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Abstract

The notion of spectral flow has been introduced by Atiyah and Lustzig and is
an important tool in geometry. In 1976 Atiyah, Patodi and Singer suggested that
a path of elliptic operators on odd dimensional compact manifolds the spectral
flow can be computed via the Fredholm index of so-called ‘suspension’, which
is a first order elliptic operator on a manifold of one higher dimension and the
well-known “Fredholm index=spectral flow” theorem has appeared for the first
time. Later, Robbin and Salamon provided an abstract framework for “Fredholm
index=spectral flow” theorem with a crucial assumption that the operators in
the path have discrete spectra and the endpoints are boundedly invertible, the
assumption which is usually violated in the setting of differential operators coming
from mathematical physics.

In 2008 Pushnitski added a new ingredient to this equality, the Krein spectral
shift function. With this new ingredient the operators in the path are allowed
to have some essential spectral away from zero. If one removes the assumption
that the endpoints are boundedly invertible, then the suspension is not neces-
sarily a Fredholm operator. The latter assumption was omitted in the works
by Carey and Gesztesy and their collaborators, where the Fredholm index was
replaced by Witten index. However, the framework of this new equality “Witten
index=spectral shift function” does not cover yet differential operators on locally
compact manifolds even in dimension 1.

The present thesis provides a complete framework for the “index=spectral
shift function” theorem, which is suitable for differential operators on locally
compact manifolds in all dimensions at once. When specialised to the classical
situation (with discrete spectra) our result recovers classical results of Atiyah,
Patodi and Singer. In addition, whenever the spectral flow for the path is well-
defined we establish an extension of Robbin-Salamon type theorem which is suit-
able for differential operators with some essential spectrum away from zero in any
dimension.
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Introduction

Suppose that {A(t)}t∈R is a family of self-adjoint operators in a Hilbert space
H and consider the operator

DA =
d

dt
+ A(t),

in the Hilbert space L2(R,H). Operators of this form were studied by Atiyah,
Patodi and Singer [5], [6], [7] with A(t), t ∈ R, a first order elliptic differen-
tial operator on a compact odd-dimensional manifold with the asymptotes (in a
suitable topology)

A± = lim
t→±∞

A(t)

boundedly invertible and purely discrete spectra of A±, A(t), t ∈ R. The as-
sumption that A± are boundedly invertible guarantees that the operator DA is
Fredholm, and therefore the Fredholm index, index(DA), of the operator DA

is well-defined. Atiyah, Patodi and Singer showed that index(DA) is equal to
the spectral flow sf{A(t)}∞t=−∞ of the path {A(t)}t∈R. The spectral flow here is
intuitively understood as the net number of net number of eigenvalues (counting
multiplicities) of A(t) which pass through zero as t runs from −∞ to +∞.

An abstract framework for this “Fredholm index=spectral flow” theorem was
established by Robbin and Salamon in [70]. In that paper the authors proved
that the equality

index(DA) = sf{A(t)}∞t=−∞ (0.1)

holds under the assumption that the self-adjoint operators A(t) and A± with com-
mon domain have purely discrete spectra and the asymptotes A± are boundedly
invertible. Equality (0.1) has become an important result, with many applica-
tions including Morse theory, Floer homology, Morse and Maslov indices etc.
It has been also extended in various directions, including Banach setting [68], a
noncommutative analogue for C∗-algebras [55] and examples where equality (0.1)
fails and the Fredholm index of DA depends on the path {A(t)}t∈R and not only
on the endpoints has been discussed in [1].

However, the bulk of the literature on the “index-spectral flow” theorem fo-
cuses on the operators with purely discrete spectra with examples arising from
geometrically defined operators on compact manifolds. If one is interested in
the operators coming from physics, then the natural setting is locally compact
manifolds and operators with at least some essential spectra.

One way to include operators with some essential spectra into consideration
is to replace the algebra B(H) of all bounded operators on H, with which the
operators A(t) are affiliated, by a general semifinite von Neumann algebra M
with faithful normal semifinite trace τ and assume that the path {A(t)} consists
of operators affiliated withM with resolvents compact with respect to the trace τ .
In this case, Phillips definition of spectral flow (see Section 1.3 for precise details)

vii
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viii INTRODUCTION

can be used to define the right-hand side of (0.1), while the Fredholm index on
the left-hand side of (0.1) is replaced by Breuer-Fredholm index. It is shown in
[11] that with this adjustments equality (0.1) holds in this more general setting.
Nevertheless, this setting is not suitable for the classical Dirac and Schroedinger
operators in Rd and other important physical operators.

The first extension of “index-spectral flow” equality in the classical setting
of the algebra B(H) for operators with some essential spectrum was obtained by
Pushnitski [67]. There the author showed that the “index-spectral flow” equality
is preserved if one replaces the Robbin-Salamon assumption of discrete spectra
by the integrability condition with respect to the trace-class norm ‖ · ‖1 on the
trace-class ideal L1(H) on H, that is∫

R
‖A′(t)‖1dt <∞, (0.2)

with A′(t) = dA(t)
dt

in a suitable topology.
Furthermore, motivated by [67], the result of Theorem (0.1) has been ex-

tended for a larger class of operators in [47]. The main assumption in [47] is
that the family {A′(t)}t∈R consists of relatively trace class perturbations of the
operators A−, that is

A′(t)(A− + i)−1 ∈ L1(H),

∫
R
‖A′(t)(A− + i)−1‖1dt <∞. (0.3)

A particular importance of [67] and [47] is the introduction of a new ingredient
in the equality (0.1), the spectral shift function from scattering theory (see Section
1.2 for the detailed description).

Theorem 0.1. [67], [47] Assume that the family {A(t)}t∈R satisfies (0.2) or
(0.3) with boundedly invertible asymptotes A±. Then

index(DA) = sf{A(t)}+∞
t=−∞ = ξ(0;A+, A−), (0.4)

where ξ(·;A+, A−) denotes the spectral shift function for the pair (A+, A−).

The addition of spectral shift function to the equality “index=spectral flow”
and the fact that the assumption on spectra of operators is not essential for
existence of spectral shift function yield that the right-hand side of (0.4) can
be well-defined even if the assumption invertibility of A± is dropped. However,
omitting the assumption of invertibility of A± implies that the operator DA is no
longer Fredholm, in general. This obstacle has been bypassed in [31] by replacing
Fredholm index by the Witten index (see Section 1.4 for detailed discussion). The
Witten index (in its resolvent regularisation) is defined as the limit

W (DA) = lim
λ↑0

(−λ) tr
(
(DAD

∗
A − λ)−1 − (D∗ADA − λ)−1

)
,

whenever this limit exists. Here tr denotes the classical trace on the Hilbert space
L2(R,H). The Witten index of DA in the theorem below is expressed in terms
on value of the spectral shift function ξ( · ;A+, A−) in Lebesgue sense (see precise
definition in Definition 6.2.1).

Theorem 0.2. [31] Assume (0.3) and suppose that 0 is a left and a right
Lebesgue point of ξ( · ;A+, A−) (denoted by ξL(0−;A+, A−) and ξL(0+;A+, A−)

---
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respectively). Then the Witten index of the operator DA exists and equals

W (DA) =
1

2

(
ξL(0+;A+, A−) + ξL(0−;A+, A−)

)
.

Thus, with omission of the assumption A−1
± ∈ B(H), one can still have “in-

dex=spectral flow” type formula, if the Fredholm index is replaced by the Witten
index and spectral flow is replaced by the (value of) spectral shift function, that
is we now have

“index=spectral shift function”

theorem.
The major drawback of assumptions in [67] and [47], [31] is that they are

suitable for certain pseudo-differential perturbations of a fixed differential opera-
tors or higher-order differential operators in low dimensions. If one considers even
the simplest example of first order differential operator A− = d

idx
on the one di-

mensional locally compact manifold R with perturbation given by multiplication
operator Mf by a sufficiently nice function f 6= 0, then

Mf (A− + i)−1

belongs to Schatten ideals L1+ε(L2(R)) for any ε > 0, but not ε = 0 [73, Chapter
4]. Thus, first order differential operators can be treated neither by [67] nor by
[47].

The first advancements for the “index=spectral shift function” equality ap-
plicable for differential operators on locally compact manifold were made in [30],
[26], [29]. In particular, it was proved that for the operators A− = d

idx
and

A+ = d
idx

+ Mf on L2(R), with sufficently good f , the spectral shift function

ξ(·; d
idx

+ Mf ,
d
idx

) is continuous at zero, the Witten index for the corresponding
suspension DA exists and

W (DA) =
1

2
ξ(0;

d

idx
+Mf ,

d

idx
) =

1

2π

∫
R
f(s)ds. (0.5)

However, the technique used in [30], [26] [29] can not be adapted to differ-
ential operators in higher-dimensions as the crucial assumption (A+−A−)(A−+
i)−2 ∈ L1(H) for many auxiliary results in [30], [26], [29] is not satisfied, in
general, in higher dimensions.

The primary aim of the present thesis is to provide a general framework for
the equality “index=spectral shift function”, which is applicable for differential
operators in any dimension at once and without any restrictions on their spectra.
In addition, if we impose the assumption that the asymptotes A± have discrete
spectra at 0 (without any restriction for the spectra outside 0) then we show that
the “index=spectral flow” equality of Atiyah-Patodi-Singer and Robbin-Salamon
holds in this more general setting too.

For our framework we assume that A− is a self-adjoint operator on H and
{B(t)}t∈R is a family of bounded self-adjoint operators such that B(t) is a p-
relative trace class perturbation of A−, that is there exists p ∈ N ∪ {0} such
that

B′(t)(A− + i)−p−1 ∈ L1(H),

∫
R
‖B′(t)(A− + i)−p−1‖1dt <∞.

In this case, the family {A(t)}t∈R is defined as

A(t) = A− +B(t), t ∈ R.
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The assumptions in [47], [31] and [30] are all particular cases on this assump-
tion with p = 0 and p = 1, respectively. In addition, this is an assumption which
is typically satisfied by differential operators on locally compact (and compact)
manifolds for sufficiently large p, which depends on the dimension of the manifold
and the order of differential operator A−.

Assuming in addition some regularity of the path {B(t)}t∈R (see Hypothesis
3.5.1 for the precise assumption) we prove the following (see Theorem 6.2.3).

Theorem 0.3. Assume Hypothesis 3.5.1. If 0 is a left and a right Lebesgue
point of ξ( · ;A+, A−) (denoted by ξL(0−;A+, A−) and ξL(0+;A+, A−) respectively),
then the Witten index of the operator DA exists and equals

W (DA) =
1

2

(
ξL(0+;A+, A−) + ξL(0−;A+, A−)

)
.

Thus, our results establish “index=spectral shift function” equality in the
framework which is suitable for differential operators in any dimension, which
covers [7], [70] and [67], [47], [31],[30] at once. We discuss our approach in the
proof of Theorem 0.3 in Section 1.6.

With an additional assumption that the operators A± are Fredholm we prove
the following result (see Theorem 6.3.9).

Theorem 0.4. In addition to Hypothesis 3.5.1, assume that the asymptotes
A± are Fredholm. Then the Witten index of the operator DA exists, the spectral
flow sf({A(t)}∞t=−∞) is well-defined and

W (DA) =
1

2

(
ξ(0+;A+, A−) + ξ(0−;A+, A−)

)
(0.6)

= sf({A(t)}∞t=−∞)− 1

2
[dim(ker(A+))− dim(ker(A−))]. (0.7)

The result of Theorem 0.4 is new in several ways. Firstly, because we do not
have to assume trivial kernels for A± or that the end points are unitarily equiv-
alent the operators DA need not be Fredholm. Replacing the Fredholm index
on the left-hand side of equality (0.1) by the Witten index and adding correction
term on the right-hand side, we establish an analogue of the “index=spectral
flow” equality of Robbin-Salamon in the setting when the asymptotes A± are not
invertible.

Secondly, if we impose the condition of trivial kernels for A±, then we obtain
exactly equations (0.1) and (0.4) for the operators with some essential spectra
outside 0, which also hold for differential operators on locally compact manifolds
in any dimension.

Thirdly, under the assumption that the operator A− has compact resolvent
and the perturbation A+ − A− is bounded, equation (0.7) has been established
in [10]. Therefore, our result provides a generalisation of [10] for the operators
with essential spectra.

We also consider several examples of one dimensional differential operators,
where we compute explicitly the spectral shift function ξ(·;A+, A−) in terms of
the perturbation A+ − A− (see Chapter 7). Therefore, taking its value at 0 we
compute the Witten index W (DA) as well as spectral flow for examples where it
is well-defined.
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Structure of the thesis

The thesis is organised in the following way. In Chapter 1 we give a brief
overview of the topic at hand. Firstly, we discuss the defintion of spectral shift
function, spectral flow and Witten index as well as their basic properties. Then,
in Section 1.5 we specify the exact assumptions made in [67] and [47], [31] as
well as discuss the approach in the proof of Theorem 0.1. In Section 1.6 we give
the outline of the proof of Theorems 0.3 and 0.4 and explain how we employ the
results from [31].

In Chapter 2 we introduce the key technical tool used in our approach, the
theory of Double Operator Integrals. We recall the definition of double operator
integrals and their properties in Section 2.1. Then we present the details of
construction from [83] of double operator integrals build over spectral measures of
operators, such that difference of high power of resolvents falls into some Schatten
ideal, and in Section 2.3 we show that these double operator integrals converge
with respect to spectral measures.

Chapter 3 starts with explicit definitions of the operators involved in Theo-
rems 0.3 and 0.4 as well as their basic properties. In this Chapter we introduce the
approximation scheme, which is employed throughout the thesis. We also state
our main assumption, Hypothesis 3.5.1, and prove its immediate corollaries.

In Chapter 4 we firstly recall the construction of spectral shift function from
[83] and prove that it is continuous with respect to the operator parameter in
Section 4.1. Then, in Section 4.2 we use these results to introduce uniquely
the spectral shift function ξ(·;A+, A−). In Section 4.3 we also explain why we
introduce the unique ξ(·;A+, A−) employing the continuity result from Section
4.1 rather than using the standard methonds from scattering theory.

Chapter 5 contains a crucial result in our approach, so-called principle trace
formula. We explain in details the importance of this formula in Sections 1.5 and
1.6. Then, in Chapter 6 we establish our main results, Theorems 0.3 and 0.4.

We conclude with a chapter dedicated for examples for our framework. Firstly,
in Section 7.1, we show that our main Hypothesis 3.5.1 is indeed satisfied for dif-
ferential operators on locally compact manifolds. As an example we consider
Dirac operator on Rd. This chapter also contains several one dimensional exam-
ples, where the spectral shift function ξ(·;A+, A−) is computed explicitly.
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CHAPTER 1

Overview

The principal aim of this chapter is to introduce the central objectives of the
present thesis, the Witten index, spectral shift function and spectral flow. We
also briefly discuss the original Pushnitski’s approach for the proof of Theorem
0.1 as well as give the outline of our approach.

1.1. Notations

In this section we collect the notations we employ throughout the thesis.
For a Banach space X we denote by B(X ) the algebra of all linear bounded

operators on X .
In case when X = H is a separable complex Hilbert space H, we use notation

‖ · ‖ for the uniform norm. The corresponding `p-based Schatten–von Neumann
ideals on H are denoted by Lp(H), with associated norm abbreviated by ‖ · ‖p,
p ≥ 1. Moreover, trH(A) denotes the trace of a trace class operator A ∈ L1(H).

We note that for A ∈ Lp(H), B ∈ Lp′(H) with 1
p
+ 1
p′

= 1
q
, the noncommutative

Hölder inequality implies that AB ∈ Lq(H) and

‖AB‖q ≤ ‖A‖p‖B‖p′ . (1.1.1)

We use symbols n-lim and s-lim to denote the operator norm limit (i.e., con-
vergence in the topology of B(H)), and the operator strong limit.

If T is a linear operator mapping (a subspace of) a Hilbert space into another,
then dom(T ) and ker(T ) denote the domain and kernel (i.e., null space) of T . The
closure of a closable operator S is denoted by S.

The spectrum and resolvent set of a closed linear operator inH will be denoted
by σ(·), and ρ(·), respectively. The spectral projections of a self-adjoint operator
S in H we denote by ES(·).

For a Fredholm operator T , we denote by index(T ) its Fredholm index.
By L2(R,H) we denote the Hilbert space off all H-valued Bochner square

integrable function on R.
We define an auxiliary functions g and gz, z ∈ C \ [0,∞) by setting

g(t) =
t

(t2 + 1)1/2
, t ∈ R. (1.1.2)

gz(t) =
t

(t2 − z)1/2
, t ∈ R, z ∈ C \ [0,∞). (1.1.3)

The notation [·, ·] stands for commutator of two operators, that is

[A,B] = AB −BA.

We also note that for operators A,B, with A invertible, we have

[A−1, B] = −A−1[A,B]A−1. (1.1.4)

1



2 1. OVERVIEW

Throughout the thesis we use the convention that constants Cd, cd, const etc.
are strictly positive constants whose value depends only on their subscripts and
can change from line to line.

The space of all Schwartz function on Rd is denoted by S(Rd) and the Sobolev
spaces are denoted by W p,q(Rd). Unless explicitly stated otherwise, whenever we
write Lp(Rd) (Lp(0,∞) etc. ) we assume the classical Lebesgue measure on Rd

((0,∞) etc.). The space of all functions with continuous derivative up to order n
is denoted by Cn(R) (or Cn(a, b), a < b). If all derivatives up to order n are also
bounded functions then, the space is denoted by Cn

b (R) (Cn
b (a, b), respectively).

1.2. Spectral shift function in the classical setting

In this section we discuss the notion of spectral shift function and its proper-
ties. The material presented here can be found in [82, Chapter 8].

In 1947, a well-known physicist I. M. Lifshitz considered perturbations of an
operator H0 (arising as the Hamiltonian of a lattice model in quantum mechan-
ics) by a finite-rank perturbation V and found some formulae and quantitative
relations for the size of the shift of the eigenvalues. In one of his papers the
spectral shift function (SSF), ξ( · ;H0 + V,H0), appeared for the first time, and
formulae for it in the case of a finite-rank perturbation were obtained.

Lifshitz later continued these investigations and applied them to the problem
of computing the trace of the operator f(H0 +V )−f(H0), where H0 is the unper-
turbed self-adjoint operator, V is a self-adjoint, finite-dimensional perturbation,
and f is an appropriate function (belonging to a fairly broad class). He obtained
(or, rather, surmised) the remarkable relation

tr(f(H0 + V )− f(H0)) =

∫
R
f ′(λ)ξ(λ;H0 + V,H0) dλ, (1.2.1)

where the function ξ( · ;H0 + V,H0) depends on operators H0 and V only.
In [53], M. G. Krein established the proper mathematical framework for spec-

tral shift function in terms of trace-class perturbations V . He also described the
broad class of functions f for which (1.2.1) holds.

Theorem 1.2.1. Suppose that H and H0 are self-adjoint operators such that
H − H0 ∈ L1(H) and assume that f ∈ C1(R) and its derivative admits the
representation

f ′(λ) =

∫
R

exp(−iλt) dm(t), |m|(R) <∞,

for a finite (complex ) measure m. Then [f(H)−f(H0)] ∈ L1(H), and there exists
unique function ξ(·;H,H0) ∈ L1(R) such the following trace formula holds

tr(f(H)− f(H0)) =

∫
R
f ′(λ)ξ(λ;H,H0) dλ. (1.2.2)

The trace formula 1.2.2 is customarily referred to a the the (Lifshitz-)Krein
trace formula.

Remark 1.2.2. (i) The proof of existence of ξ(·;H,H0) relies on so-
called perturbation determinant ∆H/H0(z) (see [82]), which is an an-
alytic function in the open upper and lower half planes of C and the
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integral representation

ln(∆H/H0(z)) =

∫
R

ξ(λ;H,H0) dλ

λ− z
, Im(z) 6= 0.

In particular, Krein’s proof heavily relies on complex analysis. The full
purely real-analytic proof has been recently provided in [66].

(ii) The function ξ( · ;H,H0) is an element of L1(R), that is, it represents an
equivalence class of Lebesgue measurable functions. Therefore, gener-
ally speaking, the notation ξ(λ;H,H0) is meaningless for a fixed λ ∈ R.
This represents a particular technical difficulty for equality (0.3) as we
wish to equate the Witten index with a particular value of the spectral
shift function ξ(·;A+, A−). To overcome this difficulty we take the value
of ξ(·;A+, A−) in Lebesgue sense (see Definition 6.2.1).

Next we discuss properties of the spectral shift function. For complete proofs
we refer to [82, Chapter 8].

Let H0 and H be such that (H − H0) ∈ L1(H) and let δ be an interval on
the real line (possibly unbounded) such that δ ⊂ ρ(H0)∩ρ(H). Then ξ( · ;H,H0)
takes a constant integer value on δ, that is,

ξ(λ;H,H0) = n, n ∈ Z, λ ∈ δ.
If the interval δ contains a half-line, then the L1-condition on ξ implies that n = 0.

Let µ be an isolated eigenvalue of multiplicity α0 <∞ of H0 and multiplicity
α for H. Then

ξ(µ+;H,H0)− ξ(µ−;H,H0) = α0 − α. (1.2.3)

Equation (1.2.3) can be generalized as follows. Suppose that in some interval
(a0, b0) the spectrum of H0 is discrete. Then, by Weyl’s theorem on the invariance
of essential spectra (see, e.g., [52, Theorem 5.35]), H has discrete spectrum in
(a0, b0) as well.

Let δ = (a, b), a0 < a < b < b0. Introduce the eigenvalue counting functions
N0(δ) and N(δ) of the operators H0 and H, respectively, in the interval δ as the
sum of the multiplicities of the eigenvalues in δ of the operator H0, respectively,
H. Since the interval δ is finite and both operators H0, H have discrete spectrum,
N0(δ) and N(δ) are finite. In this case one has the equality,

ξ(b−;H,H0)− ξ(a+;H,H0) = N0(δ)−N(δ). (1.2.4)

The equation (1.2.4) can give some insight on the reason why ξ(·;H,H0) is
called a spectral shift function. However, one of the most important properties of
spectral shift function is its connection with determinant of so-called scattering
matrix via Birman-Krein formula. Namely, denote by S(λ) = S(λ;H,H0) the
scattering matrix (see [82] for precise definition). Then, for almost every λ ∈ R
we have [13], [14] (see also [82, Section 8.4])

det(S(λ)) = exp(−2πiξ(λ;H,H0)).

This identity is often used as definition of spectral shift function and has some
deep applications in scattering theory. Here, we do not intend to use this equation
and hence we do not go into details.

Of course the requirement that H −H1 is a trace-class operator is very strict
and rules our classical differential operators. The first result, generalising the
class of operators H0, H is due to M.G.Krein [54].
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Theorem 1.2.3 (Resolvent comparable case). Let H0, H be self-adjoint oper-
ators such that

(H − z)−1 − (H0 − z)−1 ∈ L1(H), z ∈ ρ(H0) ∩ ρ(H).

Suppose that a function f on R has two bounded derivatives and

dl

dλl
(
f(λ)− f0λ

−1
)

= O(|λ|−l−1−ε), as λ→ ±∞, l = 0, 1, 2

where the constant f0 is the same for λ → ±∞. Then f(H) − f(H0) ∈ L1(H)
and there exists a spectral shift function ξ( · ;H,H0), satisfying the weighted inte-
grability condition

ξ(λ;H,H0) ∈ L1

(
R; (1 + λ2)−1dλ

)
and

tr
(
f(H)− f(H0)

)
=

∫
R
f ′(λ)ξ(λ;H,H0)dλ. (1.2.5)

We emphasize that in the resolvent comparable case the spectral shift function
is defined only up to an (integer-valued) additive constant (see [82, Section 8.7]).
So, in general, there is a class of functions from L1

(
R; (1 +λ2)−1dλ

)
, which differ

by an additive constant and satisfy (1.2.5).
Just as in the case of a trace class perturbation, the SSF for resolvent com-

parable operators H0, H possesses the following property.
If in some interval (a0, b0) the spectrum of H0 is discrete and let δ = (a, b),

a0 < a < b < b0. Then the analogue of (1.2.4) holds, that is,

ξ(b−;H,H0)− ξ(a+;H,H0) = N0(δ)−N(δ), (1.2.6)

where N0(δ) (respectively, N(δ)) are the sum of the multiplicities of the eigenval-
ues of H0 (respectively, H) in δ.

In the particular case of lower semibounded operators H0 and H equality
(1.2.6) allows us to naturally fix the additive constant in the following way. To
the left of the spectra of H0 and H, the eigenvalue counting functions N0(·) and
N(·) are zero. Therefore, by equality (1.2.6) the SSF ξ( · ;H,H0) is a constant to
the left of the spectra of H0 and H, and it is custom to set this constant equal
to zero,

ξ(λ;H,H0) = 0, λ < inf(σ(H0) ∪ σ(H)). (1.2.7)

In the following we describe a particular way to introduce the SSF for the pair
(H,H0) by what is usually called the invariance principle and which is often used
to fix an additive constant for the spectral shift function ξ(·;H,H0) for resolvent
comparable case.

Let Ω be an interval containing the spectra of H0 and H, and let f be an
arbitrary bounded monotone “sufficiently” smooth function on Ω. Suppose that

f(H)− f(H0) ∈ L1(H) (1.2.8)

then, the SSF ξ( · ;H,H0) can be fixed as follows:

ξ(λ;H,H0) = sgn
(
f ′(λ)

)
ξ(f(λ); f(H), f(H0)). (1.2.9)

For the function ξ( · ;H,H0) the Lifshitz–Krein trace formula (1.2.2) holds for
some class of admissible functions. The latter class depends on f . The assumption
that the function f is monotone is crucial in invariance principle, since it allows

--
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to take the inverse of f in the Krein trace formula. Namely, for sufficiently nice
function h we have

tr
(
h(H)− h(H0)

)
= tr

(
(h ◦ f−1)(f(H))− (h ◦ f−1)(f(H0))

)
=

∫
R
(h ◦ f−1)′(µ) ξ(µ; f(H), f(H0))dµ.

Using the substitution µ = f(λ), one can obtain that

tr
(
h(H)− h(H0)

)
=

∫
R
h′(λ) ξ(f(λ); f(H), f(H0))dλ

=

∫
R
h′(λ) ξ(λ;H,H0)dλ,

where the last equation follows from (1.2.9). In Section 4.3 we give an example
of pair (H,H0), such that inclusion (1.2.8) does not hold no matter how smooth
the function f is, which yields an example of operators for which the invariance
principle is not applicable.

1.3. The Phillips definition of spectral flow and its analytic formulas

In this section we recall Phillips definition of the spectral flow as well as its
integral formula. For a survey of the notion of spectral flow and its analytic
formulas we recommend [12].

Given a continuous path of bounded Fredholm operators {Ft : t ∈ [0, 1]},
J. Phillips [61] introduced an analytic definition of spectral flow along this path.
This definition is more useful than the original topological approach of Atiyah-
Patodi-Singer.

Let χ be the characteristic function of the interval [0,∞) and let {Ft}t∈[0,1] be
a norm continuous path of bounded self-adjoint Fredholm operator on H. Denote
by π the projection onto the Calkin algebra B(H)/K(H). Then one may show
that π(χ(Ft)) = χ(π(F (t))). Since the spectra of π(F (t)) are bounded away
from 0, this latter path is continuous. By compactness we can choose a partition
0 = t0 < t1 < · · · < tk = 1 so that for each i = 1, 2, ..., k

‖π(χ(F (t)))− π(χ(F (s)))‖ < 1/2 for all t, s ∈ [ti−1, ti].

Letting Pi = χ(Fti) for i = 0, 1, ..., k, then by the previous inequality is equivalent
to

‖π(Pi)− π(Pi−1)‖ < 1/2.

By [8, Propisition 3.1] implies that the operator Pi−1Pi : PiH → Pi−1H is Fred-
holm. Then we define the spectral flow of the path {Ft}t∈[0,1] to be the number:

sf({Ft}t∈[0,1]) =
k∑
i=1

index(Pi−1Pi),

where index(Pi−1Pi) is Fredholm index of Pi−1Pi as an operator from PiH to
Pi−1H.

The main results of [61] show that this analytic notion is well defined being
independent of the partition into ‘small’ intervals and that it reproduces the usual
topological point of view. In addition, this analytic point of view recovers the
intersection number approach to spectral flow when the operators in question
have discrete spectrum.
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The standard approach (see e.g. [34], [12]) in the analytic definition of spec-
tral flow for a path {D(t)}t∈[0,1] of unbounded Fredholm operators is to reduce it
to the path of bounded Fredholm operators {g(D(t))}t∈[0,1], where g is the Riesz
mapping

g(t) =
t

(1 + t2)1/2
.

We firstly recall the following notion of continuity for a path of unbounded oper-
ators.

Definition 1.3.1. (i) A path {D(t)}t∈[0,1] is called Γ-differentiable at
the point t = t0 if and only if there is a bounded linear operator G such
that

lim
t→t0

∥∥∥D(t)−D(t0)

t
(1 +D(t0)2)−1/2 −G

∥∥∥
B(H)

= 0.

In this case, we set Ḋ(t0) = G(1+D(t0)2)1/2. By [36, Lemma 25] the op-
erator Ḋ(t) is a symmetric linear operator with the domain dom(D(t)).

(ii) If the mapping t 7→ Ḋ(t)(1 +D(t)2)−1/2 is defined and continuous with
respect to the operator norm, then the path {D(t)}t∈[0,1] is called contin-
uously Γ-differentiable or a C1

Γ-path

One of the crucial results in [36] is the following

Theorem 1.3.2. [36, Theorem 22] If {Dt}t∈[0,1] is a C1
Γ-path of self- adjoint

linear operators, then the path {g(Dt)}t∈[0,1] is a C1-path with respect to the op-
erator norm.

Theorem 1.3.2 implies that the following definition makes sense.

Definition 1.3.3. Suppose that {Dt}t∈[0,1] is a C1
Γ-path of self-adjoint Fred-

holm operators. We introduce the spectral flow as follows

sf({Dt}t∈[0,1]) := sf({g(Dt)}t∈[0,1]). (1.3.1)

In our approach to the proof of Theorem 0.4 we employ so-called integral
formulas for spectral flow. The idea that spectral flow is given by integrating a
one form suggested by Singer [74] and the first paper which presents a systematic
approach to this idea is that of Getzler [50].

A different approach to finding an analytic formula for spectral flow may
be found in [34, 35] motivated by the study of spectral flow in semifinite von
Neumann algebras. Though [34, 35] drew inspiration from [50] their approach is
based on Phillips’ analytic viewpoint. In [34, 35] formulas for spectral flow are
given for paths of both bounded and unbounded Fredholm operators. We note
that [34], [35] and [50] prove the integral formulas for spectral flow for operators
with purely discrete spectra (and some additional summability condition). We
refer the reader to [12] and [45] for more extensive discussion of integral formulas
for spectral flow.

Substantial refinements of this early work cited in the preceding paragraphs
are found in [10] and [36]. In particular, [36] fully resolves Singer’s conjecture for
integral formulas of spectral flow. Moreover, [36] establishes an analytic formula
for spectral flow for operators with some essential spectrum .



1.3. THE PHILLIPS DEFINITION OF SPECTRAL FLOW AND ITS ANALYTIC FORMULAS7

To be more specific, we state the theorem of [36] for one particular function
we use in our proof. Below, the notation erf stands for the error function

erf(x) =
2

π1/2

∫ x

0

e−y
2

dy, x ∈ R. (1.3.2)

Theorem 1.3.4. [36, Theorem 9] Let {Dt}t∈[0,1] be a C1
Γ-path of (unbounded)

self adjoint Fredholm operators joining endpoints D0, D1. Suppose that

(i)
∫ 1

0
‖Ḋte

−λD2
t ‖1dt <∞, λ > 0;

(ii) The operator [1
2

erf(λ1/2D1)− 1
2

erf(λ1/2D0)]− [χ[0,∞)(D1)− χ[0,∞)(D0)]
is a trace-class operator.

Then

sf({Dt}t∈[0,1]) =

∫ 1

0

tr(Ḋte
−λD2

t )dt

+ tr
(

[
1

2
erf(λ1/2D1)− 1

2
erf(λ1/2D0)]− [χ[0,∞)(D1)− χ[0,∞)(D0)]

)
.

For completeness we present a short explanation how Theorem 1.3.4 can be
obtained from [36, Theorem 9].

Proof. To use [36, Theorem 9] set g(x) =
√

λ
π
e−λx

2
, x ∈ R, λ > 0. Then

clearly ∫
R
g(x)dx = 1

and hence assumptions (i) and (ii) of [36, Theorem 9] are satisfied. In addition,
the antiderivative G(·) of g(·) satisfying G(±∞) = ±1

2
is given by (see [36,

Theorem 11])

G(x) =

√
λ

π

∫ x

−∞
e−λs

2

ds− 1

2
=

√
λ

π

∫ x

0

e−λs
2

ds =
1

2
erf(
√
λx), x ∈ R, λ > 0.

Hence, the assumption (iii) of [36, Theorem 9] is precisely what is assumed in
(ii). Hence, [36, Theorem 9] applies and gives the required formula. �

Remark 1.3.5. We note that [36, Theorem 11] states exactly the same an-
alytic formula for the spectral flow as we presented above. However, one of the
assumptions of [36, Theorem 11] requires that e−λD

2
t is a trace-class operator for

every t ∈ [0, 1] and λ > 0. In our setting we do not have this assumption in
general.

To conclude section we discuss connection of spectral shift function and the
spectral flow. Recall that one particular property of spectral shift function for a
pair (D,D0) of operators with discrete spectra is that

ξ(b−;D,D0)− ξ(a+;D,D0) = N0(δ)−N(δ),

where N0(·) and N(δ) denotes the eigenvalue counting function of D0 and D
respectively on the interval a0 < a < b < b0. In addition, the naive definition of
the spectral flow for a path {D(t)}t∈[0,1] connecting D0 and D is the net number
eigenvalues (counting multiplicities) of D(t) which pass through zero as t runs
from 0 to 1. Thus, on intuitive level we have the equality

sf({D(t)}t∈[0,1]) =
1

2

(
ξ(0+;D,D0) + ξ(0−;D,D0)

)
.
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In fact, this equality indeed holds for a path with unitarily equivalent endpoints
D,D0. This result was proved rigorously in [10, Section 3.5] for a general setting
of operators affiliated with a semifinite von Neumann algebra with faithful normal
semifinite trace. Here, we recall the result for a special case when M = B(H).

Theorem 1.3.6. Suppose that D0 is a self-adjoint operator with purely dis-
crete spectra and let D−D0 be a bounded operator. Then the spectral shift function
ξ(·;D,D0) and the spectral flow sf({D(t)}t∈[0,1]) exist and

sf({D(t)}t∈[0,1]) =
1

2

(
ξ(0+;D,D0) + ξ(0−;D,D0)

)
+

1

2

(
dim(ker(D))− dim(ker(D0))

)
.

(1.3.3)

Comparing the latter equality with equality (0.7) (see also Theorem 6.3.8)
we conclude that our technique provides an extension of equality (1.3.3) for the
p-relative perturbations of a self-adjoint operator, such that D and D0 do not
have essential spectra at 0. Thus equality (1.3.3) holds also for operators with
some essential spectra.

1.4. The Witten Index

In this section we recall the definition of Witten index and its basic properties.
In his paper [81], Witten introduced a number, which counts the difference in

the number of bosonic and fermionic zero-energy modes of a Hamiltonian. This
quantity, called the Witten index, became popular in connection with a variety of
examples in supersymmetric quantum mechanics in the 1980’s and in [20], [21],
[49] has been put in mathematical framework using two different regularisation,
which we recall next.

We start with the following facts on trace class properties of resolvent and
semigroup differences.

Proposition 1.4.1. (see e.g. [31, Lemma 3.1]) Suppose that 0 ≤ Sj, j = 1, 2,
are nonnegative, self-adjoint operators in H.

(i) [79, p. 178] If
[
(S2 − z0)−1 − (S1 − z0)−1

]
∈ L1(H) for some z0 ∈

ρ(S1) ∩ ρ(S2), then[
(S2 − z)−1 − (S1 − z)−1

]
∈ L1(H) for all z ∈ ρ(S1) ∩ ρ(S2).

(ii) If
[
e−t0S2 − e−t0S1

]
∈ L1(H) for some t0 > 0, then[

e−tS2 − e−tS1
]
∈ L1(H) for all t ≥ t0.

The preceding fact allows one to consider the following two definitions.
Let T be a closed, linear, densely defined operator in H. Suppose that for

some (and hence for all ) z ∈ C\[0,∞) ⊆ [ρ(T ∗T ) ∩ ρ(TT ∗)],[
(T ∗T − z)−1 − (TT ∗ − z)−1

]
∈ L1(H).

Then one introduces the resolvent regularization

∆r(T, λ) = (−λ) trH
(
(T ∗T − λ)−1 − (TT ∗ − λ)−1

)
, λ < 0. (1.4.1)

Definition 1.4.2. The resolvent regularized Witten index Wr(T ) of T is
defined by

Wr(T ) = lim
λ↑0

∆r(T, λ),
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whenever this limit exists.

Similarly, suppose that for some t0 > 0[
e−t0T

∗T − e−t0TT ∗
]
∈ L1(H).

Then
(
e−tT

∗T − e−tTT ∗
)
∈ L1(H) for all t > t0 and one introduces the semigroup

regularization

∆s(T, t) = trH
(
e−tT

∗T − e−tTT ∗
)
, t > 0. (1.4.2)

Definition 1.4.3. The semigroup regularized Witten index W (T ) of T is
defined by

W (T ) = lim
t↑∞

∆s(T, t),

whenever this limit exists.

As proved in [49], [20], the Witten index of an operator T in H is a natural
substitute for the Fredholm index of T in cases where the operator T ceases
to have the Fredholm property. Namely, the following result states that both
(resolvent and semigroup) regularized Witten indices coincide with the Fredholm
index in the special case of Fredholm operators.

Theorem 1.4.4. [49, 20] Let T be an (unbounded ) Fredholm operator in H.
Suppose that

[
(T ∗T − z)−1− (TT ∗− z)−1

]
,
[
e−t0T

∗T − e−t0TT ∗
]
∈ L1(H) for some

z ∈ C\[0,∞), and t0 > 0. Then

index(T ) = Wr(T ) = W (T ).

We note that the regularisations (1.4.1) and (1.4.2) has been used before
[49, 20] to compute the Fredholm index of an operator (see e.g. [23]).

In general (i.e., if T is not Fredholm), Wr(T ) (respectively, W (T )) is not
necessarily integer-valued; in fact, it can be any real number. As a concrete
example, we mention the two-dimensional magnetic field system discussed by
Aharonov and Casher [3] which demonstrates that the resolvent and semigroup
regularized Witten indices have the meaning of (non-quantized) magnetic flux
F ∈ R which indeed can be any prescribed real number.

Expressing the Witten index W (T ) (respectively, Wr(T )) of an operator T in
terms of the spectral shift function ξ( · ;T ∗T, TT ∗) requires of course the choice
of a concrete representative of the SSF:

Theorem 1.4.5. [20, 49] (i) Suppose that
[
e−t0T

∗T − e−t0TT ∗
]
∈ L1(H) for

some t0 > 0 and the spectral shift function ξ( · ;T ∗T, TT ∗) , uniquely defined by
the requirement ξ(λ;T ∗T, TT ∗) = 0, λ < 0, is continuous from above at λ = 0.
Then the semigroup regularized Witten index W (T ) of T exists and

W (T ) = −ξ(0+;T ∗T, TT ∗).

(ii) Suppose that
[
(T ∗T − z)−1 − (TT ∗ − z)−1

]
∈ L1(H), z ∈ C\[0,∞) and

ξ( · ;T ∗T, TT ∗), uniquely defined by the requirement ξ(λ;T ∗T, TT ∗) = 0, λ < 0,
is bounded and piecewise continuous on R. Then the resolvent regularized Witten
index W (T ) of T exists and

Wr(T ) = −ξ(0+;T ∗T, TT ∗).
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The first relations between index theory for not necessarily Fredholm opera-
tors and the Lifshitz–Krein spectral shift function were established in [20], [46],
[49], and independently in [37]. In fact, inspired by index calculations of Callias
[23] in connection with noncompact manifolds, the more general notion of the
Witten index was studied and identified with the value of an appropriate spectral
shift function at zero in [20] and [49] (see also [46], [78, Ch. 5]). Similiar investi-
gations in search of an index theory for non-Fredholm operators were untertaken
in [37] in a slightly different direction, based on principal functions and their
connection to Krein’s spectral shift function.

While [20] and [46] focused on index theorems for concrete one and two-
dimensional supersymmetric systems, [49] treated abstract Fredholm and Witten
indices in terms of the spectral shift function and proved their invariance with
respect to appropriate classes of perturbations. Soon after, a general abstract
approach to supersymmetric scattering theory involving the spectral shift function
was developed in [22] and applied to relative index theorems in the context of
manifolds Euclidean at infinity.

The intrinsic value of the Witten index W (T ) lies in its stability proper-
ties with respect to additive perturbations, analogous to stability properties of
the Fredholm index. As shown in [49], [20], the Witten index possesses stabil-
ity properties with respect to additive perturbations, however, necessarily under
considerably stronger hypotheses (very roughly speaking, relative trace class type
perturbations) than in the case of Fredholm indices (where relatively compact per-
turbations can be handled). In this relation we refer also to a recent paper [33]
where a new approach for topological invariance has been suggested.

1.5. Pushnitski’s setting

In this section we give the precise assumptions made in [67], [47], [31] and
the discuss the crucial steps in the proof of Theorems 0.1 and 0.2.

