averaging of the measured data. The ARMAX
algorithm successfully identified modal parameters for cases where 200% unmeasured
periodic excitations were present, which included components within 2 Hz of vibration
modes. In addition, the algorithm was found to perform well when close to 90%
unmeasured random excitation was present, as well as in a case with both unmeasured
periodic and random excitation. Closely spaced modes were identified by the ARMAX
algorithm although results reinforced the observation that modes with low response at
particular measurement points were poorly identified. The sign of damping was again
shown to be useful in distinguishing between spurious modes and vibration modes. The
ARMAX agorithm was found to perform well when compared to a frequency domain
RFLS agorithm, in particular using significantly less data. Mode identification was aso
found to be easier due to smoother synthesised FRFs produced as part of the ARMAX

estimation procedure.

The experimental case studies presented in Chapters 6 and 7 suggested that while the
ARMAX algorithm performed well for cases with moderate levels of unmeasured
excitation, increasing the level of unmeasured excitation lead to a decrease in the quality
of modal parameter estimates. A natural extension of this is when the unmeasured
excitations are dominant and this corresponds to the case of operational or response-
only modal analysis. Chapter 8 presented a review of existing response-only modal

analysis methods and it was noted that most were adapted from input-output estimation
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agorithms. A preliminary study investigating the adaptation of the ARMAX estimation
agorithm was undertaken. A number of factors limiting the direct application of the
ARMAX agorithm to response measurements were identified, namely, the lack of zero
information in a scalar AR model and the inability of backwards AR models to
distinguish between vibration and spurious modes for non-deterministic vibration
responses. Two algorithms were proposed to overcome these limitations while still
mai ntai ning the features to enable model selection and distinguish between spurious and
vibration modes. Numerical tests demonstrated that the MIMO version of the algorithm
performed reasonably well, and correlation functions calculated from response
measurements were of benefit as averaging of correlation functions attenuated random
noise present in the response measurements. Experimental tests verified the numerical
test results; however, a number of observations were made that limited the practical
implementation of the adapted algorithm in its current form. Results were found to be
sensitive to model order specification, which was a potentially difficult task because the
orders of three separate model components could be specified separately. The
algorithm’s sensitivity to model order had implications for the NPDP model selection
criterion, which was found to be ineffective as spurious modes could be estimated with
positive damping. This also prevented spurious modes being distinguished from
vibration modes. Experimental results for the MIMO AR-ARMAX algorithm were
found to compare well with results from an enhanced frequency domain decomposition
method, and used considerably less data. However, AR modelling of the experimental
data also yielded very good results, suggesting that the extra stages involved in the AR-
ARMAX algorithm were of limited benefit. An exception to this was that damping
estimates from AR modelling showed positive bias. The preliminary study presented in
Chapter 8 nevertheless provided considerable insight into the development of a general
algorithm for estimating modal parameters under all possible excitation conditions:
measured excitation; measured excitation with unmeasured components; and ambient or

fully unmeasured excitation.

9.2 Recommendationsfor Further Work

The ARMAX estimation algorithm incorporated a diagonal model structure, which
allowed MIMO measurements to be decomposed into a series of MISO estimation
problems. The work in Chapter 8 showed that MIMO AR(MAX) models had some
benefits in terms of improved accuracy of modal parameters. Therefore, a study into
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MIMO estimation of ARMAX models using a diagonal structure for the AR matrix (as
opposed to separation into a series of MISO models) as well as estimation of a fully
parameterised ARMAX model could potentially yield improvements in the accuracy of
the ARMAX agorithm. This could also address the problems encountered with

measurement points having low level responses for some modes.

Piezoceramic actuators have many advantages over other types of excitation used in
modal analysis, particularly for permanent applications. Chapter 4 and experimental
results in Chapter 6 demonstrated limitations of piezoceramic actuators when applied to
beams. Studies of different actuator configurations applied to more complex structures
in modal analysis are needed to better demonstrate their advantages and limitations. The
consideration of piezoceramic actuators for experimental modal analysis of plates and
cylinders would be a natural extension to the study on beams presented in Chapter 4. A
general goal is the development of piezoceramic actuator configurations that could be
applied to an arbitrary structure for effective excitation of a large number of vibration

modes.

The literature reviews presented in Chapters 2 and 8 noted that many operational modal
analysis algorithms had been adapted from input-output algorithms, although studies
into their applications considered either measured excitation and response or response-
only situations separately. Of interest is the adaptation of algorithms for dealing with
any level of measured excitation in the presence of unmeasured excitation. In this thesis
one such agorithm has been considered and smilar studies could be applied to other
algorithms. For example, state-space based modal parameter estimation may have more
desirable numerical properties when considering models of high order and large

dimension.
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Appendix A

A.1 Statistical Testing of Innovations Sequence

Section 5.3.3 discussed some statistical methods that can be used to test the assumptions
made about the nature of innovations sequence and the correlation between the
innovations sequence and the measured excitations. The BIC uses the covariance matrix
of the innovations sequence to detect correlation between elements and also asses the
magnitude of the innovations sequence. The auto- and cross-correlation functions can be
used to extend this concept for different time lags, which potentially increases
sengitivity to periodic components in the innovations sequence. The correlation
functions were calculated for al combinations of innovations elements and two
approaches to map the matrix of correlation functions to a scalar value were tested. The
first approach calculated the sum of mean-square values for each correlation sequence
and the second approach calculated the determinant of a matrix containing the mean-
square of each correlation sequence. Figure A.1 shows values calculated using the first
approach plotted for each iteration and model estimated from the same realisation of
data as the BIC plots above. Figure A.2 shows values calculated by the second
approach.

15 4 8 Model Order

Figure A.1 Summed mean-square values of innovations correlation sequences for each
model order and iteration estimated from a typical realisation of test 1 data.
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Figure A.2 Determinant of matrix of mean-square values calculated from each
innovations correlation sequence for each model order and iteration estimated fro