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Abstract

Under a class of one dimensional local volatility models, this thesis establishes closed

form small time asymptotic formulae for the gradient of the implied volatility, whether

or not the options are at the money, and for the at the money Hessian of the implied

volatility. Along the way it also partially verifies the statement by Berestycki, Busca and

Florent (2004) that the implied volatility admits higher order Taylor series expansions

in time near expiry. Both as a prelude to the presentation of these main results and

as a highlight of the importance of the no arbitrage condition, this thesis shows in

its beginning a Cox-Ingersoll-Ross type stock model where an equivalent martingale

measure does not always exist.
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“const”: generic constant
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E: the expectation operator
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N0, N: nonnegative, strictly positive integers, respectively

ODE: ordinary differential equation

PDE: partial differential equation

φ(s, τ): implied volatility in the (s, τ) coordinates

R, R+, R++: real, nonnegative, and strictly positive real numbers, respectively

SDE: stochastic (ordinary) differential equation

(St): stock price process

(s− k)+ = max(s− k, 0)

ϕ(x, τ): implied volatility in the (x, τ) coordinates

Z ∼ N(0, 1): Z is a standard normal random variable

f(t) ∼ g(t) (t → 0) ⇐⇒ lim
t→0

f(t)

g(t)
= 1

f(t) = O(g(t)) (t→ 0) ⇐⇒ lim
t→0

∣∣∣∣
f(t)

g(t)

∣∣∣∣ ≤ const

f(t) = o(g(t)) (t → 0) ⇐⇒ lim
t→0

f(t)

g(t)
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Chapter 1

Introduction

As natural extensions of the Black–Scholes model, local volatility models aim to build

an arbitrage free pricing framework that can account for implied volatility smiles

(/skews/surfaces). By allowing the volatility of the stock to depend on stock price and

time, instead of setting it constant, local volatility models can explain implied volatili-

ties in terms of local volatilities, and vice versa. This is demonstrated by Berestycki et

al. [4], who have extended the poineering work of Dupire [22] and Derman and Kani

[20].

Unlike the Dupire formula, which connects local volatilities with European option

prices, the PDE of Berestycki et al. [4, Eq. 15] links local and implied volatilities

directly. In theory, this link affords a rationale for the use of implied smiles; in practice,

it makes possible a theory of implied local volatility models, according to which exotic

derivatives can be priced, without arbitrage, through knowledge of the implied smiles.

However, practicable numerical implementation of such a theory still faces three

long standing hurdles: (i) the lack of understanding about the small time asymptotics

of gradients and Hessians of implied volatilities, (ii) the ill posed inverse problem of

inferring local volatilities from sparse real world implied volatility data, and (iii) the

nonexistence of a martingale measure in real world markets.

Because overcoming the first hurdle will give a fuller picture of the implied-local

volatility relation and help to overcome the other two hurdles, it is the design of this

thesis to study, under a class of local volatility models, the small time asymptotics of

gradients and Hessians of implied volatilities.

Except in Chapter 3, which is independent of the other chapters, we shall, for clarity,

assume a zero risk-free interest rate in this thesis. This zero interest rate assumption

allows us to focus on the main task in hand, which is the derivation of asymptotics for

the implied volatility.

1



2 CHAPTER 1. INTRODUCTION

It is well known that by using forward prices or risk-free bonds as numeraire we can

generalize the asymptotic results of this thesis to models with nonzero and deterministic

interest rates. Yet, as shown in Chapter 3, care must be taken when imposing conditons

on the local volatility function and the deterministic risk-free interest rate, because an

equivalent martingale measure may not exist to ensure no arbitrage.

The organisation of this introduction is as follows. Section 1.1 introduces the con-

cepts of implied and local volatilities. Section 1.2 presents some previous results on local

volatility models. Section 1.3 lists for completeness some extensions of local volatility

models and briefly reviews the related literature. Section 1.4 outlines the orgainisa-

tion of this thesis and its results. Section 1.5 explains some common notation and

definitions.

1.1 Implied and local volatilities

The Black–Scholes model [7] assumes that in a frictionless one stock economy, the price

(St) of the non-dividend paying stock follows the diffusion

dSt = µSt dt+ νSt dWt, (1.1)

where the volatility ν > 0 of the stock is assumed to be constant. Here, t denotes time,

µ some constant appreciation rate, and (Wt) a standard Wiener process.

Assuming (1.1), the time t arbitrage free price of a European call option with stock

price s, strike k, and expiry T , is given by the Black–Scholes formula

B(s, τ ; k; ν) = sN(d1) − kN(d2), (1.2)

where 



N(d) =

∫
d

−∞
n(z) dz, n(z) =

1√
2π

e−z
2/2,

d1(s, τ ; k; ν) =
ln(s/k) + ν2τ/2

ν
√
τ

, d2(s, τ ; k; ν) = d1 − ν
√
τ ,

(1.3)

with τ = T − t being the (remaining) time to expiry.

Except ν, the volatility of the stock, all other parameters of the Black–Scholes

formula can be directly observed in or substituted by observables of the market. Hence,

having observed a call option price C♯ and the values of s, τ , and k, one can find a

unique number ν♯ such that C♯ = B(s, τ ; k; ν♯), as if the underlying price process is

given by dSt = µSt dt+ ν♯St dWt. It is in this sense that the volatility ν♯ is implied by

the call price C♯ and the parameters s, τ , and k.
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More precisely, given a European call option price C(s, τ ; k) with stock price s, strike

k, and time to expiry τ , the (Black–Scholes) implied volatility φ(s, τ ; k) is defined as

the unique solution to

C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)).

Contrary to the constant volatility assumption of the Black–Scholes model, empir-

ical evidence has shown that as a function of k and τ , implied volatilities do fluctuate

and persistently exhibit smile/skew patterns (U/L shapes). Motivated by these smile

phenomena are local volatility models, under which the volatility ν of the stock be-

comes a deterministic function of the stock price level and time, i.e. ν = ν(s, t) :

(0,∞)× [0, T ] → (0,∞). With this modification, fluctuations in implied volatilities are

explained by fluctuations in ν(s, t), and vice versa. To distinguish this price and time

dependent volatility from the constant and the implied volatilities, ν(s, t) is called the

local volatility of the stock.

1.2 Previous local volatility results

Local volatility models generally assume for the stock price process (St) the stochastic

differential equation

dSt = µSt dt+ ν(St, t)St dWt,

where, as already mentioned, the local volatility ν is a deterministic function of (s, t).

Under such a model, Dupire [22] and Derman and Kani [20] derived the Dupire formula

ν2(k, τ) =
2Cτ (s, τ ; k)

k2Ckk(s, τ ; k)
, (1.4)

with Cτ = ∂τC and so on.

However, as outlined in Berestycki et al. [4], pricing via the Dupire formula has

two related shortcomings. Firstly, the Dupire formula lacks robustness. The limited

number of option prices demands interpolation of the data. Consequently, numerical

differentiations of C, for Cτ and Ckk, are extremely sensitive to the choice of the

interpolation. Secondly, adding to the instability of the numerical differentiation is the

indeterminacy of the formula (1.4) in the regions {T − t ≪ 1}, {|ln(s/k)| ≫ 1}, and

{T − t≫ 1}, where it assumes the form 0/0.

Alert to these shortcomings of the Dupire approach, Berestycki et al. [4] opted

for a different track. Under some mild conditions on the local volatility ν(s, t), they

derived a direct link between implied and local volatilities. In the local Sobolev space

W 2,1,p
loc ((0,∞)2), 1 < p < ∞ — see (1.17) below for the definition — they showed that
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for each k ∈ (0,∞), the implied volatility function φ(s, τ) ≡ φ(s, τ ; k) uniquely solves

the time degenerate quasilinear parabolic PDE

φ2 + 2τφφτ − ν2(s, τ)

[(
1 − s[ln(s/k)]φs

φ

)2

−
(

1 − sτφφs
2

)2

+ 1 + s2τφφss

]
= 0,

(1.5)

in (0,∞)2, with the initial condition

lim
τց0

φ(s, τ) = [ln(s/k)]

(∫ s

k

dz

zν(z, 0)

)−1

, s ∈ (0,∞). (1.6)

Moreover, Berestycki et al. [4] proves the zero order Taylor expansion

φ(s, τ) = φ0(s) + O(τ), as τ ց 0, (1.7)

where the order O depends on the local volatility but is independent of s and τ . The

significance of this result rests with (1.6) and (1.7), which prove for the first time

that at expiry, implied volatility exists as a limit and how fast it converges. In this

thesis we will extend this result and go one step further to characterize the small time

asymptotics of the gradient φs and Hessian φss of the implied volatility φ.

1.3 Other extensions of local volatility models

For completeness we remark that apart from local volatility models, there are more

complex stochastic volatility or stochastic volatility and jump diffusion models that

can be used to produce implied volatility smiles. Some of these models can be found in

Durrleman [23, 24], Fouque et al. [28], Gatheral [34], Hafner [39], Hagan et al. [40], Lee

[59], and Lewis [60], Medvedev [65], Medvedev and Scaillet [66], Musiela and Rutkowski

[67], to name a few references. Gatheral [34] in particular provides a comprehensive

and practical discussion on both asymptotics and calibrations of the implied volatility

surface under Heston type stochastic volatility models. On the other hand, Hagan et

al. [40] have derived a small time series expansion for the implied volatility under the

so-called SABR stochastic volatility model. The results in Hagan et al. [40] extend

that of Hagan and Woodward [41], which is concerned with Black’s (local volatility)

model. Although Gatheral [34] gives small time asymptotic results for the gradient of

the implied volatility, his derivations seem formal. While not as formal in their works,

Durrleman [23, 24], Medvedev [65, Equation (10)], and Medvedev and Scaillet [66, see

e.g. Proposition 1] all seem to suffer from the same shortcoming of making additional

assumptions on assumptions that are already made. Alós et al. [1] appears to be the
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only work giving a rigorous proof of the small time asymptotics for the at the money

gradient of the implied volatility. Their result was obtained under a fairly general

stochastic volatility model, which presently we shall say a little more.

In general diffusion type stochastic volatility models, the stock price (Xt) and its

volatility process (Yt) typically follow SDEs of the form





dXt = µ(Xt, Yt, t) dt+ ν(1)(Xt, Yt, t) dW
(1)
t + dJt,

dYt = θ(Yt, t) dt+ ν(2)(Yt, t) dW
(2)
t ,

where µ, θ, ν(1) and ν(2) are real valued functions, (W
(1)
t ) and (W

(2)
t ) are correlated

standard Wiener processes, and (Jt) is some jump process. Here the process (Yt) drives

the volatility of (Xt). The processes (Xt) and (Yt) can be Rn valued for any finite

integer n ≥ 1, provided that the corresponding drift and diffusion coefficient functions,

the Wiener processes, and the jumps have suitable dimensions. An example of such a

model without jumps can be found in Berestycki et al. [5], where the small time limit

of the implield volatility under the stochastic volatilities is proved.

In more general stochastic volatility models, µ, ν and θ can themselves be stochastic

processes, instead of being (deterministic) functions. See e.g. Alós et al. [1] for a one

dimensional example with jumps.

Analogous to the modelling of yield curve term structure, Schönbucher [73], Brace

et al. [9], and Schweizer and Wissel [75] directly model the implied volatility surface.

In these works HJM type consistence results are discussed and small time asymptotics

of the implied volatility are investigated within the framework of the market model.

Apart from the small time asymptotics, large time behaviour of the implied volatil-

ity has been studied by Rogers and Tehranchi [70]. Under some weak assumptions, they

have found that the implied volatility surface flattens at long maturities. Complement-

ing this large time result, Benaim and Friz [3, 2] have derived large strike asymptotics

for implied volatilities.

1.4 Thesis outline

While Chapter 3 of this thesis deals with the existence of equivalent martingale mea-

sures, all other chapters are devoted to the main task of deriving small time asymptotics

for the gradients and Hessians of implied volatility under a class of one dimensional

local volatility models.

Subject to the smoothness assumptions on the local volatility ν = ν(s) that are

detailed in Chapter 2, we have found that the implied volatility φ can belong to
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C2,1((0,∞)× [0, T ]), and together with its gradient φs and Hessian φss, it possesses the

properties that for s, k ∈ (0,∞),

lim
τց0

φ(s, τ) = φ0(s), (1.8)

lim
τց0

φs(s, τ) = φ0
s(s), (1.9)

lim
τց0

{φss|s=k} ≡ lim
τց0

φss(k, τ) = φ0
ss(k), (1.10)

lim
τց0

τφss(s, τ) = 0, (1.11)

where

φ0(s) ≡ φ0(s; k) = [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

. (1.12)

Note that (1.10) holds for at the money options only, i.e., when s = k. In the process

of deriving these results, we also partially verify the statement by Berestycki et al. [5,

pp. 1356, 1370, cf. Equation (6.8)] that subject to certain regularity conditions on the

diffusion coefficient of the underlying stock process, implied volatilities admit Taylor

series expansions in time near expiry in arbitrary orders. We will demonstrate that the

following first order Taylor expansion is valid:

φ(s, τ) = φ(s, 0) + τφτ (s, 0) +O(τ2), as τ ց 0, (1.13)

where

φ(s, 0) = φ0(s),

φτ (s, 0) = φ0(s)

[
φ0(s)

ln(s/k)

]2

ln

(√
ν(k)ν(s)

φ0(s)

)
.

(1.14)

The result in (1.8) and that φ ∈ C2,1((0,∞) × (0, T ]) are straightforward extensions

of Theorem 1 in Berestycki et al. [4]. However, the new result in (1.9) requires some

work. Once (1.9) is obtained, (1.10)–(1.11) follow easily.

The organization of the thesis is as follows:

In Chapter 2, we will set up the local volatility model and state the main results of

this thesis.

In Chapter 3, we will divert our attention to highlight the importance of imposing

appropriate conditions on the stock process to ensure no arbitrage in local volatility

models with nonzero interest rates. We will show that in a model where the stock price

follows a Cox-Ingersoll-Ross process, an equivalent martingale measure does not always

exist. Probabilistic in nature, the proof partly relies on the relationship between the
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CIR and Bessel processes. A version of this chapter has been published as a note in

[37].

Returning to our main task in Chapter 4, we will present some preliminary results

about call option prices under the local volatility model, in particular, the convexity

of the call price C(s, τ) in s, which is a well known fact. Moreover, we will modify

the result of Berestycki et al. [4, Equations (15), (16)] and show that depending on

the regularity of the local volatility ν, the implied volatility ψ(s, τ) can belong to

C2,1((0,∞)× [0, T ]) and satisfy (1.5) and (1.6), with ν(s, t) in (1.5) and ν(s, 0) in (1.6)

respectively replaced by ν(s) and ν(z).

In Chapters 5 and 6, we adapt the method of Berestycki et al. [4] to derive a zero

and a first order Taylor expansion in time for the implied volatility. Although we work

along the lines of Berestycki et al. [4, Theorem 1], we need stronger assumptions on the

local volatility ν to derive the Taylor expansions, as now the implied volatility belongs

C2,1((0,∞) × [0, T ]).

In Chapter 7, we apply probabilistic methods to prove a small time limit for the at

the money gradient of the implied volatility, that is, to prove

lim
τց0

{
φs(s, τ)|s=k

}
≡ lim

τց0
φs(k, τ) = νs(k)/2, k ∈ (0,∞). (1.15)

Central to the proof is a representation formula for the gradient of call option prices,

which is a consequence of the Bismut–Elworthy formula. The asymptotic formula

obtained here for the at the money gradient of implied volatility is not new, although

it is independently obtained by us under weaker conditions. Assuming different, and in

some sense stronger regularity assumptions, Alòs et al. [1, Theorem 6.3] have proved

(1.15) for more general stochastic volatility models with jumps.

In Chapter 8, we derive a small time asymptotic formula for the gradient of the

implied volatility, whether or not the option is at the money. Playing a key role in

the derivation is a series representation formula for solutions of second order parabolic

equations. Coupled with the PDE characterization of the implied volatility, this gradi-

ent asymptotic result also sheds light on the asymptotics of the Hessian of the implied

volatility. Represented by (1.9)—(1.11), the main results of this chapter are new and

the proofs are mostly analytic.

In Chapter 9, we prove a technical theorem of Chapter 8, and in Chapter 10, we

conclude the thesis with a list of future research directions.
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1.5 Notation and definitions

In this thesis the standard notation and definitions for stochastic calculus can be found

e.g. in Friedman [32], Karatzas and Shreve [53], or Revue and Yor [69]. We will use

some PDE material from Krzyzanski [57] and Friedman [30]. Regarding solutions of

PDEs, the definition below is standard, although there are other definitions requiring

continuity of the solution at the boundary.

Let D = R or (0,∞). Consider the differential equation

{
Lu ≡ a(x, t)uxx + b(x, t)ux + c(x, t)u− ut = 0, (x, t) ∈ D × (0, T ],

u(x, 0) = ρ(x), x ∈ D.

where the coefficients a, b, and c are defined in D × [0, T ].

Definition 1.1. A function u = u(x, t) is a solution of Lu = 0 in D × [0, T ] if

(i) all the derivatives of u that occur in Lu (i.e., ux, uxx, ut) are continuous functions

in D × (0, T ],

(ii) Lu(x, t) = 0 at each point (x, t) ∈ D × (0, T ],

(iii) u(x, 0) = ρ(x) for all x ∈ D.

According to this definition, a solution of the PDE does not need to be be continuous

at the boundary D × {0}.
We will let N0 denote the set of all nonnegative integers and N the strictly positive

ones. In this thesis, Ω stands for the sample space, whereas Ω denotes a domain

(bounded or unbounded) in Rd, with d ∈ N.

Let α = (α1, . . . , αn) be a multiindex and |α| =
∑n

i=1 αi. For any function f : Rn →
R, define dom(f) to be the domain of f . Define the supremum norm ‖·‖m by

‖f‖m =
∑

|α|≤m
sup

x∈dom(f)
|Dαf(x)| , α ∈ R

n,m ∈ N0. (1.16)

We generally use “const” to denote a generic positive constant, whose value may

depend on certain parameters, e.g. const = const(T ).

Let Ω = (0,∞)2. Then the Sobolev spaces W 2,1,p(Ω), 1 < p ≤ ∞, are defined by

W 2,1,p(Ω) =

{
w :

∫

Ω
|wxx|p + |wτ |p + |w|p <∞

}
, 1 < p <∞, (1.17)

W 2,1,∞(Ω) = {w : ‖wxx‖∞ + ‖wτ‖∞ + ‖w‖∞ <∞} , p = ∞, (1.18)
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where ‖·‖∞ denotes the essential supremum norm. The spaces W 2,1,p(Ω) are endowed

with their natural norms and W 2,1,p
loc (Ω) are their local versions. In this thesis we do

not use these Sobolev spaces to obtain our results. They are included here to explain

the results of Berestycki et al. [4].

We will use the symbol ∼ in Z ∼ N(0, 1) to signal that Z is a standard normal

random variable. However, we will also use it in expressions for asymptotics like the

following:

f(t) ∼ g(t) (t→ 0) ⇐⇒ lim
t→0

f(t)

g(t)
= 1.

The meaning of the symbol ∼ will be clear from the context.

The big O and the little o denote respectively

f(t) = O(g(t)) (t→ 0) ⇐⇒ lim
t→0

∣∣∣∣
f(t)

g(t)

∣∣∣∣ ≤ const,

f(t) = o(g(t)) (t→ 0) ⇐⇒ lim
t→0

f(t)

g(t)
= 0.

In particular, we have

f(t) = O(1) (t→ 0) ⇐⇒ lim
t→0

|f(t)| ≤ const,

f(t) = o(1) (t→ 0) ⇐⇒ lim
t→0

f(t) = 0.

In this thesis t, τ , and T all denote time and are nonnegative real numbers. So in

the rest of this thesis we shall mostly simply write

t→ 0, τ → 0, T → 0,

in lieu of the technically correct expressions

t→ 0+, tց 0, or t ↓ 0,

τ → 0+, τ ց 0, or τ ↓ 0,

T → 0+, T ց 0, or T ↓ 0.

Occasionally we will use the following equivalent expressions interchangeably:

Xτ
τ→0−−−→ x ⇐⇒ lim

τ→0
Xτ = x.



Chapter 2

Model setup and main results

In this chapter, we will set up the local volatility model of this thesis, state our main

results as theorems, and comment on their extensions.

2.1 The local volatility model of this thesis

We assume a frictionless one stock economy in which the risk-free interest rate is zero

and the price of the nondividend paying stock, denoted by (St), is governed by the

stochastic (ordinary) differential equation

dSt = ν(St)St dWt, S0 > 0, 0 ≤ t ≤ T <∞, (2.1)

where (Wt) is a standard Wiener process with respect to a complete filtered probability

space (Ω,F ,F,P), with F = (Ft)0≤t≤T denoting the filtration generated by (St). This is

the local volatility model of this thesis, where the local volatility ν(s) : (0,∞) → (0,∞)

is always assumed to satisfy (A0) of the list of assumptions below. Further assumptions,

selected from (A1)–(A4), will be imposed to obtain different results in this thesis.

List of assumptions on the local volatility

(A0) The local volatility ν(·) is locally Lipschitz continuous in (0,∞), and there exists

a constant ν0 > 1 such that

0 <ν ≡ 1

ν0
≤ ν(s) ≤ ν0 ≡ ν <∞, ∀ s ∈ (0,∞); (2.2)

10
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(A1) the first derivative νs(·) is locally Lipschitz continuous in (0,∞) and

ν1 := sup
s∈(0,∞)

|sνs(s)| <∞; (2.3)

(A2) the second derivative νss(·) exists and is continuous in (0,∞) and

ν2 := sup
s∈(0,∞)

∣∣s2νss(s)
∣∣ <∞; (2.4)

(A3) the third derivative νsss(·) exists and is continuous in (0,∞) and

ν3 := sup
s∈(0,∞)

∣∣s3νsss(s)
∣∣ <∞; (2.5)

(A4) the forth derivative νssss(·) exists and is continuous in (0,∞) and

ν4 := sup
s∈(0,∞)

∣∣s4νssss(s)
∣∣ <∞. (2.6)

For ease of notation, we define Vi to be the set

Vi := {ν0, ν1, . . . , νi} , i = 0, 1, 2, 3, 4, (2.7)

with V0 = {ν0}.

Remark 2.1. The assumptions above will be used selectively for different results.

We shall see in Theorems 2.5–2.8 below that if we want to know more about the

implied volatility, we need to impose more assumptions on the local volatility, starting

from (A0)–(A2) and then increasing to (A0)–(A4). Note however that under weaker

assumptions, results similar to that of Theorem 2.5 have been obtained in the Sobolev

space W 2,1,p(Ω), 1 < p <∞, by Berestycki et al. [4]. Without (A2), Goldys and Roper

[36] have also proved the small time limit of the implied volatility in (2.9), although

they have not investigated whether (2.11) holds under their weaker assumptions. Note

also that the local Lipschitz property in (A1) is needed for the well-definedness of the

first variation process of (St); see (7.14) and Protter [68, Theorem 49, p. 320].

Remark 2.2. In our model, the existence of an equivalent martingale measure is

guaranteed by the assumptions of zero risk-free interest rate and zero diffusion drift

in (2.1). It is none other than the probability measure P itself. Hence arbitrage is

excluded by the fundamental theorem of asset pricing.
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2.2 Call option price and implied volatility under the model

It is well known that if (A0) and (A1) hold, then the time t arbitrage free price of a

European call option c(s, t; k, T ), with stock price s, strike k and expiry T , is given by

c(s, t; k, T ) = Es,t[(ST − k)+] = E[(ST − k)+|St = s],

for (s, t; k, T ) ∈ (0,∞) × [0, T ] × (0,∞) × (0,∞).

Equivalently, using the time to expiry τ = T − t, and the Markov property of (St),

the arbitrage free price of a European call option C(s, τ ; k), with stock price s, strike

k and time to expiry τ , is given by

C(s, τ ; k) = Es[(Sτ − k)+] = E[(Sτ − k)+|S0 = s],

for (s, τ ; k) ∈ (0,∞) × [0, T ] × (0,∞). The above call price formulas are proved in

Lemma 4.2 below. We are now ready to rigorously define implied volatility.

Definition 2.3 (Implied volatility). For each fixed T ∈ (0,∞), the unique function

φ(s, τ ; k) : (0,∞)×(0, T ]×(0,∞) → (0,∞) satisfying φ ∈ C2,1,2((0,∞)×(0, T ]×(0,∞))

and

C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)), (s, τ ; k) ∈ (0,∞) × (0, T ] × (0,∞),

is called the (Black–Scholes) implied volatility.

Remark 2.4. We will prove in Chapter 4 the existence and uniqueness of φ. Unless

explicitly stated to the contrary, throughout the thesis we will treat k, T ∈ (0,∞) as

parameters and define

c(s, t) := c(s, t; k, T ), C(s, τ) := C(s, τ ; k), φ(s, τ) := φ(s, τ ; k).

2.3 Main results of the thesis

The following theorems are the main results of the thesis.

Theorem 2.5. Let (2.1), (A0)–(A2) hold. Then for each k ∈ (0,∞), the implied

volatility φ belongs to C2,1((0,∞)× (0, T ]) and satisfies the time degenerate quasilinear

parabolic equation

φ2 +2τφφτ − ν2(s)

[(
1 − s[ln(s/k)]φs

φ

)2

−
(

1 − sτφφs
2

)2

+ 1 + s2τφφss

]
= 0, (2.8)
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in (0,∞) × (0, T ], with the initial condition

φ(s, 0) := lim
τ→0

φ(s, τ) = φ0(s), s ∈ (0,∞), (2.9)

where

φ0(s) ≡ φ0(s; k) := [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

, s ∈ (0,∞). (2.10)

Further, φ(s, τ) admits the zero order Taylor expansion in time

φ(s, τ) = φ0(s) + O(τ) as τ → 0, (2.11)

where O = O(V2).

Theorem 2.6 (First order Taylor expansion in time). Let (2.1), (A0)–(A4) hold. Then

as τ → 0,

φ(s, τ) = φ(s, 0)

(
1 + τ

φ2(s, 0)

[ln(s/k)]2
ln

(√
ν(k)ν(s)

φ(s, 0)

)
+ O(τ2)

)
, (2.12)

with O = O(V4).

Theorem 2.7 (At the money gradient asymptotic). Let (2.1), (A0)–(A2) hold. Then

lim
τ→0

{
φs(s, τ)|s=k

}
≡ lim

τ→0
φs(k, τ) = ν ′(k)/2. (2.13)

Theorem 2.8 (Gradient and Hessian asymptotics). Let (2.1), (A0)–(A4) hold. Then

the implied volatility φ has the following properties:

(i) For each s ∈ (0,∞),

lim
τ→0

φs(s, τ) = φ0
s(s). (2.14)

(ii) For each k ∈ (0,∞),

lim
τ→0

{φss|s=k} ≡ lim
τ→0

φss(k, τ) = φ0
ss(k) =

νss(k)

3
− ν2

s (k)

6ν(k)
− νs(k)

6k
. (2.15)

(iii) For every s ∈ (0,∞),

lim
τ→0

τφss(s, τ) = 0. (2.16)

Respectively, Theorems 2.5, 2.6, 2.7, and 2.8 will be proved in Chapters 5, 6, 7, and

8. However, before presenting the preliminary results and the proofs of these theorems,
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we shall in the next chapter divert our attention to the existence and nonexistence of

equivalent martingale measures in CIR type local volatility models.

2.4 Comments on extensions of the main results

For a more direct illustration of the ideas we have set the local volatility ν = ν(St) in

(2.1). Nevertheless, the main results of this thesis can be extended to local volatility

models where the local volatility depends on both space and time, i.e., ν = ν(St, t) in

(2.1). The caveat is that ν(St, t) and its derivatives must be regular enough. In fact,

Alòs et al. [1, Theorem 6.3] have proved more general results than Theorem 2.7, not

only for smooth enough deterministic local volatility ν = ν(St, t) but also for general

square integrable processes such as ν = ν(St(ω), t, ω).

Now with ν = ν(St, t) in (2.1), we make the following hypotheses:

(H0) ν(s, t) is locally Lipschitz in (0,∞) × [0, T ], and for some constant ν0 > 1

0 <ν ≡ 1

ν0
≤ ν(s, t) ≤ ν0 ≡ ν <∞, ∀ (s, t) ∈ (0,∞) × [0, T ]; (2.17)

(H1) νs(s, t) and νt(s, t) are locally Lipschitz continuous in (0,∞) × [0, T ] and

ν1 := sup
(s,t)∈(0,∞)×[0,T ]

{
|νs(s, t)| , |νt(s, t)| , |sνs(s, t)| , |sνt(s, t)|

}
<∞; (2.18)

(H2) νss(s, t) is continuous in (0,∞) and sup
(s,t)∈(0,∞)×[0,T ]

∣∣s2νss(s, t)
∣∣ <∞;

(H3) νsss(s, t) is continuous in (0,∞) × [0, T ] and sup
s∈(0,∞)×[0,T ]

∣∣s3νsss(s, t)
∣∣ <∞;

(H4) νssss(s, t) is continuous in (0,∞) × [0, T ] and sup
s∈(0,∞)×[0,T ]

∣∣s4νssss(s, t)
∣∣ <∞.

Under (H0)–(H4), we conjecture that Theorems 2.5, 2.6, 2.7, and 2.8 all hold, with the

following changes: in the theorems, (Ai) 7→ (Hi), i = 0, . . . , 4; in (2.8) v(s) 7→ v(s, t);

in (2.10) v(z) 7→ v(z, 0); in (2.12) v(k) 7→ v(k, 0), v(s) 7→ v(s, 0); in (2.13) v′(k) 7→
vs(s, 0)|s=k; in (2.15) vs(k) 7→ vs(s, 0)|s=k, vss(k) 7→ vss(s, 0)|s=k.

Once this conjecture is proven, then the short time asymptotic results of this thesis

can be further generalized to stochastic volatility models. This can be achieved because

by Gyögy’s theorem [38, Theorem 4.6], every stock price under a suitable stochastic

model has the same marginal distribution as the stock price under the corresponding

local volatility model.



Chapter 3

On the CIR Process and

existence of equivalent

martingale measures

3.1 Introduction

Published in Statistics and Probability Letters [37], this self-contained chapter shows

that in a model where historical stock price follows a Cox–Ingersoll–Ross process, an

equivalent martingale measure does not exist except when kθ = 0. The symbols used

in this chapter may differ in meaning from the same symbols appearing elsewhere in

this thesis.

In the Cox–Ingersoll–Ross (CIR) interest rate model [16, 1985], instantaneous spot

interest rates are modeled by the diffusion process (Rt),

dRt = k(θ −Rt) dt+ σ
√
Rt dWt, R0 > 0,

where the constants k, θ > 0, σ ∈ R\{0}, and (Wt) is a standard Wiener process. In

finance such a locally bounded semimartingale is called a CIR process; in mathematics,

a square root process. Original studies of the CIR process can be traced back to Feller

[25, 1951].

Well-known properties of the CIR process include that it is nonnegative and mean

reverting. It can be reflective with respect to, absorbed by, or strictly away from the

lower boundary point 0, depending on the values of the parameters k, θ and σ. Also

well known is the fact that it is a space-time changed squared Bessel process, and as a

result there are explicit formulas for its transition density, and for moments and various

15
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functionals of the process. See e.g. [35] or [52] and the references therein.

Although historically and still popularly associated with interest rate models, these

known properties of the CIR process make it well suited for the modeling of stock price

movements that display similar characteristics.

Indeed, for certain choices of the parameters, e.g. k < 0 and θ = 0, the CIR process

becomes a special case of the generalized Constant Elasticity of Variance (CEV) process

that has been widely used to model stock prices (see e.g. [15], [17], [19], [63], [74] and

Remark 3.8 below).

In most option pricing models, including those where the CIR process is used to

model interest rates, stock prices, stochastic volatilities [48], or default times [11], it

is crucial to ensure the existence of an Equivalent Martingale Measure (EMM) —

see Definition 3.1 below. According to the (First) Fundamental Theorem of Asset

Pricing, if the underlying interest rate or stock process is a locally bounded real-valued

semimartingale, then the existence of an EMM is both necessary and sufficient to ensure

that there is no arbitrage (see [18, Corollary 9.1.2]; cf. [77, p. 651; Theorem 1, p. 655;

Corollary to Theorem 2, p. 657], [43, 44]).

Moreover, the existence of an EMM allows the fair, arbitrage-free price of the option

to be represented by, and in many cases be simply calculated as, an expected value or

a functional of the expected value under the EMM (see e.g. [18, p. 8], [77, Chapters

VII & VIII], [43, 44]).

Nevertheless, the original CIR interest rate model [16] was essentially built on equi-

librium arguments of economics, while more generalized versions of the fundamental

theorem of asset pricing and the notion of no arbitrage were still taking shape with

increasing mathematical rigor. See [18] for a summary of the development of the theo-

rem.

For CIR-type interest rate models, the EMM question has been dealt with by Heath,

Jarrow and Morton [45], Maghsoodi [64] and Shirakawa [76]. However, these studies

do not investigate the question for CIR-type stock models.

On the other hand, Delbaen and Shirakawa [19] are concerned with CEV stock

models, even though their result implies the existence of an EMM for a special case of

our CIR stock model (see Remark 3.8 below).

In a different context, Wong and Heyde [79] discussed the martingale properties of

stochastic exponentials and their relations to EMMs. Yet no CIR-type stock models

were analyzed.

So far as we are aware, there is no published result directly dealing with the EMM

question for CIR-type stock models. To fill this gap, we have studied a stock model in

which the stock price follows a CIR process with a full range of parameters that are
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relevant to financial applications. We have found that except when kθ = 0, an EMM

does not exist.

Our main result, Theorem 3.3, differs from the work of Cherny and Urusov [14]

in two important respects. Firstly, their work delineates the absolute continuity and

singularity of measures for standard (squared) Bessel processes [14, Theorem 4.1, Corol-

lary 4.1]. In contrast, our theorem answers the EMM question for CIR processes, which

are space-time changed squared Bessel processes. Secondly, their theory about separat-

ing times for solutions of Stochastic Differential Equations is based on the assumption

that the diffusion coefficients of the SDEs are never zero [14, Section 5; Equation (5.2)].

However our result also includes the situation where the diffusion coefficient in the SDE

for the CIR process may become zero, because in our model the CIR process may hit

0 (see (3.1) and Lemma 3.4 below).

Similarly, the fact that the CIR process in our model may hit 0 distinguishes our

result from that of Cheridito, Filipovic and Yor [13, Section 6], which examines equiva-

lent and absolutely continuous measure changes for a class of extended, strictly positive

CIR processes with jumps.

3.2 Equivalent martingale measures under the CIR model

The security market is assumed to consist of one risky stock and one risk-free bond.

Without loss of generality, we will consider the model for the unit time interval [0, 1],

and let the stochastic stock price (Xt) and deterministic bond price Bt be given by

{
Xt = Xt∧τ ,

Bt = ert, 0 ≤ t ≤ 1,
(3.1)

where

• t ∧ τ = min(t, τ);

• Xt = x+

∫ t

0
k(θ −Xs) ds+

∫ t

0
σ

√
|Xs| dWs, 0 ≤ t ≤ 1;

• x, k, θ, σ and r are real constants with x > 0, σ 6= 0 and r > 0;

• (Wt) is a standard Wiener process defined on a complete filtered probability space

(Ω,F ,F,P), with F = (Ft)0≤t≤1 denoting the filtration generated by (Xt);

• τ = τ0 ∧ 1, with τ0 being the first hitting time of 0 by the process (X t), namely,

τ0 = τ0(ω) := inf{0 ≤ t ≤ 1 : Xt(ω) = 0}, inf ∅ = ∞.
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The stopped CIR process (Xt) is well defined (see e.g. [35, p. 313]) and by definition

nonnegative. Further, since rarely in real life can share prices decrease to 0 and return

to a positive value, the assumption that (Xt) remains at 0 once it hits 0 is economically

sound.

