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Abstract

The linear response of a dynamical system refers to changes to properties of the

system under small external perturbations. We consider two applications of linear

response theory to dynamical systems. In the first application (covering two set-

tings) we consider the optimal perturbation that (i) maximises the linear response

of the equilibrium distribution of the system, (ii) maximises the linear response of

the expectation of a specified observable and (iii) maximises the linear response

of the rate of convergence of the system to the equilibrium distribution. We also

consider problems (i) and (ii) in the time-dependent situation where the governing

dynamics is not stationary. We initially solve these problems for finite-state Markov

chains. We numerically apply the theory developed in the finite-state setting to

stochastically perturbed dynamical systems, where the Markov chain is replaced

by a matrix representation of an approximate annealed transfer operator for the

random dynamical system. In the second setting, we consider problems (ii) and

(iii) for Hilbert-Schmidt integral operators with stochastic kernels. By representing

a deterministic dynamical system with additive noise as an integral operator, we

develop theory to compute optimal map perturbations that address problems (ii)

and (iii); we also provide numerical examples in this setting.

The second application of linear response is to finite-time coherent sets. Finite-

time coherent sets represent minimally mixing objects in general nonlinear dynamics

and are spatially mobile features that are the most predictable in the medium term.

Under a small parameter change to the dynamical system, one can ask about the

rate of change of the location and shape of the coherent sets, and one can also

ask about the mixing properties (how much more or less mixing) with respect to

the parameter change. We answer these questions by developing linear response
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theory for the eigenfunctions of the dynamic Laplace operator, from which one

readily obtains the linear response of the corresponding coherent sets. We construct

efficient numerical methods based on a recent finite-element approach and provide

numerical examples.
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Chapter 1

Introduction

Response theory aims to describe how various properties of a dynamical system (e.g.

the dynamics of the ocean or the climate) change when the dynamics governing the

system is perturbed. Linear response considers the first-order change in quantities

of interest (e.g. average temperature) with respect to a parameter change to the

dynamics of the system. To illustrate the basic idea of linear response, we consider

the following theoretically simple setting of finite-state Markov chains [65]. Suppose

we have a finite state space {1, . . . , n} and an n × n probability transition matrix

M ∈ Rn×n (i.e. the matrix containing the probabilities of transitioning between

individual states) describing the dynamics over the state space. Suppose there exists

a unique invariant probability vector fM ∈ Rn such that M fM = fM . Furthermore,

suppose that for a small parameter ε ∈ R and a matrix m ∈ Rn×n, the matrix M +

εm (i.e. the “small perturbation” of M by m) also possesses a unique probability

vector fM+εm ∈ Rn such that (M + εm)fM+εm = fM+εm. If for all sufficently small ε

it is possible to write fM+εm = fM +εu1 +ε2u2 + . . . , then the vector u1 is the linear

response of the invariant vector to the perturbation m. A central part of linear

response theory in dynamical systems is to prove the existence of linear response

for various dynamical systems and to obtain a formula for it using only information

from the unperturbed system (M and fM in this example) and the perturbing force

(the matrix m).

Early work in response theory, in the setting of statistical mechanics, was [59];

in this work, the perturbation of statistical quantities (e.g. the average tempera-

ture) of a system resulting from the change of the governing dynamics was stud-

ied. The rigorous mathematical study of linear response began from the work [76],
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who, for uniformly hyperbolic dynamics, derived response formulae for the Sinai-

Bowen-Ruelle measure (a distinguished measure preserved under the dynamics of

the system). Since the work of [76], there has been much interest in the existence

(or lack of) of linear response for various dynamical systems. The work of [17,45,46]

extended the results in [76] by introducing modern functional analytic methods to

address the existence of linear response. Linear response results for one-dimensional

dynamical systems [8,9,12,13,58] and (partially) hyperbolic systems [11,22,77,83]

have been obtained; there are also results for the existence of linear response for

random dynamical systems [7, 16, 40, 49]. In terms of applications, there has been

a development of rigorous results for the numerical computation of linear response

[6, 73]. Applications of linear response theory to Earth’s climate [1, 18, 66, 74] have

seen success and have motivated new questions, like the numerical validation for

applications of linear response [44,82]; see the survey [43] for a recent review of the

applicability of response theory to climate science.

In this thesis we consider two problems grounded in the ideas of linear response;

the first is in line with trends exploring different questions relating to linear re-

sponse and the second is to use the idea of linear response to investigate mixing

properties of smooth dynamical systems. In the first problem we consider finding

optimal perturbations that maximise response. Aside from theoretical curiosity,

knowledge of these optimal perturbations can provide valuable information: in the

context of applicability to climate models, the optimal perturbations could signify

perturbation “directions” that should be avoided.

The systems we consider for the first problem, in Chapters 2 and 3, are stochas-

tically perturbed dynamical systems. An example of such a system is one whose

trajectories are given by

xn+1 = T (xn) + ωn,

where T : X → X, X ⊆ Rn, is a deterministic system and ωn is an i.i.d. process

on X distributed according to some probability density ρ. To study the behaviour

of the stochastic dynamics, one can form the annealed transfer operator

Lg(x) =

∫
X

ρ(x− T (y))g(y) d`(y) =

∫
X

k(x, y)g(y) d`(y), (1.0.1)
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where k(x, y) = ρ(x− T (y)) (see e.g. [62]). Under certain conditions, the operator

L acting on L2(X) has a unique invariant density f . With this representation, we

consider the following optimization problems:

OP1 We consider the problem of finding the infinitesimal perturbation δk to the

kernel k so as to maximise the L2 norm of the linear response δf to this per-

turbation. A motivation for this is to obtain an upper bound on the expecta-

tions of all L2 normalised observables. This follows by noting that |Eδf (c)| :=∣∣ ∫
X
c(x)δf(x)dx

∣∣ ≤ ‖c‖L2‖δf‖L2 and therefore sup‖c‖L2=1 |Eδf (c)| ≤ ‖δf‖L2 .

OP2 We consider the problem of finding the perturbation δk so as to maximise

the expectation Eδf (c) for a specific observable c ∈ L2(X). That is, for a

specific observation function, we want to know the perturbation direction

that increases the expectation the most.

OP3 We consider the problem of finding the perturbation δk that maximises the

rate of convergence to the invariant measure of the dynamical system.

In Chapter 2 we address OP1–OP3 in the setting of finite-state Markov chains.

OP1 requires the maximisation of an `2-norm and is therefore a non-convex prob-

lem. We reformulate the problem to a setting where the solution is an eigenvector

to an eigenvalue problem; when reformulating to the eigenvalue problem, we pro-

vide explicit construction of the finite-dimensional feasible space, allowing us to

easily obtain the optimal solution from the eigenvector. We also provide sufficient

conditions for the uniqueness of the optimal solution. For OP2 we use the method

of Lagrange multipliers to solve the optimisation problem and obtain a closed form

solution. We answer OP3 by first computing the derivative of the second largest

eigenvalue of the transition probability matrix with respect to the perturbing pa-

rameter; we note that from here we begin to use the term linear response for the

first-order change of the spectral data and not just for the first-order change of the

invariant vector. Similarly to OP2, we use Lagrange multipliers to obtain an ex-

plicit solution to the optimal perturbation for OP3. We then consider OP1–OP2

in the non-homogeneous case where the stochastic dynamics is now an application

of a finite sequence of stochastic transition matrices. We apply the methods used

to solve OP1–OP2 in the homogeneous case (i.e. one application of a stochastic
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transition matrix) to this setting and obtain similar results as in the corresponding

homogeneous sections. We conclude the chapter with applications to stochastically

perturbed one-dimensional maps. Using the Ulam discretisation method, we ob-

tain matrix representations for the annealed transfer operator (1.0.1) allowing us

to apply the above methods to compute the optimal kernel perturbations.

Questions involving optimisation of linear response have been considered in [42]

and [56]. In [42] the authors, in the setting of deterministic perturbations of expand-

ing maps, consider the problem of finding the perturbations achieving a prescribed

linear response. In their setting they show that there are many allowable pertur-

bations achieving the prescribed response and then address the question of finding

the minimal norm solution to this problem. In contrast to the optimisation prob-

lem in [42], we consider stochastic perturbations that maximises the `2-norm of the

linear response. In [56], the problem posed in [42] is considered in the setting of

smooth dynamics; [56] considers perturbations coming from smooth conjugacy that

achieves a prescribed linear response and discusses how the problem of finding the

perturbation that achieves a minimum norm of the linear response can be solved.

In this article, the optimisation problem is not attempted, only an approach to the

solution is presented. In contrast to [56], we pose and solve our norm optimisation

problem OP1. The idea of identifying the unique perturbations that address the

optimisation problems OP1 and OP2 is to our knowledge the original contribution

of Chapter 2 and has no precedents. There are several studies addressing the mixing

question OP3 and we will discuss these shortly.

In Chapter 3 we extend the finite-dimensional work in Chapter 2 to address

OP2 and OP3 in the setting of Hilbert-Schmidt integral operators. To show the

linear response for the invariant density we use the differentiability of the transfer

operator with respect to the perturbing parameter. For the linear response of

the eigenvalues, we use standard results and formulae for perturbation of isolated

eigenvalues (see e.g. [54] and [50]). By considering specific perturbations to the

kernel k, we obtain explicit formulae for the linear response of the invariant vector

and the second eigenvalue with respect to kernel perturbations. As in Chapter 2,

we apply the method of Lagrange multipliers to a obtain an explicit formula for the
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optimal kernel perturbation for OP2. A study in the literature that incorporates

linear response of the expectation within an optimisation problem is [81]. In the

setting of Langevin dynamics, the authors use the linear response of the expectation

of a specific observable in the context of a gradient descent procedure to solve an

optimal control problem. In contrast to this work, we consider the maximisation of

the linear response of the expectation for a specified observable.

We continue in Chapter 3 by solving OP3 in the setting of Hilbert-Schmidt

integral operators. As in Chapter 2, we also use the method of Lagrange multipliers

and obtain an explicit solution for the optimal perturbation that enhances mixing by

analysing the perturbation of the second largest eigenvalue of the Hilbert-Schmidt

integral operator. In the literature, there are a few related perturbative approaches

addressing OP3. In [29] the authors consider driving a noninvariant density to a

target density in one time step. More precisely, they find a perturbation (which

is the kernel of a Hilbert-Schmidt integral operator) so that after an application

of the perturbation and the dynamics, an initial density is as close as possible to

the target density in the L2-norm. The approach taken in this thesis to enhance

mixing is similar to theirs in that we also consider kernel perturbations. The main

difference to their approach is that we use the linear response of the eigenvalue of a

Hilbert-Schmidt integral operator (i.e. a spectral method) to pose the optimisation

problem OP3, while they enhance mixing by determining the optimal perturbations

at each step of the dynamics that push the noninvariant density to the invariant

density (i.e. a non-spectral method).

Some ideas and methods from [29] were used in [47], where the authors consider

the problem of perturbing the flow to transport an initial measure to a final measure

in finite time. To solve this problem, they minimise an objective function involving

the norms of differences between measures and the (fixed) number of steps required

to push the initial measure to the final one. To address the problem of optimal

enhancement of mixing, they chose the final measure to be “uniform over a compact

phase space”. In contrast to [47], we enhance mixing via spectral-based methods

and we do not require the specification of an initial and final measure.

5



For the remainder of Chapter 3, we apply the theory developed for Hilbert-

Schmidt integral operators to deterministic systems with additive noise. For these

systems, we consider the problem of perturbing the deterministic part to maximise

the linear response of the expectation of an observable and to enhance mixing. We

again obtain explicit formulae for the optimal perturbations. Prior to our work in

Chapter 2, the idea of enhancing mixing by spectral methods was considered in [38].

In this work, the authors perturb the drift/velocity part of periodically driven flows

to enhance mixing. The spectral approach in this thesis is similar to theirs in that

they set up the optimisation problem to enhance mixing by considering the per-

turbation of an eigenvalue of an operator (in their setting this was an infinitesimal

generator on the time-expanded phase space). In contrast to their work, we solve

our optimisation problem using the method of Lagrange multipliers which allows

us to obtain an explicit formula for the optimal perturbation.

The method/approach we use to enhance mixing (originally considered in Chap-

ter 2 but motivated by [38]) is also considered in [34]. In this work, the authors

consider perturbations to the velocity field of the Fokker-Planck equation to enhance

mixing (via Lagrange multipliers). Similar to the spectral approach in [38], they

form an optimisation problem from a differentiablity result (see [57]) of the eigen-

data of the Fokker-Planck equation with respect to drift/velocity perturbations.

The primary difference of the results in Chapter 3 to the work of [34] is that we

obtain optimal map perturbations to enhance mixing for deterministic systems with

additive noise while they consider drift/velocity perturbations of the Fokker-Planck

equation. We conclude Chapter 3 with numerical experiments which consider op-

timal kernel and map perturbations to the Pomeau-Manneville map and a weakly

mixing interval exchange map.

In Chapter 4 we turn our attention away from optimisation problems and apply

linear response ideas to finite-time coherent sets. Finite-time coherent sets are

subsets of the phase space that do not mix rapidly in a finite period of time and

therefore are important in the analysis of fluid transport. The concept of finite-time

coherent sets was initially developed in [39] and used to isolate the Antarctic polar

vortex as the slowest mixing object in the stratosphere over the south pole. This
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concept was further developed theoretically in [27]. Aside from applications to the

polar vortex, coherent sets have been used to track mesoscale eddies in the South

Atlantic [30,31,33] and in the North Atlantic [37].

We consider in Chapter 4 a family of smooth volume-perserving maps Tε : Ω→

Tε(Ω), where Ω is a submanifold of X and ε is the perturbing parameter. Following

the setting of [28], we identify finite-time coherent sets as those sets that continue to

have a small boundary size relative to volume as they are evolved by the dynamics.

Coherent sets are obtained from the dynamic Laplacian operator ∆D
ε . The dynamic

Laplacian is an elliptic operator and one can solve the weak form of the dynamic

Laplacian eigenproblem:

∫
Ω

∆D
ε uε · ϕ d` =

∫
Ω

λεuε · ϕ d`,

for all ϕ in an appropriate function space. From the eigenfunctions uε the coherent

sets are computed [28].

When the map ε 7→ Tε is sufficiently differentiable, we prove in Chapter 4

that the maps ε 7→ uε and ε 7→ λε are also differentiable. We then derive a

formula for the linear response. The derivative of eigenfunctions of the dynamic

Laplacian immediately yields derivatives of the corresponding finite-time coherent

sets with respect to ε. We also obtain a formula for the derivative of the eigenvalues

with respect to the parameter, which quantify the instantaneous rate of change of

mixing as the parameter is varied. Building on the FEM-based approaches in [33]

we develop numerical schemes for numerically computing the linear response and

illustrate these with experiments on the standard map and the rotating double gyre.

In these experiments we observe that even for large extrapolation values, the first-

order approximations of the perturbed eigenvectors, computed using linear response,

produce coherent sets that are very close to the true coherent sets (obtained from

finite difference of the perturbed dynamics).

In the literature, linear response of eigenvalues of transfer operators and gener-

ators of periodically and aperiodically driven flows, relating to finite-time coherent

sets, have been studied in [34, 38]. These works also provide methods to optimise
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the system to extremise the linear response and optimally enhance or destroy co-

herent sets. In these articles, they consider the Fokker-Planck equation and analyse

finite-time coherent sets using the ideas in [27]. In [27], coherent sets are obtained

from the eigendata of a linear operator which is constructed from the composition

of the transfer operator with a “diffusion operator” that encodes small scale diffu-

sive dynamics. In [28], the dynamic Laplacian is shown to be a zero-diffusion limit

operator capturing the small diffusion effects of the operator theoretic method in

[27]. In contrast to the coherent set analysis in [34,38], we analyse and develop the

perturbation theory of finite-time coherent sets that are identified by the dynamic

Laplacian.

I note that the content of the thesis has been or will be published in three journal

articles. Chapter 2 has been published in [2]; my contributions to this paper include

the setup and derivation of the optimal solution to the norm optimisation problem

(Section 2.2 of the thesis), the proof of necessary and sufficient conditions in the

Lagrange multiplier methods (Sections 2.3 and 2.4), the derivation of the optimal

linear response for the non-homogeneous setting (Section 2.5) and the algorithms

for the optimal solutions (Appendix A.1). Chapter 3 is a collaboration with Gary

Froyland and Stefano Galatolo; my contributions to it include the derivation of

the explicit formulae for the optimal kernel perturbations and the corresponding

approximation results (Section 3.3, modulo the existence and uniqueness results for

the general optimisation problem). Also, the derivation of the explicit formulae

for the optimal map perturbations and the corresponding approximation results

(Section 3.5). Finally, my contributions to Chapter 4, which is a collaboration with

the preliminary preprint [3], include the linear response existence proof (Section

4.3), the derivation of the explicit linear response formulae and the extension of the

results to the Neumann boundary conditions (Section 4.4). Also, the derivation of

the matrix in Proposition 4.5.1.
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Chapter 2

Optimal Linear Responses for Markov Chains and

Stochastically Perturbed Dynamical Systems

In this chapter we pose and solve problems relating to optimal linear responses

for finite-state Markov chains. In Section 2.1 we set up the fundamentals of linear

response in finite dimensions. Section 2.2 tackles the problem of finding the per-

turbation that maximises the linear response of the equilibrium measure in an `2

sense. We first treat the easier case where the transition matrix for the Markov

chain is positive, before moving to the situation of a general irreducible aperiodic

Markov chain. In both cases we provide sufficient conditions for a unique optimum,

and present explicit algorithms, including MATLAB code to carry out the necessary

computations. We illustrate these algorithms with a simple analytic example. In

Section 2.3 we solve the problem of maximising the linear response of the expecta-

tion with respect to a particular observable, while in Section 2.4 we demonstrate

how to find the perturbation that maximises the linear response of the rate of con-

vergence to equilibrium. In both of these sections, we provide sufficient conditions

for a unique optimum, present explicit algorithms, code, and treat an analytic ex-

ample. Section 2.5 considers the linear response problems for a finite sequence of

(in general different) stochastic transition matrices. Section 2.6 applies the theory

of Sections 2.2–2.4 to stochastically perturbed one-dimensional chaotic maps. We

develop a numerical scheme to produce finite-rank approximations of the transfer

(Perron-Frobenius) operators corresponding to the stochastically perturbed maps.

These finite-rank approximations have a stochastic matrix representation, allowing

the preceding theory to be applied.
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2.1 Notation and Setting

We follow the notation and initial setup of [65]. Consider a column stochastic

transition matrix M = (Mij) ∈ Rn×n of a mixing Markov chain on a finite state

space {1, . . . , n}. More precisely, we assume that M satisfies:

1. 0 ≤Mij ≤ 1 for every i, j ∈ {1, . . . , n};

2.
∑n

i=1 Mij = 1 for every j ∈ {1, . . . , n};

3. there exists N ∈ N such that MN
ij > 0 for every i, j ∈ {1, . . . , n}.

Let fM = (f1, . . . , fn)> ∈ Rn denote the invariant probability vector of M , i.e.

the probability vector such that M fM = fM . We note that the existence and the

uniqueness of fM follow from the above assumptions on M . Moreover, let us consider

perturbations of M of the form M + εm, where ε ∈ R and m ∈ Rn×n. In order to

ensure that M + εm is also a column stochastic matrix, we need to impose some

conditions on m and ε. For a fixed m = (mij) ∈ Rn×n, we require that

n∑
i=1

mij = 0 for every j ∈ {1, . . . , n}. (2.1.1)

Furthermore, we assume that ε ∈ [ε−, ε+] and ε− < ε+, where

ε+ := max
ε
{ε ∈ R : Mij + εmij ≥ 0 for every i, j ∈ {1, . . . , n}}

and

ε− := min
ε
{ε ∈ R : Mij + εmij ≥ 0 for every i, j ∈ {1, . . . , n}}.

Let us denote the invariant probability vector of the perturbed transition matrix

M + εm by fM+εm. We remark that by decreasing [ε−, ε+] we can ensure that the

invariant probability vector fM+εm remains unique. If we write

fM+εm = fM +
∞∑
j=1

εjuj, (2.1.2)

where ε ∈ R is close to 0, then u1 is defined as the linear response of the invariant

probability vector fM to the perturbation εm.
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By summing the entries of both sides of (2.1.2) and comparing ε orders, we must

have that the column sum of the vector u1 is zero. On the other hand, since fM+εm

is an invariant probability vector of M + εm, we have that

(M + εm)

(
fM +

∞∑
j=1

εjuj

)
= fM +

∞∑
j=1

εjuj. (2.1.3)

By expanding the left-hand side of (2.1.3), we obtain

(M + εm)

(
fM +

∞∑
j=1

εjuj

)
= fM + ε(Mu1 +mfM) +O(ε2).

Hence, it follows from (2.1.2) and (2.1.3) that the linear response u1 satisfies

(Id−M)u1 = mfM (2.1.4)

and

1>u1 = 0, (2.1.5)

where 1> = (1, . . . , 1) ∈ Rn. By Theorem 2 [55], the linear system (2.1.4)–(2.1.5)

has a unique solution given by

u1 = QmfM , (2.1.6)

where

Q =
(
Id−M + fM1>

)−1
(2.1.7)

is the fundamental matrix of M .

We note that (2.1.6) is a standard linear response formula, holding in more

general settings, such as where M is replaced by a transfer operator with a spectral

gap (see [10] and [45]). In the rest of the chapter, we will denote fM simply by f.

11



2.2 Maximising the Euclidean Norm of the Linear Response of the

Invariant Measure

Our aim in this section is to find the perturbation m that will maximise the Eu-

clidean norm of the linear response. We will start by considering the case when M

has all positive entries and later we will deal with the general case when M ∈ Rn×n

is the transition matrix of an arbitrary mixing Markov chain.

2.2.1 The Kronecker Product

In this subsection, we will briefly introduce the Kronecker product and some of its

basic properties. These results will be used to convert some of our optimisation

problems into simpler, smaller, and more numerically stable forms.

Definition 2.2.1. Let A = (a1| . . . |an) = (aij) be an m× n matrix and B a p× q

matrix. The mp× nq matrix given by
a11B . . . a1nB

...
...

am1B . . . amnB


is called the Kronecker product of A and B and is denoted by A⊗B. Furthermore,

the vectorization of A is given by the vector

Â :=


a1

...

an

 ∈ Rmn.

The following result collects some basic properties of the Kronecker product.

Proposition 2.2.2 ([63]). Let A,B,C,D be m×n, p× q, n×n and q× q matrices

respectively, and let α ∈ R. Then, the following identities hold:

(i) (A⊗B)(C ⊗D) = AC ⊗BD;

(ii) αA = α⊗ A = A⊗ α;

(iii) (A⊗B)> = A> ⊗B>, where A> denotes the transpose of A;

(iv) Rank(A⊗B) = (Rank(A)) · (Rank(B));
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(v) let λ1, . . . , λn be the eigenvalues of C and µ1, . . . , µq be the eigenvalues of D.

Then, the nq eigenvalues of C ⊗ D are given by λiµj, for i = 1, . . . , n and

j = 1, . . . , q. Moreover, if x1 . . . ,xn are linearly independent right eigenvec-

tors of C corresponding to λ1, . . . , λn and y1 . . . ,yq are linearly independent

right eigenvectors of D corresponding to µ1, . . . , µq, then xi ⊗ yj are linearly

independent right eigenvectors of C ⊗D corresponding to λiµj;

(vi) for any n× p matrix E, we have ÂEB = (B> ⊗ A)Ê.

2.2.2 An Alternative Formula for the Linear Response of the Invariant Measure

As a first application of the Kronecker product, we give an alternative formula for

the linear response (2.1.6). Using Proposition 2.2.2(vi) and noting that Qmf is an

n× 1 vector, we can write

Qmf = Q̂mf =
(
f> ⊗Q

)
m̂ = Wm̂, (2.2.1)

where W = f> ⊗ Q. The dimension of W is n × n2. We now have two equivalent

formulas for the linear response: (2.1.6) in terms of the matrix m and (2.2.1) in

terms of the vectorization m̂. In Sections 2.2.3 and 2.2.4, the formula (2.2.1) will

be predominately used.

2.2.3 Positive Transition Matrix M

We first assume that the transition matrix is positive, i.e. Mij > 0 for every

i, j ∈ {1, . . . , n}. In some situations, positivity is a strong assumption; in Section

2.2.4 we handle general (aperiodic and irreducible) stochastic M . We will find the

perturbation m that maximises the Euclidean norm of the linear response. More

precisely, we consider the following optimisation problem:

max
m∈Rn×n

‖Qmf‖2
2 (2.2.2)

subject to m>1 = 0 (2.2.3)

‖m‖2
F − 1 = 0, (2.2.4)
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where ‖ · ‖2 is the Euclidean norm and ‖ · ‖F is the Frobenius norm defined by

‖A‖2
F =

∑
i

∑
j |aij|2, for A = (aij). We note that the constraint (2.2.3) corresponds

to the condition (2.1.1), while (2.2.4) is imposed to ensure the existence (finiteness)

of the solution. Furthermore, we observe that a solution to the above optimisation

problem exists since we are maximising a continuous function on a compact subset

of Rn×n.

Reformulating Problem (2.2.2)–(2.2.4) in Vectorized Form

We begin by reformulating (2.2.2)–(2.2.4) in order to obtain an equivalent optimi-

sation problem over a space of vectors as opposed to a space of matrices. Using

(2.2.1), we can write the objective function in (2.2.2) as ‖Wm̂‖2
2. Similarly, we can

rewrite the constraint (2.2.3) in terms of m̂. More precisely, we have the following

auxiliary result. Let Idn denote an identity matrix of dimension n.

Lemma 2.2.3. The constraint (2.2.3) can be written in the form Am̂ = 0, where

A is an n× n2 matrix given by

A = Idn ⊗ 1>. (2.2.5)

Proof. Since 1>m is a 1× n vector, we have that 1̂>m = m>1. Furthermore, using

Proposition 2.2.2(vi), we have that m>1 = 1̂>m = ̂1>mIdn =
(
Idn ⊗ 1>

)
m̂ =

Am̂.

We also observe that ‖m‖2
F =

∑
i

∑
j |mij|2 = ‖m̂‖2

2. Consequently, we can

rewrite constraint (2.2.4) in terms of the Euclidean norm of the vector m̂. Let A

be as in (2.2.5). Our optimisation problem (2.2.2)–(2.2.4) is therefore equivalent to

the following:

max
m̂∈Rn2

‖Wm̂‖2
2 (2.2.6)

subject to Am̂ = 0 (2.2.7)

‖m̂‖2
2 − 1 = 0. (2.2.8)
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Reformulating Problem (2.2.6)–(2.2.8) to Remove Constraint (2.2.7)

Finally, we reformulate (2.2.6)–(2.2.8) to solve it as an eigenvalue problem. Consider

the subspace V of Rn2
given by

V =
{

x ∈ Rn2

: Ax = 0
}
. (2.2.9)

We can write V as V = span{v1, . . . ,vl}, where vk ∈ Rn2
, k ∈ {1, . . . , l} form a

basis of V . Note that l = n2 − n. Indeed, it follows from Proposition 2.2.2(iv)

and (2.2.5) that Rank(A) = Rank(Idn) Rank(1>) = n; thus, by and thus by the

rank-nullity theorem, we have that l = n2 − n.

Taking m̂ ∈ V and writing

E = (v1| . . . |vl), (2.2.10)

we conclude that there exists a unique α ∈ Rl such that m̂ = Eα. Hence, α =

E+m̂, where E+ denotes the left inverse of E given by E+ := (E>E)−1E>. Note

that since E has full rank, we have that E>E is non-singular (see p.43, [14]) and

therefore E+ is well-defined. Using the above identities, we obtain

Wm̂ = WEα = WEE+m̂. (2.2.11)

Let

U = WEE+. (2.2.12)

Since the only assumption on m̂ was that m̂ ∈ V , the problem (2.2.6)–(2.2.8) is

equivalent to the following:

max
m̂∈Rn2

‖Um̂‖2
2 (2.2.13)

subject to ‖m̂‖2
2 − 1 = 0. (2.2.14)

The solution m̂∗ to the problem (2.2.13)–(2.2.14) is the `2-normalised eigenvector

corresponding to the largest eigenvalue of the l × l matrix U>U (see p.281, [69]).
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In the particular case when {v1, . . . ,vl} is an orthonormal basis of V , we have

that E>E = Idl and therefore ‖m̂‖2
2 = α>E>Eα = α>α = ‖α‖2

2. Using (2.2.11),

we conclude that the optimisation problem (2.2.13)–(2.2.14) further simplifies to

max
α∈Rl

‖Ũα‖2
2 (2.2.15)

subject to ‖α‖2
2 − 1 = 0, (2.2.16)

where

Ũ = WE. (2.2.17)

The solution α∗ to (2.2.15)–(2.2.16) is the eigenvector corresponding to the largest

eigenvalue of Ũ>Ũ . Finally, we note that the relationship between the solutions of

(2.2.13)–(2.2.14) and (2.2.15)–(2.2.16) is given by

m̂∗ = Eα∗. (2.2.18)

An Optimal Solution and Optimal Objective Value

For positive M , we can now derive an explicit expression for E and thus obtain an

explicit form for the solution of the optimisation problem (2.2.2)–(2.2.4). We will

do this by considering the reformulation (2.2.15)–(2.2.16) of our original problem

(2.2.2)–(2.2.4). Let V0 denote the null space of 1>. An orthonormal basis for V0 is

the set {x1, . . . ,xn−1}, where

xi =
x̃i
‖x̃i‖2

, for i ∈ {1, . . . , n− 1} (2.2.19)

and

x̃1 =



1

−1

0
...
...

0


, x̃2 =



1

1

−2

0
...

0


, . . . , x̃n−1 =



1
...
...
...

1

−(n− 1)


. (2.2.20)
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Let B be an n× (n− 1) matrix given by

B = (x1| . . . |xn−1). (2.2.21)

Therefore, we can take

E = Idn ⊗B (2.2.22)

in (2.2.10). Using Proposition 2.2.2(i), (2.2.1) and (2.2.17), we have Ũ = WE =

f> ⊗ QB. Hence, it follows from Proposition 2.2.2(i) and (iii) that Ũ>Ũ = ff> ⊗

B>Q>QB. By Proposition 2.2.2(v), the eigenvector corresponding to the largest

eigenvalue λ of Ũ>Ũ is given by α∗ = f⊗y, where y is the eigenvector corresponding

to the largest eigenvalue (which we denote by κ) of an (n − 1) × (n − 1) matrix

B>Q>QB. From Proposition 2.2.2(v), λ = κ‖f‖2
2 is the eigenvalue corresponding

to α∗. Hence, it follows from (2.2.18) and (2.2.22) that an optimal perturbation is

m̂∗ = Eα∗ = (Idn ⊗B)(f⊗ y) = f⊗By. (2.2.23)

Note that this expression for m̂∗ is an improvement over computing an eigenvector

of the (n2− n)× (n2− n) matrix Ũ>Ũ because we only need to find y, which is an

eigenvector of an (n− 1)× (n− 1) matrix.

Taking into account (2.2.14), we must have ‖m̂∗‖2
2 = 1 and thus

1 = m̂∗>m̂∗ = (f>f)(y>B>By) = ‖f‖2
2 · ‖y‖2

2,

as B>B = Idn−1 (columns of B form an orthonormal basis of V0). Hence, y must

satisfy

‖y‖2
2 =

1

‖f‖2
2

. (2.2.24)

Finally, using Proposition 2.2.2(ii), (2.2.1) and (2.2.23), we obtain

Wm̂∗ = (f> ⊗Q)(f⊗By) = f>fQBy = ‖f‖2
2QBy,
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and therefore the optimal objective value is

‖Wm̂∗‖2
2 = ‖f‖4

2y
>B>Q>QBy = ‖f‖4

2y
> (κy) = κ‖f‖4

2 ·‖y‖2
2 = κ‖f‖2

2 = λ. (2.2.25)

We impose the normalisation condition (2.2.24) for y throughout the chapter when

dealing with positive M . Note that replacing m̂∗ with −m̂∗ in (2.2.25) yields the

same Euclidean norm of the response.

The issue of dependency of optimal solutions m̂∗ and optimal objective values λ

on the selected set of orthonormal columns for B will be treated in full generality in

Proposition 2.2.7. There we show the optimal objective value is independent of the

orthonormal basis vectors forming the columns of B (or alternatively the columns

of E), and provide a sufficient condition for an optimal m∗ to be independent of

this choice (up to sign).

2.2.4 General Transition Matrix M for Mixing Markov Chains

In the general setting, when M is a transition matrix of an arbitrary mixing Markov

chain, we consider the following optimisation problem:

max
m∈Rn×n

‖Qmf‖2
2 (2.2.26)

subject to m>1 = 0 (2.2.27)

‖m‖2
F − 1 = 0 (2.2.28)

mij = 0 if Mij = 0 or 1. (2.2.29)

The (complicating) constraint (2.2.29) models the natural situation of probabilistic

fluctuations occurring only where nonzero probabilities already exist. We note that

the solution to the optimisation problem (2.2.26)–(2.2.29) exists since we are again

maximising a continuous function on a compact subset of Rn×n.

Reformulating Problem (2.2.26)–(2.2.29) in Vectorized Form

As in the positive M case, we want to find a matrix A so that the constraints

(2.2.27) and (2.2.29) can be written in terms of m̂ in the linear form (2.2.7). Let

M := {i : M̂i ∈ {0, 1}} = {γ1, . . . , γj} ⊂ {1, 2, . . . , n2}, where M̂ denotes the

vectorization of M . Proceeding as in the proof of Lemma 2.2.3, it is easy to verify
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that constraints (2.2.27) and (2.2.29) can be written in the form (2.2.7), where A

is a k × n2 matrix (k ≥ n) given by

A =


Idn ⊗ 1>

e>γ1

...

e>γj

 , (2.2.30)

where the eis in (2.2.30) are the i-th standard basis vectors in Rn2
. As in the positive

M case, the term Idn ⊗ 1> in (2.2.30) corresponds to the constraint (2.2.27), while

all other entries of A are related to constraints (2.2.29). We conclude that we can

reformulate the optimisation problem (2.2.26)–(2.2.29) in the form (2.2.6)–(2.2.8)

with A given by (2.2.30).

Explicit Construction of an Orthonormal Basis of the Null Space of the Matrix A

in (2.2.30)

Proceeding as in the positive M case, we want to simplify the optimisation problem

(2.2.6)–(2.2.8) by constructing a matrix E as in (2.2.10), whose columns form an

orthonormal basis for the null space of A. We first note that E is an n2× l matrix,

where l is the nullity of A. Let us begin by computing l explicitly.

Lemma 2.2.4. The nullity of the matrix A in (2.2.30) is n2− (n+n1), where n is

the dimension of the square matrix M and n1 is the number of zero entries in M .

Proof. Let Y = {v = (v1, . . . , vn) ∈ Rn : vi = 1 for some 1 ≤ i ≤ n}. Assume first

that M doesn’t contain any columns that belong to Y and consider Mj, the j-th

column of M . Note that the j-th row of A is given by

(0, . . . , 0︸ ︷︷ ︸
n(j−1)

, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n(n−j)

). (2.2.31)

On the other hand, for every zero in Mj, we have the following row in A

(0, . . . , 0︸ ︷︷ ︸
n(j−1)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n(n−j)

), (2.2.32)
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where 1 is in a position corresponding to the position of the zero entry in Mj.

Since Mj /∈ Y , we have that the number of rows of the form (2.2.32) in A is at

most n − 2. Therefore, we obviously have that the set spanned by row (2.2.31)

and rows (2.2.32) is linearly independent. Moreover, since all other rows of A have

only zeros on places where vectors in (2.2.31) and (2.2.32) have nonzero entries, and

since j was arbitrary, we conclude that rows of A are linearly independent and that

Rank(A) = n+ n1. This immediately implies that the nullity of A is n2− (n+ n1).

The general case when M can have columns that belong to Y can be treated

similarly. Indeed, it is sufficient to note that each Mj ∈ Y will generate n+ 1 rows

in A (given again by (2.2.31) and (2.2.32)) but only form a subspace of dimension

n = 1 + (n− 1) and n− 1 is precisely the number of zero entries in Mj.

For A given by (2.2.30) written in the form

A = (A1| . . . |An), where Ai ∈ Rk×n, (2.2.33)

let V be defined as in (2.2.9). We aim to construct a matrix E as in (2.2.10) whose

columns form an orthonormal basis for V . We first need to introduce some addi-

tional notation. For a matrix J ∈ Rp1×p2 and a set s = {l1, . . . , ls} ⊂ {1, . . . , p1},

we define J [s] to be the matrix consisting of the rows l1, . . . , ls of J . We note that

J [s] is an s× p2 matrix.

Note that Ai in (2.2.33) can be written as

Ai =



0i1×n

1>n

0i2×n

Idn[Ri]

0i3×n


, (2.2.34)

where Ri := {j : Mji ∈ {0, 1}} and for some ic ∈ {0, 1, . . . , n2}, c ∈ {1, 2, 3},

such that
∑3

c=1 ic = k − |Ri| − 1; recall A has k rows (see (2.2.30)). It follows

from (2.2.34) that the null space of Ai is the same as the null space of the matrix
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Ãi :=

 1>n

Idn[Ri]

 . Let ri ∈ {0, . . . , n− 1} denote the number of zeros in the i-th

column of M . It follows from the arguments in the proof of Lemma 2.2.4 that

Rank(Ãi) = ri + 1. (2.2.35)

In particular, when ri = n− 1, the nullity of Ãi is zero.

