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ABSTRACT 

With the proliferation of small-scale solar PV installations, global horizontal irradiance 

(GHI) and power predictions are becoming critical elements in the integration of PV gen-

eration into the grid. This thesis considers short-term prediction, from minutes to hours, 

based on historical meteorological measurement data from weather and power monitoring 

stations located in the Canberra (Australia) region. The specific objective of this study is 

to produce accurate forecasts for (a generic) target station using a minimal amount of 

observations from nearby stations. Thus, although a large number of weather and power 

variables were collected and used for developing and testing the prediction algorithms, 

the ultimate aim is to rely on a few predictors, mainly meteorologically based. This will 

allow the identification of critical instruments which would need to be installed in order 

to provide satisfactory PV power predictions while limiting capital and operating costs of 

monitoring. Relative mean absolute error (rMAE) is used to indicate prediction perfor-

mance. Three statistical methods are tested for two different seasons, winter and summer. 

The relative importance of predictors and stations is assessed. A conversion from GHI to 

global irradiance on tilted surfaces, by means of simple geometry arguments and notion 

of irradiance components at a nearby site, is also introduced and tested. Finally, the pre-

diction accuracy is categorised according to different clear-sky indexes. Results show that 

when the clear-sky index exceeds 0.9 (near-to-cloudless conditions), the prediction per-

formance is distinctly better than at lower clear-sky indices which are under 0.9, by at 

least 0.05 and 0.2 in terms of rMAE in summer and winter, respectively. The second 

contribution of this thesis is a standalone PV-Battery hybrid system and the solar irradi-

ance anticipation is used as simulation input to PV panels. There are two converters in 
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the hybrid model. The unidirectional DC-DC converter, which is linked between PV pan-

els and DC bus for power supply, works under maximum power point tracking (MPPT) 

mode, while the other, the bidirectional DC-DC converter located between battery banks 

and DC bus, operates under a model predictive control (MPC) algorithm. By charging 

and discharging the battery, the voltage of the DC bus can be kept in a certain range to 

meet the load requirement. 
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Chapter 1 Introduction 

Electricity, as the most effective and convenient form of energy, is indispensable in al-

most all activities of modern times. Conventional generators, the mechanical energy of 

which normally comes from combusting coal, oil or natural gas, have dominated the elec-

tric power generation for a long time. As industrialization extends to rural area and pop-

ulations grow, the need for more and more electricity becomes urgent. However, during 

the last decades, human beings have witnessed the environmental degradation including 

the pollutant emissions from fossil fuel combustion such as SO2, NOx, particulate and 

CO2 [6]. With the conflict between the growing electricity demand and the environmental 

benefits, renewable energy is expected to be a potential solution as it is abundant, eco-

friendly and widely distributed. Among renewable resources, wind power has experi-

enced the most development over the last few decades in the United States. Solar energy, 

lagging behind though, is expected to get close to and even take over the dominating place 

of wind [15]. The advantages of solar energy compared to other renewable resources are 

listed below: 

1. Unlike some other renewable resources confined to particular geographical area, 

say tidal and geothermal, solar power is accessible and available in every corner 

of the world.  

2. Solar power can be used easily on small scales without connecting to the power 

grid. It is therefore an ideal energy source for increasing regional energy inde-

pendence and extending electrification to rural and remote areas. 
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3. The ‘plug and play’ nature and high mobility of solar panels make solar power 

systems easier to be deployed than any other energy systems. So it is an ideal 

energy source in urgent contexts like after-disaster rescue and reconstruction.  

4. Due to the intensive attention and resource put into sun power research, the effi-

ciency of solar panels is getting increasingly high while the cost for per megawatt 

installation is becoming lower and lower [37].    

Installations of residential solar photovoltaic (PV) panels have grown rapidly in several 

countries, mainly encouraged by government incentives, increasing energy prices and re-

ductions in the cost of solar power. Latest estimates indicate about 4 GW in installed 

small scale PV power for Australia. With progressively lower PV production costs and 

improving system quality and reliability, growth in installations in the near future is pro-

jected to be even stronger (AEMO 2012).  

Despite all the advantages solar power may have, the drawback, which is of the intermit-

tent nature as other clean energy sources may have, prevents it from proliferating fast. 

The upgoing penetration of solar energy poses a large operational challenge to existing 

transmission grid such as additional ramping, power system stability and so on. For ex-

ample, a partly cloudy day may lead to a high frequency of ups and downs in terms of 

solar power output. This may make the voltage or frequency of a weak power system 

unstable, or even worse, cause a blackout. Hourly and even subhourly prediction of solar 

radiation and PV-produced power at the residential and business level is therefore key to 

alleviate the problems related to intermittency. To be more exact, based on forecasting 

result, electric energy storage, such as batteries can be dispatched in advance to compen-

sate power deficit, absorb power redundancy and allow a smoother integration of power 

into the electricity grid. In fact, most of the controlling algorithms need a reference value 
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to follow which is the prediction power/current difference between solar generation and 

power consumption. For power systems, the prediction from the consumer side is based 

on factors like location, seasonal effect, the electricity using habits of local citizens and 

so on. It is usually accurate enough. However, the high-end precise projection for the 

generation side of renewable plants still remains to be sought. Once they are ready, the 

reference value will be available for power dispatching.  

Ideally, one would collect all of the relevant variables from each individual installation 

to accurately describe the specific system parameters and hence attempt a detailed solar 

power prediction for each system. However, this would clearly be a very expensive, time 

consuming and essentially impractical approach since PV installations are characterized 

by a variety of features: i) PV technology, ii) inverter type and technology, iii) panel 

orientation (including accounting for tracking devices), iv) amount of shading (which can 

depend on variables such as solar zenith angle, but also on the changing nature of ob-

structions), v) efficiency of the PV panels (dependent on the type of installations, whether 

free standing or roof integrated systems, as well as on weather conditions, such as air 

temperature and wind speed).  

It is apparent therefore that a deterministic approach to urban or regional PV power fore-

casting is impractical. Practical approaches to predicting solar power at increasing level 

of approximation are therefore sought. Such approaches by necessity will have to con-

sider PV system aggregation to differing degrees. Sometimes these approaches are called 

upscaling: prediction is derived for a small sample of PV systems, which is then used to 

infer the behavior of analogous PV systems over a broader area. An increasing number 

of attempts at predicting solar power at urban and/or regional level have been made. 

Amongst these, the most notable was the work of Lorenz et al. [24] and Lorenz et al. [26]. 
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They modelled PV installations from a small region in Germany to derive solar power 

predictions over most of Germany, making use of solar irradiance forecasts from a nu-

merical weather prediction model and PV installation information available through 

power authorities and/or power companies. Although specific information of each indi-

vidual system was not required, this method attempted detailed descriptions of PV system 

characteristics such as the efficiency of PV generators or the module temperature, which 

were derived by means of parameterized models. The temporal horizon of their prediction, 

essentially determined by the irradiance forecast, was from 1 hour to 3 days ahead. It was 

worth noting also that a similar technique had also been used in wind power forecast, too 

[9].  

1.1 Solar prediction using nearby stations 

In the absence of solar irradiance, power predictions could be produced by the sole use 

of power output, measured by a sample of systems (e.g. from http://pvoutput.org, a public 

web site with user submitted power output data). These methods rely on spatial and tem-

poral correlation of neighbouring PV systems. Golnas et al. [12] proposed a method of 

estimating the energy output of a certain PV system by using information from neigh-

bouring systems like historical performance correlation and inter-system distance. In their 

research, the weekly and monthly energy generation from 55 systems located in New 

Jersey was predicted. Results indicated that the method was satisfactory for long lead-

time cases: the success rate for weekly prediction was more than 91% with a 10% accu-

racy threshold while for monthly prediction, it was more than 96% with the same accu-

racy threshold. Lonij and Jayadevan [23] used 80 residential rooftop PV systems distrib-

uted over a 50 km x 50 km area as irradiance sensors. Their approach was based on the 

system performance under clear skies. The forecast performance under all sky conditions 

http://pvoutput.org/
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relied heavily on cloud velocity estimation. They also found that the RMS error could be 

improved if there was a better measurement or estimation of cloud velocity. Recently, 

Engerer and Mills [8] developed a clear-sky index for PV power output estimation. By 

using this clear-sky index, the performance of nearby PV systems could be predicted ac-

curately according to tests carried out using power output data (with time resolution of 5 

minutes) from five residential PV systems in Canberra. 

In this work, we start from the underlying assumption that, because the ultimate driver of 

PV systems and their outputs is global irradiance, accurate meteorological observations 

are key to accurate power predictions. At the same time, and with the view to limit the 

amount and cost of instrumentation required for accurate forecasts, we also assess the 

type and number of meteorological observations required to achieve accurate forecasts. 

The irradiance forecasts are then used to produce power forecasts for a target (generic) 

system.  

This work relies on a number of high-frequency monitoring stations installed, and regu-

larly maintained, around Canberra. Specifically, we use measurements from two stations 

to produce forecasts for a third target station, for which we have all measurements. Where 

the geometry of the PV system is known, as in our case, we derive the global irradiance 

on the PV plane by means of statistical relationship between the three irradiance compo-

nents (global, diffuse and direct). In the absence of PV system specifications, one would 

need to make standard assumptions about system performance, tilt and orientation angles.  

The prediction lead (or horizon) time extends from 5 minute to 3 hours ahead. Such time 

frames are particularly useful for regulation reserves, and enhanced system reliability and 

security and, potentially, for load shifting, at the high-end of this horizon time. At these 
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lead times, it is generally accepted that statistical techniques offer the most appropriate 

and practical approach [25] [35].  

1.2 Statistical prediction methods 

Some of the most common statistical methods used to compute solar radiation forecast 

includes regression analyses and machine learning [2] [34]. Machine learning methods, 

such as Artificial Neural Network (ANN) [7] [29] are widely used too. Yang et al. [39] 

proposed three ARIMA methods to predict global horizontal irradiance (GHI). The first 

method used historical GHI measurement to predict GHI. With the second one, GHI was 

decomposed into direct normal irradiance (DNI) and diffuse horizontal irradiance (Diff) 

before predicting DNI and Diff separately. Then GHI prediction was derived by combin-

ing Diff forecast and DNI forecast. The last method also took cloud cover into account 

and combined the predicted cloud effect (cloud transient was estimated by ARIMA 

method) with the solar zenith angle to forecast solar radiation (solar irradiance under dif-

ferent zenith angle and cloud cover was then predicted by a anonlinear regression method).  

Linear and machine learning methods are also used in combination. For instance, Ji et al. 

[16] proposed an Autoregressive Moving Average (ARMA) and Time Delay Neural Net-

work (TDNN) hybrid model for solar irradiance prediction. Huang et al. [14] proposed 

an AR(2) model to predict one hour ahead global solar irradiance. In their work, they also 

combined the AR(2) model with a resonating model to form a more accurate and reliable 

forecasting model which they called Coupled Auto Regressive Dynamic System 

(CARDS). Error analysis indicates that CARDS could effectively decrease the median 

absolute percentage error by 33.4%. Sharma et al. [36] collected both historical observa-

tional solar power data and the corresponding weather forecast data from National 
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Weather Service (NWS), which were then used for Support Vector Machine (SVM) train-

ing, to create a site-specific machine learning forecast model. Meanwhile, in that research, 

the linear least square was also tested and compared with the SVM model and a past-

predicts-future model. Result showed that both the Support Vector Machine model and 

linear least square model outperformed the existing forecast-based model. 

In this work we use two statistical methodologies, which we will inter-compare: a multi-

linear model and a statistical learning machine model, called random forest. A modified 

persistence method is also used as a benchmark.  

1.3 Controlling method for solar panels and battery banks 

There is a lot of research focusing on solar irradiance prediction. The reasons may be 

because renewable energy is really difficult to be used or integrated into a power grid due 

to its intermittency nature. This is especially true for the most popular two, solar energy 

and wind energy. Besides a high-end prediction algorithm, in order to make solar energy 

possible to contribute to energy market, a reasonable and effective controlling strategy 

should also be considered as an indispensable factor.  

As a power source in a circuit, solar panel arrays have much of a role to play in system 

operation. Therefore, a controlling scheme on the solar cell side is of extreme importance. 

