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Gear wear is an inevitable phenomenon during gear service life. Its propagation would impair the 

durability of gear tooth and reduce the remaining useful life of gear transmission system. 

Therefore, monitoring and predicting gear wear progression can bring significant benefits to 

industrial practice. Vibration analysis responds immediately to changes in the machine state 

(health and operating condition) and can therefore be used for gear monitoring. However, 

vibration-based techniques for gear wear monitoring are rather rare, even though techniques have 

been well established for detection and diagnosis of common gear faults such as gear tooth root 

cracks and tooth breakage. Therefore, in this research, a vibration-based integrated system is 

developed for gear wear monitoring and prediction. The developments were carried out in two 

stages: (i) wear mechanism identification using measured vibrations, and (ii) wear propagation 

monitoring and prediction using the integration of models, measurements and model updating 

approaches.  

 

In the first stage, the correlation between surface features and vibration characteristics is 

investigated. Then, use of cyclostationary properties of vibrations, a vibration-based online gear 

wear mechanism identification methodology is developed. Moreover, the evolution of fatigue 

pitting and abrasive wear (micro-level) are tracked using an indicator of second-order 

cyclostationarity of vibrations in specific spectral bands. 

 

In the second stage, a digital-twin system is developed by the integration of (i) a dynamic model 

to simulate the dynamic responses of gear system; (ii) two tribological  (wear) models for 

estimation of wear depth and pitting density, and (iii) model updating through comparing 

simulation and measured vibrations. The integration of dynamic model and tribological models 

allow a knowledge-based wear prediction of the gear profile change (determined by the wear 

depth) and pitting density. With the regularly model updating using measured vibrations, the wear 

process can be well monitored, and the best possible prediction of remaining useful life can be 

achieved. 

 

The above developments provide effective and efficient tools for monitoring and prediction of 

gear wear, in particular, the profile change and pitting density, which is critical for making 

appropriate maintenance decisions to maximise the useful life of gears and to avoid catastrophic 

failures and unexpected economic losses.  
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Abstract 

Gear wear is an inevitable phenomenon during gear service life. Its propagation impairs 

the durability of gear teeth and reduces the remaining useful life of gear transmission 

systems. Therefore, monitoring and predicting gear wear progression can bring 

significant benefits to industrial practice. Machine vibration responses reflect 

immediately the changes in the machine state (health and operating condition) and 

therefore provide a promising tool for gear condition monitoring. However, there is a 

coupling effect between gear wear and system dynamics, which results in the generation 

of vibrations with high complexity and brings significant challenges to the development 

of specific vibration techniques for extracting wear-related vibration features (indicators). 

Thus, vibration-based techniques for gear wear monitoring are rather rare, although 

techniques have been well established for the detection and diagnosis of common gear 

faults such as gear tooth root cracks and tooth breakage. Therefore, in this research, a 

vibration-based integrated system is developed for gear wear monitoring and prediction. 

The developments are carried out in two stages: (i) wear mechanism identification using 

measured vibrations, and (ii) wear propagation monitoring and prediction using the 

integration of models, measurements and model updating approaches. 
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Different gear wear mechanisms have different impacts on the gear tooth surface and 

result in different vibration characteristics, therefore, identifying gear wear mechanisms 

is a necessary procedure for developing proper gear wear monitoring techniques. Thus, 

in the first stage of this research, a vibration-based gear wear mechanism identification 

methodology is presented. More specifically, with consideration of the underlying 

physics of the gear meshing process and the unique surface features induced by fatigue 

pitting and abrasive wear, the correlation between surface features and vibration 

characteristics is investigated. The connection between the spatial frequency of the gear 

surface and the spectral frequency of the measured vibrations is established. With this 

established connection as the basis, a vibration-based online gear wear mechanism 

identification methodology is developed using cyclostationary properties of vibrations. 

Moreover, the evolution of fatigue pitting and abrasive wear (micro-level) are tracked 

using an indicator of second-order cyclostationarity of vibrations in specific spectral 

bands. Differently from previous works, the carrier frequencies (spectral content) of the 

gearmesh-cyclic second-order cyclostationary components are analysed and used to 

distinguish and track the two wear phenomena in this research. 

With the identified specific gear wear mechanisms/events in the first stage, in the second 

stage of this research, a digital-twin system is developed by the integration of (i) a 

dynamic model to simulate the dynamic responses of the gear system; (ii) two tribological 

(wear) models for estimation of wear depth and pitting density, and (iii) model updating 

through comparing simulated and measured vibrations. More specifically, a 21-degree-

of-freedom dynamic model is developed to simulate a spur gearbox setup and produce 

simulated vibrations and contact forces between the meshing gear teeth. Using the contact 

pressure (calculated from the force) as an input, the wear depth and pitting density are 

then predicted by the tribological models and used to modify the gear geometry profile 
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and contact area in the dynamic model. The integration of the dynamic model and 

tribological models allows a knowledge-based wear prediction of the gear profile change 

(determined by the wear depth) and pitting density. To guarantee accurate prediction 

results from the models, novel approaches are developed to update the wear coefficients 

in the tribological models by comparing simulated and measured vibrations. With regular 

model updating, the wear process can be well monitored, and the best possible wear 

prediction can be achieved, facilitating vastly improved estimates of the system’s 

remaining useful life. 

The effectiveness of the developed methods in gear wear monitoring and prediction is 

validated using vibration data collected in two tests: a lubricated test dominated by fatigue 

pitting and a dry test dominated by abrasive wear. 

In summary, this thesis has made the following main contributions to the research field： 

• A vibration-based method is proposed for identifying two common gear wear 

mechanisms (abrasion and surface fatigue). This development is based on the 

cyclostationary analysis technique, and it is applied for the first time to analyse wear-

related low energy phenomena (friction, asperity contacts) in vibration signals. 

• Another important contribution of this research is the development of vibration 

features coupled with wear information for identification of the dominant wear modes 

(abrasive wear and contact fatigue) and tracking of their evolution. 

• A novel vibration-based scheme for updating and prediction of abrasive wear of gears 

is developed in this research. 

• A new approach is proposed to calculate the wear depth distribution of gears. And 

gear wear under different lubrication conditions is accurately predicted. 
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• Novel gear surface degradation prediction models and schemes are proposed in this 

research.  Through regular and intelligent use of measured vibration signals, the 

models can be updated as necessary, ensuring accurate predictions of gear wear (both 

abrasion and fatigue pitting) propagation can be delivered. 

The above developments provide effective and efficient tools for the monitoring and 

prediction of gear wear, in particular, the profile change and pitting density, which is 

critical for making appropriate maintenance decisions to maximize the useful life of gears 

and to avoid catastrophic failures and unexpected economic losses.
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Chapter 1  Introduction 

1.1 Background 

Gearboxes are critical elements in many rotating machines and are characterised by high 

transmission efficiency, reliable operation and an exact constant transmission ratio. 

Thanks to the above-mentioned merits, gearboxes are widely used in different 

transmission systems in many industries. Due to material degradation during operation 

and especially in a harsh working environment, gearboxes are subject to wear - a 

progressive material loss when two gear tooth surfaces contact with relative motions [1-

3]. Wear can lead to the formation of stress concentrations, which may serve as initiation 

sites for other modes of gear failure such as spalling, gear root crack, and gear tooth 

breakage [4-6]. Thus, monitoring the gear wear process and scheduling required 

maintenance in advance accordingly, can avoid the occurrence of catastrophic failures 

and improve the availability of the gear system [7].  

Abrasive wear and fatigue pitting are the two most common wear mechanisms during 

gear service life [8]. Abrasive wear, caused by a lack of or contaminated lubrication [9], 
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is often associated with a high material removal rate of the gear surface, resulting in gear 

tooth profile change. Tooth profile changes can reduce the thickness of the gear tooth, 

which increases the risk of tooth breakage significantly. In comparison, fatigue pitting, 

due to repetitive rolling-sliding contact, has a slower rate in tooth profile change and can 

be identified by observing pits on the gear surface [4]. Fatigue pitting could promote the 

generation of surface spalls across the entire tooth width, resulting in a reduction in gear 

tooth surface durability and/or even tooth breakage. Thus, identifying abrasive wear and 

fatigue pitting and monitoring the surface degradation process (e.g., gear tooth profile 

change and surface pitting propagation) are very important topics in the area of wear 

analysis. Also, monitoring and predicting the wear propagation process can ensure timely 

maintenance being scheduled to avoid catastrophic failure, which benefits the Prognostics 

and Health Management (PHM) significantly. Therefore, a crucial component in machine 

condition monitoring, which is briefly overviewed below. 

Machine condition monitoring includes detection, diagnosis, and prognosis of an 

abnormal condition of a machine. Prognostics is the least developed yet potentially most 

lucrative of the three phases. There are several main techniques of machine condition 

monitoring [10]: performance analysis, vibration analysis, lubricant/wear debris analysis, 

thermography, and acoustic emission analysis. Among these techniques, wear debris (part 

of lubricant analysis) and vibration analysis are the two most commonly used techniques 

for gear condition monitoring. In practice, wear particle analysis is a widely used 

methodology for gear wear monitoring. In particular, wear particle concentration, size, 

and size distribution are good indicators of the overall wear condition of a machine. Also, 

particle size, shape, and surface morphologies are useful features in revealing wear 

mechanisms. Nevertheless, wear particle analysis is often carried out offline, which can 

be time-consuming and costly [10, 11]. In contrast, gear vibration signals are the 
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reflection of gear dynamic features at the moment they are measured and can be easily 

obtained online. It is now well established that vibration signals contain gear tooth profile 

information in their deterministic components (gearmesh harmonics and sidebands) [12, 

13], and some recent preliminary studies have suggested a link between gear surface 

morphology and random vibration components [14, 15]. Vibration analysis is thus the 

more promising tool for efficient real-time gear wear monitoring. To date, vibration 

analysis techniques are widely used for gear fault detection, diagnosis and prognostics, 

but with very limited attempts to monitor wear because wear-related vibration signals are 

of high complexity and thus not easy to be extracted. To utilize wear-related information 

contained in vibrations and to develop vibration-based techniques for multiple purposes 

including online gear wear monitoring and prediction, much more research is needed to 

establish techniques that are suitable for practical applications. 

1.2 Research goals 

The ultimate goal of this research is to develop vibration-based techniques for wear 

monitoring and prediction of remaining useful life (RUL) of gear systems, 

complementing existing capabilities in fault detection and diagnosis. The specific 

objectives of this research project include: 

1. To study the wear induced vibration characteristics and identify wear-related 

vibration features for identification of abrasive wear and fatigue pitting, the two 

common gear wear mechanisms/events. 

2. To develop an online method for monitoring gear wear processes using the 

vibration indicators/characteristics. 



 

4 

 

3. To develop an integrated system for monitoring and predicting gear wear 

propagation by utilizing the power of computer simulation and empirical wear 

models together with the specific and unique responses in the vibrations of 

operating machines. 

1.3 Structure of this thesis 

This thesis commences with a literature review of relevant topics (Chapter 2), followed 

by designing the methodology for achieving the above objectives in Chapter 3. The 

developments of vibration-based techniques for wear mechanism identification and 

evaluation tracking (objectives 1 and 2) are presented in Chapter 4. Objective 3 is 

achieved in 3 steps: step 1 - the establishment of a lumped parameter dynamic model of 

the gearbox transmission system, step 2 - the methodology development in monitoring 

and prediction of wear induced tooth profile change, and step 3 - the methodology 

development in monitoring and prediction of tooth profile change and surface pitting 

propagation simultaneously. The developments of the gear wear monitoring and 

prediction system in these three steps are reported in Chapter 5, Chapter 6 and Chapter 7, 

respectively. The thesis ends in making the conclusions and recommendations in Chapter 

8. 

This thesis consists of 8 chapters. Summaries of the chapters are given below: 

Chapter 1: Introduction 

Chapter 2:  This chapter reviews the progress of vibration-based gear wear monitoring, 

including gear wear modes, relationships between gear wear and dynamic 

responses of gear system, and vibration-based techniques (vibration 

features and models) for gear wear monitoring. 
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Chapter 3: This chapter describes the methodology used in this research project, 

including the research facilities, data acquisition system, and how the 

research objectives were achieved. 

Chapter 4: This chapter introduces wear mechanisms and methods to identify and 

track the evolution of wear using the characteristic of cyclostationarity of 

vibrations. The impacts of different wear mechanisms (abrasive wear and 

fatigue pitting) on gear systems are also presented, that is, profile change 

and surface pitting of gear teeth. 

Chapter 5: This chapter describes the development of a lumped parameter dynamic 

model of the gearbox test rig at the University of New South Wales 

(UNSW). The technical details and results of dynamic model validation 

and calibration are presented. 

Chapter 6: This chapter introduces the developed methodology for gear tooth profile 

change monitoring and prediction. A run-to-failure test was conducted 

using the gearbox test rig at UNSW, where the gear teeth were not 

lubricated (dry test), resulting in wear of the gear teeth caused by abrasion. 

Chapter 7: This chapter introduces the surface pitting and gear tooth profile change 

simultaneous monitoring and prediction. This chapter is a further 

improvement of Chapter 6, including another wear event: surface pitting. 

A test was conducted using the UNSW gearbox test rig, where the gear 

teeth were lubricated (lubricated test), resulting in both tooth surface 

pitting and mild tooth profile change during this run-to-failure test. 
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Chapter 8: This chapter summarises the key findings and articulates the new 

contribution to knowledge in this research field. Recommendations for 

future work are given.
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Chapter 2  Literature review 

This chapter reviews the existing studies, developments and challenges of gear wear 

monitoring using vibration analysis, including wear modes, the relationship between gear 

wear and the dynamic response of a gear system, vibration features/models for gear wear 

monitoring and prediction. 

2.1 Gear wear 

2.1.1 Gear wear modes 

Surface wear is a common but inevitable phenomenon during the whole service life of a 

gearbox [16]. When gear pairs mesh with each other, the tooth flanks will be loaded to 

maintain contact. The motion of the gear tooth surfaces is a combination of rolling motion 

and sliding motion. The sliding component is present where the surface velocities of the 

two contacting teeth are different [17]. The sliding motion can cause material removal 

from the gear teeth, which results in gear mass reduction, that is, gear wear. Gear wear 

can be sorted based on the wear mechanisms as follows: 
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• Abrasive wear: Particle contamination or lack of lubrication, which could lead to 

sliding contact resulting in abrasive wear. Abrasive wear leaves radial scratches 

on the gear surface and causes changes to the geometry of the gear teeth [18], as 

shown in Figure 2.1.  

 

Figure 2.1 Extremely worn gear due to abrasive particles in lubricant [19] 

• Fatigue: Surface fatigue results in the removal of material and it will leave cavities 

on the flank of the gear tooth. Normally, surface fatigue includes pitting and case 

crushing [18]. Case crushing often occurs in heavily loaded case-hardened gears. 

Compared with case crushing, fatigue pitting is more common during gear service 

life. Fatigue pitting is caused by cyclic loading conditions, resulting in fatigue 

cracks either at the surface of the gear tooth or shallow depth below the surface. 

The initial crack usually propagates for a short distance in a direction roughly 

parallel to the tooth surface before turning or branching to the surface. When the 

cracks have grown long enough to separate a piece of the surface material, fatigue 

pitting is formed [19], as shown in Figure 2.2. 

• Scuffing: When there is substantial sliding motion between mating teeth under 

lubrication conditions, the excessive temperature at the sliding asperity contacts 

can result in all protective lubricating films breaking down. As a consequence, the 

softer asperities can deform plastically and transfer to the mating surface. This is 
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usually accompanied by a rapid increase in wear rate or even seizing of the sliding 

pair [20]. This phenomenon is known as scuffing, as shown in Figure 2.3. 

 

Figure 2.2 Fatigue pitting [19] 

 

Figure 2.3 Typical scuffing failure in gears [20]. Note: only one instance of scuffing is indicated in this 

figure for demonstration purposes 

• Corrosive wear: Corrosive wear is a visible wear type as a surface deterioration, 

as shown in Figure 2.4. It is mainly caused by chemical reactions with active 

ingredients in the lubricant [18]. Corrosive mild wear in gears is usually 

introduced by lubricant additives intended for preventing scuffing failure, such as 

extreme pressure additives [20]. 

Fatigue pitting 

Scuffing failure 
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Figure 2.4 Corrosion damage [18]. Note: only one instance of corrosion damage is indicated in this figure 

for demonstration purposes 

In practical applications, abrasive wear and fatigue pitting are the most common wear 

phenomena in gear systems [8], and therefore, in this research, the two are chosen as the 

objective of the study. 

2.1.2 Differences between abrasive wear and fatigue pitting 

Based on the comparison of abrasive wear and fatigue pitting shown in Figure 2.1 and 

Figure 2.2, there are two major differences between these two surface degradation 

mechanisms. First, abrasive wear often has a high wear rate and can result in noticeable 

accumulated material removal in the gear tooth thickness, i.e., changing the gear tooth 

profile over a certain period. Normally, tooth profile change is in millimetres and can be 

named to be macro-level wear, which is illustrated in Figure 2.5. In Figure 2.5, it can be 

seen that the maximum tooth profile change caused by abrasive wear occurs at the 

addendum and dedendum of the gear tooth, while the profile change is minimal at the 

pitch line. Consequently, the worn tooth has a double-scalloped tooth profile. The reason 

is that the sliding velocity, which is proportional to the wear depth in the Archard wear 

model, is theoretically zero (and zero wear depth) at the pitch line and reaches the 

maximum sliding speed (and wear depth) at the addendum and dedendum. This 

phenomenon has also been observed in gear wear simulation [21] and gear wear tests [19]. 

Corrosion damage 
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In contrast, fatigue pitting has a low wear rate in the tooth thickness direction, which 

makes it has negligible effects on gear tooth profile geometry, unless it is extremely 

severe. Therefore, these two wear mechanisms can often be differentiated in macro-scale 

for abrasive wear vs micro-scale for fatigue pitting. 

 

Figure 2.5 Deviations from ideal tooth profile due to abrasive wear [22] 

Second, in view of gear surface morphology, it can be found that compared with fatigue 

pitting, abrasive wear tends to produce a surface with a relatively short wavelength in the 

direction of sliding direction, which results in a high spatial frequency [23]. As for fatigue 

pitting, the detachment of material fragments from the gear tooth surface results in 

localized valleys with long-wavelength which corresponds to the relatively low spatial 

frequency. 

The differences in the features/characteristics of abrasive wear and fatigue pitting are 

summarized in Table 2.1. 

Table 2.1 Differences between abrasive wear and fatigue pitting 

Wear types Wear rate  
Morphology (spatial 

frequency) 
Final form 

Abrasive wear High High 
Tooth profile change (together with a 

rough gear surface) 

Fatigue pitting Low Low 
Valleys on the certain region of gear 

tooth (between gear root and pitch line) 
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2.2 Gear wear effects on vibrations of gear systems 

There is a two-way relationship between the wear process and gear dynamic 

characteristics. In general, gear wear can result in the alteration of gear tooth profile 

geometry or reduction of contact area, which will change the geometric transmission error 

(GTE) and meshing stiffness of gear system, then the dynamic characteristics will be 

affected, including the dynamic contact force and its distribution. As a consequence, the 

level of vibration and harmful noise will increase [24]. In turn, the change of dynamic 

contact force could alter and accelerate the gear wear process. The two-way relationship 

between gear wear and gear dynamics will produce complex gear dynamic responses and 

vibration features, which brings huge challenges in condition monitoring on gear wear 

progression compared with other failures, such as gear tooth root crack, tooth surface 

spalling, and tooth breakage.  

With consideration of the contact patterns, abrasive wear and fatigue pitting have different 

impacts on the vibrations of the gear system in two different scales, existing studies and 

understanding of gear wear effects on vibrations are presented in the macro-level and 

micro-level below. 

Macro-level wear (gear tooth profile change) is a kind of geometric deviation of the ideal 

gear tooth profile, which is serviced as a geometric transmission error to gear system. The 

macro-level wear can lead to an increase in the strength of gear meshing harmonics in the 

vibration signal [25, 26]. Meanwhile, due to the wear-induced gear tooth profile change, 

the load distribution on the tooth surface will also be altered, therefore, the dynamic 

characteristics of mating gears will change. The effect of macro-level wear on vibrations 

can be illustrated in Figure 2.6. 
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Figure 2.6 Typical vibration spectrum due to wear [22] 

As explained in Section 2.1, abrasive wear can easily result in the gear tooth profile 

change, while fatigue pitting usually will not modify the gear tooth profile if gears are 

lubricated with a relatively low wear rate. However, both abrasive wear and fatigue pitting 

have significant impacts on the micro-geometry of the gear tooth surface. Abrasive wear 

and fatigue pitting can induce different surface morphologies, which are at the micro-

level. Abrasive wear can lead to a creation of protrusions (i.e., lumps) distributed from 

gear root to tip uniformly, while fatigue pitting induces the occurrences of valleys on the 

gear surface, normally distributed from gear root to pitch line. 

The micro-level wear generates a rough gear surface, which increases the friction force 

between the mating gears, increasing the overall vibrations level and its frequency 

characteristics [27]. The energy induced by micro-level wear might be very low in 

comparison with the macro-geometry of the gear surface, and the micro-level wear would 

induce a random vibration, namely sliding vibrations [14], so it won’t be represented in 

the gear meshing harmonics (deterministic signals), thus it is not easy to distinguish and 
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extract micro-level wear information from other effects in original measured vibration 

[28]. 

The effects of abrasive wear and fatigue pitting, in both macro-scale and micro-scale, on 

vibrations are summarized in Table 2.2. 

Table 2.2 Effects of wear on vibrations [14, 15, 22, 29] 

Wear type 

Macro-level Micro-level 

Gear meshing harmonics (deterministic 

components) change 

Sliding induced vibration 

(random components) change  

Magnitude 

Abrasive wear Significant  Increase 

Fatigue pitting Slight Increase 

From Table 2.2, it can be found that these two wear mechanisms have distinct impacts on 

different vibrations features. In practice, when fatigue pitting propagates, abrasive wear 

may also co-exist due to oil contamination. The abrasive wear could help to remove high 

asperities, then lead to a smooth gear surface and good lubrication, which can help prevent 

the occurrence of fatigue pitting. While, the occurrence of fatigue pitting can break the 

oil film, and lead to a contact pressure concentration, which could promote the abrasive 

wear process [8]. This is a coupling effect between abrasive wear and fatigue pitting, 

which results in complex vibration characteristics and makes it difficult in extracting 

wear-related vibration features and developing specific vibration-based indicator(s) for 

wear mechanism identification and evolution tracking. Therefore, the vibration-based 

techniques for gear wear monitoring are rather rare. In the following, the existing 

vibration-based gear wear monitoring methodology, using vibration features and models, 

will be reviewed and summarized. 
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2.3 Use of vibration features for gear wear monitoring 

Current wear monitoring work (using vibration features) mainly focuses on gear wear 

evolution tracking [13-15, 22, 29-35]. Moreover, most of this research aims to monitor 

gear tooth profile change (at the macro-level) [13, 22, 29-34]. In contrast, only a handful 

of studies are designed for micro-level wear monitoring, such as detecting surface 

roughness changes [14, 15] or monitoring fatigue pitting propagation [35]. Compared 

with wear evolution tracking techniques, up to date, the vibration-based techniques for 

wear mechanisms identification are rarer. Therefore, in the following, the existing 

vibration-based researches for wear evolution tracking are presented first, then, inspired 

by these researches, the potential researches for wear mechanism identification will be 

discussed and summarized. 

2.3.1 Vibration feature-based wear evolution tracking 

As discussed in Section 2.2, abrasive wear (or extreme severe fatigue pitting) could lead 

to gear tooth profile change (macro-level wear) with an increase in the overall energy of 

vibration signal and the magnitude of gear meshing harmonics. Therefore, the 

relationship between signal energy or gear meshing harmonics and gear wear severity 

were investigated. 

Root mean square (RMS) (Eq. (2.1)) is widely used for reflecting the amplitude (or power) 

of the vibration signal. Considering the worn gear would bring in geometric deviation 

from ideal gear tooth involute, then results in a stronger vibration, there are some 

researchers in Refs. [30, 31] using RMS to monitor the gear wear process. It was found 

that the RMS value has a positive relationship with the gear wear severity. In addition, to 

improve the sensibility and reliability of RMS for detecting gear wear change, a sample 
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parameter, named matched filtered RMS, was reported in reference [32], this parameter 

was defined to be the logarithmic value (expressed in dB) of the averaged power ratio 

between components of the current vibration signal and those of the reference signal. 

Compared with classical parameters such as RMS and peak values, it is easy to trend and 

performs better in tracking the gear wear process [13]. 

RMSx = √
1

𝑁
[∑ (𝑥𝑖)2

𝑁

𝑖=1
] (2.1) 

As an extended version of RMS, an indicator named energy ratio (ER) was proposed in 

Ref. [29]. It was defined in Eq. (2.2) as the difference signal d divided by the RMS of the 

signal containing only the regular meshing components yd. 

ER =
RMSd
RMSyd

(2.2) 

ER increases with wear severity when it occurs uniformly on the tooth surface since it 

would be expected that in this case RMSd would increase while RMSyd would decrease. 

However, RMS and its extended versions mainly focus on the changes in signal power, 

and thus may not be able to reflect the changes in the signal spectral distribution, which 

is also closely related to gear wear. Therefore, some studies start to focus on the signal 

spectral distribution change due to the gear wear processes. 

With consideration of the wear pattern, the uniform wear effects on gear mesh harmonics 

were investigated in reference [22]. In reference [22], the author stated that systematic 

wear would tend to give a kind of profile deviation which is indicated in exaggerated form 

in Figure 2.5. Consequently, the higher harmonics of the tooth meshing will increase. 

Therefore, the amplitude of higher-order meshing harmonics could be a reliable way of 

detecting uniform wear at its early stage. With this knowledge as a basis, the first three 
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gear mesh harmonics of the spectrum and quefrencies of the cepstrum were used in 

reference [33] to monitor the gear wear process. 

However, in the gear wear process, the average gear tooth working profile/surface will 

steadily deviate further from the ideal involute geometry profile of the gear tooth, but the 

changes in the gear tooth meshing harmonics are not determined. That is, all the gear 

meshing harmonics could vary differently, and each gear meshing harmonic may increase 

in a certain period but decrease in the following period. Due to this complex situation, 

using only one or several specific meshing harmonics may not be sufficient to monitor 

the gear wear process. Therefore, all the gear meshing harmonics with significant energy 

are taken into consideration in reference [13], then the sideband ratio (SBR) proposed in 

reference [36] was extended and modified into two new indicators: averaged logarithmic 

ratio (ALR) and moving averaged logarithmic ratio (mALR). ALR can be used to reflect 

the wear effects on the gear degradation state. mALR shows immediate changes in the 

gear degradation state within each short time interval. The performance of the two 

developed indicators was evaluated by two sets of tests with different initial gear tooth 

surfaces. 

In theory, surface wear will cause a gradual change in the mechanical properties of the 

gear transmission system (most notably in the gear tooth geometry profile and gear 

meshing stiffness) and therefore, a gradual change in the gear contact mechanism that 

generates the gear vibration signal. Thus, the difference between vibrations with healthy 

gears and vibrations with worn gears can be used to represent the gear wear propagation 

process. 

In reference [34], an indicator named Model Prediction Error (MPE) was used to track 

the gear wear process (tooth geometry profile change). Auto-regressive (AR) model was 
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used to predict the current state of the vibration signal based on the historical data, then 

“prediction error” is the difference between the predicted signal and the current measured 

signal, which can be used for indicating the gear wear process. A comparison with 

classical indicators was made, such as the FM0, FM4, NA4 and RMS. It proves that MPE 

has a better performance than those indicators in gear wear propagation monitoring. 

Compared with the above-mentioned researches for macro-level wear severity 

assessment, researches for micro-level wear monitoring are quite rare. The reason is that 

the micro-level wear induced vibration is a random vibration with low energy, which is 

not easy to distinguish micro-level wear information from other effects in the original 

measured vibration. In the following, the existing researches for micro-level wear 

assessment will be introduced. 