The first step in constructing an explicit E is provided by the following result,

where diag(B1, . . . , Bn) denotes the block matrix with diagonal blocks B1, . . . , Bn.

Proposition 2.2.5. Define the matrix E = diag(B1, . . . , Bn), where Bi is the ma-

trix whose columns form an orthonormal basis of the null space of Ai (if this null

space is trivial, we omit the block Bi). The columns of E form an orthonormal basis

for the null space of A.

Proof. We begin by showing that V = null(A) ⊂ col(E) (the column space of

E). For w ∈ V , we write w = (w>1 , . . . ,w
>
n )>, where wi ∈ Rn for 1 ≤ i ≤ n.

From (2.2.33) we have that Aw =
∑n

i=1Aiwi. Using (2.2.34), we have

Aiwi =



0i1×n

1>nwi

0i2×n

wi[Ri]

0i3×n


, and thus Aw =



1>nw1

...

1>nwn

w1[R1]
...

wn[Rn]


.

Since Aw = 0, we conclude that Aiwi = 0 for each i ∈ {1, . . . , n}. Thus, each wi

can be written as a linear combination of columns of Bi and therefore, w can be

written as a linear combination of columns of E; thus, V ⊂ col(E). The orthonor-

mality of the columns of E follows from the orthonormality of the columns of Bi.

Since Bi has full column rank, the number of columns of E equals the sum of the

rank of the Bi’s. The number of columns of E can be computed as
∑n

i=1Rank(Bi)

=
∑n

i=1Nullity(Ai) =
∑n

i=1 n−Rank(Ai) = n2 − (n + n1)= Nullity(A), where the

second last equality follows from (2.2.35) and the fact that n1 =
∑n

i=1 ri, and the
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last equality follows from Lemma 2.2.4. Thus, the columns of E form a basis for

the null space of A.

The final step is to construct the matrices Bi, 1 ≤ i ≤ n, explicitly.

Proposition 2.2.6. Assume that ri < n − 1 and let B̃i = (x1| . . . |x(n−1)−ri) ∈

R(n−ri)×((n−1)−ri), where xi form the orthonormal basis of the null space of 1>n−ri

having the form (2.2.19). Furthermore, let Bi ∈ Rn×((n−1)−ri) be a matrix defined

by the conditions:

Bi[Ri] = 0ri×((n−1)−ri) and Bi[{1, . . . , n} \Ri] = B̃i. (2.2.36)

Then, the columns of Bi form an orthonormal basis for the null space of Ai.

Proof. Since the null spaces of the matrices Ai and Ãi coincide, it is sufficient to

show that the columns of Bi form an orthonormal basis for the null space of Ãi.

We first note that the orthonormality of x1, . . . ,xn−1−ri in Rn−ri directly implies

that the columns of Bi form an orthonormal set in Rn, since the j-th column of

Bi is built from xj by adding zeroes in appropriate places that are independent of

j. Furthermore, since x1, . . . ,xn−1−ri are in the null space of 1>n−ri , we have that

the columns of Bi belong to the null space of 1>n . Moreover, it follows from the

first equality in (2.2.36) that columns of Bi are also orthogonal to all other rows of

Ãi. Consequently, we conclude that all columns of Bi lie in the null space of Ãi.

Finally, by (2.2.35) we have that the nullity of Ãi is n − ri − 1, which is the same

as the number of columns of Bi, and therefore columns of Bi span the null space of

Ãi.

Using Propositions 2.2.5 and 2.2.6, and exploiting block structure, we can arrive

at a computationally convenient form of Ũ = WE: Noting that f> ⊗ Q = (1 ⊗

Q)(f> ⊗ Idn) = Q(f> ⊗ Idn) (which follows from Proposition 2.2.2(i) and (ii),

respectively), we have

Ũ = WE = (f> ⊗Q)E = Q(f> ⊗ Idn)diag(B1, . . . , Bn) = Q(f1B1| . . . |fnBn),

(2.2.37)

where the second equality follows from (2.2.1) and the third from Proposition 2.2.5.
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Solution to Problem (2.2.26)–(2.2.29)

Now that we have constructed an appropriate E (Proposition 2.2.5 gives the form

of E and Proposition 2.2.6 provides the specific components of E), we can re-

formulate our problem (2.2.6)–(2.2.8) (with the matrix A in (2.2.30)), to obtain

the optimisation problem (2.2.15)–(2.2.16) with Ũ as in (2.2.37). A vectorized

solution to (2.2.26)–(2.2.29) is given by m̂∗ as in (2.2.18), where α∗ again de-

notes the eigenvector corresponding to the largest eigenvalue, λ, of the matrix

Ũ>Ũ . As in the positive M case, both m∗ and −m∗ yield the same Euclidean

norm of the response (2.2.26). Finally, the optimal value may be calculated as

‖Qm∗f‖2
2 = ‖Wm̂∗‖2

2 = ‖WEα∗‖2
2 = ‖Ũα∗‖2

2 = λα∗>α∗ = λ, where the first three

equalities follow by (2.2.1), (2.2.18) and (2.2.17), respectively.

A Sufficient Condition for a Unique Optimal Solution and Independence of the

Choice of Basis of the Null Space of A

The following result provides an easily checkable sufficient condition (simplicity of

the leading eigenvalue of Ũ>Ũ) for the uniqueness of the solution m∗ (up to sign)

to the problems (2.2.2)–(2.2.4) and (2.2.26)–(2.2.29). Under this condition, the

specific choice of basis for the null space of the constraint matrix A is unimportant,

and the m∗ computed in Algorithms 1 and 2 in Appendix A.1 is independent of this

basis choice. Recall that W = f> ⊗ Q and A is the matrix of equality constraints

(i.e. Am̂∗ = 0).

Proposition 2.2.7. Consider two distinct orthonormal bases for the null space of

A and construct matrices E1 6= E2 from these bases as in (2.2.10). Then,

1. The matrices Ũ>i Ũi (for Ũi = WEi), i = 1, 2 are similar.

2. If the largest eigenvalue λ1 of Ũ>1 Ũ1 is simple, let α∗i denote the eigenvector

of Ũ>i Ũi corresponding to λ1, normalised so that ‖α∗i ‖2 = 1, i = 1, 2. One

then has m̂∗1 equals m̂∗2, up to sign, when computed with (2.2.18).

Proof. Since the columns of E1 and E2 span the same space, there exists some

matrix R ∈ Rl×l such that E2 = E1R. Noting that E>i Ei = Idl, i = 1, 2, we have

that Idl = E>2 E2 = R>E>1 E1R = R>R; using the fact that R is square, we also

have that R> = R−1 and hence R is orthogonal. Since Ũ>1 Ũ1 = E>1 W
>WE1 and
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Ũ>2 Ũ2 = R−1E>1 W
>WE1R, we have that the matrices Ũ>1 Ũ1 and Ũ>2 Ũ2 are similar.

Using α∗1 = ±Rα∗2, we obtain m̂∗1 = E1α
∗
1 = ±E1Rα

∗
2 = ±E2α

∗
2 = ±m̂∗2.

2.2.5 Algorithms for Solving Problems (2.2.2)–(2.2.4) and (2.2.26)–(2.2.29)

In Appendix A.1 we provide separate algorithms for positive M (problem (2.2.2)–

(2.2.4)) and general stochastic (mixing) M (problem (2.2.26)–(2.2.29)): Algorithms

1 and 2 respectively.

2.2.6 Analytic Example

We now explicitly construct the solution for the problem (2.2.26)–(2.2.29) when

M ∈ R2×2. Since M is column stochastic and the columns of m sum to zero, we

can write

M =

 M11 M12

M21 M22

 =

 1−M21 M12

M21 1−M12


and

m =

 m11 m12

m21 m22

 =

 m11 −m22

−m11 m22

 .

We first note that without any loss of generality, we can assume that M is

positive. Indeed, if M11 = 0 then by (2.2.28) and (2.2.29), we have that m11 = 0

and m22 = ± 1√
2
. Similarly, if M22 = 0 then m22 = 0 and m11 = ± 1√

2
. Furthermore,

we note that M11 6= 1 and M22 6= 1 since otherwise M would not be a transition

matrix of an ergodic Markov chain. One may calculate that

m∗ =


1√

2(M2
12+M2

21)

 M12 M21

−M12 −M21

 , if M12 ≥M21;

1√
2(M2

12+M2
21)

 −M12 −M21

M12 M21

 , if M21 > M12,

(2.2.38)

u1 =



√
M2

12+M2
21

(M12+M21)2

 1√
2

− 1√
2

 , if M12 ≥M21;

√
M2

12+M2
21

(M12+M21)2

 − 1√
2

1√
2

 , if M21 > M12,

(2.2.39)
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and

‖u1‖2
2 =

M2
12 +M2

21

(M12 +M21)4
.

We see from (2.2.39) that the greatest `2 response of the invariant probability vector

f = (M12,M21)/(M12 + M21) is achieved by increasing whichever of M12 or M21 is

greatest. Furthermore, as expected f is most sensitive whenM is near diagonal. The

minimum value of ‖u1‖2
2 occurs when M12 = M21 = 1 (value of 1/8) and increases

with decreasing values of M12 and M21. There is a singularity at M12 = M21 = 0

when the second eigenvalue merges with the eigenvalue 1; see Figure 2.1.

Figure 2.1: Contour plot of loge((M
2
12 +M2

21)/(M12 +M21)4).

2.3 Maximising the Linear Response of the Expectation of an

Observable

In this section we consider maximising the linear response of the expected value of

a cost vector c with respect to the invariant probability vector f . The computations

developed in this section will be used in Section 2.6 to solve a discrete version of

the problem of maximising the linear response of an observable with respect to the

invariant measure of a stochastically perturbed dynamical system.

We recall that the linear response to the invariant probability vector f of an irre-

ducible, aperiodic transition matrix M , under a perturbation matrix m, is denoted
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by u1. We wish to select a perturbation matrix m so that we maximise c>u1. For

c ∈ Rn, using (2.1.6), we consider the following problem:

max
m∈Rn×n

c>Qmf (2.3.1)

subject to m>1 = 0 (2.3.2)

‖m‖2
F − 1 = 0 (2.3.3)

mij = 0 if (i, j) ∈ N, (2.3.4)

where N = {(i, j) ∈ {1, . . . , n}2 : Mij = 0 or 1}. Note that since mij takes the

value 0 for all (i, j) ∈ N , we just need to determine mij for (i, j) 6∈ N .

We employ Lagrange multipliers (see e.g. §12.3–12.5 [71]). Consider the La-

grangian function

L(m,%, ν) = w>mf− %>m>1− ν(‖m‖2
F − 1), (2.3.5)

where w> = c>Q ∈ Rn and % ∈ Rn, ν ∈ R are the Lagrange multipliers. Differen-

tiating (2.3.5) with respect to mij, we obtain

∂L

∂mij

(m,%, ν) = wifj − %j − 2νmij.

Using the first-order optimality (KKT) conditions from the method of Lagrange

multipliers (e.g. Theorem 12.1 [71]), we require

wifj − %j − 2νmij = 0 for (i, j) 6∈ N, (2.3.6)

∑
i:(i,j)6∈N

mij = 0 for j ∈ {1, . . . , n}, (2.3.7)

‖m‖F = 1, and a regularity condition (LICQ)1. Equation (2.3.6) yields %j =

−2νmij + wifj for (i, j) 6∈ N . Using (2.3.7), we calculate

∑
i:(i,j)6∈N

%j = |N c
j |%j = fj

∑
i:(i,j) 6∈N

wi,

1The regularity condition is that the gradients of all (equality) constraints are linearly inde-
pendent at the local optimum. A proof of this fact is in Appendix A.2.
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where N c
j = {i : (i, j) 6∈ N}. Thus, substituting %j = (fj/|N c

j |)
∑

l:(l,j) 6∈N wl we

obtain

m∗ij =
−%j + wifj

2ν
=
fj
2ν

wi − 1

|N c
j |

∑
l:(l,j) 6∈N

wl

 . (2.3.8)

We now scale ν to ensure ‖m∗‖F = 1. The matrix m∗ satisfies the first-order

equality constraints (2.3.2)–(2.3.4) and ∂L
∂mij

(m∗,%, ν) = 0 for (i, j) 6∈ N . Finally, we

determine the sign of ν by checking the standard second order sufficient conditions

for m∗ij to be a maximiser (namely (2.3.10) below); see e.g. Theorem 12.6 [71]. We

compute
∂2L

∂mij∂mkl

(m∗,%, ν) = −2νδ(i,j),(k,l); (2.3.9)

thus, the Hessian matrix of the Lagrangian function is H(m∗,%, ν) = −2ν Idn2−|N |.

If ν > 0 one has

s>H(m∗,%, ν)s < 0, (2.3.10)

for any s ∈ Rn2−|N | \ {0} (indeed for any s ∈ Rn2 \ {0}).

2.3.1 Algorithm for Solving Problem (2.3.1)–(2.3.4)

See Appendix A.1.

2.3.2 Analytic Example

Suppose that M ∈ R2×2 and we would like to solve (2.3.1)–(2.3.4) for c ∈ R2,

c 6= a1, where a ∈ R. As in the example in Section 2.2.6, we only need to consider

the case when M is positive. Let w = Q>c; one may calculate that

m∗ =


1√

2(M2
12+M2

21)

 M12 M21

−M12 −M21

 , if w1 > w2;

1√
2(M2

12+M2
21)

 −M12 −M21

M12 M21

 , if w2 > w1,

(2.3.11)

and

c>u1 =


√
M2

12+M2
21√

2(M12+M21)2 (c1 − c2), if w1 > w2;√
M2

12+M2
21√

2(M12+M21)2 (c2 − c1), if w2 > w1.
(2.3.12)

27



2.4 Maximising the Linear Response of the Rate of Convergence to

Equilibrium

In this section we consider maximising the linear response of the rate of convergence

of the Markov chain to its equilibrium measure. We achieve this by maximising the

linearised change in the magnitude of the (assumed simple) second eigenvalue λ2 of

the stochastic matrix M . The computations in this section will be applied in Section

2.6 to solve a discrete version of the problem of maximising the linear response of

the rate of convergence to equilibrium for some stochastically perturbed dynamical

system.

Because M is irreducible and aperiodic, λ1 = 1 is the only eigenvalue on the

unit circle. Let λ2 ∈ C be the eigenvalue of M strictly inside the unit circle with

largest magnitude, and assume that λ2 is simple. Denote by l2 ∈ Cn and r2 ∈ Cn

the left and right eigenvectors of M corresponding to λ2. We assume that we have

the normalisations r∗2r2 = 1 and l∗2r2 = 1. Considering the small perturbation of M

to M + εm, by standard arguments (e.g. Theorem 6.3.12 [53]), one has

dλ2(ε)

dε

∣∣∣∣
ε=0

= l∗2mr2, (2.4.1)

where λ2(ε) is the second largest eigenvalue of M + εm. We wish to achieve a

maximal decrease in the magnitude of λ2, or equivalently a maximal decrease

in the real part of the logarithm of λ2. Denote by <(·) and =(·) the real and

imaginary parts, respectively. Now d(<(log λ2(ε)))/dε = <(d log(λ2(ε))/dε) =

<((dλ2(ε)/dε)/λ2(ε)), which, using (2.4.1) becomes

<((dλ2(ε)/dε)/λ2)|ε=0 =
1

|λ2|2

((
<(l2)>m<(r2) + =(l2)>m=(r2)

)
<(λ2)

+
(
<(l2)>m=(r2)−=(l2)>m<(r2)

)
=(λ2)

)
.

(2.4.2)

Similarly to Section 2.3 we now have the optimisation problem:

min
m∈Rn×n

(
<(l2)>m<(r2) + =(l2)>m=(r2)

)
<(λ2)

+
(
<(l2)>m=(r2)−=(l2)>m<(r2)

)
=(λ2) (2.4.3)
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subject to m>1 = 0 (2.4.4)

‖m‖2
F − 1 = 0 (2.4.5)

mij = 0 if (i, j) ∈ N, (2.4.6)

where N = {(i, j) ∈ {1, . . . , n}2 : Mij = 0 or 1}. Note that since mij takes the

value 0 for all (i, j) ∈ N , we just need to solve (2.4.3)–(2.4.5) for (i, j) 6∈ N .

Applying Lagrange multipliers, we proceed as in Section 2.3, with the only

change being to replace the expression (2.3.6) with

Sij − %j − 2νmij = 0 for (i, j) 6∈ N, (2.4.7)

where

Sij := (<(l2)i<(r2)j + =(l2)i=(r2)j)<(λ2) + (<(l2)i=(r2)j −=(l2)i<(r2)j)=(λ2).

(2.4.8)

Following the steps in Section 2.3 we obtain

m∗ij =
−%j + Sij

2ν
=

(
Sij − 1

|Nc
j |
∑

l:(l,j)6∈N Slj

)
2ν

, (2.4.9)

where (i, j) 6∈ N and N c
j = {i : (i, j) 6∈ N}. Note that because we are minimising (as

opposed to maximising in Section 2.3) we select ν < 0, scaled so that ‖m∗‖F = 1.

2.4.1 Algorithm for Solving Problem (2.4.3)–(2.4.6)

See Appendix A.1.

2.4.2 Analytic Example

Suppose that M ∈ R2×2 and we would like to solve (2.4.3)–(2.4.6). As in Section

2.2.6 for M ∈ R2×2, we only need to consider the case when M is positive. One
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may calculate that

m∗ =


1
2

 1 −1

−1 1

 , if M11 +M22 < 1;

1
2

 −1 1

1 −1

 , if M11 +M22 > 1,

(2.4.10)

and

d(<(log λ2(ε)))

dε

∣∣∣∣
ε=0

=
1

λ2

l∗2m
∗r2 =

 1
M11+M22−1

= 1
λ2
, if M11 +M22 < 1;

−1
M11+M22−1

= −1
λ2
, if M11 +M22 > 1.

(2.4.11)

The optimal choice of m∗ depends only on whether M is diagonally dominant or

not: if M is diagonally dominant, perturb away from diagonal dominance, and if

M is not diagonally dominant, perturb toward diagonal dominance. The linear

response of λ2 has a fixed magnitude of 1.

2.5 Optimising Linear Response for a General Sequence of Matrices

In this section we extend the ideas of Sections 2.2 and 2.3 to derive the linear

response of the Euclidean norm of a probability vector f and the expectation of an

observable c, when acted on by a finite sequence of matrices. We will then introduce

and solve an optimisation problem that finds the sequence of perturbation matrices

that achieve these maximal values.

2.5.1 Linear Response for the Probability Vector f

Let M (0),M (1), . . . ,M (τ−1) be a fixed finite sequence of column stochastic matrices.

Furthermore, let m(t), t ∈ {0, . . . , τ − 1}, be a sequence of perturbation matrices.

Take an arbitrary probability vector f(0) and set

f(t+1) = M (t)f(t), for t ∈ {0, . . . , τ − 1}.

We now want to derive the formula for the linear response of f(τ). We require that

(M (t) + εm(t))

(
f(t) +

∞∑
i=1

εiu
(t)
i

)
= f(t+1) +

∞∑
i=1

εiu
(t+1)
i , (2.5.1)
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where ε ∈ R. We refer to u
(t)
1 as the linear response at time t. By expanding the

left-hand side of (2.5.1), we have

(
M (t) + εm(t)

)(
f(t) +

∞∑
i=1

εiu
(t)
i

)
= f(t+1) + ε

(
M (t)u

(t)
1 +m(t)f(t)

)
+O(ε2). (2.5.2)

Denoting for simplicity u
(t)
1 by u(t), it follows from (2.5.1) and (2.5.2) that

u(t+1) = M (t)u(t) +m(t)f(t). (2.5.3)

Set u(0) = 0. Iterating (2.5.3), we obtain that

u(τ) =
τ−1∑
t=1

M (τ−1) . . .M (t)m(t−1)f(t−1) +m(τ−1)f(τ−1). (2.5.4)

The Norm Optimisation Problem

It follows from Proposition 2.2.2(vi) that

u(τ) = û(τ) =
τ−1∑
t=1

(
f(t−1)> ⊗

(
M (τ−1) · · ·M (t)

))
m̂(t−1) + (f(τ−1)> ⊗ Idn)m̂(τ−1)

=
τ−1∑
t=1

W (t−1)m̂(t−1) +W (τ−1)m̂(τ−1)

= W


m̂(0)

...

m̂(τ−1)

 = Wm̂,

where

W (t) = f(t)> ⊗
(
M (τ−1) · · ·M (t+1)

)
for 0 ≤ t ≤ τ − 2, W (τ−1) = f(τ−1)> ⊗ Idn

and W =
(
W (0)|W (1)| . . . |W (τ−1)

)
. Note that the W (t)s are n × n2 matrices, W is

an n× τn2 matrix and m̂ is a τn2-vector.
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We consider the following optimisation problem, which maximises the response

of the Euclidean norm of the response u(τ):

max
m̂∈Rτn2

‖Wm̂‖2
2 (2.5.5)

subject to A(t)m̂(t) = 0 for t = 0, . . . , τ − 1 (2.5.6)
τ−1∑
t=0

‖m̂(t)‖2
2 − 1 = 0, (2.5.7)

where A(t) is the constraint matrix (2.2.30) associated to the matrix M (t) and con-

ditions (2.2.27) and (2.2.29).

Solution to the Norm Optimisation Problem

We want to reformulate the optimisation problem with the constraints (2.5.6) re-

moved. We first note that (2.5.6) can be replaced by Am̂ = 0, where

A = diag(A(0), . . . , A(τ−1)). (2.5.8)

Let E(t) be an n2 × l(t) matrix whose columns form an orthonormal basis of the

null space of A(t) for t = 0, . . . , τ − 1, where l(t) denotes the nullity of A(t). Then,

E = diag(E(0), . . . , E(τ−1)) is a matrix whose columns form an orthonormal basis of

the null space of the matrix A in (2.5.8). Thus, if m̂ is an element of the null space of

A then, m̂ = Eα for a unique α ∈ R
∑τ−1
t=0 l(t) . Finally, since

∑τ−1
t=0 ‖m̂(t)‖2

2 = ‖m̂‖2
2 =

‖Eα‖2
2 = ‖α‖2

2, we can reformulate the optimisation problem (2.5.5)–(2.5.7) as:

max
α∈R

∑τ−1
t=0 l(t)

‖Uα‖2
2 (2.5.9)

‖α‖2
2 − 1 = 0, (2.5.10)

where

U = WE = (W (0)E(0)| . . . |W (τ−1)E(τ−1)). (2.5.11)

Arguing as in Section 2.2.4, we conclude that m̂∗ = Eα∗ maximises the Euclidean

norm of the linear response u(τ), where α∗ ∈ R
∑τ−1
t=0 l(t) is the eigenvector corre-

sponding to the largest eigenvalue of U>U (with U as in (2.5.11)). Finally, if
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we denote f (t+1)(ε) =
(
M (t) + εm(t),∗) f (t), we choose the sign of m(t),∗ so that

‖f (t)‖2 < ‖f (t)(ε)‖2 for small ε > 0 and for each t ∈ {1, . . . , τ}; this is possible

since f(t) is independent of m(t).

2.5.2 Linear Response for the Expectation of an Observable

In this section, we consider maximising the linear response of the expected value

of an observable c with respect to the probability vector f (τ), when acted on by a

finite sequence of matrices. More precisely, we consider the following problem: For

c ∈ Rn

max
m(0),m(1),...,m(τ−1)∈Rn×n

c>u(τ) (2.5.12)

subject to m(t)>1 = 0 for t ∈ {0, . . . , τ − 1} (2.5.13)
τ−1∑
t=0

‖m(t)‖2
F − 1 = 0 (2.5.14)

m
(t)
ij = 0 if (i, j) ∈ N (t) for t ∈ {0, .., τ − 1},(2.5.15)

where N (t) = {(i, j) ∈ {1, . . . , n}2 : M
(t)
ij = 0 or 1}. Multiplying (2.5.4) on the left

by c> we obtain c>u(τ) =
∑τ−1

t=0 w(t)>m(t)f(t), where w(t)> = c>M (τ−1) . . .M (t+1)

for t ∈ {0, . . . , τ − 2} and w(τ−1)> = c>. Since m
(t)
ij = 0 for (i, j) ∈ N (t), we just

need to solve (2.5.12)–(2.5.14) for (i, j) 6∈ N (t).

As in Section 2.3, we solve this problem using the method of Lagrange multipli-

ers. We begin by considering the following Lagrangian function:

L(m(0), . . . ,m(τ−1),%(0), . . . ,%(τ−1), ν)

=
τ−1∑
t=0

w(t)>m(t)f(t) −
τ−1∑
t=0

%(t)>m(t)>1− ν

(
τ−1∑
t=0

‖m(t)‖2
F − 1

)
,

(2.5.16)

where %(t) ∈ Rn and ν ∈ R are the Lagrange multipliers. Differentiating (2.5.16)

with respect to m
(t)
ij , we obtain

∂L

∂m
(t)
ij

(m(0), . . . ,m(τ−1),%(0), . . . ,%(τ−1), ν) = w
(t)
i f

(t)
j − %

(t)
j − 2νm

(t)
ij ,
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where w
(t)
i , f

(t)
j , %

(t)
j ∈ R are the elements of the n-vectors w(t), f(t) and %(t) respec-

tively.

Using the first order optimality (KKT) conditions, we require

w
(t)
i f

(t)
j − %

(t)
j − 2νm

(t)
ij = 0 for (i, j) 6∈ N (t),

∑
i:(i,j)6∈N(t)

m
(t)
ij = 0 for j ∈ {1, . . . , n}, t ∈ {0, . . . , τ − 1}, (2.5.17)

(2.5.14), and a regularity condition, analogous to that treated in Appendix A.2,

which follows similarly. We note that %
(t)
j = w

(t)
i f

(t)
j − 2νm

(t)
ij . Using (2.5.17), we

calculate ∑
i:(i,j) 6∈N(t)

%
(t)
j :=

∣∣∣N (t),c
j

∣∣∣ %(t)
j = f

(t)
j

∑
i:(i,j) 6∈N(t)

w
(t)
i ,

where N
(t),c
j = {i : (i, j) 6∈ N (t)}. Thus, we obtain

m
(t),∗
ij =

f
(t)
j

2ν

w(t)
i −

1∣∣∣N (t),c
j

∣∣∣
∑

i:(i,j)6∈N(t)

w
(t)
i

 ,

where (i, j) 6∈ N (t). We scale ν to ensure
∑τ−1

t=0 ‖m(t),∗‖2
F = 1; all first-order opti-

mality conditions are now satisfied. As in Section 2.3, we determine the sign of ν by

checking the standard second order sufficient conditions for m(t),∗, t ∈ {0, . . . , τ−1},

to be a maximiser. We note that the matrices m(t),∗ satisfy (2.5.13)–(2.5.15) and

∂L

∂m
(t)
ij

(m(0),∗, . . . ,m(τ−1),∗,%(0), . . . ,%(τ−1), ν) = 0 for (i, j) 6∈ N (t).

We compute

∂2L

∂m
(t)
ij ∂m

(t′)
kl

(m(0),∗, . . . ,m(τ−1),∗,%(0), . . . ,%(τ−1), ν) = −2νδ(i,j,t),(k,l,t′).

If ν > 0 then H(m(0),∗, . . . ,m(τ−1),∗,%(0), . . . ,%(τ−1), ν), the Hessian of the La-

grangian function, satisfies s>H(m(0),∗, . . . ,m(τ−1),∗,%(0), . . . ,%(τ−1), ν)s < 0 for any

s ∈ Rτn2 \ {0}. Thus, the second order sufficient conditions for a maximiser are

satisfied.
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2.6 Numerical Examples of Optimal Linear Response for

Stochastically Perturbed Dynamical Systems

We apply the techniques we have developed in Sections 2.2–2.4 to randomly per-

turbed dynamical systems of the type introduced in Section 1. The annealed Perron-

Frobenius (or transfer) operator defined by (1.0.1) is the linear (Markov) operator

that pushes forward densities under the annealed (averaged) action of our random

dynamical system. We will consider a connected, compact phase space X ⊂ Rd and

a stochastic2 kernel k(x, y) in (1.0.1) to handle perturbations near the boundary

of X. The kernel k defines the integral operator Lg(x) =
∫
X
k(x, y)g(y) dy. We

will assume that k ∈ L2(X × X), which guarantees that L is a compact operator

on L2(X); see e.g. Proposition II.1.6 [19]. A sufficient condition for L possessing a

unique fixed point in L1(X) is that there exists a j such that
∫
X

infy k
j(x, y) dx > 0,

where kj is the kernel associated with Lj; see Corollary 5.7.1 [62]. This is a stochas-

tic “covering” condition, which is satisfied by our examples, which are generated by

transitive deterministic T with bounded additive uniform noise. In summary, we

have a unique annealed invariant measure for our stochastically perturbed system

and by compactness our transfer operator L has a spectral gap on L2(X) (i.e. the

only element of σ(L) on the unit circle is {1}, which is a simple eigenvalue).

2.6.1 Ulam Projection

To carry out numerical computations, we project the operator L onto a finite-

dimensional space spanned by indicator functions on a fine mesh of X. Let Bn =

{I1, . . . , In} be a partition ofX into connected sets, and set Bn = span{1I1 , . . . ,1In}.

Define a projection πn : L1 → Bn by πn(g) =
∑n

i=1

(
1

`(Ii)

∫
Ii
g d`

)
1Ii , where ` is

Lebesgue measure; πn simply replaces g|Ii with its expected value. We now consider

the finite-rank operator πnL : L1 → Bn; this general approach is known as Ulam’s

method [80]. When Ulam’s method is applied to compact L as above, one achieves

convergence of πnL to L in operator norm (and therefore L2 convergence of the

leading eigenvector of πnL to that of L via standard operator perturbation theory);

see [21].

2k(x, y) ≥ 0,
∫
X
k(x, y) dx = 1 ∀y ∈ X.
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We calculate

πnLg =
n∑
i=1

(
1

`(Ii)

∫
Ii

Lg(x) dx

)
1Ii

=
n∑
i=1

 1

`(Ii)

∫
X

∫
Ii

k(x, y) dx︸ ︷︷ ︸
:=ψi(y)

g(y) dy

1Ii . (2.6.1)

Putting g =
∑n

j=1 gj1Ij ∈ Bn, where gj ∈ R, j = 1, . . . , n, we have

πnLg =
n∑
i=1

n∑
j=1

fj

∫
Ij
ψi(y) dy

`(Ii)︸ ︷︷ ︸
:=Mij

1Ii , (2.6.2)

where M is the matrix representation of πnL : Bn → Bn.

In our examples below, X = [0, 1] or X = S1, and k(x, y) := 1Bε(Ty)(x)/`(X ∩

Bε(Ty)), where Bε(Ty) denotes an ε-ball centred at the point Ty. This definition

of k ensures that we do not stochastically perturb points outside our domain X.

Our random dynamical systems therefore comprise deterministic dynamics followed

by the addition of uniformly distributed noise in an ε-ball (with adjustments made

near the boundary of X). This choice of k leads to

ψi(y) =

∫
Ii

1Bε(Ty)(x) dx

`(X ∩Bε(Ty))
=
`(Ii ∩Bε(Ty))

`(X ∩Bε(Ty))
. (2.6.3)

Combining (2.6.2) and (2.6.3) we obtain

Mij =

∫
Ij
`(Ii ∩Bε(Ty))/`(X ∩Bε(Ty)) dy

`(Ii)
.

From now on we assume that Ii = [(i − 1)/n, i/n), i = 1, . . . , n, so that Bn is a

partition of X into equal length subintervals. We now have that
∑n

i=1Mij = 1 for

each j = 1, . . . , n, and so M is a column stochastic matrix. We use the matrix M

to numerically approximate the operator L in the experiments below.
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Consistent Scaling of the Perturbation m

In Sections 2.6.2–2.6.4 we will think of the entries of the perturbation matrix m as

resulting from the matrix representation of the Ulam projection of a perturbation

δL of L. To make this precise, we first write g ∈ Bn as g =
∑n

j=1 ḡj1Ij , and

introduce a projected version of δk: πn(δk) =
∑

i,j δ̄kij1Ii×Ij , where the matrix

δ̄kij = (1/(`(Ii)`(Ij)))
∫
Ii×Ij δk(x, y) dydx. We now explicitly compute the Ulam

projection of δL:

πnδL(g)(z) = (1/`(Ii))
n∑
i=1

[∫
Ii

δL(g)(x) dx

]
1Ii(z)

= (1/`(Ii))
n∑
i=1

[∫
Ii

∫
X

δk(x, y)g(y) dydx

]
1Ii(z)

= (1/`(Ii))
n∑

i,j=1

ḡj

[∫
Ii×Ij

δk(x, y) dydx

]
1Ii(z)

=
n∑

i,j=1

`(Ij)δ̄kij︸ ︷︷ ︸
:=mij

ḡj1Ii(z).

Thus, we have the relationship mij = `(Ij)δ̄kij between the matrix representation

of the projected version of the operator δL (namely m) and the elements of the

projected version of the kernel (namely δ̄k).

We wish to fix the Hilbert-Schmidt norm of πnδL to 1.

1 = ‖πnδL‖2
HS = ‖πnδk‖2

L2(X×X) =

∥∥∥∥∥
n∑

i,j=1

δ̄kij1Ii×Ij

∥∥∥∥∥
2

L2(X×X)

=
n∑

i,j=1

`(Ii)`(Ij)δ̄k
2
.

(2.6.4)

Since ‖m‖2
F =

∑n
i,j=1 `(Ij)

2δ̄k
2
ij, if we assume that `(Ii) = 1/n, 1 ≤ i ≤ n, we obtain

‖m‖F = (1/n)2‖δ̄k‖2
F and by (2.6.4) we know ‖δ̄k‖2

F = n2. We thus conclude that

enforcing ‖m‖F = 1 will ensure ‖πnδL‖HS = 1, as required.

Consistent Scaling for f and c

In Sections 2.6.2–2.6.4 we will use vector representations of the invariant density f

and an L2 function c. We write f =
∑n

i=1 fi1Ii , where f ∈ Rn. We normalise so that∫
X
f(x) dx = 1, which means that

∑n
i=1 fi = n. Similarly, we write c =

∑n
i=1 ci1Ii ,
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where c ∈ Rn. We normalise so that
∫
X
c(x)2 dx = 1, which means that

∑n
i=1 c2

i = n

or ‖c‖2 =
√
n.

2.6.2 A Stochastically Perturbed Lanford Map

The first example we consider is the stochastically perturbed Lanford map [60]. We

will use the numerical solution of the problems (2.2.26)–(2.2.29) and (2.3.1)–(2.3.4)

for this map to solve the problem of maximising the L2 norm of the linear response

of the invariant measure and maximising the linear response of the expectation of

an observable.

Maximising the Linear Response of the L2 Norm of the Invariant Measure

Let T : S1 → S1 be the stochastically perturbed Lanford map defined by

T (x) = 2x+
1

2
x(1− x) + ξ mod 1, (2.6.5)

where ξ ∼ U(0, 1
10

) (uniformly distributed on an interval about 0 of radius 1/10).

Let M ∈ Rn×n be Ulam’s discretisation of the transfer operator of the map T

with n subintervals. The matrix M will be mixing (aperiodic and irreducible) by

arguments similar to those in Proposition 2.3 [26]. Using Algorithm 2 (see Appendix

A.1), we solve the problem (2.2.26)–(2.2.29) for the matrix M for n = 2000 to

obtain the optimal perturbation m∗. The top two singular values of the matrix Ũ ,

computed using MATLAB, are 35.08 and 33.32 (each with multiplicity one), which

we consider to be strong numerical evidence that the leading singular value of Ũ

has multiplicity one. By Proposition 2.2.7 we conclude that our computed m∗ is the

unique optimal perturbation for the discretised system (up to sign). The sign of the

matrix m∗ is chosen so that ‖fM‖2 < ‖fM+εm∗‖2 for ε > 0. Figure 2.2(a) shows the

Lanford map and Figure 2.2(b) presents the approximation of the invariant density

f of the Lanford map. Figure 2.2(c) presents the optimal perturbation matrix m∗

which generates the maximal response. Figure 2.2(d) presents the approximation

of the associated linear response u∗1 =
∑n

i=1 u∗11Ii , for the perturbation m∗; for

this example, we compute ‖u∗1‖2
L2 ≈ 0.6154. Figure 2.2(c) shows that the selected

perturbation preferentially places mass in a neighbourhood of x = 0.4 and x = 0.95,

consistent with local peaks in the response in Figure 2.2(d).
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(a) Colourmap of the stochastically perturbed Lan-
ford map. The colourbar indicates the values of the
elements of the matrix.

(b) The invariant density f .

(c) The optimal perturbation m∗. The colourbar
indicates the values of the elements of the matrix.
Note that the aqua colour outside the support of
the two branches corresponds to a zero perturba-
tion.

(d) The optimal linear response u∗1.

Figure 2.2: Solution to the problem of maximising the L2 norm of the linear response
of the stochastically perturbed Lanford map.

