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Executive Summary

In recent years, the application of machine learning models to big data has become

ubiquitous, however their successful translation into clinical practice is currently limited

to the field of imaging for the most part. Despite much interest and promise, there are

many complex and interrelated barriers that exist in clinical settings, which must be

addressed systematically in advance of any wide-spread adoption of these technologies.

There is limited evidence in the literature of any comprehensive efforts to approach clinical

prediction problems in a way that considers not only their raw performance metrics, but also

their effective deployment, particularly in terms of the ways in which they are perceived,

used and accepted by clinicians.

The genesis of this body of work came from the critical care outreach team at St

Vincent’s Public Hospital, Sydney. They want to be able to automatically prioritise their

workload through the prediction of in-patient deterioration risk, presented in the form

of a watch-list application. This work proposes that the proactive management of in-

patients at risk of serious deterioration provides a comprehensive case-study in which to

understand clinician readiness to adopt deep-learning technology due to the significant

known limitations of existing manual processes.

Herein is described the development of a proof of concept application that meets the

requirements as stated by critical care stakeholders. This system is based around models

that use as their input the subset of real-time clinical data that is available in the electronic

medical record at the target institution. This dataset has the noteworthy challenge of not

including any electronically recorded vital signs data. Despite this, the system meets or

exceeds similar benchmark models for predicting in-patient death and unplanned ICU

admission, using a recurrent neural network architecture that has been extended with a

novel data-augmentation strategy.

This data-augmentation method has been re-implemented for demonstration in the

publicly available MIMIC-III dataset in order to establish both its specific effect and

v



vi EXECUTIVE SUMMARY

generalisability of the technique. This novel augmentation method is notable for its

applicability to discrete time-series data. Furthermore, it is rooted in knowledge of

how data entry is performed within the clinical record and is therefore not restricted in

applicability to a single clinical domain, instead having the potential for wide-ranging

impact.

This system was then presented to likely end-users in order to understand their readiness

to adopt this technology into their workflow, with the use of the Technology Adoption

Model.

In addition to the confirmation of feasibility of generating suitable predictions of risk

from this limited dataset, this study presents an investigation of clinician readiness to adopt

artificial intelligence in the critical care setting, specifically for the purpose of supporting

the critical care outreach role. This is done with a two-pronged strategy, addressing

technical and clinically-focused research questions in parallel. The overarching aim is to

deliver a proposed system that is demonstrated not only to meet a technical benchmark

for statistical performance, but also one which meets a real clinical need, and has been

designed in such a way that it is ready for acceptance by clinical end-users.



List of Abbreviations

AI Artificial Intelligence

ATT Attitude towards use construct from

the Technology Adoption Model

AUROC Area Under the Receiver Operat-

ing Characteristic curve

AWS Amazon Web Services

BI Behavioural Intention to use construct

from the Technology Adoption Model

CCO Critical Care Outreach

CCOM Critical Care Outreach Medical Of-

ficer

CCON Critical Care Outreach Nurse

CCU Critical Care Unit

CERS Clinical Emergency Response Sys-

tem

CFI Comparative Fit Index

CPR Clinical Prediction Rule

CPU Central Processing Unit

DIA Dialysis unit

ED Emergency Department

EM Emergency Medicine

EMR Electronic Medical Record

EOL End of Life

EWS Early Warning Score

FHIR Fast Healthcare Interoperability Re-

sources

GAN Generative Adversarial Network

GP General Practitioner

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HL7 Health Level 7 messaging standard

ICD International Classification of Diseases

ICU Intensive Care Unit

LIME Local Interpretable Model-Agnostic

Explanations

LRAR Low Risk Ankle Rule

LSTM Long Short Term Memory unit

MBS Medicare Benefits Schedule

MET Medical Emergency Team

NASSS Framework to explain non-adoption,

abandonment, and failure to scale,

spread and reach sustainability

NEWS National Early Warning Score

NLP Natural Language Processing

OAR Ottawa Ankle Rule

OBR HL7 Observation Request segment

OBX HL7 Observation Result segment

ORM Object Relational Model

PEOU Perceived Ease of Use construct

from the Technology Adoption Model

PU Perceived Utility construct from the

Technology Adoption Model

RMSEA Root Mean Square Error of Ap-

proximation
vii



viii Glossary

RNN Recurrent Neural Network

SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority Over-Sampling

Technique

SQL Structured Query Language

SVH St Vincent’s Public Hospital, Sydney

TAM Technology Adoption Model

TTE Time to Event

WDR Workup to Detection Ratio



Contents

MANDATORY STATEMENTS II

ACKNOWLEDGEMENTS IV

EXECUTIVE SUMMARY V

LIST OF ABBREVIATIONS VII

LIST OF FIGURES XII

LIST OF TABLES XIV

CHAPTER 1 INTRODUCTION 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publication notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 CLINICAL PREDICTION RULES: SYSTEMATIC REVIEW OF

HEALTH-CARE PROVIDER OPINIONS & PREFERENCES 9

2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Results in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Conclusions & Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3 PROCESSING PIPELINE IMPLEMENTATION 35

3.1 Source Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Technical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ix



x CONTENTS

CHAPTER 4 DEVELOPING A DEEP LEARNING SYSTEM TO DRIVE THE WORK

OF THE CRITICAL CARE OUTREACH TEAM 44

4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 5 AUGMENTATION OF ELECTRONIC MEDICAL RECORD DATA

FOR DEEP LEARNING 74

5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 6 WATCH-LIST USER INTERFACE 94

6.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Use-Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

CHAPTER 7 CLINICIAN READINESS TO ADOPT A.I. FOR CRITICAL CARE

PRIORITISATION 100

7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 8 DISCUSSION 118

8.1 Review of background and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Summary of main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS xi

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

BIBLIOGRAPHY 140

APPENDICES 157

Acknowledgements of open domain image sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix to Chapter 2: Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix to Chapter 7: Proposed application and use-cases . . . . . . . . . . . . . . . . . . . . 159

Appendix to Chapter 7: Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



List of Figures

1.1 Recognising and managing the deteriorating patient 2

2.1 PRISMA flow diagram. 12

2.2 Included studies over time 18

2.3 Physician awareness of included CPR 20

2.4 Identified themes by development phase 21

3.1 Source data relationship diagram 36

3.2 Admissions by admitting service 39

3.3 Distributions: admissions per patient, length of stay 40

4.1 Example patient trajectory 48

4.2 Model Architecture 53

4.3 Endpoint rates in source data 57

4.4 Mortality and unplanned ICU prediction 61

4.5 Recalibration techniques 63

4.6 Word clouds demonstrating the most highly weighted terms 67

5.1 Examples of typical augmentation strategies 78

5.2 Comparing model statistics across endpoints and sampling strategies 85

5.3 Effect of different model calibration strategies 86

5.4 Correct predictions over time 88

5.5 Calibration metrics across endpoints and architectures 89

xii



LIST OF FIGURES xiii

6.1 Risk changes up to prediction time 96

6.2 The watch-list as envisaged 98

7.1 TAM 109

8.1 Mapping of research artifacts to identified themes 122

8.2 Risk changes up to prediction time 161



List of Tables

1.1 CERS classifications at SVH 3

1.2 Publication Notes 7

2.1 PICOS Search Strategy 14

2.2 Study setting 15

2.3 CPR characteristics 15

2.4 CPRs included in review 16

3.1 Population Statistics 38

3.2 Vocabulary Statistics 42

4.1 Flat demography and historical summary features for each admission 54

4.2 Area under the receiver operating curve 59

4.3 Comparison models - MIMIC IV 65

4.4 Comparison to baseline models 71

5.1 Endpoint distributions 79

5.2 Stratified prediction performance of data sampling strategies across endpoints 91

7.1 Model Hypotheses 104

7.2 Respondent Demography 107

7.3 Confirmatory Factor Analysis 108

7.4 Support for Hypotheses (TAM) 110

7.5 Weighted factors 110

7.6 Inter-group model comparisons 111

xiv



LIST OF TABLES xv

7.7 Hypothesis testing for modulating factors 113

8.1 NASSS Framework Domains 127

8.2 Demography Measures 163

8.3 TAM Measures 164



CHAPTER 1

Introduction

1.1 Background

For a patient in an acute care setting, there are many complex and interrelated factors that

affect their likely trajectory toward either recovery or deterioration. Prior to significant

deterioration events, there are observable patterns in clinical features that indicate this

change in acuity [1–4]. These warning signs may be present as much as 48 hours prior to

the adverse outcome [1], however they are often overlooked.

In addition, there is evidence that sub-optimal care (including delayed or missed inter-

ventions) in general hospital wards is a key contributing factor to both unplanned ICU

admissions and preventable inpatient mortality [5, 6].

These factors have combined to drive the modern desire for tools and processes that

can faithfully highlight patients at risk of deterioration on the general wards such that

interventions can be deployed sooner, improving both patient outcomes and resource

utilisation.

1.1.1 Context

1.1.1.1 Clinical Emergency Response to the Deteriorating Patient

A Clinical Emergency Response System (CERS) is defined by the Clinical Excellence

Commission as the established procedures for escalation of care for the deteriorating
1



2 1 INTRODUCTION

FIGURE 1.1. Recognising and managing the deteriorating patient

patient, based on standard calling criteria [7]. This system is defined locally, according to

general principles and standards that are mandated at the state level.

Such systems were developed in the early 1990s as an expansion of the existing practice

of dedicated resuscitation teams [8], and have become common globally. Their precise

terminology varies somewhat (e.g. resuscitation team vs. medical emergency team vs.

cardiac response team), despite this common conceptual grounding. Note that where there

is inconsistency, this work defers to definitions that are applicable in the domain of public

hospitals in New South Wales, Australia.

More generally, there are three key components to a comprehensive patient deterioration

management system, as seen in Figure 1.1 - the early warning system (EWS), the clinical

emergency response protocols, and the associated governance structures required to enact

them.
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TABLE 1.1. CERS classifications at SVH [11]

Level Target Triggers Response Responders

Code
Blue

Immediately
life threatening

Cardiac arrest
Airway obstruction
Unresponsive patient

Immediate MET

Rapid
Response

Urgent review
required

Vital sign observations in
‘red zone’
Vital sign observations in
‘yellow zone’ that reflect
patient deterioration

30 min Rapid response
medical officer

Clinical
Review

Patient review
required

Vital sign observations in
‘yellow zone’

30 min
Attending
medical team or
designated
responder

An EWS observes patients according to a defined protocol, allowing evaluation of their

condition against set criteria in order to trigger an emergency response. Together, the EWS

and CERS define the interactions between general ward staff and specialist emergency

responders in order to affect patient stasis in a cycle of recognition and response [9].

The medical emergency team (MET) is made up of nursing and medical staff who have

received specialist resuscitation training [10] who are required to respond in a medical

emergency. The calling protocol in the target institution consists of three levels of clinical

urgency (see Table 1.1). Additionally, all levels of emergency response may be also

triggered by staff, patient or family concern. This tiered protocol was introduced in 2009.

1.1.1.2 Pre-emergency Management of Deterioration Risk

Beyond this definition of emergency response protocols, which has become widespread,

many institutions now implement an outreach functionality that draws on resources within

the critical care unit to proactively manage patients at risk of deterioration on the ward.

The purpose of this role is to integrate critical care skills into the general care wards. This

is done by providing resources to follow those discharged from intensive care unit (ICU)
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beds to support recovery and anticipating deterioration that could potentially be averted in

order to reduce unplanned ICU admissions [12, 13].

The task of preempting patient deterioration across the entire hospital is one that requires

awareness of vastly more patients and events than is typically required of clinical staff. For

this role to be effectively prioritised and directed, an existing EWS must be enriched to

include patients prior to the point at which deterioration triggers an emergency response

[14].

1.1.1.3 Setting

St Vincent’s Public Hospital (SVH) is a major, government funded, quaternary care hospital

in urban Sydney, Australia. As with many hospitals, they have developed strategies to

reduce preventable ICU admissions. Two critical care outreach (CCO) roles (one nursing

and one medical) have been created to bridge the gap between the ICU and the wards.

This is a role in addition to the MET and is designed not only to respond to emergency

situations, but also to manage care proactively on the wards and anticipate the needs of

patients relative to the available ICU resources.

To support these roles, a ‘watch-list’ has been developed that generates a list of patients

who are deemed to be at risk of deterioration, with the intention that these patients can form

the basis of discussion between ward and CCO staff at handover time, and also to drive

the work priorities of the CCO staff. This watch-list is not intended to predict emergency

situations appropriate for MET responses, rather highlight patients who require additional

monitoring and care coordination. Currently, this watch-list is generated heuristically

based on rapid response calls and patient movements in the preceding 8-24 hours. There

has been limited uptake of this watch-list, due in part to its perceived lack of relevance

stemming from the inclusion of patients clearly not at risk. For example, the inclusion of

all patients transferred into the hospital from the Emergency Department is of insufficient

granularity to helpfully identify deteriorating patients.
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1.2 Objective

This project was initiated to automate the generation of a new watch-list that is able to

include a richer set of input factors, in order to make the risk estimation more relevant to

the goal of of detecting and responding to patient deterioration. The dataset used for this

work comprises hospital administrative data plus medication and pathology records. This

represents the subset of patient data that is available in real-time at this institution, and

therefore can be reasonably used for a prediction model.

This work will describe the design and development of a prototype for a fully automated

system that can augment the existing manual clinical emergency response system at St

Vincent’s Public Hospital.

1.2.1 Research Questions

This thesis has a dual focus on both the clinical and technological domains, with the goal

of presenting a system that has credible capacity for both translation and clinical utility.

1.2.1.1 Technical

T.1 Determine an appropriate modeling architecture that can, in principle, identify

patients at risk of deterioration in the short term from the clinical record, in

real-time and without access to vital signs data.

T.2 Measure how well such an architecture can generalise within the target institution.

1.2.1.2 Clinical

C.1 Understand the qualities of predictive models that are most valued by clinical

end-users.

C.2 Apply these qualities to the delivered model as a prototype, and measure the

success of this application as perceived by likely stakeholders.
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1.3 Approach

In order to formulate responses to the proposed research questions, the research approach

is structured as follows:

Chapter 1 - Introduction: Provides an overview of the setting, motivations and high-

level results of the project.

Chapter 2 - Systematic Review (C.1): In order to understand the relationship of end

users with predictive models in a hospital setting, a systematic review of qualitative research

is described. This provides a clinical use-case and foundation for the overall design and

implementation of the technical solution presented in later chapters.

Chapter 3 - Technical Architecture (T.1): An in-depth description of the data flow,

analytic methods and processing architecture that has been implemented.

Chapter 4 - Model Results (T.1, T.2): This chapter is a stand-alone work describing

the delivered model, within the context of its use-case.

Chapter 5 - Data Augmentation for Discrete Time-Series Data (T.1, T.2): This chapter

presents a novel strategy for data augmentation. It also acts as a validation of the primary

model, as the core novel elements of the data processing pipeline and model development

are re-implemented in a publicly available dataset.

Chapter 6 - Watch-list User Interface (C.2): This chapter proposes a concrete imple-

mentation interface for the models described in Chapter 4.

Chapter 7 - Face-validity Study (C.2): In which the technical output of this work is

presented to likely end-users of such an application, for the purpose of determining its
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perceived value within their clinical workflow. This captured via responses to a structured

web questionnaire that is based on the Technology Acceptance Model. [15].

Chapter 8 - Discussion: Ties together individual elements of the project as they relate

back to the proposed research questions and provides analysis of the strengths and lim-

itations of this work. Summarises the findings of this project, presenting a case for the

translation of this model into practice.

1.4 Publication notes

Chapters 2, 4, 5 and 7 have been published, submitted for publication, or prepared for

submission as follows in Table 1.2.

Ch. Status Reference Author contributions

2 Published Kennedy, G., Gallego, B., Clinical
prediction rules: a systematic review of
healthcare provider opinions and
preferences. International journal of
medical informatics 123, 1–10 (2018).
[16]

GK: Study design, search piloting,
screening, data extraction, thematic
analysis, manuscript preparation
BG: Screening, thematic analysis
iteration, project supervision

4 Submitted to BMC
Medical
Informatics and
Decision Making

Kennedy, G., Rihari-Thomas, J., Dras, M.,
Gallego, B., Developing a deep learning
system to drive the work of the critical
care outreach team medRxiv, (2020). [17]

GK: Data analysis, model develop-
ment, model architecture concep-
tion, manuscript preparation
JRT: Clinical guidance and review
MD: Technical guidance and re-
view
BG: Overall guidance and direc-
tion of model development, project
supervision

5 Submitted to
MEDINFO

Kennedy, G., Dras, M., Gallego, B.,
Augmentation of electronic medical
record data for deep learning medRxiv,
(2021) [18]

GK: Data analysis, model devel-
opment, study design, manuscript
preparation
MD: Technical guidance and re-
view
BG: Overall guidance, project su-
pervision

7 Preprint available -
to be submitted to
HIC 2021 upon
opening of call for
submissions

Kennedy, G., Gallego, B., Clinician
readiness to adopt A.I. for critical care
prioritisation medRxiv, (2021) [19]

GK: Study design, data capture,
data analysis, manuscript prepar-
ation
BG: Overall guidance, project su-
pervision

TABLE 1.2. Publication Notes



8 1 INTRODUCTION

A preamble has been added to each of these chapters in order to provide necessary context

within the body of work. There are minor modifications in formatting and cross-referencing

in order to preserve the coherence of the entire thesis, but these chapters have been included

here with their content otherwise exactly as published / submitted.



CHAPTER 2

Clinical prediction rules: Systematic review of health-care provider

opinions & preferences

2.1 Preamble

This publication is reproduced exactly as published in [16], with the exception of this

preamble.

In the face of limited evidence of successful translation of comprehensive prediction

models incorporating the full breadth of the clinical record, the purpose of this chapter is

to seek to understand the more mature technology of the clinical prediction rule, and from

this to extrapolate the requirements of clinical end-users of the watch-list technology.

2.2 Abstract

Objective. The act of predicting clinical endpoints and patient trajectories based on past

and current states is on the precipice of a technological revolution. This systematic review

summarises the available evidence describing healthcare provider opinions and preferences

with respect to the use of clinical prediction rules. The primary goal of this work is to

inform the design and implementation of future systems, and secondarily to identify gaps

for the development of clinician education programs.

Methods. Five databases were systematically searched in May 2016 for studies collect-

ing empirical opinions of healthcare providers regarding clinical prediction rule usage.
9



10 2 CPR: SYSTEMATIC REVIEW OF HEALTH-CARE PROVIDER OPINIONS & PREFERENCES

Reference lists were scanned for additional eligible materials and an update search was

made in August 2017. Data was extracted on high-level study features, before in-depth

thematic analysis was performed.

Conclusions. Some of the objections and preferences stated by healthcare providers are

inherent to the nature of the clinical problem addressed, which may or may not be within

the designer’s capacity to change; however, others (in particular — actionability, validation,

integration and provision of high quality education materials) should be considered by

prediction rule designers and implementation teams, in order to increase user acceptance

and improve uptake of these tools. We summarise these findings across the clinical

prediction rule lifecycle and pose questions for the rule developers, in order to produce

tools that are more likely to successfully translate into clinical practice.

2.3 Introduction

Two patients present to the same hospital, scheduled to undergo identical procedures at

the hands of equally skillful and qualified surgeons. One recovers speedily, while the

other struggles with major complications requiring complex interventions. The benefit of

a reliable method to describe in advance the likelihood of each of these trajectories for a

particular patient is clear. Credible foreknowledge of expected outcomes and individual

response to treatment can inform decision making of both clinicians and patients, allow

for responsive resource allocation to eliminate waste and improve outcomes for high-

risk patients, and more accurately benchmark performance of facilities based on their

risk-adjusted case-mix than has been possible in the past.

The current technical and infrastructural capacity for predictive analytics seen routinely

in other fields exceeds what is implemented in typical clinical practice [20, 21], although

significant progress is anticipated [22]. Even in institutions with advanced systems,

healthcare data are plagued by technical and procedural limitations that inhibit successful

big data analysis. This follows a familiar story in clinical information technology projects,

which have typically been shaped by slow uptake, reluctant user acceptance, organisational

and training issues, decentralised implementation and a piecemeal design approach [23–
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25]. On the assumption that the data exists and is available in a timely fashion, however,

there is evidence for the ability to predict patient outcomes with high accuracy [26].

Informal prediction forms the foundation of clinical practice — patients are continually

compared to a physician’s experience and available knowledge base. Likewise, the practice

of evidence-based medicine is definitionally predictive in nature [27] — interventions are

applied based on their likelihood for success, established through prior observed outcomes

within patient populations. Although more advanced systems have been proposed [21, 28],

a common way in which prediction is formally applied in a typical clinical setting is through

the use of clinical prediction rules (also known as decision models or risk scores — see

definition in Table 2.1) [29]. These rules help clinicians synthesise clinical characteristics

with the evidence base and produce a likely diagnosis, risk profile or recommendation for

intervention for their patient.

We propose that it is a valuable and timely enterprise to understand the current and future

role of CPR in clinical practice, as understood by clinicians. Investment in larger scale

predictive analytics projects may be wasteful unless this comparatively simple relationship

can be navigated successfully through to translated outcomes. To this end, this paper

presents a systematic review of the perspectives of healthcare personnel on CPR. We will

use this review to identify characteristics of successfully implemented and broadly used

CPRs.

2.3.1 Outline

The remainder of this article is organised as follows. Section 2.4 describes the search

strategy, data extraction and data synthesis that was performed. Section 2.5 contains details

of specific characteristics of the included papers and their subject CPRs. Section 2.6 then

details the extracted themes and describes the context of these themes within the included

papers. Finally Sections 2.7 and 2.8 summarise this work and provide conclusions and

recommendations.
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FIGURE 2.1. PRISMA flow diagram.

2.4 Methods

The protocol for this review was developed in advance, and has been registered as PROS-

PERO ID 42016039098.

2.4.1 Search strategy

A systematic search of the literature regarding predictive models is challenging, due to lack

of standard terms. Therefore, Ingui & Rogers [30] developed and tested a search strategy

to retrieve studies of CPR from MEDLINE (since updated [31]).



2.4 METHODS 13

After testing these searches, however, it became clear that a high proportion of known

eligible papers were missed. This was because primarily papers describing the development

of new CPR were returned, rather than the qualitative studies that are the target of this

review.

Search terms were defined to capture studies which jointly address two high-level concepts

(1) clinician attitudes, preferences and practices and (2) prediction of risk via a model or

decision rule. See Table 2.1 for the PICOS strategy and Appendix 8.3.2 for final searches

used after extensive piloting.

The literature was searched in May 2016 and an update search performed in August

2017. After screening for duplicates and eligibility, and adding references obtained from

reference mining, 45 eligible papers were included in the final review (Figure 2.1).

Studies were screened independently by authors GK and BG, with discrepancies resolved

via consensus. The inter-rater agreement was excellent, with a Cohen’s kappa statistic of

κ = 0.84 and κ = 0.88 for abstract and full-text phases respectively.

2.4.2 Data extraction

A data extraction form was developed a priori to capture high-level study characteristics.

The results of this extraction can be seen in Tables 2.2, 2.3 and 2.4.

2.4.3 Data synthesis

Thematic coding was performed using the NVivo qualitative research software (version

11.3) by author GK. This coding was reviewed iteratively with feedback by BG until

saturation was achieved, and a meaningful hierarchy of codes was developed.
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TABLE 2.1. PICOS Search Strategy

Component Details

Population Healthcare providers - including physicians, non-
physician clinicians & health-care administrators.

Intervention Use or knowledge of a clinical prediction rule in cur-
rent clinical practice. This includes hypothetical predic-
tion rules (such as studies gathering types of rules that
healthcare personnel wish to see developed or potential
perceived barriers).

Comparator Existing accepted best practice

Outcome Empirically gathered healthcare provider opinions

Setting All healthcare settings

Study Design Qualitative studies, including surveys, interviews, focus
groups and usability testing.

Other Eligibility Cri-
teria

Patient opinions are excluded, except as reported sec-
ondarily by healthcare personnel. Studies that describe
only the validation of the rule itself and not its design or
implementation are excluded.

Data Sources MEDLINE, EMBASE, Scopus, CINAHL and DARE
databases were searched.

Reference Mining Reference lists were scanned for all papers included in
the full-text review. Potentially relevant papers were then
also reviewed for eligibility.

Definition For these purposes, we define CPR broadly - as a proced-
uralised effort (automated or otherwise) that assesses the
current or historical characteristics of a patient in order to
derive either an estimate of the future risk of target out-
comes (prognostic), the likelihood of a current specified
disease state (diagnostic), or likely response to treatment
(therapeutic).