We start with the assumption of Pushnitski [67].

Hypothesis 1.5.1 (The Pushnitski Assumptions).

(i) Assume A− ∈ B(H) is self-adjoint in H.
(ii) Suppose there exists a family of bounded self-adjoint operators {B(t)}t∈R

(the allowed perturbations of A−) inH with B(·) weakly locally absolutely
continuous on R, implying the existence of a family of bounded self-
adjoint operators {B′(t)}t∈R in H such that for a.e. t ∈ R,

d

dt
(g,B(t)h)H = (g,B′(t)h)H, g, h ∈ H.

(iii) Assume that B′(t) ∈ L1(H), t ∈ R, and∫
R

∥∥B′(t)∥∥L1(H)
dt <∞.

For comparison we state the key assumption of [47] on these perturbations
that replaces item (iii) of the Pushnitski assumptions.

Hypothesis 1.5.2 (The assumptions in [47] and [31]). Instead of assumption
(iii) in Hypothesis 1.5.1 assume that

-
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(iii′) Assume the relatively trace class perturbation assumption∥∥B′(t)(A2
− + 1)−1/2

∥∥
L1(H)

<∞ and

∫
R

∥∥B′(t)(A2
− + 1)−1/2

∥∥
L1(H)

dt <∞.

The Pushnitski’s assumption 1.5.1 guarantees, in particular, that the limit

B+ := lim
t→+∞

B(t),

exists in the uniform norm (see (3.1.4)), in addition,

B+ ∈ L1(H).

Introduce the family of self-adjoint operators A(t), t ∈ R, in H, by

A(t) = A− +B(t), dom(A(t)) = dom(A−), t ∈ R
and the self-adjoint asymptote

A+ = A− +B+.

For the family {A(t)}t∈R in H we denote by A the operator acting in the
Hilbert space L2(R,H) defined by

(Af)(t) = A(t)f(t) for a.e. t ∈ R,

f ∈ dom(A) =

{
g ∈ L2(R,H)

∣∣∣∣ g(t) ∈ dom(A(t)) for a.e. t ∈ R;

t 7→ A(t)g(t) is (weakly) measurable;

∫
R
dt ‖A(t)g(t)‖2

H <∞
}
.

In addition, we introduce the operator DA in L2(R,H) by

DA =
d

dt
+ A, dom(DA) = W 1,2(R,H) ∩ dom(A−).

Here the operator d/dt in L2(R,H) is defined by(
d

dt
f

)
(t) = f ′(t) for a.e. t ∈ R,

f ∈ dom(d/dt) =
{
g ∈ L2(R,H)

∣∣ g ∈ ACloc

(
R,H

)
, g′ ∈ L2(R,H)

}
= W 1,2

(
R,H

)
.

For simplicity we also introduce the nonnegative, self-adjoint operators Hj,
j = 1, 2, in L2(R,H) by setting

H1 = D∗ADA, H2 = DAD
∗
A.

The crucial step in the proof of Theorem 0.1 (as well as Theorem 0.2) is the
(resolvent version of) so-called principal trace formula which we state next.

Theorem 1.5.3. [67] (see also [47] for relative trace-class setting) Assume
that Pushnitski’s assumption 1.5.1 holds. Then(

gz(A+)− gz(A−)
)
∈ L1(H),

(
(H2 − z)−1 − (H1 − z)−1

)
∈ L1(L2(R,H))

and

(−z) tr
(
(H2 − z)−1 − (H1 − z)−1

)
= −1

2
tr
(
gz(A+)− gz(A−)

)
(1.5.1)

for all z ∈ C \ [0,∞).
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In the setting of a finite-dimensional Hilbert space H, this trace formula was
proved for the first time by Callias [23] and for dim(H) = 1 in [20].

With assumption that DA is a Fredholm operator, the left-hand side of (1.5.1)
computes index(DA). In addition, the fact that B+ is a trace-class operator im-
plies that there exists unique spectral shift function ξ(·;A+, A−) for the pair
(A+, A−). On the other hand, since

(
(H2 − z)−1 − (H1 − z)−1

)
∈ L1(L2(R,H))

there exists spectral shift function ξ(·;H2,H1) for the pair (H2,H1). In addi-
tion, since H2 and H1 are nonnegative, the spectral shift function ξ(·;H2,H1)
can be fixed (see (1.2.7)) by the requirement

ξ(λ;H2,H1) = 0, λ < 0.

Using the Krein trace formula (see (1.2.2) and (1.2.5)) for both sides of the
principal trace formula (1.5.1) one can write∫

[0,∞)

ξ
(
λ;H2,H1

)
dλ

(λ− z)−2

= − trL2(R,H)

((
H2 − z

)−1 −
(
H1 − z

)−1
)

= − 1

2z
trH
(
gz(A+)− gz(A−)

)
=

1

2

∫
R

ξ(ν;A+, A−) dν

(ν2 − z)3/2
, z ∈ C\[0,∞).

The latter equality implies the following result [67] (see also [47] for relative
trace-class setting).

Theorem 1.5.4 (Pushnitski’s formula). Assume Hypothesis 1.5.1. We have

ξ
(
λ;H2,H1

)
=

1

π

∫ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ− ν2)1/2
, (1.5.2)

Pushnitski recognised that “index=spectral flow” can be interpreted as a par-
ticular limiting form of the general equality (1.5.2).

For our approach in the proof of our main result, Theorem 0.3, we aim for the
same Pushnitski’s formula (1.5.2), however, the employ quite different methods.
We explain the outline of the proof in the next section.

1.6. The outline of the proof

As discussed in the previous section, the main step in the proof of Theorems
0.1 and 0.2 is the principal trace formula (1.5.1). However, as we show in Section
4.3 (see Theorem 4.3.10) the operator

g(A+)− g(A−)

is not necessarily trace-class operator in our setting. Therefore, the right-hand
side of (1.5.1) is not well-defined in our case.

Furthermore, the difference of resolvents((
H2 − z

)−1 −
(
H1 − z

)−1)
is not necessarily trace-class operators for examples of higher-dimensional differ-
ential operators. Therefore, we can not consider the resolvent regularisation of
the Witten index (1.4.1) for the operator DA. Hence, in the thesis we consider
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only the semigroup regularised Witten index. For that index we need to study
the limit of

tr
(
e−tH2 − e−tH1

)
as t→∞.

Since we aim to express this limit in terms of spectral shift function ξ(·;A+, A−)

for the pair (A+, A−), we need to relate tr
(
e−tH2 − e−tH1

)
with some expression

containing A+ and A−. To this end we prove principle trace formula in its heat
kernel version, namely, for all t > 0, we have

tr
(
e−tH2 − e−tH1

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds, (1.6.1)

where As = A− + s(A+ − A−), s ∈ [0, 1] is the straight line connecting A+ and
A−. As in [67], [47] and [31], this version of the principal trace formula is the
crucial step in the proof of Theorems 0.3 and 0.4.

This formula can be found in [12] under the assumption that the resolvent of
operators A± are compact (and some additional ‘summability’ assumption). Here,
we prove the formula without any assumptions on the spectra of the operators
A+ and A−.

The key idea in the proof of (1.6.1) is an approximation argument and employ-
ment of double operator integrals (see Section 2.1). The first step is to introduce
a spectral ‘cut-off’

Pn = χ[−n,n](A−)

and the path {Bn(t)}t∈R of reduced operators by setting

Bn(t) = PnB(t)Pn, n ∈ N, t ∈ R.

The p-relative trace-class assumption on B(t) guarantees that {Bn(t)}t∈R is
path of trace-class operators satisfying Pushnitski’s assumption 1.5.1 (and there-
fore assumption of [31] too, see Hypothesis 1.5.2).

Employing results of [31] we write

tr
(
e−tH2,n − e−tH1,n

)
= −1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)
, (1.6.2)

where the erf stands for the error function (see (1.3.2)) and operators Hj,n, j =
1, 2 denote the operators corresponding to the path {A− +Bn(t)}t∈R.

One can think that we can approximate now both sides of equation (1.6.2)
and obtain a more general version of the formula obtained in [31]. However,
this is not true in general. Consider the case, when the operator A− is the two-
dimensional Dirac operator (see (4.3.1)) and the perturbed operator A+ is given
by

A+ = A− + 1⊗Mϕ, ϕ ∈ S(R2).

Clearly, erf ′ > 0 is a Schwartz function. Hence, Theorem 4.3.14 below we have
that the operator

erf(t1/2A+)− erf(t1/2A−)

is not a trace-class operator. Thus, on the right-hand side of (1.6.2) we can not
pass to the limit, in general.
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Using then Daletski-Krein formula (from the theory of double operator inte-
grals) we then write

1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)

=
( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds,

with the convergent integral of the right-hand side. Thus, we obtain the required
form of the principal trace formula for reduced operators.

tr
(
e−tH2,n − e−tH1,n

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds.

Using again double operator integrals we show that both, left-hand and right-
hand side yield the required limit as n → ∞, thus proving that (see Section
5.1)

tr
(
e−tH2 − e−tH1

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds.

Having established the principal trace formula in its heat kernel version we
use Laplace transform to show (see Section 6.1) that Pushnitski’s formula (1.5.2)
holds in our general framework. As an application of Pushnitski’s formula we
obtain Theorem 0.3.

To prove Theorem 0.4 we use again the approximation technique combined
with the integral formula for spectral flow from Theorem 1.3.4.



CHAPTER 2

Double operator integrals

In this chapter we present the foundations of the theory of double operator
integrals. We start with a detailed exposition of definition of double operator
integrals given by Birman and Solomyak in [15]. We also discuss several suffi-
cient conditions for a double operator integral to be a bounded mapping on the
Schatten class Lp(H), 1 ≤ p <∞ and on B(H).

Next, we give details of construction from [83] of double operator integrals
build over spectral measures of self-adjoint operators such that the difference
of high enough power of their resolvents fall into Schatten class. This detailed
exposition is essential for the result of Section 2.3 on the limiting process for this
types of double operator integrals. The main result of this section, Theorem 2.3.9,
plays a crucial rule in the approximation of the left-hand side of the principal
trace formula (1.6.2) (see discussion in Section 1.6). The results of Section 2.3
are presented in [27].

2.1. Definition of double operator integrals and their properties

In this section we give the definition of double operator integrals and present
their basic properties. The theory of double operator integrals originated in [15],
[16], [17] and has become an important tool in many areas of mathematics, most
notably perturbation theory. There are different approaches to double operator
integrals (see e.g. [40, 60, 62, 9]) and the choice of a particular approach depends
on the question studied. In the present thesis we use double operator integrals
as operators on L1(H) only, and therefore, we recall here the classical definition
of DOI due to Birman and Solomyak.

Firstly, we recall the definition of double operator integral as a mapping
(transformator) on the Hilbert-Schmidt class L2(H). Below we present the re-
sults for self-adjoint operators, but note that the same construction works for a
pair of unitary operator U, V with the replacement of R by T.

Suppose that A,B are self-adjoint operators with common dense domain.
Denote by E and F the (B(H)-valued) spectral measures on R of A and B,
respectively. Consider the B(L2(H))-valued measures on R defined by

E(σ1) : X → E(σ1)X,

F(σ2) : X → XF (σ2),

where σ1, σ2 are Borel sets in R. It is clear that the E and F are commuting
spectral measure on R.

Define the product of two measures E and F

ν(σ1 × σ2) = E(σ1)F(σ2),

that is

ν(σ1 × σ2)(X) = E(σ1)XF (σ2).

15
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It is proved by Birman and Solomyak [15] that this is a countably additive
(in the strong operator topology) projection-valued measure on R2, and therefore
the following definition makes sense.

Definition 2.1.1. For a function ψ ∈ L∞(R2, ν) the double operator integral

TA,Bψ : L2(H) → L2(H) is defined as the integral of the symbol ψ with respect to
the spectral measure ν, that is

TA,Bψ (X) :=

∫
R2

ψ(ω)dν(ω)(X), X ∈ L2(H).

The other frequently used notation is

TA,Bψ (X) :=

∫
R×R

ψ(λ, µ)dE(λ)XdF (µ), X ∈ L2(H).

Remark 2.1.2. For a DOI operator integral TA,Bψ with symbol ψ the values

of ψ outside some Borel subset B ∈ R2 containing σ(A) ∪ σ(B) are inessential.
Namely, if σ(A) ∪ σ(B) ⊂ B and ψ|B denotes the restriction of ψ onto B, then

TA,Bψ = TA,Bψ|B .

In the special case, when the the operators A and B have discrete spectra,
the definition of double operator integral becomes substantially easier. Indeed,
suppose that A,B are self-adjoint operators with common dense domain and
discrete spectra. Let {λi}i∈N and {µj}j∈N denote the sequence of eigenvalues of A
and B, respectively, with corresponding orthonormal bases of eigenvectors {pi}i∈N
and {qj}j∈N.

In this case, the product measure ν is supported on a discrete set
{(λi, µj), i, j ∈ N} ⊂ R2 and for ψ ∈ L∞(R2, ν) we have

TA,Bψ (X) =
∑
i,j

ψ(λi, µj)Ppi X Pqj ,

where Ppi and Pqj denote the projections on the vector space spanned by pi and
qj, respectively.

In particular,

〈TA,Bψ (X)qj, pi〉 = ψ(λi, µj)xij,

where
xij = 〈X(qj), pi〉,

is the representation of the operator X ∈ L2(H) as an infinite matrix with respect
to {pi}i∈N and {qj}j∈N.

Thus, in the discrete case, the double operator integral TA,Bψ (X) is simply the
Schur product {ψ(λi, µj)}i,j ∗ X of the matrices {ψ(λi, µj)}i,j and X = {xij}i,j.
Therefore, double operator integrals are considered as continuous version of Schur
multipliers. In fact, using the decomposing the Hilbert space H into direct inte-
gral (with respect to E and F) one can write the double operator integral as a
multiplier transformation of the kernel on integral operators (see [19]).

The following proposition gathers the elementary properties of double opera-
tor integrals, which easily follow from the spectral theorem.

Proposition 2.1.3. Let A,B be arbitrary self-adjoint operators on H with
common dense domain. Suppose that ψ, ψ1, ψ2 ∈ L∞(R2, ν). We have
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(i) TA,Bψ1+ψ2
= TA,Bψ1

+ TA,Bψ2
.

(ii) TA,Bψ1ψ2
= TA,Bψ1

◦ TA,Bψ2
.

(iii) if ψ(t1, t2) = h1(t1), then TA,Bψ1
(X) = h1(A)X.

(iv) if ψ(t1, t2) = h2(t2), then TA,Bψ (X) = Xh2(B).

Next, we discuss double operator integrals on B(H). Recall that B(H) is
adjoint to L1(H) via trace duality given by

〈T, S〉 = tr(TS∗), T ∈ L1(H), S ∈ B(H).

Since L1(H) ⊂ L2(H), one can easily conclude that TA,Bψ (X) ∈ L2(H) for any

X ∈ L1(H) and ψ ∈ L∞(R2, ν). If, in addition, ψ is such that TA,Bψ is a bounded

operator on L1(H), then TA,B
ψ̄

is also a bounded operator on L1(H). Therefore,

one can define the double operator integral TA,Bψ on B(H) by duality

TA,Bψ (T ) = (TA,B
ψ̄

)∗(T ), T ∈ B(H). (2.1.1)

Thus, the definition of the double operator integral TA,B
ψ̄

on B(H) heavily

relies on the fact that TA,B
ψ̄

is bounded operator on L1(H). However, in contrast

to the double operator integrals on L2(H), the condition that ψ ∈ L∞(R2, ν) does

not guarantee that TA,Bψ ∈ B(L1(H)). Below we will recall a result describing the

class of functions ψ such that TA,Bψ ∈ B(L1(H)). We introduce

M1 :=
{
ψ ∈ L∞(R2; ν)

∣∣TA,Bψ ∈ B(L1(H))
}
,

M∞ :=
{
ψ ∈ L∞(R2; ν)

∣∣TA,Bψ ∈ B(B(H))
}
.

(2.1.2)

In addition, we set

‖ψ‖M1 := ‖TA,Bψ ‖B(L1(H)), ‖ψ‖M∞ := ‖TA,Bψ ‖B(B(H)).

It follows from the definition that

M := M1 = M∞,

and

‖ψ‖M := ‖ψ‖M1 = ‖ψ‖M∞ , ψ ∈M.

We recall the following result.

Theorem 2.1.4. [15, 17, 60] (see also [19, Theorem 4.1]) The following
conditions are equivalent:

(i) ψ ∈M;
(ii) The function ψ( · , · ) admits a representation of the form

ψ(λ, µ) =

∫
Ω

α(λ, t)β(µ, t) dη(t), (λ, µ) ∈ R2,

where (Ω, dη(t)) is an auxiliary measure space and

C2
α := sup

λ∈R

∫
Ω

|α(λ, t)|2 dη(t) <∞, C2
β := sup

µ∈R

∫
Ω

|β(µ, t)|2 dη(t) <∞.

In this case,

‖ψ‖M ≤ CαCβ.
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Next we recall an important equality, which is one of the main reasons why
the theory of double operator integrals is so fruitful.

Suppose that f is a differential function on R. Define the divided difference

f [1](λ, µ) :=

{
f(λ)−f(µ)

λ−µ , if λ 6= µ

f ′(λ), if λ = µ, λ, µ ∈ R.
(2.1.3)

We note that particular value of f [1] on the diagonal is inessential.
By the Mean Value Theorem, the function f [1] is bounded, and so the DOI

TA,B
f [1]

is a bounded operator on L2(H).

Theorem 2.1.5. [17, Theorem 4.5] Let A,B be self-adjoint operators on H
with common domain such that A − B ∈ L1(H) (respectively, A − B ∈ B(H)).
Suppose also that function f on R is such that f [1] ∈M. Then

f(B)− f(A) = TA,B
f [1]

(B − A).

In particular, f(B)− f(A) ∈ L1(H) (respectively, f(B)− f(A) ∈ B(H)) with

‖f(B)− f(A)‖1 ≤ ‖f [1]‖M‖B − A‖1

(and

‖f(B)− f(A)‖ ≤ ‖f [1]‖M‖B − A‖,
respectively).

Next, we recall a sufficient condition on a function f , so that the double
operator integral with symbol f [1] is bounded on L1(H) and on B(H).

Recall that we say that a function f on R is of Hölder class α, 0 ≤ α ≤ 1 if

‖f‖Λα = sup
t1,t2

|f(t1)− f(t2)|
|t1 − t2|α

<∞.

Theorem 2.1.6. [64, Theorem 4 and Corollary 2] Let f : R → C. Assume
that for some 0 ≤ θ < 1 and 0 < ε ≤ 1 we have ‖f‖Λθ , ‖f ′‖∞, ‖f ′‖Λε <∞. Then

the double operator integral TA,B
f [1]

is bounded on L1(H) and on B(H).

We also recall (see e.g. [63]) that if X ∈ L1(H), V ∈ B(H) and ψ ∈M then

tr(TA,Bψ (X) · V ) = tr(X · TA,Bψ (V )). (2.1.4)

In addition, if f [1] ∈M, then

TA,A
f [1]

(1) = f ′(A). (2.1.5)

Introduce the class

Mp :=
{
ψ ∈ L∞(R2; ν)

∣∣TA,Bψ ∈ B(Lp(H))
}
, p ∈ (1,∞),

with
‖ψ‖Mp := ‖TA,Bψ ‖B(Lp(H)), p ∈ (1,∞).

Remark 2.1.7. By interpolation, the inclusion ψ ∈M implies that ψ ∈Mp

for any p ∈ (1,∞), and ‖ψ‖Mp ≤ ‖ψ‖M, p ∈ (1,∞).
However, for p ∈ (1,∞) the class Mp is strictly larger that the class M.

Indeed, it is proved in [65] that for any Lipschitz function f , its divided difference
f [1] belongs to the class Mp for any 1 < p <∞. However, as shown in [43] there
exists a Lipschitz function f with f [1] /∈M.
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For future purposes we also recall the following result from [47]. Define the
function

ϕ(λ, µ) :=
λ(λ2 + 1)−1/2 − µ(µ2 + 1)−1/2

(λ2 + 1)−1/4 (λ− µ) (µ2 + 1)−1/4
, (λ, µ) ∈ R2. (2.1.6)

Note that

ϕ(λ, µ) = (λ2 + 1)1/4 · g[1](λ, µ) · (µ2 + 1)1/4,

where g is defined by (1.1.2).

Theorem 2.1.8. [47, Lemma 6.6] Suppose that A,B are self-adjoint operators
such that A − B ∈ Lp(H) 1 ≤ p < ∞. The double operator integral TA,Bϕ with
function ϕ defined by (2.1.6) is bounded on Lp(H), 1 ≤ p <∞ and on B(H) and

g(A)− g(B) = TA,Bϕ

(
(A2 + 1)−1/4(A−B)(B2 + 1)1/4

)
.

To conclude this section we also recall a result for boundedness of double
operator integral TU,Vψ built over two unitary operators U, V .

Theorem 2.1.9. [15, Theorem 11] Let U, V be unitary operator on H and let
g be a function on T such that g′ satisfies Hölder condition with exponent ε > 0.
Then the double operator integral TU,V

g[1]
is bounded on Lp(H), p ∈ [1,∞) and on

B(H).

2.2. Double operator integrals for resolvent comparable operators

The result of Theorem 2.1.5 says that for sufficiently nice function f , a
bounded perturbation A − B for self-adjoint operators A,B with common do-
main, give bounded f(A) − f(B). In this section we consider double operator
integrals such that bounded perturbation A − B with some additional resolvent
comparability condition is mapped to f(A) − f(B) belonging to some Schatten
class. The results of this section are proved in [83]. However, for the proof of
Theorem 2.3.9 we require the details of the construction from [83], and therefore,
we present it in full details. The results of this section are also presented in [27].

In the proof of the main theorem of this section, we need two results from
[83] and [19]. Since these results were stated without proof in those papers, we
now present a proof for convenience of the reader.

Theorem 2.2.1. [19, Theorem 5.2] Suppose that there exist 0 ≤ m1 < 1 and
1 < m2 such that

sup
µ∈R

∫
R

(
|ξ|m1 + |ξ|m2

)∣∣ψ̂(ξ, µ)
∣∣2 dξ = C2

0 <∞, (2.2.1)

where ψ̂(ξ, µ) stands for the partial Fourier transform of ψ with respect to the
first variable,

ψ̂(ξ, µ) = (2π)−1

∫
R
ψ(λ, µ)e−iξλ dλ, (ξ, µ) ∈ R2.

Then ψ ∈M and

‖ψ‖M ≤ constC0,

where the constant depends on m1 and m2 only.
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Proof. In view of
m1 < 1 < m2,

one obtains∫
R

(
|ξ|m1 + |ξ|m2

)−1
dξ = 2

∫ +∞

0

dr

|r|m1 + |r|m2
=: C2 ∈ (0,∞). (2.2.2)

That is, fm1,m2(ξ) = (|ξ|m1 + |ξ|m2)−1/2, m1 < 1 < m2, satisfies fm1,m2 ∈ L2(R).
Therefore, by (2.2.1) and Hölder’s inequality, one obtains∫

R

∣∣ψ̂(ξ, µ)
∣∣ dξ =

∫
R

[(
|ξ|m1 + |ξ|m2

) 1
2
∣∣ψ̂(ξ, µ)

∣∣] (|ξ|m1 + |ξ|m2
)− 1

2 dξ

≤
(∫

R

[(
|ξ|m1 + |ξ|m2

) 1
2
∣∣ψ̂(ξ, µ)

∣∣]2

dξ

)1/2 (∫
R

(
|ξ|m1 + |ξ|m2

)−1
dξ

)1/2

≤ C0

(∫
R

(
|ξ|m1 + |ξ|m2

)−1
dξ

)1/2
(2.2.2)

= C0C (2.2.3)

uniformly for µ ∈ R. Hence,

ψ̂( · , µ) ∈ L1(R), (2.2.4)

and
sup
µ∈R

∥∥ψ̂( · , µ)
∥∥
L1(R)

<∞. (2.2.5)

By the inverse Fourier transform theorem

ψ(λ, µ) =

∫
R
ψ̂(ξ, µ) eiξλ dξ

=

∫
R
eiξλ
(
|ξ|m1 + |ξ|m2

)−1/2 ·
[(
|ξ|m1 + |ξ|m2

)1/2
ψ̂(ξ, µ)

]
dξ.

(2.2.6)

Thus, introducing the functions

α(λ, ξ) = eiλξ
(
|ξ|m1 + |ξ|m2

)− 1
2 , β(µ, ξ) =

(
|ξ|m1 + |ξ|m2

) 1
2 ψ̂(ξ, µ). (2.2.7)

we have

ψ(λ, µ) =

∫
R
α(λ, ξ)β(µ, ξ)dξ.

Moreover, by (2.2.1) and (2.2.2), the functions α and β satisfy the condition of
Theorem 2.1.4 with respect to the measure space (Ω, dη(t)) = (R, dξ). Hence, by
Theorem 2.1.4, ψ ∈M and ‖ψ‖M ≤ CC0, where the constant C depends on m1

and m2 only. �

Proposition 2.2.2. [83, Proposition 3.1] Assume that A and B are self-
adjoint operators in H. Suppose that function K(·, ·) on R2 satisfies

|K(λ, µ)| ≤ CK <∞, (λ, µ) ∈ R2, (2.2.8)

and is differentiable with respect to λ with∣∣∣∣∂K(λ, µ)

∂λ

∣∣∣∣ ≤ C̃K
(
1 + λ2

)−1
, (λ, µ) ∈ R2, (2.2.9)

where the constant C̃K is independent of µ. Assume, in addition, that for every
fixed µ ∈ R

lim
λ→−∞

K(λ, µ) = lim
λ→+∞

K(λ, µ), (2.2.10)
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where the limits exist by (2.2.9). Then TA,BK ∈ B(B(H)) and TA,BK ∈ B(Lp(H)),
p ∈ [1,∞).

Proof. By (2.2.8) and (2.2.10) the function

k(µ) := lim
λ→±∞

K(λ, µ), µ ∈ R, (2.2.11)

is well-defined and bounded on R.
We set

K0(λ, µ) := K(λ, µ)− k(µ), (λ, µ) ∈ R2, (2.2.12)

and claim that this function satisfies the conditions of Theorem 2.2.1. Indeed,
since

∂K0

∂λ
=
∂K

∂λ
, (2.2.13)

one infers from (2.2.9) that

∂K0

∂λ
( · , µ) ∈ L2(R), µ ∈ R, with sup

µ∈R

∥∥∥∥∂K0

∂λ
( · , µ)

∥∥∥∥
L2(R)

<∞. (2.2.14)

Furthermore, by the definition of the function K0,

lim
λ→±∞

K0(λ, µ) = 0,

and therefore,

K0(λ, µ) =


−
∫ +∞

λ

∂K0

∂λ
(t, µ) dt, λ > 0,∫ λ

−∞

∂K0

∂λ
(t, µ) dt, λ < 0.

Hence, by (2.2.9) for λ > 0,

|K0(λ, µ)| ≤
∫ +∞

λ

∣∣∣∂K0

∂λ
(t, µ)

∣∣∣ dt ≤ C

∫ +∞

λ

(1 + t2)−1 dt,

for an appropriate constant C > 0. A similar estimate for λ < 0 yields

K0(λ, µ) = O
(
|λ|−1

)
as λ→ ±∞,

uniformly for µ ∈ R. Hence, K0(·, µ) ∈ L2(R) and by Parseval’s identity, one
obtains

sup
µ∈R

∫
R
|ξ|2
∣∣K̂0(ξ, µ)

∣∣2 dξ <∞. (2.2.15)

That is, the function K0(·, ·) satisfies the condition in Theorem 2.2.1 with

m1 = 0 and m2 = 2. (2.2.16)

Hence, Theorem 2.2.1 implies that the operator TA,BK0
: B(H) → B(H) is

bounded. Furthermore, since K(λ, µ) = K0(λ, µ)+k(µ), (λ, µ) ∈ R2, Proposition
2.1.3 implies

TA,BK (X) = TA,BK0
(X) +Xk(B), X ∈ B(H). (2.2.17)

Since the function k is bounded (see (2.2.11)) one infers that the operator TA,BK

is bounded on B(H). Finally, Remark 2.1.7 implies that the operator TA,BK is also
bounded on any Lp(H), p ∈ [1,∞). �

Corollary 2.2.3. The norms
∥∥TA,BK

∥∥
B(B(H))

,
∥∥TA,BK

∥∥
B(Lp(H))

, p ∈ [1,∞), do

not depend on the spectral measures EA and EB.
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Proof. This follows from the proof of Proposition 2.2.2 and Theorem 2.2.1.
�

To prove the norm bounds required for the proof of Proposition 4.1.6, we
now introduce the following notion. It should be understood by reference to the
classical ‘resolvent comparability’ in [82].

Definition 2.2.4. Let m ∈ N and let p ∈ [1,∞). Assume that A and B are
self-adjoint operators in the Hilbert space H. We say that A,B are m-resolvent
comparable in Lp(H) if for all a ∈ R\{0}, we have[

(B − ai)−m − (A− ai)−m
]
∈ Lp

(
H
)
. (2.2.18)

If S and T are self-adjoint operators in H and for some z0 ∈ C\R,

[(S − z0)−1 − (T − z0)−1] ∈ L1(H), (2.2.19)

then actually (see Proposition 1.4.1)

[(S − z)−1 − (T − z)−1] ∈ L1(H), z ∈ C\R.
However, an analogous result does not hold for higher powers of the resolvent as
the following remarkably simple example illustrates.

Example 2.2.5. [27] Suppose H is an infinite-dimensional Hilbert space, and
let Pj ∈ B(H), j ∈ {1, 2}, be infinite-dimensional orthogonal projections satisfy-
ing

P1P2 = 0 and P1 + P2 = 1.

Set
A =

√
3(P1 + P2), B =

√
3(P1 − P2).

Evidently, A2 = B2 = 3, and

(A− i)3 = A3 − 3iA2 + 3(−i)2A− i3 = −8i.

Similarly, one obtains (B − i)3 = −8i, and consequently,

(A− i)−3 − (B − i)−3 = 0 ∈ L1(H).

However, if z ∈ C\{i}, then

(A+ z)3 = A3 + 3zA2 + 3z2A+ z3 (2.2.20)

Taking, for example, z = 3i in (2.2.20), one computes

(A+ z)3 = A(A2 + 3z2) + z(3A2 + z2) = −24A,

and similarly,
(B + 3i)3 = −24B.

Computing inverses, one infers

(A+ 3i)−3 = − 1

24
A−1 = − 1

24
√

3
(P1 + P2),

(B + 3i)−3 = − 1

24
B−1 = − 1

24
√

3
(P1 − P2),

so that

(A+ 3i)−3 − (B + 3i)−3 = − 1

12
√

3
P2 /∈ L1(H),

due to the fact that P2 is an infinite-dimensional projection in H.
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Due to these reasons in the definition of higher power resolvent comparable
operators we assume inclusion (2.2.18) for all z = ai, a 6= 0, whenever m ≥ 2.

Remark 2.2.6. In connection with Definition 2.2.4, we recall that a Cauchy-
type formula implies the following elementary fact (cf. [82, p. 210])): Let A,B,
be self-adjoint operators in some complex, separable Hilbert space H. If[

(A− z)−m − (B − z)−m
]
∈ Lp(H), z ∈ C\R, (2.2.21)

for some p ∈ [1,∞) and some m ∈ N, then[
(A− z)−n − (B − z)−n

]
∈ Lp(H), z ∈ C\R, n ≥ m. (2.2.22)

In the case where A and B are bounded from below, see also [82, Proposi-
tion 8.9.2]. Hence, if the operators A and B are m-resolvent com[arable in Lp(H),
then A and B are n-resolvent comparable for any n ≥ m.

For the rest of this section we assume that A and B are m-resolvent compa-
rable operators in Lp(H) for some odd m ∈ N.

The following construction is taken from [83]. Fix a bijection ϕ : R → R
satisfying for some c > 0 and r > 0,

ϕ ∈ C2(R), ϕ(λ) = λm, |λ| ≥ r, ϕ′(λ) ≥ c, λ ∈ R. (2.2.23)

Let r > 0 be such that ϕ(λ) = λm for |λ| ≥ r. We choose a function θ ∈ C2(R)
such that θ(λ) = 0 for |λ| ≤ r/2, θ(λ) = 1 for |λ| ≥ r and

1

ϕ(λ)− i
= θ(λ)

1

λm − i
+ (1− θ(λ))

1

ϕ(λ)− i
=: g1(λ) + g2(λ), λ ∈ R.

(2.2.24)

We note that g2 ∈ C2(R) has compact support.
Thus,

(ϕ(A)− i)−1 − (ϕ(B)− i)−1 = g1(A)− g1(B) + g2(A)− g2(B). (2.2.25)

Next, we denote

G1,a(λ, µ) =
g1(λ)− g1(µ)

(λ− ia)−m − (µ− ia)−m
,

G2,a(λ, µ) =
g2(λ)− g2(µ)

(λ− ia)−m − (µ− ia)−m
, λ, µ ∈ R,

(2.2.26)

where a ∈ R\{0}. In [83, Proposition 3.3] it is proved that there exists a (suffi-
ciently small) a1 ∈ R\{0}, such that the function G1,a1 satisfies the assumption
of Proposition 2.2.2. Therefore, Proposition 2.2.2 implies that

g1(A)− g1(B) = TA,BG1,a1

(
(A− a1i)

−m − (B − a1i)
−m) (2.2.27)

and

‖g1(A)− g1(B)‖p ≤ C1

∥∥(A− a1i)
−m − (B − a1i)

−m∥∥
p
, (2.2.28)

for some constant C1 = C1(a1,m) ∈ (0,∞) (and a corresponding estimate for
the B(H)-norm). Moreover, in [83, Proposition 3.2] it is proved that there ex-
ists a (sufficiently large) a2 ∈ R\{0}, such that the function G2,a2 satisfies the
assumption of Proposition 2.2.2. Therefore,

g2(A)− g2(B) = TA,BG2,a2

(
(A− a2i)

−m − (B − a2i)
−m) (2.2.29)
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and

‖g2(A)− g2(B)‖p ≤ C2

∥∥(A− a2i)
−m − (B − a2i)

−m∥∥
p

(2.2.30)

for some constant C2 = C2(a2,m) ∈ (0,∞) (and a corresponding estimate for the
B(H)-norm).

Combining this with (2.2.25) one arrives at the following result.

Proposition 2.2.7. [83] Suppose that A,B are m-resolvent comparable op-
erators in Lp(H) for some odd m ∈ N and let functions ϕ,G1,a, G2,a be as in
(2.2.23) and (2.2.26), respectively. Then there exist a1, a2 ∈ R\{0} such that the

double operator integrals TA,BG1,a1
and TA,BG2,a2

are bounded on Lp(H) and on B(H)

and

(ϕ(A)− i)−1 − (ϕ(B)− i)−1

= TA,BG1,a1

(
(A− a1i)

−m − (B − a1i)
−m)

+ TA,BG2,a2

(
(A− a2i)

−m − (B − a2i)
−m) (2.2.31)

Proposition 2.2.7 implies that there exists C = C(a1, a2,m) ∈ (0,∞) such
that ∥∥(ϕ(A)− i)−1 − (ϕ(B)− i)−1

∥∥
p

≤ C
(∥∥(A− a1i)

−m − (B − a1i)
−m∥∥

p
(2.2.32)

+
∥∥(A− a2i)

−m − (B − a2i)
−m∥∥

p

)
.

In what follows we fix a1, a2 ∈ R \ {0} from Proposition 2.2.7.
Next, we introduce the class of functions for which we the main results of this

and the next section hold.

Definition 2.2.8. [83] Let m ∈ N. Define the class of functions Fm(R) by

Fm(R) :=
{
f ∈ C2(R)

∣∣ f (`) ∈ L∞(R); there exists ε > 0 and f0 ∈ C
such that

(
d`/dλ`

)[
f(λ)− f0λ

−m] =
|λ|→∞

O
(
|λ|−`−m−ε

)
, ` = 0, 1, 2

}
. (2.2.33)

(It is implied that f0 is the same as λ→ ±∞.)

In particular, one notes that for all m ∈ N,

S(R) ⊂ Fm(R), (2.2.34)

and

f(λ) =
|λ|→∞

f0λ
−m +O

(
|λ|−m−ε

)
, f ∈ Fm(R). (2.2.35)

Let f ∈ Fm(R) and let ϕ be as before (see (2.2.23)). The assumptions on the
functions ϕ and f imply that f0 := f ◦ϕ−1 ∈ F1(R) (see [83]). It follows from the
discussion before [82, Theorem 8.7.1] that there is a continuously differentiable
function h on T, with h′ satisfying the Hölder condition with exponent ε > 0,
such that

f0(λ) = h(γ(λ)), (2.2.36)

where γ(λ) = λ+i
λ−i , λ ∈ R, denotes the Cayley transform.

We denote

UA = γ(ϕ(A)), UB = γ(ϕ(B)). (2.2.37)

--
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By Proposition 2.2.7, there exist a1, a2 ∈ R\{0} and a constant
C = C(a1, a2,m) > 0 such that

UA − UB = 2i
(
(ϕ(A)− i)−1 − (ϕ(B)− i)−1

)
= 2iTA,BG1,a1

(
(A− a1i)

−m − (B − a1i)
−m)

+ 2iTA,BG2,a2

(
(A− a2i)

−m − (B − a2i)
−m) (2.2.38)

with TA,BGj,aj
∈ B(Lp(H)), j = 1, 2, and

‖UA − UB‖p ≤ 2C
(∥∥(A− a1i)

−m − (B − a1i)
−m∥∥

p
(2.2.39)

+
∥∥(A− a2i)

−m − (B − a2i)
−m∥∥

p

)
.

Since h′ satisfies the Hölder condition with exponent ε > 0, Theorem 2.1.9
implies that the double operator integral TU,V

h[1]
is bounded on Lp(H), p ∈ [1,∞).

Thus,

f(A)− f(B) = f0(ϕ(A))− f0(ϕ(B)) = h(UA)− h(UB)

= TUA,UB
h[1]

(UA − UB).

Therefore, recalling (2.2.38)

f(A)− f(B) = TUA,UB
h[1]

(UA − UB)

= 2i(TUA,UB
h[1]

◦ TA,BG1,a1
)
(
(A− a1i)

−m − (B − a1i)
−m)

+ 2i(TU,V
h[1]
◦ TA,BG2,a2

)
(
(A− a2i)

−m − (B − a2i)
−m). (2.2.40)

In particular, [f(A)− f(B)] ∈ Lp(H) and∥∥f(A)− f(B)‖p ≤ ‖TUA,UBh[1]
‖B(Lp(H))‖UA − UB‖p

≤ const
(∥∥(A− a1i)

−m − (B − a1i)
−m∥∥

p
(2.2.41)

+
∥∥(A− a2i)

−m − (B − a2i)
−m∥∥

p

)
, f ∈ Fm(R).

Here the constant C = C(f, a1, a2,m) ∈ (0,∞) is independent of p ∈ [1,∞).
We summarise the construction in the following

Definition 2.2.9. Assume that self-adjoint operators A,B are m-resolvent
comparable in Lp(H), 1 ≤ p < ∞ for some odd m ∈ N and let f ∈ Fm(R). Let
a1, a2 ∈ R \ {0} and the functions ϕ, G1,a1 , G2,a2 be as in Proposition 2.2.7. Let
h be the function on the circle satisfying

f ◦ ϕ−1 = h ◦ γ,
where γ is the Cayley transform. Introduce also the operators UA = γ(ϕ(A)), UB =

γ(ϕ(B)). Then, the double operator integral TA,Bf,aj
, j = 1, 2, is defined by setting

TA,Bf,aj
= 2iTUA,UB

h[1]
◦ TA,BGj,aj

, j = 1, 2. (2.2.42)

Using the notation of Definition 2.2.9 and recalling Proposition 2.2.7, (2.2.40)
and (2.2.41) we conclude the following result, which is proved in [83].

Proposition 2.2.10. Assume that for some odd m ∈ N the operators A,B are
m-resolvent comparable in Lp(H) for some p ∈ [1,∞) and let f ∈ Fm(R). Then
there exist (sufficiently small) a1 ∈ R \ {0} and (sufficiently large) a2 ∈ R \ {0},
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such that the double operator integral TA,Bf,aj
, j = 1, 2, introduced in (2.2.42) is

bounded on Lp(H) and

f(A)− f(B) =
∑
j=1,2

TA,Bf,aj

(
(A− aji)−m − (B − aji)−m

)
∈ Lp(H).

Remark 2.2.11. Assume that for some odd m ∈ N the operators A,B are
m-resolvent comparable in Lp(H) for some p ∈ (1,∞). Then Proposition 2.2.10
holds for a wider class of functions f , and the constant C in (2.2.41) can be
sharpened. Indeed, assume that function f on R is such that the function h on T
defined by (1.1.2) is a Lipschitz function on T. Then combining [10, Theorem 2]
and [38, Corollary 5.5] one obtains [f(A)− f(B)] ∈ Lp(H) and

‖f(A)− f(B)‖p ≤ 32
(
C1

p2

p− 1
+ 9
)
‖UA − UB‖p

(2.2.39)

≤ 64C2

(
C1

p2

p− 1
+ 9

)(
‖(A− a1i)

−m − (B − a1i)
−m∥∥

p
(2.2.43)

+
∥∥(A− a2i)

−m − (B − a2i)
−m∥∥

p

)
,

where the constants C1 = C1(f) ∈ (0,∞) and C2 = C2(a1, a2,m) ∈ (0,∞) are
independent of p ∈ (1,∞).