Recent developments [14, 15] show that the gear tooth surface roughness (induced by 

abrasive wear or fatigue pitting) information can be detected using a cyclostationary 

based approach. And the cyclostationarity of vibration is caused by the unique kinematic 

characteristics of gear transmission systems, as depicted in Figure 2.7. In the study [15], 

an indicator to measure the degree of second-order cyclostationarity (namely ICS2), 

proposed in reference [37], was used to monitor the gear surface roughness change. In the 

experimental part, an approximate positive correlation was found between the degree of 

second-order cyclostationary indicator (ICS2) of vibration and roughness. However, the 

connection was found to be more complex by a later investigation [14], based on a wider 

range of roughness values and a longer experimental duration. To date, insufficient 

conclusions can be drawn. 
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Figure 2.7 Second-order cyclostationary (CS2) signal generation from varying sliding velocity in mating 

gears; (a) number of tooth pairs in contact; (b) approximate sliding velocity; (c) possible amplitude-

modulated random signal (CS2) generated from varying sliding velocity (N = number of teeth on the 

gear) [15] 

In reference [35], the authors assumed that the strength of amplitude and frequency 

modulation is correlated to the gear wear severity, and used a correlation coefficient to 

quantify the difference between the reference signal (vibrations with healthy gears) and 

current measured vibrations, then linked it to gear wear severity. The difference with the 

work conducted in reference [34] is that the correlation coefficient used in Ref. [35] is for 

monitoring fatigue pitting propagation (micro-level wear), whose information is hard to 

detect in the deterministic part of vibration signal. Therefore, a residual signal, after 

removing gear meshing and shaft harmonics, is used for correlation coefficient 

calculation. Five natural pitting propagation tests were conducted in the laboratory to be 

used for verifying the effectiveness of this approach. 
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Table 2.3 Studies of vibration feature-based gear wear evolution tracking 

References Main techniques Purpose 

[13, 29-32] RMS, ER 
Accumulated gear wear evolution 

tracking (at macro-level) 

[22, 33] Gear mesh harmonics or quesfrencies 
Accumulated gear wear evolution 

tracking (at macro-level) 

[13, 33] Sideband energy ratio, sidebands 
Accumulated gear wear evolution 

tracking (at macro-level) 

[34] Auto-regressive model, then prediction error 
Accumulated gear wear evolution 

tracking (at macro-level) 

[35] Correlation coefficient-based approach 
Fatigue pitting propagation 

monitoring (at micro-level) 

[14, 15] ICS2 to monitor roughness change 
Gear surface roughness monitoring 

(at micro-level) 

 

Based on the above literature review, the existing vibration feature-based technique for 

gear wear evolution monitoring can be summarised in Table 2.3. From Table 2.3, it can 

be found that the vibration feature-based techniques for gear monitoring are quite limited 

and general. Most of the studies focus on tracking macro-level wear progression (gear 

tooth profile change), which can be easily detected and monitored in deterministic 

components of vibrations. In contrast, studies for micro-level wear, such as fatigue pitting 

or abrasive wear induced surface roughness change, are rather rare. The reason is that the 

vibration characteristics of micro-level wear are weak, and most of them are contained in 

the random components of vibrations, which are easily masked by unrelated signals from 

other vibration generating mechanisms or white noise. This challenge brings huge 
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difficulties to extract useful vibration features and monitor micro-level gear wear 

evolution. Therefore, researches on investigating the internal relations between micro-

level gear wear and measured vibration features, which could benefit the development of 

vibration-based fatigue pitting propagation, are in vital need and of great importance. 

2.3.2 Vibration feature-based wear mechanism identification 

Up to date, there is very limited work on vibration-based wear mechanism identification, 

and the existing approaches for wear mechanism identification mainly rely on visual 

inspection of a worn surface and/or its wear particles generated from the surface. Based 

on the literature review, there are several researches suggesting their potentials to wear 

mechanism identification, which will be presented as follows. 

A phenomenon was found in the reference [38], that is, fatigue pitting information is in 

the low-frequency range of vibrations. In Ref. [38], artificial pits were introduced to all 

the teeth of the pinion with different sizes to simulate different pitting severities, then the 

mean frequency variation of a scalogram was used to detect the pitting damage. The 

experimental results showed that the mean frequency decreased when the severity of 

pitting increases. This suggested that pitting has effects on the low-frequency part of 

vibrations. 

Even though insufficient conclusions can be drawn in references [14, 15], these two 

suggested the surface morphology information could be detected in sliding induced 

vibration. Reference [14] also mentioned that the wavelength of surface asperities might 

have an impact on the surface roughness monitoring results. This information can be used 

to separate abrasive wear and fatigue pitting. 
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Based on the findings in references [14, 15, 38, 39], the carrier frequency information of 

sliding induced vibrations might have the potential in identifying abrasive wear and 

fatigue pitting. 

From the above literature review, it can be found that the unique surface features induced 

by different gear wear mechanisms have not been well explored and investigated, which 

will restrict the potential of vibration-based techniques for gear wear mechanism 

identification. Therefore, vibration feature-based techniques for gear wear monitoring 

with consideration of special vibration characteristics induced by different gear wear 

mechanisms are needed. 

2.4 Model-based gear wear monitoring techniques 

Gear wear simulation has significant benefits to gear wear monitoring and prediction. The 

gear wear simulation mainly uses the gear meshing mechanism, gear wear mechanism, 

and vibration characteristics to establish dynamic models, tribological (wear) models, and 

their interactions. Then, with the help of the established models, responses in different 

health conditions can be simulated and evaluated, and fault symptoms can be disclosed 

and concluded for fault diagnostics and prognostics [40-42]. In the gear wear simulation, 

gear dynamic models are concerned with the relationship of dynamic properties (stiffness, 

transmission error, friction, etc) and system responses such as vibration responses 

(dynamic contact forces and vibration signals). Tribological models rely on wear 

mechanism theory or experimental data to establish a damage propagation model, in 

which contact pressure distribution, oil film thickness and/or wear rate are studied based 

on certain inputs including the load, lubricant viscosity, sliding velocity and surface 
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roughness. In the following sections, the research progress on gear wear model 

developments will be presented. 

2.4.1 Dynamic models of spur gearboxes 

Contact force is an important input for the tribological model [43-45]. By calculating the 

contact force, then contact pressure can be calculated based on Hertzian contact theory 

[46, 47], and the gear wear propagation behaviours can be simulated using tribological 

(wear) models. There are a lot of researches using empirical equations or finite element 

models to evaluate gear contact force and its distribution between meshing gear pairs [48-

53], however, most of them are effective under quasi-static conditions. Without 

considering the inertia effects due to the dynamics of the gear system, the quasi-static 

contact force can be easily simulated using empirical equations and finite element models. 

However, in industrial practices, the gear transmission system is usually operated under 

dynamic operating conditions, the corresponding responses (e.g., contact force) are quite 

different from those under quasi-static conditions. Normally, because of inertia effects, 

the dynamic meshing forces are typically larger than the corresponding quasi-static forces 

and their magnitudes and waveforms are quite different [21]. Therefore, the dynamic 

contact force and its distribution should be properly evaluated to guarantee i) gear wear 

propagation behaviours can be simulated, and ii) accurate wear induced dynamic 

responses can be exhibited.  

To obtain proper/accurate dynamic contact force during the gear wear process, a dynamic 

model of the gear transmission system, which can also generate wear induced dynamic 

responses (such as vibrations) for wear analysis, is required. In general, the dynamic 

model includes many parameters. Figure 2.8 shows a typical gear dynamic model, 

reproduced from reference [54]. In the dynamic model, there are two main excitations to 
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generate vibrations of the gear pair. The external excitations are the fluctuation of the 

applied load and input operating speed, while the internal excitations are generated from 

time-varying cyclic meshing stiffness, 𝑘(𝑡), and geometric transmission error, 𝑒(𝑡) [55]. 

The occurrence of gear tooth surface wear can affect the GTE (part of internal excitations) 

significantly, then correspondingly the responses will change, which can represent 

different fault symptoms with different wear severities.  

 

Figure 2.8 Dynamic model of a spur gearbox [54] 

Generally, when gear wear occurs, the contact patterns between mating gear pairs can be 

substantially modified, that is, tooth profile change (induced by abrasive wear) and 

contact area reduction (induced by fatigue pitting). Tooth profile change is one kind of 

GTE. Both tooth profile change and contact area reduction can alter the gear meshing 

stiffness. However, considering the scale of gear wear, the meshing stiffness change 

induced by gear wear can be neglected as it is significantly less important than the 

transmission error effect [25]. Therefore, only the researches on wear induced 

transmission error of the dynamic model will be reviewed.  

K(t) 
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Owing to the wear induced GTE, the dynamic load and its distribution between the 

meshing gear pairs will be altered, which could lead to a dynamic transmission error (DTE) 

and thus result in changes in vibration and noise level. Different from the other parameters 

in the dynamic model, such as backlash, manufacturing error and tooth relief, gear wear 

will cause a tooth profile change with certain distribution, which is almost zero around 

the pitch line and has a maximum value at the root or tip of the gear tooth generally [56]. 

Different tooth profile changes will cause different corresponding dynamic characteristics 

and responses, therefore, to acquire accurate wear induced dynamic characteristics and 

responses, GTE should be properly obtained or simulated according to the characteristics 

of wear caused tooth profile changes. There are two possible approaches to obtain wear-

induced GTE: one is the simulation-based method and the other one is the experimental 

method. In the following, researches involving GTE study for gear wear analysis will be 

introduced. 

Experimentally, GTE can be measured used a special device. For example, researchers in 

Ref. [57] used a designed gear coordinate measurement machine to obtain a large number 

of lead traces, each containing around 200 measurement points that are aligned using a 

single profile trace to obtain a three-dimensional measurement of the actual gear tooth 

surface. This approach can acquire wear-induced GTE accurately. However, when 

measuring and evaluating the tooth surface changes, the gearbox should be stopped and 

dismantled, which maybe bring other failure modes into the gearbox, such as shaft 

misalignment. Therefore, many researchers chose the simulation-based approach. Since 

wear induced tooth profile change is complex, therefore, it is not easy to use simple 

equations such as sine/cosine functions to represent it accurately. Considering that, there 

are some researchers [21, 58-60] who use the tribological (wear) models to obtain the 

wear induced tooth profile changes. This approach can be regarded as an integration of 
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dynamic model and tribological models, and it will be introduced in Section 2.4.3. In the 

following, tribological models to simulate wear propagation behaviours will be presented 

first. 

2.4.2 Tribological (wear) models for monitoring wear depth and pitting density 

There are different approaches to establish tribological models with consideration of wear 

modes (abrasive wear, scoring, corrosive wear, etc). Since abrasive wear and fatigue 

pitting are the objectives of this study, therefore, tribological models of these two wear 

mechanisms will be reviewed in this section.  

As for abrasive wear, the Archard wear model [61] is the most accepted and widely used. 

The theoretical basis of the Archard wear model is the Archard wear equation, given by: 

ℎ = ∫𝐾wear𝑃𝜈𝑑𝑡          (2.3) 

where ℎ denotes the wear depth on gear tooth, 𝜈 is the sliding velocity of mating gear 

pairs at time 𝑡 , 𝑃  represents the contact pressure and 𝐾wear  is a dimensional wear 

coefficient. The values for 𝜈 and 𝑃 can be determined by the parameters of the gearbox 

and dynamic model. In contrast, 𝐾wear will be different in different lubrication conditions, 

therefore, the wear coefficient 𝐾wear  is a major unknown factor and it is usually 

determined from experiments [62] or by an approximate wear coefficient model, which 

is based on the effect of oil film thickness and gear surface roughness [63]. It is extremely 

difficult to measure the wear coefficient directly from experiments [64]. Therefore, the 

widely used approach is to evaluate and determine the wear coefficient using empirical 

models/equations. 
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In the determination of wear coefficient using empirical models/equations, lubrication 

plays an important role and its effect is considered based on the oil film thickness-to-

roughness amplitude ratio defined as λ = ℎmin 𝑅⁄ . The minimum oil film thickness ℎmin 

can be determined by empirical equations with consideration of thermal effects [65]. And 

𝑅 = (𝑅1 + 𝑅2) 2⁄ , where 𝑅1 and 𝑅2 are root mean square values of surface roughness on 

the pinion and gear [66]. Based on the value of the calculated λ, three lubrication regimes 

are considered in the simulations to represent the level of interaction between the mating 

gear surfaces, and the wear coefficient 𝐾wear is calculated as follows: 

a) if λ > 4 , it means the oil film thickness is sufficient to avoid direct contact 

between the gear tooth surfaces, wear is neglected and 𝐾wear is set to be zero. 

b) if λ ≤ 0.5, it indicates a strong interaction, wear is maximum and 𝐾wear is usually 

determined based on experimental results. 

c) in the intermediate zone, 𝐾wear  is supposed to be estimated by linear 

interpolations based on λ. 

In conclusion, the relationship between the λ and 𝐾𝑤𝑒𝑎𝑟 can be summarized in Eq. (2.4) 

[21], given by: 

𝐾wear =

{
 
 

 
 𝑘0,              𝜆 <

1

2
 

2

7
𝑘0(4 − 𝜆),   

1

2
< 𝜆 < 4

0,                𝜆 > 4

(2.4) 

It can be seen that the values of 𝐾wear  depend on the oil film thickness and surface 

roughness, which are used to determine 𝜆. Note that 𝑘0 is an initial value of the wear 

coefficient. 
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In a gearbox, the interacting gear teeth are always rolling and sliding against each other 

under high contact pressure, which means that the lubrication state is most likely in the 

mixed or boundary regime [67]. Therefore, tribological models to simulate abrasive wear 

behaviours are almost always under boundary lubrication or mixed elastohydrodynamic 

lubrication (EHL). In the following paragraph, researches on abrasive wear models under 

boundary lubrication or mixed EHL will be briefly introduced.  

As introduced in Eq. (2.4), surface roughness is an important factor to determine the 

empirical wear coefficient 𝐾wear . However, initially, tribological models for abrasive 

wear were built with no consideration of surface roughness update, in other words, wear 

coefficient 𝐾wear is a constant value during the whole abrasive wear propagation process 

[57, 58, 68-72]. In these researches, to achieve a gear wear profile that is close to real 

worn gear, authors in Refs. [57, 58] used a comprehensive finite element model to 

calculate the contact pressure between meshing gear pairs. However, the wear 

coefficient  𝐾wear  has not been updated based on Eq. (2.4), which means surface 

roughness remains to be a fixed value without updating, which is not true during the real 

gear wear process. The surface roughness update issue was addressed in the work 

conducted as part of references [73-75]. Time-varying contact parameters (the normal 

load, radii of curvature, surface velocities, and slide-to-roll ratio) and wear coefficient 

𝐾wear updating based on surface roughness was considered in a proposed transient mixed 

EHL model [73], then the transient behaviour of this model was studied and a fatigue 

model for a spur gear in combination with the dynamic model was proposed to study the 

wear induced characteristics. Then the model proposed in Ref. [73] was employed in 

references [74, 75] to establish a fatigue model, but for tooth crack failure rather than 

fatigue pitting. With consideration of surface roughness update during the wear process, 
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a more accurate wear assessment result can be achieved, compared with the model 

without updating surface roughness.  

From the above literature review, it can be found that the wear coefficient 𝐾wear in most 

existing tribological models is an empirical value, even with consideration of surface 

roughness updating during the gear wear process. However, in actual practice, except the 

surface roughness, lots of other factors can also affect wear coefficient 𝐾wear, such as 

contamination of the lubricant, operation condition change, surface morphology change, 

etc. Therefore, to accurately simulate wear propagation behaviours, it is necessary to 

obtain the real accurate wear coefficient 𝐾wear  based on actual measurements using 

efficient and reliable tools. 

Compared with abrasive wear, studies on simulating surface pitting propagation 

behaviours are more sparse, although there are plenty of publications focusing on 

explaining the process of surface pitting initiation [74, 76-78]. In reference [79], a multi-

axial fatigue criterion and an EHL model [73] were combined to develop a fatigue pitting 

model. With the developed model, the progression of micro-pits on the tooth surface is 

simulated. Similarly, with help of the fatigue formula and EHL model, simulation of 

fatigue pitting propagation behaviours under mixed elastohydrodynamic lubrication 

conditions is achieved in Ref. [8]. Different from Ref. [79], the competition behaviours 

between fatigue pitting and abrasive wear induced mild wear were also investigated. Both 

references [8] and [79] involved the EHL model, which is time-consuming due to its high 

complexity and high-level expert knowledge is required for model establishment. It will 

bring huge challenges to application in industrial practices. Therefore, it is vital to develop 

more efficient models/tools to simulate fatigue pitting behaviours. To address this issue, 

based on the Lundberg-Palmgren model [80], a modified fatigue model with high 

computational efficiency was proposed in reference [81], and results of test rig trials and 
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material analyses were presented to demonstrate the effectiveness of the proposed fatigue 

pitting model.  

2.4.3 Integration of dynamic and tribological models for gear wear monitoring 

As mentioned in Section 2.4.1, GTE is a key parameter of the gear dynamic model for 

gear wear analysis. However, it is challenging to acquire an accurate tooth wear profile 

purely relying on experimental or simple analytical approaches. The tribological (wear) 

model can be used to generate the wear curve on the tooth flank, and then the generated 

wear curve can be incorporated into the gear dynamic model to generate vibrations 

induced by gear wear. This integration of dynamic and tribological models can help reveal 

the connection between gear wear and vibration characteristics, which can bring 

significant benefits to gear wear monitoring.  

However, until this point, there are only limited references [21, 59, 60] using the 

integration of tribological and dynamic models for gear wear monitoring. Among them, 

authors in references [21, 60] combined the tribological model and dynamic model 

together, aimed at studying the coupling effects between surface wear and gear dynamics 

(such as meshing stiffness, contact force and vibrations). Then this approach was 

extended to the planetary gearbox in Ref. [59]. The reference [21] employed a torsional 

model with a single degree of freedom and then integrated it with a wear prediction model 

[57] to investigate the interactions between the tooth surface wear and spur gear system’s 

dynamic characteristics. However, an accurate prediction for gear dynamics relies on a 

comprehensive dynamic model that can simulate the behaviours of the actual running rig. 

Reference [21] only included the torsional deflections in gear-shaft systems, the 

translational effects coming from the shaft bending and bearing radial deflections were 

not considered, which may degenerate the accuracy of the wear analysis. To solve this 



 

31 

 

problem, later, a 4-degree-freedom model including translational motions of gears was 

introduced in reference [60] and a new dynamic wear analysis method was proposed to 

study the interactions between tooth surface wear and gear dynamics. However, in 

reference [60], the authors used simple sine/cosine functions to represent the meshing 

stiffness and GTE, which is very different from the actual application. An inaccurate 

evaluation of meshing stiffness and GTE of the gear dynamic model will also cause 

degeneration of the accuracy of the wear analysis.  

Based on the discussion of the research publications in the previous sections, it can be 

seen that studies on the interaction between tribological and dynamic models for assessing 

gear wear processes are still needed with consideration of a comprehensive dynamic 

model together with a  proper evaluation of parameters (stiffness and GTE). Therefore, 

the establishment of a comprehensive dynamic model with proper meshing stiffness and 

GTE is necessary, which could simulate realistic wear-induced vibrations (compared with 

actual running rig) for further wear analysis. 

2.5 Wear prediction techniques 

Having the capability to predict the gear wear process would bring enormous benefits in 

cost and safety to a wide range of industries. In the following, existing studies of 

vibration-based gear wear prediction techniques will be reviewed. 

2.5.1 Prediction of tooth profile change from abrasive wear 

In reference [82], the wear distribution on gear tooth was predicted using the Archard 

wear model for an unlubricated system. Their observations from experiments validated 

the prediction results, that is, the maximum wear occurs in the dedendum and addendum 
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regions of gears. However, a gear system usually operates with substantial lubrication, as 

it reduces wear on the gear teeth, reduces noise and vibration, and improves the power 

conversion efficiency as less energy is irrecoverably lost to wear mechanisms. To address 

this issue, an EHL model was applied in Ref. [83] to simulate the wear propagation 

behaviours and predict the accumulated wear depth under lubrication conditions. But the 

applied EHL model in reference [83] is time-consuming and requires a high-expert 

knowledge for establishment. To reduce the computational cost of the EHL model, a 

simplified EHL model was developed in reference [84], where temperature factors were 

considered, and the predicted results of gear wear were validated against those obtained 

by isothermal formulas defined in reference [85]. However, in references [82-84], the 

contact force was calculated using empirical equations, without consideration of the real 

worn tooth profile geometry, which could degrade the accuracy of prediction results.  

Several studies [86-88] used an empirical formula to estimate the contact force between 

gears, which was used to estimate the worn tooth profile. The accuracy of these estimates 

can be improved by using the finite element method to determine the contact force. A 

gear surface wear prediction methodology for spur and helical gears was proposed in 

reference [57]. In the proposed methodology, a finite element model of the gear contact 

mechanics, in conjunction with Archard’s wear equation, was employed to predict gear 

wear. To guarantee the accuracy of prediction results, a special measurement machine 

was used to acquire the real worn tooth profile during the gear wear process. This 

measured worn tooth profile was set as an input of the finite element model to predict the 

wear propagation progression. And, the prediction results were validated through 

comparison with experimental ones. However, in the approach proposed in reference [57], 

the gearbox should be stopped and dismantled when measuring the worn tooth profile. 

The stoppage and subsequent dismantling could introduce other failure modes or affect 
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the progression of existing ones. Researchers in references [89-91] have also used the 

finite element method to estimate the contact force between gears, which was used as an 

input into the Archard wear model, and subsequently used to predict the wear depth of 

spur and planetary gears. To obtain a more accurate contact force and reduce the 

computational cost, efforts on improving the finite element model were made in 

references [92, 93]. The results showed that the wear predictions were improved with 

help of the improved finite element model. However, there is a drawback of using a finite 

element model, in that it is difficult to properly represent the dynamic characteristics 

induced by inertia. With the finite element models employed in references [92, 93], the 

simulated contact force is under quasi-static conditions. However, in actual practice, the 

gearbox is running under dynamic operating conditions, and the dynamic contact force is 

different from the quasi-static contact force in both magnitude and waveform [21]. To 

include the dynamic effects into the finite model, the boundaries and mesh generation 

should be well defined, both of which require high-level expert knowledge, along with 

increased computational costs. Therefore, the use of a simple finite element model could 

bring noticeable errors to wear prediction, unless the worn tooth profile can be regularly 

corrected using actual measurement, as in reference [89]. Thus, a dynamic model is 

needed to provide the dynamic contact force, which is closest to the actual running test 

rig. Note that the finite element model mentioned in this thesis refers in particular to the 

simple finite element model without well-defined boundary conditions and mesh 

generations. 

Except for physical model-based gear wear prediction, there are some other approaches 

that were proposed to monitor and predict the change of the profile of a gear tooth due to 

wear. For example, an integrated prognostics method was proposed in Ref. [24] for wear 

prediction in terms of wear depth change. In this hybrid approach, the Archard wear 
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model was used to simulate wear behaviours, and the Bayesian update process was 

implemented to determine the wear coefficient during the wear process. The predicted 

results were compared with experimental results from tests using a planetary gearbox that 

was run-to-failure. Compared with the wear prediction purely relying on physics models 

or experiments, the results suggested that the integration of the wear model and actual 

measurements could achieve more reliable and accurate wear prediction. The relationship 

between gear hobbing processing technique and gear geometric deviation was modelled 

by applying the improved Particle Swarm Optimization (PSO) and Back Propagation 

algorithm (BP) to determine the optimal model parameters in reference [94]. The 

accuracy of both algorithms was evaluated by the Root Mean Square Error between the 

predicted and experimental values. The result shows that the gear geometric deviations 

were well predicted and were in reasonably good agreement with experimental data. A 

statistical model with statistical parameters was proposed in Ref. [95] to monitor and 

predict the gear behaviours with extreme tooth profile alteration induced by abrasive wear, 

the effects of the Sic concentration, applied load and sliding distance was statistically and 

physically analyzed in detail. Besides, a fusion of ultra-complete independent component 

analysis (UICA) and parameter estimation (PE) was developed in reference [96] to 

monitor and predict the severity of gear wear. Even though promising prediction results 

were achieved in references [94-96], these statistical model-based approaches could not 

reveal the wear behaviours and gear dynamic responses change during the gear wear 

process, which has significant benefits to the understanding of wear mechanism and its 

consequences to the gear system. Also, the statistical model-based approach heavily relies 

on a huge amount of experimental data, which limits its capability of applying in 

industrial practice. Therefore, a vibration-based tool, which can reveal the gear wear and 

dynamic behaviours also requires a small amount of experimental data for model 
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parameter updating/calibration, is in vital need and it could bring significant benefits to 

gear wear monitoring and prediction in industrial practice.  

2.5.2 Prediction of surface pitting propagation 

The focus of the research described in the previous sections was on the prediction of the 

change in the profile of gear teeth caused by abrasive wear. Some research [8, 81] 

involved predicting the propagation of fatigue pitting. In reference [8], an EHL model 

and fatigue equation were combined to simulate the propagation behaviours of fatigue 

pitting propagation and mild tooth profile change (caused by abrasive wear), under mixed 

elastohydrodynamic lubrication conditions. In this approach, the competitive behaviours 

between abrasive wear and fatigue pitting were successfully simulated during the gear 

wear propagation progression. However, as for this approach, high computational cost 

and high-level expert knowledge are required to realize the EHL model. Compared with 

research described in reference [8], a more efficient approach was proposed by the 

researchers in Ref. [81], where the Archard wear model and empirical fatigue pitting 

formula were used to predict both the abrasive wear (in terms of wear depth) and fatigue 

pitting (in terms of surface pitting) propagation. Also, a statistical formulation was 

proposed in reference [97] to depict the evolution of asperity shape induced by wear and 

plastic deformations under mixed lubrication, and an asperity strain-hardening model was 

developed to predict the surface roughness change and fatigue pitting propagation. 

Although the model predictions were in almost perfect agreement with the experimental 

reference measurements in Ref. [97], the predictions must be subjected to a larger number 

of experimental evaluations for a more decisive validation and a final judgment on their 

precision, which brings huge challenges to the application in industrial practices. 

Moreover, in references [8, 81, 97], none of their propagation processes was timely 
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examined and calibrated by actual measurements to accommodate changes in operating 

and lubrication conditions as well as wear conditions and rates.  

In practice, the abrasive wear and fatigue pitting propagation rate would be affected by 

contamination of the lubricant, change in roughness, changes in the operating conditions, 

etc. Therefore, without real-time examination and updating, the accuracy of predictions 

is uncertain and will decrease significantly as wear progresses. Therefore, reliable, 

effective and efficient simulation methods are needed to predict the propagation of gear 

wear, with consideration of experimental/industrial measurements. 

Besides, except for the above-mentioned physical model-based approaches, other kinds 

of techniques were also developed and proven to be effective for fatigue pitting prediction. 

For example, the artificial neural network (ANN) was used in Ref. [98] to predict the 

severity of gear fatigue pitting. Based on some well-known standards, there are some 

methodologies developed for predicting fatigue pitting severity in references [99, 100]. 

American Gear Manufacturing Association (AGMA) design standard was employed in 

Ref. [99] to predict pitting and bending fatigue crack initiation along the gear tooth profile. 

With help of the ISO standard of gear micropitting (ISO/TR 15144-1:2020) and 

considering the operating load and speed conditions, a theoretical study was carried out 

in Ref. [100] to assess the risk of gear micropitting by determining the gear contact stress, 

sliding parameter, local contact temperature and lubricant film thickness along the line of 

action of gear tooth contact. Note that a large set of experimental data is required to train 

the ANN or determine/optimize the parameters in the AGMA and ISO standards. In real 

applications and industry practice, it is hard to obtain significant historical data for 

training or parameter optimization. Also, having the ability to demonstrate the fatigue 

pitting propagation behaviours can help the analyst to well understand the fatigue 
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mechanisms. However, ANN, AGMA or ISO standards cannot reveal and exhibit the 

fatigue pitting propagation behaviours with details. 

2.5.3 Research gaps 

From the above literature review on gear wear (abrasive wear and fatigue pitting) 

prediction techniques, it can be seen that most of the existing wear prediction techniques 

are designed for predicting abrasive wear induced tooth profile change. In contrast, the 

researches for fatigue pitting prediction are rare. The reason might be that i) there are few 

effective and efficient models/tools for simulating fatigue pitting propagation behaviour; 

and ii) abrasive wear usually co-exists during the fatigue pitting propagation progression, 

which brings in complex surface degradation process and surface morphology; iii) the 

fatigue pitting induced vibration feature is extremely complex, weak and difficult to 

extract. These challenges restrict the development of vibration-based fatigue pitting 

propagation monitoring and prediction. Therefore, a reliable, effective, and efficient 

fatigue pitting model/tool is required to reveal and represent fatigue pitting propagation 

behaviours. 

From the review of the existing research on gear wear prediction, it can also be found that 

the physical-based approach is widely used. Compared with the statistical model-based 

approach, artificial intelligence-based approach and standard-based approach, the 

physical (wear) model has its unique advantage, which is that the surface degradation 

behaviours can be represented for helping understand the wear mechanism and its 

consequences to the gear system. However, the existing model-based wear prediction 

methodology has not been timely examined and calibrated using actual measurements, 

which could degrade the wear prediction accuracy. Therefore, it is necessary to develop 

a vibration-based tool for gear wear prediction, in which, the wear model is developed 
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with a complete understanding of the wear mechanism and models parameters can be 

timely calibrated and updated with a reasonable amount of experiment data. 

The digital twin (DT) is a virtual representation (mirror) of a physical structure or a 

system in real space along its lifecycles [101]. Through real-time interaction between the 

virtual model and physical structure, the degradation status of the system and its RUL can 

be reflected and evaluated effectively. Thanks to its unique speciality, DT has received 

considerable attention from the research community over the last decades. However, due 

to the complex structures and harsh operation conditions, research of DT-based gearbox 

transmission system RUL prediction is rather rare. And existing conceptual approaches 

[101-103] have limitations in indicating the specific contact statuses and providing 

insights on degradation stages of gearbox transmission systems, all of which are of high 

value to RUL prediction. Therefore, the development of a systematic and practical digital 

twin technology for gear wear monitoring and RUL prediction and will benefit the 

research community and industrial practices significantly. It is the main research goal of 

this thesis. 

