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Finally, we derive general formulae for the total, RTM and intervention effects

under any bivariate distribution, while relaxing potentially restrictive assumptions

commonly used in past research. An expression for the total effect is derived in
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Chapter 1

Introduction

When repeated measurements are made on the same individual or subject at two

different times, relatively high or low observations are likely to be followed by

less extreme observations nearer to the true mean. This statistical phenomenon

is called regression to the mean (RTM), or regression towards the mean, and was

first discovered by Sir Francis Galton (1886). Galton noted that parents who were

taller than the population mean height had children who were shorter than them,

but were closer to the population mean. Similarly, parents who were shorter on

average than the population mean height had children whose heights were closer

to the population mean.

Figure 1.1 illustrates the RTM phenomenon for standardized height z = (x − µ)/σ,

where µ and σ are respectively the population mean and standard deviation. The

height of parents are in the left or right tails while the height of children are nearer

the true mean. The length of the arrow is the RTM effect.

Random error or within subject variability gives rise to RTM. Data without random

error is uncommon making RTM a ubiquitous problem in data analysis. Further,

the magnitude of RTM is proportional to the measure of dispersion of the random

error component (Barnett et al., 2005). RTM can be a group phenomenon where

subjects are selected for a study when their baseline measurements are in the

extreme of a distribution (Johnson and George, 1991).

RTM has influenced studies in many diverse research areas where repeated mea-
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Figure 1.1. Graph of RTM effect for standardized height on parents and their

children.

surements or observations are collected. In social psychology, for example, Yu and

Chen (2014) provided evidence in favour of the efficacy of social conformity and

unrealistic optimism effects, but the effects were no longer evident after control-

ling for RTM.

In public health, the prevalence of childhood obesity is of serious concern and ef-

fective strategies are introduced to prevent or reduce its rate. Burke et al. (2014)

evaluated the effectiveness of one such program called HealthMPowers and con-

cluded that it was effective in reducing childhood obesity. Skinner et al. (2015)

were critical of the effectiveness of HealthMPowers and demonstrated the appar-

ent change was due to RTM. In another study, Moores et al. (2018) concluded their

intervention program, called the Parenting, Eating, and Activity for Child Health

(PEACH), was effective on the basis of a statistically significant decrease in stan-

dardized BMI and waist scores. Hannon et al. (2018) argued that the conclusion

was mistaken as the observed decrease was likely due to the RTM effect.

In economics, unusually rapid economic growth rates are rarely persistent and

are often punctuated by a discontinuous drop-off. Thus, forecasting economic
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growth without accounting for RTM can be misleading (Pritchett and Summers,

2014). In their working paper, Pritchett and Summers warn about the likelihood

of a decrease in the current growth rates of Asian giants China and India after

accounting for RTM effects.

Other areas where RTM effects have been reported include alcohol consumption

(McCambridge et al., 2014), birth weights (Wilcox et al., 1996), blood pressure

(Kario et al., 2000), cholesterol (Schectman and Hoffmann., 1988), road crashes

(Retting et al., 2003), economic evaluation (Schilling et al., 2017), and sports

management decisions (Lee and Smith, 2002). Bland and Altman (1994) and

Morton and Torgerson (2005) discuss several examples where RTM could influ-

ence statistical inference.

Natural events can induce RTM such as when chronically ill patients only seek

treatment when their conditions are at their worst. Likewise, strong enforcement

of speed laws and the vaccination of children may only be administered when

road crashes and the incidence of tractable disease are at their peaks (Morton

and Torgerson, 2003). The effect of RTM can be mitigated through randomiza-

tion; however, ethical or logistical constraints often limit the ability to randomize

participants to control and treatment groups.

1.1 A brief history of RTM
RTM as a concept was the culmination of many years of work by Sir Francis Gal-

ton (Stigler, 1997). In his book on heredity genius, Galton (1869) approached

the concept by studying the way talent ran in families. For this purpose, Gal-

ton selected some notable people including great scientists (e.g., the Bernoullis),

musicians (e.g., the Bachs), and their relatives. Galton observed that there was

a noticeable propensity for a steady decrease in eminence the further down or

up the family tree one moved from the notable person. This phenomenon also

appeared to be true with dogs.

Galton made many attempts at explaining his observed ancestral peculiarities. Af-

ter revisiting the problem over many years, Galton produced a formulation of RTM

in terms of the bivariate normal distribution with help from Cambridge mathe-
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matician JH Dickson (Galton, 1889). Complete details can be found in Stigler

(1986).

RTM has been expressed verbally, mathematically, and geometrically since the

early days of its development (Stigler, 1997). Brief descriptions of each of these

are given below.

Verbal description

Verbally, RTM can be considered a stochastic time-varying phenomenon, where

successive observations are made on the same subject at different times. For in-

stance, consider the number of points scored by basketball team A in two succes-

sive matches against the same opposition with an exceptionally high score on the

first occasion. Team A would perform less well on a second match relative to the

first occasion due to the RTM effect.

A random variable can be often written as the sum of two components: (i) a

permanent or true component and (ii) a transient or random/measurement error

component. In the basketball context, skill is the permanent component and luck

is the error component, and scores are the combination of skill and luck. Thus,

for an exceptionally high score, the contributions of skill and luck are both high,

whereas, on the second occasion, the skill part persists but the luck part is reduced.

The luck component on the second occasion does not become bad luck and can

rarely improve, but on average there would be no luck at all. Thus, a transition

can occur from skill plus luck on the first occasion to skill alone on the second

occasion resulting in a net decrease.

On the other hand, if the first score is exceptionally low, i.e., in the left tail of

a distribution, the initial score can perhaps be thought of as the sum of below

average skill and bad luck. On the second occasion there would be only below

average skill and no luck (bad or good), which would then result in a net increase

in the score. The net decrease or increase in scores are due to RTM and not due

to a change in the basketball team’s skill level.
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Mathematical description

Mathematically, RTM can be derived in several equivalent ways. Let X and Y

be the respective pre and post variables, and let their joint distribution be the

standard bivariate normal with correlation ρ. The probability density function is

then

f(x, y) =
1

2π
√

1 − ρ2
exp(−

1

2(1 − ρ2)
(x2 + y2 − 2ρxy)) , −∞ < x, y <∞.

After some algebraic manipulation, the conditional distribution of Y given X can

be expressed as

f(y∣x) =
f(x, y)

f(x)
=

1
√

2π
√

1 − ρ2
exp

⎛

⎝
−

1

2

⎛

⎝

y − ρx
√

1 − ρ2

⎞

⎠

⎞

⎠
, −∞ < y <∞.

Note that f(y∣x) is equivalent to the probability density function of a normal dis-

tribution, N(ρx,1 − ρ2). As the conditional expectation is E(Y ∣X = x) = ρx and

ρ < 1, this implies regression towards 0, the mean of X.

In another mathematical representation, pre and post variables X and Y can be

expressed mathematically as

X = T +E1, Y = T +E2,

where T is the true or permanent component and E1 and E2 are the transient

or random error components that are mutually independent of each other. For

the sake of simplicity, let us suppose T and Ei are identically distributed with

E(T ) = E(Ei) = 0 for i = 1,2. The conditional expectation of Y given X = x can be

simplified to

E(Y ∣X = x) = E(T +E2∣T +E1 = x)

= E(T ∣T +E1 = x).

However, the value x is equivalent to

x = E(T +E1∣T +E1 = x)

= 2E(T ∣T +E1 = x),
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and so E(Y ∣X = x) = x/2. Note that no specific distribution was assumed for

the pre-post variables and this derivation does not require the existence of second

moments. If the correlation exists, we would have ρ = 1/2, which is in agreement

with the previous formula for the conditional expectation.

Geometrical description

To clarify the concept of RTM geometrically, consider the diagram of the bivari-

ate standard normal distribution with correlation ρ given in Figure 1.2. A cross-

sectional slice, perpendicular to the xy plane and parallel to the y axis, is taken at

X = x > 0. This may represent an unusually high first score if x is in the tail of the

distribution of X. The surface is then decapitated parallel to the xy plane, such

that the level curve of intersection, which is an ellipse, is exactly tangent to the

curve of intersection of the first slice. The resulting diagram is shown in Figure

1.3.

The major and minor axes of the ellipse are formed by the respective red line

Y = X and green line Y = −X. The black line passing through the origin and the

point of tangency of the two curves is the conditional expectation of Y given X,

i.e., E(Y ∣X = x) = ρx. The curve of intersection of the first slice with the surface is

the conditional distribution of Y ∣X = x as depicted in Figure 1.4.
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Figure 1.2. Surface of the bivariate normal distribution.

Figure 1.3. Geometric interpretation of RTM for the bivariate normal distribution.
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Figure 1.4. Conditional normal distribution of Y ∣X = x

In terms of this diagram, the RTM phenomenon consists of the observation that

the line of conditional expectation must be closer to the x-axis than the major axis

of the ellipse for RTM to happen. It is clear from the diagram that it is unlikely

for the first slice to touch the ellipse at the point the major axis crosses it. This

could only happen if X and Y were perfectly positively correlated (i.e., lines of the

major axis of ellipse and the conditional expectation coincide), thereby collapsing

the ellipse into a line segment. When ρ = 1, RTM is zero, and RTM is not zero for

all other values of ρ.

1.2 An overview of existing methods
In uncontrolled clinical trials and intervention studies, quantification and estima-

tion of RTM is necessary to accurately estimate treatment or intervention effects.

James (1973) and Gardner and Heady (1973) derived RTM formulae for bivariate

normally distributed random variables with stationary mean and variance, and

strictly positive correlation ρ > 0. Davis (1976) extended the derivation of RTM

formulae when multiple measurements were taken before applying a treatment to

subjects and discussed how this approach was useful in reducing the RTM effect.
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James (1973) derived a method of moments estimator for regression to the mean

by assuming that the percent of the population in the truncated portion is known.

Senn and Brown (1985) improved the derivation by James (1973) and also gen-

eralized the maximum likelihood estimator of parameters to various sampling

schemes associated with the bivariate normal distribution. Chen and Cox (1992)

derived a maximum likelihood estimator of the intervention effect assuming that

the pre and post variables were identically distributed and the treatment was de-

signed to change the post measurements in the direction of the population mean.

A key assumption in the above derivations was bivariate normality of the pre and

post random variables. Clearly, not all data are normally distributed and this

assumption could lead to inaccurate RTM estimation. Das and Mulder (1983) de-

rived a general formula of regression to the mode for arbitrary continuous distribu-

tions in a stationary population of subjects. Senn (1990) was critical to using the

terminology ‘regression to the mode’ and argued with the help of examples to use

‘regression to the mean’ instead. Importantly, the Das and Mulder (1983) method

is not directly applicable to empirical distributions as the problem of unidentifi-

ablity of distributions arise (Müller et al., 2003).

Beath and Dobson (1991) derived estimates for regression to the mean for non-

normal data based on Edgeworth series and saddlepoint approximations. Edge-

worth series approximations may become negative or multimodal for certain val-

ues of skewness and kurtosis (Barton and Dennis, 1952), and the saddlepoint

approximation is more complicated from a calculation point of view. Both Das

and Mulder (1983) and Beath and Dobson (1991) assumed normality for the

random error component with zero mean and constant variance. Under fewer

assumptions regarding the underlying distribution, Müller et al. (2003) proposed

a non-parametric method for estimating the RTM effect. John and Jawad (2010)

improved the Das and Mulder (1983) method by making it adaptive to empiri-

cal distributions via kernel estimation approaches, while still retaining their error

component assumption.

Not all variables are continuous in nature, e.g., count and binary variables which

follow discrete probability distributions. The distributions of discrete random vari-
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ables can be approximated by continuous probability distributions, but under suit-

able conditions these approximations may be inaccurate. Examples of count vari-

ables which are modelled as the Poisson distribution can be found in Anderson

(2013), Jones and Smith (2010), and Tse (2014). Similarly, the total number of

correct answers in a standardized test, obese individuals in a cohort of fixed size,

and absentees in a month may follow the binomial distribution. Along with bivari-

ate Poisson and binomial random variables, formulae for RTM are missing in the

literature for other non-normal bivariate random variables.

Existing methods for RTM make assumptions about the direction of the treatment

effect and the parameters of the pre-post variables. The effect of treatment is as-

sumed to move the post measurents in the direction of the mean, and pre-post

observations are assumed to be identically distributed. Interventions may have

effects in the direction opposite of what was intended. Ter Weel (2006), in a

study of the Dutch soccer league, found no improvements in team performance

after manager turnover. In another study, a negative relationship between em-

ployee turnover and performance was observed by Ton and Huckman (2008).

Changzheng and Kai (2010) discussed different effects of employee turnover on

firm performance including positive, negative and no effects. Thus, an interven-

tion or treatment could change the composition of a population in any direction

including away from the population mean.

The derivations of RTM formulae when the pre and post variables follow the bi-

variate Poisson or bivariate binomial distributions constitute the major part of

this research project. When an intervention or treatment is applied to subjects

screened on the basis of a cut-off point, the expected difference between pre and

post variables is the total effect which is shown to be decomposable into interven-

tion and RTM effects. Notably, in the presence of RTM, the difference in sample

means is a biased estimator of the intervention effect, but the bias can then be

used to derive an unbiased intervention or treatment effect. To achieve this objec-

tive, the other aims of this project are to derive expressions for the total effect and

its decomposition into intervention and RTM effects.

Additionally, existing RTM formulae are based on certain, potentially restrictive



CHAPTER 1. INTRODUCTION 11

assumptions including (i) identical distribution of the pre and post variables, (ii)

strictly positive correlation, (iii) the direction of the post measurement to change

towards the population mean, and (iv) the normal distribution with zero mean

and constant variance of the error component. The penultimate goal is to derive

formulae for RTM relaxing these assumptions. The last objective is to derive maxi-

mum likelihood estimators of the total, intervention and RTM effects and establish

their statistical properties of unbiasedness, consistency and asymptotic normality.

1.3 Outline of thesis
This thesis aims to achieve the above mentioned objectives as follows. In Chapter

2, existing methods for estimating and/or mitigating the RTM effect at the design

stage of a study and its derivation and estimation in data analyses are discussed.

In Chapter 3, we derive RTM formulae for the bivariate Poisson distribution, ho-

mogeneous and inhomogeneous bivariate Poisson processes, and their estimators.

Chapter 4 is devoted to deriving RTM formulae for the bivariate binomial distribu-

tion. Through a comparative study, it is shown that the normal or Poisson approx-

imations to the binomial distribution are not suitable alternatives for quantifying

RTM even when the usual conditions of approximation are satisfied. In Chapter

5, general formulae for any bivariate distribution are derived for the total, inter-

vention, and RTM effects. Formulae for the exponential family of distributions are

also derived when the vector of sufficient statistics includes the identity function.

Chapter 6 concludes the thesis with a discussion, conclusions and directions for

future work.
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Chapter 2

Existing methods for regression to the

mean

RTM is a common phenomenon in repeated data, which may bias the estimated

effectiveness of an intervention or treatment (Barnett et al., 2005). Past research

has derived formulae to account for RTM, while other research has devised strate-

gies to avoid and/or mitigate the RTM effect at the design or data analysis stages

of a pre-post study. A detailed account of existing RTM methods is presented in

the following sections.

2.1 RTM reduction method by Ederer (1972)
Ederer (1972) developed a method which can be used to reduce the RTM effect.

The author considered the successive observations Y1, Y2 and Y3 on the same sub-

ject at time points ti, such that Yi ∼ N(µi, σ2
i ) for i = 1,2,3. The author planned to

select or classify participants on the basis of a cut-off point y0 at t1 using the first

observation Y1, i.e., Y1 > y0 and measure changes from Y2. In other words, the aim

was to explore changes in Yi from t2 to t3 after classifying Y1 by the cut point y0.

Let the distribution of successive observations Y1 and Y2, and Y1 and Y3 be bivariate

normal (Y1, Yj) ∼ N(µ1, µj, σ2
1, σ

2
j , ρj1) for j = 2,3. Then, Yj can be expressed in

terms of Y1 as

Yj = αj + βj1Y1 +Ej, for j = 2,3
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where Y1 and Ej are independent, Ej ∼ N (0, (1 − β2
j1)σ

2), αj and βj1 are the

intercepts and regression coefficients, for j = 2,3, respectively.

Classifying subjects on Y1 > y0, the respective expected values of Y2 and Y3 for each

value of Y1 are

E(Y2) = α2 + β21y1 and E(Y3) = α3 + β31y1

where y1 ∈ (y0,∞). Solving the first equation for y1 and substituting in the latter

equation, we get

E(Y3) = α3 +
β31
β21

(E(Y2) − α2) .

This representation gives the expected change obtained from Y2 to Y3 after having

classified on Y1 > y0. The corresponding regression coefficient for Y3 on Y2, having

classified on Y1, is given by

β32(1) =
β31
β21

=
ρ31σ3/σ1
ρ21σ2/σ1

=
ρ31σ3
ρ21σ2

.

Note that β32(1) is different from β32 = ρ32 ⋅σ3/σ2 which is the regression coefficient

of Y3 on Y2 without classifying on Y1 > y0. RTM is zero when β32(1) = 1, and its

magnitude increases as β32(1) decreases, and reaches maximum when β32(1) = 0.

A reduction in the RTM effect in the change from t2 to t3 obtained by changing

the classification point from t2 to t1 implies that β32 < β32(1). Hence, a necessary

condition for the reduction in RTM effect under bivariate normality is ρ32 < ρ31/ρ21.

The complete elimination of RTM implies that β32 < β32(1) = 1 or, equivalently,

ρ31σ3 = ρ21σ2 or cov(Y1, Y3) = cov(Y1, Y2).

2.2 Derivation of RTM under bivariate normality
The existing RTM literature is primarily focused on the bivariate normal distri-

bution, positive correlation, and stationary distributions of the pre-post variables.

These assumptions are potentially limiting, although later research has relaxed

some but not all assumptions made in earlier studies.

James (1973) and Gardner and Heady (1973) assumed the observed variable was

the sum of true and random error components. Let Xi be an observed variable
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which is composed of the variables X0 and Ei which are respectively the true

and random error components on the ith replication for the same individual, for

i = 1, ..., n. That is, the model that connects Xi, X0, and Ei is

Xi =X0 +Ei, (2.1)

where X0 and Ei are independent of each other, X0 is normally distributed as

N(µ,σ2
0), the error termsEi are independent and identically distributed asN(0, σ2

e),

for i = 1, ..., n. As a result, Xi are also identically distributed as N(µ,σ2), where

σ2 = σ2
0 + σ

2
e .

Many existing methods assume the bivariate normal distribution for derivation of

RTM formulae (James, 1973; Gardner and Heady, 1973; Davis, 1976; Johnson

and George, 1991). These authors have utilized model (2.1) or some extensions

to derive RTM formulae. Details of each author’s work are given below.

2.2.1 James (1973)
James (1973) considered successive random variables X1 and X2, representing

some characteristics on the same subject before and after an intervention. Here,

Xi ∼ N(µ,σ2) for i = 1,2, and cov(X1,X2) = σ2
0. The joint distribution of X1 and

X2 is bivariate normal, where ρ = σ2
0/σ

2 is the correlation of X1 and X2.

In clinical or intervention studies, participants with measurements above or below

a cut-off or truncation point, say x0, are selected for treatment or an intervention.

Considering only the right cut-off point for demonstrative purposes, the ensuing

truncated bivariate normal distribution is

f(X1,X2∣X1 > x0) =
exp (− 1

1−ρ2 ((
x1−µ
σ )2 + (

x2−µ
σ )2 − 2ρ(x1−µσ )(

x2−µ
σ )))

(1 −Φ(z0))σ2
√

1 − ρ2
,

where x0 <X1 <∞,−∞ <X2 <∞, Φ(⋅) is the standard normal cumulative distribu-

tion function (CDF) and z0 = (x0 − µ)/σ.

The difference between the conditional means of the identically distributed vari-

ables X1 and X2 is defined to be RTM, R(x0), as

R(x0) = E(X1 −X2∣X1 > x0)

= ∫

∞

x0
∫

∞

−∞
(X1 −X2)f(X1,X2∣X1 > x0)dx2dx1. (2.2)
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Assuming a null treatment effect, a model describing the relationship between the

pre-post variables can be written as

X2 − µ = ρ(X1 − µ) +E1,

where E1∣x1 ∼ N (0, (1 − ρ2)σ2). James (1973) derived an expression for RTM

under bivariate normality as

R(x0) =
σ(1 − ρ)φ(z0)

1 −Φ(z0)

=
σ2
e

√
σ2
0 + σ

2
e

⋅
φ(z0)

1 −Φ(z0)
, (2.3)

where φ(⋅) is the standard normal density. James speculated that if a treatment

was effective, then it would alter the post measurements in the direction of the pre

measurement mean. A model with an effective treatment for the pre-post variables

takes the form

X2 − µ = γρ(X1 − µ) +E2,

where γ is a treatment parameter and E2∣x1 ∼ N (0, (1 − ρ2)σ2). The treatment is

considered effective if γ < 1. Using this model, James (1973) derived a formula

for the observed change, assuming the standard bivariate normal distribution as

E(Z1 −Z2∣Z1 > z0) =
(1 − γρ)φ(z0)

1 −Φ(z0)
, (2.4)

where Zi = (Xi − µ)/σ for i = 1,2. James (1973) defined the total proportional

reduction TPR in the mean at level x0 of X1, due to both RTM and treatment

effects as

TPR =
x0 − γρx0

x0
= 1 − γρ.

The proportional reduction observed in the mean, due to RTM alone would then

be

proportional reduction due to RTM = 1 − ρ.

Thus, the proportional reduction due to RTM relative to the total reduction can be

obtained as

proportional reduction due to RTM
TPR

=
1 − ρ

1 − ργ
. (2.5)
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Equation (2.5) helps in decomposing the total change into treatment and RTM

effects. However, if ρ = 0, that is when the pre-post variables are independent,

then equation (2.5) equals one indicating that the percent reduction is solely due

to RTM.

2.2.2 Gardner and Heady (1973)
Gardner and Heady (1973) considered the statistical model (2.1) for their deriva-

tions, but allowed n replicate measurements on the same subject instead of only

two measurements. The distributional assumptions of Xi, X0, and Ei were re-

tained along with the dependence structure. Unlike the successive observed vari-

ables Xi for i = 1,2, Gardner and Heady (1973) considered the joint distribution

of the observed variable Xi and the true variable X0. The joint distribution of

Xi and X0 is assumed bivariate normal, denoted by f(Xi,X0), with correlation

cor(Xi,X0) = σ0/
√
σ2
0 + σ

2
e .

Gardner and Heady (1973) considered a group of individuals who were in the

right tail of the distribution, i.e., Xi > x0. Consequently, the distribution of the

observed variable Xi is a univariate truncated normal distribution, f(Xi∣Xi > x0).

The expected value of Xi∣Xi > x0 is then

E(Xi∣Xi > x0) = µ + σ
φ(z0)

1 −Φ(z0)
. (2.6)

Similarly, the truncated distribution of X0 given Xi > x0 is

f(X0∣Xi > x0) =
∫
∞
x0
f(xi, x0)dxi

∫
∞
x0
f(xi)dxi

,

and the conditional expected value of X0 is

E(X0∣Xi > x0) = µ +
σ2
0

σ
⋅

φ(z0)

1 −Φ(z0)
. (2.7)

Comparing equations (2.6) and (2.7), it can be verified that σ > σ2
0/σ when σ2

e > 0.

Hence, the mean of the observed values will always be greater than the mean

of their true values due to RTM unless σ2
e = 0, which corresponds to the case of

perfect correlation between Xi and X0, i.e., no within subject variability.

Gardner and Heady (1973) also considered taking multiple measurements on the

same subject to reduce the RTM effect. Let the number of replicated measurements
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on the same subject be n, and the selection of subjects for treatment be based on

the average X = ∑
n
i=1Xi/n. Then, it can be shown that

E(X ∣X > x0) = µ +
√
σ2
0 + σ

2
e/n ⋅

φ(z0n)

1 −Φ(z0n)
, (2.8)

and

E(X0∣X > x0) = µ +
σ2
0√

σ2
0 + σ

2
e/n

⋅
φ(z0n)

1 −Φ(z0n)
, (2.9)

where the selection criterion is based on the cut-off point x0, i.e., X > x0, and

z0n = (x0 − µ)/
√
σ2
0 + σ

2
e/n. From equation (2.8), it is clear that as n increases

the conditional expected value of the sample mean of observed values decreases.

Whereas, the expected value of the true variable increases as n increases in equa-

tion (2.9). Thus, for large n, there would be little difference between the mean of

the observed and true values conditioned on the event X > x0. Mathematically, as

n→∞, σ2
e/n→ 0, or equivalently,

lim
n→∞

E(X ∣X > x0) = lim
n→∞

E(X0∣X > x0) = µ + σ0
φ(z0n)

1 −Φ(z0n)
.

To demonstrate this fact graphically, let the parameters of the bivariate normal

distribution be µ = 5, σ2
0 = 0.3, and σ2

e = 0.7 and the right cut-off point be x0 = 7.