In order to transfer solar irradiance to electricity in the most efficient way, Maximum 

Power Point Tracking, also known as MPPT, is the most commonly used algorithm for 

controlling PV panels’ output. Many of the MPPT controllers are voltage-based and with 

Perturb-and-Observe (P&O) nature, which means that the sensing of different real-time 

parameters such as voltage and power output is required [1] [11]. Rather than using the 

P&O method, Rai et al. [32] proposed a machine learning based algorithm for maximum 
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power tracking. In this study, a three-layer feed forward perceptron neural network was 

trained and then used to predict the maximum power voltage and current under different 

meteorological conditions and variable load situations. There are a lot of other principles 

that could be used to determine the MPPT [10]. Of course, they have their own pros and 

cons which should be taken into account before choosing one from them. 

Power storage is also crucial in a renewable energy system. Battery storage, as one of the 

most frequently used means of storing electric power, may be the most effective solution 

to the intermittency nature of the two popular renewable energy sources, wind and solar. 

In an isolated power system, it can fulfil peak shaving and improve the power quality [31] 

while in a grid-connected system, it can compensate the output fluctuation in order to 

make the output behaviour more similar to a conventional plant [20]. Liao et al. [21] 

proposed a power control method based on four different working situations for a 

standalone solar photovoltaic system with battery storage. In that study, the PV panels 

were linked with a 100V DC bus through a unidirectional (has three operating modes: 

Maximum Power Point Tracking (MPPT), Constant Voltage (CV) and Shut-down (SD)) 

DC-DC converter while the 48V battery banks were linked with the DC bus through a 

bidirectional one (has three operating modes: Boost, Buck and Shut-down (SD)). Such a 

model structure was straightforward and easy to be understood as PV systems always 

acted as a power source, but the battery storage, could be either power source or power 

load. According to battery and solar cell array voltages, and the charging and discharging 

current of battery, the working principle of the controller was divided into 4 modes which 

are basically related to the aims of extracting maximum power from PV panels if possible, 

protecting battery from over-charge or over-discharge, and trying to provide sufficient 

and stable power to the load. Using a similar electrical structure to Liao et al, Mahmood 
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et al. [28] proposed a multi-loop control strategy instead of using discrete state. The con-

trol algorithm contained two loops, one was for monitoring the State of Charge (SOC) of 

the battery, and the other one was for balancing the system power when the power pro-

duced from the PV system was far more than the power consumption from both battery 

and load. It was worth noting that the PV cells might operate at maximum power point or 

at some points with less power as a compromise to system power balancing requirement. 

This control scheme was then tested and verified on a 2kw prototype and it was proven 

that this scheme could work properly under some different situations such as load increas-

ing or decreasing.  

Model predictive control (MPC) has the potential to be used as a controlling method in a 

system where a renewable energy source is involved. Teleke et al. [38] proposed a MPC-

based control method in a wind-battery hybrid power system. In this study, a simplified 

battery mathematical model was shown and with the model predictive control, a power 

output reference from battery banks was given and the gap between the real and reference 

values was set as the performance index. Results showed that the power of a wind farm 

could be dispatched on an hourly basis like a conventional generator. Also, by setting 

constraints of battery current and State of Charge (SOC) limit of battery in the MPC con-

troller, the battery could be protected from problems like overcharging or undercharging 

which would effectively extend the lifetime of the battery system. Khalid et al. [18] also 

used MPC as a controlling solution for smoothing wind power output with battery storage. 

In addition, this research highlighted a wind prediction method. Such a forecast was based 

on the prediction of the wind vectors using the corresponding information from some 
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nearby stations. Once the target output was known, this improvement in wind power pre-

diction would allow a more accurate reference power output value for the battery to keep 

track of and the battery could be effectively deployed in advance. 

1.4 Outline 

Section 2 shows the prediction part of this study. First, the observations and methodology 

used in this work is described. In addition, we study the relative importance of predictors 

amongst various observed meteorological and power variables. The relative importance 

of monitoring station locations used in the forecast algorithms is also investigated in this 

section. At the end of Section 2, we propose a simple empirical conversion method to 

produce solar irradiance on a tilted surface, which is then used to produce power forecasts. 

Results are also analyzed for clear and non-clear skies.  In Section 3, a stand-alone PV-

Battery model is proposed and the simplified circuit is presented, followed by the content 

of demonstrating how the unidirectional DC-DC converter and the bidirectional DC-DC 

converter are modelled. In this section, the MPPT algorithm and MPC algorithm for this 

hybrid system are also given. A case study based on different prediction result is shown 

in Section 4, where the circuit and control algorithm proposed in Section 3 is implemented.  

Section 5 offers a summary and a discussion about possible future improvements. 
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Chapter 2 Solar Irradiance Prediction 

2.1 Observations and Methodology 

2.1.1 Observations 

Key to this work is the urban observation network based around Canberra, in the Austral-

ian Capital Territory (ACT). Such stations simultaneously monitor meteorological and 

electrical variables of co-located PV systems. Five stations are operating at present, and 

collect electrical variables such as current and voltage from which power is derived and 

meteorological variables such as global irradiance, both on horizontal and PV panel plane, 

PV panel temperature, air temperature, wind speed and direction, humidity, pressure and 

precipitation. All variables are logged at 1 second. However, in order to reduce the de-

grees of freedom of the prediction problem, 5-min averages are considered here. 

Due to current constraints on data availability and quality, only three stations can be used 

for this study (see Figure 1). They are Black Mountain (geographical coordinates: 149.1E, 

35.3S; elevation: 595m), Namadgi School (149.1E, 35.4S; 602m) and Wombat Hill 

(149.2E, 35.5S; 951m). Their relative distances as the crow flies are as follows: Black 

Mountain – Namadgi School 13 km, Black Mountain – Wombat Hill 29 km, Wombat 

Hill – Namadgi School 18 km. Given its location, Namadgi School, which is roughly 

located between Black Mountain and Wombat Hill, is selected as the target station in our 

forecasting experiments. 
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Figure 2-1 Map of Canberra with the position and names of our five monitoring stations. Highlighted 

with circles are the three stations used for our solar forecasting algorithms, with Namadgi School taken 

as the target station 

2.1.2 Prediction Methods 

Two statistical prediction models, multi linear and random forest, are evaluated in this 

work. They are assessed based on different predictors, seasons, and combination of 

ground stations. These two methods are benchmarked against a (modified) persistence 

method, which is described below. 

2.1.2.1 Multi-linear Model 

The multi-linear model used in this work is a linear method based on the AR(2) model. 

The following equation shows how solar power output prediction is obtained when solar 

power (P), solar irradiance (I) and panel temperature (T) are taken as predictors:  
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 Pt = α + β1Pt−n + β2Pt−(n+1) + γ1It−n + γ2It−(n+1) + δ1Tt−n + δ2Tt−(n+1) ( 2-1 ) 

where ‘n’ is the time step. More specifically, ‘n’ is the ratio between the forecast horizon 

time (HT, in minutes, also called lead time) and the temporal resolution of the data (5 

minutes in this case). 

 𝑛 =
𝐻𝑇

5
 ( 2-2 ) 

For example, if we want to predict half an hour in advance, namely HT equals 30 minutes, 

then ‘n’ is 6. As the time horizon is up to 3 hours ahead, the maximum n is 36. The figures 

below show how the time step corresponds to different forecast horizon times.  
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Figure 2-2 Examples of horizon time 

Using an AR(2) model implies that the predictors are taken at -5 and 0 minutes. These 

two predictors are then related to different ‘n’s depending on the horizon time considered.  

Forecast produced at time T uses values from the two previous time steps, T-n and T-

(n+1). Given our use of 5-minute averaged data, T-n and T-(n+1) correspond to the pre-

vious 5 n- and 5 (n+1)-minute averages respectively. The coefficients, α, β1, β2, γ1, γ2, δ1 

and δ2 are parameters to be fitted by the multi-linear regression method.  

2.1.2.2 Random Forest model 

Based on training data set, machine learning is basically an application of artificial intel-

ligence (AI) which has the ability to learn and do data mining without being explicitly 

programmed. It can also provide an effective way for discovering and extracting regular-

ities among different data. Without involving human participation, the process of acqui-

sition of knowledge from experience is much less time-consuming and it is, with no doubt, 

a symbol of high level automation [19]. Some popular machine learning algorithms such 

as Artificial Neural Network (ANN) and Support Vector Machine (SVM) are now widely 

used in data mining, images analysis and so on. Random Forest, as one of the powerful 

machine learning tools, is introduced and used in this research. 

Random Forest (RF) is a widely used statistical machine learning method developed by 

Breiman [4] and Cutler et al. [5]. It constructs multiple-predictor models and can be used 

for both regression and classification problems. For regression, as it is used here, its al-

gorithm contains three major steps [22]. First, N bootstrap samples are drawn with each 

sample including approximately 64% of the original training data. A basic structure of 
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the original training data is shown in equation (2-3). In this training data set there are 6 

features, from A to F, and m samples, from 1 to m.  

 T =

[
 
 
 
 
 
xA1 xB1 ⋯ xF1 y1
xA2 xB2      xF2 y2

⋮ ⋱ ⋮
xA12 xB12       xF12 y12

⋮ ⋮ ⋮
xAm  xBm ⋯xFm ym ]

 
 
 
 
 

 ( 2-3 ) 

where x denotes the feature and y is the object (solar irradiance or power output, in our 

case). Then, an unpruned regression tree is grown for each of the bootstrap samples. How-

ever, rather than using the best split among all p predictors, only m of the p predictors are 

randomly sampled and the best split is chosen from among these m variables.  

 S = [

xA3 xB3 ⋯ xF3 y3
⋮ ⋱ ⋮

xA12  xB12 ⋯xF12 y12
] ( 2-4 ) 

Note that S is a subset of the training data set T and each subset is used to develop a 

specific decision tree. Finally, the prediction is formed by averaging the output of the N 

trees (or equations). In addition to constructing multiple-predictor models, RF also pro-

duces scores measuring the relative importance of each predictor on the predictand. This 

score is estimated by calculating the mean decrease in accuracy due to permuting the 

associated predictor while leaving the others unchanged [22]. 

 Yp =
1

N
∑ Tn(X)
N
n=1  ( 2-5 ) 

where Yp is the predictand, Tn denotes the decision tree function, and X is a vector with 

different features. In practice, the advantages of the RF method include: 

 Relatively high speed of learning 
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 Robustness (effectively avoid over-fitting) 

 Variable importance of predictors is provided 

 Missing data can be estimated 

2.1.2.3 Persistence 

Persistence is conceptually the simplest prediction model. In its simplest form, it consists 

in keeping constant (persisting) the last measured value, therefore assuming that the value 

at the current time of the quantity to be predicted is the same as its value at the previous 

time step. For instance, if the temperature yesterday were 20° C, the simplest persistence 

forecast would predict 20° C also for today. Formally this is expressed as: 

 P(𝑡2) = P(𝑡1) ( 2-6 ) 

where t2 is the current time step and t1 is a previous time step. 

More elaborated forms of persistence could be formulated, whereby also values at previ-

ous time steps (as for autoregressive methods) or physical features may be considered. In 

our case, since solar irradiance typically has a pronounced diurnal cycle, and because the 

solar cycle – the irradiance under clear sky conditions – can be easily computed well in 

advance, a slightly modified version of persistence is more appropriate. Hence, instead of 

persisting the full signal of irradiance, the difference between irradiance and the clear sky 

value is persisted. Thus in the case of GHI: 

 GHI(𝑡2) = GHI(𝑡1) + (CS(𝑡2) − CS(𝑡1)) = (GHI(𝑡1) − CS(𝑡1)) + CS(𝑡2) ( 2-7 ) 

where CS is the irradiance under clear sky conditions. We will refer to this modified 

persistence for GHI as gap persistence. It is worth noticing that a fixed turbidity is used 
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for figuring out the clear sky irradiance in Canberra region. In principle, this could be 

varied, especially considering the seasonality of the index, but since we are considering 

seasons separately this effect would not be very pronounced. Also, the turbidity is largely 

dependent on aerosol loading. In order to get precise turbidity, aerosols measurements are 

required. However, these are normally not readily available and incur extra measuring 

equipment costs. Canberra, however, has a relatively low aerosol loading and variability, 

which means that the turbidity would not fluctuate tremendously. All the factors de-

scribed above contribute to the reason why a fixed turbidity rather than a varied one is 

used in this study.  