Let G := (Gt)0≤t≤1 be the filtration such that Gt = Ft∧τ . Then for the CIR model

(3.1), we have the following definition.

Definitions 3.1 (Equivalent Martingale Measure). A probability measure P̃ is an

EMM of P with respect to the CIR process (Xt), denoted P̃ ∼ P, if

(a) on the stopping-time sigma field Fτ , P̃τ ∼ Pτ , i.e. the measures P̃τ and Pτ are

equivalent, and

(b) the discounted stock price process (e−rtXt) is a (P̃τ ,G)-martingale.

Note that Pτ denotes the restriction of P to Fτ .

Remark 3.2. Our definition of an EMM is nonstandard. When the parameters are

set in such a way that (Xt) cannot hit 0, our EMM is the usual EMM, see e.g. [77,

p. 652] and cf. [18, Theorem 8.2.1; Introduction, p. 207]. When (Xt) can hit 0, our

EMM, strictly speaking, should be called ELMM, which is the usual Equivalent Local

Martingale Measure with respect to τ (cf. [18, Theorem 8.2.1; Introduction, p. 207],

[77, p. 652]). We include these two possibilities in our definition to streamline the

proofs.

The following theorem constitutes the main result of this note.

Theorem 3.3. For the CIR model (3.1), an EMM exists if and only if kθ = 0.

The proof of this theorem comprises four cases:

(I) if σ2 ≤ 2kθ, 0 < kθ, then an EMM does not exist;

(II) if kθ = 0, then an EMM exists;

(III) if σ2 > 2kθ > 0, then an EMM does not exist;

(IV) if kθ < 0, then an EMM does not exist.

To simplify the proof, we will present the preliminary results in the next section.
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3.3 Preliminary results

Below are the preliminary results needed for the proof of Theorem 3.3.

Lemma 3.4 (Behaviour at 0). The CIR process (Xt) has the following boundary prop-

erties:

(P1) if σ2 ≤ 2kθ, then P[τ0 <∞] = 0;

(P2) if σ2 > 2kθ > 0 and k > 0, then P[τ0 <∞] = 1 and P[τ0 < 1] > 0;

(P3) if σ2 > 2kθ > 0 and k < 0, then P[τ0 <∞] ∈ (0, 1) and P[τ0 < 1] > 0.

Proof. All the facts can be directly found in [35, p. 315] or shown by using Feller’s test

for nonexplosion, except the claim in (P2) and (P3) that P[τ0 < 1] > 0. That can be

proved by noting that (Xt) is a space-time changed squared Bessel process (see e.g. [35,

Equation (4)]). Under the conditions of (P2) or (P3), such a squared Bessel process

admits a transition density for its first hitting time of zero, τ0, like its corresponding

Bessel process, meaning that P[τ0 < T ] > 0 for any 0 < T < ∞ (see [56], [35], and [8,

Section IV-44, p. 75]).

The following lemma is also required.

Lemma 3.5. For the CIR model (3.1), assume that there exists an EMM P̃. Then

there exists a unique G-adapted stopped process (γt) such that

(i) (γ2
t ) is bounded P-a.s., i.e.

P

[∫ τ

0
γ2
t dt <∞

]
= 1, (3.2)

and the density (Zt) of P̃ with respect to P is given by

Zt = exp

(∫ t

0
γs dWs −

1

2

∫ t

0
γ2
s ds

)
, 0 ≤ t ≤ τ ; (3.3)

(ii) the process

W̃t := Wt −
∫ t

0
γs ds, 0 ≤ t ≤ τ,

is a stopped standard P̃-Wiener process;

(iii) for all t, 0 ≤ t ≤ τ ,

−rXt + k(θ −Xt) + σ
√
Xtγt = 0, P-a.s.. (3.4)
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Proof. Before proceeding, let us note that if statement (iii) holds for some (γ
(1)
t ), then

uniqueness follows from the observation that any two (γ
(1)
t ) and (γ

(2)
t ) satisfying (3.4)

will be indistinguishable for all t ≤ τ . Now let us prove that statements (i) and (ii)

hold for some G-adapted (γt).

Since by assumption P̃ ∼ P, the density (Zt), defined by

Zt := EP

[
d P̃τ

d Pτ

∣∣∣∣∣Gt
]
,

is a strictly positive, continuous, uniformly integrable (P,G)-martingale such that

EP[Zt] = 1 for all 0 ≤ t ≤ τ . Thus, statement (i) results from Proposition 1.5.1 of

[78] and the integral representation theorem for local martingales [69, Theorem 3.5, p.

201].

Statement (ii) is a direct consequence of the Girsanov theorem, see e.g. [53, Theorem

5.1, p. 191].

Statement (iii) is proved by noting that by (ii), the discounted process (e−rtXt) can

be expanded as, for 0 ≤ t ≤ τ ,

d(e−rtXt) = e−rt
(
−rXt + k(θ −Xt) + σ

√
Xtγt

)
dt+ e−rtσ

√
Xt dW̃t.

By the definition of P̃ ∼ P, the discounted process (e−rtXt) is a (P̃τ ,G)-martingale;

and it is also continuous and nonnegative. So its drift must vanish P-a.s.., implying

that for all 0 ≤ t ≤ τ ,

−rXt + k(θ −Xt) + σ
√
Xtγt = 0, P-a.s..

The proof is thus complete.

The following lemma will be needed to prove Case (III) of the main theorem. Let

N++ := N \ {0}.

Lemma 3.6 ([62, Lemma 4.7 and its corollary p. 111]). Let f = f(t, ω), t > 0, be an

adapted process relative to (Ω,F ,G,P). Let (τn)n∈N++
be a nondecreasing sequence of

Markov times with τ = lim
n↑∞

τn and such that for each n ∈ N++,

P

[∫ τn

0
f2(s, ω) ds <∞

]
= 1.
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Then

P

[
A ∩

{
ω : sup

n∈N++

∣∣∣∣
∫ τn

0
f(s, ω) dWs

∣∣∣∣ = ∞
}]

= 0,

where

A =

{
ω :

∫ τ

0
f2(s, ω) ds <∞

}
.

3.4 Proof of the main theorem of the chapter

We are now ready to present the proof of Theorem 3.3.

Proof. (I): Suppose that there exists a probability measure P̃ such that P̃ ∼ P. Then

by Lemma 3.5, there exists a G-adapted process (γt) such that (3.2)—(3.4) are satisfied.

In particular, since by (P1) of Lemma 3.4, (Xt) does not reach 0, P-a.s.., (3.4) gives for

all 0 ≤ t ≤ τ ,

γt =
rXt − k(θ −Xt)

σ
√
Xt

, P̃-a.s.

Hence, under P̃, the transformed CIR process is represented by

dXt = k(θ −Xt) dt+ σ
√
Xt dWt

= rXt dt+ σ
√
Xt dW̃t.

By (P3) of Lemma 3.4, (Xt) hits 0 with a positive probability under P̃; yet under P it

does not hit 0 a.s. This shows that P̃ and P cannot be equivalent measures.

(II): Let (Zt) be the Doléans exponential given by

Zt = exp

(∫ t

0
γs dWs −

1

2

∫ t

0
γ2
s ds

)
, 0 ≤ t ≤ 1,

where γt = (r + k)
√
Xt/σ, 0 ≤ t ≤ 1. Then by Shirakawa [76, Theorem 3.2], (Zt)

is a continuous, uniformly integrable (P,F)-martingale, i.e., E[Z1] = 1. As τ is an

F-stopping time and Zt = Zt∧τ , (Zt) is a (P,F)- and (P,G)-martingale by Doob’s

optional sampling theorem (see e.g. [69, Theorem 3.2, p. 69; Corollary 3.6, p. 71]).

In particular, E[Zτ ] = 1. Let P̃[A] = P[Zτ1A], A ∈ Fτ . Then P̃ and P are equivalent

measures on Fτ .
Further, by appealing to the Girsanov theorem (see e.g. [53, Theorem 5.1, p. 191]),

as in the proof of Lemma 3.5, it can be shown that the discounted stock price (e−rtXt)

is a (P̃,G)-martingale. Hence P̃ is an EMM with respect to (Xt).

(III): That in this case no EMM exists will be proved by contradiction. Suppose

that an EMM P̃ exists. Then by Lemma 3.5, there exists a G-adapted process (γt)
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such that (3.2) and (3.4) are satisfied. Since Xt > 0 for each t < τ , (3.4) gives, on the

random time interval [0, τ),

γt =
rXt − k(θ −Xt)

σ
√
Xt

, P̃-a.s. and P-a.s.

By (3.2), this implies

P

[∫ τ

0

1

Xs
ds <∞

]
= 1. (3.5)

Let

A := {ω : τ0(ω) < 1} ∩
{
ω :

∫ τ

0

1

Xs
ds <∞

}
.

By (P3) of Lemma 3.4, the condition σ2 > 2kθ > 0 guarantees that P[τ0 < 1] > 0;

consequently we have P[A] > 0.

Put τn(ω) := inf{0 ≤ t ≤ 1 : Xt(ω) = 1/n}. Then (τn)n∈N++
is a nondecreasing

sequence of Markov times such that τ = limn↑∞ τn. Clearly, lnXτn ↓ −∞ as n ↑ ∞ on

A; and we have

P

[
A ∩

{
ω : lim

n↑∞
lnXτn 6= −∞

}]
= 0. (3.6)

On the other hand, by the Itô formula, on the set A and for each n ∈ N++,

lnXτn = lnx− kτn +

(
kθ − σ2

2

)∫ τn

0

1

Xs
ds+ σ

∫ τn

0

1√
Xs

dWs. (3.7)

As (Xt) is nonnegative and τn is nondecreasing and τn ↑ τ , (3.5) gives,

P

[∫ τn

0

1

Xs
ds <∞

]
= 1, for each n ∈ N++.

Since the conditions of Lemma 3.6 are satisfied, we have

P

[
A ∩

{
ω : sup

n∈N++

∣∣∣∣
∫ τn

0

1√
Xs

dWs

∣∣∣∣ = ∞
}]

= 0. (3.8)

And by (3.5), (3.7), and (3.8), we must also have

P

[
A ∩

{
ω : lim

n↑∞
lnXτn = −∞

}]
= 0. (3.9)

However, (3.6) and (3.9) together imply that P[A] = 0, which is a contradiction to

P[A] > 0. Hence P̃ cannot be equivalent to P, and so an EMM does not exist in this

case.
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(IV): In this case (Xt) is a squared Bessel process with negative dimension

δ = 4kθ/σ2 < 0 under P, meaning that 0 is reached in finite time and P[τ0 < 1] > 0

[35, pp. 329-330]. Hence by the same arguments used in Case (III) above, we conclude

that an EMM does not exist in this case either.

And this completes the proof.

The following corollary follows immediately from the proofs of Cases (III) and (IV):

Corollary 3.7. For the CIR process (Xt) defined in (3.1), if σ2 > 2kθ > 0 or kθ < 0,

then

P

[∫ τ

0

1

Xt
dt = ∞

]
> 0.

Remark 3.8. The proof of Case (I) was inspired by Delbaen and Shirakawa [19, The-

orem 4.2]. In Case (II), when k < 0 and θ = 0, the CIR model (3.1) becomes a special

case of a generalized CEV model, which is proved to have an EMM by Delbaen and

Shirakawa [19, Equations (1.1) and (1.2) and Theorem 2.3].



Chapter 4

Preliminary results for the

asymptotics

In this chapter, we will return to our main task of implied volatility asymptotics and

prepare the ground for the proofs of the main results of this thesis, i.e. the theorems

listed in Chapter 2. We will modify the results of Berestycki et al. [4, Equations (15),

(16)], to show that under some further regularity assumptions on the local volatility

ν, the implied volatility φ can belong to C2,1((0,∞) × [0, T ]) and it satisfies a similar

time degenerate quasilinear parabolic equations.

This chapter is organised as follows. In Sections 4.1 and 4.2, we present some

preliminary results about call option prices under the local volatility models and the

convexity of the call price C(s, τ) in s. In Section 4.3, we prove the existence and

uniqueness of the implied volatility. In Section 4.4, we derive the PDE for the implied

volatility.

4.1 Properties of the stock price under the local model

Recall that under the local volatility model of this thesis, the stock price (St) is assumed

to be governed by the stochastic differential equation

dSt = ν(St)St dWt, S0 > 0, 0 ≤ t ≤ T <∞, (4.1)

where (Wt) is a standard Wiener process with respect to a complete filtered probability

space (Ω,F ,F,P), with F = (Ft)0≤t≤T denoting the filtration generated by (St). Recall

also that the local volatility ν(·) is always assumed to satisfy (A0).

Under these conditions, it is implicitly assumed that (4.1) has a unique (strong)

24
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solution. That this is indeed true is proved in the following Lemma.

Lemma 4.1. Let (A0) hold. Then (4.1) has a unique strong solution. Moreover, (St)

is a continuous Markov process with transition density, a diffusion, a P-martingale,

and P[0 < St <∞, 0 ≤ t ≤ T <∞ | S0 > 0] = 1.

Proof. A definition of a strong solution can be found in e.g. Karatzas and Shreve [53, p.

285]. By (A0), the coefficient ν(s)s is locally Lipschitz and grows linearly in s. Hence

(4.1) admits a unique strong solution (St); see e.g., Friedman [32, Theorem 2.2, p. 104].

The same local Lipschitz and linear growth properties of ν(s)s also ensure that (St) is a

continuous Markov process and in fact a diffusion; see e.g. Friedman [32, Theorem 4.2,

p. 115]. By Friedman [32, Theorem 5.4, p. 149], (St) has a (differentiable) transition

density.

It can be checked by applying Itô’s lemma that the solution of (4.1) can be written

as

St = S0 exp

(∫ t

0
ν(Sr) dWr −

1

2

∫ t

0
ν2(Sr) dr

)
. (4.2)

Since ν(·) is bounded, the Novikov condition is satisfied. So (St) is a P-martingale;

see e.g. Karatzas and Shreve [53, Corollary 5.13, p. 199]. From (4.2) we can infer

that P[0 < St < ∞, 0 ≤ t ≤ T < ∞ | S0 > 0] = 1. However, this can also be

directly verified by using the scale function and speed measure to show that 0 and ∞
are natural boundaries. In other words, P[τ0 < ∞|S0 > 0] = P[τ∞ < ∞|S0 > 0] = 0,

where τ0 and τ∞ denote respectively the first hitting time of 0 and ∞ by (St), i.e.,

τz := inf{t ∈ [0,∞] : St = z}, z ∈ [0,∞], inf ∅ = ∞. See e.g. Karatzas and Shreve [53,

p. 342 ff] or Karlin and Taylor [54, Chapter 15, p. 235].

We are now ready to present some PDE and convexity results for call option prices

under the local volatility model.

4.2 PDE and convexity results for the call option price

Since the risk-free interest rate is zero, trivially the discounted stock price (St) is again

(St). By Lemma 4.1, (St) is a strictly positive exponential P-martingale and P is the

martingale measure of the local volatility model, since (A0) is always assumed to hold.

Hence, the local volatility model, with the fulfillment of (A0), is complete, meaning

that any P-integrable contingent claim that is bounded from below is attainable. See

e.g. Definition 10.2.1 and Proposition 10.2.1 of Musiela and Rutkowski [67].

As a result, under the local volatility model (and the martingale measure P), the

time t price of a call option option with stock price s, strike k, and expiry T is given



26 CHAPTER 4. PRELIMINARY RESULTS FOR THE ASYMPTOTICS

by

c(s, t) ≡ c(s, t; k, T ) = Es,t[(ST − k)+] = E[(ST − k)+|St = s], (4.3)

where (s, t; k, T ) ∈ (0,∞) × [0, T ] × (0,∞) × (0,∞). See e.g. Musiela and Rutkowski

[67, Proposition 10.1.2].

Equivalently, using the time to expiry τ = T − t, and the Markov property of (St),

the arbitrage price of a European call option C(s, τ ; k), with stock price s, strike k and

time to expiry τ , is given by

C(s, τ) ≡ C(s, τ ; k) = Es[(Sτ − k)+] = E[(Sτ − k)+|S0 = s], (4.4)

where (s, τ ; k) ∈ (0,∞) × [0, T ] × (0,∞). This gives the identity

C(s, τ ; k) = c(s, T − τ ; k, T ). (4.5)

By Lemma 4.1, (St) is a diffusion process and admits a transition density. This implies

that

C(s, τ ; k) =

∫

R

(y − k)+p(s, 0; y, τ) dy

=

∫ ∞

k
(y − k)p(s, 0; y, τ) dy,

(4.6)

where p(s, 0; y, τ) denotes the transition density of (Ss,0τ ). Differentiating C with respect

to k gives the following well known results of Breeden and Litzenberger [10]:

Ck(s, τ ; k) = −
∫ ∞

k
p(s, 0; y, τ) dy, Ckk(s, τ ; k) = p(s, 0; k, τ), (4.7)

where (s, t; k) ∈ (0,∞) × (0, T ] × (0,∞).

On the other hand, if k ∈ (0,∞) is treated as a parameter, then by the reverse

Feynman–Kac result of Janson and Tysk [51, Theorem 5.5], c(s, t) uniquely solves the

backward Kolmogorove equation




ct +

1

2
ν2(s)s2css = 0, in R × [0, T ),

c(s, T ) = (s − k)+, s ∈ (0,∞).
(4.8)



4.2. PDE AND CONVEXITY RESULTS FOR THE CALL OPTION PRICE 27

By identity (4.5), C(s, τ ; k) uniquely solves the Cauchy problem




Cτ −

1

2
ν2(s)s2Css = 0, in R × (0, T ],

C(s, 0) = (s − k)+, s ∈ (0,∞).
(4.9)

In this thesis, derivatives valued at boundary points, e.g. Cτ (s, T ; k) at τ = T , are

one sided derivatives. We now summarize the above PDE results for the call option

price C in the following lemma, whose proof is given by the discussion above.

Lemma 4.2. Let (4.1) and (A0) hold. Then

(i) the call price c is given by (4.3) and it solves (4.8);

(ii) the call price C(s, τ ; k) is given by (4.4), it belongs to C2,1,2((0,∞) × [0, T ) ×
(0,∞)), and satisfies (4.6), (4.7), and (4.9).

Remark 4.3. The standard Feynman–Kac formula, see e.g. Friedman [32, Equations

(5.22), Theorem 5.3, p. 148], does not seem to justify the stochastic representation for-

mula (4.3) for the solution of (4.8). While there are equivalence results for martingales

and PDEs, see e.g. Heath and Schweizer [46], it is more convenient to apply the reverse

Feynman–Kac result of Janson and Tysk [51, Theorem 5.5].

Apart from satisfying the PDE (4.8), the call option price c is convex in the stock

price s. That is, css(s, t) ≥ 0, for (s, t) ∈ (0,∞) × [0, T ]. By (4.8), this convexity

property is equivalent to the time decaying property of the call option price, as t tends

to T , i.e., ct(s, t) ≤ 0 for (s, t) ∈ (0,∞) × [0, T ]. By (4.5) and (4.9), the convexity of

c(s, t) in s implies the convexity of C(s, τ) in s, namely, Css(s, τ) ≥ 0 and Cτ (s, τ) ≥ 0,

for (s, τ) ∈ (0,∞) × (0, T ]. These convexity results are stated in the following lemma.

Lemma 4.4 (Convexity of call prices). Let (4.1) and (A0) hold. Then ct(s, t) ≤ 0,

(s, t) ∈ (0,∞) × [0, T ], and Cτ (s, τ) ≥ 0, (s, τ) ∈ (0,∞) × [0, T ].

Proof. By (A0), ν(s)s is locally Hölder continuous in s ∈ (0,∞) with exponent 1/2.

That is, for every N > 0, there exists a constN > 0 such that

|ν(s1)s1 − ν(s2)s2| ≤ constN |s1 − s2|1/2 ∀ s1, s2 ≤ N.

Hence by Theorem 4 of Janson and Tysk [49], c(s, t1) ≥ c(s, t2) for all s ∈ (0,∞) and

0 ≤ t1 ≤ t2 ≤ T . This shows ct(s, t) ≤ 0 for all (s, t) ∈ (0,∞) × [0, T ]. Noting that

τ = T − t and C(s, τ) = c(s, t), we also have Cτ (s, τ) ≥ 0, (s, τ) ∈ (0,∞) × [0, T ].
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Remark 4.5. The convexity properties of option prices have been investigated by many

authors, including Bergman et al. [6], El Karoui et al. [55], Janson and Tysk [49, 50],

and Lions and Musiela [61]. For uniformity of presentation, the result of Janson and

Tysk [49] seems to fit our theorem best; it even allows (St) to hit and to be absorbed by

the lower boundary point {0}. However, it is possible to prove the convexity property

of c and C under weaker conditions.

Having shown the well definedness of the stock price process (St) and the PDE and

convexity properties of the call option prices, we are ready to present the existence,

uniqueness, and PDE results for the implied volatility.

Since we have presented the main results of this thesis in the (s, τ) coordinates, we

will from now on use C(s, τ ; k) rather than c(s, t; k, T ) to prove the existence, unique-

ness, and PDE results for the implied volatility.

4.3 Implied volatility: existence and uniqueness

We will show the existence and uniqueness of the implied volatility.

Let us recall that, for a constant φ, the Black–Scholes pricing functional in the

(s, τ ; k) coordinates is given by

B(s, τ ; k;φ) = sN(d1) − kN(d2), (4.10)

where 



N(d) =

∫
d

−∞
n(z) dz, n(z) =

1√
2π

e−z
2/2,

d1(s, τ ; k;φ) =
ln(s/k) + φ2τ/2

φ
√
τ

,

d2(s, t; k;φ) = d1 − φ
√
τ .

(4.11)

Bearing in mind the Black–Scholes functional, we have the following existence and

uniqueness result.

Proposition 4.6 (Existence and uniqueness of the implied volatility). Let (4.1) and

(A0) hold. Then there exists a unique function φ(s, τ ; k) : (0,∞) × (0, T ] × (0,∞) →
(0,∞) such that it belongs to C2,1,2((0,∞) × (0, T ] × (0,∞)) and satisfies

C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)), (s, τ ; k) ∈ (0,∞) × (0, T ] × (0,∞), (4.12)
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and

0 <
1

ν0
≤ φ(s, τ ; k) ≤ ν0 <∞, (s, τ ; k) ∈ (0,∞) × (0, T ] × (0,∞). (4.13)

Proof. We will use the implicit function theorem to prove the existence and uniqueness

of the implied volatility. Define ̥ : (0,∞) × (0, T ] × (0,∞)2 → R by

̥(s, τ, k;ψ) = B(s, τ ; k;ψ) − C(s, τ ; k),

where B is the Black–Scholes price functional defined in (1.2). The Jacobian determi-

nant |J(̥)| is given by

|J(̥)| = |̥ψ| = Bψ(s, τ ; k;ψ) = s
√
τn
(
d1(s, τ ; k;ψ)

)
> 0, (4.14)

in (0,∞) × (0, T ] × (0,∞)2. By definition, B is infinitely differentiable in all of its

arguments in (0,∞) × (0, T ] × (0,∞)2. By Lemma 4.2, C ∈ C2,1,2((0,∞) × (0, T ] ×
(0,∞)). Hence, by the implicit function theorem, there exists a unique function

φ : (0,∞) × (0, T ] × (0,∞) → (0,∞)

and φ ∈ C2,1,2((0,∞) × (0, T ] × (0,∞)) such that (4.12) holds.

To show (4.13) and that φ maps (0,∞) × (0, T ] × (0,∞) to (1/ν0, ν0), rather than

(0,∞), we put

dSt = νSt dWt, S0 = S0 > 0, 0 ≤ t ≤ T <∞,

dSt = ν St dWt, S0 = S0 > 0, 0 ≤ t ≤ T <∞,

where, by (A0), ν = 1/ν0 and ν = ν0 are distinct positive constants that 0 < ν ≤
ν(s) ≤ ν <∞ for all s ∈ (0,∞). Now define the upper and lower call prices by

C(s, τ ; k) = Es[(Sτ − k)+],

C(s, τ ; k) = Es[(Sτ − k)+],

where (s, τ ; k) ∈ (0,∞)× [0, T ]× (0,∞). By the same argument leading to Lemma 4.2,

(Sτ ) and (Sτ ) are P-martingales and the upper and lower call prices are well defined.

Indeed, these upper and lower call prices are none other than the Black–Scholes prices
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with respectively the constant upper and lower volatilities ν and ν, meaning that

C(s, τ ; k) ≡ B(s, τ ; k; ν),

C(s, τ ; k) ≡ B(s, τ ; k; ν).

Since the function (s)+ := max(s, 0) is convex, the mean stochastic comparison theorem

of Hajek [42, Theorem 3 or Theorem 4.1] implies that

C(s, τ ; k) ≤ C(s, τ ; k) ≤ C(s, τ ; k),

for all (s, τ ; k) ∈ (0,∞) × [0, T ] × (0,∞). Since we have proved that for (s, τ ; k) ∈
(0,∞) × (0, T ] × (0,∞), C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)), these call price inequalities

imply that

B(s, τ ; k; ν) ≤ B(s, τ ; k;φ(s, τ ; k)) ≤ B(s, τ ; k; ν)

for all (s, τ ; k) ∈ (0,∞) × (0, T ] × (0,∞). By (4.14), B(s, τ ; k;ψ) is monotonically

increasing in ψ, other things being equal. From this (4.13) follows. The proof is now

complete.

Remark 4.7. We shall continue to write φ : (0,∞) × (0, T ] × (0,∞) → (0,∞), to

signify that the interval (ν, ν) ⊂ (0,∞) can be made arbitrarily large.

It is important to note that the implicit function theorem does not guarantee the

existence of the implied volatility φ(s, τ ; k) at τ = 0, as the Jacobian determinant

|J(̥)| = 0 at τ = 0.

Since the appearance of the Black–Scholes formula in 1973, implied volatility prob-

lems have attracted a great deal of interest from both practitioners and academics. Yet,

it was only in 2002 that implied volatilities under a class of local volatility models were

proved to have limits at expiry in the Sobolev spaces W 2,1,p
loc ((0,∞)2), 1 < p < ∞. See

(1.17) for the definition of the Sobolev space and Berestycki et al. [4, Theorem 1] for

details of the result.

In contrast to the result of Berestycki et al. [4], our implied volatility φ belongs

to C2,1,2((0,∞) × (0, T ] × (0,∞)). This result comes at the cost of stronger regularity

assumptions on the local volatility. Nevertheless, we also know more about the prop-

erties of the implied volatility, such as its first order Taylor expansion and gradient

and Hessian asymptotics. In the rest of this and the next chapter, we will show that

the Sobolev space results of Berestycki et al. [4, Theorem 1] can be carried over to

C2,1,2((0,∞) × (0, T ] × (0,∞)), that is, φ solves a certain parabolic PDE and that
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limτ→0 φ(s, τ ; k) exists. The gradient and Hessian asymptotics are presented in Chap-

ters 7 and 8.

4.4 PDE for the implied volatility

To derive the PDE for the implied volatility φ, we need the following basic identities

for the Black–Scholes price functional B.

Lemma 4.8. For the Black–Scholes call option pricing function B(s, τ ; k;ψ) with ψ

being a positive parameter, the following identities are valid:

∂d1

∂ψ
= −d2

ψ
, (4.15)

∂d2

∂ψ
= −d1

ψ
, (4.16)

Bτ =
ψ

2
√
τ
sn(d1), (4.17)

Bs = N(d1), (4.18)

Bss =
1

sψ
√
τ
n(d1), (4.19)

Bψ = sn(d1)
√
τ , (4.20)

Bψψ =
s
√
τd1d2

ψ
n(d1), (4.21)

Bsψ = n(d1)

[
− ln(s/k)

ψ2
√
τ

+

√
τ

2

]
. (4.22)

Proof. Straightforward differentiation would yield these identities.

Having these identities at our disposal, deriving the PDE for the implied volatility

φ will involve little effort. Under uniform boundedness and continuity assumptions on

the local volatility, Berestycki et al. [4, Equation (15)] derived the following PDE in

some transformed coordinates for the implied volatility in W 2,1,p
loc ((0,∞)2), 1 < p ≤ ∞.

Here, our PDE holds for φ ∈ C2,1((0,∞) × (0, T ]).

Theorem 4.9. Let (4.1) and (A0) hold. Then the implied volatility φ satisfies the time

degenerate quasilinear parabolic equation

φ2+2τφφτ −ν2(s)

[(
1 − s[ln(s/k)]φs

φ

)2

−
(

1 − sτφφs
2

)2

+ 1 + s2τφφss

]
= 0 (4.23)

in (0,∞) × (0, T ].
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Proof. Since C(s, τ) = B(s, τ ;φ(s, τ)), by the chain rule we have

Cτ = Bτ + Bφφτ ,
Cs = Bs + Bφφs,
Css = Bss + 2Bsφφs + Bφφφ2

s + Bφφss.

Substituting Cτ and Css into (4.9) and using the identities (4.15)–(4.22), we get

φ

2
√
τ
sn(d1) + sn(d1)

√
τφτ

− 1

2
ν2(s)s2

[
1

sφ
√
τ
n(d1) − 2

d2

φ
n(d1)φs +

s
√
τd1d2

φ
n(d1)φ

2
s + sn(d1)

√
τφss

]
= 0

in R × (0, T ]. Multiplying 2φ
√
τ/[sn(d1)] to both sides of the equation gives

φ2 + 2τφφτ − ν2(s)
(
1 − 2s

√
τd2φs + s2τd1d2φ

2
s + s2τφφss

)
= 0.

Grouping the terms inside the parentheses then gives (4.23), and the proof is complete.

Remark 4.10. Observe that in (4.23) if φ(s, 0) := limτ→0 φ(s, τ) exists, and if τφφτ ,

τφφs, and τφφss all tend to 0 as τ → 0, then as τ → 0, (4.23) becomes

φ2(s, 0) − ν2(s)

(
1 − s[ln(s/k)]φs(s, 0)

φ(s, 0)

)2

= 0. (4.24)

Because a solution to (4.24) is given by the function

s 7→ [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

, (4.25)

we conjecture that for all s ∈ (0,∞),

φ(s, 0) ≡ lim
τ→0

φ(s, τ) = [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

. (4.26)

In the next chapter we will prove that (4.26) is indeed true.



Chapter 5

Implied volatility at expiry: zero

order expansion

In this chapter we will show that the implied volatility admits a zero order Taylor

expansion near expiry and hence at expiry the implied volatility φ(s, τ) exists as a

limit, uniformly in s ∈ (0,∞). Berestycki et al. [4, Theorem 1] have shown the same

results for φ ∈W 2,1,p
loc ((0,∞)2). By adapting their argument we demonstrate that their

asymptotic results remain valid for φ ∈ C2,1((0,∞) × (0, T ]), provided that the local

volatility is sufficiently smooth.

This chapter is organized as follows. Section 5.1 states the main results of this

chapter. Section 5.2 explains the idea behind the proofs of the main results. Sections

5.3–5.8 detail how we are going to prove the main results in another coordinate system.

Section 5.9 presents the proof of the zero order Taylor expansion first for the trans-

formed implied volatility and then for the implied volatility. Section 5.10 summarizes

the result for the transformed implied volatility in a PDE and limit theorem. This

theorem will be used in the subsequent chapters.

Note that Goldys and Roper [36] have proved the small time limit in (5.4) under

some weaker assumptions and for more general models. However, they have not dealt

with convergence rates as in (5.1) below.

5.1 Main result of the chapter

Theorem 5.1. Let (2.1), (A0)–(A2) hold. Then uniformly in s ∈ (0,∞), the implied

volatility φ satisfies

φ(s, τ) = φ0(s) + O(τ), as τ → 0, (5.1)

33
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where O = O(V2) and

φ0(s) = [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

. (5.2)

We will prove this theorem in Section 5.9. Note that (5.1) indicates that as τ tends

to zero, φ(s, τ) converges to φ0(s), uniformly in s ∈ (0,∞). Note also that once proven,

Theorem 5.1, together with Theorem 4.9, implies the following result, whose proof we

will omit:

Theorem 5.2. Let (2.1), (A0)–(A2) hold. Then for each k ∈ (0,∞), the implied

volatility φ(s, τ ; k) belongs to C2,1((0,∞) × (0, T ]) and satisfies the time degenerate

quasilinear parabolic equation

φ2 +2τφφτ − ν2(s)

[(
1 − s[ln(s/k)]φs

φ

)2

−
(

1 − sτφφs
2

)2

+ 1 + s2τφφss

]
= 0, (5.3)

in (0,∞) × (0, T ], with the initial condition

φ(s, 0) := lim
τ→0

φ(s, τ) = φ0(s), s ∈ (0,∞). (5.4)

Remark 5.3. After (5.1) is proved, we can extend the implied volatility φ(s, τ) from

(0,∞)×(0, T ] to (0,∞)×[0, T ]. The extended implied volatility φ̃ is defined as φ̃(s, τ) =

φ(s, τ) for (s, τ) ∈ (0,∞) × (0, T ], and φ̃(s, 0) = φ0(s). With some abuse of notation,

we will write φ instead of φ̃ in the rest of this thesis.

5.2 Idea of the proof

We will prove Theorems 5.1 as follows:

Firstly, we change the variable s to x by setting x = ln(s/k). In the (x, τ) coor-

dinates, the transformed implied volatility ϕ is given by ϕ(x, τ) = φ(s, τ). Secondly,

we prove that there exist upper and lower functions ϕ and ϕ such that for some small

enough T ,

ϕ(x, τ) ≤ ϕ(x, τ) ≤ ϕ(x, τ), (x, τ) ∈ R × [0, T ], (5.5)

where, for some positive constant λ,

ϕ(x, τ) = I(x)(1 + λτ),

ϕ(x, τ) = I(x)(1 − λτ),
(5.6)
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with the initial function I(x) given by

I(x) := x

(∫ x

0

dz

σ(z)

)−1

, x ∈ R. (5.7)

The upper and lower solutions ϕ and ϕ will force ϕ to be

ϕ(x, τ) = I(x) + O(τ), ∀ x ∈ R. (5.8)

Thirdly, Theorem 5.1 is proved by simply transforming (5.8) back to the the (s, τ)

coordinates and using the fact that as x = ln(s/k),

φ0(s) = I(x(s)). (5.9)

That (5.9) holds can be checked by substitution and the details are omitted.

5.3 Change of variables: (s, τ) → (x, τ)

As explained above, instead of working with the original variables (s, τ), we will work

with the reduced variables (x, τ), where for each k ∈ (0,∞),

x = ln(s/k), s ∈ (0,∞). (5.10)

Note that in finance x is called the log moneyness. A call option is respectively in, at,

and out of the money when respectively x > 0, x = 0, and x < 0. Let

σ(x) = ν(kex). (5.11)

Then (A0)–(A4) respectively imply that

(Ā0) the local volatility σ(·) is locally Lipschitz continuous in R and there exists a

strictly positive constant ν0 such that

0 < ν ≡ 1

ν0
≤ σ(x) ≤ ν0 ≡ ν <∞, ∀ x ∈ R; (5.12)

(Ā1) the first derivative σx(·) exists and is locally Lipschitz continuous in R and

‖σx‖0 := sup
x∈R

|σx(x)| ≤ const(V1) <∞; (5.13)
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(Ā2) the second derivative σxx(·) exists and is continuous in R and

‖σxx‖0 ≤ const(V2) <∞; (5.14)

(Ā3) the third derivative σxxx(·) exists and is continuous in R and

‖σxxx‖0 ≤ const(V3) <∞; (5.15)

(Ā4) the forth derivative σxxxx(·) exists and is continuous in R and

‖σxxxx‖0 ≤ const(V4) <∞. (5.16)

Remark 5.4 (Warning). In the rest of this thesis, when we state a result in the (x, τ)

coordinates but impose (Ai), i = 0, 1, 2, 3, 4, as the assumptions, the reader should note

that the (Āi)’s, as consequences of the (Ai)’s, would actually be used in the proof.