Having computed the optimal linear response for a specific n, we verify in Table

2.1 that for various partition cardinalities, the L2 norm of the approximation of

the linear response u∗1 converges. We also verify that ‖fM+εm∗ − (fM + εu∗1)‖2
L2 is

small for small ε > 0. The 10000-fold improvement in the accuracy is consistent

with the error terms of the linearisation being of order ε4 when considering the

square of the L2 norm (because fM+εm = fM + εu1 + O(ε2), when we decrease ε

from 1/100 to 1/1000, the square of the error term of the linearisation is changed

by ((1/10)2)2 = 1/10000). The table also illustrates the change in the norm of the
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invariant density when perturbed; we see that the norm of the invariant density

increases when we perturb M by εm∗ and decreases when we perturb by −εm∗,

consistent with the choice of sign of m∗ noted above.

n ‖u∗1‖2
L2 ε

‖fM+εm∗

− (fM + εu∗1)‖2
L2

‖fM−εm∗‖2
L2 ‖fM‖2

L2 ‖fM+εm∗‖2
L2

1500 0.6180 1/100 1.35×10−9 1.00713 1.00783 1.00865
1/1000 1.35×10−13 1.00775 1.00783 1.00790

1750 0.6165 1/100 1.35×10−9 1.00713 1.00783 1.00864
1/1000 1.34×10−13 1.00775 1.00783 1.00790

2000 0.6154 1/100 1.35×10−9 1.00713 1.00783 1.00864
1/1000 1.34×10−13 1.00775 1.00783 1.00790

Table 2.1: Numerical results for maximising the linear response of the L2 norm of the
invariant probability measure of the stochastic Lanford Map. Column 1: number
of partition elements; Column 2: optimal objective value; Column 3: values of ε;
Column 4: linearisation error; Columns 5-7: demonstration that the L2 norm of the
invariant density increases and decreases appropriately under the small perturbation
εm∗.

Maximising the Linear Response of the Expectation of an Observable

In this section we find the perturbation that generates the greatest linear response

of the expectation

〈c, h〉 =

∫
[0,1]

c(x)h(x)dx,

where c(x) =
√

2 sin(πx) and the underlying dynamics are given by the map (2.6.5).

We consider problem (2.3.1)–(2.3.4) with the vector c = (c1, . . . , cn) ∈ Rn, where

ci =
√

2n sin(πxi) and xi = i−1
n

+ 1
2n

, i = 1, . . . , n. Let M ∈ Rn×n be the discreti-

sation matrix derived from Ulam’s method. We use Algorithm 3 (see Appendix

A.1) to solve problem (2.3.1)–(2.3.4). Figure 2.3 presents the optimal perturbation

m∗ and the associated linear response u∗1 for this problem. Note that the response

in Figure 2.3(b) has positive values where c(x) is large and negative values where

c(x) is small, consistent with our objective to increase the expectation of c. In this

example (n = 2000), we obtain 〈c, u∗1〉 ≈ 0.2514.

Table 2.2 provides numerical results for various partition cardinalities n. We see

that (i) the value of 〈c, u∗1〉 appears to converge when we increase n, (ii) the 100 fold

improvement in accuracy is consistent with the error terms of the linearisation being
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(a) The optimal perturbation m∗. The colourbar
indicates the values of the elements of the matrix.

(b) The optimal linear response u∗1.

Figure 2.3: Solution to the problem of maximising the expectation of the response
of the observable c(x) for the stochastically perturbed Lanford map.

of order ε2 since fM+εm = fM + εu1 + O(ε2), and (iii) the expectation increases if

we perturb in the direction εm∗ and decreases if we perturb in the direction −εm∗.

n 〈c, u∗1〉 ε
〈c, fM+εm∗〉
− 〈c, fM + εu∗1〉

〈c, fM−εm∗〉 〈c, fM〉 〈c, fM+εm∗〉

1500 0.2520 1/100 -9.70×10−6 0.89434 0.89687 0.89938
1/1000 -9.73×10−8 0.89662 0.89687 0.89712

1750 0.2517 1/100 -9.68×10−6 0.89434 0.89687 0.89937
1/1000 -9.71×10−8 0.89662 0.89687 0.89712

2000 0.2514 1/100 -9.67×10−6 0.89434 0.89687 0.89937
1/1000 -9.69×10−8 0.89662 0.89687 0.89712

5000 0.2503 1/100 -9.61×10−6 0.89435 0.89687 0.89936
1/1000 -9.63×10−8 0.89662 0.89687 0.89712

7000 0.2501 1/100 -9.60×10−6 0.89436 0.89687 0.89936
1/1000 -9.62×10−8 0.89662 0.89687 0.89712

Table 2.2: Numerical results for maximising the linear response of the expectation of
c(x) =

√
2 sin(πx) for the stochastic Lanford map. Column 1: number of partition

elements; Column 2: optimal objective value; Column 3: values of ε; Column 4:
linearisation error; Columns 5-7: demonstration that the expected value of the
function c increases and decreases appropriately under the small perturbation εm∗.

2.6.3 A Stochastically Perturbed Logistic Map

In this section, we consider the problems of maximising the L2 norm of the lin-

ear response of the invariant measure and maximising the linear response of the

expectation of an observable. The underlying deterministic dynamics is given by
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the logistic map, and this map is again stochastically perturbed, yielding a linear

response (see e.g. the survey [10] for a discussion of the failure of linear response

for the deterministic logistic map).

Maximising the Linear Response of the L2 Norm of the Invariant Measure

Let Tξ : [0, 1]→ [0, 1] be the logistic map with noise defined by

Tξ(x) = 4x(1− x) + ξx, (2.6.6)

where ξx ∼ U(B 1
10

(0) ∩ [−x, 1 − x]) and U(I) denotes the uniform distribution on

the interval I. Let M ∈ Rn×n be Ulam’s discretisation of the transfer operator of

the map Tξ with n partitions. We use Algorithm 2 (see Appendix A.1) to solve the

optimisation problem (2.2.26)–(2.2.29) with the matrix M , for n = 2000, to obtain

the optimal perturbation m∗. The top two singular values of Ũ , for this example,

were computed in MATLAB to be 36.92 and 29.36 (each with unit multiplicity);

thus, by Proposition 2.2.7, m∗ is the unique optimal perturbation (up to sign). The

sign of the matrix m∗ is chosen so that ‖fM‖2 < ‖fM+εm∗‖2 for ε > 0. Figure 2.4

shows the results for the stochastically perturbed logistic map; for this example

we compute ‖u∗1‖2
L2 ≈ 0.6815. In the right branch of Figure 2.4(c), we see sharp

increases in mass mapped to neighbourhoods of x = 0.15 and x = 0.4, as well as a

sharp decrease in mass mapped to a neighbourhood of x = 0.25; these observations

coincide with the local peaks and troughs of the response vector shown in Figure

2.4(d). Table 2.3 displays the corresponding numerical results.

Maximising the Linear Response of the Expectation of an Observable

Using (2.3.1)–(2.3.4), we calculate the perturbation achieving a maximal linear

response of 〈c, f〉, for c(x) =
√

2 sin(πx), for the stochastic dynamics (2.6.6). We

again compute with the vector c = (c1, . . . , cn) ∈ Rn, where ci =
√

2n sin(πxi) and

xi = i−1
n

+ 1
2n

, i = 1, . . . , n. We compute the discretisation matrix M ∈ Rn×n

derived from Ulam’s method and make use of Algorithm 3 (see Appendix A.1).

The m∗ provoking the greatest linear response in the expectation 〈c, f〉 is shown

in Figure 2.5(a). The linear response corresponding to m∗ is shown in Figure

2.5(b); for this example, 〈c, u∗1〉 ≈ 0.1187. The response takes its minimal values at
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(a) Colourmap of the stochastically perturbed lo-
gistic map. The colourbar indicates the values of
the elements of the matrix.

(b) The invariant density f .

(c) The optimal perturbation m∗. The colourbar
indicates the values of the elements of the matrix.

(d) The optimal linear response u∗1.

Figure 2.4: Solution to the problem of maximising the L2 norm of the linear response
of the stochastically perturbed logistic map.

x = 0, x = 1, where the values of the observable c is also least, and the response is

broadly positive near the centre of the interval [0, 1], where the observable takes on

large values; both of these observations are consistent with maximising the linear

response of the observable c.

Numerical results for this example are provided in Table 2.4.

2.6.4 A Stochastically Perturbed Double Lanford Map

In this last section, we consider the problem of maximising the linear response of

the rate of convergence to the equilibrium. The underlying deterministic dynamics
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n ‖u∗1‖2
L2 ε

‖fM+εm∗

− (fM + εu∗1)‖2
L2

‖fM−εm∗‖2
L2 ‖fM‖2

L2 ‖fM+εm∗‖2
L2

1500 0.6849 1/100 7.85×10−10 1.21563 1.21711 1.21872
1/1000 7.87×10−14 1.21696 1.21711 1.21727

1750 0.6829 1/100 7.83×10−10 1.21564 1.21711 1.21872
1/1000 7.85×10−14 1.21696 1.21711 1.21727

2000 0.6815 1/100 7.81×10−10 1.21564 1.21711 1.21872
1/1000 7.83×10−14 1.21696 1.21711 1.21727

Table 2.3: Numerical results for maximising the linear response of the L2 norm of
the invariant probability measure of the stochastic logistic map. Column 1: number
of partition elements; Column 2: optimal objective value; Column 3: values of ε;
Column 4: linearisation error; Columns 5-7: demonstration that the L2 norm of the
invariant density increases and decreases appropriately under the small perturbation
εm∗.

(a) The optimal perturbation m∗. The colourbar
indicates the values of the elements of the matrix.

(b) The optimal linear response u∗1.

Figure 2.5: Solution to the problem of maximising the expectation of the response
of the observable c(x) for the stochastically perturbed logistic map.

is given by a stochastically perturbed double Lanford map. More explicitly, we

consider the map T : S1 → S1 defined by

T (x) =


(
TLan(2x) mod 1

2

)
+ ξ mod 1 if 0 ≤ x ≤ 1

2(
TLan

(
2
(
x− 1

2

))
mod 1

2

)
+ 1

2
+ ξ mod 1 if 1

2
< x ≤ 1,

(2.6.7)

where TLan(x) = 2x + 1
2
x(1 − x) and ξ ∼ U(0, 1

10
) (uniformly distributed on an

interval about 0 of radius 1/10). We have chosen this doubled version of the Lanford
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n 〈c, u∗1〉 ε
〈c, fM+εm∗〉
− 〈c, fM + εu∗1〉

〈c, fM−εm∗〉 〈c, fM〉 〈c, fM+εm∗〉

1500 0.1190 1/100 -1.89×10−6 0.80009 0.80128 0.80247
1/1000 -1.89×10−8 0.80116 0.80128 0.80140

1750 0.1189 1/100 -1.89×10−6 0.80009 0.80128 0.80247
1/1000 -1.88×10−8 0.80116 0.80128 0.80140

2000 0.1187 1/100 -1.88×10−6 0.80009 0.80128 0.80247
1/1000 -1.88×10−8 0.80116 0.80128 0.80140

5000 0.1182 1/100 -1.87×10−6 0.80010 0.80128 0.80246
1/1000 -1.87×10−8 0.80116 0.80128 0.80140

7000 0.1181 1/100 -1.87×10−6 0.80010 0.80128 0.80246
1/1000 -1.87×10−8 0.80116 0.80128 0.80140

Table 2.4: Numerical results for maximising the linear response of the expectation
of c(x) =

√
2 sin(πx) for the stochastic logistic map. Column 1: number of partition

elements; Column 2: optimal objective value; Column 3: values of ε; Column 4:
linearisation error; Columns 5-7: demonstration that the expected value of the
function c increases and decreases appropriately under the small perturbation εm∗.

map in order to study a relatively slowly (but still exponentially) mixing3 system.

The subintervals [0, 1/2] and [1/2, 1] are “almost-invariant” because there is only

a relatively small probability that points in each of these subintervals are mapped

into the complementary subinterval; see Figure 2.6(a).

Let M ∈ Rn×n be Ulam’s discretisation of the transfer operator of the map T

with n partitions. Using Algorithm 4 (see Appendix A.1), we solve problem (2.4.3)–

(2.4.6) for the matrix M for n = 2000. Figure 2.6 shows the double Lanford map

and the approximation of the invariant density f of this map. Figure 2.6(c) shows

the optimal perturbation matrix m∗ that maximises the linear response of the rate

of convergence to the equilibrium and Figure 2.6(d) shows the corresponding linear

response u∗1 of the invariant density f . We note that the sign of the matrix m∗

is chosen such that the ν in (2.4.9) is negative. The optimal objective is given by

% = d(<(log λ2(ε)))
dε

|ε=0 ≈ −0.2843. Figure 2.6(c) shows that most of the large positive

values in the perturbation occur in the upper left and lower right blocks of the

graph of the double Lanford map, precisely to overcome the almost-invariance of

the subintervals [0, 1/2] and [1/2, 1]. In order to compensate for these increases,

3Exponential mixing is guaranteed by expansivity and transitivity of TLan, which together with
the additive noise, yield the stochastic covering condition of Section 2.6.
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(a) Colourmap of the stochastically perturbed dou-
ble Lanford map. The colourbar indicates the val-
ues of the elements of the matrix.

(b) The invariant density f .

(c) The optimal perturbation m∗. The colourbar
indicates the values of the elements of the matrix.

(d) The optimal linear response u∗1.

Figure 2.6: Solution to the problem of maximising the linear response of the rate
of convergence to the equilibrium of the stochastically perturbed double Lanford
map.

there are commensurate negative values in the lower left and upper right. The net

effect is that more mass leaves each of the almost-invariant sets at each iteration of

the stochastic dynamics, leading to an increase in mixing rate.

Table 2.5 illustrates the numerical results. The value of %, namely the esti-

mated derivative of the real part of log(λ2), minimised over all valid perturbations,

is shown in the second column. As n increases, % appears to converge to a fixed

value. Let r and l denote the discretised left and right eigenfunctions of πnL corre-

sponding to the second largest eigenvalue, πnδL denote the discretised perturbation

operator represented by m∗, and η2 = 〈l, πnδL(r)〉, the analogue of (2.4.1). In the
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fourth column, we see that the absolute value of the linearisation of the perturbed

eigenvalue, |λ2+εη2|, is close to the absolute value of the optimally perturbed eigen-

value, |λ2(ε)∗|. Finally, to verify the parity of m∗ is correct, in Table 5 we observe

that the absolute value of the second eigenvalue increases when we perturb in the

direction −εm∗ and decreases as we perturb in the direction εm∗, as required for

the perturbation to enhance mixing.

n % ε |λ2(ε)∗| − |λ2 + εη2| |λ2(−ε)∗| |λ2| |λ2(ε)∗|
1500 -0.2852 1/100 -4.21×10−5 0.84956 0.84715 0.84473

1/1000 -4.49×10−7 0.84740 0.84715 0.84691
1750 -0.2846 1/100 -4.17×10−5 0.84955 0.84716 0.84473

1/1000 -4.67×10−7 0.84740 0.84716 0.84691
2000 -0.2843 1/100 -4.26×10−5 0.84955 0.84716 0.84473

1/1000 -5.57×10−7 0.84740 0.84716 0.84691
5000 -0.2823 1/100 -3.96×10−5 0.84954 0.84716 0.84475

1/1000 -4.15×10−7 0.84740 0.84716 0.84692
7000 -0.2820 1/100 -3.92×10−5 0.84953 0.84716 0.84475

1/1000 -4.07×10−7 0.84740 0.84716 0.84692

Table 2.5: Numerical results for the double Lanford Map. Column 1: number
of partition elements; Column 2: optimal objective value; Column 3: values of
ε; Column 4: linearisation error; Columns 5-7: demonstration that the absolute
value of the second eigenvalue increases and decreases appropriately under the small
perturbation εm∗.
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Chapter 3

Optimal Linear Response for Hilbert-Schmidt Integral

Operators and Stochastic Dynamical Systems

In this chapter we will generalise the two optimisation problems considered in Sec-

tions 2.3 and 2.4 to Hilbert-Schmidt integral operators; the two optimisation prob-

lems are then considered in the setting of deterministic systems with additive noise,

which are systems that can be represented as integral operators. In Section 3.1 we

obtain linear response formulae for the invariant measure and the dominant eigen-

values of integral-preserving compact operators. In Section 3.2 we introduce the

setting and derive the formulae for the linear response of the invariant measure and

the dominant eigenvalues of Hilbert-Schmidt integral operators. In Section 3.3 we

consider the problems of finding the optimal kernel perturbation to maximise the

expectation of a specified observable and to enhance mixing; for both problems we

obtain explicit formulae for the optimal perturbations. In Section 3.4 we introduce

deterministic systems with additive noise and derive the linear response formulae

in this setting. In Section 3.5 we consider the problems of finding the optimal map

perturbation to maximise the expectation of a specified observable and to enhance

mixing; for both problems we obtain explicit formulae for the optimal perturbation.

We conclude in Section 3.6 with numerical applications to stochastically perturbed

Pomeau-Manneville map and a weakly mixing interval exchange map.

3.1 Linear Response for Integral-Preserving Compact Operators

In this section we obtain response results for compact operators under suitable per-

turbations. We consider both the response of the invariant measure and the response

of the dominant eigenvalues to the perturbations. In the literature there are several
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results describing the way eigenvalues and eigenvectors of suitable classes of oper-

ators change when those operators are perturbed in some way (see e.g. [54], [50]).

We will consider integral-preserving compact operators, which are not necessarily

positive, acting on L2 that are slightly perturbed in a “differentiable” way.

3.1.1 Existence of Linear Response for the Invariant Measure

Let X be a manifold and let L2(X) be the space of square integrable functions over

the manifold (considered with the Lebesgue measure `). For brevity, we will denote

it as simply L2. To understand the general behaviour of operators preserving the

integral, it is important to understand their action on the space of functions having

null integral. To this end, let us consider the space of zero average functions

V :=

{
f ∈ L2 s.t.

∫
f d` = 0

}
.

Definition 3.1.1. We say that an operator L : L2 → L2 has exponential contraction

of the zero average space V if there are C ≥ 0 and λ < 0 such that for all g ∈ V

‖Lng‖2 ≤ Ceλn‖g‖2 (3.1.1)

for all n ≥ 0.

For ε ∈ [0, ε0), we consider a family of integral-preserving compact operators

Lε : L2 → L2; we think of Lε as perturbations of L0. We say that fε ∈ L2

is an invariant function of Lε if Lεfε = fε. We will show that under suitable

assumptions the operators Lε, ε ∈ [0, ε0), have a family of normalised invariant

functions fε ∈ L2. We also show that for suitable perturbations the invariant

functions vary smoothly in L2 and we obtain an explicit formula for the resulting

derivative dfε
dε

. We remark that since the operators we consider are not necessarily

positive, the invariant functions will not necessarily be positive.

Theorem 3.1.2 (Linear response for integral-preserving compact operators). Let

Lε : L2 → L2, ε ∈ [0, ε0), be a family of integral-preserving compact operators: for

each g ∈ L2 ∫
Lεg d` =

∫
g d`. (3.1.2)
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Then, the operators have invariant functions in L2: for each ε there is gε 6= 0 such

that Lεgε = gε.

Suppose L0 satisfies the assumption:

(A1) (Mixing of the unperturbed operator) For every g ∈ V ,

lim
n→∞

‖Ln0g‖2 = 0.

Then, the unperturbed operator L0 has a unique invariant function f0 such that∫
f0 d` = 1. Furthermore, L0 has exponential contraction of the zero average space.

If we furthermore suppose that the family of operators Lε also satisfy the follow-

ing:

(A2) (Lε are small perturbations and existence of derivative operator) There exists

K ≥ 0 such that ||Lε − L0||L2→L2 ≤ Kε for small ε and there is a function

L̇f0 ∈ V such that

lim
ε→0

∥∥∥∥(Lε − L0)

ε
f0 − L̇f0

∥∥∥∥
2

= 0.

Then, we have the following:

1. There exists ε2 > 0 such that for each 0 ≤ ε < ε2, the operator Lε has a

unique invariant functions fε such that
∫
fεd` = 1.

2. The resolvent operator (Id− L0)−1 : V → V is continuous.

3. The linear response formula

lim
ε→0

∥∥∥∥fε − f0

ε
− (Id− L0)−1L̇f0

∥∥∥∥
2

= 0.

Proof of Theorem 3.1.2. We start by proving the existence of the invariant func-

tions gε for the operators Lε from the fact that Lε are compact and integral-

preserving. Consider the adjoint operators L∗ε : L2 → L2 defined by the duality

relation (Lεf, g) = (f, L∗εg) for all f, g ∈ L2. Then, by the integral-preserving as-

sumption, we have (f, L∗ε1) = (Lεf,1) =
∫
Lεf d` =

∫
f d` = (f,1). 1 This

implies that 1 is in the spectrum of L∗ε and thus, in the spectrum of Lε. Since Lε

1We use the notation 1 for the constant function and 1A for the indicator function of the set
A.
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is compact, its spectrum equals the eigenvalues and we have invariant functions for

the operators Lε.

Now we prove the uniqueness of the normalised invariant function of L0. Above

we proved that L0 has some invariant function g0 6= 0. The mixing assumption

(A1) implies that
∫
g0 d` 6= 0; to see this, we note that if

∫
g0 d` = 0, then g0 ∈ V ,

and, by (A1), g0 cannot be a nontrivial fixed point of L0. We claim that f0 = g0∫
g0 d`

is the unique normalised invariant function for L0. To see this, suppose there was

a second normalised invariant function f ′0; then, f ′0 − f0 should be an invariant

function in V , which is a contradiction.

To show that L0 has exponential contraction on V , we first note that for f ∈ L2,

we can write f = f0

∫
f d` + [f − f0

∫
f d`]. Since [f − f0

∫
f d`] ∈ V , it follows

from (A1) that Ln0f →L2 f0

∫
f d`. Thus, the spectrum of L0 is contained in the

unit disk by the spectral radius theorem. Now suppose λ is in the spectrum of L0

and |λ| = 1. By the compactness assumption, there is at least an eigenvector fλ

for λ and then we have ||Ln0 (fλ)||2 = ||fλ||2. However, Ln0 (fλ)→L2 f0

∫
fλ d`, which

is not possible unless λ = 1. Hence, the spectrum of L0|V is strictly contained in

the unit disk. Thus, by the spectral radius theorem, there is an n > 0 such that

||Ln0 |V ||L2→L2 ≤ 1
2

and we have exponential contraction of L0 on V .

From the assumption ||Lε − L0||L2→L2 ≤ Kε, we have for small enough ε that

||Lnε |V ||L2→L2 ≤ 2
3

and therefore, Lε is also mixing. We can apply the argument

above to the operators Lε and obtain, for each small enough ε, a unique normalised

invariant function fε. Furthermore, we have

‖fε − f0‖2 = ‖Lnεfε − Ln0f0‖2

≤ ‖Lnεf0 − Ln0f0‖2 + ‖Lnεfε − Lnεf0‖2

≤ ‖Lnε − Ln0‖2‖f0‖2 + ‖Lnε |V ‖L2→L2‖fε − f0‖2

≤ ‖Lnε − Ln0‖2‖f0‖2 +
2

3
‖fε − f0‖2,

from which we get ‖fε−f0‖2 ≤ 3‖Lnε−Ln0‖L2→L2‖f0‖2. Since ‖Lε−L0‖L2→L2 ≤ Kε,

we have ‖fε − f0‖2 → 0 as ε→ 0.
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Let us consider the resolvent (Id− L0)−1. Using the exponential contraction of

L0 on V , we now show that (Id− L0)−1 : V → V is continuous. We compute

‖(Id− L0)−1‖V→V ≤ ‖Id‖V→V +

∥∥∥∥ ∞∑
n=1

Ln0

∥∥∥∥
V→V

= 1 + sup
f∈V
‖f‖2=1

∥∥∥∥ ∞∑
n=1

Ln0f

∥∥∥∥
2

≤ 1 + sup
f∈V
‖f‖2=1

∞∑
n=1

Ceλn‖f‖2

= 1 +
∞∑
n=1

Ceλn <∞,

(3.1.3)

where the last inequality follows from λ < 0; thus, (Id−L0)−1 : V → V is continu-

ous. We remark that since L̇f0 ∈ V, the resolvent can be computed at L̇f0.

Now we are ready to prove the linear response formula. Since f0 and fε are the

invariant functions of L0 and Lε, we have

(Id− L0)
fε − f0

ε
=

1

ε
(Lε − L0)fε.

By applying the resolvent to both sides we obtain

fε − f0

ε
= (Id− L0)−1Lε − L0

ε
fε

= (Id− L0)−1Lε − L0

ε
f0 + (Id− L0)−1Lε − L0

ε
(fε − f0).

Moreover, from assumption (A2), we have for sufficiently small ε that∥∥∥∥(Id− L0)−1Lε − L0

ε
(fε − f0)

∥∥∥∥
2

≤ ‖(Id− L0)−1‖V→VK‖fε − f0‖2.

Since we already proved that limε→0 ‖fε − f0‖2 = 0, we are left with

lim
ε→0

fε − f0

ε
= (Id− L0)−1L̇f0

converging in the L2 norm.
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Remark 3.1.3. The mixing assumption (A1) is required only for the unperturbed

operator L0. This requirement is somehow expected by transfer operators associ-

ated to random systems having some sort of indecomposability. The assumption is

satisfied, for example, if there is an iterate of the transfer operator having a strictly

positive kernel, see Corollary 5.7.1 of [62]. In nontrivial cases the assumption can

also be verified by a computer aided proof (see [40], Section 5, [41],[68]). The other

assumptions of Theorem 3.1.2 can be easily verified in interesting classes of systems

and perturbations. In the following sections we apply the theorem to integral oper-

ators and suitable perturbations, showing how to perform the necessary estimates.

Remark 3.1.4. (spectral picture of L0) As shown in Theorem 3.1.2, if L0 satisfies

(A1) then the invariant function is unique, up to normalisation; this shows that

1 is a simple eigenvalue. Furthermore, L2 = span{f0}
⊕

V and L0 preserves this

direct sum, having only the eigenvalue 1 when restricted to the first summand and

spectrum strictly inside the unit disk when restricted to V . Hence, the spectrum is

contained in the unit disk and there is a spectral gap.

3.1.2 Existence of Linear Response for the Dominant Eigenvalues

In this section we consider the existence of linear response for the “dominant”

eigenvalues and provide a formula for the linear response. Let B(X1) denote the

space of linear operators from the Banach space X1 to itself and r(L) denote the

spectral radius of an operator L; we begin with the following definition.

Definition 3.1.5 ([50], Definition III.7). Let s ∈ N≥0. We say that L ∈ B(L2(X))

has s dominating simple eigenvalues if there exists closed subspaces H1 and H2 such

that

1. L2(X) = H1 ⊕H2,

2. L(H1) ⊂ H1, L(H2) ⊂ H2,

3. dim(H1) = s and L|H1 has s geometrically simple eigenvalues λi, i = 1, . . . , s,

4. r(L|H2) < min{|λi| : i = 1, . . . , s}.

We can now state the linear response result for these eigenvalues.

Proposition 3.1.6. Let Lε : L2(X,C) → L2(X,C), where ε ∈ (−ε0, ε0) =: I0, be

integral-preserving (see (3.1.2)) compact operators. Assume the map ε 7→ Lε is in
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C1(I0, L
2(X,C)) and L0 is mixing (see (A1) in Theorem 3.1.2). Then, 1 ∈ σ(L0)

and r(L0) = 1. Let I ⊂ σ(L0) \ {1} be the eigenvalue(s) of maximal modulus;

assume they are geometrically simple and let s := |I| + 1. Then there exists an

open interval I1 ⊂ I0 such that for ε ∈ I1, Lε has s dominating simple eigenvalues.

Thus, there exists functions ei,(·), êi,(·) ∈ C1(I1, L
2(X,C)) and λi,(·) ∈ C1(I1,C)

such that for ε ∈ I1 and i, j = 1, . . . , s

(i) Lεei,ε = λi,εei,ε, L
∗
ε êi,ε = λi,εêi,ε,

(ii) 〈ei,ε, êj,ε〉L2(X,C) = δi,j, where δi,j is the Kronecker delta.

Furthermore, if we denote by λ̇ ∈ C the value

lim
ε→0

∣∣∣∣λi,ε − λi,0ε
− λ̇i

∣∣∣∣ = 0,

then

λ̇i = 〈êi,0, L̇ei,0〉L2(X,C), (3.1.4)

where L̇ei,0 = limε→0
Lεei,0−L0ei,0

ε
.

Proof. From Theorem 3.1.2, and Remark 3.1.4, 1 ∈ σ(L0) and r(L0) = 1.

We now use Theorem III.8 in [50] to obtain the existence of linear response and

Corollary III.11 to obtain the formula. We begin by verifying the two hypotheses

of Theorem III.8. By assumption, we have that the map ε 7→ Lε is C1 and so

hypothesis (H1) of Theorem III.8 is satisfied. Since r(L0) = 1, we just need to

show that L0 has s dominating eigenvalues. Let λ0,0 denote the eigenvalue 1 and

let E := {1, . . . , s} denote the indices of the eigenvalues in I. Since L0 is a compact

operator, the eigenvalues λi,0 ∈ I are isolated. Let Πi be the eigenprojection

onto the eigenspace of λi,0 and Ei := Πi(L
2(X,C)). Define the eigenspaces E :=⊕

i∈{0}∪E Ei and Ẽ := (Id−
∑

i∈{0}∪E Πi)(L
2(X,C)). We thus have:

(1) L2(X,C) = E ⊕ Ẽ.

(2) L0 (E) ⊂ (E) and L0(Ẽ) ⊂ (Ẽ).

(3) dim(E) = s and L0|E has s simple eigenvalues λ0,0 ∪ I. This point follows

from the assumption that the eigenvalues in I are geometrically simple and

the fact that λ0,0 is simple (see Theorem 3.1.2).
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(4) r(L0|Ẽ) < |λ0,i| where λ0,i ∈ I.

Thus, L0 satisfies hypothesis (H2) of Theorem III.8 since it has s dominating sim-

ple eigenvalues and r(L0) = 1. Hence, from Theorem III.8, the map ε 7→ λi,ε is

differentiable at ε = 0.

We can now apply the argument in Corollary III.11 for λi,0 to obtain (3.2.9) (the

result and proof of Corollary III.11 is for the top eigenvalue; however, the argument

still holds for any eigenvalue λi,0, ∈ I by changing the index value in the proof of

the corollary).

3.2 Application to Hilbert-Schmidt Integral Operators

In this section we apply the results of the previous section to Hilbert-Schmidt

integral operators and suitable perturbations. For simplicity we consider X = [0, 1]

throughout the chapter and develop the theory in this case. The operators we

consider are compact operators on L2([0, 1],R) (or L2([0, 1],C)) and sometimes for

simplicity we will denote L2 := L2([0, 1],R).2 To avoid confusion we point out that

in the following we will also consider the space L2([0, 1]2) of square integrable real

functions on the unit square; this space contains the kernel of the operators we

consider.

Let k ∈ L2([0, 1]2) and consider the operator L : L2 → L2 defined in the following

way: for f ∈ L2

Lf(x) =

∫
k(x, y)f(y)dy; (3.2.1)

such an operator is called a Hilbert-Schmidt integral operator. Such operators

may represent the annealed transfer operators of systems having additive noise (see

Section 3.4). We now list some well known and basic facts about Hilbert-Schmidt

integral operators with kernels in L2([0, 1]2):

- The operator L : L2 → L2 is bounded and

||Lf ||2 ≤ ||k||L2([0,1]2)||f ||2 (3.2.2)

(see [19], Proposition 4.7, II.§4).

2We will also denote Lp := Lp([0, 1],R). We will sometimes also write Lp([0, 1]n) instead of
Lp([0, 1]n,R); this notation will not be used for L2([0, 1]n,C).
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- If k ∈ L∞([0, 1]2), then

||Lf ||∞ ≤ ||k||L∞([0,1]2)||f ||1 (3.2.3)

and the operator L : L1 → L∞ is bounded. Furthermore, ‖L‖Lp→L∞ ≤

‖k‖L∞([0,1]2), for 1 ≤ p ≤ ∞.

- If for a.e. y ∈ [0, 1] we have

∫
k(x, y)dx = 1,

then the Hilbert-Schmidt integral operator associated to the kernel k is integral-

preserving (satisfies (3.1.2)).

- The operator L : L2 → L2 is compact (see [75], §VI.6).

Combining the last two points, we have from Theorem 3.1.2 that such an operator

has an invariant function in L2.

3.2.1 Characterising Valid Perturbations and the Derivative of the Transfer

Operator

In this subsection we consider suitable perturbations of integral-preserving Hilbert-

Schmidt integral operators such that assumption (A2) of Theorem 3.1.2 can be

verified and the derivative operator L̇ computed. We begin, however, by first char-

acterising the set of perturbations for which the “integral preserving property” of

the operators is preserved.

Consider the set Vker of kernels having zero average in the x direction, defined

as

Vker :=

{
k ∈ L2([0, 1]2) :

∫
k(x, y)dx = 0 for a.e. y

}
.

The following lemma is a characterisation of the perturbations in Vker; such per-

turbations will send L2 functions to V as required to apply the resolvent operator.

Then we prove that Vker is closed.

Lemma 3.2.1. Let A : L2 → L2 be defined as Af(x) =
∫
k(x, y)f(y)dy. Then, the

following are equivalent

- A(L2) ⊆ V

57



-
∫
k(x, y)dx = 0 for a.e. y.

Proof. Clearly, the second condition implies the first. Conversely, if
∫
k(x, y)dx 6= 0

on a set I of positive measure, then for a sufficently small δ > 0, there is a set S

of positive measure such that
∫
k(x, y)dx ≥ δ or

∫
k(x, y)dx ≤ −δ for each y ∈ S.

Consider f := 1S and g := Af. Then, we have |
∫
g(x)dx| ≥ δ and g /∈ V ; thus,

condition one implies condition two.

Lemma 3.2.2. The set Vker is a closed vector subspace of L2([0, 1]2).

Proof. The fact that Vker is a vector space is clear. For fixed f ∈ L2([0, 1]), the set

of k ∈ L2([0, 1]2) such that
∫
k(x, y)f(y)dx ∈ V is closed. To see this, define the

function Kf : L2([0, 1]2)→ L2([0, 1]) as

Kf (k) =

∫
k(x, y)f(y)dy. (3.2.4)

By (3.2.2), Kf is continuous. Since V is closed in L2([0, 1]), this implies that

K−1
f (V ) is closed in L2([0, 1]2). Finally, Vker is closed in L2([0, 1]2) because Vker =

∩f∈L2([0,1])K
−1
f (V ).

We now introduce the type of operators and perturbations which we will inves-

tigate throughout the chapter. Let Lε : L2 → L2 be a family of integral operators,

with kernels kε ∈ L2([0, 1]2), given by

Lεf(x) =

∫
kε(x, y)f(y)dy.

Lemma 3.2.3. Let kε ∈ L2([0, 1]2) for each ε ∈ [0, ε0). Suppose that

kε = k0 + ε · k̇ + rε, (3.2.5)

where k̇, rε ∈ L2([0, 1]2) and ||rε||L2([0,1]2) = o(ε). Then, there is a K ≥ 0 such that

||Lε − L0||L2→L2 ≤ Kε. (3.2.6)
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Furthermore, for every f ∈ L2,

lim
ε→0

∥∥∥∥Lεf − L0f

ε
−
∫
k̇(x, y)f(y)dy

∥∥∥∥
2

= 0

and the derivative operator for this perturbation is given by

L̇f(x) =

∫
k̇(x, y)f(y)dy.

Proof. Equation (3.2.6) is a direct application of (3.2.2). We also have

Lεf − L0f

ε
=

∫
kε(x, y)− k0(x, y)

ε
f(y)dy

=

∫
εk̇(x, y) + rε(x, y)

ε
f(y)dy

=

∫
k̇(x, y)f(y) +

∫
rε(x, y)

ε
f(y)dy.

By (3.2.2), we have

lim
ε→0

∥∥∥∥∫ rε(x, y)

ε
f(y)dy

∥∥∥∥
2

= 0

and therefore

lim
ε→0

∥∥∥∥Lεf − L0f

ε
−
∫
k̇(x, y)f(y)dy

∥∥∥∥
2

= 0.

3.2.2 A Formula for the Linear Response of the Invariant Measure and

Continuity with respect to the Kernel

Now we apply Theorem 3.1.2 to Hilbert-Schmidt integral operators and get a linear

response formula for L2 perturbation.

Corollary 3.2.4 (Linear response formula for integral operators). Suppose Lε :

L2 → L2 are integral-preserving (satisfying (3.1.2)) Hilbert-Schmidt integral oper-

ators, with kernels kε ∈ L2([0, 1]2) as in (3.2.5). Suppose L0 satisfies assumption

(A1) of Theorem 3.1.2. Then k̇ ∈ Vker, the system has linear response for this

perturbation and an explicit formula for it is given by

lim
ε→0

fε − f0

ε
= (Id− L0)−1

∫
k̇(x, y)f0(y)dy (3.2.7)
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with convergence in L2.

Proof. Since Lε, ε ∈ [0, ε0), is integral perserving, we have (Lε − L0)(L2) ⊂ V and

therefore, kε−k0 ∈ Vker by Lemma 3.2.1, i.e. εk̇+rε ∈ Vker. Then, for a.e. y ∈ [0, 1]

and ε 6= 0, we have∣∣∣∣ ∫ k̇(x, y)dx

∣∣∣∣ ≤ 1

ε

∫
|rε(x, y)|dx ≤ 1

ε
‖rε‖L2([0,1]2).