The persistence method is a simple approach and the performance in short time-frame 

prediction such as intra-minute solar energy forecast is reliable. For overcast or sunshine 

days, the steady-change weather conditions will also contribute to the forecast quality of 

persistence model, which will make it difficult to improve upon accuracy. One major 

limitation of persistence, however, is that it heavily relies on local observations, more so 

than other statistical approaches such as those described above, which can benefit from 

other relationships inherent to longer historical data. Besides, the persistence method may 

not do well under partly cloudy sky conditions and in a long lead-time context. 

2.1.3 Prediction set up and Assessment 

Predictions are performed at various lead times from five minutes (the granularity of the 

data) to 3 hours. Given the pronounced seasonal dependence of solar irradiance, predic-

tions are performed separately for both winter and summer. A three-month period is used 

for the training of the statistical methods. The prediction is then tested over the ensuing 

month. Thus, for summer, the training period is from 1 November 2012 to 31 January 
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2013 and the prediction period is from 1 to 28 February 2013. For winter, the training 

period is from 1 May to 31 July 2012 and the prediction period is from 1 to 31 August 

2012. 

Figure 2-3 shows the clear-sky index (a standard proxy for sky conditions) distribution 

for the Namadgi School site for summer (top panel) and winter (bottom panel). The sea-

sonality of the sky condition is apparent: winter is dominated by clear sky conditions – 

around 60% of events have a clear-sky index higher than 0.9 – while in summer, there is 

a predominance of clear-sky index values in the three ranges, 0.2-0.5 (cloudy conditions, 

ca. 25%), 0.8-0.9 (broken cloud conditions, ca. 20%) and higher than 0.9 (clear, ca. 30%). 

It is worth to note that for both seasons the distribution of the clear-sky index is roughly 

the same in both the training and prediction periods. 

The success of the three prediction methods – multi-linear, random forest and gap persis-

tence – is assessed by means of the relative mean absolute error (rMAE). The other two 

common metrics, correlation coefficient and relative root-mean-square error, were also 

assessed alongside the rMAE but since they showed the same features as rMAE only the 

latter was retained for simplicity of presentation. The denominator used to compute the 

rMAE is the mean GHI measurement value over the prediction period. 

Also, we only assess daytime values of GHI and power output. Night time, as well as 

early morning and early evening values are masked. For the latter two, the masking is 

imposed at times for which the clear sky irradiance is less than 50 W m-2. 
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Figure 2-3 Clear-sky index Distribution at Namadgi School for summer (top) and winter (bottom) and for 

both training period (grey bars) and prediction period (black bars). 

2.2 Relative importance of predictors 

In this section we assess the relative importance of a number of meteorological predictors 

for the prediction of solar irradiance at the Namadgi School site. We then include PV 
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system related predictors for the power predictions. We test most of the variables meas-

ured at the monitoring stations, including solar irradiance, temperature, humidity, pres-

sure, wind speed and precipitation. In this study, up to three variables at a time along with 

the extra-terrestrial solar irradiance are tested. A preliminary assessment of the im-

portance of predictors is also carried out by computing the linear correlation coefficients 

between the predictand (GHI or solar power output) and the predictors. 

Different meteorological variables contribute differently to prediction results. PV power 

output mainly depends on solar irradiance and solar panel temperature. In turn GHI de-

pends on the sun position, cloud cover, humidity etc. Also, solar panel temperature can 

be influenced by solar irradiance and air temperature. Wind speed can affect both GHI, 

insofar as it relates to cloud speed, and PV power output, through heat transfer via local 

air advection. However, note that our wind measurements, taken at the rooftop level, are 

representative of the local PV panel environment and are not in general representative of 

higher level atmospheric flow; for the purpose of cloud movement, atmospheric pressure 

(or its temporal variations) could be a better indicator. Humidity levels provide a proxy 

for the amount of direct irradiance absorption. In addition, the extra-terrestrial solar irra-

diance, which can easily be computed (e.g. using the R package ‘RAtmosphere’), is se-

lected as a fixed predictor in all predictions. Extra-terrestrial solar irradiance embeds the 

local time and seasonality of the GHI.  

Figure 2-4 shows the rMAE of GHI prediction in summer (dashed lines) and winter (solid 

lines) for four sets of predictor combinations. Before delving into the relative importance 

of variables it is interesting to note a few general features. Firstly, prediction skill is higher 

in winter (lower rMAEs) than in summer. The seasonality in skill is not surprising given 

the marked difference in sky conditions in the two seasons (Figure 2-3), as we will also 
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see in section 2.4.1. Specifically, the summer rMAE ranges from 0.15 to 0.53 while in 

winter it ranges from 0.09 to 0.34. Secondly, for corresponding statistical methods, when 

local data (i.e., from the Namadgi School station) are used the forecast accuracy is no-

ticeably higher for lead times up to about 45 minutes. However, for longer lead times, the 

difference between prediction with and without local data is normally negligible. Thirdly, 

gap persistence provides a better prediction than that without local data up to about 15 

minutes in summer. For longer lead times gap persistence rapidly degrades, reaching val-

ues larger than 0.5 for lead times close to 3 hours. In winter, however, gap persistence is 

often more accurate than the predictions without local data, for lead times up to around 

90 minutes (Figure 2-4 (b)-(d)) and even 120 minutes as in the case of Figure 2-4 (a). 

Surprisingly, gap persistence outperforms even predictions with local data (for the same 

mentioned lead times). Fourthly, when the two statistical methods are compared, it is 

apparent that Random Forest is better than the multi-linear method in summer. The op-

posite is normally true in winter, however.  

In terms of relative importance of predictors, the difference in accuracy amongst the four 

cases is not large. Nonetheless, in summer the best GHI prediction is obtained when GHI, 

air temperature and absolute humidity are taken as predictors (Figure 2-4 (c)). In winter 

the best set of predictors is with GHI, pressure and absolute humidity (Figure 2-4 (b)). 

Table 2-1 summarises the best predictor (and method) options for GHI predictions. Note 

that since all the cases include the extra-terrestrial solar irradiance as a predictor, this is 

not listed in the table. 
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Figure 2-4 rMAE of GHI Prediction. (a) Predictors: GHI only; (b) Predictors: GHI, Air Pressure, Abso-

lute Humidity; (c) Predictors: GHI, Air Temperature, Absolute Humidity; (d) Predictors: GHI, Air Tem-

perature, Air Pressure (Dashed lines show results for summer, solid lines for winter). 
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Summer Winter   

Method Predictors Method Predictors 

Short lead-

time 

With local 

data 

Random 

Forest  

GHI, Air Tem-

perature, Hu-

midity  

Clear Sky 

Persistence  

GHI 

W/o local 

data 

Random 

Forest  

GHI, Air Tem-

perature, Hu-

midity  

Multi-linear GHI, Pressure, 

Humidity 

Longer lead-

time 

With local 

data 

Random 

Forest  

GHI, Air Tem-

perature, Hu-

midity  

Multi-linear GHI, Pressure, 

Humidity 

W/o local 

data 

Random 

Forest  

GHI, Air Tem-

perature, Hu-

midity  

Multi-linear GHI, Pressure, 

Humidity 

Table 2-1 Best options for GHI prediction 

Figure 2-5 shows the analogous rMAE values as discussed for power prediction. Here, 

the observed solar irradiance on PV plane (SP-Solar) is also selected as one of the pre-

dictors (Figure 2-5 (a)). Other predictor combinations have been tested but only these two 

are shown for brevity. Similar considerations to those for the case of GHI prediction apply 

here, with a few exceptions. When using SP-Solar as a predictor, there is a decrease in 

rMAE (equivalent to an increase in accuracy) for lead times from 5 minute to just over 

an hour. While this increase in skill may be surprising at first glance, it can be explained 

by the fact that the three PV systems have different tilt and orientation angles. Incidentally, 

this is basically equivalent to using the raw PV output from neighbouring devices (e.g. 

from pvoutput.org): even for geographically close PV systems, these can have markedly 
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different output behaviour due to roof configurations, possible shading by trees, and other 

considerations. 

Although noticeable even when GHI, instead of SP-Solar, is used as a predictor, this ef-

fect is much reduced (Figure 2-5 (b)). While the forecast accuracy is lower with local 

GHI observations compared to when local SP-Solar is used, particularly at lead times 

below about 60 minutes, predictions without local data are more accurate when GHI turns 

out to be a better predictor than SP-Solar, as tilted solar irradiance is more site-specific. 

In terms of predictors, SP-Solar, solar panel temperature and absolute humidity (Figure 

2-5 (a)) seem to provide the most accurate prediction in both summer and winter, espe-

cially when local data is used. The best options for PV power predictions are listed in 

Table 2-2. 

 

 

 

 

 



26 

 

 

 
Figure 2-5 rMAE of Power Prediction. (a) Predictors: Global Irradiance on Tilted Surface (SP-Solar), 

PV panel temperature, Absolute Humidity; (b) Predictors: GHI, Air Temperature, Absolute Humidity. 

Dashed lines show results for summer, solid lines for winter.  
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Summer Winter 

  
Method Predictors Method Predictors 

Short lead-

time 

With local 

data 

Multi-linear Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

Random 

Forest 

Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

W/o local 

data 

Random 

Forest  

GHI, Air Tem-

perature, Hu-

midity  

Random 

Forest 

GHI, Air Tem-

perature, Hu-

midity 

Longer 

lead-time 

With local 

data 

Random 

Forest 

Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

Multi-linear Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

W/o local 

data 

Random 

Forest 

Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

Multi-linear Tilted Global Ir-

radiance; Panels 

Temperature; 

Humidity 

Table 2-2  Best options for power prediction. 

2.3 Relative importance of monitoring stations 

In order to assess the relative importance of each of the monitoring stations, observations 

from the Black Mountain and Wombat Hill stations are used both in combinations and 

separately to predict GHI at the Namadgi School station. As seen in the previous section, 

if local data are available, the performance of GHI and PV power output forecasts is ex-

pectedly better, particularly when the lead time is short.  
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Figure 2-6 shows the rMAEs for the GHI prediction using different combinations of the 

three sites Black Mountain, Wombat Hill and Namadgi School and applying the random 

forest method for summer and the multi-linear method in winter. The red line shows the 

rMAE when all three stations are used, whereas the blue line represents the two non-target 

stations, Black Mountain and Wombat Hill. A combination of target and non-target sta-

tions is given by the yellow line (Wombat Hill and Namadgi School) and purple line 

(Black Mountain and Namadgi School). The green and brown lines are for just Wombat 

Hill and Black Mountain, respectively. Finally, the black line represents gap persistence. 

Figure 2-6 (a) shows the rMAE of GHI prediction in summer. It can be seen that when 

the observations from the target site, Namadgi School, are included (red, yellow and pur-

ple lines) prediction results expectedly outperform those of the other three cases for short 

lead times (up to about 30 minutes), with the red line (all three stations at once) providing 

the best prediction (over all lead times). For longer lead times, however, using only the 

two non-target stations, Black Mountain and Wombat Hill (blue line), yields comparable 

results to having the target site included. It is also apparent that the combined use of Black 

Mountain and Wombat Hill is superior to the case when only one of the two is used 

(brown line in the case of Black Mountain or green line for Wombat Hill). However, 

Wombat Hill alone performs considerably better than Black Mountain to lead times of 

about 100 minutes, whereas the situation is reversed for longer lead times (to 3 hours).  

The analogous case for winter is presented in Figure 2-6 (b). As in the previous section, 

we can see again here the overall higher forecasting quality in winter than in summer. Not 

only is the accuracy higher in winter from the outset (5-minute lead time), the rate of 

rMAE increase is also considerably lower in winter than in summer. Similar to summer, 

the prediction performance is higher when local data are used, for lead times less than 45 
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minutes. As the lead time increases, the role of the local data clearly reduces.  The role of 

the Black Mountain data (brown line) is particularly noticeable for lead times beyond 90 

minutes: using this station alone the forecast skill is superior than with any other combi-

nation of data. As already observed in Figure 2-4, the most evident feature is the accuracy 

of gap persistence: this can predict GHI better than the two more sophisticated statistical 

models for short lead times. This is again a reflection of the predominant clear sky con-

ditions, which characterize Canberra in winter. 