2.3. Limiting Process for Double Operator Integrals

In this section we firstly recall the classical results of limits of double operator
integrals with respect to a varying spectral measure. Then we present limiting
results for double operators build over spectral measures of operators which arem-
resolvent comparable in Lp(H) (see Theorem 2.3.9). The latter result is published
in [27].

We firstly recall the following result, which follows from [17, Proposition 7.8,
Theorem 5.7] and [17, Proposition 5.6 (3)].

Proposition 2.3.1. Let f ∈ C2
b(R) be such that f ′ ∈ Lp(R) for some p ≥ 1

and f ′ satisfies Hölder condition for some ε > 0. Let An, Bn and A,B be self-
adjoint operators on H, such that An → A, Bn → B in the strong resolvent sense.
Then

TAn,Bn
f [1]

→ TA,B
f [1]

(2.3.1)

pointwise on L1(H).

The following proposition is an easy corollary of Daletski-Krein formula (see
e.g. [17]). We refer also to [72]. For completeness we present the full proof.

Proposition 2.3.2. Let A be a self-adjoint operator acting in a separable
Hilbert space H, B ∈ L1(H) and let f ∈ C2

b (R) be such that f ′ ∈ Lp(R)∩Lip(R).
Then, letting As = A+ sB, s ∈ [0, 1], we have that

tr(f(A1)− f(A0)) =

∫ 1

0

tr
(
f ′(As)B

)
ds. (2.3.2)

Proof. Let us show firstly that the function

s 7→ tr(f(As)− f(A0))

is a C1[0, 1]-function.
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Let s, t ∈ [0, 1]. We have

| tr(f(As)− f(A0))− tr(f(At)− f(A0))| = | tr(f(As)− f(At))|

=
∣∣∣ tr(TAs,At

f [1]
(As − At))

∣∣∣ ≤ ‖TAs,At
f [1]

‖L1→L1‖As − At‖1

≤ const |s− t|‖B‖1 → 0,

as t → s. Hence, we infer that | tr(f(As) − f(A0)) − tr(f(At) − f(A0))| → 0, as
t→ s.

To prove that this function is continuously differentiable, we write

tr(f(As)− f(A0))− tr(f(At)− f(A0))

s− t

=
tr(f(As)− f(At))

s− t
= tr

(
TAs,At
f [1]

(
As − At
s− t

)
)

= tr
(
TAs,At
f [1]

(B)
)
.

Since the function f satisfies the assumptions in Proposition 2.3.1, we further
infer that

TAs,At
f [1]

(B)→ TAt,At
f [1]

(B), s→ t,

in ‖ · ‖1-norm. Hence,

d

ds
tr(f(As)− f(A0))|s=t = tr

(
TAt,At
f [1]

(B)
)
. (2.3.3)

Moreover, we infer that the function s 7→ tr(f(As)−f(A0)) is a C1[0, 1]-function.
Hence, by the fundamental theorem of calculus we have

tr(f(A1)− f(A0)) =

∫ 1

0

d

ds
tr(f(As)− f(A0))ds

=

∫ 1

0

tr
(
TAs,As
f [1]

(B)
)
ds

(2.1.4)
=

∫ 1

0

tr
(
TAs,As
f [1]

(1) ·B
)
ds

=

∫ 1

0

tr
(
f ′(As) ·B

)
ds,

as required. �

Next, we recall several results, which are necessary for the proof of Theorem
2.3.8.

Let An, Bn, A,B be self-adjoint operators in the Hilbert space H. We recall
the definition of the classes As

r(EA) and As
l (EB) [17, p. 40]. Suppose ϕ( · , · )

admits a representation of the form

ϕ(λ, µ) =

∫
Ω

α(λ, t)β(µ, t) dη(t), (λ, µ) ∈ R2, (2.3.4)

where (Ω, dη(t)) is an auxiliary measure space and

C2
α := sup

λ∈R

∫
Ω

|α(λ, t)|2 dη(t) <∞, C2
β := sup

µ∈R

∫
Ω

|β(µ, t)|2 dη(t) <∞. (2.3.5)
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Set

a(t) :=

∫
R
α(λ, t) dEA(λ), b(t) :=

∫
R
β(µ, t) dEB(µ),

an(t) :=

∫
R
α(λ, t) dEAn(λ), bn(t) :=

∫
R
β(µ, t) dEBn(µ), n ∈ N,

(2.3.6)

and introduce

εn(v, α) =

[ ∫
Ω

‖an(t)v − a(t)v‖2 dη(t)

]1/2

,

δn(v, β) =

[ ∫
Ω

‖bn(t)v − b(t)v‖2 dη(t)

]1/2

, n ∈ N, v ∈ H,
(2.3.7)

and

As
r(EA) :=

{
ϕ in (2.3.4)

∣∣ lim
n→∞

εn(v, α) = 0, v ∈ H
}
, (2.3.8)

As
l (EB) :=

{
ϕ in (2.3.4)

∣∣ lim
n→∞

δn(v, α) = 0, v ∈ H
}
. (2.3.9)

If An, Bn, A,B are unitary operators on H, the classes As
r(EA),As

l (EA) are
introduced similarly by taking the corresponding spectral measures and functions
over the circle T.

We note that the definitions of the classes As
r(EA),As

l (EA) impose certain
restrictions on convergences An → A and Bn → B as well as on the properties of
the function ϕ, given in (2.3.4).

Proposition 2.3.3. If ϕ, ψ ∈ As
r(EA) (respectively, ϕ, ψ ∈ As

l (EB)), then
(ϕ+ ψ) ∈ As

r(EA) (respectively, (ϕ+ ψ) ∈ As
l (EB)).

Proof. We prove the assertion only for the set As
r(EA), since for the set

As
l (EB) the proof is similar.

Let the functions ϕ and ψ have the representations

ϕ(λ, µ) =

∫
Ω1

α1(λ, t)β1(µ, t) dη1(t), ψ(λ, µ) =

∫
Ω2

α2(λ, t)β2(µ, t) dη2(t),

for some measure spaces (Ωi, dηj(t)), and functions αj, βj, j ∈ {1, 2}.
Let (Ω,Σ, dη(t)) be the direct sum of the measure spaces (Ω1, dη1(t)) and

(Ω2, dη2(t)) (so Ω = Ω1 t Ω2, the disjoint union of Ω1 and Ω2, etc.). Define the
function

α (λ, t) =

{
α1 (λ, t) , t ∈ Ω1,

α2 (λ, t) , t ∈ Ω2.

Evidently, the function α satisfies condition (2.3.5). In addition,

an(t) =


∫
R
α1 (λ, t) dEAn(t) = a(1)

n (t), t ∈ Ω1,∫
R
α2 (λ, t) dEAn(t) = a(2)

n (t), t ∈ Ω2,

and

a(t) =


∫
R
α1 (λ, t) dEA(t) = a(1)(t), t ∈ Ω1,∫

R
α2 (λ, t) dEA(t) = a(2)(t), t ∈ Ω2,
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where a
(j)
n (·) and a(j)(·) denote the operators defined by (2.3.6) with respect to

the functions αj, j ∈ {1, 2}. Hence, for every fixed v ∈ H,

εn(v, α) =

(∫
Ω

‖an(t)v − a(t)v‖2dη(t)

)2

≤
(∫

Ω1

∥∥a(1)
n (t)v − a(1)(t)v

∥∥2
dη1(t)

)2

+

(∫
Ω2

∥∥a(2)
n (t)v − a(2)(t)v

∥∥2
dη2(t)

)2

= εn(v, α1) + εn(v, α2) −→
n→∞

0.

Thus, (ϕ+ ψ) ∈ As
r(EA). �

Our proof of Theorem 2.3.8 is based on the following result in [17].

Proposition 2.3.4. [17, Proposition 5.6] Let ψ ∈ As
r(EA) ∩ As

l (EB). Then
for any T ∈ Lp(H), p ∈ [1,∞),

lim
n→∞

∥∥TAn,Bnψ (T )− TA,Bψ (T )
∥∥
p

= 0, p ∈ [1,∞). (2.3.10)

Next, we provide a sufficient condition for inclusion how additional assumption
ϕ ∈ As

r(EA), in the case, when we impose additional condition that An → A in
the strong resolvent sense.

Lemma 2.3.5. Assume that A,An, n ∈ N, are self-adjoint operators such that
An → A as n → ∞ in the strong resolvent sense. If a function ϕ(·, ·) satisfies
the condition of Theorem 2.2.1, then ϕ ∈ As

r(EA).

Proof. This argument is based on the proof of Theorem 2.2.1.

Let (Ω, dη(t)) = (R, dt) and let α(λ, t) = eiλt
(
|t|m1 + |t|m2

)−1/2
. If v ∈ H, then

εn(v, α) =

[ ∫
R

(
|t|m1 + |t|m2

)−1∥∥eitAnv − eitAv∥∥2

H dt

] 1
2

, n ∈ N. (2.3.11)

Fix δ > 0. Since
∫
R

(
|t|m1 + |t|m2

)−1
dt < ∞ (cf., eq. (2.2.2)), there exists

R > 0 such that ∫
|t|>R

(
|t|m1 + |t|m2

)−1
dt < δ. (2.3.12)

On the other hand, since the family of functions
{
eiλt
}
t∈[−R,R]

is uniformly con-

tinuous, [69, Theorem VIII.21] and the comment following its proof guarantees
for each v ∈ H,

lim
n→0

∥∥eitAnv − eitAv∥∥H = 0, (2.3.13)

uniformly in t ∈ [−R,R]. Therefore, for each v ∈ H, there exists N ∈ N such
that ∥∥eitAnv − eitAv∥∥H < δ, n ≥ N, t ∈ [−R,R]. (2.3.14)

-
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Hence, for every v ∈ H,

lim
n→∞

εn(v, α) ≤ lim
n→∞

[ ∫
|t|≤R

∥∥eitAnv − eitAv∥∥2

H dt

] 1
2

(2.3.15)

+ lim
n→∞

[ ∫
|t|>R

∥∥eitAnv − eitAv∥∥2

H dt

] 1
2

≤ 2δ‖v‖H.
Since δ > 0 was arbitrary, one concludes

lim
n→∞

εn(v, α) = 0, v ∈ H. (2.3.16)

�

The next corollary is an immediate consequence of Lemma 2.3.5 and Propo-
sition 2.2.2.

Corollary 2.3.6. Assume that A,An, n ∈ N, are self-adjoint operators such
that An → A as n → ∞ in the strong resolvent sense. If a function K on R2

satisfies the assumption of Proposition 2.2.2, then K ∈ As
r(EA).

Proof. As in the proof of Proposition 2.2.2 (see (2.2.11) and (2.2.12)), we
set

k(µ) = lim
λ→±∞

K(λ, µ), K0(λ, µ) = K(λ, µ)− k(µ), λ, µ ∈ R,

and write
K(λ, µ) = K0(λ, µ)− k(µ). (2.3.17)

As established in the course of the proof of Proposition 2.2.2, the function K0

satisfies the assumption of Theorem 2.2.1. Therefore, by Lemma 2.3.5 we have
K0 ∈ As

r(EA). In addition, for the function ϕ(λ, µ) := k(µ) we can write

ϕ(λ, µ) =

∫
R
α(λ, t)β(µ, t) dm(t),

where α(λ, t) = 1, β(µ, t) = k(µ), and m is the measure defined on the σ-algebra
2R by setting

m(A) =

{
1, 0 ∈ A,
0, otherwise.

Since for the function α(λ, t) = 1, the corresponding operators a(t) and an(t),
defined in (2.3.6) are just the identity operator, it is clear that the function ϕ
belongs to the class As

r(EA). Hence, equality (2.3.17) combined with Proposition
2.3.3 implies that K ∈ As

r(EA). �

To proceed further, we now strengthen the assumptions on the operators An, A
and Bn, B, n ∈ N, as follows.

Hypothesis 2.3.7. Assume that A,An, B,Bn, n ∈ N, are self-adjoint oper-
ators such that An → A and Bn → B as n → ∞ in the strong resolvent sense.
In addition we assume that for some m ∈ N, m odd, p ∈ [1,∞), and every
a ∈ R\{0},

R(a) :=
[
(A+ ia)−m − (B + ia)−m

]
∈ Lp(H),

Rn(a) :=
[
(An + ia)−m − (Bn + ia)−m

]
∈ Lp(H),

(2.3.18)
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and

lim
n→∞

‖Rn(a)−R(a)‖p = 0. (2.3.19)

With this hypothesis at hand, the following theorem is the main result of this
section.

Theorem 2.3.8. [27] Assume Hypothesis 2.3.7. Let f ∈ Fm(R) and let the

double operator integrals TA,Bf,aj
and TAn,Bnf,aj

be as in Definition 2.2.9 (with A,B

replaced by An, Bn respectively for TAn,Bnf,aj
). Then

TAn,Bnf,aj
→ TA,Bf,aj

, j = 1, 2,

pointwise on Lp(H), p ∈ [1,∞).

Proof. The proof for j = 1 and j = 2 are identical, and therefore we prove
it only for j = 1.

By definition we have that

TA,Bf,a1
= 2iTUA,UB

g[1]
◦ TA,BG1,a1

,

and

TAn,Bnf,a1
= 2iT

UAn ,UBn
g[1]

◦ TAn,BnG1,a1
,

and therefore, we divide our proof into two steps.
Step 1. In this step we prove that

TAn,BnG1,a1
→ TA,BG1,a1

pointwise on Lp(H).
By Proposition 2.3.4 it is sufficient to show that G1,a1 ∈ As

r(EA) ∩ As
l (EB).

Since by definition of G1,a1 , we have G1,a1(λ, µ) = G1,a1(µ, λ), it suffices to show
that G1,a1 ∈ As

r(EA). The latter inclusion follows from the fact that the function
G1,a1 satisfies the assumptions of Proposition 2.2.2 and hence also of Corollary
2.3.6, that is, G1,a1 ∈ As

r(EA) ∩ As
l (EB), as required.

Step 2. Fix X ∈ Lp(H). By the previous step we have that

TAn,BnG1,a1
(X)→ TA,BG1,a1

(X)

in Lp(H). For simplicity we denote,

Yn = TAn,BnG1,a1
(X), Y = TA,BG1,a1

(X).

To conclude the proof it is sufficient to show that

T
UAn ,UBn
h[1]

(Yn)→ TUA,UB
h[1]

(Y ),

in Lp(H).
We write

T
UAn ,UBn
h[1]

(Yn)− TUA,UB
h[1]

(Y )

= T
UAn ,UBn
h[1]

(Yn − Y ) +
(
T
UAn ,UBn
h[1]

− TUA,UB
h[1]

)
(Y ).

(2.3.20)

Since Yn → Y in Lp(H) and the sequence {‖TUAn ,UBn
h[1]

‖p→p}n∈N is uniformly

bounded by ‖h[1]‖M, we conclude that the first term converges to 0 in Lp(H).
Recall, that the function h (see (2.2.36)) is such that h′ satisfies the Hölder

condition with exponent ε > 0. Therefore, a combination of [17, Proposition 7.5]
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and [17, Theorem 5.9], as well as the discussion following the latter theorem, im-
plies that h[1] belongs to the class As

l (EV )∩As
r(EU) and therefore, by Proposition

2.3.4, one infers

T
UAn ,UBn
h[1]

→ TUA,UB
h[1]

pointwise on Lp(H), which suffices to conclude that the second term on the right
hand-side of (2.3.20) converges to zero in Lp(H). Thus, the proof is complete.

�

The following result is an immediate corollary of Theorem 2.3.8.

Theorem 2.3.9. [27] Assume Hypothesis 2.3.7. Then for any function f ∈
Fm(R),

lim
n→∞

∥∥[f(An)− f(Bn)]− [f(A)− f(B)]
∥∥
p

= 0. (2.3.21)

Proof. By Proposition 2.2.10 we have that

f(A)− f(B) =
∑
j=1,2

TA,Bf,aj
(R(aj)),

f(An)− f(Bn) =
∑
j=1,2

TAn,Bnf,aj
(Rn(aj)),

where R(aj) and Rn(aj) are defined in (2.3.18).
Hence, we can write

[f(An)− f(Bn)]− [f(A)− f(B)] =
∑
j=1,2

(
TAn,Bnf,aj

(Rn(aj))− TA,Bf,aj
(R(aj))

)
=
∑
j=1,2

(
TAn,Bnf,aj

(Rn(aj)−R(aj))
)

+
∑
j=1,2

((
TAn,Bnf,aj

− TA,Bf,aj

)
(R(aj))

)
.

By assumption of Hypothesis 2.3.7 we have that Rn(aj) → R(aj) in Lp(H).

Since, in addition, the sequence {‖TAn,Bnf,aj
‖p→p}n∈N is uniformly bounded, we con-

clude that the first term on the right hand side above converges to 0 in Lp(H).
The second term converges to 0 in Lp(H) since R(aj) ∈ Lp(H) and by Theo-

rem 2.3.8 we have that TAn,Bnf,aj
→ TA,Bf,aj

pointwise on Lp(H). This completes the

proof. �



CHAPTER 3

The main setting and some preliminaries

The present chapter collects all the definitions and necessary preliminaries,
which will be used in the rest of the thesis. The result presented in this chapter
are taken from [28].

In the first section of this chapter we give precise definitions of the operators
involved and immediate implications of the p-relative trace-class assumption. In
Section 3.2 we introduce the approximation scheme we employ in our approach.
The idea is to introduce spectral ‘cut-off’ {Bn(t)}t∈R, which satisfy the Pushnit-
ski’s assumptions (Hypothesis 1.5.1) and well as assumptions of [47], [31] (see
Hypothesis 1.5.2). Hence, the results of [67], [47] and [31] are applicable to
{Bn(t)}t∈R.

In Section 3.3 we prove our first key result (see Theorem 3.3.2), which estab-
lishes that the operators A+ and A− are p-resolvent comparable in L1(H) (in the
sense of Definition 2.2.4). Moreover, we show that

(A+ − z)−p − (A− − z)−p, z ∈ C \ R

can be approximated in the L1(H)-norm by

(A+,n − z)−p − (A− − z)−p,

where A+,n denotes the asymptote for the reduced family {Bn(t)}t∈R. We also
establish several important immediate corollaries of Theorem 3.3.2, which we use
in the sequel.

To establish similar results for the operators Hj, j = 1, 2, we firstly prove uni-
form norm estimates in Section 3.4. The proof of these estimates uses techniques,
which came from noncommutative geometry (see e.g. [24, Corollary 2.7]) and are
the reason why the final Hypothesis 3.5.1 contains an additional ‘smoothness’ as-
sumption (v).

We introduce our main Hypothesis 3.5.1 in a separate Section 3.5 and also
discuss its version for a special case, when the path {B(t)}t∈R is a path with
‘separable’ variables, that is B(t) = θ(t)B+, for some function θ on R and a
bounded perturbation B+ of A−.

Finally, the uniform norm estimates from Section 3.4 we prove (Theorem 3.6.1)
that the operators Hj, j = 1, 2, are m-resolvent comparable with m = dp

2
e and

in fact the difference of powers of resolvents of Hj, j = 1, 2, can be approximated
in trace-norm by the difference of powers of resolvents of the reduced operators
Hj,n, j = 1, 2.

3.1. The basic setup

In this section we introduce precisely the operators we work with. Our paths
are restricted by the final Hypothesis 3.5.1. In this introductory discussion how-
ever we will work under the less restrictive Hypothesis 3.1.1.

33

-
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Hypothesis 3.1.1. Suppose H is a complex, separable Hilbert space.
(i) Assume A− is self-adjoint on dom(A−) ⊆ H.
(ii) Suppose we have a family of bounded self-adjoint operators {B(t)}t∈R ⊂ B(H),
continuously differentiable with respect to t in the uniform operator norm, such
that

‖B′(·)‖∞ ∈ L1(R) ∩ L∞(R). (3.1.1)

(iii) Suppose that the family {B(t)} is p-relative trace-class operators with
respect to A− for some p ∈ N ∪ {0}, that is

B′(t)(A− + i)−p−1 ∈ L1(H),

∫
R
‖B′(t)(A− + i)−p−1‖1dt <∞. (3.1.2)

In what follows, we always choose the smallest p ∈ N∪{0} which satisfies (3.1.2).

Remark 3.1.2. The Hypothesis 1.5.2 used in [47] corresponds to the p-
relative trace-class assumption with p = 0. The hypothesis in [30] corresponds
to a 1-relative trace-class assumption.

Remark 3.1.3.

(i) The fact that the function f(t) = (t+i)q

(t2+1)q/2
, q ∈ R, is bounded together

with its inverse, implies that for any C ∈ B(H) the operators

C(A− + i)−q and C(A2
− + 1)−q/2

belong to the same ideal of B(H). In what follows we use this fact
repeatedly without additional explanations.

(ii) By three lines theorem [51, Chapter III, Theorem 16.1]) (see also [48,
Theorem 3.2]), Hypothesis 3.1.1(iii) above implies that

(A− + i)−kB′(t)(A− + i)−` ∈ L1(H),

∫
R
‖(A− + i)−kB′(t)(A− + i)−`‖1dt <∞,

for all k, ` ∈ N ∪ {0} with k + ` = 1 + p.

Given Hypothesis 3.1.1 we introduce the family of self-adjoint operators A(t),
t ∈ R, in H, by

A(t) = A− +B(t), dom(A(t)) = dom(A−), t ∈ R.

Writing

B(t) = B(t0) +

∫ t

t0

B′(s) ds, t, t0 ∈ R, (3.1.3)

with the convergent Bochner integral on the right-hand side, we conclude that
the self-adjoint asymptotes

n-lim
t→±∞

B(t) := B± ∈ B(H) (3.1.4)

exist, where the limit is taken in the uniform norm. In particular, purely for
convenience of notations, we will make the choice

B− = 0

in the following and also introduce the asymptote,

A+ = A− +B+, dom(A+) = dom(A−). (3.1.5)
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Assumption (3.1.1) and equality (3.1.3) also yield,

sup
t∈R
‖B(t)‖B(H) ≤

∫
R
‖B′(t)‖B(H)dt <∞. (3.1.6)

A simple application of the resolvent identity yields (with t ∈ R, z ∈ C\R)

(A(t)− zI)−1 = (A± − zI)−1 − (A(t)− zI)−1[B(t)−B±](A± − zI)−1,∥∥(A(t)− zI)−1 − (A± − zI)−1
∥∥
B(H)
≤ |Im(z)|−2‖B(t)−B±‖B(H),

and hence proves that

n-lim
t→±∞

(A(t)− zI)−1 = (A± − zI)−1, z ∈ C\R.

This is relevant to whether spectral flow between A− and A+ along the path
{A(t)}, exists [56].

Repeating the argument of [47, (3.49)] one can prove that

B+(A− + i)−1−p, B(t)(A− + i)−1−p ∈ L1(H). (3.1.7)

Remark 3.1.4. (i) The inclusion (3.1.7) together with the fact that B+

is a bounded operator implies that

B+(A− + i)−j ∈ L p+1
j

(H), j = 1, . . . , p+ 1, (3.1.8)

and

‖B+(A− + i)−j‖ p+1
j
≤ ‖B+‖

j
p+1 · ‖B+(A− + i)−p+1‖

p+1−j
p+1

1 . (3.1.9)

Indeed, an application of three-line theorem (see e.g. [73], [51]) the

function T (z) = B+(A2
− + 1)

(p+1)(z−1)
2 , 0 ≤ Re(z) ≤ 1 with T (0) =

B+(A2
− + 1)−p−1 ∈ L1(H) and T (1) = B+ ∈ B(H) yields the required

result with Re(z) = p+1−j
p+1

.

(ii) Combining (3.1.8) together with the three lines theorem [51, Chapter
III, Theorem 16.1]) (see also [48, Theorem 3.2]), we obtain that for any
fixed j = 1, . . . , p+ 1 and any k, l ∈ N0 such that k + l = j, we have

(A− + i)−kB+(A− + i)−l ∈ L p+1
j

(H).

and

‖(A− + i)−kB+(A− + i)−l‖ p+1
j
≤ ‖B+(A− + i)−j‖ p+1

j
. (3.1.10)

Inclusion (3.1.8) combined with Weyl’s theorem (see e.g. [79, Theorem 9.13])
implies the following

Proposition 3.1.5. For all t ∈ R we have that

σess(A(t)) = σess(A−) = σess(A+).

Next, we turn to the pair (H2,H1).
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For a family of operators {T (t)}t∈R in H we denote by T the operator acting
in the Hilbert space L2(R,H) defined by

(T f)(t) = T (t)f(t) for a.e. t ∈ R,

f ∈ dom(T ) =

{
g ∈ L2(R,H)

∣∣∣∣ g(t) ∈ dom(T (t)) for a.e. t ∈ R; (3.1.11)

t 7→ T (t)g(t) is (weakly) measurable;

∫
R
‖T (t)g(t)‖2

H dt <∞
}
.

Remark 3.1.6. If the family of operators {T (t)}t∈R in H is given by T (t) =
θ(t)T for some fixed operator T in H and a suitable function θ on R, then with
the identification of the Hilbert space L2(R,H) and L2(R)⊗H we have

T = Mθ ⊗ T.

Let A− be the operator acting in L2(R,H) defined by

(A−f)(t) = A−f(t),

f ∈ dom(A−) =

{
g ∈ L2(R,H)

∣∣∣∣ g(t) ∈ dom(A−) for a.e. t ∈ R; (3.1.12)

t 7→ A−g(t) is (weakly) measurable;

∫
R
‖A−g(t)‖2

Hdt <∞
}
.

Identifying the Hilbert spaces L2(R,H) and L2(R)⊗H we have that

A− = 1⊗ A−.

Let the operators A, B,A′ = B′, be defined in terms of the families A(t),
B(t), and B′(t), t ∈ R. Since B(t), B′(t) are bounded operators for every t ∈ R
and ‖B(·)‖, ‖B′(·)‖ ∈ L∞(R) (see (3.1.6) and Hypothesis 3.1.1 (ii)) we have that

B, B′ ∈ B(L2(R,H)).

Since, in addition, A(t) = A− +B(t), we infer that

A = A− + B, dom(A) = dom(A−).

Now we introduce the operator DA in L2(R,H) by

DA =
d

dt
+ A, dom(DA) = W 1,2(R,H) ∩ dom(A−). (3.1.13)

Recall that the operator d/dt in L2(R,H) is defined by(
d

dt
f

)
(t) = f ′(t) for a.e. t ∈ R,

f ∈ dom(d/dt) =
{
g ∈ L2(R,H)

∣∣ g ∈ ACloc

(
R,H

)
, g′ ∈ L2(R,H)

}
= W 1,2

(
R,H

)
. (3.1.14)

Assuming Hypothesis 3.1.1 and repeating the proof of [47, Lemma 4.4] one
can show that the operator DA is densely defined and closed in L2(R,H). Fur-
thermore, the adjoint operator D∗A of DA in L2(R,H) is then given by (cf. [47])

D∗A = − d

dt
+ A, dom(D∗A) = W 1,2(R,H) ∩ dom(A−).
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This enables us to introduce the nonnegative, self-adjoint operators Hj, j =
1, 2, in L2(R,H) by

H1 = D∗ADA, H2 = DAD
∗
A. (3.1.15)

The following result is proved in [31, Theorem 2.6] under a relatively trace
class perturbation assumption. However, as noted in [31, Remark 2.7] the result
holds without the assumption of relative trace-class perturbation. Thus, in our
more general setting the following theorem holds.

Theorem 3.1.7. Assume Hypothesis 3.1.1. Then the operator DA is Fred-
holm if and only if 0 ∈ ρ(A+) ∩ ρ(A−).

For future purposes we also introduce H0 in L2(R,H) by

H0 = − d2

dt2
+ A2

−, dom(H0) = W 2,2(R,H) ∩ dom
(
A2
−
)
. (3.1.16)

By [69, Theorem VIII.33], the operator H0 is self-adjoint and positive. We note,
that the operators A− and H0 commute and

domH
1/2
0 = dom(d/dt) ∩ domA−. (3.1.17)

The proof of the following result can be found in [47, Lemma 4.7]. Observe,
that the proof given there does not require the full strength of the assumptions
made in that paper. The statement is formulated using Hypothesis 3.1.1. In fact,
it requires only Hypothesis 3.1.1 (i).

Lemma 3.1.8. [47, Lemma 4.7] The operator A−(H0 − z)−1/2, z < 0 is bounded
and

‖A−(H0 − z)−1/2‖∞ ≤ 1, z < 0.

In what follows, we need to strengthen Hypothesis 3.1.1 as follows.

Hypothesis 3.1.9. In addition to Hypothesis 3.1.1, assume that dom(H
1/2
0 )

is invariant with respect to the operator B.

Assuming Hypothesis 3.1.9 in the following, we have that A−B is an operator

well defined on domH
1/2
0 , since domH

1/2
0 ⊂ domA− (see (3.1.17)). Therefore,

recalling that A = A− + B one can decompose Hj, j = 1, 2, as

Hj = − d2

dt2
+ A2 + (−1)jA′

= − d2

dt2
+ A2

− + BA− + A−B + B2 + (−1)jB′

= H0 + BA− + A−B + B2 + (−1)jB′,

dom(Hj) = dom(H0), j = 1, 2.

(3.1.18)

Using the standard resolvent identity, we obtain

(Hj − zI)−1 − (H0 − zI)−1 = −(Hj − zI)−1(Hj −H0)(H0 − zI)−1

= −(Hj − zI)−1(BA− + A−B + B2 + (−1)jB′)(H0 − zI)−1, (3.1.19)

for j = 1, 2 and z ∈ C \ R+.
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3.2. The approximation scheme

In this section we introduce the key technical ideas that enable us to use the
old results of [47] in an approximation scheme.

Throughout the text we will constantly use the following result, which can be
found in [73] and [47, Lemma 3.4].

Lemma 3.2.1. Let p ∈ [1,∞) and assume that R,Rn, T, Tn ∈ B(H), n ∈ N,
satisfy

s-lim
n→∞

Rn = R, s-lim
n→∞

Tn = T

and that S, Sn ∈ Lp(H), n ∈ N, satisfy limn→∞ ‖Sn − S‖p = 0. Then

lim
n→∞

‖RnSnT
∗
n −RST ∗‖p = 0.

Next we introduce a spectral ‘cut-off’

Pn = χ[−n,n](A−). (3.2.1)

It follows from the spectral theory that

s-lim
n→∞

Pn = 1. (3.2.2)

Remark 3.2.2. The precise form of the cut-offs Pn is of course immaterial.
We just need two facts: that s-limn→∞ Pn = 1, supn∈N ‖Pn‖ < ∞ and that
PnB+Pn ∈ L1(H) (see (3.2.7) below).

Let A− and {B(t)}t∈R satisfy Hypothesis 3.1.9. We introduce the family
{Bn(t)}t∈R, n ∈ N, of reduced operators by setting

Bn(t) := PnB(t)Pn, t ∈ R, n ∈ N. (3.2.3)

In this case,

An(t) := A− +Bn(t), dom(An(t)) = dom(A−), n ∈ N, t ∈ R. (3.2.4)

In particular, one concludes that

B+,n := n-lim
t→+∞

Bn(t) = PnB+Pn, (3.2.5)

and therefore for the reduces asymptotes A+,n we obtain

A+,n := A− +B+,n = A− + PnB+Pn, dom(A+,n) = dom(A−). (3.2.6)

The following proposition shows that the family {Bn(t)}t∈R of ‘approximants’
consists of trace-class operators, and so for this family the results of [67, 47, 31]
hold.

Proposition 3.2.3. The family {Bn(t)}t∈R consists of trace-class perturba-
tions of A− and satisfies the Pushnitski’s assumption 1.5.1.

Proof. The proof easily follows from the fact that the function x 7→ (x +
i)p+1χ[n,n](x), x ∈ R, is bounded for every fixed n ∈ N, and therefore the definition
of Pn (see (3.2.1)) implies that

B′n(t) = PnB(t)′Pn = Pn ·B(t)′(A− + i)−p−1 · (A− + i)p+1Pn ∈ L1(H).

�

Remark 3.2.4. We note that the equality (3.1.7) together with the definition
of the projections Pn implies that

B+,n = PnB+Pn ∈ L1(H). (3.2.7)
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Lemma 3.2.5. Assume Hypothesis 3.1.1. We have that

(i) A+,n → A+ in the strong resolvent sense.
(ii) Let j ∈ N. For any k, l ∈ N such that k + l ≥ j and z ∈ C \R, we have

‖ · ‖ p+1
j
− lim

n→∞
(A− − z)−kB+,n(A− − z)−l = (A− − z)−kB+(A− − z)−l.

Proof. (i). Since A+,n = A− + PnB+Pn and A+ = A− + B+ and the op-
erator B+ is bounded, the operators A+,n and A+ have common core dom(A−).
Therefore, by [69, Theorem VIII.25 (a)] it is sufficient to show that A+,nξ → A+ξ
for all ξ ∈ dom(A−). Let ξ ∈ dom(A−). Since Pn → 1 in the strong operator
topology, we have that B+,nξ = PnB+Pnξ → B+ξ. Hence

‖A+,nξ − A+ξ‖ = ‖B+,nξ −B+ξ‖ → 0.

Thus, A+,n → A+ in the strong resolvent sense.
(ii). Since k + l ≥ j, Remark 3.1.4 implies that

(A− − z)−kB+(A− − z)−l ∈ L p+1
j

(H).

Therefore, since

(A− − z)−kB+,n(A− − z)−l = Pn(A− − z)−kB+(A− − z)−lPn,

and Pn → 1 in the strong operator topology, it follows from Lemma 3.2.1 that

(A− − z)−kB+,n(A− − z)−l → (A− − z)−kB+(A− − z)−l

in L p+1
j

(H).

�

Next, we turn to the operators Hj, j = 1, 2 and their reduced counterparts
Hj,n, j = 1, 2, n ∈ N. Recall that the family {Bn(t)}t∈R, n ∈ N is defined by (see
(3.2.5))

Bn(t) = PnB(t)Pn, Pn = χ[−n,n](A−).

In this case, the corresponding operator An is defined as

An = A− + Bn,

where Bn is defined by (3.1.11) with {T (t)}t∈R = {Bn(t)}t∈R.
Denote by Hj,n, j = 1, 2, the operator defined by (3.1.15) with DA replaced

by the corresponding operator DAn = d
dt

+ An. Similarly to (3.1.18), assuming
Hypothesis 3.1.9, one obtains the decompositions for the operators Hj,n, j = 1, 2,
of the following form

Hj,n =
d2

dt2
+ A2

n + (−1)jA′n

= H0 + BnA− + A−Bn + B2
n + (−1)jB′n,

dom(Hj,n) = dom(H0) = W 2,2(R) ∩ dom
(
A2
−
)
, n ∈ N, j = 1, 2,

(3.2.8)

with
Bn = P nBP n, B′n = P nB

′P n, n ∈ N,
where P n = χ[−n,n](A−) = 1⊗ Pn.

The following result can be found in [30, Lemma 3.12 (i)] as well as [28].

Lemma 3.2.6. Assume Hypothesis 3.1.9. The operators Hj,n converge to Hj,
j = 1, 2, in the strong resolvent sense.
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Proof. Since the operators Hj and Hj,n have the common core dom(H0),
by [69, Theorem VIII.25] (see also [79, Theorem 9.16]) it is sufficient to show
that

Hj,nf −→
n→∞

Hjf, f ∈ dom(H0).

Using the decompositions (3.1.18) and (3.2.8) it is sufficient to show the conver-
gence of every term separately. First, rewriting

B′ −B′n = B′ − P nB
′P n = (I − P n)B′ + P nB

′(I − P n),

the convergence s-limn→∞B′n = B′ follows since the operator B′, is a bounded
operator, and P n −→

n→∞
I in the strong operator topology. Arguing similarly, one

infers that s-limn→∞Bn = B. Next, one notes that

B2 −B2
n = B2 − P nBP nBP n

= (I − P n)B2 + P nB
(
B(I − P n) + (I − P n)BP n

)
,

implying, s-limn→∞B2
n = B2. Thus, appealing to (3.1.18) and (3.2.8), it remains

to show that s-limn→∞BnA−f = BA−f and s-limn→∞A−Bnf = A−Bf for all
f ∈ dom(H0). The fact that,

BA−f −BnA−f = BA−f − P nBA−P nf

= (I − P n)BA−f + P nB(I − P n)A−f, f ∈ domH0

and a similar equality A−Bnf = A−Bf , f ∈ domH0 implies the required
convergences. Consequently,

lim
n→∞

Hj,nf = Hjf, f ∈ dom(H0),

which completes the proof. �

3.3. Approximation results for the pair (A+, A−)

In this section we prove Theorem 3.3.2, which is our first key result. It can
be found in [28].

Suppose that j = 1, . . . , p and let i ∈ N. For z ∈ C\R and X1, . . . , Xi ∈ B(H)
we introduce the following mappings

T
(j)
1 (X1) =

∑
k0+k1=j−1

(A− − z)−k0−1X1(A− − z)−k1−1,

T
(j)
2 (X1, X2) =

∑
k0+k1+k2=j−1

(A− − z)−k0−1X1(A− − z)−k1−1X2(A− − z)−k2−1,

. . .

T
(j)
i (X1, . . . , Xi) =

∑
k0+···+ki=j−1

(A− − z)−k0−1X1(A− − z)−k1−1 . . . Xi(A− − z)−ki−1,

(3.3.1)

and for a self-adjoint B ∈ B(H) we denote

T̃
(j)
i (B;X1, . . . , Xi)

=
∑

k0+···+ki=j−1

(A− +B − z)−k0−1X1(A− − z)−k1−1 . . . Xi(A− − z)−ki−1.
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Proposition 3.3.1. Fix j = 1, . . . , p and assume that B is a p-relative trace-
class perturbation of A−, that is, B(A− + 1)−p−1 ∈ L1(H). Set Pn = χ[−n,n](A−)
and Bn := PnBPn. The following assertions hold:

(i) For every i ∈ N we have T
(j)
i (B, . . . , B) ∈ L p+1

j+i
(H).

(ii) For every i ∈ N we have the convergence

‖ · ‖ p+1
j+i
− lim

n→∞
T

(j)
i (Bn, . . . , Bn) = T

(j)
i (B, . . . , B).

(iii) For every i ∈ N we have T̃
(j)
i (B;B, . . . , B) ∈ L p+1

i
(H).

(iv) For every i ∈ N we have the convergence

‖ · ‖ p+1
i
− lim

n→∞
T̃

(j)
i (Bn;Bn, . . . , Bn) = T̃

(j)
i (B;B, . . . , B).

Proof. (i). Since the operator B is p-relative trace-class perturbation of A−,
Remark 3.1.4 implies that

(A− − z)−k0−1B(A− − z)−k1−1 ∈ L p+1
k0+k1+2

(H) (3.3.2)

and
B(A− − z)−kl−1 ∈ L p+1

kl+1
, l = 2, . . . i. (3.3.3)

Hence, by Hölder inequality we have that

(A− − z)−k0−1B(A− − z)−k1−1 . . . B(A− − z)−ki−1 ∈ L p+1
k0+k1+···+ki+i+1

(H).

Since k0 + k1 + · · ·+ ki = j − 1, we obtain that

T
(j)
i (B, . . . , B) =

∑
k0+···+ki=j−1

(A− − z)−k0−1B(A− − z)−k1−1 . . . B(A− − z)−ki−1

∈ L p+1
j+i

(H),

as required.
(ii). Since Pn → 1 in the strong operator topology, Lemma 3.2.1 and inclusions

(3.3.2), (3.3.3) imply that

(A− − z)−k0−1Bn(A− − z)−k1−1 = Pn(A− − z)−k0−1B(A− − z)−k1−1Pn

→ (A− − z)−k0−1B(A− − z)−k1−1
(3.3.4)

in L p+1
k0+k1+2

(H) and

Bn(A− − z)−kl−1 = PnB(A− − z)−kl−1Pn → B(A− − z)−kl−1 (3.3.5)

in L p+1
kl+1

(H) for every l = 2, . . . i. Hence, using again Hölder inequality we obtain

that
‖ · ‖ p+1

j+i
− lim

n→∞
T

(j)
i (Bn, . . . , Bn) = T

(j)
i (B, . . . , B).

(iii). By Remark 3.1.4 we have that

B(A− − z)−1 ∈ Lp+1(H),

which implies that
B(A− − z)−kl−1 ∈ Lp+1(H),

for any kl ∈ Z+. Therefore, by the Hölder inequality

B(A− − z)−k1−1 . . . B(A− − z)−ki−1 ∈ L p+1
i

(H),
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which implies that

T̃
(j)
i (B;B, . . . , B) ∈ L p+1

i
(H).

The proof of part (iv) can be obtained similarly to (ii) taking into account
also that

(A− +Bn − z)−l → (A− +B − z)−l, l ∈ N
with respect to the strong operator topology. �

The following theorem establishes, in particular, that the p-relative trace-
class assumption (Hypothesis 3.1.1 (iii)) implies that A+ and A− are p-resolvent
comparable. The theorem below is our first key result.

Theorem 3.3.2. [28] Assume Hypothesis 3.1.1 and let z ∈ C\R, j = 1, . . . , p.
Then

(A+ − z)−j − (A− − z)−j , (A+,n − z)−j − (A− − z)−j ∈ L p+1
j+1

(H)

and

lim
n→∞

∥∥∥[ (A+,n − z)−j − (A− − z)−j
]
−
[

(A+ − z)−j − (A− − z)−j
]∥∥∥

p+1
j+1

= 0.