Equations (2.8) and (2.9) are plotted in Figure 2.1 for different values of n. As the

value of n increases, the gap between the curves of the observed and true expected

values decreases. For multiple measurements on each individual, the RTM formula

was obtained by subtracting equation (2.8) from equation (2.9) as

R(x0) =
⎛

⎝

√
σ2
0 + σ

2
e/n −

σ2
0√

σ2
0 + σ

2
e/n

⎞

⎠
⋅

φ(z0n)

1 −Φ(z0n)

=
σ2
e/n

√
σ2
0 + σ

2
e/n

⋅
φ(z0n)

1 −Φ(z0n)
. (2.10)

For n = 1, equation (2.10) reduces to equation (2.3) from James (1973).

2.2.3 Davis (1976)

When planning an intervention study, it may be helpful to reduce the RTM effect

through the study design. To formulate this, Davis (1976) revisited the work

done by Gardner and Heady (1973) and Ederer (1972) which were based on
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Figure 2.1. Expected values of the observed and true variables as function of n

taking two and two or more measurements on the same subject, respectively. The

author considered the same statistical model given in equation (2.1). As before,

let X be the sample mean of multiple observations taken on the same subject

such that X ∼ N(µ,σ2
0 + σ

2
e/n). Let X∗ be the subsequent observation such that

X∗ ∼ N(µ,σ2
0 + σ

2
e). Then, the correlation between X and X∗ is

ρ∗ =
σ2
0√

(σ2
0 + σ

2
e/n)(σ

2
0 + σ

2
e)
.

The expectations of X and X∗ conditioned on a cut-off point x0 are given by

E(X ∣X > x0) = µ +
√
σ2
0 + σ

2
e/n ⋅

φ(z0n)

1 −Φ(z0n)
, (2.11)

and

E(X∗∣X > x0) = µ +
σ2
0√

σ2
0 + σ

2
e/n

⋅
φ(z0n)

1 −Φ(z0n)
. (2.12)

A formula for RTM can be obtained by subtracting equation (2.12) from equation

(2.11) as

R(x0, n) = E(X −X∗∣X > x0)

=
σ2
e/n

√
σ2
0 + σ

2
e/n

⋅
φ(z0n)

1 −Φ(z0n)
, (2.13)
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which is the same result derived by Gardner and Heady (1973).

The magnitude of RTM can be reduced by taking multiple measurements on the

same subject before applying an intervention asR(x0, n) is a decreasing function of

n. RTM as a function of n is shown in Figure 2.2 for values µ = 5, σ2
0 = 0.3, σ2

e = 0.7

and x0 = 7. The asymptotic value of R(x0, n) is depicted by the dashed horizontal

line at zero. RTM decreases steeply for the first four to five measurements, but

afterwards the decrease in not substantial.
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Figure 2.2. RTM as a function of n for σ2
0 = 0.3, σ2

e = 0.7 and x0 = 7.

Another way to reduce RTM can be accomplished by using the first observation

X1 as a baseline measurement for classification purposes, i.e., selecting a subject

on the basis of the event X1 > x0, and the second observation X2 on the same

subject as the baseline from which the treatment effect can be evaluated. For

example, cholesterol can be classified according to one baseline observation and

measuring the change from another baseline point several weeks later (Ederer,

1972). Let X3 be the post intervention measurements. Davis (1976) translated
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this mathematically in terms of conditional expectations as

E(X2∣X1 > x0) = µ + ρ12 ⋅ σ
φ(z0)

1 −Φ(z0)
, (2.14)

and

E(X3∣X1 > x0) = µ + ρ13 ⋅ σ
φ(z0)

1 −Φ(z0)
, (2.15)

where ρ12 and ρ13 are correlation coefficients, defined as cor(X1,X2) = ρ12 and

cor(X1,X3) = ρ13. The resulting RTM formula is

R(x0, ρ12, ρ13) = E(X2 −X3∣X1 > x0)

= (ρ12 − ρ13) ⋅ σ
φ(z0)

1 −Φ(z0)
. (2.16)

The RTM effect will be zero when ρ12 = ρ13, and if the difference (ρ12−ρ13) is small,

multiple measurements may not be required for reducing the RTM effect.

2.2.4 Johnson and George (1991)

Gardner and Heady (1973) assumed that independent measurement errors are

the only source of variability in repeated observations. In practice, there may be

many factors which can influence within subject variability, such as the subject’s

emotional state at the time of measuring blood pressure and biological variation

(Musini and Wright, 2009). Johnson and George (1991) extended model (2.1) to

include a subject effect, Si, as

Yi =X0 + Si +Ei for i = 1, ...,m, (2.17)

where Si and Sj may be correlated cor(Si, Sj) = ρs > 0 for i ≠ j, but independent of

X0 and Ei, and Si ∼ N(0, σ2
s). The assumptions of model (2.1) regarding X0 and

Ei are retained in the derivation.

Johnson and George (1991) argued that model (2.1) would be appropriate if mea-

surement error was the only attributable source of variability when repeated mea-

surements were taken under identical conditions. However, measurements taken

at different times under different conditions would lead to within subject fluctua-

tions, and model (2.17) would be appropriate. For example, if Y1 and Y2 denote a
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successive characteristic measured on parents and offspring, respectively, then S1

and S2 as defined in model (2.17) may be correlated genetic effects with correla-

tion coefficient ρs < 1. Even in the absence of measurement errors, Si components

will lead to within subject variability, for i = 1,2, and would ultimately induce

RTM.

Under model (2.17), the respective formulae for correlation between the succes-

sive variables and RTM are

cor(Y1, Y2) =
σ2
0 + ρsσ

2
s

σ2
0 + σ

2
s + σ

2
e

,

and

R(y0) =
σ2
0 + (1 − ρs)σ2

s
√
σ2
0 + σ

2
s + σ

2
e

⋅
φ(z1)

1 −Φ(z1)
, (2.18)

where z1 = (y0 − µ)/
√
σ2
0 + σ

2
s + σ

2
e .

Suppose for each subject in a study, repeated measurements are taken at m dif-

ferent times, and at each time, n replicate measurements are taken. Then, model

(2.17) can be written as

Yij =X0 + Si +Eij, for i = 1, ...,m, j = 1, ..., n, (2.19)

where, as before, X0 ∼ N(µ,σ2
0) and also S = (S1, ..., Sm) ∼ N(000,Σ), 000 = (0, ...,0)T ,

Σ is compound symmetric as

Σ = σ2
u

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρs ⋯ ρs

1 ⋯ ρs

⋱ ⋮

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Eij ∼ N(0, σ2
e) and are independent of X0 and S. Let the sample mean Y =

∑
m
i=1∑

n
j=1 yij/(nm) be used to classify subjects for inclusion in the study to ad-

minister treatment if Y > y0. Then

var(Y ) = σ2
y

= σ2
0 +

σ2
s

m
(1 + (m − 1)ρs) +

σ2
e

mn
. (2.20)
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Let Y ∗ be the observation after administering treatment, then the respective for-

mulae for the correlation of Y ∗ and Y , and RTM are

cor(Y ,Y ∗) =
σ2
0 + ρsσ

2
s

√
(σ2

0 + σ
2
s/m (1 + (m − 1)ρs) + σ2

e/mn) (σ
2
0 + σ

2
s + σ

2
e)
,

and

RT (y0) =
((1 − ρs)σ2

s + σ
2
e/n) /m

σy
⋅

φ(z2)

1 −Φ(z2)
, (2.21)

where the subscript T stands for total in RT (y0) and z2 = (y0 − µ)/σy. The mea-

surement error and subject effect both contribute to RTM, and their individual

contributions can be obtained by decomposing the total RTM, RT (y0), as

RT (y0) = RS(y0) +RE(y0) (2.22)

=
(1 − ρs)σ2

s/m

σy
⋅

φ(z2)

1 −Φ(z2)
+
σ2
e/(mn)

σy
⋅

φ(z2)

1 −Φ(z2)
.

If RT (y0) and RE(y0) are known, then RS(y0) can be estimated without know-

ing the correlation structure among subjects. The measurement error component

RE(y0) of RTM can be reduced by either increasing the number of repeated mea-

surements m, and/or by increasing the number of replications n of each measure-

ment, whereas increasing the number of repeated measurements m at different

times is the only option for reducing RS(y0). However, in practice, it may not be

possible in terms of cost and time to take a large number of measurements to clas-

sify subjects for administering treatment to them. So, a reasonable alternative is

to replicate measurements at a given time to reduce RTM attributable to measure-

ment error before applying a treatment to subjects on the basis of the condition

Y > y0. Under these conditions, equations (2.20) and (2.21) for the variance of Y

and RTM, respectively, simplify to

var(Y ) = σ2
0 + σ

2
s + σ

2
e/n,

and

RT (y0) =
(1 − ρs)σ2

s + σ
2
e/n

√
σ2
0 + σ

2
s + σ

2
e/n

⋅
φ(z2)

1 −Φ(z2)
. (2.23)

Taking the limit of equation (2.2), RT (y0) reduces to RS(y0) as

lim
n→∞

RT (y0) =
(1 − ρs)σ2

s
√
σ2
0 + σ

2
s + σ

2
e/n

⋅
φ(z2)

1 −Φ(z2)
= RS(y0). (2.24)
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Thus, it is impossible to completely eliminate the RTM effect by increasing the

number of replications unless ρs = 1.

2.3 Estimation of RTM under bivariate normality
Let (x11, x21), (x12, x22), . . . , (x1n, x2n) be a random sample of pairs of observations

of size n from a truncated bivariate normal distribution. James (1973) used the

method of moments to estimate µ, σ2, ρ, and γ. The percent of the population in

the truncated portion c0 was assumed to be known such that c0 = φ(z0)/(1−Φ(z0).

The obtained estimates are

µ̂ = x1 − c0σ̂,

σ̂2 =
s2x1

c0(x0 − c0) + 1

ρ̂ = [b2 (c0(x0 − c0) + 1) −
s2x2
σ̂2

+ 1]
1/2

γ̂ =
β̂

ρ̂
,

where x1 = ∑ni=1 x1i/n, s2j = ∑
n
i=1(xji − xj)

2/n, for j = 1,2, and the estimated slope of

X2 on X1 is β̂ = ∑
n
i=1(x1i −x1)(x2i −x2)/∑

n
i=1(x1i −x1)

2. The respective variances of

estimates σ̂, µ̂, ρ̂ and γ̂ are

var(σ̂) =
σ4
x1

2σ2 (c0(x0 − c0) + 1)
2
(n − 1)

,

var(µ̂) =
c20σ

2
x1

n
+

σ4
x1

2σ2 (c0(x0 − c0) + 1)
2
(n − 1)

var(ρ̂) =
(c0(x0 − c0) + 1)2γ2σ2

∑
n
i=1(x1i − x2)

2
+

σ4
x2

2ρ2σ4(n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
σ4
x1

σ4 (c0(x0 − c0) + 1)
2

⎤
⎥
⎥
⎥
⎥
⎦

var(γ̂) =
σ2(1 + (c0(x0 − c0) + 1)γ4)

ρ2∑
n
i=1(x1i − x1)

2
+

γ2σ4
x2

2ρ4σ4(n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
σ4
x1

σ4 (c0(x0 − c0) + 1)
2

⎤
⎥
⎥
⎥
⎥
⎦

.

Cohen (1955) derived maximum likelihood estimators (MLE) for the bivariate

normal distribution, but Senn and Brown (1985) argued that they cannot be used

for two reasons. First, the marginal distributions of X and Y are identical and

second, Cohen did not allow for a treatment effect.

Senn and Brown (1985) relaxed the assumption of known percent of the popula-

tion in the truncated portion, to derive the MLE by writing the likelihood function
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in the form

L(θθθ,xxx) = exp(−
1

2

∑(xi − µ)2

σ2
)/((2πσ2)n/2 × (1 −Φ(z0))

n
)

× exp(−
1

2

∑[(yi − µ) − γρ(xi − µ)]2

σ2(1 − ρ2)
)/(2πσ2(1 − ρ2))

n/2
,

where θθθ = (µ,σ2, ρ, γ) and

xxx =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 y1

x2 y2

... ...

xn yn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The MLE of θθθ were then obtained by numerical methods. Additionally, Senn and

Brown (1985) corrected the expression of variances derived by James (1973) us-

ing the method of moments estimation. However, the authors did not study the

statistical properties of the derived estimators for RTM.

2.4 RTM for non-normal populations

2.4.1 Das and Mulder (1983)
There are many variables of interest in health, educational and social sciences

which do not follow the normal distribution (Bono et al., 2017). Das and Mulder

(1983) considered a statistical model for pre-post non-normal variables as

Yi =W + ei for i = 1,2, (2.25)

where Yi are the observed, identically distributed variables with stationary means

µ and variances σ2, and are jointly distributed with a positive correlation coeffi-

cient, 0 < ρd < 1, W is the true component which is arbitrarily distributed with

density function f(w), mean µ, and variance ρdσ2, while the ei are normally dis-

tributed random errors with mean zero and variance (1−ρd)σ2, for i = 1,2. Further,

W and ei are mutually independent of each other.

Let the respective common density functions of ei and Yi be h(e) and g(y), for

i = 1,2. Expressing g(y) as the convolution of f(w) and h(e), we have

g(y) = ∫
∞

−∞
f(w)h(y −w)dw, −∞ < w <∞. (2.26)
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Differentiating equation (2.26) with respect to y, we have

dg(y)

dy
= −

1

(1 − ρd)σ2 ∫

∞

−∞
(y −w)f(w)h(y −w)dw. (2.27)

Using definition (2.2) and equation (2.25), it can be shown that an equivalent

form for the derivation of RTM R(y) is

R(y) = E(Y1 − Y2∣Y1 = y) = E(e1∣Y1 = y). (2.28)

The conditional density of e1∣Y1 = y is

h(e1∣Y1 = y) =
h(e1)f(y − e1)

g(y)
, −∞ < e1 <∞, (2.29)

where h(e)f(y − e) is the joint density of e1 and Y1. By evaluating the conditional

expectation in equation (2.28), Das and Mulder (1983) derived a formula for RTM

by utilizing equations (2.27) and (2.29) as

Rd(y) = −σ
2(1 − ρd)

d log (g(y))

dy
. (2.30)

When subjects are selected on the basis of the event Y1 > y0, the formula for

RTM can be found by evaluating the conditional expectation E(e1∣Y1 > y0). Using

equation (2.30), Das and Mulder (1983) simplified the conditional expectation to

Rd(y0) = σ
2(1 − ρd) ⋅

g(y0)

1 −G(y0)
, (2.31)

where G(y) is the distribution function and y0 is the cut-off point. Note that this

method is not directly applicable to empirical distributions (Beath and Dobson,

1991; John and Jawad, 2010).

2.4.2 Beath and Dobson (1991)

Beath and Dobson (1991) were motivated to estimate g(x) and G(x) from Das

and Mulder (1983), and hence RTM, for empirical non-normal distributions using

Edgeworth and saddlepoint approximations. Beath and Dobson (1991) considered

the same model in equation (2.25) and retained the associated assumptions from

Das and Mulder (1983), to obtain the RTM formula as

Rd(y0) = (1 − ρd)σ
2 ⋅

g(y0)

1 −G(y0)
.
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Note that the notations used in Das and Mulder (1983) have been retained here

with the same interpretation. It is well known that a distribution can be expressed

in terms of the normal probability function and its derivative as

h(s) =
∞
∑
j=0
cjHj(s)φ(s), (2.32)

where Hj is the jth hermite polynomial, cj are constants determined by h(s)

(Kendall et al., 1987) and φ(⋅) is the standard normal probability distribution func-

tion. Expressing equation (2.26) in terms of φ(⋅), we get

g(y) =
1

∆ ∫
∞

−∞
f(w)φ(

y −w

∆
)dw, −∞ < w <∞, (2.33)

where ∆ = σ
√

(1 − ρd) is used for brevity. Let θ = σ
√
ρd, then substituting s =

(w − µ)/θ and t = (y − µ)/θ into equation (2.33), we get

g(θt + µ) =
θ

∆ ∫
∞

−∞
h(s)φ(

θ

∆
(t − s))ds, (2.34)

where h(s) is the standard density function of s. Substituting equation (2.32) in

(2.34), using the result of Erdélyi (1954) and simplifying, we get

g(y0) =
1

σ
φ(

y0 − µ

σ
)

∞
∑
i=0
ci (

θ

σ
)

i

Hi (
y0 − µ

σ
) . (2.35)

Using the result, ∫ Hi(v)φ(v)dv = −Hi−1(v)φ(v) for i ≥ 1, an expression for G(y)

can be obtained as

G(y0) = Φ(
y0µ

σ
) − φ(

y0 − µ

σ
)

∞
∑
i=1
ci (

θ

σ
)

i

Hi−1 (
y0 − µ

σ
) . (2.36)

As h(s) is in standard measure with zero mean and unit variance, the correspond-

ing values of constants ci, for i = 0,1,2,3,4, are 1,0,0, γ1/6 and γ2/24, respectively

(Kendall et al., 1987), where γ1 and γ2 are the respective coefficient of skew-

ness and kurtosis of the distribution. Truncating the series in equation (2.35) and

(2.36), approximations for g(y) and G(y) based on the Edgeworth series becomes

g(y0) =
1

σ
φ (z3)(1 +

γ1
6
H3(z3) +

γ2
24
H4(z3) +

γ21
72
H6(z3)) ,

and

G(y0) = Φ (z3) − φ (z3)(
γ1
6

(
θ

∆
)

3

H2(z3) +
γ2
24

(
θ

∆
)

4

H3(z3) +
γ21
72

(
θ

∆
)

6

H5(z3)) ,
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where z3 = (y0 − µ)/σ. These approximations can then be used for calculating

Rd(y0).

The Edgeworth series may result in negative approximations or multi-modality for

certain values of skewness and kurtosis (Barton and Dennis, 1952). To overcome

these limitations, the method of saddlepoint approximation by Daniels (1954) can

be used to estimate Rd(y0). In this approach, the probability distribution function

g(y) is approximated as

g(y) =
exp (K(t0) − t0y)

√
2πK”(t0)

,

where K(t) is the cumulant generating function and K ′(t0) = y. Using Easton and

Ronchetti (1986), K(t) can be approximated by

K̃(t) = µt +
σ2t2

2
+
k3t3

6
+
k4t4

24
,

where k3 = θ3γ1 and k4 = θ4γ2 are the respective third and fourth cumulants and

γ1 and γ2 are as defined earlier. This approximation requires normalization of

g(y) to be a probability density function. G(y) is then numerically integrated to

complete the estimation of RTM. This method is more complicated than others

from calculation a point of view.

2.4.3 John and Jawad (2010)
As mentioned earlier, the Das and Mulder (1983) method cannot be applied di-

rectly to empirical distributions for estimation of RTM. John and Jawad (2010)

aimed at making Das and Mulder’s method data adaptive via kernel density esti-

mation and kernel estimation approaches for the hazard rate function. Consider

the formula derived by Das and Mulder (1983) for RTM as

R(y0) = (1 − ρd)σ
2 ⋅

g(y0)

1 −G(y0)
.

Let ĝh(y) be a kernel density estimator of g(y) and let Ĝ(y) be the empirical distri-

bution function. Then, the kernel estimator density function for the initial values

X1i, for i = 1, ..., n, is defined as

ĝh(x) =
1

n

n

∑
i=1
Kh(x − x1i), (2.37)
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where Kh(⋅) =K(⋅∣h)/h is the kernel function and h is the bandwidth or smoothing

parameter. The mean integrated square error (MISE) measures the estimation

error of ĝh(x) as

MISE(h) = E ∫
∞

−∞
(ĝh(x) − g(x))

2dx.

Asymptotic analysis of the MISE provides simple insight into how the bandwidth

works as a smoothing parameter. MISE is asymptotically approximated by the

asymptotic mean integrated square error (AMISE) as

AMISE(h) = R(K)/nh + h4R(g
′′

) (∫

∞

−∞
x2K(x)dx/2)

2

,

where

R(ψ) = ∫
∞

−∞
ψ(x)dx.

An optimum value, hAMISE, that minimizes AMISE(h) provides a good approxi-

mation to hMISE, which also minimizes MISE(h) and can be calculated as

hAMISE = (
R(K)

nR(g′′)(∫
∞
−∞ x

2K(x)dx/2)2
)

1/5

.

Jones et al. (1996) reviewed the first and the second generation methods for op-

timal bandwidth selection methods and suggested that the Sheather and Jones

(1991) method is stable and consistent among the existing methods, including

the rule of thumb (Läuter, 1988), least squares cross-validation (Bowan, 1984;

Rudemo, 1982; Hall and Marron, 1991), biased cross-validation (Scott and Terrell,

1987), solve the equation plug in approach (Sheather and Jones, 1991), and boot-

strap (Faraway and Jhun, 1990; Taylor, 1989). The Sheather and Jones (1991)

method chooses the bandwidth that is a solution of the fixed point equation

hAMISE =
⎛

⎝

R(K)

nR(g
′′

f(h))(∫
∞
−∞ x

2K(x)dx/2)2
⎞

⎠

1/5

,

where f(h) is the pilot bandwidth. John and Jawad (2010) used this bandwidth

for the kernel density estimation of g(x), which is the default method in many

statistical software packages.

The problem of estimating RTM can be simplified to kernel based estimation meth-

ods of the hazard function. The hazard function u(x) is the ratio of the probability
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density function g(x) to the survival function S(x) = 1−G(x). The hazard function

can be written as u(x) = g(x)/(1−G(x)) when there is no censoring for the variable

X1i for i = 1, ..., n. Ramlau-Hansen (1983) generalized kernel estimators for the

hazard function and studied asymptotic properties of the generalized form of es-

timators. A kernel estimator for u based on the generalization of Ramlau-Hansen

(1983) takes the form

ûh(x) =
1

n

n

∑
i=1
K (

x −X1(i)

h
)

1

n − i + 1
, (2.38)

where X1(i) are the ordered observations of X1i.

Researchers have suggested various methods for optimal bandwidth selection.

These methods include the maximum likelihood cross validation method (Tanner

and Wong, 1984), least square cross validation method (Cao et al., 1994; Patil,

1993; Sarda and Vieu, 1991), and bootstrap method (Gonzàlez-Manteiga et al.,

1996) which are based on fixed-bandwidth fixed-kernel methods for estimating

the hazard function. But, for unevenly distributed data over the range of interest,

the degree of smoothness achieved via a fixed-bandwidth method will not be uni-

form. This non-adaptive behaviour of fixed bandwidth estimators can be fixed by

using the varying bandwidth estimator as suggested by Muller and Wang (1994).

An alternative approach incorporates the idea of the nearest neighbour into the

definition of bandwidth (Olaf and Holger, 1992). The boundary effects near the

endpoints in the domain of the hazard function are not taken into account by the

fixed kernel estimators, which can be fixed by changing the kernels at the bound-

ary (Hougaard, 1988; Hougaard et al., 1989; Hall and Wehrly, 1991). Hess et al.

(1999) conducted a simulation study and found that Muller and Wang (1994)

and Olaf and Holger (1992) are advantageous over other existing methods for es-

timating the hazard function via kernel estimators. These two methods are also

available in the R package called muhaz.

2.4.4 Müller et al. (2003)
In the preceding models for non-normal populations, the random error component

was assumed to be normally distributed with zero mean and fixed variance. With

a goal of predicting the true value X from the observed value Y , Müller et al.
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(2003) allowed the random error component δ to be arbitrarily distributed within

the model

Yi =Xi + δi, for i = 1, ..., n, (2.39)

where Xi and δi are independent, Xi are distributed with a common density func-

tion fX(x), and δi also have a common density function fδ(x) with zero mean

and fixed variance. Let fY (y) be the probability density function of the observed

variable, then by convolution of fX(x) and fδ(x), we get

fY (y) = ∫
∞

−∞
fX(x)fδ(y − x)dx, (2.40)

and the joint density fY,X(y, x) of Y and X is

fY,X(y, x) = fδ(y − x)fX(x). (2.41)

Müller et al. (2003) aimed at predicting X from Y . The Bayes estimator, E(X ∣Y ),

can be used to achieve this goal, which is also the best linear unbiased predictor.

This leads us to the following RTM function

E(X ∣Y = y0) =
∫
∞
−∞ xfδ(y0 − x)fX(x)dx

∫
∞
−∞ fδ(y0 − x)fX(x)dx

. (2.42)

Difficulty arises in solving the right hand side of equation (2.42) when neither

fX(x) nor fδ(x) are contained in a parametric family of distributions. This prob-

lem can be addressed by using a non-parametric method.