Based on the above results, some conclusions can be drawn. The main reason why, in 

most cases, Black Mountain yields more accurate predictions than Wombat Hill is that 

meteorological conditions at Namadgi School are similar, and often lag, those at Black 

Mountain. However, in summer a pronounced occurrence of south-easterlies, due to the 

effect of sea breezes, means that predictors from Wombat Hill are more important than 

those at Black Mountain. This is particularly the case for February 2013, the test period 

for the summer case (not shown). As a consequence, predictors from Wombat Hill out-

perform those from Black Mountain in summer. An additional factor in the forecasting 

performance may be related to the stations’ elevation. Specifically, while Black Mountain 

is at about the same elevation as Namadgi School, Wombat Hill is ca. 350 m higher.  
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Figure 2-6 rMAE of GHI predictions using data from different stations (a) in summer (Method: Random 

Forest; Predictors: GHI, Air Pressure, Absolute Humidity); (b) in winter (Method: Multi-Linear; Predic-

tors: GHI, Air Pressure, Absolute Humidity). 
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2.4 Conversion of GHI prediction into power prediction  

As noted above (e.g. Figure 2-5), unlike the GHI, prediction of PV power output is 

strongly site-specific. Specifically, when local data are not used, direct use of global irra-

diance on PV planes from neighbouring systems (a site-specific variable) is expectedly a 

worse predictor than using GHI (a general variable), as demonstrated by the marked de-

creases in rMAE over lead times up to about 60 minutes (Figure 2-5 (a)). This abnormal 

increase in accuracy with lead time is related to the (different) geometry of the PV systems 

considered. Thus, correcting for the site-specific nature of the predictor should improve 

the prediction quality.  

We explore an empirical approach to predicting PV power for situations when the only 

available information about the target PV system is its tilt and orientation angle. Table 

2-1 shows the tilt and orientation angles of the three stations used in this research. The 

approach also assumes the knowledge of the relationship between the three components 

of solar irradiance, which are necessary to derive global irradiance on a generic plane 

(namely, other than horizontal). Measurements of either DNI or diffuse irradiance (or 

both) are therefore required. Although these measurements are less common than GHI, 

they are available at a number of sites. Besides, given that the statistical relationships 

between the three irradiance components hold over a wide spatial extent, say within tens 

of kilometres (this distance depends on the local orography and climatology of the area), 

such measurements do not necessarily need to be taken at the target site. In our case, the 

three components are measured only at the Black Mountain site. We then assume that 

their relationships hold for the other two sites, Namadgi School and Wombat Hill. 
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Station Tilt Angle (°) Orientation Angle (°) 

Black Mountain 36 38 (Facing Northeast) 

Namadgi School 25 327 (Facing Northwest) 

Wombat Hill 21 31 (Facing Northeast) 

Table 2-3 Tilt and orientation angles of the three PV systems. 

Essentially this approach involves an empirical geometry conversion, which transforms 

global horizontal irradiance into global irradiance on a tilt surface (a surface with the 

same tilt angle and orientation angle as the target station). It also requires historical ob-

servations for at least two radiation components in order to compute the relationship be-

tween the Diffuse Fraction (DF, which is the ratio between Diff and GHI) and the clear-

sky index [3]. Here, data for the three radiation components from the Black Mountain site 

have been used to build such relationship (Figure 2-7).  

 
Figure 2-7 Diffuse Fraction versus clear-sky index for Black Mountain station. The red line is the fitted 

line using the loess R function. 

Assuming the same relationship applies to nearby locations, the diffuse and the DNI at 
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irradiance on a tilted plane can be approximated as the sum of the direct irradiance on the 

plane, which can be expressed as a geometrical transformation of DNI, and the (modified) 

diffuse component. Thus, the steps of this conversion are as follows: 

1. Fit an empirical curve to the relationship between diffuse fraction and the clear-

sky index at a nearby location. Figure 2-7 shows the fitted line, computed with the 

R loess function, for Black Mountain.  

2. For a given clear-sky index (and hence GHI) derive the corresponding DF by us-

ing the fitted curve. The horizontal diffuse component is then estimated by using 

the relationship: 

 DiffEst_h = GHI ∗ DF ( 2-8 ) 

where DiffEst_h is the estimated horizontal diffuse component. 

3. Estimate DNI, via the relationship GHI = DNI cos θz + Diff: 

 DNIEst =
GHI−DiffEst_h

cosθZ
 ( 2-9 ) 

where DNIEst is the DNI estimation, and θz is the solar zenith angle. 

4. Compute the angle of solar incidence by using the tilt angle and orientation angle 

of the target station (Namadgi School) as follows: 

 cos θ = cos θz ∗ cos β + sin θz ∗ sin β ∗ cos(γs − γ) ( 2-10 ) 

where θ is the angle of incidence, β is the tilt angle, γs is the solar azimuth angle 

and γ is the azimuth angle of a tilted surface. 
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5. Compute the direct irradiance on a tilted surface:  

 DITilted_Est = DNIEst ∗ cos θ ( 2-11 ) 

where DITilted,Est is the direct irradiance on a tilted surface. 

6. Compute the global irradiance on a tilted surface by combining the direct irradi-

ance and diffuse component, by assuming that the ground reflection is negligible 

and the diffuse component, DiffEst_h, is isotropic [27]:  

 GITilted_Est = DITilted_Est +
(1+cosβ)

2
DiffEst_h  ( 2-12 ) 

By following the steps listed above, a virtual PV system – using the tilt and orientation 

angles of the target station – can be set up for different locations, whereby the correspond-

ing global irradiance on the target tilted surface can be computed [3].  

Once the solar irradiance on plane of non-local stations is reconstructed as shown above, 

it can be used as the key predictor for PV power output prediction. In fact, even though 

three predictors are chosen in every single prediction, the new solar irradiance on a tilted 

surface with the same angles (both the tilt and orientation) of the target station is the most 

important predictor.  

Taking Table 2-2 as a reference, the other two predictors are PV panel temperature and 

absolute humidity. Absolute humidity is taken directly from historical data. However, 

since PV panel temperature is not a variable commonly available and in order to make 

the prediction algorithm as applicable as possible to generic target stations, the PV panel 

temperature is derived using the following relationship: 

  Tsp = Ta + α1 ∗ GHI + α2  ( 2-13 ) 
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where Tsp is the solar panel temperature, Ta is the ambient air temperature of the target 

station, GHI is measured at different stations, and α1 and α2 are two coefficients computed 

from historical data. 

Thus, PV power output at the target station is computed by means of the multi-linear and 

Random Forest methods, and using the three predictors: derived solar irradiance on a 

plane, estimated panel temperature and absolute humidity. The multi-linear method is 

applied as the main forecast algorithm in winter, as it is superior to Random Forest in this 

season (Table 2-2), while Random Forest is used in summer. 

Figure 2-8 shows the forecast results of the PV power prediction. When local data are not 

used/available, the approach presented in this section provides an improvement with re-

spect to using GHI (Figure 2-5 (b)) at short lead times (under 30 minutes). This is valid 

for both winter and summer – compare orange solid and green dashed lines in Figure 2-5 

(b) (which shows the best forecast quality between the two panels for short lead times and 

without local data) with the corresponding blue lines in Figure 2-8 (a)-(b). For longer lead 

times, the performance of the prediction deteriorates a little faster than the counterpart in 

Figure 2-5. While the predictions shown in Figure 2-5 use predictors taken directly from 

historical data, for predictions in Figure 2-8, the global irradiance on tilted surface and 

the solar panels temperature are both reconstructed based on GHI measurement. The de-

pendency of these two variables, and the fact that there are approximations in the algo-

rithm presented in this section, may be the reason for such deterioration. 
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Figure 2-8 rMAE of modified Power predictions based on the conversion presented in Section 5 and us-

ing data from different stations (a) in summer (Method: Random Forest; Predictors: SP-Solar, PV panel 

temperature, Absolute Humidity); (b) in winter (Method: Multi-Linear; Predictors: SP-Solar, PV panel 

temperature, Absolute Humidity). 
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2.4.1 Dependency of power prediction on sky conditions 

Performance of solar predictions depends on the sky conditions, with predictions under 

clear skies normally considerably more skilful than under variable cloud conditions. We 

already observed this effect when we compared the forecast skills for winter and summer 

(Figure 2-4, Figure 2-5, Figure 2-6 and Figure 2-8).  

In this section we assess the dependency of forecast skill on sky conditions within each 

season and also across statistical models. Figure 2-9 shows the rMAE of power output 

prediction (when the geometry transformation described in the previous section is used) 

under two types of sky conditions, namely clear sky (high clear-sky index) and varia-

ble/overcast conditions (lower clear-sky index). We define as clear sky conditions events 

for which the clear-sky index is higher than 0.9. While in winter the gap in prediction 

skill between clear and non-clear sky conditions is obvious at all lead times, with rMAE 

differences by up to 0.7 in favour of clear sky conditions (Figure 2-9 (c)-(d)), in summer 

the performance gap between different sky conditions is not as large as that in winter. 

This is partly due to the fact that many events (almost 20%) fall in the category next to 

the chosen threshold of 0.9, namely in the 0.8-0.9 category (Figure 2-3). Specifically, 

some of these events could be practically considered as clear sky conditions for the sum-

mer period. This is because the amount of diffuse fraction under clear sky conditions is 

normally higher in summer, due to higher water vapour and aerosol levels, which there-

fore leads to a reduction of the clear-sky index even if the sky is cloudless. 

Figure 2-9 also provides a comparison of the skill of the two statistical methods, the multi-

linear and the random forest. Aside from the case of clear sky conditions in winter, when 
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the multi linear method is superior to random forest, in all other cases random forest pro-

vides more skilful forecasts. This is not very surprising since solar radiation is highly non-

linear –except in cases when clear sky conditions are predominant as in the winter case 

here. At the same time it is encouraging to note that the random forest method is able to 

capture such non-linearity better than a linear approach does. 
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Figure 2-9 rMAE of Power prediction under clear sky and non-clear sky conditions (station used: Black 

Mountain and Wombat Hill; Predictors: SP-Solar, PV panel temperature, Absolute Humidity). (a) Sum-

mer, with local data; (b) Summer, without local data; (c) Winter, with local data; (d) Winter, without lo-

cal data   
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Chapter 3 Test Platform and Control for the Integrated PV 

Solar and Battery System 

3.1 Test System 

After prediction on solar irradiance/power is derived, the problem of how to use it in a 

solar-based system remains to be solved. Therefore, in this chapter, a test system is pro-

posed where the prediction of solar irradiance/power is applied to work out the reference 

trajectory of the battery terminal voltage.  

The solar panels, battery and converters will be used to test the performance of the short 

term solar radiance prediction algorithms to provide a constant power to the load. The 

solar output has a variability which can be compensated by the battery. In this system, the 

objective will be to set up a 100 percent renewable energy stand-alone system without 

purchasing power from the grid and balance the power generation and consumption under 

a variety of constraints. This simulation will enable research in how solar irradiance pre-

diction can be used in a physical model and how the prediction quality influences the 

overall outcomes. 

According to the objective identified above, the system is isolated which means that there 

is no link between this system and the grid, and the main physical components include 

PV cells, battery, DC converters and the load. Besides, there is a DC bus for linking all 

the components together. As the power from the PV panels goes towards one direction 

only which is generally from solar panels to DC bus, the DC-DC converter linked between 

them is a unidirectional one. However, the power can flow in or out of the battery banks. 
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Therefore, the converter used between the battery and DC bus is bidirectional. In order to 

gain a proper voltage of the DC bus as well as to realize power balance under a variety of 

limits (such as battery charging or discharging rate or SOC constraints of the battery), 

two different controllers are used with the unidirectional converter and the bidirectional 

converter. The electric circuit is shown in Figure 3-1. S1, S2 are the control signals for 

the bidirectional converter while S3 is the control signal for the PV side converter.  

