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Abstract  

 

As humans age, the functional organisation of their brain networks undergoes complex changes that are 

associated with observed changes in cognition. Both genetics and the environment play a crucial role in 

influencing changes in the network topology of the ageing brain. In addition, the network topology is 

influenced by age-related brain diseases. To date, there is a paucity of population-based studies investigating 

the contributions of age, genetic and environmental factors, and brain disease to the architecture of the 

functional brain networks. The broad aim of this thesis, therefore, was to examine the influence of genetics, 

environmental factors, and disease-states on functional brain networks in older individuals using the United 

Kingdom (UK) Biobank data (N~18,455; ages 44-80 years). To study functional brain networks, I modelled 

large-scale brain networks from resting-state functional magnetic resonance imaging (fMRI) scans using 

graph theory, defined by a collection of nodes (brain regions) and edges (magnitude of temporal correlation in 

activity on fMRI between two brain regions). 

Four studies are reported in the thesis. In the first study, I investigated the genetic determinants of functional 

brain networks. I first estimated single nucleotide polymorphism (SNP) heritability (h2). Subsequently, 

genome-wide association studies (GWAS) were performed to identify genetic variants associated with each 

graph theory measure. Gene-based association analysis was carried out to uncover gene-level associations, 

and the functional consequences of the significant genetic variants were explored. As brain reorganisation of 

the functional networks has been differentially observed with ageing in the two sexes, I examined in the 
second study how age and sex are associated with the topology of functional brain networks in association 

with cognitive performance. In the third study, I examined the association of sleep and other lifestyle factors 

such as exercise, alcohol, and smoking, with functional network properties. In the final study, I studied how 

disease phenotypes, in particular depressive symptoms, influence functional network properties. 

This thesis provides several novel contributions to the literature by identifying important genetic, 

environmental, and disease-related factors that are associated with measures of functional networks in the 

ageing brain. The findings highlight biological pathways relevant to the ageing human brain functional 

network integrity and diseases that affect it. 
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ABSTRACT  

As humans age, the functional organisation of their brain networks undergoes complex 

changes that are associated with observed changes in cognition. Both genetics and the 

environment play a crucial role in influencing changes in the network topology of the 

ageing brain. In addition, the network topology is influenced by age-related brain 

diseases. To date, there is a paucity of population-based studies investigating the 

contributions of age, genetic and environmental factors, and brain disease to the 

architecture of the functional brain networks. The broad aim of this thesis, therefore, 

was to examine the influence of genetics, environmental factors, and disease-states on 

functional brain networks in older individuals using the United Kingdom (UK) Biobank 

data (N~18,455; ages 44-80 years). To study functional brain networks, I modelled 

large-scale brain networks from resting-state functional magnetic resonance imaging 

(fMRI) scans using graph theory, defined by a collection of nodes (brain regions) and 

edges (magnitude of temporal correlation in activity on fMRI between two brain 

regions). 

 

Four studies are reported in the thesis. In the first study, I investigated the genetic 

determinants of functional brain networks. I first estimated single nucleotide 

polymorphism (SNP) heritability (h2). Subsequently, genome-wide association studies 

(GWAS) were performed to identify genetic variants associated with each graph theory 

measure. Gene-based association analysis was carried out to uncover gene-level 

associations, and the functional consequences of the significant genetic variants were 

explored. As brain reorganisation of the functional networks has been differentially 

observed with ageing in the two sexes, I examined in the second study how age and sex 

are associated with the topology of functional brain networks in association with 



 v 

cognitive performance. In the third study, I examined the association of sleep and other 

lifestyle factors such as exercise, alcohol, and smoking, with functional network 

properties. In the final study, I studied how disease phenotypes, in particular depressive 

symptoms, influence functional network properties. 

 

This thesis provides several novel contributions to the literature by identifying 

important genetic, environmental, and disease-related factors that are associated with 

measures of functional networks in the ageing brain. The findings highlight biological 

pathways relevant to the ageing human brain functional network integrity and diseases 

that affect it. 
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CHAPTER 1: INTRODUCTION 
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1.1 Context  

Globally, the population is rapidly ageing. In 2019, there were 703 million persons aged 

65 years and over and this number is projected to increase to 1.5 billion by 2050, 

representing 16% of the world’s population (United Nations Department of Economic 

and Social Affairs, 2019). Similarly, in Australia, people aged 65 years and above 

increased from 12.3% to 15.9% between 1999 and 2019, and is projected to further 

increase to 28.4% by 2053 (McDonald, 2016). This transition towards an ageing 

population has also changed the leading cause of disease and death to noncommunicable 

diseases, such as cardiovascular disease, cancer, neurodegenerative disorders, and 

diabetes. It is estimated that by 2030, noncommunicable diseases will account for more 

than one-half of the diseases in low-income countries and three-fourths in middle-

income countries (United Nations Department of Economic and Social Affairs, 2019). 

In Australia alone, a typical 78-year old individual costs the government approximately 

$24,000 per annum (McDonald, 2016). The ageing of the population therefore poses a 

financial challenge for governments. In turn, this has important implications for the 

socioeconomic and healthcare systems in both developing and developed countries.  

 

Biologically, ageing is associated with declines at the molecular, cellular, and 

physiological levels (López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). 

However, the relationship between aging and functional impairments, chronic disease, 

and mortality is heterogeneous in the health outcomes of older individuals as the impact 

of ageing differs markedly across individuals, which may be dependent on one’s 

genetics, environment, and disease states (Lowsky, Olshansky, Bhattacharya, & 

Goldman, 2014). As increased life expectancy is not always accompanied by improved 

health and quality of life, considerable discussions about healthy ageing have been 
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raised. According to the World Health Organisation, healthy ageing is defined as “the 

process of developing and maintaining the functional ability that enables wellbeing in 

older age.” This definition encapsulates intrinsic capacity, such as the mental and 

physical abilities, as well as the environment, which includes the home, community, and 

society, of an individual (World Health, 2015). In order to understand the multifactorial 

process in ageing, it is imperative to study the underlying biological mechanisms and 

environmental factors that seemingly separate healthy ageing from disability; as well as 

how disease states may result in dysfunction in ageing.  

 

There is evidence to show that ageing is associated with decline in cognitive function 

(i.e. mental capacity) that may, in part, be accounted for by changes in neural plasticity 

and function of the brain (Chan, Park, Savalia, Petersen, & Wig, 2014; Shen et al., 

2017). While the brain is structurally organised grossly into different regions specialised 

for processing and relaying neural signals, it is functionally subspecialised for 

perceptual and cognitive processing (Lv et al., 2018). Given the constraints of the 

underlying structural network, understanding the functional brain networks in healthy 

brain and using it to identify the abnormalities in brain disorders has become a common 

practice in ageing neuroscience (Meier et al., 2016). Changes in the dynamics of 

functional brain architecture may be influenced by an individual’s genetics, 

environment, and disease states. In turn, the disruption of the brain’s functional 

connectivity may result in overt cognitive decline.  

 

1.2 Rationale  

Complete understanding of genetics, environment, and disease-states influencing the 

differential topology of the functional networks remains to be elucidated. Investigating 
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how these factors affect functional connectivity in the human brain may potentially 

allow for better understanding of changes in functional network topology with ageing 

and the development of disease.  

 

1.3 Aims of this thesis  

The primary aim of this thesis is to explore the multifactorial processes that influence 

the functional brain networks using graph theory measures in older adults.  

Specific aims are as follow:  

1. To review existing evidence for genetic variants and environmental influences 

associated with functional brain networks; 

2. To study the heritability and genetic variants associated with the graph theory 

measures;  

3. To examine the relationships of age and sex with the graph theory properties, 

and how these relationships modify cognitive performance;  

4. To study the relationship of sleep and other lifestyle factors including exercise, 

alcohol, and smoking, with graph theory measures; and  

5. To investigate how major depressive disorder (MDD) phenotype and genotype 

are related to the graph theory measures.  

 

1.4 Thesis outline  

Chapter 2 provides a comprehensive review of the factors, including genetics, 

environmental factors, and disease states that have been suggested to influence resting-

state functional connectivity (RSFC).  
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Chapter 3 investigates the genetic contributions to the functional brain networks. It 

examines the single nucleotide polymorphism (SNP) and gene level associations with 

functional network measures using graph theory analysis in a large population of older 

adults.  

 

Chapter 4 focuses on the relationship of age and sex with the functional network 

measures and how this relationship modifies cognitive performance in older adults. 

Cognitive measures include processing speed, memory, and executive function.  

 

Chapter 5 examines the association of sleep and other lifestyle factors with functional 

network measures. Sleep measures include both accelerometer derived data as well as 

self-reported sleep duration. Lifestyle factors include exercise, alcohol consumption, 

and smoking.  

 

Chapter 6 focuses on disease contributions to functional network measures in a large 

population sample of older adults. It examines the relationship the genetics (as 

measured by polygenic risk score) and phenotype of depression with the functional 

network measures, respectively.  

 

A summary of the main findings is presented in Chapter 7, followed by a discussion of 

their significance and clinical implications in light of the current literature. Limitations 

are also considered. Finally, future research directions are suggested.  
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2.1 Background  

The ageing human brain undergoes complex functional changes, which are associated 

with changes in cognition (Chan et al., 2014; Shen et al., 2017). These include 

significant age effects on the functional organisation of brain networks (Huang et al., 

2015). Functional connectivity reflects the magnitude of temporal correlations in neural 

activity and may occur between pairs of anatomically unconnected brain regions 

(Rubinov & Sporns, 2010). Resting-state functional connectivity (RSFC) measures are 

commonly derived from resting-state functional magnetic resonance imaging (rs-fMRI) 

data, which examine the synchronisation of neural activity between regions by 

measuring the blood oxygen level-dependent (BOLD) signal fluctuations that occur at 

low frequencies (<0.1 Hz), where participants are scanned in the absence of a stimulus 

or task (Lv et al., 2018; Rosazza & Minati, 2011). Characterising resting-state 

functional changes in the ageing brain may increase our understanding of age-associated 

cognitive changes, even in the absence of disease (Burke & Barnes, 2006; Otte et al., 

2015).  

 

Many studies have explored the associations between age and RSFC either by using 

region of interest-based correlations (i.e. seed-based) or data-driven reduction 

techniques (i.e. independent component analysis - ICA), or whole brain approaches (i.e. 

graph theoretical analysis) (Grayson & Fair, 2017; Lee, Smyser, & Shimony, 2013). 

Within graph theory, quantitative measures of topological properties of networks, such 

as small-worldness, highly-connected hubs, and modularity (Otte et al., 2015; Perry et 

al., 2015; Rubinov & Sporns, 2010), can be calculated. Although these analytical 

approaches vary in their underlying assumptions and interpretation, it is assumed that 

functional connectivity measures the same neurophysiological processes (Thompson, 
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Ge, Glahn, Jahanshad, & Nichols, 2013). Using these techniques – including seed-

based, ICA, and graph theory – several resting-state networks (RSNs), which are strong 

functionally linked sub-networks during rest (van den Heuvel & Hulshoff Pol, 2010), 

have been identified. These networks include but are not exclusive to the default mode 

(DMN), dorsal attention (DAN), frontoparietal control (FPCN), limbic (LIMB), 

salience/ ventral attention (SVAN), somatomotor (SM), and visual (VIS) networks (Lee 

et al., 2013; Yeo et al., 2011) (Table 2.1). Patterns of functional connectivity within and 

between major RSNs are regarded as intrinsic properties of brain function as they 

strongly predict patterns of co-activation during common processing tasks (Chan et al., 

2014; Grayson & Fair, 2017). More specifically, DMN has been involved in cognitive 

control and higher cognitive demands for working memory. FPCN and DAN are 

implicated in attention, memory, and executive functions (Jiang et al., 2018; Vatansever 

et al., 2017).  
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Table 2.1 Composition and functions of commonly assessed functional networks 

 

Networks Composition  Functions 

 

DMN Precuneus, posterior cingulate 

cortex, bilateral inferior 

parietal cortices and medial 

prefrontal cortices (Fallon, 

Chiu, Nurmikko, & Stancak, 

2016) 

 

Emotional processing, self-

referential mental activity, and 

recollection of prior experiences 

(Raichle, 2015) 

DAN Visual motion area, frontal eye 

fields, superior parietal lobule, 

intraparietal sulcus, and 

ventral premotor cortex 

(Spreng, Shoemaker, & 

Turner, 2017) 

 

Engaged during externally directed 

attentional tasks (Spreng et al., 

2017) 

FPCN Dorsolateral and dorsal medial 

prefrontal cortex and dorsal 

anterior cingulate cortex 

(Spreng et al., 2017) 

 

Cognitive control processes to 

maintain goals, inhibit distractions, 

and shift behaviour in the service of 

goal attainment (Spreng et al., 

2017) 

 

LIMB Anterior cingulate cortex, the 

amygdala, and hippocampus 

(de Carvalho et al., 2010) 

 

Emotional regulation, executive 

control, and reward processing 

(Tang et al., 2019) 

SVAN Dorsal anterior cingulate 

cortex and bilateral anterior 

insula (Seeley et al., 2007) 

 

Assesses the relevance of internal 

and external stimuli to guide 

behaviour (Seeley et al., 2007) 

SM Supplementary motor area, 

central sulcus, secondary 

somatomotor region, putamen, 

thalamus, contralateral 

cerebellum (Carter et al., 

2012) 

 

Planning, preparation, and 

execution of voluntary movements 

(Sánchez-Castañeda et al., 2017) 

 

VIS Primary, dorsal, and ventral 

visual networks (Shen et al., 

2019) 

 

Object recognition (Yang, Deng, 

Xing, Xia, & Li, 2015) 

 

 
Abbreviations: DMN, default mode network; DAN, dorsal attention network; FPCN, frontoparietal 

control network; LIMB, limbic network; SVAN, salience/ventral attention network; SM, somatomotor 

network; VIS, visual network  
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Graph-based network theory models the brain as a complex network that is represented 

by a collection of nodes (e.g. brain regions) and edges (e.g. connectivity) (Wang, Zuo, 

& He, 2010b). Graph theoretical metrics may be used to capture the topological 

organisation of the human brain connectome through the computation of both global 

and local features, including global efficiency, characteristic path length, transitivity, 

modularity, and strength of the brain networks (Lv et al., 2018) (Table 2.2). This 

technique of studying rs-fMRI has proven to be useful in identifying normal 

development, ageing, and various brain disorders (Wang et al., 2010b).  

 

There is evidence from neurodevelopmental studies of RSFC to show that strong 

functional connectivity between nearby brain regions and that selected local correlations 

tend to weaken while correlations with more distant brain regions tend to strengthen 

across childhood and adolescence (Power, Fair, Schlaggar, & Petersen, 2010). The 

observed changes in functional connectivity may be due to synaptic pruning 

(Huttenlocher, 1979) and myelination that occur throughout early life (Brody, Kinney, 

Kloman, & Gilles, 1987). Due to the constant state of alterations in the brain that 

accompany neurodevelopment, this review will only consider ageing-related changes in 

adults above 20 years old. In addition, this review will summarise published research on 

the influence of genetics, environmental factors, and disease-states on functional 

connectivity and graph theory measures using rs-fMRI in healthy adults.  
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Table 2.2 Graph theory measures and their association with age and ageing-related 

diseases 

Graph theory 

measures  
Definition  

Associations with age and 

ageing-related diseases 

Global efficiency 

How effectively the information 

is transmitted at a global level 

and is the average inverse 

shortest path length. Higher 

values imply greater efficiency.  

 

Older age was associated 

with reduced global 

efficiency compared to 

younger participants 

(Achard & Bullmore, 2007) 

Characteristic 

path length 

Integrity of the network and how 

fast and easily information can 

flow within the network. It is the 

average of all the distances 

between every pair of nodes in 

the network. Shorter 

characteristic path length reflects 

more efficient transmission of 

information.  

Older age was associated 

with longer characteristic 

path lengths compared to 

younger participants (Sala-

Llonch et al., 2014) 

Louvain 

Modularity  

Community detection method, 

which iteratively transforms the 

network into a set of 

communities, each consisting of 

a group of nodes. Higher 

modularity values indicate 

denser within-modular 

connections but sparser 

connections between nodes that 

are in different modules.  

Brain networks in the 

elderly showed decreased 

modularity (less distinct 

functional networks) but 

findings were mixed (Chan 

et al., 2014) 

Transitivity 

Total of all the clustering 

coefficients around each node in 

the network and is normalized 

collectively. Higher values 

represent greater specialisation 

of the brain.  

Patients with Alzheimer's 

disease (AD) showed lower 

normalized clustering 

coefficient (i.e. transitivity) 

(Supekar, Menon, Rubin, 

Musen, & Greicius, 2008) 

Strength Sum of all neighbouring edge 

weights. High connectivity 

strength indicates stronger 

connectivity between the regions.  

 

Age-related differences 

were observed in network-

level functional 

connectivity. However, 

findings were mixed 

(Betzel et al., 2014; 

Geerligs, Renken, Saliasi, 

Maurits, & Lorist, 2015; 

Song et al., 2014).  
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2.2 The influence of genetics on functional brain networks  

Genetics may play a crucial role in influencing changes in the resting-brain functional 

organisational properties observed in ageing. Brain functional connectivity can be 

studied as endophenotypes for characterising disorders that are not yet observable 

(Dennis, Thompson, & Jahanshad, 2019). There is evidence to show that brain 

measures, including RSFC, are heritable (Buckner, 2004; Glahn et al., 2010). Therefore, 

studying genetics and RSFC may increase our understanding of the underlying 

biological mechanisms that influence functional specialisation across various brain 

regions in the ageing brain. 

 

2.2.1 Heritability of functional brain networks  

Heritability analysis estimates the relative influence of genes and the environment on a 

particular phenotype. It is defined as the proportion of the observed variation in a 

particular trait that can be attributed to genetic versus environmental factors. Classical 

heritability studies include twin, family, and adoption studies. Alternatively, SNP 

heritability (h2
SNP), uses SNP data, commonly provided by genome-wide genotyping to 

assess genetic similarity between individuals (Mayhew & Meyre, 2017; Speed et al., 

2017). Trait heritability (h2) of less than 0.30 is considered as low, 0.30 to 0.60 as 

moderate, and above 0.60 as high (Visscher, Hill, & Wray, 2008). A significant h2 

estimate implies that a trait is significantly influenced by genetic factors, making it an 

appropriate target for genetic analyses (Thompson et al., 2013). Given the complex 

relationship between BOLD fMRI measures – including blood flow, blood volume, and 

oxygen metabolism – and the molecular mechanisms that control neuronal firing 

patterns, the exact biological mechanisms contributing to signal variation of rs-fMRI 

remain unclear. Establishing heritability of RSFC is therefore important in order to 
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justify further genetic studies and to improve our understanding of the biological 

pathways involved (Fornito et al., 2011; Glahn et al., 2010; Korgaonkar, Ram, 

Williams, Gatt, & Grieve, 2014) 

 

As shown in Table 2.3 and Figure 2.1, heritability of functional connectivity measures 

has been assessed by a number of studies, although many of them have examined 

different RSN properties. The majority of studies observed significant heritability. 

Using a twin study design, one study found that within-network connectivity in DMN, 

sensory-somatomotor, dorsal attention, and visual networks were more heritable than 

averaged between-network connectivity as a whole (Reineberg, Hatoum, Hewitt, 

Banich, & Friedman, 2020). Functional connectivity within DMN as a whole was 

moderately heritable (h2: 30% - 42%) in both family and twin studies in middle-aged 

adults (Glahn et al., 2010). Other networks, including precuneus-dorsal posterior 

cingulate network, visual network, frontoparietal, dorsal attention network, auditory, 

executive control, and salience, showed low-to-strong heritability (h2: 20% - 80%) in 

both young and middle-aged twins (Ge, Holmes, Buckner, Smoller, & Sabuncu, 2017; 

Miranda-Dominguez et al., 2018; Yang et al., 2016). Using both twins and family 

cohorts of young and middle-aged adults, h2 estimates were low-to-moderate across 

various regions within networks such as auditory, frontoparietal, visual, executive 

control, salience, and attention (Adhikari et al., 2018). Middle-aged adults had weakly-

to-moderately heritable (h2: 10% – 42%) connectivity of subcomponents of DMN in a 

family study (Glahn et al., 2010). Moderate heritability was observed for connectivity 

between the posterior cingulate cortex and inferior parietal cortex (h2 = 41%) 

(Korgaonkar et al., 2014), and connectivity between DMN and sensory/somatomotor 

networks was also moderately heritable (h2 = 36%) (Reineberg et al., 2020). Graph 
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theoretical measures in twin studies showed low heritability for connection strength (h2: 

15% - 18%) (Colclough et al., 2017), moderate heritability (h2 = 60%) for cost-

efficiency (Fornito et al., 2011), and moderate heritability (h2: 38% – 64%) for mean 

clustering coefficient, modularity, global efficiency, and small worldness (Sinclair et al., 

2015). Interestingly, one twin study observed higher estimated within-network 

heritability when leveraging shared features across both rs-fMRI and task-based fMRI 

than rs-fMRI alone (Elliott et al., 2019). Using genome-wide genotyping to estimate 

h2
SNP, one study found that 235 of 1,771 rs-fMRI image-derived phenotypes (IDPs) 

showed low to moderate h2
SNP (Elliott et al., 2018). Importantly, h2

SNP typically 

provides smaller heritability estimates relative to those provided by the classic design.  

 

In general, low to moderate heritability estimates were reported for RSFC measures in 

healthy adults from a range of ages, implying significant genetic underpinnings for 

variability in RSFC measures across brain regions in cognitively unimpaired 

populations. Interestingly, Reineberg et al. (2018) demonstrated higher heritability of 

within network than between network properties, suggesting that genetic influence on 

the connectivity of regions involved in the same process may be driving functional brain 

organisation (Reineberg et al., 2018). As demonstrated by Elliott et al. (2019), 

heritability estimates increase when combining both rs-fMRI and task-based fMRI data, 

thus future studies should investigate the genetic influence on functional connections 

both at rest and when in active states. There may be potential age effects on the 

heritability of resting-state networks. The heritability findings summarised here are 

from a range of ages.  
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Table 2.3 Studies examining the heritability of functional connectivity using rs-fMRI in healthy adults  

 

Measure Method Total sample size Sex Age 

(years);  

M (SD)/ 

age range 

(years) 

 

Ethnicity Heritability (h2) 

results 

Reference 

(year)  

5 nodes within 

DMN 

Seed based 

correlation  

277 from 2 

cohorts: (1) twin 

cohort (250 twins: 

79 MZ & 46 DZ); 

(2) 27 

unrelated/nontwins 

 

(1) 96M & 

154F; (2) 

15M & 12 

F  

39.7 (12.8) European 

ancestry 

Posterior cingulate 

cortex - R inferior 

parietal cortex (PCC-

RIPC) connectivity - 

41%  

Other measures n.s. 

 

Korganokar 

et al. 

(2014) 

AN, DMN, 

FPN, VN, 

ECN, SN, 

AttN, SMN 

Seed-based & 

dual-

regression 

2 cohorts: (1) 

GOBS (334 

individuals - 29 

extended 

pedigrees); (2) 

HCP (518 - MZ, 

DZ, non-twin 

siblings) 

 

GOBS: 

124M & 

210F; HCP: 

240M & 

278F 

GOBS: 47.9 

(13.2); 

HCP: 28.7 

(3.7)  

GOBS: 

Mexican-

Americans; 

HCP: 

Mainly 

Caucasians 

20% - 40% across the 8 

networks  

Adhikari et 

al. (2018) 

1 cm spherical 

ROIs drawn 

from each of 

the 264 

functional 

areas 

Power 

parcellation, 

ROI 

2 cohorts: (1) LTS 

(251 - 102 MZ 

pairs, 91 DZ pairs, 

34 MZ twin 

singletons, 45 DZ 

twin singleton); 

(2) HCP (442 - 

LTS: 97M 

& 154F; 

HCP: 171M 

& 271F  

LTS: 28.7 

(0.63); 

HCP: 29.2 

(3.46)  

LTS & 

HCP: 

Mainly 

Caucasians 

36% for DMN to 

sensory/SMN 

connection as a whole  

Reineberg 

et al. 

(2020) 
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136 MZ pairs, 75 

DZ pairs) 

DMN (8 

anatomical 

regions)  

 

Dual-

regression, 

ICA 

GOBS: 333 

individuals - 29 

pedigrees 

123M & 

210F 

48.38 (12.9) Mexican-

American  

 

42.4% as a whole  Glahn et al. 

(2010) 

PCN, VN, 

DMN, FPN, 

SN, SMN, 

DAN 

ICA QTIM: 105 - 80 

DZ, 25 singletons 

 

51M & 54F 19-29 Caucasians  5/7 networks heritable 

(i.e. PCN, VN, DMN, 

FPN, DAN) h2 = 23.3% 

- 65.2% 

 

Yang et al. 

(2016)  

 

Network 

edges. SNP 

heritability 

estimated. 

ICA UK Biobank: 8428 

(unrelated 

individuals)  

 

4045M & 

4383F 

40-69 English 235/1771 functional 

connectivity edges 

heritable  

 

Elliot et al. 

(2018) 

39 cortical 

regions 

(network 

nodes)  

Parcellation 

from resting-

state 100-

dimensional 

group ICA 

decomposition 

 

HCP: 820 - MZ & 

DZ twin pairs  

 

Information 

not 

available  

22 – 35 Mainly 

Caucasians  

15.0% - 18.0% for 

connection strength 

between components 

of nodes (eg. DMN, 

motor network, VN, 

DAN)  

 

Colclough 

et al. 

(2017)  

 

7 network 

parcellations 

(i.e. VN, SMN, 

DAN, salience 

ventral 

attention, 

limbic, control, 

DMN) split 

Yeo seven-

network 

parcellation 

2 cohorts: (1) HCP 

(528 - 92 MZ, 46 

DZ twin pairs, 250 

full siblings, 56 

singletons); (2) 

GSP (809 

unrelated younger 

subjects)  

HCP: 203M 

& 325F; 

GSP: 362M 

& 447F 

HCP: 29.21 

(3.47); GSP: 

20.84 (2.77) 

Mainly 

Caucasians 

~ 45.0% - 80.0% for all 

network parcellations  

Ge et al. 

(2017) 
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into 51 

spatially 

contiguous 

regions across 

2 hemispheres 

 

12 functional 

networks (i.e. 

auditory, 

cingulo-

opercular, 

cingulo-

parietal, DMN, 

DAN, FPN, 

retrosplenial 

temporal, SN, 

SMN hand, 

SMN mouth, 

VAN, & VN) 

into 333 ROIs  

 

Gordon 

parcellation  

2 cohorts: (1) 

longitudinal study 

in Oregon (159); 

(2) HCP (198 – 

MZ, DZ, non-twin 

siblings) 

HCP: 89M 

& 109F  

HCP: 28.4 

(3.50) 

 

Mainly 

Caucasians  

~ 20% across the 

whole brain; driven by 

high-order systems 

including the FPN, 

DAN, VAN, cingulo-

opercular, & DMN 

Miranda-

Dominguez 

et al. 

(2018) 

 

Network edges Power and 

Yeo 

parcellation 

2 cohorts: HCP 

(298 - MZ, DZ, 

full siblings); (2) 

Dunedin Study 

(591) 

Information 

not 

available  

HCP: 25-

35; Dunedin 

Study: 45 

Mainly 

Caucasians 

Within-network 

heritability ↑ from 22% 

in rs-fMRI to 28% 

when combining task-

based fMRI & rs-fMRI 

at 40 minutes scan time  

 

Elliot et al. 

(2019)  
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Network cost-

efficiency 

(global & 

regional 

communication 

efficiency, 

connection 

distance, 

connection 

density)  

1041 cortical 

regions 

parcellated, 

graph theory  

58 - 16 MZ & 13 

DZ twin pairs 

28M & 30F 40.48 

(11.77)  

Caucasians  60% in network-cost 

efficiency  

Fornito et 

al. (2011) 

 

Mean 

clustering 

coefficient, 

global 

efficiency, 

modularity, & 

rich club 

coefficient  

 

AAL 

template, 116 

regions, graph 

theory 

QTIM: 591 - 84 

MZ & 89 DZ twin 

pairs, 246 single 

twins 

 

MZ: 23M & 

61F; DZ: 

34M & 

55F; single 

twins 

information 

not 

provided  

23.0 (2.5)  Caucasians 47% – 61% for mean 

clustering coefficient;  

38% – 59% for 

modularity; 52% - 64% 

for global efficiency; 

51 – 59% for small 

worldness  

Sinclair et 

al. (2015)  

 

 
L, left; R, right; fMRI, functional magnetic resonance imaging; Rs-fMRI, resting-state functional magnetic resonance imaging; ROI, region of interest; LAN, 

auditory network; AttN, attention network; DAN, dorsal attention network; DMN, default mode network; ECN, executive control network; FPN, fronto-parietal 

network; PCN, posterior cingulate network; SMN, sensorimotor network; SN, salience network; VAN, ventral attention network; VN, visual network; ICA, 

independent component analysis; MZ, monozygotic; DZ, dizygotic; GOBS, Genetics of brain structure and function study; HCP, Human connectome project; GSP, 

Genomics superstruct project; LTS, Colorado longitudinal twin study; QTIM, Queenland Twin Imaging study; USA, United States of America; UK, United 

Kingdom; n.s., no significant results  
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Figure 2.1 Forest plot showing the heritability estimates of various resting-state network measures from 9 studies.  

Three of the 12 studies did not report confidence intervals and/or standard errors, which precluded them from being added into the forest plot. Note that non-

significant heritability results are not included. Abbreviations: PCC-RIPC, posterior cingulate cortex-right inferior parietal/temporal cortex; FC, functional 

connectivity, DMN, default mode network, ICA, independent component analysis.
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2.2.2 GWAS of functional brain networks  

GWAS use a hypothesis-free approach to systematically test multiple genetic variants 

across the genome. It has been used to identify many genetic variants, commonly SNPs, 

associated with a wide range of traits (Choi, Mak, & Reilly, 2018).  

 

However, thus far, there has only been one GWAS investigating the genetics of rs-

fMRI. This was performed in 8428 adults aged between 40 and 69 years old using the 

United Kingdom (UK) Biobank data (Elliott et al., 2018). They used group-ICA to 

identify the major RSNs and estimated network matrices for all participants. Their 

findings demonstrated several SNPs, including rs60873293, rs35124509, rs2279829, 

rs7442779, rs2274224, and rs11596664 were associated with RSN measures. This study 

highlights the potential contributions of genetic variation in influencing resting-state 

functional connectivity in mid-late life. Findings from a GWAS investigating imaging 

phenotypes found several SNPs to be associated with RSFC measures (Elliott et al., 

2018). A reported variant for middle temporal sulcus nodes and edges, rs35124509, is a 

non-synonymous SNP located in the EPH Receptor A3 (EPHA3) gene and is also an 

eQTL for EPHA3. Notably, the product of this gene has been associated with the 

regulation of cell migration, axon guidance, and trans-axonal signalling (Gallarda et al., 

2008; Shi et al., 2010). Another SNP identified from the RSFC GWAS, namely 

rs2279829 (Elliott et al, 2018), which is located in the 3’ untranslated region of the gene 

ZIC4, has been linked to brain development and is associated with parietal lobe volume 

and a rare brain disease, Dandy-Walker Malformation (van der Lee et al., 2019). SNPs 

close to or located in other genes were also identified, including PLCE1, NR2F1-AS1 

and INPP5A. Many of these polymorphisms had not been previously identified in 

regard to RSFC measures or other neuroimaging/brain phenotypes. Identification of 
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these variants may have implications in the maintenance and/or disruption of RSFC 

observed across adulthood.  However, due to the paucity of literature, more GWAS are 

required to identify further loci. Independent replication of the aforementioned results is 

required to confirm the relationships between previously identified genetic variants and 

resting-state functional connectivity measures in adults over the lifespan.  

 

2.3 Ageing-related changes in functional brain networks  

Ageing-related changes in resting-state functional connectivity have been observed. 

Previous studies found increased inter-network (between RSNs) connections and 

decreased intra-network (within RSNs) connections in healthy older adults compared to 

younger adults (Betzel et al., 2014; Geerligs et al., 2015; Grady, Sarraf, Saverino, & 

Campbell, 2016; Huang et al., 2015). The increased connectivity may be explained by 

possible compensatory mechanisms (Seidler et al., 2010) or even early stages of 

neurodegenerative pathologies (Vemuri, Jones, & Jack, 2012).  

 

Most consistently, studies showed that ageing is associated with lower within-network 

connectivity and decreased functional connectivity in the DMN compared to younger 

adults (Damoiseaux, 2017; Dennis & Thompson, 2014). This is particularly apparent in 

the anterior and posterior components of the DMN (Andrews-Hanna et al., 2007; Ng, 

Lo, Lim, Chee, & Zhou, 2016), such as the hippocampus (Damoiseaux, Viviano, Yuan, 

& Raz, 2016) and frontoinsular cortex (He et al., 2013). Besides the DMN, other studies 

also showed that aging disrupts the connectivity in the salience and visual networks 

(Onoda, Ishihara, & Yamaguchi, 2012), and putamen-occipital, and frontal-occipital 

connectivity (Fjell, Sneve, Grydeland, Storsve, & Walhovd, 2017; Fjell et al., 2016). 

However, another study showed preservation of visual networks (Geerligs et al., 2015). 
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Generally, decrease in connectivity is mainly found in the high-function networks, 

including DMN, cingulo-opercular, and frontoparietal control networks, while the 

primary function networks, such as somatomotor network, are mainly preserved 

(Geerligs et al., 2015). 

 

In addition, findings from the graph theoretical approach demonstrate that normal 

ageing is associated with reduced global and local efficiency, increased local network 

clustering, and reduced centrality of hub regions (Achard & Bullmore, 2007; Dennis et 

al., 2013; Geerligs et al., 2015; Gong et al., 2009; Hagmann et al., 2008; Meunier, 

Achard, Morcom, & Bullmore, 2009; Montembeault et al., 2012; Otte et al., 2015; 

Spreng & Schacter, 2012; Wu et al., 2012; Zhu et al., 2012).   

 

2.4 Sex differences in functional brain networks  

Sex differences have been observed in the human brain – men have larger crania, higher 

percentage of white matter (Gur et al., 1999) whereas women have higher percentage of 

gray matter (Goldstein et al., 2001). Several regions in the brain, including the 

hippocampus, amygdala (Giedd, Castellanos, Rajapakse, Vaituzis, & Rapoport, 1997), 

and corpus callosum (Allen, Richey, Chai, & Gorski, 1991), have also been shown to 

differ in sex. These anatomical brain differences may underlie the behavioural 

differences such as better motor and spatial skills for men and enhanced memory and 

social cognition for women (Gur et al., 2012; Halpern et al., 2007).  