The following assumptions were made by Müller et al. (2003) about fX(x) and

fδ(x) to complete their derivation. Both the functions fX(x) and fδ(x) are twice

continuously differentiable, and fδ(x) is given by

fδ(x) =
1

σe
ψ (

x

σe
) ,

where σe is the standard deviation of δ, and the density function ψ(⋅) satisfies the

moment conditions,

∫

∞

−∞
xψ(x)dx = 0,

∫

∞

−∞
x2ψ(x)dx = µ2 = 1

∫

∞

−∞
x3ψ(x)dx = µ3 <∞.
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Substituting fδ(x) in equation (2.42), we get

E(X ∣Y = y0) = ∫
∞

−∞
x

1

σe
ψ (

y0 − x

σe
) fX(x)dx/∫

∞

−∞

1

σe
ψ (

y0 − x

σe
) fX(x)dx

= ∫

∞

−∞
(y0 − σez)ψ (z) fX(y0 − σez)dz/∫

∞

−∞
ψ (z) fX(y0 − σez)dz.

(2.43)

Using Taylor expansion along with the results obtained by differentiating the mo-

ments as ∫ ψ
′

(x)dx = 0, ∫ xψ
′

(x)dx = − ∫ ψ(x)dx = −1, ∫ x2ψ
′

(x)dx = 0, and

∫ x
3ψ

′

(x)dx = −3µ2, where ψ′

= dψ/dx, then equation (2.43) simplifies to

E(X ∣Y = y0) = y0 + σ
2
e

f
′

Y (y0)

fY (y0)
+

1

2
σ3
eµ3

f
′′

Y (y0)

fY (y0)
+ o(σ3

e), (2.44)

where f ′ = df/dx, and f ′′ = d2f/d2x. If µ3 = 0, then the leading remainder term is

σ4
e(3µ3 − µ4)f 3

Y (y0)/ ((y0)). The multivariate version of equation (2.44) is

E(X ∣Y = y0y0y0) = y0y0y0 + V
∇fY (y0y0y0)

fY (y0y0y0)
+ o(V 3/2), (2.45)

where V is the p × p covariance matrix of δ.

Choi and Hall (1999) introduced a data sharpening method for density estima-

tion. The relationship of local moments and local sample moments to the data

sharpening method was formulated by Müller and Yan (2001). The mean update

mode finding algorithm (Fukunaga and Hostetler, 1975) implicitly uses a special

case of the local sample mean which can be useful to derive non-parametric RTM.

For some p ≥ 1, let a random vector ZZZ be the starting point for the local mo-

ment with density function fZZZ which is twice continuously differentiable. Let

y0y0y0 = (y01, ..., y0p) be an arbitrary point such that y0y0y0 ∈ Rp, and let γ = γn > 0 be

a sequence of window widths such that γ → 0 as n→∞. Then, a sequence of local

neighbourhoods S is defined as

S = Sn =
p

∏
j=1

[y0j − γ, y0j + γ].

The local mean µµµZ = (µz1 , ..., µzp) at y0y0y0 is defined as

µzj = lim
γ→0

1

γ2
E ((ZZZ − y0y0y0)

ej ∣ZZZ ∈ S) , (2.46)
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where ejejej = (0, ...,1, ...,0) and 1 occurs in the jth position. According to Müller and

Yan (2001), µzj can be written as

µzj =
1

3
DejfZ(y0y0y0)/fZ(y0y0y0) (2.47)

where

Dα =
∂α1+⋯+αp

∂α1y01⋯∂αpy0p
and α = α1 +⋯ + αp.

Let ZZZi = (zi1, ..., zip) be an Rp valued random sample of size n from the distribution

fZZZ , then the local sample mean is µ̂µµz = (µ̂z1 , ..., µ̂zp), with µ̂zj defined as

µ̂zj =
1

γ2

n

∑
i=1

(Zij − y0j)/
n

∑
i=1
I(ZZZi), j = 1, ..., p, (2.48)

where I(ZZZi) = 1 if ZZZi ∈ S, I(ZZZi) = 0 if ZZZi ∉ S. Using results from Müller and Yan

(2001), we have

µ̂µµz =
1

3

∇fZ(y0y0y0)

fZ(y0y0y0)
+ op ((nγ

2+p)−1/2) . (2.49)

The covariance matrix can be estimated by the sample covariance matrix from the

observation with repeated measurements (Yik1, ..., Yikp), for 1 ≤ i ≤ n and ≤ k ≤ mi

as

V̂ = ( 1
n ∑

mi
k=1(Yikr − Y i.r)(Yiks − Y i.s))

rs
, 1 ≤ r, s ≤ p, (2.50)

where Y i.s = ∑
mi
k=1 Yikr/mi, 2 ≤ mi, and 1 ≤ r ≤ p. Moreover, using equation (2.49)

and observations with repeated measurements, the mean vector µY can be esti-

mated as

µ̂µµY =
1

3

∇fY (y0y0y0)

fY (y0y0y0)
+ op ((nγ

2+p)−1/2) . (2.51)

Substituting equations (2.50) and (2.51) into equation (2.45), we get a non-

parametric estimate of RTM as

Ê(X ∣Y = y0y0y0) = y0y0y0 + 3V̂ µ̂µµY . (2.52)

2.5 Study designs to mitigate RTM
The design of a study can help mitigate the RTM effect in intervention studies

(Yudkin and Stratton, 1996; Linden, 2013). Some well known study designs and

their potential effect on RTM are described in the following subsections.
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2.5.1 Randomized control trials

Random allocation of subjects to treatment groups (e.g., placebo and treatment)

can minimize selection bias, and help to balance the influence of RTM across

groups. The mean change in the placebo group gives an estimate of the RTM

effect. The treatment effect can then account for RTM by finding the difference

of the mean change in the treatment group and the mean change in the placebo

group. However, randomization is not always possible due to ethical and/or logis-

tical constraints.

2.5.2 Regression discontinuity designs

When randomization is not possible, an alternative approach is the regression dis-

continuity design (Lee and Lemieux, 2010; Linden and Adams, 2012). In this

approach, subjects are assigned to a treatment group on the basis of a pre inter-

vention continuous cut-off point. Subjects to the right and left of the cut-off point

are assumed to be exchangeable and can be classified into control and treatment

groups depending on the study. As subjects do not have precise control over their

assignment score, and are unaware of the value of the cut-off point, they cannot

self-select into the treatment groups. Thus, RTM would equally effect both the

groups in the neighbourhood of the cut-off point (Linden, 2013).

2.5.3 Two measurements approach of Ederer (1972)

The Ederer (1972) method for mitigating RTM consists of taking two measure-

ments on each subject before applying an intervention. The first measurement is

used for selecting subjects, and the second measurement is used as a baseline from

which the treatment effect is assessed. Assuming that RTM has happened between

the first and second measurement, the mean change measured from baseline is the

intervention effect. Denke and Frantz (1993) used this approach for mitigating the

RTM effect in their study to assess the relationship between the starting level of

cholesterol and response to treatment. In spite of adjusting for RTM using the

Ederer (1972) approach, Denke and Frantz (1993) found that subjects with hy-

percholesterolemia were more diet-responsive than subjects with lower cholesterol

levels.
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2.5.4 Selection based on multiple measurements
The RTM formula in equation (2.3) indicates that RTM is proportional to mea-

surement variability. Selecting two or more baseline measurements reduces the

measurement variability. The study selection criterion can then be based on the

average of multiple measurements, assuming the RTM effect has taken place be-

tween the first and later measurements (Gardner and Heady, 1973; Davis, 1976).

Reducing variability can then be used to get a better estimate of the true compo-

nent of each subject before applying an intervention. The choice of taking multiple

measurements depends on the cost of obtaining them, and is not always an exe-

cutable option when resources are limited.

2.6 Accounting for RTM through data analysis
As stated earlier, ethical and/or logistical constraints may not allow us to conduct a

randomized control trial. Also, multiple measurements may not be feasible due to

the time and/or cost of obtaining those observations. Consequently, observational

data may be collected where the pre intervention observations were baseline mea-

surements. In this situation, several techniques may be considered to account for

RTM as described below.

2.6.1 Matching techniques
When only retrospective observational data are available, matching techniques

(Stuart, 2010) can be used to create a control group for comparison purposes.

Based on the observed pre intervention characteristics (especially one which may

lead to RTM) of the treatment group, an analyst tries to replicate the randomiza-

tion process to create a control group. The effect of the treatment can then be

evaluated by comparing the treatment and control groups. Matching techniques

allow the analyst to assess how well the pre-intervention variable overlaps in dis-

tribution between groups using graphical or numerical diagnostics (Stuart, 2010).

A higher degree of overlap in the distribution increases our confidence that RTM is

effectively controlled for, as we would expect in a randomized control trial. How-

ever, the farther the cut-off point is in the tail of the distribution, the more difficult

it would be to create a control group on the basis of pre-intervention characteris-



36 2.6. ACCOUNTING FOR RTM THROUGH DATA ANALYSIS

tics, because of the smaller fraction of available subjects.

2.6.2 Analysis of covariance

Analysis of covariance (ANCOVA) is the most common analytic approach used to

account for RTM. In this procedure, each subject’s follow-up measurement is ad-

justed according to their baseline measurements by including the pre-intervention

measurements as a covariate in the model (Twisk, 2003). The following regression

equation summarizes the approach

yi = α + β1(xi − x̄) + β2Gi + εi,

where Gi = 1 for the treatment group and zero otherwise and the correspond-

ing regression coefficient β2 is the treatment effect adjusted for RTM, xi is the

baseline measurement with x̄ = ∑ni=1 xi/n its sample mean, yi is the follow-up mea-

surement and εi ∼ N(0, σ2) for i = 1,2, ..., n. Additionally, each subject’s pre mea-

surement score x can be adjusted using an RTM correction factor (Irwig et al.,

1991; Trochim, 2001), and the adjusted baseline score xadj can then be used in an

ANCOVA model. A subject’s adjusted score is

xadj = x + ρ(x − x),

where ρ is the correlation of pre-post variables in the treatment group. However,

the ANCOVA assumptions, for instance, linearity between outcome and covariates

and normality, may not be valid. Moreover, there is no assurance that the treat-

ment groups are comparable on all baseline covariates (Linden, 2013).

2.6.3 Subtracting the estimated RTM effect

Finally, the simplest approach to account for RTM is to subtract the estimated RTM

effect from the total effect in the treatment group (Barnett et al., 2005). Appropri-

ate statistical methods developed for this approach for the bivariate Poisson and

binomial distributions will be discussed in Chapters 3 and 4, and generalised to

any bivariate distribution in Chapter 5.



Chapter 3

Regression to the mean for the

bivariate Poisson distribution

In this chapter, regression to the mean (RTM) formulae are derived assuming the

bivariate Poisson distribution and for both homogeneous and inhomogeneous Pois-

son processes. The asymptotic distributions of RTM estimators have been derived

and statistical properties of derivations have been evaluated through a simulation

study. The total effect for the number of people killed in road crashes in differ-

ent regions of New South Wales (Australia) is estimated and decomposed into

the RTM and intervention effects using maximum likelihood. The contents of this

chapter are reproduced from a published paper (Khan and Olivier, 2018), and the

contents and notation have been slightly modified.

3.1 Introduction
RTM can influence inference about the effectiveness of an intervention/treatment

applied to subjects in the tail of a distribution. Accounting for RTM can improve

estimation of treatment or intervention effects, thereby assisting the researcher

in drawing appropriate conclusions. The formulae for calculating the expected

RTM effect based on an assumption of bivariate normality are well known in the

literature (James, 1973; Gardner and Heady, 1973; Davis, 1976).

There are situations in which the underlying distribution may not be continuous

and can be modelled as a Poisson distribution such as counting processes or rates
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(Anderson, 2013; Jones and Smith, 2010; Tse, 2014). Further, Poisson processes

can be categorized according to the homogeneity of their means. If the average

arrival rate of a Poisson process is time/location invariant, then it is referred to as

homogeneous. On the other hand, a Poisson process with a time/location varying

average arrival rate is called an inhomogeneous Poisson process.

In pre-post study designs, interventions are implemented to change the rate of

occurrence (Chaspari et al., 2014; Ruggeri and Sivaganesan, 2005). The change

in the rate of occurrence due to RTM may be erroneously attributed to the inter-

vention. However, the quantification of the RTM effect is missing in the literature

when the underlying distribution in pre/post studies is bivariate Poisson. There-

fore, in this chapter we derive expressions to quantify the RTM effect for the bi-

variate Poisson distribution and extend the results to both the homogeneous and

inhomogeneous Poisson processes.

The remainder of this chapter is comprised of ten sections. In Section 2, the total

effect and its relation with RTM and intervention effect is discussed and exempli-

fied with the help of the bivariate normal distribution in Section 3. Formulae for

the total effect assuming the bivariate Poisson distribution are derived in Section

4. Section 5 discusses the decomposition of the total effect into RTM and inter-

vention effects and the results are extended to homogeneous and inhomogeneous

Poisson processes in Section 6. The maximum likelihood estimation of the total,

RTM and treatment/intervention effects and their asymptotic distributions are dis-

cussed in Section 7. A simulation study is carried out to investigate the statistical

properties of the sample RTM effect and its probability distribution in Section 8.

The RTM effect for the number of fatalities in NSW road crashes is calculated

using maximum likelihood in Section 9. Estimation of RTM for log-transformed

Poisson distributed data is investigated in Section 10. The chapter concludes with

a discussion in Section 11.

3.2 The total, RTM and intervention effects
In clinical or intervention studies, patients/subjects with measurements above or

below a cut-off or truncation point, say x0, are selected for treatment or an inter-
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vention. Without loss of generality, only right cut-off points are presented here.

LetX1 andX2 be some characteristic on the same subject before and after an inter-

vention. The joint distribution of pre/post measurements for a truncated bivariate

distribution is given by

f(X1,X2∣X1 > x0) =
f(X1,X2)

f(X1 > x0)
where x0 <X1 <∞,−∞ <X2 <∞.

The total effect T (x0,θθθ) can be obtained by evaluating the conditional expectation

of the difference of pre and post variables

T (x0,θθθ) = E(X1 −X2∣X1 > x0)

= ∫

∞

x0
∫

∞

−∞
(X1 −X2)f(X1,X2∣X1 > x0)dx2dx1, (3.1)

where θθθ is the parameter vector. Similarly, an expression of T (x0,θθθ) for a bivariate

discrete distribution can be obtained using equation (3.1) by replacing integrals

with summations.

The total effect, T (x0,θθθ), could be partially or totally due to RTM, depending on

the effectiveness or non-effectiveness of an intervention effect. Thus, when X1

and X2 are identically distributed, or equivalently the intervention effect is zero

E(X1) = E(X2), then the difference of the conditional means of X1 and X2 is

defined to be the RTM effect, denoted by R(x0,θθθ),

R(x0,θθθ) = E (X1 −X2∣X1 > x0,E(X1) = E(X2)) . (3.2)

Let δ(µµµ) = E(X1−X2) be the intervention effect, then T (x0,θθθ) can be expressed as

T (x0,θθθ) = R(x0,θθθ) + δ(µµµ),

where µµµ = (µ1, µ2)
T ⊆ θθθ and E(Xi) = µi for i = 1,2.

3.3 An example: the bivariate normal distribution
To exemplify the total, RTM and intervention effects and express T (x0,θθθ) as the

sum of R(x0,θθθ) and δ(µµµ), let the random variables X1 = X0 + e1 and X2 = X0 + e2

represent successive measurements of some characteristics on the same subject

before and after an intervention. It is assumed that X0 represents true measure-

ments and is distributed normally as N(µ,σ2
0), whereas e1 and e2 are random
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errors/fluctuations, identically distributed N(0, σ2
e) and independent of X0. Thus,

the resulting distributions of both X1 and X2 are N(µ,σ2), where σ2 = σ2
0 + σ

2
e and

cov(X1,X2) = σ2
0. The joint distribution of X1 and X2 is bivariate normal, where

ρ = σ2
0/σ

2 is the correlation of X1 and X2. However, when subjects for an interven-

tion are selected on the basis of a cut-off point, then the joint distribution of X1

and X2 is the truncated bivariate normal.

Using the joint truncated bivariate normal distribution, James (1973) derived an

expression for the RTM effect by evaluating the conditional difference between

the means of pre and post random variables (with identical marginal distribution)

as

R(x0,θθθ) =
σ(1 − ρ)φ(z0)

1 −Φ(z0)
,

where φ and Φ are the standard normal density and distribution functions respec-

tively, and z0 = (x0 − µ)/σ.

This derivation can be extended to allow for unequal group means where Xi ∼

N(µi, σ2) for i = 1,2. Under this set up, an expression for T (x0,θθθ) can be shown to

be

T (x0,θθθ) =
σ(1 − ρ)φ(z0)

1 −Φ(z0)
+ (µ1 − µ2),

where δ(µµµ) = µ1 − µ2, is the intervention effect. The James (1973) formula is a

special case where µ1 = µ2 = µ and hence, δ(µµµ) = 0.

The influence of the covariance of X1 and X2 and the choice of cut-off point on

the RTM effect is illustrated in Figures 3.1 for the bivariate normal distribution.

As the correlation ρ increases, the RTM effect decreases (top-left panel) while the

opposite effect is observed when the random error component σ2
e increases (top-

right panel). As the cut-off point z0 moves away from mean of the distribution on

either side, the resulting RTM increases symmetrically (bottom-left panel).
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Figure 3.1. Top-left panel: Graph of the RTM effects as function of covari-

ance/correlation, Top-right panel: Graph of the RTM as function of random error

component, Bottom-left panel: Graph of RTM as a function of cut-off points when

the underlying distribution is standard normal.

3.4 Total effect and the Bivariate Poisson Distribu-

tion
The normal distribution is one of the most important continuous probability dis-

tribution since it provides the basis for statistical inference in a large number of

studies. Likewise, the Poisson distribution has numerous applications when the

variable of interest is discrete. Count variables which are functions of time and/or

space are commonly modelled as Poisson processes. Additionally, other discrete

probability distributions are well approximated by the Poisson distribution. For-
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mula to quantify the RTM effect can be derived under a bivariate Poisson distribu-

tion assumption using an approach similar to the bivariate normal distribution.

Let Y1 and Y2 be two random variables representing the successive number of

occurrences of the same phenomenon. Define Y1 = X0 + X1 and Y2 = X0 + X2,

where the random variable X0 is the true number of occurrences and X1 and

X2 represent random fluctuations or counting errors. Here, X0, X1 and X2 are

independent Poisson random variables each with parameter (rate of occurrence)

θi for i = 0,1,2. Yi is then Poisson distributed with parameter θ0+θi for i = 1,2. The

bivariate Poisson distribution of Y1 and Y2, first discussed by Campbell (1934), is

P (Y1 = y1, Y2 = y2) = e
−(θ0+θ1+θ2) θ

y1
1

y1!

θy22
y2!

min(y1,y2)
∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

).

The covariance of Y1 and Y2 is θ0, so the correlation is

cor(Y1, Y2) =
θ0

√
(θ0 + θ1)(θ0 + θ2)

.

An intervention or treatment may be applied to extreme situations based on some

cut-off point say, y0. Depending on the problem under study, the cut-off point can

be in either the left or right tail of the distribution. Due to the asymmetric shape

of the Poisson distribution, right and left cut-off points are considered separately.

3.4.1 Case 1: Right cut-off point
Suppose an intervention is decided on the basis that the initial count Y1 was

greater than some cut-off value y0, then the truncated joint probability distribution

of Y1 and Y2 is given by

P (Y1 = y1, Y2 = y2∣Y1 > y0) =
e−(θ0+θ1+θ2)

1 − P (Y1 ⩽ y0)

θy11
y1!

θy22
y2!

min(y1,y2)
∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

).

Let Tr(y0;θθθ) denote the total effect as defined in equation (3.1) for θθθ = (θ0, θ1, θ2).

Consider the conditional expectation of Y1∣Y1 > y0 for y1 ≤ y2,

E(Y1∣Y1 > y0) =
e−(θ0+θ1+θ2)

1 − P (Y1 ⩽ y0)

∞
∑

y1=y0+1

∞
∑
y2=x0

y1
θy11
y1!

θy22
y2!

y1

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

).

It can be shown this can be simplified to

E(Y1∣Y1 > y0) =
e−(θ0+θ1)

1 − P (Y1 ⩽ y0)

∞
∑

y1=y0+1
y1
θy11
y1!

(1 +
θ0
θ1

)

y1

,
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by using the identity

∞
∑
y2=x0

θy22
y2!

y1

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

) = (1 +
θ0
θ1

)

y1

eθ2 .

This expression can be further simplified to

E(Y1∣Y1 > y0) = (θ0 + θ1)
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.3)

where F (y0∣λ) =
y0

∑
r=0

λre−λ

r! is the cumulative distribution function (CDF) of the Pois-

son distribution with parameter λ. Similarly, when y2 ≤ y1 we get

E(Y1∣Y1 > y0) =
e−(θ0+θ1+θ2)

1 − P (Y1 ⩽ y0)

∞
∑

y1=y0+1

∞
∑
y2=0

y1
θy11
y1!

θy22
y2!

y2

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

). (3.4)

Expanding the last part on the right hand side of equation (3.4), we have

∞
∑
y2=0

θy22
y2!

y2

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

) = 1 + θ2
1

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
1

x0
)+

θ22
2!

2

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
2

x0
) +⋯

After simplification, the above expression reduces to

∞
∑
y2=0

θy22
y2!

y2

∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

) = (1 +
θ0
θ1

)

y1

eθ2 . (3.5)

Substituting equation (3.5) into equation (3.4), we get

E(Y1∣Y1 > y0) =
e−(θ0+θ1)

1 − P (Y1 ⩽ y0)

∞
∑

y1=y0+1
y1
θy11
y1!

(1 +
θ0
θ1

)

y1

(3.6)

which after simplification will also result in equation (3.3).

Similarly solving E(Y2∣Y1 > y0) using the same procedure, we get

E(Y2∣Y1 > y0) = θ2 + θ0
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
. (3.7)

Substituting equations (3.3) and (3.7) into (3.1), we get the total effect for the

bivariate Poisson assuming a right cut-off point.

Tr(y0;θθθ) = θ1
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
− θ2. (3.8)
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3.4.2 Case 2: Left cut-off point
Another possibility is when an intervention is carried out on the basis of some cut-

off value less than or equal to say y0. In this situation, the truncated probability

distribution of Y1 and Y2 is

P (Y1 = y1, Y2 = y2∣Y1 ⩽ y0) =
e−(θ0+θ1+θ2)

P (Y1 ⩽ y0)

θy11
y1!

θy22
y2!

min(y1,y2)
∑
x0=0

x0!(
θ0
θ1θ2

)

x0

(
y1
x0

)(
y2
x0

).

T`(y0;θθθ) for this case can be quantified using the formula

T`(y0;θθθ) = E(Y2 − Y1∣Y1 ⩽ y0) = E(Y2∣Y1 ⩽ y0) −E(Y1∣Y1 ⩽ y0), (3.9)

where the subscript ` is for the left cut-off point. Following the same steps of

evaluation as in right truncation, the resulting expression for equation (3.9) is

T`(y0;θθθ) = θ2 − θ1
F (y0 − 1∣θ0 + θ1)

F (y0∣θ0 + θ1)
. (3.10)

3.4.3 Variance formulae for Tk(y0;θθθ)
Expressions for the variance of Tr(y0;θθθ) and T`(y0;θθθ) can be obtained by combin-

ing var(Y1∣Y1 > y0), var(Y2∣Y1 > y0) and cov(Y1, Y2∣Y1 > y0) as

var(Y1−Y2∣Y1 > y0) = var(Y1∣Y1 > y0)+var(Y2∣Y1 > y0)−2×cov(Y1, Y2∣Y1 > y0). (3.11)

Some essential results are first derived to evaluate equation (3.11). The expression

E(Y1(Y1 − 1)∣Y1 > y0) =
∞
∑

y1=y0+1

∞
∑
y2=x0

Y1(Y1 − 1)P (Y1 = y1, Y2 = y2∣Y1 > y0),

can be simplified to

E(Y1(Y1 − 1)∣Y1 > y0) = (θ0 + θ1)
21 − F (y0 − 2∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
.

Likewise,

E(Y2(Y2 − 1)∣Y1 > y0) = θ
2
2 − θ0

θ0F (y0 − 2∣θ0 + θ1) + 2θ2F (y0 − 1∣θ0 + θ1) − θ0 − 2θ2
1 − F (y0∣θ0 + θ1)

,

and

E(Y1Y2∣Y1 > y0) =
θ20 + (θ1 + θ2 + 1)θ0 + θ1θ2 − ((θ2 + 1)θ0 + θ1θ2)F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)

−
θ0(θ0 + θ1)F (y0 − 2∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
.
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We know that var(Yi∣Y1 > y0) = E(Yi(Yi−1)∣Y1 > y0)+E(Yi∣Y1 > y0)−(E(Yi∣Y1 > y0))2

for i = 1,2 and cov(Y1, Y2∣Y1 > y0) = E(Y1Y2∣Y1 > y0) − E(Y1∣Y1 > y0)E(Y2∣Y1 > y0).

Using the derived results and equations (3.3) and (3.7), the expression in equation

(3.11) reduces to

var(Y1 − Y2∣Y1 > y0) = θ2 + θ1
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)

+ θ21

1

∑
i=0

((−1)i+1
P (Y1 = y0 − i)(1 − F (y0 − 1 + i∣θ0 + θ1))

(1 − F (y0∣θ0 + θ1))2
) .