 
Figure 3-1 System topology of the PV-Battery hybrid system (R: resistance; L: inductance; C: capaci-

tance) 

3.2 System Modelling 

3.2.1 Modelling of the unidirectional DC-DC converter 

The unidirectional DC-DC converter located between PV panels and DC bus is a boost 

converter. When the IGBT is on, the inductance is charged by the PV systems. However, 

when the IGBT is turned off, then the power stored in the inductance will be released. 

Figure 3-2 shows the topology between PV panels and DC bus. It is worth noting that 

there are two diodes D1 and D2 which are used for preventing current from flowing back 

to PV panels. 
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(a) 

 
(b) 

Figure 3-2 (a) The topology of the PV panels, unidirectional DC-DC converter and DC bus; (b) The 

equivalent circuit 

If the IGBT is treated as a switch, then the circuit can be simplified as Figure 3-2 (b). 

When S3=1, the following circuit can be obtained: 

 
Figure 3-3 The system circuit when S3=1 

In this case, power is stored in the inductance. The dynamic equation of the inductance 

can be written as: 

 𝐿𝑝𝑣
𝑑𝐼1

𝑑𝑡
= 𝑉𝑝𝑣 ( 3-1 ) 

However, when S3=0, the following circuit can be obtained: 

 
Figure 3-4 The system circuit when S3=1 
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In this case, the power in the inductance is released and the inductance is connected with 

the PV panels in cascade to build up a higher voltage. The dynamic equation of the in-

ductance then can be written as: 

 𝐿𝑝𝑣
𝑑𝐼1

𝑑𝑡
= 𝑉𝑝𝑣 − 𝑉𝑑𝑐  ( 3-2 ) 

Assuming that the inductance works under continuous conduction mode and the power 

stored in the inductance is the same amount as the power released. Then the following 

equation can be obtained: 

 
𝑑𝐼0

𝑑𝑡
𝐷𝑇 +

𝑑𝐼1

𝑑𝑡
(1 − 𝐷)𝑇 = 0  

 
𝑉𝑝𝑣

𝐿𝑝𝑣
𝐷𝑇 +

𝑉𝑝𝑣−𝑉𝑑𝑐

𝐿𝑝𝑣
(1 − 𝐷)𝑇 = 0  

 𝑉𝑑𝑐 =
𝑉𝑝𝑣

1−𝐷
  ( 3-3 ) 

where D and T are the duty cycle and period of the signal, respectively.  

3.2.2 Modelling of the Bidirectional DC-DC Converter 

Plant Specification 

Figure 3-5 below shows the circuit of the battery, bidirectional DC-DC converter and how 

they are connected to the DC bus. The bidirectional converter is working under buck or 

boost mode, allowing the power to flow in or out of the battery. The control signals S1 

and S2 are independent. When the battery is set to be charged (buck mode), then the S2 

should be kept at 0 while S1 is switchable under two states, 0 or 1. And vice versa when 

the battery is discharging (boost mode). In this section, state-space equations under dif-

ferent cases are given to illustrate the dynamics of the circuit. 
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Figure 3-5 The topology of the battery, bidirectional DC-DC converter and DC bus 

Buck mode 

When the converter works under buck mode, S2 is idle and S1 is turned on or off according 

to cost function identified later. The voltage is stepped down from Vdc (voltage of DC 

bus) to Vbatt (voltage of the battery) and the battery is charged by the excessive power 

from the DC bus. The circuit topology is then simplified as below, in which the IGBT (or 

MOSFET) is treated as a switch between 2 states. When S1=1, the current is from the DC 

bus to the battery. By contrast, when S1=0, then the current is through a diode to the 

battery. Here, the system manipulate variable u(t), state x(t) and output y(t) are defined 

as below. 

 𝑢𝑏𝑢𝑐𝑘(𝑡) = 𝑆1  

 𝑥𝑏𝑢𝑐𝑘(𝑡) = [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  

 𝑦𝑏𝑢𝑐𝑘(𝑡) = 𝑉𝑏𝑎𝑡𝑡(𝑡)  ( 3-4 ) 

 
Figure 3-6 The equivalent circuit of buck mode 
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When S1=1: 

In this case, the power from the DC bus can be divided into two parts. First, some of the 

power is stored in the inductance Lbatt, while the rest is used to charge the battery. From 

the topology shown below, the circuit dynamic can be written as equations [30]: 

 𝐿𝑏𝑎𝑡𝑡
𝑑𝐼𝑙

𝑑𝑡
= 𝑉𝑑𝑐 − 𝑉𝑏𝑎𝑡𝑡 − 𝑅𝑙𝐼𝑙  ( 3-5 ) 

 𝐶𝑏𝑎𝑡𝑡1
𝑑𝑉𝑏𝑎𝑡𝑡

𝑑𝑡
= 𝐼𝑙 − 𝐼𝑏𝑎𝑡𝑡 = 𝐼𝑙 −

𝑉𝑏𝑎𝑡𝑡

𝑅𝑏𝑎𝑡𝑡
  ( 3-6 ) 

 
𝑑𝑥𝑏𝑢𝑐𝑘(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑏𝑎𝑡𝑡(𝑡)

𝑑𝑡

] = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
−

1

𝐿𝑏𝑎𝑡𝑡
1

𝐶𝑏𝑎𝑡𝑡1
−

1

𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡1

] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
] + [

1

𝐿𝑏𝑎𝑡𝑡

0
] 𝑉𝑑𝑐  ( 3-7 ) 

 𝑦𝑏𝑢𝑐𝑘(𝑡) = [0 1] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  ( 3-8 ) 

 
Figure 3-7 The equivalent circuit when S1 = 1 (buck mode) 

When S1=0: 

In this case, the link between DC bus and battery is disconnected. And the power stored 

in the inductance is released to charge the battery. With the inductance, Il will not change 

dramatically when S1 is switched from 1 to 0. The dynamic equations in this case is shown 

as below: 

 𝐿𝑏𝑎𝑡𝑡
𝑑𝐼𝑙

𝑑𝑡
= 0 − 𝑉𝑏𝑎𝑡𝑡 − 𝑅𝑙𝐼𝑙  ( 3-9 ) 
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 𝐶𝑏𝑎𝑡𝑡1
𝑑𝑉𝑏𝑎𝑡𝑡

𝑑𝑡
= 𝐼𝑙 − 𝐼𝑏𝑎𝑡𝑡 = 𝐼𝑙 −

𝑉𝑏𝑎𝑡𝑡

𝑅𝑏𝑎𝑡𝑡
  ( 3-10 ) 

 
𝑑𝑥𝑏𝑢𝑐𝑘(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑏𝑎𝑡𝑡(𝑡)

𝑑𝑡

] = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
−

1

𝐿𝑏𝑎𝑡𝑡
1

𝐶𝑏𝑎𝑡𝑡1
−

1

𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡1

] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  ( 3-11 ) 

 𝑦𝑏𝑢𝑐𝑘(𝑡) = [0 1] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  ( 3-12 ) 

The equations acquired above are based on the assumption that the DC-DC converter 

works under continuous conduction mode (CCM). However, there is chance that the en-

ergy stored in the inductance is used up and the current of which stays at 0 before it is 

charged again by the power source.  If this happens, the converter is supposed to be work-

ing under discrete conduction mode (DCM), the logic of the selection between CCM and 

DCM is demonstrated in Figure 3-9 and the state-space equation when S1=0 can be mod-

ified as below [17]: 

 
𝑑𝑥𝑏𝑢𝑐𝑘(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑏𝑎𝑡𝑡(𝑡)

𝑑𝑡

] = [
0 0

0 −
1

𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡1

] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  ( 3-13 ) 

 𝑦𝑏𝑢𝑐𝑘(𝑡) = [0 1] [
𝐼𝑙(𝑡)

𝑉𝑏𝑎𝑡𝑡(𝑡)
]  ( 3-14 ) 

 
Figure 3-8 The equivalent circuit when S1 = 0 (buck mode) 
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Assuming: 

 𝐴𝑏𝑢𝑐𝑘_1 = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
−

1

𝐿𝑏𝑎𝑡𝑡
1

𝐶𝑏𝑎𝑡𝑡1
−

1

𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡1

]  

 

{
 
 

 
 𝐴𝑏𝑢𝑐𝑘_2 = [

0 0
0 0

]   𝑖𝑓 𝐼𝑙 ≠ 0

𝐴𝑏𝑢𝑐𝑘_2 = [

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡

1

𝐿𝑏𝑎𝑡𝑡

−
1

𝐶𝑏𝑎𝑡𝑡1
0
]   𝑖𝑓 𝐼𝑙 = 0

  

 𝐵𝑏𝑢𝑐𝑘 = [
1

𝐿𝑏𝑎𝑡𝑡

0
]  

 𝐶𝑏𝑢𝑐𝑘 = [0 1]  

Then the state-space equations for buck mode can be summarized as the equations below: 

 
𝑑𝑥𝑏𝑢𝑐𝑘(𝑡)

𝑑𝑡
= (𝐴𝑏𝑢𝑐𝑘_1 + (1 − 𝑢𝑏𝑢𝑐𝑘(𝑡))𝐴𝑏𝑢𝑐𝑘_2)𝑥(𝑡) + 𝐵𝑏𝑢𝑐𝑘𝑢𝑏𝑢𝑐𝑘(𝑡)𝑉𝑑𝑐 ( 3-15 ) 

 𝑦𝑏𝑢𝑐𝑘(𝑡) = 𝐶𝑏𝑢𝑐𝑘𝑥(𝑡)  ( 3-16 ) 

 
Figure 3-9 The logic of conduction mode selection 
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Boost mode 

Comparing with the buck mode, the S1 is kept constantly zero in the boost mode. By 

changing S2 to 0 or 1, the voltage is stepped up from Vbatt to Vdc and the battery is dis-

charging. When S2=1, the IGBT is turned on and the current cannot reach the DC bus. 

However, when S2=0, the IGBT is turned off and the current will go through the diode to 

the DC bus. The manipulate variable u(t), state x(t) and output y(t) for boost mode are 

defined as below: 

 𝑢𝑏𝑜𝑜𝑠𝑡(𝑡) = 𝑆2 

 𝑥𝑏𝑜𝑜𝑠𝑡(𝑡) = [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

]  

𝑦𝑏𝑜𝑜𝑠𝑡(𝑡) = 𝑉𝑑𝑐(𝑡) 

 
Figure 3-10 The equivalent circuit of boost mode 

When S2=1: 

In this case, the whole circuit is divided into two separated parts. The inductance is 

charged up by the battery. The circuit dynamic equation can be written as below: 

 𝐿𝑏𝑎𝑡𝑡
𝑑𝐼𝑙

𝑑𝑡
= 𝑉𝑏𝑎𝑡𝑡 − 𝑅𝑙𝐼𝑙  ( 3-17 ) 

 𝐶𝑏𝑎𝑡𝑡2
𝑑𝑉𝑑𝑐

𝑑𝑡
= 0 − 𝐼𝑑𝑐 = −

𝑉𝑑𝑐

𝑅𝑑𝑐
  ( 3-18 ) 
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𝑑𝑥𝑏𝑜𝑜𝑠𝑡(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡

] = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
0

0 −
1

𝑅𝑑𝑐𝐶𝑏𝑎𝑡𝑡2

] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

] + [
1

𝐿𝑏𝑎𝑡𝑡

0
] 𝑉𝑏𝑎𝑡𝑡  ( 3-19 ) 

 𝑦𝑏𝑜𝑜𝑠𝑡(𝑡) = [1 0] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

]  ( 3-20 ) 

 
Figure 3-11 The equivalent circuit when S2 = 1 (boost mode) 

When S2=0: 

The link between battery side and DC bus side will recover. The inductance will release 

the stored power and be connected with the battery in cascade to deliver power to the DC 

bus. In this case, the dynamic equations (under CCM) are: 

 𝐿𝑏𝑎𝑡𝑡
𝑑𝐼𝑙

𝑑𝑡
= 𝑉𝑏𝑎𝑡𝑡 − 𝑉𝑑𝑐 − 𝑅𝑙𝐼𝑙  ( 3-21 ) 