Proof. Using the elementary identity

Aj −Bj =
∑

k0+k1=j−1

Ak0 [A−B]Bk1 , A,B ∈ B(H), j ∈ N,

and the resolvent identity we can write

(A+ − z)−j − (A− − z)−j

=
∑

k0+k1=j−1

(A+ − z)−k0
(

(A+ − z)−1 − (A− − z)−1
)

(A− − z)−k1

= −
∑

k0+k1=j−1

(A+ − z)−k0−1B+(A− − z)k1−1.

Writing

(A+ − z)−k0−1 = (A− − z)−k0−1 +
(
(A+ − z)−k0−1 − (A− − z)−k0−1

)
and repeating the same argument for the second term on the right-hand side we
obtain

(A+ − z)−j − (A− − z)−j

= −
∑

k0+k1=j−1

(A− − z)−k0−1B+(A− − z)k1−1

−
∑

k0+k1=j−1

(
(A+ − z)−k0−1 − (A− − z)−k0−1

)
B+(A− − z)k1−1

= −
∑

k0+k1=j−1

(A− − z)−k0−1B+(A− − z)k1−1

−
∑

k0+k1+k2=j−1

(A+ − z)−k0−1B+(A− − z)−k1−1B+(A− − z)k1−1

= −T1(B+)− T̃2(B+;B+).
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Repeating this process we can write

(A+ − z)−j − (A− − z)−j

= T
(j)
1 (B+) + · · ·+ T

(j)
j (B+, . . . , B+) + T̃

(j)
j+1(B+;B+, . . . , B+).

(3.3.6)

By Proposition 3.3.1 we have that

T
(j)
i (B+, . . . , B+) ∈ L p+1

j+i
(H) ⊂ L p+1

j+1
(H), i = 1, . . . , j

and
T̃

(j)
j+1(B+;B+, . . . , B+) ∈ L p+1

j+1
(H).

Hence,
(A+ − z)−j − (A− − z)−j ∈ L p+1

j+1
(H).

To prove the convergence one can repeat the argument above to write

(A+,n − z)−j − (A− − z)−j

= T
(j)
1 (B+,n) + · · ·+ T

(j)
j (B+,n, . . . , B+,n)

+ T̃
(j)
j+1(B+,n;B+,n, . . . , B+,n).

(3.3.7)

By Proposition 3.3.1 we have that

‖ · ‖ p+1
j+i
− lim

n→∞
T

(j)
i (B+,n, . . . , B+,n) = T

(j)
i (B+, . . . , B+)

and

‖ · ‖ p+1
j+1
− lim

n→∞
T̃

(j)
j+1(B+,n;B+,n, . . . , B+,n) = T̃

(j)
j+1(B+;B+, . . . , B+).

Thus, combining these convergences with equalities (3.3.6) and (3.3.7) we con-
clude the proof. �

Remark 3.3.3. Repeating the proof of Theorem 3.3.2 replacing A+ and A+,n

by the operators As := A− + sB+ and As,n := A− + sPnB+Pn, s ∈ (0, 1], respec-
tively, and referring to (3.1.9) and (3.1.10), one can conclude that the functions

s 7→ ‖ (As − z)−j − (A− − z)−j ‖ p+1
j+1
,

s 7→ ‖ (As,n − z)−j − (A− − z)−j ‖ p+1
j+1

are continuous with respect to s and uniformly bounded with respect to n ∈ N.

Corollary 3.3.4. If a function h on R is such that h ∈ L∞(R, (λ2 +

1)−
p+1
2 dλ), then the sequence of functions

s 7→ ‖h(As,n)(A+,n − A−)‖1, s ∈ [0, 1]

is uniformly bounded (with respect to n) by a continuous function.

Proof. By the assumption the function t 7→ h(t)(t + i)−p−1, t ∈ R, is
bounded, and therefore we can write

‖h(As,n)(A+,n − A−)‖1 ≤ ‖h(As,n)(As,n + i)p+1‖∞ · ‖(As,n + i)p+1(A+,n − A−)‖1

≤ const ‖
(
(As,n + i)p+1 − (A− + i)p+1

)
(A+,n − A−)‖1

+ const ‖(A− + i)p+1(A+,n − A−)‖1,

where the constant is independent of s and n.
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By Remark 3.3.3 the first terms is a sequence of functions uniformly majorised
by a continuous function. Since A+,n−A− = PnB+Pn, the second terms is clearly
uniformly majorised by the constant function

const ‖(A− + i)p+1B+‖1.

�

3.4. Some uniform norm estimates

In this section we prove necessary uniform norm estimates (see Proposition
3.4.5), which will be used in the proof of one of the major results, Theorem 3.6.1
below. The technique used here comes from noncommutative geometry (see e.g.
[24]).

For k ∈ N we introduce

dom(δkH0
) = {T ∈ B(L2(R,H)) : T dom(H

j/2
0 ) ⊂ dom(H

j/2
0 ),∀j = 1, . . . , k,

and the operator [(1 + H0)1/2,T ](k), defined on dom(H
k/2
0 )

extends to a bounded operator on L2(R,H)}.

and set

δkH0
(T ) = [(1 + H0)1/2,T ](k), T ∈ dom δkH0

. (3.4.1)

where the notation [(1+H0)1/2,T ](k) stands for k-th repeated commutator defined
by

[(1 + H0)1/2, T ](k) = [(1 + H0)1/2, . . . [(1 + H0)1/2, [(1 + H0)1/2, T ]] . . . ],

dom([(1 + H0)1/2, T ](k)) = dom(H
k/2
0 ).

For convenience, we set

[(1 + H0)1/2,T ](0) = T .

Remark 3.4.1. For all k ∈ N, the set
⋂k
j=0 dom(δjH0

) is a subalgebra in

B(L2(R,H)).

We note that if T ∈ dom(δH0), then for every ξ ∈ dom(H
1/2
0 ) we have

T (H0 + 1)1/2ξ = (H0 + 1)1/2T ξ − [(H0 + 1)1/2,T ]ξ.

Hence, if T ∈
⋂k
j=1 dom(δjH0

), for some k ∈ N, then for every ξ ∈ dom(H
k/2
0 ),

using this equality repeatedly we obtain

T (H0 + 1)k/2ξ = T (H0 + 1)1/2(H0 + 1)
k−1
2 ξ

= (H0 + 1)1/2T (H0 + 1)
k−1
2 ξ − [(H0 + 1)1/2,T ](H0 + 1)

k−1
2 ξ

= . . .

=
k∑
j=0

(−1)jCj
k(H0 + 1)j/2[(H0 + 1)1/2,T ](k−j)ξ,

(3.4.2)

where Cj
k denotes the binomial coefficient.
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Lemma 3.4.2. Assume B ∈ dom(δH0). Then the operator (H i + 1)−1/2(H0+

1)1/2, i = 1, 2, defined on dom(H
1/2
0 ) extends to a bounded operator on L2(R,H)

and ∥∥∥(H i + 1)−1/2(H0 + 1)1/2

∥∥∥ ≤ const ·(‖δH0(B)‖+ ‖B‖+ ‖B‖2 + ‖B′‖).

Remark 3.4.3. Note that the first assertion in Lemma 3.4.2 follows immedi-
ately from the closed graph theorem and the fact that dom(H0) = dom(H i), i =
1, 2. However, we also need an estimate on the uniform norm of this operator.

Proof. Since the operator H1 is positive we can write

(H1 + 1)−1/2 =
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1,

with the right-hand side being a convergent Bochner integral (see, e.g., [52, p. 282]
for a more general result).

By the resolvent identity (3.1.19) we have

(1 + λ+ H1)−1 = (1 + λ+ H0)−1

− (1 + λ+ H1)−1(BA− + A−B + B2 −B′)(1 + λ+ H0)−1.

Therefore, for all ξ ∈ dom(H0)1/2 we have

(H1 + 1)−1/2(H0 + 1)1/2ξ

= ξ +
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1A−B

(H0 + 1)1/2

1 + λ+ H0

ξ

+
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1B

A−
(1 + λ+ H0)1/2

(H0 + 1)1/2

(1 + λ+ H0)1/2
ξ

+
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1(B2 −B′)

(H0 + 1)1/2

1 + λ+ H0

ξ

= ξ + I1ξ + I2ξ + I3ξ. (3.4.3)

Since ∥∥∥(1 + λ+ H0)−1(H0 + 1)1/2
∥∥∥
∞
≤ (1 + λ)−1/2,

and ∥∥∥(1 + λ+ H1)−1
∥∥∥
∞
≤ (1 + λ)−1,

and the operators B,B′ are bounded we obtain that the operator I3 on the RHS
of (3.4.3) converges in the uniform norm and

‖I3‖ ≤ const(‖B‖2 + ‖B′‖).

Similarly for I2, using instead the estimate (see Lemma 3.1.8)∥∥∥A−(1 + λ+ H0)−1/2
∥∥∥
∞
≤ (1 + λ)−1/2,

we obtain that I2 is a bounded operator and

‖I2‖ ≤ const ·‖B‖.
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Finally, for I1 we write

I1ξ =
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1 A−

(H0 + 1)1/2
(H0 + 1)1/2B

(H0 + 1)1/2

1 + λ+ H0

ξ

=
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1 A−

(H0 + 1)1/2
B

H0 + 1

1 + λ+ H0

ξ

+
1

π

∫ ∞
0

dλ

λ1/2
(1 + λ+ H1)−1 A−

(H0 + 1)1/2

· [(H0 + 1)1/2,B]
(H0 + 1)1/2

1 + λ+ H0

ξ.

Since, B ∈ dom(δH0), the operator [(H0 + 1)1/2,B] extends to a bounded oper-
ator on L2(R,H). Hence, repeating the argument above, we conclude that I1 is
a bounded operator with

‖I1‖ ≤ const ·(‖B‖+ ‖δH0(B)‖).

Thus, by (3.4.3) we have that the operator (H0 + 1)−1/2(H1 + 1)1/2 extends
to a bounded operator on L2(R,H) and∥∥∥(H0 + 1)−1/2(H1 + 1)1/2

∥∥∥
∞
≤ const(1 + ‖δH0(B)‖+ ‖B‖+ ‖B‖2 + ‖B′‖).

�

The following result will be used later in the proof of the convergence of the
left-hand side of the principal trace formula.

Proposition 3.4.4. Assume B,B′ ∈
⋂k−1
j=1 dom(δjH0

) for some k ≥ 2. Then

the operator (H i + 1)−k/2(H0 + 1)k/2, i = 1, 2, defined on dom(H
k/2
0 ) extends to

a bounded operator on L2(R,H) and∥∥∥(H i + 1)−k/2(H0 + 1)k/2
∥∥∥ ≤ const ·Q(‖δjH0

(B)‖, ‖δjH0
(B′)‖), j = 0, . . . , k−1,

for some polynomial Q with positive coefficients.

Proof. We prove the assertion only for i = 1, since the proof for i = 2 is
identical.

We proceed by induction on k. For k = 1 the assertion is proved in Lemma
3.4.2. Let k = 2. By the resolvent identity (3.1.19) we have

(H1 + 1)−1(H0 + 1)ξ

= ξ − (H1 + 1)−1BA−ξ − (H1 + 1)−1A−Bξ

− (H1 + 1)−1(B2 −B′)ξ

(3.4.4)

for all ξ ∈ dom(H1) = dom(H0). For the second term we write

(H1 + 1)−1BA−ξ = (H1 + 1)−1B(H0 + 1)1/2A−(H0 + 1)−1/2ξ

= (H1 + 1)−1/2 · (H1 + 1)−1/2(H0 + 1)1/2 ·BA−(H0 + 1)−1/2ξ

− (H1 + 1)−1[(H0 + 1)1/2,B]A−(H0 + 1)−1/2ξ.

By Lemma 3.4.2, the operator (H1 + 1)−1/2(H0 + 1)1/2 extends to a bounded
operator, and by the assumption [(H0 + 1)1/2,B] also extends to a bounded
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operator. Hence, the operator (H1 + 1)−1BA− extends to a bounded operator
and∥∥∥(H1 + 1)−1BA−

∥∥∥ ≤ ∥∥∥(H1 + 1)1/2(H0 + 1)−1/2

∥∥∥‖B‖+ ‖δH0(B)‖

≤ const ·(1 + ‖δH0(B)‖+ ‖B‖+ ‖B‖2 + ‖B′‖) · ‖B‖
+ ‖δH0(B)‖,

where the latter inequality follows from Lemma 3.4.2.
For the third term on the right hand side (3.4.4), we write

(H1 + 1)−1A−Bξ = (H1 + 1)−1/2 ·(H1 + 1)−1/2(H0+1)1/2 ·(H0 + 1)−1/2A−Bξ,

for ξ ∈ dom(H0), and therefore, by Lemma 3.4.2 we conclude that 1
H1+1

A−B
also extends to a bounded operator.

Thus, (H1 + 1)−1(H0 + 1) extends to a bounded operator and by (3.4.4) we
have∥∥∥(H1 + 1)−1(H0 + 1)

∥∥∥ ≤ 1 +
∥∥∥(H1 + 1)−1BA−

∥∥∥
+
∥∥∥(H1 + 1)−1A−B

∥∥∥+
∥∥∥(H1 + 1)−1(B2 −B′)

∥∥∥
≤ Q(‖δjH0

(B)‖), j = 0, 1.

for some polynomial Q.
Suppose now that for some k ≥ 3 the assertion holds for all j ≤ k− 1. Let us

prove it for j = k. For ξ ∈ dom(H
k/2
0 ), using the resolvent identity (3.1.19) we

write

(H1 + 1)−k/2(H0 + 1)k/2ξ = (H1 + 1)−(k−2)/2(H1 + 1)−1(H0 + 1)k/2ξ

= (H1 + 1)−(k−2)/2(H0 + 1)(k−2)/2ξ (3.4.5)

+ (H1 + 1)−k/2(BA− + A−B + B2 −B′)(H0 + 1)(k−2)/2ξ.

By the induction assumption, the operator (H1 + 1)−(k−2)/2(H0 + 1)(k−2)/2 ex-
tends to a bounded operator with the required estimate in the uniform norm.

For the second term on the right hand side of (3.4.5) equality (3.4.2) implies
that

(H1 + 1)−k/2(BA− + A−B + B2 −B′)(H0 + 1)(k−2)/2ξ

=
k−1∑
j=0

(−1)jCj
k(H1 + 1)−k/2(H0 + 1)j/2[(H0 + 1)1/2,B](j)A−(H0 + 1)−1/2ξ

+
k−2∑
j=0

(−1)jCj
k(H1 + 1)−k/2(H0 + 1)(j+1)/2A−(H0 + 1)−1/2[(H0 + 1)1/2,B](j)ξ

+
k−2∑
j=0

(−1)jCj
k(H1 + 1)−k/2(H0 + 1)j/2[(H0 + 1)1/2,B2 −B′](j)ξ

By the induction assumption, for every j = 0, . . . , k − 1, it follows that the
operator

(H1 + 1)−k/2(H0 + 1)j/2
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extends to a bounded operator. In addition, the operators

[(H0 + 1)1/2,B](j) and [(H0 + 1)1/2,B′](j)

also extend to bounded operators by the assumption of the proposition. Hence,

(H1 + 1)−k/2(BA− + A−B + B2 −B′)(H0 + 1)(k−2)/2

extends to a bounded operator and the required estimate in the uniform norm
follows. �

Proposition 3.4.5. Let B,B′ ∈
⋂k−1
j=1 dom(δjH0

) for some k ∈ N. Then

(i) The operator (H0 − z)k/2(H i − z)−k/2, i = 1, 2 is bounded.

(ii) The operators (H i,n − z)−k/2(H0 − z)k/2, and (H0−z)k/2(H i,n − z)−k/2,
i = 1, 2 are bounded.

(iii) The sequences{
(H i,n − z)−k/2(H0 − z)k/2

}∞
n=1

,
{

(H0 − z)k/2(H i,n − z)−k/2
}∞
n=1

are uniformly bounded.

Proof. Without loss of generality we can assume that z = −1.
(i). As the operators (H0 + 1)k/2 and (H i,n + 1)−k/2 are self-adjoint, both of the
operators (H i,n + 1)−k/2 and (H i,n + 1)−k/2(H0 + 1)k/2 are densely defined, [79,
Theorem 4.19 (b)] implies that

(H0 + 1)k/2(H i + 1)−k/2 =
(

(H i + 1)−k/2(H0 + 1)k/2
)∗

=
(

(H i + 1)−k/2(H0 + 1)k/2
)∗
∈ B(L2(R,H)),

where the last inclusion follows from Proposition 3.4.4.
(ii). Since B,B′ ∈

⋂k−1
j=1 dom(δjH0

), Bn = P nBP n, B
′
n = P nB

′P n, and

P n commutes with H0, we infer that Bn,B
′
n ∈

⋂k−1
j=1 dom(δjH0

). Therefore,

applying Proposition 3.4.4 and part (i) to the operators H i,n and H0, we obtain
the assertion.

(iii). Note that for j = 1, . . . , k − 1, we have

‖δjH0
(Bn)‖ ≤ ‖δjH0

(B)‖, ‖δjH0
(B′n)‖ ≤ ‖δjH0

(B′)‖.

Hence, Proposition 3.4.4 applied to the operators H i,n and H0 implies that for
some polynomial Q with positive coefficients, we have∥∥∥(H i,n + 1)−k/2(H0 + 1)k/2

∥∥∥ ≤ constQ(‖δjH0
(Bn)‖, ‖δjH0

(B′n)‖)

≤ constQ(‖δjH0
(B)‖, ‖δjH0

(B′)‖), j = 0, . . . k − 1,

which together with the equality∥∥∥(H0 − z)k/2(H i,n − z)−k/2
∥∥∥ =

∥∥∥(H i,n + 1)−k/2(H0 + 1)k/2
∥∥∥,

concludes the proof. �

Corollary 3.4.6. Let B,B′ ∈
⋂k−1
j=1 dom(δjH0

) for some k ∈ N. Then

dom(H
k/2
i,n ) = dom(H

k/2
i ) ⊂ dom(H

k/2
0 ), i = 1, 2, n ∈ N.
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Proof. We prove only the inclusion dom(H
k/2
1 ) ⊂ dom(H

k/2
0 ) since the oth-

ers can be proved similarly.

Let ξ ∈ dom(H
k/2
1 ) = dom(H1 + 1)k/2 = ran((H1 + 1)−k/2). Then there

exists η ∈ L2(R,H) such that ξ = (H1 + 1)−k/2η. Since η ∈ L2(R,H) and by
Corollary 3.4.5 (i) the operator (H0 + 1)k/2(H1 + 1)−k/2 is bounded, we have
that

(H0 + 1)k/2ξ = (H0 + 1)k/2(H1 + 1)−k/2η ∈ H,
that is ξ ∈ dom(H0 + 1)k/2 = dom(H

k/2
0 ). �

By Propositions 3.4.4 and 3.4.5 the operators (H2,n − z)
−k
2 (H0 − z)

k
2 , and

(H2 − z)
−k
2 (H0 − z)

k
2 are bounded. The following proposition establishes the

strong-operator convergence of (H2,n − z)
−k
2 (H0 − z)

k
2 to (H2 − z)

−k
2 (H0 − z)

k
2 ,

which required for the proof of the principal trace formula. The result here should
be compared with [30, Lemma 3.13 (ii)], where a much simpler case k = 2 was
treated.

Proposition 3.4.7. Assume that B,B′ ∈
⋂k−1
j=1 dom(δjH0

) for some k ∈ N.
Then

(i)

(H2,n − z)
−k
2 (H0 − z)

k
2 → (H2 − z)

−k
2 (H0 − z)

k
2

in the strong operator topology.
(ii)

(H0 − z)
k
2 (H1,n − z)

−k
2 → (H0 − z)

k
2 (H1 − z)

−k
2

in the strong operator topology.

Proof. Without loss of generality we have z = −1.
(i). By Lemma 3.2.6 we have that H2,n → H2 in the strong resolvent sense.

Therefore, [69, Theorem VIII.20] implies that (H2,n + 1)
−k
2 → (H2 + 1)

−k
2 in

the strong operator topology. Hence, for every ξ ∈ dom(H
k
2
0 ) we have

(H2,n + 1)
−k
2 (H0 + 1)

k
2 ξ → (H2 + 1)

−k
2 (H0 + 1)

k
2 ξ.

Since dom(H
k
2
0 ) is a dense subset in L2(R,H) and by Proposition 3.4.5 (iii) the

sequence {(H2,n + 1)
−k
2 (H0 + 1)

k
2 }n∈N is uniformly bounded, we infer that

(H2,n + 1)
−k
2 (H0 + 1)

k
2 → (H2 + 1)

−k
2 (H0 + 1)

k
2

in the strong operator topology.
(ii). By Corollary 3.4.6 we have that

dom(H1 + 1)
k
2 = dom(H1,n + 1)

k
2 ⊂ dom(H0 + 1)

k
2 ,

and therefore both (H1,n + 1)
−k
2 ξ and (H1 + 1)

−k
2 ξ lie in dom(H0 +1)

k
2 for every

ξ ∈ L2(R,H). The strong resolvent convergence H1,n → H1 and [69, Theorem

VIII.20], imply that (H1,n + 1)
−k
2 → (H1 + 1)

−k
2 in the strong operator topology.

Hence,

(H0 + 1)
k
2 (H1,n + 1)

−k
2 ξ → (H0 + 1)

k
2 (H1 + 1)

−k
2 ξ

for every ξ ∈ L2(R,H), since the operator (H0 + 1)
k
2 is closed. �
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3.5. The main hypothesis

In this section we give the precise assumptions we impose for our results and
discuss some details of this hypothesis.

Hypothesis 3.5.1. (i) Assume A− is self-adjoint on dom(A−) ⊆ H
with H a complex, separable Hilbert space.

(ii) Suppose we have a family of bounded self-adjoint operators {B(t)}t∈R ⊂
B(H), continuously differentiable with respect to t in the uniform oper-
ator norm, such that ‖B′(·)‖B(H) ∈ L1(R; dt) ∩ L∞(R; dt).

(iii) Suppose that the family {B(t)} consists of p-relative trace-class pertur-
bations with respect to A− for some p ∈ N ∪ {0}, that is

B′(t)(A− + i)−p−1 ∈ L1(H),

∫
R
‖B′(t)(A− + i)−p−1‖1dt <∞.

(iv) Let m = dp
2
e. Assume that for all z < 0 we have that

B′(H0 − z)−m−1 ∈ L1(L2(R,H)).

(v) B,B′ ∈
⋂2m−1
j=1 dom(δjH0

).

In what follows we always take the smallest p ∈ N ∪ {0} satisfying (iii).

Next, we discuss some details of our main assumption, Hypothesis 3.5.1, for
the special type of the path {B(t)}t∈R. Suppose that a positive function θ on R
satisfies

θ ∈ C∞b (R), θ′ ∈ L1(R),

lim
t→−∞

θ(t) = 0, lim
t→+∞

θ(t) = 1.
(3.5.1)

and assume that B+ ∈ B(H).
Suppose that the family {B(t)}t∈R is given by

B(t) = θ(t)B+. (3.5.2)

Proposition 3.5.2. Suppose that B+ is a p-relative trace class perturbation of
A− and let {B(t)}t∈R be as in (3.5.2) with θ satisfying (3.5.1). Then assumption
of Hypothesis 3.1.1 (ii) and (iii) are satisfied.

Proof. By the definition of B(t) it follows that B′(t) = θ′(t)B+. Hence,
assumption (3.5.1) guarantee Hypothesis 3.1.1 (ii). Hypothesis 3.1.1 (iii) is also
satisfied since∫

R
‖B′(t)(A− + i)−p−1‖1dt =

∫
R
|θ′(t)|dt · ‖B+(A− + i)−p−1‖1 <∞.

�

Moreover, an argument similar to the proof of [32, Proposition 2.2] guarantees
the following

Proposition 3.5.3. [32] Suppose that B+ is a p-relative trace class pertur-
bation of A− and let {B(t)}t∈R be as in (3.5.2) with θ satisfying (3.5.1). Then

B′(H0 − z)−m−1 ∈ L1(L2(R,H)),

that is assumption of Hypothesis 3.5.1 (iv) is satisfied.

-
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Thus, for the special type of family {B(t)}t∈R = {θ(t)B+}t∈R the assump-
tions Hypothesis 3.5.1 (ii), (iii) and (iv) are automatically guaranteed by the
assumption (3.5.1) and the fact that B+ is a p-relative trace class perturbation
of A−.

Next, we discuss Hypothesis 3.5.1 (v). By definition of δH0 (see (3.4.1))
to check Hypothesis 3.5.1 (v) we have to consider repeated commutator with
(1 + H0)1/2. However, in general, it is hard to work with these commutators.
Therefore, we introduce below a different type of commutators, which are more
manageable.

Similarly to [25, Section 1.3] we introduce the operator

Lk
H0

(T ) = (1 + H0)−k/2[H0, T ](k)

whose domain is

dom(Lk
H0

) = {T ∈ B(L2(R,H)) : T dom(Hj
0) ⊂ dom(Hj

0), j = 1, . . . , k

and the operator (1 + H0)−k/2[H0,T ](k) defined on dom(Hk
0)

extends to a bounded operator on L2(R,H)}.

The following result follows from the proof of [25, Lemma 1.29].

Lemma 3.5.4. If T ∈
⋂2k
j=1 dom(Lj

H0
) for some k ∈ N, then T ∈

⋂k
j=1 dom(δjH0

).

Proof. It follows from the proof of [25, Lemma 1.29] that for any ξ ∈
dom(Hk

0) we have

[(1 + H0)1/2,T ](k)ξ

= 2−n
k∑
j=0

(
k

j

)( 2

π

)j ∫
Rk+

j∏
i=1

λ
1/2
i (1 + H0)

(1 + λi + H0)2
Lk+j

H0
(T )

j∏
i=1

dλi
1 + λi + H0

ξ,

where the right-hand side is well defined, since

j∏
i=1

(1 + λi + H0)−1 : dom(Hk
0)→ dom(Hk+j

0 )

and the operator Lk+j
H0

(T ) is initially defined on dom(Hk+j
0 ).

By the assumption, the operator Lk+j
H0

(T ) is bounded, j = 1, . . . k. In addition,
the functional calculus yields

(1 + λ+ H0)−1 ≤ (1 + λ)−1, λ1/2(1 + H0)(1 + λ+ H0)−2 ≤ λ−1/2/4,

we obtain that the operator [(1 + H0)1/2,T ](k) is bounded on dom(Hk
0). Hence,

there exists a unique bounded extension [(1 + H0)1/2,T ](k) ∈ B(L2(R,H)) (see
e.g. [79, Theorem 4.5]). �

Next, we want to reduce the commutators with H0 to the commutators with
A2
−. To this end, for a self-adjoint operator A on H we introduce the operator

LkA2(T ) = (1 + A2)−k/2[A2, T ](k) (3.5.3)
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with domain

dom(LkA2) = {T ∈ B(H) : T dom(Aj) ⊂ dom(Aj), j = 1, . . . , 2k

and the operator (1 + A2)−k/2[A2, T ](k) defined on dom(A2k)

extends to a bounded operator on H}.

Proposition 3.5.5. Let {B(t)}t∈R be as in (3.5.2) with θ satisfying (3.5.1).

If B+ ∈
⋂k
j=1 dom(Lj

A2
−

), for some k ∈ N, then B,B′ ∈
⋂k
j=1 dom(Lj

H0
).

Proof. We prove the assertion for B only.
Firstly we note that since

H0 =
d2

dt2
+ A2

− =
d2

dt2
⊗ 1 + 1⊗ A2

−,

and θ ∈ C∞b (R), it follows that the assumption B+ dom(Aj−) ⊂ dom(Aj−), j =
1, . . . , 2k, guarantees that the operator B = Mθ ⊗ B+ (see Remark 3.1.6) leaves
dom(Hj

0), j = 1, . . . , k, invariant.
Furthermore, on dom(H0) we have

[H0,B] = [
d2

dt2
⊗ 1,Mθ ⊗B+] + [1⊗ A2

−,Mθ ⊗B+]

= [
d2

dt2
,Mθ]⊗B+ +Mθ ⊗ [A2

−,⊗B+].

By Lemma 3.1.8 we have that the operator

C := (1− d2

dt2
)
l
2 (1 + A2

−)
k−l
2 (1 + H0)−k/2

is bounded for any l = 0, . . . , k.
Hence, on dom(Hk

0) we have

Lk
H0

(B) = (1 + H0)−k/2[H0,Mθ ⊗B+](k)

= (1 + H0)−k/2
k∑
l=0

[
d2

dt2
,Mθ]

(l) ⊗ [A2
−, B+](k−l)

=
k∑
l=0

C · (1− d2

dt2
)−

l
2 [
d2

dt2
,Mθ]

(l) ⊗ (1 + A2
−)−k−l/2[A2

−, B+](k−l).

It follows from inclusion (7.1.4) below (for n = 1) that (1 − d2

dt2
)−

l
2 [ d

2

dt2
,Mθ]

(l)

extends to a bounded operator on L2(R) for any l = 0, . . . , k. By assumption
the operator (1 + A2

−)−k−l/2[A2
−, B+](k−l) extends to a bounded operator on H.

Therefore, Lk
H0

(B) also extends to a bounded operator on L2(R,H), as required.
�

We now formulate the Hypothesis 3.5.1 for the special case when {B(t)}t∈R =
{θ(t)B+}t∈R.

Hypothesis 3.5.6. (i) Assume that A− is self-adjoint on dom(A−) ⊆
H with H a complex, separable Hilbert space and let θ satisfies (3.5.1).

(ii) Suppose that an operator B+ is p-relative trace-class perturbations with
respect to A− for some p ∈ N, that is

B+(A− + i)−p−1 ∈ L1(H).
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(iii) Assume also that B+ ∈
⋂2p
j=1 dom(Lj

A2
−

), where the mapping Lj
A2
−

is

defined by (3.5.3).

The proof of the following proposition follows from combination of Proposi-
tions 3.5.2, 3.5.3 and 3.5.5.

Proposition 3.5.7. For the special case when {B(t)}t∈R = {θ(t)B+}t∈R, Hy-
pothesis 3.5.6 guarantees that Hypothesis 3.5.1 is satisfied.

3.6. Approximation results for the pair (H2,H1).

In this section we develop further our approximation scheme that is essential
for the proof of the principal trace formula in Section 5.1 below. The following
theorem is our second key result. The proof of this result crucially uses the results
obtained in Section 3.4. We note firstly that by [48, Theorem 3.2], Hypothesis
3.5.1 (iv) implies that

(H0 − z)−m+j−1B′(H0 − z)−j ∈ L1(L2(R,H)) (3.6.1)

for all j = 1, . . . ,m.

Theorem 3.6.1. Assume Hypothesis 3.5.1. Let z ∈ C \ R+.

(i) Both (H2 − z)−m − (H1 − z)−mand (H2,n − z)−m − (H1,n − z)−mare
trace class.

(ii) We have

‖ · ‖1 − lim
n→∞

(
(H2,n − z)−m − (H1,n − z)−m

)
= (H2 − z)−m − (H1 − z)−m.

Proof. (i). Using again the resolvent identity and the elementary relation

Ak −Bk =
k∑
j=1

Ak−j[A−B]Bj−1, A,B ∈ B(H), k ∈ N,

we write

(H2 − z)−m − (H1 − z)−m

=
m∑
j=1

(H2 − z)−m+j((H2 − z)−1 − (H1 − z)−1)(H1 − z)−j+1

= −2
m∑
j=1

(H2 − z)−m+j−1B′(H1 − z)−j

Thus

(H2 − z)−m − (H1 − z)−m = −2
m∑
j=1

(H2 − z)−m+j−1(H0 − z)m−j+1

× (H0 − z)−m+j−1B′(H0 − z)−j × (H0 − z)j(H1 − z)−j (3.6.2)

By (3.6.1), the operators (H0 − z)−m+j−1B′(H0 − z)−j are trace-class oper-
ators for all j = 1, . . . ,m. Since, in addition, by Proposition 3.4.5 (i) and (ii), the

operators (H2 − z)−m+j−1(H0 − z)m−j+1 and (H0−z)j(H1 − z)−j are bounded,
we infer that (H2 − z)−m − (H1 − z)−m ∈ L1(L2(R,H)).
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Arguing similarly, one can obtain that

(H2,n − z)−m − (H1,n − z)−m

= −2
m∑
j=1

(H2,n − z)−m+j−1P nB
′P n(H1,n − z)−j−1

= −2
m∑
j=1

(H2,n − z)−m+j−1(H0 − z)m−j+1 (3.6.3)

× P n(H0 − z)−m+j−1B′
1

(H0 − z)j
P n × (H0 − z)j(H1,n − z)−j.

Referring to Proposition 3.4.4 and 3.4.5 and hence that (H2,n − z)−m−(H1,n − z)−m ∈
L1(L2(R,H)).

(ii). Using decompositions (3.6.2) and (3.6.3) we see that it is sufficient to
prove the convergence of each term separately.

By (3.6.1), the operator (H0 − z)−m+j−1B′(H0 − z)−j ∈ L1(L2(R,H)) for all
j = 1, . . . ,m, and therefore, by Lemma 3.2.1 we have that

P n(H0 − z)−m+j−1B′(H0 − z)−jP n
‖·‖1−−→ (H0 − z)−m+j−1B′(H0 − z)−j.

In addition, by Proposition 3.4.7 we have

(H2,n − z)−m+j−1(H0 − z)m−j+1 → (H2 − z)−m+j−1(H0 − z)m−j+1

and

(H0 − z)j(H1,n − z)−j → (H0 − z)j(H1 − z)−j, j = 1, . . . ,m,

in the strong operator topology. Thus, appealing again to Lemma 3.2.1 we com-
plete the proof. �



CHAPTER 4

Spectral shift function

In this chapter we discuss the spectral shift functions for the pairs (A+, A−)
and (H2,H1). Since the difference of resolvents of these operators is not neces-
sarily trace class and only the difference of higher power of resolvents gives a trace
class operator, we define spectral shift functions ξ(·, A+, A−), ξ(·;H2,H1) using
Yafaev’s construction from [83]. We firstly recall this construction in Section 4.1.
In this section we also prove that spectral shift function constructed in this way
is continuous (in a certain topology) with respect to operator parameter. This
result is published in [27]. One particularly useful application of this continuity is
the fact that it allows us to fix the additive constant in the spectral shift function
ξ(·;A+, A−).

In Section 4.2 we introduce spectral shift functions ξ(·, A+, A−), ξ(·;H2,H1)
and fix the additive constants in their definitions.

Finally, in Section 4.3 we give an example of a self-adjoint H and its bounded
self-adjoint perturbation V , such that

f(H + V )− f(H) /∈ L1(H)

for a sufficiently nice monotone function f on σ(H) ∪ σ(H + V ), which implies
that the invariance principle for the spectral shift function (see Section 1.2) is not
applicable for the pair (H+V,H). This is the reason why we fix the spectral shift
function ξ(·;A+, A−) using the continuity result from Section 4.1. The results of
Section 4.3 are taken from [57].

4.1. Continuity of spectral shift function with respect to the operator
parameter

In this section we firstly recall the construction of spectral shift function for
m-resolvent comparable (in L1(H)) operators, m ∈ N is odd, due to D. Yafaev
[83] and then prove that this spectral shift function is continuous with respect to
the operator parameter.

Suppose that A0 and B0 are fixed self-adjoint operators in the Hilbert space
H, which are m-resolvent comparable in L1(H) (see Definition 2.2.4) for some
odd m ∈ N. That is for all a ∈ R \ {0} we have[

(B0 − ai)−m − (A0 − ai)−m
]
∈ L1

(
H
)
. (4.1.1)

As in Section 2.2 we denote by ϕ : R → R a bijection satisfying for some
c > 0,

ϕ ∈ C2(R), ϕ(λ) = λm, |λ| ≥ 1, ϕ′(λ) ≥ c. (4.1.2)

By (2.2.32) we have that[
(ϕ(B0)− i)−1 − (ϕ(A0)− i)−1

]
∈ L1(H). (4.1.3)

55
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Therefore, by Theorem 1.2.3 there exists the (class) of spectral shift functions
ξ(·;ϕ(B0), ϕ(A0)) for the pair (ϕ(B0), ϕ(A0)) satisfying

ξ( · ;ϕ(B0), ϕ(A0)) ∈ L1

(
R; (µ2 + 1)−1dµ

)
. (4.1.4)

Therefore, one can introduce the (class) of spectral shift functions ξ(·;B0, A0)
for the pair (B0, A0) by setting

ξ(ν;B0, A0) := ξ(ϕ(ν);ϕ(B0), ϕ(A0)), ν ∈ R. (4.1.5)

In particular, the condition ϕ′(λ) ≥ c > 0 implies that the inverse function ϕ−1

is differentiable. Therefore, with the simple substitution

µ = ϕ(ν) ∈ R, ν ∈ R, (4.1.6)

in (4.1.4) implies that

ξ( · ;B0, A0) ∈ L1

(
R; (|ν|m+1 + 1)−1dν

)
. (4.1.7)

Furthermore, for f ∈ Fm(R), the fact that ϕ(λ) = λm for sufficiently large
(in absolute value) λ (see (2.2.23)) implies that f ◦ ϕ−1 ∈ F1(R). Hence, using
Theorem 1.2.3 and the change of variables (4.1.6), the corresponding trace formula
is of the form

tr(f(B0)− f(A0)) = tr
(
(f ◦ ϕ−1)(ϕ(B0))− (f ◦ ϕ−1)(ϕ(A0))

)
=

∫
R

(f ◦ ϕ−1)′(µ) ξ(µ;ϕ(B0), ϕ(A0))dµ

=

∫
R
f ′(ν) ξ(ϕ(ν);ϕ(B0), ϕ(A0))dν

=

∫
R
f ′(ν) ξ(ν;B0, A0)dν, f ∈ Fm(R),

where the last equality follows from (4.1.5).
Thus, we have the following result.

Theorem 4.1.1. [83] Suppose that operators A0 and B0 are m-resolvent com-
parable with m ∈ N odd. Then there exits spectral shift function ξ(·;B0, A0),
satisfying

ξ( · ;B0, A0) ∈ L1

(
R; (|ν|m+1 + 1)−1dν

)
and

tr(f(B0)− f(A0)) =

∫
R
f ′(ν) ξ(ν;B0, A0)dν, f ∈ Fm(R). (4.1.8)

Remark 4.1.2. Assume that A0 and B0 are m-resolvent comparable with
m ∈ N odd. We note that, the definition of spectral shift function ξ(·;B0, A0)
and the properties of spectral shift function for resolvent comparable operators
ϕ(A0), ϕ(B0) immediately imply two following observations.

(i) If in some interval (a0, b0) the spectra of A0 and B0 are discrete and let
δ = (a, b), a0 < a < b < b0. Then, similarly to (1.2.6), we have

ξ(b−;B0, A0)− ξ(a+;B0, A0) = NA0(δ)−NB0(δ), (4.1.9)

where NA0(δ) (respectively, NB0(δ)) are the sum of the multiplicities of
the eigenvalues of A0 (respectively, B0) in δ.

(ii) There is a class of spectral shift functions satisfying (4.1.7) and (4.1.8),
which differ by an additive constant.
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Next, we discuss the continuity of spectral shift function with respect to the
operator parameter.

Let T be some fixed self-adjoint operator on H. Denote by Γ(T ) the space of
all self-adjoint operators, which are resolvent comparable with T , that is S on H
such that

(T − z)−1 − (S − z)−1 ∈ L1(H)

for some z ∈ C \R. For every z ∈ C, Im(z) > 0, one defines a metric on Γ(T ) by
setting

dz(S1, S2) = 2Im(z)
∥∥(S2 − z)−1 − (S1 − z)−1

∥∥
1
. (4.1.10)

By a standard resolvent identity, the metrics dz1 and dz2 are equivalent for differ-
ent values of z1 and z2 in C \ R.

The following result due to Yafaev establishes continuity of spectral shift
function with respect to the operator parameter.

Proposition 4.1.3. [82, Lemma 8.7.5] Let A0, B0, and B1 denote self-adjoint
operators in H with B0, B1 ∈ Γ(A0), and let {B(s)}s ⊂ Γ(B0) be a continuous
(with respect to s) path from B0 to B1 in Γ(B0). Assume also that the spectral
shift function ξ0(·;B0, A0) is fixed representative from the class ξ(·;B0, A0). Then,
there exists a unique representative ξ(·;B(s), A0), continuous in s with respect to
the norm in L1(R, (λ2 + 1)−1dλ), such that

ξ(·;B(0), A0) = ξ0(·;B0, A0).

In the rest of this section we prove an analogue of Proposition 4.1.3 for m-
resolvent comparable operators.

Definition 4.1.4. Let T be self-adjoint in H and m ∈ N odd. Then Γm(T )
denotes the set of all self-adjoint operators S in H for which the inclusion[

(S − ai)−m − (T − ai)−m
]
∈ L1(H), a ∈ R\{0}, (4.1.11)

holds. In particular, Γ1(T ) = Γ(T ).

We note that for each m ∈ N, Γm(T ) can be equipped with the family
D = {dm,a}a∈R\{0} of pseudometrics (see [41, Definition IX.10.1] for a precise
definition) defined by

dm,a(S1, S2) =
∥∥(S2 − ai)−m − (S1 − ai)−m

∥∥
1
, S1, S2 ∈ Γm(T ). (4.1.12)

For each fixed ε > 0, a ∈ R\{0}, and S ∈ Γm(T ), define

B(S; dm,a, ε) = {S ′ ∈ Γm(T ) | dm,a(S, S ′) < ε},

to be the ε-ball centered at S with respect to the pseudometric dm,a.