Dates No date restrictions were applied to searches
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2.5 Results

2.5.1 Characteristics of included studies

TABLE 2.2. Study setting

Country* Recruitment Setting* Study Methods*

Australia 10 Academic hospital(s) 4 Focus Group 9
Canada 6 Academic primary care network 2 Semi-structured interview 14
France 2 Educational institution 2 Survey 28
Germany 1 Non-academic hospital(s) 3 Usability testing 4
Netherlands 2 Non-academic primary care net-

work
14

Spain 2 Professional body membership 14
Switzerland 1 Targeted approach 2
UK 11 Enrolment in an existing RCT 2
USA 17 Other† 4

Study Participants*

Hospital or specialised practice
nurses

5 Infectious disease special-
ists

1

Anaesthetists 1 Neurologists 1
Cancer specialists 1 Physiotherapists 4
Cardiologists 1 Primary care nurses 2
Diabetes specialists 1 General practitioners 21
Dental care providers 1 Support staff & leadership 2
Emergency physicians 10 Surgeons 4
Hospitalists (medical) 3

† Conference attendees, snowball, dental care network or users of a GP website

TABLE 2.3. CPR characteristics

Rule Type* Rule Domain* Clinical Specialty*

Diagnostic 22 All-cause mortality 1 Breast surgery 1
Prognostic 30 Back pain 2 Dentistry 1
Therapeutic 4 Cancer 6 Diabetes Management 1

Cardiovascular disease 12 Emergency 11
Rule Output* Caries/peridontal disease 1 General Practice 20

Diagnosis (& likelihood) 4 Diabetic foot disease 1 General Surgery 2
Intervention guidance 7 Infection 2 Hospital (medical) 3
Patient risk/risk category 26 Multiple 6 Intensive Care 1
Unclear or unspecified 9 Post-op adverse events 1 Neurology 1

Post-op vomiting/nausea 1 Oncology 1
Response to treatment 1 Physiotherapy 4
Shoulder pain 1
TIA & stroke 4
Trauma 7

* Totals do not add to 45 due to mixed-methods and mixed group studies, or studies referring to hypothetical
or multiple (listed or unrestricted) CPRs
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2.5.1.1 All included studies

TABLE 2.4. CPRs included in review

Rule Name Year Ref(s) Description

ABCD/ABCD2 2010

2016

[32]

[33]

Estimate stroke risk within 7 days of diagnosis of first TIA

ACI-TIPI 2006 [34] Support diagnosis of acute cardiac ischemia in emergency patients

Adjuvant!

Online

2015 [35] Estimate breast cancer patient’s survival and treatment benefit

likelihood

APACHE III 2007 [36] Predict mortality and morbidity of critical care patients

CAMBRA,

PEMBRA

2015 [37] Calculate risk of developing caries or peridontal disease (respect-

ively) based on patient characteristics

Canadian CT

Head Rule

2016 [38] Guide use of computerised tomography for minor head injuries

CAPER Can-

cer RATs

2012

2015

[39]

[40]

Identify and quantify risk of cancer in symptomatic primary care

patients

DS3 2015 [41] Provides preoperative patient-level risk estimates for postoperative

adverse events

Framingham

(or Fram-

ingham

based)

2002

2009

2011

2013

[42]

[43]

[44]

[45]

[46]

Calculates future cardiovascular risk using patient characteristics

and medical history. A number of the referenced articles adapted

the existing algorithms for specific applications or populations.

GRAIDS 2002 [47] Assess risk of cancer based on family history in primary care

HeartDecision 2012 [48] Calculates risk of cardiac event in the next 10 years

In-house un-

named rules

1994

2014

2016

[49]

[50]

[51]

Describe a rule that has been developed locally but does not have

an unambiguous name by which it is referred e.g. a rule for

calculation of [domain] risk was developed...

Keele Stroke

Model

2004 [52] Estimate individual risk and benefit of prophylactic therapy in

stroke patients

Low Risk

Ankle Rule

2010 [53] Inform management of blunt ankle trauma in children prescribing

whether ankle radiographs indicated
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Multiple

unrestricted

rules

2005

2007

2010

2013

2014

2015

2016

[54]

[55]

[56]

[57][58]

[59][60]

[61][62]

[63][64]

These studies ask clinicians about multiple (>2) unrelated CPR or

CPR in general e.g. which [domain] CPR are you aware of? or do

you use any of the following list of CPR in your practice?

Ottawa Ankle

Rule

1998

2001

2005

[65]

[66]

[67]

Inform management of ankle or foot injury by providing informa-

tion as to whether radiography is indicated

Ottawa Knee

Rule

1998

2001

[65]

[66]

Inform management of knee injury by providing information as to

whether radiography is indicated

PECARN

TBI Rules

2013 [68] Inform management of traumatic brain injury in children by provid-

ing information as to whether CCT is indicated

PRISM 2016 [69] Predict risk of emergency admission for patients with chronic

illness

QCancer 2015 [70] Assesses symptoms and provides risk of cancer diagnosis by type

QRISK 2013 [46] Estimate lifetime risk of cardiovascular disease

SCI-DC foot

assessment

2010 [71] Stratifies the diabetic population based on characteristics and cal-

culated likelihood of developing diabetic foot ulcers

Theoretical

proposed rule

2004

2011

2014

2015

[72]

[73]

[74]

[75]

These studies ask clinicians about the perceived potential benefit

of a new CPR in a given clinical work-flow, and in some instances

elicit specific requirements.

Walsh rule,

Heckerling

rule

2012 [76] Predict diagnosis of streptococcal pharyngitis and pneumonia re-

spectively

2.5.1.2 Publication dates

As seen in Figure 2.2, the rate at which studies meeting the inclusion criteria have been

published has increased over time. Using the updated MEDLINE search string as a baseline

[31], the rate that CPRs are studied for acceptability or usability is found to slightly outpace
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FIGURE 2.2. Included studies over time

the rate of general CPR publications. This proportion remains extremely low, but does

indicate a relative increase in interest in the qualitative analysis of CPRs over time.

2.5.1.3 Methods

A majority of included studies (28, 62%) employed a survey, with a significant minority

(14, 31%) performing semi-structured interviews. Usability tests and focus groups were

performed more rarely (4, 9%) due to the higher resources required. 9 studies used mixed

methods, typically an initial survey with follow-up interviews and/or focus groups.

The most common recruitment strategy was through primary care network membership (16,

36%) followed by contacting members of a professional body (14, 31%). Response rate was

provided in 23 studies, with an average of 51.3% (s.d. 22.5%)1. For recruitment directly

via medical practice, network or hospital(s), there were more studies targeting health-care

providers within non-academic than academic institutions (16 and 8 respectively).

1Where more than one response rate reported, the most general was used for aggregation
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2.5.1.4 Uptake of CPRs

More than half of the included studies (24, 53%) do not report usage or uptake of the

CPRs in question. Amongst the remaining 21 studies, only two report observed uptake

in an experimental setting [50, 76]. One reports uptake (acceptance when triggered) by

encounter and the other by clinician. The rest describe the self-reported use. Direct

comparisons are not possible due to heterogeneity in the reporting and quantification of

CPR use.

The only measure that could be directly compared was clinicians’ awareness of a specific

named rule — this was reported in 6 studies, covering 5 named rules, and one group

of domain-related rules — see Figure 2.3. Note in particular that the Low Risk Ankle

Rule (LRAR) is far less familiar than the Ottawa Ankle Rule (OAR), which is likely due

to the overwhelming popularity of the OAR, despite the LRAR’s higher sensitivity and

specificity.

2.5.1.5 Health provider perspectives

Overall, three high-level categories emerged in the themes of included studies — Utility,

Credibility and Usability — which reflect the three distinct phases in the lifecycle of a

CPR — Development, Validation and Implementation — respectively.

These findings have been summarised in Figure 2.4, along with questions that reflect

the thematic analysis results, which CPR designers can use to interrogate the design and

architecture of new tools in order to bring them inline with the stated health provider

perspectives.
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FIGURE 2.3. Physician awareness of included CPR: Ottawa Ankle Rule
[53, 66, 67]; Adjuvant! Online & MammaPrint [35]; PECARN [68];
LRAR[53]

2.6 Results in context

2.6.1 Utility

2.6.1.1 Specialty

General practice and emergency medicine are by far the most CPR-served clinical special-

ties, represented in 31 of 45 included studies. This is consistent with the most commonly

observed rule domains — cardiovascular disease (CVD) (12, 27%), cancer (6, 13%) and

trauma (7, 16%) — and study participants — GPs and emergency physicians (21 and 10

respectively). These specialties require practitioners to be generalists; to recognise, support

and treat a variety of conditions, and it is not practicable to expect consistent knowledge

across a broad domain without flexible and accessible decision aids. Additionally, general
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FIGURE 2.4. Identified themes by development phase
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practice is the specialty where physicians are likely to have an ongoing relationship with

patients, following up progress over time. As such, a focus on helping patients to under-

stand their personal risks, suggested behaviour changes and treatment pathways is valued

[44, 63]. In hospital settings, emergency physicians also rate CPRs as more aligned with

their workflow and thought processes than internists do [62].

Cancer and CVD were both highly represented domains, however it is noteworthy that

there is no correspondingly high prevalence of studies targeting cancer specialists or

cardiologists (1 study reporting on each). Most of these rules were instead defined in the

general practice setting, targeting early diagnosis and management of patient risk over

time.
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2.6.1.2 Audience

Numerous papers report higher acceptability and knowledge of CPR amongst clinicians

with fewer years of experience [49, 59, 63, 67, 68, 70]. In these instances, it is assumed

that CPRs function as a substitute for clinical experience and reassure younger clinicians

of their judgment, and may even help teach clinical reasoning [61].

The most commonly cited reason for this is an inverse correlation between clinician

confidence and the utility of a CPR, for example this verbatim quote from an experienced

family physician in [63]:

It depends how confident you are, in your decision making...like the

PHQ-9 I am confident enough taking a mental health history and a

depression history...I don’t feel that that score replaces my own clinical

judgement but there would be some scores where you know I would feel

that if the score told me something that I wasn’t sure of I would rely

on the score more than my own because I don’t feel my own clinical

acumen is good enough in that area to replace the score.

This implies that in an area of true clinical equipoise, where even experienced clinicians

express a lack of confidence, is one that is most likely to benefit from the development of

novel CPRs.

The perception that a CPR is really the formalism of existing best practice or traditional

reasoning [59] can explain some of the perceived utility for inexperienced clinicians,

however it may also extend to the point that CPRs are seen as a ‘crutch’ (contributing to

negative views) [34]. This may also be impacted by a reluctance of clinicians to change

long-held beliefs, leaving younger participants more open to statistical tools [70], and

a lower overall comfort level with technology and/or evidence-based medicine in older

respondents [37].

The most effective CPR users were clinicians who worked full-time and reported using

rules frequently [67] — underscoring the benefit seen with frequent usage.
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Only one of the included studies reports actual performance differences between groups

who use the studied CPR and those who do not. In [68], clinicians were presented with a

vignette where an imaging test is not indicated according to current best-practice guidelines.

Prior to CPR decision support intervention, more experienced clinicians were significantly

more likely to adhere to the guidelines. Clinicians who were shown CPR-based decision

support were significantly more likely to change their assessment in line with best practice

than those who were not, in particular if they reported some preexisting use of the PECARN

rules in their practice, although no further breakdown was provided as to the characteristics

of clinicians most likely to respond to CPR recommendations.

2.6.1.3 Added value

Multiple studies reported that the way in which cancer [40, 74] and CVD [58] CPRs most

added value to primary care was by distinguishing patients who had a slightly elevated

risk, as opposed to identifying those with a greatly increased risk (who should be readily

identifiable). A side effect of this observation is that outside controlled validation study

settings, clinicians may not apply CPRs uniformly [57, 63]. This is important, since a

rule that is in practice used only in low-certainty cases will necessarily underperform its

theoretical accuracy.

Critical care is identified by advanced practice nurses as a specialty with a large degree

of uncertainty [36] and thus should have a proliferation of CPR, due to the high potential

to add value through confidence in treatment decisions. This is not borne out by this

review, which includes only one such study, although study participants report a reduction

in anxiety at end of life when the decision to remove life-support systems is supported by

objective data [36].

This desire for reassurance and objectivity is also seen in EM, where there was a positive

correlation between likelihood to use a rule and severity of outcome [41, 49]. A rule to

identify patients for prophylactic treatment against post operative nausea and vomiting is

one of the most poorly received CPRs in the review [51], which is attributed by anaesthetists

to the low burden that this issue has on patients, compared to the side effects of available

treatments.
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CPR for common complaints are perceived to be beneficial [37, 68], likely due to the

increase in memorability and a decrease in the time to apply a given rule with more frequent

use.

2.6.1.4 Actionability

Healthcare providers consistently prefer CPR where results are actionable or directive,

as opposed to strictly numerical [51, 63, 66, 68] due to challenges interpreting risk-

based recommendations in isolation. In this context, an actionable outcome refers to a

recommendation that states a specific course of action, such as whether or not to prescribe

prophylactic treatment for PONV [51], or guidance as to whether or not an imaging study

is indicated for a particular patient [66, 68].

This requirement for actionability is also seen with respect to rules that attempt to diagnose

patients or classify them into sub-types. If treatment decisions are not different between

groups, further detail is not important in a clinical (i.e. not research) context [75].

Other actionable outcomes favourably viewed by clinicians avoid time-consuming, invasive

or costly procedures [68], identify risk factors that will have the highest impact on patient

outcomes [42], prioritise tests or referrals in the face of non-specific symptoms [70] and

systematically assess combinations of symptoms instead of in isolation [40].

2.6.1.5 Medico-legal and regulatory environment

There is evidence that US physicians are more likely to believe CPRs increase the risk of

being sued [34, 53, 66], whereas the converse is generally true in other English-speaking

countries, where they are viewed as protective against such suits [66, 68] by providing

documented evidence of a rationale to forming certain decisions. A corollary to this,

however, is the concern that in the instance that a CPR disagrees with the clinical judgment

of a physician, they may order procedures they believe are unnecessary if there is a paper

trail indicating that they were prompted that this was necessary [39].
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Physician autonomy is an important factor for participants in many of the included studies,

although the level of concern varied greatly. One study reported a global pattern which

closely reflected the pattern by which physicians from each country viewed their increased

risk of being sued when using CPRs [66] — a higher perception of loss of physician control

correlating with a greater fear of litigation.

2.6.1.6 Psychosocial factors

Due to this desire for autonomy, multiple studies found that clinicians would augment or

replace the CPRs with other factors [49, 50, 67, 70], or apply in a manner that was contrary

to the tool design such as restricting the applicable patient population [36, 57, 63]. This

explains discrepancies between results in validation and impact studies.

A perceived result of loss of autonomy is the imposition of external control or reduction

in services for patients predicted not to respond to treatment [36, 51, 59] if insurers have

access to CPR results. Physicians feel threatened by this as an artifice of a rigid framework

that is not suitable for all patients [36], and that it may result in ‘intellectual sloppiness’, as

providers become dependent on these tools and cannot form judgments independently [59,

61].

It is possible to argue that some loss of autonomy is a positive outcome of CPR usage, with

authorities able to benchmark performance of multiple clinicians and ensure standardised

care is provided to all patients. There is evidence, however, that this is perceived as a

threatening or overbearing action by some clinicians [69], which may affect their successful

implementation.

2.6.1.7 Patient/clinician interaction

Consultation time is a finite and valuable resource. CPR implementations typically interrupt

the flow of the consultation in some way — whether explicitly such as a pop-up window

or in a clinician-initiated fashion — prompting concerns that CPR use may cause longer

consultations, or cause other important issues to be deemphasised [39, 40, 43, 44, 48, 52,
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70, 76]. This is particularly problematic in instances requiring double data entry or context

switching [48, 71], where computer usage gets in the way of more relational interactions

[52]. Some papers suggest that carefully selected trigger points, responding to and better

reflecting the true nature of the consultation, would address this issue [44, 76].

Emergency physicians report less concern regarding time taken to apply CPRs, and are

more likely to feel that they are time saving devices [53, 65]. This may be due to the high

representation of the Ottawa Ankle and Knee Rules, which are not only simple to apply,

requiring no data entry, but also have demonstrably decreased unnecessary tests, which

directly affects the emergency physician workflow — unlike specialist and primary care

contexts, where tests fall outside consultation time so any time saved is decoupled from

the main patient care phase.

Some physicians are reluctant to initiate CPRs in front of a patient if they cannot anticipate

results, especially if these results are potentially confronting, as in the case of a high-risk

cancer prognosis [70] or if they feel that patients will have trouble contextualising the risk

[52].

2.6.2 Credibility

2.6.2.1 Face validity

This review found that rules that do not have clear face validity are rarely acceptable to

clinicians. Studies report that tools with conspicuously missing risk factors will be viewed

skeptically [34–36, 43, 55, 74], whereas those that reflect current best practice clinical

reasoning have good credibility [40, 50, 59, 61]. This skepticism holds, largely regardless

of the verified performance of the rule in practice.

This disadvantages machine learning models with complex feature engineering and hidden

layers, at least partially explaining the gap between what is technically feasible and that

which is actually observed. This call for biological plausibility is reported directly by

clinicians [59], and also observable in use. Physicians feel that weight bearing ability
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is relevant to diagnosis of ankle fractures, and manually include it in their calculations,

despite the 100% sensitivity of the LRAR. The outcome of this is a reduction in specificity,

with no additional instances of fracture diagnosed.

This is linked to the desire for actionability — with a premium on time and resources,

there is a preference to only use tools that will have an impact on patient care. For

prognostic models, this requires that identifiable risk factors can be discerned and modified.

Diagnostically and therapeutically this makes less sense, however clinicians do not seem to

discriminate, requiring face validity in all circumstances. Similarly, without a discernible

causative pathway some clinicians do not view the results as truly personalised, crediting

only applicability at the group level [51].

2.6.2.2 Validation study design and availability

Practitioners must be confident in the evidence supporting a tool before they are willing to

overcome other barriers to implementation, however there are few included studies that

spell out what validation is required to meet this bar. The OAR is cited as an example

of rigorous development standards [65, 67], but only in a general sense, not detailing by

which factors this is defined.

Out of 29 studies that look at named included rules (not including theoretical, in-house or

unrestricted sets of rules discussed in the abstract), 23 refer to contemporaneous validation

studies in external populations.

The endorsement and/or mandate by professional bodies is a valuable strategy in dissem-

ination and successful uptake of a new CPR [63, 65, 74], and is given great weight by

clinicians.



28 2 CPR: SYSTEMATIC REVIEW OF HEALTH-CARE PROVIDER OPINIONS & PREFERENCES

2.6.3 Usability & Implementation

2.6.3.1 Usage & Usability

In a number of papers, usability is equated with memorability [67, 75], with some clinicians

only willing to use tools that can be applied without referring to the computer at all.

Similarly, high value is placed model simplicity and low variable count [50], which should

be easily measurable and available without elaborate equipment and testing. Benefits of a

simple tool are realised by both clinicians and patients, as patients can be involved in the

decision making process [75], and the benefits of CPR usage are readily understood [70].

Simplicity in both variable selection and interface extends into the learnability and accurate

application of the tool. Even tools that have eventually high usability demonstrate a period

of familiarisation where error rates are higher while clinicians become accustomed to the

system [42].

Few papers (4) apply any usability testing methods directly; however even in a low-resource

and low-experience setting, this is shown to be an effective tool in increasing satisfaction

[42], and simple tests can expose usability flaws [75, 76].

2.6.3.2 Information technology & integration

40% of CPRs as implemented in the studies of this review were fully or partially integrated

(patient data populated directly from the EMR), 20% offline, 11% online but not integrated

(requiring double data entry) and 29% unclear or hypothetical implementations only. For

CPR requiring data input, the clear preference is for the system to be integrated with patient

data [41, 43, 44, 48, 70, 71, 74, 76], with the importance of this requirement increasing in

recent years. This preference for integration puts additional value on CPR designs that rely

on relatively few commonly available data points, ideally in their most generic form, to

allow effective integration across diverse systems. Integration into the health record can

also provide additional context to filter CPRs to only those applicable to the patient under

review.
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Physicians in the included studies do not demonstrate a sophisticated concern about data

security or persistence [77] however they are sensitive to any technological failures or

outages, and perceived delays [36, 39, 71].

2.6.3.3 Results presentation & visualisation

Interpretation of risk-based outputs presents a challenge to clinicians, particularly differ-

ences between absolute and relative risks [52], and even when output can be correctly

interpreted, this doesn’t necessarily translate into consistent treatment [42].

Visual representation is beneficial in accurate interpretation of risks [43, 77], particularly

consistent use of traffic-lights for risk-based information, which evoke an emotional

response [39, 43, 70], helping clinicians understand when to treat, and patients understand

physician recommendations. Visual representation is also found to speedup review of

results, allowing rapid interpretation whilst remaining patient-focused [39] and avoiding

presenting too much information, which may be confrontational [43].

Other presentation factors preferred by clinicians are the option to print out results and

tailored supporting documentation for patients to take home and digest in their own time

[48], comparative displays to show the impact of modifying risk factors [48] and multiple

formats to improve understanding [47, 74].

2.6.3.4 Education & dissemination

One way in which clinicians express frustration with CPRs is with the lack of training and

support for them to apply rules accurately and consistently [36, 39, 52]. The lack of simple

and accessible training materials is a highly impactful barrier to implementation [36, 40].

An effective roll-out will be situationally dependent, however the following desirable

characteristics were identified by users included in this review: integration into the patient

flow at the appropriate time [68], convincing evidence of effectiveness above current

accepted practice [53], materials that address correct usage, including how to combine the
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tool with clinical acumen and characteristics that may appear to be erroneously omitted [53,

67], patient communication strategies [53], quick-reference materials and memory aids [67],

publication in high-profile journals [65], endorsement by professional organisations [65],

continued support and interaction post roll-out [40], information on CPR development

methodology and standards of evidence [46, 65], and short and well-planned training

sessions or materials with key information clearly highlighted [36, 39].

2.7 Discussion

2.7.1 Limitations

It is clear that few CPRs are studied for usability or utility - consequently there is little to

no evidence of how they are used in practice. Our search was intentionally restricted to

qualitative studies, which significantly limited the result set.

There are no commonly accepted variables available for aggregation, which limits reviews

to qualitative synthesis. Physician awareness of CPRs and intended versus actual uptake

would be useful data points in future work. Without summary statistics, it is not possible

to precisely track trends over time, and the overall conclusions of the review are more

susceptible to bias.

Due to the unavailability of directly comparable and aggregatable variables, it is difficult

to make clear distinctions of trends over time. It is possible to see an increase in demand

for integration into health records, with all studies stating this this as a high-priority item

published since 2009, however few of the resultant themes show such a distinct trend.

2.7.1.1 Definition

There is no precise definition of CPRs as a distinct subset of decision support. For the

purposes of this review, we selected studies that either self-identify as CPR, or where

the decision support described within clearly takes current or past measurable patient
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characteristics into account to derive a relevant clinical likelihood. It is possible that CPR

form a basis of many other decision support systems that were not included due to a lack

of clear definition.

The lack of consistent terminology for CPRs made an exhaustive search of literature

challenging. For the final search implemented in this review, relatively generic terms

were favoured over a curated list of known prediction rules in order to avoid biasing the

results by domain. Consistency of observed results across specialties demonstrates that

this is nonetheless likely to be a representative sample of available qualitative studies and

therefore the results can be expected to be generalisable.

2.7.1.2 Big-data extrapolation

None of the included studies present a clear path forward from static predictions to a living

big-data system. These systems are only available in a very limited scope currently, with

much research, but very few implemented in real healthcare settings [22, 78], thus it is not

possible to collect clinician opinions of the usage in daily practice.

Despite this, we chose to use the acceptance of CPR in clinical practice as the closest

available proxy for this next step in maturation of clinical prediction. This is additionally

confounded by the fact that a number of the included CPR are designed to be used as

manually-applied decision aids (for example, the OAR) with no technological component.

The results of this review are, however, consistent between these manual interventions and

the more obviously comparable computerised tools, particularly with respect to utility and

credibility.

Given the nascent application of big-data tools in clinical practice, it is unlikely that a

more directly representative review could be made for a number of years, and therefore

we believe this work provides an important foundational block, as steps toward truly

personalised EMR-based predictions are taken.
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2.7.1.3 Correlation of opinions to real-world experience

Physician opinions are an important predictor of the success of a new CPR in clinical prac-

tice, but they are of course not the only factor required for well-received implementations.

This review addresses the perceptions of CPRs across a diverse set of paradigms, covering

the nature of clinical practice alongside human factors and implementation strategies,

which will, when followed, increase the likelihood of successful implementation and

uptake. This does not address the question of impact and true, measurable benefit to patient

populations.

2.8 Conclusions & Recommendations

Holding constant factors that relate only to the nature of the clinical problem addressed,

for broad acceptance of a new CPR, developers should prioritise the utility, credibility and

usability of their models. These goals are reflected primarily in the rule’s actionability,

face validity and simplicity (respectively).

Figure 2.4 presents a summary of the findings of this review that allow CPR developers to

interrogate their methods and goals in order to produce a model that is highly translatable

and will be viewed favourably by clinicians.

2.8.1 Utility

The most commonly observed utility of CPRs relates to assisting GPs with diagnosis and

risk management of cancer and CVD patients. This is followed by providing emergency

physicians with rapid reassurance in the face of uncertainty.

The utility of CPRs decrease if the predicted outcome does not have significant impact

to the patient (severe condition or serious potential side effects), or if the outcome is

numerical and not clearly actionable. CPRs should include directive outcomes and causal
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pathways, with attention paid to the discriminative performance and calibration of patients

in the ‘yellow’ zone (slightly elevated risk).

2.8.2 Credibility

Clinician’s perception can be more important for translatability than proven performance.

GPs in particular do not generally report knowledge of CPR performance, while some emer-

gency physicians and specialists pay attention to the discriminative power (in particular,

sensitivity) of CPRs.

Face validity can be improved by:

• Performing feature engineering steps to ensure biological plausibility

• Complexity reduction

• Clear direction on modifiable risk factors

• Where the above are not possible, directly addressing any potential concerns in

educational materials

Additionally, the roll-out phase should include steps to educate professional organisations

and comply with their requirements for validation and training. Ideally a validation

phase should include an impact assessment, which will address potential inconsistency in

application across patient groups.

2.8.3 Usability

Simplicity must be preserved to improve both the technical implementation and integratab-

ility. This facilitates a smooth fit within the clinician/patient interaction by limiting data

entry, disruption in communication and unnecessary context switching. In order to ensure

that CPRs meet these goals, they must be tested for usability more frequently than has

been demonstrated in these results. Where resources are limited, the authors advocate a

‘think aloud’ protocol as demonstrated in [79].
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Clinicians report misuse of CPRs when attempting to add features or inconsistently apply

rules. Where risk factors are modifiable, or any output is actionable, the CPR and associated

materials should communicate this clearly.