 𝐶𝑏𝑎𝑡𝑡2
𝑑𝑉𝑑𝑐

𝑑𝑡
= 𝐼𝑙 − 𝐼𝑑𝑐 = 𝐼𝑙 −

𝑉𝑑𝑐

𝑅𝑑𝑐
  ( 3-22 ) 

 
𝑑𝑥𝑏𝑜𝑜𝑠𝑡(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡

] = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
−

1

𝐿𝑏𝑎𝑡𝑡
1

𝐶𝑏𝑎𝑡𝑡2
−

1

𝑅𝑑𝑐𝐶𝑏𝑎𝑡𝑡2

] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

] + [
1

𝐿𝑏𝑎𝑡𝑡

0
] 𝑉𝑏𝑎𝑡𝑡  ( 3-23 ) 

 𝑦𝑏𝑜𝑜𝑠𝑡(𝑡) = [1 0] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

]  ( 3-24 ) 

If the converter operates under DCM, then the state-space equations can be rewritten as: 



51 

 

 
𝑑𝑥𝑏𝑜𝑜𝑠𝑡(𝑡)

𝑑𝑡
= [

𝑑𝐼𝑙(𝑡)

𝑑𝑡
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡

] = [
0 0

0 −
1

𝑅𝑑𝑐𝐶𝑏𝑎𝑡𝑡2

] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

] + [
1

𝐿𝑏𝑎𝑡𝑡

0
] 𝑉𝑏𝑎𝑡𝑡 ( 3-25 ) 

 𝑦𝑏𝑜𝑜𝑠𝑡(𝑡) = [1 0] [
𝐼𝑙(𝑡)
𝑉𝑑𝑐(𝑡)

]  ( 3-26 ) 

 
Figure 3-12 The equivalent circuit when S2 = 0 (boost mode) 

Assuming: 

 

{
 
 

 
 
𝐴boost_1 = [

−
𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
−

1

𝐿𝑏𝑎𝑡𝑡
1

𝐶𝑏𝑎𝑡𝑡2
−

1

𝑅𝑑𝑐𝐶𝑏𝑎𝑡𝑡2

]   𝑖𝑓 𝐼𝑙 ≠ 0

𝐴boost_1 = [
0 0

0 −
1

𝑅𝑑𝑐𝐶𝑏𝑎𝑡𝑡2

]   𝑖𝑓 𝐼𝑙 = 0

  

 

{
 
 

 
 
𝐴boost_2 = [

0
1

𝐿𝑏𝑎𝑡𝑡

−
1

𝐶𝑏𝑎𝑡𝑡2
0
]    𝑖𝑓 𝐼𝑙 ≠ 0

𝐴boost_2 = [
−

𝑅𝑙

𝐿𝑏𝑎𝑡𝑡
0

0 0
]    𝑖𝑓 𝐼𝑙 = 0

  

 

{
 

 𝐵𝑏𝑜𝑜𝑠𝑡 = [
1

𝐿𝑏𝑎𝑡𝑡

0
]   𝑖𝑓 𝐼𝑙 ≠ 0

𝐵𝑏𝑜𝑜𝑠𝑡 = [
0
0
]   𝑖𝑓 𝐼𝑙 = 0

  

𝐶𝑏𝑜𝑜𝑠𝑡 = [1 0] 

Then the state-space equations for boost mode can be summarized as the equations below: 
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𝑑𝑥𝑏𝑜𝑜𝑠𝑡(𝑡)

𝑑𝑡
= (𝐴boost_1 + 𝑢𝑏𝑜𝑜𝑠𝑡(𝑡)𝐴boost_2)𝑥(𝑡) + 𝐵𝑏𝑜𝑜𝑠𝑡𝑉𝑏𝑎𝑡𝑡  ( 3-27 ) 

 𝑦𝑏𝑜𝑜𝑠𝑡(𝑡) = 𝐶𝑏𝑜𝑜𝑠𝑡𝑥(𝑡)  ( 3-28 ) 

3.3 Controlling Design for the Integrated PV Solar and Battery Sys-

tem 

According to different amount of solar PV power output and the state of charge of the 

battery, the systems can be identified as working under two different modes: 

Mode I (normal mode): 

𝑃𝑝𝑣 < 𝑃𝐿 and 𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑚𝑖𝑛 

or 

𝑃𝑝𝑣 > 𝑃𝐿 and 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑎𝑥 

where Ppv, PL are the PV power output and power consumption, respectively. SOC, 

SOCmin and SOCmax are battery state of charge, the minimum state of charge and the 

maximum state of charge. In these two cases, the unidirectional converter will work under 

MPPT mode to exact maximum power from solar panels, while the bidirectional con-

verter will work under MPC mode to charge or discharge the battery accordingly. 

Mode II (idle mode): 

𝑃𝑝𝑣 < 𝑃𝐿 and 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑖𝑛 

or 

𝑃𝑝𝑣 > 𝑃𝐿 and 𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑚𝑎𝑥 
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In this case, the battery will be disconnected with the whole circuit to avoid overdischarg-

ing or overcharging. Without the battery, the DC bus voltage cannot be maintained within 

a certain range and the excessive/deficit power cannot be absorbed/compensated. There-

fore, the PV panels are also disconnected to protect the load from any potential damage. 

This research focus on Mode I, in which the battery can fulfil the responsibility of stabling 

the DC bus voltage and balancing power within the hybrid system. 

3.3.1 Controlling Design for the Unidirectional DC-DC Converter 

Maximum power point tracking (MPPT) algorithm is one of the most popular controlling 

methods for PV panels’ controlling. As its name indicated, this method is applied to ex-

tract the maximum power from solar system by shifting the output voltage of the PV 

panels according to the amount of sun power/solar irradiance received. Once the converter 

output side is linked to a DC bus, the output voltage is assumed to be just varied in a small 

range (or assuming the voltage of the DC bus is fixed). By changing the duty cycle, the 

input side voltage from PV module is changed accordingly. The MPPT controlling strat-

egy used in this research is based on perturb and observe nature.  Small voltage increase 

or decrease is imposed upon the solar panels and the power output change is measured. 

Then the derivative of power over voltage is compared with 0, which decides how the 

operation point moves. Here, the Incremental Conductance Based Maximum Power Point 

Tracking is illustrated below. 

The P-V curve of the BP solar SX3190, which is used for simulation, is shown in Figure 

3-13. When  

 
𝑑𝑃

𝑑𝑉
= 0  
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At MPPT (lock the duty cycle as a constant).  See the point 1. 

 
𝑑𝑃

𝑑𝑉
> 0  

Left of MPPT (corresponding solution, decrease the duty cycle D of the unidirectional 

converter, then the output voltage of PV module is stepped up). See the point 2. 

 
𝑑𝑃

𝑑𝑉
< 0  

Right of MPPT (corresponding solution, increase the duty cycle D of the unidirectional 

converter, then the output voltage of PV module is stepped down). See the point 3. 

 
Figure 3-13 P-V curve of BP Solar SX3190 under different solar irradiance 

However, in order to find out the maximum power point, the comparison between dp/dv 

and 0 is replaced by a more straightforward method-by comparing the dI/dV and I/V. As 

it is known that: 

 𝑃 = 𝑉𝐼  ( 3-29 ) 

 
𝑑𝑃

𝑑𝑉
=

𝑑(𝑉𝐼)

𝑑𝑉
= 𝐼 + 𝑉

𝑑𝐼

𝑑𝑉
  ( 3-30 ) 
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Therefore, the three situations listed above can be modified by substituting I+V*(dI/dV) 

to dP/dV. 

 
𝑑𝐼

𝑑𝑉
= −

𝐼

𝑉
 (𝐹𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑑𝑒) 𝑜𝑟 

𝛥𝐼

𝛥𝑉
= −

𝐼

𝑉
 (𝐹𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑚𝑜𝑑𝑒)  

𝑑𝐼

𝑑𝑉
> −

𝐼

𝑉
(𝐹𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑑𝑒) 𝑜𝑟 

𝛥𝐼

𝛥𝑉
> −

𝐼

𝑉
 (𝐹𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑚𝑜𝑑𝑒)  

𝑑𝐼

𝑑𝑉
< −

𝐼

𝑉
(𝐹𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑑𝑒) 𝑜𝑟 

𝛥𝐼

𝛥𝑉
< −

𝐼

𝑉
 (𝐹𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑚𝑜𝑑𝑒)  

The three equations above indicate the PV panels are working under maximum power 

point, left of the maximum power point and right of the maximum power point, respec-

tively. The process of moving the operation point towards maximum power point is 

shown in Figure 3-14 below: 
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Figure 3-14 The logic of the MPPT algorithm 

3.3.2 Controlling Design for the Bidirectional DC-DC Converter 

Basics of Model Predictive Control  

Model Predictive Control (MPC) is basically an open loop optimization algorithm based 

on the receding horizon principle. Normal open-loop optimization algorithm uses one 

temporal horizon for both prediction and controlling. This may end up with problems like 

hitting the system constraints as the duration of control window extends. However, by 



57 

 

setting the prediction horizon and controlling horizon separately (normally a larger pre-

diction horizon), the open-loop control period can be effectively decreased and the prob-

lems can be avoided.  

Assuming that we have u and y representing the system input and output signal and yref 

is the reference value of output. First, according to the initial value and reference value 

of the system output, the optimal problem is solved for a certain time interval, which is 

also known as prediction horizon. A sequence of future control signals U then can be 

computed and those with the aim of minimizing the performance index for the prediction 

horizon (in this case, minimizing the gap between real-time value and reference value of 

the battery terminal voltage) and avoiding violating the system constraints are figured out. 

However, MPC algorithm is not using all the input signals from the last step, only the 

first few values of U are set as the plant input and implemented for a smaller time interval, 

which is defined as control horizon. It is worth noting that control horizon should be set 

shorter than prediction horizon and that is why this principle is called receding horizon 

principle. At the end of every control horizon, the control signals which are not imple-

mented are discarded and the whole procedure is repeated [38].  

Model Predictive Control for the Bidirectional DC-DC Converter 

State and output anticipation 

Real-time measurement is conducted during every single sample time. As a stand-alone 

system, the voltage of DC bus is critical for system operation and should be maintained 

within a certain range. Therefore, the voltage threshold of DC bus for shifting states of 

the bidirectional converter are set. The working condition of the bidirectional converter, 
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according to the real time Vdc values, is shifted to balance the power generated and con-

sumed. Table below shows the logic of the bidirectional DC-DC converter. 

Vdc 
The state of bidirectional DC-DC con-

verter 

<100V Boost (Discharge) 

100V-102V Idle 

>102V Buck (Charge) 

Table 3-1 The voltage threshold for different converter states 

Once the operation mode of the converter is determined, the corresponding state-space 

equation used for predicting is then confirmed. Continuous state-space equations are 

given in the last section. According to those, the discrete state-space equations can be 

obtained by using the ‘c2d’ function in Matlab. Since there are two situations (corre-

sponding to IGBT on or off) in both buck mode and boost mode, 4 different discrete state-

space equations are required to show the whole possible dynamic of the system. 

Table 3-1 below shows the 4 situations according to the converter modes and the IGBT 

status. 

Mode S1 S2 Situation Number (n) 

Buck 
1 0 1 

0 0 2 

Boost 
0 1 3 

0 0 4 

Table 3-2 Different situation numbers for different modes 

Assume we have: 

Buck mode (n=1 or 2): 
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 𝑥(𝑡 + 1) = 𝐸𝑛𝑥(𝑡) + 𝐹𝑛𝑉𝑑𝑐  ( 3-31 ) 

 𝑦(𝑡) = 𝐺𝑛𝑥(𝑡)  ( 3-32 ) 

Boost mode (n=3 or 4): 

 𝑥(𝑡 + 1) = 𝐸𝑛𝑥(𝑡) + 𝐹𝑛𝑉𝑏𝑎𝑡𝑡  ( 3-33 ) 

 𝑦(𝑡) = 𝐺𝑛𝑥(𝑡)  ( 3-34 ) 

where En, Fn and Gn are the parameters of discrete state-space equations in different situ-

ations (n is the situation number).  