In the (x, τ) coordinates, we define the transformed call option price v(x, τ) and the

transformed Black–Scholes price B(x, τ ;ψ) by

v(x, τ) := C(s, τ ; k)/k, (5.17)

B(x, τ ;ψ) := B(s, τ ; k;ψ)/k = exN(d1) −N(d2), (5.18)

where, as a parameter, ψ is any positive constant, and





N(d) =

∫ d

−∞
n(z) dz, n(z) =

1√
2π

e−z
2/2,

d1(x, τ ;ψ) =
x√
τψ

+

√
τψ

2
, d2(x, τ ;ψ) =

x√
τψ

−
√
τψ

2
= d1 −

√
τψ.

(5.19)

Moreover, in (x, τ), we defined the transformed implied volatility ϕ(x, τ) by

ϕ(x, τ) := φ(s(x), τ ; k). (5.20)

The function ϕ is so named because it is precisely the volatility implied by the trans-

formed call option price v, in the sense that

v(x, τ) = B(x, τ ;ϕ(x, τ)). (5.21)

We will prove this equivalence relation between ϕ and φ in the following lemma.

Lemma 5.5 (Equivalence lemma). Let (2.1), (A0) hold. Then
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(i) the transform implied volatility ϕ satisfies

v(x, τ) = B(x, τ ;ϕ(x, τ)), (x, τ) ∈ R × (0, T ], (5.22)

if and only if the implied volatility φ satisfies

C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)), (x, τ, k) ∈ (0,∞) × (0, T ] × (0,∞); (5.23)

(ii) ϕ satisfies

ϕ(x, τ) = I(x) + O(τ) as τ → 0, (5.24)

with O = O(V2) and

I(x) = x

(∫ x

0

dz

σ(z)

)−1

, (5.25)

if and only if φ satisfies the conclusion of Theorem 5.1, i.e.

φ(s, τ) = φ0(s) + O(τ) as τ → 0, (5.26)

with O = O(V2) and

φ0(s) = [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

, s ∈ (0,∞). (5.27)

Proof. Since (2.1), (A0) hold, ϕ and φ are well defined. As a result, part (i) and

(ii) follow from the change of variables x = ln(s/k), the definitions (5.17)–(5.20), and

C(s, τ ; k) = B(s, τ ; k;φ(s, τ ; k)).

This equivalence lemma shows that to prove Theorem 5.1, it is enough to prove

Theorem 5.6 (Zero order Taylor expansion). Let (2.1), (A0)–(A2) hold. Then

ϕ(x, τ) = I(x) + O(τ) as τ → 0, (5.28)

where O = O(V2).

The rest of this chapter is devoted to the proof of this theorem. We now list some

basic results in the (x, τ) coordinates.

5.4 PDE for transformed call price and implied volatility

We have the following PDE result for the (transformed) call option price v.
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Lemma 5.7. Let (2.1), (A0) hold. Then





vτ =
1

2
σ2(x)(vxx − vx), (x, τ) ∈ R × (0, T ],

v(x, 0) = (ex − 1)+, x ∈ R,
(5.29)

Further,

vτ (x, τ) ≥ 0 for all (x, τ) ∈ R × [0, T ]. (5.30)

Proof. Under the assumptions of this lemma, C(s, τ ; k) satisfies PDE (4.9). Since by

definition v(x, τ) = C(s, τ ; k)/k, differentiating v and substituting the derivatives into

(4.9) gives (5.29). By Lemma 4.4, Cτ (s, τ) ≥ 0 for all (s, τ) ∈ (0,∞)× [0, T ]. This gives

(5.30), the time decaying property of v(x, τ) in τ . The proof is thus complete.

The following identities are needed to derive the PDE for the transformed implied

volatility ϕ.

Lemma 5.8. For the transformed Black–Scholes price B(x, τ ;ψ) with ψ being a pa-

rameter, the following identities are valid:

exn(d1) = n(d2), (5.31)

∂d1

∂ψ
= − x√

τψ2
+

√
τ

2
, (5.32)

∂d2

∂ψ
= − x√

τψ2
−

√
τ

2
, (5.33)

and

Bτ =
ψ

2
√
τ
n(d2), (5.34)

Bx = exN(d1), (5.35)

Bxx = exN(d1) +
n(d2)√
τψ

, (5.36)

Bψ =
√
τn(d2), (5.37)

Bψψ = d2

[
x

ψ2
+
τ

2

]
n(d2), (5.38)

Bxψ = exn(d1)

[
− x√

τψ2
+

√
τ

2

]
. (5.39)

Proof. An exercise of differentiation.

In the (x, τ) coordinates, Theorem 4.9 is translated into the following result:
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Lemma 5.9 (PDE for the transformed implied volatility). Let (2.1), (A0) hold. Then

for each k ∈ (0,∞), the transformed implied volatility ϕ(x, τ) belongs to C2,1((0,∞) ×
(0, T ]) and satisfies the time degenerate quasilinear parabolic equation

2τϕϕτ + ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

− σ2(x)τϕϕxx +
1

4
σ2(x)τ2ϕ2ϕ2

x = 0 in R × (0, T ].

(5.40)

Proof. Under the assumptions (2.1) and (A0), v(x, τ) solves (5.29). By definition,

ϕ(x, τ) = φ(s(x), τ). Since φ ∈ C2,1((0,∞) × (0, T ]), ϕ ∈ C2,1(R × (0, T ]). By (5.22),

v(x, τ) = B(x, τ ;ϕ(x, τ)), (5.41)

so the chain rule gives

vτ = Bτ +Bϕϕτ ,

vx = Bx +Bϕϕx,

vxx = Bxx + 2Bxϕϕx +Bϕϕϕ
2
x +Bϕϕxx.

(5.42)

By substituting vτ , vx, and vxx into (5.29) and applying the identities (5.31)–(5.39),

we get

0 = vτ −
1

2
σ2(x)(vxx − vx)

= (Bτ +Bϕϕτ ) −
1

2
σ2(x)(Bxx + 2Bxϕϕx +Bϕϕϕ

2
x +Bϕϕxx −Bx −Bϕϕx)

=
n(d2)

2
√
τϕ

[
2τϕϕτ + ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

− σ2(x)τϕϕxx +
1

4
σ2(x)τ2ϕ2ϕ2

x

]

(5.43)

for all (x, τ) ∈ R × (0, T ]. Here d2 = d2(x, τ ;ϕ). By (4.13), 0 < ν ≤ φ(s, τ ; k) ≤ ν <∞
for all (s, τ ; k) ∈ (0,∞) × (0, T ] × (0,∞). By (5.20), ϕ(x, τ) = φ(s, τ ; k). Hence

n(d2)/(2
√
τϕ) is bounded and strictly positive in R × (0, T ]. Consequently the terms

inside the square brackets in (5.43) must be zero in R × (0, T ]. The proof is thus

complete.

Corollary 5.10. Let ψ ∈ C2,1(R × (0, T ]) Put u(x, τ) = B(x, τ ;ψ(x, τ)). Then the
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following identity holds:

uτ −
1

2
σ2(x)(uxx − ux)

=
n(d2)

2
√
τψ

[
2τψψτ + ψ2 − σ2(x)

(
1 − x

ψx
ψ

)2

− σ2(x)τψψxx +
1

4
σ2(x)τ2ψ2ψ2

x

]
(5.44)

in R × (0, T ].

Proof. The identity follows from (5.41)–(5.43).

Remark 5.11. Note that (5.40) holds if and only if

σ(x) =




ϕ2 + 2τϕϕτ(
1 − xϕx

ϕ

)2
+ τϕϕxx − 1

4τ
2ϕ2ϕ2

x




1/2

, (x, τ) ∈ R × (0, T ]. (5.45)

This will be used in Section 5.6 below to define the associated local volatility functional

Σ[·], see (5.54).

Remark 5.12. As explained in Remark 4.10, if ϕ, ϕτ , ϕx, and ϕxx are sufficiently

regular, then as τ → 0, (5.40) would give the initial Ordinary Differential Equation

(ODE)

ϕ2(x, 0) − σ2(x)

(
1 − x

ϕx(x, 0)

ϕ(x, 0)

)2

= 0, x ∈ R. (5.46)

It can be checked that I(x), defined by (5.7), solves (5.46). This motivates the conjec-

ture that ϕ(x, 0) = I(x) and ϕ(x, τ) = I(x)(1 + O(τ)).

5.5 Properties of the initial function

In what follows we will often suppress the arguments of the functions when presenting

results. Let us rewrite the initial function I(x) as

I(x) =
x

J(x)
, J(x) :=

∫ x

0

dz

σ(z)
. (5.47)

Then as mentioned earlier in Remark 5.12 (c.f. Remark 4.10), I(x) solves ODE (5.46),

namely,

I2 = σ2(x)

(
1 − x

Ix
I

)2

. (5.48)
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Moreover, with the arguments suppressed we have the following identities:

I =
x

J
,

Ix =
1

J

(
1 − x

σJ

)
=
I

x
− I2

xσ
,

Ixx = − 2

J2σ
+

2x

J3σ2
+

xσx
J2σ2

= − 2I2

x2σ
+

2I3

x2σ2
+
σxI

2

xσ2
,

Ixxx =
6

J3σ2
+

3σx
J2σ2

− 6x

J4σ3
− 6xσx
J3σ3

− 2xσ2
x

J2σ3
+
xσxx
J2σ2

=
6I3

x3σ2
+

3I2σx
x2σ2

− 6I4

x3σ3
− 6I3σx

x2σ3
− 2I2σ2

x

xσ3
+
I2σxx
xσ2

.

(5.49)

Further,

1 − x
Ix
I

=
I

σ
, x ∈ R. (5.50)

Also, by the L’Hospital rule,

I(0) = σ(0),

Ix(0) =
1

2
σx(0),

Ixx(0) =
2σxx(0)σ(0) − σ2

x(0)

6σ(0)
,

Ixxx(0) =
σxxx(0)σ

2(0) − 2σx(0)σxx(0)σ(0) + σ3
x(0)

4σ2(0)
.

(5.51)

Keeping in mind that condition (Ai) ⇒ (Āi), i = 0, . . . 4, we get the following lemma.

Lemma 5.13. If (Ai), i = 0, . . . , 4, holds, then

‖I‖i ≤ const(Vi), i = 0, . . . , 4. (5.52)

In particular, (A0) implies that

0 < ν =
1

ν0
≤ I(x) ≤ ν0 = ν <∞, ∀ x ∈ R. (5.53)

Proof. The bounds follow from (5.49) and (5.51).

5.6 Associated local volatilities and their Taylor series

To show existence of the upper and lower functions ϕ and ϕ, we will define and use

certain associated volatilities. Here we will closely follow Berestycki et al. [4]. For
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ψ ∈ C2,1(R × (0, T ]), we define a local volatility functional Σ[·] by

Σ[ψ](x, τ) =

(
G[ψ]

H[ψ]

)1/2

, (5.54)

where

G[ψ] = (τψ2)τ = ψ2 + 2τψψτ ,

H[ψ] =

(
1 − x

ψx
ψ

)2

+ τψψxx −
1

4
τ2ψ2ψ2

x.
(5.55)

Further, we let I[0, T ] to be the class of those functions ψ in C2,1(R× (0,∞)) such that

Σ[ψ](x, τ) is well defined, continuous in R × [0, T ], and on this region satisfies

0 < const1 ≤ Σ[ψ](x, τ) ≤ const2 <∞, (5.56)

and

lim
τ→0

τψ2(x, τ) = 0 uniformly in x ∈ R. (5.57)

Definition 5.14 (Associated local volatility). If ψ ∈ I[0, T ] for some T > 0, then

Σ[ψ](x, τ) is called an associated local volatility, associated with the (transformed)

local volatility σ(x).

Note that I[0, T ] is not empty. Any positive real constant will be an element of

I[0, T ]. Note also that by Remark 5.11, if ψ ∈ I[0, T ], then it satisfies

2τψψτ + ψ2 − Σ2[ψ](x, τ)

(
1 − x

ψx
ψ

)2

− Σ2[ψ](x, τ)τψψxx +
1

4
Σ2[ψ](x, τ)τ2ψ2ψ2

x = 0

(5.58)

in R × (0, T ]. To see this, replace σ(x) with Σ[ψ](x, τ) in (5.45). Moreover, we have

the following lemma.

Lemma 5.15. Let ψ ∈ I[0, T ] and u(x, τ) = B(x, τ ;ψ(x, τ)). Then





uτ =
1

2
Σ2[ψ](x, τ)(uxx − ux) in R × (0, T ],

u(x, 0) = (ex − 1)+, x ∈ R.
(5.59)
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Proof. Since ψ ∈ I[0, T ] and u(x, τ) = B(x, τ ;ψ(x, τ)), by (5.44)

uτ −
1

2
Σ2[ψ](x, τ)(uxx − ux)

=
n(d2)

2
√
τψ

[
2τψψτ + ψ2 − Σ2[ψ](x, τ)

(
1 − x

ψx
ψ

)2

−Σ2[ψ](x, τ)τψψxx +
1

4
Σ2[ψ](x, τ)τ2ψ2ψ2

x

]

in R × (0, T ]. Then (5.59) follows from the definition of Σ[·] and (5.58). The initial

condition follows from the initial condition of B(x, τ ;ψ(x, τ)) and (5.56). The proof is

therefore complete.

Let

ψ(x, τ) = I(x)(1 + λτ), (x, τ) ∈ R × [0, T ], (5.60)

with λ being some arbitrarily fixed real constant. Assume for the moment that σ(·)
is sufficiently bounded and smooth. (In Proposition 5.19 below we will specify some

sufficient conditions on σ.) Then ψ belongs to I[0, T ], and a first order Taylor expansion

of Σ[ψ](x, τ) about τ = 0 is given by

Σ[ψ](x, τ) = Σ[ψ](x, 0) + τΣτ [ψ](x, 0) +R1[ψ](x, τ), (5.61)

where the remainder

R1[ψ](x, τ) =

∫ τ

0
{Σηη[ψ](x, η)} (τ − η) dη. (5.62)

By definition,

Στ [ψ](x, τ) =
1

2Σ[ψ]H2[ψ]
(Gτ [ψ]H[ψ] −G[ψ]Hτ [ψ]) . (5.63)

Suppressing the functional input ψ and the arguments x and τ , this becomes

Στ [ψ](x, τ) =
1

2ΣH2
(GτH −GHτ ). (5.64)

Further,

Σττ [ψ](x, τ) =
1

2Σ2H4

[
(GτH −GHτ )τΣH

2 − (GτH −GHτ )(ΣH
2)τ
]
,

=
1

2Σ2H4
F,

(5.65)
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where

F [ψ](x, τ) := (GττH −GHττ )ΣH
2 − (GτH −GHτ )(ΣτH

2 + 2ΣHHτ ). (5.66)

Although τ ∈ [0, T ], the above Taylor expansion about τ = 0 can be justified by

extending the time domain to [−T, T ] and setting Σ̃[ψ](x,−τ) = Σ[ψ](x, τ) for all

τ ≥ 0. In that case, the standard Taylor’s theorem can be applied in an interval

(−T1, T1) ⊂ [−T, T ], subject to the regularity of Σ[ψ].

Now let us calculate the various derivatives of G and H and express them in terms

of ψ. For G, we have

G[ψ] = ψ2 + 2τψψτ ,

Gτ [ψ] = 4ψψτ + 2τψ2
τ + 2τψψττ ,

Gττ [ψ] = 6ψ2
τ + 6ψψττ + 6τψτψττ + 2τψψτττ .

(5.67)

For H, we have

H[ψ] =

(
1 − x

ψx
ψ

)2

+ τψψxx −
1

4
τ2ψ2ψ2

x,

Hτ [ψ] = 2

(
1 − xψx

ψ

)(
−xψxτ

ψ
+
xψxψτ
ψ2

)

+ ψψxx + τψτψxx + τψψxxτ −
1

2
τψ2ψ2

x −
1

2
τ2ψψ2

xψτ −
1

2
τ2ψ2ψxψxτ ,

(5.68)

and

Hττ [ψ]

= 2

(
−xψxτ

ψ
+
xψxψτ
ψ2

)2

+ 2

(
1 − xψx

ψ

)(
−xψxττ

ψ
+

2xψxτψτ
ψ2

− 2xψxψ
2
τ

ψ3
+
xψxψττ
ψ2

)

+ 2ψτψxx + 2ψψxxτ + τψττψxx + 2τψτψxxτ + τψψxxττ −
1

2
ψ2ψ2

x − 2τψψ2
xψτ

− 2τψ2ψxψxτ −
1

2
τ2ψ2

τψ
2
x − 2τ2ψψxψτψxτ −

1

2
τ2ψψ2

xψττ −
1

2
τ2ψ2ψ2

xτ −
1

2
τ2ψ2ψxψxττ .

(5.69)
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Lemma 5.16. Let (A0)–(A2) hold. Let ψ be as in (5.60). Then

ψ = I(1 + λτ),

ψx = Ix(1 + λτ),

ψxx = Ixx(1 + λτ),

ψτ = λI,

ψττ ≡ 0,

ψτττ ≡ 0,

ψxτ = λIx,

ψxxτ = λIxx,

ψxττ ≡ 0,

ψxxττ ≡ 0.

Moreover, as τ → 0,

ψ → I,

ψx → Ix,

ψxx → Ixx,

ψτ → λI,

ψττ ≡ 0,

ψτττ ≡ 0,

ψxτ → λIx,

ψxxτ → λIxx,

ψxττ ≡ 0,

ψxxττ ≡ 0,

where the convergence is uniform in x ∈ R.

Proof. By Lemma 5.13, I, Ix, and Ixx are well defined and bounded. Differentiating ψ

and taking the limits gives the results.

The lemma above leads to the following corollaries.

Corollary 5.17. Let (A0)–(A2) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1 + λτ),
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for (x, τ) ∈ R × [0, T ]. Then uniformly in x ∈ R, as τ → 0,

G[ψ] → I2,

Gτ [ψ] → 4λI2,

Gττ [ψ] → 6λ2I2,

(5.70)

and

H[ψ] → I2

σ2
,

Hτ [ψ] → −IIxx,

Hττ [ψ] → 4λIIxx −
1

2
I2I2

xx,

(5.71)

and

Σ[ψ] → σ,

Στ [ψ] → σ

(
λ

2I2

σ2
+
IIxx

2

)
.

(5.72)

Proof. These uniform limits follow from the definitions of G[·], H[·], and Σ[·], and

Lemma 5.16.

Recall that by (1.16),

‖Σττ [ψ]‖0 = sup
(x,τ)∈R×[0,T ]

|Σττ [ψ](x, τ)| .

Then we have the following corollary.

Corollary 5.18. Let (A0)–(A2) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1 + λτ),

for (x, τ) ∈ R × [0, T ]. Then the following statements are true:

(i) There exist positive constants T = T (λ,V2) and const1,2 = const1,2(T, λ,V2) such

that

0 < const1 ≤ ψ(x, τ), G[ψ](x, τ),H[ψ](x, τ),Σ[ψ](x, τ) ≤ const2 <∞,

for all (x, τ) ∈ [0, T ].

(ii) ψ ∈ I[0, T ] for some positive T = T (λ,V2).

(iii) T ‖Σττ [ψ]‖0 → 0 as T → 0.
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Proof. By Lemma 5.16, ψ(x, τ) → I(x) as τ → 0, uniformly in x ∈ R. Since I(x) is

strictly positive and bounded, ψ is the same. By (5.55), Lemma 5.13, and Corollary

5.17, we know that for sufficiently small T = T (λ,V2), G[ψ] and H[ψ] are continu-

ous, strictly positive, and bounded. Hence by (5.54), Σ[ψ] is also continuous, strictly

positive, and bounded for the same sufficiently small T . This proves statement (i).

Statement (ii) then follows from the definition of I[0, T ]. Statement (iii) follows from

(5.65), Corollary 5.17, and statement (i). The proof is thus complete.

Proposition 5.19. Let (A0)–(A2) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1+λτ),

for (x, τ) ∈ R× [0, T ]. Then for all sufficiently small T = T (λ,V2), the associated local

volatility Σ[ψ] admits the first order Taylor expansion

Σ[ψ](x, τ) = σ(x) + τσ(x)

(
λ

2I2(x)

σ2(x)
+
I(x)Ixx(x)

2

)
+R1[ψ](x, τ) (5.73)

in R × [0, T ], where R1[ψ] is defined by (5.62) and

R1[ψ](x, τ) = O(τ2) as τ → 0, (5.74)

with O = O(T, λ,V2).

Proof. We will prove the order property of R1[ψ] first. By the definition of ψ, (A0)–(A2),

and Corollary 5.18, we know that H[ψ](x, τ) and Σ[ψ](x, τ) are continuous, strictly pos-

itive, and bounded in R× [0, T1], provided T1 = T1(λ,V2) is sufficiently small. Similarly,

by (5.66) and Corollary 5.18, we know that F [ψ](x, τ) is continuous and bounded in

R × [0, T2], provided T2 = T2(λ,V2) is sufficiently small. Let T3 = min(T1, T2). Then

Σττ [ψ](x, τ) is continuous and bounded in R × [0, T3] by (5.65); and so is R1[ψ] by

(5.62). Moreover,

|R1[ψ](x, τ)| =

∣∣∣∣
∫ τ

0
{Σηη[ψ](x, η)} (τ − η) dη

∣∣∣∣

≤
(

sup
(x,τ)∈R×[0,T3]

|Σττ [ψ](x, τ)|
)∫ τ

0
|τ − η| dη

≤ const × τ2,

(5.75)

where const = const(T3, λ,V2). This shows (5.74). Next, by substituting (5.72) into

(5.61) we obtain the Taylor expansion (5.73). The argument above also shows that the

Taylor expansion (5.73) holds for all 0 < T ≤ T3, and the proof is complete.
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5.7 Upper and lower functions: local volatility bounds

We now show that the (transformed) local volatility σ(·) is bounded by upper and lower

solutions ϕ and ϕ of the following form:

ϕ(x, τ) = I(x)(1 + λτ),

ϕ(x, τ) = I(x)(1 − λτ), (x, τ) ∈ R × [0, T ],
(5.76)

for some positive constants λ and T .

Lemma 5.20. Let (A0)–(A2) hold. Then there exist positive constants λ = λ(V2) and

T = T (λ,V2) such that

Σ[ϕ](x, τ) ≤ σ(x) ≤ Σ[ϕ](x, τ), ∀ (x, τ) ∈ R × [0, T ], (5.77)

where ϕ and ϕ are defined by (5.76).

Proof. Apply Proposition 5.19 to ϕ and use (5.73) to get

Σ[ϕ](x, τ) = σ(x)

[
1 + τ

(
λ

2I2(x)

σ2(x)
+
I(x)Ixx(x)

2

)
+
R1[ϕ](x, τ)

σ(x)

]
. (5.78)

By (5.12), 0 < 1/ν0 ≤ σ(x) ≤ ν0 <∞ for all x ∈ R. By Lemma 5.13,

0 < 1/ν0 ≤ I(x) ≤ ν0 <∞, x ∈ R,

‖Ixx‖0 ≤ const(V2).

Thus for any large enough positive constant λ1 = λ1(V2),

τ

(
λ1

2I2(x)

σ2(x)
+
I(x)Ixx(x)

2

)
≥ τν0 ≥ 0, ∀ (x, τ) ∈ R × [0, T ], (5.79)

where T is arbitrary. Next, since R1[ϕ] = O(τ2), for any small enough positive constant

T1 = T1(λ1,V2),

|R1[ϕ](x, τ)|
σ(x)

≤ const(T1, λ1,V2) × ν0τ
2 ≤ ν0τ, ∀ (x, τ) ∈ R × [0, T1]. (5.80)

Hence for such a large λ1 and small T1 we can define ϕ1(x, τ) = I(x)(1 + λ1τ), and by

(5.78), (5.79), and (5.80), we have

Σ[ϕ1](x, τ) ≥ σ(x), ∀ (x, τ) ∈ R × [0, T1].
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Now replace λ with −λ in (5.78). Then applying the same analysis shows that for some

large enough positive λ2 = λ2(V2) and small enough positive T2 = T2(λ2,V2),

Σ[ϕ](x, τ) = σ(x)

[
1 + τ

(
−λ2

2I2(x)

σ2(x)
+
I(x)Ixx(x)

2

)
+
R1[ϕ](x, τ)

σ(x)

]

≤ σ(x) (1 − τν0 + τν0)

≤ σ(x), ∀ (x, τ) ∈ R × [0, T2].

(5.81)

By setting first λ = max(λ1, λ2) and then T = min(T1, T2), we have (5.77), and this

completes the proof.

5.8 A comparison principle

In this section we will adapt the idea of Berestycki et al. [4, Lemma 6] to prove a

comparison principle. Like Berestycki et al., we will make use of the following well

known result on positive solutions of the Cauchy problem, which is a consequence of

the maximum principle for second order parabolic PDEs.

A theorem on positive solutions of the Cauchy problem

Let

Ω0 = R × (0, T ], Ω = R × [0, T ]. (5.82)

Put

Lu = a(x, t)uxx + b(x, t)ux + c(x, t)u − ut = 0, (x, t) ∈ Ω0. (5.83)

Assume that in Ω0 the coefficients a(x, t), b(x, t), and c(x, t) are continuous and

|a(x, t)| ≤ const, |b(x, t)| ≤ const × (|x| + 1), c(x, t) ≤ const × (|x|2 + 1). (5.84)

Here we call L a parabolic operator in Ω0 if a(x, t) > 0 for all (x, t) ∈ Ω0. Then we

have the following theorem:

Theorem 5.21 (Friedman [30, Theorem 9, p. 43]). Assume that L is a parabolic

operator in Ω0, Lu ≤ 0 in Ω0, and that

u(x, t) ≥ −β1 exp(β2 |x|2) in Ω (5.85)

for some positve constants β1, β2. If u(x, 0) ≥ 0 in R, then u(x, t) ≥ 0 in Ω.
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A comparison principle

Lemma 5.22 (Comparison principle, cf. Berestycki et al. [4, Lemma 6]). Let ψ,ψ ∈
I[0, T ] and suppose that

Σ[ψ](x, τ) ≤ σ(x) ≤ Σ[ψ](x, τ)

for all (x, τ) ∈ R × [0, T ]. Then ψ ≤ ϕ ≤ ψ in R × (0, T ].

Proof. We will modify the arguments of Berestycki et al. [4, Lemma 6] and prove the

second inequality ϕ ≤ ψ first. Let

v(x, τ) = B(x, τ ;ψ).

Then by Lemma 5.15, v solves





vτ =
1

2
Σ2[ψ](x, τ)(vxx − vx) in R × (0, T ],

v(x, 0) = (ex − 1)+, x ∈ R,

By (5.22), v(x, τ) = B(x, τ ;ϕ(x, τ)); by Lemma 5.7, v solves





vτ =
1

2
σ2(x)(vxx − vx) in R × (0, T ],

v(x, 0) = (ex − 1)+, x ∈ R,

with the time-τ increasing property that vτ (x, τ) ≥ 0 for all (x, τ) ∈ R× [0, T ]. Putting

w(x, τ) = v(x, τ) − v(x, τ) gives




wτ −

1

2
Σ2[ψ](x, τ)(wxx − wx) =

(
Σ2[ψ](x, τ)

σ2(x)
− 1

)
vτ in R × (0, T ],

w(x, 0) = 0, x ∈ R.

By assumption, Σ2[ψ]/σ2 ≥ 1, and so (Σ2[ψ]/σ2 − 1) ≥ 0. Noting that vτ ≥ 0, we have




wτ −

1

2
Σ2[ψ](x, τ)(wxx −wx) ≥ 0 in R × (0, T ],

w(x, 0) = 0, x ∈ R.
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Further, by the definition of the Black–Scholes functional B(·, ·; ·), we have

w(x, τ) = v(x, τ) − v(x, τ)

= B(x, τ ;ψ(x, τ)) −B(x, τ ;ϕ(x, τ))

≥ −β1 exp
(
β2 |x|2

)
, in R × [0, T ],

for some positive β1 and β2. Hence by Theorem 5.21, we have w(x, τ) ≥ 0 on R× [0, T ].

That implies that v(x, τ) ≤ v(x, τ) in R × [0, T ], i.e.,

B(x, τ ;ϕ(x, τ)) ≤ B(x, τ ;ψ(x, τ)) ∀ (x, τ) ∈ R × [0, T ].

By (5.37), B(x, τ ;φ) is strictly increasing in φ for (x, τ) ∈ R× (0, T ]. This implies that

ϕ ≤ ψ for all (x, τ) ∈ R × (0, T ].

The proof of the first inequality ψ ≤ ϕ is similar.

Let v(x, τ) = B(x, τ ;ψ) and w(x, τ) = v(x, τ)−v(x, τ). By assumption, Σ[ψ](x, τ) ≤
σ(x). This gives





wτ −
1

2
Σ2[ψ](x, τ)(wxx − wx) =

(
1 −

Σ2[ψ](x, τ)

σ2(x)

)
vτ ≥ 0 in R × (0, T ],

w(x, 0) = 0, x ∈ R.

Then the inequality ψ ≤ ϕ follows from Theorem 5.21 and the monotonicity of B(x, τ, φ)

in φ. And the proof is complete.

Remark 5.23. Our comparison principle is weaker than that of Berestycki et al. [4,

Lemma 6]. For example, we do not claim that if σ(x) ≤ Σ[ψ1](x, τ) ≤ Σ[ψ2](x, τ) for

some ψ1, ψ2 ∈ I[0, T ], then ψ1 ≤ ψ2.

Remark 5.24. In the proof of the comparison principle, we solely rely on the nonneg-

ativity of vτ to show that w,w ≥ 0. If the vτ and vτ ’s are nonnegative in R × (0, T ],

then Σ[ψ] ≤ Σ[ψ] would imply ψ ≤ ψ for all ψ,ψ ∈ I[0, T ]. However, we did not

attempt to prove the nonnegativity of the vτ and vτ ’s. The comparison principle in

its current form is sufficient for our purpose, which is to derive a zero order and a first

order Taylor expansion for the implied volatility.

5.9 Proof of the zero order Taylor expansion

We are ready to prove Theorem 5.6, the zero order Taylor expansion theorem for the

transformed implied volatility ϕ(x, τ).
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Proof of Theorem 5.6. As in (5.76), let ϕ(x, τ) = I(x)(1 + λτ) and ϕ(x, τ) = I(x)(1 −
λτ). Then by Lemma 5.20, there exist λ = λ(V2) and T = T (λ,V2) such that

Σ[ϕ](x, τ) ≤ σ(x) ≤ Σ[ϕ](x, τ), ∀ (x, τ) ∈ R × [0, T ].

By the comparison principle, Lemma 5.22,

ϕ(x, τ) ≤ ϕ(x, τ) ≤ ϕ(x, τ), ∀ (x, τ) ∈ R × (0, T ].

This shows ϕ(x, τ) = I(x) + O(τ). And the proof is complete.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. This follows from Theorem 5.6 and the equivalence lemma,

Lemma 5.5.

5.10 A PDE and limit theorem for implied volatility

Having shown that ϕ(x, τ) → I(x) as τ → 0, we follow the discussion in Remark 5.3

and define

ϕ(x, 0) := I(x), x ∈ R,

thus extending ϕ(x, τ) from R × (0, T ] to R × [0, T ]. By Lemma 5.9 and Theorem 5.6,

we obtain the following PDE and limit theorem for the transformed implied volatility:

Theorem 5.25. Let (2.1), (A0)–(A2) hold. Then the (transformed) implied volatility

ϕ(x, τ) belongs to C2,1((0,∞) × (0, T ]) and satisfies the time degenerate quasilinear

parabolic equation

2τϕϕτ + ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

− σ2(x)τϕϕxx +
1

4
σ2(x)τ2ϕ2ϕ2

x = 0, (5.86)

in R × (0, T ], with the initial condition ϕ(x, 0) = I(x). Further, as τ → 0,

ϕ(x, τ) = I(x) + O(τ), (5.87)

where O = O(V2).



Chapter 6

Implied volatility: first order

expansion

Berestycki et al. [5, p. 1356 and Section 6.3] have pointed out that implied volatilities,

under quite general multidimensional stochastic volatility models, can be expanded as

Taylor series in time. However, they have not proved their conjecture. In different con-

texts, Medvedev [65] and Medvedev and Scaillet [66] have derived asymptotic formulas

for implied volatilities under the assumption that the implied volatility admits Taylor

expansions in both the space and time variables.

In this chapter, by producing a first order Taylor expansion of the implied volatility

in time, we partially verify the statement of Berestycki et al. [5, pp. 1356, 1370].

Although we adapt the argument of Berestycki et al [4, Theorem 1], we give sufficient

conditions on the local volatility for the first order Taylor expansion of the implied

volatility to hold. Such sufficient conditions are not given in Berestycki et al. [5].

Moreover, our proof makes clear where the difficulties may lie if one wishes to adopt

the same method to obtain higher order Taylor expansions for the implied volatility.

This chapter is organised as follows. In Section 6.1, we state the main theorems of

this chapter. In Section 6.2, we explain the idea of the proofs, which we adopt from

Berestycki et al. [4, 5]. In Sections 6.3 and 6.4, we first formally derive and then study

the properties of the first order term of the Taylor expansion for the implied volatility.

In Section 6.5, we deduce second order Taylor expansions for a class of associated local

volatilities Σ[ψ] that will be used to bound the local volatility σ. In Section 6.6, we show

that there are upper and lower functions bounding the implied volatility. In Section

6.7, we prove the main theorems of this chapter.

53
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6.1 Main result of the chapter

Theorem 6.1 (First order Taylor expansion in time). Let (2.1), (A0)–(A4) hold. Then

as τ → 0,

φ(s, τ) = φ(s, 0)

(
1 + τ

φ2(s, 0)

[ln(s/k)]2
ln

(√
ν(k)ν(s)

φ(s, 0)

)
+ O(τ2)

)
, (6.1)

with O = O(V4).

Provided the diffusion coefficient ν(·) is sufficiently smooth, we conjecture that

higher order Taylor expansions in time can be obtained by the same method.

Similar to the proof of Theorem 5.1, instead of proving Theorem 6.1 directly, we

will again use the (x, τ) coordinates and prove the desired result for the transformed

implied volatility ϕ. In the (x, τ) coordinates, we will prove the following theorem:

Theorem 6.2. Let (2.1), (A0)–(A4) hold. Then the transformed implied volatility ϕ

admits the first order Taylor expansion

ϕ(x, τ) = I(x)(1 + f(x)τ + O(τ2)), (6.2)

where O = O(V4),

I(x) =
x

J
, J(x) =

∫ x

0

dz

σ(z)
, (6.3)

f(x) =
I2(x)

x2
ln

(√
σ(0)σ(x)

I(x)

)
. (6.4)

Further, in the limit as τ → 0,

ϕτ (x, 0) := lim
τ→0

ϕτ (x, τ) = I(x)f(x), uniformly in x ∈ R. (6.5)

6.2 Idea of the proof

The method we adopt here is similar to that used to prove the zero order Taylor series

in Chapter 5. There, as explained in Remark 5.12, we formally sent τ to zero in the

PDE for ϕ(x, t); then we solved the resulting ODE to obtain a formal initial function

ϕ(x, 0); after that we proved that this formal initial function was in fact the initial

function. The proof was accomplished by constructing upper and lower functions that

would force the implied volatility ϕ to converge to the desired formal initial function.
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This method for deriving implied volatility asymptotics originates from Berestycki et

al. [4].

