
Inversion workflow for multiphysics modelling of triaxial
experiments

Author:
Lin, Jack

Publication Date:
2019

DOI:
https://doi.org/10.26190/unsworks/21337

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/63240 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/21337
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/63240
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


The University of New South Wales

School of Minerals and

Energy Resources Engineering

Faculty of Engineering

Inversion workflow for
multiphysics

modelling of triaxial
experiments

Jack Lin

A thesis in fulfilment of the requirements for the degree of
Master of Philosophy in Petroleum Engineering

March 2019

Supervisors: Thomas Poulet, Manolis Veveakis





ORIGINALITY STATEMENT 

‘I hereby declare that this submission is my own work and to the best of my 
knowledge it contains no materials previously published or written by another 
person, or substantial proportions of material which have been accepted for the 
award of any other degree or diploma at UNSW or any other educational 
institution, except where due acknowledgement is made in the thesis. Any 
contribution made to the research by others, with whom I have worked at 
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that 
the intellectual content of this thesis is the product of my own work, except to 
the extent that assistance from others in the project's design and conception or 
in style, presentation and linguistic expression is acknowledged.’ 



 COPYRIGHT STATEMENT 

‘I hereby grant the University of New South Wales or its agents the right to 
archive and to make available my thesis or dissertation in whole or part in the 
University libraries in all forms of media, now or here after known, subject to the 
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent 
rights. I also retain the right to use in future works (such as articles or books) all 
or part of this thesis or dissertation. 
I also authorise University Microfilms to use the 350 word abstract of my thesis in 
Dissertation Abstract International (this is applicable to doctoral theses only). 
I have either used no substantial portions of copyright material in my thesis or I 
have obtained permission to use copyright material; where permission has not 
been granted I have applied/will apply for a partial restriction of the digital copy of 
my thesis or dissertation.' 

 AUTHENTICITY STATEMENT 

‘I certify that the Library deposit digital copy is a direct equivalent of the final 
officially approved version of my thesis. No emendation of content has occurred 
and if there are any minor variations in formatting, they are the result of the 
conversion to digital format.’ 



i 

INCLUSION OF PUBLICATIONS STATEMENT 

UNSW is supportive of candidates publishing their research results during their candidature 
as detailed in the UNSW Thesis Examination Procedure.  

Publications can be used in their thesis in lieu of a Chapter if: 
• The student contributed greater than 50% of the content in the publication and is the

“primary author”, ie. the student was responsible primarily for the planning, execution and
preparation of the work for publication

• The student has approval to include the publication in their thesis in lieu of a Chapter from
their supervisor and Postgraduate Coordinator.

• The publication is not subject to any obligations or contractual agreements with a third
party that would constrain its inclusion in the thesis

Please indicate whether this thesis contains published material or not. 

☐ This thesis contains no publications, either published or submitted for publication
(if this box is checked, you may delete all the material on page 2)

☒
Some of the work described in this thesis has been published and it has been
documented in the relevant Chapters with acknowledgement (if this box is
checked, you may delete all the material on page 2)

☐ This thesis has publications (either published or submitted for publication)
incorporated into it in lieu of a chapter and the details are presented below

CANDIDATE’S DECLARATION 

I declare that: 

• I have complied with the Thesis Examination Procedure

• where I have used a publication in lieu of a Chapter, the listed publication(s)
below meet(s) the requirements to be included in the thesis.

Name 
Jack Lin 

Signature Date (dd/mm/yy) 

Postgraduate Coordinator’s Declaration (to be filled in where publications are used 
in lieu of Chapters) 
I declare that: 

• the information below is accurate
• where listed publication(s) have been used in lieu of Chapter(s), their use complies

with the Thesis Examination Procedure
• the minimum requirements for the format of the thesis have been met.

PGC’s Name PGC’s Signature Date (dd/mm/yy) 



Acknowledgements

A big thank-you to my supervisors, Dr. Thomas Poulet and Dr. Manolis Veveakis, for
helping me every step of the way in the last two and a half years, bring me up from
absolutely zero knowledge of geomechanics or simulations to where I am now (where
I can at least pretend to know what I’m doing).

I would like to acknowledge Dr Sotiris Alevizos, for the many hours of discussions
on the finer points of plasticity theory and yield surfaces.

I would like to acknowledge (soon to be) Dr Mustafa Sari, for the many hours of
discussions on rocks, how to crush them, how to simulate crushing them, and the
myriad ways this could all go wrong.

I would like to acknowledge my family, for putting up with me.

I would like to acknowledge the financial support of my scholarship from the School
of Minerals and Energy Resources Engineering at UNSW.

This work was undertaken with the assistance of resources and services from the
National Computational Infrastructure (NCI), which is supported by the Australian
Government. This work was also supported by resources provided by the Pawsey
Supercomputing Centre with funding from the Australian Government and the Gov-
ernment of Western Australia.

i



Publications arising from this
thesis

Portions of this thesis have been published as:

Lin, J., Sari, M., Poulet, T., & Veveakis, M. (2017). An inversion framework for numer-
ical modelling of pore collapse in soft porous rocks. In E. Papamichos, P. Papanasta-
siou, E. Pasternak, & A. Dyskin (Eds.), Bifurcation and degradation of geomateri-
als with engineering applications: Proceedings of the 11th international workshop on
bifurcation and degradation in geomaterials dedicated to hans muhlhaus, limassol,
cyprus, 21-25 may 2017 (pp. 319–325). Cham: Springer International Publishing.
doi: 10.1007/978-3-319-56397-8 40

Portions of this thesis have been submitted as as a journal article as:

Lin, J., Sari, M., Veveakis, M., & Poulet, T. (2019). A heuristic model inversion for
coupled thermo-hydro-mechanical modeling of triaxial experiments. ((under review))

ii



Abstract

As multiphysics geomechanical models are developed, their increasing complexity and

number of parameters make it particularly difficult to calibrate against experimental

data. In this contribution, I present a heuristic workflow to invert for parameters of a

coupled Thermo-Hydro-Mechanical (THM) model in a way that helps the theoretical

modellers refine their definition of the underlying elasto-visco-plastic model itself. I

apply this workflow to the calibration of deviatoric and volumetric data for two sets of

triaxial experiments on mudstone and sandstone. I show that beyond the calibration

of well-defined parameters of the THM model, one or two scaling factors of the exper-

imentally obtained yield surface and two more factors to capture the confinement and

pore pressure dependency of the flow law lead to the satisfactory matching of two se-

ries of six experiments at varying confinements for two different rock types. Using this

physical model, I also show that, for the problem of volumetric pore collapse, tracking

the volumetric component of the mechanical power in the numerical simulations might

allow reducing the number of experiments required to calibrate the model.
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Chapter 1

Introduction

Geomechanics laboratories worldwide perform triaxial experiments on a daily basis,

for the purpose of understanding rock behaviours and measuring relevant properties

used by diverse theoretical models in academia and various industries. Given the long

history of geomechanics, comprehensive experimental results and observations exist

nowadays to characterise most rocks around ambient conditions, also providing a fair

insight into the corresponding sensitivities with respect to temperature, pore pressure,

confinement, or loading rate, just to name a few. The most conventional manner to ac-

count for such dependencies has consisted for a long time in approaching geomechanical

modelling from a purely mechanical perspective, using traditional constitutive models,

and account for the variations of other (secondary) physical processes like tempera-

ture and pressure through their influence on the parameters used in the constitutive

model (e.g. yield envelope). While successfully providing an empirical way to incor-

porate more physics in geomechanics, this approach still presents some limitations to

tackle situations where feedback couplings between physical processes are too strong,

as is the case for the study of material instabilities for example. For those applica-

tions, tighter couplings are sought, motivated by the fundamental understanding of

the physical processes at play from a multiphysics perspective. The non-mechanical

processes are then considered at the same level at the mechanics itself, acknowledging

that non-noticeable temperature or pressure changes at the sample scale, during a tri-

axial experiment, do not prevent temperature or pressure changes at the micro-scale

from affecting the overall rock behaviour and localisation in particular, as was shown

for mudstone for example (Poulet & Veveakis, 2016). Considering the relative infancy

and increased complexity of those multiphysics models, however, begs the question of

calibrating the input parameters required to match experimental results.

Inverting for numerical parameters of a theoretical model to match experimental

results can be challenging, even for a simple model with a low number of parame-

1



1. Introduction 2

ters, because of the overall uncertainty arising from cumulative errors at all levels:

theoretical, experimental and numerical (see Table 1.1).

Uncertainty is probably most intuitively accepted at the experimental level, where

physical limitations of the experimental apparatus (precision based on quality), in-

cluding the measuring equipment, are obvious factors. They are, however, not the

only ones. Rocks themselves are naturally inhomogeneous and it is difficult to obtain

enough representative samples, as the determination of a Representative Elementary

Volume (REV) is a difficult task in itself. Human factors must also be taken into

account, regarding the choice and quality of the sampling (accidental damage, con-

tamination), calibration of the machines and other possible mishandling mistakes.

Uncertainty at the numerical level is also obvious as rounding errors and risks of hard-

ware failure are well understood. Yet, those effects are probably negligible compared

to the risks arising from programmers and operators when selecting the theoretical

model, implementing the numerical tools, defining the meshing level, determining the

input parameter design (for stochastic generation) or simply inputting data. Uncer-

tainty also arises at the theoretical level itself, due to the need of listing of physical

processes considered (under- or over-estimation) and all interactions (known or un-

known) between those physical processes, which affect the size of the REV. Modellers

can also select unsuitable theoretical models, not necessarily by lack of understanding

of all hypotheses behind the models, but also because other physical processes than

mechanics can affect those applicability hypotheses in a manner that is simply not

yet fully understood. Dealing with this uncertainty led to the active development of

inversion methods based on multi-objective optimisation methods (see (Nguyen-Tuan

et al., 2016) and citations within), but no single perfect method has been identified

yet as there is ”no free lunch” - the performance of any two algorithms are equiva-

lent across all possible problems (Wolpert & Macready, 1997). Every benefit from a

given approach comes with less interesting consequences, and this inversion problem

becomes exponentially more difficult as the number of variables increases, leading to

an intractable problem so-far for most multiphysics approaches.

Metaheuristics are specifically developed to tackle these inversion problems using

mathematical optimisation and computer science techniques, dealing with the uncer-

tainties at the experimental and numerical levels with as little as possible human

interaction for scalability purposes. Sometimes, however, operators cannot be com-

pletely removed from the process, which needs to be interactive (Wijns et al., 2004).