2.6 Summary 

This chapter presents the review for vibration-based gear wear monitoring. From the 

literature review of vibration feature-based gear wear monitoring, it was found that most 

of the existing research focuses on tracking the abrasive wear-induced tooth profile 

change, which is at the millimetre level (macro-level wear). The researches for fatigue 

pitting monitoring (micro-level wear) and wear mechanism identification are rather rare 

and deserve more attention from the research community.  
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In reviewing the progress of vibration model-based gear wear monitoring, it can be seen 

that the Archard wear equation still plays an important role in modelling the abrasive 

wear behaviours. In contrast, models for fatigue pitting are limited, and the combination 

of the EHL model and fatigue criterion is the main approach to simulate fatigue pitting 

propagation behaviours, which is time-consuming and requires a high level of knowledge 

for the model establishment. Therefore, more effective and efficient models/tools for 

simulating fatigue pitting propagation behaviours are required. 

Moreover, in practice, abrasive wear and fatigue pitting can both occur in the gear surface 

degradation process, simultaneously or appear at different times on the same gear. 

Therefore, it is important that both the gear tooth profile change and surface pitting 

density can be monitored and predicted. To do so, there is a vital need to quantify the 

wear induced tooth profile change (in terms of wear depth) and the surface pitting density 

in situations when these two wear events take place separately or simultaneously.
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Chapter 3  Methodology 

This chapter presents and demonstrates the rationalities of the overall approaches and 

technical strategies to achieve the ultimate goal of this research. More specific 

information on the approaches is presented in Chapters 4-7. 

The structure of this chapter is arranged as follows. An introduction to the overall strategy 

to implement the vibration-based integrated system for gear wear monitoring and 

prediction is introduced in Section 3.1, and the procedures to achieve the specified project 

goals are presented. The experimental research facilities and test programs to realize the 

objectives of this research are presented in Section 3.2. Then, Section 3.3 and Section 3.4 

give the skeletons of the proposed methodology for the specified research objectives in 

stages. More specifically, approaches used to identify gear wear mechanisms and to track 

wear evolution using vibrations are presented in Section 3.3. With the identified wear 

mode(s), model-based gear wear monitoring and prediction methodologies are introduced 

in Section 3.4, including dynamic model, tribological (wear) models and the 

corresponding updating procedures with help of measured vibrations. 
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3.1 The overall strategy of the vibration-based integrated system for 

gear wear monitoring 

The developed vibration-based gear wear monitoring and prediction integrated system 

consists of two stages:  

• Stage 1: Wear mechanism identification using vibration-based techniques 

• Stage 2: Wear propagation monitoring and prediction using vibration-based 

approaches 

This project can be further divided into four specific research objectives: objective 1 

belongs to stage 1, and objectives 2-4 belong to stage 2. 

• Objective 1: Identification of gear wear mechanism and tracking wear evolution 

using cyclostationary properties of measured vibrations 

• Objective 2: Dynamic model development 

• Objective 3: Monitoring and prediction of tooth profile changes during wear 

progression 

• Objective 4: Development of a digital twin approach for monitoring and 

prediction of surface pitting and tooth profile changes 

Objective 3 only focuses on monitoring and predicting one wear phenomenon, which is 

tooth profile change (e.g., from abrasive wear). Objective 4 is a further improvement in 

objective 3 by monitoring and predicting two wear phenomena/events, that is, tooth 

profile change and surface pitting. In practice, it is common that multiple wear events co-

exist during gear wear progression. Therefore, these two common wear phenomena, 

surface pitting propagation and tooth profile change, are taken into consideration in 

objective 4. To show the connections of the above-mentioned objectives of this project, 
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a schematic diagram of the overall strategy for gear wear monitoring and prediction is 

given in Figure 3.1. The specific techniques utilized to realize each objective will be 

introduced in Sections 3.3 and 3.4 below. Also, the congruent relationship between each 

objective and the following chapters of this thesis is shown in Figure 3.1.  

To conduct the research stated in stage 1 and also to demonstrate and validate the 

effectiveness of the developed vibration-based integrated system in gear wear monitoring 

and prediction, two endurance tests were conducted on a spur gearbox at UNSW under 

different lubrication conditions to generate different dominant wear phenomena/events. 

The experimental research facilities and test programs to realize and accomplish the 

above-mentioned objectives of this research project will be introduced in the following 

section. 

 

Figure 3.1 The schematic diagram of the research methodology 
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3.2 Experimental research facilities and test programs 

3.2.1 Spur gearbox at University of New South Wales 

A single-stage spur gearbox rig, shown in Figure 3.2, was used to conduct gear wear tests. 

The gearbox is composed of an input shaft and an output shaft, which carry two modular 

gears (module 2) with 19 and 52 teeth, respectively. To achieve an accelerated wear rate, 

gears made of mild steel (JIS S45C) were used. The gears have not been processed with 

heat treatment and the hardness is less than 194 HB. The precision grade of the gears is 

JIS grade 4 (JIS B1702:1976), and gear teeth are with standard full depth. The input shaft 

is powered by a 4-kW electric motor, whose instantaneous rotational speed is controlled 

by a variable frequency drive (VFD) and connected to a torque meter that can monitor 

the instantaneous torque of the gear transmission system. An electromagnetic particle 

(EMP) brake is connected to the output shaft (at the end) and is used to control the torque 

transmitted by the gear transmission system. Two encoders are installed at the remaining 

free ends of the shafts. The connections of the gearbox shafts with the motor, brake and 

encoders are achieved using couplings with high torsional stiffness and low bending 

stiffness.  

Two vibration sensors (B&K 4396 and B&K 4394 accelerometers) are mounted on the 

top of the gearbox casing in the positions shown in Figure 3.2(b). The sensitivity of the 

B&K 4396 accelerometer is 10.0 mV ms−2⁄  and its nominal frequency range is 1 to 

14000 Hz, while for the B&K 4394, its sensitivity and frequency range are 

1.00 mV ms−2⁄  and 1 to 25000 Hz, respectively. The lubrication is provided by an oil 

bath and the kinematic viscosity of the oil is 146 (40 °C, Shell Spirax S2 A 80 W-90). 

Before the lubricated test and unlubricated test were conducted, three teeth on each gear 
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(hence a total of 6 teeth) were chosen randomly and marked to be used for monitoring the 

evolution of wear on the surface of the gear teeth. The moulding procedure consisted of 

applying Microset 101 thixotropic silicone polymer to a series of marked gear teeth at 

each stoppage during the endurance tests. The moulds were then tagged with the 

collection time (cycles) and stored for further analysis. 

 

Figure 3.2 The spur gear test rig at University of New South Wales (UNSW): (a) Overall view; (b) Detail 

of the gearbox; (c) A schematic diagram of the setup [16] 

3.2.2 Wear tests and data collection 

Two run-to-failure tests were carried out to simulate gear wear progression behaviours 

under different lubrication conditions. A test with lubrication was conducted to generate 

fatigue pitting on the gear surfaces, and mild tooth profile change co-exists due to the 

abrasive wear. Next, a test without lubrication was conducted to create abrasive wear, and 
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the tooth profile change is severe but no/rare surface pitting was observed. Further details 

of these two tests are presented below.  

The test with lubrication was performed to simulate the natural fatigue pitting propagation 

progression. The lubricated test was performed with a pre-roughened gear pair to 

accelerate the degradation process and abrasive wear occurred at the beginning of the test 

when the gear tooth surface was rough; the initial gear surface condition/morphology is 

shown in Figure 3.3. The lubricated test ran for a total of 3.25 million cycles of the pinion 

(the driving gear). The test rig was stopped roughly every 0.1 million cycles for the 

lubricated test to record the surface condition of the six gears by using a moulding 

technique, as shown in Figure 3.4. During this endurance test, the motor torque was set 

to 20 Nm for the entire duration, which is around 9-times the pinion’s rated torque for 

surface durability, guaranteeing the occurrence of surface pitting. During short specific 

intervals within the test campaign (mostly before each stoppage), the input shaft rotational 

speed was adjusted to 2 Hz, 6 Hz, 10 Hz, 16 Hz and 20 Hz from the pre-set operating 

speed to record vibration and tacho/encoder signals. Each speed adjustment lasted around 

10 seconds, after which the input shaft speed was changed back to the pre-set operating 

speed. This speed adjustment was intended to generate different types of transmission 

error signals, with the relevant investigations reported in reference [104]. Vibration 

signals were acquired regularly (around every 6000 cycles) within the test campaign, with 

a record length of 10 seconds and a corresponding sampling rate of 100 kHz. Figure 3.5 

shows a picture of the pinion and an image of a pinion tooth surface after the test with 

lubrication, which shows the occurrence of fatigue pitting. 

The test without lubrication (dry test) was conducted with a new pair of gears over 

approximately 38,000 cycles of the pinion. The test rig was stopped roughly every 5000 

cycles for the dry test to record the surface condition with the moulding technique. Figure 
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3.6 shows the surface of a tooth on the pinion and was not artificially worn before 

commencing the test. The dry test intended to create an environment conducive to high 

rates of abrasive wear, leading to rapid tooth profile changes, but without substantial 

levels of pitting. To achieve this, the motor torque was set to 5 Nm and the input shaft 

speed to 10 Hz for the entire duration of the test. Similarly, during short specific intervals 

within the test campaign (mostly before each stoppage), the input shaft rotational speed 

was adjusted to 2 Hz from the pre-set operating speed to record vibration and 

tacho/encoder signals. The vibration signals were sampled at 100 kHz and for a duration 

of 10 seconds. Wear particles were collected during the dry test using adhesive paper, as 

shown in Figure 3.7, and their mass has been used to calculate average wear depth. Figure 

3.8 shows the appearance of the pinion and its gear surface after the test. 

 

Figure 3.3 The initial surface of the pinion gear that was artificially roughened using sandpaper before 

conducting the test with lubrication 
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Figure 3.4 Gear pair and mould making (in lubricated test) 

 

Figure 3.5 Gear surfaces after the lubricated test: (a) Appearance of the pinion; (b) An image of a mould 

of a pinion tooth surface with fatigue pitting 

 

Figure 3.6 The initial pinion surface before the dry test 
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It should be highlighted that the aim of the two tests is not to conduct the most realistic 

wear progression possible. Nor is it to investigate the effect of speed and load on wear 

(rates). The objective is rather to generate lots of abrasive wear in one test and lots of 

fatigue pitting in the other, so that techniques for monitoring and predicting the 

progression of these wear types can be developed and tested. 

Figure 3.7 Gear pair and adhesive paper (in dry test) 

Figure 3.8 Gear surfaces after the dry test: (a) Appearance of the pinion; (b) An image of a mould of a 

pinion tooth surface with abrasive wear 

The lubricated test and dry test are used in this research to help realize the above-

mentioned objectives 1, 3 and 4. More specifically, two different dominant wear 

mechanisms/events occurred in the lubricated test and dry test respectively: fatigue pitting 

and abrasive wear. The measured vibrations in the two tests can be utilized to help 

develop the vibration-based techniques for wear mechanism identification, which 
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corresponds to objective 1 of this research. Also, as for objectives 2, 3 and 4, the measured 

vibrations are used to conduct model calibration and compare with simulations to update 

model parameters for gear wear progression prediction, which will be introduced in 

Section 3.3 and Section 3.4. The details and differences of the lubricated test and dry 

test are summarized in Table 3.1. 

Table 3.1 Settings of lubricated test and dry test 

Test 1 Test 2 

Lubricated Yes No 

Pre-worn Yes No 

Max cycles 3,250,000 cycles 38,000 cycles 

Stop intervals 100,000 cycles 5,000 cycles 

Load 20 Nm 5 Nm 

Input shaft speed (constant) 10 Hz 10 Hz 

Short-term input shaft speed changes 

(constant; not used in this study) 
2 Hz, 6 Hz, 16 Hz, 20 Hz 2 Hz 

3.3 Gear wear mechanism identification and wear evolution tracking 

using cyclostationary properties of vibrations (objective 1) 

It is necessary to identify the gear wear mechanism and understand its impacts on gear 

tooth before monitoring and predicting the wear propagation so that the corresponding 

maintenance strategies for specific wear events can be developed and scheduled. 

According to the literature review of Section 2.3, it can be found that the existing 

approaches for wear mechanism identification are off-line techniques.  For instance,  the 

widely used approach is the visual inspection of a worn surface and/or the wear particles 

generated from the surface. This approach requires either interruption of the operation (in 
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the case of visual inspection) or a delay in analysing wear debris, and the operating status 

of gearboxes cannot be timely reflected. Therefore, it is necessary to identify wear 

mechanisms (abrasive wear and fatigue pitting) using an efficient and effective online 

approach and track its wear evolution.  

In general, changes in the profile of gear teeth cause changes in the deterministic 

component of vibrations. In contrast, the sliding induced random vibration from the 

asperity contacts between two mating gears is closely related to the surface morphology 

[105, 106]. From the surface feature view, abrasive wear tends to introduce a change to 

the gear tooth profile, while fatigue pitting has negligible effects on the gear tooth profile 

unless the fatigue pitting is extremely severe [19]. However, both abrasive wear and 

fatigue pitting change the micro-geometry of gear tooth surfaces. Therefore, the sliding-

induced random vibrations have the information of both abrasive wear and fatigue pitting.  

However, in the measured vibrations, the sliding induced random vibration is usually 

mixed with the signals from other unrelated vibration generating mechanisms or white 

noise, which brings difficulties in extracting surface morphology related information for 

wear mechanism identification and wear severity tracking, and also leads to the traditional 

indicators (e.g., RMS and kurtosis) lose their effectiveness in gear wear monitoring. To 

effectively extract the sliding vibration from background noise (i.e, the signals from other 

unrelated vibration generating mechanisms or white noise), the special characteristics of 

sliding vibrations were investigated in references [14, 15], and it was found that the 

sliding vibration has second-order cyclostationarity (CS2) due to the time-varying sliding 

velocity and contact force on the tooth pairs. Therefore, cyclostationary properties of 

vibrations and the relevant techniques such as spectral coherence map and indicator of 

CS2 are used and further explored in this research to identify the wear mechanism and 

then track its propagation.  
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Figure 3.9 The schematic diagram of the vibration-based wear mechanism identification and evolution 

tracking 

The main procedures to achieve objective 1 in this research are as follows. Firstly, the 

relationship between the spatial frequency of the surface morphology and the frequency 

of sliding vibration is investigated and established. Then the fatigue pitting and abrasive 

wear are identified and separated using the carrier frequency of measured vibrations and 

ICS2 of vibrations [37] (an indicator of CS2): fatigue pitting information is carried in the 

low-frequency range, while abrasive wear information is carried in the high-frequency 
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range. Finally, the fatigue pitting and abrasive wear propagation are monitored and 

tracked using ICS2 in the proper frequency bands. A schematic diagram of the vibration-

based wear mechanism identification and evolution tracking is shown in Figure 3.9. More 

details of this development can be found in Chapter 4. 

3.4 Model-based gear wear monitoring and prediction methodology 

Once the wear mechanism is identified, the gear wear propagation can be monitored and 

predicted using the corresponding approach/technique so that the remaining useful life of 

the gear system can be estimated. As reviewed in Section 2.4, compared with statistical 

models and artificial intelligence, the physical model-based wear monitoring 

methodology has many merits such as fewer measurements are required for training or 

calibration purpose and an in-depth understanding of the wear mechanism can be 

provided. Therefore, model-based techniques are utilized in this research for monitoring 

and predicting gear wear propagation.  

However, in practice, during gear wear progression, the wear propagation rate tends to 

change due to factors such as oil contamination, changes in operating conditions, changes 

in surface roughness, etc. Therefore, to ensure accurate prediction results, regular 

comparison between simulations and actual measurements is scheduled in this project to 

update the model parameters if necessary. This updating procedure can address the wear 

rate shift issue and guarantee the best possible prediction of RUL can be achieved at any 

particular time. The skeleton of the model-based wear prediction proposed in this project 

is shown in Figure 3.10. In the following sections, specific models and techniques for 

monitoring different wear phenomena will be introduced. It should be emphasized here 

that the main novelty of this model-based gear wear monitoring scheme is that regular 
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comparisons between simulations and actual measurements are conducted to update the 

model parameters whenever necessary so that an accurate prediction of wear propagation 

can be achieved. Also, compared with wear particle measurements or images obtained 

through scanning the worn tooth profile, vibration has a unique advantage in that it can 

be easily and quickly obtained for updating purposes, without interrupting the operation 

of the gearbox. 

 

Figure 3.10 The skeleton of the model-based gear wear monitoring and prediction 

3.4.1 Super gearbox dynamic model development (objective 2) 

From the literature review of Section 2.4.1, modelling the contact force is a critical 

procedure for gear wear monitoring and prediction due to it is an important input of 

tribological (wear) models. Most of the existing researches use finite element models and 

empirical equations to calculate the contact force between the meshing gears, and the 

obtained contact force is under quasi-static conditions. However, in practice, the gear 

system is usually operating under dynamic conditions, and due to the inertial effects, 

dynamic meshing forces are typically larger than the corresponding quasi-static forces 

and their waveforms are quite different [21]. Therefore, the use of quasi-static force could 

bring noticeable errors to the subsequent wear prediction. Compared with the simple 

finite element model and empirical equations, the dynamic model can give a contact force 

under dynamic conditions which consider the inertia effects [18, 41, 107]. Therefore, the 
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dynamic model is chosen to provide necessary inputs to wear models and generate 

simulated vibrations in this research. 

To achieve objective 2 of this research, a 21 degree-of-freedom (DOF) lumped parameter 

dynamic model is established based on the UNSW gearbox test bench (as shown in Figure 

3.2). The model includes the motor, shafts, gears, casing and couplings. The basic motion 

equations of the dynamic model are established based on Newton’s Second Law of 

Motion. 

To guarantee the outputs (such as dynamic contact forces and vibrations) from the 

dynamic model are close enough to the measurements from the experimental rig, the 

model has been validated and calibrated through a series of tests, including impact tests, 

speed ramp tests and several constant speed tests. More details of the dynamic model 

development can be found in Chapter 5. Note that the 21 degree-of-freedoms (DOFs) 

lumped parameter dynamic model is developed based on the fixed-axis spur gearbox test 

rig shown in Figure 3.2, whose structure and properties are different from the spur 

gearbox test rig shown in previously published work [18, 41, 107].  

3.4.2 Monitoring and prediction of tooth profile changes from abrasive wear (objective 

3) 

With the dynamic contact force from the established dynamic model, the wear 

progression can be monitored and predicted through specific tribological (wear) models. 

Tooth profile change is one common wear phenomenon and it is usually caused by 

abrasive wear [19]. The tooth profile alteration can cause stress concentration, which 

increases the risk of tooth breakage significantly. Therefore, it is necessary to monitor 

and predict the tooth profile change from abrasive wear. 
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The physical-model based approach is chosen in this research to monitor the tooth profile 

change from abrasive wear, therefore, a tribological (wear) model which can represent 

the abrasive wear propagation behaviours and its induced tooth profile change is needed. 

From the literature review of Section 2.4.2, although many advanced wear models have 

been proposed using different methodologies and parameter sets, the Archard wear model 

[61] remains the most commonly used for practical applications, and is chosen in this 

research. However, none of the previously published research [21, 57, 62, 68, 108] 

considered the contribution of adjacent contact points to the wear depth accumulation 

with the Archard wear model, which can affect the wear distribution and then impair the 

wear prediction accuracy. Therefore, in this research, the Archard wear model is 

improved to calculate the wear depth on gear tooth, with consideration of the effect of 

Hertzian deformation, giving a contact area rather than a line, and the effects from 

adjacent contact points are included. 

To solve the previously discussed wear propagation rate change issue, simulation and 

measured vibrations are compared regularly to update the model parameters if necessary, 

and a vibration-based scheme for updating gear wear prediction is proposed in this 

research project. The whole basic procedure of the proposed methodology is shown in 

Figure 3.11. The modelling component of this proposed methodology is composed of two 

interacting simulation models: a dynamic model and an Archard wear model. Based on 

the input of the gear tooth profile geometry, the dynamic model predicts gear tooth 

dynamic contact forces, which are passed on to the Archard wear model to estimate the 

gear wear distribution and consequently modify the gear tooth profile geometry, which is 

then fed back into the dynamic model. This iterative loop allows a knowledge-based 

prediction of gear wear propagation. To address the issue of changing wear rates (due to 

factors such as oil contamination, changes in operating conditions, changes in surface 
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roughness, etc.), the vibrations from the gearbox dynamic model are compared to 

measured vibrations to track the quality of the wear model predictions and, if necessary, 

update the gear wear model parameters. This updating procedure is shown on the right of 

Figure 3.11, which is marked in red. As will be shown in the results presented in Chapter 

6, the vibration-based updating scheme can deliver a reliable and accurate gear tooth 

profile change monitoring and prediction result from abrasive wear. More details of the 

development can be found in Chapter 6. 

 

Figure 3.11 Basic procedures of the proposed vibration-based updating scheme for tooth profile change 

(from abrasive wear) predictions 

3.4.3 Monitoring and prediction of surface pitting propagation and tooth profile change 

from abrasive wear using a digital twin approach (objective 4) 

Fatigue pitting is another common wear phenomenon during the gear service life, it is 

caused by fatigue under cyclic loading, can result in large valleys on the gear tooth surface, 

but the effective working tooth profile (considered across the entire face width) often 
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remains unchanged, unless pitting is extremely severe [19]. Therefore, fatigue pitting is 

very different from abrasive wear. Also, fatigue pitting could promote the generation of 

surface spalls across the entire tooth width, resulting in a reduction in gear tooth surface 

durability and/or even tooth breakage [4]. Therefore, it is necessary to monitor and predict 

the surface pitting propagation, which benefits the remaining useful life prediction of the 

gear system.  

From the literature review of Section 2.5.2, most of the existing approaches for modelling 

surface pitting propagation are combinations of an elastohydrodynamic lubrication (EHL) 

model and fatigue criteria [8], which requires substantial computational resources and 

detailed knowledge of the surface micro-geometry and lubrication conditions due to the 

incorporation of surface roughness, prohibiting its widespread application in practice. To 

address this issue, in this research, a simple and efficient surface pitting model is derived 

to simulate and predict the pitting propagation behaviours based on the Lundberg-

Palmgren model [80].  

However, as with the previously discussed issue of changes in the abrasive wear rate, the 

surface pitting propagation rate would also be affected by a variety of factors – e.g., 

lubrication quality and quantity, contact pressure distribution, surface roughness and 

operating conditions, all of which may change significantly – and so without frequent 

checking and, if necessary, updating of the wear model parameters, the accuracy of the 

prediction results cannot be guaranteed and is likely to decrease significantly during the 

surface pitting propagation. 

To accurately monitor and predict the surface pitting propagation, a similar vibration-

based updating scheme as introduced in Section 3.4.2 is used in this research, as shown 

in Figure 3.12. In the proposed vibration-based updating scheme, contact pressure from 
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the dynamic model is provided to the developed fatigue pitting model, and the surface 

pitting propagation can be predicted in terms of pitting density. The occurrence and 

progression of surface pitting could reduce the contact area of the mating gear tooth, then 

alter its contact pressure, which could impact the further surface pitting propagation. This 

knowledge-based surface pitting propagation is marked in black and blue as shown in 

Figure 3.12. To guarantee accurate predictions, regular updating of the pitting coefficients 

is implemented by comparing with measured vibrations (ICS2), when available, as 

marked in red in Figure 3.12.  More details of the development of fatigue/surface pitting 

propagation prediction can be found in Chapter 7. 

 

Figure 3.12 Basic procedures of the proposed vibration-based updating scheme for fatigue pitting 

propagation predictions 

In practice, when fatigue pitting propagates, abrasive wear may co-exist due to oil 

contamination, thus, abrasive wear induced tooth profile changes and surface pitting can 

both occur as part of the surface degradation process in the same gear, either 

simultaneously or at different times, and these processes can strongly affect one another, 
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Therefore, it is necessary to develop a reliable and efficient tool, which can utilise the 

capability of efficient physics-based models and measurements for predicting the surface 

pitting propagation and the tooth profile change caused by the co-exist abrasive wear. 

 

Figure 3.13 Basic procedures of the proposed digital twin approach for monitoring and prediction of 

surface pitting and tooth profile changes from abrasive wear 

To address the above-mentioned issue, in this research, a digital twin approach for 

monitoring and prediction of surface pitting and tooth profile changes from abrasive wear 

is developed, whose skeleton is shown in Figure 3.13. Based on the inputs of gear tooth 

profile geometry and operating conditions, the dynamic model can provide dynamic 

contact forces and simulated vibrations of the gear system. The contact pressure can then 

be calculated using the Hertzian contact theory. With the contact pressure as an input, the 

Archard wear model can estimate the abrasive wear rate and consequently predict the gear 

tooth profile geometry at a specified future point in time, and this is then fed back into 

the dynamic model. Meanwhile, the contact pressure is passed on to a surface pitting 
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model to predict the surface pitting density, which consequently modifies the contact area 

and then alters the Hertzian contact pressure. To obtain accurate predictions, regular 

updating of the wear coefficients is implemented by comparing measured vibrations, 

when available, with the simulations, as marked in red. More details of the development 

of the digital twin approach for monitoring and predicting both surface pitting 

propagation and tooth profile change can be found in Chapter 7. 
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Chapter 4  Identification of gear wear mechanisms and 

tracking wear evolution using cyclostationary properties of 

measured vibrations 

The work presented in this chapter is devoted to achieving objective 1 of this research: 

identification of gear wear mechanism and tracking wear evolution using 

cyclostationary properties of measured vibrations. This chapter is a modified version 

of the paper titled “Use of cyclostationary properties of vibration signals to identify gear 

wear mechanisms and track wear evolution”, which was published in the journal of 

Mechanical Systems and Signal Processing (150: 107258, 2021). The main content of 

this chapter is identical to the above publication, while the structure has been arranged to 

ensure the consistency of the thesis. 

This chapter is organized as follows. In Section 4.1, a brief introduction to this study is 

presented. Section 4.2 presents the relationship between tribological features and sliding 

induced vibration characteristics and introduces the hypothesis for wear mechanism 

identification. Section 4.3 presents the observations found in the experiments to validate 

the proposed hypothesis. A new vibration-based procedure for gear wear mechanism 
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identification and wear tracking is proposed and applied in Section 4.4. A summary is 

given in Section 4.5. 

4.1 Introduction 

Fatigue pitting is a fatigue-induced material loss, after which the effective working tooth 

profile (considered across the entire face width) often remains unchanged (unless pitting 

is extremely severe). In general, fatigue pitting originates from a subsurface crack and 

occurs initially at the dedendum of the gear tooth or near the pitch line, due to the 

repetitive rolling-sliding contact and high contact stress [4, 109]. In contrast, abrasive 

wear, usually caused by particle contamination or lack of lubrication [9], is the removal 

of material (often across the entire face width) induced by sliding contact, and every piece 

of material removed contributes to a change in the profile [19]. Fatigue pitting and 

abrasive wear have different effects on the gear tooth surface and profile geometry. 

Therefore, it is necessary to identify and monitor fatigue pitting and abrasive wear 

separately for wear prediction, so that appropriate maintenance decisions can be made to 

avoid catastrophic failures, unexpected economic losses and serious accidents. 

Vibration analysis is an effective approach to monitor the health state of machines [10, 

110-112], and it has been well established for detection and diagnosis of common gear 

faults such as gear tooth root cracks [113-115], surface spalls [116-119] and tooth 

breakage [120-123]. However, vibration-based techniques for wear analysis, including 

wear mechanism identification and wear tracking, are rather rare. One reason for this is 

that there is a coupling effect between gear wear and gear dynamic characteristics, which 

produces complex gear dynamic characteristics/vibration features [21, 124], making it 
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difficult to extract wear-related vibration features and develop specific vibration-based 

indicator(s) for wear identification and monitoring. 

From the literature review of Section 2.3, it can be found that most of the existing 

vibration-based gear wear monitoring techniques were designed for detecting and 

tracking gear tooth profile change (accumulated gear wear), which is usually caused by 

abrasive wear. More specifically, the existing vibration-based techniques use gear 

meshing harmonics or signal “power”, which is mainly based on the deterministic 

components of vibration, to monitor the gear wear process in terms of tooth profile change. 

Since fatigue pitting does not change the tooth profile noticeably (unless pitting is 

extremely severe) [19], it has a negligible effect on the deterministic components of 

vibration, which are closely related to gear macro-geometry, i.e., the tooth profile. 

Therefore, these proposed techniques in processing deterministic components of vibration 

have very limited ability to identify gear wear mechanisms and track fatigue pitting 

severity. 