(3.12)

Similarly, the expression of variance for the conditional difference of Y1 and Y2 for

the left cut-off point is given by

var(Y2 − Y1∣Y1 ≤ y0) = θ2 + θ1
F (y0 − 1∣θ0 + θ1)

F (y0∣θ0 + θ1)

+ θ21

1

∑
i=0

((−1)i
P (Y1 = y0 − i)(F (y0 − 1 + i∣θ0 + θ1))

(F (y0∣θ0 + θ1))2
) .

(3.13)

3.5 RTM and Intervention/Treatment Effects
In a pre/post study design, the average intervention/treatment effect δr(θθθ), for

a right cut-off point, is the expected difference of events before and after the

intervention. Mathematically, this is

δr(θθθ) = E(Y1 − Y2).

Assuming the pre/post observations follow the bivariate Poisson distribution and

using the fact E(Yi) = θ0 + θi for i = 1,2, the expression for the intervention effect

is

δr(θθθ) = θ1 − θ2. (3.14)

Suppose an intervention is applied to subjects above a certain threshold y0. For a

null intervention effect, the pre and post observations are identically distributed

and the expected conditional difference of Y1 and Y2 conditioned on y0 is the RTM

effect as defined in equation (3.2). Formula forRr(y0;θθθ) can be obtained by letting

θ2 = θ1 in equation (3.8) as

Rr(y0;θθθ) = θ1
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
− θ1,

= θ1 ⋅
P (y0∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.15)
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where P (y∣λ) = e−λλy/y! is the Poisson probability mass function for parameter λ.

For a non-zero intervention effect, the distribution of pre and post observations are

not identical, i.e, θ1 ≠ θ2 and the expected conditional difference, E(Y1−Y2∣Y1 > y0),

can be decomposed into RTM and intervention effects. To prove the argument

mathematically, adding equations (3.14) and (3.15), we get

Rr(y0;θθθ) + δr(θθθ) = θ1 ⋅
P (y0∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
+ (θ1 − θ2)

= Tr(y0;θθθ). (3.16)

Following the same steps, similar equations for the left cut-off point can be proved

as

δ`(θθθ) = θ2 − θ1, (3.17)

R`(y0;θθθ) = θ1 ⋅
P (y0∣θ0 + θ1)

F (y0∣θ0 + θ1)
(3.18)

T`(y0;θθθ) = R`(y0;θθθ) + δ`(θθθ). (3.19)

3.5.1 Variances of RTM and intervention/treatment effects

Using the properties var(Yi) = θ0+θi for i = 1,2 and cov(Y1, Y2) = θ0 for the bivariate

Poisson distribution, the variance of Y1 − Y2 is

var(Y1 − Y2) = θ1 + θ2. (3.20)

Variances of Rk(y0;θθθ) for k = r, `, can be obtained by substituting θ2 = θ1 in equa-

tions (3.12) and (3.13) as

var(Y1 − Y2∣Y1 > y0, θ2 = θ1) = θ1 + θ1
1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)

+ θ21

1

∑
i=0

((−1)i+1
P (Y1 = y0 − i)(1 − F (y0 − 1 + i∣θ0 + θ1))

(1 − F (y0∣θ0 + θ1))2
) ,

(3.21)

and

var(Y2 − Y1∣Y1 ≤ y0, θ2 = θ1) = θ1 + θ1
F (y0 − 1∣θ0 + θ1)

F (y0∣θ0 + θ1)

+ θ21

1

∑
i=0

((−1)i
P (Y1 = y0 − i)(F (y0 − 1 + i∣θ0 + θ1))

(F (y0∣θ0 + θ1))2
) .

(3.22)
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3.5.2 RTM as a function of cut-off point y0
Using equations (3.15) and (3.18), the graph for different cut-off values is given

in Figure 3.2. For illustrative purposes, specific values of (θ0, θ1, θ2) = (6,3,3) are

considered. It is evident from the graph that the RTM effect is at its peak for cut-off

values at the extremes on either side. For a right cut-off point, as the value of y0

increases, the probability P (Y1 > y0) decreases and the associated RTM increases.

For left cut-off points, the probability P (Y1 ≤ y0) increases as y0 increases and the

reverse relationship is observed.
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Figure 3.2. Graph of the RTM effect constructed on the basis of derived formula for

points greater than or less than a cut-off value y0 when the underlying distribution

is bivariate Poisson with parameters θ0 = 6, and θ1 = θ2 = 3.

3.5.3 RTM as a function of covariance

The RTM effect as a function of the covariance θ0 (the true parameter) is given in

Figure 3.3. A fixed right cut-off point of y0 = 8 and specific values of (θ1, θ2) = (3,3)

are considered for demonstration purposes, though the general pattern is simi-

lar for other values. When θ0 increases, the correlation between Y1 and Y2 also

increases. In the case of the normal distribution, as the covariance/correlation
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between Y1 and Y2 increases, the RTM effect decreases. But, for the Poisson dis-

tribution, the situation is quite different due to the equality of mean and variance

of the true variable X0 and covariance of pre and post variables, i.e, cov(Y1, Y2) =

θ0 = var(X0) = E(X0). For the normal distribution, the mean/variance identity

does not hold cov(X1,X2) = σ2
0 = var(X0) ≠ E(X0).
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Figure 3.3. Graph of the RTM effect for different values of θ0 and at fixed cut-off

point y0 and θ1 = θ2 = 3.

It is evident from the graph that as θ0 increases, the RTM effect decreases due to

the increase in the probability P (Y1 > y0). On the other hand, when the fixed cut-

off point is on the left side, the RTM effect increases as the value of θ0 increases

because we are moving farther away from the cut-off point to the right. Stated

differently, the probability P (Y1 ≤ y0) decreases with increasing values of θ0 which

ultimately causes the RTM effect to increase.

3.6 RTM and Poisson Processes
A Poisson process is a collection of random variables {N(t) ∶ t ≥ 0} where N(t)

is the number of events that have occurred up to time t. Many real world situa-

tions are modelled as a Poisson process. For example, the number of failures in
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repairable systems, sighting of invasive species, page view requests to a website

during a time interval of length t and the number of plants of a particular species

in a given location of area a.

Let N1(t) and N2(t) be two Poisson processes representing the successive number

of occurrences of the same event over a specified interval of time before and after

an intervention. Further, letN1(t) =M0(t)+M1(t) andN2(t) =M0(t)+M2(t) where

Mi(t) are independent Poisson processes with parameters θi(t) for i = 0,1,2. M0(t)

represents the true occurrences and M1(t) and M2(t) are random errors. The joint

truncated probability distribution function of N1(t) and N2(t) is given by

P (N1(t) = k1,N2(t) = k2∣N1(t) > k0)

=
e−(θ0(t)+θ1(t)+θ2(t))

1 − P (N1(t) ⩽ k0)

θ1(t)k1

k1!

θ2(t)k2

k2!

min(k1,k2)
∑
k0=0

k0!(
θ0(t)

θ1(t)θ2(t)
)

k0

(
k1
k0

)(
k2
k0

).

On the basis of an arrival rate, Poisson processes can be divided into two categories

known as homogeneous and inhomogeneous Poisson processes. In the following

sections, the total, RTM and intervention effects are discussed separately for the

two types of Poisson processes.

3.6.1 T
(H)
k (y0;θθθ), R

(H)
k (y0;θθθ), and δk(θθθ) for homogeneous Pois-

son process

For a homogeneous Poisson process, the mean rate of occurrence θ(t) is constant

and independent of the location of the interval. That is, it does not vary with

time or space and depends only on the length of the interval. The number of

events/occurrences in any interval of length t is Poisson distributed with mean

E(N(t)) = θ(t) = tθ.

The statistical properties of the Poisson distribution and homogeneous Poisson pro-

cess differ only by a multiple of the time interval t. Therefore, the total, interven-

tion/treatment and RTM effects can be quantified simply by replacing θi(t) = tθi

for i = 0,1,2 in equations (3.8), (3.14), (3.15) for the right cut-off point and

equations (3.10), (3.17), and (3.18) for the left cut-off point, respectively. The re-

sulting formulae for both cases when truncation is on the right side, i.e., N(t) > y0,
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and when truncation is on the left side, i.e., N(t) ⩽ y0, are respectively given by

T
(H)
r (y0;θθθ) = tθ1

1 − F (y0 − 1∣t(θ0 + θ1))

1 − F (y0∣t(θ0 + θ1))
− tθ2,

δ
(H)
r (θθθ) = tθ1 − tθ2,

R
(H)
r (y0;θθθ) = tθ1 ⋅

P (y0∣t(θ0 + θ1))

1 − F (y0∣t(θ0 + θ1))
, (3.23)

and

T
(H)
` (y0;θθθ) = tθ2 − tθ1

F (y0 − 1∣t(θ0 + θ1))

F (y0∣t(θ0 + θ1))
,

δ
(H)
` (θθθ) = tθ2 − tθ1,

R
(H)
` (y0;θθθ) = tθ1 ⋅

P (y0∣t(θ0 + θ1))

F (y0∣t(θ0 + θ1))
, (3.24)

where θθθ = (θ0, θ1, θ2).

3.6.2 T
(I)
k (y0;θθθ), R

(I)
k (y0;θθθ), and δk(θθθ) for inhomogeneous Pois-

son process

The arrival rate may depend on the location or time of an interval. For example,

the arrival rate of calls to a telephone answering service varies with time as there

are more calls during the day than the night. In this situation, the number of

occurrences/events in an interval of length t is said to follow an inhomogeneous

Poisson process with mean Θ(t) = ∫
t

0 θ(t)dt where θ(t) is some function of time t.

The joint probability distribution function of N1(t) and N2(t) will be a bivariate

Poisson process with parameters Θi(t) = ∫
t

0 θi(t)dt for i = 0,1,2.

The statistical properties of both the Poisson distribution and the inhomogeneous

Poisson process are the same apart from the differences in parameter structure.

Therefore, to quantify the total, intervention and RTM effects for inhomogeneous

Poisson processes, we simply need to replace Θi(t) = ∫
t

0 θi(t)dt for corresponding

θi, for i = 0,1,2, in the respective equations (3.8), (3.14), (3.15) for a right cut-

off point and equations (3.10), (3.17), and (3.18) for a left cut-off point. The
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resulting formulae for a right cut-off are given by

T
(I)
r (y0;ΘΘΘ) = Θ1(t)

1 − F (y0 − 1∣Θ0(t) +Θ1(t))

1 − F (y0∣Θ0(t) +Θ1(t))
−Θ2(t),

δ
(I)
r (ΘΘΘ) = Θ1(t) −Θ2(t),

R
(I)
r (y0;ΘΘΘ) = Θ1(t) ⋅

P (y0∣Θ0(t) +Θ1(t))

1 − F (y0∣Θ0(t) +Θ1(t))
, (3.25)

where ΘΘΘ = (Θ0,Θ1,Θ2). Similarly,

T
(I)
` (y0;ΘΘΘ) = Θ2(t) −Θ1(t)

F (y0 − 1∣Θ0(t) +Θ1(t))

F (y0∣Θ0(t) +Θ1(t))
,

δ
(I)
` (ΘΘΘ) = Θ2(t) −Θ1(t)

R
(I)
` (y0;ΘΘΘ) = Θ1(t) ⋅

P (y0∣Θ0(t) +Θ1(t))

F (y0∣Θ0(t) +Θ1(t))
, (3.26)

when truncation is on the left side of the distribution.

3.6.3 Numerical example of homogeneous and inhomogeneous

Poisson processes

Let us consider the mean arrival rate of an inhomogeneous process to be θi(t) =

θi + b × cos(wt) for i = 0,1,2 where θi, b and w are constants. The resulting mean

value of the inhomogeneous Poisson process is Θi(t) = θit + b/w × sin(wt) for i =

0,1,2. Further, for demonstrative purposes assume that θi = 6, b = 3 and w = 1,

then the graph of constant (θi = 6) and varying arrival (Θi(t)) rates are given in

Figure 3.4. The peak and trough of the inhomogeneous Poisson process are 9 and

3 respectively, while the homogeneous Poisson process is constant at 6.

Without loss of generality, let us assume that the width of the time interval is

unity, then the expression for the corresponding mean value of an inhomogeneous

Poisson processes is given by

Θi(t) = ∫
t

t−1
(θi + b × cos(wt))dt = θi + b/w × sin(wt) − b/w × sin(w(t − 1)).

For illustration purposes, the graphs of constant and varying arrival rates are given

in Figures 3.5-3.7 for θ0 = 6, θi = 3 for (i = 1,2), b = 30 and w = 1.
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Figure 3.4. Graph of arrival rates for

homogeneous and inhomogeneous

Poisson processes.
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Figure 3.5. The RTM effects for con-

stant and varying arrival rates for

fixed cut-off point y0 = 5
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Figure 3.6. The RTM effects for con-

stant and varying arrival rates for

fixed cut-off point y0 = 7
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Figure 3.7. The RTM effects for con-

stant and varying arrival rates for

fixed cut-off point y0 = 9

As the cut-off point increases from 5 to 9, the RTM effect for right truncation in-

creases, while on the other hand, it decreases for left truncation both for constant

and varying arrival rates. The varying arrival rate shows periodicity for left cut-off

points, starts climbing up from a value of RTM for constant arrival rate (the blue

horizontal line) reaching a maximum and then starts descending to zero and the

cycles are repeated for left cut-off points. Likewise, for right cut-off points, the

RTM effect for the varying arrival rate starts from a constant value of RTM (the

black horizontal line) reaching a maximum and then declining to a low level.
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3.7 Maximum Likelihood Estimation (MLE) of RTM

Effect
Let (y11, y21), (y12, y22), ..., (y1n, y2n) be independent pairs of observations of size n

from the truncated bivariate Poisson distribution. Let us denote P (Y1 = y1, Y2 =

y2∣Y1 > y0) by PT (y1, y2) for brevity. The likelihood and log likelihood functions are

respectively given by

L(θθθ,yyy) =
n

∏
i=1
PT (y1i, y2i),

and

`(θθθ,yyy) =
n

∑
i=1

log(PT (y1i, y2i)),

where

yyy =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y11 y21

y12 y22

... ...

y1n y2n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Differentiating the log likelihood function with respect to θi and then equating to

zero for i = 0,1,2, we get the equations

1

n

n

∑
i=1

PT (y1i − 1, y2i − 1)

PT (y1i, y2i)
=

1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.27)

1

n

n

∑
i=1

PT (y1i − 1, y2i)

PT (y1i, y2i)
=

1 − F (y0 − 1∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.28)

and

1

n

n

∑
i=1

PT (y1, y2 − 1)

PT (y1, y2)
= 1. (3.29)

A solution to this system of equations can be found using the Teicher (1954) re-

cursive relationships given by

y1iPT (y1i, y2i) = θ1PT (y1i − 1, y12) + θ0PT (y1i − 1, y2i − 1), (3.30)

y2iPT (y1i, y2i) = θ2PT (y1i, y2i − 1) + θ0PT (y1i − 1, y2i − 1). (3.31)
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Dividing equation (3.30) by n ⋅ PT (y1, y2), summing over the sample, and using

equations (3.27) and (3.28) we get

y1∣y1>y0 = (θ0 + θ1) ⋅
1 − F (y0 − 1∣∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.32)

where y1∣y1>y0 = ∑y1i>y0 y1i/n is the conditional sample mean of pre observations.

Similarly,

y2∣y1>y0 = θ2 + θ0 ⋅
1 − F (y0 − 1∣∣θ0 + θ1)

1 − F (y0∣θ0 + θ1)
, (3.33)

where y2∣y1>y0 = ∑y2i>y0 y2i/n is the conditional sample mean of post observations.

Subtracting (3.33) from (3.32) and rearranging terms, we get the MLE of Tr(y0;θθθ),

given by

T̂r(y0,yyy) = θ̂1 ⋅
1 − F (y0 − 1∣θ̂0 + θ̂1)

1 − F (y0∣θ̂0 + θ̂1)
− θ̂2 = y1∣y1>y0 − y2∣y1>y0 . (3.34)

Likewise, the MLE of T`(y0;θθθ) is

T̂`(y0,yyy) = θ̂2 − θ̂1 ⋅
F (y0 − 1∣θ̂0 + θ̂1)

F (y0∣θ̂0 + θ̂1)
= y2∣y1≤y0 − y1∣y1≤y0 . (3.35)

The parameter vector θθθ = (θ0, θ1, θ2) of the truncated bivariate Poisson distribution

can be estimated by modifying the direct method of maximum likelihood (Kawa-

mura, 1984), which in turn can be used to estimate the intervention and RTM

effects. Let θ̂θθ = (θ̂0, θ̂1, θ̂2) be the estimate of the parameter vector, then the estima-

tors of RTM and intervention effects, for k = r, `, are

R̂k(y0,yyy) = Rk(y0, θ̂̂θ̂θ), and δk(yyy) = δk(θ̂̂θ̂θ).

3.7.1 Variances of T̂k(y0,yyy) and R̂k(y0,yyy)

To obtain the variance of T̂r(y0,yyy), subtracting Tr(y0;θθθ) on both sides of equation

(3.34), squaring and taking expectations, we get

var(T̂r(y0,yyy)) = var(y1∣y1>y0 − y2∣y1>y0) = var(Y1 − Y2∣Y1 > y0)/n. (3.36)

In a similar manner, for the left cut-off point, we get

var(T̂`(y0,yyy)) = var(Y2 − Y1∣Y1 ≤ y0)/n. (3.37)
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To obtain the variance of R̂k(y0,yyy) for k = r, `, replace θ2 with θ1 in equations

(3.36) and (3.37) respectively. Equivalently,

var(R̂r(y0,yyy)) = var (Y1 − Y2∣Y1 > y0, θ2 = θ1) /n,

and

var(R̂`(y0,yyy)) = var (Y2 − Y1∣Y1 ≤ y0, θ2 = θ1) /n.

3.7.2 Unbiasedness of T̂k(y0,yyy) and R̂k(y0,yyy)

The unbiasedness of T̂k(y0,yyy) for k = r, ` can be established by using equations

(3.3-3.10) as

E(T̂k(y0,yyy)) = Tk(y0;θθθ). (3.38)

For a null effect, i.e., δ(θθθ) = 0, T̂k(y0,yyy) and R̂k(y0,yyy) are equivalent. Thus,

R̂k(y0,yyy) can be written as

E(T̂k(y0,yyy)∣θ1 = θ2) = E(R̂k(y0,yyy)) = Rk(y0;θθθ). (3.39)

3.7.3 Asymptotic distribution of T̂k(y0,yyy) and R̂k(y0,yyy)

It is clear from equations (3.32) and (3.33) that T̂k(y0,yyy) for k = r, ` are the dif-

ferences of the conditional sample means of Y1 and Y2. Using the Central Limit

Theorem and considering the right cut-off point, T̂r(y0,yyy) is asymptotically nor-

mally distributed as

√
n (T̂r(y0,yyy)) − Tr(y0;θθθ))

d
∼ N(0,var(Y1 − Y2∣Y1 > y0)).

It is well known that the additive components of a normal random variable are

necessarily normally distributed (Cramér, 1936). So, the components R̂r(y0,yyy)

and δ̂r(yyy) of T̂r(y0,yyy) are also asymptotically normally distributed, and hence

√
n (R̂r(y0,yyy) −Rr(y0,θθθ))

d
∼ N(0,var(Y2 − Y1∣Y1 > y0, θ2 = θ1)).

The results also hold for the left cut-off point.
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3.8 Simulation Study for Quantifying the RTM Effect
A simulation study was carried out for estimating the RTM effect and comparing it

with the true RTM effect for specified parameters of the truncated bivariate Poisson

distribution. The following steps were taken to generate two sets of observations,

representing measurements before and after an intervention.

1. The probabilities P (Y > y0) or P (y0 ≤ Y ) are small if y0 is farther in the tail

of a probability distribution. So, the number of observations beyond/below a

cut-off point y0, i.e., n ⋅P (Y > y0) or n ⋅P (Y ≤ y0) in a sample generated from

the distribution would be small. Therefore, to get random samples of size

n = 10,20, ...,200 beyond/below y0, sufficiently large random samples were

generated from a Poisson distribution with mean θ0 = 6. These realizations

are denoted by x0j for j = 1,2, ..., n.

2. Sets of random samples of corresponding sizes were generated from the Pois-

son distribution with means θi = 3 for i = 1,2. These realizations of random

errors are denoted by xij for i = 1,2 and j = 1,2, ..., n.

3. Pre and post observations were obtained by y1j = x0j + x1j and y2j = x0j + x2j.

4. The first n observations of y1j beyond/below y0 and the corresponding y2i

were considered as random samples from a truncated bivariate Poisson dis-

tribution.

5. The sampling procedure was repeated m = 1000 times and the RTM effect for

each sample, was estimated using maximum likelihood.

3.8.1 Empirical distribution of R̂k(y0,yyy)

The normal quantile-quantile plots given in Figure 3.8 indicate that the sampling

distributions of R̂k(y0,yyy) for a right cut-off point y0 = 15 and different sample sizes

are approximately normal. The normal quantile plots for the cases θ1 > θ2 and

θ1 < θ2 are not given for brevity, but they also support approximate normality of

the distribution of RTM estimators.
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Figure 3.8. Left panel: Normal quantile plot of the sampling distribution of RTM

effect for n = 20, y0 = 15, θ1 = θ2 = 3 and θ0 = 6 Right panel: Normal quantile plot of

the sampling distribution of RTM effect for n = 50.

3.8.2 Empirical unbiasedness and consistency of R̂k(y0,yyy)

Estimates of RTM are given in Figure 3.9. The means of the sampling distributions

of RTM are very close to the true value for different sample sizes and choices of

the parameters θ1 and θ2, suggesting unbiasedness. As the sample size increases

the spread around the centre decreases, suggesting consistency of the estimator.
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Figure 3.9. Estimates of RTM and its sampling distribution for different sample

sizes.

3.8.3 Confidence intervals and coverage probabilities

Coverage probability is a useful tool for evaluating the performance of an estima-

tor for parameters of a discrete distribution. Coverage probability of a (1−α)100%

confidence interval is the probability it contains the true parameter. Let L̂i and Ûi

be the respective lower and upper limits of a confidence interval for Rk(y0;θθθ) for

k = r, ` estimated from a sample of size n, and let I(⋅) be the indicator function.

The true coverage probability is given by

C(θθθ, n) =∑
x

I(L̂i < Ri(y0;θθθ) < Ûi)P (x;θθθ).

C(θθθ, n) is a function of (θ0, θ1, θ2, n) and it cannot be displayed on a graph in a two

dimensional plane without holding some parameters constant.

The coverage probability can be used to investigate how well asymptotic con-

fidence intervals work for Rk(y0,θθθ), and also to explore its behaviour for finite

sample sizes. The simulated coverage probability is defined as the proportion of

times confidence intervals contain the true parameter from a series of simulated
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datasets, given by

Ĉ(θθθ, n) =
∑
m
i=1 Ii(L̂ < Ri(y0;θθθ) < Û)

m
,

where m is the number of simulated datasets.

Assuming normality of the estimates, 95% confidence intervals were constructed

and their coverage probabilities were computed for sample sizes n = 10,20, ...,200,

using maximum likelihood estimates as

R̂k(y0,yyy) ± z1−α/2 ×
√

v̂ar(R̂k(y0,yyy) for k = r, `. (3.40)

For sample sizes of at least 20, the nominal coverage probability level (95%) is

well approximated on average as depicted in Figure 3.10. For sample size n = 10

the simulated coverage probability remains consistently around 92%.
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Figure 3.10. Simulated coverage probabilities for different sample sizes and cut-

off points.
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3.9 Data Example
Yearly aggregated data on the number of road crash fatalities for 130 different

regions of New South Wales (NSW) for years 2011-2016 were provided by the

NSW Centre for Road Safety (Transport for NSW, 2018). Note there are plans for

enhancing NSW road fatality data through the linkage of multiple data sets. This

may impact previously published data and would explain discrepancies between

the data used in here and future data releases.

RTM is unlikely to occur when average yearly fatalities are small as the Poisson

variance would also be small and relatively high number of annual fatalities would

be inconsistent with a constant parameter vector θθθ as assumed in the RTM deriva-

tions. For the purposes of this analytic demonstration, regions with less than two

fatalities per year and regions with relatively large annual fatalities have been

excluded. These exclusions have resulted in data from 67 regions for the analysis.

For the NSW road fatality data, successive observations within a region are as-

sumed to be correlated, whereas different regions and observations more than

one year apart are assumed to be independent. This appears to be a reasonable

assumption as the estimated autocorrelation for successive observations was 0.226

for this data set, and 0.102, 0.114, 0.129 and 0.049 for lags of 2, 3, 4 and 5 years

respectively.

For a cut-off point y0 = 2, the estimates of the parameters of the truncated bivari-

ate Poisson distribution are θ̂0 = 0.76, θ̂1 = 3.938 and θ̂2 = 3.585. Based on these

estimates, the total, intervention and RTM effects against different cut-off values

are given in Figure 3.11.