As ε → 0, the right hand side approaches 0 and, since
∫
k̇(x, y)dx is independent

of ε, we have
∫
k̇(x, y)dx = 0 for a.e. y ∈ [0, 1], i.e. k̇ ∈ Vker.

Noting that the operators Lε are compact, integral-preserving and satisfy as-

sumptions (A1) and (A2) (this follows from Lemma 3.2.3), we can apply Theorem

3.1.2 to obtain

lim
ε→0

∥∥∥∥fε − f0

ε
− (Id− L0)−1

∫
k̇(x, y)f0(y)dy

∥∥∥∥
2

= 0.

Now we show that the linear response associated to a certain infinitesimal per-

turbation is continuous with respect to the kernel perturbation. This will be used

in Section 3.3 for the proof of the existence of solutions of our main optimisation

problems.

Consider the transfer operator L0, having a kernel k0 ∈ L2([0, 1]2), and a set

of infinitesimal perturbations P ⊂ Vker of k0. Suppose Lε is a perturbation of L0

satisfying the assumptions of Lemma 3.2.3. By Corollary 3.2.4, the linear response

will depend on the first order term of the perturbation, k̇ ∈ P , allowing us to define

the function R : P → V by

R(k̇) := (Id− L0)−1

∫
k̇(x, y)f0(y)dy. (3.2.8)

Here R is well defined thanks to Corollary 3.2.4. Furthermore, we have the following

result.

Lemma 3.2.5. The function R : P → V defined in (3.2.8) is continuous.
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Proof. The proof is straightforward using (3.2.2). Considering two perturbations

k̇1 and k̇2with ||k̇1 − k̇2||L2([0,1]2) ≤ l we get

‖R(k̇1)−R(k̇2)‖2 =

∥∥∥∥(Id− L0)−1

∫
[k̇1(x, y)− k̇2(x, y)]f0(y)dy

∥∥∥∥
2

≤ l||(Id− L0)−1||V→V ||f0||2.

3.2.3 A Formula for the Linear Response of the Dominant Eigenvalues and

Continuity with respect to the Kernel

We begin by applying Proposition 3.1.6 to Hilbert-Schmidt integral operators and

obtain a linear response formula for L2 perturbations. Then we show continuity of

the response with respect to the kernel.

Corollary 3.2.6. Suppose Lε : L2([0, 1],C) → L2([0, 1],C) are integral-preserving

(satisfying (3.1.2)) Hilbert-Schmidt integral operators, with kernels kε ∈ L2([0, 1]2)

as in (3.2.5). Suppose L0 satisfies (A1) of Theorem 3.1.2. Let λ0 ∈ C be an

eigenvalue of L0 with the largest magnitude strictly inside the unit circle and assume

that λ0 is geometrically simple. Then, there exists λ̇ ∈ C such that

lim
ε→0

∣∣∣∣λε − λ0

ε
− λ̇
∣∣∣∣ = 0.

Furthermore,

λ̇ =

∫ 1

0

∫ 1

0

k̇(x, y) (<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y)) dydx

+ i

∫ 1

0

∫ 1

0

k̇(x, y) (=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y)) dydx,

(3.2.9)

where e ∈ L2([0, 1],C) is the eigenvector of L0 associated to the eigenvalue λ0,

ê ∈ L2([0, 1],C) is the eigenvector of L∗0 associated to the eigenvalue λ0 and L̇ is

the operator in Lemma 3.2.3.

Proof. Since kε ∈ L2([0, 1]2), the operator Lε : L2([0, 1],C) → L2([0, 1],C) is com-

pact; by assumption, it also satisfies (3.1.2). From Lemma 3.2.3, the map ε 7→ Lε is
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C1. Hence, by Proposition 3.1.6, we have λ̇ = 〈ê, L̇e〉L2([0,1],C). Finally, we compute

λ̇ = 〈ê, L̇e〉L2([0,1],C) =

∫ 1

0

ê(x)L̇e(x)dx

=

∫ 1

0

ê(x)

∫ 1

0

k̇(x, y)e(y)dydx

=

∫ 1

0

∫ 1

0

k̇(x, y)ê(x)ē(y)dydx

=

∫ 1

0

∫ 1

0

k̇(x, y) (<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y)) dydx

+ i

∫ 1

0

∫ 1

0

k̇(x, y) (=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y)) dydx.

We also have the following.

Lemma 3.2.7. Let P ⊂ L2([0, 1]2) be a family of allowable perturbations. Let

R̃ : P → C, defined as

R̃(k̇) := lim
ε→0

λε − λ0

ε
,

where λε is as in Corollary 3.2.6, denote the linear response of the system to the

perturbation k̇. Then, the function R̃ : P → C is continuous.

Proof. Consider two perturbations k̇1 and k̇2 with ||k̇1 − k̇2||L2([0,1]2) ≤ l. Let

H(x, y) := ê(x)ē(y). We then have

|R̃(k̇1)− R̃(k̇2)| =
∣∣∣∣ ∫ 1

0

∫ 1

0

(k̇1(x, y)− k̇2(x, y))ê(x)ē(y)dydx

∣∣∣∣
= |〈k̇1 − k̇2, H̄〉L2([0,1]2,C)|

≤ ‖k̇1 − k̇2‖L2([0,1]2)‖H‖L2([0,1]2,C) ≤ l‖H‖L2([0,1]2,C).

3.3 Optimal Linear Response for Kernel Perturbations

Having studied the linear response properties of Hilbert-Schmidt integral operators

in the previous section, we now begin with the central part of the chapter and

consider two important optimisation problems. The first problem is to find the
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optimal infinitesimal perturbation that maximises the change in the expectation

of a given observable and the second problem is to find an optimal infinitesimal

perturbation in order to enhance mixing. These problems were considered in the

case of finite-state Markov chains in Chapter 2.

In this section, we will show that, in the cases where linear response holds, the

problems reduce to the optimisation of a linear continuous functional on a convex

set. We show that this problem has a solution and the solution is unique if the

set of allowed infinitesimal perturbations is strictly convex. In Subsection 3.3.1 we

introduce the abstract setting in which both optimisation problems are situated;

we also provide an explicit form of the set of allowable perturbations that we later

use to obtain unique solutions to the optimisation problems. In Subsection 3.3.2

we formulate the problem of optimising the expectation of a given observable and

obtain an explicit formula for the optimal perturbation. In Subsection 3.3.3 we

construct a sequence that approximates the optimal solution obtained in Subsection

3.3.2. In Subsection 3.3.4 we formulate the problem of enhancing mixing and provide

an explicit formula for the optimal solution; we conclude in Subsection 3.3.5 by

constructing a sequence that approximates the optimal solution.

3.3.1 General Optimisation Setting

We consider the problem of maximising a continuous linear function on the set P .

The existence and uniqueness of an optimal perturbation depends on the properties

of P . It is natural to think of the set of allowed perturbations P as a convex set

because if two kinds of perturbations on the system are possible, then their convex

combination (applying the two perturbation with different intensity) should also

be possible. We now recall some general results (adapted for our purposes) on

optimising a linear continuous functional on convex sets.

The problem is to find k̇ such that

S(k̇) = max
k∈P

S(k), (3.3.1)

where S : H → R is a continuous linear function, H is a separable Hilbert space

and P ⊂ H.
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Proposition 3.3.1 (Existence of the optimal solution). Let P be convex, bounded

and closed in H. Then, problem (3.3.1) has at least one solution.

Proof. Since P is bounded and S is continuous, we have that supk∈P S(k) < ∞.

Consider a maximising sequence kn such that limn→∞ S(kn) = supk∈P S(k). Then,

kn has a subsequence knj converging in the weak topology. Since P is strongly

closed and convex in H, we have that it is weakly closed. This implies that k :=

limj→∞ knj ∈ P. Also, since S(k) is continuous and linear, it is continuous in the

weak topology. Then we have that S(k) = limj→∞ S(knj) = supk∈P S(k) and we

get a maximum.

Uniqueness of the optimal solution will be provided by strict convexity of the

feasible set.

Definition 3.3.2. We say that a convex closed set A ⊆ H is strictly convex if for

every translate Af of A such that 0 ∈ Af , we have that for each x, y ∈ Af , x 6= y,

there is a δ > 0 such that (1 + δ)x+y
2
∈ Af .

Proposition 3.3.3 (Uniqueness of the optimal solution). Suppose P is strictly

convex and S is not constant on P .3 Then, the optimal solution to (3.3.1) is unique.

Proof. First we remark that for the maximisation problem a translation of P is not

relevant. Hence, we can assume that 0 ∈ P . Since S(0) = 0 (because of the linearity

of S) and S is not constant, we either have maxk∈P S(k) > 0 or maxk∈P S(k) = 0

and there is some k ∈ P such that S(k) < 0. Consider the first case and suppose

there are two perturbations k1, k2 ∈ P , k1 6= k2, such that

S(k1) = S(k2) = max
k∈P

S(k) > 0;

then

max
k∈P

S(k) = S

(
k1 + k2

2

)
> 0.

3We remark that P could, for example, be entirely contained in the kernel of S. This is possible
for certain, not very meaningful, choices of P and S. This assumption is meant to avoid this case.
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Since P is strictly convex, there is a δ > 0 such that (1 + δ)k1+k2

2
∈ P and

S

(
(1 + δ)

k1 + k2

2

)
= (1 + δ)S(k1)

> S(k1).

But this contradicts the optimality of k1; thus, the solution is unique in the case

when maxk∈P S(k) > 0.

Now consider the second case in which maxk∈P S(k) = 0 and there is some

k ∈ P such that S(k) < 0. Let P1 = P − k, a translation of the set P ; we have

that 0,−k ∈ P1 and S(−k) > 0. Hence, maxk∈P1 S(k) > 0 and we can apply the

argument above to deduce the uniqueness of the solution.

The example below is of a strictly convex set that we will use regularly.

Example 3.3.4. For H = L2([0, 1]2), the intersection of a strong ball of L2([0, 1]2)

with some closed vector subspace is strictly convex according to Definition 3.3.2.

The set P = B1 ∩ Vker, where B1 denotes the unit ball in L2([0, 1]2), is one natural

example of a strictly convex set of allowable perturbations.

Thus far, we have not required that the perturbed kernel kε in (3.2.5) to be

a stochastic kernel (i.e. kε(x, y) ≥ 0 and
∫
kε(x, y)dx = 1). However, such an

assumption is natural and, in the last part of this subsection, we will specify a set

of allowable perturbations Pl ⊂ Vker such that the perturbed kernel kε := k0 + εk̇

is non-negative (and thus a stochastic kernel since the condition
∫
kε(x, y)dx = 1

follows from the fact that k̇ ∈ Vker).

Let k0 ∈ L∞([0, 1]2) be a stochastic kernel. Before we specify the set of allow-

able perturbations, we note the following result for mixing Hilbert-Schmidt integral

operators with essentially bounded stochastic kernels.

Lemma 3.3.5. Let L : L2 → L2 be a Hilbert Schmidt integral operator with a mixing

the stochastic kernel k ∈ L∞([0, 1]2) (satisfies (A1) of Theorem 3.1.2). Then, there

exists a unique probability density f ∈ L∞ such that Lf = f .

Proof. Since k is a stochastic kernel, L0 satisfies (3.1.2). Thus, we can apply The-

orem 3.1.2 to conclude that there exists a unique f ∈ L2,
∫
f d` = 1, such that

65



Lf = f . Noting that k ∈ L∞([0, 1]2), we have from inequality (3.2.3) that f ∈ L∞.

Let kj be the kernel of the operator Lj. Since k is a stochastic kernel, we have

|k2(x, y)| =
∣∣∣∣ ∫ k(x, z)k(z, y)dz

∣∣∣∣ ≤ ∫ |k(x, z)k(z, y)|dz

≤ ‖k‖L∞([0,1]2)

∫
k(z, y)dz = ‖k‖L∞([0,1]2);

from this, it easily follows that ‖kj‖L∞([0,1]2) ≤ ‖k‖L∞([0,1]2). Thus, for any prob-

ability density g ∈ L1, we have ‖Ljg‖∞ ≤ ‖k‖L∞([0,1]2); thus, by Corollary 5.2.2

in [62], there exists a probability density f̂ such that Lf̂ = f̂ . Since f is the

unique invariant function with integral 1, we have f̂ = f ; thus, f is a probability

density.

Now, in order that perturbations preserve the non-negativity property of stochas-

tic kernels, we will consider perturbations to k0 inside the interior of its support.

To this end, let 0 < l < 1, F := {(x, y) ∈ [0, 1]2 : k0(x, y) ≥ l} and

Sk0,l := {k ∈ L2([0, 1]2) : supp(k) ⊆ F}.

Lemma 3.3.6. The set Sk0,l is a closed subspace of L2([0, 1]2).

Proof. The fact that Sk0,l is a subspace is clear. Let {kn} ⊂ Sk0,l and suppose

kn →L2 k ∈ L2([0, 1]2); also, suppose {(x, y) ∈ [0, 1]2 : k0(x, y) < l} is not a null set.

Then, we have

∫ ∫
{k0≥l}

(kn(x, y)− k(x, y))2dydx+

∫ ∫
{k0<l}

k(x, y)2dxdy → 0.

Since
∫ ∫
{k0≥l}(kn(x, y) − k(x, y))2dydx ≥ 0, if

∫ ∫
{k0<l} k(x, y)2dxdy > 0 then we

obtain a contradiction; thus,
∫ ∫
{k0<l} k(x, y)2dxdy = 0 and therefore k = 0 a.e. on

{(x, y) ∈ [0, 1]2 : k0(x, y) < l}. Hence, Sk0,l is closed.

Main application: The set of allowable perturbations that we will consider

for this section is Pl := Vker ∩ Sk0,l ∩ B1, where B1 is the unit ball in L2([0, 1]2).

Since Sk0,l and Vker are closed subspaces, Vker ∩ Sk0,l is itself a Hilbert space; hence,

Pl is strictly convex.
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3.3.2 Explicit Formula for the Optimal Perturbation for Maximising the

Expectation of an Observable

Let c ∈ L∞ be a given observable. We consider the problem of finding an in-

finitesimal perturbation that maximises the expectation of c. The perturbations we

consider are to the kernels of Hilbert-Schmidt integral operators and they are of the

form (3.2.5).

If we denote by

Ec,ε :=

∫
c fε d`

the average of c with respect to the perturbed invariant density fε, we have

dEc,ε
dε

∣∣∣∣
ε=0

= lim
ε→0

Ec,ε − Ec,0
ε

= lim
ε→0

∫
c
fε − f0

ε
d` =

∫
c R(k̇) d`,

where the last equality follows from the weak convergence to R(k̇) in L2 (this follows

from the strong L2 convergence in (3.2.7)). To formalise the problem of finding the

optimal perturbation for c, we try to find a perturbation k̇ belonging to Pl for which

the linear response of the system maximises the value of dEc,ε
dε

. This is formalised

in the following problem: find k̇ ∈ Pl such that

〈
c, R(k̇)

〉
L2([0,1],R)

= max
k∈Pl

〈
c, R(k)

〉
L2([0,1],R)

. (3.3.2)

Corollary 3.3.7. The optimisation problem (3.3.2) has a unique solution.

Proof. We apply the general existence and uniqueness results of Propositions 3.3.1

and 3.3.3 to problem (3.3.2). Let H = Pl (being a closed subspace of a Hilbert

space, Pl is a Hilbert space itself) and S(k) = 〈c, R(k)〉L2([0,1],R). By Lemma 3.2.5,

R is continuous; thus, 〈c, R(k)〉L2([0,1],R) is continuous. Since Pl is strictly convex,

we can apply Proposition 3.3.3 to obtain the uniqueness of the solution.

Since the objective function in (3.3.2) is linear in k̇, the maximum will occur

on ∂B1 ∩ Vker ∩ Sk0,l (i.e. we only need to consider the optimisation over the unit
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sphere and not the unit ball). Furthermore, for f ∈ L2, we have

〈f,R(k̇)〉L2([0,1],R) = 〈f − 〈f, f0〉L2([0,1],R)1 + 〈f, f0〉L2([0,1],R)1, R(k̇)〉L2([0,1],R)

= 〈f − 〈f, f0〉L2([0,1],R)1, R(k̇)〉L2([0,1],R),

since R(k̇) ∈ V . From
∫
f0(x)dx = 1, we have that f 7→ 〈f, f0〉L2([0,1],R)1 is a

projection onto span{1} and so f 7→ f − 〈f, f0〉L2([0,1],R)1 is a projection onto

span{f0}⊥. Thus, the objective function has the same value for f and the projection

of f onto span{f0}⊥; hence, without loss of generality, we assume that c ∈ W :=

span{f0}⊥ ∩L∞. Thus, we consider the following reformulation of problem (3.3.2):

for c ∈ W

min
k̇∈Vker∩Sk0,l

−
〈
c, R(k̇)

〉
L2([0,1],R)

(3.3.3)

subject to ‖k̇‖2
L2([0,1]2) − 1 = 0. (3.3.4)

Theorem 3.3.8. Let L0 : L2 → L2 be a Hilbert-Schmidt integral operator with the

stochastic kernel k0 ∈ L∞([0, 1]2). Suppose that L0 satisfies (A1) of Theorem 3.1.2

and let Fy := {x ∈ [0, 1] : (x, y) ∈ F}. Then, the unique solution to the optimisation

problem (3.3.3)–(3.3.4) is

k̇(x, y) =


f0(y)
α

(
((Id− L∗0)−1c)(x)−

∫
Fy

((Id−L∗0)−1c)(z)dz

`(Fy)

)
(x, y) ∈ F,

0 otherwise,

(3.3.5)

where α > 0 is selected so that ‖k̇‖L2([0,1]2) = 1. Furthermore, if k0 is such that

L0 : L1 → L1 is compact, then k̇ ∈ L∞([0, 1]2).

Remark 3.3.9. Using the fact that k0 is an essentially bounded stochastic kernel,

and that k̇ ∈ L∞([0, 1]2) ∩ Vker, we can first conclude that kε := k0 + εk̇ satisfies∫
kε(x, y)dx = 1 for a.e. y. Secondly, as we are only perturbing at values where

k0 ≥ l > 0, and since k̇ is essentially bounded, there exists a sufficiently small

ε0 > 0 such that kε ≥ 0 a.e. for all ε ∈ (0, ε0); thus, for ε ∈ (0, ε0), kε is a

stochastic kernel.
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Remark 3.3.10. A criteria for L0 to be compact on L1 (see [25]) is the following:

Given δ > 0 there exists β > 0 such that for a.e. x ∈ [0, 1] and γ ∈ R with |γ| < β,

∫
R

∣∣k̃(x, y + γ)− k̃(x, y)
∣∣dy < δ,

where

k̃(x, y) =

k0(x, y) y ∈ [0, 1],

0 otherwise.

An example of kernels that satisfy this are:

- Essentially bounded kernels k0 : [0, 1] × [0, 1] → R that are uniformly contin-

uous in the second coordinate.

See [25] for compactness of L0 on L1 in a more general setting.

The following lemma will be needed in our proof of Theorem 3.3.8. Note that

this is a different statement to continuity of (Id− L0)−1, which was treated in the

proof of Theorem 3.1.2.

Lemma 3.3.11. Consider the closed subspace span{f0}⊥ ⊂ L2 equipped with the

L2 norm. Then, the operator (Id− L∗0)−1 : span{f0}⊥ → span{f0}⊥ is bounded.

Proof. We begin by finding the kernel and range of the operator Id − L∗0. Recall

that L0(V ) ⊂ V and that L0 has a one-dimensional eigenspace (span{f0} with

eigenvalue 1). Thus, we have ker(Id − L0) = span{f0} and ran(Id − L0) ⊂ V .

Recalling that L0 : V → V is compact and f0 6∈ V , we have by the Fredholm

alternative (see [23], VII.11) that for any g ∈ V , there exists a unique h ∈ V such

that g = (Id−L0)h. Hence, ran(Id−L0) = V . Since V is closed, the range of Id−L0

is closed and so, by the Closed Range Theorem (Theorem 5.13, IV-§5.2,[54]), we

have ran((Id−L0)∗) = ker(Id−L0)⊥ = span{f0}⊥, which is a co-dimension 1 space,

and ker((Id−L0)∗) = ran(Id−L0)⊥ = V ⊥ = span{1}⊥⊥ = span{1}, where the last

equality follows from Corollary 1.41 in III-§1.8 [54] and the fact that span{1} is a

finite-dimensional closed subspace of L2.

To prove that (Id−L∗0)−1 : span{f0}⊥ → span{f0}⊥ is bounded, we will use the

Inverse Mapping Theorem (Theorem III.11, [75]). Since the integral operator L∗0 has
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an L2 kernel, by (3.2.2) and the triangle inequality it follows that Id−L∗0 is bounded.

Also, from the Fredholm alternative argument above, Id−L∗0 is surjective. Thus, to

apply the Inverse Mapping Theorem, we just need to show that Id−L∗0 is injective

on span{f0}⊥. Let f1, f2 ∈ span{f0}⊥ be such that (Id − L∗0)f1 = (Id − L∗0)f2.

Thus, f1− f2 ∈ ker(Id−L∗0) = span{1} and so f1− f2 = γ1 for some γ ∈ R. Since

f1 − f2 ∈ span{f0}⊥, we have that 0 =
∫

(f1(x)− f2(x))f0(x)dx = γ
∫
f0(x)dx and

so γ = 0 (since
∫
f0(x)dx = 1), i.e. f1 = f2; thus, (Id − L∗0) is injective and the

result follows.

Proof of Theorem 3.3.8. We will use the method of Lagrange multipliers to derive

the expression (3.3.5) from the first-order necessary conditions and then show that

such a k̇ satisfies the second-order sufficient conditions. To this end, we consider

the following Lagrangian function

L(k̇, λ) := f(k̇) + λg(k̇),

where f(k̇) := −
〈
c, R(k̇)

〉
L2([0,1],R)

, g(k̇) := ‖k̇‖2
L2([0,1]2) − 1 and k̇ ∈ Vker ∩ Sk0,l.

Necessary conditions : We want to find k̇ and λ that satisfy the first-order nec-

essary conditions:

g(k̇) = 0

Dk̇L(k̇, λ)k̃ = 0 for all k̃ ∈ Vker ∩ Sk0,l,

where Dk̇L(k̇, λ) ∈ B(L2([0, 1]2),R) is the Frechet derivative with respect to the

variable k̇ (Theorem 2, §7.7, [67]). Note that since f is linear, we have (Dk̇f)k̃ =

f(k̃). Also, we have that (Dk̇g)k̃ = 2〈k̇, k̃〉L2([0,1]2) since

|g(k̇ + k̃)− g(k̇)− 2〈k̇, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

=
|‖k̇ + k̃‖2

L2([0,1]2) − ‖k̇‖2
L2([0,1]2) − 2〈k̇, k̃〉L2([0,1]2)|

‖k̃‖L2([0,1]2)

=
|〈k̇ + k̃, k̇ + k̃〉L2([0,1]2) − 〈k̇, k̇〉L2([0,1]2) − 2〈k̇, k̃〉L2([0,1]2)|

‖k̃‖L2([0,1]2)
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=
|〈k̃, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

= ‖k̃‖L2([0,1]2).

Thus, for the necessary conditions of the Lagrange multiplier method to be satisfied,

we need that

Dk̇L(k̇, λ)k̃ = (Dk̇f)k̃ + λ(Dk̇g)k̃ = f(k̃) + 2λ〈k̇, k̃〉L2([0,1]2) = 0 (3.3.6)

for all k̃ ∈ Vker ∩ Sk0,l and

g(k̇) = 0. (3.3.7)

Noting Lemma 3.3.11 and the fact that c ∈ W , we have

f(k̃) + 2λ〈k̇, k̃〉L2([0,1]2)

= −〈c, R(k̃)〉L2([0,1],R) + 2λ〈k̇, k̃〉L2([0,1]2)

= −
〈
c, (Id− L0)−1

∫
k̃(x, y)f0(y)dy

〉
L2([0,1],R)

+ 2λ〈k̇, k̃〉L2([0,1]2)

=

〈
− (Id− L∗0)−1c,

∫
k̃(x, y)f0(y)dy

〉
L2([0,1],R)

+ 〈2λk̇, k̃〉L2([0,1]2)

=

∫ ∫
−((Id− L∗0)−1c)(x)k̃(x, y)f0(y)dydx+

∫ ∫
2λk̇(x, y)k̃(x, y)dydx

=

∫ ∫ [
−((Id− L∗0)−1c)(x)f0(y) + 2λk̇(x, y)

]
k̃(x, y)dydx.

(3.3.8)

We claim that

k̇(x, y) =
1

2λ
1F (x, y)f0(y)

(
((Id− L∗0)−1c)(x)− 1

`(Fy)

∫
Fy

((Id− L∗0)−1c)(z)dz

)

satisfies the necessary condition (3.3.6). To verify this, we compute

f(k̃) + 2λ〈k̇, k̃〉L2([0,1]2) =

∫ ∫ [
−((Id− L∗0)−1c)(x)f0(y) + 2λk̇(x, y)

]
k̃(x, y)dydx

= −
∫ ∫

F

f0(y)
1

`(Fy)

∫
Fy

((Id− L∗0)−1c)(z)dzk̃(x, y)dydx

= 0
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for every k̃ ∈ Vker∩Sk0,l because of Lemma 3.2.1 and the fact that f0(y) 1
`(Fy)

∫
Fy

((Id−

L∗0)−1c)(z)dz is a function of one variable. To check that k̇ ∈ Vker ∩ Sk0,l, we first

note that
∫
Fy

1F (x, y)dx = `(Fy) and then we have

∫
k̇(x, y)dx =

f0(y)

2λ

(∫
Fy

((Id− L∗0)−1c)(x)dx

−
∫
Fy

((Id− L∗0)−1c)(z)dz

∫
Fy

1F (x, y)dx

`(Fy)

)
= 0.

If we let

H(x, y) := 1F (x, y)f0(y)

(
((Id− L∗0)−1c)(x)− 1

`(Fy)

∫
Fy

((Id− L∗0)−1c)(z)dz

)
,

then the necessary condition (3.3.7) yields λ = ±1
2
‖H‖L2([0,1]2); the sign of λ is

determined by checking the sufficient conditions.

Sufficient conditions : We want to show that k̇ in (3.3.5) is the solution to the

optimisation problem (3.3.3)–(3.3.4) by checking that it satisfies the second-order

sufficient conditions. We first want to show that the set of Lagrange multipliers

Λ(k̇) (in Definition 3.8, §3.1 [15]) is not empty in our setting; this will enable us to

use the second-order sufficient conditions of Lemma 3.65 [15]. Note that in terms

of the notation used in [15], we have that Q = X = Vker ∩ Sk0,l, x0 = k̇, Y ∗ = R,

G(x0) = g(k̇), K = {0}, NK(G(x0)) = R, TK(G(x0)) = {0} and NQ(x0) = {0}

(since Q = X, see discussion in §3.1 following Definition 3.8). Thus, to show that

Λ(k̇) is not empty, we need to show that k̇ and λ satisfy

Dk̇L(k̇, λ)k̇ = 0, g(k̇) = 0, λ ∈ {0}−, λg(k̇) = 0, (3.3.9)

where {0}− := {a ∈ R : ax ≤ 0 ∀x ∈ {0}} = R (this simplification of conditions

(3.16) in [15] follows from the discussion following Definition 3.8 in §3.1 and the

fact that {0} is a convex cone). Since the second condition in (3.3.9) implies the

fourth, and since λ ∈ R, we only need to check the first two equalities in (3.3.9).

However, these two conditions are implied from the first-order necessary conditions.
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Hence, Λ(k̇) is not empty and thus, to show that k̇ is a solution to (3.3.3)–(3.3.4),

we need to show that it satisfies the following second-order conditions (see Lemma

3.65): there exists constants µ > 0, η > 0 and β > 0 such that

sup
|λ|≤µ, λ∈Λ(k̇)

D2
k̇k̇
L(k̇, λ)(k̃, k̃) ≥ β‖k̃‖2

L2([0,1]2), ∀k̃ ∈ Cη(k̇), (3.3.10)

where

Cη(k̇) :=

{
v ∈ Vker∩Sk0,l : |2〈k̇, v〉Vker∩Sk0,l

| ≤ η‖v‖Vker∩Sk0,l
& f(v) ≤ η‖v‖Vker∩Sk0,l

}

is the approximate critical cone (see equation (3.131), §3.3 [15]). SinceDk̇L(k̇, λ)k̃ =

f(k̃) + 2λ〈k̇, k̃〉L2([0,1]2) and 〈k̇, k̃〉L2([0,1]2) is linear in k̇, we have D2
k̇k̇
L(k̇, λ)(k̃, k̃) =

2λ〈k̃, k̃〉L2([0,1]2). Thus, we conclude that (3.3.10) holds with λ > 0, µ = |λ| =

1
2
‖H‖Vker∩Sk0,l

, β = 2λ and η = max
{

2‖k̇‖Vker∩Sk0,l
, ‖c‖2‖f0‖2‖(Id − L0)−1‖V→V

}
.

Since k̇ satisfies the necessary conditions (3.3.6) and (3.3.7) with λ > 0, we conclude

that k̇ is a solution to the optimisation problem (3.3.3)–(3.3.4). By Corollary 3.3.7,

this solution is unique.

Boundedness of the solution: From L0f0 = f0 and k0 ∈ L∞([0, 1]2), we have by

(3.2.3) that f0 ∈ L∞. Let V1 := {f ∈ L1 :
∫
f d` = 0}. We would like to show that

(Id − L0)−1 : V1 → V1 is bounded. To obtain this, we first need the exponential

contraction of L0 on V1. Since L0 is integral-preserving and compact on L1, from

the argument in the proof of Theorem 3.1.2 we only need to verify the L1 version of

assumption (A1) on V1. To verify this, we note that for h ∈ V1, we have ‖L0h‖2 ≤

‖L0h‖∞ ≤ ‖k0‖L∞([0,1]2)‖h‖1 and therefore, L0h ∈ V since L0 preserves the integral.

Thus, for any h ∈ V1, limn→∞ ‖Ln0h‖1 ≤ limn→∞ ‖Ln−1
0 (L0h)‖2 = 0 since L0 satisfies

(A1) on V . Hence, the L1 version of (A1) holds and L0 has exponential contraction

on V1. Thus, from the computation (3.1.3) (where V and the L2 norm is replaced

with V1 and the L1 norm), it follows that (Id− L0)−1 : V1 → V1 is bounded.

Next, we would like to find the subspace where the operator (Id − L∗0)−1 is

bounded. We will replicate the result of Lemma 3.3.11, however, (Id−L0)−1 is now

acting on L1, so we make the following remarks:
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- Since f0 ∈ L2 ⊂ L1, we have that span{f0} ⊂ L2 ⊂ L1; hence, span{f0} is

the subspace we have considered in earlier subsections.

- For a subspace S of L1, we have that

S⊥ :=

{
h ∈ L∞ :

∫
h(x)w(x)dx = 0 ∀w ∈ S

}
, (3.3.11)

where we are using the fact that (L1)∗ = L∞. Also, S⊥ is a closed subspace

of L∞ (see III-§1.4, [54]).

- For w ∈ L1 and h ∈ L∞, we have, as before, that L0w(x) =
∫
k0(x, y)w(y)dy

and L∗0h(y) =
∫
k0(x, y)h(x)dx.

Now, as in Lemma 3.3.11, we have ker(Id−L0) = span{f0} and ran(Id−L0) = V1.

We also have ran((Id − L0)∗) = span{f0}⊥ = {h ∈ L∞ :
∫
h(x)w(x)dx = 0 ∀ w ∈

span{f0}} =: W and ker((Id − L0)∗) = V ⊥1 = {h ∈ L∞ :
∫
h(x)w(x)dx = 0 ∀ w ∈

V1}. Next, for h ∈ W , we have

∫
(L∗0h)(x)f0(x)dx =

∫
h(x)(L0f0)(x)dx =

∫
h(x)f0(x)dx = 0;

thus, (Id − L∗0)(W ) ⊂ W . We again, as in Sublemma 3.3.11, apply the Inverse

Mapping Theorem to prove that (Id − L∗0)−1 : W → W is bounded. From (3.2.3),

and the triangle inequality, the operator Id−L∗0 : W → W is bounded. Noting that

V1 is a closed co-dimension 1 subspace of L1, we have codim(V1) = dim(V ⊥1 ) (see

Lemma 1.40 III-§1.8 [54]); hence, dim(ker(Id − L∗0)) = dim(V ⊥1 ) = codim(V1) = 1

and therefore, 1 is a geometrically simple eigenvalue of L∗0. Thus, ker(Id − L∗0) =

span{1} because L∗01 = 1. Since
∫
f0 d` = 1, 1 6∈ span{f0}⊥ and so, by the

Fredholm alternative, Id− L∗0 is a bijection on W . Hence, by the Inverse Mapping

Theorem, (Id−L∗0)−1 is bounded on W . Since c ∈ W , we have ‖(Id−L∗0)−1c‖∞ <∞.

To conclude the proof, we now show that ĝ(y) := 1
`(Fy)

∫
Fy

((Id−L∗0)−1c)(z)dz is

in L∞. We compute

|ĝ(y)| =
∣∣∣∣ 1

`(Fy)

∫
Fy

((Id− L∗0)−1c)(z)dz

∣∣∣∣ ≤ ‖(I − L∗0)−1c‖∞.

Since (Id− L∗0)−1c ∈ L∞, we conclude that ĝ ∈ L∞; thus, k̇ ∈ L∞([0, 1]2).
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Remark 3.3.12. If we do not require the positivity of kε, we can consider the the

optimisation problem (3.3.3)–(3.3.4) with c ∈ span{f0}⊥ (i.e. the observable does

not need to be essentially bounded) and k̇ ∈ Vker (i.e. the allowable perturbations

need not be restricted to the space Sk0,l). In this case, the optimal solution k̇ will be

k̇(x, y) =

(
((Id− L∗0)−1c)(x)− κ′

‖(Id− L∗0)−1c− κ′‖2

)
f0(y)

‖f0‖2

,

where κ′ =
∫

((Id− L∗0)−1c)(z)dz, and the corresponding linear response is

‖f0‖2

‖(Id− L∗0)−1c− κ′‖2

(Id− L0)−1
(
(Id− L∗0)−1c− κ′

)
.

3.3.3 Approximation of the Optimal Response.

In this section we present a result for the approximation of the optimal perturba-

tion (3.3.5) of the optimisation problem (3.3.3)–(3.3.4). We will approximate the

solution k̇ by approximating the kernel k0 of the operator L0 and the observable c.

Proposition 3.3.13. Let L0 : L1 → L1 be a compact Hilbert-Schmidt integral oper-

ator, with the stochastic kernel k0 ∈ L∞([0, 1]2), satisfying (A1) of Theorem 3.1.2.

Let {Ln} ⊂ B(L1) be a sequence of compact Hilbert-Schmidt integral operators with

stochastic kernels {kn} ⊂ L∞([0, 1]2) such that limn→∞ ‖kn−k0‖L∞([0,1]2) = 0. Then,

there exists n0 > 0 such that for each n ≥ n0, Ln satisfies assumption (A1) of Theo-

rem 3.1.2 and there exists a unique probability density fn ∈ L∞ such that Lnfn = fn.

Let {cn} ⊂ L∞ be such that cn ∈ span{fn}⊥ and limn→∞ ‖cn − c‖∞ = 0. Suppose

there exists a κ > 0 such that ‖kn‖L∞([0,1]2) ≤ κ for all n ≥ n0. Then, the sequence

of perturbations

k̇n(x, y) :=


fn(y)
αn

(
((Id− L∗n)−1cn)(x)−

∫
Fy

((Id−L∗n)−1cn)(z)dz

`(Fy)

)
(x, y) ∈ F,

0 otherwise,

(3.3.12)

where αn is selected so that ‖k̇n‖L2([0,1]2) = 1, converges to the optimal perturbation

k̇ in L∞ as n→∞.
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Proof. We first show that there exists n0 > 0 such that for each n ≥ n0, Ln is mixing

and has a unique invariant density fn ∈ L∞ such that limn→∞ ‖fn−f0‖∞ = 0. From

‖kn − k0‖L∞([0,1]2) → 0 we have that ‖kn − k0‖L2([0,1]2) → 0; from inequality (3.2.2)

this implies that ‖Ln − L0‖L2→L2 → 0. Since L0 is mixing and Ln converges to L0

in the operator norm, we have from the argument in the proof of Theorem 3.1.2

that there exists n0 > 0 such that for all n ≥ n0, Ln is mixing (satisfies (A1)).

From Lemma 3.3.5, there exists a unique probability density fn ∈ L∞ such that

Lnfn = fn, where n ≥ n0 (similarly, f0 ∈ L∞ is the unique probability density such

that L0f0 = f0). We also have that ‖fn − f0‖2 → 0 (see the proof of Theorem

3.1.2). Recalling inequality (3.2.3), we have

‖fn − f0‖∞ = ‖Lnfn − L0f0‖∞

≤ ‖kn − k0‖L∞([0,1]2)‖fn‖1 + ‖k0‖L∞([0,1]2)‖fn − f0‖1;

since ‖fn−f0‖1 ≤ ‖fn−f0‖2 → 0, and from the assumption that ‖kn−k0‖L∞([0,1]2) →

0, we have ‖fn − f0‖∞ → 0.