CHAPTER 3

Processing Pipeline Implementation

3.1 Source Data

3.1.1 Data Ethics

This study was approved as ethics application HREC/15/SVH/403 under the St Vincent’s

Hospital Human Research Ethics Committee (SVH reference SVH/259). This approval

was granted on the 10th of August, 2016 and is valid until the 2nd of August, 2021.

3.1.2 Content

The data made available for this study by the St Vincent’s Hospital data custodian represent

realistic input that would be available for real-time analysis. Pending delivery and accept-

ance of a model developed from this dataset, it is thus theoretically possible to integrate

it into the live clinical information management system. Any data points that would be

unavailable at each relevant prediction time were carefully masked (i.e. a delay of 3 days

inserted between discharge and the availability of coded discharge diagnoses in the clinical

record; 28 day readmission flags inserted only after the appropriate delay; length of stay,

discharge code, leave days, separation mode, transfer to other hospital and total ICU hours

only available for prior admissions).
35
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3.1.2.1 Data Dictionary

The requested data fall into two categories - admission-centric and patient-centric (Figure

3.1). This distinction is due to the fact that it is valid for a patient to have a pathology

result, medication administration or alert event as an outpatient, where other clinical events

such as ward movements or surgical procedures are only experienced within admission

episodes.

ADMISSION

Admission ID [pk]
Patient ID [fk]
Age at admission
Admission day
Admission time
Admitting service
Discharge day 
Discharge time
Care type
Country of birth
Day of week of admission
Discharge code
ED transfer flag
ICU hours total
Insurance
Leave days
Length of stay
Marital status
Postcode
Primary language
Referral source
28 day readmission
Transferred from
Transferred to
Admission urgency
Separation mode

THEATRE
Theatre ID [pk]
Admission ID [fk]
Procedure start date
Procedure start time
Procedure duration
Anaesthesia duration
Planned flag

PROCEDURE

Procedure ID [pk]
Admission ID [fk]
Procedure code
Procedure date

WARD

Transfer ID [pk]
Admission ID [fk]
Ward ID
Bed ID
ICU flag

DIAGNOSIS

Diagnosis ID [pk]
Admission ID [fk]
Primary diagnosis code
Associated diagnosis codes
ICD version

ALERT

Alert ID [pk]
Admission ID [fk]
Alert group
Alert type
Start day time
End day time
Episodic flag

PATIENT

Patient ID [pk]
Sex

PATHOLOGY

Pathology ID [pk]
Patient ID [fk]
Accession
OBR code
OBX code
OBX subcode
Department
Flags
Test name
Range
Result
Units
Test date

MEDICATION

Administration ID [pk]
Patient ID [fk]
Display name
Dose
Dose Unit
Event date
Event time
Form
Reasoncode
Route
Substance

REDALERT

Red Alert ID [pk]
Patient ID [fk]
Breathing
Circulation
Disability
Exposure
Fluids
Glucose
Higher Care
Alert date
Alert time
Review date
Review time
Previous RR 24hr
RR Complete date
RR Complete time

YELLOW

Yellow Alert ID [pk]
Patient ID [fk]
Breathing
Circulation
Disability
Exposure
Fluids
Glucose
Higher Care
Alert date
Alert time
Review date
Review time
Previous CR 24hr
CR Complete date
CR Complete time

FIGURE 3.1. Source data relationship diagram: blue - admission-centric;
yellow - patient-centric; grey - dropped for data quality issues

3.1.3 Data Quality

There were a number of serious quality issues observed when processing the data. These

issues are noted here to illustrate challenges experienced when applying statistical tech-

niques to naturalistically collected data, where assumptions of uniformity may not hold. In
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particular it is worth observing that the last two issues were not evident under any general

statistical summarisations and were exposed only under detailed time-series analysis.

Firstly, there was a process change during the study period in how rapid response calls (red

alerts), clinical reviews (yellow alerts) and general alerts were recorded in the EMR. As a

consequence, for each of these tables a non-representative sample of records was available

— covering only a small proportion of the time window of interest. This meant that the

clinically relevant target endpoint of predicting clinical emergencies (other than death) was

not available for many admissions, and it was not possible to integrate these emergency

calls into the final models, thus all alert tables were dropped.

In addition, the transfer of data to a new Patient Administration System was incorrectly

mapped, which meant that ward transfer times were incorrect in the source system for the

earliest 10% of admissions. As ICU admissions (identified by a ward transfer from general

to intensive-care wards) are a key target endpoint, it was therefore necessary to discard all

admissions prior to this data migration date.

The final large-scale data error was fortunately systematic and therefore recoverable, as

the date-obfuscation process (part of the project-specific patient de-identification research

ethics requirements) was applied differently to admission-centric and patient-centric tables.

Once this issue was identified, it was possible to correct simply by applying the required

offset to the medication and pathology tables.

3.2 Summary Statistics

After the correction of the above issues, 192,883 admissions remained, shared by some

92,802 patients. See Table 3.1 and Figures 3.2 and 3.3 for detailed summary statistics. It

is important to notice the extreme skew in the distribution of some data elements across

patient records, in particular pathology and medication records, where the mean number

of records per patient outstrips the mode by several orders of magnitude. This lack of

uniformity in the richness of input data is a key challenge for any predictive task.
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TABLE 3.1. Population Statistics

Item Count Mode Mean St.Dev.
Patients 92,802

Male 51,844
(55.9%)

Female 40,958
(44.1%)

Age 71 59.96 20.34

Admissions 192,883

Admissions per patient 1 2.07 3.92

All diagnoses 892,629

Primary diagnoses 192,863

Comorbid diagnoses 699,766

Diagnoses per patient 1 9.62 17.73

Diagnoses per admission 1 4.63 4.08

Distinct diagnoses per patient 1 7.12 8.61

Medication administration events 12,524,922

Medication events per patient 0 134.96 506.50

Per patient with ≥ 1 event 1 252.25 670.74

Pathology results 41,871,520

Pathology results per patient 0 451.19 1221.09

Per patient with ≥ 1 result 2 479.85 1253.80

Surgical procedures 117,658

Surgical procedures per admission 0 0.61 1.36

Surgical procedures per patient 0 1.27 2.68

Per admission with ≥ 1 procedure 1 1.92 1.82

Per patient with ≥ 1 procedure 1 2.85 3.42

Ward movements 676,193

Ward movements per admission 1 3.51 3.26

Ward movements per patient 2 7.29 11.12

Time between admissions (days) 2 105 238

Length of stay (hours) 3 98 239

Length of stay for stays ≥ 24h 27 196 316
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FIGURE 3.2. Admissions by admitting service

3.3 Technical Architecture

This prototype system was developed in a secure Amazon Web Services Elastic Compute

Cloud (AWS EC2) environment. Data processing was performed in Python 3.7, notably

leveraging the SQLAlchemy, NumPy, Pandas, Matplotlib, Scikit-Learn and TensorFlow

libraries.

By implementing a SQLAlchemy ORM abstraction layer, the code is transferable to

numerous database back-ends according to the target institution requirements.

3.3.1 Data Processing Pipeline

The data processing pipeline can be broken into 4 high-level steps — trajectory generation,

model input curation, model training and results evaluation. A summary of the main logic

is provided for each of these steps below.
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FIGURE 3.3. Distributions: admissions per patient, length of stay
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3.3.1.1 Trajectory Generation

Input. Raw data as described in Section 3.1.2.1, queried from a PostgreSQL database

via the SQLAlchemy ORM abstraction layer.

Output. For each admission, the following items were generated:

(1) A set of ordered, discrete tokens, which represent the full patient history up until

the prediction time.

(2) Endpoints (binary outcome and time to event) for each target event (death and

unplanned ICU admission), calculated from prediction time.

Process. This output was generated by the following steps:

(1) Discarding admissions shorter than 24 hours, define the time of prediction as 24

hours after admission

(2) Select all events available for this patient (including both the current and any

historical admissions) which occurred prior to this prediction time

(3) Mask any items in this set of events that occurred earlier than the prediction time,

but would not have reasonably been available in the clinical record in real time

(i.e. administrative data that is either entered or coded post-hoc)

(4) Tokenize discrete events (e.g. surgical procedures, ward movements) by defining

their categorical label

(5) Tokenize continuous events (e.g. numerical pathology results, surgery durations)

by replacing with their decile and translating to their corresponding categorical

label

(6) Interleave all tokenized events in the order of their occurrence to form the patient

trajectory until the time of prediction

(7) Label each trajectory with the target outcomes and time-to-event

Upon completion of the trajectory generation, seven token types were retained for analysis.

See Table 3.2 for a summary and examples. In this way, all historical data tokens were
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TABLE 3.2. Vocabulary Statistics

Token
type

Description Details/Examples Vocabulary Size

Admission Admission-related data and demo-
graphy.

Admitting speciality
Marriage status
Urgency of admission
Discharge code
(prior admissions only)

3503

Diagnoses Discharge diagnoses (primary and
comorbid - prior admissions only).
ICD-10-AM encoding.

Z49.1, I10, N18.9, Z72.0,
E78.0

8034

Pathology Institution-specific encoding. In-
cludes panel name, test name and
results as observed in the HL7 OBR
and OBX segments.

Urea (mmol/L), eGFR
(ml/mn/1.73m2), PO2
(mmHg), Lipase (U/L), HCT,
INR, FiO2 (%)

7759 distinct tests;
11,784 when combined
with result decile
information

Medication Medication administration events
(substance, dose, route, form, time
of admission).

Paracetamol (500mg) tablet:
1g Oral, Oxycodone (5mg)
tablet: 5mg Oral, Heparin So-
dium (5000units/0.2mL) In-
jection: 5000 units Subcu-
taneous

9368

Ward Ward and bed assignments across
the admission.

ED, ICU, CCU, DIA 809

Procedures Medicare Benefits Schedule (MBS)
encoding of surgical procedures.

Oesophagoscopy, Central
vein catheterisation, Selective
coronary angiography, Repair
of soft tissue wound

1964

Theatre Theatre movements and details of
anaesthesia.

Procedure and anaesthetic dur-
ation as per-procedure-type
decile; Elective/emergency

99,711

available as potential input for each patient, although the most rare tokens (appearing in

fewer than 2% of trajectories) were discarded.

3.3.1.2 Model Input Curation

Input. Tokenized patient trajectories and endpoint labels as defined above

Output. TensorFlow record files (TFRecord) containing all necessary endpoints and

input data for rapid model training
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Process. Train, validation and test record files were created by serialising input data

into a format that is optimised for training TensorFlow models. This step ensures that

the models can batch load and prepare data on the CPU cores whilst training the prior

batch on the GPU. Such parallelisation greatly increases the model training efficiency,

although it comes with a trade-off of unwieldy data structures that are not well suited to

more traditional error-checking and model-introspection processes.

3.3.1.3 Model Training & Results Evaluation

The description of model training and results evaluation forms the core of Chapter 4.



CHAPTER 4

Developing a deep learning system to drive the work of the critical

care outreach team

4.1 Preamble

This chapter is a stand-alone work that has been submitted for publication as [17], repro-

duced exactly as submitted with the exception of this preamble.

In the context of the work of this thesis, this chapter serves to provide the technological

proof of concept that the proposed watch-list technology can meet acceptable performance

benchmarks, in particular with respect to the lack of vital signs data in the source system.

All overarching functional requirements were sourced from the critical care team at the

requesting institution. This set of functional requirements are the key motivation behind

this project, and thus define the final form of model endpoints and overall workflow.

4.2 Abstract

Care of patients at risk of deterioration on acute medical and surgical wards requires

timely identification, increased monitoring and robust escalation procedures. The critical

care outreach role brings specialist-trained critical care nurses and physicians into acute

wards to facilitate these processes. Performing this role is challenging, as the breadth of

information synthesis required is both high and rapidly updating.
44
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We propose a novel automated ‘watch-list’ to identify patients at high risk of deterioration,

to help prioritise the work of the outreach team.

This system takes data from the electronic medical record in real-time and creates a discrete

tokenized trajectory, which is fed into a recurrent neural network model. These models

achieve an AUROC of 0.928 for inpatient death and 0.778 for unplanned ICU admission

(within 24 hours), which compares favourably with existing early warning scores and is

comparable with proof of concept deep learning systems requiring significantly more input

data.

4.3 Background

4.3.1 Clinical Setting

For a patient in an acute care setting, there are many complex and interrelated factors that

affect their likely trajectory toward either recovery or deterioration. Prior to significant

deterioration events, there are observable patterns in clinical features that indicate this

change in acuity [1–4]. These warning signs may be present as much as 48 hours prior to

the adverse outcome [1], however they are often overlooked.

In addition, there is evidence that sub-optimal care (including delayed or missed inter-

ventions) in general hospital wards is a key contributing factor to both unplanned ICU

admissions and preventable inpatient mortality [5, 6].

These factors have combined to drive the modern desire for tools and processes that

can accurately highlight patients at risk of deterioration on the general wards such that

interventions can be deployed sooner, improving both patient outcomes and resource

utilisation. This commonly takes the form of an early warning score such as the National

Early Warning Score (NEWS) [80], which tracks physiological variables and raises an

alert when they fall outside of acceptable limits.
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It may also include the establishment of a critical care outreach team whose purpose is to

integrate critical care skills of advanced assessment into the general care wards [12, 13].

This is a challenging role, requiring a rapidly updating awareness of events and patients

across the whole hospital. In order to effectively prioritise their distributed workload,

critical care outreach nurses and medical officers (CCON & CCOM) must synthesise

information on a broader scale than is required of typical ward staff.

A physiological early warning score such as NEWS is intended to provide a trigger for

emergency response, however the remit of the outreach role is broader than this — including

the goal of identifying potential future deterioration in order to allow intervention prior to

emergency onset. Risk models used to prioritise this work may therefore benefit from the

inclusion of alternative risk factors such as pathology results or complex comorbidities. In

addition to this, the reliance of existing models on vital signs indicators alone limits their

capacity for automation in settings where these observations are not captured electronically.

4.3.2 Technological Setting

There has been much interest in the development of deep learning models derived from

electronic medical record (EMR) data. Deep-learning techniques are robust to heterogen-

eous, sparse and messy data, which are defining characteristics of the EMR. EMR data also

fit naturally into recurrent neural network (RNN) architectures due to the discrete, episodic,

time-series nature of the patient trajectory, which draws robust analogies to models of

language. These language models have recently been expanded to account for the variable

time intervals present in the patient record [81–83] by incorporating time-modulation gates

or weightings for elapsed time.

Importantly, deep-learning techniques based on sequential tokens have the capacity to

learn from rare events that would have insufficient predictive power in traditional models.

Contextual embeddings such as the skipgram algorithm [84] transform high-dimensional

one-hot encoded concepts into a lower-dimensional vector representation that can describe

not only the exact event type, but also where the event type fits within a conceptual

‘neighbourhood’ [85]. This is done by learning a representation of events as they relate to
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adjacent events in the clinical trajectory — inferring that events that consistently appear in

the same context will often contribute similarly to the patient’s overall risk profile.

Recurrent models have been developed from EMR data with high accuracy for diagnostic,

phenotyping and prognostic purposes in diverse clinical domains. In particular, such

systems have been demonstrated to perform well when used to predict inpatient mortality

and ICU admission [81, 86, 87], which are the most important end-points for understanding

short-term risk in a general patient population.

4.3.3 Aim

The primary aim of this project is to investigate the feasibility of an automatically generated

watch-list that provides outreach staff with an ordered list of patients most at risk of short-

term deterioration. By analysing all available data in the medical record as it is generated,

this list can supplement the clinical judgement of the CCON & CCOM and help them

to proactively identify patients in need of early intervention to improve outcomes, avoid

unnecessary or ineffective ICU admissions and reduce the risk of unexpected death.

The watch-list does not attempt to form a specific diagnosis nor prognosis but rather

produces a priority list that can sit alongside clinical judgment. Users are therefore less

tied to strictly explainable inference, requiring only a meaningfully calibrated relative risk.

As such, we propose that it is a good candidate for piloting a real deep learning system in

the clinical workflow. Preliminary user discussions suggest an openness to augment their

workflow in this way, and a lower barrier for requiring exhaustive model scrutability due

to the fact that the existing mental model for this role is so burdensome.

A significant limitation in this setting is the lack of any electronically recorded vital

signs in the source data. All identified comparison deterioration models (both traditional

[80, 88–92] and deep-learning [81, 86, 87]) rely on patient vital signs and physiological

observations as key predictors. We are therefore also aiming to establish the viability of an

alternative for predicting short-term patient deterioration where vital signs observations

are not available. A study found that in settings where vital signs data are routinely
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documented using a mix of paper and electronic records, there are high levels of invalid

and incomplete data [93], meaning that this limitation is sufficiently wide-spread that the

automation of existing deterioration models would not be universally possible, and such an

alternative is worth seeking.

4.4 Methods

4.4.1 Data

For this work, we used a dataset of hospital admissions from a metropolitan quaternary-care

hospital in Sydney, Australia. The data were gathered retrospectively and approved for use

by the target institution’s Human Research Ethics Committee.

All historical entries in the EMR were converted to discrete token values, based on

their event type (admission/discharge, historical diagnosis, pathology results, medication

administration, ward movement, surgical procedure or demography). These tokenized

events were then concatenated to form a list of discrete values describing the patient’s

historical trajectory that could be fed into the prediction model.

4.4.1.1 Example

1a 2 3 

ED

-24hr 0hr 24hr 48hr 72hr 96hr

4 5

1b

Adm, M, 72, Proc, Path, Med, Med, Disch, Adm, M, 72, Path, Med, ..., ED Adm, M, 75, Med Unplanned ICU Death

Input Patient Trajectory Prediction Targets

Historical Adm Historical Adm 6

FIGURE 4.1. Example patient trajectory

Figure 4.1 shows an example of the inputs and prediction targets used to develop these

predictive models. This example patient has two historical admissions (1a, 1b) prior to the

current admission. Both historical admissions were for planned procedures, and include a

mix of demographic and clinical tokens.
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In the target admission, the patient was admitted via the Emergency Department. Admis-

sion time (2) is the time that the patient was transferred to the medical wards. Prediction

time (3) is set to 24 hours after admission time (t=0hr). All demographic and clinical

tokens up to prediction time are included in the input data. Thus the input trajectory is an

ordered list of all tokens occurring in any available historical admission(s), the patient’s

ED stay, and the first 24 hours of the target admission.

4.4.2 Targets

Events of interest are defined as in-hospital death and unplanned ICU admission, as a

reduction in these events is the core premise supporting the establishment the critical care

outreach team. There is no distinction made as to whether a death occurs in general wards,

theatre or in the ICU.

No predictions are generated for patients in the ICU at the time of prediction, as they are

already under the care of the core ICU team.

An ICU admission is classified as planned if it follows immediately from a surgical

procedure, as there is no data available that specifically captures ICU admission intention.

In the case that an admission to ICU direct from surgical theatres is indeed unplanned

(i.e. due to unexpected in-theatre deterioration or adverse event), there is no intervention

required from outreach staff, therefore the inability of the model to identify such cases is

unlikely to be impactful.

Patients admitted directly to ICU are excluded from these models (363 admissions). In

order to allow all states to be mutually exclusive and thus avoid the additional imbal-

ance that would be introduced under a multiclass classifier accounting for death/ICU

admission/both/neither, we train separate models for ICU admission and death risk.
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Prediction time (t = 0hr) is set to 24 hours after a patient is admitted to general

medical wards, either directly or via transfer from the emergency department. Pre-

diction endpoints are measured at 12 hourly intervals, up to 4 days into the future

(t = 0 + [12, 24, 36...96]hours).

4.4.3 Data Preparation

In order to take advantage of the contextual embeddings that were initially developed

for natural language processing (NLP) tasks, and as per prior deep learning work with

EMR data [94], we converted each entry in the clinical database into token(s) of one of the

following types: admission, discharge, pathology result, medication administration, ward

movement, surgical procedure.

Pathology results and surgical procedure details contain continuous data types (numerical

results, duration respectively), which cannot be handled by a straightforward contextual

embedding model. These numerical values are therefore converted to decile results for

each test or procedure type respectively. These tokens are then concatenated for each

patient, with their associated time-delta since time of index admission, in order to describe

their care trajectory, such as in Figure 4.1.

All data are inserted into the care trajectory at the time that they become available in

the EMR. Ward movements, medication admission, pathology result, procedure and

theatre movements are incorporated into the EMR in real-time. Some demography data

are available at triage time, whilst some variables are input only at discharge. Coded

diagnoses are not available in the EMR until some time after the time of discharge due to

manual coding procedures. We therefore mask diagnosis codes associated with the target

admission and only include historical diagnoses that end at least 3 days prior. Any variables

containing multiple or inconsistent time-stamps were only inserted in the trajectory at

the latest associated time stamp. Similarly, we take a pessimistic view of time to data

entry for details pertaining to historical admissions, also inserting a delay of 3 days for

discharge-related information such as discharge code, separation mode and total ICU

hours.
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4.4.4 Time-sensitive Concept Embedding

Before feeding such tokens into a deep-learning model, we must represent them numerically

so that they may be used in the matrix algebra that forms the basis of the learning algorithm.

An integer label for each distinct token in the vocabulary is insufficient for this purpose, as

it implies an ordinality that does not exist and thus performs poorly. A one-hot encoding

is possible, where each token is represented as an n-dimensional vector with a single ‘1’

corresponding to the specific term being described, and n is the number of distinct terms in

the vocabulary. Such a representation typically leads to intractable calculations where n is a

non-trivial number of available terms, and importantly does not take advantage of semantic

similarity between terms (in this instance, perhaps a condition and its treatment are found to

co-occur with sufficient frequency and particularity such that they may be treated similarly).

These tokens were therefore transformed into a lower dimensional embedding space using

a modification of the skipgram algorithm [84], which is a commonly used technique for

assigning tokens a semantically-meaningful spatial representation.

Temporal and relational knowledge was encoded within the embedding by using a sampling

function that was weighted inversely proportionally to both the time-delta between two

events, and also whether or not the event occurred in the same admission. In equation 4.1,

w is the weighted likelihood of selecting a particular pair of events as input to the skipgram

algorithm, s is the distance between the two events by admission (for events in the same

admission, s=0, for events in the admission immediately prior, s=1 etc.), and t is the time

interval between the two events in hours.

w =
1

(s+ 1)(t+ 1e−3)
1

100

(4.1)

This weighting was then used to distribute the likelihood of sampling token pairs for inclu-

sion in the embedding model. This is important because it allows the use of wide context

windows in order to capture relationships between events occurring in rapid succession,

as we want to preserve the strong relationship between temporally linked events (e.g.

pathology results, where full test panels may return many results simultaneously) without

introducing extraneous relationships between more loosely associated concepts captured



524 DEVELOPING A DEEP LEARNING SYSTEM TO DRIVE THE WORK OF THE CRITICAL CARE OUTREACH TEAM

within the same broad context window only incidentally due to the fact that there were no

interposing events. This is a known challenge when learning low-dimensional embedding

representations of clinical events [95, 96] without allowing for the time dimension. The

effect of this decay factor is conceptually similar to the time-based dynamic windowing

techniques in [97].

4.4.5 Data Balancing

The targets of this model have a highly imbalanced distribution, which represents a

significant challenge in the development of a useful model [98], with imbalances as

skewed as 1 event in 160 for unplanned ICU admission and 1 in 180 for death within the

shortest time-frames. At such significant levels of imbalance, it was found that resampling

alone was insufficient to produce a model of adequate performance, as the models rapidly

overtrained on the (numerically and proportionally few) samples from the minority class.

We therefore use a data augmentation strategy that allows the models to weight the loss

functions appropriately and learn a more accurate representation of both the majority and

minority classes.

Data augmentation is common in the domain of image processing tasks, where deep-

learning has the longest history. It is typical to flip, rotate, skew, scale and mask portions

of the input image in order to create multiple synthetic samples that retain the same class

as the source, but allow a network to learn a more robust set of features that are less likely

to over-learn idiosyncrasies related strictly to scale and positioning rather than the content

of the image itself. Similarly, [99] applies window slicing and window warping strategies

to provide synthetic samples from time-series data.

Following from these techniques, we implemented a data augmentation algorithm that can

be applied to discrete time-series events such as those present in the EMR.

After copying trajectories and then randomly truncating the copies to 20-100% of their

original length (by dropping the oldest events), time-series events were bucketed into 1

hour windows. 1 hour windows were chosen given the likelihood of meaningless time
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distinctions at any higher resolution based on an assumption of primarily manual data

entry processes. Events within each of these 1-hour windows were then randomly shuffled

and/or masked to create modulated patient trajectories which could be used to augment

the input data. In the training set, each trajectory not including the target event was

randomly augmented 4 times. Trajectories that included the target were augmented at a

rate that was inversely proportional to the time to event (thus emphasising indicators of

proximal deterioration), producing a balanced dataset. In the validation and test datasets,

all trajectories were augmented 30 times, regardless of outcome.

4.4.6 Final Models

The final model architecture was made up of three sub models that were trained jointly

(Figure 4.2).

Flat features [1x17]

...

.
.
.

...

...

[         ]x8DisWrdICUDth

Model 1

Concatenated Features [1x64] 

...

.
.
.

...

...

[  ]x8Dth

Model 3

[         ]x8

...

.
.
.

...

...