The state and output anticipations are based on those four sets of equations. For example, 

if the converter works under buck mode and the first, second and third values of S1 are 1, 

0 and 0, respectively. 

Then x(t+1) can be derived as: 

 𝑥(𝑡 + 1) = 𝐸1𝑥(𝑡) + 𝐹1𝑉𝑑𝑐  ( 3-35 ) 

 𝑦(𝑡) = 𝐺1𝑥(𝑡)  ( 3-36 ) 

x(t+2) can be derived as: 

 𝑥(𝑡 + 2) = 𝐸2𝑥(𝑡 + 1) + 𝐹2𝑉𝑑𝑐  ( 3-37 ) 

 𝑦(𝑡 + 1) = 𝐺1𝑥(𝑡 + 1)  ( 3-38 ) 

x(t+3) can be derived as: 

 𝑥(𝑡 + 3) = 𝐸2𝑥(𝑡 + 2) + 𝐹2𝑉𝑑𝑐  ( 3-39 ) 
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 𝑦(𝑡 + 2) = 𝐺1𝑥(𝑡 + 2)  ( 3-40 ) 

Combining the equations above, then we can get the prediction of x(t+3) based on the 

latest measurement x(t) and Vdc, which is shown as below: 

 𝑥(𝑡 + 3) = 𝐸2(𝐸2(𝐸1𝑥(𝑡) + 𝐹1𝑉𝑑𝑐) + 𝐹2𝑉𝑑𝑐) + 𝐹2𝑉𝑑𝑐 = 𝐸2(𝐸2𝐸1𝑥(𝑡) + (𝐸2𝐹1 +

𝐹2)𝑉𝑑𝑐) + 𝐹2𝑉𝑑𝑐 = 𝐸2
2𝐸1𝑥(𝑡) + (𝐸2

2𝐹1 + 𝐸2𝐹2 + 𝐹2)𝑉𝑑𝑐          ( 3-41 ) 

  𝑦(𝑡 + 2) = 𝐺1(𝐸2(𝐸1𝑥(𝑡) + 𝐹1𝑉𝑑𝑐) + 𝐹2𝑉𝑑𝑐) = 𝐺1𝐸2𝐸1𝑥(𝑡) + (𝐺1𝐸2𝐹1 + 𝐺1𝐹2)𝑉𝑑𝑐                        

                                         ( 3-42 ) 

If the converter works under boost mode and the first, second and third value of S2 are 1, 

0 and 0. Then as what has been achieved in the buck mode illustrated above, the corre-

sponding state and output should be: 

 𝑥(𝑡 + 3) = 𝐸4
2𝐸3𝑥(𝑡) + (𝐸4

2𝐹3 + 𝐸4𝐹4 + 𝐹4)𝑉𝑏𝑎𝑡𝑡  ( 3-43 ) 

 𝑦(𝑡 + 2) = 𝐺3𝐸4𝐸3𝑥(𝑡) + (𝐺3𝐸4𝐹3 + 𝐺3𝐹4)𝑉𝑏𝑎𝑡𝑡  ( 3-44 ) 

This is not just restricted to 3-step-ahead prediction. The same theory can be applied to 

m-step-ahead prediction. However, the more steps anticipated, the more calculation is 

required which may increase the response time of computing. 

Defining cost function 

The main goal of the control part of this study is to balance the power generation and 

power consumption by charging/discharging the battery. To be more exact, the voltage 

of the battery is controlled in this study, which allows the battery to absorb/supply power 

from/to the DC bus.   
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When the converter operates under buck mode which means the power generation from 

PV panels exceeds the power consumption of the load, the voltage of the DC bus is 

stepped down and the battery is charged. The power balance equation should be: 

 𝑃𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + 𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑝𝑎𝑛𝑒𝑙𝑠  ( 3-45 ) 

where, Pcharge, Pcircuit, Pload and Ppanels are the power used to charge the battery, the power 

consumed by the circuit, the power provided to the load and the power generation from 

the PV panels, respectively. 

Figure 3-15 shows a simplified battery model used in this study and its external wiring. 

From that, the following equations can be obtained: 

 𝐼𝑏𝑎𝑡𝑡 =
𝐸𝑏𝑎𝑡𝑡−𝑉𝑏𝑎𝑡𝑡 

𝑅𝑏𝑎𝑡𝑡
  ( 3-46 ) 

 𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝐼𝑙
2𝑅𝑙  ( 3-47 ) 

 𝑃𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑉𝑏𝑎𝑡𝑡𝐼𝑙  ( 3-48 ) 

where Ebatt is the constant electromotive force, which is 50V in this case. Ibatt and Il is the 

battery internal and external currents, respectively.  

In order to simplified this problem further, a relatively large capacitance is used which 

make Ibatt roughly of the same value as Il. Therefore, assuming Ibatt = Il and combining 

equations (3-45) to (3-48), the power balance equation can be modified as below: 

 
𝐸𝑏𝑎𝑡𝑡−𝑉𝑏𝑎𝑡𝑡 

𝑅𝑏𝑎𝑡𝑡
𝑉𝑏𝑎𝑡𝑡 + (

𝐸𝑏𝑎𝑡𝑡−𝑉𝑏𝑎𝑡𝑡 

𝑅𝑏𝑎𝑡𝑡
) 2𝑅𝑙 = 𝑃𝑝𝑎𝑛𝑒𝑙𝑠 − 𝑃𝑙𝑜𝑎𝑑   ( 3-49 ) 
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By solving the quadratic equation (3-49), the voltage reference of the battery can be de-

rived. 

 
Figure 3-15 The simplified battery model 

In boost mode, the power balance equation should be: 

 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃𝑝𝑎𝑛𝑒𝑙𝑠 = 𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + 𝑃𝑙𝑜𝑎𝑑  ( 3-50 ) 

Using the same approximation in buck mode, the voltage reference can be derived by 

solving the quadratic equation below: 

 
𝐸𝑏𝑎𝑡𝑡−𝑉𝑏𝑎𝑡𝑡 

𝑅𝑏𝑎𝑡𝑡
𝑉𝑏𝑎𝑡𝑡 + 𝑃𝑝𝑎𝑛𝑒𝑙𝑠 = (

𝐸𝑏𝑎𝑡𝑡−𝑉𝑏𝑎𝑡𝑡 

𝑅𝑏𝑎𝑡𝑡
) 2𝑅𝑙 + 𝑃𝑙𝑜𝑎𝑑   ( 3-51 ) 

The system output y in buck mode is the voltage of the battery (Vbatt_p) while that in boost 

mode is the external current (Il_p). However, for both situations, the reference values 

should be the voltage of the battery. Therefore, in boost mode, the current prediction is 

transformed to battery voltage prediction by combining equation (3-46) and the same ap-

proximation (Ibatt_p = Il_p) mentioned above: 

 𝑉𝑏𝑎𝑡𝑡_𝑝 = 𝐸𝑏𝑎𝑡𝑡 − 𝐼𝑙_𝑝𝑅𝑏𝑎𝑡𝑡  ( 3-52 ) 
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where Vbatt_p and Il_p are the anticipated values of terminal voltage of the battery and ex-

ternal current, respectively. 

The cost function, which is the main criterion to decide how the converter works, can be 

defined as the gap between predicted values and desired values. Assume Vbatt_r to be the 

reference in both buck and boost modes, then the cost function can be defined as below: 

 J = ∑ |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑉𝑏𝑎𝑡𝑡_𝑝(𝑘 + 𝑖|𝑘)|
𝐻𝑝
𝑖=1

  ( 3-53 ) 

where Hp is the prediction horizon, Vbatt_p(k+i|k) is the prediction of battery terminal volt-

age at time k+i based on the measurement at time k. 

In this research, the prediction horizon is 3 steps ahead. The cost function is calculated at 

every sample time depending on the values of S1 and S2. All the possible situations under 

buck/boost mode are listed in Figure 3-16. One thing worth noting is that the reference 

values, both Vdc_r and Vbatt_r are assumed to be constant when calculating the three-step-

accumulating cost function. This is because the sample time is set to be much smaller 

than the update cycle of solar irradiance prediction. So the equations above should be 

modified as follow: 

Under buck mode, 

 𝐽𝑏𝑢𝑐𝑘 = 𝐽1 + 𝐽2 + 𝐽3 = |𝑉batt_𝑟 − 𝑦𝑡| + |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑦𝑡+1| + |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑦𝑡+2| ( 3-54 ) 

Under boost mode, 

Set: 

 𝑦𝑡
′ = 𝐸𝑏𝑎𝑡𝑡 − 𝑅𝑏𝑎𝑡𝑡𝑦𝑡  ( 3-55 ) 
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  𝐽𝑏𝑜𝑜𝑠𝑡 = 𝐽1 + 𝐽2 + 𝐽3 = |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑦𝑡
′| + |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑦𝑡+1

′ | + |𝑉𝑏𝑎𝑡𝑡_𝑟 − 𝑦𝑡+2
′ | ( 3-56 ) 

where J1, J2 and J3 are the cost function values for the first, second and third step.  

In Table 3-3 The anticipating actions of the IGBT in a prediction horizon and its corre-

sponding cost function values, cost functions for different on and off sequence of the 

corresponding IGBT are presented. There are eight cases under either buck or boost mode 

and by comparing them, the minimum cost function values are found out.  

 𝐽𝑏𝑢𝑐𝑘_𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝐽_𝑆1_1, 𝐽_𝑆1_2,… , 𝐽_𝑆1_8} ( 3-57 ) 

 𝐽𝑏𝑜𝑜𝑠𝑡_𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝐽_𝑆2_1, 𝐽_𝑆2_2,… , 𝐽_𝑆2_8} ( 3-58 ) 

Although three control variables are derived every time the minimum cost function is 

figured out, just the first control variable will be applied to the process. As this is based 

on rolling optimal process, the same procedure repeats at every single sample time. 
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Figure 3-16 The possible values sequence of a single IGBT in buck or boost mode (0-off; 1-on) 
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Buck 

mode 

Values Se-

quence 

J1+J2+J3 

Boost 

mode 

Values Se-

quence 

J1+J2+J3 

S1 

0,0,0 J_S1_1 

S2 

0,0,0 J_S2_1 

0,0,1 J_S1_2 0,0,1 J_S2_2 

0,1,0 J_S1_3 0,1,0 J_S2_3 

0,1,1 J_S1_4 0,1,1 J_S2_4 

1,0,0 J_S1_5 1,0,0 J_S2_5 

1,0,1 J_S1_6 1,0,1 J_S2_6 

1,1,0 J_S1_7 1,1,0 J_S2_7 

1,1,1 J_S1_8 1,1,1 J_S2_8 

Table 3-3 The anticipating actions of the IGBT in a prediction horizon and its corresponding cost func-

tion values 
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Chapter 4 Results 

In this section, the MPC control algorithm is tested by applying solar irradiance prediction. 

Figure 4-1 shows the solar irradiance measurement of the Black Mountain site. The meas-

urement data is with time resolution of 1s. Instead of simulating the whole period, just 

the data of interest which is located in the rectangular box is selected to inspect the feasi-

bility and effectiveness of the control algorithm. Obviously, the fluctuation of solar irra-

diance poses a challenge to the controller, while the relatively stable solar isolation is 

easier for the controller to cope with. The highlighted data inside the dashed rectangle 

shows a large fluctuation, which was probably caused by a small moving cloud.   

 
Figure 4-1 The solar irradiance measurement of Black Mountain site from 31-01-2017 13:03:00 to 31-

01-2017 13:03:59 

The dashed rectangular box highlights the data of interest and Table 4-1 shows the second 

by second measurement of solar irradiance. The reason for selecting this is because the 

feasibility and effectiveness of both the solar insolation prediction and the controlling 

algorithm need to be tested under such a huge fluctuation. As can be seen, the insolation 
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drops from about 800 W/m2 to 550 W/m2, which is the lowest value point. After that, the 

irradiance becomes increasingly stronger and hits over 1050 W/m2 at the end of the se-

lected period.  

