
Systematic differences in future 20 year temperature
extremes in AR4 model projections over Australia as a
function of model skill

Author:
Perkins, Sarah; Pitman, Andrew; Sisson, Scott

Publication details:
International Journal of Climatology
v. 33
Chapter No. 5
pp. 1153-1167
0899-8418 (ISSN)

Publication Date:
2012

Publisher DOI:
http://dx.doi.org/10.1002/joc.3500

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/53766 in https://
unsworks.unsw.edu.au on 2024-04-26

http://dx.doi.org/http://dx.doi.org/10.1002/joc.3500
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/53766
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 33: 1153–1167 (2013)
Published online 27 April 2012 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/joc.3500

Systematic differences in future 20 year temperature
extremes in AR4 model projections over Australia

as a function of model skill

S. E. Perkins,a* A. J. Pitmana and S. A. Sissonb

a Climate Change Research Centre, University of New South Wales, NSW, Australia
b School of Mathematics and Statistics, University of New South Wales, NSW, Australia

ABSTRACT: The projection of temperature extremes by climate models participating in the Intergovernmental Panel
on Climate Change Fourth Assessment Report (AR4) are examined regionally over Australia. Minimum and maximum
temperature extremes are defined as the 20 year return value calculated using extreme value theory. Three measures of
model evaluation, a means-based, a distribution-based [via probability density functions (PDFs)] and an extreme-based
(via the tails of PDFs) method, are used to compare daily model data to observed daily data over various climatic regions
for a 20 year period. Model ensembles consisting of the ‘better’ and ‘poorer’ models determined by each measure of
skill are created for each region. These are compared with an all-model ensemble to examine the difference in more
skilled ensemble projections of temperature extremes in the A2 (high emissions) scenario for 2046-2065 and 2081-2100.
If either of the distribution-based evaluation methods were used to distinguish models, the higher skilled models projected
smaller increases in the 20 year return values than the all-model ensemble for both maximum temperature and minimum
temperature. For some regions, the 90% confidence intervals of the better and poorer ensemble ranges did not overlap,
indicating that projections are statistically significantly different. We show that the means-based evaluation produces less
consistent results to the two distribution-based evaluation methods. We conclude that specific AR4 models, shown to be
relatively poor over most regions of Australia by different skill metrics, bias the projected increase in the 20 year temperature
extremes towards higher values. We also suggest that performance in simulating the mean climate is an unreliable measure
of climate model capacity used to select models for projecting changes in extremes over Australia. Copyright  2012
Royal Meteorological Society
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1. Introduction

Most future climate studies have focused on changes
in the mean (e.g. Allen et al., 2003; Moise and Hud-
son, 2008; Smith et al., 2009). However, changes in
climate extremes due to global warming may affect
human and biological systems more than changes in the
mean (Mearns et al., 1984; Katz and Brown, 1992; East-
erling et al., 2000; Kharin and Zwiers, 2000; Kharin
et al., 2007; Fischer and Schar, 2010). Although changes
in temperature extremes are related to shifts in the
mean (Kharin et al., 2007), the magnitude of changes
in extremes cannot be inferred solely from this rela-
tion (Schaeffer et al., 2005). Earlier studies, including
those by Mearns et al. (1984), Katz and Brown (1992),
Colombo et al. (1999) and Meehl et al. (2000), sug-
gest that extremes may change more than indicated by
a change in the mean, particularly if both the location
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and shape parameters of the probability density function
(PDF) change.

There have been several recent studies using climate
models assessed by the Intergovernmental Panel on Cli-
mate Change (IPCC) Fourth Assessment Report (AR4)
that have investigated changes in temperature extremes
at global or regional scales. Hegerl et al. (2004) used
two AR4 climate models and showed that changes in
temperature extremes were significantly different from
changes in seasonal means in up to 66% of model grid
points. Tebaldi et al. (2006) used nine AR4 models to
demonstrate that the twentieth century trend in temper-
ature extremes would likely be amplified under higher
greenhouse forcing. Kharin et al. (2007) used 16 AR4
models and showed that globally averaged cold extremes
warmed faster than warm extremes under all available
emission scenarios. There have been few studies focusing
on extremes over the Australian region, although changes
in the mean are well documented (Moise and Hudson,
2008). Pitman and Perkins (2008) explored projected
changes in the annual return values for maximum tem-
perature (Tmax) and minimum temperature (Tmin) but these
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are not ‘extreme’ in the sense that they may dramatically
affect human health, ecosystems or other biophysical sys-
tems. Alexander and Arblaster (2009) focussed on the
potential change in extreme indices over Australia for the
twenty-first century using the AR4 models and demon-
strated that the models were generally skilful in repli-
cating trends in twentieth-century indices. Gallant and
Karoly (2010) employed a combined climate extremes
index to study observational trends in temperature and
precipitation extremes. In terms of temperature, they
found an increase (decrease) in the spatial extent of hot
(cold) extremes of 1% (2%) decade−1.