DisWrdICUDth

Recurrent patient trajectory features [1x500]

Bidirectional LSTM

Model 2

FIGURE 4.2. Model Architecture

Model 1: A flat set of features was created for each admission (see Table 4.1). These flat

features were fed into a dense feed-forward network with a 4 dimensional output branch
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Feature Range Available
(%)

Most common

Age (yrs) 18-114 100 71

Marital Status 8 distinct 96.2 Married/partner

Aboriginal or Torres Strait Is-
lander Ethnicity

7 distinct 98.7 Neither

Insurance Status 94 distinct 100 Medicare - overnight

Postcode of residence 1497 distinct 100 Postcode of hospital

Country of birth 220 distinct 98.8 Australia

Relative admission day 0-2000 100 1703

Admission hour 1-23 100 7 (07:00hr)

Admission day of week 0-7 100 3 (Tuesday)

Admission speciality 47 98.6 Emergency

Last discharge code 9 distinct 99.8 9 (discharge alive)

Days since last stay 0-2000 62 2

Last length of stay (LOS) 0-475 62 0

Historical total LOS 0-592 62 0

Historical average LOS 0-237 62 0

Historical ICU hours total 0-2733 62 0

Historical ICU hours mean 0-1665 62 0

TABLE 4.1. Flat demography and historical summary features for each
admission

(Death, ICU, Discharge, Ward) for each of 8 time points (12, 24, 36, 48, 60, 72, 84 & 96

hours in the future). Terminal layer activation was set to Softmax, all prior layers had a

LeakyReLU activation.

Model 2: The most recent 500 tokens in the patient trajectory were fed into a bi-

directional LSTM layer, which then connected to a densely connected network, trained

with the same 8 output branches as Model 1. Activations were also set as per Model 1.

Model 3: The 64 output variables from models 1 and 2 were concatenated into a

single vector and used to train a densely connected network, with binary outcomes (i.e.,

death/~death or ICU/~ICU) at each of the target times.



4.4 METHODS 55

4.4.6.1 Training Process

These models were trained jointly, meaning a single training batch was fed into models 1

and 2, with the resulting gradients back propagated, and then the output of this same batch

was fed into model 3 and back propagated before moving onto the next training batch.

The models were trained on all 8 output times (12 to 96 hour forecasts), and then the loss

function was modified to attend to the first 4 output times only and trained further in order

to prioritise detection of imminent deterioration, whilst still allowing the model to learn

from the more plentiful short to medium term deterioration end-points.

A 10% test set was held out with no processing applied until both ICU and Death model

training was completed, with the remaining 90% used in a 5-fold cross validation process.

At each fold, the training set was split into 80% training, 5% calibration and 15% validation

sets. Although it is arguable that the cross validation procedure alone would be sufficient

to demonstrate generalisability, due to the many iterative stages of model piloting, a more

cautious approach was taken with the holding out of an explicit test set.

4.4.7 Calibration

A reference distribution of risks and uncertainty were produced by generating 300 pre-

dictions for each patient in the calibration set as per the validation data. We extend upon

the binned calibration methods in [100] to transform the model output into a clinically-

meaningful probability of deterioration.

For such short-term deterioration, it is a reasonable expectation that the proportion of

patients deemed at low risk will far outweigh those at high risk. As such, instead of the

fixed bin-widths in [100], we follow the argument in [101] for the use of unevenly spaced

bins to generate measures of calibration quality to its logical conclusion and use these

unevenly spaced bins to form the basis of the recalibration function itself.
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This distribution was bucketed using a stick-breaking process at the quantiles [0, 1 −
1
2

0+α
, 1− 1

2

1+α
, ..., 1− 1

2

10+α
] to generate scoring thresholds that appropriately reflected

the far higher proportion of patients in low risk categories. A different α was selected

for each category (correct, correct+72 hours, correct in admission) to reflect the different

target distributions in the calibration set.

The risk score between 0 and 10 was then generated by comparing the predicted risk for

each patient in the test set against these cutoff thresholds.

4.5 Results

4.5.1 Summary Statistics

Input data for these models included 192,883 hospitalisations, belonging to 92,802 adult

patients (44.05% female), undergoing 117,658 surgical procedures over the period from

June 2008 to June 2016. Patients had between one and 899 visits in the time period.

Patients with 100 or more admissions (129 patients - all receiving regularly scheduled

dialysis or rehabilitation treatments) were removed from the dataset so that they did not

overwhelm the models, leaving a range of 1-99 admissions per patient (mean 2.08 ± 3.92).

Patients had an average of 3864 ± 7221 included clinical tokens at admission time. For

admissions lasting more than 24 hours, 65 ± 40 additional events were captured within the

first day.

Admissions had one primary diagnosis and up to 44 associated comorbidities (mean 4.63

± 4.08). Every admission included by definition at least one ward movement (the ward to

which the patient was initially admitted). Detailed summary statistics of the data can be

found in Chapter 3.
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4.5.2 Endpoint Rates

Data imbalance is a well known challenge in the development of machine learning models.

This is particularly relevant when the minority class is the class of interest, which is

frequently the case in models that predict mortality, specific diagnoses or other important

clinical end-points.

In the source admissions, there was an overall inpatient death rate of 1.53% and unplanned

ICU admission rate of 3.22%. These rates change over the course of admission time,

however, and drop drastically as the time windows become shorter (see Figure 4.3). At 24

hours after admission, the rate of death in the next 24 hours is 0.35% and for unplanned

ICU admission it is 0.61%.

Unplanned ICU admission rates peak in the first day of admission and remain steady after

that. Once an admission lasts more than 12 hours, the death rate becomes much higher.

This is likely to represent the low death incidence within day-surgery admissions. From 12

hours onwards, the rate rises more gradually as the less severely ill patients are discharged.

As death rates rise, unplanned ICU rates fall, which is indicative of an overall increase in

acuity over time despite a decrease in instability.
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FIGURE 4.3. Endpoint rates in source data, relative to the number of
patients still admitted at the given prediction point.
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4.5.3 Reported Metrics

We report here metrics that test the output predictions against three measures:

(1) A strictly correct forecast (model predicts endpoint within t hours, and this reflects

accurately the presence of this endpoint within t hours).

(2) A forecast that is correct with a clinically relevant tolerance. This tolerance is set

to 72 hours (model predicts endpoint within t hours, and this reflects accurately

the presence of this endpoint within t+ 72 hours), to account for patients where

similar response from outreach staff may be appropriate, given the desire for early

intervention.

(3) A forecast that is correct within the target admission (endpoint is predicted within

t hours, and this is not necessarily accurate, however the endpoint of interest does

occur prior to discharge). This gives a better sense of the true burden of false

positives and false negatives on both patients and outreach staff.

In the example from figure 4.1, there is an unplanned ICU admission at t=72hr, and the

patient dies outside of the prediction window, but within this admission. At t=36hr (4),

neither endpoint has occurred, so a prediction of false is strictly correct. Unplanned ICU

admission does occur within 36+72 hours however (5), and therefore a prediction of

ICU=true would be correct within the tolerance window and a prediction of death would

be correct within the target admission.

For prediction use-cases with such high degrees of imbalance as those targeted by these

models, with far more negative cases than cases of interest, reporting the area under the

receiver operator curve (AUROC) alone can be highly misleading [102]. Despite this, it

remains the most commonly reported statistic of model quality.

For this reason, we also report here the sensitivity and workup to detection ratio (WDR) for

every prediction target. Model sensitivity is calculated as true positive predictions divided

by all positive cases, or TP
TP+FN

. WDR is the inverse of the model positive predictive value,

and provides the ratio of all positive predictions to all true positive predictions i.e. 1
PPV

, or
TP+FP
TP

.
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Sensitivity is the key outcome measure from the perspective of at-risk patients. This is

because a false negative corresponds to potential missed interventions and directly impacts

their outcomes. WDR is the key metric for outreach staff however, as an increase in the

burden of false positives will heavily reduce the usefulness of any predictive model, and

may draw clinicians away from truly deteriorating patients. If balanced appropriately,

these measures will result in the predictive model with the highest clinical utility.

[x] 12 24 36 48 60 72 84 96
Death

Correct forecast 0.918 0.928 0.921 0.915 0.906 0.911 0.902 0.902

Correct forecast with tolerance 0.921 0.917 0.911 0.917 0.903 0.902 0.904 0.901

Target within admission 0.901 0.902 0.903 0.902 0.890 0.890 0.891 0.890

Unplanned ICU admission
Correct forecast 0.747 0.778 0.777 0.776 0.782 0.776 0.789 0.781

Correct forecast with tolerance 0.754 0.783 0.779 0.774 0.781 0.779 0.789 0.786

Target within admission 0.725 0.757 0.743 0.750 0.757 0.753 0.768 0.767

TABLE 4.2. Area under the receiver operating curve for prediction within
[x] hours, using data available 24 hours after admission time.

Note that the AUROC frequently decreases as the tolerance increases, which is somewhat

counter-intuitive, since a more permissive calculation could be expected to necessarily

improve model performance. This is due to the fact that the tolerance does not only

increase for the model predictions, but also for the model targets. Thus as the target event

frequency increases the sensitivity calculation changes in both a positive and negative

fashion, as more targets are correctly specified but more again are missed. This illustrates

further the issue with reporting AUROC as the sole metric of model performance.

4.5.4 Mortality Prediction

At 24 hours after admission, death within the following 24 hours was predicted with an

AUROC of 0.928 (see Table 4.2 for all time points). This is higher than the baseline score

NEWS [80] (0.89), however as outlined above, this measure alone is unlikely to tell the

whole story of model utility. Note also that the NEWS baseline could not be replicated in

the source data due to the unavailability of patient vital signs so is compared only to the

AUROC as reported in the cited study.
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Figure 4.4 demonstrates the discriminative value of this model, i.e. that the output does

indeed correspond to prediction of clinically meaningful risk. Although the sensitivity is

poor at the earliest time point (due to the enormous class imbalance) later forecasts can be

expected to correctly predict between a quarter and a third of patients who will deteriorate

rapidly. Sensitivity drops as the tolerance increases to 72 hours, as there is now a higher

proportion of target events. The workup to detection ratio decreases much more rapidly,

however, demonstrating that the clinical burden of a false positive in this model is low, and

that responding to a patient with even moderate risk is likely to be worthwhile.

There are a number of reasons that can explain the observed plateau of risk for most

predictions from 48 hours onward seen in Figure 4.4. In referring back to Figure 4.3, we

note that as duration of each admission extends beyond 24 hours, the rates of each endpoint

observed in the data relative to the patients still admitted at that point becomes steadier,

indicating that the cohort that is still admitted at this time becomes more stable, despite its

increased overall average severity of illness. A patient’s overall general risk increases with

time as lower severity patients are discharged, but their risk within a given time window

levels off. This is also an artifact of the training methodology whereby the models were

initially trained on all 8 output times, before further training was done attending to the first

four time-points only. This was done to balance the priority of predicting patients at risk

of imminent deterioration with the lack of available data for these shortest time-points,

however, it does somewhat mute the discrimination between medium and longer-term risk

predictions. This is deemed to be an acceptable trade-off due to the original remit of this

work, which had a strong preference for predicting short-term deterioration.

4.5.5 Unplanned ICU admission

There is a significant difference between the AUROC of the mortality prediction models

and the corresponding unplanned ICU admission models. This is likely to be due to the

fact that ICU admission criteria are strongly coupled to vital sign triggers, and therefore a

prediction model that does not include this data will under-perform.
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FIGURE 4.4. Mortality and unplanned ICU prediction — sensitivity and
WDR of death prediction at future time points using data available at 24
hours after admission. For the purposes of risk stratification, extreme risk
is here defined as a calibrated risk score of 6 or more, high risk as a score
of 4 or 5, and moderate risk as a score of 2 or 3.

Despite this, from Figure 4.4, it remains possible to predict unplanned ICU admissions

within the following 48 hours with a sensitivity of around 20% of all cases, and a corres-

ponding WDR of 1 in 17. When allowing a 72 hour window of tolerance, a WDR of 1 in

12 gives up to 60% sensitivity, and therefore still represents a tool with meaningful clinical

applications.
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4.5.6 Model Calibration

The raw results produced by this model had poor calibration, despite their good discrim-

inative power, meaning that the probabilities output by the models could not be directly

interpreted as the actual probability of the event occurring. This is typical of neural net

techniques [101], which tend to be overconfident, or ‘sharp’ in their predictions.

There was a very low positive class count (not only proportionally, but also numerically)

in the small calibration set. This meant that typical recalibration methods of isotonic

regression [103] and Platt scaling [104] were ineffective (see Figure 4.5), and it also put

techniques such as [105] out of reach.

We find that the highest probability that we can assign to precise death forecasts is 40%,

deaths within 72 hours of their forecast time have a maximal confidence of 80% and

in-admission death has a maximum confidence of 90%. This matches the expectation

that clinical trajectories are non-deterministic, particularly over the short term, but as the

precise prediction time expands, confidence increases.

4.5.7 Implementation in External Dataset

In order to demonstrate an external validation of this model, we have re-implemented the

full pipeline in the MIMIC-IV dataset [106]. Due to the lack of electronically-recorded

vital signs at the source institution it was not possible to implement NEWS directly as a

baseline, so the implementation in this additional dataset also provides the advantage of

being able to compare against this commonly-used benchmark score.

4.5.7.1 NEWS Baseline in External Dataset

The MIMIC-IV dataset includes 523,740 admissions from 256,878 patients. We calculated

a NEWS score for every admission that had at least one full vital-signs set recorded in the

first 24 hours of their admission. Where more than one recorded value exists within the
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FIGURE 4.5. Recalibration techniques for death model predicted at 24
hours after admission. Note that Platt scaling reduces all probabilities to a
single point close to the origin.

first 24 hours the most recent was used. It was possible to calculate a full NEWS score for

53,528, or around 10% of all admissions. Of these, 1209 admissions were shorter than 24

hours in duration and 854 patients died within the first 24 hours, leaving 51,465 admissions

for which a comparison score could validly be calculated at the prediction time. In 4474

of these admissions (8.69%) the patient died before being discharged from hospital and

684 (1.33%) died within the next 24 hours. Applying the standard NEWS calculation, the

resultant AUROC for in-hospital death and death within 24-hours were found to be 0.76

and 0.86 respectively. Death within 24 hours was similar to the benchmark reported in the

original NEWS development study [80] (0.89), with the small difference likely attributable

to the different composition of the cohort (ICU patients instead of all medical admissions)

and the relatively low proportion of admissions having a full set of vital-signs within the

first 24 hours.
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4.5.7.2 External Validation

In order to perform an external validation, tokens were similarly collected from the MIMIC

IV dataset that most closely resembled the tokens used in the source data. This meant that

vital sign values were not utilised, despite the fact that in this case, they are indeed available.

The tokens used for validation included medication administration events, procedures,

historical diagnoses, ward movements, pathology results (tokenised by quantile) and

historical demographic data.

The flat portion of the model was also calculated similarly, including age, marital status,

insurance status, and numeric features describing the duration and recency of a patient’s

historical admissions. The results for this model can be found in Table 4.3.

The NEWS baseline, with its access to vital signs data, clearly outperforms the simple ML

models for death within 24 hours, although this does not carry across to in-admission death.

This matches expectations for the importance of vital signs for imminent deterioration,

whilst simultaneously boosting the case for using administrative data to predict longer term

patient trajectories.

The application of the same strategy to a new dataset outperforms all other candidate

models in this data, in many cases by a significant margin, proving its viability in new

settings.

4.5.7.3 Comparison to Non-recurrent Models

It is a key hypothesis of the design of this solution that there is value in the use of a recurrent

model, over and above simpler and potentially more scrutable ML architectures, due to

the time-series nature of the patient trajectory. As a point of comparison, we therefore

trained models using 6 different supervised algorithms (logistic regression, XGBoost,

simple feed-forward deep-learning network, random forest, AdaBoost and a Bayesian

network). In order to do this, features were selected that were most highly correlated with

in-hospital death and least strongly correlated with each other. The candidate features for
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the algorithm were those that most strongly resembled the features used in the recurrent

model, i.e. demography, historical admissions, historical diagnoses, procedures, pathology

results and medication administration events. Resultant AUROC, WDR and sensitivity

values are given in Table 4.3.

Model Death within 24 hours Death within hospitalisation
AUROC WDR Sens. AUROC WDR Sens.

Logistic Regression 0.57 42.4 0.5 0.78 5.6 0.49

XGBoost 0.85 6.3 0.5 0.81 2.7 0.5

Feed-forward deep-learning 0.83 9.7 0.5 0.73 4.2 0.5

Random Forest 0.80 7.3 0.5 0.81 2.9 0.5

AdaBoost 0.84 7.1 0.5 0.81 2.9 0.5

Bayesian Network 0.82 10.8 0.5 0.79 4.6 0.5

NEWS 0.86 12.9 0.55 0.76 4.9 0.56

CCO watch-list (ext. validation) 0.89 4.5 0.5 0.88 2.1 0.5

TABLE 4.3. Area under the receiver operating curve, workup to detection
ratio at sensitivity cutoff as close to 0.5 as available in the distribution,
using data available 24 hours after admission time in the MIMIC IV dataset.
Note that a threshold of 0.5 for sensitivity is not available for NEWS, given
its discrete scoring.

4.6 Discussion

4.6.1 Source Data Limitations

Scores or tools that target imminent patient deterioration typically aim to detect derange-

ment of physiological signs and symptoms. This is based on the observation of predictable

patterns of changes in patient vital signs prior to each of the relevant deterioration end-

points cardiopulmonary arrest, unplanned ICU admissions and death [1–3, 107, 108].

Although a physiological early warning score (EWS) is used as a manual trigger of

emergency response at the target institution [109], due to a lack of availability of vital sign

data within the EMR, it is not currently possible to use such a score as the basis for a fully

automated watch-list.

This, along with variable importance analyses in logistic regression models such as [90],

serve to highlight the importance of vital sign data as the key element underpinning the vast
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majority of current best practice for prediction of inpatient deterioration. The limitation

seen in our data is a realistic one, however, that should be considered for implementation of

a fully automated system. It is characteristic of many EMR systems to serve the purposes of

hospital administration first, and support clinically relevant data only where this aligns with

the requisite billing and logistical goals, and/or where the clinical utility is high enough to

justify the additional documentation burden above what can be provided with paper charts.

Thus, it is unsurprising to observe in this data set that all theatre-based procedures are fully

available in the clinical record, as they are not only billable, but also require the booking

of resources from a central pool, compared with typical bedside procedures and nursing

observations that go unrecorded for the inverse reasons.

This limitation in the breadth of input data is significant, however encourages a model that

is built primarily around administrative data points, which are likely to be more reliably

and consistently available in the EMR.

4.6.2 Error Analysis

In order to understand the limitations of this model in these contexts, and to inspect the

model for evidence of causal leakage, we ran the false positive samples with highest

predicted risk (predicted death within 36 hours with a probability of 0.6 or higher but

discharged alive) and the false negative samples with lowest predicted risk (died within

24 hours but death probability at 96 hours was lower than 0.2) through the LIME Text

Explainer module [110]. LIME is an algorithm that provides insights into a ‘black-box’

model by learning a locally interpretable model that can explain which input data was

most relevant to a given prediction. In contrast to SHAP [111], the LIME methods are

model-agnostic, and therefore possible to apply to a nested set of models such as those

developed here.

There was no evidence of causal leakage, with no highly weighted tokens that reflected the

target endpoints directly.
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FIGURE 4.6. Word clouds demonstrating the most highly weighted terms
for (1) false positive predictions and (2) false negative predictions.

In the word clouds in Figure 4.6, the size of a word corresponds to its weighted frequency

as associated with each error type (false positives and false negatives). There is a clear

pattern between the factors that contribute strongly to a prediction of high risk versus

those contributing strongly to a low risk prediction. Lab results are generally indicative



684 DEVELOPING A DEEP LEARNING SYSTEM TO DRIVE THE WORK OF THE CRITICAL CARE OUTREACH TEAM

of a risk increase, where medications and medication-related tokens dominate lower risk

predictions.

For false negatives, most of these drug terms represent the highest-frequency tokens in

the corpus. Their interpretation therefore is limited to the fact that they are evidence of a

sort of regression to the mean, where these patients simply do not have enough distinctive

data at the point of prediction to make an accurate risk assessment. Overall, despite having

a comparable number of unique tokens, the medication terms each individually tend to

have higher frequency than other token types. This holds true even when accounting for

the repeated administration of medications, as these tokens on average each appear in

more distinct patient trajectories than other event token types (excluding ward movement

tokens).

In the list of terms contributing to false positives, there are numerous terms that may

indicate that the patient has a complex history or is in a high-risk category, e.g. low white

cell count, high blood urea, medication resistance, artificial opening status, sirolemus

testing, low lipase. There are also, however, terms that either don’t have a sensible

interpretation with respect to deterioration risk, e.g. low bilirubin, low blood alcohol

content, Nystatin administration, or that are not sufficiently specific to make an informed

interpretation of risk e.g. anaemia, sigmoidoscopy procedure, abdominal x-ray. This

system is therefore insufficient to provide directed actions or interventions and its use must

be limited to the prioritisation of attention.

4.6.3 Congruence with Current Clinical Practice

The use of rapid response systems is intended to act as a safety net for deteriorating patients

via the monitoring of a standardised subset of patient vital signs. It has, however, been

argued that this drives nursing practice towards the detection of deterioration that is already

well underway, as opposed to highlighting at-risk patients who are yet to go downhill [112].

By removing the reliance on vital signs, this model affords the capacity to move away from

detection and into the realm of prediction.
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Studies have also found that workloads and hospital work culture affect the likelihood of

staff triggering rapid response calls according to the prescribed protocols [113]. Although

calling criteria are nominally specified to allow triggering of the rapid response protocol

based on clinical intuition alone (even when vital signs based criteria are not yet met)

nursing staff who wish to act upon early signs of deterioration report themselves to be

reluctant to do so in the face of potential criticism. This is true despite the fact that nursing

intuition can preempt deterioration identified by vital signs alone [114]. A system that is

able to provide contextualisation of such minor changes in patient state is therefore well

placed to augment existing escalation protocols.

4.6.4 Comparison Models

As a baseline, we present in Table 4.4 a selection of models that have been developed with

the goal of detecting the early stages of short-term patient deterioration in a general ward

population. Not all of these baselines can be compared directly to the models presented

in this work due to the variability of endpoints and prediction times, giving instead an

overview of the general targets and performances in existing models.

Note that it is only possible to compare WDR to baselines reported in different populations

if a fixed incidence rate is chosen in order to standardise this measure. Where it was

possible to make this calculation, the fixed rate was set to 0.35%, which is the death rate

within 24 hours in this population, per section 4.5.2.

The traditional models were identified from a recent review paper that is closely aligned

with the target use-case [115] in addition to the NEWS model [80], which is a highly cited

and widely implemented early warning score that forms the basis for comparison for many

similar works.

In order to capture potential deep learning baselines, the reference list of two systematic

reviews [116, 117] were filtered to identify EMR-based patient deterioration prediction

models. General deterioration endpoints not applicable to the CCON/CCOM role were

excluded, e.g. readmission, death other than short-term, or studies only applicable to
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patients already within the ICU. Notably, many deep learning models do not fit our use-

case as they either predict only inpatient or longer-term mortality e.g. [81, 118, 119],

target a specific morbidity such as congestive heart failure or sepsis e.g. [120, 121] or are

developed using data for patients already admitted to the ICU e.g. [122, 123] (largely due

to the wide utilisation of the freely-available MIMIC-III database [124]). [81] was retained

as the deep learning baseline, as it is closest to meeting the target use-case. Interestingly,

this reference uses the NEWS model as a mortality baseline, despite the fact that NEWS

was developed to detect 24-hour mortality where the deep learning model predicts inpatient

mortality.

This summary of baselines exposes a number of issues with the comparison of such

predictive systems. In particular, the precise definition of endpoints is inconsistent. We

also note that all mortality endpoints reported here are for in-hospital mortality only, i.e.

they are unable to report full mortality as an endpoint due to the lack of data linkage and

potential loss to followup. Only Kipnis et al [91] have access to network-level data linkage,

but this is not utilised as a primary endpoint. Rajkomar et al [81] go further by redefining

readmission to include only readmission to the same institution. The availability of linked

data as per [125] would provide additional insight and allow expansion of these models to

include identification of patients at the end of life.
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TABLE 4.4. Comparison to baseline models

Model Target Endpoint Incl/Excl Criteria Prediction Time AUROC Sens. Spec. Standardised
WDR

Traditional models

In-hospital death (within 24hr) 0.89 - - -

Unplanned ICU (within 24hr) 0.86 - - -

Cardiac arrest (within 24hr) 0.72 - - -

NEWS [80]

Combined 24hr deterioration

Ex: Discharged before midnight of admission day;
admitted directly to ICU

Time observations
taken in medical
assessment unit

0.87 - - 31.5

Alvarez et al [88] Resuscitation events and death Inc: Adult patients admitted to internal medicine ward or ICU. Ex:
admitted directly to surgery; DNR order at admission; obstetrics
admission; events on first day of admission

Daily prediction 0.85 0.52 0.94 35.6

Churpek et al (a) Cardiac arrest (in admission) 0.88 - - -

[89] Unplanned ICU (in admission) 0.77 0.54 0.90 55.6

Cardiac arrest (within 24hr) 0.88 0.65 0.93 33.2

Unplanned ICU (within 24hr)

Inc: Adult patients with
documented vital signs

Every 8 hours

0.76 - - -

Churpek et al (b)
[90]

Combined 8hr deterioration Inc: Adult patients with documented vital signs Every 8 hours 0.80 0.50 0.93 42.8

Kipnis et al [91] Combined 12hr deterioration Inc: Adult patients. Ex: out of network transfers; childbirth admis-
sions, ‘comfort care only’ orders.

Hourly 0.82 0.49 0.92 49.5

Green et al [92] Combined 24hr deterioration Inc: All admissions. At time of vital
sign observation

0.80 0.50 0.90 59.9

Deep learning models

Rajkomar et al
[81]

In-admission death Inc: Length of stay > 24hr; adult patients 24hr after admis-
sion

0.95 - - -

Unplanned ICU (within 48hr) 0.77 0.50 0.88 71.2

In-hospital death (within 24hr) 0.93 0.47 0.97 21.3

CCO watch-list
(this work)

Inc: Length of stay > 24hr; adult patients, fewer than
100 visits, not admitted directly to ICU

24hr after admission

Notes: Where more than one result available for same end-point, result with highest AUROC is reported.