Time Date, Hour and Minute  2017-01-31 13:03 

Second 29 30 31 32 33 34 35 36 

Measurement value(W/m2) 795.2 740.9 653.7 603.7 585.1 570.0 559.7 570.4 

Time Date, Hour and Minute 2017-01-31 13:03 

Second 37 38 39 40 41 42 43 44 

Measurement value(W/m2) 601.7 648.4 693.2 725.9 746.7 758.8 771.7 819.2 

Time Date, Hour and Minute 2017-01-31 13:03 

Second 45 46 47 48 49 50  

Measurement value(W/m2) 910.1 965.7 1028.0 1062.7 1064.7 965.7 

Table 4-1 The solar irradiance measurement data from 31-01-2017 13:03:29 to 31-01-2017 13:03:50 

Assuming every solar irradiance value remains the same for one second until the next 

measurement is updated, the change of the solar irradiance can be demonstrated as Figure 

4-2. In order to simplify the ‘time’ label, in Figure 4-2, ‘29’ represents the time ‘31-01-

2017 13:03:29’, ‘31’ represents the time ‘31-01-2017 13:03:31’ and so on. 

 
Figure 4-2 The change in the measurement and prediction during the selected period 
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As discussed in the previous section, the higher the resolution of the solar irradiance, the 

better the persistence model performs. Therefore, in order to demonstrate how the predic-

tion accuracy affects the overall control quality, prediction results of applying the persis-

tence algorithm (with lead time of 1s and 5s) are used in this section. In Figure 4-2, the 

blue signal will be used as the input of the solar PV panels. At the same time, the control-

ler is deployed by using solar irradiance prediction (the dashed and dotted signals). The 

logic is demonstrated in Figure 4-3.  

 
Figure 4-3 The logic of the operation 

From the previous section, it is known that prediction with shorter lead-time is more ac-

curate than that with longer lead time. In this section, the forecast performance is further 
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evaluated in the proposed PV-Battery Hybrid system to emphasize the importance of an-

ticipation accuracy to the controller deployment. 

 Figure 4-4 shows the voltage against time of the DC bus by using solar irradiance pre-

diction with lead time of 1s. It can be seen that the average voltage is successfully main-

tained at 100V ± 5V even though there are some small spikes. Figure 4-5 illustrates how 

control signals S1 and S2 change according to different solar insolation values. From 29s 

to 32s, S2 is constantly at 0 while S1 was switchable. It indicates that the DC-DC Buck-

Boost converter is deployed as a buck converter, which means the battery is set to be 

charged. From 32s to 33s, both the signal values remain at 0. The converter is idle.  How-

ever, from Figure 4-4, it is clear that the voltage dropped from 102V to 95V, which means 

that the real-time solar irradiance is lower than the anticipation. Instead of being idle, 

discharging the battery would be a more proper action for the converter. From 33s to 36s, 

it seems that the solar irradiance is still overestimated. As a result, not enough battery 

power is fed in the DC bus though the voltage is still within the predefined range and 

getting closer and closer to the perfect value, 100V.  

 
Figure 4-4 The voltage of DC bus (prediction horizon time: 1s) 
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Figure 4-5 The values of control signals (S1 and S2) (prediction horizon time: 1s) 

Figure 4-6 and Figure 4-7 show the current and voltage of the battery, and how the power 

of different components of the hybrid system change. Due to the relatively stable voltage 

of DC bus, the power consumption is stabilized at roughly 400W during the whole simu-

lation period. However, the power consumed or supplied by the battery is changed as the 

solar power varies.  

Results show that when using the solar irradiance prediction with lead-time of 1 second, 

the voltage of the DC bus could be maintained within a satisfactory range. Besides, the 

converter could fulfil the function of balancing power supply and power consumption 

quite well. 
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Figure 4-6 The current and voltage of the battery (prediction horizon time: 1s) 

 
Figure 4-7 The power change of pv panels, load and battery (prediction horizon time: 1s) 

If the horizon time of prediction extends, the performance of the system will deteriorate. 

For comparison, the prediction with lead time of 5 second is used for demonstration. Fig-

ure 4-8 - Figure 4-11 show the voltage of DC bus, how S1 and S2 operate, the current and 

voltage of the battery and the power dynamic of the PV panels, Load and the storage. 

When compared with the case where lead time is 1s, it is obvious that the voltage is not 

as stable, especially from 32-38s, the voltage dropped under 95V and deteriorated as the 

solar irradiance decreased. With the lower prediction accuracy, the bidirectional converter 
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is set to be idle from 32-37s and the power from the battery, therefore, is not injected to 

the DC bus in time. However, in the case using lead time of 1s, the response of the battery 

is much faster and the voltage of the DC bus could be maintained effectively.  

 
Figure 4-8 The voltage of DC bus (prediction horizon time: 5s) 

 
Figure 4-9 The values of control signals (S1 and S2) (prediction horizon time: 5s) 
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Figure 4-10 The current and voltage of the battery (prediction horizon time: 5s) 

 
Figure 4-11 The power change of PV panels, load and battery (prediction horizon time: 5s) 
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Chapter 5 Summary and discussion 

This research can be divided into two parts, the prediction of the solar irradiance/power 

and the control algorithm which uses this prediction for power dispatching strategy in 

advance. 

5.1  Summary and prospective of the prediction method 

In this work we used observations from an urban solar network based in Canberra, Aus-

tralia, with the aim to predict both solar irradiance and solar power at a (generic) target 

station. Our target station, Namadgi School, is located in between, and at a few tens of 

kilometres from, two other monitoring stations, Black Mountain and Wombat Hill. All 

three stations, therefore including Namadgi School, have been collecting meteorological 

and power observations: this allows us to assess the predictions’ performance at the target 

station. The sensitivity of two statistical methods, random forest and multi-linear, for i) 

different meteorological and power variables as predictors, ii) different combinations of 

stations, iii) winter and summer seasons and iv) different sky conditions, is an integral 

part of this work. 

A number of variables observed at our monitoring stations were selected as our predictors 

for the GHI prediction – two global irradiances (GHI and on the plane of the PV panels), 

temperature, pressure and humidity. Clear sky radiation was also used as an additional 

predictor. Aside from the importance of historical values of GHI, the other important 

predictors are air temperature and humidity in summer and pressure and humidity in win-

ter. As a benchmark for the GHI prediction, a modified (or gap) persistence, whereby 
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GHI values were simply modified by adding the next time step increment provided by the 

diurnal cycle (clear sky radiation), was used.  

Compared to when only data from the two stations, Black Mountain and Wombat Hill, 

are used for GHI prediction, gap persistence yields better results for up to about 15 

minutes ahead in summer. However, this clearly implies availability of data at the target 

station. Of the two statistical models, random forest is more skilful than the linear method 

in summer. In winter, gap persistence performs considerably better than for summer, with 

relative mean absolute errors (rMAEs) smaller than the two statistical methods out to 

about 60 minutes. Also, in winter the performance of the two statistical methods is re-

versed compared to summer, with the multi-linear method superior to random forest. The 

fact that the performance of these two methods displays a strong seasonality is a reflection 

of the prevalent climate conditions in Canberra in the two seasons. In winter, when clear 

sky conditions dominate, solar irradiance is better predicted by a less elaborate multi-

linear method, whereas in variable, non-linear summer conditions the random forest 

method captures the GHI variability better. 

For power output prediction, geometry and other specifications of the PV systems also 

play important roles, particularly at short lead times. This is because the local real-time 

tilted solar irradiance is roughly proportional to the real-time power output from solar 

panels (regardless of the negative efficiency effect due to increasing solar panel temper-

ature). However, as the lead-time becomes longer, the positive effect of tilted solar irra-

diance as a predictor diminishes. Thus choosing GHI as a predictor instead of the solar 

irradiance on tilted surface when local data is not used seems to be acceptable as GHI is 
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less site-specific. As for other variables such as solar panels temperature, which in prin-

ciple could be an important variable as it influences the solar panels’ efficiency, in prac-

tice it did not make a marked impact on the power prediction accuracy.  

In terms of the relative importance of stations, Black Mountain typically has a larger im-

pact on the accuracy of GHI than Wombat Hill. However, for power prediction in summer 

the reverse seems to be true. These differences are mainly driven by dominant meteoro-

logical conditions. While the Canberra area is dominated by north-westerly winds, thus 

making Black Mountain more important for Namadgi School, in summer there is a pro-

nounced occurrence of south-easterlies, due to the effect of sea breezes, which increases 

the importance of Wombat Hill in this season. In general, using both stations yields better 

results than using either one of them. Overall, stations representing dominant meteoro-

logical conditions appear to be the most effective at improving the forecast at the target 

station. Cloud movement is the biggest reason which influences how solar irradiance 

change. Therefore, the historical data from stations at upwind positions (stations repre-

senting dominant meteorological conditions) is more correlated to the real-time data of 

stations at downwind positions. The precise number of stations should be assessed on a 

case-by-case basis, namely by estimating the gain due to the marginal increase in accu-

racy for a specific application and the cost of setting-up and maintaining new stations. 

In terms of predicting power output for a single site, global irradiance on tilted surface 

should be selected as a predictor if available. However, as this variable is site-specific, 

we demonstrated that by deriving it via a GHI conversion, with GHI observations at re-

mote sites, a satisfactory prediction performance is obtained. Also, the prediction accu-

racy is higher under high clear-sky index conditions. This is especially the case in winter. 
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Possible future developments of the prediction work, aimed at improving the prediction 

accuracy, may be: 

 The use of a predictor obtained from sky camera images; this would be most use-

ful to improve predictions at the short range, up to about 20-30 minutes; 

 The use of additional predictors such as a variable turbidity index; 

 The use of a number of predictors from Numerical Weather Prediction output; 

these would be useful to improve the longer range, say 2-3 hours (and beyond), 

prediction skill; 

 The use of a moving time window for the training period to continually update the 

parameters in the statistical model with more recent conditions. This would be 

particularly useful in an operational setting. 

5.2 Summary and prospective of the control algorithm 

In order to extract the maximum power from solar system, the PV panels are regulated 

by a unidirectional converter under MPPT (maximum power point tracking) algorithm. 

For the battery storage, the aim of the control algorithm is to balance the power generation 

(PV panels) and the consumption (Power loads) in the integrated PV and battery system.  

Battery is the device which is used to provide or absorb power when needed. Charging or 

discharging of the battery can be implemented by varying the battery terminal voltage. In 

this study, a simple battery model is used and if the battery terminal voltage is set over 

the predefined electromotive force (or the open circuit voltage of the battery), 50V, then 

it is charging. Otherwise, it is discharging (or be idle when the terminal voltage is exactly 

50V). For the simple battery model, the charging and discharging power can be approxi-

mated by considering just the internal resistance and the battery voltage. As the internal 
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resistance is assumed to be constant, every reference value of battery power output cor-

responds to a particular reference value of battery voltage as shown in section 3.3.2. 

One more thing that needs to be noted is that the references of the battery terminal voltage 

are simply calculated by considering the solar irradiance prediction and the power con-

sumption. The absence of real-time measurements feedback/compensation mechanism 

means that the accuracy of future reference values highly relies on the accuracy of the 

prediction, which shows how prediction quality influence the overall system performance. 

While the MPPT is relatively simple, this study focuses more on the MPC which is sup-

posed to be a rolling window optimization control method. The controller can predict the 

values of different states and output 3 steps ahead based on the values (0 or 1) of the 

control signals. Result shows that when the prediction of solar irradiance changes dra-

matically, this controlling method can fulfil its function of balancing power and main-

taining the voltage of DC bus within a certain range. However, there are also some po-

tential improvements which can be implemented to make the controlling method more 

suitable for practical use: 

 The battery system used in this study is a simplified one, so using a more compli-

cated battery model can better represent a real battery system and improve the 

accuracy. 

 Implement the control method on a physical prototype, which is a more straight-

forward way of checking the reliability and effectiveness of the algorithm. 

 In this research, the state of charge of the battery is within the safe range. However, 

if the state of charge is over the maximum or below the minimum, an alternative 

control scheme should be used to guarantee system safety. 
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 Introduce a real-time measurement feedback/compensation mechanism involved 

in generating the references of battery terminal voltage. Though it is not imple-

mented in this research with the aim of directly showing the connection between 

solar forecast quality and system performance, it will be a good way to improve 

the control quality of a practical system by setting a more reasonable reference 

trajectory. 
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