In this article, we use the 20 year return value as
an indicator of an extreme at a magnitude that might
severely affect humans and natural ecosystems. The
nature of extreme values means that they occur at the
tails of a distribution, which are sparsely populated
(Wehner, 2004; Wehner et al., 2010). Extreme value
theory (EVT) is used to study and extrapolate these
rare events, as small discrepancies in the estimation
of the empirical distribution may lead to considerable
errors in the distribution of extreme values (Coles, 2001;
Rusticucci and Tencer, 2008). EVT, in terms of the
generalized extreme value (GEV) distribution, was first
employed to study climate extremes by Zwiers and
Kharin (1998) and is now widely used by the climate
science community (Kharin and Zwiers, 2000; Kharin
et al., 2005, 2007; Schaeffer et al., 2005; Brown et al.,
2008; Rusticucci and Tencer, 2008; Sterl et al., 2008;
Fowler et al., 2010; Wehner et al., 2010; Perkins, 2011).

This article uses the GEV distribution, following the
approach of Kharin et al. (2007), but focused on Aus-
tralia. We build on Kharin et al. (2007) by implementing
an additional step before the calculation of the return
values. Before using climate models to project future
conditions, the models are usually compared with the
current climate. Obviously, a model that can simulate
current conditions well is not necessarily able to sim-
ulate future conditions (Jun et al., 2008; Weigel et al.,
2010), although Macadam et al. (2010) suggested there
is a decade-to-decade consistency in climate model skill
in the simulation of mean temperature. There is no
agreed ‘best way’ to evaluate a climate model (Knutti
et al., 2010; Weigel et al., 2010; Irving et al., 2011;
Klocke et al., 2011). While evaluation based on compar-
ing means is common (Macadam et al., 2010), this tells
us little about a model’s capacity to simulate extremes.
Perkins et al. (2007) suggested a metric that measures
the amount of overlap between an observed and mod-
elled PDF, which was employed to produce skill scores
over Australia for daily Tmin, Tmax and precipitation. They
found that overall most models captured the variability in
the observed PDF reasonably well, but some AR4 models
exhibited poorer skill relative to others and the same mod-
els tended to be the poorest in many regions. Perkins and
Pitman (2009) and Pitman and Perkins (2008) use this
skill score to select the more capable models (omit less
capable models) for future projections under various sce-
narios over Australia and explore changes up to the scale

of the annual event. Since the all-model ensembles were
biased by poorer models on timescales up to the annual
event, Stainforth et al.’s (2007) suggestion of omitting
‘models whose simulations are “substantially” worse than
state-of-the-art models’ was implemented. However, a
PDF-based evaluation does not focus solely on the tails
(i.e. extremes) of a distribution. Thus, this article extends
the approach of Perkins et al. (2007) by adding a metric
focusing on the tails of a daily-based probability distri-
bution.

This article therefore explores the AR4 model projec-
tions of the 20 year return levels for Tmax and Tmin over
Australia. EVT is used to calculate, region-by-region, the
20 year return levels over Australia. Three measures of
climate model skill are used to evaluate the AR4 models.
We then explore the sensitivity of the projected 20 year
returns to each skill measure to determine whether a sys-
tematic bias exists in some models to a degree that affects
the ensemble projection of 20 year return values.

2. Methods

2.1. Modelled and observed data
All model data were downloaded from the Program for
Climate Model Diagnosis and Intercomparison (PCMDI)
at the Lawrence Livermore National Laboratory in the
USA (http://www-pcmdi.llnl.gov/about ipcc.php). Daily
data for Tmin and Tmax for the Climate of the Twentieth
Century and A2 emission scenarios were utilized for all
models that had data common for all experiments. This
included 11 models each for Tmax and Tmin, common
across both variables. Table I lists all models used, their
respective resolutions and the number of independent
realizations for each variable. Models that had multiple
runs were aggregated to form a single ensemble, as it
was found by Kharin et al. (2007) and Perkins et al.
(2007) there was negligible difference between individual
realizations from a given model. Australia was extracted
from the global data sets and native land–ocean masks
were fitted to delete ocean values. For the twentieth
century, the period 1981–2000 was used, as it was
common among all models and was an appropriate time
period to compare in terms of the mean and return values
to the A2 scenario. There are two time periods for the A2
scenario, both of length 20 years, representative of 2050
and 2100.

Daily observed Tmin and Tmax were obtained from
1178 Australian Bureau of Meteorology stations for
1981–2000. The use of this data, their spatial distribution
and homogeneity issues is fully discussed in the study by
Perkins et al. (2007). Figure 1 shows the spatial distribu-
tion of temperature observation stations over Australia,
and Table II lists the latitudinal and longitudinal bound-
aries (consistent with those in Figure 1) of the regions
used in this study, as well as their climatic types.

2.2. GEV distribution
The GEV distribution is used to estimate a return value
over a given period. A return value is an event of a
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Table I. List of the AR4 models used with daily data common to all scenarios. The acronym used for each model in the text is
italicized in column 1. Numbers in the fourth rightmost columns indicate the number of runs used for each model.