 

Previous studies have revealed sex-by-hemispheric interaction where men showed 

greater rightward lateralisation and women showed greater leftward lateralisation 

(Tomasi & Volkow, 2012b), with higher local functional connectivity in women than 
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men (Tomasi & Volkow, 2012a). In addition, sex has been shown to differ in 

connectivity where men showed network segregation (i.e. specialised processing of the 

brain at a local level) whereas women showed more network integration (i.e. how 

rapidly the brain can integrate specialised information at a global network level) (Zhang 

et al., 2016). Another study observed that men had higher clustering coefficient in the 

right hemisphere than the left hemisphere (Tian, Wang, Yan, & He, 2011). Despite this, 

the influence of sex on functional connectivity remains to be elucidated.  

 

2.5 Lifestyle factors 

Lifestyle factors, such as sleep, exercise, alcohol, and smoking, may interact with each 

other to influence the organisational properties of the brain functional networks. 

Importantly, it is noteworthy that most of these previous works look at associations 

between these factors, which imply that causality cannot be inferred.  

 

2.5.1 The influence of sleep behaviour on functional brain networks  

Sleep is a complex and dynamic process for maintaining homeostasis, where sleep 

deprivation can disrupt whole-body functioning with the most pronounced impact on 

the central nervous system (Farahani et al., 2019a). Adults increasingly experience sleep 

problems with age (Foley et al., 1995), which have been associated with the 

development of stroke (Wu, Chen, Yu, Wang, & Guo, 2018) and dementia (Shi et al., 

2018). Therefore, identifying the underlying brain functional changes associated with 

sleep patterns may help to contribute to the understanding between sleep and disease 

states. 
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Rs-fMRI data has frequently been used to measure the hemodynamic fluctuations as a 

proxy for neural activity to investigate the neurophysiological mechanisms underlying 

sleep-related abnormalities (Farahani et al., 2019a). Using ICA, Lysen et al. (2020) 

observed that in the middle-aged and elderly population, total sleep time affected 

prefrontal activity but did not find any associations of objective and subjective sleep 

measures with between or within resting-state networks. This is contrary to a study by 

Nilsonne et al. (2017) who showed that sleep deprivation had a consistent impact on the 

within-network connectivity of the DMN. Another study also found that partial sleep 

deprivation was associated with reduction of functional connectivity in the DMN and its 

anticorrelated network (Sämann et al., 2010), which play a central role in processing 

cognitive functions dependent on internally constructed representations (Buckner & 

DiNicola, 2019). This disparity in findings may be, in part, attributable to the 

differences in sleep measures or even the imaging processing/modelling approaches 

(Lysen et al., 2020).  

 

Using graph theoretical approach, a study involving healthy young adults (mean age = 

21.1 and standard deviation = 1.9 years) also showed that small-world property (as 

measured by clustering coefficient and path length) was significantly enhanced in the 

sleep deprivation group compared to the sleep sufficient group (Liu, Li, Wang, & Lei, 

2014). This implies a more optimal network topology and lesser wiring cost, which may 

be a compensatory effect (Liu et al., 2014). However, it seemed that there was no 

difference in small-world property between individuals with narcolepsy, which is a 

chronic sleep disorder with symptoms of excessive daytime sleepiness and the 

occurrence of rapid eye-movements (REM) and daytime sleep attacks, and controls 

(Xiao et al., 2019). These individuals showed altered local properties in the left putamen 
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and left posterior cingulate compared to controls instead (Xiao et al., 2019). Another 

study found that individuals with chronic insomnia disorder, which is characterised by 

difficulties falling asleep at bedtime, frequent awakenings in the middle of the night, 

and waking up too early in the morning (Kay & Buysse, 2017), showed disruptions in 

both global and local topological organisation of the brain functional connectome (Li et 

al., 2018). More specifically, these individuals showed decreased number of modules 

and hierarchy, increased assortativity, and altered nodal centrality in the DMN, dorsal 

attention, and sensory-motor networks (Li et al., 2018). While these studies show that 

sleep patterns may influence the functional topology of the brain, there is a paucity of 

literature in the ageing population.  

 

2.5.2 The influence of exercise on functional brain networks  

There is evidence showing that exercise may play a central role in ameliorating age-

associated changes in brain structure and function (Hillman et al., 2006). Results from 

meta-analyses showed that aerobic exercises had general and selective effects that were 

beneficial to cognitive function in older adults (Colcombe & Kramer, 2003; Etnier, 

Nowell, Landers, & Sibley, 2006). Several studies have used RSFC to examine the 

plasticity of human brain networks in response to acute moderate-intensity exercise in a 

sample of healthy adults (Schmitt et al., 2019; Weng et al., 2017). Acute exercise 

increased the integration of attention and executive control networks as well as 

increased functional connectivity within the affect and reward network (ARN), which 

were brain regions associated with reward processing, learning and memory (Schmitt et 

al., 2019; Weng et al., 2017). In addition, pre-to-post comparisons after low intensity 

exercise revealed significant increase in RSFC in the frontoparietal network while high 

intensity exercise showed decrease RSFC in the sensorimotor and dorsal attention 
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networks and increase in left ARN (Schmitt et al., 2019). The findings suggest that 

different acute exercise intensities may have differential impact on the functional brain 

networks and cognitive responses. Other studies investigating the long-term effects of 

repeated exercise over several months showed stronger RSFC between the right 

parahippocampal gyrus and motor sensory, and mood regulating areas (Tozzi et al., 

2016); as well as between DMN and primary motor regions associated with improved 

motor performance (McGregor et al., 2018). However, another study did not see any 

significant changes in intrinsic brain activity after six months of aerobic exercise 

(Flodin, Jonasson, Riklund, Nyberg, & Boraxbekk, 2017).  

 

2.5.3 The influence of alcohol on functional brain networks  

Alcohol consumption among older adults (aged between 60 and 69 years old) increased 

by 24% between 2001 and 2007 (Livingston, Callinan, Raninen, Pennay, & Dietze, 

2018). It has been observed that alcohol acts to increase inhibitory neurotransmission, 

which decreases the responsiveness of other neurons to further stimuli (Lithari et al., 

2012). Their effect on neurotransmitters, may, in part explain for some of the 

behavioural (do Canto-Pereira, David, Machado-Pinheiro, & Ranvaud, 2007), cognitive 

(De Cesarei, Codispoti, Schupp, & Stegagno, 2006), and affective stimuli processing 

(Curtin, Patrick, Lang, Cacioppo, & Birbaumer, 2001) changes seen when intoxicated. 

Therefore, understanding the neurophysiological mechanisms by which alcohol acts on 

the brain, thereby modifying behaviour, is imperative (Lithari et al., 2012).  

 

Rs-fMRI studies have found a relationship between the intake of alcohol and cognitive, 

motor, and coordination dysregulation (Camchong, Stenger, & Fein, 2013; Chanraud, 

Pitel, Pfefferbaum, & Sullivan, 2011). Alcohol studies based on rs-fMRI observed 
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altered functional relationship and corresponding compensatory mechanisms among 

different brain regions associated to these deficits (Vergara, Liu, Claus, Hutchison, & 

Calhoun, 2017). Decreased functional connectivity in the left superior parietal gyrus and 

left interparietal sulcus of the dorsal attention network; and in the right superior frontal 

gyrus and right middle frontal gyrus of the default mode network were seen in 

individuals with alcohol-use disorder (Song, Chen, Wen, & Zhang, 2020). Significant 

decrease of functional connectivity in executive control, sensorimotor, visual, and 

subcortical networks was also observed in alcoholics compared to controls (Weiland et 

al., 2014). Interestingly, these regions also predicted relapse in alcoholics (Camchong et 

al., 2013). One study investigated whether moderate-heavy alcohol consumption was 

associated with increased age-related brain network changes in community-dwelling 

older adults (age range 65-80 years) compared to younger adults (age range 24-35 

years) (Mayhugh et al., 2016). Their results revealed that alcohol consumption levels 

were not associated with overall changes in resting-state functional brain network 

topology in older adults. Taken together, findings suggest that alcoholic individuals may 

have an abnormal top-down attention modulation and cognition (Song et al., 2020), 

which may result in maladaptive decision making around alcohol use and relapse 

(Wilcox, Dekonenko, Mayer, Bogenschutz, & Turner, 2014). However, given the 

paucity of studies looking at community dwelling older adults, there is a need to study 

how alcohol consumption may accelerate age-related changes in functional 

connectivity.   

 

2.5.3 The influence of smoking on functional brain networks  

Nicotine is an addictive substance that has been known to enhance cognitive function 

during acute administration but cognitive impairment during acute withdrawal (Levin, 
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McClernon, & Rezvani, 2006). The mechanisms of cognitive enhancements are 

unknown but likely involve neuronal activation directly through nicotine cholinergic 

receptors (Poorthuis, Goriounova, Couey, & Mansvelder, 2009) and indirectly through 

the modulation of glutamate, GABA, dopamine or monoamine oxidase (MAO) 

inhibitors (Brody et al., 2004; Swan & Lessov-Schlaggar, 2007). Therefore, 

understanding nicotine’s effects at a circuit level may be critical for the development of 

addiction treatment and the improvement of clinical outcomes.   

 

Rs-fMRI studies have observed changes in the ventral and dorsal striatum (Sweitzer et 

al., 2016), frontostriatal region (Froeliger et al., 2015), prefrontal and limbic regions 

(Janes, Nickerson, Frederick Bde, & Kaufman, 2012), insula and parahippocampus 

(Ding & Lee, 2013), as well as widespread functional connectivity attenuation in the 

reward circuit (Shen et al., 2016) in smokers compared to non-smokers. In addition, the 

use of nicotine seems to have an enhancement effect on brain functional connectivity in 

motor, attention, and memory circuits (Jasinska, Zorick, Brody, & Stein, 2014). 

Decreased DMN and enhanced extra-striate activity with administered nicotine has been 

associated with an activity shift from internal to external information processing 

networks (Tanabe et al., 2011). It is possible that cholinergic agonist may have effect in 

mental disorders, including depression (Greicius et al., 2007) and schizophrenia (Zhou 

et al., 2007), associated with altered resting-state activity (Tanabe et al., 2011). 

Contrastingly, findings on nicotine effects during abstinence based on resting-state 

functional connectivity demonstrated a shift towards internal information processing 

represented by the DMN where the insula played a crucial role (Sutherland, McHugh, 

Pariyadath, & Stein, 2012). Given that the insula plays a significant role in the 

maintenance of tobacco dependence (Naqvi & Bechara, 2010) and has the highest 
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density of acetylcholine receptors within the human cortex (Picard et al., 2013), it is not 

surprising that the abnormal interactions due to nicotine addiction between brain 

networks of external and internal attention is regulated by a salience network anchored 

in the insula (Fedota & Stein, 2015). As evidence has it, nicotine plays a role in 

influencing the brain functional connectivity. However, there is a lack of studies 

investigating this in an older population, which warrants the need to determine if 

nicotine accelerates the process of functional brain network ageing. 

 

2.6 Disease states 

Disease states, including disorders such as depression, may influence the organisational 

properties of the brain functional network. Given that disease-states may be influenced 

by the inherent genetic make-up, it may be more holistic to consider the influence of 

both the genetics as well as the behavioural patterns of these phenotypes on brain 

functional topology.  

 

2.6.1 The influence of major depressive disorder (MDD) on functional brain networks  

Major depressive disorder (MDD) is characterised by pervasive sadness or irritability, 

disturbances in sleep, and withdrawal from pleasurable activities (Belmaker & Agam, 

2008). It is the leading contributor to the global burden of disease due to its high 

prevalence, disabling consequences, and partial treatment response (Shen et al., 2020).  

 

Due to the ambiguity of the aetiology of MDD, one assumption is that MDD results 

from a dysfunction in information-processing within the neuronal network rather than 

chemical imbalance in the brain’s molecular structure (Castrén, 2005; Eickhoff & 

Grefkes, 2011; Leistedt & Linkowski, 2013). Previous studies found that MDD is 
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phenotypically correlated with brain functional networks (Gong & He, 2015; Jin et al., 

2011; Meng et al., 2014; Ye et al., 2015; Zhang et al., 2011; Zhi et al., 2018). Networks 

including the default mode (DMN) (Yan et al., 2019; Zeng et al., 2012), affective (AN) 

(Zeng et al., 2012), and cortico-limbic (Hooley et al., 2009) networks have been 

associated with MDD. Others have reported reduction of functional connectivity in the 

hippocampus (Cao et al., 2012; Tahmasian et al., 2013), as well as from the posterior 

cingulate cortex to the caudate nucleus, thalamus, superior medial frontal gyrus, and 

superior frontal gyrus (Guo et al., 2013; Horn et al., 2010).  Increased connectivity from 

the dorsomedial prefrontal cortex to the cognitive control network (CCN), DMN, and 

AN was also seen in MDD (Sheline, Price, Yan, & Mintun, 2010). The link between 

these regions may provide a potential mechanism to explain how symptoms of 

depression, including decreased focus, rumination, excessive self-focus, increased 

vigilance, and emotional, visceral, and autonomic dysregulation, may occur 

concomitantly and have synergistic effect (Sheline et al., 2010). Another study showed 

increased connectivity between the subgenual cingulate, thalamus, orbitofrontal cortex, 

and precuneus in MDD (Greicius et al., 2007).  

 

Using graph theoretical approach, while Zhang et al. (2011) observed an increased in 

global efficiency and decreased nodal degree in MDD patients, Meng et al. (2014) 

showed a decrease in global efficiency and Jin et al. (2011) reported an increased nodal 

degree. This heterogeneity may, in part, be due to the differences in threshold used in 

binarised connectivity matrices (i.e. presence or absence of edge).  
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Importantly, given the heterogeneity in the definition of MDD, the difference in 

medicated or drug-naïve group, and the variations in the analysis method used for 

resting-state fMRI data, the results from MDD should be taken with extra caution.  

 

2.7 Summary and gaps in the current literature  

Rs-fMRI has gained advantages over other fMRI techniques due to its ease in signal 

acquisition and its application in the research and clinical setting has been growing over 

the past two decades (Lv et al., 2018). In addition, rs-fMRI has been widely used to 

characterise resting-state networks in both the healthy brain and in multiple disease 

states (Lee et al., 2013). There are several ways to analyse rs-fMRI data and each 

approach has implications with regards to the type of information that can be extracted 

from the data (Lv et al., 2018). Before the application of any of the analytical methods, 

preprocessing steps including realignment, removal of confounders (e.g. head motion 

and CSF signals), data normalisation, and smoothing, should be performed to ensure the 

reliability of the data. However, there is no single method currently considered a gold 

standard. 

 

Given that the human brain is comprised of interconnected networks, this study is 

interested to study the properties of complex functional brain networks. These 

properties allow us to understand both the local and global organisation of neural 

networks, which may be important for providing a conceptual framework to help reduce 

the analytical brain complexity and underlying how network topology may be used to 

characterise and model vulnerabilities and resilience to ageing and brain diseases 

(Vecchio, Miraglia, & Maria Rossini, 2017).  
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Human functional network connectivity studies are a relatively new and growing field 

which offers a promising approach for elucidating the biological mechanisms 

underlying the functional organisation of the brain. However, the current functional 

network literature in association with genetics, environmental factors, and disease states 

is still in its infant stage. Findings are mixed and often lack validation, and cohorts are 

typically small. The differences in methodology used add to the inconsistencies in the 

literature. Due to the computational powers needed to study the brain at the level of 

voxels or small regions, current efforts have focused on quantifying these associations 

on either global summary measures of functional connectivity or large regions of 

interest (ROIs) (Reineberg et al., 2020). Therefore, in this thesis, I investigated the 

multifactorial processes that influence topology of the functional brain networks 

properties using graph theoretical measures.  

 

Using genetics to investigate the functional networks may provide a better 

understanding of the underlying biological mechanisms contributing to the ageing brain. 

However, comprehensive modelling of the whole-brain and genome-wide data remains 

challenging due to the statistical and computational difficulties (Thompson et al., 2013). 

To address this issue, some studies have used a-priori biological information, such as 

examining candidate genes and biological pathways. However, this precludes the 

discovery of new genes associated with functional networks. In order to perform GWAS 

on RSFC, statistical methodologies of data reduction on imaging analysis can be 

performed. For instance, instead of binary connectivity matrix in graph theory analysis, 

using weighted connectivity matrix will not only provide a more holistic representation 

of the functional brain networks, it also allows for a more streamlined genetics analysis. 

Rather than performing GWAS on all different thresholds associated with binary 
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matrices, it might be more computationally feasible to run GWAS on a single weighted 

matrix. Importantly, there is a greater need for statistically and computationally 

powerful methods in order to cope with the high dimensionality of the imaging and 

genetics data and their covariates. Also, the increasing availability of whole genome 

sequencing data will add additional computational burden. 

 

Using publicly available population-based datasets, such as the UK Biobank, that 

include both genetics and environmental factors, and imaging data are important to 

advance the field. It not only allows for better quality control and integrity of the data; it 

also provides researchers with the ability to replicate findings from other studies. 

 

This review laid the foundation for the research in this thesis and highlighted areas 

where the research is lacking and/or inconsistent. Therefore, this thesis aims to address 

these gaps in the literature by examining genetics and environmental factors, as well as 

disease states contributing to the topological architecture of the functional brain 

networks using data from the UK Biobank. Integration of several lines of evidence is 

expected to extend current findings and potentially shed light on the neurobiological 

pathways and processes involved in the pathologies associated with the disruption of 

brain networks.  
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CHAPTER 3: HERITABILITY AND GENOME-WIDE ASSOCIATION STUDY 

OF FUNCTIONAL NETWORK TOPOLOGY IN THE AGEING BRAIN   
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Abstract  

I investigated the genetics of weighted functional brain network graph theory measures 

from 18,445 participants of the UK Biobank (44-80 years). The eighteen measures 

studied showed low heritability (mean h2
SNP =0.12) and were highly genetically 

correlated. One genome-wide significant locus was associated with strength of 

somatomotor and limbic networks. These intergenic variants were located near the 

PAX8 gene on chromosome 2. Gene-based analyses identified five significantly 

associated genes for five of the network measures, which have been implicated in sleep 

duration, neuronal differentiation/development, cancer, and susceptibility to 

neurodegenerative diseases. Further analysis found that somatomotor network strength 

was phenotypically associated with sleep duration and insomnia. Single nucleotide 

polymorphism (SNP) and gene level associations with functional network measures 

were identified, which may help uncover novel biological pathways relevant to human 

brain functional network integrity and related disorders that affect it. 
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3.1 Introduction  

During aging, the human brain undergoes functional changes which affect the 

integration of information within and between functional brain networks, and these have 

been shown to be associated with behavioural changes (Chan et al., 2014). By 

modelling large-scale brain networks using graph theory, defined by a collection of 

nodes (brain regions) and edges (magnitude of temporal correlation in functional 

magnetic resonance imaging (fMRI) activity between two brain regions) (Bertolero, 

Yeo, Bassett, & D’Esposito, 2018; Rubinov & Sporns, 2010), it is possible to 

investigate aging-related topological changes. Previous functional graph theory studies 

have mainly considered edge presence or absence represented as a binary variable 

(Cohen & D'Esposito, 2016; Geerligs et al., 2015; Song et al., 2014), which precludes 

information about variations in connectivity weights between networks. Given that 

connection weights exhibit high heterogeneity over several orders of magnitude 

(Markov et al., 2013), studying weighted brain networks may provide greater insights 

into their underlying hierarchy and organisational principles.  

 

Genetics may play an important role in influencing changes in the functional topology 

of the aging brain. Graph theoretical brain functional measures are reported to be 

heritable (Fornito et al., 2011; Sinclair et al., 2015). However, to date, there has not 

been any population-based study investigating the genetic contribution to functional 

connectivity using graph theory measures. Studying the genetic architecture of graph 

theory brain functional measures has important implications (Thompson et al., 2013) - 

firstly, it can identify genes associated with network topology; and secondly, it may 

provide insights into the underlying biological mechanisms of macroscopic network 

topology in aging and how it alters during disease states.  
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This study addresses the question of how genetics influences the integrity of functional 

connectivity as measured by graph theory measures in resting-state fMRI (rs-fMRI) 

data. I assessed graph theory measures, including global efficiency, characteristic path 

length, Louvain modularity, transitivity, local efficiency and strength of default, dorsal 

attention, frontoparietal, limbic, salience, somatomotor, and visual networks, which are 

typically examined and found to change in aging (Song et al., 2014) as well as multiple 

neuropathological processes (Khazaee, Ebrahimzadeh, & Babajani-Feremi, 2015; 

Lebedev et al., 2014; Munilla et al., 2017). A UK Biobank sample comprising 18,445 

participants of British ancestry was used in this study. I first estimated single nucleotide 

polymorphism (SNP) heritability (h2). Subsequently, genome-wide association studies 

(GWAS) were performed to identify genetic variants associated with each graph theory 

measure. Gene-based association analysis was carried out to uncover gene-level 

associations, and the functional consequences of the significant genetic variants were 

explored.  

 

3.2 Methods  

3.2.1 Participants  

Our study was approved by the UK Biobank in December 2018 (Application number: 

45262). rs-fMRI data for 20,598 participants with British ancestry was downloaded in 

March 2019 (Sudlow et al., 2015). The imaging assessment took place at three different 

assessment centres with the majority assessed in Manchester, more recently scans were 

undertaken at Newcastle and Reading, UK. The UK Biobank study was conducted 

under approval from the NHS National Research Ethics Service (approval letter dated 

17th June 2011, ref. 11/NW/0382), project 10279. All data and materials are available 
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via UK Biobank (http://www.ukbiobank.ac.uk). Only individuals with both genetics and 

rs-fMRI data were included in this study. 

 

3.2.2 Image processing  

Briefly, the UK Biobank structural T1-weighted MRI scans were acquired on three 3T 

Siemens Skyra MRI scanners (software platform VD13) at three sites (Reading, 

Newcastle, and Manchester) using a 32-channel receiving head coil and a 3D MPRAGE 

protocol (1.0 x 1.0 x 1.0 mm resolution, matrix 208 x 256 x 256, inversion time 

(TI)/repetition time (TR) = 880/2,000 ms, in-plane acceleration 2). An extensive 

overview of the data acquisition protocols and image processing carried out on behalf of 

the UK Biobank can be found elsewhere (Alfaro-Almagro et al., 2018). Rs-fMRI is 

based on a blood-oxygen level dependent (BOLD) signal which was obtained using an 

echo-planar imaging (EPI) sequence (TR = 0.735s, TE = 39 ms, FoV = 88  88  64, 

voxel resolution 2.4  2.4  2.4 mm) for the duration of ~6 mins (for more details, see 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). The images pre-

processed by investigators affiliated with the UK Biobank (Alfaro-Almagro et al., 2018) 

were used. Briefly, motion correction, intensity normalisation, high-pass temporal 

filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s), echo-

planar imaging (EPI) unwarping, and gradient distortion correction were performed. 

Subsequently, structured artefacts were removed by ICA+FIX processing (Independent 

component analysis followed by FMRIB’s ICA-based X-noiseifier) (Beckmann & 

Smith, 2004; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We removed 

participants with motion of > 2mm/degrees of translation/rotation. After image quality 

control and removal of participants with head motion outliers, we excluded 1,626 

participants and 18,972 participants remained. 

http://www.ukbiobank.ac.uk)/
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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3.2.3 Graph theory analyses  

The Schaefer atlas (Schaefer et al., 2018) was used as it met the following requirements: 

1) it integrated both local gradient and global similarity approaches (i.e. Markov 

Random Field model) for parcellation, which showed greater homogeneity than four 

other previously published parcellations implying that it will not overestimate local 

connectivity of the regions; 2) it revealed neurobiologically meaningful features of the 

brain organisation; and 3) it was based of the Yeo 7-parcels atlas (Yeo et al., 2011) and 

provided a more fine-grained parcellation, which allowed us to look at an average of the 

parcels across the 7 networks for local efficiency and nodal strength. 3dNetCorr 

command from Analysis of Functional Neuroimages (AFNI) (Cox, 1996) was used to 

produce network adjacency matrix for each participant. The mean time-series for each 

region was correlated with the mean time-series for all other regions and extracted for 

each participant. Subsequently, using the derived network adjacency matrix, partial 

correlation, r, between all pairs of signals was computed to form a 400-by-400 

(Schaefer atlas) connectivity matrix, which was then Fisher z-transformed. Self-

connections and negative correlations were set to zero. The main network analysis was 

performed on positive weighted networks. Given that connection weights in brain 

networks can vary across magnitude, undirected weighted connectivity matrices were 

used instead of binary connectivity matrices. The higher the weight, the stronger the 

functional connectivity is between the brain regions (Fallani, Richiardi, Chavez, & 

Achard, 2014).  

 

All graph theory measures were quantified by using the brain connectivity toolbox 

(BCT) (Rubinov & Sporns, 2010). Global-level measures included global efficiency, 

characteristic path length, transitivity, and Louvain modularity. A single value is 
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derived for each of these four measures and quantitatively represent the whole brain 

network. Network level measures, such as local efficiency and strength, were estimated 

for each node and averaged across all nodes within each network. Subsequently, I 

averaged the left-right hemisphere to derive a value for each node and averaged within 

each network to derive a value for each of the 7 networks.   

 

To assess integration of information, I calculated global efficiency and characteristic 

path length (Deco, Tononi, Boly, & Kringelbach, 2015; Rubinov & Sporns, 2010). 

Global efficiency represents how effectively the information is transmitted at a global 

level and is the average inverse shortest path length while the latter measures the 

integrity of the network and how fast and easily information can flow within the 

network. To assess network segregation, which characterises the specialised processing 

of the brain at a local level, I calculated the Louvain modularity, transitivity, and local 

efficiency indices (Deco et al., 2015; Rubinov & Sporns, 2010). Louvain modularity is a 

community detection method, which iteratively transforms the network into a set of 

communities, each consisting of a group of nodes. Higher modularity values indicate 

denser within-modular connections but sparser connections between nodes that are in 

different modules. Transitivity refers to the sum of all the clustering coefficients around 

each node in the network and is normalised collectively. Local efficiency is a node-

specific measure and is defined relative to the sub-graph comprising of the immediate 

neighbours of a node. Finally, strength (weighted degree) is described as the sum of all 

neighbouring edge weights (Rubinov & Sporns, 2010). High connectivity strength 

indicates stronger connectivity between the regions, which provides an estimation of 

functional importance of each network. 
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3.2.4 Genotype data in UK Biobank 

Genetic data for approximately 500,000 individuals were available and full details on 

the genetics data used were described previously (Bycroft et al., 2018). The samples 

were collected from stored blood samples in the UK Biobank and genotyped either 

using the UK Bileve or the UK biobank axiom array. Genotyping was performed on 33 

batches of ~4,700 samples by Affymetrix (High Wycombe, UK). Further details on the 

UK Biobank sample pre-processing are available here 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583.  

 

An imputed data set was made available where the UK Biobank interim release was 

imputed to a reference set that consisted of > 92 million autosomal variants imputed 

from the Haplotype Reference Consortium (HRC) (McCarthy et al., 2016) and UK10K 

+ 1000 Genomes resources reference panels. After SNP QC filters (MAF > 0.1% and 

imputation information score > 0.3), 9926107 SNPs were used in the GWAS analysis.  

 

Further quality control measures were performed. Due to the confounds associated with 

population structure (Marchini, Cardon, Phillips, & Donnelly, 2004), only samples 

reported to have recent British ancestry were used in the GWAS analysis. Outliers, 

including those with high missingness, relatedness, quality control failure, and sex 

mismatch, were removed. The final UK Biobank sample, after genotyping quality 

control and including those with rs-fMRI data, was n = 18,445 participants.  

 

3.2.4 Sleep behavioural data in UK Biobank 

Self-reported sleep data, namely sleep duration and frequency of insomnia, were used. 

Sleep duration was recorded as the number of reported hours of sleep in every 24 hours 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583
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and frequency of insomnia was recorded as never/rarely, sometimes, or usually. More 

details can be found on http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1160 and 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1200.  

 

3.3 Analysis  

3.3.1 Potential confounds  

In accordance with previous GWAS of brain imaging phenotypes in the UK Biobank 

(Elliott et al., 2018), I controlled for similar confounding variables in this study. In 

addition to age at scanning and sex (i.e. age, age2, age  sex, age2  sex), covariates 

relating to imaging parameters and genetic ancestry were also included. These included: 

head motion from resting-state fMRI, head position (i.e. the exact location of the head 

in the scanner), volumetric scaling factor needed to normalise for head size, and the 10 

genetic principal components. 

 

3.3.2 SNP heritability  

Heritability analysis, which is defined as the proportion of observed phenotypic 

variance explained by additive genetic factors of all common autosomal variants (Yang, 

Zeng, Goddard, Wray, & Visscher, 2017), estimates the relative contribution of genes 

and the environment on a phenotype. Using BOLT-REML (Loh et al., 2015) 

implemented in BOLT-LMM v2.3 (Loh, Kichaev, Gazal, Schoech, & Price, 2018), I 

estimated the heritability accounted by autosomal SNPs among the graph theory 

measures. BOLT-REML uses multiple component modelling to partition SNP 

heritability and applies Monte Carlo algorithm for variance component analysis. 

 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1160
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1200
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3.3.3 Genome-wide association analysis 

BOLT-LMM v2.3 (Loh et al., 2018) was used to conduct GWAS for the graph theory 

measures in the UK Biobank sample and adjusted for potential confounds. To correct 

for multiple hypothesis testing, I estimated the number of independent tests used based 

on Nyholt et al. method (Nyholt, 2004) and derived n = 6 independent tests for this 

study. The genome-wide significant threshold was set at p  (5  10-8 /6) = 8.33  10-9. 

Quantile and Manhattan plots were also presented for each of the graph theory measure. 

Manhattan and QQ plots were made using the R-package (R Core Team, 2020). Locus 

Zoom (Pruim et al., 2010) was used for the visualisation of the nearest genes within a 

±500-kilobase genomic region for the strength of somatomotor and limbic networks 

based on the hg19 UCSC Genome Browser assembly.   

 

3.3.4 Linkage disequilibrium and Independent SNPs 

The linkage disequilibrium plot of the associated genomic region was made using the 

LD plot function in the R package “gaston” (Perdry, 2020). To identify set of 

independent SNPs associated with each of the network measures a stepwise model 

selection method as implemented in the COJO (Yang et al., 2012) (cojo-slct) procedure 

of GCTA (Yang, Lee, Goddard, & Visscher, 2011) package with default parameters was 

used.  

 

3.3.5 Multivariate association analysis 

Multivariate association analysis was conducted using metaUSAT (Ray & Boehnke, 

2018). The method uses summary statistics from individual studies and is suitable for 

correlated traits. MetaUSAT derives strength from two methods of multivariate 

association tests (score test and multivariate analysis variance test) as it uses convex 
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linear combination of two test statistics. Data-driven minimum p-value corresponding to 

the best-linear combination is obtained. The significant threshold was set as                       

p  (5  10-8 /4) = 1.25 × 10-8. 

 

3.3.6 Gene-based association analysis and functional mapping 

Gene-based association analysis was performed via MAGMA(de Leeuw, Mooij, 

Heskes, & Posthuma, 2015) (v1.07, https://ctg.cncr.nl/software/magma/). MAGMA 

uses 1000G reference panel for calculation of LD between the SNPs and gene 

coordinates based on NCBI build 37. SNPs were mapped to a gene if they were within 

±5 kb of the gene co-ordinates. Gene-based association test statistic was derived using 

the default option, which is the sum of –log(SNP p-value). The Bonferroni correction 

was used for significance of the gene-based association tests (p-value of the gene-based 

tests / (number of independent tests × number of genes tested)). In other words, 

significant threshold was set as p  0.05/(6 × 18319) = 4.56 × 10-7. 

 

3.3.7 Functional annotation  

I performed lookups for variants that passed the suggestive GWAS threshold of                      

p  5  10-8 to investigate the previously reported associations with the other traits. 

NHGRI-EBI GWAS Catalogue (Buniello et al., 2019) included previous GWAS 

publications and SNPnexus (Dayem Ullah et al., 2018) included all other publications.   

 

FUMA (Watanabe, Taskesen, van Bochoven, & Posthuma, 2017) gene2func online 

platform (version 1.3.4, http://fuma.ctglab.nl/) was used to explore the functional 

consequences of significant genes. All the genes in the GWAS analysis and the gene-

based analysis after nominal significance were used as input (a total of 18 genes). Using 

https://ctg.cncr.nl/software/magma/)
http://fuma.ctglab.nl/)
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the FUMA platform, the GTEx v7 30 general tissue types data set was used for tissue 

specificity analyses. Differentially expressed gene (DEG) sets were pre-calculated by 

performing two-tailed t-test for any one of the tissue type against all others. Expression 

values were normalised (zero-mean) following a log2 transformation of expression 

values. Using the genes as background gene set, 2  2 enrichment sets were performed. 

Genes with p-value  0.05 after Bonferroni correction were defined as differentially 

expressed. 

 

3.3.8 Genetic correlation estimation with LDSC 

LD Hub (v1.9.1, http://ldsc. broadinstitute.org/ldhub/) was used to estimate the genetic 

correlation between graph theory measures and corresponding traits. Summary statistics 

were uploaded to LD hub where it calculates the genetic correlations using the LDSC 

software (v1.0.0, https:// github.com/bulik/ldsc).   

 

3.3.9 Test of associations with graph theory measures 

The graph theory measures were normalised using ranked transformation, rntransform() 

function in R from GeneABEL package (Karssen, van Duijn, & Aulchenko, 2016) and 

age were z-transformed for regression analysis. Regression model similar to GWAS 

analysis was used to test the association of self-reported sleep duration and frequency of 

insomnia variables with the graph theory measures. Only results with a two-tailed p < 

0.05/18 (number of graph theory measures) were considered significant. Data 

management, derivation of summary statistics and other statistical analyses, and 

correlation plots were performed using R (V 4.0.0) software (R Core Team, 2020).  
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3.4. Results  

3.4.1 Demographics and graph theory measures 

After imaging and genetic pre-processing and quality control, 2,153 UK Biobank 

participants were excluded resulting in a final sample of 18,445 participants of British 

ancestry. There were 9,773 women and 8,672 men with a mean age (sd) of 62.47 (7.47). 

Eighteen weighted graph theory measures were derived by parcellating the rs-fMRI data 

using the Schaefer atlas (Schaefer et al., 2018), which is a fine-grained parcellation 

scheme based on Yeo-7 network. These 18 measures include: global efficiency and 

characteristic path length (network integration); modularity, transitivity, and local 

efficiency of 7 networks (network segregation); and strength of 7 networks. 