This is the case in particular if one wants to account for uncertainties at the theoreti-

cal level and modify the constitutive model used during the optimisation process itself

(see Fig. 1.1). This applies in particular for theoretical modellers aiming at developing

new multiphysics models and is the focus of this study.
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Table 1.1: Non-exhaustive list of sources of uncertainties

Types Sources of uncertainty Human factors Non-human factors

Theoretical
Physical processes con-
sidered

Under/over-estimation of processes
at play

Complex feedbacks between pro-
cesses

Constitutive models Applicability Model limitations

Experimental
Material sampling Sampling choices, sampling quality

(damage, contamination)
Natural representativeness

Experiment apparatus Calibration, mishandling Machine quality, precision
Measuring equipment Calibration, mishandling Machine quality, precision

Numerical
simulation setup Evaluation of theoretical model,

mesh coarseness, input parameter
design, input errors

-

Simulator and underlying
libraries

Imperfect/incomplete code verifica-
tion (implementation errors)

rounding errors, hardware failure

Post-processing Implementation rounding errors, hardware failure

Figure 1.1: Schematic workflows (A) most commonly and (B) in this study.

In this contribution I present a model inversion for coupled Thermo-Hydro-Mechanical

(THM) modelling of triaxial experiments, which is heuristic in the literal definition of

the term, i.e. enabling the theoretical modellers to learn from the optimisation work-

flow to refine their multiphysics model. The aim is to extend the work of (Poulet &

Veveakis, 2016) and describe the process for capturing the temperature and pressure

dependencies of the mechanical enthalpy formulation on which the constitutive model

is based. Chapter 2 describes the multiphysics geomechanical model used. Chapter 3

presents the inversion workflow to calibrate the model against experiments. Chap-

ter 4 presents Pathfinder, a suite of tools I developed to automate and facilitate this

workflow. Chapters 5 and 6 discuss the application of my workflow to two sets of ex-

periments on mudstone and sandstone. Finally, Chapter 7 discusses the utility of this

approach in facilitating theoretical model development, and presents a new, potentially

game-changing discovery in the model used.



Chapter 2

Forward model

2.1 Uncertainties of the geomechanical model

The theoretical model at the core if this study is an elasto-visco-plastic model that

was specifically developed to investigate material instabilities like pore collapse (Poulet

& Veveakis, 2016). The model is based on the traditional momentum, mass and

energy conservation equations of a mixture (denoted by the subscript m) composed

of a solid matrix (subscript s) fully saturated with fluid (subscript f), along with

constitutive equations described in detail in (Poulet & Veveakis, 2016). Neglecting

gravity and any chemical reaction and advection terms in the context of quasi-static

triaxial experiments, these equations express the evolution of the system as

0 = ∂jσ
′
ij − ∂ipf , (2.1a)

0 = βm∂tpf − ∂i

[
κ

μf
∂ipf

]
− λm∂tT + v

(s)
i,i , (2.1b)

0 = (ρCp)m
DT

Dt
− ∂iiT − χ σij ε̇

pl
ij . (2.1c)

where σ′ represents the effective stress, β the compressibility, λ the thermal expansion

coefficient, κ the permeability, μ the viscosity, v(s) the solid velocity, ρ the density, Cp

the specific heat, χ the Taylor-Quinney coefficient, and ε̇ pl the plastic strain rate.

Following (Poulet & Veveakis, 2016), I introduce the following normalised variables

4



2. Forward model 5

p∗ =
pf
σref

, (2.2a)

T ∗ =
T − Tref

Tref
, (2.2b)

x∗ =
x

xref
, (2.2c)

t∗ =
cth,ref
x2ref

t, (2.2d)

where σref , Tref , xref and cth,ref are reference values for the stress, temperature,

length and thermal diffusivity of the mixture respectively. Using all normalised vari-

ables and dropping the asterisk notation for simplicity, I work in this study with the

following system of equations expressing the evolution of the temperature (T ), pore

fluid pressure (pf ) and displacement (ui, 1 ≤ i ≤ 3) as

0 = ∂jσ
′
ij − ∂ipf , (2.3a)

0 = ∂tpf − ∂i

[
1

Le
∂ipf

]
− Λ∂tT +

Pe ˙εV
βm

, (2.3b)

0 = ∂tT − ∂iiT −Gr σij ε̇
pl
ij . (2.3c)

This formulation uses dimensionless groups including the Lewis number Le, Gruntfest

number Gr and thermal pressurisation Λ defined as

Le =
μf cth,ref βm

κ
(2.4a)

Gr =
σref

Tref (ρCp)m
χ, (2.4b)

Λ =
λm δ Tref

βm σref
. (2.4c)

To derive material properties for the samples, This formulation uses fairly simple

mixture rules for combining the physical properties of fluid (f) and solid (s) into an

overall mixture property using the porosity φ. Properties derived this way includes

the mixture compressibility βm, mixture thermal expansion λm, and mixture thermal

conductivity αm:

βm = (1− φ)βs + φβf (2.5)

λm = (1− φ)λs + φλf (2.6)

αm = (1− φ)αs + φαf (2.7)
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The main particularity of this model, built on the overstress plasticity framework

of Perzyna (1966) extended by Poulet & Veveakis (2016), is that dependencies on

other state variables, such as the confining pressure, excess pore pressure, and thermal

effects, are expressed through the definition of the mechanical enthalpy rather than

more traditional expressions like the yield envelope and hardening modulus. The intent

is to capture the temperature and pressure dependencies of the constitutive model with

a physical description (see Sari, 2019), which is a worthy goal but also introduces more

uncertainty in terms of model calibration compared to more engineering approaches.

For instance, in many models the evolution of the hardening modulus is an input

of the model, defined as a function of strain, and can therefore be monitored rather

accurately in the lab and entered directly in simulation to reproduce numerically those

laboratory results. This approach can produce very accurate fits to existing data,

but sacrifices some of the explaining and predictive power. Instead, the hardening or

softening behaviour of the model used in this work can only be altered by changing the

values of material parameters, which will in turn impact the stress response, including

through variations of temperature or pore pressure, or by modifying the plastic flow

law itself (Poulet & Veveakis, 2016) through the definition of the mechanical enthalpy

Qmech, or its normalised Arrhenius variable Ar = Qmech

RT̃0
, with R the ideal gas constant,

and T̃0 the temperature in Kelvin. The associated flow law used is:

ε̇vpij = ε̇0 σ̄
m exp

Ar T
1+T

∂g

∂σij
(2.8)

where ε̇vpij denotes the visco-plastic strain rate, ε̇0 a pre-exponential factor, σ̄ the

overstress, m a material parameter, g the plastic flow potential and R the ideal gas

constant.

In this approach, particular attention is paid to the temperature and pore pressure

evolutions, which might appear puzzling at first sight when modelling experiments on

rocks under isothermal conditions.

2.1.1 Temperature effect

Most triaxial tests are performed under isothermal conditions (often room tempera-

ture), which would make it a fair assumption to neglect the temperature effects when

modelling the corresponding experiments. The temperature, however, does vary inter-

nally due to all dissipative processes taking place at the micro-scale and the temper-

ature increase becomes clearly evident with infra-red radiation (IRR) imaging when

a fracture occurs (Wu et al., 2006). While such changes can be accurately monitored

with IRR cameras at the precise (and short-lived) moment when a rock sample breaks,
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which even allows to monitor temperature as a precursor for rock fracturing and fail-

ure (Wu et al., 2006), the external temperature monitoring of a triaxial experiment

will unfortunately reveal no evolution until localisation is well pronounced. Indeed,

most thermal imaging cameras are usually sensitive to gradations of 0.05-0.15 degrees

Celsius, which is not precise enough to detect micro heat signature events, especially

if not located on the outside of the sample. The temperature itself, though, is un-

deniably increasing through dissipation and its effects on the yield stress for instance

are well captured by Eyring plots (e.g. Poulet & Veveakis, 2016). Therefore, temper-

ature is considered a primary variable in the current framework, where its evolution

is mainly constrained through the values of the Gruntfest number (Gr). Its effect on

the mechanics is controlled by the Arrhenius number (Ar).

2.1.2 Pore pressure effect

Similarly to temperature, pore fluid pressure can also play a considerable role at the

microstructural level, even in cases where its overall value at the sample level seems

rather constant. The normalised mass balance equation (Eq. 2.3b) shows the impact

of the Lewis number (Le), expressing the ratio of thermal over mass diffusivities. It

accounts therefore not only for the preponderant effect of fluid permeability, but also

for any other internal mass diffusion process, including those resulting from physical

processes occurring at the micro-scale like pore collapse (Sari, 2019). As such, pore

pressure is also tracked as a primary variable, whose value is strongly affected by

the Lewis number Le, thermal pressurisation coefficient Λ and compressibility β̄. Its

variation affects the effective stress directly, by definition, and less directly through

the pressure dependency of the mechanical dissipation. Those effects impact, in turn,

on the temperature through the mechanical dissipation.

2.1.3 Rate sensitivity

The rate sensitivity of geomaterials is another well accepted phenomenon (e.g. Poulet

& Veveakis, 2016), which plays an important role when modelling rocks at geological

time scales. While considerable efforts are being spent in measuring flow laws from

experiments for as many materials as possible under various conditions, as well as

developing theoretical models to capture those dependencies (e.g. Mielke, 2006), no

consensus exists yet and the problem remains an active research area. Unsurprisingly,

the difficulty lies in capturing simultaneously the various cross-dependencies between

temperature, pressure and rate. For instance, recent observations showed the increased

rate-dependency of calcarenite with compression (Sari, 2019).
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2.1.4 Plasticity model

Those sensitivities to temperature, pressure and rate can be captured at various levels

in the geomechanical model, which contains itself some inherent uncertainty as many of

its constituents are being investigated in the quest for an improved modelling approach.

Activation enthalpy

The main characteristic of the geomechanical approach in this work is the explicit

formulation of the mechanical enthalpy Qmech. While the formula initially proposed

(Poulet & Veveakis, 2016) remains a guideline, its exact definition is the subject of

ongoing research (Sari, 2019) and needs therefore to be considered itself as a free set

of parameters in the overall inversion approach of experimental results. Theoretical

considerations can provide some constraints on the enthalpy definition (Sari, 2019), but

no definitive form has been universally accepted yet. In this contribution, I account

therefore for the related uncertainty by taking the definition (Poulet & Veveakis, 2016)

Qmech = α1 + α2pf , (2.9)

where α1 and α2 are material parameters to be inverted for specific experiments, and

pf is the excess pore pressure.