Where more than one prediction time is available, most clinically relevant prediction time for that end-point is reported.

Where multiple cutoff points are available, sensitivity and specificity are reported as per review paper [115].

Workup to detection ratio is only reported where it is possible to standardise this measure to a fixed reference prevalence rate.

Reference rate has been set to 0.35% for all WDR calculations, setting sensitivity in range ∼50% per [115].

For NEWS, fixed sensitivity/specificity in target range not available. WDR instead calculated from EWS efficiency curve.
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4.6.5 Data Processing

Many clinical prediction scores rely on highly regulated data collection that may not

reflect existing clinical processes, thus requiring additional data entry or hand calculation.

Our noisy dataset reflects true practice and availability, with pre-processing limited to

routines that can be performed with no human input. Within this pre-processing of data,

we do not attempt to normalise the labelling of medications and pathology — e.g. different

spellings are present for the same test across different panels — instead, allowing contextual

embeddings to handle this noise.

Because we rely on the naturalistic data ecosystem, rather than one requiring abstraction,

we assume that we are reducing errors caused by hand calculations or operational error,

and robust to errors preexisting within the EMR. The trade-off with this strategy is that we

cannot expect these models to achieve generalisation in a new setting without re-training

to accommodate local vocabularies and idiosyncrasies of data entry. An external validation

study will therefore require translation of the entire model pipeline, rather than transfer

and mapping of only the model inputs themselves.

To this end, the full breadth of the clinical record that was available for this project was

incorporated in the input data. The tokenisation procedure included a lower-frequency

bound whereby tokens appearing in fewer than 0.5% of patient trajectories were replaced

with a placeholder ’RARE’ token, but beyond this, there was intentionally no attempt

to manually remove low-information features. We do this on the assumption that the

more hands off we are in data preparation, the more robust the results will be to changing

practice and the lower effort required by both implementers, and the end-users. We also

do not make any effort to handle multiple recordings at the same time, or detect outliers

for this same reason. This is similar to the data preparation strategy in [81], which is

promoted by those authors as a scalable approach, creating a model that has real-world

productionalisable qualities.

Implicit in this strategy of hands-off data preparation and delivery of a pipeline, rather than

a model that would be translated without retraining, is that any and all manual curation of

patient sub-types is out of scope. This follows existing all-cause mortality and deterioration
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models such as [80, 81, 125], and is supported by the capacity of the contextual embeddings

to sub-type patient classes as a by-product of the training process itself.

4.6.6 Calibration Measure

It is not feasible to calculate the Hosmer-Lemeshow statistic of calibration for this model

due to the large sample size and excessive degrees of freedom [126, 127]. Alternative

calibration statistics were reviewed for their applicability such as [128], however were

found to be unsuitable due to their focus on density. This makes sense for many use-cases,

where it is valuable to prioritise areas of the calibration curve that represent the majority of

samples, however in this situation it is not suitable, as the differences between probabilities

at the low end of the risk scale are not clinically meaningful. Instead, the differences in the

most sparse regions must be prioritised — outreach staff may be expected to treat patients

at 80% risk quite differently to those at 90% risk, despite there being very few patients in

those risk categories, where their response will differ very little for patients at 10% risk vs.

20% risk.

This knowledge-based interpretation of the utility of a model’s calibration cannot be

quantified without some parameters set by target users a priori.

4.7 Conclusion

Based on these results, we can conclude that it is technically feasible to build a set of

predictive models that meet the needs of the critical care outreach role, based on a limited

set of real-time clinical data. These models compare favourably with the current practice of

using physiological early warning scores to highlight deteriorating patients when compared

numerically in terms of accuracy, AUROC and workup to detection ratio, although there

remains a significant amount of work to successfully implement them in practice.



CHAPTER 5

Augmentation of Electronic Medical Record Data for Deep Learning

5.1 Preamble

This chapter has been submitted for publication as [18], and is reproduced as submitted,

with the exception of this preamble and minor updates to cross-referencing for thesis

cohesion.

In this chapter, we demonstrate the result of applying the novel time-series data augmenta-

tion strategy described in Chapter 4. Although this technique is mature in the domain of

image processing, it is uncommon as applied to discrete time-series data. The confirmation

of generalisability in a publicly available dataset serves as the basis of a validation study in

external data, and quantifies the effect of this domain-specific data processing technique.

We also provide more in-depth implementation details in the form of published code, for

the purposes of research reproducibility.

Beyond the obvious benefit of being able to make code available that is useful in a public

dataset, the other reason for demonstrating the specific effect of this technique in the

MIMICIII dataset instead of the core dataset of this project was due to the significantly

higher costs of the secure infrastructure required to process this private data compared to

standard cloud compute resources.
74
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5.2 Abstract

Data imbalance is a well-known challenge in the development of machine learning models.

This is particularly relevant when the minority class is the class of interest, which is

frequently the case in models that predict mortality, specific diagnoses or other important

clinical end-points.

Typical methods of dealing with this include over- or under-sampling training data, or

weighting the loss function in order to boost the signal from the minority class. Data

augmentation is another method that is employed frequently — particularly for models

that use images as input data. In the case of discrete time-series data, however, there is no

consensus method of data augmentation.

We propose a simple data augmentation strategy that can be applied to discrete time-series

data from the EMR. This strategy is then demonstrated using a publicly available data-set,

in order to provide proof of concept for the work undertaken in Chapter 4, where data is

unable to be made open.

5.3 Background

5.3.1 Premise

Clinical prediction models frequently target rare endpoints such as mortality within a

specific time-frame or other adverse events. This is a known challenge when developing

machine learning models [98], as it is easy to over-train to the majority set, producing a

classifier of high accuracy, but low utility.

In machine learning by gradient descent, the weights of a model are updated based on the

overall distance of the model output from the target state using the gradients of a predefined

differentiable function. This function can act as either a penalty to be minimised (the

‘cost’ of each error), or a target to be maximised (the ‘reward’ for each correct output).
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For simplicity, we will refer to cost functions and minimisation for the remainder of this

work, however can be simply extrapolated by reversing the target class definition (true = 1

becoming true = 0).

If each training data point contributes equally to this cost function, in a data set with a

large imbalance between the majority and minority class the calculation quickly favours

accuracy in the majority and will err on the side of under-classifying the class of interest.

Under extreme levels of imbalance, this is true even in the instance where there is a strong

signal from the minority class.

Formally, if the model M takes inputs x̄ and produces predictions ŷ, we calculate the loss

L as the sum of the cost C across a batch of size n, where C is some predefined distance

metric between ŷ and the target labeled output y.

ŷ = M(x̄)

L =
n∑
i=1

C(yi − ŷi)

If the classes are imbalanced by some factor imb, we can separate samples x̄ and labels

y belonging to the majority and minority classes into (ymaj , ymin) and (xmaj , xmin)

respectively such that x = xmaj ∪ xmin and xmaj ∩ xmin = ∅, with imb ∗ n samples in

(ymaj, xmaj) and (1− imb) ∗ n samples in (ymin, xmin). In the case where imb = 0.5 (a

balanced data set), the loss for each batch is equally dependent on costs from each class.

As imb → 1, L → Lmaj , increasing the likelihood of simply learning a majority class

classifier, which predicts the majority class for all input samples.

If applying an under- or over- sampling strategy, the loss function is artificially balanced by

masking a portion of (ymaj, xmaj) or repeating a portion of (ymin, xmin) respectively, until

the signal of each class is able to affect the final model weights at a level that is appropriate

for the particular use-case.
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5.3.2 Data Augmentation

Data augmentation is an alternative to oversampling, where instead of repeating the same

samples exactly, synthetic samples are created and used to expand the dataset more richly

than repetition alone.

Data augmentation in this context has two goals. If samples belonging to each class are

augmented at a rate that is inversely proportional to their imbalance, this has an effect

equivalent to an oversampling strategy as described above. In addition to this, it is possible

to introduce an element of spatial or temporal invariance that improves the ability of the

model to recognise patterns in unseen samples [129]. In an image classification task for

instance, one would not want the model to rely on the precise orientation or positioning of

the input to be able to detect the presence of the target class. Thus, by repeating each input

image with random rotation, scale and skew factors, the model becomes robust in the face

of input images that were captured in different contexts.

More recently, data augmentation strategies using generative adversarial networks (GANs)

have been applied to data from the electronic medical record (EMR) with some success

[130], although this brings with it some additional challenges due to the complexity of the

implementation and cost of significant additional model training. A GAN uses two models

with opposing (adversarial) goals to produce realistic data samples — a generator network

that creates synthetic data and a discriminator network that tries to differentiate these

synthetic samples from the real data. As the discriminator becomes unable to differentiate

between real and generated data samples, these samples are deemed sufficiently realistic,

and treated as though they were part of the original dataset. This has been applied with

success in medical image analysis [131], which are atypical images in their uniformity of

scale and aspect. It is less common in other image domains, likely due to the availability

of other more straightforward methods such as applying transformational filters that are

not applicable to medical images (a skewed or scaled chest x-ray, for example, loses

information that is relevant to the prediction task).

It is possible to augment continuous time-series data in an analogous way, where noise

can be added and filters applied in order to generate additional training samples that can
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improve model generalisability [99] — see examples in Figure 5.1. Discrete data, however,

are more challenging to modify in this manner, as noise and multiplication factors are

meaningless. The problem of finding a generalised solution for discrete, ordered tokens

(as found in text or EMR data) is a known challenge [132]. We propose instead, a domain-

specific method of augmentation, which makes clinically relevant assumptions about the

way data is entered into the source system.

FIGURE 5.1. Examples of typical augmentation strategies for image and
continuous time-series data. Top L-R: original data, scale, shear transform-
ations; Bottom L-R: original data, generated noise, transformed signal.

5.4 Methods

5.4.1 Data and code

The source data for this work is an excerpt of the MIMIC-III Clinical Database [124,

133]. This dataset was accessed using the Amazon Web Services Athena Cloud Formation

scripts provided by MIT-LCP [134]. Code that builds on these scripts to produce the results

in this paper can be found in the Github repository https://github.com/CBDRH/

PaTMan. These models were built using the TensorFlow library [135], version 2.0.

https://github.com/CBDRH/PaTMan
https://github.com/CBDRH/PaTMan
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5.4.2 Input data

This dataset contains 61,500 ICU admissions across 57,773 hospital admissions, belonging

to 46,646 patients. Hospital admissions without an ‘admit’ record in the transfers table are

excluded, as these represent either newborns or incomplete records.

As input, we generate predictions only for the first ICU admission in each hospitalisation.

Hospitalisations where the patient was discharged to general wards within 6 hours of their

index ICU admission and where the patient died within the first 6 hours of their index ICU

admission were excluded, leaving a final total of 52,770 included index ICU admissions.

5.4.3 Endpoint targets

In order to demonstrate this technique, we selected three prediction targets, each having a

differing level of endpoint imbalance.

Endpoint Count True Count False Class Imbalance

Death within this ICU admission 3346 49,424 0.94

Death within this hospital admission 5304 47,466 0.90

ICU admission duration > 7 days 7915 44,855 0.85

TABLE 5.1. Endpoint distributions

5.4.4 Tokenisation

Discrete clinical events were gathered for patient demographics, historical admissions,

historical diagnoses and historical ICU admissions. Pathology results were converted to

discrete tokens according to their decile within all input data i.e. [test type]-[decile], or by

[test type] alone for non-numeric results.

These tokens were concatenated in as a temporally ordered list, which describes the patient

trajectory over time, e.g. [Admission, Female, 75, BUN-9, GFR-2, Ultrasound-Kidney, ...,
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Discharge, N17.8, ..., Admission, Female, 77, ..., ICU-Admission, ...] describes a patient

with one prior admission and a history of kidney failure. Each trajectory contains the

most recent 500 events that occur prior to prediction time. Diagnoses from the current

admission are not included, as coded diagnostic information is not available in real-time.

This description of patient trajectories in tokenised form is equivalent to the pre-processing

described in Chapter 4.

5.4.5 Model architecture

A simple model architecture was implemented, with a small set of hyperparameters tested

for each prediction task. Two versions of the model network were implemented with either

LSTM or GRU bidirectional recurrent layers of 5, 10 or 15 nodes, in order to observe

the robustness of the technique across simple architecture changes. This set of piloted

architectures was held the same across all prediction tasks, as the purpose of this work

is to demonstrate the effect of the augmentation strategy, rather than to produce the most

precisely accurate classifier for each endpoint.

5.4.6 Augmentation strategies

We make a number of assumptions about data within the electronic medical record that

allow the creation of augmented samples that can be used to improve model accuracy.

Temporal ordering is of course significant when determining whether or not the patient

trajectory is trending towards recovery or deterioration, however it is unlikely to matter at a

resolution shorter than one hour in duration. The data entry workflow is not instantaneous,

and can be modulated by systems that are outside of the scope of the target patient’s

condition, e.g. the precise time that a pathology result is returned or manual data entry is

completed may be heavily affected by the overall workload of the hospital on a given day.

We therefore bucket data into time windows and randomly shuffle events in each of these

buckets before reassembling the trajectory in order to increase the number of available

samples.
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We also assume that the length of available patient history is only somewhat related to

patient outcomes. A more complex history of interactions with the healthcare system can

be expected to indicate a more severely ill patient, however this dataset was not generated

within a closed system of care, and therefore the lack of available history data does not

strictly indicate that it does not exist, as patients may have interacted with numerous other

providers prior to this admission. Thus, after bucketing and shuffling of data, we randomly

truncate patient trajectories by dropping up to one third of the oldest events in each sample.

Finally, clinical data entry is a noisy process, affected by many external forces, and

therefore we assume that up to half of each patient trajectory could be randomly masked

without changing the clinical interpretation.

By combining these strategies multiple times, we generate additional samples proportional

to the input distributions to train each model.

5.4.7 Time to event weighting

The closer a patient is to time of death when a prediction is made, the more extreme their

deterioration risk. Similarly, the longer the eventual ICU admission, the higher impact that

early intervention may have on their overall trajectory.

We expect that amplifying the signal for subjects with the strongest evidence of deteriora-

tion risk will improve the overall calibration of our models.

For death endpoints, time to event (TTE) was set to the number of days until death at pre-

diction time and the weighting was inversely proportional to this value (i.e. more repetition

of data for subjects with lower time to death). For the long ICU admission endpoint, the

TTE parameter was eventual ICU admission duration in weeks, and the weighting was

directly proportional (higher repetition for the longest overall ICU admissions).
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5.4.8 Data balancing

5 balancing strategies were tested:

(1) None: Input data was fed to the model according to the original distribution.

(2) Oversampling (simple): Minority class samples were randomly repeated at a

rate required to approximately balance the input data.

(3) Oversampling (TTE): As per oversampling strategy, except the rate of repetition

is instead calculated based on the time to event for the minority class. The total

repetition rate is equivalent to the rate for simple oversampling.

(4) Augmentation (simple): Minority class samples were randomly augmented

(first shuffling, then either truncating or masking). For data augmentation, we

augment both majority and minority class samples, holding the ratio of these rates

equivalent to the same rate as per simple oversampling.

(5) Augmentation (TTE): As per augmentation strategy, weighted based on the time

to event for minority class.

5.4.9 Evaluation Framework

5.4.9.1 Standard metrics

Given the rare targets of these prediction models, we follow our previous work in Chapter

4 in reporting additional metrics to provide the necessary context that can be obscured by

reporting the AUROC in isolation [102]. Specifically we focus on the effect of different

training strategies on the workup to detection ratio (WDR) versus sensitivity, as this gives

a concrete measure of the excess workload on clinicians (i.e. how many patients they must

assess for each one correctly targeted intervention) as compared to the potential benefit to

the patient (i.e. what proportion of truly at-risk patients are correctly highlighted by the

model).
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5.4.9.2 Model calibration

In order to combat the known issue of poor calibration of deep-learning models [101],

we follow the same calibration process demonstrated in Chapter 4. This strategy uses the

distribution of predictions generated for a held-out calibration set to establish reference

cut-off thresholds that reflect the expected distribution of the target event.

These quantiles are set using a stick-breaking process, which generates 10 thresholds that

are then transformed to produce a risk score of between 1 and 10 for each input trajectory.

The stick breaking process is defined such that approximately the same proportion of

inputs are classified ‘high risk’ (risk score of 5 or more) as the observed proportion in

the calibration set. In practice for the most rare events this makes the high-risk bands

very narrow and the low-risk bands quite wide, reflecting the expectation that many more

patients will be at low risk of experiencing these rare target events than will be at high risk.

5.4.9.3 Risk stratification

Setting a score of 5 or more as ’high risk’ and a score of between 2 and 4 as ’medium risk’,

we report the sensitivity, specificity and workup to detection ratio at each of these thresholds.

This represents a likely end-user workflow, where patients at high risk of deterioration

can be triaged and attended to preemptively. It also gives a more clinically relevant and

interpretable indication of model performance than area under the receiver operating

characteristic curve (AUROC) alone, which can be insufficient for fully understanding

model performance for low prevalence events.

5.5 Results

5.5.1 Predictive performance

Figure 5.2 summarises performance statistics for each model architecture as applied to

each of the target endpoints.
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The AUROC metric (row 1) shows that the original data without any up-sampling applied

rapidly fits to the majority class, struggling to capture much of the data signal at all, plat-

eauing with an AUROC of close to 0.5 (where 0.5 is the AUROC for random classification,

seen as a diagonal line). Reviewing the precision-recall curve (row 2) in combination

with the workup to detection ratio (row 3) shows that for such imbalanced targets, all of

the up-sampling techniques improve the performance somewhat, with the augmentation

strategies generally outperforming the basic oversampling strategies across all metrics.

The alerts per 100 patients versus sensitivity (bottom row) shows that in order to achieve

50% sensitivity, models trained using the original data distribution have to generate alerts

for between 30 and 40% of patients, where the augmented data can achieve the same

sensitivity while generating alerts for 10% of patients or fewer.

For the prediction of death in ICU, time to event augmentation (AUROC=0.83) and basic

data augmentation (AUROC=0.82) outperform time to event oversampling (AUROC=0.80)

and basic oversampling (AUROC=0.73). Likewise for prediction of in-patient death, time

to event and basic augmentation (AUROC=0.82, 0.81 respectively) outperform time to

event and basic oversampling (AUROC=0.79, 0.80 respectively). For the less severely

imbalanced prediction task of long ICU admissions this also holds, with time to event

(AUROC=0.80) and basic (AUROC=0.81) augmentation showing significant improvement

over time to event (AUROC=0.74) and basic (AUROC=0.77) oversampling.
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FIGURE 5.2. Comparing model statistics across endpoints and sampling
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5.5.2 Model calibration

In Figure 5.3, raw model output from the time-weighted augmentation strategy is compared

with predictions that have been calibrated according to the expected target distribution and

a more traditional isotonic recalibration technique [103]. In all cases, the distribution-based

strategy is much closer to the line showing correctly calibrated risk, however the very low

number of positive cases in the calibration set limits its utility for predicting death in ICU

across the whole range of probabilities. It does, however, retain its qualities of improved

calibration, despite being unable to reach higher levels of confidence.
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FIGURE 5.3. Effect of different model calibration strategies

Figure 5.5 compares the calibration curves for each of the piloted architectures. Ideal

calibration is shown as a diagonal line. All of the original data distribution training

strategies fall significantly below this ideal line, as they fit to the majority class and predict

very few patients to be at high risk. The discrimination is poor, as there are a similar

number of positive samples within those predicted to be at low risk as those predicted at

high risk. Particularly of note are the almost horizontal portions of the graphs below 50%

risk for both death in admission and long ICU stay.

The combination of time to event sampling and the data augmentation strategy has the most

consistently acceptable calibration curves across all endpoints and architectures, meaning

that there is less dependence on the model architecture itself, and the signal within the data

is captured in a robust fashion. The LSTM architecture with width of 10 units had the most

stable calibration across sampling strategies and end-points, so for the rest of the results

section where architectures are not being compared, these are the results reported.
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The relative stability of the calibration of models trained on augmented data versus over-

sampled data provides evidence that the augmentation strategy described in this work does

indeed achieve the stated goal of introducing temporal invariance through the modulation

of bucketed event windows.

5.5.3 Time to event weighting strategies

When reviewing models produced under time-to-event weighting, this appears to have a

different effect under the over-sampled and augmentation strategies. Applied to augmented

data the improved stability of model calibration is quite clear, although the performance

across other statistics is similar. This suggests that increasing attention to the most high-

risk samples does indeed improve discrimination of patients at most imminent risk of

deterioration from those at moderately elevated risk, and is likely to be a better decision

with respect to clinical outcomes, rather than attending only to improvements in AUROC.

For over-sampled data under time-to-event weighting, although there is some improvement

in discrimination for the high-risk categories, this improvement is less consistent and

comes at the expense of a jump in the workup to detection ratio due to an increase in

false-positive predictions.

This difference may be due to the fact that an augmentation strategy also acts as a sort of

model ensembling, as all samples are augmented and therefore repeated multiple times,

including those of the negative class. In the test set this means that all samples are

repeated the same number of times with the prediction averaged, which can improve model

performance in and of itself [136]. In addition, in the training set, those at extreme risk

are augmented more frequently than those at elevated risk, but patients with elevated

risk will still have significantly more samples than members of the negative class. If

we aim to keep the overall distribution steady between oversampling under basic and

time-to-event weighting in order to avoid overtraining to the minority class, an increase

in the oversampling rate at the extremities will have the effect of decreasing the rate for

positive class samples that are at less imminent risk, until they are only very slightly more

prevalent than the negative class, and thus their signal is harder to capture.
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Considering the events over the course of one week, where day 1 is the 24-hour period

starting at prediction time, Figure 5.4 shows that the time to event sampling strategy does

indeed behave as per this expectation, where the proportion of events occurring in the first

day that are correctly predicted to be at high risk is much higher than for basic weighting,

and that this is most clearly emphasised for the rarest endpoints.
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5.5.4 Risk-stratification

In Table 5.2 we follow the reporting of model performance in [137] by stratification into

high, medium and low risk categories, as this gives a concrete way for clinical end-users to

anticipate the types of actions they would be likely to take relative to the number of alerts

produced and the number of cases captured.

We define a score of 5 or above as high risk, which is specified according to the calibration

set such that it should capture approximately the same proportion of the population as the

expected event prevalence, and a score below 2 as low risk.

For death in ICU, the time to event augmentation strategy produced a well-calibrated result,

but the discrimination at the high-end of the risk prediction was poor. This meant that

for high scores, the risk buckets were excessively narrow, and thus failed to capture the

targeted 6% of the population. Despite also only classifying 3.8% of the population as

high risk, the basic augmentation strategy captured 135 events in this window, representing

approximately one quarter of all true events. For every two events correctly classified in

this risk stratum, approximately three additional cases were reviewed, for a workup to

detection ratio of 2.39.

The clinical practicality of presenting results by risk category can be seen when comparing

the time to event weighted oversampling and augmentation strategies for the death in ICU

target. Although the sensitivity is higher for the oversampled data, capturing 141 events in

the high risk stratum instead of 134, the workup to detection ratio drops more significantly.

For these additional 7 cases correctly highlighted, there are 77 more alarms generated. It

is unlikely to be considered prudent to generate that many additional alarms to capture a

small number of events. It becomes easier to conceptualise such metrics with all of the

practical clinical implications on both workload and patient outcomes when presented in

this form.



5.6 DISCUSSION 91

Strategy Original Oversample - basic Oversample - TTE Augment - Basic Augment - TTE
Risk Stratum Low Medium High Low Medium High Low Medium High Low Medium High Low Medium High

Death in ICU

Number predicted 4881 2936 196 5028 2775 210 4673 2936 404 4557 3150 306 4669 3024 320

(%) 60.9 36.6 2.4 62.7 34.6 2.6 58.3 36.6 5 56.9 39.3 3.8 58.3 37.7 4

Number events in group 264 196 32 146 272 74 97 254 141 74 283 135 61 297 134

WDR - 14.98 6.12 - 10.2 2.84 - 11.56 2.87 - 11.13 2.27 - 10.18 2.39

Sens. - 0.4 0.07 - 0.55 0.15 - 0.52 0.29 - 0.58 0.27 - 0.6 0.27

NPV 0.95 - - 0.97 - - 0.98 - - 0.98 - - 0.99 - -

Death in admission

Number predicted 3731 3620 662 3598 3510 905 3816 3336 861 3634 3479 900 3527 3530 956

(%) 46.6 45.2 8.3 44.9 43.8 11.3 47.6 41.6 10.7 45.4 43.4 11.2 44 44.1 11.9

Number events in group 293 380 108 92 328 361 123 304 354 93 319 369 79 303 399

WDR - 9.53 6.13 - 10.7 2.51 - 10.97 2.43 - 10.91 2.44 - 11.65 2.4

Sens. - 0.49 0.14 - 0.42 0.46 - 0.39 0.45 - 0.41 0.47 - 0.39 0.51

NPV 0.92 - - 0.97 - - 0.97 - - 0.97 - - 0.98 - -

ICU stay >7 days

Number predicted 3202 3669 1142 3019 3717 1277 3063 3707 1243 3096 3613 1304 3063 3722 1228

(%) 40 45.8 14.3 37.7 46.4 15.9 38.2 46.3 15.5 38.6 45.1 16.3 38.2 46.4 15.3

Number events in group 438 560 251 181 471 597 215 470 564 128 475 646 142 475 632

WDR - 6.55 4.55 - 7.89 2.14 - 7.89 2.2 - 7.61 2.02 - 7.84 1.94

Sens. - 0.45 0.2 - 0.38 0.48 - 0.38 0.45 - 0.38 0.52 - 0.38 0.51

NPV 0.86 - - 0.94 - - 0.93 - - 0.96 - - 0.95 - -

TABLE 5.2. Stratified prediction performance of data sampling strategies
across endpoints. Note that for high and medium risk strata, predictions
in this category are treated as positive. For these groups, the in-group
event count, workup to detection ratio and sensitivity are calculated for
that risk category alone (i.e. these values are not provided as ‘greater than
or equal to’ for medium risk classification), and the negative predictive
value cannot be calculated. Likewise low risk classification is treated as a
negative prediction and therefore sensitivity and workup to detection ratio
are not available.