Supplementary Table A1 defines each of the measures and provides evidence of their 

association with aging and neuropathological diseases. Supplementary Table A2 shows 

the mean and standard deviation of the demographics and graph theory measures. 

Figure 3.1 shows the brain network reconstruction using rs-fMRI data.  

 

Phenotypic correlations between the measures were examined (Supplementary Figure 

B1). High correlations were observed between the following measures: characteristic 

path length and modularity were negatively correlated with all other graph theory 

measures (r = -0.661 to -0.989); global efficiency and transitivity were positively 

correlated with local efficiency and strength of all the networks (r = 0.753 to 0.952); 

local efficiencies of networks were positively correlated with each other (r = 0.784 to 

0.902); and strengths of networks were positively correlated with each other (r = 0.772 

to 0.927).  
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Figure 3.1 Schematic representation of brain network construction using graph 

theory analysis.  

After pre-processing, the brain was divided into different parcels using the Schaefer et al. (2018) 

parcellation scheme. Subsequently, activity time course was extracted from each region to create the 

correlation matrix. I used the correlation matrix and removed all the self-connected and negative weights 

to derive a corresponding weighted undirected brain network matrix and functional brain network graph. 

Lastly, I used the network matrix to calculate the sets of topological graph theory measures. 

 

 

3.4.2 SNP heritability estimates and genetic correlations 

SNP heritability, h2
SNP, was estimated using the proportion of variance in each graph 

theory measure that is explained by GWAS SNPs. All graph theory measures, except 

for strength of the visual network, were significantly heritable (p < 0.05), ranging from 

h2
SNP = 0.07 for local efficiency of visual network to h2

SNP = 0.17 for the strength of 
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limbic network, with a mean h2
SNP of 0.12 (Supplementary Table A3; Figure 3.2A). 

Notably, higher h2
SNP estimates (0.11-0.17) were observed for global efficiency, 

characteristic path length, transitivity, and strength of limbic, somatomotor, default, 

salience, and frontoparietal networks compared to the other measures. In addition, 

genetic and environmental correlations were examined. Strong genetic correlations 

between the network measures were observed. All measures were positively associated 

with each other with the exception of Louvain modularity and characteristic path length 

being negatively correlated with all other measures (Figure 3.2B). 
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Figure 3.2 Genetic and environmental correlations between the 18 weighted graph 

theory measures. (A) represents the heritability estimates for each of the graph theory measures. Gray 

represents the network integration as characterised by global efficiency and characteristic path length; 

blue represents network segregation as characterised by Louvain modularity and transitivity; purple 

represents networks of local efficiency; and pink represents strength of the networks. (B) Genetic 

correlations were estimated using LDSC (https://github.com/bulik/ldsc). Strong genetic and 

environmental correlations between the network measures were observed (see Supplementary Table A4 

for more details). Abbreviations: Eglob, global efficiency; Charpath, characteristic path length; Eloc, 

local efficiency.  

https://github.com/bulik/ldsc


 50 

3.4.3 Genome-wide association study 

GWAS of the rs-fMRI data for each individual graph theory measure (n=18) were 

carried out using an additive genetic model adjusted for age, age2, sex, age × sex, age2 × 

sex, head motion from resting-state fMRI, head position, volumetric scaling factor 

needed to normalise for head size, genotyping array and 10 genetic principal 

components.  

 

At the genome-wide significance level of p < 5 × 10-8 (unadjusted for the number of 

measures assessed), there were 31 SNPs significantly associated with nine of the 18 

graph theory measures namely, global efficiency, characteristic path length, Louvain 

modularity, local efficiency of default and somatomotor networks, strength of default, 

limbic, salience, and somatomotor networks (Supplementary Table A4). Supplementary 

Figure B2 shows the Manhattan and quantile-quantile plots of all the 18 graph theory 

measures. However, after adjusting for the number of independent tests using this 

method (Nyholt, 2004) (n = 6 tests for this study; p-threshold = 5 × 10-8/6 = 8.33 × 10-

9), only fourteen variants from a single locus remained significant with strength of the 

somatomotor network (lead SNP: rs12616641), and one of which also was significant 

for strength of the limbic network (rs62158161) (Table 3.1; Figure 3.3A & 3.3B). All 

SNPs were located in an intergenic region near PAX8 (Paired box gene 8) on 

chromosome 2 (BP 114065390 - 114092549) (Fig. 3.3C).  

 

The conditional and joint association (COJO) analysis using the GWAS summary data 

of the network measures did not identify any additional SNPs apart from the top 

associated within each locus (Supplementary Table A4). There is high linkage 
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disequilibrium in the genomic region (114065390 – 114110568) on chromosome 2 

(Supplementary Fig. B3). 

 

Table 3.1 GWAS genome-wide significant results for brain functional network 

measures 

 

 
Linear regression models were adjusted for age, age2, sex, age × sex, age2 × sex, head motion from 

resting-state fMRI, head position, volumetric scaling factor needed to normalise for head size, and 10 

genetic principal components. P values are two-tailed. Only results that survived Bonferroni correction (p 

< 5 × 10-8/6) were reported here. Italics represents significance.  

*rs12616641 was the lead SNP.  

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; A1, coded allele; A2, non-

coded allele; EAF, effect allele frequency; , beta; SE, standard error 

 

SNP and 

measures 
Chr Function Gene  

A1/

A2 
EAF 𝛃 SE p 

 

Strength 

Limbic 

        

rs62158161 2 Intergenic PAX8 C/T 0.749 0.069 0.012 4.70E-09 

 

Strength 

Somatomotor  

        

rs62158160 2 Intergenic PAX8 C/T 0.742 0.066 0.011 6.90E-09 

rs62158161 2 Intergenic PAX8 C/T 0.749 0.069 0.012 2.40E-09 

rs62158166 2 Intergenic PAX8 G/C 0.773 0.073 0.012 1.20E-09 

rs62158168 2 Intergenic PAX8 C/G 0.773 0.073 0.012 1.20E-09 

rs12616641* 2 Intergenic PAX8 C/A 0.774 0.073 0.012 9.90E-10 

rs62158169 2 Intergenic PAX8 C/T 0.784 0.072 0.012 3.50E-09 

rs62158170 2 Intergenic PAX8 A/G 0.784 0.073 0.012 2.60E-09 

rs199993536 2 Intergenic PAX8 T/A 0.783 0.072 0.012 3.10E-09 

rs6737318 2 Intergenic PAX8 A/G 0.779 0.070 0.012 6.20E-09 

rs62158206 2 Intergenic PAX8 T/C 0.779 0.071 0.012 4.10E-09 

rs7556815 2 Intergenic PAX8 G/A 0.780 0.071 0.012 4.70E-09 

rs2863957 2 Intergenic PAX8 C/A 0.779 0.071 0.012 4.10E-09 

rs1823125 2 Intergenic PAX8 A/G 0.779 0.071 0.012 3.30E-09 

rs60873293 2 Intergenic PAX8 G/T 0.779 0.070 0.012 5.70E-09 
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Figure 3.3 GWAS Manhattan Plots for strength of limbic and somatomotor 

networks and the locus zoom plot for the identified chromosome 2 region 

(A) represents the Manhattan plot for strength of limbic network; (B) represents the Manhattan plot for 

strength of somatomotor network. For each of the Manhattan plots, each point represents a single genetic 

variant plotted according to its genomic position (x-axis) and its association with the relevant graph 

theory measure is shown by the corresponding –log10(P) values on the y-axis. Linear regression models 

were adjusted for age, age2, sex, age × sex, age2 × sex, head motion from resting-state fMRI, head 

position, volumetric scaling factor needed to normalise for head size, genotyping array and 10 genetic 

principal components. The black solid line represents the classical GWAS significance threshold of p < 5 

× 10-8. (C) The Locus zoom plot showing the chromosome 2 locus significantly associated with both the 

strength of somatomotor and limbic networks. Rs12616641 is the lead SNP.  
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3.4.4 Multivariate association test 

Since all network measures were highly correlated, to increase power a multivariate 

analysis using GWAS summary statistics from multiple network measures was 

performed. Based on their network properties, pooled summary statistics as 

implemented in metaUSAT (Ray & Boehnke, 2018) were obtained for (i) global 

efficiency and characteristic path length; (ii) modularity and transitivity; (iii) local 

efficiency of all networks; and (iv) strength across all networks. Multivariate analysis of 

the combined strength network measures yielded 31 significant associations at p < 1.25 

× 10-8 (adjusted for four tests). Out of this, 23 were found in GWAS of somatomotor 

strength measure reported in Supplementary Table A4 and the remaining 8 SNPs were 

found for combined strength measure (Table 3.2). No additional hits were found in the 

multivariate analysis of the other three grouped measures.  

 

Table 3.2 Multivariate SNP-based analyses for combined network strength measure 

  

Only results that survived Bonferroni correction (p  5  10-8 /4 = 1.25  10-8) are reported. Italics 

represents significance. 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; ncRNA, non-coding RNA; 

LOC101928386, Uncharacterised LOC101928386; MIR3679, MicroRNA 3679; AMER3, APC Membrane 

Recruitment Protein 3; LINC01826, Long Intergenic Non-Protein Coding RNA 1826; LINC01101, Long 

Intergenic Non-Protein Coding RNA 1101; LANCL1-AS1, LANCL1 Antisense RNA 1 

Measure SNP Chr  Function Nearest gene  p 

Combined 

Network 

Strength 

rs145868127 2 ncRNA_exonic LOC101928386 3.92E-18 

rs2680724 2 intergenic MIR3679 4.04E-18 

rs62165320 2 intergenic AMER3 5.08E-18 

rs2661030 2 intergenic LINC01826 5.33E-11 

rs2661035 2 intergenic LINC01826 5.45E-11 

rs1880544 2 ncRNA_exonic LINC01101 1.35E-10 

rs2089478 2 intergenic LINC01826 1.56E-10 

rs12474078 2 ncRNA_intronic LANCL1-AS1 2.50E-09 
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3.4.5 Gene-based association analysis 

Gene-based association analysis was performed using the software MAGMA(de Leeuw 

et al., 2015) (Table 3.3). Our results showed that five genes – SLC25A33 (Solute Carrier 

Family 25 Member 33), TMEM201 (Transmembrane Protein 201), ZEB1 (Zinc Finger 

E-Box Binding Homeobox 1), SH2B3 (SH2B Adaptor Protein 3), and ATXN2 (Ataxin 

2) – were associated with global efficiency, characteristic path length, and strength of 

default, dorsal attention, and somatomotor networks after adjusting for the number of 

independent tests (n = 6) and number of genes (n = 18,319) i.e. p-threshold   0.05/(6 × 

18319) = 4.56 × 10-7. Supplementary Table A5 describes the genes associated with the 

graph theory measures.  

 

Table 3.3 Gene-based association analysis identified five significant gene-level 

associations for brain functional network measures 

 
 

 

 

 

 

 

 

 

Gene-based association analysis was performed via MAGMA (de Leeuw et al., 2015), which uses 1000G 

reference panel for calculation of LD between the SNPs and gene coordinates based on NCBI build 37. 

Only genes that passed the Bonferroni correction (p < 4.56 × 10-7) are reported here. Italics represents 

significance. Abbreviations: Chr, chromosome; NSNP, number of single nucleotide polymorphisms; 

SLC25A33, Solute Carrier Family 25 Member 33; TMEM201, Transmembrane Protein 201; ZEB1, Zinc 

Finger E-Box Binding Homeobox 1; SH2B3, SH2B Adaptor Protein 3; ATXN2, Ataxin 2 

Gene Graph theory measures Chr NSNPs p 

SLC25A33 Global efficiency 1 69 5.64E-08 
 Characteristic path length 1 69 5.23E-08 

TMEM201 Global efficiency 1 43 1.83E-08 
 Characteristic path length 1 43 1.48E-08 
 Strength Dorsal attention 1 43 1.36E-07 
 Strength Somatomotor 1 43 2.09E-07 

ZEB1 Global efficiency 10 323 3.27E-07 
 Characteristic path length 10 323 2.29E-07 

SH2B3 Strength Default 12 50 2.95E-07 

ATXN2 Strength Default 12 149 2.48E-07 
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3.4.6 Functional annotations 

I assessed the potential functions of the 39 significant SNPs from the GWAS (n=31) 

and multivariate association tests (n=8) in SNPnexus (Dayem Ullah et al., 2018). The 

results showed that many of the network associated variants were associated with other 

phenotypes including sleep patterns, psychiatric disorders, coronary artery disease, 

cholesterol, and blood pressure (Supplementary Tables A6 and A7). None of the 

variants were found to be eQTLs.   

 

Gene expression enrichment analysis of the list of significant genes in our results was 

subsequently performed using the Functional Mapping and Annotation (FUMA) 

platform (Watanabe et al., 2017). They were expressed in the brain but also across other 

tissue types (Supplementary Figure B4). Moreover, there was no enrichment in brain 

tissue types (Supplementary Table A8).  

 

3.4.7 Genetic correlations with other traits 

Given that the most robust GWAS result was observed for the strength of somatomotor 

network, I examined its genetic correlations with other traits via linkage disequilibrium 

(LD) score regression (LDSC) (Bulik-Sullivan et al., 2015) (Supplementary Table A9). 

Results showed that strength of somatomotor network was genetically correlated with 

other traits, such as nervous feelings, sleep traits, neuroticism, depressive symptoms, 

blood pressure, and education (unadjusted p  0.05). However, none of them passed 

multiple comparisons correction.  

 



 56 

3.4.8 Correlations with other associated traits 

As the SNPs in our study have been associated with sleep and insomnia in previous 

GWAS studies (Supplementary Table A6), I explored the phenotypic correlations 

between the graph theory and sleep-related measures in the UK Biobank data 

(Supplementary Tables A10 and A11). Self-reported sleep duration and insomnia were 

significantly associated with the graph theory measures. Strength of somatomotor 

network showed the most significant association with sleep duration (p = 8.33 × 10-11) 

and insomnia (p = 0.0019).  

 

3.5 Discussion  

Functional graph theory measures reflect the underlying functional topography of the 

brain. To date, this is the first study investigating the genetics of weighted functional 

graph theory measures. I present h2
SNP estimates and results from GWAS of graph 

theory measures using resting-state fMRI data from 18,445 UK Biobank participants. 

This study identified significant SNPs and gene associations that survived multiple 

correction testing with six of the 18 graph theory measures including global efficiency, 

characteristic path length, and strength of default, dorsal attention, limbic, and 

somatomotor networks. The novel contributions of this paper are the identification of 

new genetic associations at the variant, locus, and gene levels, providing insights into 

the genetic architecture of graph theory metrics using resting-state fMRI data.  

 

Similar to the study by Elliot and colleagues (Elliott et al., 2018) who showed that 

resting-state fMRI connectivity edges had the lowest levels of h2
SNP, I found low h2

SNP 

across all the graph theory measures. This is in contrast to previous classical twin study 

design studies that have shown moderate to high heritability of 0.52 to 0.64 for global 
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efficiency, 0.47 to 0.61 for mean clustering coefficient, and 0.38 to 0.59 for modularity 

(Sinclair et al., 2015). One of the plausible explanations is that h2
SNP typically provides 

smaller heritability estimates due to uncaptured rare genetic variants compared to those 

provided by the classic twin study design (Elliott et al., 2018). High genetic correlations 

observed between graph theory measures may be due to the high phenotypic 

correlations between the measures. 

 

The GWAS results found that strength of limbic and somatomotor networks were 

associated with SNPs located in an intergenic region near PAX8 (Paired box gene 8) on 

chromosome 2, which is the closest gene to the top SNP. The PAX gene family encodes 

transcription factors which are essential during development and tissue homeostasis 

(Blake & Ziman, 2014). Specifically, PAX8 protein is considered as a master regulator 

for key cellular processes in DNA repair, replication, and metabolism (Ruiz-Llorente et 

al., 2012). It has also been shown to regulate several genes involved in the production of 

thyroid hormone (Pasca di Magliano, Di Lauro, & Zannini, 2000), essential for brain 

development and function such as neuronal differentiation, synaptogenesis, and 

dendritic proliferation (Bernal, 2007; Williams, 2008). A previous study has also linked 

reductions in intrinsic functional connectivity in the somatomotor network to 

participants with subclinical hypothyroidism compared to controls (Kumar et al., 2018). 

Interestingly, studies have also found subclinical thyroid dysfunction to be associated 

with sleep quality (Kim et al., 2019; Song et al., 2019). Other genes located in this 

intergenic region near PAX8 include CBWD2 and CHCHD5, which have also been 

associated with sleep duration in prior studies (Doherty et al., 2018; Veatch, Keenan, 

Gehrman, Malow, & Pack, 2017). Considering that this study also observed phenotypic 

correlations between sleep duration, insomnia and graph theory measures, it is possible 
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that variants in or near PAX8 and other genes in this region may play a role in the 

regulation of genes associated with functional brain network properties and sleep. 

 

Results from multivariate SNP-based analyses from combined network strength 

measures found associations with SNPs on chromosome 2, which were associated with 

inflammation and oncogenesis. The majority of these SNPs were located in intergenic 

regions close to non-coding RNA genes. LINC01826 (long intergenic non-protein 

coding RNA 1826) has been associated with inflammatory responses of the vascular 

endothelial cells, which are important in the development of cardio-cerebrovascular 

diseases (Lin et al., 2017). MIR3679 (microRNA 3679) is a short non-coding RNA 

involved in post-transcriptional regulation of gene expression, which has been 

postulated to function as a tumor suppressor due to lower levels observed in patients 

with diffuse glioma than controls (Ohno et al., 2019). LINC01101 (long intergenic non-

protein coding RNA 1101), on the other hand, has been down-regulated in cervical 

cancer (Iancu et al., 2017). The identified genes may contribute to understanding the 

relationship between strength of brain networks and disease.  

 

Gene-based association analysis showed associations with genes involved in neuronal 

differentiation/development, cancer, and susceptibility to neurodegenerative diseases. 

ZEB1 has been implicated in neuronal glioblastoma (Yu, Liang, & Zhang, 2018) 

whereas SLC25A33 has been associated with insulin/insulin-like growth factor 1 (IGF-

1) necessary for metabolism, cell growth, and survival (Favre, Zhdanov, Leahy, 

Papkovsky, & O'Connor, 2010) and showed higher expression in transformed 

fibroblasts and cancer cell lines compared to non-transformed cells (Favre et al., 2010; 

Floyd et al., 2007). TMEM201 mice, which undergo accelerated senescence, exhibited 
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an early onset age-related decline in antibody response and have a higher rate of 

mortality (Shimada & Hasegawa-Ishii, 2011). ATXN2 belongs to a class of genes 

associated with microsatellite-expansion diseases, where an interrupted CAG repeat 

expansion has been associated with brain-related diseases including spinocerebellar 

ataxia type 2 (SCA2), frontotemporal lobar degeneration (FTLD), and amyotrophic 

lateral sclerosis (ALS) (Fournier et al., 2018; Lahut et al., 2012). A neighbouring gene 

SH2B3 to ATXN2 has also been implicated in increased ALS risk (Lahut et al., 2012). 

Consistent with previous studies that identified functional graph theory measures that 

were associated with the most common FTLD (behavioural variant of frontotemporal 

dementia) (Agosta et al., 2013; Reyes et al., 2018), I observed similar graph theory 

measures to be associated with the ATXN2 gene. This implies that ATXN2 may be 

involved in the relationship between the disruption of brain networks and 

neurological/neuromuscular disorders.  

 

In addition, I observed that brain functional networks are associated with self-reported 

sleep traits. Consistent with a previous study showing that individuals with chronic 

insomnia also showed disrupted global and local properties of the brain involving 

networks such as default mode, dorsal attention, and sensory-motor (Li et al., 2018), I 

found that insomnia was most significantly associated with decreased strength of 

somatomotor network. Our study, therefore, supports the contention that sleep quality is 

related to certain functional brain networks. Given that I observed genes associated with 

these networks, it is possible that altered networks may be driving the sleep 

abnormality. The reverse is also possible, with sleep disturbance influencing the activity 

in the networks.  The directionality of the relationship between brain networks and sleep 

traits may be determined using longitudinal data in future studies. 
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The strengths of this study include the well characterised sample and its large sample 

size, and uniform MRI methods. The results, however, should be interpreted with 

caution. While using weighted undirected matrix circumvents issues surrounding 

filtering/thresholding the connectivity matrix to maintain significant edge weights 

represented in a binary matrix, there are inherent difficulties associated with the 

interpretation of the results. As brain signals recorded from resting-state fMRI are 

typically noisy, it is possible that edge weights may be affected by non-neural 

contributions (Fallani et al., 2014). Despite this, with careful denoising of the resting-

state fMRI data (Parkes, Fulcher, Yücel, & Fornito, 2018; Power, Plitt, Laumann, & 

Martin, 2017) and covarying for motion, it is possible to minimise the noise in the data. 

In addition, previous studies have suggested that stronger edge weights make greater 

contributions in the computation of graph metrics than lower weight connections 

(Drakesmith et al., 2015; Ginestet, Fournel, & Simmons, 2014). This implies that when 

evaluating weighted graphs, false positive connections based on lower correlations may 

have a less disruptive impact on the network topology (van den Heuvel et al., 2017). 

Given that the brain is a complex system with hierarchical network structure, studying 

weighted networks, as was done in this study, may provide a more holistic 

representation of the brain functional network. Future studies may benefit from 

investigating the genetic effects between binarised and weighted graph theory metrics. 

In order to get a stable covariance matrix, other studies have suggested the use of 

regularisation (Pervaiz, Vidaurre, Woolrich, & Smith, 2020; Thirion, Varoquaux, 

Dohmatob, & Poline, 2014). Moreover, it is important to consider that the number of 

nodes for the 400-by-400 Schaefer parcellation may not be optimum for the 500 number 

of time points of resting-state fMRI data. Therefore, future studies may consider using 
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regularisation in the derivation of the network matrix and a parcellation that consists of 

smaller number of nodes. Moreover, given the high correlations between the graph 

theory measures suggest that these measures may account for the same phenotype, or at 

least almost account for the same variability in the population, performing GWAS on 

each of these measures may not be necessary. However, these measures have shown to 

affect different disease states in older age. Importantly, this is an exploratory study and 

the findings presented are purely correlative. Despite so, the findings from the paper 

provide a new preliminary support for combining resting-state fMRI, graph theory 

methods, and GWAS to identify genetic variants associated with the various graph 

theory measures. It may also shed light to direct future studies in determining what 

graph theory imaging phenotypes should be included. In order to further understand the 

mechanisms about brain function at a more basic level, it may be useful for future 

studies to use developmental and adult human brain gene expression data to associate 

the expression of a single gene or genes with specific graph theory measures and 

phenotypes. Furthermore, given that the UK Biobank has recently released additional 

data, replication may be possible in the future.  

 

In summary, this is the first study to investigate the genetics of weighted functional 

graph theory measures in a large and well characterised cohort. This study observed 

multiple SNPs and genes associated with weighted graph theory measures, which have 

been observed to be implicated in sleep duration, neuronal differentiation/development, 

cancer, and susceptibility to neurodegenerative diseases. Our findings may help in the 

identification of novel biological pathways relevant to human brain functional network 

integrity and disease.  
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Supplemental Tables for Chapter 3  

 

Supplementary Table A1. Graph theory measures and their association with aging and aging-related diseases 

Graph theory 

measures  
Definition  

Associations with ageing 

and ageing-related 

diseases 

Implications References 

Global efficiency 

How effectively the 

information is transmitted at 

a global level and is the 

average inverse shortest 

path length 

Older age was associated 

with reduced global 

efficiency compared to 

younger participants  

Ageing is associated with 

reduced network 

integration. Therefore, there 

may be a slower flow of 

information transmission 

within networks in older 

adults 

Achard & 

Bullmore, 2007; 

Sun et al., 2012 

Characteristic path 

length 

Integrity of the network and 

how fast and easily 

information can flow within 

the network. It is the 

average of all the distances 

between every pair of nodes 

in the network   

Older age was associated 

with longer characteristic 

path lengths compared to 

younger participants 

Sala-Llonch et al., 

2014 

Louvain Modularity  

Community detection 

method, which iteratively 

transforms the network into 

a set of communities, each 

consisting of a group of 

nodes. Higher modularity 

values indicate denser 

within-modular connections 

but sparser connections 

between nodes that are in 

different modules 

Brain networks in the 

elderly showed decreased 

modularity (less distinct 

functional networks) but 

findings are mixed  

Increasing age has been 

associated with decreasing 

segregation of the functional 

brain networks 

Chan et al., 2014; 

Iordan et al., 2017 
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Transitivity 

Total of all the clustering 

coefficients around each 

node in the network and is 

normalised collectively 

Patients with Alzheimer's 

disesase (AD) showed 

lower normalised 

clustering coefficient (i.e. 

transitivity) 

Supekar et al., 

2008 

Local efficiency 

Node-specific measure and 

is defined relative to the 

sub-graph comprising of the 

immediate neighbours of a 

node   

Ageing has been 

associated with decreased 

local efficiency   

Iordan et al., 2017 

Strength 

Sum of all neighbouring 

edge weights. High 

connectivity strength 

indicates stronger 

connectivity between the 

regions 

 

Age-related differences 

were observed in 

network-level functional 

connectivity such as 

increases in auditory 

network, decreases in 

connectivity in the visual, 

frontoparietal, dorsal 

attention, and salience 

network. However, 

findings are mixed.   

In general, there appears to 

be selective vulnerability of 

the strengths of the 

networks in older adults. 

Betzel et al., 

2014; Geerligs et 

al., 2015; King et 

al., 2018; Onoda 

et al., 2012; Song 

et al., 2014; 

Tomasi & 

Volkow, 2012 
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Supplementary Table A2. Demographics and graph theory measures in the UK Biobank 

 

Demographics 

Total N 18,445 

Analysis Discovery  

Study design Population-based  

Ancestry European 

Age (years), mean (SD) 62.47 (7.47) 

Age range  (years) 44 - 80 

n, % women 9773, 52.98% 

Graph theory measures 

Global efficiency 0.358 (0.083) 

Characteristic path length 3.606 (0.735) 

Louvain Modularity  0.186 (0.062) 

Transitivity 0.139 (0.044) 

Local efficiency Default  0.482 (0.211) 

Local efficiency Dorsal attention    0.595 (0.201) 

Local efficiency Frontoparietal 0.564 (0.208) 

Local efficiency Limbic 0.476 (0.215) 

Local efficiency Salience 0.573 (0.197) 

Local efficiency Somatomotor 0.557 (0.212) 

Local efficiency Visual 0.519 (0.200) 

Strength Default  98.353 (38.159) 

Strength Dorsal attention    130.747 (43.352) 

Strength Frontoparietal 111.522 (40.127) 

Strength Limbic 50.490 (24.337) 

Strength Salience 117.080 (43.991) 

Strength Somatomotor 117.743 (49.511) 

Strength Visual 123.486 (43.151) 
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Supplementary Table A3. Heritability estimates  

 

Graph theory measures  Genetic h2
SNP 

Genetic h2
SNP 

S.E.  

Non-genetic 

h2
SNP 

Non-genetic 

h2
SNP S.E. 

Estimated Genetic 

h2
SNP P-value 

Global efficiency 0.155 0.032 0.845 0.032 2.40E-06 

Characteristic path length 0.169 0.032 0.831 0.032 2.47E-07 

Louvain modularity 0.111 0.031 0.889 0.031 0.001 

Transitivity 0.124 0.031 0.876 0.031 1.50E-04 

Local efficiency Default 0.107 0.031 0.893 0.031 0.001 

Local efficiency Dorsal attention 0.097 0.031 0.903 0.031 0.003 

Local efficiency Frontoparietal 0.096 0.031 0.904 0.031 0.003 

Local efficiency Limbic 0.108 0.031 0.892 0.031 0.001 

Local efficiency Salience 0.085 0.031 0.915 0.031 0.010 

Local efficiency Somatomotor 0.089 0.031 0.911 0.031 0.007 

Local efficiency Visual 0.072 0.031 0.928 0.031 0.026 

Strength Default 0.157 0.031 0.843 0.031 1.44E-06 

Strength Dorsal attention 0.099 0.031 0.901 0.031 0.003 

Strength Frontoparietal 0.130 0.031 0.870 0.031 7.27E-05 

Strength Limbic 0.172 0.031 0.828 0.031 1.17E-07 

Strength Salience 0.153 0.032 0.847 0.032 3.77E-06 

Strength Somatomotor 0.158 0.032 0.842 0.032 1.85E-06 

Strength Visual 0.061 0.031 0.939 0.031 0.059 

 

Abbreviations:h2
SNP, single nucleotide polymorphism (SNP) heritability; S.E., standard error 
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Supplementary Table A4. GWAS results for the graph theory measures p < 5 x 10-8 

 

SNP and graph theory measures Chr Position  Function Nearest gene  A1/A2 EAF 𝛃 SE p 

Global efficiency           

rs62158160 2 114065390 Intergenic  PAX8 C/T 0.742 0.064 0.011 2.60E-08 

rs111789636 2 114065433 Intergenic  PAX8 A/C 0.732 0.063 0.011 3.60E-08 

rs62158161# 2 114065572 Intergenic  PAX8 C/T 0.749 0.066 0.012 1.20E-08 

rs62158166 2 114077218 Intergenic  PAX8 T/C 0.773 0.066 0.012 3.80E-08 

rs62158168 2 114078381 Intergenic  PAX8 C/G 0.773 0.066 0.012 3.50E-08 

rs12616641 2 114079248 Intergenic  PAX8 C/A 0.774 0.067 0.012 3.00E-08  
         Charpath  

rs62158160 2 114065390 Intergenic PAX8 C/T 0.742 -0.064 0.011 2.60E-08 

rs111789636 2 114065433 Intergenic PAX8 A/C 0.732 -0.062 0.011 4.10E-08 

rs62158161# 2 114065572 Intergenic PAX8 C/T 0.749 -0.065 0.012 2.00E-08  
         Louvain Modularity  

rs12764517 10 91701705 Intronic LINC01375 A/G 0.974 0.177 0.032 4.50E-08  
         Local efficiency Default 

rs147256540 11 94787430 Intergenic SRSF8 T/G 0.99 -0.296 0.054 3.80E-08  
         Local efficiency Somatomotor 

rs147256540 11 94787430 Intergenic SRSF8 T/G 0.99 -0.297 0.054 3.50E-08  
         Strength Default 

rs13176783 5 92676527 Intergenic NR2F1-AS1 G/A 0.287 -0.062 0.011 4.00E-08 

rs66954590# 5 92676616 Intergenic NR2F1-AS1 C/A 0.288 -0.062 0.011 3.10E-08 

rs6893744 5 92676659 Intergenic NR2F1-AS1 T/C 0.287 -0.062 0.011 3.70E-08  
         Strength Limbic 

rs62158160 2 114065390 Intergenic PAX8 C/T 0.742 0.066 0.012 1.10E-08 

rs111789636 2 114065433 Intergenic PAX8 A/C 0.732 0.065 0.011 1.50E-08 
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rs62158161*# 2 114065572 Intergenic PAX8 C/T 0.749 0.069 0.012 4.70E-09 

rs62158166 2 114077218 Intergenic PAX8 G/C 0.773 0.067 0.012 3.30E-08 

rs62158168 2 114078381 Intergenic PAX8 C/G 0.773 0.067 0.012 3.10E-08 

rs12616641 2 114079248 Intergenic PAX8 C/A 0.774 0.068 0.012 2.60E-08  
         Strength Salience  

rs62158160 2 114065390 Intergenic PAX8 C/T 0.742 0.064 0.011 2.60E-08 

rs111789636 2 114065433 Intergenic PAX8 A/C 0.732 0.063 0.011 2.90E-08 

rs62158161 2 114065572 Intergenic PAX8 C/T 0.749 0.065 0.012 2.00E-08 

rs62158166 2 114077218 Intergenic PAX8 G/C 0.773 0.068 0.012 1.40E-08 

rs62158168 2 114078381 Intergenic PAX8 C/G 0.773 0.068 0.012 1.30E-08 

rs12616641# 2 114079248 Intergenic PAX8 C/A 0.774 0.069 0.012 1.10E-08 

rs62158169 2 114081827 Intergenic PAX8 C/T 0.784 0.068 0.012 3.20E-08 

rs62158170 2 114082175 Intergenic PAX8 A/G 0.784 0.068 0.012 2.70E-08 

rs199993536 2 114082628 Intergenic PAX8 T/A 0.783 0.067 0.012 4.20E-08  
         Strength Somatomotor  

rs62158160* 2 114065390 Intergenic PAX8 C/T 0.742 0.066 0.011 6.90E-09 

rs111789636 2 114065433 Intergenic PAX8 A/C 0.732 0.065 0.011 9.80E-09 

rs62158161* 2 114065572 Intergenic PAX8 C/T 0.749 0.069 0.012 2.40E-09 

rs12615370 2 114068017 Intergenic PAX8 T/G 0.751 0.065 0.012 1.60E-08 

rs114068802 2 114068802 Intergenic PAX8 G/C 0.75 0.065 0.012 2.00E-08 

rs1964463 2 114069021 Intergenic PAX8 A/G 0.749 0.066 0.012 1.00E-08 

rs56163359 2 114071473 Intergenic PAX8 T/C 0.751 0.065 0.012 2.50E-08 

rs62158163 2 114071717 Intergenic PAX8 T/C 0.751 0.065 0.012 2.40E-08 

rs114073498 2 114073498 Intergenic PAX8 A/G 0.751 0.065 0.012 2.50E-08 

rs62158166* 2 114077218 Intergenic PAX8 G/C 0.773 0.073 0.012 1.20E-09 

rs62158168* 2 114078381 Intergenic PAX8 C/G 0.773 0.073 0.012 1.20E-09 

rs12616641*# 2 114079248 Intergenic PAX8 C/A 0.774 0.073 0.012 9.90E-10 

rs62158169* 2 114081827 Intergenic PAX8 C/T 0.784 0.072 0.012 3.50E-09 
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rs62158170* 2 114082175 Intergenic PAX8 A/G 0.784 0.073 0.012 2.60E-09 

rs199993536* 2 114082628 Intergenic PAX8 T/A 0.783 0.072 0.012 3.10E-09 

rs6737318* 2 114083120 Intergenic PAX8 A/G 0.779 0.07 0.012 6.20E-09 

rs62158206* 2 114084596 Intergenic PAX8 T/C 0.779 0.071 0.012 4.10E-09 

rs7556815* 2 114085785 Intergenic PAX8 G/A 0.78 0.071 0.012 4.70E-09 

rs2863957* 2 114089551 Intergenic PAX8 C/A 0.779 0.071 0.012 4.10E-09 

rs1823125* 2 114090412 Intergenic PAX8 A/G 0.779 0.071 0.012 3.30E-09 

rs60873293* 2 114092549 Intergenic PAX8 G/T 0.779 0.07 0.012 5.70E-09 

rs56093896 2 114103966 Intergenic PAX8 C/A 0.786 0.069 0.012 1.40E-08 

rs62158211 2 114106139 Intergenic PAX8 G/T 0.786 0.069 0.012 1.40E-08 

rs4618068 2 114109355 Intergenic PAX8 C/T 0.787 0.07 0.012 1.30E-08 

rs1807282 2 114110036 Intergenic PAX8 A/T 0.787 0.07 0.012 1.30E-08 

rs62158213 2 114110568 Intergenic PAX8 G/A 0.787 0.07 0.012 1.30E-08 
 

* denotes SNPs that survived Bonferroni correction after adjusting for independent tests (n = 6) of p < 5.00 × 10-8/6 

# denotes SNPs that are Cojo lead SNPs 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; A1, coded allele; A2, non-coded allele; EFA, effect allele frequency; 𝛃, beta; SE, standard 

error ; PAX8, paired box gene 8; LINC01375, Long Intergenic Non-Protein Coding RNA 1375; SRSF8, Serine And Arginine Rich Splicing Factor 8; NR2F1-AS1, 

NR2F1 Antisense RNA 1 
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Supplementary Table A5. Description of genes influencing the graph theory measures 

 

Gene 
Graph theory measures associated in 

the current study 

Description and relevant phenotypes in humans and mammalian 

models 

SLC25A33 
Global efficiency; Characteristic path 

length 

Belongs to the SLC25 family of mitochondrial carrier proteins. Involved 

in the import/export pyrimidine nucleotides into and from mitochondria. 