Yield envelope

Another distinctive aspect of the model used is the definition of the yield surface

itself, which differs from the one taken by most traditional geomechanics models. The

only available data regarding the yield surface obviously comes from experimental

curves, which exhibit characteristic points that can be interpreted as yield points. Both

on stress-strain curves from triaxial experiments and isotropic compression tests, an

initial straight line is usually interpreted as a linear elastic response, which allows the

identification of a yield point as the point on the curve where an arbitrarily determined

deviation from that linear elastic response occurs (see Fig. 2.1). It is important to

note the two major problems with this determination method, on top of the obvious

uncertainty stemming from the experimental results themselves.

Firstly, a yield point can only be determined, by definition, using data from un-

loading experiments. The initial linear trend of experimental curves does indeed not

always correspond to an elastic behaviour, as was shown for the case of calcarenite

for instance (Sari, 2019). In that example, even the first unloading sequences during

this initial (loading) linear response (which would intuitively be interpreted by many

as an elastic regime) showed that the rock had reached plasticity from the very begin-
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Figure 2.1: Schematic representation of two main methods to determine a yield point (circled)
from (a) a triaxial experiment or (b) an isotropic compression test, using an exaggerated offset
(distance between parallel dashed lines) for illustration purposes.

ning. Such complex responses raise questions about the existence of a yield envelope

altogether.

Secondly, the notion of yield can represent different concepts. For instance, the

McGraw-Hill Dictionary of Scientific and Technical Terms (Parker, 2003), uses dis-

tinctive terms to differentiate those notions they name yield, yield point and yield

strength. They define the yield as ”the stress in a material at which plastic deforma-

tion occurs”, the yield point as ”the lowest stress at which strain increases without

increase in stress” and the yield strength as ”the stress in a material at which plastic

deformation occurs”. Following their terminology, one can see clearly that the yield

strength is the notion determined experimentally, while the yield is the one required for

numerical simulations. Naturally, the yield must be reached before the yield strength,

which implies that the yield envelope needed for the simulations can only be smaller

than the experimentally obtained one. In this work, I consider the two to differ only

by a scaling function, which is taken into account as extra parameters to invert for.

In this contribution, I use a capped model which is well adapted to the two case

studies presented in Chapters 5 and 6. This model is an extended version of the

Modified Cam-Clay model (Gerolymatou, 2017) which proposes a yield surface defined

as

q2 +M2h(p)(p− pt)(p− pc) = 0 (2.10)

where p denotes the mean effective stress, q the deviatoric stress, M the slope of

the critical state line, pc the pre-consolidation pressure and pt the tension cut-off. A

dependence on mean pressure is expressed through the function

h(p) = exp

[
− 1

γ1

( p− pt
pc − pt

− γ2

)2
]

(2.11)
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where γ1 and γ2 are numerical parameters affecting the shape and skewness of the

yield surface. Note that this yield surface can lose convexity for certain values of

the parameters and needs to be used with care. This definition provides a more

flexible yield envelope than the Modified Cam-Clay model, with the ability to break

the symmetry by shifting the top point of the envelope.

To constrain the determination of the yield envelope and minimise the number of

free parameters, a first envelope is determined by matching the reported experimental

data, providing values for all parameters M , pc, pt, γ1 and γ2.

A maximum of two degrees of freedom is used to identify the best yield envelope

as a transformation of the experimental curve, determined by a new pre-consolidation

pressure p̃c and new maximum value of deviatoric stress q̃max, scaling the initial en-

velope along the Critical State Line joining the tension cut-off with the peak of the

envelope of coordinates (pmax,qmax) in (p′-q) space, as defined in Subsec. 2.2.5. The

corresponding value of the mean effective stress p̃max is therefore defined as

p̃max = pt +
q̃max

qmax
(pmax − pt) (2.12)

By algebraic manipulation of eq. 2.10, 2.11 and 2.12, a scaled version of the envelope

can then be obtained with modified values γ̃2 and M̃ defined as

γ̃2 = 2
( p̃max − pt

p̃c − pt
− γ1

) (p̃max − pt)(p̃c − p̃max)

(p̃c − pt)(p̃c + pt − 2p̃max)
(2.13)

M̃ = q̃max exp

[
1

2γ̃2

( p̃max − pt
p̃c − pt

− γ1

)2
]

1√
(p̃max − pt)(p̃c − p̃max)

(2.14)

2.2 Numerical implementation

2.2.1 Conventions

In this work, I assume stresses are taken positive in compression and pore pressure

is positive (pf > 0). Index notation is used. The indices used are i,j,k,l. All other

letters or character strings appearing as indices belong to the symbol used and are not

subject to the index notation rules. Equations assumes a biphasic material, namely a

solid and a fluid phase irrespective of the processes involved.

2.2.2 Boundary conditions

The boundary conditions for the simulations in this work follows the setup used in

(Poulet & Veveakis, 2016) and simulates a standard confined drained experiment with

constant temperature and no-flow imposed as boundary conditions on the sides of the

3D block (see Fig. 2.2). The top and bottom of the samples are drained. A cubic or
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Figure 2.2: Numerical model setup. The top and bottom faces are drained and fixed in hor-
izontal displacement. All vertical faces are impermeable and kept at constant temperature.
Reproduced from (Poulet & Veveakis, 2016).

cylindrical mesh can be used to represent the sample, depending on the experiment

conditions.

The simulation has two stages. In the initialization stage, the material is equilibrated

to a set confining pressure. The bottom face is allowed to move freely in the X and

Z directions, while other surfaces are fixed to avoid rotation. When the material

is equilibrated, the main simulation starts. In the main simulation, the X and Z

displacements of the top and bottom face are fixed at the initialized values. The

bottom face is also fixed in the Z direction. A velocity boundary condition is imposed

on the top to simulate constant compression. The sides are kept under constant

confining pressure.

2.2.3 MOOSE and REDBACK

The numerical implementation of this system of equations is done in REDBACK

(Poulet & Veveakis, 2016), an open-source simulator built using the MOOSE frame-

work (Gaston et al., 2009) and its Tensor Mechanics module in particular. MOOSE

is used for its capacity to solve tightly coupled systems in parallel, and REDBACK

implements all equations presented above using a rate-dependent overstress plasticity

framework.

2.2.4 p′ − q space

The geomechanical model implemented in REDBACK naturally differentiates the vol-

umetric and deviatoric component of stress (see Fig. 2.3). All calculations for overstress
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Figure 2.3: Decomposition of the plastic flow rule in volumetric and deviatoric components.
Figure reproduced from (Poulet & Veveakis, 2016).

are then performed in the p′−q space, where p′ denotes the effective volumetric stress,

with the notion of effective stress σ′
ij following Terzaghi’s principle σij = σ

′
ij − pfδij .

The symbol q denotes the deviatoric stress. The p′−q space is of particular interest as

it represents a natural choice to define the yield surface, marking the limit of elasticity,

in a study focuses on the volumetric and deviatoric behaviours of rocks.

2.2.5 Overstress and potential surfaces

The definition of the overstress itself is subject to interpretation and modellers have

the freedom to propose different descriptions, which all affect modelling results in a

fundamental manner. In particular, some algorithmic considerations can be taken

into account to define a numerically efficient overstress definition, leading to different

methods to compute an overstress measure between a stress point in the plasticity

region and its corresponding yield point in the (p′ − q) space. In particular, the

respective weights of the volumetric and deviatoric components of the overstress play

a critical role and justifies the simplest definition proposed in (Poulet et al., 2017).

In (Poulet & Veveakis, 2016), the flow law is defined as:

ε̇pij = λ̇
∂f

∂σij
(2.15)

With f the plastic potential (taken as the yield function in this associated model),

λ̇ the plastic multiplier, dependent on Qmech, defined as:

λ̇ =

√
〈q − qY

σref
〉2m + 〈p− pY

σref
〉2m exp

[−Qmech

RT

]
(2.16)

Where < . > denotes Macaulay brackets; p, q, pY , qY are the coordinates of a point

M and its corresponding yield point MY (from Fig. 2.3) respectively. The overstress
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Figure 2.4: responses with γ1=1 (left), γ1=6 (right). γ2 and M are back-calculated so that
the tip of the yield surface is at the same point in p′ − q space. This results in visually almost
identical yield surfaces, but the plastic potential varies significantly.

σo =
√

〈 q−qY
σref

〉2m + 〈p−pY
σref

〉2m represents a simple straight-line distance between M

and MY .

This method is straightforward and numerically robust. However, considering an

associative flow law, it is more conventional to follow the steepest descent of the

plastic potential, which leads to slightly different overstress values. A modified Cam

Clay surface with this overstress definition was tested as part of this work. While this

second definition works well for the simple ellipse of the modified Cam Clay surface,

it was found to require very high numerical precision in the overstress calculation,

and created convergence problems in the extended mCC surface. For the current

implementation of the extended mCC surface used in this work, a third definition is

selected with the overstress taken as the square-root of the plastic potential:

σo =
√

q2 +M2
fh(p− pt)(p− pc) (2.17)

While simplifying the numerical problem, this third definition creates some inter-

esting consequences of its own. For two yield surfaces that are visually very similar,

but having different values for the shape parameters M , γ1 and γ2, the shape of the

potential surfaces can differ significantly.

An example is shown in Fig. 2.4, showing two visually identical yield surfaces in

p′ − q space, but with different growth of potential surfaces. Fig. 2.5 shows two sets

of stress-strain curves, using same parameters other than the yield surface. Having

quicker-growing potentials naturally leads to more hardening in the response, in a

manner roughly analogous to increasing α2.

For fitting the experiments in this work, values are chosen so that the ratio between

height and width in the yield surface is preserved in the potential surfaces.
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Figure 2.5: stress-strain responses for two simulations with identical parameters, using the
differing yield surfaces from Fig. 2.4.
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Figure 2.6: Mesh sensitivity analysis showing the deviatoric stress vs. axial strain for simula-
tions of CD1 (Noto mudstone) with different mesh sizes. reproduced from (Sari, 2019).

2.2.6 Mesh sensitivity and localisation

Traditional FEM approaches suffer from mesh sensitivity, i.e. the simulation responses

differ depending on the resolution of the finite element mesh. This is particularly the

case in strain-weakening regimes. Using the same numerical model and parameters as

this work, Sari et al. (2019) ran repeated simulations of strain-weakening mudstone

CD1 (see Chapter 5) while varying the mesh size from 128 cells to 18400 cells. The

results shown in Fig. 2.6 show little variation in the simulation response.