Definition 4.1.5. Tm(T ) is the topology on Γm(T ) with the subbasis

Bm(T ) = {B(S; dm,a, ε) |S ∈ Γm(T ), a ∈ R\{0}, ε > 0}.

That is, Tm(T ) is the smallest topology on Γm(T ) which contains Bm(T ).

Proposition 4.1.6. Suppose that {B(s)}s∈[0,1] ∈ Γm(A0) is a path continuous
with respect to the topology Tm(A0). Then the path {ϕ(B(s))}s∈[0,1] ∈ Γ(ϕ(A0))
is continuous in Γ(ϕ(A0)) with respect to the metric dz(·, ·).
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Proof. The assertion {ϕ(B(s))}s∈[0,1] ⊂ Γ1(ϕ(B0)) follow immediately from
the inequality (2.2.32). Similarly, by the definition of the metric di(·, ·) and
pseudometric dm,a(·, ·) we have

di
(
ϕ(B(s1)),ϕ(B(s2))

)
= 2
∥∥∥(ϕ(B(s1))− i)−1 − ϕ(B(s2)− i)−1

∥∥∥
1

(2.2.32)

≤ const
(∥∥(B(s1)− a1i)

−m − (B(s2)− a1i)
−m∥∥

1

+
∥∥(B(s1)− a2i)

−m − (B(s2)− a2i)
−m∥∥

1

)
= const

(
dm,a1(B(s1), B(s2)) + dm,a2(B(s1), B(s2))

)
,

which suffices to conclude the proof. �

The following theorem is the principal result of this section.

Theorem 4.1.7. [27] Let A0, B0, and B1 denote self-adjoint operators in H
with B0, B1 ∈ Γm(A0), and let {B(s)}s ⊂ Γ(B0) be a continuous (with respect
to s) path from B0 to B1 in the topology Tm(B0). Assume also that the spectral
shift function ξ0(·;B0, A0), defined by (4.1.5), is a fixed representative from the
class ξ(·;B0, A0). Then, there there exists a unique representative ξ(·;B(s), A0),
continuous is s with respect to the norm in L1(R, (|ν|m+1 + 1)−1dν), such that

ξ(·;B(0), A0) = ξ0(·;B0, A0).

Proof. By Proposition 4.1.6 we have that the path {ϕ(B(s))}s∈[0,1] ⊂ Γ(ϕ(B0))
is a continuous path with respect to d1,i( · , · ). In addition, since ξ0(·;B0, A0) =
ξ0(ϕ(·);ϕ(B0), ϕ(A0)) is fixed, Proposition 4.1.3 implies that there exists a unique
spectral shift function ξ( · ;ϕ(B(s)), ϕ(A0)) ∈ L1(R; (λ2+1)−1dλ), depending con-
tinuously on s ∈ [0, 1] in the L1(R; (λ2 + 1)−1dλ)-norm and such that

ξ(·, ϕ(B(0)), ϕ(A0)) = ξ0(·, ϕ(B0), ϕ(A0)). (4.1.13)

For each s ∈ [0, 1], let ξ( · ;B(s), A0) denote the spectral shift function for the
pair (B(s), A0) defined by (4.1.5). Equality (4.1.13) then implies that

ξ( · ;B(0), A0) = ξ(·, ϕ(B(0)), ϕ(A0)) = ξ0(·, ϕ(B0), ϕ(A0)) = ξ0(·, B0, A0),

as required.
It only remains to establish continuity of ξ( · ;B(s), A0) with respect to the

L1(R; (|ν|m+1 + 1)−1dν)-norm. Using the substitution (4.1.6) we have∫
R

∣∣ξ(ν;B(s1), A0)− ξ(ν;B(s2), A0)
∣∣(|ν|m+1 + 1

)−1
dν (4.1.14)

=

∫
R

∣∣ξ(µ;ϕ(Bτ ), ϕ(A0))− ξ(µ;ϕ(Bτ ′), ϕ(A0))
∣∣

(|ϕ−1(µ)|m+1 + 1)ϕ′(ϕ−1(µ))
dµ.

By the properties of ϕ (see (4.1.2)) we have that

1

(|ϕ−1(µ)|m+1 + 1)ϕ′(ϕ−1(µ))
≤ constµ2 + 1, µ ∈ R. (4.1.15)
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Therefore∫
R

∣∣ξ(ν;B(s1), A0)− ξ(ν;B(s2), A0)
∣∣

|ν|m+1 + 1
dν

≤ const

∫
R

∣∣ξ(µ;ϕ(B(s1)), ϕ(A0))− ξ(µ;ϕ(B(s2)), ϕ(A0))
∣∣

µ2 + 1
dµ (4.1.16)

for s1, s2 ∈ [0, 1]. Thus, continuity of ξ( · ;B(s), A0) in L1(R; (|ν|m+1 + 1)−1dν)
follows from continuity of ξ( · ;ϕ(B(s)), ϕ(A0)) in L1(R; (µ2 + 1)−1dµ). �

We now apply Theorem 4.1.7 as a tool to fix the spectral shift function, in the
case when the perturbation is given by (m− 1)-relative trace class perturbation.

Let A0 be a self-adjoint operator and let

Pn = χ[−n,n](A0), A0 ∈ N.

Theorem 4.1.8. Suppose that A0 is a self-adjoint operator on H and let
B ∈ B(H) be an (m − 1)-relative trace class perturbation of A0, m ∈ N is odd.
Then there exists unique spectral shift function ξ(·;A0 +B,A0) such that

ξ(·;A0 +B,A0) = lim
n→∞

ξ(·;A0 + PnBPn, A0)

in L1(R; (|ν|m+1 + 1)−1dν).

Proof. Introduce the path {B(s)}s∈[0,1], by setting

B(s) = A0 + P̂sBP̂s, dom(B(s)) = dom(A0), s ∈ [0, 1],

P̂s = χ[− 1
1−s ,

1
1−s ](A0), s ∈ [0, 1), P̂1 = 1.

(4.1.17)

We note that

B(0) = A0 + P1BP1, B(1) = A0 +B. (4.1.18)

It follows from Remark 3.2.4 that PnBPn ∈ L1(H), and therefore P̂sBP̂s ∈
L1(H) for any s < 1. Hence, there exists a unique spectral shift function ξ(·;A0 +

P̂sBP̂s, A0), s < 1 satisfying

ξ(·;A0 + P̂sBP̂s, A0) ∈ L1(R). (4.1.19)

Moreover, in complete analogy to Theorem 3.3.2, the family B(s) depends
continuously on s ∈ [0, 1] with respect to the family of pseudometric dm,a(·, ·)
defined by (4.1.12). Thus, the hypotheses of Theorem 4.1.7 are satisfied and
hence there exists a unique spectral shift function ξ( · ;B(s), A0) for the pair
(B(s), A0) depending continuously on s ∈ [0, 1] in the space L1

(
R; (|ν|m+1 +

1)−1dν
)
, satisfying ξ( · ;B(0), A0) = ξ( · ;A0 + P1BP1, A0). Taking s = n−1

n
we

obtain that

ξ(·;A0 +B,A0) = lim
s→1

ξ(·;B(s), A0) = lim
n→∞

ξ(·;B(
n− 1

n
), A0)

= lim
n→∞

ξ(·;A0 + PnBPn, A0)

in L1

(
R; (|ν|m+1 + 1)−1dν

)
, as required. �

We conclude with an elementary consequence of Theorem 4.1.8.
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Corollary 4.1.9. Let A0, B and Pn be as in Theorem 4.1.8. If f ∈ L∞(R),
then

lim
n→∞

‖ξ( · ;A0 +PnBPn, A0)f−ξ( · ;A0 +B,A0)f‖L1(R;(|ν|m+1+1)−1dν) = 0. (4.1.20)

In particular, for h ∈ L∞(R) such that supν∈R
∣∣(|ν|m+1 + 1)h(ν)

∣∣ <∞ we have

lim
n→∞

∫
R
ξ(ν;A0 + PnBPn, A0)h(ν)dν =

∫
R
ξ(ν;A0 +B,A0)h(ν)dν (4.1.21)

for all g ∈ L∞(R) such that esssupν∈R
∣∣(|ν|m+1 + 1)g(ν)

∣∣ <∞.

4.2. The spectral shift functions for the pairs (A+, A−) and (H2,H1)

In this section we introduce the spectral shift functions for the pairs (A−, A+)
and (H1,H2). From the point of view of computing Witten index and spectral
flow the spectral shift function is our main tool. Throughout this section we
assume Hypothesis 3.5.1.

We want to introduce the spectral shift function ξ(·;H2,H1) following The-
orem 4.1.1. Combining Theorem 3.6.1 and Remark 2.2.6 we obtain the following

Proposition 4.2.1. Let m be as in Hypothesis 3.5.1 (iv). Then for all z ∈
C \ [0,∞) we have that both (H2− z I)−m− (H1− z I)−mand (H2− z I)−m−1−
(H1 − z I)−m−1are trace class operators.

For simplicity, for k ∈ N we use the notation

k̂ =

{
k, if k is odd,

k + 1, if k is even.
(4.2.1)

By Proposition 4.2.1 (H2 − z I)−m̂ − (H1 − z I)−m̂ ∈ L1

(
L2(R,H)

)
, for all

z ∈ C\R. Therefore, Theorem 4.1.1 implies that there is a spectral shift function
ξ( · ;H2,H1) for the pair (H2,H1) that satisfies

ξ( · ;H2,H1) ∈ L1

(
R; (|λ|m̂+1 + 1)−1dλ

)
.

Since Hj ≥ 0, j = 1, 2, ξ( · ;H2,H1) may be specified uniquely by requiring that

ξ(λ;H2,H1) = 0, λ < 0. (4.2.2)

In addition, Theorem 4.1.1 implies also the trace formula

tr(f(H2)− f(H)
)

=

∫
[0,∞)

f ′(λ)ξ(λ;H2,H1) dλ, f ∈ Fm̂(R). (4.2.3)

We introduce now the spectral shift function for the pair (A+, A−) using again
Theorem 4.1.1. Firstly, we state the following proposition, which follows by the
same argument as in Theorem 3.3.2.

Proposition 4.2.2. Assume Hypothesis 3.5.1. Then

(A+ − z)−p − (A− − z)−p , (A+ − z)−p−1 − (A− − z)−p−1 ∈ L1(H)

for every z ∈ C \ R. Furthermore,

‖ · ‖1 − lim
n→∞

(
(A+,n − z)−p−1 − (A− − z)−p−1

)
= (A+ − z)−p−1 − (A− − z)−p−1
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Combining now Proposition 4.2.2 and Theorem 4.1.1, we infer that there exists
a function

ξ(·;A+, A−) ∈ L1(R, (1 + |λ|)−p̂−1 dλ) (4.2.4)

such that

tr (f(A+)− f(A−)) =

∫
R
f ′(λ) · ξ(λ;A+, A−) dλ, f ∈ Fp̂(R). (4.2.5)

However, the spectral shift function ξ(·;A+, A−) introduced above is not
unique, in general, and therefore we have to fix one particular SSF which satisfies
(4.2.4) and (4.2.5). It order to fix this constant we apply Theorem 4.1.8 for the
operators A0 = A− and B = B+ and obtain the following

Theorem 4.2.3. Assume Hypothesis 3.5.1. There exists unique spectral shift
function ξ(·, A+, A−) such that

ξ(·, A+, A−) = lim
n→∞

ξ(·, A− +B+,n, A−) (4.2.6)

in L1(R; (|ν|p̂+1 + 1)−1dν).

Since every ξ( · ;A+,n, A−), n ∈ N, is uniquely defined, Theorem 4.2.3 implies
that we can fix uniquely the spectral shift function ξ( · ;A+, A−) satisfying con-
ditions (4.2.6). In what follows, we adopt this fixation for the remainder of the
thesis.

For convenience we state Corollary 4.1.9 for the pair (A+, A−)

Corollary 4.2.4. Assume Hypothesis 3.5.1 and suppose that f ∈ L∞(R).
Then

lim
n→∞

∫
R
ξ(ν;A+,n, A−)h(ν)dν =

∫
R
ξ(ν;A+, A−)h(ν)dν (4.2.7)

for all h ∈ L∞(R) such that supν∈R
∣∣(|ν|p̂+1 + 1)−1h(ν)

∣∣ <∞.

4.3. On invariance principle for spectral shift function

In this section we present an example of operators H,H + V such that the
inclusion

f(H + V )− f(H) ∈ L1(H)

(see (1.2.8)) does not hold for a very wide class of functions f . The results of the
present section can be found in the joint paper [57].

The example is based on the two-dimensional Dirac operator D and its elec-
tric potential 1 ⊗ Mϕ. We note that the result holds for Dirac operator with
electromagnetic potential for any dimension greater than 2 [57].

Throughout this section we assume that

H = C2 ⊗ L2(R2).

Let γ1, γ2 be the Pauli matrices, that is

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
.

Define a self-adjoint operator ∂k, k = 1, 2, in L2(R2) by

∂k = −i ∂
∂tk

,--
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which corresponds to partial differentiation with respect to the k-th argument,
and whose domain is the Sobolev space W 1,2(R2).

Define the two-dimensional Dirac operator as a self-adjoint operator acting in
the Hilbert space H = C2 ⊗ L2(R2) by

D = γ1 ⊗ ∂1 + γ2 ⊗ ∂2, (4.3.1)

with domain dom(D) = C2 ⊗W 1,2(R2).
For a bounded function ϕ ∈ L∞(R2), we denote by Mϕ the multiplication

operator of ϕ, which is the bounded operator on L2(R2) defined by pointwise
multiplication by ϕ. For simplicity we consider the case when the function ϕ 6= 0
is a real-valued Schwartz function on R2. For a more general result we refer to
[57].

Suppose now that we have a monotone function f on R = σ(D)∪σ(D+1⊗Mϕ),
such that f ′ is a Schwartz function (in particular, f ′ > 0). The main result of
this section is the that

f(D + 1⊗Mϕ)− f(D) /∈ L1(H). (4.3.2)

We note that the assumption on f can be weakened significantly, however, here
we assume that f ′ ∈ S(R) for simplicity.

The strategy of the proof of (4.3.2) is the following:

(i) Consider the auxiliary function g defined by (1.1.2) and show that

g(D + 1⊗Mϕ)− g(D) /∈ L1(H).

(ii) Using double operator integrals to reduce the question for the operator
f(D + 1⊗Mϕ)− f(D) to the operator g(D + 1⊗Mϕ)− g(D).

The first step of the proof is divided into two parts, where we firstly find a nice
decomposition for g(D+ 1⊗Mϕ)− g(D) modulo L1(H), and then show that the
remaining operator is not in L1(H). We proof each step in a separate subsection.

Before we proceed, we recall some preliminary results.
Firstly, observe that D2 = 1 ⊗ (−∆), where ∆ is the Laplace operator ∆ =

∂2
1 + ∂2

2 .
We have the following commutation relations. Suppose that ϕ is a Schwartz

function on R2. Then, for k = 1, 2, we have that Mϕ(dom ∂k) ⊂ dom(∂k), so the
operator [∂k,Mϕ] is well-defined on dom(∂k) = W 1,2(R2), and moreover,

[∂k,Mϕ] = M∂kϕ, (4.3.3)

on the domain W 1,2(R2). In particular, [∂k,Mϕ] extends to a bounded operator
on L2(R2).

Throughout this section, we shall make use of the following notations

R0,λ :=
(
D + i(1 + λ)1/2

)−1
, R1,λ :=

(
D + 1⊗Mϕ + i(1 + λ)1/2

)−1
, (4.3.4)

where λ > 0. We make several immediate observations. Note that

|R0,λ| = (1 + λ+D2)−1/2 = 1⊗ (1 + λ−∆)−1/2. (4.3.5)
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Furthermore, using the resolvent identity repeatedly, we obtain

R1,λ −R0,λ = −R1,λ(1⊗Mϕ)R0,λ

= R1,λ((1⊗Mϕ)R0,λ)
2 −R0,λ(1⊗Mϕ)R0,λ (4.3.6)

= −R1,λ((1⊗Mϕ)R0,λ)
3 +R0,λ((1⊗Mϕ)R0,λ)

2 (4.3.7)

−R0,λ(1⊗Mϕ)R0,λ.

We also recall so-called Cwikel estimates (see [73, Chapter 4]). Since we refer
to these estimates in the later section (see Chapter 7) we present the estimates
in general dimension.

Firstly, we define function spaces due to Birman and Solomyak [18] (see also
[73]). Let d ∈ N and let Q = [−1

2
, 1

2
]d ⊂ Rd be the unit cube centred at the

origin. For n ∈ Zd, let Q + n denote the unit cube centred at n. For 1 ≤ p < 2
define the space

lp(L2)(Rd) :=
{
f ∈ L0(Rd) :

∑
n∈Zd
‖fχQ+n‖p2 <∞

}
,

with the corresponding norm

‖f‖lp(L2)(Rd) :=
(∑
n∈Zd
‖fχQ+n‖p2

)1/p

, f ∈ lp(L2)(Rd).

It is clear that S(Rd) ⊂ lp(L2)(Rd), for any d ∈ N.
We now state a particular case of Cwikel estimates. For general Cwikel esti-

mates we refer to [73, Chapter 4] (see also [58]).

Theorem 4.3.1. Let λ ≥ 0.

(i) [73, Theorem 4.1] Suppose 2 ≤ p < ∞, and suppose δ > d/2p. If ϕ ∈
Lp(Rd), then Mϕ(1 + λ−∆)−δ ∈ Lp(L2(Rd)), and∥∥Mϕ(1 + λ−∆)−δ

∥∥
p
≤ const ·(1 + λ)d/2p−δ <∞.

(ii) [73, Theorem 4.5] Suppose 1 ≤ p < 2, and suppose δ > d/2p. If ϕ ∈
lp(L2)(Rd), then Mϕ(1 + λ−∆)−δ ∈ Lp(L2(Rd)) and∥∥Mϕ(1 + λ−∆)−δ

∥∥
p
≤ const ·(1 + λ)d/4−δ <∞.

For the convenience we also rewrite Cwikel estimates in the form we use them
in this section.

Corollary 4.3.2. Suppose ϕ ∈ S(R2). The following assertions hold:

(i) (1⊗Mϕ)R0,λ ∈ L3(H) and∥∥(1⊗Mϕ)R0,λ

∥∥
3
≤ const ·(1 + λ)−1/6.

(ii) (1⊗Mϕ)R3
0,λ ∈ L3/2(H) and∥∥(1⊗Mϕ)R3

0,λ

∥∥
3/2
≤ const ·(1 + λ)−5/6.

(iii) Mϕ(1−∆)−2 ∈ L1(R2).

Proof. We present the proof for part (i) only, since other parts can be proved
similarly.

(i). Writing R0,λ = (1 + λ + D2)−1/2 sgn(R0,λ) and recalling (4.3.5), it is
sufficient to prove the assertion for the operator Mϕ(1 + λ − ∆)−1/2. Since the

- -
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functions ϕ is in L3(R2), the required inclusion and the estimate follow from
Theorem 4.3.1.

�

4.3.1. Decomposition for the operator g(D + 1 ⊗Mϕ) − g(D). In this
section we show that

g(D + 1⊗Mϕ)− g(D) ∈ 1

2
γ2γ1 ⊗ (M∂2ϕ∂1 −M∂1ϕ∂2)(1−∆)−3/2 + L1(H).

Firstly, we present a suitable integral decomposition for the operator g(D +
1⊗Mϕ)− g(D). Recall that the operator R1,λ,−R0,λ are defined in (4.3.4).

Lemma 4.3.3. [26] We have

g(D + 1⊗Mϕ)− g(D) = π−1Re

(∫ ∞
0

λ−1/2[R1,λ −R0,λ] dλ

)
,

with the convergent Bochner integral on the right-hand side.

Proof. We recall the fact that for any self-adjoint operator T in H,(
T 2 + 1

)−1/2
= π−1

∫ ∞
0

λ−1/2
(
T 2 + 1 + λ

)−1
dλ

(see, e.g., [52, p. 282] for a more general result). Thus,

g(D + 1⊗Mϕ)− g(D)

=
1

π

∫ ∞
0

λ1/2
[ D + 1⊗Mϕ

(D + 1⊗Mϕ)2 + 1 + λ
− D
D2 + 1 + λ

]
dλ.

Since
t

t2 + 1 + λ
= Re

( 1

t+ i(1 + λ)1/2

)
, t ∈ R

we have that

D + 1⊗Mϕ

(D + 1⊗Mϕ)2 + 1 + λ
− D
D2 + 1 + λ

= Re
(
R1,λ −R0,λ

)
,

which concludes the proof. �

Combining Lemma 4.3.3 with (4.3.7), we may represent the difference g(D +
1⊗Mϕ)− g(D) as the Bochner integral

g(D+1⊗Mϕ)− g(D) =
1

π
Re
(∫ ∞

0

1

λ1/2
(R1,λ −R0,λ) dλ

)
(4.3.7)

=
1

π
Re
(
−
∫ ∞

0

dλ

λ1/2
R1,λ

(
(1⊗Mϕ)R0,λ

)3

+

∫ ∞
0

dλ

λ1/2
R0,λ

(
(1⊗Mϕ)R0,λ

)2

−
∫ ∞

0

dλ

λ1/2
R0,λ(1⊗Mϕ)R0,λ

)
.

(4.3.8)

We shall be interested in showing that the first two terms of our decomposition
lie in L1(H), and can therefore be neglected for our purposes. We begin with the
first term of (4.3.8).
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Lemma 4.3.4. Suppose ϕ ∈ S(R2). Then∫ ∞
0

dλ

λ1/2
R1,λ

(
(1⊗Mϕ)R0,λ

)3 ∈ L1(H).

Proof. Appealing to (4.3.4), we have that ‖R1,λ‖∞ = (1 + λ)−1/2, and by
Corollary 4.3.2 (i), we have

∥∥(1⊗Mϕ)R0,λ

∥∥
3
≤ const ·(1 + λ)−1/6. Hence, by the

noncommutative Hölder inequality (1.1.1), we have that∥∥∥∥∫ ∞
0

dλ

λ1/2
R1,λ

(
(1⊗Mϕ)R0,λ

)3

∥∥∥∥
1

≤
∫ ∞

0

dλ

λ1/2

∥∥R1,λ((1⊗Mϕ)R0,λ)
3
∥∥

1

≤
∫ ∞

0

dλ

λ1/2
‖R1,λ‖∞

∥∥(1⊗Mϕ)R0,λ

∥∥3

3

≤ const ·
∫ ∞

0

dλ

λ1/2(1 + λ)
<∞,

as required. �

Before moving on to the second term of (4.3.8), we state the following easy
corollary of functional calculus and simple computations. We supplement the
proof in Appendix A (see Lemma A.1 (ii)).

Lemma 4.3.5. We have∫ ∞
0

dλ

λ1/2
Re(R3

0,λ) = −3π

2
D(1 +D2)−5/2.

Before we proceed to the following lemma we note that since R0,λ+(D+ i(1+
λ)1/2)−1, it follows from (1.1.4) and (4.3.3) that

[R0,λ, 1⊗Mϕ]
(1.1.4)

= −R0,λ[D, 1⊗Mϕ]R0,λ
(4.3.3)

= −
d∑

k=1

R0,λ(γk ⊗M∂kϕ)R0,λ.

(4.3.9)

Lemma 4.3.6. Suppose ϕ ∈ S(R2). Then

Re
(∫ ∞

0

dλ

λ1/2
R0,λ

(
(1⊗Mϕ)R0,λ

)2
)
∈ L1(H).

Proof. Applying (4.3.9) twice to R0,λ

(
(1⊗Mϕ)R0,λ

)2
yields

R0,λ(1⊗Mϕ)R0,λ(1⊗Mϕ)R0,λ

= R0,λ(1⊗Mϕ)R2
0,λ(1⊗Mϕ)

+
2∑

k=1

R0,λ(1⊗Mϕ)R2
0,λ(γk ⊗M∂kϕ)R0,λ

= (1⊗Mϕ)R3
0,λ(1⊗Mϕ)−

2∑
k=1

R0,λ(γk ⊗M∂kϕ)R3
0,λ(1⊗Mϕ)

+
d∑

k=1

R0,λ(1⊗Mϕ)R2
0,λ(γk ⊗M∂kϕ)R0,λ.

(4.3.10)

We consider each term on the right-hand side of (4.3.10) individually.
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For each k = 1, 2, Hölder’s inequality (1.1.1) and Corollary 4.3.2 imply∥∥R0,λ(1⊗Mϕ)R2
0,λ(γk ⊗M∂kϕ)R0,λ

∥∥
1

≤
∥∥(1⊗M|ϕ|1/2)R0,λ

∥∥
3

∥∥(1⊗M|ϕ|1/2)R2
0,λ

∥∥
3

∥∥(γk ⊗M∂kϕ)R0,λ

∥∥
3

≤ const ·(1 + λ)−1. (4.3.11)

Similarly, we have that∥∥R0,λ(γk ⊗M∂kϕ)R3
0,λ(1⊗Mϕ)

∥∥
1

≤
∥∥(γk ⊗M∂kϕ)R0,λ

∥∥
3

∥∥(1⊗Mϕ)R3
0,λ

∥∥
3/2
≤ const ·(1 + λ)−1. (4.3.12)

Hence, the second and third terms on the right-hand side of (4.3.10) generate an
operator in L1(H).

Now, we consider the first term on the right-hand side of (4.3.10), and show
that it also belongs to L1(H). By Lemma 4.3.5, we have that

Re
(

(1⊗Mϕ)

∫ ∞
0

dλ

λ1/2
(R3

0,λ)(1⊗Mϕ)
)

= (1⊗Mϕ)

∫ ∞
0

dλ

λ1/2
Re(R3

0,λ)(1⊗Mϕ)

=
3π

2
(1⊗Mϕ)(1 +D2)−2 · D(1 +D2)−1/2(1⊗Mϕ).

Therefore, by Corollary 4.3.2 we conclude that the first term on the right-hand
side of (4.3.10) is a trace-class operator. Thus, combining the obtained results
with (4.3.10), we conclude the proof. �

So far, we have established that the first two integrals on the right-hand side
of (4.3.8) belong to L1(H). This leaves only the third integral term of (4.3.8).
Since this is the last remaining term in the expression, we claim that this term
is not in L1(H). First, we need the following auxiliary lemma, whose proof can
be found in Appendix A (see Lemma A.2 and Lemma A.1 (i), respectively).

Lemma 4.3.7. (i) Suppose k = 1, 2. Then∫ ∞
0

dλ

λ1/2

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

=
π

2
[D, γk ⊗ 1](1 +D2)−3/2 − 3π

2
{D, γk ⊗ 1}(1 +D2)−5/2, (4.3.13)

where {·, ·} denotes the anticommutator.
(ii) We have ∫ ∞

0

dλ

λ1/2
Re(R2

0,λ) = −2π(1 +D2)−3/2.

Lemma 4.3.8. Suppose ϕ ∈ S(R2). Then

Re
(∫ ∞

0

dλ

λ1/2
R0,λ(1⊗Mϕ)R0,λ

)
∈ π

2
γ2γ1 ⊗ (M∂2ϕ∂1 −M∂1ϕ∂2)(1−∆)−3/2 + L1(H).
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Proof. By applying (4.3.9) twice, we get that

R0,λ(1⊗Mϕ)R0,λ = (1⊗Mϕ)R2
0,λ −

2∑
k=1

(
R0,λ(1⊗M∂kϕ)

)
(γk ⊗ 1)R2

0,λ

= (1⊗Mϕ)R2
0,λ −

2∑
k=1

(1⊗M∂kϕ)R0,λ(γk ⊗ 1)R2
0,λ+

+
2∑

j,k=1

R0,λ(γj ⊗M∂j∂kϕ)R0,λ(γk ⊗ 1)R2
0,λ. (4.3.14)

By Hölder’s inequality (1.1.1) and Corollary 4.3.2, we have that∥∥R0,λ(γj ⊗M∂j∂kϕ)R0,λ(γk ⊗ 1)R2
0,λ

∥∥
1

(4.3.5)

≤
∥∥(1 + λ+D2)−1/2(1⊗M∂j∂kϕ)(1 + λ+D2)−3/2

∥∥
1

≤ const ·(1 + λ)−1. (4.3.15)

We treat (R0,λ(1 ⊗ Mϕ)R0,λ)
∗ similarly. Since M∗

∂kϕ
= −M∂kϕ and M∗

∂j∂kϕ
=

M∂j∂kϕ, by shifting (1 ⊗Mϕ) to the right with (4.3.9) instead of the left before
taking the adjoint, we observe that

(R0,λ(1⊗Mϕ)R0,λ)
∗ = (1⊗Mϕ)(R∗0,λ)

2 −
2∑

k=1

(1⊗M∂kϕ)R∗0,λ(γk ⊗ 1)(R∗0,λ)
2+

+
2∑

j,k=1

D∗0,λ(γj ⊗M∂j∂kϕ)R∗0,λ(γk ⊗ 1)(R∗0,λ)
2, (4.3.16)

and by a similar argument to that of (4.3.15), we arrive at∥∥R∗0,λ(γj ⊗M∂j∂kϕ)R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
∥∥

1
≤ const ·(1 + λ)−1. (4.3.17)

Hence, the third terms on the right-hand sides of (4.3.14) and (4.3.16) generate
an operator from L1(H). Therefore, by (4.3.14) and (4.3.16) we have

Re
(∫ ∞

0

dλ

λ1/2
R0,λ(1⊗Mϕ)R0,λ

)
∈ 1

2

∫ ∞
0

dλ

λ1/2

(
(1⊗Mϕ)R2

0,λ + (1⊗Mϕ)(R∗0,λ)
2
)

− 1

2

2∑
k=1

∫ ∞
0

dλ

λ1/2
(1⊗M∂kϕ)

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

+ L1(H)

=
(1⊗Mϕ)

2

∫ ∞
0

dλ

λ1/2
Re
(
R2

0,λ

)
− 1

2

2∑
k=1

(1⊗M∂kϕ)

∫ ∞
0

dλ

λ1/2

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

+ L1(H).
(4.3.18)
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By Lemma 4.3.7 (ii) we have that

(1⊗Mϕ)

2

∫ ∞
0

dλ

λ1/2
Re
(
R2

0,λ

)
= −π(1⊗Mϕ)(1 +D2)−3/2 ∈ L1(H), (4.3.19)

where the inclusion into L1(H) follows from Corollary 4.3.2.
Combining this inclusion with Lemma 4.3.7 (ii), we conclude that (4.3.18) can

be written as

Re
(∫ ∞

0

dλ

λ1/2
R0,λ(1⊗Mϕ)R0,λ

)
∈ −1

2

2∑
k=1

(1⊗M∂kϕ)

∫ ∞
0

dλ

λ1/2

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

+ L1(H) (4.3.20)

(4.3.13)
= −π

4

2∑
k=1

(1⊗M∂kϕ)[D, γk ⊗ 1](1 +D2)−3/2

− 3π

4

2∑
k=1

(1⊗M∂kϕ){D, γk ⊗ 1}(1 +D2)−5/2 + L1(H).

Observe that, for the second term on the right-hand side of (4.3.18), Corollary
4.3.2 implies that∥∥∥(1⊗M∂kϕ){D, γk ⊗ 1}(1 +D2)−5/2

∥∥∥
1
≤ 2
∥∥(1⊗M∂kϕ)(1 +D2)−2

∥∥
1

so the third term of (4.3.18) lies in L1(H).
Thus, by rearranging this term, we conclude that

Re
(∫ ∞

0

dλ

λ1/2
R0,λ(1⊗Mϕ)R0,λ

)
(4.3.18)
∈ π

4

2∑
k=1

(1⊗M∂kϕ)[γk ⊗ 1,D](1 +D2)−3/2 + L1(H)

=
π

4

∑
k,j=1,2

(
(γkγj − γjγk)⊗M∂kϕ∂j

)
(1 +D2)−3/2 + L1(H)

=
π

2

(
γ2γ1 ⊗ (M∂2ϕ∂1 −M∂1ϕ∂2)

)
(1 +D2)−3/2 + L1(H),

as required. �

Recalling (4.3.8), the following expression immediately follows from Lemmas
4.3.4, 4.3.6 and 4.3.8, which is the main result of this subsection.

Corollary 4.3.9. Suppose ϕ ∈ S(R2). Then

g(D + (1⊗Mϕ))− g(D) ∈ 1

2
γ2γ1 ⊗ (M∂2ϕ∂1 −M∂1ϕ∂2)(1−∆)−3/2 + L1(H).

(4.3.21)

In particular,

g(D + (1⊗Mϕ))− g(D) ∈ L1(H) if and only if (4.3.22)(
Mϕ1∂2 −Mϕ2∂1

) 1

(1−∆)3/2
∈ L1(H).
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4.3.2. The auxiliary operator g(D+1⊗Mϕ)−g(D) is not trace-class. In
this subsection we show that g(D+1⊗Mϕ)−g(D) is not a trace-class operator for
0 6= ϕ ∈ S(R2). We note that this results holds for higher-dimensional examples.
As we show in Section 7.3 the operator g(D + 1 ⊗Mϕ) − g(D) is a trace-class
operator if D is one-dimensional Dirac operator.

The key tools in the proof presented in [57, Theorem 5.3] are singular traces
and Connes’ trace theorem in the form proved in [77, Lemma 16]. Here we present
a different approach which uses only simple geometrical properties of the trace
ideal L1(H) and elementary computations.

Theorem 4.3.10. Let ϕ ∈ S(R2), ϕ 6= 0. Then g(D + 1⊗Mϕ)− g(D) is not
a trace-class operator.

Proof. To shorten notation we denote ϕ1 = ∂1ϕ and ϕ2 = ∂2ϕ. By Corollary
4.3.9 it is sufficient to show, that the operator K =

(
Mϕ1∂2 −Mϕ2∂1

)
1

(1−∆)3/2
is

not trace-class. Suppose the contrary. We note that ϕ1, ϕ2 6= 0, since otherwise
the Schwartz function ϕ equals zero.

For all n,m ∈ Z we set

ψ := χ[− 1
2
, 1
2

]×[− 1
2
, 1
2

], ψn,m(·, ·) := ψ(· − n, · −m).

By [39, Proposition 3.3] we have that∑
n,m

ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2) ≺≺ K

in the sense of Hardy-Littlewood-Polya submajorization (see e.g. [59, Section
3.3]) Since L1(H) is fully symmetric and by assumption K ∈ L1(H), it follows
that ∑

n,m∈Z

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1 =
∥∥∥ ∑
n,m∈Z

ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)
∥∥∥

1

≤ ‖K‖1 <∞.
We claim that the series above on the left-hand side does not converge, and this
would apply that the operator K is not trace-class. To this end, it is sufficient to
show that the series∑

n,m≥0

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1, m ≥ c(ϕ)n, (4.3.23)

does not converge for sufficiently large c(ϕ).
By the definition of the operator K we have

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1

≥ ‖ψn,m(∂1, ∂2)Mϕ1∂2(1−∆)−3/2ψn,m(∂1, ∂2)‖1

− ‖ψn,m(∂1, ∂2)Mϕ2∂1(1−∆)−3/2ψn,m(∂1, ∂2)‖1.

(4.3.24)

Note, that the right-hand side is well-defined since both operators are trace-
class (see Theorem 4.3.1). We estimate two terms on the right-hand side above
separately.

For (s, t) ∈ [n− 1
2
, n+ 1

2
]× [m− 1

2
,m+ 1

2
] we have the estimate

t

(1 + s2 + t2)3/2
≥

m− 1
2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

.
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Therefore,

ψn,m(s, t) ·
m− 1

2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

= θ(s, t)ψn,m(s, t)
t

(1 + s2 + t2)3/2

(4.3.25)
for some θ with 0 ≤ θ(s, t) ≤ 1. Therefore, for the first term in (4.3.24) we have

‖ψn,m(∂1, ∂2)Mϕ1∂2(1−∆)−3/2ψn,m(∂1, ∂2)‖1

≥ ‖ψn,m(∂1, ∂2)Mϕ1∂2(1−∆)−3/2ψn,m(∂1, ∂2)‖1‖θ(∂1, ∂2)‖∞
≥ ‖ψn,m(∂1, ∂2)Mϕ1∂2(1−∆)−3/2ψn,m(∂1, ∂2)θ(∂1, ∂2)‖1

(4.3.25)
= ‖ψn,m(∂1, ∂2)Mϕ1ψn,m(∂1, ∂2)‖1

m− 1
2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

.

(4.3.26)

Using the fact, that ∂1 (respectively, ∂2) is generator of translation, we have that
∂1 + n = Mhn∂1Mhn (respectively, ∂2 + m = Mhm∂2Mhm), where hn = e−ins

(respectively, hm = e−imt). Hence, we obtain that

ψn,m(∂1, ∂2) = ψ(∂1 + n, ∂2 +m) = Mhnhmψ(∂1, ∂2)Mh−1
n h−1

m
, (4.3.27)

and therefore combining this equality with (4.3.26) we obtain

‖ψn,m(∂1, ∂2)Mϕ1∂2(1−∆)−3/2ψn,m(∂1, ∂2)‖1

≥ ‖ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2)‖1

m− 1
2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

,
(4.3.28)

for all n,m ∈ Z.
On the other hand, for (s, t) ∈ [n − 1

2
, n + 1

2
] × [m − 1

2
,m + 1

2
] we have the

estimate
s

(1 + s2 + t2)3/2
≤

n+ 1
2

(1 + (m− 1
2
)2 + (n− 1

2
)2)3/2

.

Hence, using this estimate and the unitary equivalence (4.3.27) for the second
term in (4.3.24) we have

‖ψn,m(∂1, ∂2)Mϕ2∂1(1−∆)−3/2ψn,m(∂1, ∂2)‖1

= ‖ψn,m(∂1, ∂2)Mϕ2ψn,m(∂1, ∂2)∂1(1−∆)−3/2‖1

≤
n+ 1

2

(1 + (m− 1
2
)2 + (n− 1

2
)2)3/2

‖ψn,m(∂1, ∂2)Mϕ2ψn,m(∂1, ∂2)‖1

≤
n+ 1

2

(1 + (m− 1
2
)2 + (n− 1

2
)2)3/2

‖ψ(∂1, ∂2)Mϕ2ψ(∂1, ∂2)‖1

Combining this estimate with (4.3.28) we infer from (4.3.24) that

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1

≥‖ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2)‖1

m− 1
2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

−
n+ 1

2

(1 + (m− 1
2
)2 + (n− 1

2
)2)3/2

‖ψ(∂1, ∂2)Mϕ2ψ(∂1, ∂2)‖1

(4.3.29)
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Next, we claim that

‖ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2)‖1, ‖ψ(∂1, ∂2)Mϕ2ψ(∂1, ∂2)‖1 6= 0. (4.3.30)

We concentrate firstly on the operator ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2).
If ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2) = 0, then repeating the argument for the function

ψN := χ[−N
2
,N
2

]×[−N
2
,N
2

], N ∈ N, we again arrive to estimate similar to (4.3.29). If

there exists no N ∈ N such that ψN(∂1, ∂2)Mϕ1ψN(∂1, ∂2) 6= 0, then since ψN → I

in the strong operator topology, we infer that 0 = ψN(∂1, ∂2)Mϕ1ψN(∂1, ∂2)
(so)−−→

Mϕ1 , that is ϕ1 = 0, which is not the case. Therefore, there exists N1 ∈ N, such
that

ψN1(∂1, ∂2)Mϕ1ψN1(∂1, ∂2) 6= 0.

Similarly, there exists N2 ∈ N, such that

ψN2(∂1, ∂2)Mϕ1ψN2(∂1, ∂2) 6= 0.

Taking N0 = max{N1, N2} we have that

ψN0(∂1, ∂2)Mϕ1ψN0(∂1, ∂2), ψN0(∂1, ∂2)Mϕ2ψN0(∂1, ∂2) 6= 0.

Thus, without loss of generality we can assume (4.3.30).
Hence, using (4.3.29) and (4.3.30) for the series in (4.3.23) we infer∑
n,m≥0,m≥c(ϕ)n

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1

≥
∑

n,m≥0,m≥c(ϕ)n

(
‖ψ(∂1, ∂2)Mϕ1ψ(∂1, ∂2)‖1

m− 1
2

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

−
n+ 1

2

(1 + (m− 1
2
)2 + (n− 1

2
)2)3/2

‖ψ(∂1, ∂2)Mϕ2ψ(∂1, ∂2)‖1

)
≥ cosnt(ϕ)

∑
n,m≥0,m≥c(ϕ)n

m− (n+ 1)

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

.

Since m ≥ c(ϕ)n for c(ϕ) sufficiently large, we have that∑
n,m≥0,m≥c(ϕ)n

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1

≥ const
∑

n,m≥0,m≥c(ϕ)n

m

(1 + (m+ 1
2
)2 + (n+ 1

2
)2)3/2

.

Since the series on the right-hand side diverges, we infer that the series∑
n,m≥0,m≥c(ϕ)n

‖ψn,m(∂1, ∂2)Kψn,m(∂1, ∂2)‖1

is also divergent.
The obtained contradiction implies that the operator

(
Mϕ1∂2−Mϕ2∂1

)
1

(1−∆)3/2

is not trace-class, which suffices to conclude the proof. �
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4.3.3. The proof of the main result. Now, having proven Theorem 4.3.10,
we prove our main result of this section, Theorem 4.3.14, for “smoother” functions
f . Firstly, we work with the square g2 of the auxiliary function g (see (1.1.2)).

Lemma 4.3.11. Suppose ϕ ∈ S(R2). Then

g2(D + 1⊗Mϕ)− g2(D) ∈ L1(H).