Induced by IGF-1.  

TMEM201 

Global efficiency; Characteristic path 

length; Strength of Dorsal attention and 

Somatomotor networks 

Involved in nuclear movement during fibroblast polarisation and 

migration. 

ZEB1 
Global efficiency; Characteristic path 

length 

Encodes a zinc finger transcription factor, which likely plays a role in 

transcriptional repression of interleukin 2.  An epithelial-mesenchymal 

transition (EMT) transcription factor that promotes invasion and 

metastasis in carcinomas.  

SH2B3 Strength of Default network 

Encodes a member of the SH2B adaptor family of proteins, which are 

involved in a range of signaling activities by growth factor and cytokine 

receptors. Neighbouring gene to ATXN2 and has been implicated in 

increased ALS risk.  

ATXN2  Strength of Default network 

Belongs to a group of genes that is associated with microsatellite-

expansion diseases, a class of neurological and neuromuscular disorders 

caused by expansion of short stretches of repetitive DNA. Associated with 

spinocerebellar ataxia type 2 (SCA2), frontotemporal lobar degeneration 

(FTLD), and amyotrophic lateral sclerosis (ALS).  

 

Abbreviations: SLC25A33, Solute Carrier Family 25 Member 33; TMEM201, Transmembrane Protein 201; ZEB1, Zinc Finger E-Box Binding Homeobox 1; SH2B3, 

SH2B Adaptor Protein 3; ATXN2, Ataxin 2 
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Supplementary Table A6. Associations lookup from GWAS Catalogue 

 

Variant name 
Graph theory 

measures 
Chr Position 

Associate

d variant 

risk allele 

Associated gene with 

phenotype 
P value 

Phenotype 

description 
Pubmed 

rs1823125 Strength SM 2 113332835 G 

PAX8, 

LOC101927400, 

CBWD2 

1.00E-10 Sleep duration 30531941 

rs2863957 Strength SM 2 113331974 C PAX8, LOC100130100 3.00E-18 
Sleep duration 

(short sleep) 
30846698 

rs62158169 
Strength SM & 

SVAN 
2 113324250 C 

CBWD2, FOXD4L1, 

PAX8 
1.00E-10 

Depressive 

symptom sleep 

problems binary 

trait 

30952852 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8-AS1 6.00E-20 Sleep duration 30804566 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8/LOC100130100 8.00E-13 

Insomnia 

symptoms 

(never/rarely vs. 

usually) 

30804566 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8/LOC100130100 1.00E-16 

Insomnia 

symptoms 

(never/rarely vs. 

sometimes/usually) 

30804566 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8 3.00E-13 Insomnia 30804565 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8 1.00E-19 Insomnia 30804565 

rs62158170 
Strength SM & 

SVAN 
2 113324598 A PAX8 7.00E-15 

Diastolic blood 

pressure 
30224653 

rs62158206 Strength SM 2 113327019 C PAX8 3.00E-43 Sleep duration 30804565 
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rs62158206 Strength SM 2 113327019 T PAX8 8.00E-09 Insomnia 30804565 

rs62158211 Strength SM 2 113348562 G PAX8 8.00E-13 
Sleep traits (multi-

trait analysis) 
27992416 

rs62158211 Strength SM  2 113348562 T PAX8 1.00E-07 

Sleep duration 

(oversleepers vs 

undersleepers) 

27494321 

rs62158211 Strength SM  2 113348562 G CHCHD5 6.00E-17 Sleep duration 30531941 

rs62158211 Strength SM  2 113348562 T PAX8 5.00E-14 Sleep duration 
30531941, 

27494321 

rs62158211 Strength SM  2 113348562 T PAX8 1.00E-12 Sleep duration 
30531941, 

27494321 

rs62158211 Strength SM  2 113348562 G PAX8 2.00E-23 Sleep duration 
30531941, 

27494321 

rs6737318 Strength SM  2 113325543 G PAX8, LOC100130100 3.00E-13 
Sleep duration 

(long sleep) 
30846698 

rs7556815 Strength SM 2 113328208 G PAX8-AS1 2.00E-18 Sleep duration 30531941 

rs7556815 Strength SM 2 113328208 A PAX8 2.00E-54 Sleep duration 30846698 

 

Abbreviations: PAX8, Paired box gene 8; LINC01375, Long Intergenic Non-Protein Coding RNA 1375; NR2F1-AS1, NR2F1 Antisense RNA 1; SRSF8, Serine And 

Arginine Rich Splicing Factor 8; LOC101927400, Uncharacterised LOC101927400; CBWD2, COBW Domain Containing 2; LOC100130100, Ig kappa chain V-I 

region Walker-like; FOXD4L1, Forkhead Box D4 Like 1; CHCHD5, Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 5; SM, somatomotor network; SVAN, 

salience network 

P-value shows the network associated variants significantly associated with other phenotypes including sleep duration, insomnia, depressive symptoms, and diastolic 

blood pressure 
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Supplementary Table A7. Associations lookup from SNPnexus 

 
Variation ID Chromosome Phenotype Gene PubMed 

rs12764517 10 Hirschsprung Disease RET 19196962 

rs12764517 10 Triglycerides ANK3 17903299 

rs12764517 10 Schizophrenia ANK3 20185149 

rs12764517 10 Bipolar Disorder ANK3 18711365 

rs12764517 10 Bipolar Disorder ANK3 20351715 

rs12764517 10 Bipolar Disorder ANK3 22182935 

rs12764517 10 Bipolar Disorder ANK3 21926972 

rs12764517 10 Creatinine ANK3 17903292 

rs12764517 10 Glomerular Filtration Rate ANK3 17903292 

rs12764517 10 Schizophrenia ANK3 21926974 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Cholesterol, LDL ANK3 17903299 

rs12764517 10 Coronary Artery Disease LIPA 21378988 

rs12764517 10 Coronary Artery Disease LIPA 21606135 

rs147256540 11 Attention Deficit Disorder with Hyperactivity NAV2 18937294 

rs147256540 11 HIV-1 NAV2 22174851 

rs147256540 11 Bipolar Disorder HSP90AA2 21254220 

rs147256540 11 Gout SF1 21768215 

rs62158160 2 Respiratory Function Tests TPO 17903307 

rs62158160 2 C-Reactive Protein PTPRN2 17903293 

rs111789636 2 Respiratory Function Tests TPO 17903307 

rs111789636 2 C-Reactive Protein PTPRN2 17903293 
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rs62158161 2 Respiratory Function Tests TPO 17903307 

rs62158161 2 C-Reactive Protein PTPRN2 17903293 

rs12615370 2 Respiratory Function Tests TPO 17903307 

rs12615370 2 C-Reactive Protein PTPRN2 17903293 

rs1964463 2 Respiratory Function Tests TPO 17903307 

rs1964463 2 C-Reactive Protein PTPRN2 17903293 

rs56163359 2 Respiratory Function Tests TPO 17903307 

rs56163359 2 C-Reactive Protein PTPRN2 17903293 

rs62158163 2 Respiratory Function Tests TPO 17903307 

rs62158163 2 C-Reactive Protein PTPRN2 17903293 

rs62158166 2 Respiratory Function Tests TPO 17903307 

rs62158166 2 C-Reactive Protein PTPRN2 17903293 

rs62158168 2 Respiratory Function Tests TPO 17903307 

rs62158168 2 C-Reactive Protein PTPRN2 17903293 

rs12616641 2 Respiratory Function Tests TPO 17903307 

rs12616641 2 C-Reactive Protein PTPRN2 17903293 

rs62158169 2 Respiratory Function Tests TPO 17903307 

rs62158169 2 C-Reactive Protein PTPRN2 17903293 

rs62158170 2 Respiratory Function Tests TPO 17903307 

rs62158170 2 C-Reactive Protein PTPRN2 17903293 

rs199993536 2 Respiratory Function Tests TPO 17903307 

rs199993536 2 C-Reactive Protein PTPRN2 17903293 

rs6737318 2 Respiratory Function Tests TPO 17903307 

rs6737318 2 C-Reactive Protein PTPRN2 17903293 

rs62158206 2 Respiratory Function Tests TPO 17903307 

rs62158206 2 C-Reactive Protein PTPRN2 17903293 

rs7556815 2 Respiratory Function Tests TPO 17903307 

rs7556815 2 C-Reactive Protein PTPRN2 17903293 

rs2863957 2 Respiratory Function Tests TPO 17903307 

rs2863957 2 C-Reactive Protein PTPRN2 17903293 

rs1823125 2 Respiratory Function Tests TPO 17903307 
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rs1823125 2 C-Reactive Protein PTPRN2 17903293 

rs60873293 2 Respiratory Function Tests TPO 17903307 

rs60873293 2 C-Reactive Protein PTPRN2 17903293 

rs56093896 2 Respiratory Function Tests TPO 17903307 

rs56093896 2 C-Reactive Protein PTPRN2 17903293 

rs62158211 2 Respiratory Function Tests TPO 17903307 

rs62158211 2 C-Reactive Protein PTPRN2 17903293 

rs4618068 2 Respiratory Function Tests TPO 17903307 

rs4618068 2 C-Reactive Protein PTPRN2 17903293 

rs1807282 2 Respiratory Function Tests TPO 17903307 

rs1807282 2 C-Reactive Protein PTPRN2 17903293 

rs62158213 2 Respiratory Function Tests TPO 17903307 

rs62158213 2 C-Reactive Protein PTPRN2 17903293 

rs1880544 2 Respiratory Function Tests TPO 17903307 

rs1880544 2 C-Reactive Protein PTPRN2 17903293 

rs2089478 2 Respiratory Function Tests TPO 17903307 

rs2089478 2 C-Reactive Protein PTPRN2 17903293 

rs2661030 2 Respiratory Function Tests TPO 17903307 

rs2661030 2 C-Reactive Protein PTPRN2 17903293 

rs2661035 2 Respiratory Function Tests TPO 17903307 

rs2661035 2 C-Reactive Protein PTPRN2 17903293 

rs62165320 2 Respiratory Function Tests TPO 17903307 

rs62165320 2 C-Reactive Protein PTPRN2 17903293 

rs2680724 2 Respiratory Function Tests TPO 17903307 

rs2680724 2 C-Reactive Protein PTPRN2 17903293 

rs145868127 2 Respiratory Function Tests TPO 17903307 

rs145868127 2 C-Reactive Protein PTPRN2 17903293 

rs145868127 2 Carcinoma, Squamous Cell|Esophageal Neoplasms| GTDC1 19826048 

rs145868127 2 Tobacco Use Disorder GTDC1 20379614 

rs62158170 2 Insomnia symptoms (never/rarely vs. usually) PAX8/LOC100130100 30804566 

rs62158170 2 Insomnia symptoms (never/rarely vs. sometimes/usually) PAX8/LOC100130100 30804566 
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rs62158170 2 Insomnia None 30804565 

rs62158170 2 Insomnia NA 30804565 

rs62158170 2 Sleep duration PAX8-AS1 30531941 

rs62158170 2 Diastolic blood pressure PAX8 30224653 

rs6737318 2 Sleep duration (long sleep) PAX8, LOC100130100 30846698 

rs62158206 2 Sleep duration NA 30804565 

rs62158206 2 Insomnia NA 30804565 

rs7556815 2 Sleep duration None 30846698 

rs7556815 2 Sleep duration PAX8-AS1 30531941 

rs2863957 2 Sleep duration (short sleep) PAX8, LOC100130100 30846698 

rs1823125 2 Sleep duration 
PAX8, LOC101927400, 

CBWD2 
25469926 

rs62158211 2 Sleep duration CHCHD5 30531941 

rs62158211 2 Sleep duration None 28604731 

rs62158211 2 Sleep traits (multi-trait analysis) PAX8 27992416 

rs62158211 2 Sleep duration PAX8 27992416 

rs62158211 2 Sleep duration (oversleepers vs undersleepers) PAX8 27494321 

rs62158211 2 Sleep duration PAX8 27494321 

 
Abbreviations: RET, Ret Proto-Oncogene; ANK3, Ankyrin 3; LIPA, lipase A, lysosomal acid type; NAV2, Neuron navigator 2; HSP90AA2P, Heat Shock Protein 90 

Alpha Family Class A Member 2; SF1, Splicing factor SF1;  TPO, Thyroid Peroxidase; PTPRN2,  Protein Tyrosine Phosphatase Receptor Type N2; GTDC1, 

Glycosyltransferase Like Domain Containing 1; PAX8, Paired box gene 8; LOC100130100, Ig kappa chain V-I region Walker-like; PAX8-AS1, PAX8 Antisense 

RNA 1; LOC101927400, Uncharacterised LOC101927400; CBWD2, COBW Domain Containing 2; CHCHD5, Coiled-Coil-Helix-Coiled-Coil-Helix Domain 

Containing 5 

SNPs associated with the disease as reported in the study 
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Supplementary Table A8. Enrichment analysis from gene-based association results 

 
GeneSet N genes N 

overlap 

p genes 

Adipose_Subcutaneous 3668 4 0.16 NR2F1-AS1, ZEB1, SH2B3, GPER1 

Adipose_Visceral_Omentum 3435 1 0.88 SH2B3 

Adrenal_Gland 5041 3 0.58 PAX8, SLC25A33, ZEB1 

Artery_Aorta 4241 5 0.09 PAX8, SLC25A33, TMEM201, ZEB1 

Artery_Coronary 3006 4 0.09 NR2F1-AS1, ZEB1, SH2B3, ACAN 

Artery_Tibial 4761 7 0.01 PAX8, NR2F1-AS1, SLC25A33, TMEM201, ZEB1, 

ACAN, GPER1 

Bladder 948 1 0.43 NR2F1-AS1 

Brain_Amygdala 9576 6 0.50 PAX8, NR2F1-AS1, ZEB1, SH2B3, ATXN2, WTAP 

Brain_Anterior_cingulate_cortex_BA24 9101 5 0.64 NR2F1-AS1, AMER3, SLC25A33, SH2B3, WTAP 

Brain_Caudate_basal_ganglia 9143 6 0.44 AMER3, SLC25A33, ZEB1, SH2B3, ATXN2, WTAP 

Brain_Cerebellar_Hemisphere 8981 5 0.63 NR2F1-AS1, AMER3, SH2B3, ATXN2, GPER1 

Brain_Cerebellum 8976 5 0.63 NR2F1-AS1, AMER3, TMEM201, SH2B3, ATXN2 

Brain_Cortex 8420 6 0.36 NR2F1-AS1, AMER3, SLC25A33, ZEB1, SH2B3, 

WTAP 

Brain_Frontal_Cortex_BA9 8222 5 0.54 NR2F1-AS1, AMER3, SLC25A33, SH2B3, WTAP 

Brain_Hippocampus 9541 5 0.69 PAX8, ZEB1, SH2B3, ATXN2, WTAP 

Brain_Hypothalamus 8506 6 0.37 PAX8, NR2F1-AS1, AMER3, SLC25A33, SH2B3, 

WTAP 

Brain_Nucleus_accumbens_basal_ganglia 8939 4 0.81 AMER3, ZEB1, SH2B3, WTAP 

Brain_Putamen_basal_ganglia 9598 6 0.50 AMER3, SLC25A33, ZEB1, SH2B3, ATXN2, WTAP 

Brain_Spinal_cord_cervical_c-1 7371 4 0.65 SLC25A33, SH2B3, WTAP, GPER1 

Brain_Substantia_nigra 8873 4 0.80 PAX8, SLC25A33, SH2B3, WTAP 

Breast_Mammary_Tissue 2985 0 1.00 
 

Cells_Cultured_fibroblasts 6516 4 0.54 NR2F1-AS1, ZEB1, SH2B3, GPER1 

Cells_EBV-transformed_lymphocytes 7523 3 0.85 PAX8, SH2B3, GPER1 

Cervix_Ectocervix 197 0 1.00 
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Cervix_Endocervix 1854 1 0.67 ZEB1 

Colon_Sigmoid 3329 3 0.30 PAX8, ZEB1, GPER1 

Colon_Transverse 3200 1 0.86 NR2F1-AS1 

Esophagus_Gastroesophageal_Junction 2861 2 0.50 PAX8, ZEB1 

Esophagus_Mucosa 5849 5 0.24 SLC25A33, ZEB1, SH2B3, ATXN2, GPER1 

Esophagus_Muscularis 3091 2 0.55 PAX8, ZEB1 

Fallopian_Tube 491 0 1.00 
 

Heart_Atrial_Appendage 9233 5 0.66 NR2F1-AS1, ZEB1, ATXN2, WTAP, GPER1 

Heart_Left_Ventricle 10067 5 0.74 SLC25A33, ZEB1, ATXN2, WTAP, GPER1 

Kidney_Cortex 6910 3 0.80 PAX8, ZEB1, WTAP 

Kidney_Medulla 95 1 0.05 PAX8 

Liver 9595 5 0.70 TMEM201, ZEB1, SH2B3, ATXN2, WTAP 

Lung 5173 2 0.83 SH2B3, GPER1 

Minor_Salivary_Gland 3769 4 0.17 PAX8, ZEB1, SH2B3, GPER1 

Muscle_Skeletal 8051 5 0.52 SLC25A33, TMEM201, SH2B3, ATXN2, GPER1 

Nerve_Tibial 6820 8 0.03 NR2F1-AS1, LOC101928386, TMEM201, ZEB1, 

ATXN2, ACAN, GPER1 

Ovary 7253 4 0.64 NR2F1-AS1, TMEM201, ATXN2, GPER1 

Pancreas 10415 7 0.40 SLC25A33, TMEM201, ZEB1, SH2B3, ATXN2, 

WTAP, GPER1 

Pituitary 7125 3 0.82 AMER3, TMEM201, ZEB1 

Prostate 4077 2 0.70 PAX8, NR2F1-AS1 

Skin_Not_Sun_Exposed_Suprapubic 5468 5 0.20 PAX8, SLC25A33, ZEB1, SH2B3, GPER1 

Skin_Sun_Exposed_Lower_leg 5315 4 0.37 SLC25A33, ZEB1, SH2B3, GPER1 

Small_Intestine_Terminal_Ileum 4170 3 0.44 NR2F1-AS1, SLC25A33, GPER1 

Spleen 6383 4 0.52 PAX8, SLC25A33, ZEB1, SH2B3 

Stomach 3731 4 0.16 PAX8, TMEM201, SH2B3, GPER1 

Testis 15330 6 0.95 LINC01375, NR2F1-AS1, SLC25A33, TMEM201, 

ATXN2, GPER1 

Thyroid 6764 3 0.79 PAX8, SH2B3, GPER1 

Uterus 6435 4 0.53 NR2F1-AS1, TMEM201, ZEB1, ATXN2 
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Vagina 3513 1 0.88 SLC25A33 

Whole_Blood  9013  4  0.81  SLC25A33, ZEB1, ATXN2, GPER1  
 

Analysis was performed using FUMA 

Abbreviations: NR2F1-AS1, NR2F1 Antisense RNA 1; ZEB1, Zinc Finger E-Box Binding Homeobox 1; GPER1, G Protein-Coupled Estrogen Receptor 1;  PAX8, 

Paired Box Gene 8; SLC25A33, Solute Carrier Family 25 Member 33; TMEM201, Transmembrane Protein 201; SH2B3, SH2B Adaptor Protein 3; ATXN2, Ataxin 2; 

ACAN, aggrecan; WTAP, Wilms Tumor 1 Associated Protein;  LINC01375, Long Intergenic Non-Protein Coding RNA 1375; LOC101928386, Uncharacterised 

LOC101928386; AMER3, APC Membrane Recruitment Protein 3 
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Supplementary Table A9. Genetic correlations with strengths of somatomotor network using LD hub (top 50) 

 

Phenotype  Category rg SE z 
h2 

obs 

h2 

obs 

SE 

h2 

int 

gcov 

int 

h2 int 

SE 

gcov 

int SE 

Rg 

Padj 

Nervous feelings ukbb -0.271 0.076 -3.563 0.066 0.004 1.014 -0.002 0.012 0.005 0.240 

Daytime dozing / sleeping 

(narcolepsy) 
ukbb 0.284 0.091 3.108 0.049 0.003 1.009 0.002 0.009 0.006 0.311 

Neuroticism personality -0.252 0.082 -3.082 0.091 0.008 0.986 0.001 0.013 0.005 0.311 

Age at first live birth ukbb 0.248 0.081 3.056 0.166 0.008 1.047 0.005 0.009 0.005 0.311 

Transport type for commuting to 

job workplace: Cycle 
ukbb 0.370 0.123 3.007 0.032 0.003 1.016 -0.005 0.007 0.004 0.311 

Depressive symptoms psychiatric -0.328 0.114 -2.882 0.048 0.004 0.999 0.002 0.007 0.005 0.333 

Qualifications: None of the above ukbb -0.221 0.078 -2.847 0.098 0.004 1.066 -0.004 0.012 0.005 0.333 

Age at last live birth ukbb 0.287 0.101 2.830 0.088 0.006 1.017 0.005 0.008 0.005 0.333 

Systolic blood pressure_ 

automated reading 
ukbb -0.209 0.074 -2.807 0.128 0.005 1.067 0.006 0.015 0.006 0.333 

Drive faster than motorway speed 

limit 
ukbb 0.233 0.086 2.705 0.057 0.003 1.030 -0.001 0.009 0.005 0.392 

Diastolic blood pressure_ 

automated reading 
ukbb -0.194 0.073 -2.675 0.136 0.006 1.066 0.004 0.016 0.006 0.392 

Pulse wave reflection index ukbb 0.360 0.136 2.648 0.055 0.005 1.008 -0.009 0.007 0.005 0.392 

Number of depression episodes ukbb 0.596 0.227 2.630 0.032 0.012 1.005 -0.008 0.006 0.004 0.392 

Qualifications: O levels/GCSEs 

or equivalent 
ukbb 0.236 0.092 2.567 0.049 0.003 1.017 0.001 0.009 0.005 0.441 

Fractured/broken bones in last 5 

years 
ukbb 0.272 0.108 2.527 0.019 0.002 1.008 -0.011 0.008 0.005 0.459 

Mineral and other dietary 

supplements: Glucosamine 
ukbb 0.263 0.107 2.453 0.025 0.002 1.009 0.003 0.008 0.005 0.532 

Friendships satisfaction ukbb -0.264 0.113 -2.329 0.062 0.005 0.998 -0.004 0.007 0.005 0.573 

Illness_ injury ukbb 0.279 0.120 2.316 0.014 0.002 1.011 -0.005 0.007 0.004 0.573 
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Happiness ukbb -0.249 0.108 -2.305 0.062 0.005 1.004 -0.002 0.008 0.005 0.573 

Noisy workplace ukbb -0.242 0.106 -2.274 0.062 0.006 1.028 -0.003 0.007 0.004 0.573 

Alzheimers disease neurological -0.475 0.209 -2.274 0.042 0.022 1.069 0.011 0.030 0.005 0.573 

Number of days/week walked 10+ 

minutes 
ukbb -0.191 0.085 -2.258 0.042 0.002 1.010 0.007 0.007 0.005 0.573 

Neuroticism score ukbb -0.155 0.069 -2.258 0.118 0.006 1.018 -0.006 0.013 0.005 0.573 

Obesity class 1 anthropomet -0.168 0.075 -2.250 0.218 0.012 1.017 0.010 0.011 0.005 0.573 

Types of transport used 

(excluding work): Cycle 
ukbb 0.236 0.106 2.227 0.025 0.002 1.026 0.000 0.007 0.005 0.573 

Number of cigarettes previously 

smoked daily 
ukbb -0.220 0.099 -2.210 0.100 0.014 1.002 0.004 0.009 0.005 0.573 

Tense / highly strung ukbb -0.164 0.075 -2.193 0.057 0.003 0.996 -0.001 0.010 0.005 0.573 

Time spent using computer ukbb 0.164 0.075 2.185 0.096 0.004 1.044 -0.010 0.009 0.006 0.573 

Current employment status: 

Doing unpaid or voluntary work 
ukbb 0.386 0.178 2.169 0.009 0.001 1.008 0.000 0.006 0.005 0.573 

Vitamin and mineral 

supplements: Multivitamins +/- 

minerals 

ukbb 0.224 0.104 2.147 0.024 0.002 1.008 -0.005 0.008 0.005 0.573 

Number of self-reported cancers ukbb -0.478 0.223 -2.144 0.007 0.002 1.014 0.006 0.007 0.006 0.573 

Mood swings ukbb -0.173 0.081 -2.130 0.071 0.003 1.017 -0.004 0.010 0.006 0.573 

Obesity class 3 anthropomet -0.264 0.125 -2.119 0.121 0.014 0.980 0.011 0.009 0.006 0.573 

Non-cancer illness code_ self-

reported: muscle or soft tissue 

injuries 

ukbb 0.840 0.397 2.117 0.002 0.001 1.000 -0.007 0.007 0.004 0.573 

Subjective well being psychiatric 0.210 0.100 2.112 0.025 0.002 1.001 0.000 0.007 0.005 0.573 

Qualifications: A levels/AS levels 

or equivalent 
ukbb 0.159 0.075 2.111 0.097 0.004 1.053 0.005 0.012 0.006 0.573 

Age completed full time 

education 
ukbb 0.178 0.085 2.084 0.085 0.005 1.063 0.008 0.010 0.006 0.573 

Diagnoses - main ICD10: N32 

Other disorders of bladder 
ukbb -0.490 0.237 -2.070 0.004 0.001 0.989 0.005 0.006 0.004 0.573 
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Sleep duration ukbb -0.153 0.074 -2.060 0.071 0.004 1.024 -0.008 0.010 0.005 0.573 

Vitamin and mineral 

supplements: Vitamin B 
ukbb 0.366 0.179 2.046 0.007 0.002 1.000 -0.002 0.007 0.005 0.573 

Non-cancer illness code_ self-

reported: hypertension 
ukbb -0.153 0.075 -2.044 0.114 0.005 1.057 -0.004 0.017 0.006 0.573 

Diagnoses - main ICD10: I10 

Essential (primary) hypertension 
ukbb 0.654 0.321 2.037 0.003 0.001 0.998 -0.010 0.006 0.004 0.573 

Alcohol intake frequency. ukbb -0.162 0.080 -2.026 0.084 0.004 1.044 0.004 0.010 0.006 0.573 

Wears glasses or contact lenses ukbb -0.231 0.114 -2.023 0.016 0.002 1.001 0.013 0.008 0.004 0.573 

Vascular/heart problems 

diagnosed by doctor: High blood 

pressure 

ukbb -0.150 0.074 -2.018 0.116 0.005 1.062 -0.003 0.017 0.006 0.573 

Other eye problems ukbb -0.285 0.141 -2.014 0.009 0.002 1.024 -0.003 0.007 0.005 0.573 

Ever had prostate specific antigen 

(PSA) test 
ukbb 0.250 0.125 1.997 0.034 0.003 1.004 -0.008 0.007 0.005 0.584 

Average weekly spirits intake ukbb 0.221 0.112 1.971 0.032 0.003 1.017 -0.004 0.008 0.005 0.601 

Cancer diagnosed by doctor ukbb -0.405 0.206 -1.964 0.007 0.002 1.010 0.005 0.007 0.005 0.601 

 
Abbreviations: rg, genetic correlation between two traits; SE, standard error; h2, heritability; h2 obs & h2 obs SE, observed scale h2 for trait 2 and standard error; h2 

int & h2 int SE, single-trait LD Score regression intercept for trait 2 and standard error; gcov int & gcov int SE, cross-trait LD Score regression intercept and standard 

error; ICV, intracranial volume 
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Supplementary Table A10. Associations between graph theory measures and sleep 

duration in UK Biobank 

 

Graph theory measures   SE t p 

Eglob  -0.047 0.008 -6.181 6.52E-10 

Charpath  0.048 0.008 6.240 4.47E-10 

Modularity 0.009 0.008 1.188 0.235 

Transitivity -0.031 0.008 -3.985 6.77E-05 

Eloc DMN -0.026 0.008 -3.384 0.001 

Eloc DAN -0.019 0.008 -2.477 0.013 

Eloc FPCN -0.012 0.008 -1.528 0.127 

Eloc LIMB -0.029 0.008 -3.717 0.0002 

Eloc SVAN -0.022 0.008 -2.832 0.005 

Eloc SM -0.016 0.008 -2.101 0.036 

Eloc VIS -0.020 0.008 -2.624 0.009 

Strength DMN -0.033 0.008 -4.325 1.53E-05 

Strength DAN -0.036 0.008 -4.734 2.22E-06 

Strength FPCN -0.020 0.008 -2.645 0.008 

Strength LIMB -0.040 0.008 -5.253 1.51E-07 

Strength SVAN -0.039 0.008 -5.120 3.08E-07 

Strength SM -0.050 0.008 -6.498 8.33E-11 

Strength VIS -0.038 0.008 -4.930 8.31E-07 

 

Abbreviations: , beta; SE, standard error, t, t-value; p, p-value; Eglob, global efficiency; Charpath, 

characteristic path length; Eloc, local efficiency; DMN, strength of default mode network; DAN, strength 

of dorsal attention network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic 

network; SVAN, strength of salience/ ventral attention network; SM, strength of somatomotor network; 

VIS, strength of visual network  
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Supplementary Table A11. Associations between graph theory measures and insomnia in UK Biobank 

 

Graph theory 

measures 

  

No insomnia vs 

Sometimes 

 

No insomnia vs 

Usually 

SE 

No insomnia vs 

Sometimes 

SE 

No insomnia vs 

Usually 

p  

No insomnia vs 

Sometimes 

p  

No insomnia 

vs Usually 

Eglob  -0.0505 -0.0531 0.0174 0.0201 0.0037 0.0083 

Charpath  0.0491 0.0478 0.0174 0.0201 0.0047 0.0173 

Modularity 0.0438 0.0739 0.0177 0.0204 0.0131 0.0003 

Transitivity -0.0505 -0.0546 0.0176 0.0203 0.0041 0.0072 

Eloc DMN -0.0377 -0.0357 0.0178 0.0205 0.0340 0.0824 

Eloc DAN -0.0493 -0.0589 0.0177 0.0205 0.0054 0.0040 

Eloc FPCN -0.0316 -0.0557 0.0177 0.0205 0.0741 0.0065 

Eloc LIMB -0.0372 -0.0360 0.0177 0.0205 0.0355 0.0781 

Eloc SVAN -0.0298 -0.0388 0.0177 0.0204 0.0921 0.0576 

Eloc SM -0.0378 -0.0399 0.0178 0.0205 0.0331 0.0521 

Eloc VIS -0.0446 -0.0633 0.0178 0.0206 0.0123 0.0021 

Strength DMN -0.0557 -0.0540 0.0176 0.0204 0.0016 0.0080 

Strength DAN -0.0530 -0.0694 0.0175 0.0202 0.0025 0.0006 

Strength FPCN -0.0384 -0.0572 0.0175 0.0202 0.0285 0.0048 

Strength LIMB -0.0430 -0.0242 0.0176 0.0203 0.0144 0.2332 

Strength SVAN -0.0400 -0.0447 0.0174 0.0201 0.0218 0.0266 

Strength SM -0.0540 -0.0576 0.0174 0.0201 0.0019 0.0042 

Strength VIS -0.0447 -0.0624 0.0177 0.0205 0.0116 0.0023 

 

Abbreviations: , beta; SE, standard error, t, t-value; p, p-value; Eglob, global efficiency; Charpath, characteristic path length; Eloc, local efficiency; DMN, strength of 

default mode network; DAN, strength of dorsal attention network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ ventral attention network; SM, strength of somatomotor network; VIS, strength of visual network  
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Supplemental Figures for Chapter 3.  

 

Supplementary Figure B1. Correlations between the graph theory measures in the UK 

Biobank sample (n = 18,445). Blue represents positive correlations whereas red 

represents negative correlations.  

 

 
 

Abbreviations: Eglob, global efficiency; Charpath, characteristic path length; Eloc, local efficiency  
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Supplementary Figure B2. Manhattan and quantile-quantile (QQ) plots in the UK 

Biobank sample (n = 18,445).  

In the Manhattan plots, each point represents a single genetic variant plotted according to its genomic 

position (x-axis) and its –log10(P) for two-tailed associations with graph theory measures (y-axis). In QQ-

plots, the line represents the expected null distribution and Lambda inflation factors () are provided in 

each plot. Linear regression models were adjusted for age, age2, sex, age × sex, age2 × sex, head motion 

from resting-state fMRI, head position, volumetric scaling factor needed to normalise for head size, 

genotyping array, the 10 genetic principal components. The black solid line represents the classical 

GWAS significance threshold of p < 5 × 10-8. Genomic inflation factor (lambda gc) is between 1.013 to 

1.046.   
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B2A. Global efficiency 

 

 

Lambda gc = 1.043  
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B2B. Characteristic path length  

 

 

Lambda gc = 1.046  
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B2C. Louvain Modularity  

 

 

Lambda gc = 1.034 
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B2D. Transitivity 

 

 

Lambda gc = 1.027  
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B2E. Local efficiency of default network 

 

 

Lambda gc = 1.024 
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B2F. Local efficiency of dorsal attention network   

 

 

Lambda gc = 1.021  
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B2G. Local efficiency of frontoparietal network   

 

 

Lambda gc = 1.020  
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B2H. Local efficiency of limbic network   

 

 

Lambda gc = 1.022 
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B2I. Local efficiency of salience network 

 

 

 

 

 

 

 

Lambda gc = 1.019  
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B2J. Local efficiency of somatomotor network  

 

 

Lambda gc = 1.025  
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B2K. Local efficiency of visual network  

 

 

Lambda gc = 1.018  
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B2L. Strength of default network   

 

 

Lambda gc = 1.026  
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B2M. Strength of dorsal attention network   

 

 

Lambda gc = 1.033  
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B2N. Strength of frontoparietal network 

 

 

Lambda gc = 1.041 
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B2O. Strength of limbic network   

 

 

Lambda gc = 1.013  
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B2P. Strength of salience network   

 

 

Lambda gc = 1.022  
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B2Q. Strength of somatomotor network   

 

 

Lambda gc = 1.037  
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B2R. Strength of visual network   

 

 

Lambda gc = 1.034 
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Supplementary Fig. B3. Linkage disequilibrium plot of the GWAS region on 

chromosome 2 associated with network measures.  
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Supplementary Figure B4. Heat map of gene expression levels across tissues for the list 

of genes found in the gene-based association analysis using FUMA Gene2Func. 