Model name Affiliation/country Resolution Number of realizations
and acronym

Horizontal Vertical Tmax Tmin

20thC A2 20thC A2

BCCR-BCM2.0 Bjerknes Centre for Climate Research,
Norway

1.9° × 1.9° L31 1 1 1 1

CGCM 3.1 Canadian Centre for Climate Modeling
& Analysis, Canada

∼2.8° × 2.8° L31 4 3 5 3

CSIRO3.0 CSIRO Atmospheric Research, Australia ∼1.9° × 1.9° L18 2 1 3 1
CSIRO3.5 CSIRO Atmospheric Research, Australia ∼1.9° × 1.9° L18 1 1 1 1
ECHAM 5/MPI-OM Max Planck Institute for Meteorology,

Germany
∼1.9° × 1.9° L31 1 1 1 1

ECHO-G Meteorological Institute of the
University of Bonn, Meteorological
Research Institute of KMA, and Model
& Data Group, Germany/Korea

∼3.9° × 3.9° L19 2 3 3 3

GFDL2.0 Geophysical Fluid Dynamics Laboratory,
USA

∼2.5° × 2.5° L24 1 1 1 1

GFDL2.1 Geophysical Fluid Dynamics Laboratory,
USA

∼2.5° × 2.5° L24 1 1 1 1

IPSL-CM4 Institut Pierre Simon Laplace, France ∼2.5° × 3.75° L19 2 1 2 1
MIROC 3.2 (medres) Center for Climate System Research

(University of Tokyo), National Institute
for Environmental Studies, and Frontier
Research Center for Global Change
(JAMSTEC), Japan

∼2.8° × 2.8° L20 2 3 1 3

MRI-CGCM2.3.2 Meteorological Research Institute, Japan ∼2.8° × 2.8° L30 3 4 2 5

Figure 1. Spatial distribution of temperature observations and the
locations of regions 1, 2, 3, 8, 10 and 11, as discussed in the text.
Regions marked in grey are the further six regions used by Perkins

et al. (2007).

certain magnitude that occurs once, on average within
the return period, t . For example, an event with a return
period of t = 20 years has a probability of 1/20 = 0.05
(5%) of occurring within a given year. When considering
the cumulative density function [CDF, F(X)] based on
annual data, the 20 year return value for Tmax is F(X) =
1 − 1/t = 0.95 and for Tmin is F(X) = 1/t = 0.05.

Extreme value samples are extracted from the original
daily data set before fitting the GEV distribution, taken
as the annual maxima for Tmax and the annual minima
for Tmin. At the regional scale, samples were formed
by taking the annual maxima (minima) for each model
grid box in a given region and concatenating to create a
region-specific sample per model. The sample size in this
case is dependant on the model’s horizontal resolution
(Table I). At the continental scale, samples are formed
separately for each land grid element at the model’s
native resolution.

The theory behind the derivation of the GEV distri-
bution as the limiting distribution of the largest obser-
vation in a sample is given in detail by Zwiers and
Kharin (1998), Kharin and Zwiers (2000) and Kharin
et al. (2005). The GEV distribution has three parameters:
location, scale and shape (k). The three distributional sub-
families are distinguished by k. In the limit as k → 0,
the GEV distribution reduces to the Gumbel distribu-
tion, which exhibits exponential (light) tail decay; k < 0
leads to the Frechét distribution with polynomial (heavy)
tail decay and k > 0 leads to the Weibull distribution,
which has a finite upper endpoint. There are two methods
that are commonly used to estimate the GEV distribution
parameters: L-moments (probability-weighted moments)
and maximum likelihood. Although the method of L-
moments assumes stationarity of annual extremes, the
method of maximum likelihood is less efficient for
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Table II. The latitudinal and longitudinal boundaries of the regions used in this study, and their climatic types. Figure 1 shows
the location of these regions, as well as the other six regions used by Perkins et al. (2007).

Region Latitude Longitude Climate

1 35.25 °S–44 °S 143.75 °E–154 °E Temperate
2 26.5° –35.25 °S 143.75 °E–154 °E Desert/grassland/temperate
3 17.75 °S–26.5 °S 143.75 °E–154 °E Desert/grassland/subtropical
8 26.5 °S–35.25 °S 133.5 °E–123.25 °E Grassland/desert
10 9 °S–17.75 °S 133.5 °E–123.25 °E Grassland/tropical
11 26.5 °S–35.25 °S 113 °E–123.25° E Temperate/grassland/desert

short samples (Coles, 2001; Kharin et al., 2005), making
L-moments the preferable method of parameter estima-
tion for this study.

Kharin et al. (2007) note that the GEV distribution
is valid only when extremes are drawn from increas-
ingly larger samples. It is therefore important to deter-
mine whether the GEV distribution explains the nature
of observed annual extremes reasonably, as the sea-
sonal cycle within daily data substantially reduces the
parent sample size (annual maxima does not occur dur-
ing winter and annual minima does not occur during
summer). Following Kharin et al. (2007), we used the
Kolmogorov–Smirnov test (Stephens, 1970) to determine
whether there was any substantial difference between the
empirical and fitted CDF. We conducted the test for each
grid box in the model’s native resolution and also for each
of the regions defined by Perkins et al. (2007). Overall,
our results are similar to that of Kharin et al. (2007) in
that the GEV distribution is a reasonable approximation
for Tmin and Tmax at the 1% significance level.

Once the location, scale and shape parameters have
been estimated, a CDF is produced and inverted to
estimate the return value for the given return period. Our
study focuses on 20 year return values for Tmin (Tmin

20)
and Tmax (Tmax

20); we did not estimate changes in longer
return values from the available 20 year data sets, given
concerns over the small sample size (e.g. Kharin et al.,
2007).

To quantify in-sample uncertainty, the nonparametric
bootstrap (Efron and Tibshirani, 1993) was employed.
As there are no known analytical expressions for such
information when calculating parameters by L-moments,
1000 bootstrap samples were generated for each model
grid box at its native resolution. Return values were
calculated for each sample to provide 90% bootstrap
confidence intervals and estimates of standard errors.