Here we carry the idea of Berestycki et al. [4] a little further. First we will suppose

that the implied volatility ϕ admits a second order Taylor expansion

ϕ(x, τ) = I(x)(1 + f(x)τ + g(x)τ2 + O(τ3)), (6.6)

for some smooth function f and g. Next, we will differentiate with respect to τ the

PDE for ϕ, (5.86), to obtain the PDE for ϕτ . Then we will formally send τ to zero to

obtain an ODE for f . Having solved the ODE and found f , we will show that there

exist large constants λ and small constants T such that

ϕ(x, τ) ≤ ϕ(x, τ) ≤ ϕ(x, τ), ∀ (x, τ) ∈ R × (0, T ], (6.7)

where the upper and lower functions ϕ and ϕ are respectively defined by

ϕ(x, τ) = I(x)(1 + f(x)τ + λτ2),

ϕ(x, τ) = I(x)(1 + f(x)τ − λτ2), (x, τ) ∈ R × [0, T ].
(6.8)

Once (6.7) is proved, Theorem 6.2 follows from it. In principle, we can continue this

process to derive the second order term g and so on. However, this conjecture needs a

proof, and we will not pursue it in our thesis.

Remark 6.3. It appears that Berestycki et al. [5] are the first authors using this

method to derive first order Taylor expansions in time for implied volatilities. In [5,

Equations (6.8)–(6.10)], they give a first order expansion for the implied volatility under

a two factor stochastic volatility model. However, they do not detail their derivation

or prove that the term O(τ2) in their expansion was genuinely of second order. Nor

do they touch upon first order expansions for implied volatilities under local volatility

models. Here we verify that their method can be used to derive a first order Taylor

series in time for the implied volatility under the local volatility model (2.1).

6.3 Derivation of the first order term of the Taylor series

In this section we formally derive the first order term of the Taylor series for the implied

volatility ϕ. We assume that for some functions f, g : R → R and f, g ∈ C2(R), the

implied volatility ϕ admits the Taylor expansion

ϕ(x, τ) = I(x)(1 + f(x)τ + g(x)τ2 +O(τ3)),
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where I(x) is defined by (6.3) and O = O(V4). We also assume that ‖f‖2, ‖g‖2 < ∞,

and

∂ix∂
j
τO(τ3) = ∂jτ∂

i
xO(τ3) = O(τ3−j), i, j = 0, 1, 2, i+ j ≤ 3.

(Note that we impose these assumptions for the formal derivation only; they are not

used in the actual proofs.) Before formally using PDE (5.86) to solve for f , let us list

some properties of ϕ under the above assumptions. Suppressing the arguments x and

τ , we have

ϕ = I(1 + fτ + gτ2 + O(τ2)),

ϕx = Ix(1 + fτ + gτ2 + O(τ3)) + I(fxτ + gxτ
2 + O(τ3)),

ϕxx = Ixx(1 + fτ + gτ2 + O(τ3)) + 2Ix(fxτ + gxτ
2 + O(τ3)) + I(fxxτ + gxxτ

2 + O(τ3)),

ϕτ = I(f + 2gτ + O(τ2)),

ϕττ = I(2g + O(τ)),

ϕxτ = Ix(f + 2gτ + O(τ2)) + I(fx + 2gxτ + O(τ2)),

ϕxxτ = Ixx(f + 2gτ + O(τ2)) + 2Ix(fx + 2gxτ + O(τ2)) + I(fxx + 2gxxτ + O(τ2)).

Moreover, as τ → 0,

ϕ→ I,

ϕx → Ix,

ϕxx → Ixx,

ϕτ → If,

ϕττ → 2Ig,

ϕxτ → Ixf + Ifx,

ϕxxτ → Ixxf + 2Ixfx + Ifxx.

Recall from (5.86) that

2τϕϕτ + ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

− σ2(x)τϕϕxx +
1

4
σ2(x)τ2ϕ2ϕ2

x = 0. (6.9)
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Then differentiating both sides of this equation with respect to τ gives

2ϕϕτ + 2τϕ2
τ + 2τϕϕττ + 2ϕϕτ − 2σ2

(
1 − x

ϕx
ϕ

)(
−xϕxτϕ− ϕxϕτ

ϕ2

)

− σ2ϕϕxx − σ2τϕτϕxx − σ2τϕϕxxτ

+
1

2
σ2τϕ2ϕ2

x +
1

2
σ2τ2ϕϕτϕ

2
x +

1

2
σ2τ2ϕ2ϕxϕxτ = 0.

Grouping the terms, we get

4ϕϕτ + 2τϕ2
τ + 2τϕϕττ − 2σ2

(
1 − x

ϕx
ϕ

)(
−xϕxτϕ− ϕxϕτ

ϕ2

)

− σ2ϕϕxx − σ2τϕτϕxx − σ2τϕϕxxτ

+
1

2
σ2τϕ2ϕ2

x +
1

2
σ2τ2ϕϕτϕ

2
x +

1

2
σ2τ2ϕ2ϕxϕxτ = 0.

Letting τ → 0, we have,

4IIf + 0 + 0 − 2σ2

(
1 − x

Ix
I

)(
−x(Ixf + Ifx)I − IxIf

I2

)

− σ2IIxx − 0 − 0 + 0 + 0 + 0 = 0.

That is

4I2f − 2σ2

(
1 − x

Ix
I

)
(−xfx) − σ2IIxx = 0.

Rearranging the terms we get

fx +
2I2

xσ2

(
1 − x

Ix
I

)f =
IIxx

2x

(
1 − x

Ix
I

) .

Since

I2 = σ2

(
1 − x

Ix
I

)2

, (6.10)

the ODE can be simplified to

fx + 2

(
1

x
− Ix

I

)
f =

σIxx
2x

. (6.11)

By the method of variation of the constant, a solution to this ODE is

f(x) =
1

J2(x)
ln

(√
σ(0)σ(x)

I(x)

)
=
I2(x)

x2
ln

(√
σ(0)σ(x)

I(x)

)
, (6.12)
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where the constant
√
σ(0) is necessary to ensure that f is nonsingular at x = 0. Indeed,

if (A0)–(A2) hold, then an application of the L’Hospital rule will show that

f(0) =
1

12
σ(0)σxx(0) −

1

24
σ2
x(0) <∞. (6.13)

Hence by Lemma 5.13, ‖f‖0 ≤ const(V2). We will present more boundedness properties

of f in the next section.

Remark 6.4. Note that we have not claimed that f is the unique solution of ODE

(6.11). Yet, this will not affect the limit of ϕτ (x, τ) as τ tends to zero, for, the limit

of ϕτ (x, τ) must be unique, or otherwise there would be a contradiction. See (6.42)

below.

6.4 Properties of the first order term of the Taylor series

In this section we study the properties of f as f constitutes part of the first order term

in the first order Taylor expansion for the implied volatility.

Lemma 6.5. Let (A0)–(A4) hold. Then

‖f‖i ≤ const(Vi+2), i = 0, 1, 2. (6.14)

Proof. By straightforward differentiation, f , defined by (6.12), and its first two deriva-

tives can be written as

f(x) =
I2(x)

x2
ln

(√
σ(0)σ(x)

I(x)

)
,

fx(x) =
I3(x)

2x3σ(x)

[
xσx(x)

I(x)
− 2σ(x)

I(x)
+ 2 − 4 ln

(√
σ(0)σ(x)

I(x)

)]
,

fxx(x) =
I4(x)

2x4σ2(x)

[
−x

2σ2
x(x)

I2(x)
− 6xσx(x)

I(x)
+
x2σ(x)σxx(x)

I2(x)
+

2σ2(x)

I2(x)
+ 8I(x)σ(x)

−10 + 12 ln

(√
σ(0)σ(x)

I(x)

)
+

4xσx(x)

I(x)
ln

(√
σ(0)σ(x)

I(x)

)]
.
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An application of the L’Hospital rule then gives

f(0) =
1

12
σ(0)σxx(0) −

1

24
σ2
x(0),

fx(0) =
σxxx(0)σ(0)

24
,

fxx(0) =
1

1440σ2

(
−5σ4

x + 12σxσxxxσ
2 − 4σσxxσ

2
x + 4σ2σ2

xx + 36σ3σxxxx
)
,

(6.15)

where in the last identity the terms on the right hand side are evaluated at x = 0. Since

by (A0)–(A4), σ, I, and their derivatives are continuous, f , fx and fxx are continuous

in R. Partition R into [−1, 1] and R \ [−1, 1]. By (A0)–(A4) and Lemma 5.13, σ, I,

and their derivatives are bounded on R; in particular, σ and I are are strictly positive.

Hence the supremum norms of f , fx, and fxx are bounded on each of the sets [−1, 1]

and R \ [−1, 1]. This then gives (6.14).

Conjecture 6.6. Let σ0 be some positive constant such that 0 < 1/σ0 ≤ σ(x) ≤ σ0 for

all x ∈ R. Assume σ ∈ Cn+2(R) and ‖σ‖n+2 <∞ for n = 2, 3, 4, . . .. Then

‖f‖i ≤ const(‖σ‖0 , . . . , ‖σ‖i+2), i = 0, 1, 2, . . . , n.

Remark 6.7. To derive an nth order Taylor series expansion in time for the implied

volatility under our model and method, we need ‖f‖n to be bounded. Proving this

conjecture will help setting sufficient conditions on the local volatility σ for the higher

order Taylor expansion.

6.5 Associated local volatilities: second order expansions

Recall from Section 5.6 that the associated local volatility functional Σ[·] is defined by

Σ[ψ](x, τ) =

(
G[ψ]

H[ψ]

)1/2

, (6.16)

where

G[ψ] = (τψ2)τ = ψ2 + 2τψψτ ,

H[ψ] =

(
1 − x

ψx
ψ

)2

+ τψψxx −
1

4
τ2ψ2ψ2

x,
(6.17)

for ψ ∈ C2,1(R × (0, T ]). Recall also that I[0, T ] is the class of those functions ψ ∈
C2,1(R × (0,∞)) for which Σ[ψ](x, τ) is well defined, continuous in R × [0, T ], and
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satisfies there

0 < const1 ≤ Σ[ψ](x, τ) ≤ const2 <∞, (6.18)

and

lim
τ→0

τψ2(x, τ) = 0 uniformly in x ∈ R. (6.19)

Assuming that the function ψ ∈ I[0, T ] is regular enough, then a formal second order

Taylor expansion of the associated volatility Σ[ψ] is given by

Σ[ψ](x, τ) = Σ[ψ](x, 0) + τΣτ [ψ](x, 0) +
τ2

2
Σττ [ψ](x, 0) +R2[ψ](x, τ), (6.20)

where

R2[ψ](x, τ) =
1

2

∫ τ

0
{Σηηη [ψ](x, η)} (τ − η)2 dη. (6.21)

As already detailed in Section 5.6, suppressing the functional input ψ and the arguments

x and τ , we have

Στ [ψ](x, τ) =
1

2ΣH2
(GτH −GHτ ). (6.22)

Further,

Σττ [ψ](x, τ) =
1

2Σ2H4

[
(GτH −GHτ )τΣH

2 − (GτH −GHτ )(ΣH
2)τ
]

=
1

2Σ2H4
F,

(6.23)

where

F [ψ](x, τ) := (GττH −GHττ )ΣH
2 − (GτH −GHτ )(ΣτH

2 + 2ΣHHτ ). (6.24)

Differentiating once more with respect to τ gives

Στττ [ψ](x, τ) =
1

2Σ4H8
[FτΣ

2H4 − F (Σ2H4)τ ]

=
1

2Σ4H8
[FτΣ

2H4 − F (2ΣΣτH
4 + 4Σ2H3Hτ )],

(6.25)

where in more detail

Fτ [ψ](x, τ) = (GτττH +GττHτ −GτHττ −GHτττ )ΣH
2

+ 2(GττH −GHττ )(ΣτH
2 + 2ΣHHτ )

+ (GτH −GHτ )(ΣττH
2 + 4ΣτHHτ + 2ΣH2

τ + 2ΣHHττ ).

(6.26)



6.5. ASSOCIATED LOCAL VOLATILITIES: SECOND ORDER EXPANSIONS 61

Let us list some derivatives of G and H and express them in terms of ψ. Note that

some of them have already appeared in Section 5.6. For G, we have

G[ψ] = ψ2 + 2τψψτ ,

Gτ [ψ] = 4ψψτ + 2τψ2
τ + 2τψψττ ,

Gττ [ψ] = 6ψ2
τ + 6ψψττ + 6τψτψττ + 2τψψτττ ,

Gτττ [ψ] = 24ψτψττ + 8ψψτττ + 6τψ2
ττ + 8τψτψτττ + 2τψψττττ .

(6.27)

For H, we have

H[ψ] =

(
1 − x

ψx
ψ

)2

+ τψψxx −
1

4
τ2ψ2ψ2

x,

Hτ [ψ] = 2

(
1 − xψx

ψ

)(
−xψxτ

ψ
+
xψxψτ
ψ2

)

+ ψψxx + τψτψxx + τψψxxτ −
1

2
τψ2ψ2

x −
1

2
τ2ψψ2

xψτ −
1

2
τ2ψ2ψxψxτ ,

(6.28)

and

Hττ [ψ]

= 2

(
−xψxτ

ψ
+
xψxψτ
ψ2

)2

+ 2

(
1 − xψx

ψ

)(
−xψxττ

ψ
+

2xψxτψτ
ψ2

− 2xψxψ
2
τ

ψ3
+
xψxψττ
ψ2

)

+ 2ψτψxx + 2ψψxxτ + τψττψxx + 2τψτψxxτ + τψψxxττ −
1

2
ψ2ψ2

x − 2τψψ2
xψτ

− 2τψ2ψxψxτ −
1

2
τ2ψ2

τψ
2
x − 2τ2ψψxψτψxτ −

1

2
τ2ψψ2

xψττ −
1

2
τ2ψ2ψ2

xτ −
1

2
τ2ψ2ψxψxττ .

(6.29)
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Moreover,

Hτττ [ψ](x, τ)

= τψψxxτττ + 3τψττψxxτ − 3ψψ2
xψτ + τψτττψxx − 3ψ2ψxψxτ

+ 6

(
−xψxτ

ψ
+
xψxψτ
ψ2

)(
−xψxττ

ψ
+

2xψxτψτ
ψ2

− 2xψxψ
2
τ

ψ3
+
xψxψττ
ψ2

)

− 3τψ2
τψ

2
x − 3τψψ2

xψττ − 3τψ2ψ2
xτ − 3τψ2ψxψxττ + 3τψτψxxττ

+ 2

(
1 − xψx

ψ

)

×
(
−xψxτττ

ψ
+

3xψxττψτ
ψ2

− 6xψxτψ
2
τ

ψ3
+

3xψxτψττ
ψ2

+
6xψxψ

3
τ

ψ4
− 6xψxψτψττ

ψ3
+
xψxψτττ
ψ2

)

+ 3ψττψxx + 6ψτψxxτ + 3ψψxxττ − 3τ2ψψ2
xτψτ − 3τ2ψψxψττψxτ − 3τ2ψψxψτψxττ

− 12τψψxψτψxτ −
3

2
τ2ψτψ

2
xψττ − 3τ2ψ2

τψxψxτ −
1

2
τ2ψψ2

xψτττ

− 3

2
τ2ψ2ψxτψxττ −

1

2
τ2ψ2ψxψxτττ .

(6.30)

To construct upper and lower functions that bound the transformed implied volatility

ϕ, we will use a subclass of I[0, T ] such that the ψ’s in this class are of the form

ψ(x, τ) = I(x)(1 + f(x)τ + λτ2), (x, τ) ∈ R × [0, T ], (6.31)

where I(x) and f(x) are respectively defined by (6.3) and (6.4), and λ is some fixed real

constant. Note that provided the positive constant T is sufficiently small, such ψ’s do

belong to I[0, T ]. This fact follows from the definition of I[0, T ] — see the definition

above (5.56) — and from Corollary 6.9 and Proposition 6.10 below.

We will study the the second order Taylor expansion in time of the associated

volatility Σ[ψ] when ψ is given by (6.31).

Lemma 6.8. Let (A0)–(A4) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1 + f(x)τ +

λτ2), for (x, τ) ∈ R × [0, T ]. Then uniformly in x ∈ R, as τ → 0,

G[ψ] → I2,

Gτ [ψ] → 4I2f,

Gττ [ψ] → 6I2f2 + 12I2λ,

Gτττ [ψ] → 48I2fλ,

(6.32)
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and

H[ψ] → I2

σ2
,

Hτ [ψ] → −2xIfx
σ

+ IIxx = 4
I2

σ2
f,

Hττ [ψ] → 2x2f2
x +

4xIffx
σ

+ 4IIxxf + 4IIxfx + 2I2fxx −
1

2
I2I2

x,

Hτττ [ψ] → −6I2I2
xf − 3I3Ixfx − 12x2ff2

x

− I

σ

(
12xfxλ− 12xf2fx

)
+ 12IIxxλ+ 6If(Ixxf + 2Ixfx + Ifxx),

(6.33)

and

Σ[ψ] → σ,

Στ [ψ] → 0,

Σττ [ψ] → σ

[
6I2

σ2
λ+

3I2f2

σ2
−
(
x2f2

x + 2xffx
I

σ
+ 2IIxxf + 2IIxfx + I2fxx −

1

4
I2I2

x

)]
.

(6.34)

Proof. By assumption,

ψ = I(1 + fτ + λτ2),

ψτ = I(f + 2λτ),

ψττ = 2Iλ,

ψτττ ≡ 0,

ψx = Ix(1 + fτ + λτ2) + Ifxτ,

ψxτ = Ix(f + 2λτ) + Ifx,

ψxττ = 2Ixλ,

ψxτττ ≡ 0,

ψxx = Ixx(1 + fτ + λτ2) + 2Ixfxτ + Ifxxτ,

ψxxτ = Ixx(f + 2λτ) + 2Ixfx + Ifxx,

ψxxττ = 2Ixxλ,

ψxxτττ ≡ 0.
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By the uniform bounds of (5.52), (5.53), and (6.14), we have, as τ → 0,

ψ → I,

ψτ → If,

ψττ → 2Iλ,

ψτττ ≡ 0,

ψx → Ix,

ψxτ → Ixf + Ifx,

ψxττ → 2Ixλ,

ψxτττ ≡ 0,

ψxx → Ixx,

ψxxτ → Ixxf + 2Ixfx + Ifxx,

ψxxττ → 2Ixxλ,

ψxxτττ ≡ 0,

uniformly in x ∈ R. These uniform limits, together with (6.27)–(6.29), then imply

(6.32) and (6.33), where the equality in the limit for Hτ [ψ] in (6.33) follows from the

fact that by (6.10) and (6.11),

fx =
σIxx
2x

− 2

(
1

x
− Ix

I

)
f

=
σIxx
2x

− 2

x

(
1 − x

Ix
I

)
f

=
σIxx
2x

− 2I

xσ
f.

So we have proved (6.32) and (6.33).

To prove (6.34), we combine (6.32), (6.33), (6.4), and (5.48), to obtain Σ[ψ] → σ,

which is uniform in x ∈ R. In turn, this shows that

Σ[ψ]H2[ψ] → I4/σ3. (6.35)

On the other hand, by (6.32) and (6.33), we have Gτ [ψ]H[ψ]−G[ψ]Hτ [ψ] → 0 as τ → 0,

uniformly in x ∈ R. Hence, by (6.22), we have Στ [ψ] → 0 as τ → 0, uniformly in x ∈ R.

Then, applying the uniform limits obtained so far to (6.23) will yield the uniform limit

for Σττ [ψ] in (6.34). The proof is thus complete.

Corollary 6.9. Let (A0)–(A4) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1+f(x)τ +
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λτ2), for (x, τ) ∈ R× [0, T ]. Then there exists T∗ = T∗(λ,V4), such that for all T ≤ T∗,

0 < const1 ≤ ψ(x, τ), G[ψ](x, τ),H[ψ](x, τ),Σ[ψ](x, τ) ≤ const2 <∞, (6.36)

uniformly on R × [0, T ], and that

sup
(x,τ)∈R×[0,T ]

{ ∣∣∂iτ∂jxψ(x, τ)
∣∣ ,
∣∣∂iτG[ψ](x, τ)

∣∣ ,
∣∣∂iτH[ψ](x, τ)

∣∣ ,
∣∣∂iτΣ[ψ](x, τ)

∣∣ ,
i = 0, 1, 2, 3, j = 0, 1, 2

}
< const3,

(6.37)

where constι, ι = 1, 2, 3, depend on T1, λ, and V4 only.

Proof. The existence of such a T∗ follows from the uniform limits in Lemma 6.8 and

the uniform bounds for σ, I, f , and their derivatives, which are given by (A0)–(A4),

Lemma 5.13, and Lemma 6.5.

Recall from (6.34) that

Σ[ψ](x, 0) = σ,

Στ [ψ](x, 0) = 0,

Σττ [ψ](x, 0) = σ

[
6I2

σ2
λ+

3I2f2

σ2

−
(
x2f2

x + 2xffx
I

σ
+ 2IIxxf + 2IIxfx + I2fxx −

1

4
I2I2

x

)]
.

Then we have the following proposition for second order Taylor expansion of Σ[ψ].

Proposition 6.10. Let (A0)–(A4) hold. Let λ ∈ R be fixed and ψ(x, τ) = I(x)(1 +

f(x)τ + λτ2), for (x, τ) ∈ R × [0, T ]. Then there exists T∗ = T∗(λ,V2) such that the

associated local volatility Σ[ψ] admits the second order Taylor expansion

Σ[ψ](x, τ) = σ(x) +
τ2

2
Σττ [ψ](x, 0) +R2[ψ](x, τ) (6.38)

in R × [0, T∗], where R2[ψ] is defined by (6.21) and

R2[ψ](x, τ) = O(τ3), as τ → 0, (6.39)

with O = O(T∗, λ,V2).

Proof. The second order Taylor expansion results from substituting Σ[ψ](x, 0), Στ [ψ](x, 0),

Σττ [ψ](x, 0), and Σηηη [ψ](x, η) into the formal expansion (6.20)–(6.30). For some

T∗ = T∗(λ,V4), this second order expansion is valid by Lemma 6.8 and Corollary 6.9.

In particular, (6.37) implies that R2[ψ](x, τ) = O(τ3), with O = O(T∗, λ,V4).
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6.6 Upper and lower solutions and their corresponding

associated volatilities

Let λ be some strictly positive constant and define

ϕ(x, τ) = I(x)
(
1 + f(x)τ + λτ2

)
,

ϕ(x, τ) = I(x)
(
1 + f(x)τ − λτ2

)
.

(6.40)

Proposition 6.11. Let (2.1), (A0)–(A4) hold. Let ϕ and ϕ be defined as in (6.40).

Then there exist positive constants λ = λ(V4) and T = T (λ,V4) such that

Σ[ϕ](x, τ) ≤ σ(x) ≤ Σ[ϕ](x, τ), ∀ (x, τ) ∈ R × [0, T ].

Proof. We will prove the second inequality first. By Proposition 6.10, Σ[ϕ](x, τ) has

the second order expansion

Σ[ϕ](x, τ) = σ(x)

[
1 +

τ2

2
Λ(λ, σ, I, f) +

R2[ψ](x, τ)

σ(x)

]
,

in R × [0, T0], for some T0 = T0(λ,V4). Here

Λ(λ, σ, I, f)

=
6I2

σ2
λ+

3I2f2

σ2

(
x2f2

x + 2xffx
I

σ
+ 2IIxxf + 2IIxfx + I2fxx −

1

4
I2I2

x

)
.

By (A0)–(A4), Lemma 5.13, and Lemma 6.5, the functions σ, I, f , and their derivatives

are uniformly bounded. So for sufficiently large λ1 = λ1(V4), we have Λ(λ1(V4), σ, I, f) >

4, uniformly for all x ∈ R. On the other hand, Corollary 6.9 shows that Στττ [ϕ](x, τ)

is uniformly bounded on R× [0, T0], and hence we can find a T1 = T1(λ1,V4) < T0 such
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that

∣∣∣∣
R[ϕ](x, τ)

σ(x)

∣∣∣∣ ≤ ν0 |R[ϕ](x, τ)|

= ν0

∣∣∣∣
1

2

∫ τ

0
{Σηηη [ψ](x, η)} (τ − η)2 dη

∣∣∣∣

≤ ν0

2

(
sup

(x,τ)∈R×[0,T1]
|Στττ [ϕ](x, τ)|

)∫ τ

0
(τ − η)2 dη

≤ ν0

6

(
sup

(x,τ)∈R×[0,T1]
|Στττ [ϕ](x, τ)|

)
τ3

≤ ν0

6

(
sup

(x,τ)∈R×[0,T1]
|Στττ [ϕ](x, τ)|

)
T1τ

2

≤ τ2.

For such a large positive λ1 = λ1(V4) and small positive T1 = T1(λ1,V4), we have

Σ[ϕ1](x, τ) ≥ σ(x)(1 + 2τ2 − τ2) ≥ σ(x)

for all (x, τ) ∈ R× [0, T1], where ϕ1(x, τ) = I(x)(1+f(x)τ +λ1τ
2). Now replace λ with

−λ in the analysis above, we can similarly find large positive λ2 = λ2(V4) and small

positive T2 = T2(λ2,V4) such that

Σ[ϕ
2
](x, τ) ≤ σ(x)(1 − 2τ2 + τ2) ≤ σ(x)

for all (x, τ) ∈ R× [0, T2], where ϕ
2
(x, τ) = I(x)(1+f(x)τ −λ2τ

2). Finally, the desired

λ and T can be obtained by setting λ = max(λ1, λ2) and T = min(T1, T2). In fact, any

larger λ and smaller T will work.

6.7 Proof of the main theorems of the chapter

Here we will present the proofs of Theorems 6.2 and 6.1.

Proof of Theorem 6.2. Let ϕ and ϕ be defined as in (6.40). Then by Proposition 6.11,

there exist λ = λ(V4) and T = T (λ,V4) such that

Σ[ϕ](x, τ) ≤ σ(x) ≤ Σ[ϕ](x, τ), ∀ (x, τ) ∈ R × [0, T ].
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By the comparison principle, Lemma 5.22, we have

ϕ(x, τ) ≤ ϕ(x, τ) ≤ ϕ(x, τ), ∀ (x, τ) ∈ R × (0, T ]. (6.41)

This shows that as τ → 0,

ϕ(x, τ) = I(x)(1 + f(x)τ + O(τ2)),

with O = O(V4). It remains to prove the convergence of ϕτ (x, τ). By (6.41),

ϕ(x, τ) − ϕ(x, 0)

τ
≤ ϕ(x, τ) − ϕ(x, 0)

τ
≤ ϕ(x, τ) − ϕ(x, 0)

τ
,

for all (x, τ) ∈ R × (0, T ]. Since ϕ(x, 0) ≡ I(x), taking the limit yields

lim
τ→0

ϕτ (x, τ) = I(x)f(x), uniformly in x ∈ R. (6.42)

The proof is thus complete.

Proof of Theorem 6.1. The conclusion of the theorem is a consequence of Theorem 6.2

and the identity φ(s, τ) = ϕ(x(s), τ), where x = ln(s/k).



Chapter 7

At the money gradient

asymptotics

In this chapter we employ probabilistic methods to prove a small time limit for the at

the money (ATM) gradient of the implied volatility. Central to the proof is a gradient

representation formula of Fournie et al. [29, Proposition 3.2] for call option price, which

is a variant of the Bismut–Elworthy formula.

We repeat that the asymptotic formula obtained here for the ATM gradient of

implied volatility is not new, although it is independently obtained by us under weaker

conditions. Assuming different, and in some sense stronger regularity conditions, Alòs

et al. [1, Theorem 6.3] have proved (7.1) for more general stochastic volatility models

with jumps.

This chapter is organised as follows. In Section 7.1, we state the main result of

this chapter. In Section 7.2, we explain the idea behind the proof. In Section 7.3, we

derive a representation for the ATM gradient of the implied volatility. In Sections 7.4

and 7.5, we present a stochastic formula for and study the small time asymptotics of

the gradient of the call option price. In Section 7.6, we prove the main theorem of the

chapter.

7.1 Main result: the ATM theorem

The following theorem represents the main result of this chapter.

Theorem 7.1 (At the money gradient asymptotic). Let (2.1), (A0)–(A2) hold. Then

lim
τ→0

{
φs(s, τ)|s=k

}
≡ lim

τ→0
φs(k, τ) = ν ′(k)/2. (7.1)

69
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The proof of this theorem is given in the last section of this chapter.

7.2 Idea of the proof

We will show that

∂φ

∂s
=

(
∂C

∂s
− ∂B
∂s

)/(
∂B
∂φ

)
, (s, τ) ∈ (0,∞) × (0, T ].

After that, we will use a variant of the Bismut–Elworthy formula to break the difference

in the numerator into smaller parts so that the fraction would converge to the desired

limit.

For ease of notation, we put

h(s) = sν(s), s ∈ (0,∞). (7.2)

The stock process can be written as

dSt = h(St) dWt, S0 > 0, 0 ≤ t ≤ T <∞. (7.3)

Let τ = T − t and assume St = s > 0. Then by the time homogeneity of the Markov

process, (Ss,tt+τ ) and the process (Ss,0τ ) have the same distribution, where in integral

form

Ss,tt+τ = s+

∫ t+τ

t
h(Ss,tr ) dWr,

Ss,0τ = s+

∫ τ

0
h(Ss,0r ) dWr,

(7.4)

with (Wr) being a standard Wiener process with respect to the probability space

(Ω,F ,F,P). Hence we will use (Sτ ), where Sτ ≡ Ss,0τ , in the derivation of the asymp-

totic formula for the ATM gradient of the implied volatility.

7.3 Representation for ATM gradient of implied volatility

Proposition 7.2. Let (2.1), (A0)–(A2) hold. Then as τ → 0,

∂φ(s, τ)

∂s

∣∣∣∣
s=k

=

√
2π

k
√
τ

(
∂C(s, τ)

∂s

∣∣∣∣
s=k

− 1

2
− ν(k)

√
τ

2
√

2π
+ O(τ3/2)

)
, (7.5)

where O = O(k,V2) and the convergence is uniform in k on compact subsets of (0,∞).
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Proof. By (4.12) and (5.1),

C(s, τ) = B(s, τ ;φ(s, τ)), (s, τ) ∈ (0,∞) × [0, T ]. (7.6)

Differentiating with respect to s gives

∂C(s, τ)

∂s
=
∂B(s, τ ;φ)

∂s
+
∂B(s, τ ;φ)

∂φ
× ∂φ(s, τ)

∂s
, (s, τ) ∈ (0,∞) × (0, T ]. (7.7)

With the arguments suppressed, this implies

∂φ

∂s
=

(
∂C

∂s
− ∂B
∂s

)/(
∂B
∂φ

)
, (s, τ) ∈ (0,∞) × (0, T ]. (7.8)

At s = k, the small time asymptotics of ∂B/∂φ and ∂B/∂s can be obtained as follows.

By (4.11)

d♯(k, τ) := d1(s, τ ;φ(s, τ))
∣∣∣
s=k

=
√
τφ(k, τ)/2. (7.9)

Hence by (4.11) and (4.20),

∂B(s, τ ;φ(s, τ))

∂φ

∣∣∣∣
s=k

= sn(d1)
√
τ
∣∣∣
s=k

=
k
√
τ√

2π
e−τφ

2(k,τ)/8, (k, τ) ∈ (0,∞) × [0, T ].

(7.10)

On the other hand, (4.18) gives ∂B/∂s = N(d1). So by a second order Taylor expansion

of N(·) about 0 and the Lagrange formula for the remainder, we obtain, as τ → 0,

∂B(s, τ ;φ)

∂s

∣∣∣∣
s=k

= N(d1)
∣∣∣
s=k

= N(d♯)

= N(0) +N ′(0)d♯(k, τ) +
1

2
N ′′(0)d2

♯ (k, τ) + O
(
d
3
♯ (k, τ)

)

=
1

2
+
φ(k, τ)

√
τ

2
n(0) + O(τ3/2)

=
1

2
+

√
τ

2
√

2π
φ(k, τ) + O(τ3/2)

=
1

2
+

√
τ

2
√

2π

(
φ0(k) + O(τ)

)
+ O(τ3/2)

=
1

2
+

√
τ

2
√

2π
φ0(k) + O(τ3/2),

(7.11)

where O = O(k,V2). The third and the penultimate equalities are both justified by
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Theorem 5.1, which gives φ(s, τ) = φ0(s) + O(τ), with O = O(V2). In particular,

Theorem 5.1 implies that d♯(k, τ) = O(τ1/2), O = O(k,V2), and this order property

justifies the Taylor expansion of N(d♯). Now noting that φ0(k) = ν(k), we get

∂B(s, τ ;φ)

∂s

∣∣∣∣
s=k

=
1

2
+
ν(k)

√
τ

2
√

2π
+ O(τ3/2). (7.12)

Finally, the conclusion of the proposition follows from (7.8), (7.10), (7.12), and the fact

that τφ2(k, τ) → 0 as τ → 0.

7.4 Formula for gradient of call option price

In view of the representation for the ATM gradient of implied volatility, to prove

Theorem 7.1 it remains to show that in (7.5) the small-time asymptotic properties

of ∂C
∂s |s=k do lead to the desired result. Note that the gradient or space derivative of

the call option price is also called the delta of the call option. We now present a variant

of the Bismut–Elworthy formula for the delta, which we shall call the delta formula for

short. This formula was originally derived by Fournie et al. [29].

Proposition 7.3 (Delta formula). Let (2.1), (A0)–(A1) hold. Then

∂C(s, τ)

∂s
= Es

[
(Sτ − k)+

1

τ

∫ τ

0

Yr
h(Sr)

dWr

]
, (s, τ) ∈ (0,∞) × [0, T ], (7.13)

where the first variation process (Yτ ) is given by

Yτ = 1 +

∫ τ

0
Yrh

′(Sr) dWr. (7.14)

Proof. A proof for the well-definedness of the first variation process (Yτ ) can be found

in e.g. Protter [68, Theorem 49, p. 320]. Then (7.13) follows from Proposition 3.2 of

Fournie et al. [29], noting that their proof can be applied here under the assumptions

(2.1) and (A0)–(A1), instead of their Assumption 3.1.

Remark 7.4. Let (2.1), (A0)–(A1) hold. Define (γτ ) to be

γτ =

∫ τ

0
h′(Sr) dWr, τ ∈ [0, T ].

Then (γτ ) is a continuous P-martingale with γ0 = 0; see e.g. Friedman [32, Theorem
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3.1, p. 67]. Further, by Doléans’ theorem, (Yτ ) is the exponential martingale given by

Yτ = exp

(
γτ −

1

2
〈γ〉τ

)
, (7.15)

where 〈γ〉τ denotes the quadratic variation of (γτ ). See Rogers and Williams [71,

Theorem 37.1, p. 75] or Protter [68, p. 321].

We now present some useful bounds for (Xτ ) and (Yτ ) and the associated Wiener

integral used in the delta formula.