Before we prove ‖k̇n − k̇‖L∞([0,1]2) → 0 as n → ∞, we note the following. Let

h(x) := ((Id−L∗0)−1c)(x), hn(x) := ((Id−L∗n)−1cn)(x), ĝ(y) := 1
`(Fy)

∫
Fy
h(z)dz and

ĝn(y) := 1
`(Fy)

∫
Fy
hn(z)dz. Also, let k̂n(x, y) := fn(y) (hn(x)− ĝn(y)) and k̂(x, y) :=

f0(y) (h(x)− ĝ(y)) (i.e. k̇n and k̇ without the normalising constant). We then have

|k̂n(x, y)− k̂(x, y)|

≤ |hn(x)||fn(y)− f0(y)|+ |f0(y)||hn(x)− h(x)|

+ |ĝn(y)||fn(y)− f0(y)|+ |f0(y)||ĝn(y)− ĝ(y)|

≤ (|hn(x)− h(x)|+ |h(x)|) |fn(y)− f0(y)|+ |f0(y)||hn(x)− h(x)|

+ (|ĝn(x)− ĝ(x)|+ |ĝ(x)|) |fn(y)− f0(y)|+ |f0(y)||ĝn(y)− ĝ(y)|.

Also, we have that

|ĝn(y)− ĝ(y)| ≤ 1

`(Fy)

∫
Fy

|hn(z)− h(z)|dz ≤ ‖hn − h‖∞.
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Since k̇n = k̂n/‖k̂n‖L2([0,1]2) (similarly k̇ = k̂/‖k̂‖L2([0,1]2)), if ‖k̂n − k̂‖L∞([0,1]2) →

0 then ‖k̂n − k̂‖L2([0,1]2) → 0, which implies ‖k̂n‖L2([0,1]2) → ‖k̂‖L2([0,1]2) (by the

reverse triangle inequality) and therefore ‖k̇n − k̇‖L∞([0,1]2) → 0. Thus, to show

‖k̇n − k̇‖L∞([0,1]2) → 0 as n → ∞, we just need to show that ‖hn − h‖∞ → 0 as

n→∞.

Let Wn := span{fn}⊥ and W := span{f0}⊥, where ⊥ is as in (3.3.11). Let

Π̂0 : L∞ → L∞ be defined as Π̂0g =
∫
gf0 d`1. Since

∫
f0 d` = 1, we have

Π̂2
0g =

∫ ∫
gf0 d`1f0 d`1 =

∫
gf0 d`

∫
f0 d`1 =

∫
gf0 d`1 = Π̂0g;

therefore, Π̂0 is a projection onto span{1} along span{f0}⊥(i.e. ker(Π̂0) = span{f0}⊥).

Hence, the operator Π0 := Id− Π̂0 : L∞ → L∞ is a projection onto span{f0}⊥ along

span{1}. We similarly define Πn : L∞ → L∞ as Πng = g−
∫
gfn d`1, which is a pro-

jection onto span{fn}⊥ along span{1}. Let Qn := (Id−L∗n)−1 and Q0 := (Id−L∗0)−1;

recalling that Π0c = c and Πncn = cn (since c ∈ W and cn ∈ Wn), we have

‖hn − h‖∞ = ‖Qncn −Q0c‖∞

= ‖QnΠncn −QnΠnc+QnΠnc−Q0Π0c‖∞

≤ ‖QnΠn‖L∞→L∞‖cn − c‖∞ + ‖QnΠn −Q0Π0‖L∞→L∞‖c‖∞;

thus, to show ‖hn−h‖∞ → 0, we need to show that ‖QnΠn−Q0Π0‖L∞→L∞ → 0 as

n→∞ (which implies ‖QnΠn‖L∞→L∞ → ‖Q0Π0‖L∞→L∞ as n→∞ by the reverse

triangle inequality). Noting that L∗n(Wn) ⊂ Wn, we have L∗nΠn = ΠnL
∗
nΠn; thus,

QnΠn =
∞∑
i=0

L∗in Πn =
∞∑
i=0

(L∗nΠn)i = (Id− L∗nΠn)−1.

Similarly, we have Q0Π0 = (Id− L∗0Π0)−1. Hence, we have

‖QnΠn −Q0Π0‖L∞→L∞

= ‖(Id− L∗nΠn)−1 − (Id− L∗0Π0)−1‖L∞→L∞

= ‖(Id− L∗nΠn)−1(L∗0Π− L∗nΠn)(Id− L∗0Π0)−1‖L∞→L∞

≤ ‖(Id− L∗nΠn)−1‖L∞→L∞‖L∗0Π0 − L∗nΠn‖L∞→L∞‖(Id− L∗0Π0)−1‖L∞→L∞ ,
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where in the second line we used the resolvent identity (Theorem 5.16.1, [52]). We

next have

‖L∗0Π0 − L∗nΠn‖L∞→L∞

= ‖L∗0Π0 − L∗0Πn + L∗0Πn − L∗nΠn‖L∞→L∞

≤ ‖L∗0‖L∞→L∞‖Π0 − Πn‖L∞→L∞ + ‖L∗0 − L∗n‖L∞→L∞‖Πn‖L∞→L∞ .

Noting that (Π0−Πn)g =
∫
g(x)(fn(x)− f0(x))dx, we apply Holder’s inequality to

obtain

‖Π0 − Πn‖L∞→L∞ = sup
‖g‖∞=1

∥∥∥∥∫ g(x)(fn(x)− f0(x))dx

∥∥∥∥
∞

≤ ‖fn − f0‖1;

as ‖fn − f0‖1 → 0, we have that ‖Π0 −Πn‖∞ → 0. Also, since ‖L∗0 −L∗n‖L∞→L∞ ≤

‖k0 − kn‖L∞([0,1]2) → 0, we have that ‖L∗0Π0 − L∗nΠn‖L∞→L∞ → 0. Finally, to show

that ‖QnΠn−Q0Π0‖L∞→L∞ → 0, and thus conclude the proof, we have the following

result.

Sublemma 3.3.14. There exists an N > 0 and 0 < C < ∞ such that for all

n ≥ N , ‖(Id− L∗nΠn)−1‖L∞→L∞ ≤ C.

Proof. We first show that L∗0 is mixing on W . From the proof of Theorem 3.3.8 (see

“Boundedness of the solution”), we have that (Id − L∗0)−1 : W → W is bounded.

Thus,
∑∞

j=0 L
∗j
0 is bounded on W ⊂ L∞ and so limj→∞ ‖L∗j0 ‖W→W = 0, i.e. L∗0 is

mixing on W .

We now show that
∑∞

j=0 ‖(L∗nΠn)j‖L∞→L∞ is bounded using the fact that L∗0

is mixing on W and that ‖Ln − L0‖L∞→L∞ → 0 as n → ∞. From the mixing

of L∗0 on W , we can fix an integer b > 1 such that ‖L∗b0 ‖W→W ≤ 2λ < 1. Since

‖L∗0Π0 − L∗nΠn‖L∞→L∞ → 0 as n → ∞ (see argument prior to this sublemma),

there exists an integer N such that for all n ≥ N , ‖L∗0Π0 − L∗nΠn‖L∞→L∞ <

1−2λ
2

1
4
‖k0‖−1

L∞([0,1]2)κ
−1b−1, where κ is from the assumption in the proposition. Let
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k̃jn be the kernel of the operator L∗jn ; from the proof of Lemma 3.3.5, ‖k̃jn‖L∞([0,1]2) ≤

‖k̃n‖L∞([0,1]2) = ‖kn‖L∞([0,1]2). We also note that

‖Π0‖L∞→L∞ = sup
‖g‖∞=1

‖Π0g‖∞ = sup
‖g‖∞=1

∥∥∥∥g − ∫ g(y)f0(y)dy1

∥∥∥∥
∞

≤ sup
‖g‖∞=1

(‖g‖∞ + ‖g‖∞‖f0‖1) = 2,

where the last equality follows since f0 is a probability density (see Lemma 3.3.5);

we similarly have ‖Πn‖L∞→L∞ ≤ 2. Recalling that ‖kn‖L∞([0,1]2) ≤ κ (from the

assumptions in the proposition) and that (L∗nΠn)b = L∗bn Πn (similarly (L∗0Π0)b =

L∗b0 Π0), since L∗n(Wn) ⊂ Wn (and L∗0(W ) ⊂ W ), we have the following for n ≥ N

‖(L∗nΠn)b‖L∞→L∞

≤ ‖L∗b0 Π0‖L∞→L∞ + ‖(L∗0Π0)b − (L∗nΠn)b‖L∞→L∞

≤ 2‖L∗b0 ‖W→W +

∥∥∥∥ b−1∑
j=0

(L∗0Π0)j(L∗0Π0 − L∗nΠn)(L∗nΠn)b−1−j
∥∥∥∥
L∞→L∞

≤ 2λ+
b−1∑
j=0

‖(L∗0Π0)j‖L∞→L∞‖L∗0Π0 − L∗nΠn‖L∞→L∞‖(L∗nΠn)b−1−j‖L∞→L∞

≤ 2λ+ 4
b−1∑
j=0

‖L∗j0 ‖L∞→L∞‖L∗0Π0 − L∗nΠn‖L∞→L∞‖L∗ b−1−j
n ‖L∞→L∞

≤ 2λ+ 4
b−1∑
j=0

‖k̃j0‖L∞([0,1]2)‖L∗0Π0 − L∗nΠn‖L∞→L∞‖k̃b−1−j
n ‖L∞([0,1]2)

≤ 2λ+ 4
b−1∑
j=0

‖k̃0‖L∞([0,1]2)‖L∗0Π0 − L∗nΠn‖L∞→L∞‖k̃n‖L∞([0,1]2)

= 2λ+ 4
b−1∑
j=0

‖k0‖L∞([0,1]2)‖L∗0Π0 − L∗nΠn‖L∞→L∞‖kn‖L∞([0,1]2)

≤ 2λ+ 4bκ‖k0‖L∞([0,1]2)‖L∗0Π0 − L∗nΠn‖L∞→L∞

< 2λ+ 4bκ‖k0‖L∞([0,1]2)

(
1− 2λ

2

)
1

4
‖k0‖−1

L∞([0,1]2)κ
−1b−1

= 2λ+

(
1− 2λ

2

)
= η < 1,
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where η = 2λ+
(

1−2λ
2

)
. Thus, for m ≥ 1, we have that

‖(L∗nΠn)bm‖L∞→L∞ ≤ ‖(L∗nΠn)b‖mL∞→L∞ ≤ Ĉbm,

where Ĉ = η
1
b < 1. For j > 0, let j = bm+ a, where m > 0 and a ∈ {0, . . . , b − 1}.

Since κ ≥ ‖kn‖L∞([0,1]2) ≥ ‖kn‖L1([0,1]2) = 1 (since kn is a stochastic kernel), we have

‖(L∗nΠn)j‖L∞→L∞ ≤ ‖(L∗nΠn)bm‖L∞→L∞‖(L∗nΠn)a‖L∞→L∞

≤ Ĉbm‖L∗an Πn‖L∞→L∞

≤ 2Ĉbm‖L∗n‖aL∞→L∞

≤ 2Ĉbm‖kn‖aL∞([0,1]2)

≤ 2Ĉbmκa

≤ 2Ĉbmκb−1

≤ Ĉ ′Ĉbm+a = Ĉ ′Ĉj,

where Ĉ ′ = 2κb−1Ĉ−(b−1). Finally, since Ĉ < 1, we have

∞∑
j=0

‖(L∗nΠn)j‖L∞→L∞ = 1 +
∞∑
j=1

‖(L∗nΠn)j‖L∞→L∞

≤ 1 +
∞∑
j=1

Ĉ ′Ĉj <∞;

thus, for C := 1 + Ĉ′

1−Ĉ
and n ≥ N , the result of the sublemma follows.

Remark 3.3.15. We note the following link to Chapter 2. Let ϕn : L∞ → L∞ be

defined as ϕn(g) =
∫
gfn d`1. From the proof above, we have that

(Id− L∗n)−1Πn = (Id− L∗nΠn)−1

= (Id− L∗n(Id− ϕn))−1

= (Id− L∗n + L∗nϕn)−1

= (Id− L∗n + ϕn)−1,

(3.3.13)
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where last equality follows from the fact that 1 is an eigenvector of L∗n for the

eigenvalue 1. Thus, for a function cn ∈ span{fn}⊥ = Wn, we compute (Id −

L∗n)−1cn = (Id− L∗n + ϕn)−1cn. Equation (3.3.13) is used in Section 2.3 (under the

notation Q>) to compute the optimal response in the finite dimensional setting .

3.3.4 Explicit Formula for the Optimal Perturbation to Increase the Mixing Rate

In this section we will investigate the linear response problem for enhancing the rate

of mixing. We will begin with a formulation of the optimisation problem and the

sufficient condition on the feasible set of allowable perturbations under which the

optimisation problem has a unique solution. We conclude by deriving an explicit

formula for the optimal solution.

We first state the required assumptions for this, and the following, subsections:

- Let Lε : L2([0, 1],C) → L2([0, 1],C) be a family of integral operators with

kernels kε ∈ L2([0, 1]2,R) of the form (3.2.5).

- We assume Lε satisfies the integral-preserving assumption (3.1.2) and that L0

satisfies the mixing assumption (A1).

- Let λ0 ∈ C denote an eigenvalue of L0 strictly inside the unit circle with

largest magnitude. We assume that λ0 is geometrically simple. We denote

by e and ê the eigenvectors of L0 and L∗0, respectively, corresponding to the

eigenvalue λ0.

To find the kernel perturbations that enhance mixing, we follow the approach

taken in Section 2.4 and consider perturbing our original dynamics L0 in such a

way that the modulus of the second eigenvalue of the perturbed dynamics is closer

to zero. Equivalently, we want to find perturbations such that the real part of the

logarithm of the perturbed second eigenvalue is minimised. The following result

provides an explicit formula for the instantaneous change of the real part of the

logarithm of the second largest eigenvalue.

Lemma 3.3.16. Let

E(x, y) := (<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y))<(λ0)

+ (=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y))=(λ0).
(3.3.14)
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Then

d

dε
< (log λε)

∣∣∣∣
ε=0

=

〈
k̇, E

〉
L2([0,1]2,R)

|λ0|2
.

Proof. From (3.2.9), we have that

<(λ̇0) =

∫ 1

0

∫ 1

0

k̇(x, y) (<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y)) dydx (3.3.15)

and

=(λ̇0) =

∫ 1

0

∫ 1

0

k̇(x, y) (=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y)) dydx. (3.3.16)

Next, we note that

d

dε
<(log λε) = <

(
d

dε
log λε

)
= <

(
dλε
dε

1

λε

)
. (3.3.17)

From (3.3.15)–(3.3.17), we obtain

d

dε
< (log λε)

∣∣∣∣
ε=0

= <

(
λ̇0

λ0

)

= <

(
λ̇0

λ0

λ0

λ0

)

=
<(λ̇0)<(λ0) + =(λ̇0)=(λ0)

|λ0|2

=

〈
k̇, E

〉
L2([0,1]2,R)

|λ0|2
.

The formula in the above result provides the objective function for the optimisa-

tion problem we will consider for enhancing mixing. Below we state the optimisation

problem and the conditions that the set of allowable perturbations must satisfy for

a solution to exist and be unique.

Corollary 3.3.17. Consider the problem of finding k̇ ∈ P such that

〈
k̇, E

〉
L2([0,1]2,R)

= min
k∈P

〈
k,E

〉
L2([0,1]2,R)

, (3.3.18)
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where P ⊂ Vker is the set of allowable perturbations. If P is closed, bounded and

convex then there exists at least one solution to the problem. Furthermore, if P is

also strictly convex, then there exists a unique solution.

Proof. Since (3.3.18) is a minimisation problem, we apply Propositions 3.3.1 and

3.3.3 with S(k) = −
〈
k,E

〉
L2([0,1]2,R)

, which is linear in k, to obtain the result.

We now would like to obtain a result similar to Theorem 3.3.8 for problem

(3.3.18). Since we are interested in kernel perturbations that will ensure that the

perturbed kernel kε is stochastic, we assume that k0 ∈ L∞([0, 1]2,R) and we consider

the constraint set Pl, as in Section 3.3.1, where 0 < l < 1. Snce Pl is closed,

bounded and strictly convex, from Corollary 3.3.17 we have that problem (3.3.18),

with this constraint set, has a unique solution. Furthermore, the objective function

of (3.3.18) is linear and therefore, we only need to consider the optimisation problem

on Vker∩Sk0,l∩∂B1. Thus, to obtain the perturbation k̇ that will enhance the mixing

rate, we solve the following optimisation problem:

min
k̇∈Vker∩Sk0,l

〈
k̇, E

〉
L2([0,1]2,R)

(3.3.19)

such that ‖k̇‖2
L2([0,1]2,R) − 1 = 0, (3.3.20)

where E is defined in (3.3.14).

Theorem 3.3.18. Let L0 : L2([0, 1],C)→ L2([0, 1],C) be a Hilbert-Schmidt integral

operator with the stochastic kernel k0 ∈ L∞([0, 1]2,R). Suppose that L0 satisfies

(A1) of Theorem 3.1.2 and let F := {(x, y) ∈ [0, 1]2 : k0(x, y) ≥ l} and Fy :=

{x ∈ [0, 1] : (x, y) ∈ F}. Then, the unique solution to the optimisation problem

(3.3.19)–(3.3.20) is

k̇(x, y) =


1
α

(
1

`(Fy)

∫
Fy
E(x, y)dx− E(x, y)

)
(x, y) ∈ F

0 otherwise,

(3.3.21)

where E is given in (3.3.14) and α > 0 is selected so that ‖k̇‖L2([0,1]2,R) = 1. Fur-

thermore, k̇ ∈ L∞([0, 1]2,R).
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Proof. The optimisation problem under consideration is very similar to that con-

sidered in Theorem 3.3.8; thus, we will refer to the proof of that theorem with the

following modifications.

Consider the Lagrangian function

L(k̇, µ) := f(k̇) + µg(k̇),

where, in this setting, we have f(k̇) = 〈k̇, E〉L2([0,1]2,R) and g(k̇) = ‖k̇‖2
L2([0,1]2,R) − 1.

Thus, for the necessary conditions of the Lagrange multiplier method to be satisfied,

we need that

f(k̃) + 2µ〈k̇, k̃〉L2([0,1]2) = 〈k̃, E〉L2([0,1]2,R) + 2µ〈k̇, k̃〉L2([0,1]2,R) = 0 (3.3.22)

for all k̃ ∈ Vker ∩ Sk0,l and

g(k̇) = 0. (3.3.23)

We first note that

〈k̃, E〉L2([0,1]2,R) + 2µ〈k̇, k̃〉L2([0,1]2,R) = 〈k̃, E + 2µk̇〉L2([0,1]2,R).

Second, we claim that

k̇(x, y) = −1F (x, y)
1

2µ

(
E(x, y)− 1

`(Fy)

∫
Fy

E(x, y)dx

)
(3.3.24)

satisfies the necessary condition (3.3.22). To see this, let h(y) := 1
`(Fy)

∫
Fy
E(x, y)dx

and so k̇(x, y) = −1F (x, y) (E(x,y)−h(y))
2µ

. Then, we have

〈k̃, E + 2µk̇〉L2([0,1]2,R) = 〈k̃, h〉L2([0,1]2,R)

=

∫ ∫
F

k̃(x, y)h(y)dydx = 0,
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where the last equality follows by Lemma 3.2.1 and the fact that k̃ ∈ Vker ∩ Sk0,l.

Finally, we have

∫
k̇(x, y)dx = − 1

2µ

(∫
Fy

E(x, y)dx− 1

`(Fy)

∫
Fy

E(z, y)dz

∫
1F (x, y)dx

)

= − 1

2µ

(∫
Fy

E(x, y)dx− 1

`(Fy)

∫
Fy

E(z, y)dz `(Fy)

)
= 0

and therefore, (3.3.24) is in Vker. If we let 2µ = ±‖1F (E − h)‖L2([0,1]2,R), then k̇ in

(3.3.24) satisfies both necessary conditions (3.3.22) and (3.3.23).

For the sufficient conditions, we note that in this setting D2
k̇k̇
L(k̇, λ)(k̃, k̃) is the

same as in the proof of Theorem 3.3.8 (since the objectives considered in both this

and the other optimisation problem are linear). Hence, the second order sufficient

conditions are satisfied with µ > 0. Thus, with 2µ = ‖1F (E−h)‖L2([0,1]2,R), (3.3.21)

satisfies the necessary and sufficient conditions; hence (3.3.21) is the unique solution

to the optimisation problem (3.3.19)–(3.3.20).

We finally show thatE ∈ L∞([0, 1]2,R). Recall that E(x, y) =
(
<(ê)(x)<(e)(y)+

=(ê)(x)=(e)(y)
)
<(λ0) +

(
=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y)

)
=(λ0). Since L0e = λ0e

and L∗0ê = λ0ê, from inequality (3.2.3) we have e, ê ∈ L∞([0, 1],C) since k0 ∈

L∞([0, 1]2,R). Hence, we have that <(e),<(ê),=(e),=(ê) ∈ L∞([0, 1],R) and thus

E ∈ L∞([0, 1]2,R).

Corollary 3.3.19. If e, ê and λ0 are real and k0 ≥ l, then the solution to (3.3.19)–

(3.3.20) is

k̇(x, y) = sgn(λ0)
e(y)

‖e‖2

(
〈ê,1〉L2([0,1],R) − ê(x)

‖〈ê,1〉L2([0,1],R) − ê‖2

)
. (3.3.25)

Furthermore, ker(L̇) = span{e}⊥, ran(L̇) = span{ê−〈ê,1〉L2([0,1],R)1} and the linear

response is

lim
ε→0

fε − f0

ε
= sgn(λ0)

〈e, f0〉L2([0,1],R)

‖e‖2

(Id− L0)−1 〈ê,1〉L2([0,1],R) − ê
‖〈ê,1〉L2([0,1],R) − ê‖2

.
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Proof. We have E(x, y) = λ0ê(x)e(y); thus, the solution to the optimisation prob-

lem (3.3.19)–(3.3.20) is

k̇(x, y) = λ0β

(∫ 1

0

ê(x)dx− ê(x)

)
e(y),

where β > 0 is the normalisation constant such that ‖k̇‖2
L2([0,1]2,R) = 1. More

explicitly, from the proof of Theorem 3.3.18, we have that β−2 = ‖E − h‖2
L2([0,1]2,R)

where h(y) =
∫ 1

0
E(x, y)dx. We can write

β−2 =

∫ 1

0

∫ 1

0

(
E(x, y)−

∫ 1

0

E(z, y)dz

)
dydx

= λ2
0‖e‖2

2‖〈ê,1〉L2([0,1],R)1− ê‖2
2;

hence, β−1 = |λ0|‖e‖2‖〈ê,1〉L2([0,1],R)1− ê‖2. So, we have that

k̇(x, y) = sgn(λ0)
e(y)

‖e‖2

〈ê,1〉L2([0,1],R)1− ê(x)

‖〈ê,1〉L2([0,1],R)1− ê‖2

.

From this we compute

L̇g(x) =

∫ 1

0

k̇(x, y)g(y)dy

= sgn(λ0)

∫ 1

0

e(y)

‖e‖2

〈ê,1〉L2([0,1],R)1− ê(x)

‖〈ê,1〉L2([0,1],R)1− ê‖2

g(y)dy

= sgn(λ0)

〈
e

‖e‖2

, g

〉
L2([0,1],R)

〈ê,1〉L2([0,1],R)1− ê(x)

‖〈ê,1〉L2([0,1],R)1− ê‖2

.

From the equation above, we see that for any g ∈ L2, L̇g ∈ span{〈ê,1〉L2([0,1],R)1−ê};

also, for α(〈ê,1〉L2([0,1],R)1 − ê) ∈ span{〈ê,1〉L2([0,1],R)1 − ê}, where α ∈ R, the

function g = α‖〈ê,1〉L2([0,1],R)1 − ê‖2
e
‖e‖2 is such that L̇g = α(〈ê,1〉L2([0,1],R)1 − ê)

and thus, ran(L̇) = span{〈ê,1〉L2([0,1],R)1− ê}. If g ∈ span{e}⊥ then L̇g = 0, and if〈
e
‖e‖2 , g

〉
L2([0,1],R)

= 0 then g ∈ span{e}⊥; thus, ker(L̇) = span{e}⊥. Since the linear

response formula is limε→0
fε−f0

ε
= (Id− L0)−1L̇f0, we are done.

Remark 3.3.20. Let Lε be an integral operator with the kernel kε = k0 + εk̇,

where k̇ is as in the result above; thus, we can write Lε = L0 + εL̇. For g ∈ L2,

we write g = g1 + g2, where g1 ∈ span{e} and g2 ∈ span{e}⊥. From the result
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above, we see that Lεg = L0g + εL̇g1; that is, to enhance mixing, only g1, the part

parallel to e, contributes to the perturbation. Furthermore, εL̇g1 is in the span of

ê−〈ê,1〉L2([0,1],R)1, which is the projection of the eigenvector ê, corresponding to the

second largest eigenvalue of L∗0, onto span{1}⊥ (the orthogonal complement of the

eigenspace corresponding to the largest eigenvalue of L∗0).

3.3.5 Approximation of the Optimal Response

We conclude this section by obtaining a convergence result, similar to Proposition

3.3.13, for the solution (3.3.21).

Proposition 3.3.21. Let L0 : L2([0, 1],C) → L2([0, 1],C) be a Hilbert-Schmidt

integral operator, with the stochastic kernel k0 ∈ L∞([0, 1]2), satisfying (A1) of

Theorem 3.1.2. Let {Ln} ⊂ B(L2([0, 1],C)) be a sequence of Hilbert-Schmidt in-

tegral operators with stochastic kernels {kn} ⊂ L∞([0, 1]2) such that limn→∞ ‖kn −

k0‖L∞([0,1]2) = 0. Then, there exists n0 > 0 such that for each n ≥ n0, Ln satisfies

(A1) of Theorem 3.1.2 and there exists λn ∈ C and functions en, ên ∈ L∞([0, 1],C),

with ‖en‖2 = 1 = ‖ê‖2, such that Lnen = λnen, L∗nên = λnên, limn→∞ |λn − λ0| =

0, limn→∞ ‖en − e‖∞ = 0 and limn→∞ ‖ên − ê‖∞. Let

En(x, y) := (<(ên)(x)<(en)(y) + =(ên)(x)=(en)(y))<(λn)

+ (=(ên)(x)<(en)(y)−<(ên)(x)=(en)(y))=(λn).

Then, the sequence of perturbations

k̇n(x, y) :=


1
αn

(
1

`(Fy)

∫
Fy
En(x, y)dx− En(x, y)

)
(x, y) ∈ F,

0 otherwise,

(3.3.26)

where F and Fy are as in Theorem 3.3.18 and αn is selected so that ‖k̇n‖L2([0,1]2,R) =

1, converges to the optimal k̇ in L∞ as n→∞.

Proof. From limn→∞ ‖kn − k0‖L∞([0,1]2,R) = 0, and (3.2.2), we have limn→∞ ‖Ln −

L0‖L2→L2 = 0. From this and the assumption that L0 satisfies (A1), we have from

the argument in the proof of Theorem 3.1.2 that there exists n̄0 > 0 such that for

all n ≥ n̄0, Ln satisfies (A1). Next we show the existence of the approximating
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eigenvalues and eigenvectors. Recalling that λ0 is a geometrically simple isolated

eigenvalue, we can use Theorem 3.16 in IV-§3.4 [54] (because of Theorem 2.23 (a)

IV-§2.6 and the fact that Ln ∈ B(L2([0, 1]2,C)) and limn→∞ ‖Ln − L0‖L2→L2 = 0).

From Theorem 3.16, and the discussion in IV-§3.5, we conclude that there exists

an n0 > n̄0 and {λn} ⊂ C such that for all n ≥ n0, λn is an eigenvalue of Ln and

limn→∞ |λn − λ0| = 0. Let Π0 be the eigenprojection associated to the eigenvalue

λ0 of L0; similarly, let Πn denote the eigenprojection associated to the eigenvalue

λn of Ln. From Theorem 3.16, we also have that for n ≥ n0, λn is a geometrically

simple eigenvalue of Ln (since dim(Πn(L2([0, 1],C))) = dim(Π0(L2([0, 1],C))) = 1

for n ≥ n0) and that limn→∞ ‖Πn − Π0‖L2→L2 = 0. Let en = Πne
‖Πne‖2 ; then Lnen =

λnen and ‖en − e‖2 = ‖(Πn − Π0)e‖2 ≤ ‖Πn − Π0‖L2→L2‖e‖2 → 0 as n → ∞.

From inequality (3.2.2), we also have ‖L∗n − L∗0‖L2→L2 ≤ ‖kn − k0‖L2([0,1]2,R) → 0

as n → ∞; thus, we can apply the argument above to conclude that there exists

functions ên ∈ L2([0, 1],C) such that L∗nên = λnên and limn→∞ ‖ên − ê‖2 = 0.

From inequality (3.2.3) we have en, ên ∈ L∞([0, 1],C) since kn ∈ L∞([0, 1]2,R).

We now show that ‖en − e‖∞ → 0 and ‖ên − ê‖∞ → 0 as n→∞. We compute

‖en − e‖∞

=

∥∥∥∥ 1

λn
Lnen −

1

λ0

L0e

∥∥∥∥
∞

≤
∣∣∣∣ 1

λn
− 1

λ0

∣∣∣∣‖Lnen‖∞ +
1

|λ0|
‖Lnen − L0e‖∞

≤
∣∣∣∣ 1

λn
− 1

λ0

∣∣∣∣‖kn‖L∞([0,1]2,R)‖en‖1 +
1

|λ|
(‖(Ln − L0)en‖∞ + ‖L0(en − e)‖∞)

≤
∣∣∣∣ 1

λn
− 1

λ0

∣∣∣∣‖kn‖L∞([0,1]2,R)‖en‖2

+
1

|λ|
(‖kn − k0‖L∞([0,1]2,R)‖en‖1 + ‖k0‖L∞([0,1]2,R)‖en − e‖1)

≤
∣∣∣∣ 1

λn
− 1

λ0

∣∣∣∣ (‖kn − k0‖L∞([0,1]2,R) + ‖k0‖L∞([0,1]2,R)

)
(‖en − e‖2 + ‖e‖2)

+
1

|λ|
(‖kn − k0‖L∞([0,1]2,R) (‖en − e‖2 + ‖e‖2) + ‖k0‖L∞([0,1]2,R)‖en − e‖2).

(3.3.27)

Hence, as ‖kn−k0‖L∞([0,1]2,R) → 0, we have that ‖en−e‖∞ → 0. The same argument

can be used to show ‖ên − ê‖∞ → 0.
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To show that limn→∞ ‖k̇n − k̇‖L∞([0,1]2,R) = 0, we need that limn→∞ ‖En −

E‖L∞([0,1]2,R) = 0. From the convergence of λn, en and ên to λ, e and ê, re-

spectively, we have the convergence of <(λn),=(λn),<(en),=(en),<(ên),=(ên) to

<(λ),=(λ),<(e),=(e),<(ê),=(ê), respectively, where function convergence is in

L∞. Using this, we conclude the convergence of En to E in L∞([0, 1]2,R). Noting

that∣∣∣∣ 1

`(Fy)

∫
Fy

En(x, y)dx− 1

`(Fy)

∫
Fy

E(x, y)dx

∣∣∣∣ ≤ 1

`(Fy)

∫
Fy

|En(x, y)− E(x, y)|dx

≤ ‖En − E‖L∞([0,1]2,R),

the convergence of En to E in L∞ proves the convergence of the integral. Fi-

nally, the convergence of the scaling factor αn follows from the L∞ convergence of

1
m(Fy)

∫
Fy
En(x, y)dx − En(x, y) and the reverse triangle inequality. Hence, ‖k̇n −

k̇‖L∞([0,1]2,R) → 0 as n→∞.

3.4 Linear Response for Map Perturbations

In this section we consider systems (Tε, ρ) with additive noise in which the dy-

namics is governed by a stochastic process which is given by the composition of

a deterministic map Tε and the adding of some noise at each iteration. We will

assume that the noise is distributed according to a certain Lipschitz kernel ρ and

impose a “reflecting boundary” condition that ensures that the dynamics, after the

noise, are still in the interval [0, 1]. More precisely, we consider a random dynamical

system with additive noise on [0, 1] whose trajectories are given by

xn+1 = Tε(xn) +̂ ωn (3.4.1)

where

(T1) Tε : [0, 1]→ [0, 1] is a Borel measurable map

(T2) ωn is an i.i.d. process distributed according to a probability density ρ ∈

Lip([−1 + ε0, 1− ε0]) with Lipschitz constant K.
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Figure 3.1: The function π.

- +̂ is the “boundary reflecting” sum, which we defined as follows: let π :

[−1, 2]→ [0, 1] be the piecewise linear map

π(x) = min
i∈Z
|x− 2i|, (3.4.2)

see Figure 3.1. Then, for a, b ∈ R, the sum +̂ is defined as

a+̂b := π(a+ b)

where + is the usual sum operator on R; by this a+̂b ∈ [0, 1].

3.4.1 Expressing the Map Perturbation as a Kernel Perturbation

Associated with the process (3.4.1) is an integral-type transfer operator, which

we will derive (following the method of §10.5 in [62]). Since |π′(z)| = 1 for all

z ∈ [−1, 2], the Perron-Frobenius operator Pπ : L1([−1, 2]) → L1([0, 1]) associated

to the map π is simply

Pπf(x) =
∑

z∈π−1(x)

f(z) = f(x) + f(−x) + f(2− x). (3.4.3)

For b ∈ R consider the shift map τb defined by (τbf)(y) := f(y + b) for f ∈

Lip([−1, 2]). For the process (3.4.1), suppose that xn has the distribution fn (i.e.

fn ∈ L1, fn ≥ 0 and
∫
fn d` = 1). Following [62], §10.5, we note that Tε(xn) and

ωn are independent (since we only need ω0, . . . , ωn−1 to compute x1, . . . , xn) and so,

the joint density of (xn, ωn) is fn(y)ρ(z). Let h : R→ R be a bounded, measurable
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function and let E denote expectation with respect to `; we then compute

E(h(xn+1)) = E(h(πy(Tε(xn) + ωn))

=

∫ ∫
h(π(Tε(y) + z))fn(y)ρ(z)dydz

=

∫ ∫
h(π(z′))fn(y)ρ(z′ − Tε(y))dz′dy

=

∫
fn(y)

∫
h(π(z′))(τ−Tε(y)ρ)(z′)dz′dy

=

∫
fn(y)

∫
h(z′)(Pπτ−Tε(y)ρ)(z′)dz′dy,

where the last equality follows from the duality of the Perron-Frobenius and the

Koopman operators. Since E(h(xn+1)) =
∫
h(x)fn+1(x)dx, and h is arbitrary, the

map fn 7→ fn+1 is given by

fn+1(z′) =

∫
(Pπτ−Tε(y)ρ)(z′)fn(y)dy

for all z′ ∈ [0, 1]. Thus, the integral operator Lε : L2([0, 1])→ L2([0, 1]) associated

to the process (3.4.1) is given by

Lεf(x) =

∫
kε(x, y)f(y)dy, (3.4.4)

where

kε(x, y) = (Pπτ−Tε(y)ρ)(x) (3.4.5)

and x, y ∈ [0, 1].

Lemma 3.4.1. The kernel (3.4.5) is a stochastic kernel in L∞([0, 1]2).

Proof. Stochasticity and nonnegativity of kε follow from stochasticity and nonneg-

ativity of ρ and the fact that Perron-Frobenius operators preserve these properties.

Essential boundedness of kε follows from the facts that ρ is Lipschitz (thus essen-

tially bounded), τ is a shift and Pπ is constructed from a finite sum.
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Proposition 3.4.2. Assume that (Tε, ρ) satisfies (T1) and (T2) and that kε is

given by (3.4.5). Suppose that the family of interval maps {Tε}ε∈[0,ε0) satisfies

Tε = T0 + ε · Ṫ + tε,

where Ṫ , tε ∈ L2 and ‖tε‖2 = o(ε). Then

kε = k0 + ε · k̇ + rε

where k̇ ∈ L2([0, 1]2) is given by

k̇(x, y) = −
(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) · Ṫ (y) (3.4.6)

and rε ∈ L2([0, 1]2) satisfies the properties listed in Lemma 3.2.3.

Proof. For almost all x, y we have

kε(x, y)− k0(x, y) = (Pπτ−Tε(y)ρ)(x)− (Pπτ−T0(y)ρ)(x)

= (Pπτ−Tε(y)ρ)(x)− (Pπτ−(T0(y)+εṪ (y))ρ)(x) (3.4.7)

+(Pπτ−(T0(y)+εṪ (y))ρ)(x)− (Pπτ−T0(y)ρ)(x). (3.4.8)

We then have that ‖kε − k0 − εk̇‖L2([0,1]2) is bounded above by sum of the L2 norm

of (3.4.7) and the L2 norm of (3.4.8) minus εk̇. We will first show that the L2 norm

of (3.4.7) is o(ε) and then show that the L2 norm of (3.4.8) minus εk̇ is also o(ε).