The colour bar represents the magnitude and direction of the gene expression – red represents higher 

expression of the genes compared to the cells filled in blue across tissue types. 
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Abstract  

Age and sex have been associated with changes in functional brain network topology 

and cognition in large population of older adults. However, findings from previous 

studies were mixed. We explored this question further by examining differences in 11 

resting-state graph theory measures with respect to age, sex, and their relationships with 

cognitive performance in 17,127 UK Biobank participants (mean=62.837.41 years). 

Age was associated with an overall decrease in the effectiveness of network 

communication (i.e. integration) and loss of functional specialisation (i.e. segregation) 

of specific brain regions. Sex differences were also observed, with women showing 

more efficient networks which were less segregated than in men (FDR adjusted p<.05). 

Age-related changes were also more apparent in men than women, which suggests that 

men may be more vulnerable to cognitive decline with age. Interestingly, while network 

segregation and strength of limbic network were only nominally associated with 

cognitive performance, the network measures collectively were significantly associated 

with cognition (FDR adjusted p ≤ .002). This may imply that individual measures may 

be inadequate to capture much of the variance in neural activity or its output and need 

further refinement.  The complexity of the functional brain organisation may be shaped 

by an individual’s age and sex, which ultimately may influence cognitive performance 

of older adults. Age and sex stratification may be used to inform clinical neuroscience 

research to identify older adults at risk of cognitive dysfunction.  
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4.1 Introduction  

The brain is topographically organised into distinct networks. In the recent years, 

neuroscientists have examined networks to understand brain function rather than to 

assess the brain regions as was done classically. There are several approaches to 

mapping these brain networks, with one approach being resting-state functional 

magnetic resonance imaging (rs-fMRI). Rs-fMRI measures spontaneous brain activity 

as low-frequency fluctuations in bold oxygen level-dependent (BOLD) signals and is 

used to understand brain function (Wang et al., 2010b). In network models of rs-fMRI 

data, functional brain networks are summarised into a collection of nodes (i.e., brain 

regions) and edges (i.e., magnitude of temporal correlation in fMRI activity between 

regions) (Bertolero et al., 2018; Rubinov & Sporns, 2010). This network model can then 

be used to study the global and local properties of the functional brain networks (Table 

4.1). There is evidence that adult human brains are organised into groups of specialised 

functional networks that are able to respond to various cognitive demands (Wang et al., 

2010b). Therefore, studying the organisation of functional networks in the ageing brain 

may allow us to understand age-associated cognitive changes, even in the absence of 

brain disease (Burke & Barnes, 2006; Otte et al., 2015).  

 

Reorganisation of the functional networks in the brain has been observed with ageing, 

and is also associated with changes in cognition (Betzel et al., 2014; Chan et al., 2014; 

Geerligs et al., 2015; Song et al., 2014; Zhang et al., 2016). Age-related alterations have 

been associated with a less efficient global network, decreased modularity, longer path 

lengths, and higher clustering coefficient, which may suggest a shift to more local 

organisation in older age (Achard & Bullmore, 2007; Geerligs et al., 2015; Wang, Li, 

Metzak, He, & Woodward, 2010c; Zhang et al., 2016). These topological functional 
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network changes occurred most pronouncedly in regions important for cognition. For 

instance, high clustering coefficients in some frontal, temporal, and parietal regions 

were related to lower performance in verbal and visual memory functions (Sala-Llonch 

et al., 2014). Declines in default mode network, which comprises of the medial and 

lateral parietal, medial prefrontal, and medial and lateral temporal cortices (Raichle, 

2015), are reported in ageing and have been associated with memory consolidation 

(Murman, 2015). In addition, it has been observed that age has a mediating role in the 

correlation between local clustering coefficients and verbal memory learning scores 

(Sala-Llonch et al., 2014).  Similarly, another study found that the relationship between 

aging and general decline in cognition could be mediated by changes in the functional 

connectivity measures such as path length (Bagarinao et al., 2019).  

 

Previous studies have also shown sex differences in the organisation of brain functional 

networks using graph theory measures. Men showed network segregation (i.e., 

specialised processing of the brain at a local level) whereas women showed more 

network integration (i.e., how rapidly the brain can integrate specialised information at a 

global network level) (Zhang et al., 2016). Another study observed that men had a 

higher clustering coefficient in the right hemisphere than the left hemisphere (Tian et 

al., 2011), suggesting that men had greater specialisation of the right hemisphere. In 

addition, age-related differences in reorganisation of functional connectivity may also 

differ by sex, with men showing increasing between-network connectivity (Goldstone et 

al., 2016) while women exhibit smaller age-related decreases in the default mode and 

limbic networks (Scheinost et al., 2015). It is noteworthy that age-related changes in 

cognition also differ by sex. For instance, a recent study has observed that while women 

had significantly higher baseline global memory, executive function, and memory 
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performance than men, they showed significantly faster declines in the global memory 

and executive function (Levine et al., 2021). Another study found that older men had 

steeper rates of decline on measures of perceptuomotor speed and integration as well as 

visuospatial abilities (McCarrey, An, Kitner-Triolo, Ferrucci, & Resnick, 2016). Taken 

together, the findings show that sex may influence age-related functional reorganisation 

in the brain and improving our understanding of this may shed light onto why some 

cognitive abilities differ substantially by sex (Ritchie et al., 2018).  

 

There is evidence to show that changes in cognition may be due to the changes in 

functional network connectivity. Segregated functional networks, for instance, seemed 

to be associated with better long-term episodic memory and fluid processing (Wig, 

2017). However, there have been mixed findings regarding how resting-state functional 

connectivity differences relate to cognitive performance. One longitudinal study found 

age-related decline of within-network connectivity in default mode and executive 

control networks but without associations with cognitive decline, whereas an 

association of between-network connectivity of default mode  
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network and executive control network with processing speed was also observed (Ng et 

al., 2016). In contrast, another longitudinal study showed positive associations between 

within-network connectivity of the default mode network and memory performance 

(Persson, Pudas, Nilsson, & Nyberg, 2014).  

 

One previous study has investigated the functional network architecture of older adults 

with respect to age, sex, and cognitive performance (attention, episodic and working 

memory, executive function, and language) in a cohort of 722 participants with ages 

between 55 and 85 years old (mean age of 67.1 years) (Stumme, Jockwitz, Hoffstaedter, 

Amunts, & Caspers, 2020). They found resting-state functional connectivity 

reorganisation with age, particularly in the visual and sensorimotor networks, which 

may suggest that these networks may mediate age-related differences in cognitive 

performance. In addition, the authors observed that men showed higher network 

integration whereas women showed more segregation, which may possibly facilitate 

sex-related differences in cognitive performance.  

 

This study aims to extend previous work by firstly examining age, sex, and cognitive 

function in association with functional network properties but in a much larger sample 

of 17,127 UK Biobank participants. Additionally, a more extensive range of graph 

theory measures, which assess the global and local properties as well as the strength of 

the network, will be examined. These measures are namely global efficiency, 

characteristic path length, Louvain modularity, transitivity, and strength of default, 

dorsal attention, frontoparietal, limbic, salience, somatomotor, and visual networks, 

which are typically found to change with aging (Song et al., 2014) and are involved in 
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multiple neuropathological processes (Khazaee et al., 2015; Lebedev et al., 2014; 

Munilla et al., 2017).   

 

4.2 Methods  

4.2.1 Participants  

Data from 20,598 participants of European ancestry with rs-fMRI scans from the UK 

Biobank (aged between 44 and 80 years old) (Sudlow et al., 2015) were accessed in 

March 2019. The imaging assessment took place at three different assessment centres: 

Manchester, Newcastle, and Reading, UK.  

 

This project was approved by the NHS National Research Ethics Service (approval 

letter dated 17th June 2011, ref. 11/NW/0382), project 10279. All data and materials are 

available via UK Biobank (http://www.ukbiobank.ac.uk).  

 

4.2.2 Image pre-processing and graph theory analyses 

All participants underwent rs-fMRI scan on a Siemens Skyra 3T scanner (Siemens 

Medical Solutions, Erlangen, Germany). Rs-fMRI was obtained using a blood-oxygen 

level dependent (BOLD) sequence using an echo-planar imaging (EPI) sequence (TR = 

0.735s, TE = 39 ms, FoV = 88  88  64, voxel resolution 2.4  2.4  2.4 mm), lasting 

for ~6 mins (for more details, see 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). I analysed the rs-fMRI 

data that was previously pre-processed by the UK Biobank (Alfaro-Almagro et al., 

2018). The pre-processing steps involved: motion correction, intensity normalisation, 

high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0s), echo-planar imaging (EPI) unwarping, and gradient distortion correction. 

http://www.ukbiobank.ac.uk/
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ICA+FIX processing (Beckmann & Smith, 2004; Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014) was then used to remove structured artefacts. Participants with 

motion of > 2mm/degrees of translation/rotation were removed. Of the 20,598 

participants of British ancestry with rs-fMRI scans provided by the UK Biobank 

(Sudlow et al., 2015), image pre-processing was successful for 19,820 participants.   

 

The regions of interest (ROIs) used to construct the network properties were selected 

from the Schaefer atlas (Schaefer et al., 2018) corresponding to 100 cortical regions 

classified into seven resting-state networks including frontoparietal control (FPCN), 

default mode (DMN), dorsal attention (DAN), salience ventral attention (SVAN), 

limbic (LIMB), somatomotor (SM), and visual (VIS) networks. 3dNetCorr command 

from Analysis of Functional Neuroimaging (AFNI) (Cox, 1996) was used to produce 

network adjacency matrix for each participant. The mean time-series for each region 

was correlated with the mean time-series for all other regions and extracted for each 

participant. More details can be found in Miller et al. (2016). Subsequently, using the 

derived network adjacency matrix, partial correlation, r, between all pairs of signals was 

computed to form a 100-by-100 (Schaefer atlas) connectivity matrix, which was then 

Fisher z-transformed. To slightly improve the partial correlation coefficients, L2-

regularisation was used (rho = 0.5 for Ridge Regression option in FSLNets). Self-

connections and negative correlations were set to zero. As rs-fMRI can vary across 

magnitude, the use of undirected weighted matrices may provide a more comprehensive 

picture of the functional brain networks. The stronger the weights, the stronger the 

connections between nodes. In addition, I used undirected graph because in rs-fMRI, 

this study is unable to make inferences about the possible direction of information flow. 

However, undirected graph is useful as it allows us to identify existing connections 
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between specific pairs of network nodes (Fornito, Zalesky, & Bullmore, 2016). 

Therefore, I used weighted and undirected matrices in this study.  

 

All graph theory measures were derived using the Brain Connectivity Toolbox (BCT) 

(Rubinov & Sporns, 2010). Functional integration can be assessed by global efficiency, 

which refers to the transmission of information at a global level, and characteristic path 

length, which is the average shortest distance between any two nodes in the network. To 

assess network segregation, which characterises the specialised processing of the brain 

at a local level, I calculated the Louvain modularity and transitivity. Louvain modularity 

is a community detection method, which iteratively transforms the network into a set of 

communities, each consisting of a group of nodes. Higher modularity values indicate 

denser within-modular connections but sparser connections between nodes that are in 

different modules. Transitivity refers to the sum of all the clustering coefficients around 

each node in the network and is normalised collectively. Finally, strength (weighted 

degree) is described as the sum of all neighbouring edge weights. High connectivity 

strength indicates stronger connectivity between the regions, which provides an 

estimation of functional importance of each network. Subsequently, I averaged the left-

right hemisphere to derive a value for each node and averaged within each network to 

derive a value for each of the 7 networks for strength measures.  

 

4.2.3 Cognition  

Cognitive assessments were administered on a touchscreen computer and were acquired 

at the imaging visit (instance 2). Seven tests from the UK Biobank battery of tests were 

selected to represent three cognitive domains (Cox, Ritchie, Fawns-Ritchie, Tucker-

Drob, & Deary, 2019; Kendall et al., 2017) namely processing speed, memory, and 
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executive function, in this study. All test scores were first z-transformed and then 

averaged to form domain scores. Processing speed domain included the following tests: 

“Reaction Time” (average time to correctly identify matches in a “snap”-like card game 

task), “Trail Making A” (time taken to complete a numeric path), and “Symbol Digit 

Substitution” (number of correct symbol number matches within the time limit). 

“Numeric Memory” (maximum number of digits remembered correctly) and “Pairs 

Matching” (number of incorrect visual matching) represented the memory domain 

whereas “Trail Making B” (time taken to complete an alphanumeric path) and “Fluid 

Intelligence” (total number of questions that required logic and reasoning correctly 

answered) formed the executive function domain. Global cognition was an average of 

the 3 domains. After including those with cognition data, the final sample in this study 

was 17,127 UK Biobank participants. 

 

4.2.4 Statistical analyses  

Statistical analyses were performed with R (V 4.0.0) (R Core Team, 2020). The graph 

theory measures were normalized using ranked transformation, rntransform() function 

in R from GeneABEL package (Karssen et al., 2016) and age was z-transformed for 

regression analysis. In line with previous studies (Elliott et al., 2018), we controlled for 

imaging covariates, including head size (intracranial volume), head motion from rs-

fMRI, and volumetric scaling factor needed to normalize for head size, as well as 

scanning site and education. The network measures were residualised for imaging 

covariates and assessment centre and used in all subsequent analyses.  

 

To explore age and sex-related changes in the networks, a multiple linear regression that 

modelled the targeted property of networks as the dependent variable and age, age2, sex 
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(Female = 0, Male = 1), years of education, and age-by-sex and age2-by-sex interactions 

as predictors was undertaken. In addition, separate multiple linear regressions were 

performed to study whether the network measures influenced cognitive functions 

(dependent variable) with covariates as in the previous model.  

 

Penalised multiple regression with penalty parameters for the regression coefficients 

was done to further examine the joint effect of the network measures on cognitive 

functions after accounting for the same set of covariates in the univariate model. Since 

the network measures are correlated I used penalised regression analysis using glmnet 

algorithm as implemented in the R package caret (Kuhn, 2015). The glmnet uses two 

penalty functions with tuning parameters to shrink the beta coefficients in the 

generalised linear model (glm). I used elastic net glm model with default options to 

identify the optimum tuning parameter estimates. Network measures and the covariates 

with non-zero regression coefficient in the training step were fit with linear regression 

model. Likelihood ratio tests, p-values and the incremental r-square were computed by 

comparing the model with network measures (full model) against a model with only the 

covariates (base model).  False discovery rate – adjusted p-values were obtained by 

using Benjamini and Hochberg (1995) procedure as implemented in the R function 

p.adjust.  

 

4.3 Results  

4.3.1 Sample characteristics  

The current sample of 17,127 participants is a group of generally healthy middle-aged 

and older adults (range = 45.17 – 80.67 years, mean age = 62.83  7.41 years) after 

including only samples with cognition and graph theory data. Of this sample 9,037 were 
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women and 8,090 were men, with an overall mean of 15.73 (  4.74) years of education. 

Significant differences were observed for the demographics, graph theory measures, and 

memory scores between men and women (Table 4.1). Figure 4.1 shows the significant 

correlations between the network measures, except for transitivity, which was not 

significantly associated with any other measures. 

 

4.3.2 Age- and sex- related differences in functional brain network  

Figure 4.2 and Table 4.2 summarise the results of age- and sex- related differences on 

the graph theory measures. Global efficiency, Louvain modularity, and strength of all 

except for strength of default and salience networks decreased significantly with age, 

whereas characteristic path length and transitivity increased significantly with age. 

 

Sex was significantly associated with all measures, except for transitivity. Men 

appeared to have lower global efficiency, transitivity, strengths of all the networks as 

well as longer characteristic path length compared to women. In addition, men showed 

increased Louvain modularity compared to women. 

 

Age and sex interaction effects were negatively associated with Louvain modularity, 

and strength of visual, limbic, and default networks. This implies that age-related 

changes in these measures were more apparent in males than females. 

 

4.3.3 Association of network measures with cognition  

I studied whether the network influence on cognition after controlling for age, sex, and 

education. Although none of these results would survive correction for multiple testing, 

I report the results that were nominally significant. Louvain modularity showed positive 
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associations with global cognition whereas transitivity was negatively associated with 

memory. Strength of limbic network also showed negative associations with global 

cognition and memory (Supplementary Table C1).  

 

I further examined this relationship to see if it is moderated by age and sex. However, 

none of the interaction effects between network measures and age or sex on cognition 

were significant (Supplementary Table C2).  
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Table 4.1 UK biobank sample characteristics and descriptive statistics (mean  

standard deviation) of graph theory measures and cognition measures in women 

and men 

 Women Men t p 

Age, years (range) 62.21  7.23 (45–80) 63.53  7.55 (45-80) -11.660 < 0.001 

Education, years 15.44  4.75 16.06  4.70 -8.540 < 0.001 

Graph theory measures  

Eglob 0.180  1.010 -0.205  0.952 25.573 < 0.001 

Charpath -0.199  1.009 0.234  0.904 -28.919 < 0.001 

Louvain modularity -0.086  1.014 0.123  0.964 -13.758 < 0.001 

Transitivity 0.071  0.989 -0.089  0.992 10.544 < 0.001 

DMN 0.191  1.006 -0.227  0.942 28.021 < 0.001 

DAN  0.199  1.005 -0.230  0.945 28.643 < 0.001 

FPCN 0.149  1.019 -0.176  0.950 21.499 < 0.001 

LIMB 0.160  0.991 -0.203  0.973 24.158 < 0.001 

SVAN 0.185  1.010 -0.225  0.935 27.415 < 0.001 

SM 0.024  1.026 -0.037  0.923 3.992 < 0.001 

VIS 0.194  1.004 -0.222  0.943 27.807 < 0.001 

Cognition 

Memory 0.01  0.943 0.11  1.002 -4.604 < 0.001 

Executive 0.12  0.928 0.13  0.990 -0.616 0.538 

Processing speed 0.18  0.945 0.14  0.964 1.968 0.049 

Global cognition 0.14  0.917 0.16  0.983 -1.178 0.239 

 

Analysis were conducted using independent samples t-test for continuous variables. Graph theory 

measures and cognition are in z-scores i.e. negative value represents poorer score, except for characteristic 

path length. Abbreviations: t, t-value; p, p-value; Eglob, global efficiency; Charpath, characteristic path 

length; Vis, strength of visual network; SM, strength of somatomotor network; DAN, strength of dorsal 

attention network; SVAN, strength of salience network; LIMB, strength of limbic network; FPCN, 

strength of control network; DMN, strength of default network. Italics represents significance. 
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Figure 4.1 Correlations between the graph theory measures 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Abbreviations: Speed, processing speed; Executive, executive function; Eglob, global efficiency; 

Charpath, characteristic path length; Vis, strength of visual network; SM, strength of somatomotor 

network; DAN, strength of dorsal attention network; SVAN, strength of salience network; LIMB, 

strength of limbic network; FPCN, strength of control network; DMN, strength of default network
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Table 4.2 Age- and sex- related differences in graph theory measures 

 

, Beta; SE, standard error; Padj, adjusted p-value; AgeXsex, age and sex interaction; Eglob; global efficiency; Charpath, characteristic path length; DMN, strength of 

default mode network; DAN, strength of dorsal attention network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ventral attention network; SM, strength of somatomotor network; VIS, strength of visual network 

Italics represents significance  

 

 

Graph theory 

measures 

  

Age 

SE  

Age 

  

Sex 

SE  

Sex 

  

AgeXsex 

SE  

AgeXsex 

Padj  

Age 

Padj  

Sex 

Padj  

AgeXsex 

Eglob -0.108 0.011 -0.170 0.021 -0.014 0.016 3.74E-21 1.29E-15 0.391 

Charpath 0.043 0.011 0.226 0.021 0.034 0.016 1.67E-04 3.78E-26 0.068 

Louvain modularity -0.181 0.011 0.166 0.021 0.046 0.016 1.05E-57 2.96E-15 0.016 

Transitivity 0.072 0.011 -0.042 0.021 0.024 0.016 4.55E-10 0.048 0.179 

DMN 0.004 0.011 -0.287 0.021 -0.044 0.016 0.772 4.28E-41 0.016 

DAN  -0.055 0.011 -0.181 0.021 -0.006 0.016 1.71E-06 2.27E-17 0.681 

FPCN -0.025 0.011 -0.194 0.021 -0.015 0.016 0.032 1.11E-19 0.391 

LIMB 0.142 0.011 -0.263 0.021 -0.043 0.016 3.14E-36 3.04E-35 0.016 

SVAN 0.000 0.011 -0.223 0.021 -0.026 0.016 0.971 2.29E-25 0.145 

SM -0.093 0.011 -0.090 0.021 -0.031 0.016 5.86E-16 2.27E-05 0.093 

VIS -0.071 0.011 -0.106 0.021 -0.076 0.016 5.12E-10 6.80E-07 1.21E-05 
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Figure 4.2 Age- and sex- related differences in the graph theory measures 

Lines represent the fitted values for men (blue) and women (red) separately The middle line shows the 

fitted equation evaluated at the mean value of education for each sex, while the top and lower lines 

represent confidence bands. Abbreviations: Eglob, global efficiency; Charpath, characteristic path length; 

Vis, strength of visual network; SM, strength of somatomotor network; DAN, strength of dorsal attention 

network; SVAN, strength of salience network; LIMB, strength of limbic network; FPCN, strength of 

control network; DMN, strength of default network 
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4.3.4 Multivariate analysis between network measures and cognition 

Given the significant correlations between the network measures, I further investigated 

whether the joint effect of the network measures contributed to cognition after 

controlling for age, sex, and education variables. Summary of the individual terms in 

the model are presented in the Supplementary table C3. I observed that while the R2 

difference between the base model (age, age2, sex, and education) and the full model 

with the network measures was small, the joint effect of the network measures still 

significantly contributed to cognition (Table 4.3).  
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Table 4.3 Multivariate analysis of the joint effect of the network measures with 

cognitive function 

Cognitive domains df LR 

R2 full 

model R2 base R2 diff Padj 

Processing speed 7 3.224 0.239 0.237 0.002 0.002 

Executive function 9 3.503 0.132 0.128 0.004 5.29E-04 

Memory 8 3.650 0.045 0.041 0.004 5.29E-04 

Global cognition 3 4.480 0.188 0.184 0.004 7.75E-05 

 

Abbreviations: df, number of network measures in the model; LR, likelihood ratio, diff, difference; Padj, 

adjusted p-value 

Networks included in the final model:  

Processing speed – Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual 

Network, Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Salience 

Network, Strength of Limbic Network  

Executive function - Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual 

Network, Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Salience 

Network, Strength of Limbic Network, Strength of Control Network, Strength of Default Network 

Memory - Age, Age2, Sex, Education, Global efficiency, Transitivity, Strength of Visual Network, 

Strength of Dorsal Attention Network, Strength of Salience Network, Strength of Limbic Network, 

Strength of Control Network, Strength of Default Network 

Global cognition - Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual 

Network, Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Limbic 

Network, Strength of Control Network, Strength of Default Network 

Full model includes network measures and base model includes only covariate 

Italics represents significance 
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4.4 Discussion 

Changes to resting-state networks due to ageing arguably reflect more fundamental 

alterations or adaptations at the general level of brain function (Jockwitz & Caspers, 

2021). Graph theoretical approaches may be the most integrative way to investigate 

resting-state functional connectivity (RSFC) as it studies connectivity at both nodal and 

systems levels (Jockwitz & Caspers, 2021). Therefore, in this study, I examined the 

topological age and sex relationship with functional brain networks, using graph theory 

measures, and cognition. I observed that most functional brain network measures 

showed decreasing strength of connectivity as well as reduced efficiency of 

communication and specialisation between the networks with ageing. However, the 

default mode and salience networks were an exception to this finding, with no 

significant results observed. In addition, there were significant sex differences in brain 

functional network topology where women showed greater efficiency of networks and 

network strength but less modularity than men. Further, age-related changes were more 

apparent in men than women. Lastly, the collective effect of the network measures 

contributed significantly to cognitive performance, with the highest correlation being 

with processing speed. However, no one network measure was significant after multiple 

testing adjustment.  

 

I observed that global efficiency correlated negatively with age whereas characteristic 

path length correlated positively with age, which was similar to a previous study (Sala-

Llonch et al., 2014). This suggests an overall age-related decrease in the effectiveness of 

the communication between brain regions. In addition, the finding that modularity 

decreases with age has also been reported previously (Song et al., 2014). This implies 

that increasing age is associated with a less differentiated functional modular structure, 
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which may be either due to the increase in between-network connections or the decrease 

in within-network connections or both (Chan et al., 2014; Song et al., 2014). At younger 

ages, functional brain networks are more segregated with every network being relatively 

specialised for distinct mental processes (Chan et al., 2014). The data suggest that there 

is some loss of functional specialisation of specific brain networks as the brain ages 

(Goh, 2011), which may be important for cognitive reserve and compensation in older 

adults. Furthermore, this study showed age-related decline in all of the other network 

strengths, excluding the DMN and salience network. However, results for other 

networks from previous studies are more complex. For instance, Betzel and colleagues 

(Betzel et al., 2014) found within-network decline for higher order control and attention 

networks but stability for visual and somatomotor networks, whilst another study (Song 

et al., 2014) showed increased global and local efficiency in the sensorimotor network 

in older compared to younger adults. Taken together, our data and others suggest age-

related vulnerability in global network measures as well as specific network strengths.   

 

Importantly, this study did not observe any age-related decline in the DMN and salience 

network. Prior works suggest that within-network posterior DMN connectivity, 

including angular gyrus, anterior cingulate cortex, precuneus, dorsal prefrontal, and 

inferior parietal lobe, decreases with age, (Betzel et al., 2014; Chan et al., 2014; 

Geerligs et al., 2015; Song et al., 2014; Stumme et al., 2020). In contrast, within the 

older adult population, DMN as a whole remains relatively stable (Jones et al., 2011; 

Stumme et al., 2020). This finding is important as it shows that anterior-posterior DMN 

has differential vulnerability to age-related changes. Moreover, the salience network 

seems to remain relatively stable throughout the lifespan (Chan et al., 2014; Varangis, 

Habeck, Razlighi, & Stern, 2019) as well as in older age (Siman-Tov et al., 2017; 
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Stumme et al., 2020). Interestingly, the DMN and salience network have also been 

implicated in age-related diseases such as Alzheimer’s disease (AD) and depression. 

One study observed that individuals with AD showed moderate decrease of within-

network DMN between the posterior cingulate cortex and right hippocampus as 

compared to healthy controls but no differences were evident for whole-network DMN 

(Grieder, Wang, Dierks, Wahlund, & Jann, 2018). Further, compared to older adult 

controls, individuals with AD showed significantly decreased within-network functional 

connectivity in the frontoinsular cortices and increased FC in medial prefrontal cortex in 

the salience network (He et al., 2014). Similarly, older adults with depression 

demonstrated higher within-network DMN in the left precuneus, subgenual anterior 

cingulate cortex (ACC), ventromedial prefrontal cortex, and lateral parietal regions than 

controls (Alexopoulos et al., 2012). In addition, regarding the salience network, within-

network bilateral anterior insula showed decreased connectivity but bilateral ACC 

showed increased connectivity in middle-aged adults with depression compared to 

controls (Manoliu et al., 2014). These findings suggest that while the whole DMN may 

be preserved, within-network posterior DMN may be vulnerable to ageing and ageing-

related diseases. 

 

The topology of functional brain networks differed by sex. This study detected 

significant sex influence on all the assessed graph theory measures. Consistent with 

results from Zhang et al. (Zhang et al., 2016) showing that female brains facilitated 

functional integration in young adults, I found that in older individuals, women indeed 

had higher global efficiency and shorter characteristic path length than men. Similarly, 

congruent with previous findings, I also observed women had higher normalised 

clustering coefficients (i.e. transitivity) than men (Zhang et al., 2016). However, men 
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exhibited stronger Louvain modularity which suggests that there may be sex differences 

even within network segregation. It has previously been reported that women tend to 

exhibit overall higher within-network RSFC (Allen et al., 2011), which is consistent 

with our finding that women had higher network strengths than men. Similarly, 

consistent with previous findings that women show less age-related decreases in RSFC 

in the default and limbic network (Scheinost et al., 2015), I found that age-related 

changes in strengths of the limbic and default networks in addition to Louvain 

modularity and strength of visual network were more apparent in males than females. 

This suggests that ageing-related changes in the functional brain network are different in 

the two sexes and that this difference may in part account for the differential 

vulnerability in cognitive decline between men and women.  

 

In this study, I saw that functional connectivity architecture in the brain has been 

associated with cognitive performance in older adults independent of age, sex, and 

education. I observed that decreased Louvain modularity was nominally associated with 

decline in global cognition and that decreased transitivity was nominally associated with 

decline in memory. Individuals with less segregated networks exhibited poorest 

memory ability after controlling for age, which may suggest that network segregation 

may be an age-invariant marker of individual differences in cognition (Chan et al., 

2014). In addition, prior evidence from cognitive training interventions has shown that 

higher modularity at baseline in older adults was associated with greater cognitive 

training improvements, especially in sensory-motor processing (Gallen et al., 2016). 

Furthermore, given that the limbic network derived from the Schaefer parcellation 

comprises the orbitofrontal cortex and temporal pole, and these regions are associated 

with memory formation (Petrides, Alivisatos, & Frey, 2002) and executive function 
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(Robinson, Calamia, Gläscher, Bruss, & Tranel, 2014), it supports our finding that the 

strength of the limbic network showed negative associations with memory and 

executive function. While there is nominal significance between individual network 

measures and cognition, the joint effect of all the network measures contributed 

significantly to cognition after accounting for age, sex, and education. This suggests that 

cognitive decline observed in older adults may be partially explained by independent 

changes in brain functional network organisation. It also implies that individual network 

measures may be inadequate to capture much of the variance in neural activity and the 

functional output. Future studies are needed to combine various strategies to more 

holistically understand the network topology in relation to cognition. 

 

The strengths of this study include a well-characterised large middle and older aged 

cohort, uniform imaging methods, the inclusion of a range of network measures 

associated with age and ageing-related diseases, and the examination of a number of 

cognitive domains. This is the largest study of its kind thus far. However, limitations 

should also be considered. Firstly, this study is cross-sectional, which precludes the 

ability to detect subtle changes in the functional brain topology over time within 

individuals. Secondly, while using weighted undirected matrix circumvents issues 

surrounding filtering/thresholding the connectivity matrix to maintain significant edge 

weights represented in a binary matrix, there are inherent difficulties associated with the 

interpretation of the results. As brain signals recorded from resting-state fMRI are 

typically noisy, it is possible that edge weights may be affected by non-neural 

contributions (De Vico Fallani, Richiardi, Chavez, & Achard, 2014). Despite this, with 

careful denoising of the resting-state fMRI data (Parkes et al., 2018; Power et al., 2017) 

and covarying for motion, it is possible to minimise the noise in the data. Given that I 
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have performed motion correction and included it as a covariate as well as performed 

regularisation on the imaging data, I am confident that the estimation of the partial 

correlation matrix derived for subsequent analysis of the graph theory measures is valid. 

Moreover, while I was only interested in investigating whole network functional 

connectivity, given the findings from DMN and salience network, it may be beneficial 

to look at individual nodes within the network to more holistically capture the nodal 

topology. Lastly, given the principles of neurobiology, I assumed that network 

properties influence cognition and not the other way around. This question needs to be 

examined longitudinally to confirm the directionality of the relationship.  