Lemma 7.5. Let (2.1), (A0)–(A1) hold. Then for 1 ≤ p <∞,

(i)

Es
[
S−p
τ

]
≤ const(s,V0, T, p), τ ∈ [0, T ]; (7.16)

(ii)

Es [Y p
τ ] ≤ const(s,V1, T, p), τ ∈ [0, T ]; (7.17)

(iii)

Es

[∫ τ

0

Y p
r

hp(Sr)
dr

]
≤ const(s,V1, T, p) × τ, τ ∈ [0, T ]. (7.18)

Proof. We will follow Protter [68, pp. 314–315] to prove properties (i) and (ii). Let

ϑτ =

∫ τ

0
ν(Sr) dWr.

Then assumption (A0) ensures that (ϑτ ) is a continuous P-martingale that is null at

τ = 0; see e.g. Friedman [32, Theorem 3.1, p. 67]. Further (A0) implies that

sup
τ∈[0,T ]

|〈ϑ〉τ | ≤ ν2
0T, P-a.s. (7.19)

Hence

Es
[
S−p
τ

]
= Es

[{
s exp

(
ϑτ −

1

2
〈ϑ〉τ

)}−p
]

= Es

[
1

sp
exp

(
−pϑτ +

1

2
p 〈ϑ〉τ

)]

≤ 1

sp
exp

(
1

2
pν2

0T

)
Es [exp (pϑ∗τ )] ,

(7.20)

where ϑ∗τ = supr∈[0,τ ] |ϑr|. Since (ϑτ ) is a continuous martingale, ϑτ = W̃〈ϑ〉
τ

is a

standard Wiener process on a different filtration; see e.g. Protter [68, Theorem 42, p.
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88]. Taking into account (7.19), we have

ϑ∗τ ≤ ϑ∗T = W̃ν2
0
T .

This shows Es [exp(pϑ∗τ )] ≤ Es[exp(pW̃ ∗
ν2
0
T
)]. Applying the reflection principle (see e.g.

Protter [68, Theorem 33, p. 23]), we have

Es

[
exp

(
pW̃ ∗

ν2
0
T

)]
= 2 Es

[
exp

(
pW̃ν2

0
T

)]

= 2exp
(
p2ν2

0T/2
)
.

(7.21)

Combining (7.20) and (7.21) then gives property (i). Noting that (Yτ ) is the exponential

martingale given by (7.15), property (ii) can be similarly proved. For property (iii), we

have

Es

[∫ τ

0

Y p
r

hp(Sr)
dr

]
= Es

[∫ τ

0

Y p
r

Sprνp(Sr)
dr

]

= νp0 Es

[∫ τ

0

Y p
r

Spr
dr

]

= νp0

∫ τ

0
Es

[
Y p
r

Spr

]
dr

≤ νp0

∫ τ

0

(
Es
[
Y 2p
r

])1/2 (
Es
[
S−2p
r

])1/2
dr

≤ const(s,V1, T, p) × τ,

where in the second equality we use (A0); in the third equality, the Fubini theorem; in

the first inequality, the Cauchy–Schwarz inequality; and in the last inequality, properties

(7.16) and (7.17). And the proof is complete.

7.5 Small time asymptotics of the delta

By Proposition 7.3, the delta formula, and by adding and subtracting the term
{
(Sτ −

s)+Wτ/
(
τh(s)

)}
, we can write the ATM delta as

∂C(s, τ)

∂s

∣∣∣∣
s=k

= I1(k, τ) + I2(k, τ), (7.22)



7.5. SMALL TIME ASYMPTOTICS OF THE DELTA 75

where

I1(s, τ) = Es

[
(Sτ − s)+

1

τ

∫ τ

0

(
Yr

h(Sr)
− 1

h(s)

)
dWr

]
, (7.23)

I2(s, τ) = Es

[
(Sτ − s)+

Wτ

τh(s)

]
. (7.24)

We now study the small-time asymptotics of I1 and I2.

Small time asymptotic of I1

For I1, we have the following lemma.

Lemma 7.6. Let (2.1), (A0)–(A2) hold. Then uniformly in s on compact subsets of

(0,∞).

I1(s, τ) = O(τ), as τ → 0, (7.25)

where O = O(s,V2, T ).

Proof. Let

Ψ(y, x) =
y

sν(s)
.

Then

∂Ψ

∂y
=

1

sν(s)
,

∂Ψ

∂s
= −y

(
1

s2ν(s)
+

ν ′(s)
sν2(s)

)
,

∂2Ψ

∂y∂s
= − 1

s2ν(s)
− ν ′(s)
sν2(s)

,

∂2Ψ

∂y2
= 0,

∂2Ψ

∂s2
= y

(
2

s3ν(s)
+

2ν ′(s)
s2ν2(s)

+
2
(
ν ′(s)

)2

sν3(s)
− ν ′′(s)
sν2(s)

)
.

Note that ν ′(s) = dν(s)/ds. By Itô’s formula,

Yr
h(Sr)

− 1

h(s)
=

∫ r

0

∂Ψ

∂Y
(Yρ, Sρ) dYρ +

∫ r

0

∂Ψ

∂S
(Yρ, Sρ) dSρ

+
1

2

∫ r

0

∂2Ψ

∂S2
(Yρ, Sρ) d 〈S〉ρ +

∫ r

0

∂2Ψ

∂Y ∂S
(Yρ, Sρ) d 〈Y,X〉ρ .
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Simplifying the terms gives

Yr
h(Sr)

− 1

h(s)
=

∫ r

0
gρ dρ, (7.26)

gρ = −Yρ
(
ν ′(Sρ) + Sρν

′′(Sρ)/2
)
. (7.27)

Hence, by the Cauchy-Schwarz inequality and the definition of I1, (7.23), we get

I2
1 (s, τ) ≤ 1

τ2
Es
[
(Sτ − s)2+

]
Es

[(∫ τ

0

∫ r

0
gρ dρdWr

)2
]
. (7.28)

It is well known that

Es
[
(Sτ − s)2

]
≤ const(s) × τ ; (7.29)

see e.g. Friedman [32, Theorem 2.3, p. 107]. So it remains to get the desired bound

for the second expectation.

Using firstly Itô’s formula and then the fact that

∣∣∣∣
∫ r

0
gρ dρ

∣∣∣∣ ≤
∫ r

0
|gρ| dρ ≤ r sup

ρ∈[0,r]
|gρ| ,

we obtain

Es

[(∫ τ

0

∫ r

0
gρ dρdWr

)2
]

= Es

[∫ τ

0

(∫ r

0
gρ dρ

)2

dr

]

≤ Es



∫ τ

0
r2

(
sup
ρ∈[0,r]

|gρ|
)2

dr




=

∫ τ

0
r2 Es



(

sup
ρ∈[0,r]

|gρ|
)2

 dr

≤ Es



(

sup
r∈[0,τ ]

|gr|
)2


∫ τ

0
r2 dr

=
τ3

3
Es



(

sup
r∈[0,τ ]

|gr|
)2

 .

(7.30)

We will show that the expectation involving gr is bounded, whereby the use of the Itô

isometry and the Fubini theorem in the first and third steps above are justified. By
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(A0)–(A2),

|gρ| =

∣∣∣∣
Yρ
Sρ

∣∣∣∣×
∣∣∣∣∣Sρν

′(Sρ) +
S2
ρν

′′(Sρ)

2

∣∣∣∣∣

= const(V2) |Yρ/Sρ| .

As a result,

Es



(

sup
r∈[0,τ ]

|gr|
)2

 ≤ const(V2) × Es



(

sup
r∈[0,τ ]

|Yr/Sr|
)2



≤ const(V2) × Es



(

sup
r∈[0,τ ]

|Yr|
)2(

sup
r∈[0,τ ]

|1/Sr|
)2



≤ const(V2) ×



Es



(

sup
r∈[0,τ ]

|Yr|
)4

Es



(

sup
r∈[0,τ ]

|1/Sr|
)4






1/2

,

(7.31)

where in the last step we have used the Cauchy–Schwarz inequality. Recall from (7.15)

that (Yτ ) is a continuous P-martingale. Applying firstly the martingale moment in-

equalities, see e.g. Karatzas and Shreve [53, Proposition 3.26, p. 163], and secondly

Lemma 7.5, we obtain for all τ ∈ [0, T ],

Es



(

sup
r∈[0,τ ]

|Yr|
)4

 ≤ const(2) × Es

[
〈Y 〉2τ

]

≤ const(2) × Es

[
|Yτ |4

]

≤ const(s,V1, T, 4),

(7.32)

where const(2) and const(s,V1, T, 4) are respectively constants depending on the num-

ber 2, and on s, V1, T , and the number 4. Similarly, we can rewrite (1/Sr) as a product

of a martingale and a bounded process and apply the martingale inequalities to bound

the expectation involving (1/Sr). Rewrite (1/Sτ ) as

S−1
τ =

{
s exp

(
ϑτ −

1

2
〈ϑ〉τ

)}−1

= MτNτ ,
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where

Mτ = exp

(
−ϑτ −

1

2
〈ϑ〉τ

)
,

Nτ =
1

s
exp (〈ϑ〉τ ) .

Note that (Mτ ) is a martingale; see e.g. Rogers and Williams [71, Theorem 37.8, p.

77]. On the other hand, by (7.19) and the definition of (Nτ ), we have for all τ ∈ [0, T ],

0 < 1/s ≤ Nτ ≤ const(s,V0, T ), P-a.s. (7.33)

Hence, for all τ ∈ [0, T ],

Es



(

sup
r∈[0,τ ]

|1/Sr|
)4

 = Es



(

sup
r∈[0,τ ]

|MrNr|
)4



≤ const(s,V0, T ) × Es



(

sup
r∈[0,τ ]

|Mr|
)4



≤ const(s,V0, T, 2) × Es

[
〈M〉2τ

]

≤ const(s,V0, T, 2) × Es

[
|Mτ |4

]

= const(s,V0, T, 2) × Es

[∣∣S−1
τ N−1

τ

∣∣4
]

≤ const(s,V0, T, 2) ×
{

Es

[∣∣S−1
τ

∣∣8
]}1/2 {

Es

[∣∣N−1
τ

∣∣8
]}1/2

≤ const(s,V0, T, 2) ×
{

Es

[∣∣S−1
τ

∣∣8
]}1/2

= const(s,V0, T, 2) ×
{
Es
[
S−8
τ

]}1/2

≤ const(s,V0, T, 8),

(7.34)

where the first inequality results from (7.33); the second and third inequalities from

the martingale inequalities; the forth inequality from the Cauchy–Schwarz inequality;

and the last inequality from Lemma 7.5. Now combining (7.31), (7.32) and (7.34) gives

Es



(

sup
r∈[0,τ ]

|gr|
)2

 ≤ const(s,V1, T, 8). (7.35)
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This inequality, together with (7.28), (7.29) and (7.30), implies that for all τ ∈ [0, T ],

I2
1 (s, τ) ≤ 1

τ2
× τ × τ3 × const(s,V1, T, 8) = τ2 × const(s,V1, T, 8).

And the proof is complete.

Small-time asymptotic of I2

It is a little more involved to derive the small-time asymptotic of I2. We shall need a

preliminary lemma.

Let Z be a standard normal random variable, i.e. Z ∼ N(0, 1). Recall that h(s) =

sν(s) and h′(s) = ν(s) + sν ′(s). Define for any s ∈ (0,∞),

H(s, τ) := E

[(
Z +

√
τ

2
h′(s)(Z2 − 1)

)

+

Z

]
. (7.36)

Then we have the following lemma.

Lemma 7.7. For any (s, τ) ∈ (0,∞) × [0, T ], the following is true:

(i) if h′(s) = 0, then

H(s, τ) ≡ 1/2 ∀ τ ∈ [0, T ]; (7.37)

(ii) if h′(s) 6= 0, then as τ → 0,

H(s, τ) =
1

2
+

√
τ

2
√

2π
h′(s) + O(τ), O = O(s,V2, T ). (7.38)

Proof. Case (i) h′(s) = 0. In this case as Z ∼ N(0, 1), (7.36) implies

H(s, τ) ≡ E[Z+Z] = 1/2, ∀ τ ∈ [0, T ].

Case (ii) h′(s) 6= 0. There are two subcases: (a) h′(s) > 0, and (b) h′(s) < 0.

For ease of exposition we will in what follows often suppress the arguments of the

functions, e.g. writing h′ for h′(s). In both subcases (a) and (b), we will let z1(s, τ)

and z2(s, τ) be the roots of the quadratic polynomial q(z) = z +
√
τh′(z2 − 1)/2, i.e.

z1(s, τ) =
−1 −

√
1 + τ(h′(s))2√
τh′(s)

, z2(s, τ) =
−1 +

√
1 + τ(h′(s))2√
τh′(s)

.

Subcase (ii)(a) h′(s) > 0. Here z1 < z2, and with s fixed, z1,2 has the following
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properties as τ → 0:

{
z1 ց −∞,

z2 ց 0,

{
∂τz1 ր +∞,

∂τz2 ր 0,

{
∂2
τ z1 ց −∞,

∂2
τ z2 ց −∞,

{
∂3
τ z1 ր +∞,

∂3
τ z2 ր +∞.

(7.39)

Also, with s fixed, as a function of τ̄ =
√
τ , z1,2 has the following properties when

h′(s) > 0 and τ̄ → 0:

{
z1 ց −∞,

z2 ց 0,

{
∂τ̄z1 ր +∞,

∂τ̄z2 → h′/2,

{
∂2
τ̄ z1 ց −∞,

∂2
τ̄ z2 ց 0,

{
∂3
τ̄ z1 ր +∞,

∂3
τ̄ z2 → −3(h′)3/4.

(7.40)

By (7.36) and explicit integration we have

H(S, τ) =

∫ z1

−∞

(
z +

√
τh′

2
(z2 − 1)

)
z

1√
2π

e−z
2/2 dz

+

∫ ∞

z2

(
z +

√
τh′

2
(z2 − 1)

)
z

1√
2π

e−z
2/2 dz

=

{
1 +

1

2
erf

(
z1√
2

)
− 1

2
erf

(
z2√
2

)}
+

{√
τh′√
2π

(
e−z

2
2
/2 − e−z

2
1
/2
)}

= f1(s, τ) + g1(s, τ),

where erf(·) denotes the error function, and f1 and g1 denote respectively the terms

inside the first and second set of braces. Then coupled with (7.40), a Taylor expansion

of f1(s, τ) in
√
τ about 0 gives, as τ → 0,

f1(s, τ) =
1

2
−

√
τh′

2
√

2π
+ O(τ),

where O = O(s,V2, T ). Similarly, by a Taylor expansion of (e−z
2
2
/2 − e−z

2
1
/2) in τ about

0, the L’Hopital rule, and (7.39), we get, as τ → 0,

g1(s, τ) =

√
τh′√
2π

(
1 + O(τ)

)
=

√
τh′√
2π

+ O(τ),

where O = O(s,V2, T ).

Hence, when h′(s) > 0,

H(s, τ) =
1

2
+

√
τh′

2
√

2π
+ O(τ).

Subcase (ii)(b) h′(s) < 0. Here z2 < z1, and with s fixed, z1,2 has the following
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properties as τ → 0:

{
z1 ր +∞,

z2 ր 0,

{
∂τz1 ց −∞,

∂τz2 ց 0,

{
∂2
τ z1 ր +∞,

∂2
τ z2 ր +∞,

{
∂3
τ z1 ց −∞,

∂3
τ z2 ց −∞.

(7.41)

Also, with s fixed, as a function of τ̄ =
√
τ , z1,2 has the following properties when

h′(s) < 0 and τ̄ → 0:

{
z1 ր +∞,

z2 ր 0,

{
∂τ̄z1 ց −∞,

∂τ̄z2 → h′/2,

{
∂2
τ̄ z1 ր +∞,

∂2
τ̄ z2 ր 0,

{
∂3
τ̄ z1 ց −∞,

∂3
τ̄ z2 → −3(h′)3/4.

(7.42)

By (7.36) and explicit integration we have

H(s, τ) =

∫ z1

z2

(
z +

√
τh′

2
(z2 − 1)

)
z

1√
2π

e−z
2/2 dz

=

{
1

2
erf

(
z1√
2

)
− 1

2
erf

(
z2√
2

)}
+

{√
τh′√
2π

(
e−z

2
2 − e−z

2
1
/2
)}

= f2(s, τ) + g2(s, τ),

where f2 and g2 denote respectively the terms inside the first and second set of braces.

Then coupled with (7.42) and with s fixed, a Taylor expansion of f2(s, τ) in
√
τ about

0 gives, as τ → 0,

f2(s, τ) =
1

2
−

√
τh′

2
√

2π
+ O(τ),

where O = O(s,V2, T ). Similarly, by a Taylor expansion of (e−z
2
2
/2 − e−z

2
1
/2) in τ about

0, the L’Hopital rule, and (7.41), we get, as τ → 0,

g2(s, τ) =

√
τh′√
2π

(
1 +O(τ)

)
=

√
τh′√
2π

+ O(τ),

where O = O(s,V2, T ). Hence, when h′(s) < 0, we again have

H(s, τ) =
1

2
+

√
τh′

2
√

2π
+ O(τ). (7.43)

Therefore, (7.43) holds whenever h′(s) 6= 0, and this completes the proof.

We will need the following lemma.

Lemma 7.8. Let (2.1), (A0)–(A2) hold. Then uniformly in s on compact subsets of

(0,∞),

I2(s, τ) = H(s, τ) + o(τ1/2), as τ → 0. (7.44)
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Proof. By (7.4), we have

I2 = Es

[(∫ τ

0
h(Sr) dWr

)

+

Wτ

τh(s)

]

=
1

h(s)
Es

[(
h(s)

Wτ√
τ

+
1√
τ

∫ τ

0

(
h(Sr) − h(s)

)
dWr

)

+

Wτ√
τ

]

=
1

h(s)
Es

[(
h(s)Z +

1√
τ

∫ τ

0

(
h(Sr) − h(s)

)
dWr

)

+

Z

]
,

(7.45)

where in the last equality we have used (Wτ/
√
τ)

d
= Z ∼ N(0, 1). In this thesis, the

symbol
d
= means equality in distribution or law. Then by the definition of h(·), and by

Itô’s formula, we have

J :=
1√
τ

∫ τ

0

(
h(Sr) − h(s)

)
dWu

=
1√
τ

∫ τ

0

∫ r

0
h′(Sρ)h(Sρ) dWρ dWr +

1

2
√
τ

∫ τ

0

∫ r

0
h′(Sρ)h

2(Sρ) dρdWr

=
1√
τ

∫ τ

0

∫ s

0
h′(s)sν(s) dWρ dWr +

1

2
√
τ

∫ τ

0

∫ r

0
h′(Sρ)h

2(Sρ) dρdWr

+
1√
τ

∫ τ

0

∫ r

0

(
h′(Sρ)h(Sρ) − h′(s)h(s)

)
dWρ dWr

= J1 + J2 + J3,

(7.46)

where Ji, i = 1, 2, 3, denotes the ith integral term in the penultimate equality. We will

show that the properties of the Ji’s give the desired result. We will check J1 first. Since

∫ τ

0

∫ r

0
dWρ dWr =

1

2
(W 2

τ − τ),

we have

J1 =

√
τ

2
h′(s)h(s)

((
Wτ√
τ

)2

− 1

)

d
=

√
τ

2
h′(s)h(s)(Z2 − 1).

(7.47)

Next, we will check J2. As in (7.30), we apply the Itô isometry and the Fubini theorem
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to get

Es

[
|J2|2

]
=

1

4τ
Es

[(∫ τ

0

∫ r

0
h′(Sρ)h

2(Sρ) dρdWr

)2
]

=
1

4τ
Es

[∫ τ

0

(∫ r

0
h′(Sρ)h

2(Sρ) dρ

)2

dr

]

≤ 1

4τ
× τ3

3
Es



(

sup
r∈[0,τ ]

∣∣h′(Sr)h2(Sr)
∣∣
)2



≤ τ2 × const(s,V1, T, 2),

(7.48)

where the bound const(s,V1, T, 2) is similarly obtained as the bound in (7.35). Lastly,

we will check J3. Let

ζρ = h′(Sρ)h(Sρ) − h′(s)h(s),

ζ∗ρ,τ =

(
sup
ρ∈[0,τ ]

Es
[
ζ2
ρ

]
)1/2

.

Since (Sτ ) is a continuous process and ν ∈ C2, we have ζ∗ρ,τ
τ→0−−−→ 0. Then the Itô

isometry and the Fubini theorem will give

Es

[
|J3|2

]
=

1

τ
Es

[∣∣∣∣
∫ τ

0

∫ r

0
ζρ dWρ dWr

∣∣∣∣
2
]

=
1

τ
Es

[∫ τ

0

(∫ r

0
ζρ dWρ

)2

dr

]

=
1

τ

∫ τ

0
Es

[(∫ r

0
ζρ dWρ

)2
]

dr

=
1

τ

∫ τ

0
Es

[∫ r

0
ζ2
ρ dρ

]
dr

=
1

τ

∫ τ

0

∫ s

0
Es
[
ζ2
ρ

]
dρdr

≤ (ζ∗ρ,τ )
2

τ

∫ τ

0

∫ r

0
dρdr

= (ζ∗ρ,τ )
2τ/2.

(7.49)

We now combine the small time asymptotics of the Ji’s to show the desired result. By
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(7.45), (7.46), and (7.47) we can write I2 as

I2(s, τ) =
1

h(s)
Es



(
h(s)Z +

3∑

i=1

Ji

)

+

Z


 .

Then by the definition of H(s, τ),

d := |I2(s, τ) −H(s, τ)|

=

∣∣∣∣I2 −
1

h(s)
Es

[(
h(s)Z + J1

)
+
Z
]∣∣∣∣

=
1

h(s)

∣∣∣∣∣∣
Es





(
h(s)Z +

3∑

i=1

Ji

)

+

−
(
h(s)Z + J1

)
+


Z



∣∣∣∣∣∣

≤ 1

h(s)
Es



∣∣∣∣∣∣



(
h(s)Z +

3∑

i=1

Ji

)

+

−
(
h(s)Z + J1

)
+


Z

∣∣∣∣∣∣




=
1

h(s)
Es



∣∣∣∣∣∣

(
h(s)Z +

3∑

i=1

Ji

)

+

−
(
h(s)Z + J1

)
+

∣∣∣∣∣∣
|Z|




≤ 1

h(s)
Es

[∣∣∣∣∣

(
h(s)Z +

3∑

i=1

Ji

)
−
(
h(s)Z + J1

)
∣∣∣∣∣ |Z|

]

≤ 1

h(s)
Es [|J2 + J3| |Z|]

≤ 1

h(s)

(
Es[|J2| |Z|] + Es[|J3| |Z|]

)

≤ 1

h(s)

((
Es

[
|J2|2

])1/2 (
Es

[
|Z|2

])1/2
+
(
Es

[
|J3|2

])1/2 (
Es

[
|Z|2

])1/2
)

=
1

h(s)

((
Es

[
|J2|2

])1/2
+
(
Es

[
|J3|2

])1/2
)

≤ 1

h(s)

(
τ × const(s,V1, T, 2) +

ζ∗ρ,τ
√
τ

2

)
,

where the fifth step follows from the inequality |x+ − y+| ≤ |x− y|; the second last step

from the fact that Es[|Z|2] = 1; the last step from (7.48) and (7.49). Since ζ∗ρ,τ
τ→0−−−→ 0,

we have d/
√
τ

τ→0−−−→ 0, namely, I2(s, τ) = H(s, τ) + o(τ1/2) as required.

Summarizing (7.22)–(7.25) and (7.44), we have the following proposition:

Proposition 7.9. Let (2.1), (A0)–(A2) hold. Then uniform in k on compact subsets
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of (0,∞), we have, as τ → 0,

∂C(s, τ)

∂s

∣∣∣∣
s=k

= H(k, τ) + O(τ) + o(τ1/2), (7.50)

where O = O(k,V2, T ).

7.6 Proof of the ATM theorem

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. By (7.5) and (7.50), we have, as τ → 0,

∂φ(s, τ)

∂s

∣∣∣∣
s=k

=

√
2π

k
√
τ

(
H(k, τ) − 1

2
− ν(k)

√
τ

2
√

2π
+ O(τ) + o(τ1/2)

)
, (7.51)

where O = O(k,V2, T ). Then according to Lemma 7.7, there are two cases to check.

Case (i) h′(k) = 0. In this case, recalling from (7.2) that h(s) = sν(s), we get

h′(k) = ν(k) + kν ′(k) = 0 =⇒ ν(k)/k = −ν ′(k).

Further, (7.37) gives H(k, τ) = 1/2. Hence

∂φ(s, τ)

∂s

∣∣∣∣
s=k

= −ν(k)
2k

+ O(τ1/2) + o(1)

=
ν ′(k)

2
+ O(τ1/2) + o(1)

−→ ν ′(k)
2

as τ → 0.

Case (ii) h′(k) 6= 0. From (7.51) and (7.38), and again recalling from (7.2) that

h(s) = sν(s), we get

∂φ(s, τ)

∂s

∣∣∣∣
s=k

=
ν ′(k)

2
+ O(τ1/2) + o(1) −→ ν ′(k)

2
as τ → 0.

As the convergence in both cases is uniform on compact subsets of (0,∞) × [0, T ],

the conclusion of the theorem is proved.



Chapter 8

Small time asymptotics of

gradient and Hessian of implied

volatilities

In this chapter we will derive a small time asymptotic formula for the gradient of the

implied volatility. This formula holds regardless whether the option is at the money.

Playing a key role in the derivation is a series representation formula for solutions

of second order parabolic equations. Coupled with the PDE characterization of the

implied volatility, this gradient asymptotic result also brings forth some asymptotics of

the Hessian of the implied volatility.

This chapter is organised as follows. In Section 8.1, we present the main results of

the chapter. In Section 8.2, we lay out the ideas behind the proofs. In Section 8.3, we

recall some facts about fundamental solutions for second order linear parabolic PDEs.

In Sections 8.4 and 8.5, we derive representation formulas for the call option price and

the gradient of the implied volatility. In Section 8.6, we prove some auxiliary limits.

After stating a technical theorem in Section 8.7, we will prove the main result of the

chapter in Section 8.8.

8.1 Main results of the chapter

Recall that under the conditions of Theorem 5.25 or 6.2, the implied volatility φ(s, τ)

tends to the initial function φ0(s) as τ goes to zero, where from (1.12),

φ0(s) ≡ φ0(s; k) = [ln(s/k)]

(∫ s

k

dz

zν(z)

)−1

, s, k ∈ (0,∞). (8.1)

86
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This gives, for s ∈ (0,∞),

φ0
s(s) =

φ0(s)

s ln(s/k)
− [φ0(s)]2

sν(s) ln(s/k)
,

φ0
ss(s) = −φ

0(s)

s2
− 2[φ0(s)]2

s2ν(s)[ln(s/k)]2

+
2[φ0(s)]3

s2ν2(s)[ln(s/k)]2
+

[φ0(s)]2

s2ν(s) ln(s/k)
+

νs(s)[φ
0(s)]2

sν2(s) ln(s/k)
.

(8.2)

Bearing in mind these formulas, we are ready to state the main result of this chapter.

Theorem 8.1 (Gradient and Hessian asymptotics for φ). Let (2.1), (A0)–(A4) hold.

Then the implied volatility φ has the following properties:

(i) For each s ∈ (0,∞),

lim
τ→0

φs(s, τ) = φ0
s(s). (8.3)

(ii) For each k ∈ (0,∞),

lim
τ→0

φss(k, τ) = φ0
ss(k) =

νss(k)

3
− ν2

s (k)

6ν(k)
− νs(k)

6k
. (8.4)

(iii) For every s ∈ (0,∞),

lim
τ→0

τφss(s, τ) = 0. (8.5)

Instead of proving Theorem 8.1 directly in the (s, τ) coordinates, we shall prove

an equivalent theorem in the (x, τ) coordinates. Recall that the (transformed) initial

implied volatility function I is defined by

I(x) = x

(∫ x

0

dz

σ(z)

)−1

, x ∈ R, (8.6)

and

Ix =
I

x
− I2

xσ
,

Ixx = − 2I2

x2σ
+

2I3

x2σ2
+
σxI

2

xσ2
;

(8.7)

see (5.7) and (5.49). Recall also that x = ln(s/k); so “at the money” means s = k and

x = 0, and vice versa.

The following theorem is equivalent to Theorem 8.1. We will omit the proof of
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the equivalence of Theorems 8.1 and 8.2 as it is a direct consequence of the change of

variables x = ln(s/k).

Theorem 8.2 (Gradient and Hessian asymptotics for ϕ). Let (2.1), (A0)–(A4) hold.

Then the (transformed) implied volatility ϕ(x, τ) possesses the following properties:

(i) For each x ∈ R,

lim
τ→0

ϕx(x, τ) = Ix(x). (8.8)

(ii) When x = 0,

lim
τ→0

ϕxx(0, τ) = Ixx(0) =
σxx(0)

3
− σ2

x(0)

6σ(0)
. (8.9)

(iii) For every x ∈ R,

lim
τ→0

τϕxx(x, τ) = 0. (8.10)

Remark 8.3. Property (i) is the core result of the theorem; properties (ii) and (iii)

are simple consequences of it.

Remark 8.4 (Warning). In this chapter, (2.1), (A0)–(A4) are always assumed to hold.

So by Theorem 5.25 or 6.2, τϕ2(x, τ) → 0 as τ → 0 for all x ∈ R. In the rest of this

chapter this zero limit of τϕ2 will be repeatedly used in the proofs, as if it is a fact and

mostly without explicit reference to Theorem 5.25 or 6.2.

8.2 Ideas of the proofs

As we shall prove Theorem 8.2 only, we will from now on switch to the (x, τ) coordinates.

By Remark 8.3, we shall only outline our plan for the proof of property (i), the small

time limit for the gradient ϕx.

By Lemma 5.5 and Theorem 5.25, the (transformed) implied volatility ϕ belongs

to C2,1(R × [0, T ]) and satisfies

v(x, τ) = B(x, τ ;ϕ(x, τ)), ∀ (x, τ) ∈ R × [0, T ], (8.11)

where B is the Black–Scholes formula defined by (5.18) and v is the call option price

satisfying (5.29). Implicit differentiation of (8.11) and rearrangement of the derivatives

would show

ϕx = (vx −Bx)/Bϕ, (x, τ) ∈ R × (0, T ].
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By (5.35) and (5.37),

Bx = exN(d1),

Bϕ =
√
τn(d2) =

√
τ√
2π

e−x
2/(2τϕ2)ex/2e−τϕ

2/8.

Hence explicitly ϕx can be written as

ϕx =
1

Bϕ
(vx −Bx)

=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8
[
e−xvx −N(d1)

]
, (x, τ) ∈ R × (0, T ].

(8.12)

If (2.1), (A0)–(A4) hold, then by Theorem 5.25 or 6.2, τϕ2(x, τ) → 0 as τ → 0. This

implies that when x 6= 0, the coefficient outside the parentheses grows exponentially to

positive infinity as τ tends to zero, and when x = 0, the coefficient grows like τ−1/2.

To cancel out the exponential or the τ−1/2 growth, we will decompose the difference

inside the square brackets into equally fast decaying terms as follows.

By (5.19), we can decompose N(d1) into two terms:

N(d1) =
1√
2π

∫ d1

−∞
e−z

2/2 dz

=
1√
2π

∫ x/(
√
τϕ)

−∞
e−z

2/2 dz +
1√
2π

∫ x/(
√
τϕ)+

√
τϕ/2

x/(
√
τϕ)

e−z
2/2 dz

=: N0(x, τ) +N1(x, τ),

(8.13)

where respectively, N0 and N1 denote the first and second integral terms in the second

equality above.

To decompose the term e−xvx in (8.12), we set u = e−xvx. We will show that u

admits a decomposition u = U0 + U1. With this decomposition, (8.12), and (8.13), we

can represent the gradient of the implied volatility as





ϕx = ϕ(0)
x − ϕ(1)

x + ϕ(2)
x , (x, τ) ∈ R × (0, T ],

ϕ(0)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8
(
U0 −N0

)
,

ϕ(1)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8N1,

ϕ(2)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8U1.

(8.14)



90 CHAPTER 8. GRADIENT AND HESSIAN ASYMPTOTICS

Finally, we will prove that the limits of the ϕ
(i)
x ’s do add up to the desired gradient

asymptotics in (8.8).

8.3 Facts about second order linear parabolic PDEs

With some abuse of notation, we will recall some facts about second order linear

parabolic PDEs. The following is mostly taken from Krzyzanski [57, Section 65.4].

Let Lu = 0 be the parabolic equation

Lu ≡ a(x, t)uxx + b(x, t)ux + c(x, t)u− ut = 0, (x, t) ∈ R × (T0, T1), (8.15)

where for some positive constants a0 and a1,

0 < a0 ≤ a(x, t), (x, t) ∈ R × [T0, T1], (8.16)

and that ax, at, axx are bounded and of class C1 in R × [T0, T1]. Let

θ(x, t) =

∫ x

0

dz√
a(z, t)

, (8.17)

and

λ(x, t) = b(x, t) − 1

2
ax(x, t) −

√
a(x, t)θt(x, t). (8.18)

Further, assume that the functions θt(x, t), b(x, t), bx(x, t) and c(x, t) are of class C1 and

bounded in R. Consequently
√
a(x, t)θt(x, t) and λ(x, t) are of class C1 and bounded,

together with their first order derivatives. Let

K0(x, t; y, s) =
1√

4π(t− s)a(y, s)
exp

(
− [θ(x, t) − θ(y, s)]2

4(t− s)

)
. (8.19)

Define, for n = 0, 1, 2, . . .,

Kn+1(x, t; y, s) =

∫ t

s

∫ ∞

−∞
K0(x, t; ξ, τ)

[
λ(ξ, τ)

∂Kn(ξ, τ ; y, s)

∂ξ
+ c(ξ, τ)Kn(ξ, τ ; y, s)

]
dξ dτ.

(8.20)

Then we have the following definition.

Definition 8.5. A fundamental solution of Lu = 0 (in R × [T0, T1]) is a function

Γ(x, t; y, s) defined for all (x, t) ∈ R× [T0, T1], (y, s) ∈ R× [T0, T1], t > s, which satisfies

the following conditions:

(i) for fixed (y, s) ∈ R× [T0, T1] it satisfies, as a function of (x, t) (x ∈ R, s < t ≤ T1)
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the equation Lu = 0;

(ii) for every continuous function ρ(x), where

|ρ(x)| ≤ const1 × exp
(
const2 × |x|2

)
, (8.21)

it holds that

lim
tցs

∫ ∞

−∞
Γ(x, t; y, s)ρ(y) dy = ρ(x). (8.22)

See e.g. Friedman [30, p. 22] for information about how the well-definedness of the

integral in (8.22) depends on const2, a0, a1, T0, and T1.

Now define a function K by

K(x, t; y, s) = K0(x, t; y, s) +

∞∑

n=1

Kn(x, t; y, s), (8.23)

where K0 and Kn, n = 1, 2, . . ., are defined by (8.19) and (8.19), for (x, t) ∈ R× [0, T ],

and (y, s) ∈ R × [0, t]. Then we have the following lemma.

Lemma 8.6. The series
∑∞

n=0Kn converges uniformly for x, y ∈ R and 0 ≤ s < t ≤ T ,

t − s ≥ δ for each fixed δ > 0. Moreover, the function K(x, t; y, s) is a fundamental

solution of (8.15).

Proof. See e.g. Krzyzanski [57, p. 534].