Areas where the initial number of casualties were eight or more (left panel) ex-

perienced a decrease of almost five casualties on average the next year which are

mostly due to the RTM effect with a contribution of more than four on average.

The opposite effect was observed in places where casualties happened infrequently

(right panel). For example, areas where the number of casualties were two or

fewer, experienced on average an increase of more than two casualties the next

year which is mainly due to RTM. Generally, as the cut-off point goes farther in
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Figure 3.11. Left panel: Graph for the RTM effects for points greater than y0, Right

panel: Graph for the RTM effects for points less than or equal to y0.

the tail, the RTM effect increases causing the total effect to increase, whereas the

treatment effect remains constant. Consequently, an observed average increase or

average decrease which is the additive effect of the RTM and treatment, may be

mistaken for a real change.

3.10 Log-transformation of Poisson distributed data
Log-transformation is a widely used tool for dealing with positively skewed data

in different research areas, e.g, image processing and biomedical research. The

resulting observations may be well approximated by a normal distribution, thereby

allowing for methods and formulae based on a normal assumption.

Log-transformation can be problematic when zeros have been observed, which

makes it difficult to estimate RTM when selection is based on subjects below a

certain threshold, i.e. y ≤ y0, for log-transformed data. However, if selection is

based on subjects above a certain threshold (and zero has not been observed in

the data set), then RTM can be evaluated for log-transformed data. Moreover,

Feng et al. (2014) highlighted the limitations of log-transformation when dealing

with skewed data.
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For our data example, we considered the cut-off points of 7 and 8 because road

safety interventions are not enacted when there are too few fatalities. RTM was

calculated against these cut-off points for log-transformed data using maximum

likelihood. The results obtained are given in Table 3.1. The estimated RTM ef-

fect was exponentiated to get it back in the original units. These estimates were

then compared to those computed from the untransformed data. The percentage

relative change was calculated using the formula by Tornqvist et al. (1985)

PRC = (RTM − exp(logRTM)) /RTM × 100%.

The respective percentage relative change ranged from 46% to 53% for cut-off

points 7 and 8. This example suggests that RTM formulae assuming the bivari-

ate normal distribution on log-transformed data can severely underestimate RTM

when the data are generated from a bivariate Poisson distribution.

Table 3.1. Comparison of RTM for the NSW road fatality log-transformed data

Estimates

Formula y0 = 7 y0 = 8

RTM for log-transformed data logR(y0) 0.715 0.839

Exponentiated logRTM exp(logR(y0)) 2.044 2.315

RTM for the Original data R(y0) 3.818 5.000

Difference R(y0) − exp(logR(y0)) 1.774 2.685

Percentage relative change PRC 46.454% 53.696%

To check the amount of bias for the log transformed data, a simulation study was

carried out for different sample sizes and parameters θ0 = 6, θ1 = 3, θ2 = 3 and

y0 = 12 (a right cut off point). The log of the true RTM, i.e., log(R(y0)) is 0.564 for

these parameters represented by the green line in Figure 3.12. The RTM effect for

the log transformed data was estimated using the log cut off point log(y0) = 2.48

and the sampling distribution of estimates are presented in Figure 3.12. The mean

of the sampling distribution of log R̂(y0) for the log transformed data was 0.15

(the red line segments in Figure 3.12) and the corresponding percentage relative

difference observed was 73%.
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Figure 3.12. The estimated RTM effects for simulated log-transformed data for

sample sizes n = 50,100,200.

3.11 Discussion
Regression to the mean is an important issue in data analysis that can lead to

erroneous conclusions and therefore warrants consideration. For the normal dis-

tribution, expressions for RTM are available in the literature. However, there are

many situations where the underlying distribution is Poisson. The evaluation of

the impact of any intervention or policy-change aimed at changing the rate of oc-

currence could be improved by accounting for potential RTM effects. Therefore,

quantification of the RTM effect for the Poisson distribution/process is an impor-

tant research problem.

In a pre/post study design when an intervention or treatment is applied to subjects

selected based on certain thresholds, RTM is likely to occur. The severity of RTM

increases as the cut-off point is farther into the tail of the baseline distribution.

The intervention or treatment effect can be estimated by decomposing the total

effect into RTM and the intervention/treatment effects.

Our derivations assuming the bivariate Poisson differ from the bivariate normal
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in terms of the influence of covariance. For the normal distribution, the RTM

effect decreases linearly as the covariance/correlation between variables before

and after an intervention increases. On the contrary for the Poisson distribution, as

the covariance/correlation increases, RTM for left and right cut-off points behave

differently. As the covariance increases, RTM decreases non-linearly for a right

cut-off point, whereas RTM increases for a left cut-off point. A possible reason for

this difference is the equality of mean and variance of the Poisson distribution.

A log-transformation is often useful for positively skewed data as it may result in

observations that are well approximated by a normal distribution thereby allow-

ing for methods and formulae based on a normal assumption. For the NSW road

fatality data and the simulated bivariate Poisson data, RTM estimates were com-

puted assuming a bivariate normal distribution after a log transformation. In both

instances, RTM was severely underestimated using this approach and therefore

the log-transformation is not recommended when estimating RTM.

Our simulation study suggests that the maximum likelihood estimators of RTM

are not only consistent and unbiased, but also approximately normally distributed

confirming the asymptotic results.

Further, the behaviour of the RTM effect is markedly dissimilar for homogeneous

and inhomogeneous Poisson processes which can be easily corroborated. It is

therefore recommended to take into account the varying nature of arrival rates of

Poisson processes for calculating the RTM effects in a data analysis.



Chapter 4

Regression to the mean for the bivari-

ate binomial distribution

The binomial distribution is often used to describe the number of successes in a

fixed number of trials. In an intervention study, the pre-post variables for number

of successes may follow the bivariate binomial distribution. This chapter derives

expression for RTM when the underlying distribution is the bivariate binomial. It

highlights the differences resulting from the dependence structure of the true and

random error components, and its impact on the intervention/treatment effect

and the correlation.

This chapter also demonstrates that RTM is underestimated when normal and

Poisson approximations to the bivariate binomial distribution are used. The max-

imum likelihood estimates of the total, RTM, and intervention effects are derived

and the statistical properties of unbiasedness, consistency, and asymptotic nor-

mality are established. A simulation study is conducted to empirically assess the

statistical properties of the RTM estimator and its asymptotic distribution.

Data on the number of obese individuals and the number of nonconforming card-

board cans are used to decompose the total effect into the RTM and intervention

effects. The contents of this chapter are reproduced from a published paper (Khan

and Olivier, 2019) with some minor modifications.
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4.1 Introduction
The conclusions of pre-post intervention studies may be influenced by RTM when

subjects are selected in the tail of a distribution. One approach to mitigate this

issue is to quantify the RTM effect and subtract it from the total effect. When the

pre-post variables follow the bivariate normal distribution, James (1973), Gard-

ner and Heady (1973), and Davis (1976) derived formulae for calculating the

expected RTM effect. Similarly, Khan and Olivier (2018) derived expressions for

the RTM effect assuming the bivariate Poisson distribution for pre and post counts.

Many real life situations exist where the response variables are binary and could be

decomposed into two components that generate the event of success. This decom-

position includes (i) the true source (ii) and random fluctuations or luck/chance.

For instance, in a standardized test, the number of correct answers scored by a can-

didate can be decomposed into the questions the student knows the answer and

questions the student does not know the answer and guesses. In another example,

the prevalence of obesity could be decomposed into two sources: (1) individual

factors such as genetics and personal choices, and (2) collective behaviour such as

social pressure and global economic drivers (Gallos et al., 2012). Similarly, skill

and luck/chance play important roles in sports (Frans, 1985; Filip, 2014). The

total number of matches a team wins in a fixed number of games could be the

sum of the matches won by skill and those matches determined by luck/chance.

Other examples exist where the characteristic of interest is binary which could be

decomposed into two different sources. For example, the Government of Khyber

Pakhtunkhwa, Pakistan has established independent monitoring units to regularly

evaluate the performance of public sector schools and hospitals (IMU, 2018a,b).

One of the many objectives of this organization is to ensure the presence of the

working staff for each day. The total absentee days by an employee in a month is

the sum of official leaves and unauthorized absences, and the government makes

decisions based on this data. Similarly, in statistical process control, the p-chart is

used for monitoring the fraction of defective items in the manufacturing process

(Montgomery, 2013). The total number of defective items produced could be due

to some assignable cause or to chance variation.
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In the above examples, the outcome of interest is the number of successes in a

fixed number of trials, e.g., obese individuals, correct answers, wins, absentees,

or defective items, which may follow the binomial distribution. The random com-

ponent part in each case could induce the RTM effect. The conclusions of inter-

vention studies such as the effectiveness of a program at reducing the prevalence

of obesity (Hannon et al., 2018; Skinner et al., 2015), improving student’s perfor-

mance on a standardized test (Rothman and Henderson, 2011; Good et al., 2003),

key decisions about changing strategies in sports for improving performance, and

interrupting manufacturing processes for decreasing the production of defective

items could be impacted by RTM and, therefore, estimates of the effect of an in-

tervention may be inaccurate.

Further, normal or Poisson approximations to the binomial distribution are ap-

propriate under certain conditions which may not always hold true. That is, the

estimation of RTM under normal or Poisson approximations to the binomial distri-

bution could be invalid. In pre/post studies involving binomial experiments, the

quantification of RTM is missing in the literature. Therefore, the purpose of this

chapter is to derive expressions to quantify the RTM effect when the underlying

distribution of pre/post observations is a bivariate binomial distribution.

The remainder of the chapter is organized into seven sections. Formulae quan-

tifying RTM effects are derived under the assumption of the bivariate binomial

distribution in Section 4.2. The effect of the correlation between pre and post

observations on RTM is studied in Section 4.3 and comparisons of RTM under the

bivariate binomial distribution and normal or Poisson approximations to the bino-

mial are carried out in Section 4.4. Section 4.5 is devoted to estimation of the RTM

effect, and a simulation study is conducted in Section 4.6 to investigate the sta-

tistical properties and sampling distribution of the RTM estimator. Data examples

for the number of obese individuals and the number of nonconforming cardboard

cans is demonstrated in Section 4.7. A discussion in Section 4.8 concludes the

chapter.
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4.2 The Bivariate Binomial Distribution and Regres-

sion to the Mean
The normal and Poisson distributions are, respectively, important continuous and

discrete probability distributions in statistics as they are relevant in a wide range

of applications. There are also situations which can be modelled as binomial, e.g.,

the number of correct answers scored by a student, the number of matches won by

a team, and the number of defective items produced in a manufacturing process

in a fixed number of trials.

Similarly, in medicine and public health, the number of obese, the number of

patients with allergies reporting symptomatic relief with a specific medication,

and the number of coronary stents successfully transplanted in a fixed number of

patients selected for treatment may follow the binomial distribution. Apart from

this, normal or Poisson approximations to the binomial are not always appropriate,

thus making the quantification of RTM under the bivariate binomial distribution a

relevant problem to study.

In a set up similar to the bivariate Poisson, let Y1 = X
(1)
0 +X1 and Y2 = X

(2)
0 +X2

be the total number of successes in a pre/post study design with a fixed number

of trials, say n. Here, X(i)0 represents the true number of successes, and Xi are

random numbers of successes due to luck/chance, for i = 1,2. For example, in

a standardized test with multiple choice questions, X(i)0 would be the number of

correct answers that the student knows and Xi for i = 1,2, would be the number

of correct answers from guessing. Here, X(i)0 ∼ Bin(n,π0) and the conditional

distribution of Xi given that X(i)0 = x0 is also binomial, i.e., Xi∣x0 ∼ Bin(n − x0, πi)

where π0 = P (X
(i)
0 = 1) and πi = P (Xi = 1∣X

(i)
0 = x0) for i = 1,2.

In the normal and Poisson set up, the true and random component of measure-

ments/counts are independent of each other, whereas they are not in the binomial

case presented here. Yi is the sum of two dependent binomial random variables

X
(i)
0 and Xi, so its distribution is not straightforward. To derive the distribution of
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Yi, consider the joint distribution of X(i)0 and Xi given by

f
X
(i)
0 ,Xi

(x0, xi) = fX(i)0
(x0)fXi∣x0(xi∣x0)

= (
n

x0
)πx00 (1 − π0)

n−x0(
n − x0
xi

)πxii (1 − πi)
n−x0−xi ,

where x0 = 0,1, ..., n, x1 = 0,1, ..., n − x0 and 0 ≤X
(i)
0 +Xi ≤ n.

The probability generating function (PGF) of Yi is

PYi(s) = E(sYi) = E(sX
(i)
0 +Xi)

=
n

∑
x0=0

n−x0
∑
xi=0

sX
(i)
0 +Xi(

n

x0
)πx00 (1 − π0)

n−x0(
n − x0
xi

)πxii (1 − πi)
n−x0−xi

=
n

∑
x0=0

(
n

x0
)(sπ0)

x0(1 − π0)
n−x0

n−x0
∑
xi=0

(
n − x0
xi

)(sπi)
xi(1 − πi)

n−x0−xi .

Summing the series first with respect to xi and then x0, we get

PYi(s) = (s(π0 + (1 − π0)πi) + (1 − π0)(1 − πi))
n
,

which is the PGF of a binomial distribution, i.e., Yi ∼ Bin(n,π0 + (1 − π0)πi).

The component (1 − π0)πi can be interpreted as the probability of success due to

chance. In this case, the total probability of success on an individual item in a

pre/post trial cannot be explicitly decomposed into two parts like the parameters

of the bivariate Poisson distribution. However, the notations can be eased by re-

parametrizing them according to the outcomes of the bivariate Bernoulli distribu-

tion (Marshall and Olkin, 1985). Let Zi be Bernoulli distributed random variables

for i = 1,2, then (Z1, Z2) has the four possible outcomes (1,1), (1,0), (0,1) and

(0,0) in a bivariate set up. The probabilities of these outcomes are the sum of

mutually exclusive events

P{(Z1, Z2) = (1,1)} = φ0 = pTT + pTR + pRT + pRR,

P{(Z1, Z2) = (1,0)} = φ1 = pT0 + pR0

P{(Z1, Z2) = (0,1)} = φ2 = p0T + p0R

P{(Z1, Z2) = (0,0)} = φ3 = p00,

where the subscripts T and R denote successes generated from the true and ran-

dom sources respectively, whereas 0 represents a failure and φ3 = 1 − φ0 − φ1 − φ2.
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In a pre/post set up, let Z1 and Z2 be the pre and post Bernoulli variables. The

probability of success in pre/post marginal Bernoulli trials are

P (Z1 = 1) = φ0 + φ1,

and

P (Z2 = 1) = φ0 + φ2.

Note that since there are only two possible outcomes of a Bernoulli trial, the se-

lection of subjects for a pre-post study design can be based on either the presence

(i.e., Z1 = 1) or absence (i.e., Z1 = 0) of a characteristic of interest.

The binomial random variables Y1 and Y2 can be represented as the sums of

Bernoulli random variables as

Y1 =
n

∑
i=1
Z1i, Y2 =

n

∑
i=1
Z2i.

In this new pre/post set up, Yi ∼ Bin(n,φ0 + φi) is an equivalent form of the

distribution of the total number of successes Yi, for i = 1,2.

The classification of the pre/post number of successes in n bivariate Bernoulli trials

are presented in Table 4.1. Here, α denotes the number of successes on both the

pre and post occasions, i.e., α = ∣(Z1, Z2) = (1,1)∣.

Table 4.1. 2×2 table for successes and failures in a distribution

Pre successes Pre failures Totals

Post successes α y2 − α y2

Post failures y1 − α n + α − y1 − y2 n − y2

Totals y1 n − y1 n

The joint distribution of Y1 and Y2, first discussed by Aitken and Gonin (1936), is

fY1,Y2(y1, y2, n) =
min(y1,y2)
∑
α=0

f(α, y1 − α, y2 − α,φ0, φ1, φ1, n),

where

f(α, y1−α, y2−α,n) = (
n

α, y1 − α, y2 − α,n + α − y1 − y2
)φα0φ

y1−α
1 φy2−α2 (1−φ0−φ1−φ2)

n+α−y1−y2

is a multinomial-type probability mass function. The covariance of Y1 and Y2 in

this set up is cov(Y1, Y2) = n(φ0 − (φ0 + φ1)(φ0 + φ2)).
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4.2.1 The Total Effect Under the Bivariate Binomial Distribu-

tion

In pre/post intervention studies, RTM may arise when subjects beyond/below a

baseline point, say y0, are selected. For example, schools/hospitals in Khyber

Pukhtunkhwa, Pakistan, where absentees of staff members are greater than y0 in a

month triggers interventions like salary deduction and on-site inspections. Two sit-

uations arise as a result. Firstly, the intervention could be ineffective and the effect

could be due to RTM. In other words, Y1 and Y2 are identically distributed with

φ1 = φ2. Secondly, the intervention could be effective and the observed change

could be a combination of RTM and intervention effects. Under the latter sce-

nario, Y1 and Y2 are not necessarily identically distributed.

An intervention/treatment is potentially applied to extreme situations based on a

cut-off value y0, which could be either in the left or right tail of the distribution.

The shape of the binomial distribution is asymmetric for most parametric values,

so right and left cut-off points are considered separately. Based on a right cut-off

point, let Tr(y0,φφφ) be the total effect which is the difference of the conditional

means of pre and post variables. Mathematically, this is

Tr(y0,φφφ) = E(Y1 − Y2∣Y1 > y0), (4.1)

where φφφ = (φ0, φ1, φ2).

The truncated bivariate binomial distribution is

ft(y1, y2, n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fY1,Y2(y1,y2,n)
P (Y1>y0) , if Y1 = y0 + 1, y0 + 2, ..., n and Y2 = 0,1, ..., n

0 otherwise.

Considering the conditional expectation of Y1,

E(Y1∣Y1 > y0) =
n

∑
y1=y0+1

y1
n−y1+α
∑
y2=α

y1

∑
α=0

f(α, y1 − α, y2 − α,n)/P (Y1 > y0)

and using the identity

n−y1+α
∑
y2=α

y1

∑
α=0

f(α, y1 − α, y2 − α,n) = (
n

y1
)(φ0 + φ1)

y1(1 − φ0 − φ1)
n−y1 ,
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it can be shown that this expression simplifies to

E(Y1∣Y1 > y0) =
n

∑
y1=y0+1

y1(
n

y1
)(φ0 + φ1)

y1(1 − φ0 − φ1)
n−y1/P (Y1 > y0)

= n(φ0 + φ1) ⋅
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
,

(4.2)

where Fn(y∣p) = ∑
y
t=0 (

n
t
)pt(1− p)n−t is the cumulative distribution function (CDF )

of the binomial distribution. Now, considering the conditional expectation of Y2,

we have

E(Y2∣Y1 > y0) =
n

∑
y1=y0+1

n−y1+α
∑
y2=α

y1

∑
α=0

y2f(α, y1 − α, y2 − α,n)/P (Y1 > y0). (4.3)

Expanding the inner summations,
n−y1
∑
y2=0

y2f(0, y1, y2, n) +
n−y1+1
∑
y2=1

y2f(1, y1 − 1, y2 − 1, n) +⋯ +
n

∑
y2=y1

y2f(y1, y1 − y1, y2 − y1, n)

then substituting y′2 = y2− i for i = 1,2, ..., y1 recursively, rearranging the expression

and using the binomial theorem ∑ni=1 (
n
i
)axbn−x = (a + b)n, the inner summations

reduce to

(
n

y1
)(n − y1) ⋅ φ2(1 − φ0 − φ1)

n−y1−1(φ0 + φ1)
y1 + (

n

y1
)y1 ⋅ φ0(1 − φ0 − φ1)

n−y1(φ0 + φ1)
y1−1.

Substituting this result into equation (4.3), we get

E(Y2∣Y1 > y0) =

⎡
⎢
⎢
⎢
⎢
⎣

n

∑
y1=y0+1

(
n

y1
)(n − y1)

φ2

1 − φ0 − φ1

(1 − φ0 − φ1)
n−y1(φ0 + φ1)

y1+

n

∑
y1=y0+1

(
n

y1
)y1

φ0

φ0 + φ1

(1 − φ0 − φ1)
n−y1(φ0 + φ1)

y1

⎤
⎥
⎥
⎥
⎥
⎦

/P (Y1 > y0).

Simplifying and using equation (4.2), we get

E(Y2∣Y1 > y0) = n(φ0+φ1)⋅
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
⋅
φ0 − (φ0 + φ1)(φ0 + φ2)

(φ0 + φ1)(1 − φ0 − φ1)
+n

φ2

1 − φ0 − φ1

.

(4.4)

Combining equations (4.2) and (4.4) in equation (4.1), and using the recursive

relation

Fn(y0∣φ0 + φ1) = Fn−1(y0 − 1∣φ0 + φ1) + (1 − φ0 − φ1)Pn−1(Y1 = y0),

the expression for Tr(y0,φφφ) is

Tr(y0,φφφ) = n⋅
φ1(1 − Fn−1(y0 − 1∣φ0 + φ1)) − φ2[1 − Fn(y0∣φ0 + φ1) − (φ0 + φ1)Pn−1(Y1 = y0)]

1 − Fn(y0∣φ0 + φ1)
,

(4.5)



CHAPTER 4. RTM FOR THE BIVARIATE BINOMIAL DISTRIBUTION 73

where Pn−1(Y1 = y0) = (
n−1
y0

)(φ0 + φ1)
y0(1 − φ0 − φ1)

n−1−y0.

If selection criterion is based on all subjects equal to or less than a cut point, then

T`(y0,φφφ) can be quantified by evaluating the difference of conditional means as

T`(y0,φφφ) = E(Y2 − Y1∣Y1 ≤ y0).

Following similar steps, the expression for T`(y0,φφφ) is

T`(y0,φφφ) = n ⋅
φ2[Fn(y0∣φ0 + φ1) + (φ0 + φ1)Pn−1(Y1 = y0)] − φ1Fn−1(y0 − 1∣φ0 + φ1)

Fn(y0∣φ0 + φ1)
.

(4.6)

4.2.2 RTM and intervention effects under the bivariate bino-

mial distribution

Let Ri(y0,φφφ) and δi(φφφ) be, respectively, the RTM and intervention effects for i = r, `.

Using the fact E(Yi) = n(φ0 + φi), for i = 1,2, δr(φφφ) can be expressed as

δr(φφφ) = E(Y1 − Y2) = n(φ1 − φ2).

For a null intervention effect, δi(φφφ) = 0 or φ1 = φ2, and the total effect is due to

RTM. So, expressions of RTM for the right and left cut-off points can be derived

by substituting φ2 = φ1 in equations (4.5) and (4.6) as

Rr(y0,φφφ) = E(Y1 − Y2∣Y1 > y0, φ1 = φ2) = nφ1 ⋅
Pn−1(Y1 = y0)

1 − Fn(y0∣φ0 + φ1)
, (4.7)

and

R`(y0,φφφ) = E(Y1 − Y2∣Y1 ≤ y0, φ1 = φ2) = nφ1 ⋅
Pn−1(Y1 = y0)

Fn(y0∣φ0 + φ1)
. (4.8)

For the bivariate normal and Poisson distributions, the total effect T P,Nr (y0,θθθ) can

be expressed as the sum of the RTM and intervention effects

T P,Nr (y0,θθθ) = R
P,N
r (y0,θθθ) + δ

P,N
r (θθθ), (4.9)

where RP,N
r (y0,θθθ) and δP,Nr (θθθ) are RTM and intervention effects, respectively. For

a non-null case, δP,Nr (θθθ) can be obtained simply by subtracting RTM from the total

effect.
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For the bivariate binomial distribution and a right cut-off point, the difference of

the total and RTM effects can be written as

Tr(y0,φφφ) −Rr(y0,φφφ) = n(φ1 − φ2) ⋅ [1 − (φ0 + φ1)
Pn−1(Y1 = y0)

1 − Fn(y0∣φ0 + φ1)
]

= δr(φφφ) ⋅ [1 −Br(y0, φ0 + φ1)], (4.10)

where

Br(y0, φ0 + φ1) = (φ0 + φ1)
Pn−1(Y1 = y0)

1 − Fn(y0∣φ0 + φ1)

is a factor by which the intervention effect is underestimated because Br(y0, φ0 +

φ1) ∈ (0,1). Simple subtraction does not work for the bivariate binomial distribu-

tion to get the unbiased intervention effect from the total and RTM effects, and

instead can be obtained as

δr(φφφ) =
Tr(y0,φφφ) −Rr(y0,φφφ)

1 −Br(y0, φ0 + φ1)
= n(φ1 − φ2).

The non-equivalence to the difference of total and RTM effects makes the bivariate

binomial distribution distinct from the bivariate normal and Poisson distributions

which could be attributed to the dependency of X(i)0 and Xi for i = 1,2. Further, it

can be shown that

lim
n→∞

Fn−1(y0 − 1∣φ0 + φ1)Ð→ Fn(y0∣φ0 + φ1)

and

lim
n→∞

Br(y0, φ0 + φ1)Ð→ 0

and hence for large n,

Tr(y0,φφφ) −Rr(y0,φφφ) ≈ n(φ1 − φ2).