(Sari et al., 2019) concludes that the introduction of the energy balance equa-

tion regularizes the problem of localization of plastic deformation during mechanical

softening, providing an internal length and a characteristic time of propagation of the

shear band, unlike most traditional solid mechanics approaches. Note that localization

occurs (as would be expected from the physical experiments) despite treating all rock

samples as homogeneous and using the same material parameters across the entire

mesh. A detailed treatment of strain localization can be found in (Poulet & Veveakis,

2016).



Chapter 3

Inversion workflow

This chapter focuses on the inverse problem of identify all parameters needed to match

numerical simulations of confined drained triaxial experiments with experimental data.

As the longer term goal is to investigate the underlying multiphysical processes in-

volved, the implementation consider all samples to be homogeneous and attribute a

single value for each of the material parameters, rather than try to improve the match

by introducing spatial distributions for different samples.

Considering the ”no-free-lunch theorem” (Wolpert & Macready, 1997), no inversion

strategy performs better than all others in all cases. Instead, the optimal algorithm

depends on the problem being solved, and I have developed a customized approach

tailored to the current model.

3.1 Model parameters

From all considerations presented in Sec. 2.1, a list of parameters to be inverted for

can be established (see Table. 3.1), including the material parameters, but also the

constitutive models parameters. In particular, as mentioned above, A maximum of

two free parameters is used to rescale the yield envelope, and I also invert for the

two parameters α1 and α2 of the mechanical enthalpy. Most parameters represent

usual material properties and can be constrained in reasonably tight ranges from lit-

erature and experimental data. A few parameters, including the Lewis number Le,

Gruntfest number Gr, and mechanical enthalpy parameters α1 and α2 are more poorly

constrained.

16
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Parameter name Symbol Unit of

Measure

Flow law overstress exponent m -

Initial permeability κ m2

Initial porosity φ -

Arrhenius coefficient Ar -

Young’s modulus E Pa

Poisson ratio ν -

Fluid thermal diffusivity cth,f m2.s−1

Fluid thermal expansion coefficient λf K−1

Fluid viscosity μ,f Pa.s

Fluid compressibility βf Pa−1

Solid thermal diffusivity cth,s m2.s−1

Solid thermal expansion coefficient λs K−1

Solid compressibility βm Pa−1

Mixture thermal diffusivity cth,m m2.s−1

Mixture thermal expansion coefficient λs K−1

Mixture compressibility βm Pa−1

Mixture thermal pressurisation coefficient Λm -

Lewis number Le -

Gruntfest number Gr -

Yield envelope, pre-consolidation pressure p̃c Pa

Yield envelope, maximum deviatoric stress q̃max Pa

Mechanical enthalpy parameter α1 α1 -

Mechanical enthalpy parameter α2 α2 -

Table 3.1: List of all parameters to invert for in the numerical simulations of triaxial experi-

ments

3.2 Optimisation algorithm

Numerous meta-heuristic approaches have been previously developed to invert model

parameters from experimental data in geomechanics, and following (Nguyen-Tuan et

al., 2016) I am using a Particle Swarm Optimisation (PSO) computational paradigm to

perform this task, as it is particularly well suited to investigate optimisation problems

with multiple local minima as faced in a multiphysics context. This optimization pro-

cess is implemented via Pathfinder (covered in Chapter 4), a software suite specifically
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developed to orchestrate parameter inversion tasks on the various high-performance

computational facilities available.

In order to reduce the computational time and maximise the learning benefit from the

optimisation process, not all parameters are inverted for at once, instead the process

is broken down in several stages. The inversion process starts by selecting numerical

values for all parameters, including reference values for normalisation, as best esti-

mates based on reported values from the experiment, literature values for the rock

involved, and previous studies. This provides a starting point from which the pa-

rameter optimisation can proceed, following three steps (illustrated in Fig. 3.1). The

first step consists in using Pathfinder (see Chapter 4) to optimise the numerical values

of α1 and α2 for each of the confinement cases individually. As a second step, the

scaling parameter of the yield envelope is then optimised manually. The third step

sees the adjustment of all other variables, manually or using Pathfinder. In practise,

this involves mainly the three variables identified as playing the most important roles:

the thermal pressurisation coefficient Λ, Gruntfest number (Gr) and Lewis number

(Le). These three steps are repeated iteratively until satisfactory overall convergence

is obtained.

3.3 Objective function

Given a series of N confined drained experiments CDi with 1 ≤ i ≤ N at various

confinement pressures, an automatic parameter inversion can be performed through

a minimisation of an objective function f , which is taking into account both the

volumetric and deviatoric components of the experimental and simulation data to

reflect the importance of those two components in the model formulation (see Poulet

& Veveakis, 2016). Fig. 3.2 is a graphical representation of the computation.

For each experiment i, the deviatoric component fd
i of the objective function is

expressed as the L2-norm of the difference between the experimental and numerical

simulation results of the strain-stress curve for that experiment. Similarly, the volu-

metric component fd
i represents the L2-norm of the error on the porosity evolution as

a function of strain.

To increase the focus on the impact of the constitutive model in plasticity, both

definitions are taken on a subset of the whole range of strain values, from a manually

selected value of strain after all experiments display a plastic behaviour until the end

of the experiments (horizontal range in between dashed vertical lines on Fig. 3.2). In

other words, I am more interested in the plastic behaviour at large strain than on the

elastic regime or its transition to the plastic regime.

The overall deviatoric and volumetric objective functions, fd and fv, are taken
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Figure 3.1: Schematic description of the optimisation process, broken down in three main steps
to optimise sequentially the flow law parameters, yield surface scaling parameters and all other
material parameters until global convergence is reached.
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Figure 3.2: Schematic description of the objective function (f) computation, showing its vol-
umetric and deviatoric components for a series of experiments at various confinements. See
the full explanation in Sec. 3.3.

as the sums of all components for all confining pressures, fd =
∑N

i=1 ωif
d
i and fv =∑N

i=1 ωif
v
i , using a family of weights {ωi}1≤i≤N which typically reduces the emphasis

on the low values of confinement where the physical model is less adapted. In the two

case studies presented in this work, the weights values of the objective function were

selected as {0.2, 0.5, 1, 1, 1, 1} to reduce the impact of the experiments at the lower

confinements.

In order to respect some balance between the volumetric and deviatoric compo-

nents, the values of stress and porosity used in the definition of the errors are nor-

malised so their maximum ranges are identical. The total objective function is taken

as the sum of the deviatoric and volumetric components, f = fd + fv.
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3.3.1 Pseudocode for the objective function

def plastic_norm(result, reference):

result = extract_plastic_portion(result)

reference = extract_plastic_portion(reference)

return L2norm(result.volumetric_stress, reference.volumetric_stress) +

L2norm(result.deviatoric_stress, reference.deviatoric_stress)

def calculate_objective_function(input_params, reference_experiments):

//this function performs a series of simulations at different confining

//pressures, using input_params, and compares them to a corresponding

//set of reference triaxial experiments

//run each of the six simulations to obtain results as time series

sim_result_CD1 = run_simulation(input_params, confining_pressure_CD1)

sim_result_CD2 = run_simulation(input_params, confining_pressure_CD2)

sim_result_CD3 = run_simulation(input_params, confining_pressure_CD3)

sim_result_CD4 = run_simulation(input_params, confining_pressure_CD4)

sim_result_CD5 = run_simulation(input_params, confining_pressure_CD5)

sim_result_CD6 = run_simulation(input_params, confining_pressure_CD6)

//calculate a plastic norm for each set of results by

//comparing it to the reference physical experiments

objective_CD1 = plastic_norm(sim_result_CD1, reference_experiment.CD1)

objective_CD2 = plastic_norm(sim_result_CD2, reference_experiment.CD2)

objective_CD3 = plastic_norm(sim_result_CD3, reference_experiment.CD3)

objective_CD4 = plastic_norm(sim_result_CD4, reference_experiment.CD4)

objective_CD5 = plastic_norm(sim_result_CD5, reference_experiment.CD5)

objective_CD6 = plastic_norm(sim_result_CD6, reference_experiment.CD6)

//the objective function is a weighed average of the six experiments

return (0.2 * objective_CD1 + 0.5 * objective_CD2 +

objective_CD3 + objective_CD4 +

objective_CD5 + objective_CD6)



Chapter 4

Pathfinder 2.0

4.1 Heuristics and automation: a hybrid strategy

Enumerating all the sources of uncertainty, it becomes obvious that a brute force

approach of attempting all possible parameter combinations would be prohibitively

expensive from a computational point of view. At the same time, it would not neces-

sarily provide theoretical modellers with too much insight into the complex couplings

involved and the respective importance of all parameters, which is an important part

of the longer-term strategy behind this work, as stated in Sec. 2.1.

To calibrate a complex THM model from experimental data, significant work needs

to go into dimensionality reduction. A divide-and-conquer approach is needed for

breaking the problem into more tractable sub-problems. At the same time, there

are structures, regularities and rules-of-thumb in the problem that can be learned

over time, by observing simulation outputs, that can help narrow down the search

space. Involving humans in the optimization process has several advantages: humans

have existing subject knowledge that is difficult to completely encode into programs.

Humans are better at spotting trends and novelties, and making intuitive judgement

on which parts of the search space to explore first. Finally, considering that the goal

is to understand the underlying scientific principles, a human-explainable model can

be much more valuable than a black-box neural network that cannot necessarily be

generalized.

On the other hand, it is widely recognised that keeping humans in the loop creates

many drawbacks, which explains the rapidly expanding global trend towards automa-

tion. The process of running these simulations is complex, with many small yet vital

details. Humans can make mistakes, forget things, and lose track of data. Humans

have difficulties doing things in a reproducible manner, and are much slower than

computers. In a multi-step process like this, mistakes in any step can compound,

22
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and result in nonsensical results - ”Garbage In, Garbage Out” (Babbage & Baudouin,

2009).

To mitigate these challenges, It is necessary to automate repetitive tasks as much

as possible, thus reducing human interaction to a minimum. To this end I developed

Pathfinder 2.0, which is a suite of tools for developing, running, interpreting and opti-

mizing simulations in REDBACK. It is a much-improved version of the code outlined

in (Lin et al., 2017), and helps guide every step of this workflow. The goal is to reduce

human intervention to deciding on a few critical numbers based on high-level interpre-

tation of the results, with all the implementation details and settled science abstracted

away.

4.2 Scientific workflows

Scientific workflow systems are an application of workflow management softwares and

systems to solving scientific problems, reproducibly executing a series of computational

or data management steps, or workflow. The design of scientific workflow systems is

an established field, with many software packages available, such as Pegasus (Deelman

et al., 2015), Kepler (Ludäscher et al., 2006), Taverna (Wolstencroft et al., 2013),

Nimrod/K (Abramson et al., 2008), to name a few. A recent overview of workflow

softwares, their development and the challenges they face can be found in (Liew et al.,

2016).