Since ρ is uniformly Lipschitz with constant K, we have for a.e. x, y that

∣∣(τ−(Tε(y))ρ)(x)− (τ−(T0(y)+εṪ (y))ρ)(x)
∣∣ =

∣∣ρ(x− Tε(y))− ρ(x− T0(y)− εṪ (y))
∣∣

=
∣∣ρ(x− T0(y)− εṪ (y)− tε(y))

− ρ(x− T0(y)− εṪ (y))
∣∣

≤ K|tε(y)|;
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hence, |τ−Tερ − τ−(T0+εṪ )ρ| ≤ K|tε|. Since T0(y) ∈ [0, 1] for a.e. y ∈ [0, 1], we have

that supp(τ−T0(y)ρ) ⊂ [−1, 2] and hence, we can apply Pπ to τ−T0(y)ρ. To find the

interval containing the support of τ−(T0(y)+εṪ (y))ρ we first note that |tε| ≤ ε0 a.e.

since otherwise we would not have ‖tε‖2 = o(ε). Since Tε = T0 + εṪ + tε and

Tε(y) ∈ [0, 1] for a.e. y ∈ [0, 1], we have that −ε0 ≤ T0 + εṪ ≤ 1 + ε0. Hence,

supp(τ−(T0(y)+εṪ (y))ρ) ⊆ [−1 + ε0 + T0(y) + εṪ (y), 1− ε0 + T0(y) + εṪ (y)] ⊆ [−1, 2]

and so, we can apply Pπ to τ−(T0(y)+εṪ (y))ρ. Then we have

∣∣Pπτ−Tερ−Pπτ−(T0+εṪ )ρ
∣∣ ≤ Pπ

(∣∣τ−Tερ− τ−(T0+εṪ )ρ
∣∣)

≤ KPπ(|tε|) = K|tε|,

where the first inequality follows from the fact that Pπ is a Markov operator and

the last equality follows from the fact that supp(tε) ⊆ [0, 1]. Thus, we have

(∫ 1

0

∫ 1

0

∣∣(Pπτ−(Tε(y))ρ)(x)− (Pπτ−(T0(y)+εṪ (y))ρ)(x)
∣∣2dxdy)1/2

≤ K

(∫ 1

0

∫ 1

0

|tε(x)|2dxdy
)1/2

= K‖tε‖2 = o(ε)

and therefore the L2 norm of (3.4.7) is o(ε)

Next we show that the L2 norm of (3.4.8) minus εk̇ is o(ε). Noting that

supp

(
Ṫ (y) · τ−T0(y)

dρ

dx

)
⊆ [−1, 2],

we have

∫ 1

0

∫ 1

0

(
(Pπτ−(T0(y)+εṪ (y))ρ)(x)− (Pπτ−T0(y)ρ)(x)

ε

−
(
−Pπ

(
Ṫ (y) · τ−T0(y)

dρ

dx

))
(x)

)2

dxdy

=

∫ 1

0

∫ 1

0

(
Pπ

(
τ−(T0(y)+εṪ (y))ρ− τ−T0(y)ρ

ε
+

(
Ṫ (y) · τ−T0(y)

dρ

dx

)))
(x)2dxdy
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≤ 7

∫ 1

0

∫ 2

−1

((
τ−(T0(y)+εṪ (y))ρ

)
(x)−

(
τ−T0(y)ρ

)
(x)

ε

−
(
−Ṫ (y)

(
τ−T0(y)

dρ

dx

)
(x)

))2

dxdy,

where in the last line we used Lemma B.1.1 from the Appendix. We next note that

lim
ε→0

ρ(x− T0(y)− εṪ (y))− ρ(x− T0(y))

ε
= −dρ

dx
(x− T0(y))Ṫ (y) (3.4.9)

for a.e. x, y. Since

∣∣∣∣ρ(x−T0(y)−εṪ (y))−ρ(x−T0(y))
ε

∣∣∣∣ ≤ KṪ (y), by the dominated conver-

gence theorem the limit also converges in L2. Hence, the L2 norm of (3.4.8) minus

εk̇ is o(ε); combining this with the fact that the L2 norm of (3.4.7) is o(ε), we

have limε→0
1
ε
‖kε − k0 − εk̇‖L2([0,1]2) = 0. We finally conclude from the latter that

‖rε‖L2([0,1]2) = o(ε).

3.4.2 A Formula for the Linear Response of the Invariant Measure and

Continuity with respect to the Map

By considering the kernel form of map perturbations, we can apply Corollary 3.2.4

to obtain the following.

Proposition 3.4.3. Let Lε : L2 → L2, ε ∈ [0, ε0), be integral operators with the

kernels kε as in (3.4.5). Suppose that L0 satisfies (A1) of Theorem 3.1.2 and let

fε ∈ L2 be the probability density such that Lεfε = fε. Then the kernel k̇ in (3.4.6)

is in Vker and

lim
ε→0

fε − f0

ε
= −(Id− L0)−1

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y)f0(y)dy,

with convergence in L2.

Proof. The result is a direct application of Corollary 3.2.4; we verify its assumptions.

From Lemma 3.4.1, kε is a stochastic kernel and so Lε is an integral preserving

compact operator. From Proposition 3.4.2, kε has the form (3.2.5). Thus, we can

apply Corollary 3.2.4 to obtain the result.
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Since we are interested in map perturbations, we will consider the the linear

response as a function of the map perturbation; more precisely, let R̂ : L2 → L2 be

defined as

R̂(Ṫ ) := −(Id− L0)−1

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y)f0(y)dy. (3.4.10)

Lemma 3.4.4. The function R̂ : L2 → L2 is continuous.

Proof. Let Ṫ1, Ṫ2 ∈ L2 be such that ‖Ṫ1 − Ṫ2‖2 ≤ l. Then we have

R̂(Ṫ1)− R̂(Ṫ2) = −(Id− L0)−1

∫ 1

0

k̃(x, y)
(
Ṫ1(y)− Ṫ2(y)

)
dy,

where k̃(x, y) :=
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)f0(y). Also,

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈ L∞([0, 1]2)

since dρ
dx
∈ L∞. From inequality (3.2.3), we then have f0 ∈ L∞ and so k̃ ∈

L∞([0, 1]2). Using inequality (3.2.2) we finally have

‖R̂(Ṫ1)− R̂(Ṫ2)‖2 ≤ l‖(Id− L0)−1‖V→V ‖k̃‖L2([0,1]2).

3.4.3 A Formula for the Linear Response of the Dominant Eigenvalues and

Continuity with respect to the Map

By expressing map perturbations as kernel perturbations, we are also able to express

the linear response of the dominant eigenvalues as a function of the perturbing map

Ṫ .

Proposition 3.4.5. Let Lε : L2([0, 1],C)→ L2([0, 1],C), ε ∈ (−ε0, ε0), be integral

operators with the kernels kε as in(3.4.5). Let λi,ε be the eigenvalue(s) of Lε with

second largest magnitude strictly inside the unit disk. Suppose that L0 satisfies (A1)

of Theorem 3.1.2 and {λi,0} = I (the unperturbed eigenvalue(s) with second largest

magnitude) are geometrically simple. Then

dλi,ε
dε

∣∣∣∣
ε=0

= 〈H, Ṫ 〉L2([0,1],C), (3.4.11)
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where e is the eigenvector of L0 associated to the eigenvalue λi,0, ê is the eigenvector

of L∗0 associated to the eigenvalue λi,0 and

H(y) = ē(y)

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)ê(x)dx.

Proof. Since kε ∈ L2([0, 1]2,R), Lε : L2([0, 1],C) → L2([0, 1],C) is compact. From

Lemma 3.4.1 we have that kε is a stochastic kernel and so Lε preserves the integral

(i.e. it satisfies (3.1.2)). The kernel kε is in the form (3.2.5) and so ε 7→ Lε is C1

(see Lemma 3.2.3), where the derivative operator L̇ is the integral operator with

the kernel k̇. Using the assumption that L0 is mixing and λi,0 are geometrically

simple, we apply Proposition 3.1.6 to obtain
dλi,ε
dε

∣∣
ε=0

= 〈ê, L̇e〉L2([0,1],C). Finally, we

compute

〈ê, L̇e〉L2([0,1],C) =

∫ 1

0

ê(x)

∫ 1

0

k̇(x, y)e(y)dydx

=

∫ 1

0

∫ 1

0

ê(x)k̇(x, y)ē(y)dxdy

=

∫ 1

0

ē(y)

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)ê(x)dxṪ (y)dy

= 〈H, Ṫ 〉L2([0,1],C).

From (3.4.11), the linear response of the dominant eigenvalues is continuous with

respect to map perturbations. This follows from Cauchy-Schwarz and the fact that

H ∈ L∞([0, 1],C); the latter claim follows from the fact that
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈

L∞([0, 1]2,R) (see proof of Lemma 3.4.4) and since e, ê ∈ L∞([0, 1],C) (which fol-

lows from (3.2.3) and the fact that k0 ∈ L∞([0, 1]2,R), see Lemma 3.4.1).

3.5 Optimal Linear Response for Map Perturbations

In this section we will obtain the results of Sections 3.3.2–3.3.5 for deterministic

systems with additive noise. We begin with a description of the set of allowable map

perturbations. Then we obtain an explicit formula for the optimal map perturbation

that maximises the expectation of an observable; we then show a convergence result
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for the optimal solution. We also obtain an explicit formula for the optimal map

perturbation that enhances mixing and conclude with a convergence result for this

optimal solution.

3.5.1 The Feasible Set of Perturbations

Before we formulate the optimisation problem, we note that in this setting, we

require some restriction on the space of allowable perturbations to T0 if we are to

interpret Ṫ as a map perturbation. With this in mind, let b > 0 and F̃b := {x ∈

[0, 1] : b ≤ T0(x) ≤ 1−b}. Recalling that in Proposition 3.4.2 we are considering L2

perturbations of the map T0, that is Ṫ ∈ L2, we introduce the following definition

and result.

Lemma 3.5.1. Let

ST0,b := {T ∈ L2 : supp(T ) ⊆ F̃b}. (3.5.1)

Then ST0,b is a closed subspace of L2.

Proof. It is clear that ST0,b is a subspace. To show it is closed, let {fn} ⊂ ST0,b

and suppose that fn →L2 f ∈ L2; also suppose that Ŝ := {x ∈ [0, 1] : T0(x) <

b or T0(x) > 1− b} is not a null set. Then, we have

∫
ST0,b

(fn(x)− f(x))2dx+

∫
Ŝ

f(x)2dx→ 0.

If
∫
Ŝ
f(x)2dx > 0, we obtain a contradiction since

∫
ST0,b

(fn(x)−f(x))2dx ≥ 0; thus,∫
Ŝ
f(x)2dx = 0 and so f = 0 a.e. on Ŝ. Hence, ST0,b is closed.

For the remainder of this section, the set of allowable perturbations that we will

consider is

Pb := ST0,b ∩B1, (3.5.2)

where B1 is the unit ball in L2. Since ST0,b is a closed subspace of L2, it is itself a

Hilbert space and so Pb is strictly convex.
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3.5.2 Explicit Formula for the Optimal Perturbation for Maximising the

Expectation of an Observable

In this section we will consider the problem of finding the optimal map perturbation

that maximises the expectation of some observable c ∈ L2. We begin with a result

that ensures a unique solution exists and then derive an explicit expression for the

optimal perturbation.

Proposition 3.5.2. Let Pb be the set in (3.5.2). Then, the problem of finding

Ṫ ∈ Pb such that

〈
c, R̂(Ṫ )

〉
L2([0,1],R)

= max
ḣ∈Pb

〈
c, R̂(ḣ)

〉
L2([0,1],R)

, (3.5.3)

where R̂ is as in (3.4.10), has a unique solution.

Proof. From Lemma 3.4.4, it follows that 〈c, R̂(ḣ)〉L2([0,1],R) is continuous as a func-

tion of ḣ. Since it is also linear in ḣ, we can apply Proposition 3.3.1 to conclude

that a solution exists. Recalling that Pb is strictly convex, the uniqueness of the

solution follows from Proposition 3.3.3.

Before we present the explicit formula for the optimal solution, we will refor-

mulate the optimisation problem (3.5.3) to simplify the analysis. We first note

that since the objective function in (3.5.3) is linear in Ṫ , the maximum will oc-

cur on ST0,b ∩ ∂B1. Also, we have that R̂(Ṫ ) ∈ V ; this follows from the fact that(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)f0(y) ∈ Vker (since k̇ ∈ Vker, see Proposition 3.4.3) and therefore∫ 1

0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)f0(y)g(y)dy ∈ V for g ∈ L2 (see Lemma 3.2.1). Hence, we

only need to consider c ∈ span{f0}⊥ (see discussion in Section 3.3.2 prior to Theo-

rem 3.3.8). With these remarks, we consider the following reformulation of (3.5.3):

for c ∈ span{f0}⊥

min
Ṫ∈ST0,b

−
〈
c, R̂(Ṫ )

〉
L2([0,1],R)

(3.5.4)

subject to ‖Ṫ‖2
2 − 1 = 0. (3.5.5)
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Theorem 3.5.3. Let (T0, ρ) be a deterministic system with additive noise satisfying

(T1) and (T2). Suppose the associated transfer operator L0, with the kernel k0 as

in (3.4.5), satisfies (A1) of Theorem 3.1.2. Let G : L2 → L2 be defined as

Gf(y) :=

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)f(x)dx. (3.5.6)

Then, the unique solution to the optimisation problem (3.5.4)–(3.5.5) is

Ṫ (y) =

−‖f0G((Id− L∗0)−1c)1F̃b
‖−1

2 f0(y)G((Id− L∗0)−1c)(y) y ∈ F̃b,

0 otherwise.

(3.5.7)

Furthermore, Ṫ ∈ L∞.

Proof. The proof will follow similarly to that of Theorem 3.3.8. To this end, we

consider the following Lagrangian function

L(Ṫ , λ) := f(Ṫ ) + λg(Ṫ ),

where f(Ṫ ) := −
〈
c, R̂(Ṫ )

〉
L2([0,1],R)

, g(Ṫ ) := ‖Ṫ‖2
2 − 1 and Ṫ ∈ ST0,b.

Necessary conditions : We want to find Ṫ and λ that satisfy the first-order

necessary conditions:

g(Ṫ ) = 0

DṪL(Ṫ , λ)T̃ = 0 for all T̃ ∈ ST0,b,

where DṪL(Ṫ , λ) ∈ B(L2,R) is the Frechet derivative with respect to the variable

Ṫ . Since f is linear, we have (DṪf)T̃ = f(T̃ ). Also, we have that (DṪg)T̃ =

2〈Ṫ , T̃ 〉L2([0,1],R) (following the computation in Theorem 3.3.8). Thus, for the nec-

essary conditions of the Lagrange multiplier method to be satisfied, we need that

DṪL(Ṫ , λ)T̃ = (DṪf)T̃ + λ(DṪg)T̃ = f(T̃ ) + 2λ〈Ṫ , T̃ 〉L2([0,1],R) = 0 (3.5.8)
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for all T̃ ∈ ST0,b and

g(Ṫ ) = 0. (3.5.9)

Following the proof of Theorem 3.3.8, we will solve for Ṫ by rewriting f(T̃ ) +

2λ〈Ṫ , T̃ 〉L2([0,1],R) as one inner product on L2. To this end, we first have that

f(T̃ ) + 2λ〈Ṫ , T̃ 〉L2([0,1],R)

=

〈
c, (Id− L0)−1

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y)f0(y)dy

〉
L2([0,1],R)

+ 2λ〈Ṫ , T̃ 〉L2([0,1],R)

=

〈
(Id− L∗0)−1c,

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y)f0(y)dy

〉
L2([0,1],R)

+ 〈2λṪ , T̃ 〉L2([0,1],R)

=

∫ 1

0

∫ 1

0

((Id− L∗0)−1c)(x)

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y)f0(y)dydx

+ 〈2λṪ , T̃ 〉L2([0,1],R)

=

∫ 1

0

[∫ 1

0

((Id− L∗0)−1c)(x)

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)dxf0(y) + 2λṪ (y)

]
T̃ (y)dy

=

∫ 1

0

[
f0(y)G((Id− L∗0)−1c)(y) + 2λṪ (y)

]
T̃ (y)dy.

(3.5.10)

We note that since c ∈ span{f0}⊥, we have from Lemma 3.3.11 that (Id−L∗0)−1c ∈

L2 and the above expression is well defined. Now, from (3.5.10), we have that

f(T̃ ) + 2λ〈Ṫ , T̃ 〉L2([0,1],R) = 〈f0 G((Id − L∗0)−1c) + 2λṪ , T̃ 〉L2([0,1],R). From this we

can conclude that finding Ṫ and λ that satisfy (3.5.8) and (3.5.9) reduces to finding

Ṫ ∈ ST0,b and λ ∈ R that satisfy 〈f0 G((Id− L∗0)−1c) + 2λṪ , T̃ 〉L2([0,1],R) = 0 for all

T̃ ∈ ST0,b and (3.5.9). Using the non-degeneracy of the inner product, we find that

Ṫ = −H
2λ
,

where H = 1F̃b
f0 G((Id − L∗0)−1c). The necessary condition (3.5.9) yields λ =

±1
2
‖H‖2 and hence we obtain the form (3.5.7); the sign of λ is determined by

checking the sufficient conditions.
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Sufficient conditions : As in Theorem 3.3.8, we will show that Ṫ in (3.5.7) is

the solution to the optimisation problem (3.5.4)–(3.5.5) by checking that it satisfies

the second-order sufficient conditions. We first note that in this setting we have

Q = X = ST0,b, x0 = Ṫ , Y ∗ = R, G(x0) = g(Ṫ ), K = {0}, NK(G(x0)) = R,

TK(G(x0)) = {0} and NQ(x0) = {0}. Thus, to show that Λ(Ṫ ) is not empty, we

need to show that Ṫ and λ satisfy

DṪL(Ṫ , λ)Ṫ = 0, g(Ṫ ) = 0, λ ∈ {0}−, λg(Ṫ ) = 0, (3.5.11)

where {0}− := {α ∈ R : αx ≤ 0 ∀x ∈ {0}} = R. Following the argument in

Theorem 3.3.8, it is easily verifiable that Λ(Ṫ ) is not empty. Thus, to show that

Ṫ is a solution to (3.5.4)–(3.5.5), we need to show that it satisfies the following

second-order conditions: there exists constants µ > 0, η > 0 and β > 0 such that

sup
|λ|≤µ, λ∈Λ(Ṫ )

D2
Ṫ Ṫ

L(Ṫ , λ)(T̃ , T̃ ) ≥ β‖T̃‖2
2, ∀ T̃ ∈ Cη(Ṫ ), (3.5.12)

where Cη(Ṫ ) :=
{
v ∈ ST0,b : |2〈Ṫ , v〉ST0,b

| ≤ η‖v‖ST0,b
and f(v) ≤ η‖v‖ST0,b

}
is

the approximate critical cone. Since DṪL(Ṫ , λ)T̃ = f(T̃ ) + 2λ〈Ṫ , T̃ 〉L2([0,1],R) and

〈Ṫ , T̃ 〉L2([0,1],R) is linear in Ṫ , we have that D2
Ṫ Ṫ

L(Ṫ , λ)(T̃ , T̃ ) = 2λ〈T̃ , T̃ 〉L2([0,1],R).

Thus, we conclude that the second-order condition (3.5.12) holds with λ > 0, µ =

|λ| = 1
2
‖H‖ST0,b

, β = 2λ and η = max
{

2‖Ṫ‖ST0,b
, ‖H‖ST0,b

}
. Since Ṫ satisfies

the necessary conditions (3.5.8) and (3.5.9), with λ > 0, Ṫ is a solution to the

optimisation problem (3.5.4)–(3.5.5). Using Proposition 3.5.2, we conclude that this

solution is unique since the unit ball of the Hilbert space ST0,b is strictly convex.

Boundedness of the solution: We have that
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈ L∞([0, 1]2)

(see proof of Lemma 3.4.4). From (3.2.3), with the kernel
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x), we

have that Gh ∈ L∞ for any h ∈ L2. Since f0 ∈ L∞, we have that f0 G((Id −

L∗0)−1c) ∈ L∞. Thus, H = 1F̃b
f0 G((Id− L∗0)−1c) ∈ L∞ and therefore Ṫ ∈ L∞.
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Corollary 3.5.4. Suppose there exists an b > 0 such that b ≤ T0(x) ≤ 1−b for a.e.

x ∈ [0, 1]. Then, the unique solution to the optimisation problem (3.5.4)–(3.5.5) is

Ṫ = − f0 G [(Id− L∗0)−1c]

‖f0 G [(Id− L∗0)−1c] ‖2

and the linear response with this perturbation is

lim
ε→0

fε − f0

ε
= (Id− L0)−1G∗

[
G [(Id− L∗0)−1c] f0

‖G [(Id− L∗0)−1c] f0‖2

f0

]
,

where the convergence is in L2 and G∗ : L2 → L2 is the operator

G∗f(y) :=

∫ 1

0

(
Pπ

(
τ−T0(x)

dρ

dx

))
(y)f(x)dx.

Proof. Since b ≤ T0 ≤ 1− b, we have that F̃b = [0, 1] and therefore,

Ṫ (y) = −‖f0G((Id− L∗0)−1c)‖−1
2 f0(y)G((Id− L∗0)−1c)(y).

From Proposition 3.4.2, we have that k̇(x, y) = −
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)Ṫ (y). We

then compute

L̇f0(x) =

∫ 1

0

k̇(x, y)f0(y)dy

=

∫ 1

0

−
(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y)f0(y)dy

= −G∗
[
Ṫ f0

]
(x)

= G∗
[

G [(Id− L∗0)−1c] f0

‖G [(Id− L∗0)−1c] f0‖2

f0

]
(x).

Thus, the linear response is

(Id− L0)−1L̇f0 = (Id− L0)−1G∗
[

G [(Id− L∗0)−1c] f0

‖G [(Id− L∗0)−1c] f0‖2

f0

]
.
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3.5.3 Approximation of the Optimal Response

In this section we will obtain a result similar to that of Proposition 3.3.13 for the

solution (3.5.7) of the optimisation problem (3.5.4)–(3.5.5).

Proposition 3.5.5. Let (T0, ρ) be a deterministic system with additive noise satis-

fying (T1) and (T2). Suppose the associated transfer operator L0, with the kernel k0

as in (3.4.5), satisfies (A1) of Theorem 3.1.2. Let {Ln} ⊂ B(L2) be a sequence of

Hilbert-Schmidt integral operators with stochastic kernels {kn} ⊂ L∞([0, 1]2) such

that limn→∞ ‖kn − k0‖L∞([0,1]2) = 0. Then, there exists n0 > 0 such that for each

n ≥ n0, Ln satisfies assumption (A1) of Theorem 3.1.2 and there exists a unique

probability density fn ∈ L∞ such that Lnfn = fn. Let {cn} ⊂ L2 be such that

cn ∈ span{fn}⊥ and limn→∞ ‖cn − c‖2 = 0. Suppose there exists a κ > 0 such that

‖kn‖L∞([0,1]2) ≤ κ. Then, the sequence of perturbations

Ṫn(y) :=

−‖fnG((Id− L∗n)−1cn)1F̃b
‖−1

2 fn(y)G((Id− L∗n)−1cn)(y) y ∈ F̃b,

0 otherwise,

(3.5.13)

converges to the optimal perturbation Ṫ in L∞ as n→∞.

Proof. We can apply the argument at the beginning of the proof of Proposition

3.3.13 to conclude that there exists n0 > 0 such that for each n ≥ n0, Ln satisfies

(A1) and there exists unique probability densities fn ∈ L∞ such that Lnfn = fn.

To simplify presentation, let h(x, y) :=
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x), Q0 := (Id − L∗0)−1

and Qn := (Id− L∗n)−1. We note the following estimate∣∣∣∣fn(y)G(Qncn)(y)− f0(y)G(Q0c)(y)

∣∣∣∣
≤ |f0(y)− fn(y)|

∣∣∣∣G(Q0c)(x)

∣∣∣∣+ |fn(y)|
∣∣∣∣G (Q0c−Qncn) (x)

∣∣∣∣
≤ ‖h‖L∞([0,1]2) (|f0(y)− fn(y)|‖Q0c‖1 + (|fn(y)− f0(y)|+ |f0(y)|)‖Q0c−Qncn‖1) .

Thus, to show that ‖Ṫn− Ṫ‖∞ → 0, we need to show that ‖Qncn−Q0c‖1 → 0. We

can analogously apply the argument used to show ‖Qncn−Q0c‖∞ → 0 in the proof
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of Proposition 3.3.13, but in L2 instead of L∞, to conclude that ‖Qncn − Q0c‖1 ≤

‖Qncn −Q0c‖2 → 0.

3.5.4 Explicit Formula for the Optimal Perturbation to Increase the Mixing Rate

In this section, we will obtain the results of Section 3.3.4 for deterministic systems

with additive noise. We being with setting up the optimisation problem to enhance

mixing. We then obtain an explicit formula for the optimal perturbation.

We recall that to enhance mixing in Section 3.3.4, we considered perturbing k0

so that the logarithm of the real part of the perturbed second eigenvalue decreases.

From Lemma 3.3.16, we had the formula

d

dε
<(log λε)

∣∣∣∣
ε=0

=
〈k̇, E〉L2([0,1]2,R)

|λ0|2
,

where λε denotes the second largest eigenvalue in magnitude of the integral operator

Lε with the kernel kε = k0 + εk̇ + o(ε). Since we want to perturb T0 by Ṫ , we will

reformulate the above inner product to a term involving Ṫ .

Proposition 3.5.6. Let L0 and I be as in Proposition 3.4.5. Let e and ê be

the eigenvectors of L0 and L∗0, respectively, corresponding to an eigenvalue λ0 ∈

I. Let E(x, y) =
(
<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y)

)
<(λ0) +

(
=(ê)(x)<(e)(y) −

<(ê)(x)=(e)(y)
)
=(λ0). Then

〈
k̇, E

〉
L2([0,1]2,R)

=
〈
Ṫ , Ê

〉
L2([0,1],R)

,

where

Ê(y) = −
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)E(x, y)dx (3.5.14)

and Ê ∈ L∞([0, 1],R).

Proof. We first show that Ê ∈ L∞([0, 1],R). We can write

−
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)E(x, y)dx

= −
4∑
i=1

βihi(y)

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)gi(x)dx
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= −
4∑
i=1

βihi(y)(Ggi)(y),

where β1 = β2 = <(λ0), β3 = −β4 = =(λ0), g1 = g4 = <(ê), g2 = g3 = =(ê),

h1 = h3 = <(e), h2 = h4 = =(e). From the proof of Theorem 3.5.3, we have

Ggi ∈ L∞([0, 1],R). Also, from Lemma 3.4.1, we have that k0 ∈ L∞([0, 1]2) and

therefore gi, hi ∈ L∞([0, 1],R); thus, Ê ∈ L∞([0, 1],R).

Finally, we compute

〈
k̇, E

〉
L2([0,1]2,R)

=

∫ 1

0

∫ 1

0

k̇(x, y)E(x, y)dxdy

= −
∫ 1

0

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y)E(x, y)dxdy

=

∫ 1

0

Ṫ (y)Ê(y)dy =
〈
Ṫ , Ê

〉
L2([0,1],R)

.

Using the result of Proposition 3.5.6, we have the following formulation, and

result, for the optimisation problem of enhancing mixing for systems with additive

noise.

Proposition 3.5.7. Let Pb be the set in (3.5.2). Then, the problem of finding

Ṫ ∈ Pb such that 〈
Ṫ , Ê

〉
L2([0,1],R)

= min
ḣ∈Pb

〈
ḣ, Ê

〉
L2([0,1],R)

(3.5.15)

has a unique solution.

Proof. Since S(ḣ) := −〈ḣ, Ê〉L2([0,1],R) is linear and continuous, and since Pb is

strictly convex, we apply Propositions 3.3.1 and 3.3.3 to obtain the result.

Since the objective function in (3.5.15) is linear, the solution will be in ST0,b∩∂B1.

Hence, we consider the following optimisation problem:

min
Ṫ∈ST0,b

〈
Ṫ , Ê

〉
L2([0,1],R)

(3.5.16)

such that ‖Ṫ‖2
2 − 1 = 0. (3.5.17)
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Theorem 3.5.8. Let (T0, ρ) be a deterministic system with additive noise satisfy-

ing (T1) and (T2). Suppose the associated transfer operator L0 : L2([0, 1],C) →

L2([0, 1],C), with the kernel k0 as in (3.4.5), satisfies (A1) of Theorem 3.1.2. Sup-

pose λ0 ∈ I, where I is as in Proposition 3.4.5, is geometrically simple. Then, the

unique solution to the optimisation (3.5.16)–(3.5.17) is

Ṫ (y) =


1
α

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)E(x, y)dx y ∈ F̃b,

0 otherwise,

(3.5.18)

where

E(x, y) =
(
<(ê)(x)<(e)(y) + =(ê)(x)=(e)(y)

)
<(λ0)

+
(
=(ê)(x)<(e)(y)−<(ê)(x)=(e)(y)

)
=(λ0)

and α is selected so that ‖Ṫ‖2 = 1. Furthermore, Ṫ ∈ L∞.

Proof. The result is obtained via Lagrange multipliers. Hence, we will refer to the

arguments in the proofs of Theorems 3.5.3 and 3.3.18 for the proof of this result

with the following computations needed to obtain equation (3.5.18): First, let Ê be

as in (3.5.14). For the necessary conditions, we will need that

〈T̃ , Ê + 2µṪ 〉L2([0,1],R) = 0 (3.5.19)

for all T̃ ∈ ST0,b and

‖Ṫ‖2
2 = 1. (3.5.20)

Thus, from (3.5.19), and the fact that Ṫ should be in ST0,b, we have that Ṫ =

−1F̃b

Ê
2µ

; from (3.5.20) we have that Ṫ = ∓1F̃b

Ê∥∥Ê∥∥
2

(i.e. 2µ = ±‖Ê‖2). For the

sufficient conditions, which will be the same as that in the proof of Theorem 3.5.3

since the objective is linear, we require that µ > 0; thus, we conclude that (3.5.18)

is the unique solution. The essential boundedness of Ṫ follows from that of Ê (see

Proposition 3.5.6).
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Corollary 3.5.9. If e, ê and λ0 are real, then

Ṫ (y) =


sgn(λ0) e(y)(Gê)(y)

‖eGê1
F̃b
‖2 y ∈ F̃b,

0 otherwise,

where G is the operator in (3.5.6). Furthermore, if there exists an b > 0 such that

b ≤ T0(x) ≤ 1− b for x ∈ [0, 1], then

Ṫ = sgn(λ0)
e Gê

‖e Gê‖2

. (3.5.21)

Proof. When e, ê and λ0 are real, we have E(x, y) = ê(x)e(y)λ0 and the expression

for Ṫ follows from (3.5.18). Finally, if b ≤ T0(x) ≤ 1 − b, then F̃b = [0, 1] and we

have (3.5.21).

3.5.5 Approximation of the Optimal Response

We conclude our analysis of deterministic systems with additive noise by obtaining

the following convergence result for the optimisation problem (3.5.16)–(3.5.17).

Proposition 3.5.10. Let (T0, ρ) be a deterministic system with additive noise sat-

isfying (T1) and (T2). Suppose the associated transfer operator L0 : L2([0, 1],C)→

L2([0, 1],C), with the kernel k0 as in (3.4.5), satisfies (A1) of Theorem 3.1.2 and

λ0 is geometrically simple. Let {Ln} ⊂ B(L2([0, 1],C)) be a sequence of Hilbert-

Schmidt integral operators with stochastic kernels {kn} ⊂ L∞([0, 1]2,R) such that

limn→∞ ‖kn − k0‖L∞([0,1]2) = 0. Then, there exists n0 > 0 such that for each

n ≥ n0, Ln satisfies (A1) of Theorem 3.1.2 and there exists λn ∈ C and func-

tions en, ên ∈ L∞([0, 1],C), with ‖en‖2 = 1 = ‖ê‖2, such that Lnen = λnen,

L∗nên = λnên, limn→∞ |λn − λ0| = 0, limn→∞ ‖en − e‖∞ = 0 and limn→∞ ‖ên − ê‖∞.

Let

En(x, y) := (<(ên)(x)<(en)(y) + =(ên)(x)=(en)(y))<(λn)

+ (=(ên)(x)<(en)(y)−<(ên)(x)=(en)(y))=(λn).
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Then, the sequence of perturbations

Ṫn(y) :=


1
αn

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)En(x, y)dx y ∈ F̃b

0 otherwise,

(3.5.22)

where αn > 0 is selected so that ‖Ṫn‖2 = 1, converges to the optimal Ṫ in L∞ as

n→∞.

Proof. From ‖kn − k0‖L2([0,1]2,R) → 0 (which follows from ‖kn − k0‖L∞([0,1]2,R) →

0), we have ‖Ln − L0‖L2→L2 → 0. Thus, from the argument in the proof of

Proposition 3.3.21, we have the convergence of the eigenvalues and the eigen-

vectors in L∞; we also have limn→∞ ‖En − E‖L∞([0,1]2,R) = 0. If we let C :=

esssup(x,y)∈[0,1]2

∣∣ (Pπ

(
τ−T0(y)

dρ
dx

))
(x)
∣∣, we then have

|Ṫn(y)− Ṫ (y)| ≤ C

(∣∣∣∣ 1

αn
− 1

α

∣∣∣∣‖En − E‖L∞([0,1]2,R) +

∣∣∣∣ 1α
∣∣∣∣‖En − E‖L∞([0,1]2,R)

+

∣∣∣∣ 1α − 1

αn

∣∣∣∣‖E‖L∞([0,1]2,R)

)
.

Noting that αn is the L2 norm of
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)En(x, y)dx, the conver-

gence limn→∞ ‖En − E‖L∞([0,1]2,R) = 0, with the reverse triangle inequality, implies

limn→∞ αn = α. Thus, limn→∞ ‖Ṫn − Ṫ‖∞ = 0.

The following result immediately follows from the above proposition.

Corollary 3.5.11. Suppose there exists an b > 0 such that b < T0(y) < 1 − b for

all y ∈ [0, 1]. If e, ê and λ0 are real, and there exists an ñ0 > 0 such that en, ên and

λn are real for all n ≥ ñ0, then the sequence

Ṫn = sgn(λn)
enGên
‖enGên‖2

, (3.5.23)

where G is the operator in (3.5.6), converges to (3.5.21) in L∞ as n→∞.
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3.6 Applications and Numerical Experiments

In this section we will consider two stochastically perturbed systems, namely the

Pomeau-Manneville map and a weakly mixing interval exchange map. For each of

these maps we numerically estimate:

1. The unique kernel perturbation that maximises the change in expectation of

a prescribed observation function. An expression for this optimal kernel is

given by (3.3.5).

2. The unique kernel perturbation that maximally increases the mixing rate. An

expression for this optimal kernel is given by (3.3.21) and (3.3.25).

3. The unique map perturbation that maximises the change in expectation of

a prescribed observation function. An expression for this optimal kernel is

given by (3.5.7).

4. The unique map perturbation that maximally increases the mixing rate. An

expression for this optimal kernel is given by (3.5.18) and (3.5.21).

The numerical methodology will be explained as we proceed through these four

optimisation problems.

3.6.1 Pomeau-Manneville Map

We consider the Pomeau-Manneville map [64]

T0(x) =

 x(1 + (2x)α), x ∈ [0, 1/2);

2x− 1, x ∈ [1/2, 1]
, (3.6.1)

with parameter value α = 1/2. For this parameter choice it is known that the map

T0 admits a unique absolutely continuous invariant probability measure, but only

algebraic decay of correlations [64]. With the addition of noise as per (3.4.1), the

transfer operator defined by (3.4.4) and (3.4.5) for ε = 0 becomes compact as an

operator on L2. In our numerical experiments we will use the smooth noise kernel

ρδ : [−δ, δ] → R, defined by namely ρδ(x) = N(δ) exp(−δ2/(δ2 − x2)), where N(δ)

is a normalisation factor ensuring
∫
ρδ(x) dx = 1.

We now begin to set up our numerical procedure for estimating L0, which is

a standard application of Ulam’s method [80]. Let Bn = {I1, . . . , In} denote an
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equipartition of [0, 1] into n subintervals, and set Bn = span{1I1 , . . . ,1In}. Define

the (Ulam) projection πn : L2([0, 1]) → Bn by πn(g) =
∑n

i=1

(
1

`(Ii)

∫
Ii
g(x)dx

)
1Ii .

The finite-rank transfer operator Ln := πnL0 : L2([0, 1]) → Bn can be computed

numerically. We use MATLAB’s built-in functions integral.m and integral2.m to

perform the ρ-convolution (using an explicit form of ρδ) and the Ulam projections,

respectively.