Remark 8.7. The parametrix K0 is slightly different from the standard one used in

the literature. Alternative proofs for constructions of fundamental solutions using the

standard parametrix can be found in standard texts such as Ladyzanskaja et al. [58,

Section IV. §11, and p. 363], Friedman [30, p. 22, ff.], Friedman [31, Paragraph 1, p.

17, Theorem 10, p. 23], or Garroni and Menaldi [33, Lemma 3.1, p. 178]. The proofs

in these standard texts can also be adapted to prove Lemma 8.6.

8.4 Representation for call option prices

Consider the PDE





uτ =
1

2
σ2uxx +

(
σσx +

1

2
σ2

)
ux, (x, τ) ∈ R × (0, T ],

u(x, 0) = ~(x), x ∈ R,

(8.24)
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where ~(·) is the Heaviside function

~(x) =





1, x > 0,

1/2, x = 0,

0, x < 0.

(8.25)

We shall prove existence and uniqueness of u by constructing a fundamental solution

according to (8.15)–(8.20). Let

a(x) = σ2(x)/2,

b(x) = σ(x)σx(x) + σ2(x)/2,

θ(x) =

∫ x

0

dz√
a(z)

,

λ(x) = b(x) − ax(x)/2.

(8.26)

With these functions, the Kn’s of (8.19) and (8.20) become

K0(x, τ ; y, r) =
1√

4π(τ − r)a(y)
exp

(
− [θ(x) − θ(y)]2

4(τ − r)

)
, (8.27)

and for n = 0, 1, 2, . . .,

Kn+1(x, τ ; y, r) =

∫ τ

r

∫ ∞

−∞
K0(x, τ ; ξ, ρ)λ(ξ)

∂Kn(ξ, ρ; y, r)

∂ξ
dξ dρ. (8.28)

Then according to Lemma 8.6, a fundamental solution of (8.24) is given by

K(x, τ ; y, r) = K0(x, τ ; y, r) +
∞∑

n=1

Kn(x, τ ; y, r). (8.29)

Let

u(x, τ) =

∫ ∞

−∞
K(x, τ ; y, 0)~(y) dy

=

∫ ∞

0
K(x, τ ; y, 0) dy.

(8.30)

Lemma 8.8. Let (A0)–(A4) hold. Then u uniquely solves (8.24). Further, u admits

the representation

u(x, τ) =

∞∑

n=0

un(x, τ), (8.31)
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with

un(x, τ) =

∫ ∞

0
Kn(x, τ ; y, 0) dy, n = 0, 1, 2, . . . . (8.32)

Proof. That u solves (8.24) follows from the arguments in Krzyzanski [57, Section 65.4].

For uniqueness, we suppose that ũ is another solution of (8.24). Set wτ = u− ũ. Then

w solves the PDE wτ = a(x)wxx + b(x)wx in R × (0, T ] with w(x, 0) = 0. It can be

shown that the only function satisfying this PDE is the zero function, i.e., w(x, τ) ≡ 0

in R × [0, T ]. See e.g. Cerrai [12, Theroem 1.7.5] or Friedman [30, Theorem 16, p.

29]. This shows that u(x, τ) ≡ ũ(x, τ) in R × [0, T ]. Hence u uniquely solves (8.24).

Lastly, the series representation of u results from Lemma 8.6, which shows that K is a

uniformly convergent series. The proof is thus complete.

Define ̺ to be

̺(τ) =
σ2(0)

2

∫ τ

0
ux(0, r) dr, τ ∈ [0, T ], (8.33)

where u is the solution of (8.24). Then the following lemma shows that ̺ is well defined

and in C1((0, T )).

Lemma 8.9. Let (A0)–(A4) hold. Then |̺| ≤ const(V4, T ) and ̺ belongs to C1((0, T )).

Proof. If we can show that |̺| < ∞, then the C1 property follows from Lemma 8.8,

which shows that ux(0, τ) is continuous in (0, T ). So it remains to prove the bound for

̺. From (8.31), we get

ux(x, τ) =

∫ ∞

0
Kx(x, τ ; y, 0) dy.

By Eidelman’s estimate, for x, y ∈ R and 0 < τ ≤ T ,

|Kx(x, τ ; y, 0)| ≤
c1

τ
exp

[
−c2 |x− y|2

τ

]
,

where the positive constants c1 and c2 depend only on V4 and T . See e.g., Friedman

[30, Equations (6.12), p. 24] or Krzyzanski [57, p. 539]. Hence

|̺(τ)| ≤ c1

∫ τ

0

∫ ∞

0

1

r
exp

[
−c2 |y|2

r

]
dy dr.
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Let

̺1 =

∫ τ

0

∫ 1

0

1

r
exp

[
−c2 |y|2

r

]
dy dr,

̺2 =

∫ τ

0

∫ ∞

1

1

r
exp

[
−c2 |y|2

r

]
dy dr.

Then following Friedman [30, Equations (3.2) and (3.3)], we have, for any p > 3,

1

r
exp

[
−c2 |y|2

r

]
=

1

c
1/p
2 r1−1/py2/p

(
c2y

2

r

)1/p

exp

[
−c2 |y|2

r

]

≤ const(c2, p) ×
1

r1−1/py2/p
on [0, τ ] × [0, 1],

This shows that

|̺1| ≤ const(c1, c2, p) ×
∫ τ

0

∫ 1

0

1

r1−1/py2/p
dy dr ≤ const(V4, T, p).

We now bound |̺2|. Making the change of variables z = c2y
2/r yields

̺2 ≤ const(c1, c2) ×
∫ τ

0

1√
r

∫ ∞

c2/r

1√
z
e−z dz dr

= const(c1, c2) ×
∫ τ

0

1√
r

√
π [1 − erf(c2/r)] dr

≤ const(V4, T ),

where erf(·) denotes the error function. The bound on |̺| then follows from the bounds

on ̺1,2. The proof is thus complete.

We are now ready to state and prove a representation for the call price v. Recall

that v satisfies the PDE





vτ =
1

2
σ2(x)(vxx − vx), (x, τ) ∈ R × (0, T ],

v(x, 0) = (ex − 1)+, x ∈ R.
(8.34)

See Lemma 5.7.

Proposition 8.10. Let (2.1), (A0)–(A4) hold. Then the call option price v(x, τ) admits

the representation

v(x, τ) =

∫ x

0
ezu(z, τ) dz + ̺(τ), (x, τ) ∈ R × [0, T ]. (8.35)
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Proof. The initial condition can be verified by taking the limit as τ → 0. Taking the

limit inside the integral is permitted by the dominated convergence theorem. Further,

for τ > 0, and using the “differentiation under the integral sign” theorem, which can

be found e.g. in Fleming [27, p. 197 ff.], we can differentiate under the integral sign to

get

vτ =

∫ x

0
ezuτ (z, τ) dz + ̺τ

=

∫ x

0
ez [a(z)uzz(z, τ) + b(z)uz(z, τ)] dz +

σ2(0)

2
ux(0, τ)

=
σ2(x)

2
exux(x, τ).

Here the second equality follows from the PDE for u and the definition of ̺ (see (8.24)

and (8.33)); the third equality is obtained by integrating by parts the term in the

integrand involving uzz, which cancels out with the term in the integrand involving uz.

The proof is then completed by noting that vxx − vx = exux.

Remark 8.11. In the proof above, in order to use the dominated convergence the-

orem and to differentiate under the integral sign, we rely on the differentiability and

boundedness properties of the fundamental solution for the parabolic problem (8.24).

For details of these properties see e.g. Sections 65.4 and 65.5 of the monograph by

Krzyzanski [57] and note in particular Equations (19.65) and (20.65) on p. 535 and

the Eidelman estimates on p. 539. For related comments in this thesis see Remark 9.6

below.

8.5 Representation for gradients of implied volatilities

We will state and prove a representation result for ϕx, the gradient of the implied

volatility.

Proposition 8.12 (Gradient representation). Let (2.1), (A0)–(A4) hold. Let u and un

n = 0, 1, . . ., be as in Lemma 8.8 and put

U0(x, τ) = u0(x, τ), U1(x, τ) =

∞∑

n=1

un(x, τ). (8.36)
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Then ϕx, the gradient of the implied volatility, admits the representation





ϕx = ϕ(0)
x − ϕ(1)

x + ϕ(2)
x , (x, τ) ∈ R × (0, T ],

ϕ(0)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8
(
U0 −N0

)
,

ϕ(1)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8N1,

ϕ(2)
x (x, τ) :=

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8U1.

(8.37)

Proof. By the explanation leading to (8.14) in Section 8.2, we only need to show that

e−xvx = U0 + U1. This is precisely what we have by Lemma 8.8, for, the lemma gives

vx(x, τ) = exu(x, τ) = ex(U0 + U1).

8.6 Auxiliary small time limits

Recall that from (5.47), we have

I(x) =
x

J
, J(x) =

∫ x

0

dz

σ(z)
. (8.38)

Define

µ(x, τ) :=
1

2τ

(
x2

ϕ2
− J2

)
, (x, τ) ∈ R × (0, T ]. (8.39)

Then we have the following lemma.

Lemma 8.13. Let (2.1), (A0)–(A4) hold. Then

µ0(x) := lim
τ→0

µ(x, τ) = ln

(
I(x)√
σ(0)σ(x)

)
, x ∈ R. (8.40)

Proof. By (5.87) or (6.2), as τ → 0,

(
x2

ϕ2(x, τ)
− J2(x)

)
→
(

x2

x2/J2
− J2

)
= 0.
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Thus, by the L’Hospital rule and (6.5),

µ0 = lim
τ→0

1

2τ

(
x2

ϕ2(x, τ)
− J2(x)

)

= lim
τ→0

1

∂τ {2τ}

{
∂τ

(
x2

ϕ2(x, τ)
− J2(x)

)}

= lim
τ→0

1

2

(
−2

x2ϕτ
ϕ3

)

= −x
2I(x)f(x)

I3(x)
= −x

2f

I2
= − x2f

x2/J2
= −J2f

= ln

(
I(x)√
σ(0)σ(x)

)
.

The proof is thus complete.

Lemma 8.14. Let (2.1), (A0)–(A4) hold. Then

U0(x, τ) =
1

2
+

1√
2π

∫ J/
√
τ

0
e−z

2/2 dz = N
(
J/

√
τ
)
. (8.41)

Proof. By Lemma 8.8, we have

u0(x, τ) =

∫ ∞

0
K0(x, τ ; y, 0) dy

=

∫ ∞

0

1√
4πτa(y)

exp

(
−(θ(x) − θ(y))2

4τ

)
dy,

where a(x) = σ2(x)/2 and θ(x) =
∫ x
0 [a(z)]−1/2 dz; see (8.26). Then, by making the

change of variables z = [θ(x) − θ(y)]/
√

2τ and noting the definitions of θ(·) and J(·),
we get

u0(x, τ) =

∫ θ(x)/
√

2τ

−∞

1√
2π

e−z
2/2 dz

=

∫ J/
√
τ

−∞

1√
2π

e−z
2/2 dz

= N(J/
√
τ).

The proof is thus complete.

The following asymptotic result for the standard normal distribution function is

well known. See e.g. Feller [26, Lemma 2, p. 175].
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Lemma 8.15 (Tail estimate of standard normal distribution). As x→ ∞,

1 −N(x) ∼ x−1n(x). (8.42)

We then have the following proposition:

Proposition 8.16. Let (2.1), (A0)–(A4) hold. Then as τ → 0,

ϕ(0)
x (x, τ) → ex/2

J(x)

(
1 − eµ0(x)

)
, x ∈ R. (8.43)

Proof. By the definitions of n(·), U0 and N0, we have

ϕ(0)
x =

ex/2

√
τn
(

x√
τϕ(x,τ)

)eτϕ
2(x,τ)/8

[
N

(
J(x)√
τ

)
−N

(
x√

τϕ(x, τ)

)]

=
ex/2√
τn(z1)

eτϕ
2/8
{

[1 −N(z1)] − [1 −N(z2)]
}

=
ex/2√
τ

eτϕ
2/8

[
1 −N(z1)

n(z1)
− 1 −N(z2)

n(z1)

]
,

where z1 = x/(
√
τϕ) and z2 = J/

√
τ . By Theorem 5.25 or 6.2, τϕ2 → 0 as τ → 0. So

it suffices to show that

ϕ(0)∗
x =

1√
τ

[
1 −N(z1)

n(z1)
− 1 −N(z2)

n(z1)

]
→ 1

J
(1 − eµ0) as τ → 0. (8.44)

We will verify this in three separate cases: (i) x = 0, (ii) x > 0, and (iii) x < 0.

Case (i) x = 0: In this case we have

z1(0, τ) = 0 and z2(0, τ) = J(0)/
√
τ = 0, ∀ τ ∈ (0, T ].

Hence ϕ
(0)∗
x (0, τ) ≡ 0 for all τ ∈ (0, T ], implying that ϕ

(0)∗
x (0, τ) → 0 as τ → 0. On the

other hand, we note that

J(0) = 0, I(0) = σ(0),
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and so

1

J
(1 − eµ0)

∣∣∣∣
x=0

= lim
x→0

1

J
(1 − eµ0)

= lim
x→0

1

J

(
1 − I(x)√

σ(0)σ(x)

)

=
1

0
(1 − 1) .

Hence, we apply the L’Hospital rule to get

1

J
(1 − eµ0)

∣∣∣∣
x=0

= lim
x→0

1

Jx

d

dx

(
− I(x)√

σ(0)σ(x)

)

= lim
x→0

1

1/σ(x)

(
− 1√

σ(0)

(
Ix(x)√
σ(x)

− I(x)σx(x)

2σ3/2(x)

))

= 0,

as I(x)
x→0−−−−→ σ(0) and Ix(x)

x→0−−−−→ σx(0)/2; see (5.51). This proves (8.43) for x = 0.

Case (ii) x > 0: In this case we rewrite ϕ
(0)∗
x as

ϕ(0)∗
x =

1

z1
√
τ

[
1 −N(z1)

z−1
1 n(z1)

− 1 −N(z2)

z−1
2 n(z2)

× z−1
2 n(z2)

z−1
1 n(z1)

]
=

1

z1
√
τ

[
R1 −R2 ×R3

]
.

By Theorem 5.25 or 6.2, ϕ(x, τ) → I(x) as τ → 0. This implies that as τ → 0,

1

z1
√
τ

=
ϕ(x, τ)

x
→ 1

J(x)
and z1, z2 → ∞.

By (8.42), R1,2 → 1 as τ → 0. On the other hand,

R3 =
z−1
2 n(z2)

z−1
1 n(z1)

=
x/(

√
τϕ)

J/
√
τ

exp

(
x2

2τϕ2
− J2

2τ

)

=
x

Jϕ
exp

[
1

2τ

(
x2

ϕ2
− J2

)]
−→ eµ0 as τ → 0.

Thus for x > 0 we have, as τ → 0, ϕ
(0)∗
x → (1 − eµ0)/J as required.
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Case (iii) x < 0: In this case, we rewrite ϕ
(0)∗
x as

ϕ(0)∗
x =

1√
τn(z1)

(
N(z2) −N(z1)

)

=
1√

τn(z1)

(
[1 −N(−z2)] − [1 −N(−z1)]

)

=
1

−z1
√
τ

[
1 −N(−z2)

(−z2)−1n(−z2)
× (−z2)−1n(−z2)

(−z1)−1n(−z1)
− 1 −N(−z1)

(−z1)−1n(−z1)

]

=
1

z1
√
τ

[
1 −N(−z1)

(−z1)−1n(−z1)
− 1 −N(−z2)

(−z2)−1n(−z2)
× (−z2)−1n(−z2)

(−z1)−1n(−z1)

]

=
1

z1
√
τ

[
R1 −R2 ×R3

]
.

Since ϕ(x, τ) → I(x) as τ → 0, we have

1

z1
√
τ

=
ϕ(x, τ)

x
→ 1

J(x)
and − z1 → ∞, −z2 → ∞.

By (8.42), R1,2 → 1 as τ → 0. Also,

R3 =
(−z2)−1n(−z2)
(−z1)−1n(−z1)

=
z1n(z2)

z2n(z1)
=
x/(

√
τϕ)

J/
√
τ

exp

(
x2

2τϕ2
− J2

2τ

)

=
x

Jϕ
exp

[
1

2τ

(
x2

ϕ2
− J2

)]
−→ eµ0 as τ → 0.

Hence, for x < 0, we also have ϕ
(0)∗
x → (1 − eµ0)/J as τ → 0. The proof is thus

complete.

Proposition 8.17. Let (2.1), (A0)–(A4) hold. Then

ϕ(1)
x → ex/2

J

(
1 − e−x/2

)
as τ → 0. (8.45)

Proof. Recall that

ϕ(1)
x (x, τ) =

√
2π√
τ

ex
2/(2τϕ2)ex/2eτϕ

2/8N1

=
ex/2

√
τn
(

x√
τϕ

)eτϕ
2/2N1.
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Since τϕ2 → 0 as τ → 0, it suffices to check that

ϕ(1)∗
x :=

1
√
τn
(

x√
τϕ

)N1 → 1

J

(
1 − e−x/2

)
, as τ → 0,

when (i) x > 0, (ii) x < 0, and (iii) x = 0.

In cases (i) and (ii) the proof is similar to that of Lemma 8.16.

Case (i) x > 0: In this case, we put

z1 =
x√
τϕ

, z2 =
x√
τϕ

+

√
τϕ

2
,

and rewrite ϕ
(1)∗
x as

ϕ(1)∗
x =

1√
τn(z1)

(
N(z2) −N(z1)

)

=
1√

τn(z1)

(
[1 −N(z1)] − [1 −N(z2)]

)

=
1

z1
√
τ

[
1 −N(z1)

z−1
1 n(z1)

− 1 −N(z2)

z−1
2 n(z2)

× z−1
2 n(z2)

z−1
1 n(z1)

]

=
1

z1
√
τ

[
R1 −R2 ×R3

]
.

Since τϕ2 → 0 as τ → 0, we have

z1
√
τ = x/ϕ→ J, and z1, z2 → ∞ as τ → 0.

Then by (8.42), R1,2 → 1 as τ → 0. One the other hand,

R3 =
z−1
2 n(z2)

z−1
1 n(z1)

=
z1n(z2)

z2n(z1)
=

x/(
√
τϕ)

x/(
√
τϕ) +

√
τϕ/2

exp
(
z2
1/2 − z2

2/2
)

=
x

x+ τϕ2/2
exp

(
−x/2 − τϕ2/4

)
−→ e−x/2, as τ → 0.

The desired result then follows from these limits.

Case (ii) x < 0: Since the proof is similar to that of case (i), we omit it.

Case (iii) x = 0: In this case we can write ϕ
(1)∗
x as

ϕ(1)∗
x =

√
2π√
τ

∫ √
τϕ/2

0

1√
2π

e−z
2/2 dz =

1√
τ

∫ √
τϕ/2

0
e−z

2/2 dz.
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Since τϕ2 → 0 as τ → 0, we get ϕ
(1)∗
x → 0/0 as τ → 0. An application of the L’Hospital

rule and the Leibniz formula for differentiation of the integral gives

lim
τ→0

ϕ(1)∗
x = lim

τ→0

[
2
√
τe−τϕ

2/8

(
ϕ

4
√
τ

+

√
τϕτ
2

)]

= lim
τ→0

[
e−τϕ

2/8
(ϕ

2
+ τϕτ

)]

=
σ(0)

2
,

where the last equality results from Theorem 6.2. On the other hand, we have

lim
x→0

ex/2

J

(
1 − e−x/2

)
= σ(0)/2.

This shows

ϕ(1)
x

∣∣∣
x=0

→ ex/2

J

(
1 − e−x/2

)∣∣∣∣∣
x=0

as τ → 0.

The proof is therefore complete.

8.7 A technical theorem

We shall need the following technical theorem.

Theorem 8.18. Let (2.1), (A0)–(A4) hold. Then as τ → 0,

U1 ∼
√

τ

2π
e−J

2/(2τ) 1

J(x)

(
1 −

√
σ(0)

σ(x)
e−x/2

)
. (8.46)

The proof of this theorem is a little involved, so we will prove it separately in

Chapter 9. This technical theorem implies the following asymptotic result.

Proposition 8.19. Let (2.1), (A0)–(A4) hold. Then as τ → 0,

ϕ(2)
x → eµ0

ex/2

J(x)

(
1 −

√
σ(0)

σ(x)
e−x/2

)
. (8.47)

Proof. Noting the definition of µ0, see (8.40), and that τϕ2 → 0 as τ → 0, this is a

consequence of (8.46) and the definition of ϕ
(2)
x , which is given by (8.37).
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8.8 Proof of the main theorem of the chapter

We will present the proof of Theorem 8.2. The proof of Theorem 8.1, the equivalent

result in the (s, τ) coordinates, will be omitted. Theorem 8.1 can be proved by applying

the change of variables x = ln(s/k) to the result of Theorem 8.2.

Proof of Theorem 8.2. By (8.37), (8.43), (8.45), and (8.47), we have, as τ → 0,

ϕx = ϕ(0)
x − ϕ(1)

x + ϕ(2)
x

→ ex/2

J(x)

(
1 − eµ0(x)

)
− ex/2

J(x)

(
1 − e−x/2

)
+ eµ0(x) ex/2

J(x)

(
1 −

√
σ(0)

σ(x)
e−x/2

)

=
1

J(x)

(
1 − eµ0(x)

√
σ(0)

σ(x)

)

=
1

J(x)

(
1 − I(x)√

σ(0)σ(x)

√
σ(0)

σ(x)

)

=
1

J(x)

(
1 − I(x)

σ(x)

)

=
I(x)

x
− I2(x)

xσ(x)

= Ix(x),

(8.48)

where the last equality follows from (8.7). Note that the convergence is uniform in

(x, τ) on compact subsects of R × [0, T ]. This proves (8.8).

It remains to prove the Hessian limits (8.9) and (8.10). To prove the ATM Hessian

limit (8.9), we use (5.86), the PDE for ϕ. Since x = ln(s/k) and the option is at the

money, we have x = 0. A rearrangement of the PDE for ϕ, see (5.86), gives

ϕxx(0, τ) =
2ϕτ (0, τ)

σ2(0)
+
ϕ2(0, τ) − σ2(0)

τσ2(0)ϕ(0, τ)
+

1

4
τϕ(0, τ)ϕ2

x(0, τ). (8.49)

By Theorem 6.2,

lim
τ→0

ϕ(0, τ) = σ(0),

lim
τ→0

ϕτ (0, τ) = I(0)f(0) = σ(0)

(
σ(0)σxx(0)

12
− σ2

x(0)

24

)
,

(8.50)

where I(0) and f(0) are respectively given by (5.51) and (6.15). The first limit in
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(8.50), together with (8.48), implies that uniformly in x ∈ R,

τϕϕ2
x → 0 as τ → 0. (8.51)

Further, we have
ϕ2(0, τ) − σ2(0)

τσ2(0)ϕ(0, τ)
→ 0

0
as τ → 0. (8.52)

Applying L’Hospital’s rule and (8.50) then gives

lim
τ→0

ϕ2(0, τ) − σ2(0)

τσ2(0)ϕ(0, τ)
= lim

τ→0

2ϕ(0, τ)ϕτ (0, τ)

σ2(0)ϕ(0, τ) + τσ2(0)ϕτ (0, τ)

=
2ϕτ (0, 0)

σ2(0)

=
2I(0)f(0)

σ2(0)
.

(8.53)

By combining (8.49)–(8.51) and (8.53), we get

lim
τ→0

ϕxx(0, τ) =
4I(0)f(0)

σ2(0)
=
σxx(0)

3
− σ2

x(0)

6σ(0)
= Ixx(0),

where the last equality follows from (5.51). This proves (8.9); and it remains to prove

(8.10). We will again use the PDE for ϕ. From (5.86), we have

2τϕϕτ + ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

− σ2(x)τϕϕxx +
1

4
σ2(x)τ2ϕ2ϕ2

x = 0,

in R × (0, T ]. By Theorem 6.2 and (8.48), we have, for each x ∈ R, as τ → 0,

2τϕϕτ → 0,

ϕ2 − σ2(x)

(
1 − x

ϕx
ϕ

)2

→ 0,

1

4
σ2(x)τ2ϕ2ϕ2

x → 0,

σ2(x)ϕ→ σ2(x)I(x) > 0.

This shows τϕxx → 0 as τ → 0, and the proof is complete.

Remark 8.20. It can be checked that limx→0 ϕx(x, 0) = 1
2σx(0). Converting this limit

to the (s, τ) coordinates shows that it agrees with the probabilistic result of Theorem

7.1.



Chapter 9

Proof of the technical theorem

In this chapter we will prove Theorem 8.18, the technical theorem in Chapter 8. For

easy referencing we repeat the theorem here.

Theorem 9.1. Let (A0)–(A4) hold. Then as τ → 0,

U1(x, τ) ∼
√

τ

2π
e−J

2(x)/(2τ) 1

J(x)

(
1 −

√
σ(0)

σ(x)
e−x/2

)
, (9.1)

where U1 =
∑∞

n=1 un(x, τ) is defined by (8.36).

Remark 9.2. Note that in this chapter the letter n stands for an index; it does not

denote the normal density function n(·) as in the previous chapters.

This chapter is organised as follows. In Section 9.1, we derive a series representation

for the gradient of the call option price using a change of the space variables. In Section

9.2, we present some technical results. In Section 9.3, by calculating u1 and u2, the

first and second term of the series U1, we demonstrate how the technical results of

Section 9.2 actually work. In Section 9.4, we first prove an auxiliary proposition and

then Theorem 9.1. In short, this chapter shows that by some changes of the variables

and interchange of integration and differentiation, each term of the series U1 can be

explicitly computed and hence summed to give (9.1).

9.1 Change of variables

From Lemma 8.8, we know that u solves the PDE





uτ =
1

2
σ2uxx +

(
σσx +

1

2
σ2

)
ux, (x, τ) ∈ R × (0, T ],

u(x, 0) = ~(x), x ∈ R,

(9.2)

105
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where ~(·) is the Heaviside function

~(x) =





1, x > 0,

1/2, x = 0,

0, x < 0.

(9.3)

Moreover, we know that u admits the series representation

u(x, τ) =

∞∑

n=0

un(x, τ), (9.4)

with

un(x, τ) =

∫ ∞

0
Kn(x, τ ; y, 0) dy, n = 0, 1, 2, . . . , (9.5)

where the Kn’s are defined by (8.27) and (8.28)

We make the following change of variables. Define

x̄ = θ(x) =
√

2

∫ x

0

dz

σ(z)
, (9.6)

and put

ū(x̄, τ) = u(x, τ). (9.7)

Let

b̄(x̄) =
1√
2

(
σ′
(
θ−1(x̄)

)
+ σ

(
θ−1(x̄)

))
, (9.8)

with θ−1(·) denoting the inverse function of θ(·) and σ′(z) = dσ(z)/dz. As in (8.27)

and (8.28), we define

K0(x̄, τ ; ȳ, r) =
1√

4π(τ − r)
exp

(
−(x̄− ȳ)2

4(τ − r)

)
, (9.9)

and for n = 0, 1, 2, . . .,

Kn+1(x̄, τ ; ȳ, r) =

∫ τ

r

∫ ∞

−∞
K0(x̄, τ ; ξ̄, ρ)b̄(ξ̄)

∂Kn(ξ̄, ρ; ȳ, r)

∂ξ̄
dξ̄ dρ. (9.10)

Further, let

K(x̄, τ ; ȳ, r) = K0(x̄, τ ; ȳ, r) +

∞∑

n=1

Kn(x̄, τ ; ȳ, r). (9.11)

Then we have the following lemma.

Proposition 9.3. Let (A0)–(A4) hold and u(x, τ) and un(x, τ), n = 0, 1, . . ., be as in
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Lemma 8.8. Then the following statements are true:

(i) The function ū(x̄, τ) uniquely solves the PDE

{
ūτ = ūx̄x̄ + b̄(x̄)ūx̄, (x̄, τ) ∈ R × (0, T ],

ū(x̄, 0) = ~(x̄), x̄ ∈ R.
(9.12)

(ii) The function ū admits the representation

ū(x̄, τ) =

∫ ∞

0
K(x̄, τ ; ȳ, 0) dȳ =

∞∑

n=0

ūn(x̄, τ), (9.13)

where, for n = 0, 1, 2, . . .,

ūn(x̄, τ) =

∫ ∞

0
Kn(x̄, τ ; ȳ, 0) dȳ. (9.14)

(iii) The function ū(x̄, τ) has the decomposition

ū(x̄, τ) = Ū0 + Ū1, Ū0(x̄, τ) = ū0(x̄, τ), Ū1(x̄, τ) =

∞∑

n=1

ūn(x̄, τ). (9.15)

(iv) The following identities hold:

ūn(x̄(x), τ) = un(x, τ), n = 0, 1, 2, . . . ,

Ū0(x̄(x), τ) = U0(x, τ),

Ū1(x̄(x), τ) = U1(x, τ).

(9.16)

Proof. Statement (i) results from (9.7) and (9.2). Like the series representation of

u(x, τ), statement (ii) follows from the explicit construction of the solution via the

parametrix method; see e.g. Krzyzanski [57, Section 65.4]. Statement (iii) is given by

Lemma 8.6. Statement (iv) can be verified by induction, using x̄(x) = θ(x) to prove

the equality of ūn and un’s. The proof is now complete.

9.2 Technical results

In this section we will be working towards proving the following proposition.
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Proposition 9.4. Let (A0)–(A4) hold. Then as τ → 0,

ūn(x̄, τ) ∼
√
τ√
π

[
exp

(
− x̄

2

4τ

)]
1

x̄
·(−1)n−1

n!

(
1

2

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

])n
, n = 1, 2, . . .

(9.17)

We defer the proof of this proposition to Section 9.4 as it requires the technical

results that we now present.

Technical details

For n = 2, 3, 4, . . ., and τn > 0, define En(ξ̄n, τn; ȳ, 0) to be

En(ξ̄n, τn; ȳ, 0)

=

∫ τn

0

∫ ∞

−∞
K0(ξ̄n, τn; ξ̄n−1, τn−1)b̄(ξ̄n−1)

×
∫ τn−1

0

∫ ∞

−∞

∂

∂ξ̄n−1
K0(ξ̄n−1, τn−1; ξ̄n−2, τn−2)b̄(ξ̄n−2)

× · · ·

×
∫ τ2

0

∫ ∞

−∞

∂

∂ξ̄2
K0(ξ̄2, τ2; ξ̄1, τ1)b̄(ξ̄1)

×
∫ τ1

0

∫ ∞

−∞

∂

∂ξ̄1
K0(ξ̄1, τ1; ξ̄0, τ0)b̄(ξ̄0)K0(ξ̄0, τ0; ȳ, 0) dξ̄0 dτ0

× dξ̄1 dτ1

× · · ·
× dξ̄n−2 dτn−2

× dξ̄n−1 dτn−1,

(9.18)

where b̄ and K0 are respectively defined by (9.8) and (9.9). To illustrate this definition,

we set n = 2 to get

E2(ξ̄2, τ2; ȳ, 0)

=

∫ τ2

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ1)b̄(ξ̄1)

×
∫ τ1

0

∫ ∞

−∞

∂

∂ξ̄1
K0(ξ̄1, τ1; ξ̄0, τ0)b̄(ξ̄0)K0(ξ̄0, τ0; ȳ, 0) dξ̄0 dτ0

× dξ̄1 dτ1.

Taking into account this definition and that of the Kn’s given by (9.9) and (9.10), we

obtain the following lemma.
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Lemma 9.5. Let (A0)–(A4) hold. Then for n = 2, 3, . . .,

Kn(ξ̄n, τn; ȳ, 0) = − ∂

∂ȳ
En(ξ̄n, τn; ȳ, 0). (9.19)

Proof. Suppose this is true for some n ∈ {2, 3, . . .}. Then by definition, see (9.10), we

have

Kn+1(ξ̄n+1, τn+1; ȳ, 0)

=

∫ τn+1

0

∫ ∞

−∞
K0(ξ̄n+1, τn+1; ξ̄n, τn)b̄(ξ̄n)

∂

∂ξ̄n
Kn(ξ̄n, τn; ȳ, 0) dξ̄n dτn

=

∫ τn+1

0

∫ ∞

−∞
K0(ξ̄n+1, τn+1; ξ̄n, τn)b̄(ξ̄n)

∂

∂ξ̄n

{
− ∂

∂ȳ
En(ξ̄n, τn; ȳ, 0)

}
dξ̄n dτn

= − ∂

∂ȳ

∫ τn+1

0

∫ ∞

−∞
K0(ξ̄n+1, τn+1; ξ̄n, τn)b̄(ξ̄n)

∂

∂ξ̄n
En(ξ̄n, τn; ȳ, 0) dξ̄n dτn.

(9.20)

The equality of

∂

∂ξ̄n

{
− ∂

∂ȳ
En(ξ̄n, τn; ȳ, 0)

}
= − ∂

∂ȳ

∂

∂ξ̄n
En(ξ̄n, τn; ȳ, 0) (9.21)

is justified since the mixed derivatives are continuous for all ξ̄n ∈ R, ȳ ∈ R, and τn > 0.

Also, the differentiation under the integral sign is valid by the “differentiation under

the integral sign” theorem, which can be found in Fleming [27, p. 197 ff.], for example.

Repeating the argument above shows that (9.19) holds for n = 2, and thus by

induction it holds for all n = 2, 3, 4, 5, . . .. And the proof is complete.

Remark 9.6. In the proof above, to use the “differentiation under the integral sign”

theorem in Fleming [27, p. 197 ff.], we have invoked some boundedness and integrability

properties of the Kn’s. These properties of the Kn’s are well known in PDE theory.

They can be found in, e.g., Krzyzanski [57, p. 534]. Note three things however. First,

our Kn’s are the Un’s in Krzyzanski [57, p. 534]. Second, in Krzyzanski [57, p. 534],

there is a typographical error in the inequality

|Un(x, t; y, s)| ≤
H2n

Γ
(
n
2

)(t− s)n/2−1;

it should read

|Un(x, t; y, s)| ≤
H2n

Γ
(
n
2

) .

Third, Friedman [30, Chapter 1] provides a more detailed discussion on the boundedness

and integrability properties of the Kn’s. The inequalities in Krzyzanski [57, p. 534]
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can be derived by the same methods used in Friedman [30, Chapter 1, Section 4]. We

quote Krzyzanski’s results because they are stated in the form we want.

We now come to the following lemma:

Lemma 9.7. Let (A0)–(A4) hold. Then for each τn > 0, n = 2, 3, . . .,

ūn(ξ̄n, τn) = En(ξ̄n, τn; 0, 0). (9.22)

Proof. Put ξ̄n = x̄. Then by Proposition 9.3, we have

ūn(ξ̄n, τn) =

∫ ∞

0
Kn(ξ̄n, τn; ȳ, 0) dȳ. (9.23)

By (9.19), we have

ūn(ξ̄n, τn) =

∫ ∞

0
− ∂

∂ȳ
En(ξ̄n, τn; ȳ, 0) dȳ

= lim
R→∞

∫ R

0
− ∂

∂ȳ
En(ξ̄n, τn; ȳ, 0) dȳ

= lim
R→∞

[
lim
ȳ→0

En(ξ̄n, τn; ȳ, 0) − lim
ȳ→R

En(ξ̄n, τn; ȳ, 0)

]

= lim
R→∞

[
En(ξ̄n, τn; 0, 0) − En(ξ̄n, τn;R, 0)

]

= En(ξ̄n, τn; 0, 0),

(9.24)

where the third equality follows from the fundamental theorem of calculus, see e.g.