Therefore, X(i)0 and Xi are asymptotically independent for i = 1,2.

Similarly, for a left cut-off point, the intervention effect δ`(φφφ), is

δ`(φφφ) =
T`(y0,φφφ) −R`(y0,φφφ)

1 +B`(y0, φ0 + φ1)
,

where

B`(y0, φ0 + φ1) = (φ0 + φ1) ⋅
Pn−1(Y1 = y0)

Fn(y0∣φ0 + φ1)
> 0

and the intervention effect would be overestimated if RTM is only subtracted from

the total effect.
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4.2.3 Variance of RTM
Expressions for the variance of (Y1 − Y2∣Y1 > y0) can be obtained by evaluating the

conditional variance of the difference of pre and post variables given by

var(Y1−Y2∣Y1 > y0) = var(Y1∣Y1 > y0)+var(Y2∣Y1 > y0)−2×cov(Y1, Y2∣Y1 > y0). (4.11)

To complete the derivation, some helpful results are derived as follows. First,

E(Y1(Y1 − 1)∣Y1 > y0) =
n

∑
y1=y0+1

y1(y1 − 1)
n−y1+α
∑
y2=α

fT (y1, y2, n)

using the identity ∑n−y1+αy2=α fY1,Y2(y1, y2, n) = (
n
y1
)(φ0+φ1)

y1(1−φ0−φ1)
n−y1, and then

simplifying, we get

E(Y1(Y1 − 1)∣Y1 > y0) = n(n − 1)(φ0 + φ1)
2 ⋅

1 − Fn−2(y0 − 2∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
. (4.12)

Similarly, for a left cut-off point, it can be shown that

E(Y1∣Y1 ≤ y0) = n(φ0 + φ1) ⋅
Fn−1(y0 − 1∣φ0 + φ1)

Fn(y0∣φ0 + φ1)
, (4.13)

and

E(Y1(Y1 − 1)∣Y1 ≤ y0) = n(n − 1)(φ0 + φ1)
2 ⋅
Fn−2(y0 − 2∣φ0 + φ1)

Fn(y0∣φ0 + φ1)
. (4.14)

Now consider

E(Y2(Y2 − 1)∣Y1 > y0) =
n

∑
y1=y0+1

n−y1+α
∑
y2=α

y2(y2 − 1)fT (y1, y2). (4.15)

Expanding the inner summation, rearranging and simplifying, we get

E(Y2(Y2 − 1)∣Y1 > y0)

= E(Y1(Y1 − 1)∣Y1 > y0) ⋅
(φ1φ2 − φ0(1 − φ0 − φ1 − φ2))

2

(φ0 + φ1)
2(1 − φ0 − φ1)

2
+ n(n − 1)

φ2
2

(1 − φ0 − φ1)
2

− 2φ2 ⋅
n(φ1φ2 − φ0(1 − φ0 − φ1 − φ2)) − φ1φ2

(φ0 + φ1)(1 − φ0 − φ1)
2

⋅E(Y1∣Y1 > y0).

(4.16)

The crossproduct expectation can be found by

E(Y1Y2∣Y1 > y0) =
n

∑
y1=y0+1

y1
n−y1+α
∑
y2=α

y2fT (y1, y2, n),

=
φ0 − (φ0 + φ1)(φ0 + φ2)

(φ0 + φ1)(1 − φ0 − φ1)
⋅E(Y1(Y1 − 1)∣Y1 > y0)

+ (
φ0

φ0 + φ1

+
(n − 1)φ2

1 − φ0 − φ1

) ⋅E(Y1∣Y1 > y0),

(4.17)
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by using the identity
n−y1+α
∑
y2=α

y2fT (y1, y2, n) = (
n

y1
)(n − y1)

φ2

1 − φ0 − φ1

(1 − φ0 − φ1)
n−y1(φ0 + φ1)

y1

+ (
n

y1
)y1

φ0

φ0 + φ1

(1 − φ0 − φ1)
n−y1(φ0 + φ1)

y1 .

Using the formulae of variances and covariance of Y1 and Y2, i.e., var(Yi∣Y1 > y0) =

E(Yi(Yi−1)∣Y1 > y0)+E(Yi∣Y1 > y0)−(E(Yi∣Y1 > y0))2 for i = 1,2 and cov(Y1, Y2∣Y1 >

y0) = E(Y1Y2∣Y1 > y0) − E(Y1∣Y1 > y0)E(Y2∣Y1 > y0), the expression of variance in

equation (4.11) simplifies to

var(Y1 − Y2∣Y1 > y0)

= n(
φ1 + (φ0 + φ1)(φ2 − φ1)

(1 − φ0 − φ1)
)

2

⋅

⎡
⎢
⎢
⎢
⎢
⎣

(n − 1) ⋅
1 − Fn−2(y0 − 2∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)

− n ⋅ (
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
)

2 ⎤
⎥
⎥
⎥
⎥
⎦

+
nφ2

(1 − φ0 − φ1)
⋅ (1 −

φ2

(1 − φ0 − φ1)
)

+
(φ0 − (φ0 + φ1)(φ0 + φ1))(1 − φ0 − φ1) + 2φ1φ2

2)

(1 − φ0 − φ1)
2

⋅ (n
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
) .

(4.18)

Likewise, the expression of the variance for the left cut-off point can be derived as

var(Y2 − Y2∣Y1 ≤ y0)

= n(
φ1 + (φ0 + φ1)(φ2 − φ1)

(1 − φ0 − φ1)
)

2

⋅

⎡
⎢
⎢
⎢
⎢
⎣

(n − 1) ⋅
Fn−2(y0 − 2∣φ0 + φ1)

Fn(y0∣φ0 + φ1)

− n ⋅ (
Fn−1(y0 − 1∣φ0 + φ1)

Fn(y0∣φ0 + φ1)
)

2 ⎤
⎥
⎥
⎥
⎥
⎦

+
nφ2

(1 − φ0 − φ1)
⋅ (1 −

φ2

(1 − φ0 − φ1)
)

+
(φ0 − (φ0 + φ1)(φ0 + φ2))(1 − φ0 − φ1) + 2φ1φ2

2)

(1 − φ0 − φ1)
2

⋅ (n
Fn−1(y0 − 1∣φ0 + φ1)

Fn(y0∣φ0 + φ1)
) .

(4.19)

Expression of the variances for RTM can be found by substituting φ2 = φ1 in equa-

tions (4.18) and (4.19).

4.3 RTM as a Function of Correlation Coefficient ρ
The magnitude of RTM is related to the correlation coefficient ρ of pre and post

observations. The pattern of this relationship depends on the probability distri-

bution under consideration. For the normal distribution, it varies linearly with ρ,

whereas for the Poisson distribution the pattern is non-linear and is also affected

by the direction of y0 relative to the mean.
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As ρ is a function of different parameters (φ0, φ1, φ2), for illustrative purposes it is

depicted in the left panel of Figure 4.1 for φ1 = φ2 and φ0 = 0.1. It is evident from

the graph that ρ decreases non-linearly as φ1 increases. To demonstrate RTM as a

function of ρ, some specific values of y0 both in the right and left tail are consid-

ered and the result is depicted in the right panel of Figure 4.1. For a left cut-off

point, RTM decreases steeply as ρ takes values from −0.6 to 0.6, while for a right

cut-off point it increases reaching maximum when ρ is around zero and then starts

decreasing.

For normal and Poisson distributions, the RTM effect never exceeds the difference

of y0 and E(Y1), but for the bivariate binomial distribution when ρ < 0, RTM

could have a relatively greater range thereby exaggerating the intervention effect

comparatively more. Consequently, the conclusion would be more seriously in

error if RTM is not accounted for when the pre and post observations follow the

bivariate binomial distribution.
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Figure 4.1. Left panel: Correlation as a function of φ = φ1 = φ2 for fixed n = 40 and

φ0 = 0.1, Right panel: RTM as a function of correlation and different cut-off points.
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4.4 RTM for Normal and Poisson Approximations
As a rule of thumb, the normal approximation to the binomial distribution is

deemed appropriate if both nπ and n(1 − π) are greater than ten (Moore et al.,

2017). For demonstrative purposes, specific values of the parameters are consid-

ered here to satisfy this condition of approximation. Let φ0 = 0.10, φ1 = φ2 = 0.05

and n = 80. Assuming the normal is a good approximation to the binomial,

the mean and variance of the normal distribution are µ = n(φ0 + φ1) = 12 and

σ2 = n(φ0 + φ1)(1 − φ0 − φ1) = 10.2 respectively and the correlation coefficient is

ρ = n(φ0 − (φ0 + φ1)(φ0 + φ2))/σ2 = 0.608.

Similarly, the Poisson approximation to the binomial distribution is considered

appropriate when the sample size n is large and the probability of success p is very

small. The parameters of the bivariate Poisson distribution for the same values are

θ0 = nφ0 = 8, θ1 = nφ1 = 4 and θ2 = nφ2 = 4.

The percentage relative change (PRC) can be used for quantitative comparison of

two quantities/estimators by taking into account the size of things being compared

and removing the units of measurement. One of the quantities being compared

is the standard/reference/true value. With Ri(y0,φφφ) under the bivariate binomial

distribution as the reference value and Ri(x0) and Ri(y0,θθθ) as RTM under the nor-

mal and Poisson approximations to the bivariate binomial distribution respectively,

the PRC was calculated using the formula PRCi = (Ri(y0,φφφ) −Ri(x0))/Ri(y0,φφφ)

for i = r, ` (Tornqvist et al., 1985). When PRC is around zero, the approximation

works well in estimating RTM, whereas positive/negative values of PRC can be

interpreted as underestimation/overestimation of RTM.

It is worth mentioning here that the formula of RTM for a left cut-off point remains

the same for the normal approximation due to symmetry, i.e., Φ(−z0) = 1 −Φ(z0).

The resulting graph of PRCi for i = r, `, is given in Figure 4.2. Importantly, the

PRC is greater than zero for all cut-off points, so the normal and Poisson approx-

imations to the bivariate binomial distribution consistently underestimate RTM.

The severity of underestimation stabilizes at 69 and 14 as the right cut-off point

increases for the normal and Poisson approximations, respectively. On the other
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hand, as the left cut-off point decreases, PRC` first decreases and then increases

touching 100 at y0 = 36 for the normal approximation, and it stays at 15 for the

Poisson approximation. Though the Poisson approximation works better than the

normal approximation under suitable conditions, neither of them would be con-

sidered an appropriate alternative to the bivariate binomial distribution for quan-

tifying RTM.
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Figure 4.2. Left panel: Graph of percentage relative difference of RTM under

normal approximation to bivariate binomial distribution and bivariate binomial

distribution for different cut-off points, Right panel: Graph of percentage relative

difference of RTM under Poisson approximation to bivariate binomial distribution

and bivariate binomial distribution.

Correlation for the bivariate normal or Poisson of pre and post observations is

always positive, so a comparative study cannot be performed when the bivariate

binomial distribution has negative correlation.

4.5 Maximum Likelihood Estimation of the Total, RTM

and Intervention Effects
A sample from the bivariate binomial distribution can contain information in two

different ways. Firstly, the sample may contain thorough information on the num-
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ber of successes on both the pre and post occasions on same subjects (α) and the

total number of successes separately on the pre-post occasions, i.e., (Y1, Y2). Sec-

ondly, the sample may contain information only on (Y1, Y2). Estimation for both

cases are considered separately.

4.5.1 MLE of φφφ when α is known

When information on the number of successes on both pre and post occasions, αi,

is available for each sample taken from the bivariate binomial distribution without

a cut-off point, then φφφ can be estimated from the relevant sample proportions

(Hamdan and Nasro, 1986). Let (α1, y11, y21), (α2, y12, y22), ..., (αk, y1k, y2k) be a

random sample of size k from the bivariate binomial distribution. The MLE of

φφφ = (φ0, φ1, φ2, φ3) is given by

φ̂0 =
∑
k
i=1αi
k

,

φ̂1 =
∑
k
i=1(y1i − αi)

k

φ̂2 =
∑
k
i=1(y2i − αi)

k

φ̂3 = 1 − φ̂0 − φ̂1 − φ̂2.

The total, RTM and intervention effects can be estimated by substituting estimates

of (φ0, φ1, φ2) into their relevant formulae.

4.5.2 MLE of φφφ when α is unknown

Let (y11, y21), (y12, y22), ..., (y1k, y2k) be a random sample of size k from a truncated

bivariate binomial distribution. The likelihood function is given by

L(φ0φ0φ0,yyy) =
k

∏
i=1
fT (y1i, y2i, n),

where

yyy =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y11 y21

y12 y22

... ...

y1n y2k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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and the log of the likelihood is

`(φ0φ0φ0,yyy) =
k

∑
i=1
log(fT (y1i, y2i, n)).

Differentiating `(φ0φ0φ0,yyy) with respect to φ0, φ1 and φ2, and then setting these equa-

tions to zero, we get

n

k

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
=
n

k

k

∑
i=1

fT (y1i, y2i, n − 1)

fT (y1i, y2i, n)
+
d log(P (Y1 > y0))

dφ0

, (4.20)

nφ0

kφ1

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
+
n

k

k

∑
i=1

fT (y1i, y2i, n − 1)

fT (y1i, y2i, n)
=
y1
φ1

−
d log(P (Y1 > y0))

dφ1

,

(4.21)

and

nφ0

kφ2

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
+
n

k

k

∑
i=1

fT (y1i, y2i, n − 1)

fT (y1i, y2i, n)
=
y2
φ2

, (4.22)

where yj = ∑
k
i yji/k are the sample means for j = 1,2.

The derivative d log(P (Y1 > y0))/dφi for i = 0,1, can be expressed in terms of the

CDF as

d log(P (Y1 > y0))

dφi
= n ⋅

Pn−1(y0)

1 − Fn(y0∣φ0 + φ1)
.

A recursive relation for the bivariate binomial distribution can be derived as

nfT (y1i, y2i, n−1) =
n − y1i − y2i

1 − φ0 − φ1 − φ2

⋅fT (y1i, y2i, n)+
nφ0

1 − φ0 − φ1 − φ2

⋅fT (y1i−1, y2i−1, n−1).

(4.23)

Using the identity in equation (4.23), equation (4.22) simplifies to

n

k

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
=
y1φ2 + y2(1 − φ0 − φ1) − nφ2

φ0(1 − φ0 − φ1)
. (4.24)

Dividing equation (4.23) by fT (y1i, y2i, n), summing over the sample and using

equation (4.24), we get the identity

n

k

k

∑
i=1

fT (y1i, y2i, n − 1)

fT (y1i, y2i, n)
=

n − y1
1 − φ0 − φ1

. (4.25)

Substituting the right hand side of equation (4.20) into equation (4.21), using

equation (4.25) and solving for y1, we get

y1 = n(φ0 + φ1) ⋅
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
. (4.26)
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Combining equations (4.20) and (4.22), and using the identities (4.24-4.26), we

get

y2 = n ⋅
φ0 − (φ0 + φ1)(φ0 + φ2)

1 − φ0 − φ1

⋅
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
+

nφ2

1 − φ0 − φ1

. (4.27)

Subtracting equation (4.27) from equation (4.26) and using the identity Fn(y0∣φ0+

φ1) = Fn−1(y0 − 1∣φ0 + φ1) + (1 − φ0 − φ1)Pn−1(Y1 = y0), we get

nφ1 ⋅
1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
− nφ2 + nφ2 ⋅

(φ0 + φ1)Pn−1(Y1 = y0)

1 − Fn(y0∣φ0 + φ1)
= y1 − y2. (4.28)

By equation (4.5), the left hand side of equation (4.28) is Tr(y0,yyy), and hence the

difference of the sample means is its estimate, given by

T̂r(y0,yyy) = n ⋅
φ̂1(1 − Fn−1(y0 − 1∣φ̂0 + φ̂1)) − φ̂2[1 − Fn(y0∣φ̂0 + φ̂1) − (φ̂0 + φ̂1)P̂n−1(Y1 = y0)]

1 − Fn(y0∣φ̂0 + φ̂1)

= y1 − y2. (4.29)

Similarly, for a left cut point, the MLE of T`(y0,φφφ) can be obtained as

T̂`(y0,yyy) = n ⋅
φ̂2[Fn(y0∣φ̂0 + φ̂1) + (φ̂0 + φ̂1)P̂n−1(Y1 = y0)] − φ̂1Fn−1(y0 − 1∣φ̂0 + φ̂1)

Fn(y0∣φ̂0 + φ̂1)

= y2 − y1. (4.30)

For the estimation of the RTM and intervention effects, point estimates of φ0, φ1

and φ2 are required, which consists of a two step procedure. In the first step, the

MLE of (φ0 + φ1) is obtained by solving equation (4.26) iteratively. The MLE of

(φ0 + φ1) can also be obtained from the marginal distribution of Y1, the truncated

univariate binomial distribution. In the second step, estimates of φi are obtained,

for i = 0,1,2.

Once (φ0 + φ1) is estimated, equations (4.20-4.22) can be re-organized after some

algebraic manipulations to estimate φi, for i = 0,1,2. An equivalent form of equa-

tion (4.24) can be obtained by substituting equations (4.25) and (4.26) in equa-

tion (4.20) and simplifying

n

k

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
= n ⋅

1 − Fn−1(y0 − 1∣φ0 + φ1)

1 − Fn(y0∣φ0 + φ1)
. (4.31)
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For brevity, let the expression d log(P (Y1 > y0))/dφi be A0 = n ⋅
Pn−1(y0)

1−Fn(y0∣φ0+φ1) for i =

0,1. Similarly, let equations (4.25) and (4.31) be denoted byA1 =
n
k ∑

k
i=1

fT (y1i,y2i,n−1)
fT (y1i,y2i,n)

and A2 =
n
k ∑

k
i=1

fT (y1i−1,y2i−1,n−1)
fT (y1i,y2i,n) , respectively.

The sample estimates of A0, A1, and A2 can be obtained by substituting (φ̂0 + φ̂1)

into their respective equations as

Â0 = n ⋅
P̂n−1(y0)

1 − Fn(y0∣φ̂0 + φ̂1)
,

Â1 =
n − y1

1 − (φ̂0 + φ̂1)

Â2 = n ⋅
1 − Fn−1(y0 − 1∣φ̂0 + φ̂1)

1 − Fn(y0∣φ̂0 + φ̂1)
.

Using the identity Â2 = Â0 + Â1 and Âi for i = 0,1,2 in equation (4.21) and solving

for φ1, we get

φ̂1 =
y1

Â0 + Â1

− φ̂0. (4.32)

Similarly, a solution of equation (4.22) for φ̂2,

φ̂2 =
y2 − φ̂0Â2

Â1

. (4.33)

Rewriting equation (4.31) in terms of Â2, we have

n

k

k

∑
i=1

fT (y1i − 1, y2i − 1, n − 1)

fT (y1i, y2i, n)
= Â2. (4.34)

Equation (4.34) is a polynomial in φ0 and has to be solved numerically. Estimates

of φ1 and φ2 can be obtained by substituting φ̂0 in equations (4.32) and (4.33)

respectively.

Substituting (φ̂0, φ̂1, φ̂2) in equations (4.7) and (4.9), we get the MLE of the RTM

and intervention effects respectively as

R̂r(y0,yyy) = nφ̂1 ⋅
P̂n−1(Y1 = y0)

1 − Fn(y0∣φ̂0 + φ̂1)
, (4.35)

and

δ̂r(yyy) = n(φ̂1 − φ̂2). (4.36)

The variances of R̂r(y0,yyy) can be obtained by substituting φ2 = φ1 in equation

(4.18) and dividing by the sample size k

var(R̂r(y0)) = var(Y1 − Y2∣Y1 > y0, φ1 = φ2)/k. (4.37)
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Similarly, for the left cut-off point we have

var(R̂`(y0)) = var(Y2 − Y1∣Y1 ≤ y0, φ1 = φ2)/k. (4.38)

4.5.3 Unbiasedness of T̂i(y0,yyy) and R̂i(y0,yyy)

Applying expectation on both sides of equation (4.29) and using equations (4.2)

and (4.4), we get

E(T̂r(y0,yyy)) = Tr(y0,φφφ). (4.39)

For the null effect case, i.e., φ1 = φ2, T̂r(y0,yyy) and R̂r(y0,φφφ) are equivalent and we

can write

E(T̂r(y0,yyy∣φ1 = φ2)) = E(R̂r(y0,yyy)) = Rr(y0,φφφ). (4.40)

For the non-null case, i.e., φ1 ≠ φ2, the component parts of Tr(y0,φφφ) are Rr(y0,φφφ)

and δr(φφφ)[1−Br(y0, φ0+φ1)]. Writing T̂r(y0,yyy) into its constituent parts in equation

(4.39), we get

E[R̂r(y0,yyy)+δ̂r(yyy)[1−Br(y0, φ̂0+φ̂1)]] = Rr(y0,φφφ)+δr(yyy)[1−Br(y0, φ0+φ1)]. (4.41)

Thus, from equations (4.40) and (4.41), the unbiasedness property of R̂r(y0,yyy) is

established.

The unbiasedness of T̂`(y0,yyy) and R̂`(y0,yyy), for a left cut-off point can be estab-

lished in a similar way.

4.5.4 Asymptotic distribution of T̂i(y0,yyy) and R̂i(y0,yyy)

T̂i(y0,yyy) for i = r, ` are the differences of the sample means of Y1 and Y2 generated

from the truncated bivariate binomial distribution. So for a right cut-off point, by

the Central Limit Theorem, T̂r(y0,yyy) are asymptotically normally distributed as
√
k (T̂r(y0,yyy) − Tr(y0,φφφ))

d
∼ N (0,var(Y1 − Y2∣Y1 > y0)) .

As additive components of a normal random variable are necessarily normally

distributed (Cramér, 1936), so the components R̂r(y0,yyy) and δ̂r(yyy)[1 ±Br(y0, φ̂0 +

φ̂1)] of T̂r(y0,yyy) are also asymptotically normally distributed. In particular, the

RTM estimator is
√
k (R̂r(y0,yyy) −Rr(y0,φφφ))

d
∼ N (0,var(Y1 − Y2∣Y1 > y0, φ2 = φ1)) .

The results also hold for the left cut-off point.
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4.6 Simulation Study of RTM
To estimate the RTM effect and study its properties empirically, a simulation study

was performed. The procedure of Hamdan and Nasro (1986) to generate bivariate

sample observations from the bivariate binomial distribution was adopted. If a

cut-off point is selected far in the tail on either side, the associated probability

P (Y1 > y0) is very small, thus the number of observations beyond/below a cut-off

is very small. A sample of size n = 1000 from the binomial would suffice to get

an expected sample of size 50 beyond a cut-off point greater than 12 for n = 20

and φ0 + φ1 = 0.45. Initially, samples of sufficiently large sizes were generated

to get adequate number of realizations beyond/below a cut-off point y0. First,

k = 10,20,50,100 realizations above/below y0 were considered as random samples

from the truncated bivariate binomial distribution with parameters n = 20, y0 = 12,

φ0 = 0.20 and φ1 = φ2 = 0.25 for demonstrative purposes. This procedure was

repeated 1000 times.

4.6.1 Empirical distribution of R̂r(y0,yyy)

The resulting normal quantile-quantile plots of the sampling distribution of R̂r(y0,yyy)

are given in Figure 4.3 which suggests approximate normality of the distribution

of R̂r(y0,yyy) for k = 10,20,50,100.
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Figure 4.3. Normal qq-plot of the sampling distribution of RTM for k =

(10,20,50,100) and y0 = 12, n = 20, φ0 = 0.20, φ1 = 0.25, φ2 = 0.25 and m = 1000

simulations.

4.6.2 Empirical unbiasedness and consistency of R̂r(y0,yyy)

The graph of RTM estimates for different sample sizes is given in Figure 4.4. The

means of estimates shown by green line segments, coincide with the true RTM

effect indicated by the dashed red line, confirming the theoretically derived re-

sult of unbiasedness of the RTM estimator. As the sample size k increases, the

spread around the centre decreases, verifying consistency of the estimator shown
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theoretically in equations (4.38) and (4.39).
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Figure 4.4. Estimates of RTM and its sampling distribution for different sample

choices and parameters y0 = 12, n = 20, φ0 = 0.20 and φ1 = φ2 = 0.25.

4.6.3 Confidence intervals and coverage probabilities

Coverage probabilities are often used for evaluating the performance of an esti-

mator for parameters of a discrete distribution. The concepts of confidence and

coverage probability are interrelated, and coverage probability of a (1 − α)100%

confidence interval is the probability it contains the true parameter. Let the re-

spective upper and lower limits of a confidence interval for Ri(y0,φφφ), be given

by Ûi and L̂i, estimated from a sample of size k, for i = r, `. The true coverage

probability C(φφφ,n, k) is

C(φφφ,n, k) =∑
x

I(L̂i < Rk(y0,φφφ) < Ûi)P (x;φφφ) (4.42)

where I(⋅) is the indicator function.