2.3. Model evaluation

Three methods of model evaluation were used to assess
each AR4 model’s ability to simulate Tmax and Tmin in
the current climate. All 12 regions defined by Perkins
et al. (2007) were used in this study for each evaluation
method (Figure 1 and Table II). The three evaluation
methods were performed separately for Tmax and Tmin

using observed data for 1981–2000. All models resolved
multiple grid squares for each region. For each of the
three evaluation methods outlined below, two ensembles

were created, one consisting of the best (most skilled)
models and one consisting of the poorest (least skilled)
models. Division of the models into small samples
allowed for the quantification of biases (if any) related
to evaluation performance, which may be hampered
when considering larger subsets. On division into the
better and poorer ensembles, all models were assigned
equal weightings since recent literature suggests the
implausibility of finding the optimum weights, due to
uncertainty in observations, models and the statistics
used to evaluate them (Weigel et al., 2010; Klocke et al.,
2011).

Our first validation method is the absolute difference
between the annual 1981–2000 mean of a given model
and the observed for each variable and region. While the
mean may not be a good indicator of extreme values, it
is still widely used for model validation.

Our second validation method is the skill score devel-
oped by Perkins et al. (2007). This calculates the cumu-
lative minimum value of two distributions of each binned
value, thereby measuring the common area between two
PDFs (Figure 2). If a model simulates the observed con-
ditions perfectly, the skill score will equal one, which is
the total sum of the binned values in a given PDF:

PDFscore =
n∑

1

min(Zm, Zo) (1)

where n is the number of bins used to calculate the PDF
for a given region, Zm is the proportion of values in a
given bin from the model and Zo is the proportion of
values in a given bin from the observed data. Perkins

Figure 2. Schematic showing the regions of the PDF for each evaluation
measure.

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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et al. (2007) found the skill score to be robust against
data limitations (e.g. outliers and gaps in data) and to
be a clear and straightforward way of comparing the
entire modelled and observed data set. The skill score
is also directly comparable across all variables and is
easily interpreted.

The third validation method concentrates on the tail
of the PDF (Figure 2, right tail for Tmax, left tail for
Tmin). The ‘tail-skill’ focuses on the top (bottom) 5%
for Tmax (Tmin), based on the observed PDF and is the
weighted sum of absolute differences between the model
and observed PDF proportions:

Tailskill =
n∑

i=1

Wi |Zi
o − Zi

m| (2)

where n is the number of equally spaced bins, Wi is
the specific weighting for bin i, Zo is the frequency
of values in a given bin for the observed data and
Zm is the frequency of values in a given bin for each
model. All bins below (above) the observed 5% limit
are weighted zero. The weighting above (below) the
observed threshold is based on the number of bins in
the observed tail, nt . The weighting for bin it , where t

is the number of the bin above (below) the threshold is
it × 10/nt for it = 1 . . . nt . The weighting is normalized
is capped at bin nt . If there are differences between the
observed and modelled tails beyond where the observed
tail ceases, the weighting is the same as bin nt . The
direction of the weighting increases to the right for Tmax

and to the left for Tmin. In this method, a perfect skill
equals zero (no difference between the observed and
modelled tail) and poor skill scores exceed 1.0 (when
the model tail is much larger than the observed and the
model is over estimating the magnitude of the extreme
values).

Models were ranked from highest to lowest for
each region using each skill measure. For each vari-
able, the best and poorest four models were selected
to form the two ensembles based on the measure
of skill. The change in 20 year return values esti-
mated by the GEV distribution over Australia was
examined using continental maps and regional analysis.
Regional analysis is presented in ‘stock plots’ – these
show the regionally calculated minimum and maxi-
mum for each ensemble based on skill and return
value. Both the best (higher skilled models) and poor-
est (lower skilled models) ensembles are shown to
demonstrate the influence the poorest models have over
the all-model ensemble. Regions 1, 2, 3, 8, 10 and
11 defined by Perkins et al. (2007) are analysed for
the twentieth century and A2 scenario, for 2050 and
2100. Figure 1 shows the location of these regions,
and Table II lists their boundaries and climatic types.
These regions were selected to cover a range of climate
types over Australia and because of the larger observed
and model sample sizes (stations and grid boxes,
respectively).

3. Continental results

3.1. Maximum temperature

Figure 3 shows the A2 2050 20 year return values
(Tmax

20) for the all-model ensemble, the ensemble of
the four best models for each skill-based ensemble,
the change from the twentieth century and the bias
compared with the all-model ensemble for each skill-
based ensemble. Figure 3(a) shows Tmax

20 in the all-
model ensemble exceeding 48 °C over large areas of
the centre and northwest of Australia. The rest of the
continent has return values of 46–48 °C, except for the
majority of the coastline with return values of 40–44 °C.
These return levels are 2–4 °C higher than the twentieth-
century values (Figure 3(b)) over most of the continent.