Proof. First, observe that g2(t) = t2(1+t2)−1 = 1−(1+t2)−1, so by applying
the second resolvent identity, we see that

g2(D+1⊗Mϕ)− g2(D) = (1 +D2)−1 −
(
1 + (D + 1⊗Mϕ)2

)−1

= (1 +D2)−1
(
(D + 1⊗Mϕ)2 −D2)

(
1 + (D + (1⊗Mϕ))2

)−1

= (1 +D2)−1
(
D(1⊗Mϕ) + (1⊗Mϕ)D + (1⊗Mϕ)2

)
(1 +D2)−1

× 1 +D2

1 + (D + (1⊗Mϕ))2
.

Since (1⊗Mϕ) is bounded, [34, Lemma B.6] implies that (1 +D2)
(
1 + (D+ (1⊗

Mϕ))2
)−1

is bounded, and therefore it suffices to show that

(1 +D2)−1D(1⊗Mϕ)(1 +D2)−1, (1 +D2)−1(1⊗Mϕ)D(1 +D2)−1,

(1 +D2)−1(1⊗Mϕ)2(1 +D2)−1 ∈ L1(H).

We show this only for the first operator, since the others can be treated similarly.
By the noncommutative Hölder inequality (1.1.1) and Corollary 4.3.2, we have
that ∥∥(1 +D2)−1D(1⊗Mϕ)(1 +D2)−1

∥∥
1

≤
∥∥D(1 +D2)−1/2

∥∥
∞

∥∥(1 +D2)−1/2(1⊗M|ϕ|1/2)
∥∥

3

×
∥∥|(1⊗M|ϕ|1/2)(1 +D2)−1

∥∥
3/2

<∞.

�

Lemma 4.3.12. Suppose ϕ ∈ S(R2). If f0 ∈ C2
b (R) is an even function, then

f0(D + 1⊗Mϕ)− f0(D) ∈ L1(H).

Proof. Suppose f0 ∈ C2
b (R) is even. Since g2 is an even function, and

since g2 : [0,∞) → [0, 1) is injective, we may write f0 = h ◦ g2, where h =
f0 ◦ g−2 : [0, 1] → R is a C2-function. Hence, by Theorem 2.1.6 we have that

T
g2(D+1⊗Mϕ),g2(D)

h[1]
∈ B

(
L1(H)

)
. Therefore, by Lemma 4.3.11 we conclude that

f0(D + 1⊗Mϕ)− f0(D) = h
(
g2(D + 1⊗Mϕ)

)
− h
(
g2(D)

)
= T

g2(D+1⊗Mϕ),g2(D)

h[1]

(
g2(D + 1⊗Mϕ)− g2(D)

)
∈ L1(H),

as required. �

Lemma 4.3.13. Suppose that ϕ ∈ S(R2). Then(
g(D + 1⊗Mϕ)− g(D)

)
(1 +D2)−1 ∈ L1(H).
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Proof. By Theorem 4.3.1, M∂jϕ(1 + D2)−2 ∈ L1(H). Hence, by Corollary
4.3.9, we have(

g(D + 1⊗Mϕ)− g(D)
)
(1 +D2)−1

∈ 1

2

(
γ2γ1 ⊗ (M∂2ϕ∂1 −M∂1ϕ∂2)

)
(1 +D2)−5/2 + L1(H) = L1(H).

�

Now, in the following, let f be a real-valued function on R such that 0 <
f ′ ∈ S(R). We denote limits at infinity by f(+∞) := limt→∞ f(t) and f(−∞) :=
limt→−∞ f(t). Since f(+∞) 6= f(−∞) we can define the functions f0, f1, f0,m, f1,m

by setting

f0(t) :=
f(t) + f(−t)

2
, f1(t) :=

f(t)− f(−t)
2

,

f0,m(t) := f0(t)− f0(+∞), f1,m(t) :=


f1(t)

g(t)f1(+∞)
− 1, if t 6= 0,

−1, if t = 0.

One can check that f0,m ∈ S(R), f1,m ∈ C2
b (R). We are now ready to prove the

second main result of the present section.

Theorem 4.3.14. Suppose ϕ ∈ S(R2). Suppose f : R→ R is a function such
that 0 < f ′ ∈ S(R). Then

f(D + 1⊗Mϕ)− f(D) /∈ L1(H).

Proof. Firstly, for t ∈ R, observe that we may write

f(t) = f0(t) + f1(t) = f0(+∞) +
(
f0(t)− f0(+∞)

)
+ g(t)

( f1(t)

g(t)f1(+∞)

)
f1(+∞)

= f1(+∞) + f0,m(t) + g(t)
(
1 + f1,m(t)

)
f1(+∞),

Now, since f0,m ∈ C2
b (R) is even, Lemma 4.3.12 implies that

f0,m(D + 1⊗Mϕ)− f0,m(D) ∈ L1(H).

Furthermore,

g(D + 1⊗Mϕ)
(
1 + f1,m(D + 1⊗Mϕ)

)
− g(D)

(
1 + f1,m(D)

)
= g(D + 1⊗Mϕ)

[
f1,m(D + 1⊗Mϕ)− f1,m(D)

]
+
[
g(D + 1⊗Mϕ)− g(D)

](
1 + f1,m(D)

)
,

and, since f1,m ∈ C2
b (R) and is even, again using Lemma 4.3.12, we have that

g(D + 1⊗Mϕ)
[
f1,m(D + 1⊗Mϕ)− f1,m(D)

]
∈ L1(H).

Hence,

f(D + 1⊗Mϕ)− f(D)

∈ f1(+∞)
[
g(D + 1⊗Mϕ)− g(D)

](
1 + f1,m(D)

)
+ L1(H)

= f1(+∞)
[
g(D + 1⊗Mϕ)− g(D)

]
+ f1(+∞)

[
g(D + 1⊗Mϕ)− g(D)

]
· f1,m(D) + L1(H)

(4.3.31)



74 4. SPECTRAL SHIFT FUNCTION

For the second term on the right-hand side of (4.3.31) we note that since
θf (t) = f1,m(t)(1 + t2) is bounded, Lemma 4.3.13, implies that[

g(D+1⊗Mϕ)− g(D)
]
f1,m(D)

=
[
g(D + 1⊗Mϕ)− g(D)

]
(1 +D2)−1 · θf (D) ∈ L1(H).

Thus, we conclude that

f(D + 1⊗Mϕ)− f(D) ∈ f1(+∞)
[
g(D + 1⊗Mϕ)− g(D)

]
+ L1(H).

Finally, by Theorem 4.3.10, we have that g(D + 1⊗Mϕ)− g(D) /∈ L1(H), so

f(D + 1⊗Mϕ)− f(D) /∈ L1(H).

�



CHAPTER 5

The principal trace formula

In this chapter we prove the fundamental result of the present thesis, the
principal trace formula, which states that

tr
(
e−tH2 − e−tH1

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds, t > 0, (5.0.1)

where As = A− + s(A+ − A−), s ∈ [0, 1] is the straight line path joining A− and
A+.

As mentioned in Section 1.6, this principal trace formula is the most impor-
tant result, which allows us to establish the further results for the Witten index
(see Chapter 6 below). One can say that the results of Chapter 6 are (almost
immediate) corollaries of this principal trace formula.

In the first section of the present chapter we establish the principal trace
formula in its heat kernel version.

To demonstrate that our technique is applicable for many other versions of
trace formulas of the type (5.0.1), we we also prove version of the principal trace
formula in its resolvent difference form. In this case, the formula is

tr
(

(H2−z)−m−(H1−z)−m
)

= − (2m− 1)!!

2m(m− 1)!

∫ 1

0

tr
(
(A2

s−z)−
1
2
−m(A+−A−)

)
ds,

where z < 0 and As = A− + s(A+ − A−), s ∈ [0, 1], as before. The latter result
provides an alternative proof of [32, Theorem 1.1].

The results of this chapter are presented in [28].

5.1. The heat kernel version of the PTF

As we already mentioned in Section 1.6, our approach in the proof of the
principal trace formula relies on approximation of results already known for the
path {An(t)}t∈R of reduced operators

An(t) = A− + PnB(t)Pn,

where, as before, Pn = χ[−n,n](A−). Hence, we firstly recall the result from [31],
which is used here. The notation erf stands for the error function

erf(x) =
2

π1/2

∫ x

0

e−y
2

dy, x ∈ R. (5.1.1)

Proposition 5.1.1. [31, Example B.6 (ii) and Theorem B.5] For the the path
{An(t)}t∈R of reduced operators we have that

e−tH2,n − e−tH1,n ∈ L1(L2(R,H)), erf(t1/2A+,n)− erf(t1/2A−) ∈ L1(H)

and the equation

tr
(
e−tH2,n − e−tH1,n

)
= −1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)
, (5.1.2)

75
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holds.

Proof. By Proposition 3.2.3 the family {An(t)} satisfies the Pushnitski as-
sumptions (see Hypothesis 1.5.1), and hence, obviously, it satisfies Hypothesis
1.5.2, which guarantees that the results of [31] are applicable.

Take the Schwartz function

f(λ) = e−tλ, λ ∈ [0,∞), t ∈ (0,∞).

Then for the function F on R, defined by (cf. [31, (B.57)])

F (ν) =
ν

2π

∫
[ν2,∞)

λ−1(λ− ν2)−1/2[f(λ)− f(0)]dλ,

we have [31, (B.76)]

F (ν) = −1

2
erf
(
t1/2ν

)
.

Hence, by [31, Theorem B.5] we obtain that

tr
(
e−tH2,n − e−tH1,n

)
= tr

(
f(H2,n)− f(H1,n)

)
= tr(F (A+,n)− F (A−))

= −1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)
,

as required. �

Next, applying the (noncommutative) Fundamental Theorem of Calculus ob-
tained in Proposition 2.3.2 to the right-hand side of (5.1.2), we aim to rewrite the
principal trace formula obtained in Proposition 5.1.1 for the reduced operators.

Lemma 5.1.2. For the path {An(t)}t∈R of reduced operators we have

tr
(
e−tH2,n − e−tH1,n

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds, (5.1.3)

where As,n = A− + sPnB+Pn, s ∈ [0, 1].

Proof. By Proposition 5.1.1 we have

tr
(
e−tH2,n − e−tH1,n

)
= −1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)
.

Since the operator B+,n = A+,n−A− is a trace-class operator (see (3.2.7)), it
follows that the path Bs,n = s(A+,n − A−) is a C1-path of trace-class operators.
Applying now Proposition 2.3.2 for this path (with f = erf, which clearly satisfies
the assumption of this proposition since f ′ is a Schwartz function) we obtain that

1

2
tr
(

erf(t1/2A+,n)− erf(t1/2A−)
)

=
( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds.

(5.1.4)
Hence,

tr
(
e−tH2,n − e−tH1,n

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds,

as required. �
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Thus, by Lemma 5.1.2 it is sufficient to pass to the limit as n→∞ to prove
the desired principal trace formula (5.0.1). We firstly prove the integral of the
right-hand side of (5.0.1) is well-defined.

Proposition 5.1.3. Assume Hypothesis 3.5.1. The function

s 7→ tr
(
e−tA

2
s(A+ − A−)

)
, s ∈ [0, 1]

is continuous, and hence, the integral∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds

is well-defined.

Proof. Firstly we show that the operator e−tA
2
s(A+ − A−) is a trace class

operator for any fixed s ∈ [0, 1]. Since the operator

(As + i)p+1e−tA
2
s

is bounded, it is sufficient to show that

(As + i)−p−1(A+ − A−) = (As + i)−p−1B+ ∈ L1(H).

We can write

(As + i)−p−1B+ =
(

(As + i)−p−1 − (A− + i)−p−1
)
B+ + (A− + i)−p−1B+.

By (3.1.7) we have that the second term on the right-hand side is a trace-class
operator. On the other hand, Theorem 3.3.2 implies the operator (As + i)−p−1 −
(A− + i)−p−1 is a trace-class operator. Hence, (As + i)−p−1B+ ∈ L1(H) for any
s ∈ [0, 1].

Now, let s1, s2 ∈ [0, 1]. By Proposition 2.2.10 we have

e−tA
2
s1B+ − e−tA

2
s2B+ = (e−tA

2
s1 − e−tA2

s2

)
B+

=
∑
j=1,2

T
As1 ,As2
f,aj

(
(As1 − aji)−p−1 − (As2 − aji)−p−1

)
·B+,

(5.1.5)

where f(x) = e−tx
2
, x ∈ R, t > 0.

By Remark 3.3.3 we have that∥∥∥(As1 − aji)−p−1 − (As2 − aji)−p−1
∥∥∥

1
→ 0, as s1 − s2 → 0.

Furthermore, by Theorem 2.3.8 the double operator integral T
As1 ,As2
f,aj

, j = 1, 2,

converges pointwise on L1(H) to T
As1 ,As1
f,aj

, as s2 → s1. Therefore,

‖ · ‖1 − lim
s2→s1

T
As1 ,As2
f,aj

(
(As1 − aji)−p−1 − (As2 − aji)−p−1

)
= T

As1 ,As1
f,aj

(0) = 0. j = 1, 2.

Thus, equality (5.1.5) implies that

‖e−tA2
s1B+ − e−tA

2
s2B+‖1 → 0, s1 − s2 → 0,

as required. �

We now ready to prove the principal trace formula in its heat kernel version,
which is the main result of this chapter.
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Theorem 5.1.4 (The principal trace formula). Assume Hypothesis 3.5.1. Let
As = A− + s(A+ − A−), s ∈ [0, 1], be the straight line path joining A− and A+.
Then for all t > 0, we have

tr
(
e−tH2 − e−tH1

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds.

Proof. By Lemma 5.1.2 we have

tr
(
e−tH2,n − e−tH1,n

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds. (5.1.6)

We now pass to the limit as n→∞.
For the left hand side of (5.1.6) we firstly note that since the function f(λ) =

e−tλ
2
, t > 0, is a Schwartz function, it follows from (2.2.34) that it belongs to the

class Fm (see Definition 2.2.8). Therefore, Theorem 3.6.1 (ii) and Theorem 2.3.9
(with An = H2,n, A = H2, Bn = H1,n, B = H1) imply that

lim
n→∞

tr
(
e−tH2,n − e−tH1,n

)
= tr

(
e−tH2 − e−tH1

)
. (5.1.7)

For the right hand side of (5.1.6), we firstly write

e−tA
2
s,n(A+,n − A−) = (As,n + i)p+1e−tA

2
s,n · (As,n + i)−p−1B+,n.

Since As,n → As in the strong resolvent sense (see Lemma 3.2.5) and the function

x 7→ e−tx
2
(x + i)p+1 is continuous and bounded, [69, Theorem VIII.23] implies

that (As,n + i)p+1e−tA
2
s,n → (As + i)p+1e−tA

2
s strongly. Hence, by Lemma 3.2.1,

the convergence

‖ · ‖1 − lim
n→∞

e−tA
2
s,n(A+,n − A−) = e−tA

2
s(A+ − A−) (5.1.8)

will follow from the convergence

‖ · ‖1 − lim
n→∞

(As,n + i)−p−1B+,n = (As + i)−p−1B+. (5.1.9)

To prove convergence (5.1.9) we write

(As,n + i)−p−1B+,n

=
(

(As,n + i)−p−1 − (A− + i)−p−1
)
B+,n + (A− + i)−p−1B+,n

=
(

(As,n + i)−p−1 − (A− + i)−p−1
)
B+,n + Pn(A− + i)−p−1B+Pn.

Theorem 3.3.2 (see also Remark 3.3.3) implies that
(

(As,n+i)−p−1−(A−+i)−p−1
)

converges to
(

(As + i)−p−1− (A−+ i)−p−1
)

in L1(H). Moreover, the assumption

that (A− + i)−p−1B+ ∈ L1(H) (see (3.1.7)), the strong convergence Pn → 1
combined with Lemma 3.2.1 imply that

Pn(A− + i)−p−1B+Pn → (A− + i)−p−1B+

in L1(H). Hence,

‖ · ‖1 − lim
n→∞

(As,n + i)−p−1B+,n

=
(

(As + i)−p−1 − (A− + i)−p−1
)
B+ + (A− + i)−p−1B+

= (As + i)−p−1B+
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for every fixed s ∈ [0, 1], which suffices to prove (5.1.8).
By Corollary 3.3.4 we have that the sequence of functions

{s 7→ ‖e−tA2
s,n(A+,n − A−)‖1}n∈N (5.1.10)

is uniformly bounded with respect to n ∈ N. Hence, using (5.1.8) with (5.1.10)
and employing the dominated convergence theorem we infer that

lim
n→∞

∫ 1

0

tr
(
e−tA

2
s,n(A+,n − A−)

)
ds =

∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds. (5.1.11)

Thus, (5.1.6) and (5.1.7) imply that

tr
(
e−tH2 − e−tH1

)
= −

( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds,

which concludes the proof. �

5.2. Resolvent version of the principal trace formula

In this section we show how our technique yields an alternative proof of the
resolvent version of the principal trace formula proved in [32]. Our argument is
based on the approximation technique described previously and differentiation of
the original principal trace formula (1.5.1) from [67, 47] with respect to the pa-
rameter z. We firstly supply the necessary technical details of our differentiation
procedure.

Recall that, the reduced family {Bn(t)}t∈R, n ∈ N, satisfies the Pushnitski’s
assumption (see Proposition 3.2.3). Therefore, by Theorem 1.5.3 for the operators
Hj,n, j = 1, 2, n ∈ N we have that

(H2,n − z)−1 − (H1,n − z)−1 ∈ L1(L2(R,H)). (5.2.1)

In particular, the equality

(H2,n − z)−k − (H1,n − z)−k

=
k∑
j=1

(H2,n − z)j−k
(

(H2,n − z)−1 − (H1,n − z)−1
)

(H1,n − z)1−j,

implies that
(H2,n − z)−k − (H1,n − z)−k ∈ L1(L2(R,H)). (5.2.2)

for any k ∈ N.
Moreover, inclusion (5.2.1) combined with Theorem 1.2.3 guarantees that

there exists spectral shift function ξ(·;H2,n,H1,n) for the pair (H2,n,H1,n), sat-
isfying

ξ(·,H2,n,H1,n) ∈ L1(R; (λ2 + 1)−1dλ). (5.2.3)

The following lemma gives the well-known formula for derivative (with respect
to z) of (5.2.1). The proof, which is based on the Krein trace formula (1.2.5), is
supplied for completeness. We note, that the formula below can be proved using
simple algebraic tools, however Krein trace formula provides a shorter proof.

Lemma 5.2.1. Let m ∈ N. We have

dm

dzm
tr
(

(H2,n−z)−1−(H1,n−z)−1
)

= m! tr
(

(H2,n−z)−m−1−(H1,n−z)−m−1
)

for all z ∈ C \ [0,∞).
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Proof. Throughout this proof we fix z ∈ C \ [0,∞) and choose ∆z ∈ C
satisfying |∆z| < ε with ε > 0 sufficiently small such that z + ∆z ∈ C \ [0,∞).

It is sufficient to prove, that

d

dz
tr
(

(H2,n−z)−m− (H1,n−z)−m
)

= m tr
(

(H2,n−z)−m−1− (H1,n−z)−m−1
)
.

By Krein’s trace formula we have

1

∆z

[
tr
(
(H2,n − z −∆z)−m − (H1,n − z −∆z)−m

)
− tr

(
(H2,n − z)−m − (H1,n − z)−m

)]
= −m 1

∆z

∫ ∞
0

ξ(λ,H2,n,H1,n)(λ− z −∆z)−m−1dλ (5.2.4)

+m
1

∆z

∫ ∞
0

ξ(λ,H2,n,H1,n)(λ− z)−m−1dλ

= −m
∫ ∞

0

ξ(λ,H2,n,H1,n)
( 1

∆z

(
(λ− z −∆z)−m−1 − (λ− z)−m−1

))
dλ.

We have that

lim
∆z→0

1

∆z

(
(λ− z −∆z)−m−1 − (λ− z)−m−1

)
= (m+ 1)(λ− z)−m−2. (5.2.5)

Furthermore,∣∣∣ 1

∆z

(
(λ− z −∆z)−m−1 − (λ− z)−m−1

)∣∣∣
=
∣∣∣ 1

(λ− z −∆z)(λ− z)

m∑
j=0

(λ− z −∆z)−m+j(λ− z)−j
∣∣∣

≤ const |(λ− z)−2|
uniformly with respect to ∆z. Since the function ξ(·,H2,n,H1,n)(λ − z)−2 is
integrable (see (5.2.3)), we obtain that the integrand on the right-hand side of
(5.2.4) is uniformly majorised by an integrable function. Therefore, by (5.2.5)
and the dominated convergence theorem we obtain that (5.2.4) converges to

−m(m+ 1)

∫ ∞
0

ξ(λ,H2,n,H1,n)(λ− z)−m−2dλ

as |∆z| → 0. By the Krein trace formula the latter term is equal to

m tr
(

(H2,n − z)−m−1 − (H1,n − z)−m−1
)
.

Thus,

d

dz
tr
(

(H2,n − z)−m − (H1,n − z)−m
)

= − d

dz
m

∫ ∞
0

ξ(λ,H2,n,H1,n)(λ− z)−m−1dλ

= −m(m+ 1)

∫ ∞
0

ξ(λ,H2,n,H1,n)(λ− z)−m−2dλ

= m tr
(

(H2,n − z)−m−1 − (H1,n − z)−m−1
)
,

as required.
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�

Lemma 5.2.2. Let m ∈ N, let D0 be a self-adjoint operator on H and let B be
self-adjoint trace-class operator, D1 = D0 +B. For every z < 0 we have in trace
norm

dm

dzm
(D2

1 − z)−
3
2B = Cm(D2

1 − z)−
3
2
−mB,

where Cm = (2m+1)!!
2m

.

Proof. Since, the operator B is trace-class, by Lemma 3.2.1 it is sufficient
to show that

(so)− dm

dzm
(A2 − z)−

3
2 = Cm(A2 − z)−

3
2
−m,

which in its turn follows from

(so)− d

dz
(A2 − z)−

3
2
−m = (

3

2
+m)(A2 − z)−

3
2
−m−1.

By Leibniz’s rule we have

(so)− d

dz
(A2 − z)−

3
2
−m (5.2.6)

=
(

(so)− d

dz
(A2 − z)−1/2

)
× (A2 − z)−1−m

+ (A2 − z)−1/2 ×
(

(so)− d

dz
(A2 − z)−1−m

)
.

The equality (so)− d
dz

(A2− z)−1−m = (1 +m)(A2− z)−2−m,m ∈ N∪ {0} can
be easily proved by induction. Thus, we need only to show that

(so)− d

dz
(A2 − z)−1/2 =

1

2
(A2 − z)−

3
2 .

Let z, z0 < 0 and let f(t) = (t2 − z)−1/2, we have

(A2 − z)−1/2 − (A2 − z0)−1/2

z − z0

=
1

z − z0

TA
2−z,A2−z0

f [1]
(z − z0) = TA

2−z,A2−z0
f [1]

(I).

Since the function f ∈ C2
b [z′,∞), where z′ = min{−z,−z0} > 0, we have that

(see e.g. [9, Proposition 4.9 (ii)])

T
(A2−z,A2−z0)

f [1]
(1)→ TA

2−z0,A2−z0
f [1]

(1), as z → z0

in the strong operator topology. Hence, by (2.1.5) we conclude

(so)− d

dz
(A2 − z)−1/2

∣∣∣
z=z0

= TA
2−z0,A2−z0

f [1]
(1) = f ′(A2 − z0) =

1

2
(A2 − z0)−

3
2 .

�

The next theorem gives an alternative proof of [32, Theorem 1.1].

Theorem 5.2.3. Assume Hypothesis 3.5.1. Let As = A− + s(A+ − A−), s ∈
[0, 1] by the straight line joining A− and A+. Then for all z < 0, we have that

tr
(

(H2−z)−m−(H1−z)−m
)

= − (2m− 1)!!

2m(m− 1)!

∫ 1

0

tr
(
(A2

s−z)−1/2−m(A+−A−)
)
ds.
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Proof. By Proposition 3.2.3 the family {An(t)} satisfies the Pushnitski as-
sumption 1.5.1. Hence, by Theorem 1.5.3 we have the principal trace formula
(1.5.1) for the reduced operators,

tr
[
(H1,n − z)−1 − (H2,n − z)−1] =

1

2z
tr [gz (A+,n)− gz (A−)] , n ∈ N,

where gz is defined by (1.1.3).
Recall that Bs,n is a C1-path of trace-class operators. In addition, for the

function gz ∈ C∞(R) we have g′z(t) = −z(t2 − z)−3/2, that is g′z ∈ L1(R). Hence,
applying Proposition 2.3.2 we infer

1

2z
tr [gz (A+,n)− gz (A−)] = −1

2

∫ 1

0

tr
(

(A2
s,n − z)−

3
2 (A+,n − A−)

)
ds.

Thus, for every n ∈ N we have

tr
[
(H1,n − z)−1 − (H2,n − z)−1] (5.2.7)

= −1

2

∫ 1

0

tr
(

(A2
s,n − z)−

3
2 (A+,n − A−)

)
ds, z ∈ C \ [0,∞).

On the left hand side of (5.2.7), by Lemma 5.2.1, we have that

dm−1

dzm−1
tr
[
(H1,n − z)−1 − (H2,n − z)−1]

= (m− 1)! tr
[
(H1,n − z)−m − (H2,n − z)−m

]
.

On the other hand by Lemma 5.2.2 for the right-hand side of (5.2.7) we have

dm−1

dzm−1

∫ 1

0

tr
(

(A2
s,n − z)−

3
2 (A+,n − A−)

)
ds

=

∫ 1

0

dm−1

dzm−1
tr
(

(A2
s,n − z)−

3
2 (A+,n − A−)

)
ds

=
(2m− 1)!!

2m−1

∫ 1

0

tr
(

(A2
s,n − z)−m−1/2(A+,n − A−)

)
ds.

Therefore, for every n ∈ N

tr
[
(H1,n − z)−m − (H2,n − z)−m

]
(5.2.8)

= − (2m− 1)!!

(m− 1)!2m

∫ 1

0

tr
(

(A2
s,n − z)−m−1/2(A+,n − A−)

)
ds.

By Theorem 3.6.1 the left hand side converges to tr
(

(H2−z)−m−(H1−z)−m
)

as n→∞. We claim that the right-hand side converges to (2m−1)!!
(m−1)!2m

∫ 1

0
tr
(
(A2

s −
z)−1/2−m(A+ − A−)

)
ds. By Corollary 3.3.4 we have that the functions

[0, 1] 3 s 7→
∥∥(A2

s,n − z)−m−1/2(A+,n − A−)
∥∥

1
(5.2.9)

are uniformly bounded with respect to n ∈ N.
It follows from (5.1.9) that

‖ · ‖1 − lim
n→∞

(As,n + i)−2m−1B+,n = (As + i)−2m−1B+.
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In addition, the function x 7→ (x2−z)−m−1/2(x+ i)2m+1, x ∈ R, is continuous and

bounded, and therefore [69, Theorem VIII.23] implies that (As,n+ i)p+1e−tA
2
s,n →

(As + i)p+1e−tA
2
s strongly. Hence, by Lemma 3.2.1, the convergence

‖ · ‖1− lim
n→∞

(A2
s,n− z)−m−1/2(A+,n−A−,n) = (A2

s − z)−m−1/2(A+−A−) (5.2.10)

holds. Combining this fact with (5.2.9), by the dominated convergence theorem
we infer that the sequence

(2m− 1)!!

(m− 1)!2m

∫ 1

0

tr
(

(A2
s,n − z)−m−1/2(A+,n − A−,n)

)
ds

converges to

(2m− 1)!!

(m− 1)!2m

∫ 1

0

tr
(
(A2

s − z)−1/2−m(A+ − A−)
)
ds

as n→∞.
Thus, by (5.2.8) we obtain

tr
(

(H2−z)−m−(H1−z)−m
)

= − (2m− 1)!!

(m− 1)!2m

∫ 1

0

tr
(
(A2

s−z)−1/2−m(A+−A−)
)
ds.

�

Remark 5.2.4. (i) Here we presented the proof, which uses differentia-
tion with respect to z. We note that this step is redundant and, in fact,
can be replaced by the reference to [31, Theorem B.5]. Indeed, consider
the function

f(λ) = (λ− z)−m, λ ∈ [0,∞),m ∈ N.

Then for the function F on R, defined by (cf. [31, (B.57)])

F (ν) =
ν

2π

∫
[ν2,∞)

λ−1(λ− ν2)−1/2[f(λ)− f(0)]dλ,

we have (see [31, (B.51)])

F ′(ν) =
1

π

∫
[0,∞)

λ−1/2f ′(λ+ ν2)dλ, ν ∈ R.

For this choice of f , one can compute that

F ′(ν) = −m
π

∫
[0,∞)

1

λ1/2(λ− z + ν2)m+1
dλ

=
m

π

Γ(m+ 1/2)
√
π

Γ(m+ 1)

1

(ν2 − z)m+1/2

= − (2m− 1)!!

2m(m− 1)!

1

(ν2 − z)m+1/2
,

where the second equality follows from the definition of Beta function
and the last equality one from properties of Gamma function.



84 5. THE PRINCIPAL TRACE FORMULA

Hence, by [31, Theorem B.5] and Proposition 2.3.2 we have

tr
(

(H2,n − z)−m − (H1,n − z)−m
)

= tr
(
F (A+,n)− F (A−)

)
=

∫ 1

0

tr
(
F ′(As,n)(A+,n − A−)

)
ds

= − (2m− 1)!!

2m(m− 1)!

∫ 1

0

tr
(
(A2

s,n − z)−m−1/2(A+,n − A−)
)
ds,

which is precisely the same as (5.2.8). Passing to the limit as n → ∞
as before, we infer the principal trace formula in the resolvent form.

(ii) If fact, our technique can be used to prove trace formulas for a wide
class of functions. However, since we do not aim to prove principle
trace formula for a general class of functions, we skip the proof.



CHAPTER 6

Witten index in terms of spectral shift function and
spectral flow

In this chapter we prove the main results of the present thesis. The results
presented in htis chapter are taken from [28].

The first main result here (Section 6.1) is the Pushnitski’s formula

ξ(λ;H2,H1) =
1

π

∫ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ− ν2)1/2
.

Thus, we generalise the formula, obtained in [67], [47] and [30], for the setting
of p-relative trace-class perturbations of a self-adjoint operator A−.

We note that our approach to the proof of Pushnitski’s formula is completely
different from that of [67], [47] and [30]. The fundamental step in our approach is
the principal trace formula (in its heat kernel version) and the Laplace transform.

As an application of Pushnitski’s formula we prove (see Theorem 6.2.3) that

W (DA) = [ξL(0+;A+, A−) + ξL(0−;A+, A−)]/2,

provided that the right-hand side is well-defined. Here our proof is based on [31].
Thus, if the values (in Lebesgue sense) of the spectral shift function ξ(·;A+, A−)
are well defined from the left and the right of zero, the Witten index of the
operator DA can be computed via ξ(·;A+, A−).

In Section 6.3 we impose an additional assumption that the asymptotes A±
are Fredholm. This assumption guarantees that the spectral flow sf({A(t)}t∈R)
for the family {A(t)}t∈R is well-defined. Moreover, it also yields that spectral
shift function ξ(·;A+, A−) is left and right continuous at zero. Here, we prove
that

1

2

(
ξ(0+;A+, A−) + ξ(0−;A+, A−)

)
= sf{A(t)}∞t=−∞ −

1

2
[dim(ker(A+))− dim(ker(A−))],

thus showing that an intuitive equality that the spectral shift function on discrete
spectra computes the spectral flow holds in this general setting.

In addition, combining this with our formula for the Witten index we conclude
that

W (DA) =
1

2

(
ξ(0+;A+, A−) + ξ(0−;A+, A−)

)
= sf{A(t)}∞t=−∞ −

1

2
[dim(ker(A+))− dim(ker(A−))].

Thus, we prove the ’index=spectral flow’ type theorem of Atiyah-Patodi-Singer,
Robbin-Salamon etc., which is now suitable for paths {A(t)}t∈R with not nec-
essarily invertible asymptotes A±. Furthermore, this result also holds for paths
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{A(t)}t∈R of differential operator on locally compact manifolds, where some es-
sential spectra outside 0 is typically present.

6.1. Pushnitski’s formula

The following is generalisation of Pushnitski’s formula (1.5.2) from [67] (see
also, [47], [30]).

Theorem 6.1.1. Assume Hypothesis 3.5.1. Let ξ(·;A+, A−) be the spectral
shift function for the pair (A+, A−) fixed in (4.2.6) and let ξ(·;H2,H1) be the
spectral shift function for the pair (H2,H1) fixed by equality (4.2.2). Then for
a.e. λ > 0 we have

ξ(λ;H2,H1) =
1

π

∫ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ− ν2)1/2
(6.1.1)

with a convergent Lebesgue integral on the right-hand side of (6.1.1).

Proof. By the principle trace formula for semigroup difference (see Theorem
5.1.4) we have that

tr(e−tH2 − e−tH1) = −
( t
π

)1/2
∫ 1

0

tr
(
e−tA

2
s(A+ − A−)

)
ds

for all t > 0. For the right hand side of this formula (5.1.11) and (5.1.4) imply
that ( t

π

)1/2
∫ 1

0

tr(e−tA
2
s(A+ − A−))ds

(5.1.11)
= lim

n→∞

( t
π

)1/2
∫ 1

0

tr(e−tA
2
s,n(A+,n − A−))ds

(5.1.4)
= lim

n→∞

1

2
tr(erf(t1/2A+,n)− erf(t1/2A−))

(6.1.2)

By the Krein’s trace formula (1.2.2) and the definition of error function (5.1.1)
we have that

1

2
tr(erf(t1/2A+,n)− erf(t1/2A−)) =

( t
π

)1/2
∫
R
e−ts

2

ξ(s, A+,n, A−)ds. (6.1.3)

It is clear that the function s 7→ e−ts
2
, s ∈ R, t > 0, satisfies the assumption of

Corollary 4.2.4, and therefore, we obtain that

lim
n→∞

( t
π

)1/2
∫
R
e−ts

2

ξ(s, A+,n, A−)ds =
( t
π

)1/2
∫
R
e−ts

2

ξ(s, A+, A−)ds. (6.1.4)

Thus, combining (6.1.2), (6.1.3) and (6.1.4) we conclude that the right-hand
side of the principal trace formula can be written as( t

π

)1/2
∫ 1

0

tr(e−tA
2
s(A+ − A−))ds =

( t
π

)1/2
∫
R
e−ts

2

ξ(s, A+, A−)ds.

Since the function s 7→ e−ts, s ∈ R, t > 0, is a Schwartz function, it belongs
to the class Fm̂ (see (2.2.34)). Hence, by the Krein’s trace formula (4.2.3) for the
left hand side of the principal trace formula we have that

tr(e−tH2 − e−tH1) = −t
∫ ∞

0

ξ(λ;H2,H1)e−tλ dλ.
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Thus,∫ ∞
0

ξ(λ;H2,H1)e−tλ dλ =
( 1

π · t

)1/2
∫
R
ξ(s, A+, A−)e−ts

2

ds

=
( 1

π · t

)1/2
∫ ∞

0

ξ(
√
s, A+, A−) + ξ(−

√
s, A+, A−)√

s
e−tsds, (6.1.5)

where for the last integral we used the substitutions s 7→
√
s and s 7→ −

√
s for

the integrals on (0,∞) and on (−∞, 0), respectively.
Let us denote by L the Laplace transform on L1

loc(R). It is well-known that
L( 1

π
√
s
)(t) = 1√

π t
(see e.g. [2, 29.3.4]). Therefore, introducing

ξ0(s) :=
ξ(
√
s, A+, A−) + ξ(−

√
s, A+, A−)√

s
, s ∈ [0,∞),

equality (6.1.5) can be rewritten as

L
(
ξ(λ;H2,H1)

)
(t) = L

( 1

π
√
s

)
(t) · L

(
ξ0(s)

)
(t).

By [4, Proposition 1.6.4] the right-hand side of the above equality is equal to

L
(

1
π
√
s
∗ξ0(s)

)
(t). Therefore, by the Uniqueness theorem for the Laplace transform

(see e.g. [4, Theorem 1.7.3]) we have ξ(λ;H2,H1) =
(

1
π
√
s
∗ ξ0(s)

)
(λ) for a.e.

λ ∈ [0,∞). Thus, for a.e. λ ∈ [0,∞) we have

ξ(λ;H2,H1) =
1

π

∫ λ

0

1√
λ− s

ξ0(s)ds

=
1

π

∫ λ

0

1√
λ− s

ξ(
√
s, A+, A−) + ξ(−

√
s, A+, A−)√

s
ds

=
1

π

∫ λ

0

ξ(
√
s, A+, A−)
√
s
√
λ− s

ds+
1

π

∫ λ

0

ξ(−
√
s, A+, A−)

√
s
√
λ− s

ds

=
1

π

∫ √λ
−
√
λ

ξ(s;A+, A−)ds√
λ− s2

.

�

6.2. Witten index in terms of spectral shift function

In this section, employing the Pushnitski’s formula (6.1.1) in the general set-
ting of p-relative trace-class perturbations, we prove the formula relating the
Witten index and spectral shift function, which follows the detailed treatment
in [31]. Our results enable us to weaken the “relatively trace class perturbation
assumption” of Hypothesis 1.5.2 from [31] as well as “relatively Hilbert-Schmidt
class perturbation assumption” from [30]. In Section 7.1 we show that our Hy-
pothesis 3.5.1 permits consideration of differential operators (in particular, Dirac
operators) in any dimension uniformly.

We firstly recall necessary definitions.

Definition 6.2.1. Let f ∈ L1,loc(R) and h > 0.
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(i) The point x ∈ R is called a right Lebesgue point of f if there exists an
α+ ∈ C such that

lim
h↓0

1

h

∫ x+h

x

|f(y)− α+|dy = 0. (6.2.1)

One then denotes α+ = fL(x+).
(ii) The point x ∈ R is called a left Lebesgue point of f if there exists an

α− ∈ C such that

lim
h↓0

1

h

∫ x

x−h
|f(y)− α−|dy = 0. (6.2.2)

One then denotes α− = fL(x−).

For convenience we also recall the following result from [31].

Lemma 6.2.2. [31, Lemma 4.1] Introduce the linear operators S : L1,loc(R)→
L1,loc(0,∞) defined by

(Sf)(λ) =
1

π

∫ λ1/2

0

(λ− ν2)−1/2f(ν)dν, λ > 0.

If 0 is a right Lebesgue point for f ∈ L1,loc(R), then it is also right Lebesgue point
for Sf and

(Sf)L(0+) =
1

2
fL(0+). (6.2.3)

Now we state our main result of the present chapter. Its proof closely follows
the argument as used in [31].

Theorem 6.2.3. Assume Hypothesis 3.5.1 and assume that 0 is a right and a
left Lebesgue point of ξ(·;A+, A−). Then 0 is a right Lebesgue point of ξ(·;H2,H1)
and W (DA) exists and equals

W (DA) = ξL(0+;H2,H1) = [ξL(0+;A+, A−) + ξL(0−;A+, A−)]/2. (6.2.4)

Proof. First, one rewrites (6.1.1) in the form,

ξ(λ;H2,H1) =
1

π

∫ λ1/2

0

dν [ξ(ν;A+, A−) + ξ(−ν;A+, A−)]

(λ− ν2)1/2
, λ > 0. (6.2.5)

Define the function f(ν) = [ξ(ν,A+, A−) + ξ(−ν,A+, A−)]. Equality (6.2.5) im-
plies that

ξ(λ;H2,H1) = (Sf)(λ), λ > 0,

where S is defined in Lemma 6.2.2. By assumption, 0 is a right and a left Lebesgue
point of ξ( · ;A+, A−), and therefore, 0 is a right Lebesgue point of f . Hence, by
Lemma 6.2.2 we obtain that 0 is a right Lebesgue point of ξ( · ;H2,H1) and

ξL(0+;H2,H1) =
1

2
fL(0+) =

1

2
(ξL(0+;A+, A−) + ξL(0−;A+, A−)).

Next, to prove the first equality we introduce the function

Ξ(r;H2,H1) =

∫ r

0

ξ(s;H2,H1) ds, r > 0.
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By Krein’s trace formula (4.1.8) we have that

1

t
tr
(
e−tH2 − e−tH1

)
= −

∫ ∞
0

ξ(s;H2,H1) e−ts ds

= −
∫ ∞

0

e−tsdΞ(s;H2,H1).

We have already established, that 0 is a right Lebesgue point of ξ( · ;H2,H1).
Hence, one obtains that

lim
r↓0+

Ξ(r;H2,H1)

r
= Ξ′(0+;H2,H1) = ξL(0+;H2,H1)

exists. Hence, an Abelian theorem for Laplace transforms [80, Theorem 1, p.
181] (with γ = 1) implies that

− lim
t→∞

trH
(
e−tH2 − e−tH1

)
= lim

r↓0+

Ξ(r;H2,H1)

r
= ξL(0+;H2,H1).

�

6.3. Connection to spectral flow

In this section we establish the connection of the Witten index of the operator
DA to the spectral flow along the path {A(t)}t∈R in the special case, when A±
are Fredholm operators, and so the spectral flow is well-defined. This provides
an extension of the Robbin-Salamon result to the situation where the endpoints
of the path are not invertible so that DA is not Fredholm.

The key tool in our proof is the analytic formula for the spectral flow of
Theorem 1.3.4 applied for the path of approximants {An(t)}t∈R (see the proof of
Proposition 6.3.5 below).