5.6 Discussion

In this chapter, we do not implement a fully tuned architecture that is targeted to each

specific endpoint of interest, as was demonstrated in Chapter 4, instead building a very

simple, shallow network that can make explicit the effect of manipulating the data sampling

strategy alone. In particular, this technique is specific to recurrent data, and thus we do

not include the key component of the densely connected sub-model that ingests patient

demographic factors. This fact notwithstanding, we still manage to produce a model that

can predict half of inpatient deaths as high risk with a workup to detection ratio of 2.4 (for

every 5 patients highlighted by the model, on average 2 will in fact die before discharge).

Importantly, model calibration is greatly improved through the application of this sampling

strategy, in a manner that is robust across different model architectures.
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Traditional oversampling methods allow one to boost the signal of the minority class only,

with a straightforward copy of each minority class sample. Using an augmentation strategy

instead allows for more flexibility, where both the minority and majority class data may

be strengthened by resampling each individual patient trajectory in a knowledge-driven

fashion in order to create a much richer dataset for both classes.

This strategy is common in imaging and continuous time-series datasets, but the results

presented here show that by making certain assumptions about the data collection meth-

odology, it is possible to implement an equivalent strategy in discrete time-series data.

This strategy has been designed around assumptions that are relevant to data entry in the

electronic health record and proven against that data, however there are many equivalent

input token-based datasets that may benefit from such treatment, for example consumer

behaviour on websites that can be used to drive recommender systems.

Although generative models have been proposed for the purpose of creating augmented

datasets for training models based in EMR data, they typically focus on generating ag-

gregate data [138]. SMOTE is another alternative for adding synthetic data samples of

the minority class [139], however this takes as its input tabular data, which limits its

applicability to time-series data. Other methods of generating synthetic EMR data are

knowledge-based and therefore restricted to specific disease domains [140, 141]. This is

the only method to the authors’ knowledge that is driven by known factors of the EMR

data entry paradigm as opposed to the data itself, and therefore generalisable across all

patient classes and robust to unseen combinations of patient characteristics.

A recent review of data augmentation for time-series data describes many strategies for

augmenting continuous signals [142]. Although the masking, windowing and perturbation

augmentation modalities are generally analogous to the strategies described here, their

application to discrete tokens and specifically the EMR domain is novel. No comparable

studies were found that addressed discrete time-series augmentation in other domains

either.

In addition, this method is computationally and logically inexpensive in comparison to

other generative methods. This factor not only reduces the cost of creating the input
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data (both time and financial), but also increases the applicability of model introspection

techniques such as LIME [110] or SHAP [111]. These algorithms for model explainability

output the factors of highest importance with respect to a specific prediction, which may

be obfuscated by the use of truly synthetic data.

By weighting model input according to the time-to-event parameter, we can ensure that

risk immanency is captured and thereby robustly improve model calibration.

The strategy of basing an augmentation strategy around knowledge of the data-entry

paradigm, rather than implementing a more heavily-engineered disease-specific method is

also strongly related to one of the recurring themes seen in Chapter 4 of model scalability

and productionalisation capacity. In a similar fashion the decision to retain all available

data in the clinical record across all patients, rather than hand-curating a mapping to some

required subset or population, is one that demonstrates a more realistic application of these

technologies that are commonplace in domains other than the EMR.

5.7 Conclusion

The pattern of improvement seen from applying the data augmentation strategy described

in this work is conclusive - improving prediction results across the board for three distinct

end-points, each with a different level of data imbalance. Time to event sampling improves

model calibration for all endpoints, although its effect on other metrics is less consistent.



CHAPTER 6

Watch-list User Interface

6.1 Objective

In Chapters 3–5 the case has been made that it is indeed technically feasible to implement

a system that meets the stated requirements of the critical care outreach workflow, i.e. one

that predicts short-term patient deterioration to an acceptable level of accuracy, using only

data available in real-time at the target institution.

In order to address the next research question that is posed in this work, and measure

the potential success of this system as perceived by likely stakeholders, it is necessary to

envisage and describe a prototype user interface for this system.

Within the scope of this thesis, it is infeasible to include a complete and rigorous design

phase for this user interface. There are, however, a number of key stakeholders who have

shaped the direction of this work. Across a series of 1-1 interviews, a set of pilot use-cases

were captured and used to define a realistic user interface that could be presented for an

evaluation phase, which will be described in Chapter 7.

6.2 Use-Cases

The following four use-cases describe the most highly desired functionalities of a pilot

implementation of the previously described models. There was significant alignment of

priorities between the interview subjects, however it should be noted that the interviews
94
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took place in an informal setting, at different stages throughout the project. Three out

of four interviewees reviewed and endorsed the interface that was proposed as a result

of these sessions, but one changed roles and was no longer available to the project team

before this was possible.

6.2.1 UC-1: Prioritise Current Risk Across Hospital

This use-case was the primary driver and the genesis of this project, where users want to

have a quick and accessible overview of current deterioration risk status for all patients, for

the purposes of prioritising outreach interventions. This overview must be easily digested,

and it was not felt to be important to provide detailed explanations for each risk assessment

provided if it came at the expense of additional complexity.

6.2.2 UC-2: Individual Case Risk Trend

Although at a high-level, model introspection was secondary to usability, it was a non-

negotiable requirement that the detailed model inputs would be available if a user drilled

down to see further information for a particular case.

The models described do not have any inherent explainability or attention mechanisms.

Instead we build upon the assumption that the system is not implemented as a single

point-in-time assessment of risk, rather that for a given patient, their risk is evaluated at

numerous times throughout their entire admission. If this time-line view of patient risk is

taken, it is possible to present these results in such a way that one can see which clinical

events align with an increase or decrease in predicted risk.

Figure 6.1 shows the mean risk prediction (line) and standard deviation (shaded) for the

first 100 hours of admission for all admissions in the test set that are at least this long.

They are grouped here by actual outcome after the 100th hour. It is not possible to give

an actual individual example of how this change in risk corresponds to specific events

due to privacy and confidentiality restrictions on the source data, but this population-level
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FIGURE 6.1. Risk changes up to prediction time

summary shows how the risk profile changes as more information is available. By aligning

the trend line for a patient with the clinical data, a user may investigate the source of a

change of interest to whatever level is useful to them.

6.2.3 UC-3: Manually Override

It was imperative to all interviewees that the workflow encompassing palliative and end-

of-life (EOL) care be carefully considered in the design of this interface. This requires

that an EOL patient that was surfaced as high deterioration risk by the system could be

proactively marked as ‘risk reviewed and accepted’ or ‘comfort care only’, so that the

high-risk summary would remain useful. A secondary effect of this would be to streamline

the current EOL processes, allowing staff to easily see which patients do not yet have in

place the necessary advance care directives.
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6.2.4 UC-4: Sort, Filter and Summarise

There were a number of user groups proposed who do not fit the scope of the critical care

outreach user, but who would also benefit from understanding the risk profile of inpatients

in a summary fashion.

Medical officers performing shift handover: Filtering by assigned clinician and/or

ward allows the generation of a priority list for handover discussions. Outside of formal

handover processes, a clinician starting a shift may also filter for their own assigned

patients to get a summary of acuity changes overnight.

Hospital admissions staff: A sortable ward-level summary of current patient deteriora-

tion risk is a better proxy measure for hospital case-mix and workload than any currently

available in real-time. This has the potential benefit of anticipating overload and bed-block

before it occurs, allowing staff to make informed decisions regarding scheduling, staffing

and discretionary admissions/transfers/discharges.

Patient safety and quality departments: If one has a good idea of patient risk traject-

ories over time, it is possible to identify those deaths that were most and least expected.

Of course there will always be deaths that are not anticipated by the system but which are

entirely explainable by a clinician, as a limitation to the finite training set. This system

must therefore not entirely replace any manual review of unacceptable mortality and

morbidity, however it could rationally be used as one of numerous inputs into the patient

safety governance procedures.

Risk summaries tracked over time also have potential uses as metrics to measure the impact

of institution-level interventions, particularly in cases where other endpoints are rare, so

it can be difficult to reach statistical significance. An overall decrease in acuity of target

groups may give a more fine-grained view of improved outcomes.
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FIGURE 6.2. The watch-list as envisaged

6.3 Interface Description

Figure 6.2 shows the resultant watch-list application as envisaged, based on the described

use-cases.

The solution that is proposed takes visual and operational cues from common clinical

dashboard applications in order to reduce as much as possible the burden of the application

learning curve. A simple three-column design is used, which can support adaptive web-

based implementations, expected to be suitable for mass-market tablet and mobile devices,

reducing the risk of vendor dependence.

The three-column design is hierarchical from left to right, where the core use-cases (UC-1,

UC-2) take the most prominent position, to support the goal of rapid-synthesis and overview.

In a responsive design, this also means that in the face of reduced screen real-estate (such

as on a mobile device), the core use-cases will still be prominent.
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(A) Summary panel. Use the summary panel to see a high-level view of cases according

to a simple traffic-light schema. This allows an immediate overview of the risk profile of

the hospital and working priority list for outreach, meeting the goals of UC-1.

(B) Detail view. In the detail view, a user can see predictions for individual cases over

time to understand trends, and highlight events co-occurring with risk changes over time

by interacting with both the graphed patient trajectory and the time-stamped list of input

events (UC-2). The precise user interface controls would require extensive piloting to

navigate this complex relationship, but it is expected to be advantageous to link click events

on the graphed risk with a change in focus or highlight in the event list and vice-versa.

The detail view also holds the controls required to enact UC-3, taking the form of a context

menu to set patient-level characteristics. This manual override would then be reflected in

the summary panel, where a user may switch between deterioration risk (default) and EOL

care priority queues.

(C) Control panel. Controls available to sort and filter by risk category, location, as-

signed clinician or other relevant parameters, as required for all users described in UC-4.

Both figures 6.1 and 6.2, together with a summary of Chapter 4 results and a simplified

description of the above use-cases were used as the input to the following chapter. The full

text that was presented to survey participants can be found in the Appendix to Chapter 7:

Proposed application and use-cases.



CHAPTER 7

Clinician Readiness to Adopt A.I. for Critical Care Prioritisation

7.1 Preamble

This chapter has been submitted for publication as [19] and is reproduced exactly as

submitted, with the exception of this preamble.

In this chapter, the proposed watch-list application was presented to a series of likely

stakeholders in order to determine their readiness to adopt it within their workflow. In

the context of this thesis, this work is intended to take the core technical work described

in Chapter 4 and provide the necessary data required to relate it back to the clinical

requirements expressed in Chapter 2.

7.2 Abstract

There is a wide chasm between what has been shown to be feasible in the application

of artificial intelligence to data from the electronic medical record, and what is currently

available. The reasons for this are complex and understudied, and vary across technical,

ethical and sociocultural domains. This work addresses the gap in the literature for studies

that determine the readiness of clinical end-users to adopt such tools and the way in which

they are perceived to affect clinical practice itself.
100
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In this study, we present a novel, credible AI system for predicting in-patient deterioration

to likely end users. We gauge their readiness to adopt this technology using a modified

version of the technology adoption model.

Users are found to be moderately positive towards the potential introduction of this techno-

logy in their workflow, although they demonstrate particular concern for the appropriateness

of the clinical setting into which it is deployed.

7.3 Background

Within the recent proliferation of reviews and summaries of the state of artificial intelligence

(AI) in clinical settings [116, 143–147], there is evidence of successful translation of AI

research into actual clinical practice for the analysis of images [148–152]1. However, when

it comes to the domain of AI decision support based on data from the electronic medical

record (EMR), despite much interest and a number of viable models [81, 153, 154], there

are very few signs of mature real-world implementations of such systems.

Asides from the technical and procedural challenges of data harmonisation and integration,

model generalisability and ethical safeguards [144, 155, 156], and the high bar of achieving

approval of software as a medical device [157], there is of course also a human and cultural

barrier to entry that must be crossed in order to successfully implement these tools in

practice. Despite this, there is no prior work to our knowledge that presents a credible

EMR-based AI decision support system to likely clinician users to assess their opinion of

its suitability within their daily work.

The work presented in Chapter 4 describes an AI system for predicting risk of in-patient

deterioration, targeted to the specific use-case of prioritising the work of the critical care

outreach team. This system uses only real-time available data and is designed with the

goal of being integratable within the EMR.

1Note that these examples are limited to those demonstrating successful implementation and real-world
use, as opposed to studies describing model development, which are plentiful.
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7.3.1 Objective

The aim of this study is to assess the readiness of intensive care clinicians and leaders

to adopt an AI-based decision support system for the prioritisation of patients at risk of

deterioration on the wards.

The critical care outreach workflow is a reasonable one in which to pilot this emergent

technology because it is a challenging and fast-paced role that requires rapidly updating

awareness of events across the whole hospital. It is therefore a natural fit for any tool that

can reliably synthesise a large amount of real-time data to augment clinical judgement.

In addition, it already typically relies on track-and-trigger early warning systems (EWS)

[80], and therefore the progression to what is effectively a risk model based on a broader

selection of data is not as great a leap as it may be in other contexts.

We propose that this is a necessary next step towards completion of an appropriate impact

study, as the complexity of such an implementation (even in pilot phase) cannot be

understated. A full and theoretically grounded account of stakeholder readiness and

understanding of potential pain points will be a powerful tool in navigating an intricately

balanced set of clinical, cultural and technological priorities required for its successful

execution.

7.3.2 Prior Work

The original technology acceptance model (TAM) [158] and its derivatives [15, 159]

have been used to understand barriers to technology adoption in the context of many

disruptive technologies such as wireless internet [160], e-commerce [161], and personal

computing [162], and importantly have been demonstrated for healthcare applications such

as telemedicine [163], electronic medical records [164] and mobile healthcare systems

[165].

The TAM framework explains the behavioural intention of an individual to use a new

technology as a factor of their attitude towards its use. Their attitude towards a technology
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is affected directly by the measures of its perceived usefulness (PU) and perceived ease of

use (PEOU). The premise of this model is that an individual’s attitude to using a system

is a good predictor of their behavioural intention to use it (BI), and in turn, their actual

eventual use.

The review papers [166, 167] found that whilst the TAM has general capacity to predict

technology acceptance in a clinical or healthcare setting, it is necessary to include additional

context-specific explanatory variables.

We reviewed the literature for expanded versions of the TAM that had been validated

in a healthcare setting [168, 169] in order to adopt a minimal set of relevant additional

variables for this use-case. The proposed additional variables were kept to a minimal

set of demographic questions in order to reduce the burden of response on the target

subjects, in particular given the timing of the study during the outbreak of COVID-19

and the extraordinary pressure on intensive care teams during this time. It was deemed

unlikely that within the highly targeted (and therefore small) population of probable users,

sufficient responses could be gathered to validate any new constructs, so added variables

were restricted to modulating factors only.

7.3.3 Research Model and Hypotheses

The TAM is comprised of the hypotheses summarised as H1–5 in Table 7.1. We further

expanded the model with three additional context-specific hypotheses. We do not include

the TAM2 second and third order factor antecedents of perceived usefulness [15] due to

the challenge of meaningfully capturing these factors for a proposed (not implemented)

system.

It is hypothesised that the perception of usefulness will be the most significant factor in

the successful adoption of this technology (H3b), as the capacity for a model to improve

the workflow itself is a critical factor for clinician buy-in. This is particularly true in this

early stage, where it is necessary to confirm whether the model is even addressing a real

need [16]. This hypothesis is supported by the observation made by [167] that in 100% of
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reviewed healthcare TAM studies, the PU→BI relationship was significant, compared to

just over half of reviewed studies finding a statistically significant PEOU→BI relationship.

This study expands the existing TAM hypotheses with three additional modulating factors:

• The perception of usefulness will be modulated by how well a potential user can

envisage such a system supporting their own workflow, and therefore will be

dependent upon their role (H6).

• A user who spends most of their working week assigned to relevant patient

deterioration tasks will see greater value in automated data synthesis to support

the workflow, increasing their perception of its usefulness (H7). Once the system

is in regular use, it is likely that higher time devoted to the task would also

increase a user’s perception of ease of use, but in this hypothetical phase (prior to

any learning curve), it is not anticipated that such an effect would be observed.

• Senior patient deterioration staff may be more separated from the day to day

challenges imposed by interaction with clinical information management systems,

and therefore it will affect their view of how practical an AI system would be in

practice (H8).

Hypothesis As Equation
H1 Behavioural intent predicts actual use BI→AU

H2 Attitude to use explains behavioural intent ATT→BI

H3 Perceived usefulness explains attitude PU→ATT

H4 Perceived ease of use explains attitude PEOU→ATT

H5 Perceived ease of use explains perceived usefulness PEOU→PU

H3b Perceived usefulness will be the most important model factor in
driving attitude

PU→ATT >
PEOU→ATT

H6 Clinical role modulates perceived usefulness ROLE∼PU

H7 Time devoted to task modulates perceived usefulness TIME∼PU

H8 Experience modulates perceived usefulness EXP∼PU

TABLE 7.1. Hypotheses proposed by the TAM (H1-5), extended with H3b
and H6-8 which are specific to this context
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7.4 Methods

7.4.1 Data Collection

The questionnaire consisted of two parts. The first section captured variables that described

the subject’s role, experience and demography. After responding to the demography

questions, subjects were asked to review a prototype user interface, alongside descriptions

of the tasks being performed (reproduced in Appendix to Chapter 7: Proposed application

and use-cases). In addition, some high-level summary information was provided on the

development of the predictive model itself (data sources, mode of operation and accuracy

— as described in Chapter 4).

The main portion of the questionnaire was defined by adapting the measures in the original

validated model [15] to the target context (refer to Appendix to Chapter 7: Measures for

a full list). A single free-text response was also captured that allowed respondents to

make any additional comments or suggestions that they felt were pertinent to the potential

roll-out of such a tool. Finally, in order to identify disingenuous responses, a question to

test malingering with a trivially correct response was included.

The survey was distributed by email and completed online using the Qualtrics survey

platform. All TAM measures were captured as a 7 item Likert scale from 1 = Strongly

Disagree to 7 = Strongly Agree.

7.4.2 Population

This questionnaire was distributed to members of the New South Wales Deteriorating Pa-

tient Advisory Group (NSW-DPAG) (n∼170), which is made up of highly engaged critical

care staff, including nurses, physicians and administrators across the public healthcare

system. This represents the key decision-making group whose advocacy and leadership

would be a necessary prerequisite for a successful pilot implementation of this system

within their respective institutions.
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7.4.3 Data Analysis

A structural equation modeling approach was used for this analysis, based on the lavaan

library [170] in R.

7.5 Results

7.5.1 Descriptive Statistics

The questionnaire was sent out to the NSW-DPAG member email list in July of 2020 and

was open for a period of one month. 59 responses were captured, giving a 34.7% response

rate. 14 response sets were removed for not proceeding beyond review of the proposed

application. None of the remaining sets provided an incorrect or missing response on the

malingering item, and therefore 45 response sets were retained for analysis. 91% of the

remaining respondents (41) completed all measures, giving an overall completion rate of

96% for the analysis data.

Overall the respondents were highly experienced, with the majority coming from a nursing

background (60%). This is expected within the included group, and accurately represents

the key decision makers who would be responsible for overseeing the implementation of

such a system. Managerial levels are over-represented in this sample, however 67% had at

least some regular assignment to relevant clinical tasks and therefore fit the profile of an

expected end-user as well.

7.5.2 Model Validation

7.5.2.1 Construct Reliability

Re-validation of the model constructs was necessary, due to their modification to fit the

research context.
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TABLE 7.2. Respondent Demography

Measure Response n % Group

Gender
Female 33 73.3

Male 12 26.7

Age

<30 years of age 7 15.6

30-39 11 24.4

40-49 6 13.3

50-59 18 40.0

60+ 3 6.7

Speciality

Nursing 28 62.2 Nursing

Medical 9 20.0

Allied Health 4 8.9

Administrative 4 8.9

Non-nursing

0-5 years 2 4.4

6-10 years 9 20.0
Less experienced

11-15 6 13.3
Experience
post-graduation

16+ 28 62.2
Very experienced

None 7 15.6

Occasional or cover assignment only 8 17.8

Part-time but regular assignment 13 28.9

Low time

Majority of working week 9 20.0

Level of assignment to
clinical patient
deterioration related
tasks in a typical
work-week

Full-time or dedicated assignment 8 17.8
High time

After applying a mean imputation strategy, we cannot reject the null hypothesis of data

non-normality (tested with [171] due to small sample size), and therefore are unable to

use maximum likelihood estimation to fit our model. A robust unweighted least squares

strategy [172] was thus used instead.

Despite a moderate response rate, the final number of responses was insufficient to assess

the reliability of the original 4 factors comprising the TAM (model non-convergence). We

therefore follow the lead of the updated TAM2 model [15] in merging the BI and ATT

latent factors. In doing this, some of the nuance between a potential user believing the

system overall is a good idea and it translating into their actual intention to use it is lost,

but a simpler and more robust model is produced, which can withstand analysis under
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Construct Items Factor AVE Composite
Loading Reliability

PU PU1 0.970 0.885 0.938

PU2 0.910

PEOU PEOU1 0.915 0.607 0.820

PEOU2 0.678

PEOU3 0.723

BI/ATT BI1 0.847 0.694 0.901

BI2 0.862

ATT1 0.768

ATT2 0.853

TABLE 7.3. Confirmatory Factor Analysis

a small data set. The high composite reliability for this merged factor (higher than the

average CR for each individual construct in [173]) also supports this action.

The model was further simplified by removing one PU item (PU3) and one PEOU item

(PEOU4) due to their high degree of collinearity with other items in their respective

constructs.

In all instances, the resultant construct composite reliability (CR) meets the 0.8 standard for

generally acceptable reliability [174, 175] (see Table 7.3). The average variance extracted

(AVE) for each construct also exceeds the threshold of 0.5, required as per [176] to ensure

that variance due to measurement error does not exceed the variance of the construct itself.

7.5.2.2 Model Fit and Assessment of Hypotheses

The Satorra-Bentler scaled chi-squared test statistic allows the generation of goodness of fit

indices that do not make any assumptions about the normality of the underlying data [177].

Applying this method, we do not reject the null hypothesis of good model fit (p=0.281).

Other model fit indices were also indicative of good fit: CFI = 0.989, TLI = 0.983, SRMR

= 0.058.
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FIGURE 7.1. Original TAM (left) with adjustments for this context (right)
(standardised factor weightings)

Most importantly, those relationships that have been retained in the simplified model are

theoretically grounded. We therefore accept PU and PEOU as antecedents of a user’s

intention to use this system, and accept that the measures in this survey tool are sufficient

to quantify PU, PEOU and BI constructs for these exploratory purposes.

Given the hypothetical nature of this target system, it is naturally impossible to test H1 in

advance of any meaningful pilot, although it is retained here for completeness, and as per

section 7.5.2.1, we had insufficient statistical power to test H2.

Consistent with the existing literature, both perceived usefulness and perceived ease of

use were significant determinants of behavioural intent to use (Table 7.4), and therefore

H3 and H4 were supported. Perceived ease of use was also a significant antecedent of

perceived usefulness, supporting H5.

The standardized estimates of the relationship between PU and BI/ATT and PEOU and

BI/ATT are similar, and in fact PEOU is found to be somewhat higher in weighting. This

is the opposite effect as proposed by H3b, so it is not supported.

7.5.2.3 Weighted Results

Table 7.5 reports the mean and standard deviation for each factor (weighted and un-

weighted). The ratio of weighted mean to the theoretical weighted maximum is above 0.5

for each construct, showing that overall the potential users rated the proposed application

as relatively useful and relatively easy to use, leading to an overall positive attitude and

intention to use.
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Hypothesis Estimate SE P Support

H1 BI→AU Untestable in this context Untested

H2 ATT→BI Untestable in this context Untested

H3 PU→BI/ATT 0.457 0.151 ** Supported

H4 PEOU→BI/ATT 0.590 0.165 *** Supported

H5 PEOU→PU 0.570 0.152 *** Supported

Estimate: Standardized
SE: Standard Error
*** p < 0.001, ** p < 0.01
Note: SE and p vals estimated with 500 bootstrap samples

TABLE 7.4. Support for Hypotheses (TAM)

Construct Unweighted Weighted Range - actual
WM/TM

(items) Mean SD Mean SD (theoretical)
PU (2) 10.42 2.32 9.79 2.18 2.85-13.16 (1.88-13.16) 0.74

PEOU (3) 15.23 3.30 11.68 2.59 5.94-16.21 (2.32-16.21) 0.72

BI/ATT (4) 20.62 4.32 17.14 3.61 6.66-22.45 (3.33-23.31) 0.76

Weightings: Standardized
WM/TM - ratio of weighted mean to theoretical maximum for this construct

TABLE 7.5. Weighted factors

Both PU and PEOU saw ceiling effects, where at least one respondent answered maximally

positively (strongly agree) across the whole measure. No respondent answered maximally

negatively (strongly disagree) across any measure. This is particularly true for PEOU,

which had a minimum unweighted score of 8 out of a possible 21. The ranges of responses

overall, however, were quite wide.