Figure 3(c) shows the 20 year return values for the
PDF-based ensemble (an ensemble over the best four
models in each region). While the PDF-based ensemble
projects increases in the 20 year return levels over
twentieth-century levels (Figure 3(d)), the amount of
increase is 1–4 °C less than the all-model ensemble over
eastern Australia (Figure 3(e)), a substantial reduction in
the magnitude of the return value. This result is largely
mirrored for the tail-skill-based ensemble (Figure 3(f)).
The mean-based ensemble (Figure 3(i)) is commonly
2–4 °C warmer than the all-model ensemble and 4–6 °C
warmer over southeast Australia. In each case, the
skill-selected models project increases in Tmax

20 due to
increased CO2 (Figure 3(d), (g) and (j)), but the increase
is generally smaller in the PDF and tail-skill-selected
models (Figure 3(e) and (h)) and larger in the mean skill-
selected models (Figure 3(k)).

Figure 4 shows that by 2100, Tmax
20 may experience

similar patterns of change as 2050, but at magnitudes
2 °C higher. The all-model ensemble projects increases
in Tmax

20 of 4–6 °C over all regions. The PDF-based
skill ensemble (Figure 4(c)) shows areas of 50–52 °C
in central and west Australia, but overall, the amount
of warming is projected to be similar or less compared
with the all-model ensemble (Figure 4(e)), particularly
in eastern regions. The tail-based skill ensemble also
simulates less increase in Tmax

20 compared with the all-
model ensemble over the southeast. The mean-based
ensemble shows larger increases (Figure 4(k)) than the
all-model ensemble over eastern and northern regions,
but smaller increases in some parts of southern Australia.
Thus, as with 2050, the PDF and tail-skill-selected
models simulate lower increases in Tmax

20 compared with
an all-model ensemble.

Figure 5 shows for selected regions (Figure 1 and
Table II) the range in Tmax

20 and the 90% confidence
intervals calculated from bootstrapped samples for all the
ensembles over the twentieth century, 2050 and 2100. In
virtually every case, for virtually every region, Tmax

20

estimated for the twentieth century by the models with
better skill is smaller in magnitude and range that the
poorer models (Figure 5(a) and (b)). The expansion in
the simulated range shown by the all-model ensemble is
therefore substantially caused by the inclusion of poorer

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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Figure 3. Tmax
20 for the A2 emission scenario for 2050 for (a) actual values and (b) their change from the twentieth century for the all-model

ensemble; (c) actual values from the PDF-based ensemble; (d) change from the twentieth century; (e) difference between the PDF and all-model
ensembles; (f) actual values from the tail skill-based ensemble; (g) change from the twentieth century; (h) difference from the all-model ensemble;

(i) actual values from the mean-based ensemble; (j) difference from the twentieth century and (k) difference from the all-model ensemble.

models and this is true irrespective of how model skill
is determined. In the case of regions 1, 8, 10 and 11,
the skill-based ensembles tend to populate the upper end
of the all-model range. In regions 2 and 3, the skill-
based ensembles tend to be more central or towards the
bottom of the all model range. In Figure 5(a) and (b),
the two samples for each skill score are not statistically
significantly different since in all cases the uncertainty
derived from bootstrapping (shown in Figure 5 as thin
bars) overlap.

While the best and worst skill-based samples are not
statistically significantly different during the twentieth
century, Figure 5(c) and (d) demonstrates that there are
examples where there is a clear distinction between the
best and poorest skill-based ensembles for 2050 (e.g.
regions 2 and 3). For other regions, the differentia-
tion between the poorest and best models is not sig-
nificantly different. However, the range of values pro-
jected by the poorest model ensembles is similar in scale
to the all-model ensemble, while the range from the

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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Figure 4. As Figure 3 but for 2100.

skill-selected ensembles tends to be much smaller and
more consistent. The expansion in the poorest model
ranges shown in Figure 5(c) and (d) compared with the
best model ensemble is not related to sample size (which
is common, four models per sample) and mainly occurs
due to both the top and the bottom of the range being
expanded. A noteworthy difference is visible when the
mean skill is used. In all cases shown in Figure 5(c) and
(d), the upper values of the projected all-model ensemble
range are only simulated by the better models and while
the poorer models show a larger range, this is due to the
lowest values in the all-model ensemble being included

at the same time as higher values being excluded. That is,
only the better models determined by the mean capture
the higher end of the projected range in Tmax

20. A similar
result is seen for Tmax

20 by 2100 (Figure 5(e) and (f)).

3.2. Minimum temperature

The 20 year return level for Tmin
20 is shown in Figure 6

for 2050 and in Figure 7 for 2100. In Figure 6(a), the
all-model ensemble shows Tmin

20 in the tropics reach-
ing 10–20 °C with cooler values to the south. There is
an area in the southeast with return values of between
−1 and −3 °C associated with higher orography. These

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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(a) 20th century
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(b) 20th century
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(c) A2 2050
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Figure 5. The simulated range and 90% bootstrapped confidence interval for all ensembles for Tmax
20 for (a) regions 1, 2 and 3, (b) regions

8, 10 and 11 for the twentieth century; (c) and (d) shows the equivalent regions for 2050 and (e) and (f) 2100. For each panel/region, the first
bar is the all-model ensemble with the bootstrapped uncertainty shown as thin ‘error bars’. The second and third bars are the better and poorer
models using the PDF skill score, the fourth and fifth bars are the better and poorer models from the tail skill score and the sixth and seventh

bars are the better and poorer models using the mean skill. The models that make up each ensemble are listing in Table III.

return values are 1–2 °C warmer than the twentieth cen-
tury over virtually the whole continent (Figure 6(b)), with
the exception of the far southwest of Western Australia
and Victoria. The PDF-based skill ensemble (Figure 6(c))
shows broadly similar patterns to the all-model ensemble
but different absolute values. Return values are cooler
over almost all the continent (Figure 6(e)) by 2–4 °C
compared with the all-model ensemble but are still
warmer than the twentieth century (Figure 6(d)). Similar
results are found for the tail-based (Figure 6(f)) ensem-
bles. The mean-based ensemble (Figure 6(i)) is warmer
than the twentieth century (Figure 6(j)) by 1–4 °C and is

warmer than the all-model ensemble over the central east
and west Australia, while being 2–5 °C cooler over the
Great Australian Bight (Figure 6(k)).