To apply the theory discussed in the earlier sections, we make the following

remarks. First note that the kernel kn of the operator Ln is given by

kn(z, y) =
n∑
i=1

1

`(Ii)

∫
Ii

k0(x, y)dx1Ii(z),

where k0 is the kernel in (3.4.5) with ε = 0. Since k0 ∈ L∞([0, 1]2), we have that

‖kn‖L∞([0,1]2) ≤ ‖k0‖L∞([0,1]2) =: κ. Furthermore, since k0 is a stochastic kernel, then

kn is also a stochastic kernel. We also have that limn→∞ ‖kn−k0‖L∞([0,1]2) = 0 since

k0 is uniformly Lipschitz in the first variable. Next, we note that if c ∈ Lip([0, 1])

then, with cn := πn(c), limn→∞ ‖cn−c‖∞ = 0. Hence, if c is uniformly Lipschitz and

since k0 is uniformly Lipschitz in the first variable then, from Propositions 3.3.13

and 3.3.21, the approximate k̇n (in Propositions 3.3.13 and 3.3.21) converge in L∞

to the optimal k̇ (in (3.3.5) and (3.3.21), respectively). Also, the assumptions for

Propositions 3.5.5 and 3.5.10 follow from the points above and the fact that T0 and

ρδ satisfy assumptions (T1) and (T2).

Figure 3.2 shows the column-stochastic matrix corresponding to Ln for δ = 0.1.

Approximations to the invariant probability densities for our stochastic dynamics

are displayed in Figure 3.3 (left) for large and small noise supports. A lower level

of noise permits greater concentration of invariant probability mass near the fixed

point x = 0 of the map T0. Also shown in Figure 3.3 (right) are the estimated

eigenfunctions corresponding to the second-largest eigenvalue of Ln. The signs of

these second eigenfunctions split the interval [0, 1] into left and right hand portions,

broadly indicating that the slow mixing is due to positive mass near x = 0 and

negative mass away from x = 0 [20]; see [36] for further discussion of this point in

the Pomeau-Manneville setting.
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Figure 3.2: Transition matrix for the system (3.4.1) generated by the Pomeau-
Manneville map T0 (3.6.1). The additive noise in (3.4.1) is drawn according to ρδ
with δ = 1/10.

Figure 3.3: Approximate invariant densities (left) and eigenfunctions corresponding
to the 2nd largest eigenvalue of L0 (right) for the system (3.4.1) with T0 given by
the Pomeau-Manneville map (3.6.1). The additive noise {ωn} is drawn according
to ρδ with δ taking the values 1/10 (blue) and

√
6/100 (red).

Kernel Perturbations

We use the monotonically increasing observation function c(x) = − cos(x). In order

to estimate k̇ as given in (3.3.5) we use the approximate version k̇n from (3.3.12),

with the ingredients fn (obtained as the leading eigenvector of Ln), cn (obtained

as πn(c)), and (Id − L∗n)−1cn (obtained as a vector y ∈ Rn by numerically solving

the linear system (Id − L∗n)y = cn, f
>
n y = 0). Figure 3.4 shows the optimal kernel

perturbations k̇n arising from (3.3.12) with n = 500. Because c is an increasing
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Figure 3.4: Optimal kernel perturbations for the Pomeau-Manneville map to max-
imise the change in expectation of c(x) = − cos(x), computed using (3.3.12) with
n = 500 subintervals. Left: δ = 1/10, Right: δ =

√
6/100.

function, intuitively one might expect the kernel perturbation to try to shift mass

in the invariant density from left to right. Broadly speaking, this is what one sees in

the high-noise case in Figure 3.4 (left): vertical strips typically have red above blue,

corresponding to a shift of mass to the right in [0, 1]. The main exception to this

is around the y-axis value of 1/2, where red is strongly below blue along vertical

strips. This is because at the next iteration, these red regions will be mapped near

x = 1 and achieve the highest value of c. In the low-noise case of Figure 3.4 (right),

we see a similar solution with higher spatial frequencies, and strong perturbations

near the critical values of x = 0 and T0(x) = 1/2.

To investigate the optimal kernel perturbation to maximally increase the rate of

mixing in the stochastic system, we use the expression k̇ in (3.3.21). The approx-

imate version k̇n in (3.3.26) requires estimates of the left and right eigenfunctions

of L0 corresponding to the second largest eigenvalue λ; these are obtained directly

as eigenvectors of Ln. Figure 3.5 shows the resulting optimal kernel perturbations.

Because the fixed point at x = 0 is responsible for the slow algebraic decay of

correlations for the deterministic dynamics of T0, the fixed point will also play a

dominant role in the mixing rate of the stochastic system for low to moderate levels

of noise. Indeed, Figure 3.5 shows that the optimal perturbation concentrates its

effort in a neighbourhood of the fixed point, and pushes mass away from the fixed

point as much as possible. This is particularly extreme in the low noise case of
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Figure 3.5: Optimal kernel perturbation for the Pomeau-Manneville map to max-
imally increase the mixing rate, computed with n = 500 subintervals. Left:
δ = 1/10, Right: δ =

√
6/100.

Figure 3.5 (right) with the perturbation almost exclusively concentrated in a small

neighbourhood of x = 0.

Map Perturbations

We now turn to the problem of finding the unique map perturbation Ṫ that max-

imises the change in expectation of the observation c(x) = − cos(x). We use the

expression4 (3.5.7) and its approximate counterpart (3.5.13). The objects fn and

(Id − L∗n)−1cn are computed exactly as before in Section 3.6.1. The action of the

operator G in (3.5.7) is computed using MATLAB’s built-in function integral.m

using an explicit form of dρδ/dx for dρ/dx in (3.5.7).

Figure 3.6 (left) shows the optimal Ṫ for the two noise amplitudes δ = 1/10 and

δ =
√

6/100. Figure 3.6 (right) illustrates the Pomeau-Manneville map (black) with

perturbed maps T0 +Ṫ /100. We have chosen a scale factor of 1/100 for visualisation

purposes; one should keep in mind we are optimising for an infinitesimal change in

the map. Figure 3.7 shows the kernel derivatives k̇ corresponding to the optimal map

derivatives Ṫ for the two noise levels. These kernel derivatives have a restricted form

because they arise purely from a derivative in the map. One may compare Figure

3.7 with Figure 3.4 and note that the kernel derivative in Figure 3.7 (left) attempts

4Note that since T−1
0 ({0, 1}) is a finite set, we may take l > 0 as small as we like. In the

computations we set l = 0, so that F̃l = [0, 1] mod `.
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Figure 3.6: Left: Optimal map perturbation Ṫ for the Pomeau-Manneville map to
maximise the change in expectation of c(x) = − cos(x), computed using (3.5.13)
with n = 500. Right: Illustration of T0 + Ṫ /100.

Figure 3.7: Kernel perturbations corresponding to the optimal map perturbations
in Figure 3.6. Left: δ = 1/10, Right: δ =

√
6/100.

to follow the general structure of the kernel derivative in Figure 3.4 (left), while

obeying its structural restrictions arising from the less flexible map perturbation.

The map perturbation that maximally increases the rate of mixing is a par-

ticularly interesting question. Our computations use (3.5.21) and its approximate

counterpart (3.5.23). The computations follow as in Section 3.6.1 with the action

of G computed as above. Figure 3.8 (left) shows the optimal Ṫ for the two noise

amplitudes δ = 1/10 and δ =
√

6/100. A sharp map perturbation away from

x = 0 is seen for both noise levels, with the perturbation sharper for the lower
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Figure 3.8: Left: Optimal map perturbation Ṫ for the Pomeau-Manneville map to
maximise the change in the mixing rate, computed using (3.5.23) with n = 500.
Right: Illustration of T0 + Ṫ /100.

noise case. This result corresponds well with the results seen for the optimal ker-

nel perturbations in Figure 3.5, where probability mass was primarily moved away

from x = 0. Figure 3.8 (right) illustrates the Pomeau-Manneville map (black) with

perturbed maps T0 + Ṫ /100, where again the factor 1/100 is just for illustrative

purposes. When inspecting the kernel derivatives k̇ corresponding to the optimal

map perturbations Ṫ in Figure 3.9, we see similar behaviour to those in Figure 3.8.

Figure 3.9: Kernel perturbations corresponding to the optimal map perturbations
in Figure 3.8. Left: δ = 1/10, Right: δ =

√
6/100.
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3.6.2 Interval Exchange Map

In our second example, we consider a weakly mixing interval exchange map because

of an existing literature in mixing optimisation for these classes of maps with the

addition of noise. Avila and Forni [5] prove that a typical interval exchange is

either weak mixing or an irrational rotation. We use a specific weak-mixing [78]

interval exchange map T0 with interval permutation (1234) 7→ (4321) and interval

lengths given by the normalised entries of the leading eigenvector of the matrix
13 37 77 47

10 30 60 37

3 10 24 14

4 10 19 12

; see equation (51) in [78]. We again form a stochastic system

using the same noise kernels as for the Pomeau-Manneville map in Section 3.6.1;

we also note that the theoretical justification for the convergence of k̇n to k̇ in

Propositions 3.3.13 and 3.3.21 is as discussed in Section 3.6.1. The mixing properties

of this map have been studied in [29]. Figure 3.10 shows the column-stochastic

matrix corresponding to Ln for n = 500 and δ = 0.1.

Figure 3.10: Transition matrix for the system (3.4.1) for ε = 0 and T0 given by
the interval exchange map above using n = 500 subintervals. The additive noise is
drawn from the density ρδ with δ = 1/10.

Kernel Perturbations

We use the same observation function c(x) = − cos(x) as in the Pomeau-Manneville

case study, and estimate the optimal kernel perturbation k̇ that maximally increases

the expectation of c in an identical fashion. In broad terms, one again sees that
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k̇ attempts to shift invariant probability mass to the right in [0, 1]. In the low

Figure 3.11: Optimal kernel perturbation for the interval exchange map to maximise
the change in expectation of c(x) = − cos(x), computed using (3.3.12) with n = 500
subintervals. Left: δ = 1/10, Right: δ =

√
6/100.

noise case, Figure 3.11 (right), displays similar behaviour to the higher noise case of

Figure 3.11 (left) but with lower noise, the deterministic dynamics plays a greater

role and additional preimages are taken into account, leading to a more oscillatory

optimal k̇.

To investigate the optimal kernel perturbation to maximally increase the rate of

mixing in the stochastic system, we use the expression k̇ in (3.3.21). The method

of numerical approximate is identical to that used for the Pomeau-Manneville map.

Figure 3.12 shows the signed distribution of mass that is responsible for the slowest

real5 exponential rate of decay in the stochastic system. The second eigenfunctions

become more oscillatory as the level of noise decreases, and as must be the case, the

magnitude of the second eigenvalue increases from λ ≈ −0.7476 to λ ≈ −0.9574.

Because the sign of these eigenvalues is negative, one expects a pair of almost-2-

cyclic sets, consisting of three subintervals each, given by the positive and negative

supports of the eigenfunctions. Figure 3.13 shows the approximate optimal kernel

perturbations. For the high noise situation (Figure 3.13 (left)) it is difficult to

interpret exactly why the solution looks as it does, however the sharp horizontal

changes are clearly present at preimages of the deterministic dynamics. For the

5In our numerical experiments the largest magnitude real eigenvalue appears as the sixth (resp.
fourth) eigenvector of L500 for δ = 1/10 (resp. δ =

√
6/100). Slightly larger complex eigenvalues

are present, but we do not investigate these in order to make the dynamic interpretation more
straightforward.

117



Figure 3.12: Approximate second eigenfunctions of the transfer operator L0 of the
system (3.4.1) with T0 given by the interval exchange map above. The additive
noise {ωn} is drawn from the density ρδ with δ taking the values 1/10 (blue) and√

6/100 (red).

Figure 3.13: Optimal kernel perturbation for the interval exchange map to max-
imally increase the mixing rate, computed with n = 500 subintervals. Left:
δ = 1/10, Right: δ =

√
6/100.

low noise case (Figure 3.13 (right)) it appears that there is an alternating shifting

of mass left and right with alternating “red above blue” and “blue above red”.

This leads to greater mixing at smaller spatial scales than is possible in a single

iteration of the deterministic interval exchange. We anticipate that decreasing the

noise amplitude further will result in more rapid alternation of “red above blue”

and “blue above red”. This is because diffusion mixes at small scales, but as this

mixing effect is decreased, small scale mixing now has to be accessed by increasing

oscillation in the kernel.
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Map Perturbations

The computations in this section follow those of Section 3.6.1 for map perturbations.

Figure 3.14 (left) shows the optimal map perturbations Ṫ at two different noise

levels. Figure 3.14 (right) illustrates T0 + Ṫ /100 for the two different levels of

Figure 3.14: Left: Optimal map perturbation Ṫ for the interval exchange map to
maximise the change in expectation of c(x) = − cos(x), computed using (3.5.13)
with n = 500. Right: Illustration of T0 + Ṫ /100.

noise. The kernel perturbations generated by these optimal map perturbations are

displayed in Figure 3.15. If one compares the kernel perturbations in Figure 3.15

Figure 3.15: Kernel perturbations corresponding to the optimal map perturbations
in Figure 3.14. Left: δ = 1/10, Right: δ =

√
6/100.

with those more flexible kernel perturbations in Figure 3.11, one sees that the two

sets of kernel perturbations are broadly equivalent with one another in terms of the

relative positions of the positive and negative (red and blue) perturbations.
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The question of perturbing noisy interval exchange maps to increase the mixing

rate has been studied by a number of authors [4, 29, 79]. The original interval

exchange T0 cuts and shuffles the unit interval into an increasing number of smaller

pieces, assisting the small scale mixing of diffusion. Our results in Figure 3.16

(left) show an oscillatory Ṫ , with increasing oscillations as the noise amplitude

decreases. Thus, the optimisation attempts to include some additional mixing by

Figure 3.16: Left: Optimal map perturbation Ṫ for the interval exchange map to
maximise the change in the mixing rate, computed using (3.5.23) with n = 500.
Right: Illustration of T0 + Ṫ /100.

rapid local warping of the phase space. It is plausible that this additional warping

effect enhances mixing beyond the rigid shuffling of the interval exchange. An

illustration of T0+Ṫ /100 is given in Figure 3.16. We emphasise that the factor 1/100

Figure 3.17: Kernel perturbations corresponding to the optimal map perturbations
in Figure 3.16. Left: δ = 1/10, Right: δ =

√
6/100.
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is only for visualisation purposes and for smaller factors, the perturbed map would

remain a piecewise homeomorphism (modulo small overshoots at the boundaries,

which are taken care of by the reflecting boundary conditions on the noise). This

type of general map optimisation has not been attempted before and we believe

opens up interesting new directions in the field of mixing optimisation.

121





Chapter 4

Linear Response for the Dynamic Laplacian and Finite-Time

Coherent Sets

In this final chapter, we will apply the idea of linear response to quantify the re-

sponse of finite-time mixing properties in dynamical systesm by developing theory

to describe the response of finite-time coherent sets. In Section 4.1 we introduce

differentiability hypotheses on the dynamics. In Section 4.2 we define the dynamic

Laplacian, coherent sets, and the linear response problem. Section 4.3 contains the

proof of the weak differentiability of the dynamic Laplacian with respect to the per-

turbing parameter, and the proof of the existence of linear response of eigenfunctions

in the case when we have Dirichlet boundary conditions. In Section 4.4 we derive

a linear system to compute the linear response, and demonstrate that the linear

response results obtained for Dirichlet boundary conditions also hold for Neumann

boundary conditions. Section 4.5 develops FEM-based approaches to compute the

linear response, and we conclude in Section 4.6 with numerical experiments.

4.1 Perturbations

Let Ω ⊂ Rn be a smooth compact subset of Rn that is either boundaryless or has

a smooth boundary. For ε0 > 0 small, using a parameter ε ∈ (−ε0, ε0), define a

family of maps {Tε}ε∈(−ε0,ε0), where Tε : Ω → Tε(Ω). We think of T0 as governing

the original, unperturbed dynamics.

Before we specify the precise relationship between the unperturbed and per-

turbed maps, we note some special families of perturbations we have in mind:
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1. Tε is given by the flow map ϕt0,t1ε of some ordinary differential equation

∂tx = v(t, x, ε),

where the vector field v depends on a parameter ε. In this case,

Tε(x) := ϕt0,t1ε (x) = ϕt0,t10 (x) + ε∂εϕ
t0,t1
ε (x)|ε=0 + o(ε),

where t0, t1 ∈ R are chosen such that the flow map is defined for all x. Under

appropriate assumptions on v we have Tε = T0 + εṪ + o(ε), where Ṫ (x) :=

∂εϕ
t0,t1
ε (x)|ε=0 satisfies the variational equation

∂tṪ (x) = ∂xv(t, T0(x), 0)Ṫ (x) + ∂εv(t, T0(x), 0).

2. As a further specialisation of 1. we interpret the time t itself as the parameter

ε, i.e. we consider

∂tx = v(x, t)

with the flow map ϕt0,t1 . In this case we have that

Tε(x) := ϕt0,t1+ε(x)

= ϕt0,t1(x) + ε
∂

∂τ
ϕt0,τ

∣∣∣∣
τ=t1

(x) + o(ε)

= T0(x) + εṪ (x) + o(ε),

where

Ṫ (·) :=
∂

∂τ
ϕt0,τ

∣∣∣∣
τ=t1

(·) = v(·, t1).

The precise setting we consider is the following: Let Diff2(Ω,Rn) be the space

of C2-diffeomorphisms from Ω to Rn which is endowed with the C2-norm

‖f‖C2(Ω,Rn) =
∑

αj ,|α|≤2

max
x∈Ω

∣∣∣∣ ( ∂|α|

∂xα1
1 . . . ∂xαnn

f

)
(x)

∣∣∣∣
Rn
,
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where α = (α1, . . . , αn), 0 ≤ αj for 1 ≤ j ≤ n, |α| :=
∑n

j=1 αj, (xi) are the coordi-

nates on Ω and ∂|α|

∂x
α1
1 ...∂xαnn

f =
(

∂|α|

∂x
α1
1 ...∂xαnn

f1, . . . ,
∂|α|

∂x
α1
1 ...∂xαnn

fn

)
, where fi : Rn → R.

We then assume that the map ε 7→ Tε is in C1((−ε0, ε0),Diff2(Ω,Rn)). From Tay-

lor’s theorem (see [61], XIII §6) for sufficiently small ε0 > 0, one has

Tε = T0 + εṪ +Rε (4.1.1)

for ε ∈ (−ε0, ε0), where the maps x 7→ Ṫ (x) and x 7→ Rε(x) are in Diff2(Ω,Rn), and

‖Rε‖C2(Ω,Rn) = o(ε).

4.2 Coherent Sets Via Dynamic Isoperimetry and the Linear

Response Problem

We are interested in analysing the response of coherent sets to perturbations of the

dynamics. Finite-time coherent sets can be obtained using the dynamic Laplacian.

In this section (following the descriptions in [28] and [33]) we will discuss the method

of dynamic isoperimetry and present the required set up to define the dynamic

Laplacian and coherent sets. We consider the simple setting of Tε volume-preserving

and one application of Tε, however, the methods we propose are easily extendible

to non-volume-preserving Tε and multiple applications of Tε.

In [28], the following dynamic isoperimetric problem was considered: Given a

manifold Ω, how can it be disconnected by a codimension 1 manifold Γ so that the

evolved size of Γ is minimal relative to the volume of the two disconnected pieces

Ω1,Ω2 of Ω. To address this, consider the dynamic Cheeger constant

h(Γ) :=
1
2
(`n−1(Γ) + `n−1(T0(Γ)))

min{`(Ω1), `(Ω2)}
, (4.2.1)

where `n−1 is the codimension 1 volume and ` is the n−dimensional volume. If we

can solve the problem

h := min{h(Γ) : Γ is a C∞ codimension 1 manifold disconnecting Ω}, (4.2.2)
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then the Γ achieving the minimum generates material disconnectors in the phase

space that remain coherent since they resist filamentation under the dynamics. In

[28], the following dynamic Federer-Fleming theorem was proved:

h = s,

where

s := inf
f∈C∞(Ω,R)

1
2
(‖∇f‖1 + ‖∇T0,∗f‖1)

infα∈R ‖f − α‖1

(4.2.3)

is the dynamic Sobolev constant and T0,∗f := f ◦ T−1
0 . Note that with this result

we are able to address the geometric problem of finding Γ by analytical methods.

By considering the L2 optimisation in (4.2.3), the problem can be solved exactly by

considering the following eigenproblem:

∆D
0 v = λv on int(Ω), (4.2.4)

∇v • A0ν = 0 on ∂Ω, (4.2.5)

where ∆D
0 := 1

2

(
∆Ω + T ∗0 ∆T0(Ω)T0,∗

)
, T ∗0 f := f ◦T0, ∆Ω is the Laplacian1 on Ω, ν is

the unit outward normal to ∂Ω and A0 := 1
2

(
Id + (DT>0 DT0)−1

)
. The eigenfunction

corresponding to the second eigenvalue of the eigenproblem (4.2.4)–(4.2.5) is the

function achieving the minimum of an L2 version of the optimisation problem in

(4.2.3). We note that in the proof of the Federer-Fleming theorem, the set Γ

minimising h(Γ) is obtained from a level set of the function achieving the infimum

in the definition of the Sobolev constant. Thus, the level sets of the eigenfunctions

of the eigenvalue problem (4.2.4)–(4.2.5) provide candidates for coherent sets (see

[28,32,33,35,37] for more on extracting coherent sets from the eigenfunctions).

Following the approach in [33], we consider the following weak formulation of

the eigenvalue problem (4.2.4)–(4.2.5):

− 1

2

(∫
Ω

∇u0 • ∇ϕ d`+

∫
T0(Ω)

∇(T0,∗u0) • ∇(T0,∗ϕ) d`

)
= λ0

∫
Ω

u0ϕ d` (4.2.6)

1We restrict ourselves to the Euclidean metric here and write ∆ = ∆Ω = ∆T0(Ω) =
∑n

i=1
∂2

∂x2
i
.
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for all ϕ ∈ V , where V = H1(Ω) or H1
0 (Ω), depending on the boundary condition.

Note that if we let ϕ = u0 in (4.2.6), the right hand side is positive and so is the

bracket on the left hand side; thus, the eigenvalues λ0 are negative (or 0). Note

further that for ϕ ∈ V we have

−
∫
T0(Ω)

∇(T0,∗u0) • ∇(T0,∗ϕ) d` = −
∫

Ω

(DT>0 DT0)−1∇u0 • ∇ϕ d`

=

∫
Ω

div((DT>0 DT0)−1∇u0) · ϕ d`,

where DT0 is the Jacobian matrix of T0; we note that in the equations immediately

above, the first equality is obtained in [33] and the second one follows from the

divergence theorem and, for the Dirichlet boundary conditions, the fact that ϕ is

zero on the boundary. Hence, we have that

∫
Ω

∆D
0 u0 · ϕ d` =

∫
Ω

div
(
A0∇u0

)
· ϕ d`. (4.2.7)

Viewing the dynamic Laplacian in divergence form (right hand side above) simplifies

the perturbation analysis we will require.

Similarly to the above discussion, we compute coherent sets of Tε, for ε ∈

(−ε0, ε0), via the computation of the eigenfunction uε of the dynamic Laplacian

∆D
ε :=

1

2
(∆ + T ∗ε ∆Tε,∗)

at the leading eigenvalue λε 6= 0. Thus, to answer the question of how coherent sets

of Tε depend on ε, we are going to show that the map ε 7→ uε is differentiable at 0

as a map from (−ε0, ε0) to H1
0 (Ω) (or H1(Ω)) and devise a method for computing

the linear response u̇ := d
dε
uε|ε=0 of uε.

4.3 Existence of Linear Response

In this section we show that the map ε 7→ uε is differentiable with respect to ε

by considering the dynamic Laplacian ∆D
ε as a second order elliptic operator. We

begin with a lemma about the regularity of the coefficient functions of the dynamic

Laplacian. Using this result, we show in Theorem 4.3.2 that we can differentiate

127



the perturbed dynamic Laplacian with respect to ε. Finally, we state a regularity

theorem for the spectral data of elliptic operators and use it to obtain the regularity

of the map ε 7→ uε.

Let a0 := (a0
11, . . . , a

0
nn) and aε := (aε11, . . . , a

ε
nn) be the n2-tuple of coefficients of

the elliptic operators ∆D
0 and ∆D

ε (see [28] for proof of uniform ellipticity). We let

Qsym =
1

2
(Q+Q>)

denote the symmetric part of some matrix Q and we denote by B(X, Y ) the space

of bounded linear maps from the Banach space X to Y (thus, B(Rn) = B(Rn,Rn)

denotes the bounded linear maps from Rn to Rn).

Lemma 4.3.1. Let ε ∈ (−ε0, ε0). Then, the function x 7→ aε(x) is in C1(Ω,R)n
2
.

Furthermore, there exists a function x 7→ ȧ(x) in C1(Ω,R)n
2

such that

lim
ε→0

∥∥∥∥aε − a0

ε
− ȧ
∥∥∥∥
C1(Ω,R)n2

= 0, (4.3.1)

where the matrix of coefficients Ȧ := (ȧij) is given by

Ȧ = −
(

(DT0)−1(DṪ )(DT0)−1(DT0)−>
)sym

. (4.3.2)

Proof. The coefficient matrix of ∆D
ε is Aε = 1

2

(
Id + (DT>ε DTε)

−1
)

(see derivation

of (4.2.7)). Since ε 7→ Tε is in C1((−ε0, ε0),Diff2(Ω,Rn)), we have that for any

ε ∈ (−ε0, ε0) the map x 7→ Tε(x) is in Diff2(Ω,Rn); thus, the maps x 7→ DTε(x)

and x 7→ DT−1
ε (x) are in C1(Ω,B(Rn)). From (DT>ε DTε)

−1 = DT−1
ε DT−>ε and the

product rule, the map x 7→ Aε(x) = 1
2

(
Id +DT−1

ε (x)DT−>ε (x)
)

is in C1(Ω,B(Rn));

equivalently, aε, the collection of functions forming the elements of the square matrix

Aε, is in C1(Ω,R)n
2
.

Next, we recall from (4.1.1) that for sufficiently small ε0 > 0, we have that

Tε = T0 + εṪ +Rε for ε ∈ (−ε0, ε0), where ‖Rε‖C2(Ω,Rn) = o(ε). Also, we have

(DTε)
−1 =

(
DT0 + εDṪ +DRε

)−1

=
(
DT0(Id + (DT0)−1(εDṪ +DRε)))

)−1
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=
(

Id + (DT0)−1(εDṪ +DRε)
)−1

(DT0)−1.

Using the fact that ‖Rε‖C2(Ω,Rn) = o(ε), we have that ‖DRε‖C1(Ω,B(Rn)) = o(ε) and

so there exists C <∞, that is independent of ε, such that

‖(DT0)−1(εDṪ +DRε)‖C1(Ω,B(Rn))

≤ ‖(DT0)−1‖C1(Ω,B(Rn))

(
|ε|‖DṪ‖C1(Ω,B(Rn)) + ‖DRε‖C1(Ω,B(Rn))

)
≤ |ε|‖(DT0)−1‖C1(Ω,B(Rn))

(
‖DṪ‖C1(Ω,B(Rn)) + C

)
.

Since ε is small, we have that

|ε| <
(
‖(DT0)−1‖C1(Ω,B(Rn))

(
‖DṪ‖C1(Ω,B(Rn)) + C

))−1

and therefore ‖(DT0)−1(εDṪ + DRε)‖C1(Ω,B(Rn)) < 1. Thus, we can use the Neu-

mann series representation to obtain

(DTε)
−1

=

(
Id− (DT0)−1(εDṪ +DRε) +

(
(DT0)−1(εDṪ +DRε)

)2

− · · ·
)

(DT0)−1

=
(

Id− ε(DT0)−1DṪ + R̂ε

)
(DT0)−1

= (DT0)−1 − ε(DT0)−1(DṪ )(DT0)−1 + R̂ε(DT0)−1,

where R̂ε = (DT0)−1DRε +
∑

i≥2(−1)i
(

(DT0)−1(εDṪ +DRε)
)i

. Noting that

‖R̂ε‖C1(Ω,B(Rn)) ≤ ‖(DT0)−1‖C1(Ω,B(Rn))‖DRε‖C1(Ω,B(Rn))

+
∑
i≥2

‖(DT0)−1‖i
C1(Ω,B(Rn))

(
ε‖DṪ‖C1(Ω,B(Rn)) + ‖DRε‖C1(Ω,B(Rn))

)i
,

and using the fact that ‖DRε‖C1(Ω,B(Rn)) = o(ε), we have that ‖R̂ε‖C1(Ω,B(Rn)) =

o(ε). Hence, we have

(DTε)
−1(DTε)

−>
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= (DT0)−1(DT0)−>

− ε
(

(DT0)−1(DṪ )(DT0)−1(DT0)−> + (DT0)−1(DT0)−>(DṪ )>(DT0)−>
)

+ R̃ε

= (DT0)−1(DT0)−> + 2εȦ+ R̃ε,

where ‖R̃ε‖C1(Ω,B(Rn)) = o(ε). From (DT>ε DTε)
−1 = (DTε)

−1(DTε)
−>, we conclude

that ‖A0−Aε−εȦ‖C1(Ω,B(Rn)) = o(ε) and therefore ‖aε−a0−εȧ‖C1(Ω,R)n2 = o(ε).

We will soon use the lemma above to state a result about the differentiability

of the dynamic Laplace operator in a suitable setting. Let

Lb :=
n∑

i,j=1

∂i(bij∂j) (4.3.3)

be a second order differential operator, where b := (b11, . . . , bnn) ∈ Ck(Ω,R)n
2
, for

k ≥ 1. We denote by Λ(Lb) the set of pairs (λ, u) ∈ R×H1
0 (Ω) that satisfy

Lbu = λu in Ω,

u = 0 on ∂Ω
(4.3.4)

in a weak sense; that is

−
∫

Ω

B∇u • ∇ϕd` = λ

∫
Ω

u · ϕd` for all ϕ ∈ H1
0 (Ω),

where B = (bij) is the coefficient matrix. Note that if we let b = aε, then Lb = ∆D
ε .

Theorem 4.3.2. Let ∆̇ :=
∑n

i,j=1 ∂i(ȧij∂j), where (ȧ11, . . . , ȧnn) = ȧ is as in

Lemma 4.3.1. Then, ∆̇ is a weak derivative of ∆D
ε with respect to ε; that is, for

ψ, ϕ ∈ H1
0 (Ω)

lim
ε→0

∣∣∣∣ ∫
Ω

(
(∆D

ε −∆D
0 )ψ

ε
− ∆̇ψ

)
· ϕd`

∣∣∣∣ = 0. (4.3.5)
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Proof. We note that from Lemma 4.3.1 we can write aεij = a0
ij + εȧij + rεij, where ε

is small and ‖rεij‖C1(Ω,R) = o(ε). We compute

∣∣∣∣ ∫
Ω

(
∆D
ε −∆D

0 − ε∆̇
)
ψ · ϕd`

∣∣∣∣ =

∣∣∣∣ ∫
Ω

n∑
i,j=1

(aεij − a0
ij − εȧij)∂jψ ∂iϕd`

∣∣∣∣
=

∣∣∣∣ ∫
Ω

n∑
i,j=1

rεij∂jψ ∂iϕd`

∣∣∣∣
≤

n∑
i,j=1

‖rεij‖C0(Ω,R)‖∇ψ‖L2(Ω)‖∇ϕ‖L2(Ω)

= o(ε).

(4.3.6)

Having established the appropriate setting and conditions required for the dif-

ferentiability of the dynamic Laplacian, we next state, and then immediately apply,

the theorem we require to obtain the differentiability of the spectral data with

respect to the parameter ε.

Theorem 4.3.3 ([48]). Let Ω ⊂ Rn be a bounded domain and a0 ∈ Ck(Ω,R)n
2
,

where k ≥ 1, be coefficients of the uniformly elliptic operator La0. Let (λ0, u0) ∈

Λ(La0) and assume λ0 is algebraically simple. Then there exists a neighbourhood

U ⊂ Ck(Ω,R)n
2

of a0 and functions of Ck class λ : U → R and u : U → H1
0 (Ω)

such that:

1. λ(a0) = λ0 and u(a0) = u0;

2. (λ(a),u(a)) ∈ Λ(La) for every a ∈ U.

Theorem 4.3.4. Let (λε, uε) ∈ Λ(Laε), where ε ∈ (−ε0, ε0), aε be the coefficient

functions of ∆D
ε and λ0 be algebraically simple. Then there exists a function u̇ ∈

H1
0 (Ω) such that

lim
ε→0

∥∥∥∥uε − u0

ε
− u̇
∥∥∥∥
H1

0 (Ω)

= 0.

Furthermore, there exists λ̇ ∈ R such that

lim
ε→0

∣∣∣∣λε − λ0

ε
− λ̇
∣∣∣∣ = 0.
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Proof. From Lemma 4.3.1, we have a0 ∈ C1(Ω,R)n
2
; hence, we can apply Theorem

4.3.3 since La0 is uniformly elliptic (see [28]) and λ0 is assumed simple. Thus, there

exists a neighbourhood U 3 a0 such that the maps u : U → H1
0 (Ω) and λ : U → R

are C1. Specifically, there exists bounded linear maps B1 : C1(Ω,R)n
2 → H1

0 (Ω)

and B2 : C1(Ω,R)n
2 → R satisfying

lim
‖aε−a0‖

C1(Ω,R)n
2→0

‖u(aε)− u(a0)−B1(aε − a0)‖H1
0 (Ω)

‖aε − a0‖C1(Ω,R)n2

= 0

and

lim
‖aε−a0‖

C1(Ω,R)n
2→0

|λ(aε)− λ(a0)−B2(aε − a0)|
‖aε − a0‖C1(Ω,R)n2

= 0.

Furthermore, from Taylor’s theorem (see [61], XIII, §6), we have that

u(aε) = u(a0) +B1(aε − a0) + Uε, (4.3.7)

where ‖Uε‖H1
0 (Ω) = o(‖aε − a0‖C1(Ω,R)n2 ), and

λ(aε) = λ(a0) +B2(aε − a0) + lε, (4.3.8)

where |lε| = o(‖aε − a0‖C1(Ω,R)n2 ).

Let u̇ := B1(ȧ) ∈ H1
0 (Ω) and λ̇ := B2(ȧ). Using the fact that we can write

aεij = a0
ij + εȧij + rεij, where ‖rεij‖C1(Ω,R) = o(ε), and equations (4.3.7) and (4.3.8),

the results follow.

4.4 Derivation of the Linear Response Formula

Having established the existence of the linear response u̇, in this section we will

derive the linear response formula for computing u̇ (this will be in the form of a

linear system); we also obtain the formula for λ̇. We will do this for Dirichlet

boundary conditions first and in Section 4.4.1 we will consider Neumann boundary

conditions.
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Theorem 4.4.1. Let λ̇ and u̇ be as in Theorem 4.3.4 and ∆̇ be as in Theorem

4.3.2. Then,

λ̇ =

∫
Ω

∆̇u0 · u0d`∫
Ω
u0 · u0d`

(4.4.1)

and the linear response u̇ ∈ H1
0 (Ω) is a solution to the weak form of the linear

system  (∆D
0 − λ0I)u̇ = (λ̇I − ∆̇)u0 in Ω

u̇ = 0 on ∂Ω;
(4.4.2)

that is, for all ϕ ∈ H1
0 (Ω),

−
∫

Ω

A0∇u̇ • ∇ϕ d`− λ0

∫
Ω

u̇ · ϕ d` = λ̇

∫
Ω

u0 · ϕ d`+

∫
Ω

Ȧ∇u0 • ∇ϕ d`. (4.4.3)

Furthermore, if we restrict the linear response to V0 := span{u0}⊥ ⊂ H1
0 (Ω), then

u̇∗ = u̇−〈u̇, u0〉H1
0 (Ω)u0 ∈ V0, where u̇ is a solution to (4.4.3), is the unique solution.

Proof. We show the result in two steps. In the first step, we compute the weak

derivative of λεuε with respect to ε and in the second step we compute the weak

derivative of ∆D
ε uε with respect to ε. Since these are equal, because uε is the

eigenfunction associated to the eigenvalue λε, we show that the result follows. Before

proceeding, we note that for all ε ∈ (−ε0, ε0), we normalise the eigenfunctions uε

as follows: ‖uε‖H1
0 (Ω) = 1.

Sublemma 4.4.2. For ϕ ∈ H1
0 (Ω),

lim
ε→0

∫
Ω

(
λεuε − λ0u0

ε

)
· ϕd` =

∫
Ω

(
λ0u̇+ λ̇u0

)
· ϕd`.

Proof. From Theorem 4.3.4 we have that uε = u0 + εu̇+ gε and λε = λ0 + ελ̇+ µε,

where ‖gε‖H1
0 (Ω) = o(ε) and |µε| = o(ε). Hence, we have

λεuε = λ0u0 + ε(λ0u̇+ λ̇u0) + f ε,

where f ε = u0µ
ε + ε2u̇λ̇ + εu̇µε + gε · (λ0 + ελ̇ + µε). Noting that gε and µε are

o(ε), we apply Holder’s inequality to obtain
∣∣ ∫

Ω
f ε · ϕd`

∣∣ = o(ε); the result then

follows.
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Sublemma 4.4.3. For ϕ ∈ H1
0 (Ω),

lim
ε→0

∫
Ω

(
∆D
ε uε −∆D

0 u0

ε

)
· ϕd` =

∫
Ω

(
∆D

0 u̇+ ∆̇u0

)
· ϕd`.