In the case of Pathfinder, I did not rely on existing workflow systems but developed

instead a customised one. The existing scientific workflow frameworks try to cover

a broad range of use-cases, and this makes them heavyweight and complex, with

a correspondingly steep learning curve and room for unexpected behaviour. They

can result in savings in time and money mostly when they are used to implement

long and complex workflows, where the initial learning curve is mortgaged over a

long development process. In contrast, the workflow described in this work is quite

straightforward from a programming perspective, and by coding it myself I avoid the

incidental complexity of having to interact with a large external framework. Further,

the development of this workflow demands an agile process, as it must iterate very

quickly whenever the model changes. Coding from scratch gives fine-grained control

over every detail, facilitating rapid prototyping.

4.3 Meeting requirements

Pathfinder sets out to solve several problems, specific to the needs of REDBACK

model development:
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• Multi-platform. The software needs to work both locally and remotely. It

needs to work on HPC platforms, each of which has its own requirements/details

in terms of job submission process, node and queue design, and software environ-

ment. The development of REDBACK happens on several platforms, both local

on Linux and macOS, and remotely on HPC platforms such as Leonardi@UNSW,

Raijin@NCI and Magnus@Pawsey. Leonardi is a faculty cluster based in UNSW,

spanning a few dozen nodes. Raijin is a 84,656-core Fujitsu/Lenovo cluster based

in the ACT. Magnus is a Cray XC40 system based in Perth.

• Flexible. The underlying model changes frequently. The simulations in this

work rely on MOOSE and REDBACK, both open-source projects constantly

being updated. The software needs to evolve along with the model and parent

softwares. It needs to be flexible enough to survive constant changes.

• Useful. The software needs to automate away menial tasks (such as precalcula-

tion, post-processing, etc.) as much as possible. At minimum, it needs to meet

or beat the previous, manual process at every step.

• Not a black box. The users must be kept in-the-loop and well-informed. For

example, users need to be able to break open the data pipeline at any point and

examine the contents, to make sure everything is working the right way. There

also need to be clear separation between the menial tasks that can be performed

by a computer, and significant decisions that require domain knowledge.

All those developments were met:

• Multi-platform. As part of the workflow development, I deployed and tested

MOOSE/REDBACK on several platforms, both PCs (Linux, macOS) and clus-

ters (Leonardi, Raijin, Magnus). Pathfinder is implemented as a collection of

Python 2.x scripts, as MOOSE and REDBACK already requires a Python 2.x

installation. Pathfinder is designed to function without additional software in-

stalls, and has few additional requirements on top of those of MOOSE/RED-

BACK. Any potential slowdowns caused by using an interpreted language such

as Python is considered insignificant compared to the very demanding RED-

BACK simulations. The simulation management module abstracts away the

architecture-specific implementation details, so that the users can focus on the

science.

• Flexible. Pathfinder has witnessed and adapted to many model changes, im-

proving alongside the theoretical understanding. It is impossible to set out to
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make something that never changes when the parent does (since you don’t know

what will change), but Pathfinder is flexible enough to change along with the

theory.

• Useful. The usefulness of Pathfinder is best demonstrated by the results pre-

sented in this work. They would not have been possible if I stayed on the old,

manual process. Pathfinder greatly increased the speed of iterations between

theory and testing, and at the same time it organized and kept track of the

many vital details of the model, leaving less room for human error and forgetful-

ness. The use of version control meant that all simulations are now reproducible,

despite frequent changes.

• Not a black box. Pathfinder is designed from the ground up with a knowledge-

able user in mind, and is not a ’press button and forget’ solution. In Pathfinder

the human is kept in the loop as much as possible, and processing steps that can

potentially change the interpretation of data are kept transparent to the user.

As a design decision, Pathfinder is constructed using very simple techniques and

algorithms, and there are few moving pieces. This means it is easy for end-users

to identify and understand any part of the code, see the exact functioning of the

program, and extend/modify as necessary.

4.4 Components of Pathfinder

Pathfinder is implemented as a collection of Python 2.x scripts, in order to utilize the

same version of Python as MOOSE and REDBACK. Pathfinder has several major

components to interact with the various aspects of the workflow, including the pre-

processing, simulation management, parameter optimisation and post-processing.

4.4.1 Pre-processing

Pathfinder aids in initializing the physical and experimental parameters. Instead of

having an input file with potentially hundreds of fields as in REDBACK, Pathfinder

abstracts away most of the detail. REDBACK is a general-purpose simulator, that can

simulate a wide range of multiphysics scenarios, across many scales, materials, and ex-

periment setups. This flexibility comes hand-in-hand with additional complexity. An

input file describing a specific experiment schedule including material properties, ge-

ometry, boundary conditions and numerics-related properties can easily go to hundreds

of lines, all of which impacts the end-result. By narrowing the focus to a specific type

of experiment (in this case, consolidated-drained triaxial tests, though other experi-

ments are also possible), Pathfinder can cut down on this complexity. For example,
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Pathfinder separates the parameters that rarely or never change (e.g. physical con-

stants, parameters describing the experiment setup) from the handful of constitutive

parameters that are complete unknowns (to be scrutinized manually or via parameter

inversion). Co-dependent parameters (see Chapter 2) are pre-calculated and normal-

ization (see Eq. 2.2 and Eq. 2.4) is done automatically, as the equations for them are

largely not subject to change.

In practice, the boundary between settled and unknown parameters is blurred,

and reflect current understanding and assumptions. As this understanding changes,

Pathfinder is updated to add or remove parameters from the list needing close scrutiny,

or change the equations used. Unlike a paper record, Pathfinder is tied directly to nu-

merical simulations that give feedback to end-users, so any errors, ambiguities and

inconsistencies are much more easily discovered. In this way, Pathfinder becomes a

programmatic description of the current state-of-art of the model, facilitating commu-

nication and knowledge transfer.

4.4.2 Simulation management

REDBACK simulations used in this work can each be scaled from one to hundreds of

CPUs, and an optimization run can involve hundreds or thousands of these simulations.

Access to HPC platforms is metered, so it is vital to orchestrate these simulations

in an efficient way. Pathfinder handles running large numbers of simulations and

orchestrating parameter inversion tasks on HPC platforms, abstracting away the local,

architecture-dependent implementation details, including the handling of the queuing

system, the number of CPUs and nodes of the host and other parallelization settings.

It schedules REDBACK simulations automatically in a way that optimizes resource

usage.

Reproducibility and change-tracking is vital, and this component also handles the

management of simulation results. Source code is version-controlled using industry-

standard Git (git(1) Manual Page, 2019). Simulation results are stored and indexed

together with its input parameters, so that any set of simulations can be re-ran as

needed.

4.4.3 Parameter optimization

Considering the ”no-free-lunch theorem” (Wolpert & Macready, 1997), no inversion

strategy performs better than all others in all cases. Instead, the choice of algorithm

depends on the problem at hand. Several widely-used algorithms were considered for

implementing the optimization routine, including Nelder-Mead (Nelder & Mead, 1965),

Stochastic Gradient Descent (Robbins &Monro, 1951), Broyden–Fletcher–Goldfarb–Shanno
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(BFGS) (Broyden, 1970), Genetic Algorithm (Holland, 1992), and Particle Swarm

(PSO) (Kennedy & Eberhart, 1995), though gradient-based algorithms such as Stochas-

tic Gradient Descent and BFGS were eliminated from consideration due to issues with

noisy and unreliable gradient information, causing the optimizer to fall into local min-

ima.

Following (Nguyen-Tuan et al., 2016), where a similar inverse THM problem is in-

vestigated, Pathfinder’s inversion strategy is using PSO, which has been proven to be

a suitable choice where the complexity of the forward problem supports the assump-

tion of a non-convex optimisation problem. From an implementation perspective,

PSO supports running a large number of simulations in parallel, meaning it scales

easily in highly parallel high-performance computing (HPC) environments. It is also

a simple enough algorithm to be implemented without relying on external programs

other than a lightweight library, Pyswarm (tisimst, 2019), which simplifies the design

and implementation. The exact procedure and objective function used is covered in

Chapter 3. An illustration of the interactions between this module and the simulation

management module is shown in Fig. 4.1.

PSO has tunable parameters to control various behaviours of the algorithm. For

example, hyperparameters p and g control the ’force’ attracting particles to their own

best result, and the global best result, respectively. The difference between good

and bad values of such parameters can trigger large differences in convergence speed.

To tune these parameters, synthetic data sets were first constructed by varying two

parameters (α1, α2) in REDBACK simulations in a grid pattern that includes a known

cost minima. The grid is filled by calculating the cost functions for each simulation,

then interpolating the values between them via a radial basis function (Broomhead

& Lowe, 1988), implemented using (scipy.interpolate.Rbf , 2019). Next, repeated PSO

runs with random starting points were performed on these synthetic data-sets in a grid-

search to find the set of hyperparameters that minimizes average number of iterations

to convergence. The result is a map of convergence iterations as function of α1 and

α2 (see Fig. 4.2). Since the physical model itself is subject to the inversion process,

it is very challenging to get the absolute best set of hyperparameters for any given

optimization run without spending more compute power than the value of information

(realistic synthetic data generation requires large number of REDBACK simulations,

and would need to be re-done for a change in physical model), but going through this

hyperparameter tuning even a small number of times prevents common pathological

cases that would cause the algorithm to get stuck or take more time than necessary,

such as the large region on the left side in Fig. 4.2.
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Figure 4.1: Parameter inversion in Pathfinder, reproduced from (Lin et al., 2017).

Figure 4.2: Grid search on PSO hyperparameters
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4.4.4 Post-processing

The final component runs locally on the user’s personal computer, to generate vari-

ous plots and graphics from the output files generated by REDBACK. The manual

workflow Pathfinder replaced involved the user downloading the results, clean and ag-

gregate them, then generate the plots in Excel. This module simply automates this

process. Many of the figures in this work are generated using Pathfinder. The graphics

are plotted using Python’s Matplotlib library, with post-processing using Scipy and

Scikit-learn.



Chapter 5

Case study: Noto diatomaceous

mudstone

In this case study, I apply the workflow developed in Chapter 3 to fit experimental

results from experiment data on mudstone published by Oka et al. (2011).