Figure 7 (for A2 2100) shows an analogous result
to 2050. Every ensemble projects warming in Tmin

20

by at least 1 °C over most of Australia and warming
by 2–4 °C over many areas (Figure 7(b), (d), (g) and
(j)). However, the PDF- and tail-skill-based ensembles
projects less warming in Tmin

20 than the all-model ensem-
ble by 1–2 °C over most of Australia and by 2–4 °C
over many areas (Figure 7(e) and (h)). Some areas in the
west suggest higher increases in Tmin

20 in the tail-based

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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Figure 6. As Figure 3 but for Tmin
20.

ensembles (Figure 7(h)). The mean-based ensemble sim-
ulates a similar change to the all-model ensemble except
over Western Australia (Figure 7(k)) where higher values
are projected.

Figure 8 shows for selected regions the range in
the ensembles for the twentieth-century Tmin

20 and the
90% confidence intervals calculated from bootstrapped
samples. The results are very different in compari-
son to Tmax

20 (Figure 5). For magnitudes Tmin
20, the

twentieth-century simulations by the models with bet-
ter skill is commonly statistically significantly smaller

than the poorer models in regions 1, 3 and 8. This
is particularly clear for the PDF- and tail-based skill
ensembles. The selection of models into the best and
poorest ensembles tends to have an impact on the
range in the resulting projections (the length of each
bar is not noticeably smaller in the best or poorest
ensemble).

Figure 8(c) and (d) (2050) and Figure 8(e) and (f)
(2100) show clear distinctions between the ‘better’ and
‘poorer’ skill ensembles. In contrast to Tmax

20, the differ-
ences are sometimes statistically significant. For example,

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)



1162 S.E. PERKINS et al.

Figure 7. As Figure 4 but for Tmin
20.

there are clear differentiations between the two ensembles
in regions 3 and 8 in both 2050 and 2100.

4. Discussion

Global warming is already causing increases in warm
nights and hot days in many regions (Alexander et al.,
2007; Brown et al., 2008; Coelho et al., 2008; Rusticucci
and Tencer, 2008; Caesar et al., 2010; Perkins, 2011).
Observed trends in the twentieth century over Australia
highlight warm temperature extremes increasing and cool
extremes decreasing over most of the country (Plummer

et al., 1999; Collins et al., 2000). Our results suggest that
these trends will continue in the future under increasing
atmospheric concentrations of greenhouse gases in agree-
ment with previous global analyses (e.g. Kharin et al.,
2007). Our results are also complementary with that of
Alexander and Arblaster (2009), who reported warm-
ing trends in temperature extremes over Australia under
future emission scenarios and analyses at the annual
timescale by Perkins and Pitman (2009) and Pitman and
Perkins (2008).

Our analysis of the AR4 models therefore provides
additional evidence that the 20 year minimum and

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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(a) 20th century
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(b) 20th century
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(c) A2 2050
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Figure 8. As Figure 5 but for Tmin
20.

maximum temperatures will increase over Australia by
2050 and increase further by 2100. Although increases
in Tmax

20 and Tmin
20 are projected by all ensembles pre-

sented in this article, our results show a systematic reduc-
tion in the amount of warming in Tmax

20 and Tmin
20, and

a smaller range, in skill-selected ensembles if a PDF or
tail-based skill score compared with an all-model ensem-
ble, particularly over the eastern part of the continent
(Figures 3(e), 3h, 4(e), 4(h), 6(e), 6(h), 7(e) and 7(h)). If
a means-based skill score is used, higher amounts of pro-
jected warming are commonly simulated (Figures 3(k),
4(k), 6(k) and 7(k)). The amount of warming in Tmax

20

is commonly 2–4 °C less over eastern states than an all-
model ensemble (Figures 3 and 4) compared with the
all-model ensemble. Similar differences in the projected

changes in Tmin
20 occur in the skill-selected AR4 mod-

els, but the impact is more geographically distributed. It
was shown (Figure 5) that the better models formed a
statistically significantly different population in Tmax

20 in
some regions in both 2050 and 2100 (Figure 5). Figure 8
showed that the better models tended to provide the lower
values in the total distribution for Tmin

20, and the results
were commonly statistically significant. Our results there-
fore suggest that over Australia, a PDF- or tail-based
ensemble commonly projects smaller increases in both
Tmax

20 and Tmin
20 than an all-model ensemble. This leads

to three questions: Is the way model skill is measured
important? Do common models populate the better and
poorer ensembles determined by each skill metric? And
is this consistent over Australia?

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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Table III. Frequency of models appearing in the better and poorer ensembles based on each skill score for Tmax
20 and (in

parentheses) Tmin
20.