7.5.3 Multi-group Analysis

7.5.3.1 Model Invariance

To assess hypotheses that predict mediation of relationships between groups (H6, H7, H8),

measurement invariance must first be confirmed. We first establish a baseline model to
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Group Model χ2 df CFI RMSEA
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es Configural 10.94 34 0.999 0.043

Metric 26.53 39 0.996 0.065

Scalar 30.59 44 0.993 0.077

Strict 57.39 52 0.976 0.141

H
ig

h
vs
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ow
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sk
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e Configural 20.78 34 0.992 0.106

Metric 33.55 39 0.993 0.097

Scalar 36.17 44 0.992 0.095

Strict 59.20 52 0.981 0.133

TABLE 7.6. Inter-group model comparisons

confirm the factor-loading pattern between groups (configural model), where the factor

structure is the same, but all other elements of the model are allowed to vary freely between

groups. This is compared to models where invariance is enforced for (1) factor loadings

(metric model), (2) both factor loadings and model intercepts (scalar model) and (3) factor

loadings, model intercepts and item variances (strict model) [178].

When comparing the Nursing vs. Non-Nursing and High time vs. Low time inter-group

relationships, note that in each case, a single negative variance was produced, which

is potentially indicative of model misspecification. In this case, however, it is likely

to be due to the low group sizes, as in each instance the estimate plus the respective

standard error was positive [179]. Conversely, when comparing the Highly Experienced

group to the Moderately or Less Experienced group, more samples are required in order

to define a fully-specified model, so it was not possible to test H8. As an alternative

expression of H8, we note that experience and age are naturally highly dependent —

χ2(12, N = 45) = 52.1, p < 0.005 and therefore compare older (50+) to younger (6 49)

respondents as well, however additional samples are also required to validly test this

version. This inability to define a validly weighted model for both forms of H8 implies

that the relationship is unlikely to be a straightforward one.
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Table 7.6 shows that there is good model fit for the configural, metric and scalar models,

and therefore latent mean analysis is valid, as the latent factors can be assumed to be

invariant in configuration, factor loadings and scale.

For the strict model, there is a change in the CFI that exceeds the threshold of -0.010

combined with an increase in RMSEA by more than 0.010, as suggested in [180]. The strict

model change in fit implies that the variance in responses may differ across groups, despite

the overall model structure remaining valid. To estimate the differences in latent-factor

means across groups, we constrain the factor mean in a reference group to zero, and then

estimate the mean in the comparison group to produce the difference in factor mean [181].

This was done individually for each latent factor in the model and is reported in Table 7.7.

7.5.3.2 Effect of Role

H6 is supported, as there is a statistically significant difference between the perceived

usefulness between nurses and non-nurse respondents. A more meaningful inter-group

comparison for this hypothesis would be nursing staff compared to medical staff, as there

would be more uniformity in the scope of the roles being analysed, however once again we

are limited by the small data set.

7.5.3.3 Effect of Workload

There is no statistically significant difference in the PU latent factor when comparing the

group of respondents who spend all or the majority of their working week assigned to

relevant clinical patient deterioration tasks, versus those who spend only part of their time

or ad-hoc assignment in this role, so H7 is not supported.

7.5.4 Free-text responses

23 subjects provided input to the optional free-text comment at the end of the study. These

responses were typically very short (mean 175 characters, s.d. 144), but despite this,



7.5 RESULTS 113

Hypothesis Reference Comparison Factor Difference Support

H6 ROLE∼PU Nurses
Not
Nurses

PU 0.61* Supported

PEOU 0.52 n/a

BI 0.59 n/a

H7 TIME∼PU
High
task time

Low
task time

PU 0.52 Not supported

PEOU 0.14 n/a

BI -0.24 n/a

H8 EXP∼PU Untestable in this context Untested

TABLE 7.7. Hypothesis testing for modulating factors

consistent themes were strongly evident. Only three comments were too general in their

nature to fit into at least one of the identified themes. We report here the results of this

abstraction for the purposes of driving the direction of future exploratory analyses 2.

The most common response type (10) referred to a specific setting (physical or logical)

— either in support of the utility of this tool in a given context, or where there was some

setting-specific limitation in its use.

Supported Settings Settings with Limitations
A state-wide or universal EMR Rural hospitals (rotating staff/training) (2)

Settings with large numbers of patients Paediatrics (unsuitable endpoints)

Emergency departments End-of-life care (treat EOL patients differently)

For junior clinicians Community health (lack of applicability)

Multipurpose services (lack of applicability)

Four responses referred to the impact of this tool on quality of care, two of which repeated

the same concern that such automation must not be allowed to impact or supersede face to

face care. The other two were more positive with respect to the potential effect that the

tool may have on patient outcomes by introducing timely and specific alerts.

Workload was also mentioned in four responses, specifically: that any manual steps will

increase the load of already overburdened critical care teams (2 responses); the concern that

availability must be straightforward and flexible for it to be useful; and that a formalisation
2Note that it is outside of the bounds of the ethical approval of this study to report any quotes directly.
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such as this may generate data to support implementing dedicated response teams where

they do not already exist.

Three subjects commented on the value of synthesising large volumes of data from nu-

merous sources, and the additional benefit that this may provide in terms of a high-level

overview of current acuity levels.

Finally, three subjects provided general caveats or considerations that they considered

key to the successful implementation of this tool. These were: for this to be useful, it

must be possible to know the reason behind the deterioration; the necessity of specialist

clinician informatician involvement, particularly with respect to privacy and security; and

the importance of a carefully designed roll-out phase.

7.6 Discussion

7.6.1 Study Measure

This study demonstrated the applicability of the TAM measures to describe the attitudes

and intentions of clinicians to adopt the proposed AI system for the purpose of decision

support in a patient deterioration context. Although it was not possible to fully validate the

ATT and BI measures, the retained relationships between latent factors were consistent

with prior literature, and explained a large proportion of the variance in the overall opinions

of the target users.

It is possible that the need to merge the BI and ATT factors was due to the composition

of the study population, which is over-representative of very senior clinicians. BI items

(when interpreted in their literal sense) ask a subject to reflect on the likelihood of an action

on their part that may fall outside of the scope of a managerial role (e.g. I would be a

frequent user), and thus breaks the directness of translation of a positive overall attitude

into a behavioural intention to use. In future studies, it would be illustrative to identify the
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role of decision-maker as distinct from likely user, and adjust the BI items to account for

this difference in remit.

7.6.2 Clinician Readiness

As seen in Table 7.5, there is an overall positive view of all the latent factors in the research

model. This means that a subject is more likely than not to perceive that the system under

review is both somewhat useful and somewhat easy to use, although this is not universally

true. The readiness to adopt this technology would be best described as ‘moderate’, with

nurses somewhat more likely than other clinicians to have a positive view of its potential

utility.

The favourable view of nurses as to the usefulness of this system is a good indicator of sup-

port for a pilot implementation, as nurses are generally more burdened with administrative

tasks introduced by hospital information management systems. It would be reasonable

therefore to expect them to be a more skeptical user group for novel hospital IT programs.

Their positive assessment should be taken as evidence that this system has potential to

fit in well with this workflow, and that as a user group they are open to the idea of auto-

mated information synthesis and risk assessments that could augment their patient care.

There is also evidence that nurses do not always find the patient care escalation process

to be without friction when based on intuition alone [182], so it would be informative to

explore in what capacity nursing staff perceive this system to be useful - whether for its

information-synthesis capacity, risk assessment, or as an additional measure that can be

used to make the case for patient prioritisation.

The effects of the PU and PEOU factors upon the combined BI/ATT endogenous factor

are fairly equally weighted in this model, which goes against H3b. This may be due to

the novelty of this system, where it is easier for a user to assess ease of use against their

mental models of existing clinical software than it is for them to fully imagine how it will

assist their practice. Based on experience, however, we would posit that in order to take

this system from the research to the clinical realm PU will in fact be a far higher barrier to

cross. This was evident in the focus of the free-text responses on specific settings where
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the system would be most useful or where it may have limitations to its usefulness. The

hypothetical nature of this system may require the introduction of an additional factor to

capture the friction between a user’s general positive attitude towards the use of a system

and the behavioural intention to not only use a system but also to overcoming technical

and procedural changes necessary for its implementation.

Relationships between the latent factors were consistent between study groups, both in

scale and factor loadings, although the variance showed some differences. More data

would be required in order to further investigate these differences in variance and to infer

anything about the patterns of which individual measures showed a statistically significant

inter-group variation. This may also be an outcome of the seniority bias evident in the

study sample.

7.6.3 Limitations

The most obvious limitation of this study is in its small sample size. We chose to prioritise

the relevance and expertise of the subjects, at the expense of the available population. The

results here are therefore challenging to generalise, although they give a solid basis upon

which to build.

In addition, the novelty of the target system makes it difficult for subjects to meaning-

fully evaluate in this limited context. This is seen in the relatively high percentage of

respondents who filled in the demography measures completely, but did not proceed with

the questionnaire after reviewing the prototype application. Until a controlled experiment

demonstrating this system in practice (or better: a working prototype) is available, any

judgements of PU in particular will be insufficient to draw broad conclusions.

7.6.4 Future Work

The free-text responses were illustrative of the general concerns and objectives of this

group of potential decision-makers and users, however they were insufficiently formal to
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draw any significant conclusions. A semi-structured interview format would be best to

further explore these themes, in order to identify the specific barriers between the moderate

readiness identified in this work and an actual pilot implementation.

7.7 Conclusion

Clinicians were found to be moderately favourable towards the AI decision support system

that was presented as a potential prototype for the support of managing critical care

outreach workloads. Nurses were somewhat more likely than other clinicians to perceive

the system as useful in their practice.



CHAPTER 8

Discussion

8.1 Review of background and objectives

The overarching objective of this thesis has been to deliver a body of work that seeks a

technical solution to the clinical problem of predicting deterioration in an acute-care setting.

By setting out both technical and clinical research questions to be addressed in parallel,

the aim was to develop a watch-list application that allows critical care outreach staff to

accurately identify patients at high risk of deterioration in a fashion that has capacity for

successful translation into clinical practice.

This is a problem that has been addressed previously in the literature, typically by the use

of an early warning score that is based on the detection of vital sign observations outside

of pre-defined thresholds such as NEWS [80], although the evidence of impact of such

systems is inconsistent [183, 184]. The approach described herein differs in two important

ways. Pragmatically, the desire for automation at the target institution is hampered by the

unavailability of physiological observations in the clinical record, which has led them to

seek an alternative solution — the catalyst for this work. Further, the focus of this effort is

on the workflow of the critical care outreach staff. By centring a specific clinical function

and user group, it is possible not only to explore the mechanisms and performance of the

predictive models themselves, but also to consider the ways in which their usage will affect

clinical users and anticipate roadblocks and challenges in their eventual implementation.

This chapter will assess the proposed system in light of its ability to meet these stated clin-

ical goals, in particular as measured against the perceptions of its end-users. The entirety
118
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of the research output will also be assessed as a cohesive and complete methodology for

delivering such systems.

Due to the desire to present a translatable solution in particular, this application will

also be evaluated under the NASSS framework [185], which studies the root causes of

technological non-adoption, abandonment, and issues of failure to scale, spread, and reach

sustainability in clinical settings.

Finally, conclusions of this work will be summarised such as it provides answers to the

research questions posed in Chapter 1.

8.2 Summary of main findings

8.2.1 Technical contributions

The work presented in Chapter 4 details the development of a set of models that compare

favourably with existing methods for predicting in-patient death and comparably for

unplanned ICU admission. For the target of death within 24 hours, an area under the

receiver operating curve (AUROC) of 0.93 was achieved, and an AUROC of 0.78 for

unplanned ICU admission in the same time-frame. As a point of comparison, the calling

criteria set by NEWS [80] reports AUROC metrics of 0.89 and 0.86 respectively for these

same end-points.

This was achieved despite the limiting factor of the absence of vital sign data in the clinical

record in this data set. This limitation is of note, as vital sign observations form the crux of

current best-practice for detection of inpatient deterioration at the target institution and

around the world [1, 80]. In particular, the performance of the models show that the lack

of vital sign observations is more limiting for the prediction of unplanned ICU admissions

than it is for predicting in-patient death.
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A thorough exposition of model performance that goes beyond the reporting of AUROC

alone (which is often misleading in imbalanced prediction problems) reveals a well-

calibrated prediction of risk for both targets across multiple points in time. These models

therefore offer a satisfactory candidate input around which to form the basis of the watch-

list application.

These models were based on elements of existing work applying deep neural networks

to generate predictions from electronic medical record (EMR) data, such as [81, 82,

94], which treat the patient trajectory as a series of discrete tokens representing clinical

events over time, to which it is possible to apply language-modelling techniques. This

was extended with novel pre-processing methods that improve the performance of these

models in a data set that is relatively small, both in terms of volume (moderate in number

of patients, but more importantly low instance of positive-class samples) and breadth

(absence of vital signs, primarily administrative data).

Chapter 5 confirms the generalisability of the core innovative techniques that were used

to implement these models. In particular, under the highly imbalanced end-points that

define many of the targets of interest for such data, a combination of data augmentation

and modulation techniques greatly improved the predictive capacity of even very simple

model architectures. The use of time-to-event sampling strategies further improved the

robustness of the model calibration. The potential impact of the technical contribution

of this work is wide-ranging, due to the fact that these techniques are not specific to any

one clinical domain, rather they are predicated on the nature of EMR data entry processes

themselves, and thus have applications in many similar prediction problems.

These results confirm that as a proof of concept, it is possible to reliably produce an

adequately calibrated risk of imminent patient deterioration that can be expected to improve

the capacity of critical care outreach staff in prioritising their workload.
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8.2.2 Evaluation of overall research approach

8.2.2.1 Contributions

The decision to combine the technical research target with a parallel focus on ensuring its

eventual translatability naturally increases the scope of inputs into this work. In doing so,

the requirements become broad relative to what is achievable in a single doctoral thesis,

and thus there are elements that must be compromised in depth in order to complete a

cohesive unit of research, such as the lack of more detailed user interviews despite the

clearly useful content gathered in even a preliminary open-response question in Chapter 7.

This trade-off does, however, affirm the overarching research target, as it is demonstrative

of the additional resources and interdisciplinary methods that are necessary to properly

evaluate not only clinical predictive rule design but also their use in practice and the way

that they impact end-users. The evidence in Chapter 2 shows the paucity in the literature

of comprehensive research programs that tackle this task in a meaningful way. Although

there has been a push for external validation of prediction rules in clinical contexts insofar

as they affect health outcomes, few reach this level of evaluation, and the consideration of

usability of the developed system and utility of the clinical target itself is often undertaken

as a separate post-hoc effort, rather than shaping the body of work in its entirety [186].

As the capacity of the technology advances, and as the availability of real-time clinical

data continues to increase in breadth and volume, it is safe to expect that there will be a

consequent proliferation of efforts to implement prediction models driven by medical record

data that are already available as a by-product of clinical care. Real-world implementation

of models based on the full patient record absolutely must be delivered as an integrated

solution in order to have any realistic chance of acceptance, making their technical roll-out

a high-cost endeavour. As a consequence, the value not only of understanding the capacity

of a given model to technically achieve its stated purpose but also being able to anticipate

the needs and preferences of end-users is clear, as the potential waste due to unsuccessful

implementations and/or non-adoption is vast. This is true even before considering the

clinical and cultural barriers to implementation, which are also significant. This work takes

a foundational step in considering such models from the perspective of the end user as a

core tenet, rather than an afterthought.
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FIGURE 8.1. Mapping of research artifacts to identified themes: Green -
present in research artifact; Pink - unavailable; Gradient - partially available

8.2.2.2 Limitations

Figure 8.1 expands on Figure 2.4 by aligning the output of this research project with the

relevant themes and phases that emerged from the qualitative literature. This mapping

exposes some of the limitations of this body of work in trying to address all the concerns

of end-users.

Firstly, while the use of the MIMIC-III dataset to demonstrate the novelty of the domain-

specific data augmentation strategy does show the general transferability of the techniques,

this version of the model was heavily simplified. It therefore did not reach the same

performance levels and thus cannot be interpreted as a true external validation study. This

re-implementation of the model in publicly available data was primarily used to demon-

strate the impact specific to the data augmentation strategy, which necessitated applicability

across multiple end-points, and the additional cost to optimise the architecture to these

multiple end-points and re-train to completeness made this a necessary compromise.

In addition, it is clear that this work cannot be considered complete with respect to clinician

opinions and preferences, as there is no way to comment on its actual use in practice,

and importantly it does not touch on the training, education and support materials that

were seen to be highly impactful in the source literature [36, 39, 40, 52]. Where possible,

implementation-relevant considerations have been included, such as integrated architecture

and user interface, but with such a broad scope of work, even an implementation in an

experimental setting was out of reach.
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When compared with the development studies of other models however, such as [81,

153], it is evident that current best practice does not consider implementation details in

a systemic fashion, nor does it require concern for the experience of the end-user. These

cited examples come from groups with a mature practice of delivering consumer-facing

applications and almost infinite capacity to resource a study of user experience, so the

omission of this analysis is all the more glaring. As the trend for studies of technology

adoption to become more pragmatic continues [187], the holistic approach demonstrated

herein shows both the importance and feasibility of considering how a novel technology is

situated within modern clinical praxis (with all its associated complexities) at the point of

development, rather than as part of a post-hoc (pessimistically, post-mortem) analysis.

8.2.3 Addressing healthcare provider opinions and preferences

Since technical feasibility has been established per Chapters 4 and 5, the assessments that

were refined from the literature analysis in Chapter 2 can be used to inform the delivery of

predictive models that truly support the needs of clinical end-users. In this section, these

goals (see the top row of Figure 8.1) are used to reflect on the healthcare provider opinions

and preferences concerning clinical prediction rules, and to what end there is evidence of

their consideration in the watch-list application itself, as supported by the responses to the

technology adoption model questionnaire (TAM).

8.2.3.1 To be useful, profitable or beneficial

In some ways, this project was conferred an advantage from the point of its inception, due

to the fact that it is addressing a concrete, specific, user-defined need, which is currently

unmet by existing technologies.

This user-driven definition of the problem statement is in contrast to a research-driven or

model-driven scope, where a theoretical capacity to predict an outcome has limited clinical

utility. This was observed in models predicting post-operative nausea and vomiting, which

were not found to be useful by clinicians, due to the relatively low burden on patients

compared with the complexity of applying the model [51].
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It is also in contrast to a ‘top-down’ approach, where there is a propensity for leadership

to implement an innovation for theoretical benefit, which then struggles to be realised in

practice, such as was the case in the roll-out of speech recognition technology for electronic

medical records in New South Wales [188].

On the other hand, the scope of this project also presented a significant challenge with

respect to the utility of the proposed model, in that the request was specifically for a

generalised, numeric risk score, which is naturally limited in its capacity to have direct and

actionable output. Deference is given here to the experience of the end-users who have

specified that for this particular use, a risk score will provide sufficient benefit to be able to

deprioritise this factor [51, 63, 66, 68].

It is possible that in this workflow, given the heterogeneity of the deterioration target (as

distinct from a workflow that reviews the risk of a single patient at a time, such as [55]),

that the action can be reframed as clinical review versus no clinical review, in which case

actionability from a priority queue of numeric risk alone is restored. According to the

users interviewed for the use-case development in Chapter 6, it is their belief that they can

and would intend to take action based on such a numerical output in this workflow, as per

the escalation procedure described in Chapter 1. This would of course need to be verified

by testing of a real prototype in clinical practice.

Also heeding this desire for actionability, special attention was paid to the calibration of the

models, so that it could be assumed to be reliable across not only the binary of risk/no-risk,

but in identifying those at slightly elevated risk [40, 58, 74].

Chapter 7 shows that the group of prospective likely users on average perceived a moderate

level of utility in this system. The strong focus on setting in the open-ended response

from the TAM shows that while the potential for utility of the proposed application is

generally accepted, this acceptance is restricted to appropriate clinical environments. It is

not surprising to see that the supported settings (high volume hospitals with emergency

departments, and teaching hospitals with a prevalence of junior clinicians) are congruent

with the target institution, where the majority of queried settings (rural, community and

multipurpose services) are not. Paediatric departments and end-of-life (EOL) care are also
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both identified as domains requiring specialised end-points and actions. No paediatric data

were included in the development of this model, reflecting the same assumption that those

cases would indeed have different requirements, and EOL care is handled under a targeted

use-case allowing those patients to be included or excluded as deemed appropriate by staff.

8.2.3.2 To be trusted and believed in

The fact that the external validation and impact study for this model is limited by necessity

has already been addressed in Section 8.2.2. In addition to this, the credibility of this

model must be judged on its ability to meet an appropriate level of face-validity in terms

of both model scrutability and alignment with clinical best practice.

This model makes no attempt to use a technological solution for attention or explainability

that can mathematically attribute the importance of input factors on the overall assessment.

Instead, it takes advantage of the fact that it is core to the design of this solution that

multiple risk assessments are produced, which change over time. By time-stamping each

risk assessment, and allowing the user an intuitive mechanism for exploring the events

that co-occur with any change in risk, the necessity for a more complex mechanism is

avoided, which would bring with it more assumptions than this simple alignment of factors.

A weakness of this approach is that it is not as directly applicable to patients just entering

the system, but as seen in Chapter 4, the strength of this model increases as more data

are collected, and therefore appropriately reflects the lower confidence that can be taken

from any prediction made at those early stages. Although on average, the perceived utility

(PU) of the system was moderately accepted, the PU measure had a wider range than the

perceived ease of use (PEOU) measure, showing a level of scepticism remains that such a

model could actually affect patient outcomes and clinical practice in a positive way. The

only way to address this concern would be with an impact study, whether of a prototype

in a controlled setting (such as described in [189]) or a comprehensive pre-post design to

study the impact of an implemented system (such as [190]). Both of these approaches were

infeasible within the scope of this work, but given the resource-intensive requirements for

implementation into even a single institution, both will be required in order to pass over

the barriers to local and wide-ranging implementations respectively.
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8.2.3.3 To be fit for use

The most concrete way in which the proposed system addresses the identified usability

requirements is in the strict adherence to the use of only real-time available data that is

feasibly available in the clinical record, despite the technological impact of the integration

requirement.

What it was not possible to deliver is an implementation plan that expands beyond the

technological requirements, i.e. training and support materials, process change design,

and the learning curve of these changes. The PEOU measure does give an indication of

acceptable usability in the proposed system, where at least the interface design together

with the description of the target use-cases is judged to be moderately easy to use. The

free-text responses to the TAM also demonstrate in their consistency the ability of potential

users to understand and identify with the core purpose of this intervention, despite only

high-level description.

8.2.4 Evaluation under NASSS framework

Given the importance placed on qualities of translatability in this body of work, it is

valuable to further assess the proposed application through the lens of implementation

science. In doing this it becomes possible to anticipate the readiness of the target institution

to successfully incorporate it within their clinical emergency response system.

The NASSS framework uses complexity theory to explain barriers between technological

innovations and their eventual success or failure upon implementation. Importantly, it

considers not only the obstacles to a successful initial system delivery, but also impediments

to a sustainable, systemic, transforming change.

This framework asks users to assess the technological system under seven domains (see

Table 8.1), through which it is possible to produce a narrative that reveals a comprehensive

picture of the complexity of a technology within its setting. The core premise is that higher

complexity systems are naturally less likely to see successful uptake. Each domain is
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categorised as simple (few, predictable factors), complicated (many, predictably interacting

factors), or complex (many factors, with fuzzy bounds and unpredictable or unknown

interactions). Following from this is the supposition that by articulating areas of complexity,

one may seek to simplify, or support organisations to handle complexities where this is not

possible. In applying this framework, a note must be made that it was first released in 2018,

Domain Core question
Condition How well-defined is the condition that this

technology addresses?

Technology How challenging is the technology itself to
both use and supply?

Value Proposition Is the value proposition of the technology
clear and plausible?

Adopters Are the intended system users resistant to this
innovation?

Organisation Is the organisation one that can support in-
novation?

Wider System How is this organisation’s capacity to innov-
ate affected by external forces?

Embedding & Adapt-
ation over time

Does this technology have an intrinsic capa-
city to adapt to external, unexpected changes?

TABLE 8.1. NASSS Framework Domains

two years after searches were performed for the systematic review presented in Chapter

2, and thus does not inform any of the included studies. Despite this fact, it provides the

sorely needed balance between theory and pragmatism that will bridge the gap between

the model in the journal and the model in practice1, and can be used post-hoc to explain

some of the observed healthcare provider opinions.

This theoretical framework provides a useful lens through which to interpret the outputs

of the technology adoption model (TAM) [158], which was applied in Chapter 7, as it

addresses the translatability of a technological solution as it is situated within the highly

complex system in which it is to be implemented. Although understanding the behavioural

intentions and attitudes described by the TAM is of course a necessary precursor of

successful implementation, and can inform a number of the NASSS domains (notably

1See: [187] for the parallel patient in the guideline vs. the patient in the bed



128 8 DISCUSSION

Technology and Adopters), they are not in and of themselves sufficient to predict whether a

technological solution will deliver all the benefits that are expected or promised.

The experience of capturing concrete use-cases as described in Chapter 6 demonstrates

clearly the need to consider the watch-list to be a complex adaptive system. This can be

seen in particular in UC-3 and UC-4, where stakeholders anticipated second-order use-

cases for end of life care and clinical administrative tasks respectively. Although these tasks

did not form part of the initial project scope, through the iterative design process it rapidly

became clear that the ways in which these user groups would also want to interact with the

system must be accommodated. This complexity is thus evident before consideration is

even expanded from the scope of the watch-list application itself to encompass the deep

integration required with the clinical record. The integrated architecture brings with it not

only the obvious technological interdependencies but also the impacts from any potential

future process changes, which are difficult to predict, and can already be observed in the

source data as described in Chapter 3.

Greenhalgh states that “...complexity tends to be inherent in healthcare programmes, [and]

the key challenge is often to develop ways of ‘running with’ complexity, rather than seeking

to eliminate it” [185]. To this end, in this section each domain of the NASSS framework is

described as it applies to the proposed watch-list application, including ways in which the

design of this system has either accommodated or mitigated those inherent or introduced

complexities.