5.1 Rock description

The material used in this study is Noto diatomaceous mudstone, whose properties

are described in details in (Maekawa & Miyakita, 1983). It is composed of 1% sand,

66% silt and 33% clay. In particular, it is characterised by its high porosity (73%)

and permeability (1.55 × 10−9m2). Oka’s team submitted this rock to conventional

consolidated-drained (CD) shear tests to observe the rock behaviour under various

confinements.

5.2 Triaxial experiment description

A series of tests was performed, at six effective confinement pressures of 0.25 MPa

(CD1), 0.5 MPa (CD2), 0.75 MPa (CD3), 1 MPa (CD4), 1.5 MPa (CD5) and 2 MPa

(CD6) respectively. The pore fluid was water. An ambient temperature of 20 degrees

Celsius is assumed. The samples were 4cm x 4cm x 8cm rectangular prisms. A

description of the triaxial apparatus for testing prismatic samples is provided in (Oka

et al., 2011).

Each experiment was split into two stages: an initialisation step followed by the

main compression experiment. Stage one took 6 hours, under isotropic conditions, with

constantly increasing confining pressure until target confinement was reached. In stage

two, constant confinement was applied under drained conditions; Compression from

30
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Figure 5.1: Physical parameters for triaxial experiments; excerpted from (Oka et al., 2011)

the top proceeded for approximately 33 hours and 20 minutes, at constant displacement

of 0.01%/min and the maximum axial strain reached approximately 20%. Physical

parameters reported by the authors for those experiments are listed in 5.1.

Figure 5.2 shows the evolution of deviatoric stress with axial strain for all six

experiments. The results demonstrate nicely the existence of a characteristic point

for each experiment (before 2% axial strain) where the initial linear elastic behaviour

switches to what is usually described as a plastic regime. The same transition can be

observed when plotting the volumetric strain against the mean effective stress(Figure

5.2, lower). It is notable that all six experiments are in the compactant regime where

total volume decreases over the course of experiments. In the absence of unloading

data, this transition from linearity is usually interpreted as a yield point marking the

start of plasticity for the overall sample and can be plotted over the loading path
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and linked to obtain a yield envelope as shown in Figure 5.3. The shape of this yield

envelope is characteristic of a compression cap, with the yield point diminishing with

increased confinement and a final value of mean effective stress obtained through an

isotropic compression experiment.

Another important point to note from the experimental results is that the evolution

of deviatoric stress in the plastic regime is quite sensitive to the value of confinement,

ranging from a strong weakening behaviour at low confinement (CD1) to strong hard-

ening for higher confinements.

5.3 Simulation and parameter inversion

The strain-stress results from those experiments were previously used to calibrate an

earlier version of the model described in (Poulet & Veveakis, 2016). In this work, the

volumetric responses are also considered as extra simultaneous constraints.

The experimental results from (Oka et al., 2011) indicate the suitability of the

extended modified Cam-Clay yield envelope (see Sec. ??) for the whole sample. A

first set of numerical values is derived to match the experimental yield points reported

by Oka et al. (2011): M = 1.2, pc = 2.26MPA, pt = −0.68MPa, γ1 = 0 and γ2 = 1e6.

Note that the large value of γ2 basically produced a traditional Modified Cam-Clay

envelope. Based on the discussion from Sec. ?? I conjecture a similar but smaller shape

for the yield envelope needed for the numerical simulations, keeping only a single free

scaling parameter since keeping the same pre-consolidation pressure ultimately proved

adequate. This is shown in Fig. 5.4. The mesh used in this study is shown in Fig. 5.5.

Following the inversion process described in Chapter 3 leads to the final parameters

listed in table 5.1, providing acceptable fits for both sets of curves shown in Fig. 5.6

and Fig. 5.7.
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Figure 5.2: Experiment responses in consolidated-drained CD triaxial tests, excerpted from
(Oka et. al, 2011)
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Parameter name Symbol Value Unit of Measure

Flow law overstress exponent m 2 -

Initial permeability κ 1.55× 10−9 m2

Initial porosity φ 0.74 -

Arrhenius coefficient Ar 8 -

Young’s modulus E 135.6 MPa

Poisson ratio ν 0.2 -

Fluid thermal diffusivity cth,f 1.43× 10−7 m2.s−1

Fluid thermal expansion coefficient λf 6.9× 10−5 K−1

Fluid viscosity μ,f 8.9× 10−4 Pa.s

Fluid compressibility βf 4.5× 10−10 Pa−1

Solid thermal diffusivity cth,s 1.64× 10−6 m2.s−1

Solid thermal expansion coefficient λs 5× 10−6 K−1

Solid compressibility βm 3.46× 10−7 Pa−1

Mixture thermal diffusivity cth,m 5.45× 10−7 m2.s−1

Mixture thermal expansion coefficient λs 5.18× 10−5 K−1

Mixture compressibility βm 9.34× 10−8 Pa−1

Mixture thermal pressurisation coefficient Λm 555 Pa.K

Lewis number Le 50 -

Gruntfest number Gr 3.3× 10−3 -

Yield envelope, tension cut-off pt -0.68 MPa

Yield envelope, pre-consolidation pressure pc 2.26 MPa

Yield envelope, slope of critical state line M 0.24 -

Yield envelope, γ1 parameter γ1 10 -

Yield envelope, γ2 parameter γ2 -31.4 -

Table 5.1: Parameter values obtained for the fits of mudstone experiments shown in Fig. 5.6
and Fig. 5.7.
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Figure 5.3: Effective stress paths and yield surface in triaxial tests, (Oka et. al, 2011)
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Figure 5.4: Experimentally determined yield points (black circles) for mudstone by Oka et al.
(2011) and corresponding yield envelope (thin line), as well as result yield envelope (thick line)
obtained from the inversion process, scaling the experimental yield envelope along the Critical
State Line (dashed line). The thick lines in light grey show the stress paths for all confined
drained experiments CD1-6. The triangles mark yield points obtained from the experimental
data at 0.2% plastic strain.
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Figure 5.5: 3D mesh used in FEM simulations of Noto mudstone

Figure 5.6: Deviatoric stress as function of axial strain at various confinements; comparison
of numerical (solid lines) and experimental results (dashed lines).
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Figure 5.7: Volumetric strain curves in function of mean effective stress at various confine-
ments for mudstone; comparison of numerical (solid lines) and experimental results (dashed
lines).



Chapter 6

Case study: Adamswiller

sandstone

In this case study I apply the Pathfinder workflow to fit experimental results from

experiment data on Adamswiller sandstone (T.-F. Wong et al., 1997), a much harder

material, to show that the workflow can operate in a wide range of conditions.

6.1 Rock description

Adamswiller sandstone is composed of 71% quartz, 11% clay, 9% feldspar, and 5%

oxides and mica. Cylindrical samples are cut from cores parallel to bedding.

Adamswiller sandstone has been studied extensively, and detailed physical prop-

erties can be found in a series of papers by T-F. Wong et. al, including (David et al.,

1994), (T.-F. Wong et al., 1997), (Zhu &Wong, 1997),(T. Wong & Baud, 1999),(Tembe

et al., 2007) and (Zhu et al., 2008).

This rock was subjected to conventional consolidated-drained (CD) shear tests to

observe its behaviour under various confinements.

6.2 Triaxial experiment description

Six experiments were performed at different effective confinement pressures of 5 MPa,

20 MPa, 40 MPa, 60 MPa, 100 MPa, and 150 MPa; referred to as CD1 to CD6

respectively. The samples were cylinders with diameter of 18.4 mm and length of

38.1 mm. All samples were fully saturated with water. T.-F. Wong et al. (1997) report

all experiments were performed at ’room temperature’, so an ambient temperature of

20 degrees Celsius is assumed. The authors also report Young’s moduli of 5.69 GPa,
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8.03 GPa, 7.78 GPa, 10.36 GPa, 10.38 GPa, 10.54 GPa respectively for the six samples;

For the rest of this work I assume a value of 10 GPa for simplicity.

All experiments are performed in two stages: stage one is under isotropic condi-

tions, with constantly increasing confining pressure until target confinement is reached.

In stage two, constant confinement was applied under drained conditions. Similarly,

for the numerical simulations, each experiment was split into two stages: an initialisa-

tion step followed by the main compression experiment. For the second stage, a strain

rate of 4 × 10−5s−1 was reported; compression is carried out to more than 15%, or

until the sample fails. This translates to a duration of 62.5 minutes for 15% strain.

No duration was specified for the first stage; For the purpose of this study I assume a

duration of 9 minutes.

The results of the six confined drained experiments are presented in (T.-F. Wong

et al., 1997) and (T. Wong & Baud, 1999), some of them are reproduced here for com-

parison purposes. Figure 6.1 shows the evolution of deviatoric stress and porosity with

axial strain for all six experiments. The authors report that CD1-3 failed by shear

localization, while CD4-6 failed by compactive cataclastic flow. The six experiments

span the range of behaviours from brittle to ductile, exhibiting the characteristic sig-

natures of both regimes. In CD1 the steep drop in deviatoric stress between 2 MPa

and 3 MPa is typical of a brittle behaviour. In the brittle failure regime (CD1-3), the

transition from elastic to plastic regime is marked by a stress overshoot. For more

ductile regime (CD5,6) the response is more regular, and shows some hardening.
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Figure 6.1: Stress-strain behaviour in consolidated-drained CD triaxial tests, (T. Wong &
Baud, 1999). The solid curves are for samples which failed by shear localization, and the
dashed curves are for samples which failed by cataclastic flow, with delocalized compaction and
strain hardening.

From the results of triaxial and isotropic experiments, it is possible in theory to

derive a yield point at each confining pressure, and a yield surface can be derived by

interpolating between these yield points. The determination method of the yield point,

however, is not standardised, and T.-F. Wong et al. (1997) select their yield points

in two different ways. Yield points are chosen for all six experiments by picking the

points on Fig. 6.2 where the experiments deviate from the isotropic response. For the

low confinement regime (CD1,2,3), T.-F. Wong et al. (1997) additionally identify the

peak deviatoric stresses for the low-confinement experiments which results in higher

yield stresses. To close the yield envelope, the preconsolidation pressure Pc is selected

as the turning point on the isotropic compression curve. This is marked as P ∗ on the

second graph in Fig. 6.2. Fig. 6.3 shows the resulting yield points along with loading

paths.
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Figure 6.2: effective mean stress vs porosity change, reproduced from (Wong et.al, 1997)

6.3 Simulation and parameter inversion

The finite element simulation uses the mesh shown in Fig. 6.4. The inversion process

followed the same steps described previously and led to the identification of the yield

enveloped presented in Fig. 6.5, using this time the pre-consolidation value as a second

free parameter. The numerical simulations show a good fit with experimental results,

both for the deviatoric and volumetric responses, as shown in Fig. 6.6 and Fig. 6.7

respectively, for the corresponding parameter values listed in Table 6.1.
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Figure 6.3: Reported yield points in p′ − q space

Figure 6.4: Finite Element mesh used for sandstone simulations
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Figure 6.5: Experimentally determined yield points (black circles) for sandstone by (T.-
F. Wong et al., 1997) and corresponding yield envelope (thick line), as well as result yield
envelope (thin line) obtained from the inversion process, scaling the experimental yield enve-
lope along the Critical State Line (dashed line) with a shift in pre-consolidation pressure. The
thick lines in light grey show the stress paths for all confined drained experiments CD1-6.
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Figure 6.6: Stress strain curves at various confinements for sandstone; comparison of numer-
ical (solid lines) and experimental results (dashed lines).