Better ensemble Poorer ensemble

PDF-based skill Tail skill Mean PDF-based skill Tail skill Mean

CGCM 0 (4) 0 (7) 6 (2) 12 (5) 12 (1) 5 (7)
CSIRO3.0 2 (5) 4 (5) 2 (2) 9 (1) 3 (3) 7 (6)
ECHO-G 4 (4) 9 (2) 6 (8) 0 (0) 1 (6) 2 (1)
IPSL 5 (3) 1 (5) 7 (6) 2 (4) 5 (3) 1 (3)
MIROC 8 (4) 9 (2) 6 (8) 1 (0) 1 (6) 2 (1)
MRI 1 (7) 1 (5) 5 (7) 9 (1) 10 (3) 5 (4)
BCCR 0 (0) 0 (1) 0 (4) 11 (10) 11 (10) 11 (7)
GFDL2.0 10 (12) 10 (8) 4 (2) 0 (0) 0 (3) 5 (7)
GFDL2.1 10 (10) 10 (10) 2 (6) 0 (1) 0 (0) 5 (4)
ECHAM 6 (3) 5 (4) 5 (1) 0 (4) 2 (4) 1 (6)
CSIRO3.5 2 (0) 5 (1) 6 (6) 4 (10) 2 (3) 4 (1)

Our results suggest that the measure of skill used
in model selections is important. Over Australia, the
differences between the three skill-selected ensembles
are large (recall, the differences are in extreme values,
not the mean). Omitting the poorest models using a
distribution-based measure has a systematic impact on
the ensemble projections by removing the poorest models
that are consistently relatively more sensitive to increas-
ing CO2 over Australia than the better models. Using
a means-based measure systematically removes models
with a relatively low sensitivity. This is clearly seen in
Figures 5 and 8, where the poorer models project larger
increases in return values and the better models project
smaller increases. Thus, the measure of climate model
performance is important, and our results suggest that a
PDF- or tail-based measure is preferable to the mean.

The second question – which models make up the
more skilful ensembles – informs us on the consistency
of the three measures. A ‘poor’ model should ideally
appear poor in a range of measures; a ‘best’ model should
ideally not be omitted by one measure and included
in another. Table III shows the frequency (out of 12)
of a given model forming part of the best and poorest
ensembles for Tmax

20. Given the three measures used
assess very different statistics of temperature (Figure 2),
some variability in models that score well against each
measure is to be expected.

Some models are almost always in the best ensem-
ble for Tmax

20 using the PDF-based skill score or the
tail-based skill (GFDL2.0, GFDL2.1 and MIROC). Some
models are almost always in the poorest ensemble,
region-by-region over Australia (e.g. CGCM, BCCR and
MRI). The results for Tmax

20 are therefore explained by
omission of CGCM, BCCR and MRI and the inclu-
sion of GFDL2.0, GFDL2.1 and MIROC in the skilled
ensembles and the recognition that these better mod-
els simulate a lower sensitivity to increasing CO2 in
terms of increasing Tmax

20 over most regions of Australia.
Table III also shows the equivalent result for Tmin

20. In
this case, GFDL2.0, GFDL2.1 and MRI typically form
the skilful ensemble, while ECHO-G and CSIRO3.5 are

commonly in the poorer ensembles. The models that
appear best/poorest in the means-based measure are not
as systematic. Only one model (BCCR) never appears
in the best ensemble for any region (Table III). While
GFDL2.0 and GFDL2.1 stand out as particularly good in
the PDF- and tail-based measures, no model stands out
as particularly good in the means-based measure. That is,
as an evaluation measure, the mean does not appear to
discriminate between models well.

There have been several papers that have noted that
skill in simulating the present may be a weak guide
to the reliability in the future (e.g. Räisänen, 2007;
Weigel et al., 2010; Klocke et al., 2011). To the best
of our knowledge, all analyses relating skill in the
present to reliability in the future have used mean-
based performance measures (Räisänen, 2007; Jun et al.,
2008) sometimes on decadal or longer timescales (e.g.
Reifen and Toumi, 2009) and there are contrasting results
suggesting that specific models retain skill decade-by-
decade through the twentieth century (Macadam et al.,
2010). However, as implied by Räisänen (2007), Jun
et al. (2008) and Reifen and Toumi (2009), there is no
clear relationship between mean skill in simulating the
present and the amount of warming in the 20 year return
values simulated by the models in the results presented
here. Perkins and Pitman (2009) discussed the merits of
the PDF-based skill scores in terms of the high overlap
of the PDF representing 2100 with the present-day PDF.
Even under high global warming, it was noted that the
present and future PDFs would overlap considerably,
and it could be inferred that for when this overlap
exists, broadly similar physical climates observed in the
present will exist in the future. A climate model able to
simulate the whole of the present-day PDF has therefore
shown a capacity to simulate a useful amount of a future
PDF, to the degree that the present and future PDFs
overlap. This finding is consistent across the Australian
continent, thereby answering the third question stated
above.