 

In conclusion, in this large population-based study age was associated with decreased 

overall network integrity and specialised processing of the brain at a local level. Women 

had better functional network topology properties than men, with men tending to have 

denser within-network connections but sparser connections between-network 

connections. This work demonstrates the complexity of functional brain organisation 

that is shaped by age, sex and other factors, which ultimately may influence cognitive 

performance of older adults. 
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Supplemental Tables for Chapter 4 

Supplementary Table C1. Results for network and cognition after controlling for age, sex, and education 

Network measure (IV) Cog Measure (DV)  Network SE Network P Network Adj P Network 

Eglob Processing speed -0.014 0.010 0.149 0.414 

Eglob Executive function 0.011 0.011 0.323 0.570 

Eglob Memory -0.010 0.011 0.331 0.570 

Eglob Global cognition -0.004 0.010 0.700 0.850 

Charpath Processing speed 0.016 0.010 0.102 0.319 

Charpath Executive function -0.006 0.011 0.585 0.809 

Charpath Memory 0.015 0.011 0.175 0.453 

Charpath Global cognition 0.008 0.010 0.400 0.652 

Louvain modularity Processing speed 0.024 0.010 0.017 0.095 

Louvain modularity Executive function 0.021 0.011 0.050 0.222 

Louvain modularity Memory 0.024 0.011 0.030 0.145 

Louvain modularity Global cognition 0.029 0.010 0.005 0.054 

Transitivity Processing speed -0.011 0.010 0.249 0.548 

Transitivity Executive function -0.003 0.010 0.759 0.850 

Transitivity Memory -0.030 0.011 0.005 0.054 

Transitivity Global cognition -0.017 0.010 0.084 0.309 

VIS Processing speed 0.003 0.010 0.750 0.850 

VIS Executive function 0.026 0.011 0.014 0.088 

VIS Memory 0.004 0.011 0.719 0.850 

VIS Global cognition 0.013 0.010 0.196 0.479 

SM Processing speed -0.004 0.010 0.707 0.850 
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SM Executive function 0.007 0.011 0.533 0.792 

SM Memory -0.004 0.011 0.678 0.850 

SM  Global cognition -0.003 0.010 0.792 0.850 

DAN  Processing speed -0.025 0.010 0.009 0.069 

DAN  Executive function -0.003 0.011 0.780 0.850 

DAN  Memory -0.015 0.011 0.151 0.414 

DAN  Global cognition -0.017 0.010 0.100 0.319 

SVAN Processing speed -0.005 0.010 0.588 0.809 

SVAN  Executive function 0.000 0.011 0.983 0.983 

SVAN Memory -0.020 0.011 0.069 0.275 

SVAN Global cognition -0.008 0.010 0.441 0.693 

LIMB  Processing speed -0.026 0.010 0.009 0.069 

LIMB Executive function -0.013 0.011 0.242 0.548 

LIMB Memory -0.033 0.011 0.002 0.054 

LIMB Global cognition -0.030 0.010 0.003 0.054 

FPCN  Processing speed -0.009 0.010 0.337 0.570 

FPCN Executive function 0.011 0.011 0.324 0.570 

FPCN Memory -0.005 0.011 0.660 0.850 

FPCN Global cognition 0.001 0.010 0.949 0.971 

DMN  Processing speed -0.010 0.010 0.330 0.570 

DMN Executive function 0.012 0.011 0.262 0.549 

DMN Memory -0.007 0.011 0.540 0.792 

DMN Global cognition 0.002 0.010 0.877 0.919 

Abbreviations: , beta; SE, standard error, p, p-value; Adjp, Adjusted p-value; Eglob, global efficiency; Charpath, characteristic path length; DMN, strength of default 

mode network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, strength of salience/ ventral attention network; SM, 

strength of somatomotor network; VIS, strength of visual network 
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Supplementary Table C2. Results for interaction between network measures and age-sex on cognition 

Network measure 

(IV) 

CogMeasure (DV)  AgeX 

Network 

 

SexX 

Network 

SE 

AgeX 

Network 

SE 

SexX 

Network 

Adj P 

AgeX 

Network 

Adj P 

SexX 

Network 

Eglob Processing speed 0.003 -0.011 0.010 0.020 0.869 0.933 

Eglob Executive function 0.006 0.025 0.011 0.022 0.869 0.920 

Eglob Memory 0.010 -0.018 0.011 0.022 0.845 0.920 

Eglob Global cognition 0.006 0.001 0.010 0.020 0.869 0.997 

Charpath Processing speed -0.003 0.007 0.010 0.020 0.869 0.956 

Charpath Executive function 0.000 -0.027 0.011 0.022 0.996 0.920 

Charpath Memory -0.010 0.013 0.011 0.022 0.845 0.933 

Charpath Global cognition -0.004 -0.006 0.010 0.020 0.869 0.956 

Louvain modularity Processing speed 0.011 0.011 0.010 0.020 0.845 0.933 

Louvain modularity Executive function 0.034 -0.011 0.011 0.022 0.104 0.933 

Louvain modularity Memory 0.011 -0.001 0.011 0.022 0.845 0.997 

Louvain modularity Global cognition 0.025 -0.001 0.010 0.021 0.223 0.997 

Transitivity Processing speed -0.006 -0.003 0.010 0.019 0.869 0.997 

Transitivity Executive function -0.020 0.026 0.011 0.021 0.414 0.920 

Transitivity Memory -0.001 -0.014 0.011 0.021 0.992 0.933 

Transitivity Global cognition -0.010 0.001 0.010 0.020 0.845 0.997 

VIS Processing speed -0.001 0.038 0.010 0.020 0.992 0.792 

VIS Executive function 0.010 0.042 0.011 0.022 0.845 0.792 

VIS Memory 0.010 0.025 0.011 0.022 0.845 0.920 

VIS Global cognition 0.005 0.043 0.010 0.020 0.869 0.792 

SM Processing speed 0.024 0.006 0.010 0.020 0.223 0.956 
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SM Executive function 0.018 0.024 0.011 0.022 0.637 0.920 

SM Memory 0.006 0.028 0.011 0.022 0.869 0.920 

SM  Global cognition 0.020 0.025 0.010 0.020 0.414 0.920 

DAN  Processing speed -0.005 -0.016 0.010 0.020 0.869 0.920 

DAN  Executive function -0.005 0.018 0.011 0.022 0.869 0.920 

DAN  Memory 0.000 -0.001 0.011 0.022 0.996 0.997 

DAN  Global cognition -0.007 0.004 0.010 0.020 0.869 0.997 

SVAN Processing speed 0.011 -0.019 0.010 0.020 0.845 0.920 

SVAN  Executive function -0.010 0.016 0.011 0.022 0.845 0.933 

SVAN Memory 0.010 -0.033 0.011 0.022 0.845 0.920 

SVAN Global cognition 0.003 -0.013 0.010 0.020 0.869 0.933 

LIMB  Processing speed -0.004 -0.006 0.010 0.020 0.869 0.956 

LIMB Executive function -0.026 0.010 0.011 0.022 0.223 0.933 

LIMB Memory 0.008 0.000 0.011 0.022 0.869 0.997 

LIMB Global cognition -0.011 0.004 0.011 0.021 0.845 0.997 

FPCN  Processing speed 0.005 -0.028 0.010 0.020 0.869 0.920 

FPCN Executive function 0.000 0.017 0.011 0.022 0.996 0.920 

FPCN Memory 0.015 -0.021 0.011 0.022 0.845 0.920 

FPCN Global cognition 0.007 -0.011 0.010 0.020 0.869 0.933 

DMN  Processing speed 0.004 -0.027 0.010 0.020 0.869 0.920 

DMN Executive function -0.006 0.018 0.011 0.022 0.869 0.920 

DMN Memory 0.009 -0.017 0.011 0.022 0.869 0.920 

DMN Global cognition 0.001 -0.008 0.010 0.020 0.992 0.956 

Abbreviations: , beta; SE, standard error, p, p-value; Adjp, Adjusted p-value; Eglob, global efficiency; Charpath, characteristic path length; DMN, strength of 

default mode network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, strength of salience/ ventral attention network; 

SM, strength of somatomotor network; VIS, strength of visual network 
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Supplementary Table C3. Multivariate analysis between network measures and cognition 

CogMeasure (DV) IV   SE t.value p 

Processing speed Age -0.444 0.011 -42.241 0 

Processing speed Age2 -0.056 0.010 -5.589 2.38E-08 

Processing speed Sex 0.030 0.020 1.519 0.129 

Processing speed Education 0.019 0.002 8.931 5.31E-19 

Processing speed Louvain Modularity 0.016 0.015 1.101 0.271 

Processing speed Transitivity -0.006 0.011 -0.543 0.587 

Processing speed VIS  0.021 0.012 1.827 0.068 

Processing speed SM 0.019 0.014 1.394 0.163 

Processing speed DAN -0.046 0.015 -2.953 0.003 

Processing speed SVAN 0.030 0.017 1.762 0.078 

Processing speed LIMB -0.028 0.015 -1.871 0.061 

Executive function Age -0.213 0.011 -18.561 4.01E-75 

Executive function Age2 -0.073 0.011 -6.737 1.74E-11 

Executive function Sex 0.046 0.022 2.146 0.032 

Executive function Education 0.050 0.002 22.036 0.000 

Executive function Louvain Modularity 0.041 0.016 2.524 0.012 

Executive function Transitivity 0.010 0.012 0.856 0.392 

Executive function VIS  0.041 0.013 3.260 0.001 

Executive function SM  0.016 0.015 1.044 0.297 

Executive function DAN -0.034 0.018 -1.859 0.063 

Executive function SVAN -0.020 0.022 -0.901 0.368 
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Executive function LIMB -0.040 0.017 -2.280 0.023 

Executive function FPCN 0.019 0.020 0.944 0.345 

Executive function DMN 0.057 0.026 2.241 0.025 

Memory Age -0.159 0.012 -13.270 1.03E-39 

Memory Age2 -0.042 0.011 -3.642 2.73E-04 

Memory Sex 0.120 0.023 5.223 1.81E-07 

Memory Education 0.017 0.002 7.037 2.15E-12 

Memory Global efficiency -0.051 0.033 -1.552 0.121 

Memory Transitivity -0.027 0.012 -2.313 0.021 

Memory VIS  0.028 0.015 1.905 0.057 

Memory DAN -0.005 0.022 -0.206 0.836 

Memory SVAN -0.034 0.023 -1.503 0.133 

Memory LIMB -0.067 0.018 -3.765 1.68E-04 

Memory FPCN 0.029 0.023 1.264 0.206 

Memory DMN 0.087 0.028 3.067 0.002 

Global cognition Age -0.339 0.011 -31.491 8.77E-204 

Global cognition Age2 -0.071 0.010 -6.985 3.11E-12 

Global cognition Sex 0.081 0.020 4.012 6.09E-05 

Global cognition Education 0.036 0.002 16.701 1.92E-61 

Global cognition Louvain Modularity 0.021 0.015 1.407 0.160 

Global cognition Transitivity -0.009 0.011 -0.860 0.390 

Global cognition VIS  0.033 0.012 2.774 0.006 

Global cognition SM  0.012 0.014 0.895 0.371 

Global cognition DAN -0.048 0.017 -2.846 0.004 

Global cognition LIMB -0.058 0.016 -3.543 3.98E-04 

Global cognition FPCN 0.012 0.019 0.663 0.507 
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Global cognition DMN 0.055 0.022 2.462 0.014 

 
Abbreviations: , beta; SE, standard error, p, p-value; Adjp, Adjusted p-value; Eglob, global efficiency; Charpath, characteristic path length; DMN, strength of default 

mode network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, strength of salience/ ventral attention network; SM, 

strength of somatomotor network; VIS, strength of visual network  
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CHAPTER 5: ASSOCIATION OF SLEEP AND OTHER LIFESTYLE 

FACTORS, INCLUDING EXERCISE, ALCOHOL CONSUMPTION, AND 

SMOKING, WITH FUNCTIONAL NETWORK TOPOLOGY IN THE AGEING 

BRAIN   
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Abstract  

Sleep and lifestyle factors, including exercise, alcohol consumption, and smoking, have 

been associated with changes in the brain’s functional networks in older adults. 

However, findings from previous studies have been inconsistent.  Here, I investigate 

how these factors influence functional networks, as well as their relationships with each 

other, in middle- to older-aged adults. The findings showed that self-reported sleep 

duration was associated with increasing strength of functional connectivity in several 

brain regions and better communication across the brain. Increased accelerometer-based 

nap duration was also associated with poorer specialised processing of the brain at a 

local level (i.e. reduced transitivity). In addition, exercise and alcohol consumption were 

related to global network segregation whereas smoking was associated with global 

network integration and specific network strengths. Furthermore, smoking also 

moderated the relationship between accelerometer-based nap hours and characteristic 

path length and strength of salience networks. In conclusion, these findings show that 

sleep and lifestyle factors are associated with distinct changes in the functional brain 

network properties. 
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5.1 Introduction  

Sleep is an important human function. However, the mechanisms that regulate it remain 

to be elucidated. Along with other physiological alterations, sleep patterns change with 

ageing. Older people are more likely to have an earlier sleep onset, earlier morning 

wake signals, reduction of average sleep duration, and diminished sleep depth 

(Wolkove, Elkholy, Baltzan, & Palayew, 2007). Changes in sleep quality, quantity, and 

timing have been associated with brain function and psychiatric disorders (Fernandez-

Mendoza & Vgontzas, 2013; He, Zhang, Li, Dai, & Shi, 2020; Spira, Chen-Edinboro, 

Wu, & Yaffe, 2014; Sterniczuk, Theou, Rusak, & Rockwood, 2013). Therefore, 

identifying the underlying brain functional changes associated with sleep patterns may 

contribute to the understanding of the association between sleep and disease states. 

 

Various lifestyle factors, including exercise, alcohol intake, and smoking, have been 

shown to influence sleep. It has been postulated that regular physical activity and 

exercise may promote relaxation and energy expenditure in ways that may be beneficial 

to initiating and maintaining sleep (Dzierzewski et al., 2014), especially in older adults 

(Littman et al., 2007; Madden, Ashe, Lockhart, & Chase, 2014; Manjunath & Telles, 

2005). Interestingly, a study investigating the directionality of this relationship using 

longitudinal data from the UK Biobank observed that sleep improvements overtime 

benefitted physical activity at follow-up while reduced physical activity was detrimental 

to sleep patterns at follow-up (Huang, Hamer, Duncan, Cistulli, & Stamatakis, 2021). 

This implies that there may be concurrent underlying mechanisms at play. In addition, 

some studies show that alcohol consumption affects sleep quality by momentarily 

increasing sleepiness but later causing frequent night-time and early morning 
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awakenings (Ebrahim, Shapiro, Williams, & Fenwick, 2013), whereas another study 

found no correlation between drinking pattern and sleep quality (Vinson et al., 2010). 

Furthermore, nicotine can stimulate the release of neurotransmitters, such as 

acetylcholine and norepinephrine, which may in turn inhibit gamma-aminobutyric acid 

(GABA) and sleep-promoting neurons (Saint-Mleux et al., 2004). Despite this, findings 

on the relationship between active smoking and sleep characteristics have been mixed, 

with some showing a positive association (McNamara et al., 2014; Riedel, Durrence, 

Lichstein, Taylor, & Bush, 2004; Zhang, Samet, Caffo, & Punjabi, 2006), and others 

showing nil (Jaehne et al., 2012; Liao et al., 2019) or a negative association (Wang et 

al., 2016). Given these inconsistencies, it is important to establish how other lifestyle 

factors may influence sleep patterns.  

 

Using resting-state functional magnetic resonance imaging (rs-fMRI), studies have 

shown that sleep and other lifestyle factors affect the functional connectivity of the 

brain. Sleep deprivation has been associated with immediate widespread changes in 

functional connectivity during subsequent wakefulness (Nilsonne et al., 2017; Yeo, 

Tandi, & Chee, 2015). Others have shown that sleep quality or duration may affect 

intrinsic neural activity (Khalsa et al., 2016; Khazaie et al., 2017). Specifically, poor 

quality of sleep has been associated with alterations in functional connectivity of the 

default mode and attentional networks (Amorim et al., 2018). Individuals with chronic 

insomnia also showed disrupted global and local topological organisation of the brain 

(Li et al., 2018). Contrastingly, findings from large-scale population-based studies did 

not observe any associations between sleep quality and networks (Smith et al., 2016). 

Moreover, varying intensities of acute exercise may also have differential impacts on 

the brain functional networks. More specifically, low intensity exercise was associated 
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with decreased functional connectivity in the frontoparietal regions while high intensity 

exercise was associated with decreased functional connectivity in the sensorimotor and 

dorsal attention networks and increased activity in the left affect and reward networks 

(Schmitt et al., 2019). Dysfunctional alcohol consumption was associated with 

decreased functional connectivity in the executive control, sensorimotor, visual, and 

subcortical, regions that also predict relapse in alcoholics (Weiland et al., 2014). In 

addition, changes in the ventral and dorsal striatum (Sweitzer et al., 2016), frontostriatal 

region (Froeliger et al., 2015), prefrontal and limbic regions (Janes et al., 2012), insula 

and parahippocampus (Ding & Lee, 2013), as well as widespread functional 

connectivity attenuation in the reward circuit (Shen et al., 2016) were seen in smokers 

compared to non-smokers. Despite evidence showing that these lifestyle factors affect 

the functional brain networks, there is a paucity of studies looking at their influence in 

older populations. It, therefore, remains to be elucidated if variations in sleep and other 

lifestyle factors are related to functional connectivity in the older population.  

 

In light of the uncertainty about how the above lifestyle factors influence sleep patterns, 

which may in turn alter the brain functional network topology, the aim of the present 

study was to examine these relationships in the UK Biobank participants. More 

specifically, I investigated how accelerometer-derived measures of sleep and rest-

activity patterns, self-reported sleep duration, and other lifestyle factors influenced brain 

functional networks. I further determined whether physical activity as well as alcohol 

and smoking moderate functional brain networks through sleep. 
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5.2 Methods  

5.2.1 Study population  

The UK Biobank, which is a large prospective cohort study, included participants from 

the United Kingdom aged between 40 and 80 years old (Sudlow et al., 2015). 

Participants provided full informed consent to participate in UK Biobank and this 

project was approved by the NHS National Research Ethics Service (approval letter 

dated 17th June 2011, ref. 11/NW/0382), project 10279. All data and materials are 

available via UK Biobank (http://www.ukbiobank.ac.uk). This study included a total of 

17,077 participants with self-reported sleep data, lifestyle factors, and imaging data in 

this study. As a subset, I also examined sleep patterns using accelerometer data.  

 

5.2.2 Imaging data and network matrices  

Brain images were acquired on Siemens Skyra 3.0T scanners (Siemens Medical 

Solutions, Germany) with a 32-channel head coil across three different assessment 

centres including Reading, Newcastle, and Manchester. I analysed the rs-fMRI data that 

was previously pre-processed by the UK Biobank (Alfaro-Almagro et al., 2018). The 

pre-processing steps involved: motion correction, intensity normalisation, high-pass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0s), echo-planar imaging (EPI) unwarping, and gradient distortion correction. 

ICA+FIX processing (Beckmann & Smith, 2004; Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014) was then used to remove structured artefacts. I removed 

participants with motion of > 2mm/degrees of translation/rotation.  

 

The Schaefer 7 network atlas (Schaefer et al., 2018) for 100 parcels was used for 

parcellation. Average time-series were extracted for the 100 functional parcels. 

http://www.ukbiobank.ac.uk/
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3dNetCorr command from Analysis of Functional Neuroimaging (AFNI) (Cox, 1996) 

was used to produce network adjacency matrix for each participant. The mean time-

series for each region was correlated with the mean time-series for all other regions and 

extracted for each participant. More details can be found in Miller et al. (Miller et al., 

2016).  

 

Subsequently, using the derived network adjacency matrix, partial correlation, r, 

between all pairs of signals was computed to form a 100-by-100 (Schaefer atlas) 

connectivity matrix, which was then Fisher z-transformed. To slightly improve the 

partial correlation coefficients, L2-regularisation was applied (rho = 0.5 for Ridge 

Regression option in FSLNets). Self-connections and negative correlations were set to 

zero. As rs-fMRI can vary across magnitude, the use of undirected weighted matrices 

may provide a more comprehensive picture of the functional brain networks. The 

stronger the weights, the stronger the connections between nodes. While undirected 

graphs were unable to make inferences about the possible direction of information flow, 

they are useful as they allow us to identify existing connections between specific pairs 

of network nodes (Fornito et al., 2016). Therefore, I used weighted and undirected 

matrices in our study.  

 

Brain Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010) was used to derive the 

graph theory measures. Global-level metrics included global efficiency, characteristic 

path length, transitivity, and Louvain modularity. Network level measures, such as local 

efficiency and strengths, were estimated for each node and averaged across all nodes 

within each network.  
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To assess network segregation, which characterises the specialised processing of the 

brain at a local level, I calculated the Louvain modularity and transitivity (Deco et al., 

2015). Louvain modularity is a community detection method, which iteratively 

transforms the network into a set of communities, each consisting of a group of nodes. 

Higher modularity values indicate denser within-modular connections but sparser 

connections between nodes that are in different modules. Transitivity refers to the total 

of all the clustering coefficients around each node in the network and is normalised 

collectively.  

 

To assess integration of information, I calculated characteristic path length and global 

efficiency. Characteristic path length measures the integrity of the network and how fast 

and easily information can flow within the network. It is the average of all the distances 

between every pair of nodes in the network. Global efficiency represents how 

effectively the information is transmitted at a global level and is the average inverse 

shortest path length. 

 

Finally, strength (weighted degree) is described as the sum of all neighbouring edge 

weights. High connectivity strength indicates stronger connectivity between the regions, 

which provides an estimation of functional importance of each network.  

 

5.2.3 Activity-monitor devices 

A Triaxial accelerometer device (Axivity AX3) was worn between 2.8 and 9.7 years 

after study baseline by 103,711 individuals from the UK Biobank for a continuous 

period up to 7 days. Quality control was performed by the UK Biobank (Doherty et al., 

2017). Of these, individuals were excluded if the number of recording errors, 
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interrupted recording period, or duration of interrupted recording periods were greater 

than the variable’s third quartile + 1.5 x IQR. In addition, participants were also 

excluded if the sleep period time (SPT)-window mean sleep duration was either too 

short (< 3 hours) or too long (> 12 hours) and mean number of sleep episodes was too 

low (5) or too high (30). This is to ensure that the extreme outliers that are not 

characteristic of normal sleep patterns were not included in subsequent analysis.  

 

5.2.4 Accelerometer data processing and sleep measure derivations 

Consistent with a previous study (Jones et al., 2019), I derived a total of six 

accelerometer-based measures of sleep and activity timing. These measures included 

sleep duration, sleep efficiency, daytime nap, the number of nocturnal sleep episodes, 

timing of the least-active 5 h (L5), and timing of the most-active 10 h (M10). All 

measures were derived by converting the raw accelerometer data (.cwa) files from the 

UK Biobank to .wav files using omconvert for signal calibration to gravitational 

acceleration (Doherty et al., 2017; van Hees et al., 2014) and interpolation (Doherty et 

al., 2017). Subsequently, the .wav files were processed with an open source R package 

GGIR (van Hees et al., 2018) to infer the non-wear time, and extract the z-angle across 

5-s epochs from the time-series data for subsequent use in estimating the SPT window 

and sleep episodes within it. For more details on how each of these measures was 

derived, please refer to Jones et al. (2019) and https://cran.r-

project.org/web/packages/GGIR/vignettes/GGIR.html#output-part-2. Only 6,740 

participants with quality control acceptable accelerometer data with imaging data were 

included in the accelerometer data analyses. 

 

https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html#output-part-2
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html#output-part-2
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5.2.5 Self-reported sleep measures  

Self-reported sleep duration was also used. Sleep duration was recorded as the number 

of reported hours of sleep in every 24 hours. More details can be found in 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1160.  

 

5.2.6 Lifestyle factors  

Exercise was quantified using the short-form International Physical Activity 

Questionnaire (IPAQ) (Hagströmer, Oja, & Sjöström, 2006), which measured the 

frequency and duration of light (Data-Fields: 864 and 874), moderate (Data-Fields: 884 

and 894), and vigorous activities (Data-Fields: 904 and 914). Participants were 

categorised according to the World Health Organisation physical activity guidelines 

based on weekly Metabolic Equivalent of Task i.e. MET minutes/week into 3 groups: 

highly active,  1200; active, 600 to  1200; inactive,  600 (Huang et al., 2021). Other 

variables included smoking status (Data-Field: 20116), and number of packs of 

cigarettes a year (Data-Field: 20161), and frequency of alcohol intake (Data-Field: 

1558). The responses for smoking were either currently smoking, previously smoked, 

and never smoked. For alcohol consumption, it was daily/almost daily, 3-4 times a 

week, once/twice a week, 1-3 times a month, special occasions only, or never. I recoded 

the variables where higher value/s reflected higher level/s of intake. Pack-years of 

smoking was calculated for individuals who had ever smoked.  

 

5.2.7 Statistical analysis  

All statistical analyses were performed using R version 3.5.1 software (The R 

Foundation, Vienna, Austria). To achieve normality of the graph theory measures and 

the sleep variables, normal transformation was applied using the R package. 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1160
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In line with previous studies (Elliott et al., 2018), this study controlled for age, age2, 

sex, age  sex (i.e. age and sex interaction), age2  sex (i.e. age2 and sex interaction), 

head size (intracranial volume), head motion from rs-fMRI, and volumetric scaling 

factor needed to normalise for head size, as well as scanning site and years of education. 

The network measures were then residualised for subsequent analysis. The residuals 

included the age and sex variables and years of education.   

 

Multiple linear regression models were performed to study the associations of sleep 

patterns and other lifestyle factors with functional network properties. False discovery 

rate-adjusted p-values were obtained by using Benjamini and Hochberg (Benjamini & 

Hochberg, 1995) procedure as implemented in the R function, p.adjust. Only results that 

reached significance level was set at p < 0.05 were reported in the main text.  

 

In addition, I examined whether lifestyle factors moderated the influence of sleep 

patterns on functional network properties. The analysis was performed using the R 

package, mediation (Tingley, Yamamoto, Hirose, Keele, & Imai, 2014) and the p-values 

were obtained based on 100,000 stimulations.  

 

5.3 Results  

5.3.1 Demographics  

Of the 17,077 participants, 9,014 (52.78%) were women and the mean (standard 

deviation) age was 62.33 (7.41) years. Table 5.1 shows descriptive statistics of the 

accelerometer-derived and self-reported sleep phenotypes as well as lifestyle factors 

such as exercise, alcohol, and smoking variables. Figure 5.1 shows correlation between 
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accelerometer-derived sleep variables and self-reported sleep duration. Accelerometer-

based sleep duration and self-reported sleep duration showed weak positive correlations 

(r2 = 0.078). Self-reported sleep duration was higher than that of accelerometer-based 

sleep duration.  

 

 

Figure 5.1 Correlations between accelerometer-based sleep variables and self-

reported sleep duration  

Abbreviations: Acc, accelerometer-based; L5, least-active 5 h; M10, timing of the most-active 10 h, Self, 

self-reported sleep duration. Blue represents positive correlations whereas red represents negative 

correlations.  
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Table 5.1 Descriptive statistics of demographics, self-reported sleep duration data 

and other lifestyle factors (n = 17,077); as well as sleep activity derived from 

accelerometer data (n = 6,740) 

Demographics 

Age (years), mean (standard deviation) 62.33 (7.41)  

Sex (n) 9014 women (52.8%), 8063 men 

(47.2%) 

Education (years) 15.73 (4.74) 

Accelerometer sleep data  

L5 timing (hours from previous midnight) 27.41 (6.21) 

M10 timing (hours from previous midnight) 19.69 (1.92) 

Sleep duration (hours) 4.83 (1.60) 

Sleep efficiency (%) 89.76 (5.63) 

Number of sleep episodes 15.56 (2.15) 

Daytime napping   0.26 (0.16) 

Self-reported sleep data 

Sleep duration (hours) 7.14 (1.10) 

Exercise 

Physical activity (MET mins/week) 667.76 (767.50) 

Physical activity level   

           Inactive 10,590 (62.0%) 

           Active 3,985 (23.3%) 

           Highly active 2,505 (14.7%) 

Smoking 

Smoking status  

          Never 10,731 (63.0%) 

          Previous 5,687 (33.4%) 

          Current 627 (3.68%) 

Pack years of smoking 19.05 (15.39) 

Alcohol consumption 

Alcohol consumption  

         Daily/ almost daily 2821 (16.6%) 

         3-4 times/ week  4,846 (28.4%) 

         1-2 times/ week 4,590 (26.9%) 

         1-3 times/ month 1,981 (11.6%) 

         Special occasions 1,759 (10.3%) 

         Never 1,048 (6.14%) 
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5.3.2 Association between sleep patterns and functional brain network measures  

Accelerometer-based nap duration was negatively associated with transitivity ( = -

0.043, SE = 0.012, p-adjusted = 0.010). In addition, self-reported sleep duration was 

negatively associated with characteristic path length and Louvain modularity but 

positively associated with transitivity, strength of default, control, limbic, and salience 

networks (Table 5.2).   

 

Table 5.2 Associations between self-reported sleep duration and network measures  

Graph theory measures  SE p Padj  

Global efficiency 0.013 0.007 0.063 0.442 

Characteristic path length -0.024 0.007 0.001 0.012 

Louvain Modularity -0.054 0.007 5.44E-14 6.58E-12 

Transitivity 0.028 0.007 8.19E-05 0.002 

DMN  0.040 0.007 1.86E-08 5.63E-07 

DAN 0.019 0.007 0.007 0.101 

FPCN 0.049 0.007 1.07E-11 4.30E-10 

LIMB 0.050 0.007 3.39E-12 2.05E-10 

SVAN 0.027 0.007 1.36E-04 0.003 

SM -0.019 0.007 0.010 0.117 

VIS -0.014 0.007 0.056 0.442 

 

Abbreviations: , beta; SE, standard error, p, p-value; Padj, adjusted p-value; DMN, strength of default 

mode network; DAN, strength of dorsal attention network; FPCN, strength of control network; LIMB, 

strength of limbic network; SVAN, strength of salience network; SM, strength of somatomotor network; 

VIS, strength of visual network 

Italics represents significance  

 

5.3.3 Association between lifestyle factors and graph theory measures  

Table 5.3 presents the significant association between lifestyle factors and graph theory 

measures. Increased physical activity was associated with decreased transitivity and 

increased strength of somatomotor network. Smoking status was positively associated 
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with global efficiency and strengths of all the networks as well as negatively associated 

with characteristic path length. Number of packets of cigarettes smoked in a year was 

associated positively associated with global efficiency and negatively associated with 

characteristic path length. Alcohol consumption was negatively associated with 

transitivity and positively associated with Louvain modularity. Supplementary table D1 

presents results for all other associations.  
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Table 5.3 Associations between lifestyle factors and graph theory measures  

Graph theory measures  SE p Padj  

Physical activity status      

Transitivity  -0.038 0.011 0.000 0.002 

SM 0.025 0.010 0.016 0.047 

Smoking status      

Global efficiency 0.059 0.014 1.65E-05 3.18E-04 

Characteristic path length -0.059 0.014 2.17E-05 3.18E-04 

DMN 0.035 0.014 0.012 0.044 

DAN 0.056 0.014 4.91E-05 0.001 

FPCN 0.039 0.014 0.005 0.022 

LIMB 0.038 0.014 0.005 0.022 

SVAN 0.055 0.014 6.46E-05 0.001 

SM 0.052 0.014 1.72E-04 0.001 

VIS 0.043 0.014 0.002 0.008 

Packs per year     

Global efficiency 0.003 0.001 0.016 0.047 

Characteristic path length -0.003 0.001 0.016 0.047 

Alcohol consumption      

Transitivity -0.032 0.006 8.97E-09 3.95E-07 

Louvain modularity  0.018 0.005 0.001 0.005 

 

Abbreviations: , beta; SE, standard error, p, p-value; Padj, adjuated p-value; DMN, strength of default 

mode network; DAN, strength of dorsal attention network; FPCN, strength of control network; LIMB, 

strength of limbic network; SVAN, strength of salience network; SM, strength of somatomotor network; 

VIS, strength of visual network 

Italics represents significance  

 

5.3.4 Moderation effect  

I further examined if the relationship between self-reported sleep duration and graph 

theory measures was moderated by the significant lifestyle factors. Results showed that 

smoking status moderated accelerometer nap duration to affect characteristic path length 

and strength of salience network (Table 5.4). However, none of their interaction effects 

were significant (Supplementary Table D2). 
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Table 5.4 Moderation effect of lifestyle factors on sleep in affecting functional network properties  

 
Abbreviations: , beta; SE, standard error, Adjp, Adjusted p-value; LS, lifestyle factors; LSxSleep, interaction between lifestyle and sleep factors; Charpath, 

characteristic path length; SVAN, strength of salience/ ventral attention network. Italics represents significance. 

 

 

 

 

Networks Sleep LS 
  

Sleep 

  

LS 

  

LSxSleep 

SE 

Sleep 

SE 

LS 

SE 

LSxSleep 

AdjP  

Sleep 

AdjP  

LS 

AdjP 

LSxSleep 

Charpath Nap 
Smoking 

status 
-0.040 -0.161 0.365 0.098 0.046 0.154 0.847 0.013 0.390 

SVAN Nap 
Smoking 

status 
-0.024 0.153 -0.311 0.098 0.046 0.153 0.938 0.017 0.711 
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5.4 Discussion   

In this study, I investigated how sleep and various lifestyle factors, including physical 

activity, alcohol consumption, and smoking, influenced functional brain network 

properties in a large cohort of middle to older aged adults. The major findings were as 

follows. First, increased self-reported sleep duration was associated with greater 

strength of functional connectivity in several brain regions as well as efficiency of 

communication but with lower within-modular connections. Second, accelerometer 

derived nap was associated with transitivity. Next, physical activity and alcohol 

consumption were associated with global network segregation whereas smoking 

influenced global network integration and specific network strengths. Lastly, smoking 

status moderated the relationship between accelerometer nap hours, characteristic path 

length, and strength of salience network. 

 

Global properties, including characteristic path length, transitivity, and Louvain 

modularity, as well as strength of functional connectivity between brain regions in 

DMN, FPCN, limbic, and salience networks, were associated with self-reported sleep 

duration. Previous studies have shown that sleep deprivation was associated with 

decreased DMN connectivity (De Havas, Parimal, Soon, & Chee, 2012; Sämann et al., 

2010) and that cumulative amount of sleep was predictive of internetwork and 

intranetwork functional connectivity between DMN and salience network (Khalsa et al., 

2016). Interestingly, there is evidence showing that even within the range of variability 

in self-reported sleep duration normally experienced by the majority of the healthy 

adults on weeknights, the accumulation of additional sleep was associated with greater 

functional connectivity within the DMN (Killgore, Schwab, & Weiner, 2012). This 

implies that even relatively minor differences in sleep duration may contribute 
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significantly to the differences in strength of functional connectivity in the DMN. 

Importantly, decreased DMN connectivity has been implicated in individuals with 

amnestic mild cognitive impairment (MCI) (Greicius, Srivastava, Reiss, & Menon, 

2004; Sorg et al., 2007) and Alzheimer’s disease (AD) (Greicius et al., 2004). 

Moreover, older adults with MCI with more sleep disturbances also showed decreased 

connectivity in the DMN (McKinnon et al., 2017; McKinnon et al., 2016). These 

findings suggest neural mechanisms implicated in disordered sleep may also result in 

memory dysfunction but the directionality has not been determined. However, to date, 

there is a lack of studies investigating how sleep duration affects functional network 

properties in healthy adults. Individuals with obstructive sleep apnoea, however, 

showed decreased transitivity and increased characteristic path length as well as 

decreased communication in DMN, salience, and control networks (Chen et al., 2018). 

Further, those with insomnia disorder showed decreased functional network 

connectivity in FPCN between anterior and posterior DMN (Dong et al., 2018). These 

findings suggest that disrupted global and regional properties of functional network may 

be potential biomarkers for sleep deprivation vulnerability (Yeo et al., 2015), however, 

more work needs to be done in healthy older adults in order to understand the 

underlying mechanisms.  

 

In addition, increased derived nap hours were associated with reduced network 

segregation. One previous study has shown that daytime nap increased hippocampal 

activation during task-based fMRI encoding trials (Ong, Lau, Lee, van Rijn, & Chee, 

2020). It is possible that increased activation is observed in specific regions within a 

network but there is an overall decrease in network connectivity. However, given that 

this is the first study showing the association between accelerometer sleep data and 
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functional network measures, more studies need to be undertaken in order to establish 

the significance.   