In contrast, the random signal components induced by varying sliding motions and 

contact forces contain useful information for gear wear mechanism identification and 

wear severity tracking because they are closely related to gear surface morphology 

characteristics [105, 106]. Furthermore, even though gear wear (fatigue pitting and 

abrasive wear) is usually likely to be uniform around the gear, it is still random from tooth 

to tooth. Therefore, studying the random signal components could bring benefits with 

respect to gear wear mechanism identification and the development of wear severity 

monitoring techniques. However, there is very limited research on the random signal 

components modulated by gear mesh behaviours and on how these components might be 

used to wear monitoring. 
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In recently published research [14, 15], the relationship between gear surface roughness 

and sliding induced random vibration was investigated. In the gear transmission system, 

all gear operations involve some form of sliding contact between the mating gear surfaces, 

and this sliding contact can produce random vibrations from the asperity contacts between 

the gears, the nature of which is dependent on a number of factors, such as the speed and 

load, the lubrication conditions and the micro-geometry of the surfaces. Therefore, the 

sliding induced vibrations have random characteristics. With this as a basis, second-order 

cyclostationarity was found in the sliding induced vibrations due to the time-varying 

sliding velocity [125] and contact force on the gear tooth pairs in reference [15]. A 

positive relationship between gear tooth surface roughness level and the degree of second-

order cyclostationarity (CS2) of vibration was found. However, the connection was found 

by a later investigation [14] to be more complex, based on a wider range of roughness 

values and a longer experimental duration. To date, insufficient conclusions could be 

drawn in evaluating the cyclostationary features for vibration-based gear wear mechanism 

identification and wear severity tracking. 

Even though the cyclostationarity of vibration signals has been widely studied, most 

published works have focused on signal modulation characteristics, using the ‘degree’ of 

cyclostationarity (for example a measure of the level of amplitude modulation) to 

correlate with fault severity [28, 126, 127], while studies on the spectral frequency of 

cyclostationary vibration at gear mesh cyclic frequency are rare. In other words, 

properties associated with the cyclic frequency 𝛼 have been widely studied, while those 

of the carrier (spectral) frequency 𝑓  have not, despite both having clear physical 

underpinnings. In Ref. [14], the authors used the mean carrier frequency to investigate 

the impacts of speed on the vibration signals modulated at the gearmesh frequency. 

Although a direct ratio between the mean carrier frequency and running speed was found, 
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no further investigation was undertaken; for instance, the relationship between the carrier 

frequency and gear surface morphology was not investigated. 

Inspired by the achievements reported in Refs. [14, 15], this study aims to develop a 

vibration-based approach for gear wear mechanism identification, and then to track wear 

evolution with the help of a cyclostationary indicator, the combination of which was not 

investigated previously. This work is based on the observation that sliding vibration 

signals are strongly influenced by the surface features induced by different wear 

mechanisms and also affected by modulation effects caused by sliding velocity. 

4.2 Hypothesis and proposed vibration-based approach for gear wear 

identification 

In this section, the surface feature differences arising from fatigue pitting and abrasive 

wear are introduced and summarised, followed by a brief description of micro-level gear 

surface feature effects on sliding induced vibrations. A hypothesis for gear wear 

mechanism identification will then be presented, after which a vibration-based wear 

mechanism identification approach is presented. 

4.2.1 Surface feature differences and their effects on sliding vibrations 

As mentioned before, from a macro-scale point of view, abrasive wear tends to introduce 

a change to the gear tooth profile, while fatigue pitting has negligible effects on the gear 

tooth profile unless the fatigue pitting is extremely severe [19]. Both abrasive wear and 

fatigue pitting change the micro-geometry of gear tooth surfaces, that is, the surface 

morphologies in a micrometre scale, as demonstrated in Figure 4.1 (abrasive wear) and 

Figure 4.2 (fatigue pitting). The images were obtained using a moulding procedure 
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outlined in Ref. [128]. Abrasive wear causes scratches or gouges on the tooth surface that 

are oriented in the direction of sliding. As a result, the worn, rough surfaces have micro-

scaled morphological features in short wavelengths and high spatial frequencies [23], 

while profile changes are long wavelengths. Fatigue pitting will instead introduce large 

valleys on the gear tooth surface, which contain longer wavelengths and lower spatial 

frequencies [20] in comparison with surface roughness changes associated with the 

abrasive wear process. These surface feature differences can help in separating fatigue 

pitting and abrasive wear. 

 

Figure 4.1 Changes to gear surface morphologies in abrasive wear process and in the micro-scale: (a) a 

new surface; (b) a worn surface subjected to abrasive wear 

 

Figure 4.2 Changes to gear surface morphologies in a fatigue pitting process and the micro-scale: (a) a 

new surface; (b) a pitted surface 
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For gear systems, the surfaces of contacting gear teeth are subject to combined rolling 

and sliding action as the gears rotate. Since rolling resistance is considerably smaller than 

the sliding resistance [129], usually, its contribution to the total tooth friction is ignored, 

and only the sliding induced friction is considered. During the gear meshing process, the 

sliding induced tooth friction will result in the generation of vibration, which is a random 

signal and is closely related to the gear surface morphology [106]. Even though the sliding 

induced vibration might have very low energy compared with the vibration induced by 

macro-geometric effects (such as tooth profile change) of gears, it contains rich 

information about the surface morphology. It has been proposed that the surface 

morphology information can be detected and extracted through cyclostationary tools as 

demonstrated in Ref. [15]. Therefore, the use of cyclostationary properties of sliding 

induced vibration should be able to identify different wear mechanisms and then track 

their evolution. In the following sections, this possibility will be further explored and 

investigated. 

4.2.2 Hypothesis for wear mechanism identification 

The sliding induced vibration from the asperity contacts between two mating gears is 

closely related to the surface morphology. Different surface morphologies will result in 

different frequency components of sliding induced vibration. The relationship between 

the spatial frequency of the surface morphology and the frequency of sliding vibration 

can be assumed to follow the relationship 

𝑓𝑣  ∝  𝜈𝑠 ∙ 𝑓𝑠 (4.1) 

where 𝑓𝑣 (Hz) is the dominant sliding induced vibration frequency, 𝜈𝑠 (m s⁄ ) is the sliding 

velocity of the mating gear surface and 𝑓𝑠 (1 m⁄ ) is the dominant spatial frequency of the 
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roughness of the mating surfaces. Despite the presence of multiple phenomena (e.g., the 

dependency of power on load, transfer function effects), it is at least expected that, even 

if not quantitatively following this relationship, the frequency range characterising 

vibration due to sliding will grow with sliding velocity and spatial frequency of the 

roughness of the mating surfaces. The sliding velocity 𝜈𝑠  is determined by the gear 

kinematics and remains virtually unchanged under mild/medium wear (micro-level). 

Surfaces modified in an abrasive wear process or fatigue pitting process have different 

spatial frequencies, as shown in Figure 4.3 and Figure 4.4 respectively. This is expected 

to affect the spectral content (carrier frequency band) of the resulting gearmesh-cyclic 

CS2 components. Based on the above assumptions, we expect that: 

1) sliding of fatigue pitted surfaces, exhibiting low spatial frequency, should 

generate gearmesh-cyclic CS2 components with low spectral frequencies (Figure 

4.3), and 

2) sliding of worn surfaces subject to abrasion, characterised by surface 

morphologies with high spatial frequency, should result in gearmesh-cyclic CS2 

components with high spectral frequencies (Figure 4.4). 

It should be noted that in the above discussion, Eq. (4.1) and Figure 4.3 and Figure 4.4 

are used to describe the manner of excitation, and that the measured response would be 

shaped by a system transfer function, and so the observed dominant carrier frequencies 

in the CS content of the measured signal would also depend on system resonances, as 

well as the cyclostationary tool used for their detection. While the theoretical excitation 

frequency (band) would be directly proportional to speed and surface spatial frequency, 

the observed vibration carrier frequency (band) is likely to appear to move discretely 

between dominant resonances. The fact that system resonances are generally not of 
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uniform strength further complicates this phenomenon. To mitigate this issue, 

“normalised” cyclostationary tools such as cyclic-coherence [130] can be chosen to 

investigate the spectral content of the signals. 

Based on this physical intuition, analysing the relative carrier frequency range of sliding 

induced vibrations is a promising approach for identifying fatigue pitting and abrasive 

wear. This hypothesis will be validated using experimental data in Section 4.3.  

 

 

Figure 4.3 The fatigue pitting induced sliding vibration characteristics 

 

 

Figure 4.4 The abrasive wear induced sliding vibration characteristics 
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4.2.3 Proposed vibration-based approach for wear mechanism identification 

To summarise the previous discussion, it is expected that (i) the CS2 vibration 

components with gearmesh cyclic frequency are symptomatic of changes in tooth surface 

morphology; and, (ii) the dominant spectral (carrier) frequency 𝑓  of those CS2 

components can be used to determine the key wavelengths of surface alterations and 

therefore the dominant wear mechanism. 

 

Figure 4.5 Diagram of vibration-based gear wear mechanism identification approach  

With these hypotheses, a vibration-based approach for gear wear mechanism 

identification is illustrated in Figure 4.5. In the vibration signal, only the random 
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components with second-order cyclostationarity (CS2), with a cyclic frequency 

corresponding to a particular gearmesh, are considered for gear wear (fatigue pitting and 

abrasive wear) identification. The deterministic ones are expected to be instead correlated 

to macroscopic profile changes (more severe wear effects). The proposed vibration-based 

wear identification approach is validated using experimental data in the following section. 

It must be noted that the scope of this work has been restricted to micro-surface alteration 

and therefore to the random components of vibration, but future developments could then 

combine this information with that extracted from the deterministic component for a full 

picture of the tooth degradation. 

4.3 Observations in gear systems 

4.3.1 Tribological features used to describe fatigue pitting and abrasive wear 

propagation 

It was observed through visual inspection that wear (fatigue pitting and abrasive wear) 

occurred quite uniformly on the gears and that the pinion was worn much more severely 

than the driven (big) gear due to the gear ratio. An optical microscope with a 5× 

magnification objective lens was used to capture 2D images of the gear moulds to monitor 

the wear progress qualitatively. A laser scanning confocal microscope (LSCM) was used 

to capture 3D images of the gear moulds for quantitative analysis. The captured 3D 

images contain the height and spatial information of the gear tooth surfaces for numerical 

characterisations of changes in the surface morphologies during the wear processes.  

For fatigue pitting, initially, both the number and size of the pits increase, until the pitting 

becomes quite severe, at which point nearby pits tend to join and the actual number of 
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pits may decrease. Thus the most robust indicator to describe pitting severity is probably 

the pitted area, and in Section 4.4 this is used to assess the performance of the proposed 

technique in monitoring pitting propagation. 

For abrasive wear, a high wear rate often results in a surface deviation from a perfect 

involute (macroscopic profile change). Meanwhile, at the micro-level, the gear tooth 

surfaces tend to become rougher when abrasive wear propagates (very short wavelength) 

[131]. Surface roughness 𝑆𝑎 , the arithmetic average of absolute values of surface 

deviation from the mean surface level, is often used to characterise the surface change in 

the micro-meter level. In this work, surface roughness 𝑆𝑎 is applied as the tribological 

reference to help check the capability of the vibration-based indicators/techniques in 

monitoring the abrasive wear induced micro-surface feature change, which will be 

introduced in Section 4.4. 

4.3.2 Theory of vibration-based wear mechanism identification techniques 

In this section, the hypothesis and proposed approach in Sections 4.2.2 and 4.2.3 for wear 

mechanism identification are introduced in detail. 

To obtain the sliding induced vibrations, the deterministic/random signal separation 

technique, time synchronous averaging (TSA) or discrete/random separation (DRS) [132-

136]  is applied to remove the deterministic components of the vibrations. The remainder 

is referred to as the residual signal. Spectral coherence, defined in reference [130], is 

employed to qualitatively explore the spectral frequency distribution of sliding induced 

vibration at gear mesh cyclic frequency, and to compute what will be referred to as “mean 

carrier frequency” (i.e., the first moment of the spectral-coherence along the spectral 

frequency axis). The definition of spectral coherence is  
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γx(α, f) =
𝑆𝑥(𝛼, 𝑓)

√𝑆𝑥(0, 𝑓)𝑆𝑥(0, 𝑓 − 𝛼)
(4.2) 

where 𝑆𝑥(𝛼, 𝑓) represents the ordinary power spectral density at frequency 𝑓. I.e., the CS 

content at frequency 𝑓  is normalised by the power at frequencies 𝑓  and 𝑓– 𝛼  in the 

stationary part of the signal. 

Even though the deterministic components of vibrations are removed using TSA, in the 

residual signal, the sliding induced vibration is still mixed with the background noise, 

which brings difficulties in extracting surface morphology related information for wear 

mechanism identification and wear severity tracking. 

CS2 signals have a close relationship with surface morphology [14, 15, 137, 138]. The 

general hypothesis is that when the surface roughness increases due to the occurrence of 

fatigue pitting or abrasive wear, the friction between the mating gear surfaces will 

increase, resulting in a stronger sliding induced vibration, while the gear mesh modulation 

pattern remains unchanged. Therefore, it is hypothesised that the second-order 

cyclostationarity of the sliding induced vibration will increase correspondingly, as 

qualitatively depicted in Figure 4.6. 

 

Figure 4.6 Diagram to illustrate the hypothesis: increase in second-order cyclostationarity due to an 

increase in surface roughness (induced by fatigue pitting or abrasive wear) 
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ICS2 [37, 139], an indicator to measure the degree of second-order cyclostationarity, can 

be used to assess the phenomenon illustrated in Figure 4.6, relative to stationary 

background noise. The definition of ICS2 is 

ICS2
𝒜h,H =

∑ max
n∈𝒜h

(SES[n]2)h=1:H

SES[0]2
(4.3) 

where 𝒜h with ℎ =  1 is a set of cyclic frequencies of interest (with a tolerance band in 

the case of expected cyclic frequency deviations), and 𝒜ℎ (ℎ = 2,… , H) represents the 

equivalent sets for the corresponding harmonics. 𝐻 indicates the maximum gear mesh 

harmonics to be taken into consideration. In the case of gears, to monitor gear wear 

progression, 𝒜1 is set as the gear mesh frequency with 3 times the cyclic resolution as 

the tolerance band. SES is the squared envelope (amplitude) spectrum [110]. Note that 

the background noise is a stationary signal because any signal value (event) is equally 

probable to happen given any other signal value (another event) at any two time instances 

no matter how far apart they are. 

With the use of a 1 3⁄ -binary tree filter bank (or other similar decomposition 

representation) [140], ICS2 can be used to select one band with maximum 

cyclostationarity, in which the influences of background noise become less significant 

and the vibration characteristics related to surface morphology are enhanced [139].  

Based on the hypothesis in Section 4.2.2, the ICS2-based frequency band selection results 

will be different for fatigue pitting and abrasive wear, and can be used to separate them. 

Further, because background noise is minimised in the selected frequency band, the ICS2 

level within the selected band should have better performance in tracking the evolution 

of fatigue pitting/abrasive wear severity compared with the full-band ICS2 level. The 

effectiveness of ICS2-based wear mechanism identification and wear monitoring is 
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validated in Section 4.3.3 and Section 4.4, respectively, using experimental data measured 

from gear systems.  

4.3.3 Observation results 

In this section, the observation results in gear systems using the above-mentioned 

techniques, spectral coherence map and ICS2-based band selection, are presented to 

validate the hypothesis for wear mechanism identification proposed in Section 4.2 and 

Section 4.3.2. 

Observation results of the lubricated test 

 

Figure 4.7 Lubricated test: (a) Carrier frequency distribution at gear mesh (cyclic) frequency; (b) Top 

view 
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Figure 4.7 shows the distribution in the spectral coherence of the gearmesh-cyclic CS2 

component (cyclic frequency) for the lubricated test at 10 Hz, in which fatigue pitting is 

the dominant wear mechanism. The spectral coherence software developed in Ref. [141] 

was used for this analysis. From Figure 4.7, it can be found that the carrier frequency 

distribution is quite different before and after 0.23 million wear cycles. Before this point, 

the spectral coherence is highest for carrier frequencies around 30-50 kHz, this being 

interpreted as being caused by the initial rough surface prepared using sandpaper, which 

exhibits high spatial frequency content. The initial high carrier frequency with high 

spectral coherence, therefore, supports the hypothesis of Section 4.2.2 that the gearmesh-

modulated CS2 carrier frequency range is closely connected with the spatial frequency of 

the gear tooth surfaces. 

After the run-in period (i.e., after the 0.23 million cycles), the roughening marks were 

worn away, and fatigue pitting started propagating. During this process, the dominant 

carrier frequency band jumps to the low-frequency range, below 15 kHz. This 

phenomenon matches with the hypothesis (in Section 4.2.2) that sliding surfaces with low 

spatial frequency content, such as from fatigue pitting, will induce CS2 vibrations with 

lower carrier frequencies. Note that the distinctive vertical parallel bands shown in Figure 

4.7 are indicating the resonances of the gear system. This phenomenon will be further 

explained with the spectral coherence maps under different rotational speeds.  

The ICS2-based selection results at 10 Hz are demonstrated in Figure 4.8. Similar to 

Figure 4.7, before 0.23 million cycles, a high carrier frequency range is selected. After 

0.23 million cycles, the selected frequency band jumps to the low-frequency range. This 

again supports the hypothesis connecting surface spatial frequency and CS2 carrier 

frequency, suggesting strong potential for differentiating between abrasive wear and 

fatigue pitting. Note that there is an abrupt change in [2.30~3.00] million cycles. During 
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this period, there is a decrease in the total pitted area, which has been described in Ref. 

[128]. The cause of decreased pitted area might be that the generation of new pits achieves 

balance with the filling-in of existing cavities, perhaps from wear debris pressed into the 

cavities under the meshing load [142]. Thus, during this period, the excitation has 

changed, and so a different resonance(s) becomes dominant in the response. The ICS2 

based band selection results are affected, resulting in the occurrence of abrupt changes. 

After this ‘abnormal’ period, the ICS2 based band selection shift back to the low 

frequency again, still indicating a low spatial frequency of pits. To help the reader obtain 

an intuitive understanding of this phenomenon, the gradual fatigue pitting propagation 

process is demonstrated in Figure 4.9. 

 

Figure 4.8 Lubricated test: ICS2-based band selection results 
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Figure 4.9 Figure pitting evolution on the dedendum of pinion tooth [128] 

To validate the fatigue pitting related carrier frequency range, power spectral density 

(PSD) analysis [143-145] was applied on the scanned images (see Figure 4.10) to find the 

spatial frequency affected by fatigue pitting initiation and propagation. Note that even 

though the images in Figure 4.10 were captured at the same location of the same tooth, 

some features disappear due to new pits filling in existing cavities, resulting in some 

dissimilarities and a non-monotonic trend in the overall pitted area; however, the spatial 

frequencies it represents during fatigue pitting propagation are still reliable. The PSD 

function provides a representation of the density of the squared amplitude (height from a 

fixed reference) of a surface’s morphology as a function of the spatial frequency of the 

morphology (units μm2 1

μm
⁄ = μm3). Spatial frequency is the inverse of the wavelength 

of the morphology features. The PSD analysis results are depicted in Figure 4.11, which 

shows that the spatial frequency range affected by fatigue pitting is [0.0012~0.0146] 

(1/µm). The sliding velocity (absolute value) range is [0~0.4461] (m/s) according to the 

dynamic model used in Ref. [124]. Based on Eq. (4.1), taking the central value of this 
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sliding velocity range, the fatigue pitting related vibration frequency range is expected to 

be around [0.27~3.27] kHz. The upper part of this range matches very closely the results 

shown in Figure 4.7 and Figure 4.8.  The hypothesis for fatigue pitting from Section 4.2.2 

– that fatigue pitting induces CS2 signals with low carrier frequencies – is therefore at 

least qualitatively supported by the lubricated test results. It is important to note that Eq. 

(4.1) is expected to be only qualitatively matching with the results, given the effect of 

transfer functions and background-noise distribution which could bias the choice of the 

ICS2 indicator, for instance towards an area where background noise is lower. 

 

Figure 4.10 3D images of fatigue pitting propagation in the lubricated test 
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Figure 4.11 PSD analysis results of the scanned images of the lubricated test in Figure 4.10 

In the above discussion, the relationship between the carrier frequency of the vibration 

and spatial frequency of the gear surface has been investigated and the hypothesis 

supported. In the following, the sliding velocity effects on the carrier frequency are 

investigated.  

Figure 4.12 shows the spectral coherence maps for different speeds: 10, 16 and 20 Hz. 

Next, a mean carrier frequency at gear mesh cyclic frequency was calculated for different 

speeds (Figure 4.13) over two frequency ranges. The mean carrier frequency was obtained 

based on the distribution of the spectral coherence along the spectral axis, for the cyclic 

component at gearmesh frequency. Figure 4.13(a) is averaged over the range 0-30 kHz, 

and Figure 4.13(b) over the range 0-50 kHz. Even though Figure 4.12 shows that the 

dominant CS2 part (with highest spectral coherence) is below 30 kHz at all speeds, the 

range of 0-50 kHz was included for unbiased comparison with the results, shown later, 
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for dry wear (Figure 4.14). Figure 4.12 and Figure 4.13 show that an increase in sliding 

velocity (induced by increasing rotating speed) basically leads to an increase in mean 

carrier frequency, in accordance with Eq. (4.1). The fact that the calculated mean carrier 

frequency does not match with the raw product of the quantities on the right-hand side of 

Eq. (4.1) can be explained. It is largely due to background noise (most evident in the 

difference between Figure 4.13(a) and (b), with the uniform noise above 30 kHz giving a 

bias to a higher mean frequency in particular for the 10 Hz result), and the use of spectral 

coherence rather than actual spectral power. The choice of spectral coherence, itself a 

measure of cyclostationarity, will bias the position of the dependent mean carrier 

frequency, but it was necessary to amplify the fairly weak CS2 content, in particular near 

modulated resonances, where the signal/noise ratio is higher, yet still limit the strong 

effects of resonances. Despite this limitation, the fixed resonances are clearly evident in 

Figure 4.12 at the different speeds, and rather than the mean frequency directly obeying 

Eq. (4.1), as for the expected excitation band, which would move gradually (on a 

continuum) depending on speed and spatial frequency, the dominant carrier frequency in 

the response would tend to move discretely between dominant bands. Nonetheless, the 

qualitative effect of sliding velocity on the vibration carrier frequency is clearly seen to 

be supported. 
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Figure 4.12 Carrier frequency distribution at gear mesh (cyclic) frequency at different speeds (top views) 

of lubricated test: (a) input speed: 10 Hz; (b) input speed: 16 Hz; (c) input speed: 20 Hz 

When ICS2-based band selection results, as in Figure 4.8, were compared for the three 

different speeds, despite them all indicating carrier frequencies within the range up to 20 

kHz (as indicated in Figure 4.12, at least after the initial run-in period), the variation with 

speed was not monotonic, but this can also be explained. The ICS2 value is much more 

sensitive to resonances than the spectral coherence, and is also a sum over a number of 

harmonics of gearmesh frequency (rather than just the first as for Figure 4.12). It is quite 

possible that at low speed a high harmonic of the gearmesh frequency will be greatly 

amplified by a high-frequency resonance and bias the effective carrier frequency. The 

ICS2 parameters are more directly affected by the amount of modulation, and are used 

later (Section 4.4) as indicators of the severity of wear. 
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Figure 4.13 Mean carrier frequency with different rotating speeds of lubricated test: (a) frequency range: 

0-30 kHz; (b) frequency range: 0-50 kHz 

Observation results of dry test 

Again, spectral coherence analysis is applied to the dry test to investigate the carrier 

frequency distribution with abrasive wear. The carrier frequency distribution (in terms of 

spectral coherence) at the gear mesh (cyclic frequency) for the dry test records is 

illustrated in Figure 4.14.  

(a) 

(b) 
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Figure 4.14 Dry test: (a) Carrier frequency distribution at gear mesh (cyclic) frequency; (b) Top view 

Unlike fatigue pitting, the abrasive wear propagation results in an increasing spectral 

coherence of the high carrier frequency part. It suggests that abrasion, and the 

corresponding high spatial frequency surfaces, generate higher carrier frequencies. This 

phenomenon is also proved by the ICS2-based band selection in Figure 4.15. Note that 

the initial surfaces were smooth for this test, and hence a low carrier frequency was 

induced initially (unlike with the lubricated test). To verify the abrasive wear-related 
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carrier frequency range, PSD analysis was applied on the scanned images (see Figure 

4.16). Figure 4.17 shows the PSD analysis results, from which it can be found that the 

spatial frequency range affected by abrasive wear is [0.0283~0.0946] (1/µm). The sliding 

velocity (absolute value) range is around [0~0.4461] (m/s). Based on the right-hand side 

of Eq. (4.1), taking the average sliding velocity, the abrasive wear-related vibration 

frequency should be [6.31~21.10] kHz. It is in the high-frequency range. Figure 4.14 and 

Figure 4.15 show that the spectral coherence of the high carrier frequency part increases 

with an increase in abrasive wear, giving strong support to this hypothesis made in Section 

4.2.2. 

 

Figure 4.15 Dry test: ICS2-based band selection result 
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Figure 4.16 3D images of abrasive wear propagation in the dry test 

An important comment must be added regarding the different lubrication conditions of 

the two tests. These could have also affected the frequency range of the CS2 content, and 

future tests will be required to analyse the extent of this bias. However, the fact that the 

initial (healthy) cases for both dry and lubricated tests showed an opposite trend vs the 

corresponding worn cases is an initial indication that the bias is not likely to compromise 

the procedure. In fact, dry tests with smooth surfaces resulted in low-frequency vibrations 

like the worn lubricated cases and the initial lubricated tests (with the artificially 

roughened surface) were comparable to worn dry tests. Albeit based on a low number of 

observations, this supports the hypothesis that the wavelength of surface roughness has a 

strong impact on the vibration spectral support, and that this effect seems fairly consistent 

with different lubrication conditions. 
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Figure 4.17 PSD analysis results of the 3D images shown in Figure 4.16 

4.4 A new vibration-based procedure for comprehensive gear wear 

monitoring: mechanism identification and severity tracking 

In Section 4.3, the hypothesis for fatigue pitting and abrasive wear identification was 

supported by the analysis of the spectral frequency distribution in the spectral coherence 

map and the ICS2-based band selection results. However, even though fatigue pitting and 

abrasive wear can be identified by observing the spectral coherence map and ICS2-based 

band selection results, the wear evolution (fatigue pitting and abrasive wear) cannot be 

monitored. A vibration-based approach/indicator is therefore still needed, which can 

distinguish the two wear mechanisms and track their evolution. In the following, a new 

vibration-based procedure for comprehensive gear wear monitoring is introduced and 

presented. 

The ability of ICS2 to monitor fatigue pitting and abrasive wear propagation is likely to 

be improved in the selected frequency band, which enhances CS2 content over 
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background noise. Therefore, an ICS2-based approach can help to comprehensively 

monitor gear wear progression: wear mechanism identification and wear severity tracking. 

The basic procedure of the proposed vibration-based approach for comprehensive gear 

wear monitoring is illustrated in Figure 4.18. 

 

Figure 4.18 Proposed guideline of vibration-based comprehensive gear wear monitoring 

In the following, the performance of this developed procedure for gear wear monitoring 

is demonstrated step by step, using the experimental data from the designed lubricated 

and dry tests. 
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Figure 4.19 Performance of ICS2 in wear severity tracking 

Firstly, ICS2-based band selection for identifying fatigue pitting ([2~13] kHz) and 

abrasive wear ([20~37] kHz) was illustrated in Figure 4.8 and Figure 4.15, and shows that 

fatigue pitting induces low carrier frequencies, and abrasive wear induces high carrier 

frequencies. Figure 4.19 shows that the ICS2 band selection results can assist the 

vibration-based wear mechanism identification and wear monitoring, by tracking the 

evolution of fatigue pitting and abrasive wear (at the micro-level), with a low-frequency 

range (2~13 kHz) and high-frequency range (20~37 kHz) indicators, respectively. From 

the comparison of Figure 4.19 (a) and (b), it can be found that only the ICS2 with low-

frequency carrier tracks fatigue pitting propagation (in terms of pitted area). In contrast, 

in Figure 4.19 (c) and (d), only the ICS2 with a high-frequency carrier tracks the change 

in abrasive wear micro-scale features (in terms of surface roughness). Therefore, with an 
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approximate frequency band (suggested by the ICS2-based band selection result), ICS2 

can track wear severity for fatigue pitting and abrasive wear (at the micro-scale). 

Meanwhile, the performance of ICS2 in the low- and high-frequency ranges can also 

suggest different wear mechanisms. If ICS2 has a monotonic trend in the low-frequency 

range, but not in the high-frequency range, it indicates fatigue pitting propagation, while 

a monotonic trend in the high-frequency range, but not in the low-frequency range, 

suggests abrasive wear propagation. 

To quantify the performance of ICS2 in the low-frequency range in fatigue pitting severity 

tracking, the pitted area was used as a reference to perform correlation analysis. 

Correlation analysis was also applied comparatively on a number of other classical 

vibration indicators, such as RMS and kurtosis, to demonstrate the performance of band 

selected ICS2 to monitor fatigue pitting progression, see Figure 4.20. 