In this section we assume the following:

Hypothesis 6.3.1. In addition to Hypothesis 3.1.1 we assume that

(i) the operators A± are Fredholm;
(ii) For all t ∈ R and some k ∈ N we have

B′(t)(A− + i)−1 ∈ Lp+1(H),

∫
R
‖B′(t)(A− + i)−1‖p+1dt <∞.

Remark 6.3.2. Note that using the three line theorem, one can show that the
assumption B′(t)(A− + i)−p−1 ∈ L1(H) implies that B′(t)(A− + i)−1 ∈ Lp+1(H),
however, we also need integrability of the norm.

In order to relate the Witten index to spectral flow we will again use our
approximation method, that is, as before, we introduce the family

An(t) = A− + PnB(t)Pn, t ∈ R, A−,n = A−, A+,n = A− + PnB+Pn,

where Pn = χ[−n,n](A−).
Repeating the proof of [47, Remark 3.3] and referring to Remark 3.1.4 we

obtain that

B(t)(|A−|+ I)−1 =

∫ t

−∞
B′(s)(|A−|+ I)−1 ds ∈ Lp+1(H), t ∈ R (6.3.1)

and

B+(|A−|+ I)−1 =

∫ ∞
−∞

B′(s)(|A−|+ I)−1 ds ∈ Lp+1(H). (6.3.2)
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As the key ingredient of our argument is Theorem 1.3.4 and that results defines
the spectral flow for a path {S(t)}, t ∈ [0, 1] (see Section 1.3), we re-parametrise
our path {A(t)}∞t=−∞ to avoid confusion. Let r : [0, 1] → R be a continuously
differentiable strictly increasing function. Introduce the path {S(t)}1

t=0 by letting

S(0) = A−, S(t) = A(r(t)), t ∈ (0, 1), S(1) = A+, (6.3.3)

and the corresponding path of ‘cut-off’ operators {Sn(t)}1
t=0 by

Sn(0) = A−, Sn(t) = An(r(t)), t ∈ (0, 1), Sn(1) = A+,n, (6.3.4)

Recall that Theorem 1.3.4 is established for C1
Γ-path of unbounded Fredholm

operators (see Definition 1.3.1 for the precise definition of a C1
Γ-path). Therefore,

we begin by showing that both the paths {A(t)}+∞
t=−∞, {An(t)}+∞

t=−∞ (and equiva-
lently, {S(t)}1

t=0 and {Sn(t)}1
t=0) are continuous paths of (self-adjoint) Fredholm

operators.

Lemma 6.3.3. The paths {S(t)}t∈[0,1] and {Sn(t)}t∈[0,1] are C1
Γ-paths of Fred-

holm operators.

Proof. We prove the assertion only for the path {S(t)}t∈[0,1], as the argument
for {Sn(t)}t∈[0,1] is similar.

To prove that the path consists of Fredholm operators, we note that (6.3.1)
states that B(t), t ∈ R is an A−-relatively compact operators. Hence by Weyl
theorem (see e.g. [52, Theorem 5.35]) we obtain that A(t) = A− + B(t), t ∈ R
has the same essential spectra as A−, which by Hypothesis 6.3.1 implies that
A(t), t ∈ R, are Fredholm operators.

Next, we show that {S(t)}t∈[0,1] is a C1
Γ-path. By Hypothesis 3.5.1 we have

that {S(t)}t∈[0,1] is Γ-differentiable at any point and Ṡ(t) = A′(r(t)) · r′(t) =
B′(r(t)) · r′(t). Next for arbitrary t1, t2 ∈ [0, 1] we have∥∥∥Ṡ(t1)(1 + S(t1)2)−1/2 − Ṡ(t2)(1 + S(t2)2)−1/2

∥∥∥
≤ ‖B′(r(t1))−B′(r(t2))‖‖(1 + S(t1)2)−1/2‖

+ ‖B′(r(t2))‖
∥∥∥(1 + S(t1)2)−1/2 − (1 + S(t2)2)−1/2

∥∥∥.
Since the family {B(t)}∞t=−∞ is continuously differentiable with respect to

uniform norm and the function r is continuous, we obtain that, as t1− t2 → 0 we
have ‖B′(r(t1))−B′(r(t2))‖ → 0. In addition, we have

(1 + S(t1)2)−1/2 − (1 + S(t2)2)−1/2

=
1

π

∫ ∞
0

dλ λ−1/2((1 + λ+ S(t1)2)−1 − (1 + λ+ S(t2)2)−1).

Using the resolvent identity and continuity of the path {B(t)}∞t=−∞ one can con-

clude, that ‖(1 + S(t1)2)−1/2 − (1 + S(t2)2)−1/2‖ → 0 as t1 − t2 → 0.
Thus, ‖Ṡ(t1)(1 + S(t1)2)−1/2 − Ṡ(t2)(1 + S(t2)2)−1/2‖B(H) → 0 as t1 − t2 → 0,

which proves that the mapping t 7→ Ṡ(t)(1 + S(t)2)−1/2 is continuous, and hence,
concludes the proof.

�

Thus, by Lemma 6.3.3 both {A(t)}∞t=−∞ and {An(t)}∞t=−∞ are C1
Γ-paths of

Fredholm operators. Therefore, by Definition 1.3.3 we can define the spectral

-
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flow for both paths {A(t)}∞t=−∞ and {An(t)}∞t=−∞ by setting

sf({A(t)}∞t=−∞) := sf({S(t)}1
t=0) = sf({g(S(t))}1

t=0) (6.3.5)

and
sf({An(t)}∞t=−∞) := sf({Sn(t)}1

t=0) = sf({g(Sn(t))}1
t=0). (6.3.6)

In the next lemma we show that the path {Sn(t)}1
t=0 satisfies the assumptions

of Theorem 1.3.4.

Lemma 6.3.4. The path {Sn(t)}1
t=0 satisfies the assumptions of Theorem 1.3.4.

Proof. By Lemma 6.3.3 the path {Sn(t)}t∈[0,1] is a C1
Γ-path. Moreover,

Ṡ(t) = PnB
′(r(t))Pn, which implies that Ṡ(t) is a trace-class operator for any

t ∈ [0, 1]. Hence assumption (i) of Theorem 1.3.4is satisfied.
Next, by Proposition 5.1.1we have that

1

2
erf(t1/2A+,n)− 1

2
erf(t1/2A−) ∈ L1(H).

Thus, we only need to show that

χ[0,∞)(A+,n)− χ[0,∞)(A−) ∈ L1(H).

Since 0 is an isolated eigenvalue of σ(A+,n) and σ(A−), there exists ε > 0,
such that P(0,ε)(A+,n) = P(0,ε)(A−) = 0 and ε /∈ σ(A+,n), σ(A−). Therefore,

χ[0,∞)(A+,n)− χ[0,∞)(A−) = −[χ(−∞,0)(A+,n)− χ(−∞,0)(A−)]

= −[χ(−∞,ε)(A+,n)− χ(−∞,ε)(A−)]

= −[χ(−∞,0)(A+,n − ε)− χ(−∞,0)(A− − ε)].
(6.3.7)

Introduce a smooth cut-off function ϕ ∈ C∞(R) satisfying

ϕ(ν) =

{
1, ν ≤ −ν0,

0, ν ≥ ν0,
and

∫ ν0

−ν0
ϕ′(ν) dν = −1. (6.3.8)

The choice of the function ϕ guarantees that ϕ satisfies the assumptions on The-
orem 1.2.1. Hence, the fact that (A+,n − ε) − (A− − ε) = A+,n − A− ∈ L1(H)
combined with Theorem 1.2.1 implies that

ϕ(A+,n − ε)− ϕ(A− − ε) ∈ L1(H). (6.3.9)

Note that ϕ coincides with the characteristic function of (−∞, 0) on the spec-
tra of A+,n − ε and A− − ε, and therefore

χ(−∞,0)(A+,n − ε) = ϕ(A+,n − ε), χ(−∞,0)(A− − ε) = ϕ(A− − ε).
Hence, combining (6.3.7) and (6.3.9) we conclude that

χ[0,∞)(A+,n)− χ[0,∞)(A−) = [χ(−∞,0)(A+,n − ε)− χ(−∞,0)(A− − ε)]
= −[ϕ(A+,n − ε)− ϕ(A− − ε)] ∈ L1(H),

which concludes the proof. �

The next step of our approach is to give a formula, similar to that of Theorem
1.3.6, relating the spectral flow along the path {An(t)}∞t=−∞ and the spectral shift
function ξ(·;A+,n, A−). To this end, we recall (see (4.1.19) and (1.2.2)) that for
each n ∈ N there exists a (unique) spectral shift function ξ(·;A+,n, A−) for the pair
(A+,n, A−). By Proposition 6.3.3 the operators A+,n and A− are Fredholm, and
therefore, it follows from the properties of the spectral shift function (see (1.2.4))
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that for every n ∈ N, the function ξ(·;A+,n, A−) is left and right continuous at
zero and

ξ(0+;A+,n, A−)− ξ(0−;A+,n, A−) = dim ker(A−)− dim ker(A+,n). (6.3.10)

The next proposition is the first step in the proof of our formula for the
Witten index in terms of spectral flow. This formula connects the spectral flow
sf({An(t)}∞t=−∞) to the spectral shift function ξ(·, A+,n, A−). The main ingredient
of our argument is Theorem 1.3.4.

Proposition 6.3.5. Let A+,n, {An(t)}∞t=−∞ and {Sn(t)}t∈[0,1] be as before.
Then for sf({An(t)}∞t=−∞), defined by (6.3.6) we have

sf({An(t)}∞t=−∞) =
1

2

[
ξ(0+, A+,n, A−) + ξ(0−, A+,n, A−)

]
+

1

2

[
dim(ker(A+,n))− dim(ker(A−))

]
.

Proof. By Lemma 6.3.4 the path {Sn(t)}t∈[0,1] satisfies the assumption of
Theorem 1.3.4. Hence,

sf({An(t)}∞t=−∞) = sf({Sn(t)}t∈[0,1])

=

∫ 1

0

tr
(
(A+,n − A−)e−λA

2
n(r(t))

)
dt+

1

2
tr[erf(λ1/2A+,n)− erf(λ1/2A−)]

− tr[χ[0,∞)(A+,n)− χ[0,∞)(A−)].

By Proposition 2.3.2 we have that∫ 1

0

tr
(
(A+,n − A−)e−λA

2
n(r(t))

)
dt =

1

2
tr[erf(λ1/2A+,n)− erf(λ1/2A−)],

and therefore

sf({An(t)}∞t=−∞) = tr[erf(λ1/2A+,n)− erf(λ1/2A−)]

− tr[χ[0,∞)(A+,n)− χ[0,∞)(A−)].

We now compute tr[χ[0,∞)(A+,n) − χ[0,∞)(A−)]. Fix ε > 0 as in the proof of
Lemma 6.3.4. By (6.3.7) we have that

tr
(
χ[0,∞)(A+,n)− χ[0,∞)(A−)

)
= − tr

(
[χ(−∞,0)(A+,n − ε)− χ(−∞,0)(A− − ε)]

)
.

(6.3.11)

Introducing the family B̃n(t) = Bn(t)− ε, we have that B̃′n(t) = B′n(t) for all
t ∈ R, and hence the family {B̃n(t)}t∈R satisfies the Pushnitski assumptions 1.5.1
relative to A−−ε. In addition, for the corresponding asymptotes A+,n−ε, A−−ε,
0 is not in their spectra and (A+,n − ε)− (A− − ε) = A+,n − A− ∈ L1(H).

Hence, by [47, Lemma 8.7.5] we have that

tr[χ(−∞,0)(A+,n − ε)− χ(−∞,0)(A− − ε)] = −ξ(0, A+,n − ε, A− − ε),
which implies that

tr[χ[0,∞)(A+,n)− χ[0,∞)(A−)] = ξ(0, A+,n − ε, A− − ε) = ξ(ε, A+,n, A−). (6.3.12)

Thus, combining (6.3.11) with (6.3.12) we conclude that

sf({An(t)}∞t=−∞) = tr[erf(λ1/2A+,n)− erf(λ1/2A−)] + ξ(ε, A+,n, A−).
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Next, we take the limit as λ → ∞. Firstly, applying Proposition 2.3.2 and
(5.1.3) we have that

sf({An(t)}∞t=−∞) = 2 tr[erf(λ1/2A+,n)− erf(λ1/2A−)] + ξ(ε, A+,n, A−)

(5.1.3)
= −2 tr(e−tH2,n − e−tH1,n)− ξ(ε, A+,n, A−).

Now, by Theorem 0.2 we have that

−2 lim
t→∞

tr(e−tH2,n − e−tH1,n) = 2W (DAn) = [ξ(0+, A+,n, A−) + ξ(0−, A+,n, A−)].

Therefore,

sf({An(t)}∞t=−∞) = [ξ(0+, A+,n, A−) + ξ(0−, A+,n, A−)]− ξ(ε, A+,n, A−)

=
1

2
[ξ(0+, A+,n, A−) + ξ(0−, A+,n, A−)]

− 1

2
[ξ(0+, A+,n, A−)− ξ(0−, A+,n, A−)].

Referring to (6.3.10) we have that

sf({An(t)}∞t=−∞) =
1

2
[ξ(0+, A+,n, A−) + ξ(0−, A+,n, A−)]

+
1

2
[dim(ker(A+,n))− dim(ker(A−))],

which concludes the proof. �

Having established the desired formula for the reduced operators we now want
to pass to the limit as n → ∞. We state some of the necessary aproximation
results in separate lemmas.

To handle the kernel dimensions we prove that the kernel of the operator A+,n

has the same dimension as the kernel of A+ for sufficiently large n ∈ N.

Lemma 6.3.6. For sufficiently large n ∈ N we have that dim(ker(A+,n)) =
dim(ker(A+)).

Proof. By Theorem 3.3.2 we have

‖(A+,n − i)−1 − (A+ − i)−1‖∞ ≤ ‖(A+,n − i)−1 − (A+ − i)−1‖p+1

=
∥∥∥((A+,n − i)−1 − (A− − i)−1

)
−
(
(A+ − i)−1 − (A− − i)−1

)∥∥∥
p+1

→ 0

as n → ∞. That is A+,n → A+ in the norm resolvent sense. Therefore, by [69,
Theorem VIII.23 (i)] we obtain that 0 is an isolated eigenvalue of σ(A+,n) for
sufficiently large n ∈ N. In addition, by [69, Theorem VIII.23 (ii)] for sufficiently
small ε > 0 we have that ‖P(−ε,ε)(A+,n) − P(−ε,ε)(A+)‖∞ → 0. Therefore, for
sufficiently large n ∈ N, the rank of P(−ε,ε)(A+,n) equals the rank of P(−ε,ε)(A+),
that is for sufficiently large n ∈ N the multiplicity of 0 for A+,n is the same as
multiplicity for A+. �

Next, we handle the approximation of spectral flow.

Lemma 6.3.7. For n sufficiently large

sf{A(t)}∞t=−∞ = sf{An(t)}∞t=−∞. (6.3.13)
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Proof. By (6.3.5) we have that sf{A(t)}∞t=−∞ = sf{g(S(t))}t∈[0,1], and, sim-
ilarly, by (6.3.6) sf{An(t)}∞t=−∞ = sf{g(Sn(t))}t∈[0,1]. Recall that S(0) = Sn(0) =
A−, S(1) = A+ and Sn(1) = A+,n (see (6.3.3) and (6.3.4)). We form the following
loop

g(A−) −→ g(A+)
`−→ g(A+,n) −→ g(A−), (6.3.14)

where the operators g(A+) and g(A+,n) are joined by the straight line `. We
claim that this loop is contractible, and therefore there is no spectral flow around
this loop. To this end, it is sufficient to show that all operators in the loop are
compact perturbations of a fixed operator, say, g(A−).

Firstly, we show that the difference g(A(t))− g(A−) is compact for all −∞ ≤
t ≤ ∞. By Theorem 2.1.8 we have

g(A(t))− g(A−) = TA(t),A−
ϕ

(
(A(t)2 + 1)−1/4

(
A(t)−A−

)
(A2
− + 1)−1/4

)
, (6.3.15)

where ϕ is defined by setting

ϕ(λ, µ) :=
λ(λ2 + 1)−1/2 − µ(µ2 + 1)−1/2

(λ2 + 1)−1/4 (λ− µ) (µ2 + 1)−1/4
, (λ, µ) ∈ R2

and the operator T
A(t),A−
ϕ is bounded on Lp(H) for any p ≥ 1. Hence, by equality

(6.3.15) it is sufficient to show that (A(t)2+1)−1/4
(
A(t)−A−

)
(A2
−+1)−1/4 ∈ Lp(H)

for some p ≥ 1.
We have

(A(t)2 + 1)−1/4
(
A(t)− A−

)
(A2
− + 1)−1/4

= −(A(t)2 + 1)−1/4(A2
− + I)1/4 × (A2

− + I)−1/4B(t)(A2
− + I)−1/4.

Repeating the argument in [47, Remark 3.9] one can prove that the operator

(A(t)2 + 1)−1/4(A2
− + I)1/4

is bounded. Using the fact that

B(t)(A2
− + I)−1/2 ∈ Lp+1(H), −∞ ≤ t ≤ ∞

(see (6.3.1) for t <∞ and (6.3.2) for t =∞) and the three line theorem (see also
[47, Lemma 6.6]), we infer that (A2

− + I)−1/4B(t)(A2
− + I)−1/4 ∈ Lp+1(H), which

implies that

g(A(t))− g(A−) ∈ Lp+1(H), −∞ ≤ t ≤ ∞.
Repeating the same argument, one can obtain that

g(An(t))− g(A−) ∈ Lp+1(H), −∞ ≤ t ≤ ∞.

Hence, the loop (6.3.14) consists of compact perturbations of the operator opera-
tors g(A−), that is, it is contractible. Thus, there is no spectral flow around this
loop, which means that

sf{g(S(t))}t∈[0,1] + sf{g(A+), g(A+,n)}+ sf{g(Sn(t))}t∈[1,0] = 0. (6.3.16)

Finally, by Lemma 6.3.6 we have sf{g(A+), g(A+,n)} = 0 for sufficiently large
n ∈ N. Hence, equality (6.3.16) implies that

sf{g(S(t))}t∈[0,1] = − sf{g(Sn(t))}t∈[1,0] = sf{g(Sn(t))}t∈[0,1],

which completes the proof. �
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Prior to proving the next result of this section, we recall that the spectral
shift function ξ(·;A+, A−) for the pair (A+, A−) is defined in (4.2.4), (4.2.3) and
fixed via the requirement (4.2.3). In addition, the operators A± are Fredholm,
and therefore, by (4.1.9) we have that ξ(·;A+, A−) is left and right-continuous at
zero. In particular, 0 is a left and right Lebesgue point of ξ(·;A+, A−).

Theorem 6.3.8. Assume Hypothesis 6.3.1. We have

1

2

(
ξ(0+;A+, A−) + ξ(0−;A+, A−)

)
= sf{A(t)}∞t=−∞ −

1

2
[dim(ker(A+))− dim(ker(A−))].

(6.3.17)

Proof. By Proposition 6.3.5 we have that

1

2

[
ξ(0+, A+,n, A−)+ξ(0−, A+,n, A−)

]
= sf({An(t)}∞t=−∞)− 1

2

[
dim(ker(A+,n))− dim(ker(A−))

]
.

(6.3.18)

By Lemma 6.3.6 we have that dim(ker(A+,n)) = dim(ker(A+)) for sufficiently
large n ∈ N. In addition, since A± and A+,n have discrete spectra at 0, the spec-
tral shift functions ξ(·, A+,n, A−) and ξ(·, A+, A−) are step functions on sufficiently
small interval containing 0 (see (1.2.4) and (4.1.9) respectively). Hence, Corol-
lary 4.2.6 implies that ξ(0+, A+,n, A−) = ξ(0+, A+, A−) and ξ(0−, A+,n, A−) =
ξ(0−, A+, A−) for sufficiently large n ∈ N. Thus, for sufficiently large n ∈ N we
have

1

2

[
ξ(0+, A+, A−)+ξ(0−, A+, A−)

]
= sf({An(t)}∞t=−∞)− 1

2

[
dim(ker(A+))− dim(ker(A−))

]
.

(6.3.19)

Referring to Lemma 6.3.7 we conclude that

1

2

[
ξ(0+, A+, A−)+ξ(0−, A+, A−)

]
= sf({A(t)}∞t=−∞)− 1

2

[
dim(ker(A+))− dim(ker(A−))

]
,

as required.
�

As a corollary of Theorem 6.2.3 and 6.3.8 we obtain the following theorem,
which is the main result of this section. This result is an extension of Robbin-
Salamon theorem (see equation (0.1)) for the operators with some essential spec-
tra outside 0 without the assumption that that asymptotes A± are boundedly
invertible. As we will show in Section 7.1 below our framework is suitable for
differential operators on locally compact manifolds in any dimension.
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Theorem 6.3.9. Assume Hypothesis 3.5.1 and 6.3.1. Then the Witten index
of the operator DA exists and equals

W (DA) =
1

2

(
ξ(0+;A+, A−) + ξ(0−;A+, A−)

)
(6.3.20)

= sf{A(t)}∞t=−∞ −
1

2
[dim(ker(A+))− dim(ker(A−))]. (6.3.21)

Proof. As we discussed above (see also (4.1.9)), 0 is a left and right Lebesgue
point of ξ(·;A+, A−). Hence, by Theorem 6.2.3 we have that the Witten index of
the operator DA exists and equals W (DA) = 1

2

(
ξ(0+;A+, A−)+ξ(0−;A+, A−)

)
.

On the other hand, Theorem 6.3.8 implies (6.3.21). �



CHAPTER 7

Examples

In this chapter we supplement several examples, for which our general as-
sumption are satisfied and hence the results of Chapter 6 hold.

Firstly, in Section 7.1, we prove that our primary example, multidimensional
Dirac operator on Rd and its perturbation given by multiplication by a sufficiently
nice functions, satisfies Hypothesis 3.5.1. Thus, our framework is indeed suitable
for differential operators on locally-compact manifolds.

In the rest of the chapter we consider one-dimensional differential operators
and compute explicitly the spectral shift function ξ(·;A+, A−). In all our compu-
tation we use the Krein trace formula (see (4.2.5))

tr(f(A+)− f(A−)) =

∫
R
ξ(λ;A+, A−)dλ, f ∈ Fp̂(R), (7.0.1)

where the spectral shift function ξ(·;A+, A−) is fixed by (4.2.6).
However, for our examples the class f ∈ Fp̂(R) is not large enough to compute

ξ(·;A+, A−) by computing the left-hand side of (7.0.1). Therefore, in Section 7.2
we firstly enlarge the class of admissible function f so that the trace formula
(7.0.1) holds for our specific choice of the additive constant in ξ(·;A+, A−).

In Section 7.3 we consider the example of differential operators on L2(R),
namely

A− = −i d
dx
, A+ =

d

idx
+Mϕ, dom(A−) = dom(A+) = W 1,2(R),

where ϕ ∈ W 1,1(R) ∩ Cb(R). In this case the spectra of operators A± is purely
absolutely continuous. We show that the spectral shift function ξ(·; d

idx
+Mϕ,

d
idx

)
is a constant function and

ξ(ν;
d

idx
+Mϕ,

d

idx
) =

1

2π

∫
R
ϕ(x) dx for a.e. ν ∈ R.

The result of this chapter are taken from [26]. We note that [29] presents an
alternative approach for the computation of ξ(·; d

idx
+ Mϕ,

d
idx

) which uses tools
from scattering theory.

In Section 7.4 we consider the example, when A− = d
idx

is differentiation oper-

ator on L2[0, 2π] with twisted periodic boundary conditions and A+ = d
idx

+Mϕ.
This example is taken from [28]. Since this operator has purely discrete spectra,
by computing the spectral shift function ξ(·; d

idx
+ Mϕ,

d
idx

) we also compute the
spectral flow.

Finally, in Section 7.5 we consider the ’discrete differentiation’ operator on
`2(Z).

97
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7.1. The Dirac operators

In this section we show that the main Hypothesis 3.5.1 is satisfied for the mul-
tidimensional Dirac operator on Rd and its perturbation given by multiplication
operator.

Through this section we fix d ∈ N. For each k = 1, . . . , d, define a self-adjoint
operator in L2(Rd) by

∂k = −i ∂
∂tk

, dom(∂k) = W 1,2(Rd).

Let n(d) = 2d
d
2
e. Let γk ∈Mn(d)(C), 1 ≤ k ≤ d, be Clifford algebra generators,

that is,

(i) γk = γ∗k and γ2
k = 1 for 1 ≤ k ≤ d.

(ii) γk1γk2 = −γk2γk1 for 1 ≤ k1, k2 ≤ d, such that k1 6= k2.

Definition 7.1.1. Define the Dirac operator as an unbounded operator D
acting in the Hilbert space Cn(d)⊗L2(Rd) with domain dom(D) = Cn(d)⊗W 1,2(Rd)
by the formula

D =
d∑

k=1

γk ⊗ ∂k. (7.1.1)

We have

D2 = −1⊗∆,

where ∆ : L2(Rd) → L2(Rd) is the Laplace operator (i.e. ∆ =
∑d

k=1 ∆k with

∆k = ∂2

∂2xk
).

Suppose that Φ = {ϕij}n(d)
i,j=1 is a matrix of function, such that ϕij ∈ L∞(Rd).

We denote by MΦ the multiplication operator by Φ on the Hilbert space Cn(d) ⊗
L2(Rd).

For this example we set

A− = D, B+ = MΦ

and

B(t) = θB+,

where theta satisfies (3.5.1). In the rest of this section gradually impose assump-
tions on the matrix Φ = {ϕij}, such that the family {θ(t)MΦ} satisfies Hypothesis
3.5.6 with p = d. By Proposition 3.5.7 this ensures that Hypothesis 3.5.1 is also
satisfied.

Recall (see Section 4.3) that the space l1(L2)(Rd) is defined as

l1(L2)(Rd) :=

{
f ∈ L0(Rd) :

∑
n∈Zd
‖fχQ+n‖2 <∞

}
,

with the corresponding norm

‖f‖l1(L2)(Rd) :=
∑
n∈Zd
‖fχQ+n‖2, f ∈ l1(L2)(Rd).

Proposition 7.1.2. Assume that Φ = {ϕij}n(d)
i,j=1 is such that ϕij ∈ l1(L2)(Rd).

Then the operator MΦ is a d-relative trace-class operators with respect to D, that
is Hypothesis 3.5.6 (ii) is satisfied.
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Proof. Since ϕij ∈ l1(L2)(Rd), Theorem 4.3.1 implies that the matrix ele-

ments Mϕij(−∆ + 1)−
d+1
2 are trace class operators (on L2(Rd)) for all 1 ≤ i, j ≤

n(d). Hence, the operator

MΦ(−1⊗∆ + 1)
−d−1

2 =
(
Mϕij(−∆ + 1)

−d−1
2

)n(d)

i,j=1

is a trace class operator (on Cn(d) ⊗ L2(Rd)). Therefore, MΦ(D + i)−1−d ∈
L1(Cn(d) ⊗ L2(Rd)). �

In the next proposition we establish sufficient condition on the matrix Φ =
{ϕij} for Hypothesis 3.5.6.

Recall that (see (3.5.3)) the operator LjD2 , j ∈ N is defined by

LkD2(T ) = (1 + A2
−)−k/2[A2

−, T ](k)

with domain

dom(LkD2) = {T ∈ B(H) : T dom(Dj) ⊂ dom(Dj), j = 1, . . . , 2k

and the operator (1 +D2)−k/2[D2, T ](k) defined on dom(D2k)

extends to a bounded operator on H}.

Since D2 = −1⊗∆, we have that

[D2,MΦ] =
(

[−∆,Mϕij ]
)n(d)

i,j=1
,

whenever the commutators [−∆,Mϕij ] are well-defined. Therefore, introducing

Lj−Delta, j ∈ N as in (3.5.3), we obtain that MΦ ∈ dom(LkD2) for some k ∈ N,

provided that Mϕij ∈ dom(Lk−∆) for any i, j = 1, . . . , n(d). In this case,

LkD2(MΦ) =
(
Lk−∆(Mϕij)

)n(d)

i,j=1
. (7.1.2)

Next, we give a condition on ϕ, which is sufficient for the inclusion Mϕ ∈⋂k
j=1 dom(Lj−∆).

Proposition 7.1.3. Let k ∈ N be fixed. If ϕ ∈ W 2k,∞(Rn), then Mϕ ∈⋂k
j=1 dom(Lj−∆).

Proof. Let k ∈ N be fixed. Since ϕ ∈ W 2k,∞(Rn), we have that (∆)j(ϕξ) ∈
L2(Rn) for every ξ ∈ dom(∆)j, j = 1, . . . k. That is Mϕ dom(∆)j ⊂ dom(∆)j for
all j = 1, . . . , 2k.

Recall that ∂k = ∂
i∂xj

and if ϕ ∈ L∞(Rd) with ∂ϕ
∂xk
∈ L∞(Rd), k = 1, . . . , d,

then ϕ dom(∂k) ⊂ dom(∂k) and for all ξ ∈ dom(∂k) we have

[∂k,Mϕ]ξ =
1

i

∂ϕ

∂xk
ξ, k = 1, . . . , d. (7.1.3)
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By (7.1.3) we have

[∆,Mϕ] =
n∑
j=1

[∂2
j ,Mϕ] =

n∑
j=1

∂j[∂j,Mϕ] +
n∑
j=1

[∂j,Mϕ]∂j

=
1

i

n∑
j=1

(
∂jM ∂ϕ

∂xj

+M ∂ϕ
∂xj

∂j

)
=

1

i

n∑
j=1

(
2∂jM ∂ϕ

∂xj

− [∂j,M ∂ϕ
∂xj

]
)

=
2

i

n∑
j=1

∂jM ∂ϕ
∂xj

+
n∑

j,`=1

M ∂2ϕ
∂xj∂x`

.

Therefore,

(1−∆)−1/2[∆,Mϕ] =
2

i

n∑
j=1

∂j(1−∆)−1/2M ∂ϕ
∂xj

+
n∑

j,`=1

(1−∆)−1/2M ∂2ϕ
∂xj∂x`

.

Since ϕ ∈ W 2k,∞(Rn), the operators M ∂2ϕ
∂xj∂x`

and M ∂ϕ
∂xj

, j, ` = 1, . . . , n, are

bounded. Since the operator ∂j(1−∆)−1/2 is also bounded, we infer that

(1−∆)−1/2[∆,Mϕ] ∈ B(L2(Rn)).

Continuing this process, we obtain that

(1−∆)−j[∆,Mϕ](j) ∈ B(L2(Rn)), j = 1, . . . , k, (7.1.4)

that is Mϕ ∈
⋂2k
j=1 dom(Lj−∆). �

Combining now Proposition 7.1.2 and 7.1.3 we arrive at the following

Theorem 7.1.4. Let D be the Dirac operator on Cn(d) ⊗ L2(Rd) defined by

(7.1.1), d ∈ N, and let m = dd
2
e. Assume that Φ = {ϕij}n(d)

i,j=1 is such that

ϕij ∈ l1(L2)(Rd) ∩W 4p,∞(Rd), i, j = 1, . . . , n(d).

Then the operator A− = D and the perturbation B+ = MΦ satisfy Hypothesis
3.5.6 (and hence also Hypothesis 3.5.1) with p = d.

7.2. An auxiliary result

Recall that (see (4.2.5))

tr (f(A+)− f(A−)) =

∫
R
f ′(λ) · ξ(λ;A+, A−) dλ, f ∈ Fp̂(R), (7.2.1)

and the spectral shift function ξ(·;A+, A−) is fixed by (4.2.3).
The examples we consider below are examples of one-dimensional differential

operators and for these type of operators the formula above holds for a signifi-
cantly larger class of functions f . We aim to use this fact to compute the spectral
shift function, since the class of admissible function is large enough to compute
ξ(·;A+, A−) by computing the left-hands side of (7.2.1).

The purpose of this section is to show that under some additional conditions
suitable for one-dimensional differential operators we can extend the trace formula
(7.2.1) to the required class of functions f keeping the choice of the spectral shift
function ξ(·;A+, A−) as in (4.2.3).
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Proposition 7.2.1. Let A±, Pn and A+,n, n ∈ N, be as before (see (3.1.5),
(3.2.1) and (3.2.6)). Assume that g(A+)− g(A−) ∈ L1(H) and

‖ · ‖1 − lim
n→∞

(g(A+,n)− g(A−)) = g(A+)− g(A−).

Then for any F ∈ C∞b (R) such that F ′(λ) ≤ const(1 + λp̂+1)−1, λ ∈ R, we have
F (A+)− F (A−) ∈ L1(H) and

tr
(
F (A+)− F (A−)

)
=

∫
R
F ′(λ)ξ(λ;A+, A−)dλ,

where the spectral shift function ξ(·;A+, A−) is fixed by (4.2.3).

Proof. Since F ′(λ) ≤ const(1 + λp̂+1)−1, λ ∈ R, Corollary 4.2.4 implies that∫
R
F ′(λ)ξ(λ;A+, A−)dλ = lim

n→∞

∫
R
F ′(λ)ξ(λ;A+,n, A−)dλ.

Since B+,n = A+,n−A− is a trace-class operator (see (3.2.7)) and F ∈ C∞b (R),
the Krein trace formula (1.2.2) implies that∫

R
F ′(λ)ξ(λ;A+,n, A−)dλ = tr

(
F (A+,n)− F (A−)

)
.

Set ψ = F ◦ g−1. By the assumption on F , we have that ψ satisfies the

assumptions of Theorem 2.1.6. Hence, the double operator integral T
g(A+,n),g(A−)

ψ[1]

is bounded on L1(H). Therefore,

F (A+,n)− F (A−) = ψ(g(A+,n))− ψ(g(A−))

= T
g(A+,n),g(A−)

ψ[1]

(
g(A+,n)− g(A−)

)
and similarly

F (A+)− F (A−) = T
g(A+),g(A−)

ψ[1]

(
g(A+)− g(A−)

)
In particular, we have that F (A+)− F (A−) ∈ L1(H).

By the assumption on F , the function ψ satisfies the assumption of Proposi-
tion 2.3.1. Therefore, combining Proposition 2.3.1 implies that

‖ · ‖1 − lim
n→∞

(
F (A+,n)− F (A−)

)
= ‖ · ‖1 − lim

n→∞
T
g(A+,n),g(A−)

ψ[1]

(
g(A+,n)− g(A−)

)
= T

g(A+),g(A−)

ψ[1]

(
g(A+)− g(A−)

)
= ψ(g(A+))− ψ(g(A−)) =

(
F (A+)− F (A−)

)
.

Therefore,

lim
n→∞

tr
(
F (A+,n)− F (A−)

)
= tr

(
F (A+)− F (A−)

)
.

Thus, ∫
R
F ′(λ)ξ(λ;A+, A−)dλ = lim

n→∞

∫
R
F ′(λ)ξ(λ;A+,n, A−)dλ

= lim
n→∞

tr
(
F (A+,n)− F (A−)

)
= tr

(
F (A+)− F (A−)

)
as required. �
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In addition to Proposition 7.2.1 we prove here a lemma where a useful integral
decomposition for the difference g(A+)−g(A−) is given. This decomposition will
be used whenever we show that the assumptions of Proposition 7.2.1 are satisfied
for a specific choice of A±. We used a similar integral decomposition ito prove
Corollary 4.3.9 for the two-dimensional Dirac operator.

For brevity, we introduce (cf. (4.3.4)) the notations R+,λ(z), R−,λ(z) for
appropriate resolvents of the operators A+ and A−, respectively, that is,

R+,λ =
(
A+ + i(1 + λ)1/2

)−1
, R−,λ =

(
A− + i(1 + λ)1/2

)−1
, λ > 0. (7.2.2)

We also introduce

Uλ = (A+ − A−)R−,λ = B+R−,λ. (7.2.3)

Lemma 7.2.2. Suppose that B+ leaves the domain of A− invariant. We have

g(A+)− g(A−) = −B+(A2
− + 1)−3/2

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[A−, B+]R2

−,λ +R∗−,λ[A−, B](R∗−,λ)
2
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R+,λU

2
λ

)
dλ.

Proof. By Lemma 4.3.3 we have that

g(A+)− g(A−) =
1

π
Re
(∫ ∞

0

λ−1/2[R+,λ −R−,λ]dλ
)
.

Using the resolvent identity twice one can write

R+,λ −R−,λ = −R+,λB+R−,λ

= −R−,λB+R−,λ +R+,λB+R−,λB+R−,λ

= −R−,λB+R−,λ +R+,λU
2
λ .

Therefore, we have

R+,λ −R−,λ = −B+R
2
−,λ − [R−,λ, B+]R−,λ +R+,λU

2
λ .

Applying the formula [C−1, B] = −C−1[C,B]C−1 to the second term we obtain

R+,λ −R−,λ = −B+R
2
−,λ +R−,λ[A−, B+]R2

−,λ +R+,λU
2
λ .

Similarly(
R+,λ −R−,λ

)∗
= −R∗−,λ +R∗+,λ = −R∗−,λB+R

∗
+,λ

= −R∗−,λB+R
∗
−,λ +R∗−,λB+R

∗
−,λB+R

∗
+,λ

= −R∗−,λB+R
∗
−,λ + (R+,λU

2
λ)∗

= −B+(R∗−,λ)
2 − [B+, R

∗
−,λ]R

∗
−,λ + (R+,λU

2
λ)∗

= −B+(R∗−,λ)
2 +R∗−,λ[A−, B](R∗−,λ)

2 + (R+,λU
2
λ)∗.
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Therefore, we have

g(A+)− g(A−) =
1

2π

∫ ∞
0

λ−1/2B+

(
(R∗−,λ)

2 + (R−,λ)
2
)
dλ

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[A−, B+]R2

−,λ +R∗−,λ[A−, B](R∗−,λ)
2
)
dλ

+
1

2π

∫ ∞
0

λ−1/2
(
R+,λU

2
λ + (R+,λU

2
λ)∗
)
dλ

=
1

π
B+Re

(∫ ∞
0

λ−1/2(R−,λ)
2dλ
)

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[A−, B+]R2

−,λ +R∗−,λ[A−, B](R∗−,λ)
2
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R+,λU

2
λ

)
dλ.

It follows from Lemma A.1 (i), that

1

π
B+Re

(∫ ∞
0

λ−1/2(R−,λ)
2dλ
)

= −B+(A2
− + 1)−3/2,

which suffices to complete the proof. �

7.3. Locally compact one dimensional example

In this section we compute the spectral shift function for the one dimensional
operator A− = −i d

dx
on L2(R) and its perturbation by multiplication operator.

This example illustrates Theorem 6.2.4 in the case, when the operators A± has
purely absolutely continuous spectra coinciding with the whole real line.

Throughout this section we assume that A−, acting in the Hilbert space L2(R),
is the self-adjoint operator

A− = D = −i d
dx
, dom(A−) = W 1,2(R)

and its perturbation B+ is given by the self-adjoint operator

B+ = Mϕ,

where, as before, Mϕ denotes the multiplication operator by a bounded real-
valued function on R.

Subsequently, we will exploit the unitary equivalence of the operators A− = D
and A+ = D +Mϕ. The following lemma establishes this fact.

Assuming that the function ϕ is locally integrable. We define the function

ψ(x) = exp
(
− i
∫ x

0

ϕ(y) dy
)
, x ∈ R. (7.3.1)

Lemma 7.3.1. Assume that ϕ ∈ Cb(R) and let ψ be defined by (7.3.1). We
have

M∗
ψ(D +Mϕ)Mψ = D. (7.3.2)

Proof. By the definition of the function ψ we have that

ψ′ = −iϕψ.
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Therefore, we have(
[−i(d/dx) +Mϕ]Mψξ)(x)

= −iψ′(x)ξ(x)− iψξ′(x) + iϕ(x)ψ(x)ξ(x)

= −iψξ′(x) = (MψDξ)(x), ξ ∈ C∞0 (R),

as required. �

Corollary 7.3.2. Since the operators A− and A+ are self-adjoint, Lemma
7.3.1 and the functional calculus imply that

h(D +Mϕ) = Mψh(D)M∗
ψ (7.3.3)

for any locally bounded Borel function h : R→ C.

It follows from Theorem 7.1.4 that Hypothesis 3.5.6 is satisfied (with p = 1) if
we assume that ϕ ∈ l1(L2)(R)∩W 4,∞(R). Therefore, if we show that 0 is a right
and left Lebesgue point for ξ(·;D+Mϕ, D), the Witten index of the corresponding
operator DA can be computed via ξ(·;D +Mϕ, D).

For convenience, we divide the exposition into several subsections.

7.3.1. On the difference g(D + Mϕ) − g(D). . In this subsection, we
show that the assumptions of Proposition 7.2.1 are satisfied for our choice of the
operators A− = D, A+ = D +Mϕ.

Recall (see (7.2.2)) that the operators R+,λ(z), R−,λ(z) are defined for the
operators A+ = D +Mϕ and A− = D by setting

R+,λ =
(
D +Mϕ + i(1 + λ)1/2

)−1
, R−,λ =

(
D + i(1 + λ)1/2

)−1
, λ > 0.

Recall also (see (7.2.3))

Uλ = (A+ − A−)R−,λ = MϕR−,λ.

The next result yields the first claim in Theorem 1.5.3 in the present setting.
Here we do not resort to the double operator integration technique as in [47], but
instead apply more elementary means.

Proposition 7.3.3. Suppose that A− = D, A+ = D+Mϕ with ϕ ∈ W 1,1(R)∩
Cb(R). We have that g(A+)− g(A−) ∈ L1(L2(R)) and

‖g(D +Mϕ)− g(D)‖1 ≤ ‖ϕ‖1,1.