Proof. From Theorem 4.3.4, uε = u0 + εu̇+ gε, where ‖gε‖H1
0 (Ω) = o(ε). Also, from

Lemma 4.3.1, aεij = a0
ij +εȧij + rεij, where ‖rεij‖C1(Ω,R) = o(ε). Hence, by considering

the expansion ∆D
ε = ∆D

0 + ε∆̇ +Gε, where Gε :=
∑n

i,j=1 ∂i(r
ε
ij∂i), we obtain

∫
∆D
ε uε · ϕd` =

∫
∆D
ε (u0 + εu̇+ gε) · ϕd`

=

∫
(∆D

0 u0 + ε∆̇u0 +Gεu0) · ϕd`+ ε

∫
(∆D

0 u̇+ ε∆̇u̇+Gεu̇) · ϕd`

+

∫
∆D
ε g

ε · ϕd`

=

∫
∆D

0 u0 · ϕd`+ ε

∫ (
∆̇u0 + ∆D

0 u̇
)
· ϕd`

+

∫ (
Gεu0 + ε2∆̇u̇+ εGεu̇+ ∆D

ε g
ε
)
· ϕd`.

If we show that ∣∣∣∣ ∫ (Gεu0 + ε2∆̇u̇+ εGεu̇+ ∆D
ε g

ε
)
· ϕd`

∣∣∣∣︸ ︷︷ ︸
I

= o(ε)

then the result follows. We have

I ≤
∣∣∣∣ ∫ Gεu0 · ϕd`

∣∣∣∣+ ε2

∣∣∣∣ ∫ ∆̇u̇ · ϕd`
∣∣∣∣+ |ε|

∣∣∣∣ ∫ Gεu̇ · ϕd`
∣∣∣∣+

∣∣∣∣ ∫ ∆D
ε g

ε · ϕd`
∣∣∣∣

= o(ε) + ε2

∣∣∣∣ ∫ ∆̇u̇ · ϕd`
∣∣∣∣︸ ︷︷ ︸

I′

+o(ε) +

∣∣∣∣ ∫ ∆D
ε g

ε · ϕd`
∣∣∣∣︸ ︷︷ ︸

II′

,

where we obtained the last line by using (4.3.6) with ψ = u0 and ψ = u̇. From

Theorem 4.3.2, we have that
∣∣ ∫ ∆̇u̇ · ϕd`

∣∣ is bounded since u̇, ϕ ∈ H1
0 (Ω); hence,

I ′ = o(ε).
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We also have

II ′ ≤
∣∣∣∣ ∫ ∆D

0 g
ε · ϕd`

∣∣∣∣︸ ︷︷ ︸
I′′

+ |ε|
∣∣∣∣ ∫ ∆̇gε · ϕd`

∣∣∣∣︸ ︷︷ ︸
II′′

+

∣∣∣∣ ∫ Gεgε · ϕd`
∣∣∣∣︸ ︷︷ ︸

III′′

.

Using the fact that ‖gε‖H1
0 (Ω) = o(ε), we can use the argument in (4.3.6) with ∆D

0

and ∆̇ (instead of ∆D
ε −∆D

0 − ε∆̇), to conclude that I ′′ = o(ε) = II ′′. Furthermore,

using the fact that ‖rεij‖C1(Ω,R) = o(ε), we can again use the argument in (4.3.6) to

obtain III ′′ = o(ε); thus, I = o(ε).

From Sublemmas 4.4.2 and 4.4.3, we immediately have that for ϕ ∈ H1
0 (Ω),

∫
Ω

(
∆D

0 u̇+ ∆̇u0

)
· ϕd` =

∫
Ω

(
λ0u̇+ λ̇u0

)
· ϕd`. (4.4.4)

Substituting ϕ = u0 into (4.4.4), the left hand side becomes

∫
Ω

u̇ ·∆D
0 u0d`+

∫
Ω

∆̇u0 · u0d` =

∫
Ω

u̇ · λ0u0d`+

∫
Ω

∆̇u0 · u0d`,

while the right hand side becomes

∫
Ω

λ0u̇ · u0d`+

∫
Ω

λ̇u0 · u0;

from these observations we obtain (4.4.1). By Green’s theorem, (4.4.4) implies

(4.4.3), which is the weak formulation of the problem (4.4.2).

Finally, we note that (λ̇I − ∆̇)u0 ∈ L2(Ω) and, by (4.4.1), we have that 〈(λ̇I −

∆̇)u0, u0〉L2 = λ̇〈u0, u0〉L2 − 〈∆̇u0, u0〉L2 = 0. Hence, by Theorem 1.2.16 [51], there

exists a solution u̇ ∈ H1
0 (Ω). All other solutions are of the form u̇ + cu0 for c ∈ R;

thus, if we restrict u̇ to V0 = span{u0}⊥, there is a unique solution u̇∗ ∈ V0, which

is the projection of a solution u̇ of (4.4.3) onto the space V0.

4.4.1 Neumann Boundary Conditions

In this section we will present the required modifications to the previous theory

which allows us to conclude that linear response exists when considering Neumann
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boundary conditions. Furthermore, we will also obtain a linear system, the weak

form of which we can use to compute the linear response.

Let W = {f ∈ H1(Ω) :
∫

Ω
fd` = 0} and ΛN(Lb) be the set of pairs (λ, u) ∈

R×W that, in a weak sense, satisfy

Lbu = λu in Ω,

∇u •Bν = 0 on ∂Ω,
(4.4.5)

where B = (bij) is the matrix of coefficient functions of the operator Lb, considered

in the form (4.3.3), and ν is the unit outward normal to ∂Ω.

Theorem 4.4.4. Let (λε, uε) ∈ ΛN(Laε), where ε ∈ (−ε0, ε0), aε be the coefficient

functions of ∆D
ε and λ0 be algebraically simple. Then there exists a function u̇ ∈ W

such that

lim
ε→0

∥∥∥∥uε − u0

ε
− u̇
∥∥∥∥
H1(Ω)

= 0.

Furthermore, there exists λ̇ ∈ R such that

lim
ε→0

∣∣∣∣λε − λ0

ε
− λ̇
∣∣∣∣ = 0.

Proof. On W we have the result of Theorem 4.3.3; that is, there existence a neigh-

bourhood U ⊂ Ck(Ω,R)n
2

and Ck functions λ : U → R and u : U → W such that

(λ(a),u(a)) ∈ ΛN(La) for all a ∈ U (this follows by noting that the isomorphism

from the Lax-Milgram theorem, which is required in the proof of Theorem 4.3.3

for elliptic operators of the form (4.3.3), exists when restricted to the subspace W

of H1(Ω)). Hence, the arguments in Theorem 4.3.4 hold in this setting; thus, the

eigenfunction uε ∈ W and the eigenvalue λε are differentiable with respect to ε.

Furthermore, we have the following analogue to Theorem 4.4.1 for the Neumann

boundary setting.

Theorem 4.4.5. Let λ̇ and u̇ be as in Theorem 4.4.4 and ∆̇ be as in Theorem

4.3.2. Then,

λ̇ =

∫
Ω

∆̇u0 · u0d`∫
Ω
u0 · u0d`

(4.4.6)
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and the linear response u̇ ∈ W is a solution to the weak form of the linear system (∆D
0 − λ0I)u̇ = (λ̇I − ∆̇)u0 in Ω

∇u̇ • A0ν = 0 on ∂Ω;
(4.4.7)

that is, for all ϕ ∈ W ,

−
∫

Ω

A0∇u̇ • ∇ϕ d`− λ0

∫
Ω

u̇ · ϕ d` = λ̇

∫
Ω

u0 · ϕ d`+

∫
Ω

Ȧ∇u0 • ∇ϕ d`. (4.4.8)

Furthermore, if we restrict the linear response to W0 := (span{u0})⊥ ∩ W , then

u̇∗ = u̇ − 〈u̇, u0〉H1(Ω)u0 ∈ W0, where u̇ is a solution to (4.4.8), is the unique

solution.

Before we prove this theorem, we note the following result.

Lemma 4.4.6. If for a sufficiently small ε0 > 0, ∇uε • Aεν = 0 on ∂Ω for all

ε ∈ (−ε0, ε0), then Ȧ∇u0 • ν + A0∇u̇ • ν = 0.

Proof. Since Aε is symmetric, Aε∇uε • ν = ∇uε •Aεν = 0 for all ε ∈ (−ε0, ε0) and

thus

A0∇u0 • ν + ε
(
Ȧ∇u0 • ν + A0∇u̇ • ν

)
+ o(ε) = 0 for all ε ∈ (−ε0, ε0).

Using the fact that A0∇u0•ν = 0, we can conclude that Ȧ∇u0•ν+A0∇u̇•ν = 0.

Proof of Theorem 4.4.5. The result is obtained similarly to the setting in Theorem

4.4.1 if we obtain (4.4.4) for the Neumann setting. Thus, we first show that for

ψ, ϕ ∈ W ,

lim
ε→0

∣∣∣∣ ∫
Ω

(
(∆D

ε −∆D
0 )ψ

ε
− ∆̇ψ

)
· ϕd`

∣∣∣∣ = 0.

Let Tr : H1(Ω) → L2(∂Ω; `n−1) be the trace operator; note that Tr is a bounded

linear operator since ∂Ω is C1 (Theorem 1 §5.5, [24]). If we write Aε = A0+εȦ+R̄ε,
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where R̄ε = (rεij) and ‖rεij‖C1(Ω,R) = o(ε), we obtain

∣∣∣∣ ∫
Ω

(∆D
ε ψ −∆D

0 ψ − ε∆̇ψ) · ϕd`
∣∣∣∣ ≤ ∣∣∣∣ ∫

Ω

R̄ε∇ψ • ∇ϕd`
∣∣∣∣+

∣∣∣∣ ∫
∂Ω

(R̄ε∇ψ • ν)Trϕd`n−1

∣∣∣∣
≤ o(ε) +

n∑
i,j=1

∫
∂Ω

∣∣rεij∂jψνi Trϕ
∣∣d`n−1,

where the first bound follows from the argument in (4.3.6). From the fact that

‖rεij‖C0(Ω,R) = o(ε), ν is the unit outward normal and Tr is bounded, we have

n∑
i,j=1

∫
∂Ω

∣∣rεij∂jψνi Trϕ
∣∣d`n−1 ≤

n∑
i,j=1

‖rεij‖C0(Ω,R)

∫
∂Ω

∣∣∂jψTrϕ
∣∣d`n−1

≤
n∑

i,j=1

‖rεij‖C0(Ω,R)‖∂jψ‖L2(∂Ω)‖Trϕ‖L2(∂Ω)

≤
n∑

i,j=1

‖rεij‖C0(Ω,R)‖∇ψ‖L2(Ω)‖ϕ‖H1(Ω)

= o(ε).

Thus, we can use a similar argument to that in Theorem 4.4.1 to obtain (4.4.4)

for the Neumann setting; that is, for all ϕ ∈ W , we have

−
∫

Ω

A0∇u̇ • ∇ϕ d`+
∫
∂Ω

ϕ · A0∇u̇ • ν d`n−1 − λ0

∫
Ω

u̇ · ϕ d`

= λ̇

∫
Ω

u0 · ϕ d`+

∫
Ω

Ȧ∇u0 • ∇ϕ d`−
∫
∂Ω

ϕ · Ȧ∇u0 • ν d`n−1.

Using Lemma 4.4.6, the above equation implies (4.4.8), which is a weak form of

problem (4.4.7). Finally, the uniqueness of the solution on W0 follows as in the

Dirichlet setting.

4.5 Numerical Approach to Computing u̇

We now describe how to compute the linear response vector u̇ numerically. To

this end, we approximately solve the weak form (4.4.3), respectively (4.4.8), using

the method described in [33]. That is, we consider (4.4.3), respectively (4.4.8), on

a finite-dimensional approximation space VN ⊂ H1
0 (Ω) or W , respectively. Note

that while we needed to restrict to W ⊂ H1(Ω) in order to obtain the content in
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Section 4.4.1, numerically we can still work with VN ⊂ H1(Ω) since the eigenvectors

at eigenvalues 6= 0 will be orthogonal to the constant function. In practice, the

approximation space will be realised as a finite element space, typically using linear

triangular Lagrange elements.

In [33], two different variants of a finite-element discretisation of the basic eigen-

problem for the dynamic Laplacian have been proposed, one based on the evaluation

of the right Cauchy Green deformation tensor (the CG method) and one based on an

explicit approximation of the transfer operator associated to Tε (the TO method).

We now describe how to use both variants in order to compute u̇.

4.5.1 The CG Method

Let ϕ1, . . . , ϕN be a basis for VN . As usual, we define the Galerkin approximation

˙̃u =
∑N

j=1 υ̇jϕj of u̇ in (4.4.3), respectively (4.4.8), by requiring it to satisfy

−
∫

Ω

A0∇ ˙̃u • ∇ϕjd`− λ0

∫
Ω

˙̃u · ϕjd` = λ̇

∫
Ω

ũ0 · ϕjd`+

∫
Ω

Ȧ∇ũ0 • ∇ϕjd`

for j = 1, . . . , N , where ũ0 =
∑N

j=1 υ0,jϕj is the Galerkin approximation of u0.

Plugging in the linear combinations for ũ0 and ˙̃u, this immediately yields the linear

system

(K − λ0M)υ̇ = (λ̇M − L)υ0, (4.5.1)

for the coefficient vectors υ0 and υ̇. Here,

M =

(∫
Ω

ϕj • ϕ` d`
)
j,`

, K = −
(∫

Ω

A0∇ϕj • ∇ϕ` d`
)
j,`

,

L = −
(∫

Ω

Ȧ∇ϕj • ∇ϕ` d`
)
j,`

(4.5.2)

are the mass, the stiffness and the “linear response” matrix, respectively. Note that

due to Theorem 4.4.1, we need to solve (4.5.1) on V0. We implement this by adding

the corresponding orthogonality constraint as an additional equation to the linear

system so that in fact we solve K − λ0M υ0

υ>0 0

 υ̇

α

 =

 (λ̇M − L)υ0 + υ0

0

 (4.5.3)
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for υ̇ in order to obtain u̇∗. A corresponding Matlab code is given in the FEMDL

package.

4.5.2 The TO Method

As shown in [33], the matrices M and K from (4.5.2) can be computed without

having to evaluate A0 (which is numerically expensive and potentially unstable).

Instead, the action of the transfer operator is approximated explicitly. Similarly,

the matrix L can be constructed without having to evaluate Ȧ, as we will now show.

Proposition 4.5.1. For f, g ∈ H1(Ω),

−
∫

Ω

Ȧ∇f • ∇g d` =

∫
T0(Ω)

(∇T0,∗g)>D(T0,∗Ṫ )sym(∇T0,∗f) d`.

Proof. We recall from (4.3.2) that

Ȧ = −
(

(DT0)−1(DṪ )(DT0)−1(DT0)−>
)sym

= −1

2

(
(DT0)−1(DṪ )(DT0)−1(DT0)−> +

(
(DT0)−1(DṪ )(DT0)−1(DT0)−>

)>)
.

Next, we compute

∫
Ω

(DT0)−1(DṪ )(DT0)−1(DT0)−>∇f • ∇g d`

=

∫
Ω

(DṪ )(DT0)−1(DT0)−>∇f • (DT0)−>∇g d`

=

∫
Ω

(DṪ )(DT0)−1(∇T0,∗f) ◦ T0 • (∇T0,∗g) ◦ T0 d`

=

∫
T0(Ω)

[((DṪ ) ◦ T−1
0 ) (DT0)−1 ◦ T−1

0 ](∇T0,∗f) • ∇T0,∗g d`

=

∫
T0(Ω)

[((DṪ ) ◦ T−1
0 ) (DT−1

0 )]∇T0,∗f • ∇T0,∗g d`

=

∫
T0(Ω)

[D(T0,∗Ṫ )]∇T0,∗f • ∇T0,∗g d`

=

∫
T0(Ω)

(∇T0,∗g)>D(T0,∗Ṫ )(∇T0,∗f) d`.

Similarly, we have

∫
Ω

(
(DT0)−1(DṪ )(DT0)−1(DT0)−>

)>
∇f • ∇g d`
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=

∫
T0(Ω)

(∇T0,∗g)>(D(T0,∗Ṫ ))>(∇T0,∗f) d`.

We thus obtain

−
∫

Ω

Ȧ∇f • ∇gd` =

∫
Ω

(
(DT0)−1(DṪ )(DT0)−1(DT0)−>

)sym

∇f • ∇gd`

=

∫
T0(Ω)

(∇T0,∗g)>D(T0,∗Ṫ )sym(∇T0,∗f) d`.

If we want to use the integral on the right hand side in Proposition 4.5.1 to

compute the matrix L, we need to approximate the action of the transfer operator

T0,∗ : H1(Ω)→ H1(T0(Ω)). To this end, we work with two different approximation

spaces, V 0
N ⊂ H1(Ω) and V 1

N ⊂ H1(T0(Ω)). Let ϕ0
1, . . . , ϕ

0
N be a basis of V 0

N and

ϕ1
1, . . . , ϕ

1
N of V 1

N . Suppose we know how to approximate the push forward of some

function g ∈ H1(Ω) by some function in V 1
N , i.e.

T0,∗g ≈
∑
k

gkϕ
1
k,

where gk ∈ R; then, we can use
∑

k gk∇ϕ1
k as an approximation for ∇(T0,∗g). We

denote by Ṫ1, . . . , Ṫn the component functions of Ṫ . Correspondingly,

T0,∗Ṫ = Ṫ ◦ T−1
0 = (Ṫ1 ◦ T−1

0 , . . . , Ṫn ◦ T−1
0 ) = (T0,∗Ṫ1, . . . , T0,∗Ṫn).

We write ∇(T0,∗Ṫi) ≈
∑

sw
i
s∇ϕ1

s, where wis ∈ R, so that

D(T0,∗Ṫ ) =


(∇T0,∗Ṫ1)>

...

(∇T0,∗Ṫn)>

 ≈

∑

sw
1
s∂1ϕ

1
s . . .

∑
sw

1
s∂nϕ

1
s

...
...∑

sw
n
s ∂1ϕ

1
s . . .

∑
sw

n
s ∂nϕ

1
s

 .

We then obtain the approximation

(∇T0,∗g)>D(T0,∗Ṫ )∇T0,∗f
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≈

[∑
k

gk∂1ϕ
1
k, . . . ,

∑
k

gk∂nϕ
1
k

]
∑

sw
1
s∂1ϕ

1
s . . .

∑
sw

1
s∂nϕ

1
s

...
...∑

sw
n
s ∂1ϕ

1
s . . .

∑
sw

n
s ∂nϕ

1
s



∑

l fl∂1ϕ
1
l

...∑
l fl∂nϕ

1
l


=
∑
kl

gk

(∑
s

[(
n∑
i=1

wis∂iϕ
1
k

)(
n∑
i=1

∂iϕ
1
s∂iϕ

1
l

)])
︸ ︷︷ ︸

=:B

fl

= g>Bf .

Similarly, one obtains (∇T0,∗g)>(D(T0,∗Ṫ ))>(∇T0,∗f) ≈ g>B>f , and therefore

−
∫

Ω

Ȧ∇f • ∇gd` =

∫
T0(Ω)

(∇T0,∗g)>D(T0,∗Ṫ )sym(∇T0,∗f) d`

≈
∫
T0(Ω)

g>Bsymf d`.

Remark 4.5.2. We note that B = (Bkl) is a function of x ∈ Ω and for n = 2 we

have

Bkl(x)

=
∑
s

(
w1
s(∂1ϕ

1
k)(x) + w2

s(∂2ϕ
1
k)(x)

) (
(∂1ϕ

1
s)(x)(∂1ϕ

1
l )(x) + (∂2ϕ

1
s)(x)(∂2ϕ

1
l )(x)

)
.

We will conclude this section by describing how to compute the gk in the ap-

proximation T0,∗g ≈
∑

k gkϕ
1
k using the two methods presented in [33]. Let {xi}Ni=1

be the nodes of the mesh of Ω at the initial time and suppose that g ≈
∑

k g̃kϕ
0
k,

where ϕ0
k ∈ V 0

N for k = 1, . . . , N . We then have

T0,∗g ≈
∑
k

g̃kT0,∗ϕ
0
k

≈
∑
k

g̃k
∑
i

αki ϕ
1
k

=
∑
k

gkϕ
1
k,

where gk = g̃k
∑

i α
k
i . The method of collocation on nonadapted meshes can be used

to obtain αki = ϕk(T
−1
0 (xi)) (see Section 3.2.2 in [33]). Alternatively, the method of
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collocation on adapted meshes can instead be used to obtain αki = ϕk(T
−1
0 (xi)) =

ϕ0
k(xi) = δk,i, where δk,i is the Kronecker delta (see Section 3.2.3 in [33]).

4.6 Experiments

Since we identify coherent sets as level sets of eigenfunctions, and are interested in

the evolution of coherent sets, we will begin this section with a small note about

the evolution of level sets.

4.6.1 Level Set Evolution

We are interested in the change of the level sets of uε as we perturb the parameter ε.

From the level-set method [72], we note the following. Let Γε = {x ∈ Ω : uε(x) = 0}

be a closed curve in Ω. If the curve Γ0 moves in the outward normal direction with

speed s, we have the following level-set equation

u̇+ s|∇u0| = 0. (4.6.1)

Since we know u0 and u̇, we can solve for s and thus, we know the evolution of the

level set Γ0; the curve Γ0 evolves in the direction ∇u0 with speed s, i.e. it evolves

according to the vector field −u̇
|∇u0|∇u0. In the following experiments, we will use

this vector field to verify that the coherent sets change as expected (see for example

Figures 4.2 and 4.4).

4.6.2 The Standard Map

We start with the standard map on the flat 2-torus, given by

T (x, y) = (x+ y + a sinx, y + a sinx) (mod 2π). (4.6.2)

In Figure 4.1 (left) we show the second eigenvector u0 of the dynamic Laplacian

for the nominal parameter value a = 0.98, which identifies two coherent sets in the

upper and lower half of the domain. Interestingly, even for a rather large linear

extrapolation, the vector u0 + 1
2
u̇ is quite similar to the exact second eigenvector

uε (right) at a+ ε = 0.98 + 0.5 = 1.48. Figure 4.2 shows the (normalised) velocity

field of the level set curves at ε = 0. Clearly, the change in the level contour from
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Figure 4.1: Standard map (left to right): u0, u̇, u0 + 1
2
u̇ and uε.

ε = 0 (solid line) to ε = 0.5 is consistent with the prediction by the velocity field

(obtained as per Section 4.6.1). Note that we obtain predictions for the perturbed

level contours very cheaply by computing level contours for u0 + εu̇, ε ∈ [0, 0.5].

Figure 4.2: Standard map: velocity of level contour, level contours for ε = 0 (solid)
and ε = 0.5 (dashed).

4.6.3 The Rotating Double Gyre

As a second experiment, we consider the rotating double gyre flow [70]. This is a

non-periodic time-variant Hamiltonian system with Hamiltonian H = −ψ, where

ψ is the stream function

ψ(x, y, t) = (1− s(t))ψP (x, y) + s(t)ψF (x, y)

ψP (x, y) = sin(2πx) sin(πy)

ψF (x, y) = sin(πx) sin(2πy)
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and s(t) is the transition function

s(t) =


0 for t < 0,

t2(3− 2t) for t ∈ [0, 1],

1 for t > 1.

On the square Ω = [0, 1]2, the vector field initially (at t = 0) exhibits two gyres,

with centers at (1
2
, 1

2
) and (3

2
, 1

2
), which rotate by π/2 during the flow time T = 1.

We view the flow time T as the parameter.

In Figure 4.3 (left) we show the second eigenvector u0 of the dynamic Laplacian

for T = 0.6 (corresponding to ε = 0) which identifies two coherent sets in the left

and right half of the domain. Again, even for a rather large linear extrapolation,

the vector u0 + 0.2u̇ is quite similar to the exact second eigenvector uε (right) at

T + ε = 0.6 + 0.2 = 0.8. Figure 4.4 shows the (normalised) velocity field of the

Figure 4.3: Rotating double gyre (left to right): u0, u̇, u0 + 0.2u̇ and uε.

Figure 4.4: Rotating double gyre: velocity of level contour, level contours for ε = 0
(solid) and ε = 0.2 (dashed).

level set curves at ε = 0. Again, the change in the level contour from ε = 0 (solid

line) to ε = 0.2 is consistent with the prediction by the velocity field.
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Chapter 5

Conclusion

In this thesis we applied the concept of linear response to investigate two problems

in dynamical systems. The first was concerned with optimising linear response, a

question that has not been explicitly addressed in the literature. In Chapter 2 we

considered the problems of finding stochastic perturbations that (i) maximise the `2

norm of the linear response, (ii) maximise the expectation of a specified observable,

and (iii) maximise the rate of convergence to the equilibrium. The solution to (i)

involved solving an eigenvalue problem. We obtained closed form solutions for (ii)

and (iii). We then addressed (i) and (ii) for the non-homogeneous case. In the final

section, we applied the theory to an Ulam discretisation of stochastically perturbed

one-dimensional chaotic maps.

In Chapter 3 we extended the research above by working with Hilbert-Schmidt

integral operators to address the optimisation problems (ii) and (iii). We first ob-

tained linear response formulae for the invariant density and the second eigenvalue

of integral preserving compact operators. By considering infinitesimal additive per-

turbations to the kernel of the Hilbert-Schmidt integral operator, we were able to

express the linear response formulae in terms of the derivative of the kernel with

respect to the perturbing parameter. From this, we used the idea in Chapter 2 of

applying the Lagrange multiplier method to obtain explicit formulae for the op-

timal kernel perturbations. We also proved approximation results, which validate

numerical computations of the optimal kernels. In the setting of deterministic sys-

tems with additive noise, we considered optimal map perturbations addressing (ii)

and (iii). By reformulating the map perturbation as a kernel perturbation, we used
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the theory developed in earlier sections to obtain explicit formulae for the opti-

mal map perturbations and the corresponding approximation results. In the final

section we numerically computed optimal kernel and map perturbations of stochas-

tically perturbed deterministic systems. Future work could tackle problem (i) for

Hilbert-Schmidt integral operators.

The second question we considered was about the response of finite-time coher-

ent sets to a parameter change. Following the work in [28] and [33], we also wanted

to obtain a computationally feasible method to analyse the response. When the dy-

namics depend smoothly on a perturbing parameter, we proved the differentiability,

with respect to the perturbing parameter, of the eigenfunctions and eigenvalues of

the dynamic Laplacian. We then obtained linear response formulae for the eigendata

with respect to the perturbing parameter. Since the coherent sets can be obtained

from the eigenfunctions of the dynamic Laplacian, the linear response formulae can

be used to analyse perturbations of coherent sets. We demonstrated the use of

the numerical schemes we developed on two dynamical systems. These numerical

results showed that even for large parameter perturbations the level sets of the

perturbed eigenfunctions were very close to the level sets obtained from the linear

response approximation. We are currently implementing the numerical methods on

real ocean data.
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Appendix A

Chapter 2 Appendix

A.1 Algorithms and Code for Computing m∗

A.1.1 Optimisation Problem (2.2.2)–(2.2.4)

Algorithm 1

1. Compute f as the invariant probability vector of the stochastic matrix M .

2. Construct the matrix B from Section 2.2.3. We use the specific basis defined

in (2.2.19) and (2.2.20).

3. Compute QB = (Idn −M + f1>)−1B.

4. Compute the singular vector y corresponding to the largest singular value of

QB (this is the eigenvector corresponding to the (assumed simple) largest

eigenvalue of B>Q>QB discussed in Section 2.2.3). Normalise y so that

‖y‖2
2 = 1

‖f‖2 (see (2.2.24)).

5. Form the matrix m∗ = Byf> (see (2.2.23)).

Matlab Code

function [m,f] = lin_resp(M)

n=length(M);

%Step 1

[V,D] = eigs(M,1);

f = V;

f = f/sum(f);

%Step 2

B = triu(ones(n))-diag([1:n-1],-1);

B(:,n) = [];

B = sparse(normc(B));

%Step 3

QB = inv(eye(n)-M+f*ones(1,n))*B;

%Step 4

[U2,D2,V2] = svds(QB,1);

y = 1/(norm(f)*norm(V2))*V2;

%Step 5
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m = B*y*f’; end

A.1.2 Optimisation Problem (2.2.26)–(2.2.29)

Algorithm 2

1. Compute f as the invariant probability vector of the stochastic matrix M .

2. Construct the matrix B from Section 2.2.3. We use the specific basis defined

in (2.2.19) and (2.2.20).

3. Define the matrix Ũ ∈ Rn×l, where l = n2 − (n + n1) (with n1 equal the

number of zeroes in M) is the nullity of the matrix A in Lemma 2.2.4. For

Q = (Idn−M+f1>)−1 and using (2.2.37) we compute Ũ = Q(f1B1| . . . |fnBn),

where Bi is given in Proposition 2.2.6. (Note that the j1 and j2 in the code

for this step provide the column index range used to determine where fiBi

belongs in (f1B1| . . . |fnBn))

4. Compute the singular vector α∗ corresponding to the largest singular value of

Ũ (the eigenvector corresponding to the (assumed simple) largest eigenvalue

of Ũ>Ũ).

5. Calculate m∗ = [m̂∗1| . . . |m̂∗1] where


m̂∗1
...

m̂∗n

 = m̂∗ = Eα∗ =


B1α

∗
1

...

Bnα
∗
n

 ,

α∗ =


α∗1
...

α∗n

 and Bi is given in Proposition 2.2.6. In the second and third

equality above, we used (2.2.18) and Proposition 2.2.5 respectively. (Note

that in the code for this step, j1 and j2 track the length of the vectors α∗i for

i = 1, . . . , n)
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Matlab Code

function [m,f] = lin_resp(M)

n=length(M);

%Step 1

[V,D] = eigs(M,1);

f = V;

f = f/sum(f);

%Step 2

B = triu(ones(n))-diag([1:n-1],-1);

B(:,n) = [];

B = sparse(normc(B));

%Step 3

n1 = length(find(M==0));

l =n^2-(n+n1);

U = zeros(n,l);

j1 = 1; j2 = 0;

for i=1:n

R = find(M(:,i)==0);

r = length(R);

if r~= n-1

B_i=zeros(n,n-r-1);

R2=setdiff([1:n],R);

r2=length(R2);

B_i(R2,:)=B(1:r2,1:(r2-1));

j2=j2+n-r-1;

U(:,j1:j2)=f(i)*B_i;

j1=j2+1;

end

end

M_inf = f*ones(1,n);

Q = inv(eye(n)-M+M_inf); U = Q*U;

%Step 4

[U2,D2,V2] = svds(U,1);

%Step 5

m = sparse(n,n); j1=1; j2=0;

for i=1:n

R = find(M(:,i)==0);

r=length(R);

j2=n-r-1+j2;

if r~= n-1

B_i = zeros(n,n-r-1);

R2=setdiff([1:n],R);

r2=length(R2);

B_i(R2,:)=B(1:r2,1:(r2-1));

m(:,i) = B_i*V2(j1:j2);

else

m(:,i) = sparse(n,1);

end

j1=j2+1;

end

end

A.1.3 Optimisation Problem (2.3.1)–(2.3.4)

Algorithm 3
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1. Compute the invariant probability vector f of the stochastic matrix M .

2. Solve
(
Idn −M + f1>

)>
w = c for w.

3. Calculate m∗ij according to (2.3.8), where ν = ‖m∗‖F .

Matlab Code

function m = lin_resp_fun(M,c)

n=length(M);

%Step 1

[V,D] = eigs(M,1);

f = V;

f = f/sum(f);

%Step 2

Z = eye(n)-M+f*ones(1,n);

w = Z’\c;

%Step 3

m = zeros(n);

for j=1:n

N_j = find(M(:,j)>10^-7);

if(length(N_j) > 1)

m(N_j,j)=f(j)*(w(N_j)-mean(w(N_j)));

end

end

m = m./(norm(m,’fro’));

end

Remark A.1.1. When M is large, but sparse, to avoid creating the full matrix f1>

in Step 2 above, one can replace Step 2 with: Solve the following (sparse) linear

system for w  Idn −M>

f>

w =

 c− (f>c)1

f>c

 . (A.1.1)

A.1.4 Optimisation Problem (2.4.3)–(2.4.6)

Algorithm 4

1. Compute r2 and l2, the right and left eigenvectors corresponding to the second

largest eigenvalue of M , normalised as r∗2r2 = 1 and l∗2r2 = 1.
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2. Construct the matrix S from (2.4.8).

3. Calculate m∗ij according to (2.4.9), where ν = −‖m∗‖F .

Matlab Code

function m = lin_resp_eval2(M)

%Step 1

[V,D] = eigs(M,2);

if abs(D(2,2))>abs(D(1,1))

V(:,[1,2]) = V(:,[2,1]);

D(:,[1,2]) = D(:,[2,1]);

end

r = V(:,2);

[V1,D1] = eigs(M’,2);

if abs(D1(2,2))>abs(D1(1,1))

V1(:,[1,2]) = V1(:,[2,1]);

D1(:,[1,2]) = D1(:,[2,1]);

end

l = V1(:,2);

l = (1/(conj(l)’*r))*V1(:,2);

%Step 2

d = D(2,2);

S=real(d)*(real(l)*real(r)’)...

+real(d)*(imag(l)*imag(r)’)...

+imag(d)*(real(l)*imag(r)’)...

-imag(d)*(imag(l)*real(r)’);

%Step 3

n=length(M);

m = zeros(n);

for i=1:n

K = find(M(:,i)>10^-7);

if(length(K) > 1)

m(K,i) = (S(K,i)- mean(S(K,i)));

end

end

m = -m./(norm(m,’fro’));

end

A.2 Proof of the LICQ Condition from Section 2.3

Proof. Let J = {j : ∃i with (i, j) 6∈ N}. For j ∈ J , let fj(m) =
∑n

i=1mij. For

(i, j) ∈ N , let gij(m) denote the left hand side of the equality in (2.3.4). Finally,

let f(m) denote the left hand side of the equality in (2.3.3). For j ∈ J we have

∂fj
∂mkl

(m) = δjl. For (i, j) ∈ N we have
∂gij
∂mkl

(m) = δikδjl, and lastly ∂f
∂mkl

(m) = 2mkl.

The condition LICQ (Definition 12.4 [71]) is satisfied if

∑
j∈J

aj
∂fj
∂mkl

(m) +
∑

(i,j)∈N

aij
∂gij
∂mkl

(m) + a
∂f

∂mkl

(m) = 0, for 1 ≤ k, l ≤ n, (A.2.1)
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implies aj = 0 for j ∈ J , aij = 0 for (i, j) ∈ N , and a = 0.

1. Let l ∈ J . Let k ∈ {1, . . . , n} satisfy (k, l) 6∈ N . For such (k, l), equa-

tion (A.2.1) becomes al + 2amkl = 0. Since m satisfies (2.3.2), one has that∑
k:(k,l)/∈N(al + 2amkl) =

∑
k:(k,l)/∈N al +

∑n
k=1 2amkl =

∑
k:(k,l)/∈N al = 0, be-

cause mkl = 0 for (k, l) ∈ N . Thus al = 0 for all l ∈ J .

2. By (2.3.3), there exists k, l ∈ {1, . . . , n} such that mkl 6= 0. Thus (k, l) /∈ N

and so l ∈ J . For such (k, l), using part 1. we know 2amkl = 0 and thus a = 0.

3. Using part 2. for (k, l) ∈ N , (A.2.1) becomes either akl = 0 if l /∈ J , or

al + akl = 0 if l ∈ J . For the latter case, using part 1. we have al = 0 and so

akl = 0. Thus akl = 0 for all (k, l) ∈ N .
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Appendix B

Chapter 3 Appendix

B.1 Upper Bound for the Reflecting Boundary Operator

Lemma B.1.1. Let Pπ be as in (3.4.3) and f ∈ L2([−1, 2]). Then, ‖Pπf‖L2([0,1]) ≤
√

7‖f‖L2([−1,2]).

Proof. For f ∈ L2([−1, 2]), we have∣∣∣∣ ∫ 1

0

Pπf(x)2dx

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

(f(x) + f(−x) + f(2− x))2dx

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

f(x)2 + f(−x)2 + f(2− x)2+

2 [f(x)f(−x) + f(x)f(2− x) + f(−x)f(2− x)] dx

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

f(x)2dx+

∫ 0

−1

f(x)2dx+

∫ 2

1

f(x)2dx

+ 2

[∫ 1

0

f(x)f(−x)dx+

∫ 1

0

f(x)f(2− x)dx+

∫ 1

0

f(−x)f(2− x)dx

] ∣∣∣∣
≤ ‖f‖2

L2([−1,2])

+ 2

[√∫ 1

0

|f(x)|2dx

√∫ 1

0

|f(−x)|2dx+

√∫ 1

0

|f(x)|2dx

√∫ 1

0

|f(2− x)|2dx

+

√∫ 1

0

|f(−x)|2dx

√∫ 1

0

|f(2− x)|2dx

]
≤ ‖f‖2

L2([−1,2])

+ 2[‖f‖L2([−1,2])‖f‖L2([−1,2]) + ‖f‖L2([−1,2])‖f‖L2([−1,2]) + ‖f‖L2([−1,2])‖f‖L2([−1,2])]

= 7‖f‖2
L2([−1,2]);
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thus, ‖Pπf‖L2([0,1]) ≤
√

7‖f‖L2([−1,2]).
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