Figure 4.21 shows that the ICS2 of vibration with the low-frequency carrier has a high 

correlation coefficient with the total pitted area, this being 0.9085, and can thus track the 

severity of fatigue pitting. The correlation analysis results for other classical indicators 

are summarised in Table 4.1. These show that ICS2 of vibration in the low-frequency 

range has the best performance in tracking the fatigue pitting propagation. Although the 

RMS value of the raw vibration signal also has a high correlation with the total pitted area, 

it mainly indicates the energy change of deterministic components of vibration, which 

have less physical relevance with fatigue pitting propagation (induced micro-level surface 

feature change). Notably, the amplitude of the 1st gear mesh harmonics of vibration has a 

low correlation coefficient with fatigue pitting propagation, supporting the earlier point 

that fatigue pitting has negligible effects on the gear tooth profile, and so this indicator 

should not have the ability to track fatigue pitting propagation. It should be pointed out 

that the sidebands were used in some references [13, 22, 33] to indicate damage, but they 
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can only pick up non-uniform effects and are not useful for the more typical uniform wear 

case studied here. From the comparisons, ICS2 in the low-frequency range has the best 

performance in tracking fatigue pitting severity. 

 

Figure 4.20 Classical indicators performance in the lubricated test: (a) RMS of raw signal; (b) kurtosis of 

raw signal; (c) RMS of residual signal; (d) kurtosis of residual signal; (e) 1st gear mesh frequency 
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Figure 4.21 Lubricated test: correlation between ICS2 and pitted area 

Table 4.1 Correlation analysis results of vibration indicators with tribological parameter for the lubricated 

test 

Indicators Correlation with pitted area: 

𝑅2 

ICS2 (high frequency range) 0.0215 

ICS2 (low frequency range) 0.9085 

RMS (raw signal) 0.8146 

Kurtosis (raw signal) 0.1237 

RMS (residual signal) 0.6984 

Kurtosis (residual signal) 0.6718 

1st gear mesh frequency amplitude 0.2476 

Similarly, surface roughness 𝑆𝑎  was used as the tribological parameter to assess the 

effectiveness of ICS2 with the high-frequency carrier in monitoring abrasive wear 

propagation (at the micro-scale), as shown in Figure 4.22. The high correlation coefficient 

of 0.9086 shows that it can track this wear indicator very well. Note that compared with 
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existing studies [14, 15], restricting the spectral band of the ICS2 to the high-frequency 

range, instead of the full frequency band, makes ICS2 a much better index to track surface 

roughness changes. 

 

Figure 4.22 Dry test: correlation between ICS2 and surface roughness 

Compared with other classical indicators (in Figure 4.23), ICS2 also has the best 

performance in monitoring the abrasive wear induced micro-level surface feature changes, 

as shown in Table 4.2. Even though the RMS value of the raw signal has a low correlation 

with the surface roughness, it should have a strong relationship with tooth profile changes 

induced by abrasive wear, which is tested in Figure 4.24. However, even though Figure 

4.24 shows that the RMS value has a high correlation (R2 = 0.9816) with the wear depth 

before 0.045 million cycles, it deviates widely after that. In the light of the findings of 

Ref. [104], it seems that the vibrations only respond to deviations of the tooth profile 

around the mean wear, and measurement of "absolute TE" is required to determine the 

overall wear depth. This will be tested in future work, but the total wear in this test was 
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extreme, and that corresponding to 0.045 million cycles here would often be considered 

as being at the limit. 

 

Figure 4.23 Classical indicators performance in the dry test: (a) RMS of raw signal; (b) kurtosis of raw 

signal; (c) RMS of residual signal; (d) kurtosis of residual signal; (e) 1st gear mesh frequency 

 

(a) (b) 

(c) (d) 

(e) 
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Table 4.2 Correlation analysis results of vibration indicators with the surface roughness of the dry test   

Indicators Correlation with surface roughness: 𝑅2 

ICS2 (high frequency range) 0.9086 

ICS2 (low frequency range) 0.0240 

RMS of the raw signal 0.5590 

Kurtosis of the raw signal 0.2313 

RMS of the residual signal 0.4895 

Kurtosis of the residual signal 0.2611 

1st gear mesh frequency amplitude 0.0661 

 

 

Figure 4.24 Performance of RMS of raw signal in tracking wear depth change (obtained from wear 

particle) 
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4.5 Summary 

With consideration of the underlying physics of the gear meshing process and the unique 

surface features induced by fatigue pitting and abrasive wear, this chapter has investigated 

vibration-based methods to identify these two wear mechanisms and then track their 

evolution. This development is based on the cyclostationary analysis technique, which is 

applied for the first time to analyse wear-related low energy phenomena (friction, asperity 

contacts) in vibration signals. Differently from existing studies for wear mechanism 

identification (such as analysing wear particles or images captured from gear tooth 

surface), the proposed approach can be done online, making it more efficient than wear 

debris analysis techniques. In the proposed method, an indicator of second-order 

cyclostationarity of the vibration signal, ICS2, is calculated for low and high carrier 

spectral frequencies, and then used to separate fatigue pitting and abrasive wear. 

Moreover, the use of specific spectral bands for the calculation of the ICS2 increases the 

indicator’s capability to track the evolution of fatigue pitting and abrasive wear (micro-

level). As discussed in Section 4.1, none of the existing vibration-based gear wear 

monitoring research involved two wear mechanism/phenomena identification and 

monitoring. The ICS2-based wear monitoring result can offer useful information for the 

monitoring and prognostics of gear systems. Experimental data support the effectiveness 

of the proposed vibration-based method.  

However, it should be noted that the spectral frequency distribution of measured vibration 

can be affected by lots of factors such as load, speed, especially lubrication. Therefore, 

further work on investigating the effects of operational conditions on spectral frequency 

distribution should be taken into consideration.
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Chapter 5  Dynamic model development 

The work presented in this chapter is devoted to achieving objective 2 of this research: 

dynamic model development. This work has been presented in a paper titled “Vibration-

based updating of wear prediction for spur gears”, which was published in the journal of 

Wear (426-427: 1410-1415, 2019). Compared with this publication, more details on the 

model establishment and model validation are included in this chapter.  

This chapter is organized as follows. In Section 5.1, a brief introduction to this study is 

given. Section 5.2 presents the dynamic model structure. After that, procedures of model 

validation and calibration are introduced in Section 5.3. A summary is given in Section 

5.4. 

5.1 Introduction 

The dynamic model, developed with the key dynamic properties including gear meshing 

stiffness, transmission error, damping, can simulate and represent gear system responses 

under different failure modes and severities. Its time and cost-efficiency can bring 

significant benefits to gear wear analysis. As an output of the dynamic model, the 
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dynamic contact force is a very important parameter and a crucial input to the 

tribological/wear model for wear analysis. Therefore, modelling the contact force is vital 

for analysing gear wear characteristics and further predicting its propagation. 

From the literature review of Section 2.4.1, various approaches, such as the finite element 

model (FEM) [146-148] and empirical equations [48-53], have been developed/applied 

to estimate contact force, which is used as an input into tribological (wear) models. 

However, there is a common drawback existing in both FEM (without extra efforts in 

defining boundary conditions and mesh generations) and empirical equations, that is, only 

the contact force under quasi-static conditions can be produced and represented. However, 

in engineering practices, the gear transmission system is usually operated under dynamic 

operating conditions, and the corresponding responses are quite different from those 

under quasi-static conditions. Normally, owning to the inertia effects, the dynamic 

meshing forces are typically larger than the corresponding quasi-static forces and their 

magnitudes and waveforms are quite different [21]. Therefore, to guarantee reliable wear 

analysis and prediction through tribological (wear) models, the dynamic contact force 

with inertia effects should be properly evaluated, thus a 21-degree-of-freedom (DOF) 

dynamic model is established in this research based on the University of New South 

Wales (UNSW) gearbox test bench. To guarantee the outputs (such as dynamic contact 

forces and vibrations) from the dynamic model are close enough to the measurements 

from the experimental rig, the developed dynamic model has been validated and 

calibrated through a series of tests, including impact tests, speed ramp tests and several 

constant speed tests. The development of this comprehensive dynamic model will be 

introduced with details in the following. It should be pointed out that the 21 degree-of-

freedoms (DOFs) lumped parameter dynamic model developed in this project is based on 

the fixed-axis spur gearbox test rig shown in Figure 3.2, whose structure and properties 
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are different from the previously published research [18, 41, 107]. Also, as introduced in 

Chapter 3, the developed dynamic model will be integrated with tribological models that 

can be updated according to vibrations to predict gear wear propagation. This overall 

integration architecture is the main novelty of this thesis work, instead of the dynamic 

model development itself. 

5.2 Dynamic model structure 

The layout of the UNSW spur gearbox test rig and each labelled modelling component 

(such as coupling, motor and brake) are shown in Figure 5.1. The major parameters that 

are included in the dynamic model are summarised in Table 5.1. A 21 DOFs lumped 

parameter dynamic model is developed based on the spur gearbox test rig (shown in 

Figure 5.1), whose skeleton is shown in Figure 5.2.  

Table 5.1 Basic parameters of the spur gearbox test rig 

Parameters Pinion Gear 

Gear type Standard involute 

Modulus of elasticity, 𝐸 (GPa) 205 

Poisson’s ratio, 𝜐 0.29 

Face width, 𝑊 (mm) 20 

Module, 𝑚 2 

Pressure angle, 𝜑 (deg) 20 

Addendum (mm) 1.00 

Dedendum (mm) 1.25 

Number of teeth 19 20 

Pitch radius, 𝑟 (mm) 19 20 
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Figure 5.1 Spur gearbox test rig with each labelled modelling component 

 

Figure 5.2 21 DOFs lumped dynamic model of UNSW test rig 

There is a total of 21 DOFs of this dynamic model, including 9 torsional DOFs and 12 

translations DOFs. The mass, stiffness, damping and inertia parameter information of this 

developed dynamic model are summarized in Table 5.2 and Table 5.3. The basic motion 

equations describing the coupled torsional and translational model are described as  

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐟 (5.1) 

where 

𝐱 = [𝜃1, 𝜃2, 𝜃3, 𝜃5, 𝜃7, 𝜃8, 𝜃10, 𝜃12, 𝜃13, 𝑦4, 𝑦5, 𝑦6, 𝑦9, 𝑦10, 𝑦11, 𝑥4, 𝑥5, 𝑥6, 𝑥9, 𝑥10, 𝑥11]
𝑇(5.2) 
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represents the translational (𝑥𝑖, 𝑦𝑖) and angular displacements 𝜃𝑖 of the different nodes of 

the system in the plane perpendicular to the shaft axes, and 𝐂 , 𝐊  and 𝐟  are the 

corresponding damping, stiffness and force matrixes. The absence of bearing torsional 

DOFs (𝜃4, 𝜃6, 𝜃9, 𝜃11) is due to the absence of torsional stiffness at the bearings, whereas 

the missing translational displacement DOFs (all the nodes outside the gearbox) is a result 

of the low bending stiffness of the joints, effectively isolating the linear displacements of 

the gearbox. 

The force vector 𝐟 includes the input and output torques Tmot and Tbrk provided by the 

motor and brake (on 𝜃1 and 𝜃13, respectively), and the contact forces between the two 

gears, modelled as Fk and Fc (elastic and viscous components). These are simulated by 

combining a gear meshing stiffness 𝑘𝑚 , damping coefficient 𝑐𝑚  and geometric 

transmission error (GTE) 𝑒𝑡: 

Fk = 𝑘𝑚(𝑅𝑏1𝜃5 − 𝑅𝑏2𝜃10 − 𝑦5𝑐𝑜𝑠𝜑 + 𝑦10𝑐𝑜𝑠𝜑 + 𝑥5𝑠𝑖𝑛𝜑 − 𝑥10𝑠𝑖𝑛𝜑 + 𝑒𝑡) (5.3) 

Fc = 𝐶𝑚(𝑅𝑏1𝜃5̇ − 𝑅𝑏2𝜃10̇ − 𝑦5̇𝑐𝑜𝑠𝜑 + 𝑦10̇ 𝑐𝑜𝑠𝜑 + 𝑥5̇𝑠𝑖𝑛𝜑 − 𝑥10̇ 𝑠𝑖𝑛𝜑 + 𝑒�̇�) (5.4) 

where 𝑅𝑏1 and 𝑅𝑏2 are the basic radius of pinion and gear, and 𝜑 is the contact pressure 

angle.  

The contact force is applied at nodes 5 and 10, considering the radius of the two gears 

and the contact angle 

𝐟 = [𝑇𝑚𝑜𝑟 , 0,0, −𝑅𝑏1(𝐹𝑘 + 𝐹𝑐), 0,0, 𝑅𝑏2(𝐹𝑘 + 𝐹𝑐), 0,0,0, 𝑐𝑜𝑠𝜑(𝐹𝑘 + 𝐹𝑐), 0,0, 

                 −𝑐𝑜𝑠𝜑(𝐹𝑘 + 𝐹𝑐), 0,0, −𝑠𝑖𝑛𝜑(𝐹𝑘 + 𝐹𝑐), 0,0, 𝑠𝑖𝑛𝜑(𝐹𝑘 + 𝐹𝑐), 0]
𝑇              (5.5). 

The whole torsional and translation motion equations are given as follows 

Torsional DOFs: 

𝐼1𝜃1̈ = 𝑇𝑚𝑜𝑡 − 𝑘𝑡12(𝜃1 − 𝜃2) − 𝐶𝑡12(𝜃1̇ − 𝜃2̇)                                                        (5.6-a) 

𝐼2𝜃2̈ = 𝑘𝑡12(𝜃1 − 𝜃2) + 𝐶𝑡12(𝜃1̇ − 𝜃2̇) − 𝑘𝑡23(𝜃2 − 𝜃3) − 𝐶𝑡23(𝜃2̇ − 𝜃3̇)             (5.6-b) 
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𝐼3𝜃3̈ = 𝑘𝑡23(𝜃2 − 𝜃3) + 𝐶𝑡23(𝜃2̇ − 𝜃3̇) − 𝑘𝑡35(𝜃3 − 𝜃5) − 𝐶𝑡35(𝜃3̇ − 𝜃5̇)               (5.6-c) 

𝐼5𝜃5̈ = 𝑘𝑡35(𝜃3 − 𝜃5) + 𝐶𝑡35(𝜃3̇ − 𝜃5̇) + 𝑘𝑡57(𝜃7 − 𝜃5) + 𝐶𝑡57(𝜃7̇ − 𝜃5̇) 

              −𝑅𝑏1(𝐹𝑘 + 𝐹𝑐)                                                                                              (5.6-d) 

𝐼7𝜃7̈ = 𝑘𝑡57(𝜃5 − 𝜃7) + 𝐶𝑡57(𝜃5̇ − 𝜃7̇)                                                                    (5.6-e) 

𝐼8𝜃8̈ = 𝑘𝑡810(𝜃10 − 𝜃8) + 𝐶𝑡810(𝜃10̇ − 𝜃8̇)                                                              (5.6-f) 

𝐼10𝜃10̈ = 𝑅𝑏2(𝐹𝑘 + 𝐹𝑐)−𝑘𝑡102(𝜃10 − 𝜃12) − 𝐶𝑡102(𝜃10̇ − 𝜃12̇ ) + 𝑘𝑡810(𝜃8 − 𝜃10) 

                +𝐶𝑡810(𝜃8̇ − 𝜃10̇ )                                                                                       (5.6-g) 

𝐼12𝜃12̈ = 𝑘𝑡102(𝜃10 − 𝜃12) + 𝐶𝑡102(𝜃10̇ − 𝜃12̇ ) − 𝑘𝑡123(𝜃12 − 𝜃13) − 𝐶𝑡123(𝜃12̇ − 𝜃13̇ ) 

   (5.6-h) 

𝐼13𝜃13̈ = 𝑘𝑡123(𝜃12 − 𝜃13) + 𝐶𝑡123(𝜃12̇ − 𝜃13̇ ) − 𝑇𝑏𝑟𝑘                                           (5.6-i)  

Translational DOFs: 

𝑚4𝑦4̈ + 𝑘𝑦4𝑦4 + 𝐶𝑦4𝑦4̇ + 𝑘𝑦45(𝑦4 − 𝑦5) + 𝐶𝑦45(𝑦4̇ − 𝑦5̇) = 0                             (5.7-a) 

𝑚5𝑦5̈ + 𝑘𝑦56(𝑦5 − 𝑦6) + 𝐶𝑦56(𝑦5̇ − 𝑦6̇) + 𝑘𝑦45(𝑦5 − 𝑦4) + 𝐶𝑦45(𝑦5̇ − 𝑦4̇) = (𝐹𝑘 +

𝐹𝑐)𝑐𝑜𝑠𝜑                                                                                                                    (5.7-b) 

𝑚6𝑦6̈ + 𝑘𝑦6𝑦6 + 𝐶𝑦6𝑦6̇ − 𝑘𝑦56(𝑦5 − 𝑦6) − 𝐶𝑦56(𝑦5̇ − 𝑦6̇) = 0                            (5.7-c) 

𝑚9𝑦9̈ + 𝑘𝑦9𝑦9 + 𝐶𝑦9𝑦9̇ + 𝑘𝑦910(𝑦9 − 𝑦10) + 𝐶𝑦910(𝑦9̇ − 𝑦10̇ ) = 0                      (5.7-d) 

𝑚10𝑦10̈ + 𝑘𝑦910(𝑦10 − 𝑦9) + 𝐶𝑦910(𝑦10̇ − 𝑦9̇) + 𝑘𝑦101(𝑦10 − 𝑦11) + 𝐶𝑦101(𝑦10̇ −

𝑦11̇ ) = (−𝐹𝑘 − 𝐹𝑐)𝑐𝑜𝑠𝜑                                                                                                      (5.7-e) 

𝑚11𝑦11̈ + 𝑘𝑦11𝑦11 + 𝐶𝑦11𝑦11̇ − 𝑘𝑦101(𝑦10 − 𝑦11) − 𝐶𝑦101(𝑦10̇ − 𝑦11̇ ) = 0         (5.7-f) 

𝑚4𝑥4̈ + 𝑘𝑥4𝑥4 + 𝐶𝑥4𝑥4̇ + 𝑘𝑥45(𝑥4 − 𝑥5) + 𝐶𝑥45(𝑥4̇ − 𝑥5̇) = 0                            (5.7-g) 
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𝑚5𝑥5̈ + 𝑘𝑥56(𝑥5 − 𝑥6) + 𝐶𝑥56(𝑥5̇ − 𝑥6̇) + 𝑘𝑥45(𝑥5 − 𝑥4) + 𝐶𝑥45(𝑥5̇ − 𝑥4̇) = (−𝐹𝑘 −

𝐹𝑐)𝑠𝑖𝑛𝜑                                                                                                                    (5.7-h) 

𝑚6𝑥6̈ + 𝑘𝑥6𝑥6 + 𝐶𝑥6𝑥6̇ − 𝑘𝑥56(𝑥5 − 𝑥6) − 𝐶𝑥56(𝑥5̇ − 𝑥6̇) = 0                             (5.7-i) 

𝑚9𝑥9̈ + 𝑘𝑥9𝑥9 + 𝐶𝑥9𝑥9̇ + 𝑘𝑥910(𝑥9 − 𝑥10) + 𝐶𝑥910(𝑥9̇ − 𝑥10̇ ) = 0                       (5.7-j) 

𝑚10𝑥10̈ + 𝑘𝑥910(𝑥10 − 𝑥9) + 𝐶𝑥910(𝑥10̇ − 𝑥9̇) + 𝑘𝑥101(𝑥10 − 𝑥11) + 𝐶𝑥101(𝑥10̇ −

𝑥11̇ ) = (𝐹𝑘 + 𝐹𝑐)𝑠𝑖𝑛𝜑                                                                                             (5.7-k) 

𝑚11𝑥11̈ + 𝑘𝑥11𝑥11 + 𝐶𝑥11𝑥11̇ − 𝑘𝑥101(𝑥10 − 𝑥11) − 𝐶𝑥101(𝑥10̇ − 𝑥11̇ ) = 0          (5.7-l) 

Table 5.2 Mass and inertia of the dynamic model of spur gearbox systems 

Inertia (kgm2) Mass (kg) 

𝐼1 
Inertia of motor, inertia of motor shaft and 1 2⁄  

inertia of coupling 1 
𝑚4 

Mass of pedestal and 

bearing 

𝐼2 
1 2⁄  inertia of coupling 1, 1 2⁄  inertia of coupling 2 

and inertia of torque meter shaft 
𝑚5 Mass of pinion 

𝐼3 
1 2⁄  inertia of coupling 2 and inertia of input shaft to 

bearing (not including bearing) 
𝑚6 

Mass of pedestal and 

bearing 

𝐼5 
Inertia of pinion, inertia of input shaft (whole shaft 

section through casing) 
𝑚9 

Mass of pedestal and 

bearing 

𝐼7 
Inertia of slip ring (rotor part), adapter, coupling 3 

and shaft section outside casing (free end) 
𝑚10 Mass of gear 

𝐼8 
Inertia of slip ring (rotor part), adapter, coupling 5 

and shaft section outside casing (free end) 
𝑚11 

Mass of pedestal and 

bearing 

𝐼10 
Inertia of gear, inertia of whole output shaft section 

through casing 
  

𝐼12 
1 2⁄  inertia of coupling 4 and output shaft section to 

bearing (not including bearing) 
  

𝐼13 
Inertia of brake, inertia of brake shaft and 1 2⁄  inertia 

of coupling 4 
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Table 5.3 Stiffness and damping of the dynamic model of spur gearbox systems 

Stiffness and damping 

𝑘𝑡12, 𝐶𝑡12 
Torsional stiffness and damping 

of coupling 1 
𝑘𝑦56, 𝐶𝑦56 

Vertical stiffness and 

damping of shaft 

𝑘𝑡23,  𝐶𝑡23 
Torsional stiffness and damping 

of coupling 2 
𝑘𝑦101, 𝐶𝑦101 

Vertical stiffness and 

damping of shaft 

𝑘𝑡35, 𝐶𝑡35 

Torsional stiffness and damping 

of shaft (from coupling 2 to 

pinion) 

𝑘𝑦910, 𝐶𝑦910 
Vertical stiffness and 

damping of shaft 

𝑘𝑡57, 𝐶𝑡57 
Torsional stiffness and damping 

of shaft (from pinion to slip ring) 
𝑘𝑥45, 𝐶𝑥45 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡810, 𝐶𝑡810 
Torsional stiffness and damping 

of shaft (from gear to slip ring) 
𝑘𝑥56, 𝐶𝑥56 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡102, 𝐶𝑡102 
Torsional stiffness and damping 

of shaft (from gear to coupling 4) 
𝑘𝑥101, 𝐶𝑥101 

Horizontal stiffness and 

damping of shaft 

𝑘𝑡123, 𝐶𝑡123 
Torsional stiffness and damping 

of coupling 4 
𝑘𝑥910, 𝐶𝑥45 

Horizontal stiffness and 

damping of shaft 

𝑘𝑦45, 𝐶𝑦45 
Vertical stiffness and damping of 

shaft 
𝑘𝑦4, 𝑘𝑦6, 𝑘𝑦9, 𝑘𝑦11 

Vertical stiffness of 

pedestal/bearing 

5.2.1 Meshing stiffness and damping coefficient of gear system 

In the developed dynamic model, the internal excitation of the gear systems is from the 

gear meshing contact [149-151], therefore, properly modelling the contact properties of 

mating gear teeth can facility a better understanding of the coupling effects between gear 

wear and gear dynamic characteristics, and then provide useful information for wear 

monitoring and prediction. 

Three major parameters are characterizing the gear contact, that is, meshing stiffness 𝑘𝑚, 

damping coefficient 𝑐𝑚 and geometric transmission error 𝑒𝑡. In this study, the meshing 

stiffness 𝑘𝑚 is considered as a function of the angular rotation of the pinion 𝜃5. The shape 

of the dependency 𝑘𝑚(𝜃5) is derived based on the potential energy which considers the 

strain energy and Hertzian contact [152-154]. The strain energy consists of bending, shear 
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and axial compressive potential energies stored in the meshing teeth, which are expressed 

below [155-157] 

𝑈𝑏 =
𝐹2

2𝑘𝑏
(5.8) 

𝑈𝑠 =
𝐹2

2𝑘𝑠
(5.9) 

𝑈𝑎 =
𝐹2

2𝑘𝑎
(5.10) 

where 𝐹 is gear contact force, 𝑘𝑏 , 𝑘𝑠  and 𝑘𝑎  are bending stiffness, shear stiffness and 

axial compressive stiffness. 

The stiffness of the Hertzian contact between tooth pairs can be approximated by [158] 

𝑘ℎ =
𝜋𝐸𝑊

4(1−𝜈2)
(5.11). 

The Hertzian stiffness is dependent on the width of contact between two teeth widths 𝑊 

and the material properties: Poisson’s ratio and elastic modulus, 𝜈 and 𝐸, respectively. 

With Hertzian, bending, shear and axial compressive stiffness, the gear mesh stiffness for 

one tooth pair can be obtained by using [155, 159-161] 

1

𝑘𝑚
=
1

𝑘ℎ
+∑[

1

𝑘𝑏,𝑗
+

1

𝑘𝑠,𝑗
+

1

𝑘𝑎,𝑗
]

2

𝑗=1

(5.12) 

where 𝑗 = 1,2 represents the pinion and gear, respectively. The mesh stiffness of one 

tooth pair is demonstrated in Figure 5.3.  
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Figure 5.3 Single tooth pair meshing stiffness 

It is assumed that the gear system has a constant damping ratio and the meshing damping 

coefficient is proportional to the gear meshing stiffness [162] 

𝑐𝑚 = 𝜇𝑘𝑚 (5.13) 

where 𝜇 (s) is the scale constant. 

To determine the value of 𝜇, 𝑘𝑎𝑣𝑒 and 𝑐𝑎𝑣𝑒 are defined as the mean meshing stiffness and 

damping coefficient in one mesh period, and the damping ratio can be calculated through 

𝜁 =
𝑐𝑎𝑣𝑒

2√𝑘𝑎𝑣𝑒𝑚
(5.14) 

where 𝑚 represents the effective mass of pinion and gear, which can be derived as 

𝑚 =
𝑚5𝑚10

𝑚5+𝑚10
(5.15). 

From Eq. (5.14) and Eq. (5.15), the average meshing damping coefficient 𝑐𝑎𝑣𝑒 is 

𝑐𝑎𝑣𝑒 = 2𝜁√𝑘𝑎𝑣𝑒
𝑚5𝑚10

𝑚5+𝑚10
(5.16). 
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Therefore, based on Eqs. (5.13-5.16), the damping ratio 𝜇  together with the meshing 

damping coefficient 𝑐𝑚 can be calculated. 

5.2.2 Geometric transmission error 

The GTE, 𝑒𝑡 (geometric deviation from perfect involute), makes kinematic (inertia and 

loading independent) contribution to the transmission error of the gear system [25]. It can 

be used to represent gear surface wear, but could also include initial profile errors, that 

can be estimated based on manufacturing quality or measured. 

 

Figure 5.4 Gear systems: (a) gear contact mechanism; (b) deflections between mating teeth; (c) gear 

dynamic contact force 

The shape and severity of GTE impact the contact mechanism of gear pairs significantly. 

Figure 5.4 demonstrates the effects of GTE on gear dynamic contact force 𝐹𝑘 . The 

deflections ∆ℓ between the mating gear teeth are shown in Figure 5.4(b), it consists of the 

stiffnesses related deformation and the geometric working surface deviations from the 

ideal gear tooth profile, which is GTE. Note that in the gear wear case, meshing stiffness 

𝑘𝑚(𝜃5) 

𝑒𝑡 

∆ℓ = 𝑅𝑏1𝜃5 − 𝑅𝑏2𝜃10 − 𝑦5𝑐𝑜𝑠𝜑 + 𝑦10𝑐𝑜𝑠𝜑 
              +𝑥5𝑠𝑖𝑛𝜑 − 𝑥10𝑠𝑖𝑛𝜑 + 𝑒𝑡  

𝐹𝑘(𝜃5) = 𝑘𝑚(𝜃5)Δℓ 

 

𝐹𝑘(𝜃5) 

𝐹𝑘(𝜃5) 

(a) (b) 

(c) 
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change can be neglected as it is significantly less important than the transmission error 

effect [18]. Therefore, the assessment of gear wear induced GTE is vital for analyzing the 

coupling effects between gear wear and gear dynamic, and the further wear prediction. 

The evaluation of wear induced GTE will be introduced in Chapter 6. 