 

Although some lifestyle habits may pose a risk to brain network integrity, others may be 

protective (Bittner et al., 2019). Here, this study show that the increasing frequency of 

physical activity is negatively associated with the efficiency in how the brain networks 

process information (i.e. decreased transitivity) and an increased strength of the 

somatomotor network. While there is an overall consensus that exercise has positive 

influence on the brain plasticity (Fernandes, Arida, & Gomez-Pinilla, 2017), findings 

are inconsistent on whether the influence are global or specific. For instance, while one 

study showed that exercise was associated with an increased overall efficiency of how 

information is integrated across the whole brain network (i.e. global efficiency) in older 

adults (Kawagoe, Onoda, & Yamaguchi, 2017), another showed that the associations 

were specific to the default and frontal executive networks rather than global (Voss et 

al., 2016). Further, there is evidence showing that an acute bout of exercise may 

increase neural processes underlying semantic memory activation in older adults but 

these associations were localised and did not reflect a widespread increase in overall 

brain activation (Won et al., 2019). These mixed findings may be, in part, due to the 

different intensity and frequency of the exercises examined in the different studies. Our 

current results are in the opposite direction to that in the previous studies. The reason is 

uncertain, but I speculate that older individuals who were more physically active may 

have recruited their global brain resources to protect the integrity of specific networks 

vulnerable to age-related declines.  
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I also observed graph theoretical measures differences in the topological organisation of 

functional networks in smokers compared to non-smokers, and a relationship with packs 

of cigarettes smoked per year. Similar to previous studies, this study showed increased 

network connectivity strength in the visual, frontoparietal, and motor areas in smokers 

compared to non-smokers (Bittner et al., 2019; Fedota & Stein, 2015; Janes et al., 

2012). Moreover, increased coupling was observed between insula and dorsal anterior 

cingulate cortex, which are key nodes of the salience network (Seeley et al., 2007), 

which have been associated with smoking severity in a previous study (Hong et al., 

2009). Interestingly, I saw an increase in global network integration, as reflected by 

increased global efficiency and reduced characteristic path length, associated with 

smoking. This association has been previously associated with attention-enhancing 

arising from acute administration of nicotine (Fedota & Stein, 2015; Hahn et al., 2009; 

Lim et al., 2010). Further, increased global efficiency was correlated with greater 

behavioural benefits of nicotine and increased frequency of smoking in acute nicotine 

administration in another study (Gießing, Thiel, Alexander-Bloch, Patel, & Bullmore, 

2013). However, for chronic smokers, the associations were opposite (Lin, Wu, Zhu, & 

Lei, 2015). It is unclear why these patterns observed were similar to acute nicotine 

administration when this study was on chronic smokers. I assume that age may 

influence this since these previous studies on acute nicotine administration were 

performed in younger adults (aged 19 to 44 years). Further, I found that smoking status 

moderated accelerometer nap hours in influencing characteristic path length and 

strength of salience network. Previous studies have found that smoking affects sleep 

quality (Liao et al., 2019; Patterson et al., 2019). However, to date, none have examined 

how the relationship between smoking and sleep affects functional network measures. I 
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postulate that smoking may affect nap or the quality of sleep to affect the overall 

communication of network and specific network strength.  

 

Additionally, greater alcohol consumption was associated with lower transitivity and 

higher Louvain modularity. Findings from a previous study on alcohol dependent 

middle-aged adults showed that reduced average clustering coefficient (i.e. transitivity) 

was associated with more severe alcohol use (Sjoerds et al., 2017). Given that reduced 

efficiency adversely affects cognition (van den Heuvel, Stam, Kahn, & Hulshoff Pol, 

2009), it is possible that reduced transitivity due to alcohol consumption may be partly 

responsible for cognitive dysfunction seen in addicted individuals (Schulte et al., 2014; 

van Holst & Schilt, 2011). In addition, a previous study demonstrated that while 

community consistency (i.e. modularity) in DMN was similar between light and 

moderate-heavy drinkers, the latter showed significantly higher modularity in the 

central executive network compared to the former in older adults (Mayhugh et al., 

2016). However, the study did not investigate overall modularity. As such, it is difficult 

to conclude how spatial specificity of functional communities is relevant to this group 

of older adults. I can only posit that the amount of alcohol consumed relates 

differentially within functional network segregation.  

 

This study should be interpreted with caution due to its limitations. First, environmental 

influences often do not occur in isolation and are related to each other. Moreover, there 

are other factors, such as socialising and volunteering, that may confound the 

relationship between lifestyle factors and functional network properties that were not 

taken into consideration. Further, there is evidence to show the age influence on various 

sleep stages and wakefulness were associated with brain functional connectivity using 
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combined electroencephalography (EEG) and fMRI (Daneault et al., 2021). While this 

may increase our understanding of sleep and brain networks, it also represents a 

different construct and this study is also limited by the type of data available. However, 

future studies may consider investigating the influence of different sleep stages on the 

topological functional network properties in an ageing population. In addition, while I 

only investigated the physical activity status using the frequency and intensity of 

exercise, the type of exercise may also be important in understanding how physical 

activity helps with preserving the cognition. For example, previous studies have found 

that differential impacts on the brain functional connectivity depending on the type of 

exercises, such as aerobics or Tai Chi (Cui et al., 2021; Weng et al., 2017). Future 

studies may include this information for a more holistic understanding of how exercise 

affects functional connectivity. Furthermore, while self-report measurements have 

shown to have high reliability and validity, it may also be subjected to memory effects 

or social desirability bias (Bittner et al., 2019). Lastly, the cross-sectional design of this 

study makes it impossible to determine the causal directionality of the effects. 

Longitudinal data are needed to evaluate this in future studies.  

 

In conclusion, in this large population-based study, I found that sleep and other lifestyle 

factors including, physical activity, smoking, and alcohol consumption, were associated 

with distinct differences in the brain functional network properties. There are important 

clinical implications of these results where self-report sleep assessments may be used to 

understand the brain function and cognition in older adults. 
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Supplemental Tables for Chapter 5 

 

Supplementary Table D1. Associations between lifestyle factors and functional network 

measures  

Networks Lifestyle  SE p Adj P 

Eglob Alcohol intake 0.009 0.006 0.110 0.186 

Eglob Smoking 0.059 0.014 1.65E-05 0.000 

Eglob Packs per year 0.003 0.001 0.016 0.047 

Eglob Physical activity -0.016 0.010 0.122 0.199 

Charpath Alcohol intake -0.007 0.006 0.208 0.286 

Charpath Smoking -0.059 0.014 2.17E-05 3.14E-04 

Charpath Packs per year -0.003 0.001 0.016 0.047 

Charpath Physical activity 0.015 0.010 0.156 0.237 

Modularity Alcohol intake 0.018 0.005 0.001 0.005 

Modularity Smoking -0.009 0.014 0.525 0.564 

Modularity Packs per year -0.002 0.001 0.066 0.121 

Modularity Physical activity -0.008 0.010 0.457 0.529 

Transitivity Alcohol intake -0.032 0.006 8.97E-09 3.95E-07 

Transitivity Smoking 0.012 0.014 0.385 0.484 

Transitivity Packs per year 8.65E-05 0.001 0.936 0.958 

Transitivity Physical activity -0.038 0.011 0.000 0.002 

DMN Alcohol intake 0.007 0.006 0.185 0.262 

DMN Smoking 0.035 0.014 0.012 0.044 

DMN Packs per year 0.002 0.001 0.105 0.185 

DMN Physical activity -0.020 0.010 0.060 0.115 

DAN Alcohol intake 0.003 0.006 0.620 0.649 

DAN Smoking 0.056 0.014 4.91E-05 0.001 

DAN Packs per year 0.002 0.001 0.030 0.078 
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DAN Physical activity -0.016 0.010 0.139 0.218 

FPCN Alcohol intake 0.007 0.006 0.183 0.262 

FPCN Smoking 0.039 0.014 0.005 0.022 

FPCN Packs per year 0.002 0.001 0.040 0.093 

FPCN Physical activity -0.023 0.010 0.031 0.078 

LIMB Alcohol intake 0.004 0.005 0.497 0.551 

LIMB Smoking 0.038 0.014 0.005 0.022 

LIMB Packs per year 0.002 0.001 0.032 0.078 

LIMB Physical activity -0.007 0.010 0.501 0.551 

SVAN Alcohol intake 

-3.54E-

05 0.006 0.995 0.995 

SVAN Smoking 0.055 0.014 6.46E-05 0.001 

SVAN Packs per year 0.002 0.001 0.045 0.094 

SVAN Physical activity -0.009 0.010 0.402 0.491 

SM Alcohol intake 0.011 0.006 0.044 0.094 

SM Smoking 0.052 0.014 0.000 0.001 

SM Packs per year 0.002 0.001 0.053 0.105 

SM Physical activity 0.025 0.010 0.016 0.047 

VIS Alcohol intake -0.006 0.006 0.305 0.394 

VIS Smoking 0.043 0.014 0.002 0.008 

VIS Packs per year 0.001 0.001 0.287 0.383 

VIS Physical activity 0.008 0.010 0.428 0.509 

 

Abbreviations: , beta; SE, standard error, p, p-value; Adj P, Adjusted p-value; Eglob, global efficiency; 

Charpath, characteristic path length; DMN, strength of default mode network; FPCN, strength of 

frontoparietal control network; LIMB, strength of limbic network; SVAN, strength of salience/ ventral 

attention network; SM, strength of somatomotor network; VIS, strength of visual network  
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Supplementary Table D2. Moderation effect of lifestyle factors on sleep variables in influencing network measures  

Networks Sleep LS 
  

Sleep 

  

LS 

  

LSxSleep 

SE 

Sleep 

SE 

LS 

SE 

LSxSleep 

Adj P  

Sleep 

Adj P  

LS 

Adj P 

LSxSleep 

Charpath Nap 
Smoking 

status 
-0.040 -0.161 0.365 0.098 0.046 0.154 0.847 0.013 0.390 

Charpath Nap 

Physical 

activity 

status 

0.130 0.036 -0.098 0.094 0.034 0.111 0.401 0.583 0.791 

Charpath Nap 
Alcohol 

intake 
0.277 0.018 -0.057 0.249 0.020 0.071 0.505 0.639 0.838 

Charpath 
Sleep 

duration 

Alcohol 

intake 
-0.045 -0.058 0.007 0.016 0.035 0.005 0.023 0.370 0.752 

Charpath 
Sleep 

duration 

Smoking 

status 
-0.029 -0.143 0.012 0.009 0.090 0.013 0.007 0.370 0.766 

Charpath 
Sleep 

duration 

Physical 

activity 

status 

-0.029 -0.058 0.010 0.009 0.070 0.010 0.005 0.662 0.766 

Modularity Nap 
Alcohol 

intake 
-0.053 0.032 0.011 0.243 0.020 0.069 0.953 0.370 0.969 

Modularity Nap 
Smoking 

status 
-0.054 -0.025 0.142 0.096 0.045 0.150 0.781 0.767 0.766 

Modularity Nap 

Physical 

activity 

status 

0.032 0.008 -0.082 0.092 0.033 0.109 0.873 0.920 0.838 
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Modularity 
Sleep 

duration 

Physical 

activity 

status 

-0.057 -0.093 0.012 0.009 0.070 0.010 4.18E-09 0.477 0.752 

Modularity 
Sleep 

duration 

Alcohol 

intake 
-0.044 0.034 -0.002 0.016 0.034 0.005 0.023 0.583 0.875 

Modularity 
Sleep 

duration 

Smoking 

status 
-0.053 -0.059 0.007 0.009 0.090 0.012 2.59E-08 0.739 0.875 

Transitivity Nap 
Alcohol 

intake 
-0.173 -0.039 0.031 0.245 0.020 0.070 0.762 0.270 0.875 

Transitivity Nap 
Smoking 

status 
-0.066 0.051 -0.054 0.096 0.045 0.151 0.764 0.578 0.902 

Transitivity Nap 

Physical 

activity 

status 

-0.055 -0.023 -0.058 0.093 0.033 0.109 0.781 0.729 0.875 

Transitivity 
Sleep 

duration 

Physical 

activity 

status 

0.015 -0.202 0.023 0.009 0.071 0.010 0.262 0.051 0.390 

Transitivity 
Sleep 

duration 

Alcohol 

intake 
0.023 -0.043 0.001 0.016 0.035 0.005 0.400 0.529 0.909 

Transitivity 
Sleep 

duration 

Smoking 

status 
0.031 0.095 -0.012 0.009 0.091 0.013 0.003 0.583 0.766 

FPCN Nap 
Alcohol 

intake 
-0.192 -0.009 0.032 0.250 0.020 0.071 0.730 0.814 0.875 

FPCN 
Sleep 

duration 

Smoking 

status 
0.054 0.143 -0.015 0.009 0.091 0.013 2.59E-08 0.370 0.766 
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FPCN 
Sleep 

duration 

Physical 

activity 

status 

0.055 0.069 -0.013 0.009 0.070 0.010 1.04E-08 0.583 0.752 

FPCN 
Sleep 

duration 

Alcohol 

intake 
0.058 0.032 -0.003 0.016 0.035 0.005 0.002 0.613 0.838 

DMN Nap 
Smoking 

status 
-0.015 0.101 -0.227 0.097 0.046 0.153 0.959 0.204 0.752 

DMN Nap 

Physical 

activity 

status 

-0.114 -0.026 0.044 0.094 0.033 0.110 0.505 0.670 0.889 

DMN Nap 
Alcohol 

intake 
-0.207 -0.011 0.034 0.248 0.020 0.070 0.707 0.767 0.875 

DMN 
Sleep 

duration 

Alcohol 

intake 
0.056 0.049 -0.006 0.016 0.035 0.005 0.003 0.457 0.752 

DMN 
Sleep 

duration 

Smoking 

status 
0.042 0.089 -0.008 0.009 0.090 0.012 2.75E-05 0.583 0.875 

DMN 
Sleep 

duration 

Physical 

activity 

status 

0.044 0.049 -0.010 0.009 0.070 0.010 5.52E-06 0.728 0.766 

LIMB Nap 
Smoking 

status 
0.072 0.094 -0.193 0.096 0.045 0.150 0.731 0.233 0.752 

LIMB Nap 

Physical 

activity 

status 

-0.042 -0.036 0.109 0.092 0.033 0.109 0.828 0.583 0.766 

LIMB Nap 
Alcohol 

intake 
-0.135 -0.016 0.042 0.244 0.020 0.069 0.781 0.670 0.875 
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LIMB 
Sleep 

duration 

Physical 

activity 

status 

0.054 0.095 -0.014 0.009 0.070 0.010 1.04E-08 0.477 0.752 

LIMB 
Sleep 

duration 

Alcohol 

intake 
0.038 -0.017 0.003 0.016 0.034 0.005 0.066 0.778 0.875 

LIMB 
Sleep 

duration 

Smoking 

status 
0.045 0.010 0.004 0.009 0.090 0.012 4.99E-06 0.965 0.909 

SVAN Nap 
Smoking 

status 
-0.024 0.153 -0.311 0.098 0.046 0.153 0.938 0.017 0.711 

SVAN Nap 

Physical 

activity 

status 

-0.148 -0.016 0.030 0.094 0.034 0.111 0.348 0.792 0.909 

SVAN Nap 
Alcohol 

intake 
-0.135 -0.007 0.001 0.249 0.020 0.071 0.781 0.877 0.992 

SVAN 
Sleep 

duration 

Smoking 

status 
0.035 0.201 -0.020 0.009 0.091 0.013 0.001 0.204 0.752 

SVAN 
Sleep 

duration 

Alcohol 

intake 
0.038 0.027 -0.004 0.016 0.035 0.005 0.073 0.670 0.838 

SVAN 
Sleep 

duration 

Physical 

activity 

status 

0.029 0.022 -0.004 0.009 0.070 0.010 0.005 0.891 0.875 

 

Abbreviations: , beta; SE, standard error, Adj P, Adjusted p-value; LS, lifestyle factors; LSxSleep, interaction between lifestyle and sleep factors; Charpath, 

characteristic path length; DMN, strength of default mode network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ ventral attention network
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CHAPTER 6: THE ASSOCIATION OF MAJOR DEPRESSIVE DISORDER 

PHENOTYPES AND ITS POLYGENIC RISK SCORE WITH FUNCTIONAL 

BRAIN NETWORKS 
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Abstract  

Major depressive disorder (MDD) comprises a multitude of clinical symptoms, which 

suggest multiple disruptions of neural circuits. Therefore, in this present study, I aimed 

to investigate how phenotypic MDD and MDD polygenic risk scores (PRSMDD) related 

to functional network properties in middle- to older-aged participants from the UK 

Biobank. Due to the heterogeneous nature of the disorder, I studied two depression 

phenotypes – namely, lifetime MDD and a broad category of ‘mental disorder’, which 

included individuals with mental health presentation to a physician for a non-psychotic 

psychiatric disorder. I observed that the broad mental disorder measure did not show 

any association with the graph theory measures. Individuals who met the criteria for 

lifetime depression showed reduced network integration, segregation, and strength 

compared to controls. In addition, PRSMDD was associated with similar network 

disruption as with lifetime depression. Findings from this study provide insights into the 

biological and neural mechanisms underlying major depression. 
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6.1 Introduction  

Major depressive disorder (MDD) is characterised by pervasive sadness or irritability, 

disturbances in sleep, and withdrawal from pleasurable activities (Belmaker & Agam, 

2008).  It is the leading contributor to the global burden of disease due to its high 

prevalence, disabling consequences, and partial treatment response (Shen et al., 2020). 

In the elderly, defined herein as those 60 years and above, MDD can cause considerable 

suffering and reduce their quality of life (Bohr et al., 2012). The diversity of the 

different depression symptoms may imply the existence of multiple disruptions of 

neural circuits in depression (Bezmaternykh et al., 2021). Furthermore, to date, there are 

no objective biomarkers to guide diagnosis and there are inconsistencies in the 

definition of depression (Harris et al., 2020). Therefore, understanding the biological 

correlates and the underlying brain networks involved in the pathogenesis of MDD may 

allow us to potentially develop effective treatments. 

 

Previous studies found that MDD is phenotypically correlated with brain functional 

networks (Gong & He, 2015; Jin et al., 2011; Meng et al., 2014; Ye et al., 2015; Zhang 

et al., 2011; Zhi et al., 2018). More specifically, using graph theoretical approach, loss 

of small-worldness (Achard & Bullmore, 2007), significant reorganisation of 

community structures (Leistedt et al., 2009; Lord, Horn, Breakspear, & Walter, 2012; 

Zhang et al., 2011), and increased local efficiency and modularity (Ye et al., 2015) have 

been observed in MDD. Local brain regions such as default mode network (DMN) and 

executive control network (ECN) have also been shown to be significantly affected in 

MDD (Ye et al., 2015). However, the findings have not always been consistent - two 

studies observed that MDD was associated with decreased path length but not clustering 

coefficient (Leistedt et al., 2009; Zhang et al., 2011) whereas another showed no 
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difference in both path length and clustering coefficient but rather changes in 

community structure in MDD (Lord et al., 2012). This may be, in part, due to the 

differences in methodology and definition of MDD (Ye et al., 2015).  

 

In addition, given that the heritability of MDD has been estimated at 37% in a meta-

analysis of twin studies (Sullivan, Neale, & Kendler, 2000) and ranged up to 8.7% 

based on single-nucleotide polymorphisms (SNPs) (Wray et al., 2018), the functional 

alterations observed in MDD may be in part due to genetic influences (Lee, Shen, & 

Qiu, 2017). Genome-wide association and related studies have observed that risk of 

MDD is a result from the cumulative effects of many low-penetrance genetic variants 

(Lubke et al., 2012; Ripke et al., 2013). It has been shown that polygenic risk scores 

(PRS), which are derived as the weighted sums of risk alleles an individual carries for 

any particular disease or phenotype, hold great promise for supporting the identification 

of disease risks in different contexts (Halldorsdottir et al., 2019). For instance, higher 

depression PRS has been observed among adults who reported an early age onset (Wray 

et al., 2018). Thus, there may be value in understanding how genetic disposition using 

PRS, plays a role in the functional reorganisation of brain networks in MDD.  

 

In this present study, I used graph theoretical approach to further understand how 

topological integrity of functional network connectivity is related to phenotypic MDD 

in a large sample of middle-aged to older participants from the UK Biobank. In 

addition, this study examined how MDD polygenic risk scores (PRSMDD) influence 

functional brain networks.  
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6.2 Methods  

6.2.1 Study population  

The UK Biobank, which is a large prospective cohort study, included participants from 

the United Kingdom aged between 40 and 80 years old (Sudlow et al., 2015). 

Participants provided full informed consent to participate in UK Biobank and this 

project was approved by the NHS National Research Ethics Service (approval letter 

dated 17th June 2011, ref. 11/NW/0382), project 10279. All data and materials are 

available via the UK Biobank (http://www.ukbiobank.ac.uk).  

 

This study was approved by the UK Biobank in December 2018 (Application number: 

45262). After quality control filtering, including those with complete rs-fMRI, 

depression, and genetics data, and excluding those with other mental health issues, the 

final sample consisted of 16,613 participants.  

 

6.2.2 Major Depressive Disorder Phenotypes 

In this study, two depression phenotypes were examined.  

 

The first phenotype analysed was lifetime depression based on the short form of the 

Composite International Diagnostic Interview (CIDI) short form (CIDI-SF) (Kessler, 

Andrews, Mroczek, Ustun, & Wittchen, 1998). It included a yes/no binary question to 

depressive feelings (Data-Field: 20446) or loss of interest (Data-Field: 20441) for more 

than two weeks. Participants who responded “Yes” were given follow up questions 

including feelings of worthlessness (Data-Field: 20450), tiredness (Data-Field: 20449), 

difficulty concentrating (Data-Field 20435), suicidal thoughts (Data-Field: 20437), 

changes in sleep patterns (Data-Field: 20532), and changes in weight (Data-Field: 

http://www.ukbiobank.ac.uk/
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20536). Cases were defined as those who answered “Yes” to the screening questions 

plus another four follow-up questions while the rest were defined as controls (Howard 

et al., 2020). This resulted in 13,071 controls and 3,542 cases. Participants were 

classified as subthreshold lifetime depression if they experienced fewer than five 

symptoms on the CIDI-SF (Xiang, Leggett, Himle, & Kales, 2018). Of the 13,071 

controls categorised in lifetime depression, 2,807 of them had subthreshold depression.  

 

The second phenotype was a broad category of mental disorder, which was defined as 

self-reported help-seeking behaviour for mental health issues, and was categorised as 

Broad Depression by Howard and colleagues (Howard et al., 2018). Using the definition 

defined by Howard et al. (Howard et al., 2018), cases were characterised as individuals 

who sought help for nerves, anxiety, tension, or depression from either a general 

practitioner or psychiatrist (Data-Field: 2090 and 2100). Controls were participants who 

did not fulfil the above-mentioned criteria. Participants identified with bipolar disorder, 

schizophrenia, or personality disorder were removed. This resulted in 11,256 controls 

and 5,357 cases.  

 

In addition, I also investigated whether the number of depressive episodes was 

associated with functional network topology. 

 

6.2.3 Imaging data pre-processing 

Brain images were acquired on Siemens Skyra 3.0T scanner (Siemens Medical 

Solutions, Germany) with a 32-channel head coil across three different assessment 

centres including Reading, Newcastle, and Manchester. I analysed the rs-fMRI data that 

was previously pre-processed by the UK Biobank (Alfaro-Almagro et al., 2018), which 
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involved: motion correction, intensity normalisation, high-pass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s), echo-planar 

imaging (EPI) unwarping, and gradient distortion correction. ICA+FIX processing 

(Beckmann & Smith, 2004; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) was 

then used to remove structured artefacts. I removed participants with motion of > 

2mm/degrees of translation/rotation.  

 

6.2.4 Parcellation 

The Schaefer 7 network atlas (Schaefer et al., 2018) for 100 parcels was used for 

parcellation. Average time-series were extracted for the 100 functional parcels. 

3dNetCorr command from Analysis of Functional Neuroimaging (AFNI) (Cox, 1996) 

was used to produce network adjacency matrix for each participant. The mean time-

series for each region was correlated with the mean time-series for all other regions and 

extracted for each participant. More details can be found in Miller et al. (Miller et al., 

2016).  

 

Subsequently, using the derived network adjacency matrix, partial correlation, r, 

between all pairs of signals was computed to form a 100-by-100 (Schaefer atlas) 

connectivity matrix, which was then Fisher z-transformed. To slightly improve the 

partial correlation coefficients, L2-regularisation was used (rho = 0.5 for Ridge 

Regression option in FSLNets). Self-connections and negative correlations were set to 

zero. As rs-fMRI can vary across magnitude, the use of undirected weighted matrices 

may provide a more comprehensive picture of the functional brain networks. The 

stronger the weights, the stronger the connections between nodes. In addition, I used 

undirected graph because in rs-fMRI, which is useful as it allows us to identify existing 
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connections between specific pairs of network nodes (Fornito et al., 2016). Therefore, I 

used weighted and undirected matrices in our study.  

 

6.2.5 Network matrices  

Brain Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010) was used to derive the 

graph theory measures. Global-level metrics included global efficiency, characteristic 

path length, transitivity, and Louvain modularity. Network level measures, such as local 

efficiency and strengths, were estimated for each node and averaged across all nodes 

within each network.  

 

To assess network segregation, which characterises the specialised processing of the 

brain at a local level, I calculated the Louvain modularity, transitivity, and local 

efficiency indices (Deco et al., 2015). Louvain modularity is a community detection 

method, which iteratively transforms the network into a set of communities, each 

consisting of a group of nodes. Higher modularity values indicate denser within-

modular connections but sparser connections between nodes that are in different 

modules. Transitivity refers to the total of all the clustering coefficients around each 

node in the network and is normalised collectively. Local efficiency is a node-specific 

measure and is defined relative to the sub-graph comprising of the immediate 

neighbours of a node.  

 

To assess integration of information, I calculated characteristic path length and global 

efficiency. Characteristic path length measures the integrity of the network and how fast 

and easily information can flow within the network. It is the average of all the distances 

between every pair of nodes in the network. Global efficiency represents how 
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effectively the information is transmitted at a global level and is the average inverse 

shortest path length. 

 

Finally, strength (weighted degree) is described as the sum of all neighbouring edge 

weights. High connectivity strength indicates stronger connectivity between the regions, 

which provides an estimation of functional importance of each network.  

 

6.2.6 Genotyping and imputation 

DNA was extracted from stored blood samples, which were collected from participants 

on their visit to a UK Biobank assessment centre (Bycroft et al., 2018). Affymetrix UK 

Biobank Lung Exome Variant Evaluation (UK BiLEVE) Axiom array or Affymetrix 

UK Biobank Axiom array (Bycroft et al., 2018) were used to acquire the genetics data. 

Quality control (QC) was performed using the UK Biobank pipeline. Imputed data set 

was made available where the UK Biobank interim release was imputed to a reference 

set combining the UK10K haplotype and 1000 Genome Phase 3 reference panels. For 

more details, refer to http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020. Ten 

principal components generated by the UK Biobank were included as covariates in the 

statistical model to control for population stratification. For PRS calculation, only those 

SNPs that remained after QC filtering (MAF > 0.1%, imputation information score > 

0.6) were used. I also only used samples with reported British ancestry and removed 

any samples with high genotype missing rate and relatedness. 

 

6.2.7 Polygenic risk score (PRS) derivation 

MDD PRS (PRSMDD) were calculated as a weighted sum of risk alleles an individual 

carries for depression phenotype. The weights are the effect sizes observed in GWAS of 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020
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the relevant phenotype (Choi, Mak, & O’Reilly, 2020). For the current study, PRS 

derivations were based on the summary statistics obtained from previous depression 

GWAS from two cohorts, including the PGC (Wray et al., 2018) and the 23andMe 

discovery sample (Hyde et al., 2016). It was calculated using PRS-CS (Ge, Chen, Ni, 

Feng, & Smoller, 2019), which uses the Bayesian regression framework with 

continuous shrinkage priors to obtain posterior effect sizes of the summary statistics. In 

turn, it produces a pruned set of effect sizes using linkage disequilibrium (LD) among 

SNPs based on a reference panel (without the need to use thresholds based on the 

GWAS p-values). Subsequently, PLINK software was used to generate the PRS score 

(Chang et al., 2015).  

 

6.2.8 Statistical analysis  

All statistical analyses were performed using R version 3.5.1 software (The R 

Foundation, Vienna, Austria). The graph theory measures were normalised using ranked 

transformation, rntransform() function in R from GeneABEL package (Karssen et al., 

2016) and age were z-transformed for regression analysis. In line with previous studies 

(Elliott et al., 2018), I controlled for imaging covariates, including head size 

(intracranial volume), head motion from rs-fMRI, and volumetric scaling factor needed 

to normalise for head size, as well as age, sex, agesex, age2, age2sex, and scanning 

site. In addition, as a previous study (Elliott et al., 2018) showed that rs-fMRI was 

associated with genetic factors, I controlled for ten genetic principal components. The 

network measures were residualised for subsequent analyses.  

 

One-way analysis of variance (ANOVA) was performed to compare between the CIDI-

SF lifetime depression groups (i.e. controls, subthreshold, and cases of lifetime 
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depression). Independent t-tests were used to examine the difference between 

individuals with mental disorders and controls. Further, using regression models, I 

compared the network measurements across the 3 groups of CIDI-SF depression 

phenotypes using pairwise comparisons while controlling for covariates. Logistic 

regression was then used to estimate the associations with functional network topology 

on mental disorders where the independent variables were the network properties and 

the dependent variable was the depression phenotype. In addition, linear regression 

model was used to study the influence of the number of depressive episodes as well as 

PRSMDD on the graph theory measures.  

 

False discovery rate adjusted p-values were obtained by using Benjamini and Hochberg 

(1995) procedure (Benjamini & Hochberg, 1995) as implemented in the R function 

p.adjust. Significance level was set at adjusted p < 0.05. Only results that passed the 

significance level are reported.  

 

6.3 Results   

6.3.1 Demographics  

Of the 16,613 participants, 8,826 were women and 7,787 were men with mean (sd) age 

of 62.96 (7.43) years. Table 6.1 summarises the demographic information and the graph 

theory measures for the depression phenotypes. While participants with mental disorder 

did not differ from controls, subthreshold and cases of lifetime depression had 

significant differences compared to controls. More specifically, cases of lifetime 

depression were significantly younger, had lower global efficiency and strengths of all 

networks, longer characteristic path length, higher modularity, and higher PRSMDD 

compared to subthreshold lifetime depression as well as controls. Individuals with 
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subthreshold depression were significantly older and had higher PRSMDD compared to 

controls. 
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 Table 6.1 Differences in demographics and graph theory measures between CIDI-SF lifetime depression, mental disorder, and 

controls 

 
* < 0.05, ** < 0.01, *** <0.001 compared to controls; # <0.05, ## <0.01, ### <0.001 comparison between subthreshold and cases of lifetime depression 

Abbreviations: Eglob; global efficiency; Charpath, characteristic path length; DMN, strength of default mode network; DAN, strength of dorsal attention network; 

FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, strength of salience/ventral attention network; SM, strength of 

somatomotor network; VIS, strength of visual network

 CIDI-SF lifetime depression Mental disorder 

 Controls  

(n = 10,264) 

Subthreshold  

 (n = 2,807) 

Cases 

(n = 3,542) 

Controls 

(n = 11,256) 

 Cases 

(n = 5,357) 

Age 63.27 (7.52) 63.78 (7.20)* 61.44 (7.12)***### 62.99 (7.38) 62.90 (7.51) 

Sex (Women, %) 4885 (47.59%) 1520 (54.15%)*** 2421 (68.35%)***### 5,939 (52.76%) 2,887 (53.89%) 

Eglob 0.037 (0.985) 0.022 (1.014) -0.125 (0.968)***### -0.002 (0.991) 0.0055 (0.984) 

Charpath -0.036 (0.987) -0.024 (1.016) 0.125 (0.967)***### 0.003 (0.991) -0.006 (0.986) 

Louvain modularity -0.023 (1.001) -0.021 (0.984) 0.105 (0.980)***### 0.007 (1.005) -0.001 (0.974) 

Transitivity 0.025 (0.991) 0.023 (1.002) -0.117 (0.986)***### -0.008 (0.999) -0.001 (0.981) 

DMN  0.022 (0.996) 0.025 (1.013) -0.114 (0.971)***### -0.011 (0.999) 0.002 (0.986) 

DAN  0.041 (0.984) 0.026 (1.006) -0.117 (0.971)***### 0.001 (0.992) 0.013 (0.978) 

FPCN 0.035 (0.992) 0.033 (1.013) -0.119 (0.978)***### -0.0003 (0.997) 0.007 (0.990) 

LIMB 0.028 (0.996) 0.014 (1.018) -0.130 (0.965)***### -0.010 (0.995) -0.002 (0.995) 

SVAN 0.041 (0.988) 0.035 (1.006) -0.121 (0.966)***### 0.003 (0.991) 0.011 (0.984) 

SM 0.028 (0.988) 0.018 (0.997) -0.113 (0.978)***### -0.007 (0.993) 0.004 (0.980) 

VIS 0.031 (0.980) 0.014 (1.015) -0.106 (0.966)***### -0.001 (0.984) -0.002 (0.986) 

MDD PRS -0.063 (1.012) 0.018 (0.972)*** 0.168 (0.966)***### 0.005 (0.995) -0.010 (1.010) 
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         6.3.2 Associations between depression phenotypes and graph theory measures 

Table 6.2 summarises the pairwise comparisons between the CIDI-SF groups. Cases of 

CIDI-SF lifetime depression were negatively associated with global efficiency, 

transitivity, and strength of all the networks; and positively associated with 

characteristic path length and strength of visual network compared to controls. In 

contrast to cases, subthreshold CIDI-SF lifetime depression showed positive 

associations with global efficiency, transitivity, and strength of networks; and negative 

associations with Louvain modularity and characteristic path length. Mental disorder 

and the number of depressive episodes were not associated with any of the measures 

(Supplementary Tables E1 and E2).  
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Table 6.2 Associations between graph theory measures and CIDI-SF lifetime depression phenotype 

Measures 1 SE1 p1 padj1 2 SE2 p2 padj2 3 SE3 p3 padj3 

Eglob -0.011 0.020 0.839 0.999 0.080 0.019 5.19E-05 2.85E-04 0.092 0.019 4.00E-04 0.001 

Charpath 0.015 0.020 0.734 0.999 -0.081 0.019 5.17E-05 2.85E-04 -0.096 0.019 2.11E-04 0.001 

Louvain modularity 0.019 0.021 0.637 0.999 -0.040 0.019 0.094 0.094 -0.058 0.019 0.046 0.046 

Transitivity -0.023 0.020 0.501 0.999 0.056 0.019 0.009 0.010 0.079 0.019 0.004 0.005 

DMN  -0.023 0.020 0.515 0.999 0.060 0.019 0.005 0.007 0.083 0.019 0.002 0.004 

DAN -0.008 0.020 0.920 0.999 0.074 0.019 2.37E-04 0.001 0.082 0.019 0.002 0.004 

FPCN -0.018 0.020 0.651 0.999 0.058 0.019 0.006 0.007 0.076 0.019 0.005 0.006 

LIMB -0.005 0.021 0.965 0.999 0.076 0.019 2.05E-04 0.001 0.081 0.019 0.003 0.004 

SVAN -0.022 0.020 0.510 0.999 0.073 0.019 2.93E-04 0.001 0.095 0.019 2.26E-04 0.001 

SM -0.018 0.020 0.651 0.999 0.068 0.019 0.001 0.002 0.085 0.019 0.001 0.003 

VIS 0.0001 0.020 0.999 0.999 0.080 0.019 7.79E-05 2.86E-04 0.080 0.019 0.003 0.004 

 
Abbreviations: , beta; SE, standard error; p, p-value; padj, adjusted p-value; 1, subthreshold lifetime depression versus controls; 2, cases lifetime depression verses 

controls; 3, subthreshold lifetime depression versus cases lifetime depression; Eglob, global efficiency;  charpath, characteristic path length ;  DMN, default mode 

network; DAN, dorsal attention network; FPCN, frontoparietal control network; LIMB, limbic network; SVAN, salience/ventral attention network; SM, somatomotor 

network; VIS, visual network 

Italics represents significance
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6.3.3 PRSMDD 

Global efficiency and strength of all the networks except for control network were 

negatively associated with PRSMDD whereas characteristic path length was positively 

associated with PRSMDD (Table 6.3).  