C(φφφ,n, k) is a function of five parameters (φ0, φ1, φ2, n, k) and hence cannot be

displayed on a two dimensional plane. An alternative option is simulated coverage

probability (SCP) which is the proportion of times an estimated confidence interval
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contains the true parameter from a series of m simulated datasets,

Ĉ(φφφ,n, k) =
∑
m
i=1 I(L̂i < Ri(y0,φφφ) < Ûi)

m
.

SCP can be used for studying large sample properties such as asymptotic normal-

ity and consistency of the RTM estimator and also its behaviour for finite sample

sizes. Assuming normality for the distribution of R̂r(y0,yyy), 95% confidence in-

tervals were constructed for different sample sizes, using maximum likelihood

estimates as

R̂k(y0,yyy) ± 1.96
√

v̂ar(R̂k(y0,yyy)) for k = r, `. (4.43)

The resulting SCP for different sample sizes and cut-off points in both the right and

left tails, is given in Figure 4.5. The pattern of SCP remains similar for different

cut-off points and approaches the target value of 95% as the sample size increases.

Whereas, for a sample size of 10, SCP misses the target value, although the SCP is

greater than 90% for each scenario.
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Figure 4.5. Simulated coverage probabilities for different sample sizes and cut-off

points

4.7 Data Examples

4.7.1 Data Accessibility

The data* used in this manuscript were accessed from a published obesity study

(Woolson and Clarke, 1984) and a text on statistical quality control (Montgomery,

2013). Note that the raw data have been re-organized for the current study as

detailed below.
*https://content.sph.harvard.edu/fitzmaur/ala/obesity.txt
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4.7.2 Data on Obesity in Different Age Cohorts

Data on weight and height measurements of five cohorts of children, initially aged

5-7, 7-9, 9-11, 11-13, and 13-15 years, were obtained biennially from 1977 to

1981 in Muscatine, Iowa (Lauer et al., 1997; Woolson and Clarke, 1984). One of

the study aims was to assess whether risk of obesity increased with age. There

was evidence that the log-odds of obesity increased from 6 to 12 years, levelled

off from 12-14 years, and declined from 14 to 18 years. The structure of the

longitudinal data collection is given in Figure 4.6.

Participent’s

Age group

05-07

07-09

09-11

11-13

13-15

Time 1977

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

1979

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

1981

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

Obesity

Status

Figure 4.6. Longitudinal study flowchart

To demonstrate how RTM may affect the Muscatine study’s conclusion, data were

re-organized. Successive observations were considered as outcomes of a bivariate

Bernoulli trial (Z1, Z2) for each individual and the resulting total number of indi-

viduals n and data pairs are given in Table 4.2 for each age group. Each individual

can at most contribute two data pairs of information across all three occasions.

Incomplete data for children were excluded. The sum of the data pairs is assumed

to follow the bivariate binomial distribution. In this example, information on the

number of obese individuals on both occasions, α, are available and subject selec-

tion is not based on cut-off points. So, the MLE of the parameters of the bivariate
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binomial distribution were obtained using the Hamdan and Nasro (1986) method

for each age cohort. The estimates of the parameters of the bivariate binomial

distribution for different age groups are given in Table 4.2.

Table 4.2. Estimates of the parameters of the bivariate binomial distribution

Age Cohort n Data pairs φ̂0 φ̂1 φ̂2 ρ̂

5-7 513 819 0.105 0.031 0.104 0.639

7-9 662 1137 0.145 0.057 0.095 0.515

9-11 673 1143 0.163 0.071 0.071 0.463

11-13 524 904 0.132 0.079 0.076 0.416

13-15 498 833 0.146 0.061 0.072 0.498

To study the contribution of RTM to the total difference of obesity risk on pre-post

occasions, cut-off points for the number of obese individuals above the means of

the respective cohorts were considered for demonstrative purposes. The estimated

total, RTM, observed intervention and intervention effects (which is the age effect)

for different cut-off points in the right tail, and different age cohorts are given in

Figure 4.7.

For age cohorts (5-7, 7-9 and 13-15) where φ̂1 < φ̂2, as depicted in Figure 4.7 for a

right cut-off point, the age effect is negative, indicating that obesity has increased

with age. Importantly, the total effect decreases as the cut-off point increases, and

the adverse age effect on obesity would be underestimated without accounting

for RTM, in the age cohorts 5-7 and 7-9 years of age. Additionally, the difference

between δ̂(yyy)(1 − B̂(y0,yyy)) and δ̂(yyy) is proportional to (φ̂1 − φ̂2) and the cut-off

points. It is at a maximum for groups 5-7 and 7-9 years of age and almost zero for

the remaining age groups.

The curves of the total and RTM effects coincide in Figure 4.7 for age cohorts

9-11 and 11-13, indicating a possible null age effect, i.e., φ̂1 = φ̂2. The observed

decrease up to 25 units on average in obesity is due to RTM and could erroneously

be attributed to the age effect for reducing obesity in age cohorts 9-11 and 11-13

years.
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Overall, RTM increases as the cut-off points on either side are selected farther in

the tail of the distribution thereby depleting or inflating the total effect. Conse-

quently an observed mean change, which is the sum of RTM and the age effect,

may be mistaken for a real mean change in the prevalence of obesity due to ageing.
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Figure 4.7. Graph of the RTM effects for obesity example for different age cohorts

and right cut-off points.
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4.7.3 Number of Nonconforming Cardboard Cans

Data on the number of nonconforming cardboard cans is considered here, which

can be obtained from Tables 7.2 and 7.3 of Montgomery (2013). Sixty four sam-

ples each of size n = 50 were collected after half an hour over a three-shift period

in the control state of the manufacturing process. The successive observations

were treated as a bivariate sample of size k = 63 from the bivariate binomial distri-

bution. The maximum likelihood method was used for estimating the parameters

for a right cut-off point y0 = 3 and estimates of the truncated bivariate binomial

distribution are φ̂0 = 0.080, φ̂1 = 0.029 and φ̂2 = 0.021.

In statistical process control, when the number of nonconforming units exceed a

pre-specified limit (e.g., three sigma), the control chart signals an out of control

situation. This is followed by an intervention (e.g., adjustment of machine, ma-

terial checking, or adjustment of controllable variables) to bring the process back

into a control state. For example, let the number of nonconforming units in a sam-

ple be equal to or greater than 7. This is an out of control situation as per three

sigma limits and would trigger an intervention. The cumulative probability of hav-

ing between 7 and 12 nonconforming units in a sample of size n = 50 are 0.173,

0.089, 0.041, 0.017, 0.006, and 0.002 respectively. Based on the estimated pa-

rameters, T̂ (y0,yyy), R̂(y0,yyy), δ̂r(yyy) and δ̂r(yyy)(1− B̂(y0,yyy)) for different right cut-off

points (2-12) are given in Figure 4.8.
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Figure 4.8. Graph of the RTM effects for cardboard can example for different right

cut-off points y0.

As the cut-off point increases, R̂r(y0,yyy) increases and as a result T̂ (y0,yyy) also in-

creases, whereas δ̂r(yyy)(1 − B̂(y0,yyy)) stays virtually constant at δ̂r(yyy). Samples

where the number of nonconforming cans y0 were greater than 12, decreased on

average by more than 3 in the next sample. This decrease in nonconforming units

could be due to RTM and might have resulted in unnecessary machine adjust-

ment, material checking or adjustment of controllable variables for reducing the

nonconforming cardboard cans. This could have a potentially negative effect on

production.

4.8 Discussion
In data analysis, RTM can potentially affect the conclusions of a study by exag-

gerating the intervention effect. The strategies of random allocation or multiple

baseline measurements used for guarding against RTM are not always possible due

to ethical/logistical constraints or associated costs. Therefore, quantifying and ac-

counting for RTM in an analysis, is an important statistical issue. Expressions for
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RTM are available in the literature when the underlying distributions are the bi-

variate normal and Poisson. However, expressions for RTM are missing when the

pre and post variables follow the bivariate binomial distribution.

The correlation of pre and post variables under bivariate normality or bivariate

Poisson are always positive, whereas correlation can be negative or positive when

pre and post variables follow the bivariate binomial distribution. The RTM effect is

more severe when ρ is negative. RTM is underestimated when the normal/Poisson

approximations to the binomial are used, and therefore these approximations are

not recommended. Apart from this, the intervention effect would be biased if it is

obtained by subtracting RTM from the total effect.

Expressions for the MLE of RTM and intervention effects were derived assum-

ing a bivariate binomial distribution. The properties of unbiasedness, consistency

and asymptotic normality of the estimators were demonstrated theoretically. The

asymptotic properties were verified through simulation by studying its empirical

distribution, mean, the spread around its mean and simulated coverage probabili-

ties.

The RTM effect for different cut-off points was evaluated for the number of obese

individuals in different age groups, using the maximum likelihood method. With-

out accounting for RTM, observed differences may be mistaken for real differences

in the prevalence of obesity. Likewise, the change in the number of nonconform-

ing cardboard cans could be due to RTM and which may be incorrectly attributed

to an intervention aimed at reducing the nonconforming units. Besides this, the

intervention effect obtained by subtracting RTM from the total effect was biased

in some cases.



Chapter 5

Regression to the mean for bivariate

families of distributions

The earlier derivations for regression to the mean discussed in Chapter 2 were

based on assumptions of normality, positive correlation, and a null intervention or

treatment effect. In Chapters 3 and 4, formulae for RTM were derived to obtain

an unbiased intervention effect by decomposing the total effect into RTM and in-

tervention/treatment effects, while relaxing restrictive assumptions. This chapter

derives expressions for the total effect for any bivariate distribution, while also

providing a solution for decomposing the total effect into RTM and intervention

or treatment effects. Maximum likelihood estimates are derived and the unbiased-

ness, consistency and normality of these estimators are established for exponential

families, where possible. Data on the cholesterol levels in men aged 35 to 39 are

used for decomposing the total change in cholesterol level on pre-post occasions

into regression to the mean and intervention or treatment effects. The contents of

this chapter are reproduced from a drafted paper with minor modification.

5.1 Introduction
As discussed in Chapter 2, early research derived formulae to account for RTM

assuming the bivariate normal distribution for the pre-post variables in an inter-

vention study (James, 1973; Gardner and Heady, 1973; Davis, 1976). Apart from

the distributional assumption, the pre-post variables were restricted to be identi-
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cally distributed and positively correlated, and the treatment effect was assumed

to move the post measurements in the direction of the mean.

RTM formulae for non-normal populations were derived by Das and Mulder (1983),

but this derivation was of limited use as it was not directly applicable to empirical

distributions. Beath and Dobson (1991) derived estimates for RTM for non-normal

data based on Edgeworth series and saddlepoint approximations. However, in

these derivations the error term was allowed to be normally distributed with zero

mean and constant variance and the pre-post variables were assumed to be sta-

tionary. John and Jawad (2010) aimed at making the Das and Mulder (1983)

derivation data adaptive for estimation of RTM using kernel density estimation for

the density and hazard rate functions.

James (1973) derived the method of moments estimator for RTM assuming that

the percent of the population in the truncated portion is known. Senn and Brown

(1985) improved the derivation by James (1973) and also generalized the maxi-

mum likelihood estimation of parameters to various sampling schemes associated

with the bivariate normal distribution. Chen and Cox (1992) derived a maximum

likelihood estimator of the intervention effect assuming that the pre-post param-

eters were identical and the treatment was designed to change the post measure-

ments in the direction of the population mean. The authors did not study the

statistical properties of their derived estimators.

Interventions may have effects in the direction opposite than intended. Ter Weel

(2006), in a study of the Dutch soccer league, found no improvements in team

performance after manager turnover. In a similar study, a negative relationship

between employee turnover and performance was observed by Ton and Huck-

man (2008). Changzheng and Kai (2010) discussed different effects of employee

turnover on firm performance including positive, negative and no effects. Thus,

an intervention could change the composition of a population including its mean,

variance and correlation parameters.

Khan and Olivier (2018, 2019) relaxed the identical distributional assumption for

the pre-post variables, thereby allowing the treatment to change the post measure-
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ments towards the mean of the population or in the opposite direction. Moreover,

an intervention or treatment applied to subjects screened on the bases of a cut-

off point produces a compound effect called the total effect (Khan and Olivier,

2018). This could be the combined effect of the intervention and RTM. To accu-

rately estimate an intervention effect, RTM should be accounted for. The authors

achieved this objective by decomposing the total effect into the RTM and interven-

tion effects, and obtaining the maximum likelihood estimates for the constituent

parts.

The outcomes of a pre-post study design are rarely independent and follow a bi-

variate distribution which could be continuous or discrete depending on the prob-

lem under study. Balakrishnan and Lai (2009) discussed continuous bivariate dis-

tributions with applications in various research areas. Similarly, Norman et al.

(1997) shed light on bivariate and multivariate discrete distributions along with

applications. However, a general approach for accurately estimating the interven-

tion effect by accounting for RTM is missing in literature.

Therefore, the aims of this chapter are to derive expressions and maximum likeli-

hood estimators for the total, RTM and intervention effects while relaxing assump-

tions about the bivariate distribution, the direction of the treatment effect and the

pre-post parameters. Additionally, exploring the statistical properties of the max-

imum likelihood estimators from a theoretical point of view, where possible, is

another objective of this work.

For the remainder of this chapter, Section 5.2 generalizes the dependence struc-

ture to allow the pre-post variables to be negatively correlated where possible,

and have non-stationary distributions. Section 5.3 derives an expression for the

total effect which is decomposed into its constituent parts. Derivation of the RTM

formulae for the exponential family of distributions is discussed in Section 5.4

and demonstrated with the help of some well known examples of bivariate dis-

tributions in Section 5.5. Maximum likelihood estimators of the total, RTM and

intervention effects are derived in Section 5.6, while these effects are estimated

using data on cholesterol levels in Section 5.7. Section 5.8 concludes the chapter

with a discussion.



100 5.2. SUCCESSIVE RANDOM VARIABLES

5.2 Successive random variables
Let X1 and X2 be characteristics of interest on the same subject before and after

an intervention or treatment. Stigler (1997), in a review of the work by Sir Francis

Galton, decomposed X1 and X2 into persistent traits X0 and transient traits Ei as

X1 = X0 +E1 and X2 = X0 +E2, for i = 1,2. James (1973) used the terminology of

true and random error components for the persistent and transient traits, respec-

tively, and derived a formula for RTM. The variables X0, E1 and E2 were assumed

mutually independent and identically normally distributed. This formulation also

restricts X1 and X2 to be identically distributed N(µ,σ2) and positively correlated

ρ = var(X0)/var(X1) > 0. After applying treatment to individuals with X1 > x0,

James (1973) assumed a model for post measurements as

X2 − µ = γρ(X1 − µ) +E,

where E ∼ N(0, (1− ρ2)σ2) is independent of X1 and γ is the treatment parameter

designed to move the post measurements towards the mean of the untruncated

population. The treatment is deemed effective when γ < 1.

To add more flexibility, let the successive variables X1 and X2 be decomposed as

X1 = X0 + E1 and X2 = a + bX0 + E2, where X0 is the true component part as

before, a and b are constants, and E1 and E2 are within subject or random errors.

The variables E1 and E2 are mutually independent but may not be independent of

X0 or identically distributed (Khan and Olivier, 2019). For continuous probability

distributions, the constants a and b allow the pre-post means to differ as a result of

the intervention effect and be correlated either negatively or positively. Whereas,

for discrete distributions, a = 0, b = 1 and the error componentsE1 andE2 allow the

successive variables to have different means as a result of a possible intervention

effect.

It is not always possible for a random variable to be decomposed as the sum of

other random variables, e.g., the Pareto and Weibull distributed random variables

(Nadarajah, 2008; Zaliapin et al., 2005). Consequently, the successive variables

cannot be expressed as a linear sum of the true and random error components

which is helpful in specifying their unique joint distribution. This potentially
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gives rise to non-uniqueness problems as there exist many bivariate distributions

(Paduthol et al., 2014). However, formulae for RTM can be determined for these

variables assuming any relevant bivariate distribution.

5.3 Derivations and decomposition the total effect
Let the respective distributions of X1 and X2 be f(x1;θθθ1) and f(x2;θθθ2) where

(θθθ1,θθθ2) ⊆ θθθ is the parameter vector, for i = 1,2. Let the means, variances and

correlation of successive variables be E(X1) = µx1(θθθ1), E(X2) = µx2(θθθ2), var(X1) =

σ2
x1(θθθ1), var(X2) = σ2

x2(θθθ2) and cor(X1,X2) = ρ. Let the joint distribution of X1 and

X2 be f(x1, x2;θθθ) where −∞ <X1 <∞,−∞ <X2 <∞.

Assume that a treatment or intervention is applied to subjects selected from a

population with parameter vector θθθ1. The treatment effect δ(θθθ) can be evaluated

by finding the expected difference of successive variables X1 and X2 and variance

as

δ(θθθ) = E(X1 −X2) = µx1(θθθ1) − µx2(θθθ2) (5.1)

var(X1 −X2) = σ
2
x1(θθθ1) + σ

2
x2(θθθ2) − 2ρσx1(θθθ1)σx2(θθθ2). (5.2)

Suppose subjects with measurements above or below a cut-off or truncation point,

say x0, are selected for an intervention or treatment. For demonstrative purposes,

let the selection of subjects be based on a right cut-off point, then the joint distri-

bution of successive measurements X1 and X2 is the truncated distribution

ft(x1, x2; θ) =
f(x1, x2;θθθ)

1 − F (x0;θθθ1)
= ft(x1;θθθ1)f(x2 ∣ x1,θθθ) x0 <X1 <∞,−∞ <X2 <∞,

(5.3)

where ft(x1;θθθ1) = f(x1;θθθ1)/{1−F (x0;θθθ1)} and the subscript t stands for truncated.

For a truncated distribution, the expected difference ofX1 andX2 is not equivalent

to the treatment effect alone, and is instead the total effect, T (x0;θθθ) as

T (x0;θθθ) = E(X1 −X2 ∣X1 > x0) = ∫
∞

x0
∫

∞

−∞
(x1 − x2)ft(x1, x2;θθθ)dx2dx1. (5.4)

Evaluating the inner integral in equation (5.4), and using the fact ∫
∞
−∞ f(x2∣x,θθθ)dx2 =
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1, we get

T (x0;θθθ) = ∫
∞

x0
x1ft(x1;θθθ1)dx1 − ∫

∞

x0
ft(x1;θθθ1) (∫

∞

−∞
x2f(x2 ∣ x1,θθθ)dx2)dx1

= Ex1 (X1 −E(X2 ∣X1)) , (5.5)

where E(X2∣X1) = ∫
∞
−∞ x2f(x2 ∣ x,θθθ)dx2 is the conditional expectation of X2 given

X1 and Ex1 denotes expectation with respect to X1. The conditional expectation

E(X2 ∣X1) can be written as

E(X2 ∣X1) = E(X2) + βx2,x1 (X1 −E(X1)) , (5.6)

where βx2,x1 = cov(X1,X2)/var(X1) is the regression coefficient.

The total effect T (x0;θθθ) can be decomposed into RTM and intervention effects.

Substituting equation (5.6) into equation (5.5) and rearranging terms, we get

T (x0;θθθ) = {E(X1 ∣X1 > x0) −E(X1)}(1 − βx2,x1) +E(X1 −X2)

= R(x0;θθθ) + δ(θθθ), (5.7)

where R(x0;θθθ) is regression to the mean and δ(θθθ) is the average intervention

effect. A null treatment effect, δ(θθθ) = 0, implies that X1 and X2 are identically

distributed, that is θθθ1 = θθθ2 or E(X1) = E(X2). Thus, for a null intervention effect,

the total effect is identical to RTM, T (x0;θθθ) = R(x0;θθθ).

By definition, the variance of (X1 −X2 ∣X1 > x0) is

var(X1 −X2 ∣X1 > x0) = E ((X1 −X2 ∣X1 > x0) −E(X1 −X2 ∣X1 > x0))
2

= E{X2
1 +X

2
2 − 2X1X2 + (E(X1 −X2 ∣X1 > x0))

2

− 2(X1 −X2)E(X1 −X2 ∣X1 > x0)}. (5.8)

To complete the evaluation of equation (5.8), we derive some helpful identities.

First, the second conditional moment of X2 is

E(X2
2 ∣X1 > x0) = ∫

∞

x0
ft(x1;θθθ1) (∫

∞

−∞
x22f(x2 ∣ x,θθθ)dx2)dx1. (5.9)

As E(X2
2 ∣X1) = ∫

∞
−∞ x

2
2f(x2 ∣ x1,θθθ)dx2, and E(X2

2 ∣X1) = var(X2∣X1) + (E(X2∣X1))
2,

equation (5.9) simplifies to

E(X2
2 ∣X1 > x0) = ∫

∞

x0
(var(X2∣X1) + (E(X2∣X1))

2)ft(x1;θθθ1)dx1

= var(X2 ∣X1) +Ex1 (E(X2∣X1)
2)) . (5.10)
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Following the same steps, it can be shown that

E(X1X2∣X1 > x0) = Ex1 {X1 ×E(X2 ∣X1)} . (5.11)

Substituting equations (5.7), (5.10) and (5.11) in equation (5.8) and simplifying,

we get

var(X1 −X2 ∣X1 > x0) = var(X2 ∣X1) + V ar {X1 −E(X2 ∣X1)}

= var(X2 ∣X1) + (1 − βx2,x1)
2var(X1 ∣X1 > x0). (5.12)

5.4 Expression of T (x0; θ) for exponential family of

distributions
The exponential family unifies many distributions into one framework. This helps

in generalizing the derivation and estimation of T (x0;θθθ) and its constituent parts

R(x0;θθθ) and δ(θθθ). A probability distribution f(x;θθθ) is said to be a p parameter

exponential family if it can be represented in the form

f(x;θθθ) = h(x)eη(θθθ)
T t(x)−A(η), θθθ ∈ ΘΘΘ, (5.13)

where h is a known function, t(X) = {t1(X), ..., tp(X)}T is a vector of sufficient

statistics, η(θθθ) = {η1(θθθ), ..., ηp(θθθ)}T is the natural parameter vector which is a twice

continuously differentiable function of θθθ, and A is the log of a normalization factor.

Here, ΘΘΘ is open and connected. An exponential family is said to be in canonical

form if η(θθθ) = θθθ.

The respective equations for finding the mean vector and variance-covariance ma-

trix of the sufficient statistics of an exponential family are

E{t(X)} =
dA(η)

dη
, and

var(t(X)) =
d2A(η)

dηTdη
.

Let t(X1,X2) be the joint vector of known real-valued functions sufficient for

the parameters of the truncated bivariate density function of the pre-post vari-

ables. Let the first and second elements of t(X1,X2) be t1(X1,X2) = X1 and

t2(X1,X2) = X2 with respective natural parameters η1(θθθ) and η2(θθθ). This holds
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for many members of the exponential family, but is not true in general, e.g, the

beta distribution. Then, the means of the pre-post variables are

E(X1 ∣X1 > x0) = E{t1(X1,X2)} =
dA(η)

dη1
,

Ex1{E(X2 ∣X1)} = E{t2(X1,X2)} =
dA(η)

dη2
.

Hence, T (x0;θθθ) for an exponential family can be expressed as

T (x0;θθθ) =
dA(η)

dη1
−
dA(η)

dη2
. (5.14)

An expression for R(x0;θθθ) can be deduced from equation (5.14) by assuming a

null effect, i.e., δ(θθθ) = 0 or E(X1) = E(X2), and δ(θθθ) can be obtained through sub-

traction when the true and random error components are independent. Similarly,

var(X1 −X2 ∣X1 > x0) for the exponential family can be expressed as

var(X1 −X2 ∣X1 > x0) =
d2A(η)

dη21
+
d2A(η)

dη22
− 2 ⋅

d2A(η)

dη1dη2
. (5.15)

The bivariate Poisson (Campbell, 1934) and binomial (Aitken and Gonin, 1936)

distributions cannot be expressed similarly to equation (5.13), and instead can be

expressed as

f(x;θθθ) =
min(x)
∑
α=0

h(x,θθθ,α)eη(θθθ)
T t(x)−A(η), θθθ ∈ ΘΘΘ. (5.16)

However, equations (5.14) and (5.15) can still be used for derivation of the total,

RTM and intervention effects and their variances.

5.5 Expression of R(x0;θθθ) for selected bivariate dis-

tributions
Based on the nature and dependence structure of pre-post variables, X1 = X0 +

E1 and X2 = a + bX0 + E2, different cases arise. For each case, RTM formulae

for some well known distributions, including members of the exponential family

are discussed in the following subsections. Note that only a right cut-off point

is considered here for demonstrative purposes, and formulae for RTM would be

different for a left cut-off point when the distribution is not symmetric.
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5.5.1 The bivariate Poisson distribution

For the bivariate Poisson distribution, the error terms Ei are independent of X0

but not identically distributed, for i = 1,2. Here, a = 0 and b = 1 as X1 and X2 are

count variables. The probability mass function of the bivariate Poisson is

f(y1, y2) = e
−(θ0+θ1+θ2) θ

y1
1

y1!