5.2.3 Dynamic simulation process 

In this study, the dynamic model is established using Simulink@ environment. To solve 

this developed gear system, the state space theory is used to represent the gear dynamic 

system in a useful mathematical way [163-165], as shown in Figure 5.5. Linear Time-

Invariant (LTI) component is a linear representation of a dynamic gear system in either 

discrete or continuous time. With the LTI component, the eigenfrequencies can be easily 

obtained for validating the dynamic model. Also, the time-varying variables, such as 

meshing stiffness, damping coefficient, and geometric transmission error, are taken into 

consideration, using the lookup tables with cubic spline interpolation, so that the dynamic 

characteristics of the gear system can be realized and simulated. To clearly show the 

differences between this work and previously published research [18, 41, 107, 166], more 

details of the dynamic model in the Simulink® simulation environment are demonstrated 

in Figure 5.6, Figure 5.7, and Figure 5.8. 
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Figure 5.5 Gear state-space dynamic model 

 

 

Figure 5.6 Dynamic model in Simulink® simulation environment: overall structure 

LTI component 
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Figure 5.7 Dynamic model in Simulink® simulation environment: gear contact part 

 

 

Figure 5.8 Dynamic model in Simulink® simulation environment: single tooth pair contact 

ODE 45 is a function that implements a Runge-Kutta method with a variable time step 

and high computation efficiency, therefore, in this study, ODE45 would be the first choice 

for solving the dynamic motion equations [41]. In some specific cases, for example, the 

problem/system is suspected to be stiff [167], ODE15s is the alternative in this study to 

obtain numerical solutions of the developed dynamic gear transmission system.  
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5.3 Model validation and calibration 

Before using the dynamic model for further analysis, the dynamic model should be 

validated and calibrated to guarantee the responses from the dynamic model are reliable. 

In this research, a series of initial tests were performed for the validation and calibration 

of the dynamic model, including a speed ramp test, impact tests and constant speed tests.  

To obtain the natural frequencies/modes of the spur gearbox test rig for comparing with 

the developed dynamic gear model, a speed ramp test was arranged. This method involves 

collecting vibration signals over a period when the gearbox is ramping up toward full 

speed, as shown in Figure 5.9. This particular test uses the vibration of the shaft as a 

forcing function to provide energy inputting into the gear system. Doing like this will 

excite resonances as the shaft vibration passes through the critical speed.  

Power spectral density (PSD) analysis is a traditional frequency-domain analysis tool to 

identify the structure modes/natural frequencies of mechanical systems. The reason is that 

resonance is the amplification of a signal when its frequency is close to the natural 

frequency of a system. With help of PSD analysis, the resonances in the spectrum are 

amplified and other components such as background noise are reduced, making the modes 

of the systems being easily detected. The PSD analysis of the spur gearbox is shown in 

Figure 5.10.  
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Figure 5.9 Measured vibration during the spur gearbox ramp test: (a) rotational speed; (b) measured 

vibrations 

 

Figure 5.10 PSD analysis of the vibrations of the spur gear system 

(a) 

(b) 
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From Figure 5.10, the modes/natural frequencies of the whole UNSW spur gear system 

can be identified, which have been summarized in Table 5.4. These natural frequencies 

can be used as references to help check the validity and reliability of the developed 

dynamic model. It should be noted that in the developed dynamic model, the foundation 

of the spur gearbox is not simulated and included, therefore, to make the natural frequency 

from ramp tests being comparable with the developed dynamic model of the gear system, 

the foundation of the gearbox’s natural frequencies should be excluded from the natural 

frequencies acquired from ramp tests. With this regard, an impact test was applied to help 

reveal the natural frequencies of the gearbox’s foundation so that it can be subtracted 

from the whole UNSW spur gear system. Note that a slight load is applied to ensure the 

gear pairs being in contact, when conducting the hammer test on the foundation of the 

gearbox. 

Table 5.4 Identified natural frequencies from the PSD analysis of experimental measurements 

Natural frequencies (Hz) 

13 22 41 59 68 87 128 

218 270 430 512 6883 767 880 

1103 1167 1248 1367 1471 1714 1927 

The quadrature picking method was applied here to determine the natural 

frequencies/modes and mode shapes of the gearbox’s foundation [168], as demonstrated 

in Figure 5.11. The theory of the quadrature picking method is explained as follows. The 

Frequency Response Function (FRF) appears to become purely imaginary at the modal 

frequency. Its amplitude is proportional to the modal displacement, and its sign is positive 

if displacement is in phase with the excitation. The mode shapes can be determined if a 

response is fixed, or set an excitation degree of freedom as a reference and then make a 

set of measurements. The imaginary parts of the measured FRFs can be “picked” at the 
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modal frequencies at which they represent the modal displacement for that specific degree 

of freedom [168]. This method is based on the assumption that the coupling between the 

modes is light. In practice, mechanical structures are often very lightly damped (<1%). 

This implies that the modes are lightly coupled.  

 

Figure 5.11 Demonstration of quadrature picking method [168] 

As for the foundation of the gear system, an accelerometer (B&K 4396) is fixed on the 

root of the gearbox casing to collect the responses excited by varying inputs generating 

by impact hammers, as shown in Figure 5.12.  The modes of the foundation of the gearbox 

and its mode shapes can be calculated and extracted through Eq. (5.17) 

𝐻(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
(5.17) 

where 𝐻(𝜔) is the FRF, 𝑋(𝜔) is the output of the system and 𝐹(𝜔) is the input of the 

system. 
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Figure 5.12 Harmer test on gearbox’s foundation 

Figure 5.13 gives the first four mode shapes for demonstration purposes. Based on Eq. 

(5.17), the FRF of the gearbox’s foundation is shown in Figure 5.14, including the 

magnitude, phase and coherence. At the modes of the gear system, there would be a peak 

in the magnitude spectrum, and the corresponding phase would shift 180 degrees. 

Coherence is a function versus frequency that indicates how much of the output is due to 

the input in the FRF. It can be an indicator of the quality of the FRF, which evaluates the 

consistency of the FRF from measurement to repeat of the same measurement: (a) 

coherence’s value is 1 at a particular frequency indicating that the FRF amplitude and 

phase are very repeatable from measurement to measurement; (b) while coherence’s 

value is 0 indicating that opposite – the measurements are not repeatable, which is a 

possible “warning flag” that there is an error in the measurement setup. 
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From the magnitude, phase and coherence spectrums in Figure 5.14, all the modes of the 

gearbox’s foundation can be identified. Subtracting the obtained modes/natural 

frequencies from the whole gear system’s modes (from the speed ramp test), the 

modes/natural frequencies of the gear system without foundation can be achieved, which 

are comparable with the developed dynamic model. 

 

Figure 5.13 The first four mode shapes of the gearbox’s foundation 
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Figure 5.14 Frequency Response Function (FRF) of the gearbox’s foundation 

The speed ramp and impact tests were used to provide an initial adjustment of the most 

uncertain model parameters (e.g. stiffness of joints and bearings) with the ultimate aim of 

obtaining a good match between simulated and experimental natural frequencies in the 

frequency a range of interest (0-2 kHz). The comparison result is summarised in Table 

5.5. And the scaled meshing stiffness is shown in Figure 5.15. Note that the natural 

frequencies presenting formats (such as accuracy) are set to be the same as the researchers 

did in Ref. [169]. The reason why scaling the meshing stiffness is explained as follows. 

In gear transmission systems, various gears are used for different purposes. For example, 

some gears are surface hardened, while some are not treated with the hardening process. 

Soft vs hardened gears results in different magnitudes of the meshing stiffness when they 

have identical gear profiles. To guarantee the responses from the dynamic model are close 

to the actual measurements from the specific test rig, model calibration is thus necessary. 

It involves ‘scaling’ the meshing stiffness of the model so that it is close enough to the 

gears used in the experiments. 
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Figure 5.15 Meshing stiffness curve 

Table 5.5 Natural frequency comparison results of dynamic model and experimental data 

Experiments (Hz) Dynamic model (Hz) Difference (%) 

22 23 5.1 

87 81 -6.7 

218 201 -7.8 

430 427 -0.8 

512 529 3.5 

767 740 3.5 

1248 1268 1.6 

1927 1885 2.2 

Table 5.5 shows that the first eight natural frequencies agree between the experiments 

and the dynamic model within eight percent, which was deemed sufficient to approximate 

the system response.  

Two constant speed tests were then executed to fine-tune a scale factor for the meshing 

stiffness function 𝑘𝑚 and the damping coefficient 𝑐𝑚: 

1. 2 Hz rotational speed and 10 Nm motor torque and  
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2. 2 Hz rotational speed and 20 Nm motor torque. 

The encoder signals on the input and output shaft were used in these tests to calculate the 

static transmission error (STE) of the gearbox system using the phase demodulation 

method [170] assuming negligible dynamic effects at this low speed. This STE was then 

used as an input to the dynamic model to simulate a vibration response. After low-pass 

filtering in the band of interest (0-2 kHz), the RMS of the simulated vibration signal 

𝑦6
(𝑆𝐼𝑀)(𝑡) was then compared with the experimental results and the meshing stiffness and 

damping were manually adjusted until good agreement between the results was obtained, 

as shown in Figure 5.16. To examine the rationality of the responses from the developed 

dynamic model, similar to Ref. [41], the first five gear tooth meshes are expanded and 

plotted in Figure 5.17. From the comparison between the five gear mesh teeth signals of 

the experiment and simulation, it can be seen that the characteristics of the gear system 

are well presented, including the engagement of teeth contact, loading and unloading of 

teeth, the gear mesh period, and the amplitude of vibration. Note that the wear on each 

gear tooth is theoretically the same, even though the tooth-to-tooth differences do exist in 

practice due to manufacturing or mounting error (as shown in Figure 5.16(a) and Figure 

5.17(a)), resulting in that modulation phenomenon and sidebands exist in the measured 

signal. Since uniform wear is simulated in the developed dynamic model, and also 

because the wear process is the same on each gear tooth, no sidebands around the gear 

mesh (caused by the modulations behaviours) exist in the simulated signal. 
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Figure 5.16 Vibration signal: (a) experiment and (b) simulation 

 

Figure 5.17 Five-gearmesh teeth: (a) experiment and (b) simulation 
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The low pass filtering was necessary to remove high frequency effects which arise in the 

simulation from the unrealistic steps in the stiffness function, smoothed in practice by a 

gradual engagement/disengagement of the teeth. Indeed, even in this limited band the 

stronger weighting of the higher gear mesh harmonics is apparent in the simulated 

response in Figure 5.16(b). Nonetheless, the overall magnitudes of the responses were 

deemed to match the measurements sufficiently for the purposes of the present study. 

The dynamic contact force from the developed model is shown in Figure 5.18, and more 

spikes and fluctuations are observed in the contact force compared with the results shown 

in Ref. [21]. These spikes and fluctuations are caused by the resonances of the gear system. 

In Ref. [21], a torsional model (with a single DOF) was established to generate dynamic 

contact force and the subsequent worn tooth profile. As for the torsional model in Ref. 

[21], there is only one mode existing in the simulated gear system, therefore, its FRF is 

simple and only has one peak, resulting in the contact force being in a ‘smooth’ pattern. 

However, in practice, the gear system is usually much more complex in terms of potential 

changes in the dynamic responses under an operating condition, and the single DOF 

torsional model is not representative anymore. Therefore, the authors in Ref. [60] 

included the translational effects coming from the shaft bending and bearing radial 

deflections into the dynamic model, and significantly different characteristics of contact 

force and the subsequent worn tooth profile were observed, comparing with the results 

shown in Ref. [21], and more spikes and fluctuations start to appear. Also, the dynamic 

contact force simulated in Ref. [171] exhibited lots of spikes and fluctuation behaviours 

due to more degrees of freedom are included in the developed dynamic model.  
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Figure 5.18 Dynamic contact force (from gear root to tip) 

This calibrated dynamic model was used both to generate dynamic contact forces (for 

specified GTEs) for input into the tribological wear model and to simulate responses for 

comparison with vibration measurements to enable updating of the wear model.  

5.4 Summary 

This chapter presents the development of a 21-DOFs dynamic model based on the UNSW 

spur gearbox test rig, including gear meshing stiffness, geometric transmission error 

evolution, and the solver to acquire numerical solutions. The dynamic model developed 

in this chapter is a crucial part of the proposed vibration-based wear prediction schemes, 

which will be introduced in Chapter 6 and Chapter 7. Note that the developed dynamic 

model is different from previously published research [18, 41, 107] since a new gearbox 

test rig is used in this thesis. Also, the applications of the developed dynamic model are 

different from previously published research. To guarantee the dynamic responses of the 

developed dynamic model is close enough to the actual test rig so that it can provide 
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useful information for further wear analysis, speed ramp test, impact test and several 

constant speed tests are conducted to validate and calibrate the dynamic model. The 

natural frequency comparison between experiment and simulation shows that the 

developed dynamic model match well with the real UNSW spur gearbox test rig. Also, 

the time waveforms of vibrations from experiments and the dynamic model match each 

other. It suggests that the developed dynamic model can provide reliable dynamic contact 

to the tribological (wear) models for further wear analysis. Moreover, the simulated 

vibration characteristics can be used to compare with actual measurements for updating 

analysis of wear prediction, which will be introduced in Chapter 6 and Chapter 7. 

However, it should be mentioned that the foundation of the gearbox has not been 

modelled in the developed dynamic model, which might affect the simulated vibrations, 

especially when it is operating at its resonances range. This issue will be addressed in 

future work by including the foundation. 
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Chapter 6  Monitoring and prediction of tooth profile 

changes during wear progression 

The work presented in this chapter is devoted to achieving objective 3 of this research: 

monitoring and prediction of tooth profile changes during wear progression. This 

work has been presented in papers titled “Vibration-based updating of wear prediction 

for spur gears” and “Use of an improved vibration-based updating methodology for gear 

wear prediction”, which were published in the journals of Wear (426-427: 1410-1415, 

2019) and Engineering Failure Analysis (120: 105066, 2021). The main content of this 

chapter is identical to the above publications, while the structure of this chapter has been 

arranged to ensure the consistency of the thesis. 

This chapter is organized as follows. In Section 6.1, a brief introduction to this study is 

presented. Section 6.2 introduces the proposed wear prediction scheme, and then presents 

the new wear depth distribution calculation approach; Section 6.3 shows the gear wear 

prediction results using two endurance tests under different lubrication conditions. In 

Section 6.4, the main outcomes are summarised. 
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6.1 Introduction 

Gear wear is a progressive material loss from contacting gear tooth surfaces due to the 

combined sliding and rolling motion under boundary or mixed lubrication conditions [13]. 

During gear service life, wear induced tooth profile change is a common wear 

phenomenon, and it can result in gear tooth thickness reduction. In general, the wear 

induced tooth profile alteration non-uniformly distributes from gear tooth root to tip [68]. 

The reason is that the sliding velocities at the different contact locations of the gear tooth 

in relation to the pitch line are different and the wear rate is a function of the sliding 

velocity as well as the pressure [172]. The wear induced tooth profile alteration may lead 

to a sudden failure of the gearbox transmission system, which can result in unexpected 

economic loss and serious accidents. Therefore, for the effective management of the 

health of the transmission system, it is important to be able to monitor the gear profile 

change and predict its propagation, which is the focus of this chapter. 

As reviewed in Chapter 2, the majority of existing research works mainly focused on 

studying the effects of surface wear processes on gear system dynamic characteristics 

such as transmission error and dynamic meshing force [31, 72, 173-175], and 

investigating the effect of gear dynamics on surface wear [21, 59, 60, 176-178]. In 

contrast, there are only a handful of studies on the prediction of spur gear wear induced 

tooth profile change under quasi-static operating conditions [57, 68, 84]. But dynamic 

response characteristics are quite different from those under quasi-static conditions. The 

dynamic meshing forces are typically larger than the corresponding quasi-static forces 

and their magnitudes and waveforms are quite different [21]. 

Theoretically, dynamic response characteristics of a gear pair are sensitive to a profile 

change, that is, a geometric deviation of the tooth surface profile from a perfect involute, 
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and elastic deformation [25]. Gear surface wear is a material removal process, which can 

result in a geometric deviation. And, elastic deformation is determined by contact force 

and meshing stiffness. Based on this theory, the authors in reference [21] used a 

periodically time-varying meshing stiffness function and an external displacement 

excitation to represent the effects of dynamic response on the gear wear process. In that 

research, the authors utilized a torsional model with a single-degree-of-freedom (DOF) 

and then combined it with a quasi-static wear model [57] to develop a dynamic wear 

model. This model is capable of investigating the interactions between the surface wear 

and the spur gear system's dynamic characteristics. Later, to demonstrate the effect of 

translational deflection on the wear process, one study [60] introduced a 3-DOFs dynamic 

model to replace the torsional model in Ref. [21], and it found that the translational 

deflection in the gear system impact the gear progress significantly, therefore, it must be 

included when analysing gear wear progradation. 

It should be noted that both Refs. [21, 60] only investigated the coupling effects between 

gear dynamics and the wear process through a set of simulations. Gear wear prediction 

under dynamic conditions, which can bring significant benefits to a wide range of 

industries, was not included. 

The combination of dynamic and wear models, proposed in a few variants in the literature 

[57, 68, 84], is theoretically able to predict the evolution of wear and its induced tooth 

profile alteration, considering its interactions with the gearbox dynamics. This prediction 

will however likely drift away from the actual wear process which is a complex process 

with multiple factors, especially considering that the parameters governing wear 

dynamics vary in time (e.g., with the contamination of the lubricant and the change in 

surface roughness). Increasing the complexity of the wear models to follow these complex 

trends is an option, but it is likely to result in additional parameters whose quantification 
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for practical applications could be difficult, leading to additional uncertainty in the model 

predictions. 

To accurately and efficiently predict gear tooth profile change in a wear process, a gear-

wear prediction methodology is proposed in this research. The following sections will 

introduce the whole procedure of the proposed vibration-based updating of the wear 

prediction scheme theoretically and demonstrate the tooth profile change prediction 

results with accelerated run-to-failure gear wear tests under different lubrication 

conditions. 

6.2 Methodology for monitoring and predicting tooth profile change 

from wear 

6.2.1 The proposed vibration-based approach for monitoring and predicting tooth 

profile change 

In this section, the architecture of the proposed vibration-based prediction scheme for the 

tooth profile change caused by wear will be introduced briefly. 

The overall approach is concisely presented in Figure 6.1. The modelling component of 

this methodology (on the left of Figure 6.1) is composed of two interacting simulation 

models: a dynamic model and a wear model. Based on the input of the tooth profile 

geometry, the dynamic model predicts tooth contact forces, which are passed on to the 

wear model to estimate gear wear and consequently modify the tooth profile geometry, 

which is then fed back into the dynamic model. This iterative loop allows a knowledge-

based prediction of wear and its induced tooth profile change, which however is likely to 
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be reliable only on a limited timeframe, within which the wear model parameters remain 

unchanged. 

 

Figure 6.1 Basic procedures of the proposed vibration-based scheme for updating wear predictions 

The main novelty of the proposed approach relies on the updating of the wear model 

parameters based on vibration measurements (on the right of Figure 6.1). The vibrations 

from the gearbox dynamic model are compared to measured vibration levels to track the 

quality of the wear model predictions and if necessary update the wear model parameters. 

The details of each component of the approach, as outlined in Figure 6.1, will be discussed 

in depth in the following sections. 

6.2.2 Dynamic model 

In this section, only a brief introduction of the dynamic model of the spur gearbox will 

be given since its development has been introduced with details in Chapter 5.  
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To generate realistic vibrations and contact forces for the wear model, a 21 degree-of-

freedom (DOF) lumped parameter dynamic model is established based on the University 

of New South Wales (UNSW) gearbox test bench, the development of which has been 

introduced in Chapter 5. The basic motion equations of the dynamic model are as follows 

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐟 (6.1) 

where 𝐱 represents the angular and translational displacements of the different nodes of 

the gearbox system, which is in the plane perpendicular to the input and output shaft axes. 

𝐊, 𝐂 and 𝐟 are the matrices of corresponding stiffness, damping and force. Further details 

of this dynamic model development can be found in Chapter 5, also the dynamic model 

was calibrated using impact tests, some speed ramp tests and several constant speed tests. 

The calibration ensures that reliable contact force figures are fed into the wear model and 

that realistic vibration signals are simulated. 

6.2.3 Wear model for simulating tooth profile change 

Although many advanced wear models have been proposed using different methodologies 

and parameter sets, the Archard wear model remains the most commonly used for 

practical applications, and is chosen in this research to simulate the wear induced tooth 

profile change behaviours. Neglecting changes in the contact area over the meshing cycle, 

and differentiating the expression of Ref. [21], the Archard wear model is as follows 

𝑑ℎ

𝑑𝑡
= 𝐾wear𝐹𝜈 (6.2) 

where ℎ  is the wear depth, 𝐹  is the normal load and 𝜈  is the corresponding sliding 

velocity. 

Even though the capability of the Archard wear in simulating wear propagation 

behaviours has been demonstrated in lots of references [71, 179-181], the Archard wear 
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model can be improved to enhance the gear wear prediction accuracy with consideration 

of more realistic parameters and factors. First, expressing Eq. (6.2) in terms of contact 

pressure 𝑃 rather than contact force would be more physically meaningful [182, 183]. 

The second point involves the inclusion in the model of the effect from adjacent contact 

points on the wear depth accumulation at one specific contact point. From the literature 

review of Chapter 2, it is worth noting that none of the existing works [21, 24, 57, 62, 68, 

108] considers the pressure contribution coming from the adjacent contact points to the 

wear depth accumulation, although the pressure is distributed in a small region and affects 

the wear distribution. 

To address the above-mentioned issues, in this research, the Archard wear model is 

further improved by considering contact pressure rather than force. Moreover, 

considering the effect of Hertzian deformation, giving a contact area rather than a line, a 

new approach is proposed to calculate the wear depth distribution: 

ℎ(𝑥) = ∫𝐾wear𝑃(𝑥, 𝑡)𝜐(𝑡)𝑑𝑡 (6.3) 

where ℎ(𝑥)  is the wear depth at contact point 𝑥 , 𝑃(𝑥, 𝑡)  is the contact pressure 

distribution at time 𝑡, and 𝜐(𝑡) is the corresponding sliding velocity. 

To clearly explain the new wear depth distribution calculation approach, a simple 

example is used in Figure 6.2 for demonstration. In Figure 6.2, P(5), P(6) and P(7) 

represent the instantaneous Hertzian pressure distribution at contact points #5, #6 and #7 

respectively. The parameter P(5)_6 represents the consequent pressure at contact point 

#6 when the gear pairs are engaged at contact point #5, due to the contact area given by 

Hertzian deformation. A similar meaning holds for P (7)_6. Therefore, in summary, due 

to the Hertzian deformation, the wear depth at contact point #6 is affected not only when 

itself is the (theoretical) contact ‘point’, but also when adjacent points #5 and #7 are the 
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(theoretical) contact points. The sum of them forms the final wear depth at contact point 

#6, which is demonstrated in Eq. (6.4).  

 

Figure 6.2 The wear depth at contact point #6: including the effects coming from adjacent contact points 

∆ℎ(6) = (𝐾𝑤𝑒𝑎𝑟𝑃6(6)𝑉(6) + 𝐾𝑤𝑒𝑎𝑟𝑃5(6)𝑉(5) + 𝐾𝑤𝑒𝑎𝑟𝑃7(6)𝑉(7)) ∙ 𝛥𝑡 (6.4) 

The gear tooth wear depth distribution obtained using the Archard wear model presented 

in the reference [21] and the improved Archard wear model with the new calculation 

approach is shown in Figure 6.3. Two differences between the results can be seen: 

1) The wear depth at the pitch line (rotation angle zero) is not zero with the new 

calculation approach, which corresponds more closely with experimental observations 

(see Figure 6.9 in Section 6.3). The reason is that even though the sliding velocity is 

theoretically zero at the instant of pitch line contact, due to the Hertzian deformation 

giving a contact area, the sliding velocity at the pitch line is non-zero during this short 

instant. This results in mild wear at the pitch line. 

2) The curve of the wear depth distribution (from the tooth root to tip) becomes much 

smoother, which again is more physically meaningful and corresponds with experimental 

observations (see Figure 6.8 in Section 6.3). In practice, even though dynamic contact 

pressure distribution has some peaks corresponding to each contact point (see Figure 6.4), 

it could not cause sharp peaks and troughs in the wear depth distribution when taking into 
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consideration the effect from the adjacent contact points due to Hertzian deformation. The 

load altering will rapidly remove any sharp peaks and troughs induced by dynamic forces. 

 

Figure 6.3 Wear depth distribution 

 

Figure 6.4 Contact pressure distribution: there are some peaks corresponding to each contact point 

With consideration of these two factors, the calculated wear profile using the improved 

Archard wear model with the new calculation approach is more reasonable and realistic 

compared with the Archard wear model used in Ref. [21], therefore, in this research, the 
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improved Archard wear model is used to simulate the wear propagation behaviours and 

its induced tooth profile change. 

Note that the worn gear tooth profile (the black dot line) shown in Figure 6.3 is different 

from the results shown in Ref. [21]. More specifically, it is not as ‘smooth’ as the worn 

tooth profile presented in Ref. [21]. The reason is that a single DOF torsional model used 

in Ref. [21] neglects some actual modes (such as translational modes) of gear systems, 

resulting in a very simple and smooth contact force, which does not represent the actual 

one. In contrast, a 21 DOFs dynamic model is used in this thesis to account for both 

translational and torsional modes, and the generated contact force is thus very different 

to the one obtained from the single DOF torsional model. This difference has been 

discussed in Section 5.3. Thus, the calculated worn gear tooth profile still has small jags, 

which is caused by the dynamic interactions from translational and torsional modes of the 

21 DOFs dynamic model.  

It should note that the wear model parameter 𝐾wear (in Eq. (6.3)) is affected by a number 

of factors including material properties, such as hardness and roughness of the two 

surfaces, and the lubrication condition, which may evolve in the wear process. Since it is 

very difficult to estimate or directly measure 𝐾wear experimentally, this coefficient is 

often a major unknown parameter. In this study, 𝐾wear is determined experimentally, 

based on the comparison of simulated and experimental vibrations. The details of this 

updating methodology will be introduced in the following section. 

6.2.4 Updating methodology 

The update of the wear coefficient 𝐾wear is obtained based on the comparison of the root 

mean square (RMS) value of simulated and experimental signals. The updating 
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methodology is executed iteratively when the absolute error between the experimental 

and simulated RMS values exceeds the predefined 5% threshold, and the wear coefficient 

𝐾wear for the next iteration (i+1) is calculated as follows 

𝐾wear(𝑖+1) = 𝐷(𝑖) ∙ 𝐾wear(𝑖) (6.5) 

where 𝐷(𝑖) = RMS{𝑦
(EXP,𝑖)(𝑡)} RMS{𝑦(SIM,𝑖)(𝑡)}⁄ , and 𝑦(EXP,𝑖)(𝑡) and 𝑦(SIM,𝑖)(𝑡) are the 

simulated and experimental vibration signals at time t and iteration 𝑖 . Note that the 

predefined threshold should be set close to 0 in theory, and the wear coefficient will be 

updated almost at each step. By doing so, even though the prediction accuracy can be 

improved slightly, the computation cost will increase significantly. To balance the 

prediction accuracy and computation cost, a 5% threshold is selected in this research. The 

iterations are stopped when the absolute error between the simulated and experimental 

RMS values falls below the predefined threshold. It must be highlighted that the operating 

conditions of the dynamic model (speed and torque) should be set as close as possible to 

the actual experimental conditions, to avoid potentially large biases on RMS readings. 

Luckily, speed measurements and torque estimates (e.g., through current measurements 

in electromechanical drivetrains) are available in most machines with sufficient criticality 

to justify a sophisticated condition monitoring system. 

6.3 Tooth profile change prediction results 

In this section, the wear induced tooth profile change prediction results under dry and 

lubricated conditions are presented.  
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6.3.1 Dry test 

The dry test was conducted with input shaft speed and torque of 10 Hz and 5 Nm. The 

wear model parameter 𝐾wear  was updated (when/if necessary) with the procedure 

discussed in Section 6.2.4. In total, two updates were executed during the test, when the 

error between the RMS value of simulated and measured vibration signals exceeded the 

predefined 5% threshold. The first updating was executed at 0.73 × 104 wear cycles, and 

the 𝐾wear was found to be  1.65 × 10−6Pa−1. The second update occurred at 2.48 × 104 

wear cycles, and the updated 𝐾𝑤𝑒𝑎𝑟  was 2.17 × 10−6Pa−1 . Figure 6.5 shows the 

evolution of the vibration RMS throughout the dry test. From Figure 6.5, it can be found 

that the simulated vibrations from the dynamic model match well with the experimental 

ones after updating the 𝐾wear.  