 

Table 6.3 Associations between graph theory measures and PRSMDD 

Measures  SE p Padj  

Eglob -0.025 0.008 0.002 0.007 

Charpath 0.024 0.008 0.003 0.008 

Louvain modularity 0.006 0.008 0.467 0.467 

Transitivity -0.011 0.008 0.204 0.224 

DMN  -0.024 0.008 0.004 0.009 

DAN -0.019 0.008 0.021 0.033 

FPCN -0.012 0.008 0.153 0.187 

LIMB -0.020 0.008 0.018 0.033 

SVAN -0.018 0.008 0.028 0.039 

SM -0.025 0.008 0.002 0.007 

VIS -0.026 0.008 0.002 0.007 

 

Abbreviations: , beta; SE, standard error; Padj, adjusted p-value; Eglob, global efficiency; Charpath, 

characteristic path length; DMN, strength of default mode network; DAN, strength of dorsal attention 

network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ ventral attention network; SM, strength of somatomotor network; VIS, strength of 

visual network 

Italics represents significance  

 

 

6.4 Discussion  

Depression is a heterogeneous mental health disorder that presents with a multitude of 

symptoms (Fried, 2017). Understanding the underlying biological mechanisms may 

provide valuable aetiological insights. The findings of the current study describe a 
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robust association between lifetime depression, genetics of MDD, and functional graph 

theory measures within a population-based sample. The main observations are that: (1) 

CIDI-SF lifetime depression phenotypes showed significant association with graph 

theory measures whereas mental disorders did not; (2) CIDI-SF lifetime depression 

phenotypes showed poorer network integration, segregation, and strengths as compared 

to controls; (3) Higher genetic load (PRS) for MDD was related to poorer network 

integration and strength.  

 

One notable observation was that lifetime depression phenotypes seemed to be 

associated with the functional brain network properties rather than the mental disorders 

phenotype. There is evidence to show that the mental disorder phenotype, Broad 

depression, is likely to include a number of personality and psychiatric disorders 

(Howard et al., 2018) whereas the lifetime depression provides a more robust definition 

and is reported to be the gold standard for depression phenotypes in the UK Biobank 

(Glanville et al., 2021). Furthermore, it has been posited that genetic architecture differs 

between minimally defined and strictly defined depression phenotypes, where the 

former may yield associations with variants that may not be specific to MDD (Cai et al., 

2020; Glanville et al., 2021). SNP-based heritability (h2
SNP) for lifetime depression 

according to CIDI-SF was about 26% whereas it was 14% for broad depression (Cai et 

al., 2020). Findings by Wray and colleagues (Wray et al., 2018) showed that while these 

depression phenotypes had a high degree of shared genetic liability, pairwise genetic 

correlations showed that they differed significantly. This implies that there may be 

phenotype-specific genetic effects. Therefore, given their specific effects, it is not 

surprising that they showed differing associations with brain functional network 

properties.  
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In agreement with previous studies (Jiang et al., 2019b; Luo et al., 2015; Meng et al., 

2014; Ye et al., 2015), I found reduced global efficiency, transitivity, and increased 

characteristic path length and modularity in individuals with lifetime depression 

compared to controls. This implies that the network architecture in individuals with 

MDD was less locally specialised and less globally integrated. Our results further 

indicated reduced functional network strengths in different brain regions. Similar to our 

findings, a study investigating functional connectivity differences in various seed 

regions in adults (mean age = 29.46) with MDD showed alterations in DMN, central 

executive, limbic, visual, somatomotor, ventral attention, dorsal attention networks (Liu 

et al., 2020). There is evidence to show that DMN provides the neural substrate for 

depressive rumination (Dutta, McKie, & Deakin, 2014; Hamilton, Farmer, Fogelman, & 

Gotlib, 2015; Yan et al., 2019) and predicts disease severity of MDD (Sambataro, Wolf, 

Pennuto, Vasic, & Wolf, 2014; Wang, Hermens, Hickie, & Lagopoulos, 2012). Other 

networks, including salience, control, and limbic networks, have also been shown to be 

relevant to MDD psychopathology due to their involvement in attention (Beevers, 

Clasen, Enock, & Schnyer, 2015), cognitive control (Stange et al., 2017), and emotional 

processing respectively (Dutta et al., 2014; Liu et al., 2020). These findings are 

supported by the neurocognitive model of MDD, which postulates that symptoms of 

MDD may be accounted for by disturbed connections of the control network with other 

networks involving attention, emotion, and internal mentation (Disner, Beevers, Haigh, 

& Beck, 2011; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015).  

 

Higher genetic risk for MDD was also associated with disrupted network integration, 

segregation, and strengths. The contribution of an inherited genetic predisposition to the 
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occurrence of sporadic depression has been previously reported (Cao et al., 2021). One 

study found that higher genetic risk increased the risk of depression by 22% (Cao et al., 

2021) and another showed that PRS may serve as an early indicator of clinically 

significant levels of depression in a youth cohort (Halldorsdottir et al., 2019). Given that 

this study observed PRSMDD associated with these network properties, it is possible that 

higher genetic predisposition of depression alters networks that in turn, drive the 

depression phenotype. The reverse is also possible that depression phenotype influences 

the network topology. The directionality of the relationship between brain networks and 

MDD may be determined using longitudinal data in future studies.  

 

The strengths of this work include the large sample size of UK Biobank participants, the 

use of standardised protocols for data collection, and the detailed depression phenotypes 

available. Some limitations should also be considered. Depression phenotype in the UK 

Biobank sample reflected lifetime history of depression based on CIDI-SF, which, 

although based on diagnostic criteria and well validated, is still limited by the reliance 

on retrospective self-report (de Nooij et al., 2020). Further, clinical assessments were 

not always concurrent with the MRI scan. There are some methodological limitations 

that should be considered. Although the use of weighted undirected networks resolves 

the issue on filtering/thresholding connectivity matrix to maintain significant edge 

weights represented in a binary matrix, it is possible that the edge weights may be 

affected by non-neural contributions (De Vico Fallani et al., 2014). However, with 

careful denoising and covarying for motion (Parkes et al., 2018; Power et al., 2017), it is 

possible to minimise the noise in the data. Furthermore, the limitation imposed by a 

cross-sectional design precludes the directionality of relationship between MDD 

phenotype, genotype, and functional brain network alterations over the disease course.   
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In summary, using graph theory measures, the present findings suggest that lifetime 

MDD and genetic predisposition to MDD relate to disruptions of the functional network 

properties among adults in their mid-late life. Using different clinical characteristics to 

define MDD show differential profiles of functional brain network alterations. This 

implies that depression phenotypes may differ quantitatively with respect to the 

construct they measure, which points to the importance of considering how depression 

is defined when conducting and interpreting the results. Together, these findings 

provide evidence of the underlying biological and neural mechanisms correlates of 

depression. 

  



 187 

 

 

Supplemental Tables for Chapter 6 

 

Supplementary Table E1. Logistic regression results for association between mental 

disorder and graph theory measures 

Measures  SE t p 

Eglob 0.019 0.018 1.093 0.274 

Charpath -0.021 0.018 -1.195 0.232 

Louvain modularity -0.018 0.017 -1.038 0.299 

Transitivity 0.015 0.017 0.872 0.383 

DMN 0.024 0.017 1.375 0.169 

DAN 0.022 0.018 1.259 0.208 

FPCN 0.019 0.017 1.079 0.280 

LIMB 0.015 0.017 0.893 0.372 

SVAN 0.020 0.018 1.144 0.252 

SM 0.022 0.018 1.274 0.203 

VIS 0.007 0.017 0.413 0.679 

 

Abbreviations: , beta; SE, standard error, t, t-value; p, p-value; Eglob, global efficiency; Charpath, 

characteristic path length; DMN, strength of default mode network; DAN, strength of dorsal attention 

network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ ventral attention network; SM, strength of somatomotor network; VIS, strength of 

visual network  
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Supplementary Table E2. Results from linear regression associating the number of 

depressive episodes with graph theory measures 

 

Abbreviations: , beta; SE, standard error, t, t-value; p, p-value; Eglob, global efficiency; Charpath, 

characteristic path length; DMN, strength of default mode network; DAN, strength of dorsal attention 

network; FPCN, strength of frontoparietal control network; LIMB, strength of limbic network; SVAN, 

strength of salience/ ventral attention network; SM, strength of somatomotor network; VIS, strength of 

visual network  

  

Measures  SE t p 

Eglob -0.00040 0.00047 -0.857 0.392 

Charpath 0.00038 0.00047 0.794 0.427 

Louvain modularity -0.00036 0.00048 -0.757 0.449 

Transitivity 0.00013 0.00048 0.278 0.781 

DMN -0.00008 0.00048 -0.175 0.861 

DAN -0.00041 0.00048 -0.862 0.389 

FPCN -0.00013 0.00048 -0.271 0.787 

LIMB -0.00051 0.00048 -1.064 0.288 

SVAN -0.00014 0.00047 -0.299 0.765 

SM -0.00024 0.00047 -0.508 0.611 

VIS -0.00009 0.00048 -0.184 0.854 
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH 
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7.1 Review of thesis objectives and aims  

The world’s population is ageing, and there is an urgent need to understand the 

processes that distinguish healthy ageing from disability. Biologically, ageing is 

associated with declines at the molecular, cellular, and physiological levels. There is 

evidence to show that ageing is associated with decline in cognitive function that may 

be in part accounted for by changes in neural plasticity and function of the brain. 

However, depending on one’s genetics, environment, and disease states, the impact of 

ageing differs markedly between individuals. Therefore, investigating how these factors 

influence the topology of functional networks in ageing may allow for a better 

distinction between healthy ageing and development of disease.  

 

There are many determinants and correlates of brain ageing. For instance, an 

individual’s genetics, age, sex, environmental factors such as sleep quality, physical 

activity, alcohol consumption, and smoking, as well as depression states all play a role 

in brain ageing (see Chapter 2). However, findings are either inconsistent or there is 

lack of studies investigating the associations of these factors with functional brain 

networks. Due to the multifactorial process of ageing, understanding the mechanistic 

underpinnings of brain functional network properties may help identify factors that may 

accelerate or slow down the brain ageing process. In addition, it may help to identify 

potential targets for preventive strategies to maintain brain health in older individuals.  

 

Given that the human brain is composed of interconnected networks, studying the 

properties of both the local and global organisation of the neural networks may be 

important for characterising vulnerabilities and resilience to ageing and brain diseases. 

While human functional network connectivity studies offer a promising approach for 
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elucidating the biological mechanisms underlying the functional organisation of the 

brain, this field is still in its infancy. Therefore, in the thesis, I set out to examine the 

genetics, environmental factors, and disordered states that potentially influence the 

functional brain network properties in middle aged and older adults using samples from 

the UK Biobank. The specific aims of the research were to (i) to study the heritability 

and genetic variants associated with the graph theory measures; (ii) to examine the 

influence of age and sex on the graph theory properties, and how this relationship 

modifies cognitive performance; (iii) to study how sleep and lifestyle factors including 

exercise, alcohol, and smoking, influence graph theory measures; and (iv) to investigate 

how major depressive disorder (MDD) phenotype and genotype relate to the graph 

theory measures. These research aims were addressed in the four studies reported in the 

preceding chapters. Key findings of these studies are summarised below.  

 

7.2 Summary of key findings   

7.2.1 Genetics of functional brain network properties  

Chapter 3 addressed the first research aims and examined the genetics of weighted 

functional brain network graph theory measures from 18,445 participants of the UK 

Biobank (44-80 years). To date, this is the first study investigating the genetics of 

weighted functional graph theory measures.  

 

Eighteen graph theory measures, which were associated with ageing and other age-

related neurodegenerative diseases, were derived from the rs-fMRI data. The eighteen 

measures studied showed low heritability (mean h2
SNP =0.12) but were highly 

genetically correlated. This result was consistent with an earlier report by Elliott et al. 

(2018), which showed that rs-fMRI connectivity edges had the lowest h2
SNP. This 
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implies that there is relatively low genetic predisposition to functional brain network 

properties.  

 

This work identified significant SNPs and gene associations that survived multiple 

correction testing with six of the 18 graph theory measures, i.e. global efficiency, 

characteristic path length, and strength of default, dorsal attention, limbic, and 

somatomotor networks. More specifically, one genome-wide significant locus was 

associated with strength of somatomotor and limbic networks. These intergenic variants 

were located near the PAX8 gene on chromosome 2. This gene is essential for brain 

development and functions and has been associated with sleep (Bernal, 2007; Doherty 

et al., 2018; Williams, 2008). Considering phenotypic correlations between sleep 

duration, insomnia, and the graph theory measures were observed, it is possible that 

variants in or near PAX8 and other genes in this region may play a role in the regulation 

of genes associated with functional brain network properties and sleep. In a previous 

study by Stoykova and Gruss (1994), postnatal PAX gene expression patterns in the 

central nervous system were investigated in relationship to their embryonic expression 

profiles. They found that PAX8 was active in the developing brain, especially in the 

intermediate zones of myelencephalon and metencephalon. This implies a role for PAX8 

in brain regionalisation. Given this evidence, it is possible that PAX8 may influence 

somatomotor and limbic networks. However, due to the paucity of studies examining 

somatomotor and limbic networks and sleep, it is difficult to speculate further.   

Gene-based analyses also identified five significantly associated genes for five of the 

network measures, which have been implicated in sleep duration, neuronal 

differentiation/development, cancer, and susceptibility to neurodegenerative diseases.  

 



 193 

In summary, single nucleotide polymorphism (SNP) and gene level associations with 

functional network measures were identified, which may help uncover novel biological 

pathways relevant to human brain functional network integrity and related disorders that 

affect it.  

 

7.2.2 Age and sex association with functional brain network properties   

Age and sex have been associated with changes in functional brain network topology, 

which may in turn affect cognition in older adults. This study explored this question 

further in Chapter 4 by examining differences in 11 resting-state graph theory measures 

with respect to age, sex, and their relationships with cognitive performance in 17,127 

UK Biobank participants (mean=62.837.41 years). 

 

I found that age was associated with an overall decrease in the effectiveness of network 

communication (i.e. integration) and loss of functional specialisation (i.e. segregation) 

of specific brain regions. Sex differences were also observed, with women showing 

more efficient networks that were less segregated than men (FDR adjusted p<.05). Age-

related changes were also more apparent in men than women, which may suggest that 

men may be more vulnerable to cognitive decline with age.  

 

Network segregation and strength of limbic network were nominally associated with 

cognitive performance. Individuals with less segregated networks exhibited the poorest 

memory, suggesting that network segregation may be an age-invariant marker of 

individual differences in cognition (Chan et al., 2014). However, while the individual 

networks were nominally significant, the collective effect of all the network measures 

contributed significantly to cognition after accounting for age and sex, and education 
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(FDR adjusted p≤.002). This suggests that cognitive decline observed in older adults 

may be partially explained by independent changes in brain functional network 

organisation. It may also imply that individual network measures may be inadequate to 

capture much of the variance in neural activity or its output and need further refinement.   

 

Taken together, the data suggest that the complexity of functional brain organisation is 

related to an individual’s age and sex, which may influence cognitive performance of 

older adults.  

 

7.2.3 The association of sleep and other lifestyle factors with functional brain 

network properties   

Sleep is an important human function that changes in quality and quantity as humans 

age. These changes have been associated with changes in the brain’s functional 

networks. Other lifestyle factors, including exercise, alcohol intake, and smoking, have 

differential impact on the brain functional networks and have shown to influence sleep 

patterns. However, previous studies have been inconsistent in their findings and there is 

a paucity of studies looking at their influence in older population. Therefore, in Chapter 

5, I studied how accelerometer-derived measures of sleep and rest-activity patterns, self-

reported sleep duration, and other lifestyle factors influence brain functional networks, 

as well as their relationship with each other.  

 

I observed that that increased self-reported sleep duration was associated with 

increasing strength of functional connectivity in several brain regions as well as 

efficiency of communication but decreasing within-modular connections. One important 

finding is the association between sleep duration and strength of the default mode 
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network connectivity, which has been implicated in neurodegenerative diseases such as 

mild cognitive impairment (MCI) and Alzheimer’s disease. This may suggest that 

neural mechanisms implicated in disordered sleep may also result in memory 

dysfunction. In addition, I showed that accelerometer derived nap duration was 

associated with transitivity. However, due to the lack of nap studies in influencing 

resting-state fMRI, little can be concluded. Future studies should examine the 

relationship between accelerometer-based sleep data and functional brain networks to 

confirm this finding.  

  

Lifestyle factors have also shown to influence functional brain network properties. I 

observed increasing frequency of physical activity have been associated with an overall 

reduction of efficiency in how the brain networks process information (i.e. decreased 

transitivity). This is contrary to previous studies. Further, I also showed differences in 

the topological organisation of functional networks in smokers compared to non-

smokers.  Interestingly, even though this study was on middle- to older-aged chronic 

smokers, results from this study were similar to other studies investigating acute 

nicotine smokers in younger adults. It is unclear why this may be but I postulate that age 

may have an influence on this finding. Moreover, greater alcohol consumption was 

associated with lower transitivity and higher Louvain modularity. Taken together, sleep 

and other lifestyle factors including, physical activity, smoking, and alcohol 

consumption, were associated with distinct changes in the brain functional network 

properties.  
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7.2.4 Depression and functional brain network properties   

Major depressive disorder (MDD) comprises a multitude of clinical symptoms, which 

may suggest multiple disruptions of neural circuits. Therefore, in Chapter 6, I aimed to 

investigate how phenotypic MDD and MDD polygenic risk scores (PRSMDD) influence 

the functional network properties in mid- and old- aged participants from the UK 

Biobank. Due to the heterogeneous nature of the disorder, I studied two depression 

phenotypes – namely, lifetime depression and mental disorders. It was observed that 

mental disorders did not show any association with the graph theory measures. 

Individuals who passed the criteria for lifetime depression showed reduced network 

integration, segregation, and strength compared to controls. Consistent with studies 

positing that genetic architecture differs between depression phenotypes (Cai et al., 

2020; Glanville et al., 2021), I showed differing associations between depression 

phenotypes and brain functional network properties. In addition, our results further 

indicated reduced network strength in different brain regions that have been associated 

with depressive rumination (Yan et al., 2019), attention (Beevers et al., 2015), cognitive 

control (Stange et al., 2017), and emotional processing (Dutta et al., 2014). 

Furthermore, PRSMDD showed similar network disruption as with the cases of lifetime 

depression where higher genetic risk for MDD was associated with disrupted network 

integration, segregation, and strengths. Therefore, findings from Chapter 6 show the 

biological and neural mechanisms underlying the different depression phenotypes. 

 

7.3 The multifactorial process influencing functional brain network properties  

Understanding the mechanisms that allow for the emergence of different complex 

functional network properties remain to be elucidated. Findings in this thesis highlight 

the potential role of genetics, environment, and disease-states on the underlying 
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alteration of functional brain network properties in a large sample of middle- and older- 

aged adults. While these factors seemingly affect the brain ageing process, they vary in 

their degree of influence. From the findings, it was observed that genetics have a small 

effect size on the functional brain network properties whereas environmental factors 

have greater associations with the network properties. One previous study has 

postulated that while major portions of the network systems were controlled by genetic 

factors as observed by the intermediate to high heritability, environmental factors 

influenced the interplay between networks (Yang et al., 2016). Findings from modelling 

studies for the evolution of complex networks may be able to explain this variation. It 

has been posited that adaptive rewiring of the brain networks drive changes within their 

given computational role to meet the new demands associated with the alteration of the 

brain networks (Rentzeperis & van Leeuwen, 2021). There are varying demands on 

plasticity depending on the brain region (Neville & Bavelier, 2000) or the triggering 

factor, including development (Sur & Leamey, 2001), learning (Plautz, Milliken, & 

Nudo, 2000), and ageing (Park & Bischof, 2013). Importantly, the robustness of the 

network is responsible for maintaining the function of the networks amidst the changes 

that are taking place in the brain, such as a centralised network that is adaptively 

rewired remains centralised (Rentzeperis & van Leeuwen, 2021). This implies that 

underlying biological mechanisms, such as genetics, may play a role in constraining the 

possible architecture of the network in the rewiring process due to environmental 

contributions without destroying the macroscopic topological features of the network 

(Rentzeperis & van Leeuwen, 2021). The versatility of functional brain networks may 

be due to the concomitant interplay of different mechanisms of genetics and the 

environment. However, more work needs to be done to understand if these neural 

changes are indicative of neural rewiring process due to the environmental factors.  
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7.4 Implications 

Given that rs-fMRI allows for the indirect study of neural activity by assessing the 

hemodynamic relationship between blood flow and neural firing in the brain, it has been 

used to examine changes in functional signal amplitudes and connectivity associated 

with different cognitive conditions (Medaglia, 2017). Variations in intrinsic 

connectivity as measured by the organisation of the network properties using graph 

theoretical approach have identified associated cognitive functions and clinical 

syndromes (Medaglia, 2017). Studies that investigated topological changes across the 

lifespan identified changes in the number and strength of connections to balance out the 

wiring costs and communication efficiency over the lifespan (Bullmore & Sporns, 2012; 

Cao et al., 2014). Further, it has been reported that there is continuous reorganisation in 

the functional brain network with ageing, which may influence behavioural and 

cognitive variability throughout the lifespan. These imply that reconfiguration of 

networks may allow for more flexibility to meet the demands during different stages of 

life (Wang, Zuo, & He, 2010a). Consequentially, findings on how functional network 

properties change with age may allow us to distinguish normal ageing from pathological 

ageing. Applications of graph theory rs-fMRI have been used to examine the 

abnormalities in the organisation of intrinsic network properties in various pathological 

conditions. For instance, individuals with Alzheimer’s disease showed significantly 

lower normalised clustering coefficient, which suggests disrupted local network 

connectivity, as compared to age-matched controls (Supekar et al., 2008). These 

findings show that graph theory rs-fMRI can capture specific changes in the features of 

the functional network properties associated with normal development, ageing, and 

pathology. Despite this, the unique theoretical value of graph theory rs-fMRI analysis 
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remains largely unknown (Medaglia, 2017). In other words, it remains unclear whether 

it is biologically and cognitively meaningful or whether it affords theoretical or 

predictive information (Medaglia, 2017). Nevertheless, cautious optimism for using 

graph theory rs-fMRI for some clinical purposes may be justified. For instance, the 

combination of graph theory and machine learning to develop models that identify 

disease states, including autism (Zhou, Yu, & Duong, 2014), Alzheimer’s disease (Koch 

et al., 2012), schizophrenia (Fekete et al., 2013), and depression (Sacchet, Prasad, 

Foland-Ross, Thompson, & Gotlib, 2015), compared to controls have shown to have 

high sensitivity and specificity (Medaglia, 2017). Although these findings need to be 

validated and replicated in a clinical setting, it is crucial to credit the potential 

usefulness of graph theory rs-fMRI in capturing and monitoring the brain organisation 

under different mental conditions. Moreover, with the advancements in brain imaging 

techniques together with the concomitant use of multiple analytical approaches, it is 

possible that graph theory rs-fMRI may provide a holistic picture into the complexity of 

the functional brain networks.  

 

7.5 Methodological and conceptual considerations and limitations  

While there have been tremendous advances in genetics and rs-fMRI neuroimaging 

techniques and analysis in the past decade that have enhanced our understanding of the 

human brain, there still exist mechanistic issues associated with these techniques. In 

addition, given that ageing is a multifarious process, it is important to recognise that 

there are other factors that may have influenced the brain functional network properties 

besides the ones that have been covered in this thesis. Specific methodological 

limitations regarding each study have been addressed within their respective chapters. 
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In this section, I will discuss several broader methodological and conceptual issues and 

how these issues contribute to the gaps in the literature.  

 

7.5.1 Processing and analysis of rs-fMRI data  

Rs-fMRI has been widely used as a tool for mapping human brain function and multiple 

analytic techniques have been developed to examine the functional connectivity 

throughout the brain. However, there remains an inherent issue with the attained rs-

fMRI signals and to date, there is also a lack of gold standard to process and analyse rs-

fMRI data.  

 

Rs-fMRI signals are easily contaminated by artefacts, such as the movement of head, 

physiological effects (e.g. respiration and cardiac pulsatility), and various imperfections 

in the MRI hardware (e.g. heating of imaging gradients) during the acquisition of the 

data, which can result in substantial errors in the functional connectivity estimates 

(Maknojia, Churchill, Schweizer, & Graham, 2019). While retrospective corrective 

methods have been developed to minimise the noise from these data, there is no 

standard protocol for researchers to follow. This means that researchers need to choose 

from a wide array of rs-fMRI pre-processing methods and this may contribute to the 

inconsistent findings in rs-fMRI literature.  

 

In addition to the pre-processing methods, there are several approaches to analyse rs-

fMRI data. Functional connectivity, which aims to establish the connection between two 

spatial regions of interest, is inferred using correlations among parameters of neuronal 

activity on which the majority of the analytic techniques are based on (Smitha et al., 

2017). Using different number of nodes may also have different implications. For 
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instance, I used 400-by-400 connectivity unregularized matrix in Chapter 3 whereas 

100-by-100 connectivity regularised matrix was used in the other Chapters. One reason 

for this change was the potential issue relating to inconsistencies in the estimates of 

parameters using partial correlations that could be mitigated by regularised partial 

correlation on timeseries. Changing the number of nodes may also increase robustness 

of the connectivity matrix. Furthermore, within one analytic technique, there are also 

numerous approaches one can undertake to analyse the data. In seed-based analysis, 

which is a model-based method where an a-priori selection of seed or region of interest 

(ROI) is required, the functional connectivity map derived is dependent on the size and 

region selected. Using graph theory analysis, one can also choose between weighted or 

unweighted and directed or undirected matrices; and the reliability of the matrices 

derived is heavily influenced by the rs-fMRI signals. In turn, the difference in analysis 

used may result in variability of the findings observed in rs-fMRI data.  

 

7.5.2 The use of graph theory to examine functional network properties  

Graph theory-based approaches, which model the brain as complex network represented 

by a collection of nodes and edges and can be summarised in the form of a 

connection/adjacency matrix, have been extensively used to study the functional brain 

network properties (Wang et al., 2010a). Functional graphs are dependent on the rs-

fMRI time series and are often highly dense and variable across time (Sporns, 2018). In 

order to construct the adjacency matrix, one must define the nodes between which the 

edges are calculated and this is typically achieved by selecting a parcellation of rs-fMRI 

data voxels into coarse-grained units of parcels (Medaglia, 2017). The statistics of 

network analysis vary depending on the parcellation (Wang et al., 2009). While there is 

continued interest in the development of parcellations, there is no “perfect” parcellation. 
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Each relies either on statistical optimisation or anatomically-based boundary definitions 

coupled with the conceptual idea of what is biologically meaningful (Medaglia, 2017). 

As such, there needs to be careful selection and comparison of the parcellations and 

rationale behind selecting it. In addition, edges can either be binary or weighted, 

directed or undirected, depending on how interactions are estimated and they address 

different questions. Binary analyses focus on understanding the basic topology of the 

network in the simplest sense such as which regions are connected to each other. On the 

contrary, weighted analyses will also factor in variations in the strength of the 

connectivity, which may be able to provide a more accurate picture of the brain network 

since not all connections in the brain are equal in terms of information capacity. 

However, it may be more complex to interpret weighted networks. The direction of the 

graph is based on whether the edges between nodes carry directional information such 

as causal interaction (Farahani, Karwowski, & Lighthall, 2019b). While negative 

correlations (i.e. anticorrelations) may provide more information about neural ageing, 

there are inherent issues involving its interpretation given the known potential artifacts 

after global signal correction. To date, most graph theory analyses use undirected 

networks because of the technical constraints surrounding the interpretation of 

directional networks (Liao, Vasilakos, & He, 2017). Given that there is no gold standard 

for the derivation of graph theory that can account for signed weights, I used the same 

methods as previous studies looking at weighted graph theory measures.  

 

7.5.3 Identifying genetic variants associated with imaging phenotypes 

Combining multi-dimensional genetics and imaging to assess the impact of genetic 

variations on brain structure and function has allowed for better understanding of 

behavioural and brain functional alterations (Jiang, King, & Turner, 2019a). Despite its 
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potential, there are increasing concerns surrounding the lack of biological validation and 

replication in these studies (Bogdan et al., 2017). Firstly, there is a question about 

whether the neuroimaging phenotypes are comparable across studies. Specifically, the 

imaging data may be acquired using different scanners of differing strengths and the 

neuroimaging phenotypes may be derived differently, which may contribute to 

inconsistent results across studies. Secondly, over reporting of studies with large effect 

sizes looking at genetic associations with neural phenotypes may introduce publication 

bias, which misrepresents the robustness and biological importance of these genetic 

effects (Bogdan et al., 2017). Lastly, as most genetics studies are performed on samples 

with European origins, there is an issue of ancestry bias and the observed results may 

not be generalisable to other races/ethnicities.   

 

7.6 Future avenues of research  

Accounting for the findings from this thesis as well as the methodological and 

conceptual considerations discussed above, I highlight the potential future avenues of 

research.  

1. While it was observed that multiple SNPs and genes were associated with 

weighted graph theory measures (Chapter 3), they require replication and 

validation in independent studies. Moreover, the high correlations between the 

graph theory measures may suggest that these measures may account for the 

same phenotype, or the same variability in the population. Therefore, performing 

GWAS on each of these measures may not be necessary. In order to further 

understand the mechanisms of brain function at a more basic level, it may be 

useful for future studies to use developmental and adult human brain gene 

expression data to associate the expression of a single gene or genes with 
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specific graph theory measures and phenotypes. Moreover, the finding that 

PAX8 gene, which is involved in brain development and sleep, was related to 

somatomotor and limbic networks, may suggest that some aspects of functional 

connectivity patterns in these two networks are “wired” during development and 

may be important in older age when sleep patterns get disrupted. It would be 

interesting to study these networks across the lifespan.  

2. Chapter 4 demonstrated that the complexity of the functional brain organisation 

is shaped by the individual’s age and sex, which may contribute to the cognitive 

performance of older adults. The current assumption is that network properties 

influence cognition and not the other way around. Future studies should use 

longitudinal data to determine the directionality of this relationship as well as to 

study the age trajectory of this association.  

3. In Chapter 5, it was observed that sleep duration as well as other lifestyle 

factors, including physical activity, alcohol consumption, and smoking status, 

influence functional brain network properties. While the directionality of this 

relationship may be bidirectional, causality cannot be inferred from this study 

due to its cross-sectional design. Moreover, even though this study is useful for 

understanding some environmental factors and their relationships with brain 

networks, it may be more beneficial to include a wider range of factors as well 

as undertaking multivariate analyses to evaluate their influence on functional 

brain networks. This may be a more holistic approach to identifying 

risk/protective factors underlying brain networks.  

4. Findings in Chapter 6 suggest that lifetime MDD and genetic predisposition to 

MDD are associated with disruptions of the functional network properties 

among adults in their mid-late life. Different MDD phenotypes showed 
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differential profiles of functional brain network alterations. However, given the 

heterogeneity of depression and its measures as well as the limitation of reliance 

on retrospective self-report depression, future research should study the clinical 

symptom profiles and endophenotypes in relation to functional brain networks to 

further understand the underlying biological mechanisms behind the variability 

of depression symptoms. Another approach is to use Research Domain Criteria 

(RDoC) (https://www.nimh.nih.gov/research/research-funded-by-

nimh/rdoc/about-rdoc), which serves to understand the varying degrees of 

dysfunction of mental health disorders, rather than using the diagnostic and 

statistical manual (DSM)-5 or other diagnostic categories, in order to study the 

changes of functional networks associated with the complexity of the disorder.  

 

7.7 Concluding remarks   

Functional neuronal connections provide the physical foundation for communication 

and activity across the different brain regions. Elucidating whether genetics and/or 

environmental factors contribute to the topological properties of the brain networks is 

important to understand the underlying mechanisms that govern the intrinsic functional 

architecture of the brain, which may in turn explain the individual variations in both 

behavioural and mental states. Studies presented in this thesis were designed to shed 

light on the influence of genetics, environmental factors, and depression disease states 

on the functional brain network properties. This thesis provides novel contributions to 

the field of neuroscience in the following ways:  

1. This is the first study to investigate the genetics of weighted functional graph 

theory measures in a large and well characterised cohort. Our findings may help 

https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc
https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc
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in the identification of novel biological pathways relevant to human brain 

functional network integrity and disease. 

2. I identified that age and sex contribute significantly to the functional brain 

network properties in cognitively healthy middle-aged and older adults. This 

allows for better understanding of the brain changes that occur in normal versus 

pathological ageing.  

3. Through examining how sleep and other lifestyle factors affect the functional 

brain network topology, this study was able to elucidate that environmental 

factors play a role in shaping the functional integrity of the brain architecture. 

This can be useful in developing preventive strategies in order to maintain 

functional brain health.  

4. By including different depression phenotypes, it was observed that different 

definitions have varying relationship strengths between depression and 

functional brain network properties. This emphasises the need to be aware of 

this variability when examining the associations between different depression 

phenotypes and functional network measures, as potentially it may contribute to 

inconsistencies of results observed between studies. 
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