Figure 6.7: Volumetric strain curves at various confinements for sandstone; comparison of
numerical (solid lines) and experimental results (dashed lines).
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Parameter name Symbol Value Unit of

Measure

Flow law overstress exponent m 2 -

Initial permeability κ 1.48 ×
10−14

m2

Initial porosity φ 0.226 -

Arrhenius coefficient Ar 6 -

Young’s modulus E 9.45 GPa

Poisson ratio ν 0.2 -

Fluid thermal diffusivity cth,f 1.43×10−7 m2.s−1

Fluid thermal expansion coefficient λf 6.9× 10−5 K−1

Fluid viscosity μ,f 8.9× 10−4 Pa.s

Fluid compressibility βf 4.5× 10−10 Pa−1

Solid thermal diffusivity cth,s 1.64×10−6 m2.s−1

Solid thermal expansion coefficient λs 3× 10−5 K−1

Solid compressibility βm 1.9× 10−10 Pa−1

Mixture thermal diffusivity cth,m 1.3× 10−6 m2.s−1

Mixture thermal expansion coefficient λs 3.9× 10−5 K−1

Mixture compressibility βm 2.5× 10−10 Pa−1

Mixture thermal pressurisation coeffi-

cient

Λm 1× 10−6 -

Lewis number Le 0.65 -

Gruntfest number Gr 0.3 -

Yield envelope, tension cut-off pt -5 MPa

Yield envelope, pre-consolidation pres-

sure

pc 155 MPa

Yield envelope, slope of critical state

line

M 0.52 -

Yield envelope, α parameter α 6 -

Yield envelope, β parameter β -24.7 -

Table 6.1: Parameter values obtained for the fits of sandstone experiments shown in Fig. 6.6

and Fig. 6.7.



Chapter 7

Flow law sensitivity analysis and

saddle point

While this thesis focuses on a data-driven approach with an inversion workflow for

multiphysics modelling of triaxial experiments, the longer-term goal behind this work

is ultimately to extend the current physical understanding of rock plasticity. A model

describing mechanical hardening and softening as a function of temperature and pres-

sures would alleviate a major limitation of current models limited to interpolation

between experimental results, to provide a model that can extrapolate beyond labo-

ratory conditions.

Developing such a new theoretical model goes well beyond the scope of this thesis,

yet it is important to note that data-driven and physics-driven approaches go hand in

hand. The understanding of a given model behaviour and its limitations is a key factor

in the development of an improved one and this chapter demonstrates the power of

the inversion workflow to infer new information.

In the last three chapters I showed a workflow for calibrating the REDBACK model

against experiment data, then showed two case studies that match the model closely

against experiment data from well-known studies. In the pursuit of the longer-term

goal to conjecture some physical knowledge from the numerical approach and try and

reduce the number of laboratory experiments required to capture a rock behaviour,

I used the calibration studies of Chapters 5 and 6 to assess whether it is possible to

invert for α1 and α2 without relying on the experimental curves.

To this end, I added functionalities in Pathfinder to do the following:

• perform a sensitivity analysis by running a large number of simulations near the

optimized results in α1-α2 space

• generate maps of the objective function in α1-α2 space via interpolation
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• generate plots of each of many post-processors available per simulation in RED-

BACK, in the same space as above.

• identify characteristic points on simulation results (i.e. noisy data) to help users

identify features of the objective function.

This is a purely data-driven exercise, not bound by any theoretical model. The

goal is to identify any strong correlation, which would then guide the theoreticians in

model development.

7.1 Parameter space

The flow law used in this work remains under active research and will most certainly

continue to evolve in the near future. For instance, REDBACK’s current energy-based

model is most suited for pore-collapse type mechanism found in compaction and does

not capture so well the behaviour in the dilatant regime, which is dominated more by

geometry effects. This means that the model is more applicable at high rather than

low confinement. The sandstone results contain a strain-hardening effect that is not

currently captured in the model. Of the results presented, the mudstone results in

high confinement (CD4-6) are most likely to be close to what the current theoretical

model can capture. Therefore, the parameters used to simulate CD4-6 of mudstone

were selected for this study. Note that the only change between these three sets of

tests is the confining pressure.

Keeping all other parameters constant, a sensitivity analysis was performed on α1

and α2 (from Eq. 2.8) by taking 25 equally spaced values of those parameters within

given ranges (α1 in [−8.5,−2.5], α2 in [0, 60]) and running every other cross-product

simulations to cover that parameter space. The 313 simulation results produced were

subsequently compared against the experimental data using the objective function

described in Sec. 3.3 to produce sensitivity maps presented in the following section.

7.2 Map of objective functions against experimental data

The experiments involve axial strain from 0% to 20%. It is possible to calculate an

objective function (see Sec. 3.3) at any point in plasticity (after roughly 0.5% strain)

by comparing against the experiment data from the onset of plasticity up to that point.

Fig. 7.1 shows how this objective function evolves with change of α1 and α2.

These maps show that for each confining pressure, there is a zone in α1-α2 space

producing relatively good fits (low objective function values) and potentially hosting

a single global minimum. The location of this ’optimal zone’ varies for each confining
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Figure 7.1: Map of the objective function in α1-α2 space for CD4-6 of Noto mudstone. Blue
color represents region of low cost. Interpolated via radial basis function.

pressure. The right columns of Fig. 7.2, like Fig. 7.1, show the evolution of this zone

as a function of time/axial strain. It seems to be rotating over time, but the location

of the global minimum remains surprisingly steady.

This sensitivity analysis also reveals that the valid ranges of α1 and α2 to get

meaningful numerical results are quite narrow. For extreme values the simulation

behaves in obviously incorrect ways, e.g. by dropping porosity all the way to zero, or

never entering plasticity, and the corresponding zones on the maps have been cropped

out (appearing as white areas).

7.3 Correlating simulation response to objective function

It is interesting to see if any of this behaviour could be captured directly in the numer-

ical results themselves, in order to lessen the reliance on expensive experimental data.

REDBACK has the ability to output various physical properties at each timestep. A

non-exhaustive list is provided in Table 7.1. Note that unlike the cost function, which

is a comparison of the simulation stress and strain to that of experiment data, the

post-processors are generated purely based on the simulation itself.

Fig. 7.2 and Fig. 7.3 show two post-processors evolving over time, seemingly moving

in sync with the objective function. Similar correlations of this sort can be observed in

a broad range of post-processors, and across all three tested confining pressures, with

the best correlations in the centre block, rather than average or extreme values.

The Qmech post-processor tracks the activation enthalpy at the core of the model

used in this work. Comparing this post-processor against the objective function

(Fig. 7.2), the zone of good fit in the objective function seems to correspond to a

narrow range of values of Qmech.

Figures 7.3 and 7.4 shows the post-processor most closely matching the objective
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Figure 7.2: Evolution of the Qmech post-processor and cost function (right) over time, from
start of plasticity to end of experiment. The Qmech data is taken from the center block. Blue
represents low values, red represents high values, white represents omitted areas.

Figure 7.3: Evolution of the volumetric plastic mechanical power post-processor (left) and
objective function (right) over time, from the start of plasticity to end of experiment. The
post-processor data is taken from the center block. Blue represents low values, red represents
high values, white represents omitted areas.
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Figure 7.4: Sensitivity analysis in (α1,α2) parameter space for mudstone experiments CD4-
6. The top row displays the value of the objective function interpolated from 313 simulations
(white dots), showing a localised zone of good fits (low values). The bottom row shows the
corresponding values of a post-processor computing the volumetric component of the plastic
mechanical work at the center of the sample. The red dot shows the location of identified
saddle points. Note that some colorbars were capped to exclude extreme values and better
illustrate the patterns.
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Figure 7.5: 3D plot of the process for finding a saddle point in α1-α2 space, on a synthetic
function h(x, y) = x2−y2 to illustrate the functionality. Red dots are sampled from h(x, y) with
added noise. The light blue surface is the fitted polynomial f(x, y), and the large dark blue dot
is the found saddle point. Despite heavy noise, the polynomial tracks the underlying function
closely, and the saddle point, found at [-0.030, -0.008], is close to the analytical solution of
[0,0].
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function. It seems to consistently display a saddle point very close to the cost minima.

Examining Fig. 7.3 it is possible to see that the strong match does not just happen at

the end, instead the cost function and post-processor evolve in a synchronised manner

throughout the experiment.

This volumetric plastic mech power post-processor tracks the volumetric compo-

nent of the plastic mechanical power in the center block. It is calculated by taking

the product of the mean stress and plastic volumetric strain rate, two separate post-

processors. When the mean stress and plastic volumetric strain rate maps are plotted

separately, a ’ridge’ is visible in different orientations. When multiplied, these ridges

intersect to form a saddle point. The fact that the volumetric component offers a

strong signal makes sense in the context of the plasticity model, which was designed

to model pore collapse at high confinement.

7.4 Determining the saddle point in α1-α2 space

To aid in future analyses, a routine has been implemented in Pathfinder for extracting

the saddle point from a post-processor map.

As the (α1, α2) space is discretised, and the resolution is imperfect due to numerical

precision, derivatives of this space contains a small but non-negligible noise component,

making it difficult to track characteristic points directly. Instead, the routine first fits

a 3rd-order polynomial f(α1, α2) to the data. It then finds the saddle point of this

(smooth) function, using a numerical approximation of the second partial derivative

test. Fig. 7.5 highlights the localisation of the saddle point on a synthetic test function

h(x, y) = x2 − y2 with added random noise of amplitude 1, showing that it is robust

even when facing large amounts of noise.