To check the effectiveness of the proposed updating scheme (with improved Archard 

wear model) in wear depth prediction, an estimate of the mean wear depth was calculated 

based on the wear particles collected using adhesive paper [104]. Figure 6.6 shows the 

comparison results. It can be found that the wear depths (at 1.29 × 104 , 185 × 104 , 

3.19 × 104 and 3.77 × 104 wear cycles) are well predicted using the proposed updating 

scheme. Therefore, the proposed updating scheme with the improved Archard wear 

model has an excellent performance in wear prediction under dry conditions. Note that 

this and subsequent mean wear depth figures represent the combined wear of the pinion 

and driven gear tooth profiles, which means that of the pinion alone accounts for about 

73% of this wear depth figure. Note too that these wear depth figures were never used in 

the updating – only the vibration signals (simulated and measured). 
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Figure 6.5 Dry test: RMS (in mm/s) versus the number of wear cycles from the experimental testing and 

the results from simulations (after updating) 

 

Figure 6.6 Wear depth comparison results of dry test: experiment (from wear particles) and model (after 

updating) 
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6.3.2 Lubricated test 

In this section, the performance of the updating scheme in wear prediction under 

lubricated conditions will be examined. The lubricated test was conducted with input 

shaft speed and torque of 20 Hz and 20 Nm, respectively. In this case, four updates of the 

wear coefficient 𝐾wear were executed throughout the test (measurements for which the 

error between the RMS values of simulated and measured vibration signals exceeded the 

predefined 5%  threshold). The updates were applied at 0.57 × 106 , 0.82 × 106 , 

2.19 × 106 and 2.30 × 106 wear cycles. Figure 6.7 shows the RMS comparison results 

from the model (after updating) and the experiment. The RMS values from the model 

match well with the experimental ones after updating the 𝐾wear values. Note that the 

manufacturing marks on the driven gear have been significantly removed during 

[1.41~2.12] million cycles. The same phenomenon was observed in Ref. [128]. Thus, a 

plateau at 1.4 mm/s occurs in the RMS trend during this period. 

In the lubricated test, it is hard to collect all wear particles in the oil, therefore, the tooth 

profile change could not be estimated like the dry test using wear particle mass. To obtain 

reliable wear depth measurements for verifying the effectiveness of the updating scheme 

in wear prediction, a moulding technique [128] was used to obtain the gear tooth profile 

change experimentally, see Figure 6.8. Figure 6.9 shows the tooth profile change from 

0.36 × 106  wear cycles to 2.58 × 106  wear cycles. Note: the run-in period (the first 

0.36 × 106 wear cycles) is excluded.  
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Figure 6.7 Lubricated test: RMS (in mm/s) versus the number of wear cycles from the experimental 

testing and the results from simulations (after updating) 

 

Figure 6.8 3D image of the mould profile collected from pinion (SAP: start of active profile, EAP: end of 

active profile) 

Based on the profile change demonstrated in Figure 6.9, the mean wear depth (from gear 

root to tip) of the mating gears should be 48.2 μm . The model-based wear depth 

prediction results compared with the experimental measurement (the latter from only the 

end of the test) are shown in Figure 6.10. From Figure 6.10, it can be found that the final 

predicted wear depth is 46.2 μm. Compared with the measured wear depth, a 4.3% error 

exists, which is acceptable. Therefore, with the improved Archard wear model, the 
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proposed updating methodology is effective in predicting wear depth under lubricated 

conditions. 

 

Figure 6.9 The tooth profiles of pinion (SAP: start of active profile, EAP: end of active profile) 

 

Figure 6.10 Wear depth comparison results of lubricated test: experiment (from moulding technique) and 

model (after updating) 

Position (𝑚𝑚) 

5 𝜇𝑚 
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6.4 Summary 

The contribution of the work presented in this chapter is a novel vibration-based updating 

scheme is proposed to monitor and predict the gear wear process. Unique to previously 

published work, [21, 92, 184], comparison between simulated vibrations and 

measurements from the actual test rig is conducted regularly to update the model 

parameters if necessary. The updating procedure can track and correct for changes in wear 

rates, thus allowing analysts to obtain reliable wear predictions with relatively simple 

modelling tools. Also, different to the existing studies in gear-wear prediction, the newly 

developed wear prediction scheme was applied and validated on both lubricated and dry 

tests. Reliable and accurate prediction results of the tooth profile change are demonstrated. 

In addition, unlike Ref. [24], the updating procedure in the proposed scheme does not 

require gearbox stoppage or disassembly to obtain the wear particle mass. By utilising the 

advantage of the data acquisition system, the vibration signals can be easily acquired 

online without disturbing the operation, the proposed method can be applied when the 

gearbox system is in operating. 

In addition, in the developed vibration updating scheme, an improved Archard wear 

model is also proposed to calculate the wear depth more realistically using the pressure 

distribution rather than the localised force on the gear surface. The improved Archard 

wear model implemented in this research includes consideration of the effect of Hertzian 

deformation, giving a contact area rather than a line, producing qualitatively more 

realistic and reliable wear induced tooth profile alteration behaviours results in 

comparison with the original approach used in the reference [21]. 

However, it should be mentioned that in the lubricated test, significant fatigue pitting 

propagation was observed, and the proposed vibration-based updating scheme does not 
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have the capability to predict fatigue pitting propagation. Therefore, in the next chapter, 

Chapter 7, consideration is given to modifying the updating scheme to handle two wear 

mechanisms (abrasive wear and fatigue pitting) and their consequences on the gear tooth 

surface (tooth profile change and surface pitting). 
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Chapter 7  Development of a digital twin approach for 

monitoring and prediction of surface pitting and tooth profile 

changes 

The work presented in this chapter is devoted to achieving objective 4 of this research: 

development of a digital twin approach for monitoring and prediction of surface 

pitting and tooth profile changes. This chapter is an improvement of the methodology 

presented in Chapter 6 by involving multiple wear phenomena: gear tooth profile change 

and surface pitting. This chapter is a modified version of the paper titled “Vibration-based 

monitoring and prediction of surface profile change and pitting density in a spur gear 

wear process”, which was published in the journal of Mechanical Systems and Signal 

Processing (165: 108319, 2022). The main content of this chapter is identical to the above 

publication, while the structure of this chapter has been arranged to ensure the consistency 

of the thesis. 

The organisation of this chapter is as follows: Section 7.1 briefly introduces essential 

background relevant to this study as well as the early work on monitoring and prediction 

of tooth profile change. Then Section 7.2 presents the relationship between vibration 

characteristics and wear features, and then vibration indicators for monitoring gear tooth 
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profile change and surface pitting propagation are given. Section 7.3 introduces the 

proposed vibration-based surface degradation prediction methodology, including the 

dynamic and tribological models, and novel comparison analysis for model updating. To 

simulate the surface pitting propagation behaviours, a pitting propagation model is 

developed and introduced in Section 7.3. Section 7.4 demonstrates and verifies the 

effectiveness of the proposed surface degradation methodology for wear (gear tooth 

profile change and surface pitting) monitoring and prediction, with measurements from a 

laboratory gear rig. A summary of this study is presented in Section 7.5. 

7.1 Introduction 

In gear systems, wear induced gear tooth surface degradation is an inevitable phenomenon, 

and it can lead to destructive damage to the gear teeth and a significant reduction in the 

remaining useful life (RUL) of the gearbox [13, 185-187]. It is, therefore, necessary to 

monitor and predict the wear propagation process to ensure timely maintenance can be 

scheduled to avoid catastrophic failure. Tooth profile changes and surface pitting of gear 

teeth are two common processes during gear service life, and they have different impacts 

on the degradation rate and RUL of gear systems. During the gear wear process, tooth 

profile changes and surface pitting can occur simultaneously, and the two wear events 

can act together leading to a more rapid surface deterioration than if only one acted alone 

[81, 188-190]. Therefore, the development of an efficient and reliable tool for monitoring 

and predicting both gear tooth profile changes and surface pitting could bring enormous 

benefits to the industry. 

Based on the literature review in Chapter 2, the Archard wear model [21, 61, 191] is 

widely used to estimate the wear depth of tooth surfaces. With the help of the Archard 
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wear model, dynamic model and measured vibrations, the prediction of wear induced 

tooth profile change under dynamic conditions can be realised as presented in Chapter 6. 

As reviewed in Chapter 2, compared with research on the prediction of abrasive wear and 

associated tooth profile changes, studies on surface pitting propagation monitoring and 

prediction are sparser, although there are plenty of publications focusing on explaining 

the process of surface pitting initiation [76, 77, 192]. With help of the Archard wear model, 

Dang Van fatigue criterion [193-195] and Lundberg-Palmgren model [80, 196-198], 

attempts in the surface pitting propagation were made and the coupling effects between 

abrasion and pitting were investigated in Refs. [81] and [8]. Although promising surface 

pitting prediction results were demonstrated in these studies, it should be noted that 

neither study included calibration of the models using actual measurements to 

accommodate variations in the wear rate. In practice, the pitting propagation rate would 

be affected by a number of factors, such as lubrication quality and quantity, contact 

pressure distribution, sliding speed, surface roughness, all of which may change 

significantly – and so without frequent checking and, if necessary, updating of the wear 

model parameters, the accuracy of the prediction results cannot be guaranteed and is 

likely to decrease significantly during the surface pitting propagation. 

In short, existing techniques do not have the capability to accurately predict the gear 

surface degradation, especially when the two wear phenomena (tooth profile change and 

surface pitting) co-exist. Therefore, it is necessary to develop a reliable and efficient tool, 

which can utilise the capability of both physics-based models and measurements for 

predicting both tooth profile change and surface pitting propagation. 

A two-step approach is used to achieve the above goal. First, a method for monitoring 

and predicting the gear tooth profile change is proposed in this project as presented in 

Chapter 6. This methodology is based on the combination of an Archard wear model, a 
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dynamic model and an updating scheme capable of frequently updating, as necessary, the 

Archard wear coefficient. By comparing simulated and measured vibrations, reliable 

predictions of abrasion-induced tooth profile changes were achieved through the 

proposed methodology. However, the methodology presented in Chapter 6 does not have 

the ability to monitor and predict surface pitting behaviours. Also, the root mean square 

(RMS) of the raw vibration signal was the feature used in the comparison analysis, and 

this could be easily affected by background noise or any number of unrelated machine 

changes, and could thus drastically reduce prediction accuracy and increase computation 

cost. 

Built upon the work introduced in Chapter 6, a vibration-based methodology for 

monitoring and predicting both wear induced tooth profile change and surface pitting is 

then developed in this chapter. 

7.2 Relationships of vibration features and wear features 

In most applications, with constant or randomly varying speeds and loads, tooth profile 

change and surface pitting are distributed on all gear teeth uniformly, but the two wear 

events have different impacts on gear systems [19], and thus result in different vibration 

characteristics. Tooth profile changes generally cause an increase in the magnitude of 

gear mesh harmonics [13, 22], and so a suitable indicator for this phenomenon is the RMS 

of the signal obtained by synchronously averaging over the gearmesh period (giving a 

signal comprising only gearmesh harmonics), as shown in Eq. (7.1): 

RMSSA = √∑𝐴𝐺𝑀𝑖
2

𝑁

𝑖=1

(7.1) 
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where 𝐴𝐺𝑀𝑖 is the amplitude of the 𝑖th gear mesh harmonic. The merits of using the time-

synchronously averaged (TSA) vibration signal are as follows: 1) noise coming from the 

environment can be reduced significantly; 2) the average level of profile change of all 

gear teeth can be well indicated. It should be noted that well-lubricated gear systems 

usually exhibit relative smooth worn tooth profiles characterised by long-wavelength 

variations from the involute. For such mild wear cases, the first several gear mesh 

harmonics are sufficient to indicate the level of profile change. In contrast, the severely 

worn tooth profiles that are more often found in dry or poorly lubricated conditions are 

more complex, and therefore more gear mesh harmonics are required to properly reflect 

such profiles. This difference will be demonstrated with a lubricated test and a dry test in 

the results section. 

As for surface pitting, it is fatigue-induced material loss, after which the effective working 

tooth profile (considered across the entire face width) often remains unchanged (unless 

pitting is extremely severe). Therefore, gear mesh harmonics often change negligibly 

during this process. To indicate the surface pitting propagation, ICS2, a measure of the 

degree of second-order cyclostationarity in a signal [37] and shown in Eq. (7.2), was 

investigated for tracking surface pitting propagation in Chapter 4, with consideration of 

the underlying physics of the gear meshing process: 

ICS2
𝒜h,H =

∑ max
n∈𝒜h

(SES[n]2)h=1:H

SES[0]2
(7.2) 

where h is the harmonic order of the gearmesh frequency, and 𝒜ℎ  (ℎ = 1, 2, … , H) 

represents the equivalent sets for the corresponding harmonics (with a tolerance band in 

the case of expected cyclic frequency deviations, to account for imperfect order tracking 

for example). SES  is the (amplitude) spectrum of the squared envelope, obtained by 

amplitude demodulating the signal. A bandpass filtered version of the signal can be used 
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to obtain the SES, giving an ICS2 enhanced by targeting not just the desired cyclic 

frequency(ies) but also the desired carrier frequency range(s). ICS2 obtained in this way 

has proven successful in difficult bearing diagnostic cases [199], and the experimental 

results presented in Chapter 4 demonstrate that ICS2 has an excellent performance in 

tracking surface pitting propagation when based on a low (carrier) frequency band. 

Therefore, in this study, ICS2 based on a low frequency band will be employed as the 

vibration feature to conduct the comparison analysis for surface pitting propagation 

monitoring and prediction (see details in Section 7.3). 

7.3 Methodology for monitoring and predicting surface pitting and 

tooth profile change 

In this section, the proposed vibration-based surface degradation monitoring and 

prediction methodology is presented. The details of the dynamic and tribological/wear 

models’ development are provided, followed by the approaches of model updating using 

measured vibrations. 

7.3.1 Structure of the proposed vibration-based surface degradation prediction 

methodology 

Figure 7.1 shows the architecture of the proposed methodology. It consists of a dynamic 

model, wear models (Archard wear model and surface pitting model) and comparison 

analysis with measured vibrations for updating wear coefficients. 

A dynamic model is established to simulate the actual spur gearbox. The dynamic model 

development has been introduced in Chapter 5, therefore, it will not be introduced in this 

chapter to avoid repetition. Based on the inputs of gear tooth profile geometry and 
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operating conditions, the dynamic model can provide dynamic contact forces and 

simulated vibrations of the gear system. The contact pressure can then be calculated using 

the Hertzian contact theory. With the contact pressure as an input, the Archard wear 

model can estimate the abrasive wear rate and consequently predict the gear tooth profile 

geometry at a specified future point in time, and this is then fed back into the dynamic 

model. Meanwhile, the contact pressure is passed on to a surface pitting model to predict 

the surface pitting density, which consequently modifies the contact area and then alters 

the Hertzian contact pressure. Further information about the wear models can be found in 

Section 7.3.2. Both the profile change and surface pitting can affect the contact pressure, 

through modifying gear tooth profile geometry and contact area respectively, and 

therefore, there is an interaction between tooth profile change and surface pitting 

propagation. 

In the proposed methodology, the contact pressure from the dynamic model is provided 

to the two wear models (Archard wear model and surface pitting model), and wear depth 

and surface pitting density are predicted simultaneously. In Figure 7.1, this part of the 

methodology is represented mostly in black, with the blue part indicating the updating of 

the contact area and tooth profile geometry, both of which can be conducted as often as 

required (without measurements). 

In practice, there are many factors that can affect the dominant wear mechanisms and 

wear rate, such as the quality of lubrication and changes in the surface roughness and 

operating conditions. Therefore, using a constant wear coefficient K in each wear model 

could result in significant prediction errors. To guarantee accurate predictions, regular 

updating of the wear coefficients is implemented by comparing measured vibrations 

(RMSSA and ICS2 in Section 7.2), when available, with the simulations. In this updating 

process, indicated in purple in Figure 7.1, the RMSSA of the measured and simulated 
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vibrations is compared directly. ICS2, on the other hand, is not compared directly; rather, 

ICS2 from the measurements is used to estimate pitting density, which is then compared 

with the simulation. This is because it is very difficult to accurately model the effect on 

vibration of fatigue pitting as it would require a very complex contact model and a much 

more detailed dynamic model to replicate vibration responses over the required frequency 

range.  

 

Figure 7.1 Basic procedure of vibration-based updating methodology for gear wear prediction 

In summary, once the simulations start to drift away from actual measurements, two 

separate updating procedures are executed on the wear coefficients in the two models. 

The approaches for updating wear coefficients will be introduced in Section 7.3.3.  
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7.3.2 Wear models: modelling surface pitting behaviours 

The Archard wear model and its improvement for simulating wear induced tooth profile 

change have been introduced in Chapter 6. Therefore, in this section, only the newly 

developed surface pitting model is introduced. 

The Lundberg-Palmgren fatigue model (Eq. (7.3)) proposed in Ref. [80] is a commonly 

accepted theory for determining the fatigue life of rolling element bearings, with its 

advantages including excellent performance and high computational efficiency. It has 

also been applied to gear systems [200-202] to determine the gear RUL when surface 

pitting propagates. It can be expressed as 

𝑙𝑛
1

𝑆(𝑁, 𝜃)
~
𝜏0(𝜃)

𝑐𝑁𝑚

𝑧0(𝜃)ℎ
𝑉(𝜃) (7.3) 

where 𝑆(𝑁, 𝜃) is the survival probability of the gear tooth at specific rotation angle 𝜃 

after 𝑁  running cycles, and 𝑐 , 𝑚  and ℎ  are the material coefficients, which are 

determined by gear material properties [27]. Some parameters are determined through 

Hertzian contact theory, like maximum shear stress 𝜏0, stressed volume 𝑉 and depth of 

the maximum shear stress 𝑧0 [27, 203, 204], defined as 

𝜏0(𝜃) = 0.3 × 𝑃max(𝜃) (7.4) 

𝑧0(𝜃) = 0.786 × 𝑏(𝜃) (7.5) 

𝑉(𝜃) = 2𝑏(𝜃) × 𝑧0(𝜃) × 2𝜋 × 𝑅(𝜃) (7.6) 

where 𝑃max is the maximum Hertzian contact pressure at the specific rotation angle 𝜃, 

and, 𝑏 and 𝑅 are Hertzian contact radius and equivalent radius, respectively. 

However, from the literature review in Chapter 2, it can be found that the model has not 

been developed for simulating pitting propagation behaviours. To address this issue, in 
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recently published research [81], the level of surface pitting damage was assumed to be 

the reciprocal of 𝑆, and the distribution of fatigue pitting on the gear tooth was modelled, 

but its severity was not simulated or assessed. Inspired by this research, and furthermore 

considering that the range of 𝑆 is [0,1], we propose instead to approximate surface pitting 

density as: 

𝐷(𝑁, 𝜃)~1 − 𝑆(𝑁, 𝜃) (7.7) 

With this assumption, the fatigue pitting propagation behaviour can be simulated and 

predicted. However, two issues remain with respect to Eq. (7.7): 

1) The pitting propagation behaviour is determined by the initial contact stresses, 

and any changes in these stresses due to abrasive wear are not taken into account. 

2) There is no feedback mechanism to account for the fact that prior pitting 

significantly affects the pitting propagation rate. 

In practice, the pitting propagation rate would be affected by a number of factors, such as 

lubrication quality and quantity, contact pressure distribution, surface roughness and 

operating conditions, and the previous pitting density would indeed influence the rate and 

nature of further pitting propagation. To address these issues, 𝐾pitting, the surface pitting 

coefficient, is introduced to update the surface pitting propagation rate based on actual 

measurements. The surface pitting propagation model in Eq. (7.7) is thus further 

developed into Eq. (7.8): 

𝐷(𝑁, 𝜃) = 1 −
1

exp (
𝐾pitting∙𝜏0(𝜃)

𝑐∙𝑁𝑚∙𝑉(𝜃)

𝑧0(𝜃)
ℎ )

(7.8)

To realise the accumulated pitting propagation behaviour, the surface pitting propagation 

rate 𝐷′(𝑁, 𝜃) is calculated as follows: 
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𝐷′(𝑁, 𝜃) =
𝑑𝐷(𝑁, 𝜃)

𝑑𝑁
                                                                                                                        

=
𝐾pitting × 𝜏0(𝜃)

𝑐 ×𝑚 × 𝑉(𝜃) × 𝑁𝑚−1 × exp (−
𝐾pitting × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × 𝑁𝑚

𝑧0(𝜃)
ℎ )

𝑧0(𝜃)ℎ
(7.9)

 

The surface pitting increment ∆𝐷 during ∆𝑁 running cycles is shown in Eq. (7.10): 

∆𝐷(∆𝑁, 𝜃) = ∫ 𝐷′(𝑁, 𝜃)
𝑁+∆𝑁

𝑁

𝑑𝑁            

                      = exp(−
𝐾pitting × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × 𝑁𝑚

𝑧0(𝜃)ℎ
) 

                     −exp(−
𝐾pitting × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × (𝑁 + ∆𝑁)𝑚

𝑧0(𝜃)ℎ
)                               (7.10) 

The accumulated pitting density 𝐷𝑖+1 at 𝑁 + ∆𝑁 running cycles is 

𝐷𝑖+1 = 𝐷𝑖 + (exp(−
𝐾pitting × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × 𝑁𝑚

𝑧0(𝜃)ℎ
) 

−exp(−
𝐾pitting × 𝜏0(𝜃)

𝑐 × 𝑉(𝜃) × (𝑁 + ∆𝑁)𝑚

𝑧0(𝜃)ℎ
)                                (7.11) 

where 𝐷𝑖 is the pitting density at 𝑁 running cycles. It should be noted that 𝜏0(𝜃), 𝑉(𝜃) 

and 𝑧0(𝜃) will be updated based on the pitting density 𝐷𝑖, which will be introduced below. 

The surface pitting can reduce the actual contact length (B), and then affect further surface 

pitting propagation, which is defined in Eq. (7.12) 

𝐵(𝑁𝑖+1) = 𝐵initial × (1 − 𝐷(𝑁𝑖)) (7.12) 

where 𝐵initial is the designed gear tooth width. 

Then 𝜏0(𝑁𝑖+1), 𝑉(𝑁𝑖+1) and 𝑧0(𝑁𝑖+1) will be calculated with previous pitting density 

𝐷(𝑁𝑖) based on Hertzian theory, and the pitting density 𝐷(𝑁𝑖+1) can be obtained. 

With Equations (7.11) and (7.12), the accumulated pitting propagation process can be 

simulated. Using accumulated pitting density as in Equation (7.11), in which 𝜏0, 𝑉 and 

𝑧0 are functions of the number of running cycles 𝑁, allows for the fact that existing pitting 

(and indeed any existing changes in the tooth profile from abrasive wear) would definitely 
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promote and affect future pitting propagation. This feedback effect of both abrasive wear 

and fatigue pitting can be conducted without vibration measurements, and is shown in the 

blue parts of Figure 7.1. 

7.3.3 Model updating procedures using measured vibrations 

As introduced in the purple part of Figure 7.1, to deliver an accurate wear prediction result 

in the proposed methodology, measured vibration signals are used to determine whether 

any updating of the wear model coefficient K is required. The model updating procedures 

for gear tooth profile change and surface pitting propagation will be introduced in this 

section. 

To determine whether the wear coefficient 𝐾wear in Archard’s model requires updating, 

the simulated and measured vibration signals are compared as introduced in Chapter 6. 

The updating methodology is executed iteratively when the absolute error between the 

simulated and experimental RMSSA values exceeds the predefined 5% threshold, and the 

wear coefficient for the next iteration is calculated as follows: 

𝐾wear(𝑗+1) = 𝐺(𝑗)
−1 ∙ 𝐾wear(𝑗) (7.13) 

where 

𝐺(𝑗) = 𝑅𝑀𝑆𝑆𝐴{𝑦
(SIM,𝑗)(𝑡)} 𝑅𝑀𝑆𝑆𝐴{𝑦

(EXP,𝑗)(𝑡)}⁄ (7.14) 

in which,  𝑦(SIM)(𝑡) and 𝑦(EXP)(𝑡) are the simulated and experimental vibration signals. 

This iterative loop permits a knowledge-based monitoring and prediction of the tooth 

profile change. Note that the index j relating to running cycles here differs from i used in 

Equations (7.11) and (7.12). While i relates to the frequency of ‘blue loop’ updates 

(Figure 7.1) – the wear feedback effects contained entirely within the simulation model – 
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which can be executed as often as desired, j refers to the frequency of ‘purple loop’ 

updates, which are executed based on measurement availability. 

Since pitting severity can be estimated based on instantaneous measurements, the pitting 

coefficient 𝐾pitting  can be periodically updated to account for changes in the pitting 

growth rate, which might be caused by lubrication contamination or surface contact 

temperature changes. In the following, the updating procedure will be introduced. 

The ICS2 of measured vibrations in the low frequency region has been found to perform 

very well in tracking surface pitting propagation in Chapter 4; therefore, ICS2 is 

employed here as the vibration feature for the updating procedure. If the surface pitting 

model performs well, the predicted pitting density should also have a high correlation 

with ICS2. Otherwise, the surface pitting model parameter 𝐾pitting should be updated to 

deliver improved pitting predictions. Note that although a good correlation between ICS2 

(in the low frequency region) and pitting density (area) was found in Chapter 4, the ‘scale 

factor’ is still missing, meaning the actual pitting level cannot be reliably determined 

through measurements directly. At least one detailed inspection of the gear surface is 

therefore required to find this ‘scale factor’, which will be introduced in the updating 

procedure below. 

In Chapter 4, the coefficient of determination 𝑅2  is used to quantify the correlation 

between measured pitting density and ICS2 of measured vibrations, and a linear 

relationship was found. In the case of a single regressor, fitted by least squares, the 

coefficient of determination 𝑅2 is the square of Pearson’s correlation coefficient C [205]. 

Thanks to its clear analytical expression and simple computational procedure, Pearson’s 

correlation coefficient [206] is used in this study to find the optimal 𝐾pitting, ensuring the 

ICS2 of measured vibrations and predicted pitting density are well correlated. 
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The predicted pitting density array can be defined as 𝐗 = [𝐷𝑗−1, 𝐷𝑗 , 𝐷𝑗+1] and measured 

ICS2 array as 𝐘 = [𝐼𝐶𝑆𝑗−1, 𝐼𝐶𝑆2𝑗 , 𝐼𝐶𝑆2𝑗+1] . Taking �̅� =
𝐷𝑗−1+𝐷𝑗+ 𝐷𝑗+1

3
 and �̅� =

𝐼𝐶𝑆𝑗−1+𝐼𝐶𝑆2𝑗+𝐼𝐶𝑆2𝑗+1

3
, the correlation coefficient C between X and Y is given by:  

𝐶 =
(𝐷𝑗−1 − �̅�)(𝐼𝐶𝑆2𝑗−1 − �̅�) + (𝐷𝑗 − �̅�)(𝐼𝐶𝑆2𝑗 − �̅�) + (𝐷𝑗+1 − �̅�)(𝐼𝐶𝑆2𝑗+1 − �̅�)

√(𝐷𝑗−1 − �̅�)
2
+ (𝐷𝑗 − �̅�)

2
+ (𝐷𝑗+1 − �̅�)

2
√(𝐼𝐶𝑆2𝑗−1 − �̅�)

2
+ (𝐼𝐶𝑆2𝑗 − �̅�)

2
+ (𝐼𝐶𝑆2𝑗+1 − �̅�)

2
(7.15)

 

Now define correlation coefficient C as a function of 𝐾pitting: 

𝐶(𝐾pitting) = 𝑓(𝐾pitting), 𝐾pitting ∈ [0,+∞) (7.16) 

If the surface pitting model needs to be updated due to changes in the pitting propagation 

rate, the updated 𝐾pitting𝐮𝐩𝐝𝐚𝐭𝐞𝐝
 should maximise the correlation coefficient 𝐶, at which 

point the derivative of C should be 0: 

𝐶′ (𝐾pitting𝐮𝐩𝐝𝐚𝐭𝐞𝐝
 ) = 0 (7.17) 

It should be noted that only three ICS2j values and predicted surface pitting densities 𝐷𝑗  

are used to conduct the correlation analysis, which ensures the correlation coefficient 𝐶 

is highly sensitive to changes in the pitting growth rate so that the optimal pitting 

coefficient 𝐾pitting can be obtained. 

The detailed updating procedure for 𝐾pitting is summarised as follows:   

Step 1: measure ICS2 to identify the specific pitting occurrence time and define it as 𝑗 =

0. Note: after the run-in period, the propagation of surface pitting should lead to an 

increase in ICS2 of measured vibrations as presented in Chapter 4; 

Step 2: use mould image [128] if possible (or visual inspection) to obtain the actual pitted 

density: 𝐷actual(𝑁0) and 𝐷actual(𝑁1); 
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Step 3: procedures to determine the simulated pitting density 𝐷(𝑁2) and predict pitting 

density 𝐷(𝑁3) are as follows: 

1) Build vibration reference [𝐼𝐶𝑆20, 𝐼𝐶𝑆21, 𝐼𝐶𝑆22]; 

2) Use surface pitting model to obtain the simulated pitting density 𝐷(𝑁2) with an 

initial pitting coefficient 𝐾pitting(2); 

3) If the Pearson’s correlation coefficient C between [𝐼𝐶𝑆20, 𝐼𝐶𝑆21, 𝐼𝐶𝑆22]  and 

[𝐷actual(𝑁0), 𝐷actual(𝑁1), 𝐷(𝑁2)] is greater than 0.95, it means the surface pitting 

model at time 𝑗 = 2 performs well, and so 𝐾pitting(3) =  𝐾pitting(2) can be used 

to predict surface pitting density 𝐷(𝑁3) at time 𝑗 = 3; 

4) If the Pearson’s correlation coefficient 𝐶 between [𝐼𝐶𝑆20, 𝐼𝐶𝑆21, 𝐼𝐶𝑆22]  and 

[𝐷actual(𝑁0), 𝐷actual(𝑁1), 𝐷(𝑁2)] is less than 0.95, it means the simulated surface 

pitting density 𝐷(𝑁2) is not correct, and the surface pitting coefficient needs to be 

updated to obtain 𝐾pitting(2). 