Overall, the individual models that make up the better
(i.e. more skilful) and poorer (i.e. less skilful) ensembles

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 1153–1167 (2013)
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are similar for all regions (Tables II and III), which means
there are very limited inconsistencies in our methodology,
region-by-region, across Australia. There is, however,
some inconsistency between the models that perform
well for Tmax

20 compared with Tmin
20 (e.g. MRI). This

is not surprising since the simulation of Tmax
20 requires

clouds, incoming solar radiation, albedo, aerosols and
the partitioning of net radiation between sensible and
latent heat fluxes to be captured well. Jones and Trewin
(2000) highlight the role of radiative and latent heat
interactions in explaining maximum temperature vari-
ations over Australia. Variations in any processes that
control the supply of water for evaporation (rainfall, soil
moisture, root distribution and stomatal conductance; Pit-
man, 2003) can affect evaporative cooling and therefore
maximum temperatures (Collatz et al., 2000). Further-
more, extreme maxima over (particularly eastern) Aus-
tralia are commonly related to drought, which are linked
to large-scale teleconnection patterns such as the Indian
Ocean Dipole (IOD; Ummenhofer et al., 2009) and the
El Niño/Southern Oscillation (ENSO; Jones and Trewin,
2000; Nicholls, 2004). Ummenhofer et al. (2009) found
that extreme droughts over southern Australia have only
occurred during the positive and neutral phases of IOD,
while the El Niño phase of ENSO is associated with
below-average rainfall for the eastern two thirds of the
country. Such conditions are linked to high land sur-
face temperatures. Thus, to simulate the change in Tmax

20

requires many processes to be captured well ranging
from local surface energy balance through regional scale
advection of heat and moisture through to large-scale cou-
pling of the ocean-atmosphere system at low-frequency
timescales.

Drivers of changes in Tmin
20 can also be associated

with large-scale ocean-atmosphere coupling as changes
in rainfall also affect minimum temperatures. However,
while annual minima can commonly be explained through
changes in cloud cover and associated increases in
infrared loss, extreme minima tend to be associated
with outbreaks of Antarctic air masses that can affect
minimum temperatures as far north as the subtropics in
eastern Australia.

There are some unavoidable caveats given the nature of
climate models, and the data available. First, present-day
skill in calculating the mean, PDF or the tail of the PDF
may not reliably guide how well the models can simulate
future changes in the 20 year return levels. A second
caveat relates to sample size and model independence.
Twenty years of daily data from 11 AR4 climate models
is a small sample size. Omitting poorest models reduces
the sample size; where two or three models are omitted,
this may not be a problem, but where only two or three
models are included, conclusions should be treated with
caution. This is particularly important, given the issues
around model independence (Abramowitz and Gupta,
2008; Jun et al., 2008).

5. Conclusions

Temperature extremes have a large impact on many
human, industrial and biophysical systems. Earlier stud-
ies using EVT consistently show increases in extreme
temperatures in the future under higher atmospheric con-
centrations of CO2. Most of these studies explore these
changes via multimodel ensembles (e.g. Kharin et al.,
2007) using all available climate model results.

In this article, we utilize the approach of Kharin et al.
(2007) but with a prior step; we evaluate each AR4
climate model over Australia using three methods that
test performance against mean, the PDF and the tail of
the PDF – all derived using daily climate model data and
compared with daily observational data. This is important
as most temperature-related extremes occur over several
days and it is difficult to test the skill of a model on this
timescale using monthly averages.

Our results show for Tmax and Tmin over Australia that
regardless of the evaluation procedure considered, the
poorest performing models project larger increases in the
20 year return values than the best performing models.
Thus, an all-model ensemble, used most commonly in the
literature, is biased towards overestimating the amount
of increase in the 20 year return values at regional and
continental scales for both 2050 and 2100. Models that
performed relatively poorly in representing the observed
climate were generally consistently poor for most regions
(CGCM, BCCR and MRI for Tmax and CSIRO3.5 and
ECHO-G and BCCR for Tmin). The best-performing
models were generally commonly best performing for
most regions for Tmax (GFDL2.0, GFDL2.1 and MIROC)
and for Tmin (GFDL2.0, GFDL2.1 and MRI).

The better skill-based ensembles project 20 year return
values for Tmin and Tmax that are 2–4 °C cooler than
the all-model ensemble at the continental scale and were
commonly at the lower end of the all-model ensemble
range at the regional scale. For Tmax, the confidence
intervals for some regions for the better and poorer
ensembles do not overlap, such that the range of 20 year
return values in the two ensembles for the respective
measure of skill are statistically significantly different.
This also occurs for Tmin, the ranges of the poorer
ensembles are commonly at the higher end of the all-
model range.

We emphasize some limitations in our methodol-
ogy – in particular, sample size and concerns over how
independent the AR4 models are from each other,
whether there are systematic biases to all models, whether
skill in modelling the present is a guide to predictive
skill and how to manage the situation of the better mod-
els for Tmin being the worst for Tmax and vice versa.
However, with these caveats in mind, we note that an
all-model ensemble is biased over Australia by specific
poor models and that excluding these reduces the amount
of projected warming in Tmax

20 and Tmin
20. We suggest

our results reinforce the case for excluding demonstrably
poor models from ensembles – noting that this analysis
is necessarily regionally specific. We also note that our
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results support earlier analyses that suggest that a good
performance by a model against observed averages may
not provide confidence that the model will perform well
in the future. However, we provide some evidence that a
PDF- or tail-skill-based measure is a more rigorous and
valuable measure to evaluate climate models since this
appears to provide a means to more consistently discrim-
inate between model performances.
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