7.4.1 Second partial derivative test

Since f(α1, α2) is a 3rd-order polynomial, it is real, differentiable, and second partial

derivatives exist. This means that the saddle point can be found via the second partial

derivative test (Stewart, 2004). The test is as follows:

Defining H as the Hessian matrix of f(α1, α2):

H(α1, α2) =

[
fα1α1(α1, α2) fα1α2(α1, α2)

fα1α2(α1, α2) fα2α2(α1, α2)

]
(7.1)

where the subscripts indicate derivatives of the function (e.g. fα1α1 = ∂2f
∂α1∂α2

).
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Let D be the determinant of H(α1, α2):

D(α1, α2) = Det(H(α1, α2))

= fα1α1(α1, α2)fα2α2(α1, α2)− (fα1α2(α1, α2))
2

(7.2)

For critical point (a, b) where fα1(a, b) = 0 and fα2(a, b) = 0,

1. If D(a, b) < 0 then (a, b) is a saddle point.

2. If D(a, b) = 0 then (a, b) is a saddle point, minima, or maxima.

3. Otherwise, (a, b) is not a saddle point.

7.4.2 Numerical approximation

Implementing the second derivative test above requires finding the critical points of

the function. This means either analytically solving for its derivative or numerically

solving for its roots. It is simpler to implement instead the following test:

1. Calculate a 2D matrix of values for the function in the region of interest.

2. For each point, calculate whether it is greater than each of its eight neighbours.

Output 1 if greater, -1 otherwise.

3. Go clockwise through the eight neighbours, count the number of sign changes in

the output of Step 2.

4. It is a saddle point if there are at least 4 sign changes.
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Post-processor Description

lewis number Lewis number, starting from value defined in input file.

porosity Porosity, starting from φ0 defined in input file.

Qmech The constitutive term Qmech as defined in Eq. 2.8.

pore pressure Normalized excess pore pressure.

temp Normalized temperature.

mises stress deviatoric stress.

mises strain the equivalent plastic strain.

mises strain rate time derivative of above.

mean stress volumetric mean stress.

plastic volumetric strain plastic portion of volumetric strain.

plastic volumetric strain rate time derivative of above.

deviatoric pmw
Deviatoric component of plastic mechanical work.
= mises stress ∗mises strain

volumetric pmw
Volumetric component of plastic mechanical work.
= mean stress ∗ plastic volumetric strain

plastic mech work
Total plastic mechanical work.
= deviatoric pmw + volumetric pmw

deviatoric pmp
Deviatoric component of plastic mechanical power.
= mises stress ∗mises strain rate

volumetric pmp
Volumetric component of plastic mechanical power.
= mean stress ∗ plastic volumetric strain rate

plastic mech power
Total plastic mechanical power.
= deviatoric pmp+ volumetric pmp

top avg stress yy
A measure of the deviatoric stress, averaged over
the top face of the rock sample.

Table 7.1: Partial List of post-processors in REDBACK. Each post-processor except for
top avg stress yy is calculated in three locations: in the centre block, averaged over entire vol-
ume, and the extrema (min or max depending on context) of the entire volume.



Chapter 8

Discussion and conclusion

This study showcased a heuristic inversion workflow for calibrating a thermo-hydro-

mechanical model based on elasto-visco-plasticity against triaxial experimental data.

I demonstrated the ability of the underlying physical model to capture both the volu-

metric and deviatoric behaviours of rock deformation for two different cases, mudstone

and sandstone (see Chapters 5 and 6), building on previous work which had showed

promising results on mudstone for the deviatoric behaviour only (Poulet & Veveakis,

2016). The heuristic nature of the approach is an important component, both from

numerical and theoretical reasons. Numerically, the multi-physical nature of the model

obviously grows considerably the number of parameters that need to be inverted, which

comes at an exponential computational cost in terms of simulations needed to parse

the parameter space. As such, the breakdown of the inversion process in three sep-

arate stages, as described on Fig. 3.1, provides individual steps that are much more

manageable computationally. The numerical argument, however, does not represent

the major reason for this breakdown, which is even more important for theoretical

reasons. Those stages represent indeed a much better way for theoretical modellers

to understand the behaviour of their physical model in terms of parameter sensitiv-

ity, compared with a single-step optimisation approach. In practice, the data driven

approach presented here provided a better understanding of the flow law description

used (Eq. 2.8) and led to the discovery of a potentially game-changing property of the

model with the presence of a saddle point (see Fig. 7.3).

The time and cost of running laboratory experiments are important factors to

take into consideration when characterising a rock behaviour and using numerical

simulations to minimise those costs is certainly very appealing. The potential presence

of a saddle point in the volumetric component of the plastic mechanical power, as

shown in Sec. 7.3, is therefore a critical outcome of this study as it could help reduce

the number of laboratory experiments needed to calibrate this physical model. The

56
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theoretical study of the physical reasons for this behaviour clearly falls outside the

scope of this work, but it is important to note the role of a data-driven analysis to

infer information about a theoretical model to help its development. This reinforces the

significance of taking a heuristic approach and highlights the need not to de-correlate

too quickly the complementary physically-driven and data-driven approaches, as they

both strongly benefit from a tight and simultaneous interaction.

It is also worth mentioning some other conclusions drawn from this calibration

exercise regarding the concept of the yield envelope, as well as the important physical

roles of temperature, pressure and rate sensitivity of materials.

The distinction between an experimentally obtained yield envelope at the sample

scale and the yield surface required at the smaller scale for equivalent finite element

simulations has always been an admitted concept in theory. In this contribution, I

considered the possibility to use a scaled-down version of the experimental curves (see

Subsec. 2.1.4) and showed satisfactory modelling results which justify further investi-

gations of this approach. Once again, the theoretical justification of this method falls

outside the scope of this work, but the results highlight the important role of numerical

investigations to help infer theoretical knowledge on constitutive relationships.

The results obtained in Chapters 5 and 6 demonstrate as well the temperature,

pressure and rate dependency of the materials tested, showing that it is possible to cap-

ture relatively well already the physical reasons behind the puzzling hardening/weak-

ening evolution with confining pressure. While Sec. 2 presented theoretical reasons to

take into account those mechanisms, the interpretation of the results justifies those

considerations.

Most models treat triaxial experiments as isothermal, which is not necessarily jus-

tified a priori as discussed in Subsec. 2.1.1. From the results obtained I can now

illustrate more precisely the effect of considering temperature variations, at least in

terms of overall impact, since its effects are feeding back on pore pressure and stress

through the various feedbacks considered in the system of equations (Eq. 2.8). Fig. 8.1

shows the thermal weakening of the model and the sensitivity of the Gruntfest num-

ber Gr, encompassing the micro-structural shear heating effects, on the stress-strain

response of mudstone at 1.5 MPa confinement for instance. There is a slight weak-

ening occurring when increasing Gr by a factor 5, while the maximum temperature

changes (at the centre of the virtual rock sample) remain below a maximum of 0.3oC.

These minor temperature variations within the sample would remain barely noticeable

from the outside using a recent thermal infra-red camera, which shows the important

effects of even minor temperature changes. Note as well the temperature feedback on

the mechanical behaviour through the temperature dependency of the mechanical flow

law and the Arrhenius parameter Ar (Eq. 2.8), with a sensitivity analysis for the same
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Figure 8.1: Sensitivity analysis on Gruntfest number Gr, showing noticeable temperature weak-
ening on the stress-strain curves (left) for corresponding temperature values (right) not exceed-
ing 1oC at the centre of the 3D block.

simulation shown in Fig. 8.2. The effects on the mechanical response are even more

drastic, with temperature changes yet remaining once again below noticeable values

from the outside.

Similar to temperature, pore pressure effects also play an important role in the

results obtained and highlight the range of values required for the Lewis number Le

for the pressure sensitivity of the flow law to become relevant. While the definition of

Le from Eq. (2.4a) only accounts for Darcy flow in terms of mass diffusivity, the higher

values obtained through the inversion - up to 5 orders of magnitude for sandstone for

instance - point to the fact that other mechanisms are at play and should be accounted

for in the physical model. This finding highlights once again the importance of the

numerical approach to help derive the physical model, and to allow flexible bounds

for poorly constrained numbers (like Le) as a good way to infer new directions for

the theoretical model development. For instance, Sari (2019) proposed recently a new

formulation of the mechanical flow law accounting for the mass diffusivity of a weaker

solid phase resulting from grain de-bonding and cement breakage, which would indeed

translate in the current model as much larger values of Le.

Finally, the rate sensitivity built into the model has already been demonstrated

(Poulet & Veveakis, 2016) and proved as well to play a role in the calibration studies

presented here. Considering creep brings more focus on the impact of the loading

rates used to equilibrate the laboratory experiments at high confinements, especially

as reduced yield envelopes are also in play. This raises the interesting question whether

some creep had actually started in places, at the microstructural level, for the experi-

ments at highest confinements. This question can only be answered in the laboratory

but points again at the surprising impact of the data-driven numerical approach be-
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Figure 8.2: Sensitivity analysis on Arrhenius number Ar, showing extremely different mechan-
ical responses on the stress-strain curves (left) for corresponding temperature values (right) not
exceeding 0.2oC at the centre of the 3D block.

yond its originally intended scope.

The derived set of parameters are not necessarily unique, but they closely fit the ex-

perimental observations of rock behaviour, and the presence of a saddle point satisfies

heuristics regarding the interaction between multiple competing processes. Ultimately

there is no way to ‘ensure’ a match with physical reality, but the close matches ob-

tained warrant some validity of the approach via Occam’s Razor, and warrant further

investigations into the proposed model. Like all models, it is a simplification of reality,

but it is one that has proven useful.

Going forward, improvement could come from several directions: insight could be

obtained through calibrating the model to a wider range of experiments, covering more

rock types and broader range of experiment conditions. The model could be expanded

to include considerations such as sample anisotropy and clay swelling. Advancing

the theoretical underpinnings for the identified constitutive parameters could lead to

elimination of some of the free parameters and improve predictive power.

In conclusion, this study demonstrated the importance of linking theoretical and

numerical investigations as both approaches are so complementary in the context of

multiphysics that they cannot satisfactorily be tackled independently. The workflow

presented here provides a practical step towards this goal and showed the impact of

combining physically-driven and data-driven approaches. This approach is of par-

ticular interest for applications including landslides, subduction zones, nuclear waste

disposal, or any other geological deformation focusing on plasticity with multiphysi-

cal feedbacks. The formulation of a physical model accounting directly for tempera-

ture and pressure evolution could open the door to possible extrapolations of existing

laboratory results beyond the conditions previously tested (high temperature, high
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pressure, geological strain rates) and such novel theories will certainly require an even

tighter experimental-theoretical-numerical integration.
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