With the above-mentioned updating approach (see Eq. (7.17)), the optimal 𝐾pitting(2) 

can be determined (then obtain updated 𝐷(𝑁2)), which produces a strong correlation 

between [𝐼𝐶𝑆20, 𝐼𝐶𝑆21, 𝐼𝐶𝑆22]  and [𝐷𝑎𝑐𝑡𝑢𝑎𝑙(𝑁0), 𝐷𝑎𝑐𝑡𝑢𝑎𝑙(𝑁1), 𝐷(𝑁2)] . After that, set 

𝐾pitting(3) =  𝐾pitting(2)𝐮𝐩𝐝𝐚𝐭𝐞𝐝 to predict pitting density 𝐷(𝑁3) at time 𝑗 = 3; 

Step 4: Repeat the above-mentioned process. At time 𝑗, current surface pitting coefficient 

𝐾pitting(𝑗) = 𝐾pitting(𝑗 − 1), and the predicted pitting density is 𝐷(𝑁𝑗). If the correlation 

coefficient C between [𝐷(𝑁𝑗−2), 𝐷(𝑁𝑗−1), 𝐷(𝑁𝑗)]  and [𝐼𝐶𝑆2𝑗−2, 𝐼𝐶𝑆2𝑗−1, 𝐼𝐶𝑆2𝑗]  is 

greater than 0.95, it means the current predicted pitting density 𝐷(𝑁𝑗) is correct. And 

then set 𝐾pitting(𝑗 + 1) = 𝐾pitting(𝑗) to predict the pitting density 𝐷(𝑁𝑗+1) at time 𝑗 + 1. 
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Otherwise, the above-mentioned updating approach (see Eq. (7.17)) is used to obtain the 

updated pitting coefficient 𝐾pitting(𝑗)𝐮𝐩𝐝𝐚𝐭𝐞𝐝 and the corresponding new predicted pitting 

density 𝐷(𝑁𝑗). After that, set 𝐾pitting(𝑗 + 1) = 𝐾pitting(𝑗)𝐮𝐩𝐝𝐚𝐭𝐞𝐝 to predict the surface 

pitting density at time 𝑗 + 1. 

Note that after attempts to update, the 95% threshold for the correlation coefficient 

between measured ICS2 and predicted surface pitting density cannot be achieved, 

𝐾pitting(𝑗) and 𝐾pitting(𝑗 + 𝑘) will be set to 0. This condition would likely be caused by 

a reduction in ICS2, but the proposed pitting model assumes ever-increasing pitting 

density. In reality, when surface pitting density starts to decrease, it means the gear should 

be replaced due to the presence of severe surface pitting [207]. This will be demonstrated 

in the results in Section 7.4.1. 

7.4 Test and Results 

Two run-to-failure experiments were conducted under different lubrication conditions 

(lubricated and dry test) to demonstrate and verify the effectiveness of the proposed 

methodology in wear prediction.  

The details of test programs and experimental data collection have been presented in 

Chapter 3, therefore, these two tests will not be introduced in this chapter to avoid 

repetition.  
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7.4.1 Monitoring and prediction of surface pitting and mild tooth profile change during 

the lubricated test  

Two wear events presented in the lubricated test: surface pitting propagation and mild 

abrasive wear, leading to modest gear tooth profile changes. This allows for testing of the 

proposed method on both wear types using the same dataset. The collected moulds during 

the tests were imaged using a laser scanning confocal microscope (LSCM). The tooth 

profile change (see Figure 7.2 and Figure 7.3) and the actual pitting density (see Figure 

7.4) were then quantified using the images and used as references to check the monitoring 

and prediction results [128]. Note that both the tooth profile change and pitting density in 

Figure 7.2, Figure 7.3 and Figure 7.4 are obtained from the pinion’s mould images. The 

combined tooth profile change can be calculated based on the gear ratio (the pinion’s 

profile change accounts for 73% of the combined tooth profile change). As for the surface 

pitting propagation, much less pitting was observed on the driven gear surface, and the 

occurrence of pitting on the driven gear was greatly delayed. Thus, the total pitting density 

of the gear pair can be represented by the pinion’s pitting density. The measured pitting 

density will be used to check the effectiveness of the proposed method in surface pitting 

propagation monitoring and prediction. A run-in period took place from 0 to 0.12 million 

cycles, during which the roughening marks were worn away. From Figure 7.4, it can be 

found that surface pitting started to propagate from 0.12 million cycles, and the pitting 

density mainly kept increasing until 2.12 million cycles. From 2.12 million cycles to 3.25 

million cycles, the pitting density started to decrease. It appears that in this period the 

generation of new pits was outweighed by the filling-in of existing cavities, perhaps from 

wear debris pressed into the cavities under the meshing load [142]. 
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Figure 7.2 3D image of the mould profile collected from pinion at 0.35 million cycles (SAP: start of 

active profile, EAP: end of active profile) during the lubricated test 

 

Figure 7.3 Lubricated test: The average profiles of pinion at different running cycles (see the locations of 

SAP and EAP in Figure 7.2) 
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Figure 7.4 Lubricated test: Pitting density of pinion obtained from moulds: red dots represent: 0.12 

million cycles, when surface pitting was detected; 2.12 million cycles, the point of maximum pitting 

density; and 3.25 million cycles, the end of the test 

Monitoring and prediction of change in tooth profile 

This sub-section investigates the application and performance of the proposed 

methodology in monitoring and predicting wear induced tooth profile changes. First, to 

determine the best vibration feature for tracking mild profile changes under lubricated 

conditions, the number of gear mesh harmonics included in RMSSA  (Eq. (7.1)) is 

investigated. Then, with the help of the selected wear-relevant vibration feature, the 

profile change monitoring and prediction results are presented and compared with the 

actual measurements. 

Due to the continual lubrication provided by the oil bath, this test was characterised by a 

low wear rate and a relatively smooth worn tooth profile, as shown in Figure 7.3. Gear 

teeth with different profile shapes can affect different gear mesh harmonics directly [25], 

and here the required number of harmonics to sufficiently represent the profile change is 
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investigated. Figure 7.5 shows the change in gear mesh harmonics of measured vibrations 

throughout the test. It shows that the first two harmonics change more significantly than 

the others. To determine the optimal number of harmonics to be used, correlation analysis 

between the vibration indicator RMSSA and the wear depth (calculated based on mould 

images shown in Figure 7.3) with different numbers of gear mesh harmonics included 

(see Eq. (7.1)) was conducted. More specifically, the Pearson correlation coefficient is 

used to quantify the similarity between the two variables: RMSSA and wear depth. The 

results show that tooth profile change can be represented with the first two gear mesh 

harmonics, and Figure 7.6 demonstrates a strong relationship between RMSSA (N = 2) of 

measured vibration and wear depth. Therefore, in this study, RMSSA (N = 2) will be used 

as the vibration feature to be compared with measured vibrations for the monitoring and 

prediction of tooth profile changes in the lubricated test.  

 

 

Figure 7.5 Changes in gear mesh harmonics of measured vibrations during the lubricated test (the first ten 

gear mesh harmonics) 
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Figure 7.6 Lubricated test: RMSSA (N = 2) of measured vibrations and wear depth change obtained from 

mould images as shown in Figure 7.3 

For comparison purposes, the relationship between RMSSA  ( N = 2 ) of measured 

vibration and measured pitting density also presented in Figure 7.7. From Figure 7.7, it 

can be found that there is a poor relationship between RMSSA (N = 2) and measured 

pitting density. Therefore, ICS2 will be used as the vibration feature in the proposed 

method to help monitor and predict the pitting propagation, which will be introduced in 

this section later. 
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Figure 7.7 Lubricated test: RMSSA (N = 2) of measured vibrations and measured pitting density as shown 

in Figure 7.4 

As introduced in Chapter 5, with the help of measured vibrations, the dynamic model was 

first calibrated at 0.12 million cycles (after the run-in period) to guarantee the simulated 

vibration signal and contact forces are sufficiently close to those of the actual test rig. 

Then, the initial wear coefficient 𝐾wear in the Archard wear model was calibrated to be 

3.55 × 10−10Pa−1, with the help of the measured vibration signal at 0.27 million cycles. 

This wear coefficient calibration step can be recognised as the execution of the first 

updating of the wear coefficient 𝐾wear. 

In the further wear propagation process, because the error between the RMSSA value of 

the simulated and that of the measured vibration signals exceeds the predefined 5% 

threshold, three more updates of 𝐾wear were executed, at 0.57, 1.43 and 2.19 million 

cycles. The updated wear coefficients are 4.03 × 10−10 , 1.44 × 10−10  and 3.97 ×

10−10Pa−1 , respectively. The relationship between measured RMSSA  and simulated 

RMSSA is given in Figure 7.8, showing that the error between them remains within 5.0% 
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after necessary updating of the wear coefficient. The tooth profile change monitoring and 

prediction results are plotted in Figure 7.9, illustrating that the maximum error between 

predicted and measured wear depth is 4.7 %. The specific points when updates were 

executed are indicated using grey dashed lines in Figure 7.9. The tooth profile change is 

therefore well monitored and predicted using the proposed methodology. 

 

Figure 7.8 RMSSA (N=2) comparison results of the lubricated test: experiment and model 
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Figure 7.9 Mean wear depth comparison results of the lubricated test: experiment and model. Note: grey 

dashed lines indicate when updates are executed 

Note that there are two wear rate changes observed in Figure 7.9. Possible explanations 

for these changes are as follows. The manufacturing marks on the driven gear have been 

significantly removed during [1.41~2.12] million cycles. The same phenomenon was 

observed in Ref. [128]. Thus, a plateau wear rate occurs during this period. After 2.12 

million cycles, the involute profile of the gear tooth becomes flat, and the contact area of 

engaging tooth pairs increased. As a result, the tooth profile change rate might increase 

significantly [208]. 

The monitoring and prediction results with several limited wear coefficient updates (not 

all necessary updates) are also demonstrated in Figure 7.9, i.e., the first and third updates 

of 𝐾wear . It can be seen that the abrasive wear rate changed significantly during the 

lubricated test, and that if the wear coefficient were not able to be updated it would lead 

to very large errors in wear depth prediction. In general, with more wear coefficient 

updates, increasingly accurate prediction results can be achieved. Therefore, to guarantee 
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accurate wear prediction results, regular comparisons with measurements and (where 

required) updates to the wear coefficient are recommended. 

Surface pitting propagation monitoring and prediction 

Based on observations during the lubricated test, the surface pitting initiates at the 

dedendum of the gear tooth, and then propagates to the pitch line and finally to the 

addendum, as shown in Figure 7.10. In the proposed methodology, with the dynamic 

contact force outputted from the dynamic model, the pitting propagation behaviour can 

be simulated using the developed surface pitting model, as shown in Figure 7.11. From 

Figure 7.11, it can be seen that according to the developed model, the surface pitting also 

initiates at the gear tooth root and then propagates to the pitch line. The trends shown in 

Figure 7.11 match the actual pitting propagation trends shown in Figure 7.10, suggesting 

the developed surface pitting model has the ability to simulate accurately the surface 

pitting propagation behaviour. Note that the dynamic force has several spikes, it is caused 

by the resonances of the gear system and a similar phenomenon was observed in Ref. 

[171]. More explanations on this phenomenon can refer to Section 5.3. 

 

Figure 7.10 Lubricated test: Optical images of pinion tooth surfaces taken from moulds by optical 

microscope with a 5× magnification objective lens. Image size: 2.8mm ×2.11 mm (a) 0.1296 million 

cycles, (b) 0.8178 million cycles, (c) 1.7175 million cycles [142] 

Using the developed surface pitting model and the proposed wear monitoring 

methodology, the surface pitting propagation can be monitored and predicted. The 
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relationship between predicted pitting density and ICS2 is shown in Figure 7.12. It can 

be seen that the ICS2 of measured vibration correlates well with the predicted pitting 

density (after the run-in period, from 0.12 million cycles to 2.00 million cycles). The 

magnitude of surface pitting coefficient 𝐾pitting  is first calibrated to be 5.64 × 10−15 

using the mould images captured at 0.12 and 0.27 million cycles. This calibration of 

𝐾pitting can be recognised as the first update. 

 

Figure 7.11 Diagram of pitting density calculation using surface pitting model: pitch line is at 0 rad and 

indicated by red vertical dash line  
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During the further pitting propagation process, six more updates of 𝐾𝑝𝑖𝑡𝑡𝑖𝑛𝑔  were 

executed, prompted by Pearson’s correlation coefficient C between measured ICS2 and 

predicted pitting density falling below the predefined 95% threshold. These updates were 

at 0.51, 0.56, 1.02, 1.11, 1.97 and 2.12 million cycles, respectively. The final update at 

2.12 million cycles sets 𝐾pitting to 0 because the 95% threshold for 𝐶 cannot be achieved. 

Figure 7.13 shows the pitting prediction results compared with the actual measured pitting 

densities using mould images. From the comparison, it can be seen that the surface pitting 

propagation is very well monitored and predicted after all necessary updating (before 2.00 

million cycles). 

Note that from 2.00 million cycles to 3.25 million cycles, the measured pitting density 

decreased slightly. The tooth profile started to change rapidly in this period, caused by 

increased abrasive wear. Because the developed surface pitting model is designed to 

represent accumulated pitting behaviour on the assumption that pitting density cannot 

decrease, therefore, the stabilisation stage (2.00 million cycles to 3.25 million cycles) was 

not simulated and predicted in this study. During this stage, the pitting coefficient is set 

to 0 automatically, and the predicted surface pitting density remains a constant value. 

Moreover, at 2.00 million cycles the pitting density is already 17.4%, and according to 

the ASM Handbook [207], the gear should be scrapped, and could thus be considered 

already to have failed.  That is, the proposed method delivers excellent pitting prediction 

results over the most meaningful phase of the gear’s degradation, from 0.12–2.00 million 

cycles. 

Figure 7.13 shows the prediction results if only earlier updates of the pitting coefficient, 

the first and the fourth, were used. Here it turns out that the ‘point of failure’ (~2 million 
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cycles) is in fact better predicted using the fourth update of 𝐾pitting than the first, and a 

more accurate prediction result can be expected with more updates. 

Note that in the proposed methodology, the tooth profile is continually updated through 

the improved Archard wear model (introduced in Chapter 6) to provide updated contact 

pressure to the surface pitting model, which is used for predicting pitting propagation. In 

turn, the occurrence of surface pitting affects the effective contact width, resulting in a 

change in the contact pressure. This is a two-way relationship between surface pitting 

propagation and tooth profile change. The comparison analysis between measurements 

and simulations can guarantee accurate tooth profile change prediction and surface pitting 

propagation prediction results, as shown in Figure 7.9 and Figure 7.13. 

 

Figure 7.12 Comparison results: ICS2 of measured vibration and predicted pitting density based on model 

(after updating) 
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Figure 7.13 Pitting density comparison results: experiment and model-based prediction. Note: grey 

dashed lines indicate when updates are executed  

7.4.2 Monitoring and prediction of severe tooth profile change during the dry test 

Compared with the lubricated test, the dry test represents an extreme case, with severe 

abrasive wear and a correspondingly large change in the tooth profile, but very little 

surface pitting propagation (as demonstrated in Figure 7.14). The proposed approach is 

however still effective under dry conditions, as will be demonstrated in this section. 

As with the lubricated test, this section first investigates the number of gear mesh 

harmonics required in the vibration feature to accurately track the severe tooth profile 

changes. Figure 7.15 shows the evolution in the amplitudes of measured acceleration 

signal of the first 10 gear mesh harmonics during the test, from which it can be seen that 

the first six harmonics change significantly. To find the required number of harmonics 

for tracking profile changes in this test, correlation analysis between the wear depth 

(calculated based on the weight of collected wear particles) and the vibration indicator 

RMSSA with different numbers of gear mesh harmonics (absolute values) was conducted. 
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The results show that severe tooth profile changes can be represented with the first six-

gear mesh harmonics, and Figure 7.15 demonstrates this by showing the strong 

relationship between measured RMSSA  (N = 6 ) and measured wear depth based on 

collected wear particles. Therefore, for this test, RMSSA (N = 6) was used as the vibration 

feature to compare the measured and simulated vibrations for tooth profile change 

monitoring and prediction. Compared with the lubricated test, severer tooth profile 

change occurs during the dry test, therefore, more gear mesh harmonics (the first six) are 

required to represent the worn tooth profile, while, only the first two gear mesh harmonics 

are required to represent the tooth profile change during lubricated tests. This 

phenomenon also has been discussed in Section 7.2. 

 

Figure 7.14 Gear tooth profile and surface morphology of the dry test at 0 and 0.04 million cycles (SAP: 

start of active profile, EAP: end of active profile) 
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The Archard wear model parameter 𝐾wear  can be updated (if necessary) with the 

procedure discussed in Section 7.3.3 at each measured time. The trends of RMSSA and 

mean wear depth vs wear cycles (rotations of the pinion) are plotted in Figure 7.17 and 

Figure 7.18, respectively. Two updates were executed during the short dry test, when the 

error between the RMSSA value of the simulated and measured vibration signals exceeded 

the predefined 5%  threshold. With the help of measured vibration at 0.007 million 

running cycles, the wear model parameter was found/calibrated to be 1.65 × 10−6Pa−1, 

and the predicted mean wear depth was estimated at 12.92 μm. This calibration can be 

considered the first update. After that, the simulated RMSSA and estimated wear depth 

match well with experiments until the second update was triggered at 0.025 million cycles, 

and the wear model parameter 𝐾wear was updated to 2.19 × 10−6Pa−1, after which the 

wear model gives good prediction results for the remainder of the test. From Figure 7.17, 

it can be found that the maximum error between predicted wear depth and measured wear 

depth is 4.5% . Therefore, with a vibration feature based on gear mesh harmonics 

combined with an improved Archard model, the proposed surface degradation monitoring 

and prediction methodology has an excellent performance in tracking and predicting the 

tooth profile change (in terms of wear depth) under dry conditions. 
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Figure 7.15  Changes in gear mesh harmonics during the dry test (the first ten gear mesh harmonics) 

 

Figure 7.16 Dry test: measured RMSSA (N = 6) and measured wear depth based on collected wear 

particles  
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Figure 7.17  RMSSA comparison results of the dry test: experiment and model (after updating) 

 

Figure 7.18 Mean wear depth comparison results of the dry test: experiment and model. Note: grey 

dashed lines indicate when updates are executed  
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Figure 7.19 Dry test: ICS2 of measured vibrations  

The tooth profile prediction results with one update/calibration of 𝐾wear are also shown 

in Figure 7.18 for comparison purposes. It can be seen that the wear rate changes 

significantly around 0.018 million cycles, and so without the second updating of 𝐾wear, 

there would be a significant under-estimation of the future wear level. 

During the dry test, almost no surface pitting was observed from the mould images (as 

shown in Figure 7.14), and ICS2 of the measured vibrations keeps fluctuating during the 

wear propagation, as shown in Figure 7.19. Based on the rules introduced in Sections 

7.3.3, the surface pitting coefficient was set to zero, and the predicted pitting density is 

0% during the dry test. This is consistent with the observation in Ref. [82] that the 

dominant wear phenomenon in this test is tooth profile change, and very little or no 

surface pitting occurs. 
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7.5 Summary 

In this chapter, a vibration-based surface degradation monitoring and prediction 

methodology was proposed to monitor and predict the two common wear events in gears: 

gear tooth profile change, and surface pitting propagation. Based on the literature review 

and discussion in Section 7.1, there is no digital twin approach that can monitor and 

predict the two wear events simultaneously. In the proposed methodology, a simple 

vibration feature based on a few gear mesh harmonics is used for tracking gear tooth 

profile changes under different lubrication conditions, and an improved version of 

Archard’s wear model (introduced in Chapter 6) is used in combination with a gearbox 

dynamic model to predict future worn tooth profiles. An effective and efficient surface 

pitting model was also proposed in this chapter, and the level of second-order 

cyclostationarity (ICS2) in the measured vibration signal was used for tracking surface 

pitting progression.  

A key component of the methodology is that through regular and intelligent use of 

measured vibration signals, the parameters of the two wear models can be updated as 

necessary, ensuring wear predictions that tend to improve over time. Unique among 

existing studies in gear-wear prediction, the interaction of the developed dynamic and 

wear models, along with this updating capability, deliver an approach that is able to 

monitor and predict the two common wear events (profile change and surface pitting) 

simultaneously and under different lubrication conditions. Although two calibration steps 

are required by the approach – one for the dynamic model and one for relating ICS2 to 

the pitting level – the models are relatively simple. The flexible and evolving nature of 

the prediction approach means that it could be easily deployed within existing digital twin 

frameworks, bringing significant potential benefits to gear prognostics in practice. In 



 

177 

 

summary, in this chapter, novel gear surface degradation prediction models and schemes 

are proposed. Through regular and intelligent use of measured vibration signals, the 

models can be updated as necessary, ensuring accurate predictions of gear wear 

propagation can be delivered. 

The main limitation of the method in its current form is that a scan (or perhaps a close 

visual inspection) of the gear surface is required to find the ‘scale factor’ between ICS2 

and the actual pitting level, and this requires that the gearbox be stopped and partially 

dismantled. Another option is that the scan could presumably be done by endoscopic 

examination, with almost no dismantling, just access through a small inspection cover; 

this is widely practised with wind turbine gearboxes [209]. It has also been found that 

ICS2 tends not to track pitting levels well in the initial stages. To deliver improved pitting 

propagation predictions, a good future contribution would therefore be to establish a more 

definitive relationship between ICS2 and pitting level or in developing a more reliable 

pitting-sensitive vibration indicator.



 

178 

 

Chapter 8  Conclusions and future work 

The conclusions and recommendations for future research work are presented in this 

chapter. The chapter begins with a summary of the outcomes of this thesis, regarding the 

proposed research objectives. Then, the limitations of the studies are discussed, followed 

by suggested future research directions that would improve the presented work in this 

thesis. 

8.1 Summary of findings and contribution to research 

This thesis investigated the interconnection between vibration characteristics and gear 

wear through signal processing algorithms and modelling techniques to realize accurate 

gear wear monitoring and prediction using vibration-based techniques. This section 

summarises the main outcomes of this thesis guided by research objectives. 

• Identification of gear wear mechanism and tracking wear evolution using 

cyclostationary properties of measured vibrations (Objective 1) 
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A novel relationship is proposed in Chapter 4 to represent the internal connection 

between vibration characteristics and gear surface features. More specifically, the 

link between the carrier frequency of vibrations 𝑓𝑣  and spatial frequency of gear 

surface 𝑓𝑠  was built. The proposed relationship is validated through the 

cyclostationarity analysis of vibrations and power spectral density (PSD) analysis of 

the scanned gear surface images. 

Based on the achieved understanding from the derived equation, a vibration-based 

gear wear mechanism identification approach is proposed. More specifically, through 

the use of cyclostationary properties of vibrations, the abrasive wear and fatigue 

pitting are separated and identified via spectral coherence map and ICS2-based band 

selection results. This developed novel online gear wear mechanism identification 

approach avoids interruption of the operation of the gearbox (in the case of visual 

inspection, which is the most widely used approach for identification of wear 

mechanism at present) or a delay in analysing wear debris generated from gear 

surface, making it be a more practical tool in industry practice. 

Moreover, with help of the derived equation and indicator of vibration 

cyclosationarity, an informative vibration frequency band can be determined, then 

the fatigue pitting and abrasive wear propagation can be well tracked and monitored 

using ICS2 of vibration in the corresponding selected appropriate frequency bands. 

Differently from previous works, the carrier frequencies (spectral content) of the 

gearmesh-cyclic CS2 components are analysed and used in this research to 

distinguish and track the two wear phenomena. 

• Dynamic model development (Objective 2) 
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A comprehensive dynamic model is developed in Chapter 5, based on the UNSW 

spur gearbox test rig. And there is no published work on modelling this test rig, whose 

layout is shown in Figure 3.2. After a series of necessary model validations and 

calibrations, the natural frequencies of the developed dynamic model and time 

waveforms match well with the measurements from the actual gearbox transmission 

system. Thus, the dynamic model can generate contact force and vibration responses, 

which are close enough to the actual test rig. The developed dynamic model can 

provide insights into the coupling effects between gear wear and gear dynamic 

characteristics (e.g., contact force and vibrations). This can benefit the gear 

maintenance schedule to minimize the consequences of gear wear on the service life 

of the gear system. 

• Monitoring and prediction of tooth profile changes during wear progression 

(Objective 3) 

A novel vibration-based updating scheme is developed in Chapter 6 to monitor and 

predict the gear tooth profile change during gear wear propagation. Unique to 

previously published work, such as Refs. [21, 92, 184], in the developed vibration-

based updating scheme, measured vibrations are compared with simulated vibrations 

from the dynamic model, to update the coefficient 𝐾wear  when a deviation from 

predictions is detected. The developed methodology can track and correct for 

changes in the gear wear rates, thus allowing reliable gear wear prediction. In 

addition, the vibration signals can be easily acquired without disturbing the operation 

of the gearbox, and no gearbox stoppage or disassembly is required to obtain the wear 

mass (as presented in Ref. [24]). 
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In the proposed wear prediction scheme, the Archard wear model is improved with 

consideration of the effect of Hertzian deformation, giving a contact area rather than 

a line. The improvement makes the calculated wear profile distribution is more 

reasonable and realistic compared with the original Archard wear model used in the 

study [21]. 

• Development of a digital twin approach for monitoring and prediction of surface 

pitting and tooth profile changes (Objective 4) 

A vibration-based surface degradation monitoring and prediction methodology is 

proposed in Chapter 7 to monitor and predict the two common wear events in gears: 

gear profile change (e.g., from abrasive wear), and surface pitting propagation. 

Through regular and intelligent use of measured vibration signals, the parameters of 

the wear models can be updated as necessary, ensuring wear predictions that tend to 

improve over time. It is a novel work since no research have been published to report 

a digital twin methodology that can predict two wear events propagation and 

validated its effectiveness using measurements from gearbox tests rig. 

To simulate the surface pitting propagation behaviours, an efficient pitting 

propagation model is also developed based on the Lundberg Palmgren model [80] 

and presented in Chapter 7. With the developed fatigue pitting model, the 

accumulated pitting propagation process can be simulated and the impacts on pitting 

propagation rate from the prior pitting are also taken into consideration. 

To conclude, in this research, the wear propagation phenomenon and its consequences on 

gear tooth surface have been comprehensively investigated and studied with the use of 

vibration analysis techniques, including signal processing algorithms and modelling 

methodology. To realize gear wear monitoring, a vibration-based integrated system is 
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developed. With the developed integrated system, the gear wear mechanism can be 

identified on-line and then its propagation can be well tracked using the developed digital 

twin approach, so that the remaining useful life of the gear system can be predicted. The 

developments for gear wear monitoring and prediction in this research bring significant 

benefits to the research community and industrial practices. 

8.2 Recommendations for future work 

In this research, vibration-based gear wear monitoring techniques are developed and 

applied to wear mechanism identification and wear prediction of the fixed-axis gearbox. 

Considering the kinematic characteristics of the gearbox transmission systems are similar, 

therefore, the techniques developed in this research should be tested on other gear types 

and gearing arrangements, including planetary gearboxes, and industrial practices. 

Even though the theoretical developments in this research are validated through the 

relevant experimental investigations, some limitations still exist in the developed 

techniques presented in this thesis, which will be pointed out as follows, together with 

corresponding recommendations for future improvements. 

1. The limitation of using ICS2 to monitor the fatigue pitting and abrasive wear 

propagation is that the real wear severity can not be directly assessed from the ICS2 

trend, since the mathematical relationship between ICS2 trends and the real severity 

of gear wear has not been derived in Chapter 4. Therefore, future work will focus on 

establishing the mathematical relationship between ICS2 and wear severity using the 

regression analysis theory [210, 211], so that the real wear severity can be quantified 

once the measured vibration is acquired. 
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2. There is a limitation of using the Archard wear model to present the wear induced 

tooth profile change. The Archard model is modelling a significant component of the 

geographical variation of wear along the tooth flank, more complex dynamics can 

contribute significantly to the evolution of the wear profile geometry. Therefore, in 

future work, model development that has the capability of modelling complex wear 

profile geometry will be considered, such as using Legendre Polynomials [25]. 

3. In the vibration-based gear wear monitoring and prediction methodology developed 

in Chapter 7, the ICS2 of measured vibration is used to compare with the predicted 

fatigue pitting density, and then update the surface pitting coefficient 𝐾𝑝𝑖𝑡𝑡𝑖𝑛𝑔  if 

necessary. This approach should deliver an accurate prediction of overall surface 

pitting severity representing an average across the whole surface; however, it can not 

provide information on the pitting distribution on the gear tooth (from root to tip). 

Therefore, vibration features that can accurately represent the surface pitting 

distribution are extremely valuable and should be studied in the future.
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