Rudin [72, Theorem 7.21, p. 149]; and the limits in the last two equalities follow

from Lebesgue’s dominated convergence theorem, see e.g. Rudin [72, Theorem 1.34, p.

26].

To study the small time properties of vn, we make the following change of variables

to normalize the τn’s. Given any n = 1, 2, . . ., we put

τ̄n−1 =
τn−1

τn
,

τ̄n−2 =
τn−2

τnτ̄n−1
,

τ̄n−3 =
τn−3

τnτ̄n−1τ̄n−2
,

...

τ̄0 =
τ0

τnτ̄n−1 · · · τ̄2τ̄1
.

(9.25)



9.2. TECHNICAL RESULTS 111

Equivalently, we have, for any n = 1, 2, . . .,

τn−1 = τnτ̄n−1,

τn−2 = τnτ̄n−1τ̄n−2,

τn−3 = τnτ̄n−1τ̄n−2τ̄n−3,

...

τ0 = τn

n−1∏

j=0

τ̄j.

(9.26)

Then by substituting the τ̄n’s into En(ξ̄n, τn; 0, 0) and by (9.22), we obtain the following

lemma:

Lemma 9.8. Let (A0)–(A4) hold. Then

ūn(ξ̄n, τn) = τnn

∫ 1

0

∫ ∞

−∞
K0(ξ̄n, τn; ξ̄n−1, τnτ̄n−1)b̄(ξ̄n−1)

× τ̄n−1
n−1

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄n−1
K0(ξ̄n−1, τnτ̄n−1; ξ̄n−1, τnτ̄n−1τ̄n−2)b̄(ξ̄n−2)

× · · ·

× τ̄2
2

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄2
K0


ξ̄2, τn

n−1∏

j=2

τ̄j; ξ̄1,
n−1∏

j=1

τ̄j


 b̄(ξ̄1)

× τ̄1

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄1
K0


ξ̄1,

n−1∏

j=1

τ̄j ; ξ̄0,

n−1∏

j=0

τ̄j


 b̄(ξ̄0)

×K0


ξ̄0,

n−1∏

j=0

τ̄j; 0, 0


 dξ̄0 dτ0

× dξ̄1 dτ̄1

× · · ·
× dξ̄n−2 dτ̄n−2

× dξ̄n−1 dτ̄n−1.

(9.27)

We shall need the following K0 recombination formula for the heat/Green kernels.

Our proof uses an identity from Friedman [30, the last equation in p. 15]. The same

identity also appeared in the earlier work of Dressel [21].
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Lemma 9.9 (K0 recombination formula). Let (A0)–(A4) hold. Then for n = 1, 2, 3, . . .,

K0

(
ξ̄n, τn; ξ̄n−1, τnτ̄n−1

)
K0(ξ̄n−1, τnτ̄n−1; 0, 0)

= K0(ξ̄n, τn; 0, 0)K0(ξ̄n−1, τnτ̄n−1; ξ̄nτ̄n−1, τnτ̄
2
n−1). (9.28)

Further, for n = 2, 3, . . . and i = 1, 2, 3, . . . , n− 1, we have

K0


ξ̄i, τn

n−1∏

j=i

τ̄j; ξ̄i−1, τn

n−1∏

j=i−1

τ̄j


K0


ξ̄i−1, τn

n−1∏

j=i−1

τ̄j; 0, 0




= K0


ξ̄i, τn

n−1∏

j=i

τ̄j; 0, 0


K0


ξ̄i−1, τn

n−1∏

j=i−1

τ̄j; ξ̄iτ̄i−1, τn

n−1∏

j=i−1

τ̄j τ̄i−1


 . (9.29)

Proof. We will prove the first identity first. Let us note that

ξ̄n − ξ̄n−1

4τn(1 − τ̄n−1)
+

ξ̄2n−1

4τnτ̄n−1
=

1

4τnτ̄n−1(1 − τ̄n−1)

[
(ξ̄n − ξ̄n−1)

2τ̄n−1 + ξ̄2n−1(1 − τ̄n−1)
]

=
1

4τnτ̄n−1(1 − τ̄n−1)

(
ξ̄2n − 2ξ̄nξ̄n−1τ̄n−1 + ξ̄2n−1

)

=
1

4τnτ̄n−1(1 − τ̄n−1)

[
(ξ̄n−1 − ξ̄nτ̄n−1)

2 + ξ̄2nτ̄n−1(1 − τ̄n−1)
]

=
(ξ̄n−1 − ξ̄nτ̄n−1)

2

4τnτ̄n−1(1 − τ̄n−1)
+

ξ̄2n
4τn

.

(9.30)

Together with the definition of K0, see (9.9), this gives

K0

(
ξ̄n, τn; ξ̄n−1, τnτ̄n−1

)
K0(ξ̄n−1, τnτ̄n−1; 0, 0)

=
1√

4πτn(1 − τ̄n−1)

[
exp

(
− (ξ̄n − ξ̄n−1)

2

4τn(1 − τ̄n−1)

)]
1√

4πτnτ̄n−1

[
exp

(
− (ξ̄n − ξ̄n−1)

2

4τn(1 − τ̄n−1)

)]

=
1√

4πτn

[
exp

(
− ξ̄2n

4τn

)]
1√

4πτnτ̄n−1(1 − τ̄n−1)

[
exp

(
− (ξ̄n−1 − ξ̄nτ̄n−1)

2

4τnτ̄n−1(1 − τ̄n−1)

)]

= K0(ξ̄n, τn; 0, 0)K0(ξ̄n−1, τnτ̄n−1; ξ̄nτ̄n−1, τ τ̄
2
n−1).

(9.31)

This proves the first identity. Now set

τ̃n,i = τn

n−1∏

j=i

τ̄j, n = 2, 3, . . . , i = 1, 2, 3, . . . , n− 1. (9.32)
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Then by a similar argument to the derivation of the first identity, we get

K0(ξ̄i, τ̃n,i; ξ̄i−1, τ̃nτ̄i−1)K0(ξ̄i−1, τ̃nτ̄i−1; 0, 0)

= K0(ξ̄i, τ̃n,i; 0, 0)K0(ξ̄i−1, τ̃nτ̄i−1; ξ̄iτ̄i−1, τ̃nτ̄
2
i−1). (9.33)

And the proof is complete.

To simplify the integrands in (9.27) we use the definition of K0 and explicit differ-

entiation to get

∂

∂ξ̄i
K0


ξ̄i, τn

n−1∏

j=i

τ̄j; ξ̄i−1, τn

n−1∏

j=i−1

τ̄j




=
ξ̄i − ξ̄i−1

2τn

n−1∏

j=i

τ̄j(1 − τ̄i−1)

K0


ξ̄i, τn

n−1∏

j=i

τ̄j; ξ̄i−1, τn

n−1∏

j=i−1

τ̄j


 , (9.34)

for n = 2, 3, 4, . . ., and i = 1, 2, . . . , n− 1. For the same n’s and i’s, we define

I
(1)
ūn

(τn; ξ̄1, τ̄1) = τ̄1

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄1
K0


ξ̄1, τn

n−1∏

j=1

τ̄j; ξ̄0, τn

n−1∏

j=0

τ̄j


 b̄(ξ̄0)

×K0


ξ̄0, τn

n−1∏

j=0

τ̄j; 0, 0


 dξ̄0τ̄0,

I
(2)
ūn

(τn; ξ̄2, τ̄2) = τ̄2

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄2
K0


ξ̄2, τn

n−1∏

j=2

τ̄j; ξ̄1, τn

n−1∏

j=1

τ̄j


 b̄(ξ̄1)

× I
(1)
ūn

(τn; ξ̄1, τ̄1) dξ̄1τ̄1,

...
...

...

I
(n−1)
ūn

(τn; ξ̄n−1, τ̄n−1) = τ̄n−1
n−1

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄n−1
K0

(
ξ̄n−1, τnτ̄n−1; ξ̄n−2, τnτ̄n−1τ̄n−2

)
b̄(ξ̄n−2)

× I
(n−2)
ūn

(τn; ξ̄n−2, τ̄n−2) dξ̄n−2τ̄n−2,

I
(n)
ūn

(ξ̄n, τn) ≡ ūn(ξ̄n, τn) = τnn

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄n
K0

(
ξ̄n, τn; ξ̄n−1, τnτ̄n−1

)
b̄(ξ̄n−1)

× I
(n−1)
ūn

(τn; ξ̄n−1, τ̄n−1) dξ̄n−1τ̄n−1.

(9.35)

Note that τ ii ≡ (τi)
i, and it is the ith power of the ith time variable, and that for each
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fixed n, the nth time variable τn is always unbarred. Note also that in the last identity

we have merely expressed ūn in a different form.

Also, for n = 2, 3, 4, . . . and i = 1, 2, . . . , n− 1, we set

I
(i)
ūn,R(τn; ξ̄i, τ̄i) : =

∫ 1

0

∫ ∞

−∞

ξ̄i − ξ̄i−1

1 − τ̄i−1
K0


ξ̄i−1, τn

n−1∏

j=i−1

τ̄j ; ξ̄iτ̄i−1, τn

n−1∏

j=i−1

τ̄j τ̄i−1


 b̄(ξ̄i−1)

×
∫ 1

0

∫ ∞

−∞

ξ̄i−1 − ξ̄i−2

1 − τ̄i−2
K0


ξ̄i−2, τn

n−1∏

j=i−2

τ̄j ; ξ̄i−1τ̄i−2, τn

n−1∏

j=i−2

τ̄j τ̄i−2


 b̄(ξ̄i−2)

× · · ·

×
∫ 1

0

∫ ∞

−∞

ξ̄2 − ξ̄1
1 − τ̄1

K0


ξ̄1, τn

n−1∏

j=1

τ̄j; ξ̄2τ̄1, τn

n−1∏

j=1

τ̄j τ̄1


 b̄(ξ̄1)

×
∫ 1

0

∫ ∞

−∞

ξ̄1 − ξ̄0
1 − τ̄0

K0


ξ̄0, τn

n−1∏

j=0

τ̄j; ξ̄1τ̄0, τn

n−1∏

j=0

τ̄j τ̄1


 b̄(ξ̄0)

× dξ̄0 dτ̄0 dξ̄1 dτ̄1 × · · · × dξ̄i−2 dτ̄i−2 dξ̄i−1 dτ̄i−1.

(9.36)

Here R is not an index; it signifies that I
(i)
ūn,R is the residual component of the term

I
(i)
ūn

. This can be seen in the following lemma.

Lemma 9.10. Let (A0)–(A4) hold. Then for n = 2, 3, 4, . . . and i = 1, 2, . . . , n− 1,

I
(i)
ūn

(τn; ξ̄i, τ̄i) =
(−1)i


2τn

n−1∏

j=i+1

τ̄j



i
K0


ξ̄i, τn

n−1∏

j=i

τ̄j; 0, 0


 I

(i)
ūn,R(τn; ξ̄i, τ̄i), (9.37)

where for i = n− 1,
∏n−1
j=n τ̄j := 1.

Proof. We will prove the lemma by induction. For any fixed (and finite) n = 2, 3, . . .,

explicit calculation shows

I
(1)
ūn

(τn; ξ̄1, τ̄1) =
(−1)1


2τn

n−1∏

j=1

τ̄j




1K0


ξ̄1, τn

n−1∏

j=1

τ̄j; 0, 0


 I

(1)
ūn,R(τn; ξ̄1, τ̄1).

(9.38)

So the identity in question is true for i = 1 for any fixed n = 2, 3, . . .. Now suppose
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that the identity is true for some (n, i), i > 1. We will show that it is also true for

(n, i + 1). Recall that the identity in question would hold only for i = 1, 2, . . . , n − 1.

Hence without loss of generality we assume that i+ 1 ≤ n− 1. By definition

I
(i+1)
ūn

(τn; ξ̄i+1, τ̄i+1)

= τ̄ i+1
i+1

∫ 1

0

∫ ∞

−∞

∂

∂ξ̄i+1
K0


ξ̄i+1, τn

n−1∏

j=i+1

τ̄j; ξ̄i, τn

n−1∏

j=i

τ̄j


 b̄(ξ̄i)I

(i)
ūn

(τn; ξ̄i, τ̄i) dξ̄iτ̄i.

(9.39)

Then, by explicit differentiation, see (9.34), and by (9.37), the identity for I
(i)
ūn

— since

we have supposed that it holds for some fixed pair (n, i) — we get

I
(i+1)
ūn

(τn; ξ̄i+1, τ̄i+1)

= τ̄ i+1
i+1

∫ 1

0

∫ ∞

−∞
− ξ̄i+1 − ξ̄i

2τn

n−1∏

j=i+1

τ̄j(1 − τ̄i)

K0


ξ̄i+1, τn

n−1∏

j=i+1

τ̄j; ξ̄i, τn

n−1∏

j=i

τ̄j


 b̄(ξ̄i)

× (−1)i

2τn

n−1∏

j=i+1

τ̄j



i
K0


ξ̄i, τn

n−1∏

j=i

τ̄j; 0, 0


 I

(i)
ūn,R(τn; ξ̄i, τ̄i) dξ̄i dτ̄i

=
(−1)i+1


2τn

n−1∏

j=i+1

τ̄j



i+1

∫ 1

0

∫ ∞

−∞
− ξ̄i+1 − ξ̄i

1 − τ̄i
K0


ξ̄i+1, τn

n−1∏

j=i+1

τ̄j; ξ̄i, τn

n−1∏

j=i

τ̄j


 b̄(ξ̄i)

×K0


ξ̄i, τn

n−1∏

j=i

τ̄j; 0, 0


 I

(i)
ūn,R(τn; ξ̄i, τ̄i) dξ̄i dτ̄i.

(9.40)
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By recombining the K0’s with (9.29), we get

I
(i+1)
ūn

(τn; ξ̄i+1, τ̄i+1)

=
(−1)i+1


2τn

n−1∏

j=i+1

τ̄j



i+1

K0


ξ̄i+1, τn

n−1∏

j=i+1

τ̄j; 0, 0




×
∫ 1

0

∫ ∞

−∞
− ξ̄i+1 − ξ̄i

1 − τ̄i
K0


ξ̄i, τn

n−1∏

j=i

τ̄j; ξ̄i+1τ̄i, τn

n−1∏

j=i

τ̄j τ̄i


 b̄(ξ̄i)

× I
(i)
ūn,R(τn; ξ̄i, τ̄i) dξ̄i dτ̄i

=
(−1)i+1


2τn

n−1∏

j=i+1

τ̄j



i+1

K0


ξ̄i+1, τn

n−1∏

j=i+1

τ̄j; 0, 0


 I

(i+1)
ūn,R (τn; ξ̄i+1, τ̄i+1).

(9.41)

This shows that if (9.37) holds for some (n, i), it holds also for (n, i + 1). Hence by

induction, for a fixed n, (9.37) holds for all i = 1, 2, . . . , n − 1. Repeating the same

argument shows that (9.37) holds for any fixed integer n ≥ 2. So by induction again it

indeed holds for all arbitrary integer n ≥ 2. And the proof is complete.

We now have another lemma.

Lemma 9.11. Let (A0)–(A4) hold. Then for n = 2, 3, . . .,

ūn(ξ̄n, τn) =

{
(−1)n−1

2n−1
τnK0(ξ̄n, τn; 0, 0)

}
×
∫ 1

0

∫ ∞

−∞
K0

(
ξ̄n−1, τnτ̄n−1; ξ̄nτ̄n−1, τnτ̄

2
n−1

)
b̄(ξ̄n−1)

×
∫ 1

0

∫ ∞

−∞

ξ̄n−1 − ξ̄n−2

1 − τ̄n−2
K0

(
ξ̄n−2, τnτ̄n−1τ̄n−2; ξ̄n−1τ̄n−2, τnτ̄n−1τ̄

2
n−2

)
b̄(ξ̄n−1)

× · · ·

×
∫ 1

0

∫ ∞

−∞

ξ̄2 − ξ̄1
1 − τ̄1

K0


ξ̄1, τn

n−1∏

j=1

τ̄j; ξ̄2τ̄1, τn

n−1∏

j=1

τ̄j τ̄1


 b̄(ξ̄1)

×
∫ 1

0

∫ ∞

−∞

ξ̄1 − ξ̄0
1 − τ̄0

K0


ξ̄0, τn

n−1∏

j=0

τ̄j; ξ̄1τ̄0, τn

n−1∏

j=0

τ̄j τ̄0


 b̄(ξ̄0)

× dξ̄0 dτ̄0 dξ̄1 dτ̄1 × · · · × dξ̄n−2 dτ̄n−2 dξ̄n−1 dτ̄n−1.

(9.42)
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Proof. By (9.35), we have

ūn(ξ̄n, τn) = τnn

∫ 1

0

∫ ∞

−∞
K0(ξ̄n, τn; ξ̄n−1, τnτ̄n−1)b̄(ξ̄n−1)I

(n−1)
ūn

(τn; ξ̄n−1, τ̄n−1) dξ̄n−1 dτ̄n−1.

(9.43)

By (9.37),

ūn(ξ̄n, τn) = τnn

∫ 1

0

∫ ∞

−∞
K0(ξ̄n, τn; ξ̄n−1, τnτ̄n−1)b̄(ξ̄n−1)

× (−1)n−1

(
2τn

∏n−1
j=n τ̄j

)n−1K0


ξ̄n−1, τn

n−1∏

j=n−1

τ̄j; 0, 0




× I
(n−1)
ūn,R (τn; ξ̄n−1, τ̄n−1) dξ̄n−1 dτ̄n−1

= τnn

∫ 1

0

∫ ∞

−∞

(−1)n−1

(2τn)n−1
K0(ξ̄n, τn; ξ̄n−1, τnτ̄n−1)K0

(
ξ̄n−1, τnτ̄n−1; 0, 0

)

× b̄(ξ̄n−1)I
(n−1)
ūn,R dξ̄n−1 dτ̄n−1

=
(−1)n−1

2n−1
τnK0(ξ̄n, τn; 0, 0)

×
∫ 1

0

∫ ∞

−∞
K0(ξ̄n−1, τnτ̄n−1; ξ̄nτ̄n−1, τnτ̄

2
n−1)b̄(ξ̄n−1)I

(n−1)
ūn,R dξ̄n−1 dτ̄n−1,

(9.44)

where in the last equality we have used (9.29) to recombine the K0’s. The desired result

then follows from the definition of I
(n−1)
ūn,R ; see (9.36). The proof is thus complete.

For each fixed n = 2, 3, 4, . . ., we will change the variables ξ̄i, i = 1, 2, . . . , n− 1, in

(9.42). For each fixed n = 2, 3, 4, . . ., let

ū(1)
n =

∫ 1

0

∫ ∞

−∞

ξ̄1 − ξ̄0
1 − τ̄0

K0


ξ̄0, τn

n−1∏

j=0

τ̄j; ξ̄1τ̄0, τn

n−1∏

j=0

τ̄j τ̄0


 b̄(ξ̄0) dξ̄0 dτ̄0,

ū(2)
n =

∫ 1

0

∫ ∞

−∞

ξ̄2 − ξ̄1
1 − τ̄1

K0


ξ̄1, τn

n−1∏

j=1

τ̄j; ξ̄2τ̄1, τn

n−1∏

j=1

τ̄j τ̄1


 b̄(ξ̄1)ū

(1)
n dξ̄1 dτ̄1,

...

(9.45)
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and

ū(i)
n =

∫ 1

0

∫ ∞

−∞

ξ̄i − ξ̄i−1

1 − τ̄i−1
K0


ξ̄i−1, τn

n−1∏

j=i−1

τ̄j; ξ̄iτ̄i−1, τn

n−1∏

j=i−1

τ̄j τ̄i−1




× b̄(ξ̄i−1)ū
(i−1)
n dξ̄i−1 dτ̄i−1,

...

ū(n−1)
n =

∫ 1

0

∫ ∞

−∞

ξ̄n−1 − ξ̄n−2

1 − τ̄n−2
K0


ξ̄n−2, τn

n−1∏

j=n−2

τ̄j; ξ̄iτ̄n−2, τn

n−1∏

j=n−2

τ̄j τ̄n−2




× b̄(ξ̄n−2)ū
(n−2)
n dξ̄n−2 dτ̄n−2,

ū(n)
n (ξ̄n, τn) =

∫ 1

0

∫ ∞

−∞
K0

(
ξ̄n−1, τnτ̄n−1; ξ̄nτ̄n−1, τnτ̄

2
n−1

)
b̄(ξ̄n−1)ū

(n−1)
n dξ̄n−1 dτ̄n−1,

(9.46)

where ū
(i)
n = ū

(i)
n

(
ξ̄i, τ̄i, τ̄i+1, . . . , τ̄n−1; ξ̄n, τn

)
, i = 1, 2, . . . , n− 1.

To illustrate how to change the ξ̄n variables, let us put

ȳ0 =
ξ̄0 − ξ̄1τ̄0√

4τn
∏n−1
j=0 τ̄j(1 − τ̄0)

. (9.47)

Then a rearrangement gives

ξ̄0(ȳ0; τn) = ȳ0

√√√√4τn

n−1∏

j=0

τ̄j(1 − τ̄0) + ξ̄1τ̄0. (9.48)

Notice that

ξ̄0|τn=0 := lim
τn→0

ξ̄0(ȳ0; τn) = (ξ̄1|τn=0)τ̄0 (9.49)

if in turn ξ̄1 also depends on τn.

Now by the definition of ū
(1)
n

(
ξ̄1, τ̄1, τ̄2, . . . , τ̄n−1; ξ̄n, τn

)
, see (9.45), we get

ū(1)
n =

∫ 1

0

∫ ∞

−∞

1

1 − τ̄0


 ξ̄1 − ξ̄1τ̄0 − ȳ0

√√√√4τn

n−1∏

j=0

τ̄j(1 − τ̄0)




× 1√
π

e−ȳ
2
0 b̄(ξ̄0(ȳ0; τn)) dȳ0 dτ̄0

=

∫ 1

0

∫ ∞

−∞




ξ̄1 − ȳ0

√
4τn

∏n−1
j=0 τ̄j

1 − τ̄0


 b̄(ξ̄0(ȳ0; τn))

1√
π

e−ȳ
2
0


 dȳ0 dτ̄0.

(9.50)
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Hence

lim
τn→0

ū(1)
n

(
ξ̄1, τ̄1, τ̄2, . . . , τ̄n−1; ξ̄n, τn

)

= lim
τn→0

∫ 1

0

∫ ∞

−∞




ξ̄1 − ȳ0

√
4τn

∏n−1
j=0 τ̄j

1 − τ̄0


 b̄(ξ̄0(ȳ0; τn))

1√
π

e−ȳ
2
0


 dȳ0 dτ̄0

=

∫ 1

0

∫ ∞

−∞
lim
τn→0




ξ̄1 − ȳ0

√
4τn

∏n−1
j=0 τ̄j

1 − τ̄0


 b̄(ξ̄0(ȳ0; τn))

1√
π

e−ȳ
2
0


 dȳ0 dτ̄0

=

∫ 1

0

∫ ∞

−∞
ξ̄1|τn=0 b̄(ξ̄0|τn=0)

1√
π

e−ȳ
2
0 dȳ0 dτ̄0

=

(∫ 1

0
ξ̄1|τn=0 b̄(ξ̄0|τn=0) dτ̄0

)(∫ ∞

−∞

1√
π

e−ȳ
2
0 dȳ0

)

=

∫ 1

0
ξ̄1|τn=0 b̄(ξ̄0|τn=0) dτ̄0

(9.51)

where the taking of the limit inside the integral is permitted by Lebesgue’s dominated

convergence theorem, see e.g. Rudin [72, Theorem 1.34, p. 26]; and that the splitting

of the integrals are justified as ξ̄0|τn=0 and ξ̄1|τn=0 are independent of ȳ0.

Having illustrated the idea of how to change the ξ̄0 variable, we will list the full

transformation for all the ξ̄i’s, i = 0, 1, . . . , n−1, for any fixed n = 2, 3, 4, . . . as follows:

ȳ0 =
ξ̄0 − ξ̄1τ̄0√

4τn
∏n−1
j=0 τ̄j(1 − τ̄0)

, or ξ̄0 = ȳ0

√√√√4τn

n−1∏

j=0

τ̄j(1 − τ̄0) + ξ̄1τ̄0,

ȳ1 =
ξ̄1 − ξ̄2τ̄1√

4τn
∏n−1
j=1 τ̄j(1 − τ̄1)

, or ξ̄1 = ȳ1

√√√√4τn

n−1∏

j=1

τ̄j(1 − τ̄1) + ξ̄2τ̄1,

...

ȳi =
ξ̄i − ξ̄i+1τ̄i√

4τn
∏n−1
j=i τ̄j(1 − τ̄i)

, or ξ̄i = ȳi

√√√√4τn

n−1∏

j=i

τ̄j(1 − τ̄i) + ξ̄i+1τ̄i,

...

ȳn−2 =
ξ̄n−2 − ξ̄n−1τ̄n−2√

4τn
∏n−1
j=n−2 τ̄j(1 − τ̄n−2)

, or ξ̄n−2 = ȳn−2

√√√√4τn

n−1∏

j=n−2

τ̄j(1 − τ̄n−2) + ξ̄n−1τ̄n−2,

ȳn−1 =
ξ̄n−1 − ξ̄nτ̄n−1√

4τnτ̄n−1(1 − τ̄n−1)
, or ξ̄n−1 = ȳn−1

√
4τnτ̄n−1(1 − τ̄n−1) + ξ̄nτ̄n−1.

(9.52)
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Then, as τn → 0,

ξ̄n−1|τn=0 = ξ̄nτ̄n−1,

ξ̄n−2|τn=0 = (ξ̄n−1|τn=0)τ̄n−1 = ξ̄nτ̄n−1τ̄n−2,

...

ξ̄2|τn=0 = ξ̄n

n−1∏

j=2

τ̄j,

ξ̄1|τn=0 = ξ̄n

n−1∏

j=1

τ̄j,

ξ̄0|τn=0 = ξ̄n

n−1∏

j=0

τ̄j.

(9.53)

In general, for each fixed n = 2, 3, . . .,

ξ̄i|τn=0 = ξ̄n

n−1∏

j=i

τ̄j, i = 0, 1, 2, . . . , n− 1. (9.54)

We then have the following lemma.

Lemma 9.12. Let (A0)–(A4) hold. Then for all n = 2, 3, . . .,

ū(1)
n =

∫ 1

0

∫ ∞

−∞


ξ̄1(ȳ1; τn) − ȳ0

√
4τn

∏n−1
j=0 τ̄j

1 − τ̄0


 b̄(ξ̄0(ȳ0; τn))

1√
π

e−ȳ
2
0 dȳ0 dτ̄0,

ū(2)
n =

∫ 1

0

∫ ∞

−∞


ξ̄2(ȳ2; τn) − ȳ1

√
4τn

∏n−1
j=1 τ̄j

1 − τ̄1


 b̄(ξ̄1(ȳ1; τn))

1√
π

e−ȳ
2
1 ū(1)

n dȳ1 dτ̄1,

...

ū(n−1)
n =

∫ 1

0

∫ ∞

−∞


ξ̄n−1(ȳn−1; τn) − ȳn−2

√
4τn

∏n−1
j=n−2 τ̄j

1 − τ̄n−2




× b̄(ξ̄n−2(ȳn−2; τn))
1√
π

e−ȳ
2
n−2 ū(n−2)

n dȳn−2 dτ̄n−2,

ū(n)
n (ξ̄n, τn) =

∫ 1

0

∫ ∞

−∞
b̄(ξ̄n−1(ȳn−1; τn))

1√
π

e−ȳ
2
n−1 ū(n−1)

n dȳn−1 dτ̄n−1,

(9.55)

where ū
(i)
n = ū

(i)
n

(
ξ̄i, τ̄i, τ̄i+1, . . . , τ̄n−1; ξ̄n, τn

)
, i = 1, 2, . . . , n − 1.
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Proof. We have shown in (9.50) that for any arbitrary positive integer n ≥ 2, the

formula for ū
(1)
n holds. Now by the definition (9.55) and the variable transform formulae

(9.52) we can apply a similar argument to that leading to (9.50), to obtain the desire

formulae for ū2
n, . . . , ū

(n)
n .

It remains to show that the formulae above indeed hold for all n = 2, 3, . . .. This will

be done by induction. Since we have shown that the formulae hold for any arbitrary

integer n ≥ 2, we only need to show that if the formula for ū
(n)
n holds for some positive

integer m, then it also holds for m+ 1. By definition,

ū
(m+1)
m+1 (ξ̄m+1, τm+1) =

∫ 1

0

∫ ∞

−∞
K0(ξ̄m, τm+1τ̄m; ξ̄m+1τ̄m+1, τm+1τ̄

2
m)

× b̄(ξ̄m; τm+1)ū
(m)
m dξ̄m dτ̄m.

(9.56)

Let

ȳm =
ξ̄m − ξ̄m+1τ̄m√

4τm+1τ̄m(1 − τ̄m)
, (9.57)

or equivalently

ξ̄m(ȳm; τm+1) := ξ̄m(ȳm, τm; ξ̄m+1, τm+1) = ȳm
√

4τm+1τ̄m(1 − τ̄m) + ξ̄m+1τ̄m. (9.58)

Then we have

ū
(m+1)
m+1 (ξ̄m+1, τm+1) =

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄m(ȳm; τm+1)

) 1√
π

e−ȳ
2
m ū(m)

m dȳm dτ̄m, (9.59)

showing that the formula for ū
(n)
n holds also for n = m+ 1 if it holds for n = m. Hence

the proof is complete.

We will use (9.55) to calculate the limit of ū
(i)
n , i = 1, 2, . . . , n, as τn → 0. Note

that by the dominated convergence theorem, we can take the limits of the integrands

before integrating them, as in (9.51). For each n = 2, 3, . . ., let

ξ̄i|τn=0 = lim
τn→0

ξ̄i(ȳi; τn), i = 1, 2, . . . , n− 1,

ū(i)
n |τn=0 = lim

τn→0
ū(i)
n

(
ξ̄i, τ̄i, τ̄i+1, . . . , τ̄n−1; ξ̄n, τn

)
, i = 1, 2, . . . , n− 1,

ū(n)
n |τn=0 = lim

τn→0
ū(n)
n (ξ̄n, τn).

(9.60)
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Then by (9.54) and (9.55), we have

ū(1)
n |τn=0 = lim

τn→0

∫ 1

0

∫ ∞

−∞
ξ̄1(ȳ1; τn)b̄

(
ξ̄0(ȳ0; τn)

) 1√
π

e−ȳ
2
0 dȳ0 dτ̄0

=

∫ 1

0

∫ ∞

−∞
ξ̄1(ȳ1; τn)|τn=0b̄

(
ξ̄0(ȳ0; τn)|τn=0

) 1√
π

e−ȳ
2
0 dȳ0 dτ̄0

=

∫ 1

0

∫ ∞

−∞


ξ̄n

n−1∏

j=1

τ̄j


 b̄


ξ̄n

n−1∏

j=0

τ̄j


 1√

π
e−ȳ

2
0 dȳ0 dτ̄0

=



∫ 1

0


ξ̄n

n−1∏

j=1

τ̄j


 b̄


ξ̄n

n−1∏

j=0

τ̄j


 dτ̄0



[∫ ∞

−∞

1√
π

e−ȳ
2
0 dȳ0

]

=

∫ 1

0


ξ̄n

n−1∏

j=1

τ̄j


 b̄


ξ̄n

n−1∏

j=0

τ̄j


 dτ̄0.

(9.61)

Similarly,

ū(2)
n |τn=0 = lim

τn→0

∫ 1

0

∫ ∞

−∞
ξ̄2(ȳ2; τn)b̄

(
ξ̄1(ȳ1; τn)

) 1√
π

e−ȳ
2
1 ū(1)

n dȳ1 dτ̄1

=

∫ 1

0

∫ ∞

−∞
ξ̄2(ȳ2; τn)|τn=0b̄

(
ξ̄1(ȳ1; τn)|τn=0

) 1√
π

e−ȳ
2
1 ū(1)

n |τn=0 dȳ1 dτ̄1

=

∫ 1

0

∫ ∞

−∞


ξ̄n

n−1∏

j=2

τ̄j


 b̄


ξ̄n

n−1∏

j=1

τ̄j


 1√

π
e−ȳ

2
1 ū(1)

n |τn=0 dȳ1 dτ̄1

=



∫ 1

0


ξ̄n

n−1∏

j=2

τ̄j


 b̄


ξ̄n

n−1∏

j=1

τ̄j


 ū(1)

n |τn=0 dτ̄0



[∫ ∞

−∞

1√
π

e−ȳ
2
0 dȳ0

]

=

∫ 1

0


ξ̄n

n−1∏

j=2

τ̄j


 b̄


ξ̄n

n−1∏

j=1

τ̄j


 ū(1)

n |τn=0 dτ̄0.

(9.62)
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Repeating the same process, we have

ū(n−1)
n |τn=0 = lim

τn→0

∫ 1

0

∫ ∞

−∞


ξ̄n−1(ȳn−1; τn) − ȳn−2

√
4τn

∏n−1
j=n−2 τ̄j

1 − τ̄n−2




× b̄
(
ξ̄n−2(ȳn−2; τn)

) 1√
π

e−ȳ
2
n−2 ū(n−2)

n dȳn−2 dτ̄n−2

=

∫ 1

0

∫ ∞

−∞
ξ̄n−1(ȳn−1; τn)|τn=0b̄

(
ξ̄n−2(ȳn−2; τn)|τn=0

)

× 1√
π

e−ȳ
2
n−2 ū(n−2)

n |τn=0 dȳn−2 dτ̄n−2

=

∫ 1

0

∫ ∞

−∞


ξ̄n

n−1∏

j=n−1

τ̄j


 b̄


ξ̄n

n−1∏

j=n−2

τ̄j


 1√

π
e−ȳ

2
n−2 ū(n−2)

n |τn=0 dȳn−2 dτ̄n−2

=

∫ 1

0

∫ ∞

−∞
ξ̄nτ̄n−1b̄

(
ξ̄nτ̄n−1τ̄n−2

) 1√
π

e−ȳ
2
n−2 ū(n−2)

n |τn=0 dȳn−2 dτ̄n−2

=

[∫ 1

0
ξ̄nτ̄n−1b̄

(
ξ̄nτ̄n−1τ̄n−2

)
ū(n−2)
n |τn=0 dτ̄n−2

] [∫ ∞

−∞

1√
π

e−ȳ
2
n−2 dȳn−2

]

=

∫ 1

0
ξ̄nτ̄n−1b̄

(
ξ̄nτ̄n−1τ̄n−2

)
ū(n−2)
n |τn=0 dτ̄n−2.

(9.63)

and

ū(n)
n |τn=0 =

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄n−1(ȳn−1; τn)|τn=0

) 1√
π

e−ȳ
2
n−1 ū(n−1)

n |τn=0 dȳn−1 dτn−1

=

∫ 1

0
b̄(ξ̄nτ̄n−1)ū

n−1
n |τn=0 dτ̄n−1.

(9.64)

In sum, we have obtained the following lemma for the ū
(n)
n ’s.
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Lemma 9.13. Let (A0)–(A4) hold. Then for all n = 2, 3, . . .,

lim
τn→0

ū(n)
n (ξ̄n, τn) =

∫ 1

0
b̄(ξ̄nτ̄n−1)

×
∫ 1

0
ξ̄nτ̄n−1b̄

(
ξ̄nτ̄n−1τ̄n−2

)

× · · · ×
∫ 1

0


ξ̄n

n−1∏

j=2

τ̄j


 b̄


ξ̄n

n−1∏

j=1

τ̄j




×
∫ 1

0


ξ̄n

n−1∏

j=1

τ̄j


 b̄


ξ̄n

n−1∏

j=0

τ̄j


 dτ̄0

× dτ̄1 × · · · × dτ̄n−2 dτ̄n−1.