θy22
y2!

min(y1,y2)
∑
x=0

x!(
θ0
θ1θ2

)

x

(
y1
x
)(
y2
x
) y1, y2 = 0,1,2...

As stated earlier, the bivariate Poisson distribution is not explicitly expressible like

equation (5.13); however, the truncated bivariate Poisson distribution can be rep-

resented as

f(y1, y2) = h(x, θ) exp [y1 log θ1 + y2 log θ2 − (θ0 + θ1 + θ2) − log {1 − F (x0 ∣ θ0 + θ1)} ].

In this representation,

h(x,θθθ) =
min(y1,y2)
∑
x=0

x!(
θ0
θ1θ2

)

x

(
y1
x
)(
y2
x
)/y1!y2!,

θ = {θ0, θ1, θ2}, p = 3, t(X,Y ) = {y1, y2}T , η = {η1 = log θ1, η2 = log θ2}T and the log

normalizing factor is

A(η) = θ0 + e
η1 + eη2 + log {1 − F (x0 ∣ θ0 + e

η1)} .

The respective formulae for the total, RTM and intervention effects are then

TP (x0;θθθ) = θ1 ⋅
1 − F (x0 − 1 ∣ θ0 + θ1)

1 − F (x0 ∣ θ0 + θ1)
− θ2,

RP (x0;θθθ) = θ1 ⋅
f(x0 ∣ θ0 + θ1)

1 − F (x0 ∣ θ0 + θ1)

δP (θθθ) = θ1 − θ2,

where f(x ∣ λ) and F (x ∣ λ) are the respective Poisson probability mass and distri-

bution functions.

5.5.2 The bivariate binomial distribution

For the bivariate binomial distribution, X0 and ei are not independent, although ei

for i = 1,2, are mutually independent but not identically distributed. As pre-post
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variables are discrete, this restricts the range of the real constants to a = 0 and

b = 1. The joint distribution of pre-post variables is

f(y1, y2;φφφ,n) =
min(y1,y2)
∑
α=0

(
n

α, y1 − α, y2 − α, y3
)φα0φ

y1−α
1 φy2−α2 φy33 , y1, y2 = 0,1,2...n

where φφφ = (φ0, φ1, φ2), φ3 = 1 − φ0 − φ1 − φ2 and y3 = n + α − y1 − y2. Likewise, the

truncated bivariate binomial distribution can be expressed as equation (5.16), and

formulae for the total, RTM and intervention effects are then

TB(y0,φφφ) = n ⋅
φ1(1 − Fn−1(y0 − 1∣φ0 + φ1)) − φ2 {1 − Fn(y0∣φ0 + φ1) − (φ0 + φ1)Pn−1(Y1 = y0)}

1 − Fn(y0∣φ0 + φ1)
,

RB(y0,φφφ) = nφ1 ⋅
Pn−1(Y1 = y0)

1 − Fn(y0∣φ0 + φ1)

δB(φφφ) =
TB(y0, φ) −RB(y0, φ)

1 −B(y0, φ0 + φ1)
= n(φ1 − φ2),

where Pn(X = x) and Fn(x∣p) are the binomial probability mass and distribution

functions for n trials, andB(y0, φ0+φ1) = (φ0+φ1)Pn−1(Y1 = y0)/ {1 − Fn(y0∣φ0 + φ1)}.

The intervention effect cannot simply be obtained by subtracting RB(y0,φφφ) from

TB(y0,φφφ) due to the dependence of X0 and ei. However, limn→∞B(y0, φ0 + φ1) = 0

and simple subtraction is approximately correct for large n.

5.5.3 The bivariate normal distribution

The bivariate normal distribution is a member of the exponential family of dis-

tributions and ti(X1,X2) ∈ t(X1,X2) for i = 1,2. Here, the error terms Ei for

i = 1,2 are independently and identically distributed and also independent of the

true component X0. In the formulation of James (1973), X1 and X2 are strictly

positively correlated ρ > 0, but the real constants a and b allows X1 and X2 to

be negatively correlated and have different population means. The probability

density function of the bivariate normal is

f(x1, x2) =
exp [ − 1

2(1−ρ2) {(
x1−µ1
σ1

)2 + (
x2−µ2
σ2

)2 − 2ρ × (
x1−µ1
σ1

)(
x2−µ2
σ2

)} ]

2πσ1σ2
√

1 − ρ2
,
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where −∞ < X1,X2 < ∞. Expressions for the total, RTM and intervention effects

are

TN(x0;θθθ) = (σ1 − ρσ2) ⋅
φ(z0)

1 −Φ(z0)
+ µ1 − µ2,

RN(x0;θθθ) = (σ1 − ρσ2) ⋅
φ(z0)

1 −Φ(z0)

δN(θθθ) = µ1 − µ2,

where z0 = (x0 − µ1)/σ1. The James (1973) formula for RTM is a special case of

RN(x0;θθθ) when b = 1, which implies that σ1 = σ2.

5.5.4 The bivariate log-normal distribution
The lognormal distribution is a member of the exponential family, but ti(X,Y ) /∈

t(X,Y ) for i = 1,2 and equation (5.7) should be used for derivation of RTM in-

stead of equation (5.14). The dependence structure and the real constants remain

the same as in the case of the normal distribution to add flexibility. The joint

distribution of the pre-post observations is

f(x1, x2) =
exp [ − 1

(1−ρ2) {(
logx1−µ1

σ1
)2 + (

logx2−µ2
σ2

)2 − 2ρ × (
logx1−µ1

σ1
)(

logx2−µ2
σ2

)} ]

2πσ1σ2x1x2
√

1 − ρ2
,

where 0 < x1, x2 <∞. Using equation (5.7), expressions for TLN(y0, θ), RLN(y0, θ)

and δLN(θ) are then

TLN(y0,θθθ) = E(X1){
1 −Φ(z′0 − σ1)

1 −Φ(z′0)
− 1}{1 −

E(X2)

E(X1)
⋅
exp(ρσ1σ2) − 1

exp(σ2
1) − 1

} + δLN(θθθ),

RLN(y0,θθθ) = E(X1){
1 −Φ(z′0 − σ1)

1 −Φ(z′0)
− 1}{1 −

E(X2)

E(X1)
⋅
exp(ρσ1σ2) − 1

exp(σ2
1) − 1

}

δLN(θθθ) = E(X1) −E(X2),

where E(Xi) = exp(µi + σ2
i /2) for i = 1,2 and z′0 = (logx0 − µ1)/σ1.

5.5.5 The bivariate Pareto-I distribution
The Pareto distribution belongs neither to the exponential family nor can it be

expressed as the linear sum of random variables. However, expressions for RTM

can be derived under a suitable bivariate distribution. For illustrative purposes,

consider the bivariate Pareto-I distribution (Mardia, 1962)

f(x1, x2) =
p(p + 1)(a1a2)p+1

(a2x1 + a1x2 − a1a2)p+2
, 0 < a1 < x1, 0 < a2 < x2, p > 0.
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Using equation (5.7), the respective total, RTM and intervention effects are

TPr(x0;θθθ) =
(x0 − a1)(pa1 − a2) + a1p(a1 − a2)

a1(p − 1)
,

RPr(x0;θθθ) =
(x0 − a1)(pa1 − a2)

a1(p − 1)

δPr(θθθ) =
p(a1 − a2)

p − 1
.

5.6 Maximum likelihood estimation
Let (x11, x21), (x12, x22), . . . , (x1n, x2n) be a random sample of pairs of observations

of size n from a truncated bivariate distribution. The respective likelihood and log

likelihood functions are

L(θθθ,xxx) =
n

∏
i=1
ft(x1i, x2i;θθθ), and (5.17)

`(θθθ,xxx) =
n

∑
i=1

log ft(x1i, x2i;θθθ), (5.18)

where

xxx =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11 x21

x12 x22

⋮ ⋮

x1n x2n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To find the maximum likelihood estimate of T (x0;θθθ), R(x0;θθθ) and δ(θθθ), a point es-

timate of θθθ is required. This can be obtained by differentiating `(θθθ,xxx) with respect

to θj and setting the partial derivatives equal to zero to get a set of estimating

equations
d`(θθθ,xxx)

dθj
= 0 for j = 1, ..., p. (5.19)

A solution to this system of equations does not have a closed form and has to

be solved numerically. Once θθθ is estimated, the maximum likelihood estimates of

T (x0;θθθ), R(x0;θθθ) and δ(θθθ) can be obtained by substituting θ̂θθ into their respective

equations using the invariance property of maximum likelihood estimation as

T̂ (x0;xxx) = T (x0; θ̂θθ),

R̂(x0;xxx) = R(x0; θ̂θθ)

δ̂(xxx) = δ(θ̂θθ). (5.20)
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When the joint truncated distribution ft(x1, x2;θθθ) is expressible as in equations

(5.13) or (5.16), t1(X1,X2) = X1 and t2(X1,X2) = X2, then the respective likeli-

hood and log likelihood functions are

L(θθθ,xxx) = {
n

∏
i=1
h(x)} e∑

n
i=1 η(θθθ)T t(x1,x2)−n⋅A(η),

and

`(θθθ,xxx) =
n

∑
i=1

logh(x) +
n

∑
i=1
η(θθθ)T t(x1, x2) − n ⋅A(η). (5.21)

To find the maximum likelihood estimate of T (x0;θθθ), differentiating `(θθθ,xxx) with

respect to η1 and η2 respectively, and equating the partial derivatives to zero we

get

x1 =
dA(η)

dη1
= E(X1 ∣X1 > x0) (5.22)

x2 =
dA(η)

dη2
= Ex1 {E(X2 ∣X1)} , (5.23)

where x1 = ∑ni=1 x1i/n and x2 = ∑ni=1 x2i/n. Subtracting equation (5.23) from equa-

tion (5.22), we get

T̂ (x0;xxx) = x1 − x2. (5.24)

If R̂(x0;xxx) ≠ 0, then x1 − x2 is not the maximum likelihood estimate of the in-

tervention effect. The estimates of R(x0;θθθ) and δ(θθθ) can be obtained by finding

the maximum likelihood estimate of θθθ and then substituting θ̂θθ in their respective

equations as in equation (5.19).

5.6.1 Variances of the estimators

Dividing equation (5.15) by n, the variance of T̂ (x0;xxx) is

var{T̂ (x0;xxx)} = var(X1 −X2 ∣X1 > x0)/n. (5.25)

For the variance of R̂(x0;xxx), we only need to replace θ2 with θ1 in equation (5.25)

as

var(R̂(x0;xxx)) = var (X1 −X2 ∣X1 > x0,E(X1) = E(X2)) /n. (5.26)

Lastly, dividing equation (5.2) by n, the variance of δ̂(xxx) is

var{δ̂(xxx)} = var(X1 −X2)/n. (5.27)
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5.6.2 Unbiasedness of the estimators
In general, with a notable exception of an exponential family, where ti(X1,X2) ∈

t(X1,X2) for i = 1,2, the unbiasedness property of T̂ (x0;xxx), R̂(x0;xxx) and δ̂(xxx)

cannot be proved theoretically. Assuming the true and error component are in-

dependent, t1(X1,X2) = X1 and t2(X1,X2) = X2 hold true, taking expectation of

equation (5.24) and using equation (5.14), we get

E{T̂ (x0;xxx)} = T (x0;θθθ). (5.28)

The RTM and total effects are equal for a null intervention effect, i.e., E(X1) =

E(X2), and we can write

E{T̂ (x0;xxx ∣ E(X1) = E(X2))} = E{R̂(x0;xxx)} = R(x0;θθθ). (5.29)

Writing equation (5.28) in terms of its constituent parts, we get

E{R̂(x0;xxx) + δ̂(xxx)} = R(x0;θθθ) + δ(θθθ). (5.30)

Subtracting equation (5.29) from equation (5.30), we have

E{δ̂(xxx)} = δ(θθθ), (5.31)

which completes the proof of unbiasedness of estimators.

5.6.3 Asymptotic distributions
By the Central Limit Theorem, the distribution of the sample mean is asymptoti-

cally normally distributed irrespective of its parent distribution, if E(X2) <∞. As

T̂ (x0;xxx) is the difference of the sample means of X and Y , it is asymptotically

normally distributed,
√
n{T̂ (x0;xxx) − T (x0;θθθ)}

d
∼ N(0,var(X1 −X2 ∣ X > x0)). The

additive components of a normally distributed random variable are also normally

distributed (Cramér, 1936). Hence,
√
n{R̂(x0;xxx) −R(x0;θθθ)}

d
∼ N(0,var(X1 −X2 ∣

X > x0,E(X1) = E(X2)) and
√
n{δ̂(xxx) − δ(θθθ)}

d
∼ N(0,var(X1 −X2)).

5.7 Data Example: Cholesterol Levels
Data on cholesterol levels from a study undertaken by the Lipid Research Clin-

ics (Senn and Brown, 1985) are used for highlighting the differences between
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the proposed and existing methods (James, 1973; Senn and Brown, 1985; Beath

and Dobson, 1991) for estimating the RTM and intervention effects. Men aged

35 to 39 years were screened for cholesterol levels and those in excess of 265

mg% proceeded further in the trial. Cholesterol levels were remeasured for the

screened participants before undergoing any treatment. The respective sample

means, variances and regression coefficient of the pre-post log cholesterol levels

were as follows:

x1 = 5.676, x2 = 5.634, s21 = 0.00728, s22 = 0.01348,and β̂ = 0.792.

The cut-off point, x0, for log cholesterol was 5.58. Assuming bivariate normality

for the pre-post cholesterol levels, the estimated parameters obtained by Davis

(1976) using the James (1973) method of estimation, and the method of maxi-

mum likelihood developed by Senn and Brown (1985) are presented in Table 1,

where µ, σ, γ and ρ are the mean, standard deviation, treatment parameter and

Table 5.1. Parameter estimates for James’s model

Methods µ̂ σ̂ γ̂ ρ̂

James 5.207 0.228 0.870 0.910

Senn & Brown 5.390 0.186 0.985 0.861

correlation coefficients, respectively. Note that this model allows the post mea-

surements to move only in the direction of the mean. To estimate the total effect,

RTM and intervention effects by the proposed method for comparison with the

estimates obtained by existing methods, the parameters of the bivariate normal

distributions were estimated as

µ̂1 = 5.205, σ̂1 = 0.229, µ̂2 = 5.261, σ̂2 = 0.204, and ρ̂ = 0.887.

The maximum likelihood estimates of the total, RTM and intervention effects for

both methods are given in Table 2. For the Beath and Dobson (1991) method

using Edgeworth approximation, γ1 = 0 and γ2 = 3 were used as the respective co-

efficient of skewness and kurtosis for the normal distributions along with the Senn

and Brown (1985) estimated parameters. The Beath and Dobson method lacks a
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mechanism for decomposing the total effect into its constituent parts, though it

was done here through subtraction for demonstrative purposes. For comparison

purposes, the total effect was decomposed into the RTM and interventions effects

by the proportional reduction formula of James (1973)

proportional reduction due to regression
total proportional reduction

=
1 − ρ

1 − γρ
.

The methods produced differing results in terms of the estimated intervention

Table 5.2. Comparison of Suggested and existing methods

Methods T̂ (x0;xxx) R̂(x0;xxx) δ̂(xxx)

James 0.042 0.018 0.024

Senn & Brown 0.042 0.038 0.004

Beath & Dobson (Edgeworth) 0.042 0.045 -0.003

Beath & Dobson (Saddlepoint) 0.042 0.040 0.002

Proposed 0.042 0.098 -0.056

effects. Due to the constraint imposed on the direction of the post measurement

mean, a non-negative intervention effect will always be observed, δ̂(xxx) ≥ 0, using

the James (1973) approach. Whereas, the proposed method allows an interven-

tion effect to be in either direction. A negative intervention effect could lessen the

observed change or hide an adverse effect. In particular, the James (1973) method

estimates a positive intervention effect, Senn and Brown (1985) and Beath and

Dobson (1991) estimate a nearly null effect, and the proposed method estimates

a negative effect which is more than twice the magnitude estimated by the James

method. That is, the method for accounting for RTM could influence the conclu-

sion in any direction.

5.8 Discussion
Regression to the mean can occur whenever an intervention or treatment is applied

to subjects selected in the extreme of a distribution. Ignoring regression to the

mean in data analysis can potentially affect statistical inferences by exaggerating

results. Further, the use of restrictive methods can potentially conceal an adverse

intervention effect.
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In clinical trials, treatments are often designed to change the post measurement

mean in the direction of the population mean, although this change can potentially

occur in any direction. Existing methods for RTM are limited due to restrictive

assumptions about the distribution of pre-post variables and associated models for

the intervention effect.

The maximum likelihood estimators were derived for the total, RTM and interven-

tion effects. The statistical properties of unbiasedness, consistency and asymptotic

normality were established where possible. In the presence of a regression to the

mean effect, the difference of the sample means is not the maximum likelihood

estimate of an intervention effect, as is usually the case.

The total, RTM and intervention effects were evaluated for cholesterol levels us-

ing the maximum likelihood method. A comparison of the proposed method with

existing methods for RTM and intervention effects gave substantially different re-

sults. The proposed method allows more flexibility for an intervention study in

terms of the direction of the intervention effect and allows for negative correlation

between pre-post variables. Accounting for RTM increases accuracy in estimating

an intervention effect.

Intervention or treatment studies where subjects are selected based on a cut-off

point should account for RTM to avoid erroneous conclusions. The expressions

derived in this study allow the intervention effect to be either favourable or ad-

verse and could be used to estimate an unbiased intervention effect by accounting

for RTM under any bivariate distribution.
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Chapter 6

Discussion and future work

Pre-post study designs are often used to measure the within participant change in

a variable of interest after the introduction of a treatment or intervention. When

subjects are selected for study based on a cut-off point in the tail of a distribution,

the inference drawn could be susceptible to the regression to the mean effect. This

fact has been reported in diverse research areas including but not limited to public

health, social psychology, economics, and sports management decisions.

The RTM effect could be mitigated by randomly assigning subjects to comparison

groups (placebo and treatment), but ethical and/or logistical constraints limit its

applicability. Estimating and accounting for RTM is another option to accurately

estimate the intervention effect. However, existing methods for RTM are based on

some restrictive assumptions, including bivariate normality, which may not hold

true. Current methods developed for non-normal populations have limitations

such as inapplicability to the empirical distribution, non-negativeness of the prob-

ability density function and multi-modality distributional problems, and can be

computationally expensive.

In a pre-post study design, when an intervention or treatment is applied to subjects

selected on the basis of a certain threshold, RTM could exaggerate the observed

change called the total effect. The total effect is the sum of RTM and a function of

intervention intervention effects, and RTM should be accounted for to accurately

estimate the intervention effect.
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Count or rate of occurrence data is often modelled by the Poisson distribution, and

an objective of this thesis was to derive RTM formulae for the bivariate Poisson

distribution. For the Poisson cases, it was also demonstrated that the conditional

mean difference was the sum of the RTM and treatment effects.

Generally, when the correlation ρ between pre-post variables increases, the RTM

effect decreases. However, RTM as a function of ρ behaves differently for differ-

ent distributions. It is linearly related to ρ for the bivariate normal distribution

irrespective of the direction of the cut-off point. Whereas, for the bivariate Pois-

son distribution, it decreases as ρ increases but the behaviour is non-linear and

depends on the direction of cut-off point. Moreover, RTM increases as the cut-off

point is selected farther in the tail of a distribution, and the behavior of RTM is

markedly dissimilar for homogeneous and inhomogeneous Poisson processes.

A log-transformation is often useful for transforming positively skewed data to

an approximate normal distribution. Methods and formulae based on a normal

assumption can then be applied to log transformed data. For NSW road fatal-

ity data and the simulated bivariate Poisson data, RTM estimates were computed

assuming a bivariate normal distribution for the log transformed data. In both in-

stances, RTM was severely underestimated using the log-transformation approach

and therefore this approach is not recommended.

The correlation ρ is strictly positive for the bivariate normal and Poisson distri-

butions, although this assumption does not hold generally. In particular, for the

bivariate binomial distribution, ρ can take both positive or negative values. For

a left cut-off point, RTM decreases steeply as ρ takes on values in its range from

the lower to upper limits. For a right cut-off, RTM increases reaching a maximum

when ρ is around zero and then starts decreasing as ρ increases. When ρ < 0,

RTM could have a relatively greater range and, consequently, the total effect is

comparatively more exaggerated.

Distributional approximations make calculation easier when the relevant assump-

tions are satisfied. Using real and simulated data, however, RTM was underes-

timated under normal and Poisson approximations to the binomial distribution
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when conditions for approximations were suitable. The magnitude of underesti-

mation is greater for the normal approximation compared to the Poisson.

Furthermore, simple subtraction of RTM from the total effect would give a biased

intervention effect when the pre-post variables follow the bivariate binomial distri-

bution. The bias term is proportional to the difference of the pre-post parameters

and approaches zero as the sample size increases. Existing methods assume the

treatment changes the post measurement mean in the direction of the population

mean. Potentially, an adverse treatment effect could change the post measurement

mean in the opposite direction than intended. For the Muscatine data on the num-

ber of obese individuals, the age effect is negative for the first two age cohorts,

indicating that obesity has increased with age. The total effect could conceal an

adverse effect if analytic methods do not account for RTM.

In the existing literature, RTM formulae have been derived assuming (i) identi-

cal distribution of the pre-post variables, (ii) strictly positive correlation, (iii) the

direction of the post measurements to change towards the population mean, and

(iv) the error components being normally distributed with zero mean and constant

variance. Relaxing those assumptions, formulae for the total effect are derived

and decomposed into RTM and treatment/intervention effects. The generalized

derivations allow the pre-post variables to be distributed with different parame-

ters, thereby allowing the treatment effect to be either positive or negative. This

fact was observed with the Lipid Research Clinics data on cholesterol levels where

the treatment effect was negative in contrast with the existing methods. In the

proposed set up, the correlation can take any value in its range, where possible.

For negative correlation coefficients, the range of RTM increases and could further

exaggerate the observed change away from the true treatment effect.

RTM formulae and maximum likelihood estimators can be simplified for bivariate

distributions that belong to the p parameter exponential family and can be written

in canonical form. The unbiasedness, consistency and asymptotic normality of

the maximum likelihood estimators of RTM have been established theoretically in

general for the exponential family. The asymptotic properties have been verified

through simulations for the bivariate Poisson and binomial distributions.
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Using data on cholesterol levels, the total, RTM and intervention effects were

estimated by the maximum likelihood method assuming the bivariate normal dis-

tribution. A comparison of the proposed method with existing methods for RTM

and intervention effects gave substantially different results. In particular, existing

methods estimate either a positive or nearly null intervention effect, and the pro-

posed method estimates a negative intervention effect which is more than twice

the magnitude of the highest estimated intervention effect by one of the existing

methods.

In sum, the proposed methods derived in this thesis allow for more flexibility

in estimating the regression to the mean effects which, in turn, allows for more

accurate estimation of the intervention or treatment effects.

6.1 Future work
The methods developed in this thesis can be further extended, but the time and/or

resources do not allow me to explore them in full detail. In the future, I plan to

work on the following research topics.

6.1.1 Interrupted time series

Interrupted time series analysis is frequently used in quasi-experimental designs

for assessing the impact of interventions when a randomized controlled design

cannot be conducted. Pairs of time series observations, with lag h are often mod-

elled by a bivariate distribution. Potentially, the ideas and techniques developed in

this thesis could be applied to the joint distribution of the pairs of time series ob-

servations to decompose the effect into its constituent parts to accurately estimate

the intervention effect.

6.1.2 Statistical process control

In statistical process control, control charts are important tools used for improving

the quality of products and/or services by reducing assignable process variability.

Whenever a control chart detects an out of control situation based on the extreme

values of a charting statistic, an interruption is made to bring the process back in

control state by some necessary adjustments, thereby producing products at the
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nominal value. The nominal value is usually the mean of the charting statistic.

Accounting for RTM could potentially be helpful in making accurate adjustments

and hence increasing productivity.

6.1.3 Revisiting the bivariate normal distribution

In this thesis, RTM formulae have been derived in general for bivariate distribu-

tions by relaxing some restrictive assumptions. However, general derivation of

maximum likelihood estimators of RTM, and the effect of the RTM and its vari-

ance on statistical inference when the correlation is negative are worthy of further

exploration. In particular, although several approaches exist for RTM assuming the

bivariate normal distribution, very little attention has been given to the negatively

correlated case.

6.1.4 Writing an R package

Estimation of the RTM and intervention effects requires estimation of the parame-

ters of truncated bivariate distributions. The methods developed in this thesis are

not straight forward, and a companion R package would increase the likelihood

these methods would be used by other researchers.

The variable of interest in intervention or treatment studies could be binary, count,

or continuous, and not necessarily normally distributed. The expressions derived

in this study allow the intervention effect to be either favourable or adverse and

could be used to estimate an unbiased intervention effect by accounting for RTM

under any bivariate distribution, particularly, the bivariate Poisson, binomial, nor-

mal, log-normal and Pareto-I distributions.
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