There are some logical limits to the application of this framework, given the as-yet

hypothetical nature of the watch-list, and thus an inability to produce empirical evidence

of the capacity of the organisation and wider system to adapt to this innovation. The

example case studies provided by the framework authors and their colleagues [191, 192]

are evaluative, and therefore have the advantage of hindsight; however the NASSS is

also designed to help predict program success, before such complete information can be

collected. One strength of this framing is its characterisation of systems as open, dynamic

and adapting, so this form is followed to make assumptions around future uncertainty and

unpredictable factors based on the available evidence. A concrete example of the impact

of unanticipated future changes was seen in the sudden reallocation of funding and human
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resources (including direct stakeholders in this project) within the critical care department

due to the impact of COVID-19. Whether these personnel changes persist, are reverted, or

some as yet undefined configuration is implemented remains to be seen. Nonetheless, it

remains clear that any study of technological innovation of sufficiently significant scale

that assumes a static system with known bounds will struggle to be effective.

8.2.4.1 The condition

The condition that is the target of the watch-list technology is definitionally complex.

In-patient deterioration is often caused by the interaction of many factors. Although the

root cause of a given individual’s path to deterioration may be well defined, the broad

scope of the critical care outreach role means that in any one shift these clinicians are likely

to be dealing with many different care pathways and treatment options, including ones that

are much less well understood. The conditions leading to deterioration are frequently also

volatile and associated with multi-comorbidities as well as complex socio-cultural factors.

Here there is a tension between the stated requirements of this project’s stakeholders,

where the use of a watch-list is desirable specifically for its anticipated capacity to reduce

existing complexity, and the NASSS framework which attributes failure of a technological

innovation in part to its application to a complex condition. It may be more helpful

therefore to describe the complexity of the intended clinical action of the technology

(which is typically, but not universally, tied to the complexity of the condition), instead of

relating this domain strictly to the condition itself.

In this instance, the clinical action from the output of the watch-list is specifically designed

for its capacity to simplify. There is no attempt to diagnose or direct treatment, except in

its ability to summarise large quantities of data over time and produce a priority queue.

Although the inputs are many, varied, and unpredictable, the outputs are straightforward,

and have the capacity to reduce the complexity of the status-quo, wherein individuals are

required to keep track of this high volume of data in an ad-hoc fashion. Although this

expected reduction in complexity is untested in actual clinical practice, it forms the core

rationale behind the initiation of this work, and is further supported by numerous free-text

responses captured in Chapter 7.
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This can be compared to the analysis in [191], which saw large differences in uptake of the

same video consultation technology for routine diabetes management versus management

of gestational diabetes (20% and 3% respectively). This was explained by the different

levels of complexity in the conditions, but perhaps a more nuanced explanation would be

to compare the level of complexity in action instead — i.e. monitoring a stable, long-term

patient, in contrast to educating and monitoring a metabolic instability condition for a

patient who is not used to managing their disease, in particular, new to the physical act of

insulin administration.

8.2.4.2 The technology

Application architecture. The proposed application is designed to be tightly integrated

with the electronic medical record, which is a highly complex requirement even in a single

institution. EMR systems are driven by idiosyncratic data models that are typically heavily

customised for each implementation, requiring significant domain knowledge (both of the

EMR application itself, but also specific to an institution’s instance) to enact even simple

outbound integrations.

Through initial model development, external model validation, and demonstrating the

novel data augmentation techniques a version of the application architecture was developed

for three different source data systems. Each time, it was possible to reconstruct the

pipeline from the new source data model with relatively few adjustments, particularly

considering the completely different source data models, coding systems, and scope of

data collected. Of note, the scope of the development work was less than that required for

a more traditional ML model with a comparable number of features, where precise item by

item mapping is required. In order to generalise this innovation to multiple sites, it must

be assumed that the integration layer will be bespoke for each deployment, noting however

that in a realistic commercial implementation it would be feasible to abstract away many of

these challenges with a robust ontological model covering each subset of the source data.

The complexity of this architecture is also somewhat ameliorated with the implementation

of an Object Relational Model (ORM). This additional level of abstraction acts as a
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buffer between the source data and the validated application and allows the necessary

customisation to be achieved by re-configuration, as opposed to re-development.

In addition to the complex overall application architecture, the decision to implement a

deep learning model at the core of the proposed solution must be considered. There is

high complexity in the specialised knowledge required to design, implement and host the

final model, and furthermore, there is very limited prior work to draw upon in anticipating

second and third order consequences of its deployment.

Performance impacts. It is typical in modern hospitals to implement some form of data

mirror, whereby the tasks of reporting and analysis are decoupled from the production

system to reduce the risk of introducing performance and data integrity issues. Any

potential for similar impact from the deployment of a deep learning model must be

considered, in particular one that requires access to near-live clinical data.

A hypothetically sound implementation could be the implementation of a dedicated ap-

plication server within the secure network which can host the trained models. New or

updated clinical data can be pushed from the EMR to this server either as it becomes

available or batched and pushed according to a schedule that is pre-determined to have an

acceptable balance between responsiveness of the downstream application and burden on

the production system.

This would likely be sufficient for a pilot implementation, but for a truly productionalised

roll-out, this complexity must be further extended to include a strategy for model re-

training, and the implementation of modern messaging paradigms (FHIR, HL7) that are

supported in such settings.

User interface. The user interface itself is by comparison a far simpler consideration

that can be built upon well-understood and flexible technologies that are straightforward

to develop and deploy, and have very few resultant dependencies. Its implementation is

envisaged as a web-app, which reflects current practice in the target institution for all

clinical user interfaces, and is further typical of many EMR-based applications.
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Here the PEOU construct from the TAM must be examined. Despite the complete novelty

of the watch-list system, with no directly comparable precursor, users on average agreed

with statements that described the system as easy to use, and only one user moderately

disagreed with these statements across the board. The interface was designed to reflect

affordances and workflows that are common in clinical applications, drawing on general

familiarity and comfort with simple, modern application elements. The use of colour in

the traffic-light style risk stratification and visualisation of risk changes over time was also

highly valued in a number of studies [39, 43, 70]. The eventual burden of the application

learning curve remains to be borne out in practice, however it is anticipated that it will be

relatively simple for end-users to include in their workflow.

This technology stack can be imagined as akin to the proverbial duck, where the vast

majority of its complexity is ‘under the water’, at least one step removed from the end-user.

If a careful and considered roll-out that pays sufficient attention to the back-end complexity

can be achieved, from the point of view of the clinical users the behaviour of the technology

can be expected to fall within the bounds of acceptable complexity. From the point of view

of the organisation itself, however, the level of complexity is extreme.

8.2.4.3 The value proposition

Although the core value proposition of this application is somewhat speculative at this

nascent stage, it aligns with previous works [193, 194] that demonstrate a reduction in

cardiac arrest events as a result of early review of the deteriorating patient. Whether this

can be extrapolated to even earlier interventions leading to more conclusively positive

outcomes remains to be seen (and measured).

Internal reports into the critical care outreach role itself [195] also point to the generally

positive impact that this role is having, although low incident counts for key end-points

preclude the drawing of statistically significant conclusions. An additional value pro-

position that was suggested by the clinical stakeholders in this project is based on the

supposition that the watch-list is able to function as a self-monitoring system. This means

that patient risk and outcomes over time are all stored within the application state itself and

therefore any value realised from this intervention will be concrete and directly attributable,
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which is a significant improvement over the ad-hoc monitoring processes that are the

status-quo. This suggestion is also directly and spontaneously supported by one of the

free-text responses to the TAM questionnaire.

The accommodation of the secondary end of life and administrative use-cases of these

models also strengthens the argument for the value of this application. Despite the

speculative nature of the value proposition, it has multiple paths by which it can be

expected to streamline processes and be of material benefit to the healthcare system by

reducing costs and/or improving outcomes. In particular, end of life care and advance

care planning is an area that reportedly suffers from inconsistent and largely untracked

application in the target institution, despite known benefits to the patient, surviving family

members, and health system [196]. A straightforward and centralised way of identifying

patients who should be under the care of a palliative-care specialist and/or have an advanced

care directive in place has the potential to not only improve consistency of care, but also

creates an opportunity for significant developments in the field of end of life research.

8.2.4.4 The intended adopters

The intended adopters are the staff who are expected to use the watch-list application for

one or more of the identified use-cases. The way in which the implementation of this

technology affects these users has formed the core driver behind much of this thesis, and

as such, has already been addressed in the most detail of any of the NASSS domains. For

a full exposition of this domain, and how it relates to the gathered evidence-base, please

refer to Section 8.2.3.

8.2.4.5 The organisation

Without insider-level access to the management structures and culture at the target organ-

isation, it is not possible to provide a full evaluation of its capacity to support innovation.

Although some of the stakeholders in this project did indeed have such access, an analysis

of organisational structure and climate were not within the agreed research scope, and

therefore it was not appropriate to capture these details directly.
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There are some externally known or observable factors, however, from which it is possible

to infer some of the structural determinants that affect the organisation’s readiness to pilot

the watch-list.

St Vincent’s hospital has a history of technological innovation, and were early adopters

of electronic medical records, relative to other large Australian hospitals. The internally-

developed deLacy application was first deployed in 1993 [197], before being modernised

as Web deLacy in 2006. Of note is the way that this development effort was rooted in

nursing process theory, and how nursing staff in particular transitioned into leadership

informatics roles. This echoes the genesis of the watch-list project, which is very much

nursing-led.

This practice of early adoption brings with it some challenges, however, and there have

been periods where being out of step with the bulk of comparable hospitals (even in

the positive direction) puts an institution at risk of incompatibilities and unsupported

requirements. Despite this, deLacy has continued to be used to break new ground, being

the first system to provide integration with the Australian National Personally Controlled

Electronic Health Record (PCEHR) [198].

This appetite for innovation must be balanced against the lack of organisational slack

and inflexibility of resourcing at this hospital [199]. This is evident in the roll-out of the

critical care outreach role, which has remained only partially funded for the duration of

this project, and has been granted insufficient resources to effectively evaluate the program.

8.2.4.6 The wider system

St Vincent’s Health operates a mix of public and private hospitals, as well as numerous

aged-care communities and two dedicated palliative-care facilities across the east coast of

Australia. Although the scope of this project applies currently only to the public hospital in

Darlinghurst, Sydney, this heterogeneity of geography and remit must be considered when

planning a sustainable roll-out, in particular the effect of complex governance structures

that span multiple state-level health authorities.
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Based on the organisational appetite for innovation described in the previous section,

however, it is possible that despite the increased complexity that comes from operating

in multiple jurisdictions, this may actually break down the silos that are characteristic of

the relationships between state healthcare systems in Australia and thus act as a facilitator

of innovation as opposed to a barrier. There is an appetite in Australian research funding

bodies to give weight to applications that cross state lines, so this facilitation may be as

simple as the capacity of this institution to access funding, although such conclusions

cannot be more than speculative.

To date, there is no attempt to specifically regulate the implementation of predictive

models in healthcare in Australia beyond the existent privacy, security and discrimination

obligations (under which the hospital systems already operate) although there is a road map

towards AI standards [200] and a national AI ethical framework [201], both of which must

inform such systems. This lags behind the European Union, which specifies requirements

for model explainability under the General Data Protection Regulation [202] and the United

States, which is starting to consider the role of clinical regulatory bodies as applied to these

systems [157]. It is reasonable to expect that Australia will fall into step with at least some

elements of these regulatory models however, as the AI standards discussion paper already

highlights the need to be operating under internationally harmonised standards [200], so it

would be wise to assume that similar controls will be put in place in the near future.

8.2.4.7 Evolution and adaptation over time

System adaptation. The tightly integrated architecture introduces a brittleness where

changes in the data source can introduce downstream software bugs. This is a necessary

trade-off between the desire of clinical end-users to avoid all instances of double data entry

[48, 71] and the inherent complexity of any integrated software system.

The implementation of an ORM abstraction as described previously goes some of the way

to reduce this impact, and further than just the decoupling of source and target system, the

particular selection of SQLAlchemy offers a mature ecosystem of data migration tools.

The scale of such migration projects in an enterprise-grade system (in particular one with

auditable elements) must nonetheless not be underestimated.
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Rajkomar et al. [81] use the FHIR messaging standard as the basis of an alternative

architecture, as this data standard can be expected to be a persistent feature of the source

data system, regardless of any future updates. Given the serialised processing that forms

much of the core logic of the final models, this has the additional benefit of reducing

the computational burden on the downstream system, which is not insignificant. At such

time as this messaging standard becomes pervasive within the Australian system, this

strategy should be considered for its multiple benefits in reducing the complexity of the

technology and adaptability domains. The pre-processing techniques described in Chapter

3 can equally be applied to such messages, so this modification is technically feasible, and

does not affect the core proposal.

Note that the equivalent HL7 messages are not persisted in the source system, so were not

available for this proof-of-concept work.

Procedural adaptation. Finally, in Chapter 3, it is already possible to see evidence of

ways in which a solution must be robust not only to technological changes, but also able

to accommodate and reflect process change. This is especially true in a setting such as

this, where there is an expectation that use of the system will itself be a driver of changing

practice over time. Davis et al [203] suggest a procedure for updating clinical models to

combat model performance drift that takes into account changes in population, end-point

rates and changes in the relationships between predictors and outcomes. Any or all of these

changes are highly likely to occur within the timescales of such an implementation.

Assuming that these process changes are implemented at a smooth pace, and with a

sufficiently robust feedback loop in place, it is theoretically possible to update model

training iteratively, thereby reflecting current practice, although a mature and updating

model that can be trusted to adapt in this way is still many steps away from implementation,

and represents a highly complex proposition.

The capacity of a version of the prototype model (and a highly simplified version at that)

to demonstrate transferability of the core concepts into a data set that is fundamentally

quite different (changed setting in particular) between Chapters 4 and 5 gives support to its

technical feasibility, although not its procedural implementation.
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8.2.5 Future research directions

In Sections 8.2.3 and 8.2.4, a number of important research directions are discussed, namely

the expansion of external validation, impact study and the development of a principled

roll-out strategy. The careful study of the fairness and ethical impact of any implemented

system must be added to these. It is clear from the error analysis in Chapter 4 that there is

a difference in the types of cases that cause false-positive and false-negative assessments

from the model. If this is true, the capacity for systemic bias must be assumed to follow.

The consistent highlighting of certain patient groups to be either prioritised or deprioritised

relative to other groups will have wide-ranging impacts on patient outcomes that can easily

be obscured in population-level analyses.

8.3 Conclusion

8.3.1 Account of research questions

As the conclusion, the four original research questions that were stated in Chapter 1 are

evaluated.

T.1 Determine an appropriate modelling architecture that can, in principle, identify

patients at risk of deterioration in the short term from the clinical record, in real

time and without access to vital signs data.

Chapter 4 demonstrates that the lack of vital signs data, although significant, does not

prevent the delivery of a model that can predict death and unplanned ICU admission within

24 hours with accuracy that is comparable to baseline deterioration models, despite their

advantage of being able to include important physiological variables.

T.2 Measure how well such an architecture can generalise within the target institution.
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Although in this discussion chapter the proposed solution was critiqued for not having

reached the level of external validation, in fact the original proposal was to deliver a system

that generalised locally, which is achieved through the use of hold-out test data as the

performance benchmark. The validation of generalisability of the high-level techniques,

and delivery of published code as applicable to a publicly available data set in Chapter 5,

goes much further than this stated aim.

C.1 Understand the qualities of predictive models that are most valued by clinical

end-users.

The review of qualitative literature in Chapter 2 provides a proxy for understanding how

clinicians value and want to interact with predictive models in practice. There remains a

significant gap between what is possible and what is available in this realm, so there is no

perfect measure of this yet. From the consistency of results between what was expected

from the literature and what was observed through the requirements-gathering phase in

Chapter 6, and in the application of the technology adoption model in Chapter 7, it is

reasonable to be confident that these observations provide a sufficiently strong foundation

until such further examination is possible.

C.2 Apply these qualities to the delivered model as a prototype, and measure the

success of this application as perceived by likely stakeholders.

Using the framework provided by the NASSS model, the general capacity for success of

the proposed model is assessed. Although there are significant complexities observed,

in most cases they can be justified as unavoidable in the provision of the core objectives

of this work. Notably, in the technology and adaptability domains, there exists capacity

to reduce complexity in the future through the adoption of widely accepted messaging

standards.

In presenting the prototype interface to likely stakeholders in this pre-adoption state, its

reception is warm across the domains of perceived usefulness, perceived ease of use, and

in behavioural intention to use. Although this success is somewhat equivocal, until a

‘hands-on’ experience can be delivered, it is natural to expect some uncertainty.
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8.3.2 Key contributions

Throughout this work it has been demonstrated that current best practice for clinical

prediction system development (whether simple rules-based or bleeding-edge AI) does

not take into account the way that it affects its intended end users. The current ‘best-case’

scenario is an implementation study showing an effect on clinical outcomes. This is a

necessary but insufficient analysis if the end-goal is robust, systemic modernisation of the

use of predictive technologies applied to real-time observational data in clinical practice.

This work demonstrates the feasibility of a more holistic approach, considering the per-

spectives of clinical end users in parallel with the technological development phase. By

considering the clinical factors prior to implementation, it is possible to adapt to user needs

much earlier in the process, reducing the risk of failure upon delivery.

The technical feasibility of a prototype system using the limited real-time available data

at the target institution by applying novel context-specific processing techniques is also

shown, and importantly, the key technical innovations of this proposed system were found

to be transferable into other settings.
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Appendices

Acknowledgements of open domain image sources

Figure 1.1: This diagram has been designed using resources from Freepik.com

Figure 7.1: This interface was designed using resources from Vecteezy.com

Appendix to Chapter 2: Literature Review

Search Strings. MEDLINE: 1. Practice Patterns, Physicians’/; 2. Practice Patterns,

Nurses’/; 3. Attitude of Health Personnel/; 4. 1 or 2 or 3; 5. Decision Support Techniques/;

6. Decision Support Systems, Clinical/; 7. prediction model*.mp.; 8. risk predict*.mp.;

9. clinical predict*.mp.; 10. decision rule*.mp.; 11. prediction rule*.mp.; 12. prediction

tool*.mp.; 13. 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12; 14. 4 and 13

Scopus: (KEY(practice patterns, physicians) or KEY(practice patterns, nurses) or KEY(attitude

of health personnel)) and (KEY(decision support techniques) or KEY(decision support

systems, clinical) or TITLE-ABS(prediction model) or TITLE-ABS(risk predict) or TITLE-

ABS(clinical predict) or TITLE-ABS(decision rule) or TITLE-ABS(prediction rule) or

TITLE-ABS(prediction tool))

CINAHL: ( practice pattern* or attitudes of health* ) AND ( decision support* or predic-

tion model* or risk predict* or clinical predict* or decision rule* or prediction rule* or

prediction tool* )
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EMBASE: 1. clinical practice/; 2. health personnel attitude/; 3. nursing practice/; 4. 1

or 2 or 3; 5. decision support system/; 6. prediction model*.mp.; 7. risk predict*.mp.;

8. clinical predict*.mp.; 9. decision rule*.mp.; 10. prediction rule*.mp.; 11. prediction

tool*.mp.; 12. 5 or 6 or 7 or 8 or 9 or 10 or 11; 13. 4 and 12

DARE: 1. MeSH Descriptor: [Practice Patterns, Physicians’]; 2. MeSH Descriptor:

[Practice Patterns, Nurses’]; 3. MeSH Descriptor: [Attitude of Health Personnel’]; 4. 1

or 2 or 3; 5. MeSH Descriptor: [Decision Support Techniques’]; 6. MeSH Descriptor:

[Decision Support Systems, Clinical’]; 7. prediction model*; 8. risk predict*; 9. clinical

predict*; 10. decision rule*; 11. prediction rule*; 12. prediction tool*; 13. 5 or 6 or 7 or 8

or 9 or 10 or 11 or 12; 14. 4 and 13

Please note that during the piloting phase, lists of known decision rules were included

in the initial searches, however produced no additional eligible results. It seems that

qualitative studies are sufficiently likely to use the more generic ‘rule’ terminology and

thus be captured by the final search strings described here.

Funding. This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

Summary.

• Clinician opinions and uptake of clinical prediction rules is inconsistent

• Technical capacity for prediction in healthcare is higher than what is implemented

in practice

• Clinicians require actionable output from prediction rules

• Face validity is important for translation of risk scores

• Increasingly, clinicians desire fully integrated risk-score calculators

• Utility, credibility and usability are necessary for acceptance of CPR
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Appendix to Chapter 7: Proposed application and

use-cases

Text presented to survey respondents

Background

This application has been developed in order to assist the work of the Critical Care Outreach

team by presenting assessments of patient deterioration risk over time.

You will be presented with a system mock-up and text describing the intended use-cases.

The purpose of the questions that follow is to determine the potential usefulness, ease of

use and attitudes towards such an application. In responding to these questions, please

assume that the risk assessments presented have been validated to the following level of

accuracy for in-patient deaths and unplanned ICU admissions.

Application Overview

Data sources. The watch-list is envisaged as an application that can be run automatically,

from data that is available in the clinical record in real time, i.e. pathology orders and

results, medication administration records, surgical theatre bookings, ward movements and

administrative data.

This list will update regularly as new data is available, producing a risk assessment for

each patient.

Prediction of in-patient death. The prototype system is able to predict death within 24

hours with an accuracy that compares favourably to the commonly used early warning

score NEWS (AUROC 0.93 vs 0.89).
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Prediction of unplanned ICU admission. This system is able to predict unplanned ICU

admission within 24 hours (defined here as admissions to ICU from any source other than

direct from surgical theatres) with an AUROC of 0.77.

This accuracy and clinical applicability will be tested and reported upon separately. Your

responses should focus on the usability of the application itself, assuming the accuracy

described above.

Note that the prototype system does not make use of vital signs data or clinical notes, and

accuracy is expected to increase significantly (particularly in regards to unplanned ICU

admission) when this data is made available.

Application Usage

A

Risk increase
Max risk prev 24hr
Max current risk
Max all-time risk
....

Watch-List

Overall Risk EOL Care

Extreme 

High

Elevated

CBA

John Smith, 75, M
Ward North / Bed 10 (Dr. Bloggs)

YYYYMMDD - HH:MM : Pathology result XYZ 
YYYYMMDD - HH:MM : Ward move a-b
YYYYMMDD - HH:MM : Procedure 1

J.S. N10

J.D. W32

Sort Options

Filters
Location
Assigned 
clinician

Risk as at [last checked]
  80/100 USER123

role: RN

A.B. W4

C.D. W7

E.F. N1

G.H. S55

I.J. N18

K.L. E22
YYYYMMDD - HH:MM : Med A 10mg
YYYYMMDD - HH:MM : Med A 10mg
YYYYMMDD - HH:MM : Pathology order ABC

Ward West / Bed 32 (Dr. Lee)
Jane Doe, 84, F

Risk as at [last checked]
  75/100

(A) Summary panel - see high-level view of cases allowing an immediate overview of the

risk profile of the hospital

(B) Detail view - see predictions for individual cases over time to understand trends, and

highlight events co-occurring with risk changes over time

(C) Control panel - sort and summarise by risk category, location, assigned clinician or

other relevant parameters
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FIGURE 8.2. Risk changes up to prediction time

It is not possible to give a real example for the detail panel due to privacy restrictions on the

source data, so here we present the average risk trend for the first 100 hours of admission

for admissions > 100 hours in length in the test set (grouped by actual outcome).

Application Use Cases

A non-exhaustive list of expected use-cases includes:

1. Using the control panel to sort by location and risk, the critical care outreach nurse

begins their shift and is able to rapidly assess where to visit first.

2. A medical officer is handing over at the end of their shift. They filter by assigned

clinician and/or location and use the output as a priority list to work through for the

handover conversation.

3. A rapid-response is called on a patient. The responding medical officer is not familiar

with this patient, however they are able to use the view of risk over time, together with the

listed events summarised below, to help them get up to speed on this case more rapidly.
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4. Clinicians can manually override a high-risk prediction in the instance that the patient in

question is receiving end-of-life care.

5. Post-hoc analysis of outlier predictions can be used to classify and identify unexpected

deterioration in order to drive institution-level policies.
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Appendix to Chapter 7: Measures

Question Responses
Age Under 30 years of age

30-39 years

40-49 years

50-59 years

60+ years

Prefer not to respond

Gender Male

Female

Prefer not to respond

Other

Level of assignment to clinical
patient deterioration related tasks
(including outreach and emergency
response) in a typical work-week

None

Occasional or cover assignment only

Part-time but regular assignment

Majority of working week

Full-time or dedicated assignment

Role Nursing

Medical

Administrative

Other

Years of experience post-graduation 0-5

6-10

11-15

16+

TABLE 8.2. Demography Measures



164
A

P
P

E
N

D
IC

E
S

Measure Questions
ATT ATT1 Providing risk assessments in such a format to prioritise Critical Care Outreach work is a good

idea

ATT2 I am positive toward the idea of assessing patient deterioration risk in such a fashion

BI BI1 Were this system offered in my practice, I believe I would be a frequent user

BI2 Were this system available, but not offered in my practice, I would advocate for its use

PEOU PEOU1 It would be easy for me to use this application in my clinical practice

PEOU2 It would be easy to become skillful at using this application

PEOU3 It is easy for me to understand the patient deterioration risk assessments that are presented by
this application

PEOU4 I feel confident that I could find the information I wanted in this application

PU PU1 Death and unplanned ICU admission risk assessments presented in this manner would enhance
the effectiveness of the Critical Care Outreach team

PU2 This application would make it easier to prioritise Critical Care Outreach resources

PU3 This application would be useful to the Critical Care Outreach team

Free-text Do you have any additional comments that you would like to make regarding the clinical utility
of the proposed tool?

TABLE 8.3. TAM Measures
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