(9.65)

For n = 2, 3, . . ., we make the following change of variables:

z̄0 = ξ̄n

n−1∏

j=0

τ̄j =


ξ̄n

n−1∏

j=1

τ̄j


 τ̄0,

z̄1 = ξ̄n

n−1∏

j=1

τ̄j =


ξ̄n

n−1∏

j=2

τ̄j


 τ̄1,

...

z̄i = ξ̄n

n−1∏

j=i

τ̄j =


ξ̄n

n−1∏

j=i+1

τ̄j


 τ̄i,

...

z̄n−1 = ξ̄n

n−1∏

j=n−2

τ̄j =
(
ξ̄nτ̄n−1

)
τ̄n−2,

z̄n−2 = ξ̄nτ̄n−1.

(9.66)

Recall that by definition ū
(n)
n |τn=0 = ū

(n)
n (ξ̄n, 0). Then we have the following lemma:

Lemma 9.14. Let (A0)–(A4) hold. Then for each n = 1, 2, 3, . . .,

ū(n)
n (ξ̄n, 0) =

1

ξ̄n

∫ ξ̄n

0
b̄(z̄n−1)

∫ z̄n−1

0
b̄(z̄n−2)

∫ z̄n−2

0
b̄(z̄n−3) × · · · ×

∫ z̄2

0
b̄(z̄1)

∫ z̄1

0
b̄(z̄0)

× dz̄0 dz̄1 × · · · × dz̄n−3 dz̄n−2 dz̄n−1.

(9.67)
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Proof. We will prove the lemma by induction. Suppose that the formula is true for

some n. Then by (9.59),

lim
τn+1→0

ū
(n+1)
n+1 (ξ̄n+1, τn+1)

= lim
τn+1→0

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄n(ȳn; τn+1)

) 1√
π

e−ȳ
2
n ū

(n)
n+1 dȳn dτ̄n

=

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄n(ȳn; τn+1)|τn+1=0

) 1√
π

e−ȳ
2
n ū

(n)
n+1|τn+1=0 dȳn dτ̄n

=

[∫ 1

0
b̄
(
ξ̄n(ȳn; τn+1)|τn+1=0

)
ū

(n)
n+1|τn+1=0 dτ̄n

] [∫ ∞

−∞

1√
π

e−ȳ
2
n dȳn

]
,

(9.68)

where

ū
(n)
n+1(ξ̄n, τ̄n; ξ̄n+1, τn+1) =

∫ 1

0

∫ ∞

−∞


ξ̄n(ξ̄n; τn+1) − ȳn−1

√
4τn+1

∏n
j=n−1 τ̄j

1 − τ̄n−1




× b̄
(
ξ̄n−1(ȳn−1; τn+1)

) 1√
π

e−ȳ
2
n−1 ū

(n−1)
n+1 dȳn−1 dτ̄n−1.

(9.69)

Then by repeating the variable transform (9.66), with the index n raised to n+ 1, we

get

ū
(n+1)
n+1 (ξ̄n+1, 0) =

1

ξ̄n+1

∫ ξ̄n+1

0
b̄(z̄n)

∫ z̄n

0
b̄(z̄n−1)

∫ z̄n−1

0
b̄(z̄n−2) × · · · ×

∫ z̄2

0
b̄(z̄1)

∫ z̄1

0
b̄(z̄0)

× dz̄0 dz̄1 × · · · × dz̄n−2 dz̄n−1 dz̄n.

(9.70)

Hence (9.67) holds for n + 1 if it holds for some positive integer n. It can be verified

that (9.67) holds for n = 1, 2, so by induction (9.67) holds for all n = 1, 2, 3, . . .. The

proof is thus complete.

It turns out (9.67) can be integrated explicitly. Recall that

b̄(x̄) =
1√
2

(
σ(θ−1(x̄)) + σ′(θ−1(x̄))

)
, (9.71)

θ(x) =
√

2

∫ x

0

dz

σ(z)
. (9.72)
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Let

I(1)
n (z̄1) =

∫ z̄1

0
b̄(z̄0) dz̄0,

I(2)
n (z̄2) =

∫ z̄2

0
b̄(z̄1)I

(1)
n (z̄1) dz̄1,

...

I(n−1)
n (z̄n−1) =

∫ z̄n−1

0
b̄(z̄n−2)I

(1)
n (z̄n−2) dz̄n−2.

(9.73)

Then

ū(n)
n (ξ̄n, 0) =

1

ξ̄n

∫ ξ̄n

0
b̄(z̄n−1)I

(n−1)
n (z̄n−1) dz̄n−1. (9.74)

For each fixed n ∈ N0, implicitly define the new variables z0, z1, . . . , zn−1, by

z̄0 = θ(z0),

z̄1 = θ(z1),

...

z̄n−1 = θ(zn−1).

(9.75)

Then in these new variables,

I(1)
n (z̄1) =

∫ θ−1(z̄1)

0

1√
2

(
σ(z0) + σ′(z0)

) √
2

σ(z0)
dz0

=

∫ θ−1(z̄1)

0

[
1 +

σ′(z0)
σ(z0)

]
dz0

=

∫ θ−1(z̄1)

0

d

dz0

[
z0 + lnσ(z0)

]
dz0

= θ−1(z̄1) + ln
σ(θ−1(z̄1))

σ(0)
.

(9.76)

This gives

I(1)
n (z1) = z1 + ln

σ(z1)

σ(0)
. (9.77)
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Similarly,

I(2)
n (z̄2) =

∫ θ−1(z̄2)

0

1√
2

(
σ(z0) + σ′(z0)

) √
2

σ(z1)

[
z1 + ln

σ(z1)

σ(0)

]
dz1

=

∫ θ−1(z̄2)

0

[
1 +

σ′(z0)
σ(z0)

] [
z1 + ln

σ(z1)

σ(0)

]
dz1

=

∫ θ−1(z̄2)

0

1

2

d

dz0

{[
z1 + ln

σ(z1)

σ(0)

]2
}

dz1

=
1

2!

[
θ−1(z̄2) + ln

σ(θ−1(z̄2))

σ(0)

]2

.

(9.78)

In other words,

I(2)
n (z2) =

1

2!

[
z2 + ln

σ(z2)

σ(0)

]2

. (9.79)

Noting these results, we are now ready to prove the following lemma:

Lemma 9.15. Let (A0)–(A4) hold. Then for any n = 2, 3, . . .,

I(i)
n (z̄i) =

1

i!

[
θ−1(z̄i) + ln

σ(θ−1(z̄i))

σ(0)

]i
, i = 1, 2, . . . , n− 1. (9.80)

Proof. Recall that we have shown in the above that (9.80) is true for i = 1, 2 for any

fixed integer n ≥ 2. Now suppose it is true for some i and an arbitrary integer n, we

will show that it is also true for i+ 1, provided i+ 1 ≤ n− 1. By the definition (9.73),

I(i+1)
n (z̄i+1) =

∫ z̄i+1

0
b̄(z̄i)I

(i)
n (z̄i) dz̄i. (9.81)

By assumption, (9.80) holds for some i. Hence

I(i+1)
n (z̄i+1) =

∫ z̄i+1

0
b̄(z̄i)

1

i!

[
θ−1(z̄i) + ln

σ(θ−1(z̄i))

σ(0)

]i
dz̄i. (9.82)

Setting z̄i = θ(zi), we have

I(i+1)
n (z̄i+1) =

∫ θ−1(z̄i+1)

0

1√
2

(
σ(zi) + σ′(zi)

) √
2

σ(zi)

1

i!

[
zi + ln

σ(zi)

σ(0)

]i
dzi. (9.83)
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Simplifying the terms gives

I(i+1)
n (z̄i+1) =

∫ θ−1(z̄2)

0

[
1 +

σ′(z0)
σ(z0)

]
1

i!

[
zi + ln

σ(zi)

σ(0)

]i
dzi

=

∫ θ−1(z̄i+1)

0

1

(i+ 1)!

d

dz0

{[
zi + ln

σ(zi)

σ(0)

]i+1
}

dzi

=
1

(i+ 1)!

[
θ−1(z̄i+1) + ln

σ(θ−1(z̄i+1))

σ(0)

]i+1

.

(9.84)

Hence (9.80) holds for any arbitrarily fixed n = 2, 3, . . ., and all i = 1, 2, . . . , n − 1. It

holds for all n = 2, 3, . . . and all i = 1, 2, . . . , n − 1 by induction. The proof is thus

complete.

9.3 Calculation of the 1st and 2nd term of the series

Remember that in this chapter our aim is to prove Theorem 9.1. To this end we

have proceeded to calculate term by term the time τ limit of the series U1(x, τ) =
∑∞

n=1 un(x, τ). By (9.15) and (9.16), this is the same as to calculate term by term

the time τ limit of the series Ū1(x̄, τ) =
∑∞

n=1 ūn(x̄, τ). While yet to be proved,

Proposition 9.4 gives the limits we are to obtain for the ūn’s. The technical results

given in Section 9.2 above have paved the way for the proof of these limits. Before

proving these limits, i.e., before proving Proposition 9.4, and the main theorem of this

chapter, let us demonstrate how those technical results of Section 9.2 actually work in

the calculation of the time τ limits of the ūn’s. In this demonstration we will calculate

the limit as τ tends to 0 of ū1 and ū2, the first and second term of the series Ū1(x̄, τ).

Calculation of the time τ limit of the first term

We now calculate the limit of the first term ū1 as τ tends to 0. Note that by (9.16)

we have ūn = un for all n ∈ N0. By (9.5)–(9.10), (9.13), and with (x̄, τ) replaced by
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(ξ̄1, τ1), we have

ū1(ξ̄1, τ1) =

∫ ∞

−∞
K1(ξ̄1, τ1; ȳ, 0)~(ȳ) dȳ

=

∫ ∞

0
K1(ξ̄1, τ1; ȳ, 0) dȳ

=

∫ ∞

0
− ∂

∂ȳ

[∫ τ1

0

∫ ∞

−∞
K0(ξ̄1, τ1; ξ̄0, τ0)b̄(ξ̄0)K0(ξ̄0, τ0; ȳ, 0) dξ̄0 dτ0

]
dȳ

=

[∫ τ1

0

∫ ∞

−∞
K0(ξ̄1, τ1; ξ̄0, τ0)b̄(ξ̄0)K0(ξ̄0, τ0; ȳ, 0) dξ̄0 dτ0

]∞

ȳ=0

=

∫ τ1

0

∫ ∞

−∞
K0(ξ̄1, τ1; ξ̄0, τ0)b̄(ξ̄0)K0(ξ̄0, τ0; 0, 0) dξ̄0 dτ0,

(9.85)

where the third equality is justified by (9.19), the forth by (9.22), and the fifth by the

dominated convergence theorem. This corresponds to (9.22) with n = 1. To normalize

the time integration from the interval (0, τ1) to the interval (0, 1), we put τ̄0 = τ0/τ1.

This gives τ0 = τ1τ̄0. Consequently, recombining the kernels gives

ū1(ξ̄1, τ1)

= τ1

∫ 1

0

∫ ∞

−∞
K0(ξ̄1, τ1; ξ̄0, τ1τ̄0)b̄(ξ̄0)K0(ξ̄0, τ1τ̄0; 0, 0) dξ̄0 dτ̄0

= τ1

∫ 1

0

∫ ∞

−∞
K0(ξ̄1, τ1; 0, 0)b̄(ξ̄0)K0(ξ̄0, τ1τ̄0; ξ̄1τ̄0, τ1τ̄

2
0 ) dξ̄0 dτ̄0

=
τ1√
4πτ1

[
exp

(
− ξ̄21

4τ1

)]∫ 1

0

∫ ∞

−∞
b̄(ξ̄0)

1√
4πτ1τ̄0(1 − τ̄0)

exp

[
− (ξ̄0 − ξ̄1τ̄0)

2

4τ1τ̄0(1 − τ̄0)

]
dξ̄0 dτ̄0.

(9.86)

This corresponds to (9.42) with n = 1. Now as in (9.47) or (9.52), we let

ȳ0 =
ξ̄0 − ξ̄1τ̄0√

4τ1τ̄0(1 − τ̄0)
. (9.87)

Then a rearrangement of ȳ0 gives

ξ̄0(ȳ0; τ1) = ȳ0

√
4τ1τ̄0(1 − τ̄0) + ξ̄1τ̄0. (9.88)

By this change of variables we get

ū1(ξ̄1, τ1) =
τ1√
4πτ1

[
exp

(
− ξ̄21

4τ1

)]∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄0(ȳ0; τ1)

) 1√
π

e−ȳ
2
0 dȳ0 dτ̄0. (9.89)
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Noting that

ξ̄0(ȳ0; τ1) → ξ̄1τ̄0 as τ1 → 0, (9.90)

we have, as τ1 → 0,

ū1(ξ̄1, τ1) ∼
τ1√
4πτ1

[
exp

(
− ξ̄21

4τ1

)]∫ 1

0

∫ ∞

−∞
b̄(ξ̄1τ̄0)

1√
π

e−ȳ
2
0 dȳ0 dτ̄0

=

√
τ1√
4π

[
exp

(
− ξ̄21

4τ1

)]∫ 1

0
b̄(ξ̄1τ̄0) dτ̄0

∫ ∞

−∞

1√
π

e−ȳ
2
0 dȳ0

=

{√
τ1√
4π

[
exp

(
− ξ̄21

4τ1

)]}∫ 1

0
b̄(ξ̄1τ̄0) dτ̄0,

(9.91)

where in the last equality the integral corresponds to ū
(n)
n in (9.65) with n = 1, and the

curly bracket term corresponds to the curly bracket term in (9.42), again with n = 1.

Following (9.66), we then set z̄0 = ξ̄1τ̄0. By (9.91), as τ1 → 0,

ū1(ξ̄1, τ1) ∼
√
τ1√
4π

[
exp

(
− ξ̄21

4τ1

)]∫ ξ̄1

0
b̄(z̄0)

1

ξ̄1
dz̄0, (9.92)

where the integral corresponds to (9.67) with n = 1. As in (9.75), we put z0 = θ(z̄0),

i.e., z̄0 = θ(z0). Then

∫ ξ̄1

0
b̄(z̄0)

1

ξ̄1
dz̄0 =

1

ξ̄1

∫ θ−1(ξ̄1)

0
b̄
(
θ(z0)

) √
2

σ(z0)
dz0

=
1

ξ̄1

∫ θ−1(ξ̄1)

0

1√
2

(
σ(z0) + σ′(z0)

) √
2

σ(z0)
dz0

=
1

ξ̄1

[
θ−1(ξ̄1) + ln

σ(θ−1(ξ̄1))

σ(0)

]
.

(9.93)

This is nothing more than replacing z̄1 in (9.76) with ξ̄1. Together with (9.92), this

shows that as τ1 → 0,

ū1(ξ̄1, τ1) ∼
√
τ1√
4π

[
exp

(
− ξ̄21

4τ1

)]
1

ξ̄1

[
θ−1(ξ̄1) + ln

σ(θ−1(ξ̄1))

σ(0)

]
. (9.94)

Replacing (ξ̄1, τ1) with (x̄, τ), and recalling

x̄ ≡
√

2

∫ x

0

dz

σ(z)
≡

√
2J(x), (9.95)
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we have, as τ → 0,

ū1(x̄, τ) ∼
√
τ√
4π

[
exp

(
− x̄

2

4τ

)]
1

x̄

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

]

=

{√
τ√
π

[
exp

(
− x̄

2

4τ

)]
1

x̄
· (−1)n−1

n!

(
1

2

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

])n}

n=1

.

(9.96)

This completes the calculation of the time τ limit of ū1(x̄, τ), the first term of the series

Ū1(x̄, τ) =
∑∞

n=1 ūn(x̄, τ).

Calculation of the time τ limit of the second term

We now calculate ū2, the second term of the series Ū1(x̄, τ) =
∑∞

n=1 ūn(x̄, τ). By

(9.5)–(9.10), (9.13), and with (x̄, τ) replaced by (ξ̄2, τ2), we have

ū2(ξ̄2, τ2) =

∫ ∞

−∞
K2(ξ̄2, τ2; ȳ, 0)~(ȳ) dȳ

=

∫ ∞

0
K2(ξ̄2, τ2; ȳ, 0) dȳ

=

∫ ∞

0
− ∂

∂ȳ

{∫ τ2

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ1)b̄(ξ̄1)

×
∫ τ1

0

∫ ∞

−∞

[
∂

∂ξ̄1
K0(ξ̄1, τ1; ξ̄0, τ0)

]
b̄(ξ̄0)K0(ξ̄0, τ0; ȳ, 0) dξ̄0 dτ0

× dξ̄1 dτ1

}
dȳ

=

∫ τ2

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ1)b̄(ξ̄1)

×
∫ τ1

0

∫ ∞

−∞

[
∂

∂ξ̄1
K0(ξ̄1, τ1; ξ̄0, τ0)

]
b̄(ξ̄0)K0(ξ̄0, τ0; 0, 0) dξ̄0 dτ0 dξ̄1 dτ1.

(9.97)

This corresponds to (9.22) with n = 2. To normalize the time integration from the

interval (0, τ2) to the interval (0, 1), we put τ̄1 = τ1/τ2. This gives τ1 = τ2τ̄1 and

ū2(ξ̄2, τ2) = τ2

∫ 1

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ2τ̄1)b̄(ξ̄1)

×
∫ τ2τ̄1

0

∫ ∞

−∞

[
∂

∂ξ̄1
K0(ξ̄1, τ2τ̄1; ξ̄0, τ0)

]
b̄(ξ̄0)K0(ξ̄0, τ0; 0, 0) dξ̄0 dτ0 dξ̄1 dτ̄1.

(9.98)
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Setting τ̄0 = τ0/(τ2τ̄1) gives τ0 = τ2τ̄1τ̄2. This change of the variables then gives

ū2(ξ̄2, τ2) = τ2
2

∫ 1

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ2τ̄1)b̄(ξ̄1)

× τ̄1

∫ 1

0

∫ ∞

−∞

[
∂

∂ξ̄1
K0(ξ̄1, τ2τ̄1; ξ̄0, τ2τ̄1τ̄0)

]
b̄(ξ̄0)K0(ξ̄0, τ2τ̄1τ̄0; 0, 0)

× dξ̄0 dτ̄0 dξ̄1 dτ̄1.

(9.99)

This equation corresponds to (9.27) with n = 2. Note that in this expression we have

the τ̄0 and τ̄1, instead of τ0 and τ1, time integrals. Let f be the inner most integrand

of ū2(ξ̄2, τ2) in (9.99); that is,

f =

[
∂

∂ξ̄1
K0(ξ̄1, τ2τ̄1; ξ̄0, τ2τ̄1τ̄0)

]
b̄(ξ̄0)K0(ξ̄0, τ2τ̄1τ̄0; 0, 0). (9.100)

By differentiating explicitly and applying the K0 recombination formula (9.28), we get

f = − ξ̄1 − ξ̄0
2τ2τ̄1(1 − τ̄0)

b̄(ξ̄0)K0(ξ̄1, τ2τ̄1; 0, 0)K0(ξ̄0, τ2τ̄1τ̄0; ξ̄1τ̄0, τ2τ̄1τ̄
2
0 ). (9.101)

Note that in the application of the K0 recombination formula (9.28), we could treat

τ2τ̄1 as a time point τ̃ . Moreover, (9.101) can be directly verified by using the definition

of K0, see (9.9). Now by (9.99) and (9.101) we can rewrite ū2(ξ̄2, τ2) as

ū2(ξ̄2, τ2) = τ2
2

∫ 1

0

∫ ∞

−∞
K0(ξ̄2, τ2; ξ̄1, τ2τ̄1)b̄(ξ̄1)

× τ̄1K0(ξ̄1, τ2τ̄1; 0, 0)

[∫ 1

0

∫ ∞

−∞
g dξ̄0 dτ̄0

]
dξ̄1 dτ̄1,

(9.102)

where

g = − ξ̄1 − ξ̄0
2τ2τ̄1(1 − τ̄0)

b̄(ξ̄0)K0(ξ̄0, τ2τ̄1τ̄0; ξ̄1τ̄0, τ2τ̄1τ̄
2
0 ). (9.103)

Applying the K0 recombination formula (9.28) to K0(ξ̄2, τ2; ξ̄1, τ2τ̄1)K0(ξ̄1, τ2τ̄1; 0, 0)

then gives

ū2(ξ̄2, τ2) = τ2
2K0(ξ̄2, τ2; 0, 0)

∫ 1

0

∫ ∞

−∞
K0(ξ̄1, τ2τ̄1; ξ̄2τ̄1, τ2τ̄

2
1 )b̄(ξ̄1)

× τ̄1

∫ 1

0

∫ ∞

−∞
g dξ̄0 dτ̄0 dξ̄1 dτ̄1.

(9.104)
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Starting with the inner most integral that now has g as its integrand, we will further

simplify ū2(ξ̄2, τ2). As in (9.52), to simplify g we set

ȳ0 =
ξ̄0 − ξ̄1τ̄0√

4τ2τ̄1τ̄0(1 − τ̄0)
. (9.105)

This gives

ξ̄0(ȳ0; τ2) = ȳ0

√
4τ2τ̄1τ̄0(1 − τ̄0) + ξ̄1τ̄0. (9.106)

And we have

K0(ξ̄0, τ2τ̄1τ̄0; ξ̄1τ̄0, τ2τ̄1τ̄
2
0 ) dξ̄0 =

1√
π

e−ȳ
2
0 dȳ0. (9.107)

Moreover, we get

ξ̄1 − ξ̄0 = ξ̄1 − ȳ0

√
4τ2τ̄1τ̄0(1 − τ̄0) − ξ̄1τ̄0

= ξ̄1(1 − τ̄0) − ȳ0

√
4τ2τ̄1τ̄0(1 − τ̄0),

(9.108)

and

− ξ̄1 − ξ̄0
2τ2τ̄1(1 − τ̄0)

= − 1

2τ2τ̄1

[
ξ̄1 − ȳ0

√
4τ2τ̄1τ̄0
1 − τ̄0

]
. (9.109)

By (9.105)–(9.109) , ū2(ξ̄2, τ2), in the form expressed by (9.104), can be rewritten as

ū2(ξ̄2, τ2) = τ2
2K0(ξ̄2, τ2; 0, 0)

∫ 1

0

∫ ∞

−∞
K0(ξ̄1, τ2τ̄1; ξ̄2τ̄1, τ2τ̄

2
1 )b̄(ξ̄1)

× −τ̄1
2τ2τ̄1

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄0(ȳ0; τ2)

)[
ξ̄1 − ȳ0

√
4τ2τ̄1τ̄0
1 − τ̄0

]
1√
π

e−ȳ
2
0 dȳ0 dτ̄0 dξ̄1 dτ̄1

= −τ2
2
K0(ξ̄2, τ2; 0, 0)

∫ 1

0

∫ ∞

−∞
K0(ξ̄1, τ2τ̄1; ξ̄2τ̄1, τ2τ̄

2
1 )b̄(ξ̄1)

×
∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄0(ȳ0; τ2)

) [
ξ̄1 − ȳ0

√
4τ2τ̄1τ̄0
1 − τ̄0

]
1√
π

e−ȳ
2
0 dȳ0 dτ̄0 dξ̄1 dτ̄1,

(9.110)

where ξ̄0(ȳ0; τ2) is given by (9.106). To simplify the remaining K0 term in (9.110), we

put

ȳ1 =
ξ̄1 − ξ̄2τ̄1√

4τ2τ̄1(1 − τ̄1)
. (9.111)

This gives

ξ̄1(ȳ1; τ2) = ȳ1

√
4τ2τ̄1(1 − τ̄1) + ξ̄2τ̄1. (9.112)

Further, we have

K0(ξ̄1, τ2τ̄1; ξ̄2τ̄1, τ2τ̄
2
1 ) dξ̄1 =

1√
π

e−ȳ
2
1 dȳ1. (9.113)
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By (9.111)–(9.113), ū2(ξ̄2, τ2), as expressed by the last equality of (9.110), can be

rewritten as

ū2(ξ̄2, τ2) = −τ2
2
K0(ξ̄2, τ2; 0, 0)

∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄1(ȳ1; τ2)

) 1√
π

e−ȳ
2
1

×
∫ 1

0

∫ ∞

−∞
b̄
(
ξ̄0(ȳ0; τ2)

) [
ȳ1

√
4τ2τ̄1(1 − τ̄1) + ξ̄2τ̄1 − ȳ0

√
4τ2τ̄1τ̄0
1 − τ̄0

]

× 1√
π

e−ȳ
2
0 dȳ0 dτ̄0 dȳ1 dτ̄1.

(9.114)

By (9.106), we have ξ̄1(ȳ1; τ2)
τ2→0−−−−→ ξ̄2τ̄1. This, together with (9.112), then gives

ξ̄0(ȳ0; τ2)
τ2→0−−−−→ lim

τ2→0
ξ̄1(ȳ1; τ2)τ̄0 = ξ̄2τ̄1τ̄0.

Hence, by taking into account (9.114) and the definition of K0, and using the dominated

convergence theorem, we get, as τ2 → 0,

ū2(ξ̄2, τ2) ∼ −τ2
2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)

×
∫ 1

0

∫ ∞

−∞
b̄(ξ̄2τ̄1)

1√
π

e−ȳ
2
1

[∫ 1

0

∫ ∞

−∞
ξ̄2τ̄1b̄(ξ̄2τ̄1τ̄0)

1√
π

e−ȳ
2
0 dȳ0 dτ̄0

]

× dȳ1 dτ̄1

= −τ2
2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)

×
∫ 1

0
b̄(ξ̄2τ̄1)

[∫ 1

0
ξ̄2τ̄1b̄(ξ̄2τ̄1τ̄0) dτ̄0

]
dτ̄1

×
∫ ∞

−∞

1√
π

e−ȳ
2
1 dȳ1

∫ ∞

−∞

1√
π

e−ȳ
2
0 dȳ0

=

{
−τ2

2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)}
×
∫ 1

0
b̄(ξ̄2τ̄1)

[∫ 1

0
ξ̄2τ̄1b̄(ξ̄2τ̄1τ̄0) dτ̄0

]
dτ̄1.

(9.115)

Here the (double) integral term corresponds to the right hand side of (9.65) with n = 2,

and the curly bracket term corresponds to the curly bracket term in (9.42), also with

n = 2.
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Following (9.66), we set z̄0 = ξ̄2τ̄1τ̄0 and z̄1 = ξ̄2τ̄1. Then (9.115) becomes

ū2(ξ̄2, τ2) ∼
{
−τ2

2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)}
×
∫ 1

0
b̄(ξ̄2τ̄1)

[∫ ξ̄2τ̄1

0
b̄(z̄0) dz̄0

]
dτ̄1

=

{
−τ2

2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)}
× 1

ξ̄2

∫ ξ̄2

0
b̄(z̄1)

[∫ z̄1

0
b̄(z̄0) dz̄0

]
dz̄1.

(9.116)

We will calculate first the integral inside the square brackets. Recall from (9.6) that

θ(x) =
√

2

∫ x

0

dz

σ(z)
.

As in (9.75), we can implicitly (and uniquely) define z0 by

z̄0 = θ(z0). (9.117)

Then

∫ z̄1

0
b̄(z̄0) dz̄0 =

∫ θ−1(z̄1)

0
b̄(θ(z0))

√
2

σ(z0)
dz0

=

∫ θ−1(z̄1)

0

1√
2

[
σ′
(
θ−1(θ(z0))

)
+ σ

(
θ−1(θ(z0))

)] √
2

σ(z0)
dz0

=

∫ θ−1(z̄1)

0

[
σ′(z0) + σ(z0)

] 1

σ(z0)
dz0

=

∫ θ−1(z̄1)

0

[
1 +

σ′(z0)
σ(z0)

]
dz0

= [z0 + lnσ(z0)]
θ−1(z̄1)
z0=0

= θ−1(z̄1) + ln
σ(θ−1(z̄1))

σ(0)
,

(9.118)

where in the second equality we have used (9.8), the definition of b̄(·). Now we implicitly

define z1 by

z̄1 = θ(z1). (9.119)

Then by (9.118), the (double) integral in (9.116) becomes

∫ ξ̄2

0
b̄(z̄1)

[∫ z̄1

0
b̄(z̄0) dz̄0

]
dz̄1 =

∫ ξ̄2

0
b̄(z̄1)

[
θ−1(z̄1) + ln

σ(θ−1(z̄1))

σ(0)

]
dz̄1

=

∫ θ−1(ξ̄2)

0
b̄(θ(z1))

[
θ−1(θ(z1)) + ln

σ(θ−1(θ(z1)))

σ(0)

] √
2

σ(z1)
dz1.

(9.120)
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Applying (9.8), the definition of b̄(·), we then get

∫ ξ̄2

0
b̄(z̄1)

[∫ z̄1

0
b̄(z̄0) dz̄0

]
dz̄1

=

∫ θ−1(ξ̄2)

0

1√
2

[
σ′(z1) + σ(z1)

]
×
[
z1 + ln

σ(z1)

σ(0)

] √
2

σ(z1)
dz1

=

∫ θ−1(ξ̄2)

0

[
1 +

σ′(z1)
σ(0)

]
×
[
z1 + ln

σ(z1)

σ(0)

]
dz1

=
1

2

∫ θ−1(ξ̄2)

0

d

dz1

{[
z1 + ln

σ(z1)

σ(0)

]2
}

dz1

=
1

2

[
θ−1(ξ̄2) + ln

σ(θ−1(ξ̄2))

σ(0)

]2

.

(9.121)

This, coupled with (9.116), then shows that as τ2 → 0,

ū2(ξ̄2, τ2) ∼
{
−τ2

2

1√
4πτ2

exp

(
− ξ̄22

4τ2

)}
× 1

ξ̄2
× 1

2

[
θ−1(ξ̄2) + ln

σ(θ−1(ξ̄2))

σ(0)

]2

=

√
τ2√
π

[
exp

(
− ξ̄22

4τ2

)]
1

ξ̄2
· (−1)2−1

2!

(
1

2

[
θ−1(ξ̄2) + ln

σ(θ−1(ξ̄2))

σ(0)

])2

.

(9.122)

Relabelling (ξ̄2, τ2) with (x̄, τ), we have, as τ → 0,

ū2(x̄, τ) ∼
{√

τ√
π

[
exp

(
− x̄

2

4τ

)]
1

x̄
· (−1)n−1

n!

(
1

2

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

])n}

n=2

,

(9.123)

which what is given by (9.17) in Proposition 9.4. This completes the calculation

of the small time asymptotic limit of ū2, the second term of the series Ū1(x̄, τ) =
∑∞

n=1 ūn(x̄, τ). The other ūn terms in the series can be calculated accordingly, as we

have already proved in Section 9.2. We are now ready to present the main proofs of

this chapter.

9.4 The main proofs of the chapter

In this section we will prove firstly Proposition 9.4 and secondly Theorem 9.1.

Proof of Proposition 9.4. Lemma 9.15 shows that for any n = 2, 3, . . .,

I(n−1)
n (z̄n−1) =

1

(n − 1)!

[
θ−1(z̄n−1) + ln

σ(θ−1(z̄n−1))

σ(0)

]n−1

. (9.124)
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Then by (9.74), and by setting z̄n−1 = θ(zn−1),

ū(n)
n (ξ̄n, 0) =

1

ξ̄n

∫ ξ̄n

0
b̄(z̄n−1)I

(n−1)
n (z̄n−1) dz̄n−1

=
1

ξ̄n
· 1

n!

[
θ−1(ξ̄n) + ln

σ(θ−1(ξ̄n))

σ(0)

]n
.

(9.125)

By (9.42), (9.55) and (9.125), as τn → 0,

ūn(ξ̄n, τn) ∼
(−1)n−1

2n−1
τnK0(ξ̄n, τn; 0, 0)ū

(n)
n (ξ̄n, 0)

=
(−1)n−1

2n−1
τn

1√
4πτn

[
exp

(
− ξ̄2n

4τn

)]
1

ξ̄n
· 1

n!

[
θ−1(ξ̄n) + ln

σ(θ−1(ξ̄n))

σ(0)

]n
.

(9.126)

Replacing (ξ̄n, τn) with (x̄, τ), we have, as τ → 0,

ūn(x̄, τ) ∼
(−1)n−1

2n−1
τ

1√
4πτ

[
exp

(
− x̄

2

4τ

)]
1

x̄
· 1

n!

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

]n

=
(−1)n−1√τ

2n
√
π

[
exp

(
− x̄

2

4τ

)]
1

x̄
· 1

n!

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

]n
,

=

√
τ√
π

[
exp

(
− x̄

2

4τ

)]
1

x̄
· (−1)n−1

n!

(
1

2

[
θ−1(x̄) + ln

σ(θ−1(x̄))

σ(0)

])n
,

(9.127)

for n = 2, 3, . . .. The proof is completed by invoking (9.96), which shows that the

formula also works for n = 1.

We now prove Theorem 9.1.

Proof of Theorem 9.1. Applying the change of variable formula x̄ = θ(x) =
√

2J(x) to

(9.17) gives

un(x, τ) ∼
√
τ√
2π

[
exp

(
−J

2(x)

2τ

)]
1

J(x)
· −1

n!

(
−1

2

[
x+ ln

σ(x)

σ(0)

])n
n = 1, 2, . . . .

(9.128)

The desired result then follows from this and the fact that

∞∑

n=1

−1

n!

{
−1

2

[
x+ ln

σ(x)

σ(0)

]}n
= 1 − exp

(
−1

2

[
x+ ln

σ(x)

σ(0)

])

= 1 −
√
σ(0)√
σ(x)

e−x/2.

(9.129)
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Future research

The field of implied volatilities in option pricing is rapidly expanding, involving more

branches of mathematics and more advanced techniques. Already, stochastic models are

going infinite dimensional and applications of large deviations and differential geometry

are appearing fast, headed by the work of Henry-Labordere [47]. So, what is left for

the local volatility model and where to go from here? Here are some plausible and

incomplete answers:

• A modest forward step would be to develop numerical schemes for solving the

degenerate quasilinear parabolic PDE linking local and implied volatilities; see

(2.8). An efficient scheme would provide a basis for practicable exotic derivative

pricing with implied volatilities.

• A more ambitious step would be to derive the known asymptotic results under

the assumption that the diffusion coefficient, e.g., ν(·) or σ(·) in this thesis, can

hit zero or blow up to infinity. The asymptotics can be of small or large time

or large strike. We note that the main tricks used in this thesis are not likely to

work.

• On a different scale of complexity, one could investigate the small time properties

of the gradient and Hessian of the implied volatility in stochastic volatility models

that, unlike the one dimensional local volatility model in my thesis, allow for an

arbitrary number of stochastic volatility factors. This would extend the work of

Berestycki et al. [5].

• Of course, to reach a more admirable pinnacle, one can borrow tools from geo-

metric analysis, after the fashion of yield curve modelling, to break new paths

in the field of implied volatilities. More admirable still, if the new paths can be

statistically tested and can stand the test of time.
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[78] A. S. Üstünel and M. Zakai, Transformation of measure on Wiener space, Springer-

Verlag, 2000.

[79] B. Wong and C. C. Heyde, On the martingale property of stochastic exponentials,

Journal of Applied Probability 41 (2004), 654–664.



Index

B(x, τ ;ϕ(x, τ)), 36

C(s, τ ; k), C(s, τ), 12

En(ξ̄n, τn; ȳ, 0), 108
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ūn

, I
(i)
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