Proof. To prove the first statement we use Lemma 7.2.2 to write

g(D +Mϕ)− g(D) = −Mϕ(D2 + 1)−3/2

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[D,Mϕ]R2

−,λ +R∗−,λ[D,Mϕ](R∗−,λ)
2
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R+,λU

2
λ

)
dλ.

(7.3.4)

First, we show that ∫ ∞
0

λ−1/2R+,λU
2
λ dλ ∈ L1(L2(R)). (7.3.5)
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Employing the noncommutative Hölder inequality∥∥∥∥∫ ∞
0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
1

≤
∫ ∞

0

λ−1/2
∥∥R+,λU

2
λ

∥∥
1
dλ

≤
∫ ∞

0

λ−1/2‖R+,λ‖∞‖Uλ‖2
2 dλ. (7.3.6)

Thus, applying Theorem 4.3.1 (i),

‖Uλ‖2 =
∥∥Mϕ

(
D + i(λ+ 1)1/2I

)−1∥∥
2

≤ const ‖ϕ‖2‖h1‖2 ≤ const ‖ϕ‖1‖ϕ‖∞‖h1‖2,

where h1(t) = (t+ i(λ+ 1)1/2)−1. Since ‖h1‖2 = const(λ+ 1)−1/4, one infers that

‖Uλ‖2 ≤ const ‖ϕ‖1‖ϕ‖∞(λ+ 1)−1/4. (7.3.7)

In addition, (see (7.2.2)) one has

‖R+,λ‖∞ ≤ sup
t∈R

(|t+ i(λ+ 1)1/2|)−1 = (λ+ 1)−1/2.

Hence, combining this estimate with (7.3.6) and (7.3.7), one obtains∥∥∥∥∫ ∞
0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
1

≤ const ‖ϕ‖1‖ϕ‖∞
∫ ∞

0

λ−1/2(λ+ 1)−1 dλ. (7.3.8)

Since the integral on the right-hand side converges, the claim (7.3.5) follows.
Next, we show that∫ ∞

0

λ−1/2R−,λ[D,Mϕ]R2
−,λ dλ ∈ L1

(
L2(R)

)
. (7.3.9)

Since [D,Mϕ] = 1
i
Mϕ′ we have∥∥∥∥∫ ∞
0

λ−1/2R−,λ[D,Mϕ]R2
−,λ dλ

∥∥∥∥
1

≤
∫ ∞

0

λ−1/2
∥∥R−,λMϕ′R

2
−,λ
∥∥

1
dλ

≤
∫ ∞

0

λ−1/2
∥∥R−,λM|ϕ′|1/2∥∥2

∥∥M|ϕ′|1/2R2
−,λ
∥∥

2
dλ. (7.3.10)

Since by assumption, ϕ′ ∈ L1(R), Theorem 4.3.1 (i) implies that∥∥R−,λM|ϕ′|1/2∥∥2
≤ const

∥∥|ϕ′|1/2∥∥
2
‖h1‖2.

Arguing similarly, one obtains that∥∥M|ϕ′|1/2R2
−,λ
∥∥

2
≤ const

∥∥|ϕ′|1/2∥∥
2
‖h2‖2,

where h2(t) = (t+ i(λ+ 1)1/2)−2. It is easy to check that ‖h2‖2 = C(λ + 1)−3/4.
Therefore, (7.3.9) is proved by estimating the right-hand side of (7.3.10) as follows∥∥∥∥ ∫ ∞

0

λ−1/2R−,λ[D,Mϕ]R2
−,λ dλ

∥∥∥∥
1

≤ const ‖ϕ′‖1

∫ ∞
0

λ−1/2(λ+ 1)−1 dλ <∞.

(7.3.11)

Using the same argument one can show that∫ ∞
0

λ−1/2R∗−,λ[D,Mϕ](R2
−,λ)

∗ dλ ∈ L1

(
L2(R)

)
. (7.3.12)

-
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and∥∥∥∥∫ ∞
0

λ−1/2R−,λ[D,Mϕ](R2
−,λ)

∗ dλ

∥∥∥∥
1

≤ const ‖ϕ′‖1

∫ ∞
0

λ−1/2(λ+ 1)−1 dλ <∞.

(7.3.13)

Finally, by Theorem 4.3.1 and Lemma 7.3.10 we have∥∥Mϕ

(
A2
− + 1

)−3/2∥∥
1
≤ const ‖ϕ‖`1(L2)(R)

∥∥((·)2 − z)−3/2
∥∥
`1(L2(R))

≤ const ‖ϕ′‖1,1. (7.3.14)

Thus, combining equality (7.3.4) with the estimates obtained in (7.3.8), (7.3.11),
(7.3.13) and (7.3.14) imply that g(A+)− g(A−) is a trace-class operator and

‖g(A+)− g(A−)‖1 ≤ C [‖ϕ‖1‖ϕ‖∞ + ‖ϕ‖1,1]. (7.3.15)

To remove the term ‖ϕ‖1‖ϕ‖∞ from the estimate (7.3.15) we fix l ∈ N and write

‖g(A+)− g(A−)‖1

=
∥∥∥ l−1∑
k=0

(
g
(
A− +

k + 1

l
Mϕ

)
− g
(
A− +

k

l
Mϕ

))∥∥∥
1

≤
n−1∑
k=1

∥∥g(A− +
k + 1

l
Mϕ

)
− g
(
A− +

k

l
Mϕ

)∥∥
1
. (7.3.16)

Applying Lemma 7.3.1 one obtains for fixed k ∈ N the existence of a sequence of
unimodular functions ψk,l such that A− + k

l
Mϕ = Mψk,lA−M

∗
ψk,l

. Hence we have

A− +
k + 1

l
Mϕ = A− +

k

l
Mϕ +

1

l
Mϕ

= Mψk,lA−M
∗
ψk,l

+
1

l
Mϕ

= Mψk,l

(
A− +

1

l
M∗

ψk,l
MϕMψk,l

)
M∗

ψk,l
.

Therefore, ∥∥∥g(A− +
k + 1

l
Mϕ)− g(A− +

k

l
Mϕ)

∥∥∥
1

=
∥∥∥g(A−)− g(A− +

1

l
Mψ∗k,lϕψk,l

)
∥∥∥

1
.

Combining this with (7.3.16) and using that every ψk,l is a unimodular function
yields

‖g(A+)− g(A−)‖1

≤
l−1∑
k=0

∥∥g(A−)− g
(
A− +

1

l
Mψ∗k,lϕψk,l

)∥∥
1

≤ const
l−1∑
k=0

(
‖1

l
ψ∗k,lϕψk,l‖∞‖

1

l
ψ∗k,lϕψk,l‖1 + ‖1

l
ψ∗k,lϕψk,l‖1,1

)
≤ l const[‖1

l
ϕ‖∞‖

1

l
ϕ‖1 + ‖1

l
ϕ‖1,1].
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Hence,

‖g(A+)− g(A−)‖1

≤ const lim
l→∞

l[‖1

l
ϕ‖∞‖

1

l
ϕ‖1 + ‖1

l
ϕ‖1,1]

≤ const lim
l→∞

l[l−2‖ϕ‖∞‖ϕ‖1 + l−1‖ϕ‖1,1] = const ‖ϕ‖1,1,

as required. �

The following theorem is the main result of this subsection; it yields a trace
norm approximation of the operator [g(A+)− g(A−)] as required for Proposition
7.2.1.

Firstly, for the reduced operators we also define

R
(n)
+,λ =

(
A+,n + i(λ− z)1/2I

)−1
, U

(n)
λ = PnUλPn, n ∈ N.

Theorem 7.3.4. Suppose that ϕ ∈ W 1,1(R) ∩ Cb(R). Then,

lim
n→∞

∥∥[g(A+,n)− g(A−)]− [g(A+)− g(A−)]
∥∥

1
= 0.

Proof. Recall (see (7.3.4)) that

g(D +Mϕ)− g(D) = −Mϕ(D2 + 1)−3/2

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[D,Mϕ]R2

−,λ +R∗−,λ[D,Mϕ](R∗−,λ)
2
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R+,λU

2
λ

)
dλ.

Using similar argument we can write

g(D + PnMϕPn)− g(D) = −PnMϕPn(D2 + 1)−3/2

+
1

2π

∫ ∞
0

λ−1/2
(
PnR−,λ[D,Mϕ]R2

−,λPn + PnR
∗
−,λ[D,Mϕ](R∗−,λ)

2Pn
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R

(n)
+,λ(U

(n)
λ )2

)
dλ.

To prove the stated convergence it suffices to show that we have trace norm
convergence:

PnMϕ

(
A2
− + 1

)−3/2
Pn −→

n→∞
Mϕ

(
A2
− + 1

)−3/2
,

Pn

∫ ∞
0

λ−1/2R−,λ[D,Mϕ]R2
−,λ dλPn −→

n→∞

∫ ∞
0

λ−1/2R−,λ[D,Mϕ]R2
−,λ dλ,

Pn

∫ ∞
0

λ−1/2R∗−,λ[D,Mϕ](R2
−,λ)

∗ dλPn −→
n→∞

∫ ∞
0

λ−1/2R∗−,λ[D,Mϕ](R2
−,λ)

∗ dλ,∫ ∞
0

λ−1/2R
(n)
+,λ(U

(n)
λ )2 dλ −→

n→∞

∫ ∞
0

λ−1/2R+,λU
2
λ dλ.

(7.3.17)

By (7.3.11) the operator Mϕ(A2
− + 1)−3/2 is a trace-class operator. Since Pn −→

n→∞
1 in the strong operator topology, Lemma 3.2.1 implies convergence of the first
term in (7.3.17). Similarly, using (7.3.13) and (7.3.14) instead of (7.3.11), we
obtain the convergence of the second and third term in (7.3.17).
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For the fourth term one obtains∥∥∥∥∫ ∞
0

λ−1/2R
(n)
+,λ(U

(n)
λ )2 dλ−

∫ ∞
0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
1

≤
∫ ∞

0

λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2 −R+,λU

2
λ

∥∥
1
dλ,

(7.3.18)

Since U
(n)
λ = PnUλPn and Pn → 1 in the strong operator topology, Uλ ∈

L2(L2(R)), Lemma 3.2.1 implies that

‖U (n)
λ − Uλ‖2 → 0, n→∞.

Therefore, limn→∞
∥∥(U

(n)
λ )2 − U2

λ

∥∥
1

= 0.
Combining strong resolvent convergence of A+,n to A+ as n→∞ (see Lemma

3.2.5), and trace norm convergence of (U
(n)
λ )2 to U2

λ as n → ∞, Lemma 3.2.1
implies that the integrands on the right-hand side of (7.3.18) converge to zero.
Since, in addition, ∥∥R(n)

+,λ

∥∥
∞, ‖R+,λ‖∞ ≤ (λ+ 1)−1/2,

and

‖Uλ‖2
2 ≤ (λ+ 1)−1/2,

one infers that λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2 − R+,λU

2
λ

∥∥
1

is dominated by the integrable

function λ−1/2(λ+ 1)−1. Thus, the dominated convergence theorem implies that∫ ∞
0

λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2 −R+,λU

2
λ

∥∥
1
dλ −→

n→∞
0,

as required. �

7.3.2. Computation of spectral shift function ξ(·;D +Mϕ, D). In this
subsection we compute explicitly the spectral shift function ξ(·;D +Mϕ, D).

Firstly, we prove that the spectral shift function for the pair (D + Mϕ, D) is
a constant function.

Proposition 7.3.5. Let ϕ ∈ W 1,1(R) ∩ Cb(R), A− = D, A+ = A− + Mϕ.
Then

ξ(ν;A+, A−) = const. for a.e. ν ∈ R.

Proof. Let h be such that h′ is a Schwartz function. Then h◦g−1 ∈ C2[−1, 1],
and hence by Proposition 7.2.1, [h(A+)− h(A−)] ∈ L1

(
L2(R)

)
. We claim that

tr(h(A+)− h(A−)) = tr(h(A+ + α)− h(A− + α)), α ∈ R. (7.3.19)

As D = −id/dx on dom(D) = W 1,2(R) is the generator of translations in L2(R),
introducing ψ0 = e−iαx, α ∈ R, yields D + α = Mψ0DM

∗
ψ0

and hence,

h(D + α) = Mψ0h(D)M∗
ψ0
, h(D +Mϕ + α) = Mψ0h(D +Mϕ)DM∗

ψ0
.

Consequently, by the unitary invariance of tr

tr
(
h(D +Mϕ + α)− h(D + α)

)
= tr

(
Mψ0(h(D +Mϕ)− h(D))M∗

ψ0

)
= tr(h(D +Mϕ)− h(D)),



7.3. LOCALLY COMPACT ONE DIMENSIONAL EXAMPLE 109

which proves (7.3.19). By Proposition (7.2.1) we have

tr
(
h(D +Mϕ + α)− h(D + α)

)
=

∫
R
h′(ν + α)ξ(ν;D +Mϕ, D) dν

=

∫
R
h′(ν)ξ(ν − α;D +Mϕ, D) dν.

Therefore, ∫
R
h′(ν)[ξ(ν − α;D +Mϕ, D)− ξ(ν;D +Mϕ, D)] dν = 0.

Since h′ is an arbitrary Schwartz function, it follows by the Lemma of Du Bois-
Reymond that

ξ(ν − α;D +Mϕ, D)− ξ(ν;D +Mϕ, D) = 0 for a.e. ν ∈ R.

Since α ∈ R was arbitrary, ξ( · ;A+, A−) is constant a.e. on R. �

By Proposition 7.3.5, the spectral shift function ξ( · ;A+, A−) is constant a.e.
on R. In particular, we obtain that 0 is a right and a left Lebesgue point of
ξ( · ;A+, A−). In the rest of this subsection we achieve our principal goal, which
is to compute the actual constant value of ξ( · ;A+, A−).

In order to calculate the precise value of the constant ξ( · ;A+, A−) we consider
the auxiliary function arctan(·). Since arctan′(t) = (1 + t2)−1, it follows from
Proposition 7.2.1 that

[arctan(A+)− arctan(A−)] ∈ L1(L2(R)), (7.3.20)

and that for a.e. ν ∈ R,

tr(arctan(A+)− arctan(A−)) =

∫
R

ξ(ν;A+, A−)

ν2 + 1
dν = πξ(ν;A+, A−).

Equivalently,

ξ(ν;A+, A−) =
1

π
tr(arctan(A+)− arctan(A−)) for a.e. ν ∈ R. (7.3.21)

Thus, our task is the computing the value of the right-hand side in (7.3.21).
Given ϕ ∈ W 1,1(R)∩Cb(R), our aim is to represent the operator [arctan(A+)−

arctan(A−)] as an integral operator on L2(R) (cf. (7.3.30)). The unitary equiva-
lence in (7.3.2) implies

arctan(A+)− arctan(A−) = Mψ arctan(A−)M∗
ψ − arctanA−

= MψF−1MarctanFM∗
ψ −F−1MarctanF ,

where F denotes the Fourier transform on L2(R). Fix η ∈ L2(R) ∩ L1(R), then

(F−1 arctan(·)Fη)(x) = (2π)−1

∫
R2

η(x1) arctan(s0)e−is0(x1−x) ds0dx1. (7.3.22)

We would like to identify the quantity on the right-hand side of (7.3.22) with the
integral

(2π)−1/2

∫
R
η(s1)(F arctan)(s1 − s) ds1. (7.3.23)

However, this identification is not possible straight away due to the fact that

(F arctan)(s) =
1

is
F
(

1

1 + x2

)
(s) =

(
π

2

)1/2
1

is
e−|s|,
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that is, the function (F arctan)(s1 − s) is discontinuous at the point s1 − s = 0.
Thus, we have to replace (7.3.23) by the principal value

1

2i
lim
ε→0

∫
|s1−s|>ε

e−|s1−s|η(s1)

s1 − s
ds1. (7.3.24)

The identification of the right-hand sides of (7.3.22) and (7.3.24) will be done in
Lemma 7.3.6 below.

Prior to proving that lemma we show that the principle value of e−|x|

x
(in

the sense of distributions), abbreviated by p.v. e
−|x|

x
, is a tempered distribution,

and hence the convolution on right-hand side of the equality in Lemma 7.3.6 is
well-defined.

Since arctan(·) is bounded, we may regard it as a tempered distribution (see,

e.g., [75, Section I.3]). We consider the principle value of e−|x|

x
introduced by the

equality

p.v.
e−|x|

x
(η) = lim

ε↓0

∫
|x|>ε

e−|x|η(x)

x
dx, η ∈ S(R). (7.3.25)

This is a tempered distribution since for arbitrary η ∈ S(R),

p.v.
e−|x|

x
(η) = lim

ε↓0

∫
ε<|x|<1

e−|x|η(x)

x
dx+

∫
|x|>1

e−|x|η(x)

x
dx

= lim
ε↓0

∫
ε<|x|<1

e−|x|(η(x)− η(0))

x
dx+ η(0) lim

ε↓0

∫
ε<|x|<1

e−|x|

x
dx

+

∫
|x|>1

e−|x|η(x)

x
dx,

and since the next to last integral equals zero,∣∣∣∣p.v.
e−|x|

x
(η)

∣∣∣∣ ≤ const. [‖η′‖∞ + ‖η‖∞].

Thus, by [75, Section 1.3, Theorem 3.11], p.v. e
−|x|

x
is a tempered distribution.

The next lemma is crucial for our representation of the operator arctan(A+)−
arctan(A−) as an integral operator.

Lemma 7.3.6. Let D = −i d
dx

. Then,

(arctanD)(η) = − 1

2i
p.v.

e−|x|

x
∗ η, η ∈ S(R).

Proof. For every t > 0, consider the function Qt : R→ R defined by

Qt(x) =
x

t2 + x2
e−|x|, x ∈ R.

It is clear that Qt ∈ L2(R), t > 0, and hence the Fourier transform of Qt, t > 0,
is also square-integrable.

One can consider the function Qt as a tempered distribution [75, Section 3.3].
Next, we claim that

lim
t↓0

Qt = p.v.
e−|x|

x
(7.3.26)
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in the sense of tempered distributions, that is,

lim
t↓0

Qt(η) = p.v.
e−|x|

x
(η), η ∈ S(R)

(see also a similar, but slightly different result in [42, Proposition 3.1]). Indeed,
one can write Qt = 1

2

(
1

x+it
+ 1

x−it

)
e−|x|, and by the Sokhotski–Plemelj formulas

(see, e.g., [44, p. 33–34]) obtain for every η ∈ S(R),

lim
t↓0

∫
R

1

x+ it
e−|x|η(x) dx = −iπη(0) + p.v.

∫
R

e−|x|η(x)

x
dx,

and

lim
t↓0

∫
R

1

x− it
e−|x|η(x) dx = +iπη(0) + p.v.

∫
R

e−|x|η(x)

x
dx,

that is,

lim
t↓0

Qt(η) = lim
t↓0

∫
R

1

x+ it
e−|x|η(x) dx+ lim

t↓0

∫
R

1

x− it
e−|x|η(x) dx

= p.v.
e−|x|

x
(η), η ∈ S(R).

Next, standard properties of the Fourier transform imply

F(Qt)(s) = F
(

x

t2 + x2
e−|x|

)
(s) =

1

(2π)1/2

(
F
(

x

t2 + x2

)
∗ F(e−|x|)

)
(s)

= i
1

(2π)1/2

((
F(

1

t2 + x2
)

)′
∗ F(e−|x|)

)
(s)

= −i 1

(2π)1/2

(
(e−t|x| sgn(x)) ∗ 1

1 + x2

)
(s).

Lebesgue’s dominated convergence theorem implies

lim
t↓0
F(Qt)(s) = −i 1

(2π)1/2
lim
t↓0

∫
R
e−t|x| sgn(x)

1

1 + (x− s)2
dx

= −i 1

(2π)1/2

∫
R

sgn(x)
1

1 + (x− s)2
dx = − 2i

(2π)1/2
arctan (s).

(7.3.27)

In addition, since the Fourier transform is a continuous map of S ′(R) onto itself
(see, e.g., [71, Theorem 7.15]),

F
(

p.v.
e−|x|

x

)
= F(lim

t↓0
Qt) = lim

t→0
F(Qt),

in S ′(R), or equivalently,

F
(

p.v.
e−|x|

x

)
(η) = −i 1

(2π)1/2

∫
R

(
(e−t|x| sgn(x)) ∗ (1 + x2)−1

)
(s)η(s) ds,

η ∈ S(R).

Since ∥∥(e−t|·| sgn(·)) ∗ (1 + | · |2)−1
∥∥
∞ ≤

∥∥(1 + | · |2)−1
∥∥

1

∥∥e−t|·| sgn(·)
∥∥
∞ ≤ π

(see, e.g., [75, Section 1.1, Theorem 1.3]), and η ∈ S(R), one infers that the inte-
grand ((e−t|x| sgn(x)) ∗ (1 + x2)−1)(·)η(·) is dominated by the integrable function
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πη(·). Hence, by (7.3.27), applying once again Lebesgue’s dominated convergence
theorem, one arrives at

F
(

p.v.
e−|x|

x

)
(η) = − 2i

(2π)1/2

∫
R

arctan(s)η(s) ds,

that is, the distribution F
(
p.v. e

−|x|

x

)
is, in fact, the function − 2i

(2π)1/2
arctan(·).

Thus,

F−1 arctan(·) = −(2π)1/2

2i
p.v.

e−|x|

x
. (7.3.28)

Finally, for an arbitrary η ∈ S(R) by [71, Theorem 7.19] one obtains

(arctan(D)η)(s) = (F−1 arctan(·)Fη)(s) = F−1(arctan ·Fη)(s)

=
1

(2π)1/2

(
η ∗ F−1 arctan

)
(s)

(7.3.28)
= − 1

2i

(
η ∗ p.v.

e−|x|

x

)
(s).

�

For the special case where the operator D is perturbed by a Schwartz function
ϕ ∈ S(R), we also state the following result:

Corollary 7.3.7. Let ϕ ∈ S(R). Then the operator A+ = D + Mϕ with
dom(A+) = dom(D) = W 1,2(R), in L2(R) satisfies

(arctanA+)η = − 1

2i
ψ p.v.

e−|x|

x
∗ (ψη), η ∈ S(R).

Proof. Since ϕ is a Schwartz test function, ψ(x) = exp(−i
∫ x

0
ϕ(x′) dx′) is

infinitely differentiable and ψη ∈ S(R) for every η ∈ S(R). Hence, one can write

(arctanA+)η = ψ arctan(D)ψη = ψ · arctan(D)(ψη),

and Lemma 7.3.6 completes the proof. �

Proposition 7.3.8. Let ϕ ∈ S(R) and introduce A− = D, A+ = A− + Mϕ,
dom(A±) = W 1,2(R), in L2(R). Then,

tr(arctan(A+)− arctan(A−)) =
1

2

∫
R
ϕ(x) dx. (7.3.29)

Proof. To prove (7.3.29), let η ∈ S(R). Combining Lemma 7.3.6 and Corol-
lary 7.3.7 one infers,

((arctan(A+)− arctan(A−))η)(y)

= − 1

2i

(
ψ p.v.

e−|x|

x
∗ (ψη)(y)− p.v.

e−|x|

x
∗ (η)(y)

)
= − 1

2i
lim
ε↓0

∫
|x|>ε

(
ψ(y)ψ(y − x)− 1

)e−|x|
x

η(y − x) dx

= − 1

2i
lim
ε↓0

∫
|y−x|>ε

(
ψ(y)− ψ(x)

)
ψ(x)

e−|y−x|

y − x
η(x) dx

= − 1

2i

∫
R
ψ(x)

ψ(y)− ψ(x)

y − x
e−|y−x|η(x) dx,

where the last equality is due to continuity of ψ(x) ψ(y)−ψ(x)
y−x e−|y−x|η(x) for all

x ∈ R (given y ∈ R).
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Next, we will show that the preceding equality can be extended to arbitrary
η ∈ L2(R) and thus(

(arctan(A+)− arctan(A−))η
)
(y) = − 1

2i

∫
R
ψ(x)

ψ(y)− ψ(x)

y − x
e−|y−x|η(x) dx

(7.3.30)
holds. Since S(R) is dense in L2(R), for every η ∈ L2(R) there exists a sequence
{ηn}∞n=1 ⊂ S(R), such that ‖ηn − η‖2 −→

n→∞
0. On one hand,

‖(arctan(A+)− arctan(A−))(ηn − η)‖2 −→
n→∞

0,

since [arctan(A+)− arctan(A−)] ∈ B
(
L2(R)

)
. On the other hand, we claim that

the integral operator K in L2(R) with integral kernel

K(x, y) = − 1

2i
ψ(x)

ψ(y)− ψ(x)

y − x
e−|x−y|

is a bounded operator on L2(R). By [18, Equation (2.2)] this will follow from the
estimates

‖K( · , · )‖L∞(R;dx;L1(R;dy)) <∞, ‖K( · , · )‖L∞(R;dy,L1(R;dx)) <∞ (7.3.31)

(Bochner norms are used in this context). Since |K(x, y)| = 1
2

∣∣ψ(y)−ψ(x)
y−x

∣∣e−|y−x|, it

is sufficient to estimate one of the two norms in (7.3.31). We estimate the norm
of ‖K( · , · )‖L∞(R;dx;L1(R;dy)) next:

‖K( · , · )‖L∞(R;dx;L1(R;dy)) =
1

2
sup
x∈R

∫
R

∣∣∣∣ψ(y)− ψ(x)

y − x

∣∣∣∣e−|y−x| dy
≤ 1

2
sup
x∈R

∫
R

sup
(x,y)∈R2

∣∣∣∣ψ(y)− ψ(x)

y − x

∣∣∣∣e−|y−x| dy
≤ 1

2
‖ψ′‖∞ sup

x∈R

∫
R
e−|y−x| dy ≤ ‖ψ′‖∞ <∞.

Hence indeed, K ∈ B
(
L2(R)

)
and Kηn −→

n→∞
Kη in L2(R). Thus, equality

(7.3.30) holds for all η ∈ L2(R). Moreover, since the integral kernel K( · , · ) is
continuous, an application of (7.3.30) yields

tr(arctan(A+)− arctan(A−)) =

∫
R
K(x, x) dx

= − 1

2i

∫
R
ψ′(x)ψ(x) dx =

1

2

∫
R
ϕ(x) dx.

�

By Proposition 7.3.8 and equality (7.3.21) we have

ξ(ν;D +Mϕ, D) =
1

2π

∫
R
ϕ(x) dx for a.e. ν ∈ R, (7.3.32)

provided that ϕ ∈ S(R). The following theorem extends this result to an arbitrary
ϕ ∈ W 1,1(R) ∩ Cb(R).

Theorem 7.3.9. Assume that ϕ ∈ W 1,1(R) ∩ Cb(R), m ∈ N. Then,

ξ(ν;D +Mϕ, D) =
1

2π

∫
R
ϕ(x) dx for a.e. ν ∈ R.
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Proof. Since ϕ ∈ W 1,1(R), one concludes the existence of a sequence of
Schwartz functions {ϕn}∞n=1 such that ‖ϕn − ϕ‖1,1 −→

n→∞
0. By Lemma 7.3.1,

D +Mϕn = MψnDM
∗
ψn

, and

D +Mϕ = D +Mϕn +Mϕ−ϕn

= Mψn

(
D +M∗

ψn(Mϕ−ϕn)Mψn

)
M∗

ψn ,

that is, D+Mϕ is unitarily equivalent to D+M∗
ψn

(Mϕ−ϕn)Mψn . Hence, applying
Proposition 7.3.3,∣∣tr(g(D +Mϕ)− g(D)

)
− tr

(
g(D +Mϕn)− g(D)

)∣∣
≤ ‖g(D +Mϕ)− g(D +Mϕn)‖1

=
∥∥g(D +M∗

ψn(Mϕ−ϕn)Mψn

)
− g(D)

∥∥
1

≤ const. ‖ψ∗n(ϕ− ϕn)ψn‖1,1 ≤ const. ‖ϕ− ϕn‖1,1 −→
n→∞

0,

that is,

tr
(
g(D +Mϕ)− g(D)

)
= lim

n→∞
tr
(
g(D +Mϕn)− g(D)

)
.

Since ϕn ∈ S(R), n ∈ N, Proposition 7.2.1 and equality (7.3.32) imply that

tr
(
g(D +Mϕ)− g(D)

)
= lim

n→∞
ξ( · ;D +Mϕ, D)

(
g(+∞)− g(−∞)

)
= lim

n→∞

1

π

∫
R
ϕn(x) dx,

Moreover, the convergence ‖ϕn − ϕ‖1,1 −→
n→∞

0 implies that
∫
R ϕn(x) dx −→

n→∞∫
R ϕ(x) dx, that is,

tr
(
g(D +Mϕ)− g(D)

)
=

1

π

∫
R
ϕ(x) dx.

On the other hand, by Proposition 7.2.1 we have

tr
(
g(D +Mϕ)− g(D)

)
=

∫
R
g′(ν)ξ(ν;D +Mϕ, D)dν

= ξ(ν;D +Mϕ, D)

∫
R
g′(ν)dν = 2ξ(ν;D +Mϕ, D).

Thus,

ξ(ν;D +Mϕ, D) =
1

2π

∫
R
ϕ(x) dx for a.e. ν ∈ R.

�

7.3.3. Main result for the pair (D + Mϕ, D). Thus, we obtain that if
ϕ ∈ l1(L2)(R)∩W 4,∞(R), then by Theorem 6.2.3, the Witten index of the operator
DA can be computed via the spectral shift function ξ(·;D+Mϕ, D). On the other
hand, by Theorem 7.3.9 the spectral shift function ξ(·;D+Mϕ, D) is a.e. equal to
the constant 1

2π

∫
R ϕ(x) dx if ϕ ∈ W 1,1(R)∩Cb(R). Before we formulate the main

result of this section we prove that the latter condition implies that ϕ ∈ l1(L2)(R).

Lemma 7.3.10. If f ∈ W 1,p(R) ∩ Cb(R), 1 ≤ p <∞, then f ∈ `p(L2)(R) and

‖f‖`p(L2)(R) ≤ C ‖f‖1,p.
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Proof. Since f is continuous, for every n ∈ Z, there exists xn ∈ [n, n + 1],
such that

|f(xn)| =
(∫ n+1

n

|f(x)|p dx
)1/p

.

For every x ∈ [n, n+ 1], one has

|f(x)| =
∣∣∣∣f(xn) +

∫ x

xn

f ′(s) ds

∣∣∣∣ ≤ |f(xn)|+
∫ x

xn

|f ′(s)| ds

≤
(∫ n+1

n

|f(s)|p ds
)1/p

+

∫ n+1

n

|f ′(s)| ds

≤
(∫ n+1

n

|f(s)|p ds
)1/p

+

(∫ n+1

n

|f ′(s)|p ds
)1/p

≤ 21−1/p

(∫ n+1

n

|f(s)|p ds+

∫ n+1

n

|f ′(s)|p ds
)1/p

.

Thus,

‖f‖`p(L2)(R) ≤ ‖f‖`p(L∞)(R) =
∑
n∈Z

sup
x∈[n,n+1)

|f(x)|p

≤ C
∑
n∈Z

(∫ n+1

n

|f(x)|p dx+

∫ n+1

n

|f ′(x)|p dx
)1/p

≤ C (‖f‖p + ‖f ′‖p),
as required. �

Combining now Theorems 7.3.9 and 6.2.3 with Lemma 7.3.10 we obtain the
following result.

Theorem 7.3.11. Suppose that ϕ ∈ W 1,1(R) ∩ Cb(R) ∩W 4,∞(R). Let A− =
D = −id/dx and let B+ = Mϕ. Then for the corresponding operator DA the
Witten index exists and equals

W (DA) =
1

2π

∫
R
ϕ(x) dx.

Proof. Since ϕ ∈ W 1,1(R)∩Cb(R), Lemma 7.3.10 implies that ϕ ∈ l1(L2)(R).
Therefore, ϕ ∈ l1(L2)(R) ∩W 4,∞(R), which means that Theorem 6.2.3 hold for
the operators A− = D and B+ = Mϕ. Hence,

W (DA) =
1

2

(
ξL(0+;D +Mϕ, D) + ξL(0−;D +Mϕ, D)

)
=

1

2π

∫
R
ϕ(x) dx,

where the last equality follows from Theorem 7.3.9. �

7.4. Compact one-dimensional example

In this section we consider compact one-dimensional example with A− = −i d
dx

on L2[0, 2π] with twisted periodic boundary conditions and its perturbation B+

given by multiplication operator.
Let α ∈ [0, 1) and let Dα = d

idx
be the differentiation operator on L2[0, 2π]

with twisted periodic boundary conditions, that is

dom(Dα) = {ξ ∈ L2[0, 2π] : ξ ∈ AC[0, 2π], ξ(0) = ei2παξ(2π)}.
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Recall, the operator Dα has eigenvalues λα,n and eigenfunctions eα,n given by

λα,n = n− α, eα,n(t) = (2π)−1/2eiλα,nt, n ∈ Z, (7.4.1)

where every eigenvalue has multiplicity 1 (see e.g. [76, Section X.2]). In partic-
ular,

(Dα + i)−1 ∈ L1+ε(L2[0, 2π]), ε > 0.

Therefore, for any bounded perturbation Mϕ, f ∈ L∞[0, 2π], we have that

Mϕ(Dα + i)−2 ∈ L1(L2[0, 2π]),

which implies that the operator Mϕ is 1-relative trace-class perturbation of Dα.
Recall also (see e.g. [76, Section X.2]), that the operator Dα is unitary equiv-

alent to the operator D0 − α, namely

U∗αDαUα = D0 − α, (7.4.2)

where the unitary operator Uα is given by multiplication on the function s 7→
e−iαs, s ∈ [0, 2π].

In contrast to the locally compact case (see Lemma 7.3.1), the operators Dα

and Dα +Mϕ are unitary equivalent only under an additional condition on ϕ.

Lemma 7.4.1. If
∫ 2π

0
h(s)ds ∈ 2πZ, then the operators Dα + Mh and Dα are

unitary equivalent. That is, for the unimodular function

ψ(t) = exp(−i
∫ t

0

h(s)ds), t ∈ [0, 2π],

we have

MψDαMψ̄ = Dα +Mh.

Proof. We firstly note that since
∫ 2π

0
h(s)ds = 2πZ, we have

ψ(0) = ψ(2π).

Since, in addition, there exists ψ′ = −iψh, we have that ψξ ∈ dom(Dα) for all
ξ ∈ dom(Dα).

Now, for an arbitrary ξ ∈ dom(Dα) we have,

[Mψ, Dα]ξ = MψDαξ −Dα(ψξ) =
1

i
(ψξ′ − (ξψ)′) =

−ψ′

i
ξ = ψhξ = Mψhξ.

Thus,

MψDα −DαMψ = MhMψ or, equivalently, (Dα +Mh)Mψ = MψDα

and the claim follows. �

Let ϕ ∈ C1[0, 2π] be an arbitrary function. We set

c =
1

2π

∫ 2π

0

ϕ(s)ds and ϕ0 := ϕ− c. (7.4.3)

Then

ϕ = ϕ0 + c,

∫ 2π

0

ϕ0(s)ds = 0.
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Remark 7.4.2. It follows from Lemma 7.4.1 and (7.4.1) that for any ϕ ∈
L∞[0, 2π] we have

σ(Dα +Mϕ) = σ(Dα +Mϕ0 + c) = σ(Dα + c) = {λα,n + c, n ∈ Z}

=
{
n− α + c, n ∈ Z

}
,

where every eigenvalue has multiplicity one.

Remark 7.4.3. Of course, the full description of the spectra of Dα and Dα +
Mϕ is sufficient to know the jumps of spectral shift function ξ(·;Dα + Mϕ, Dα).
However, to compute the Witten index, the additive constant in ξ(·;Dα+Mϕ, Dα)
(which is fixed by (4.2.3)) has to be computed too. We do this using Proposition
7.2.1.

As we intend to use Proposition 7.2.1, we need to ensure that the assumptions
of this proposition are satisfied.

Proposition 7.4.4. Let ϕ ∈ C1[0, 2π] with ϕ(0) = ϕ(2π). Then the operator
g(Dα +Mϕ)− g(Dα) is trace-class. In addition, if Pn = χ[−n,n](Dα) then

‖ · ‖1 − lim
n→∞

(
g(Dα + PnMϕPn)− g(Dα)

)
= g(Dα +Mϕ)− g(Dα).

Proof. Using the decomposition obtained in Lemma 7.2.2 we can write

g(Dα +Mϕ)− g(Dα) = −Mϕ(D2
α + 1)−3/2

+
1

2π

∫ ∞
0

λ−1/2
(
R−,λ[Dα,Mϕ]R2

−,λ +R∗−,λ[Dα,Mϕ](R∗−,λ)
2
)
dλ

+
1

π

∫ ∞
0

λ−1/2Re
(
R+,λU

2
λ

)
dλ.

(7.4.4)

where, as before,

R+,λ =
1

Dα +Mϕ + i(λ+ 1)1/2
, R−,λ =

1

Dα + i(λ+ 1)1/2
,

Uλ = MϕR−,λ, λ > 0.

We note that both integrals on the right-hand side converges in the uniform norm.
The first term on the right hand side of (7.4.4) is a trace-class operator, since

∥∥∥Mϕ
1

(D2
α + 1)3/2

∥∥∥
1
≤ ‖f‖∞

∥∥∥ 1

(D2
α + 1)3/2

∥∥∥
1

= ‖f‖∞
∑
n∈Z

1

((n− α)2 + 1)3/2
<∞.

For the second term in (7.4.4) we note that since the function f is differentiable
and ϕ(0) = ϕ(2π) we have that the commutator [Dα,Mϕ] extends to a bounded
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operator on L2[0, 2π] (which we still denote by [Dα,Mϕ]). Hence, we can estimate∥∥∥∫ ∞
0

dλ

λ1/2
R−,λ[Dα,Mϕ]R2

−,λ

∥∥∥
1

≤
∫ ∞

0

dλ

λ1/2
‖R−,λ[Dα,Mϕ]‖3‖R2

−,λ‖3/2

≤
∫ ∞

0

dλ

λ1/2
‖[Dα,Mϕ]‖∞

∥∥∥ 1

Dα + i(λ+ 1)1/2

∥∥∥3

3

≤ const

∫ ∞
0

dλ

λ1/2

∑
n∈Z

1

((n− α)2 + (1 + λ))3/2

≤ const

∫ ∞
0

dλ

λ1/2
(1 + λ)−1 <∞,

and therefore,
∫∞

0
dλ
λ1/2

R−,λ[Dα,Mϕ]R2
−,λ ∈ L1(L2[0, 2π]). A similar argument

shows that
∫∞

0
dλ
λ1/2

R∗−,λ[Dα,Mϕ](R2
−,λ)

∗ ∈ L1(L2[0, 2π]). That is, the second
term in (7.4.4) is also a trace-class operator.

For the third term in (7.4.4) we have∥∥∥∫ ∞
0

dλ

λ1/2
R+,λU

2
λ

∥∥∥
1
≤
∫ ∞

0

dλ

λ1/2
‖R+,λ‖∞‖Uλ‖2

2

and since ‖R+,λ‖∞ ≤ const(1 + λ)−1/2 and

‖Uλ‖2
2 =

∥∥∥Mϕ
1

Dα + i(λ+ 1)1/2

∥∥∥2

2
≤ ‖ϕ‖2

∞

∥∥∥ 1

Dα + i(λ+ 1)1/2

∥∥∥2

2

≤ const
∑
n∈Z

1

(n− α)2 + 1 + λ
≤ const(1 + λ)−1/2.

we infer that ∥∥∥∫ ∞
0

dλ

λ1/2
R+,λU

2
λ

∥∥∥
1
≤ const

∫ ∞
0

dλ

λ1/2
(1 + λ)−1 <∞.

That is, the second term in (7.4.4) is also trace-class operator.
The proof of the convergence follows an argument similar to that of Proposi-

tion 7.3.3, and therefore is omitted. �

Remark 7.4.5. (i) We note that by equality (7.4.4) for a small t ∈ R
we have that

g(Dα + tMϕ)− g(Dα) = tV + oL1(t),

where

V = Mϕ
1

(D2
α + 1)3/2

−
∫ ∞

0

dλ

λ1/2

(
R−,λ[Dα,Mϕ]R2

−,λ +R∗−,λ[Dα,Mϕ](R2
−,λ)

∗).
(ii) We note that we need that assumption that f(0) = f(2π), since in the

proof of Proposition 7.4.4 we use the commutator [Dα,Mϕ].

By the assumption of Proposition 7.2.1 are satisfied, and therefore, we have
that

tr
(
F (Dα +Mϕ)− F (Dα)

)
=

∫
R
F ′(λ)ξ(λ;Dα +Mϕ, Dα)dλ (7.4.5)
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provided that F is such that F ′ ∈ S(R). To compute the spectral shift function
ξ(·, Dα+Mϕ, Dα) we now compute the left hand of the equality above for F with
F ′ ∈ S(R).

Let ϕ ∈ C1[0, 2π]. Recall that

c :=
1

2π

∫ 2π

0

ϕ(s)ds and ϕ0 := ϕ− c

and

ϕ = ϕ0 + c,

∫ 2π

0

ϕ0(s)ds = 0. (7.4.6)

It is clear, that ϕ0 ∈ C1[0, 2π] and ϕ0(0) = ϕ0(2π).
Taking into account that ϕ = ϕ0 + c, we write

tr(F (Dα +Mϕ)− F (Dα))

= tr(F (Dα +Mϕ0 + c)− F (Dα +Mϕ0))

+ tr(F (Dα +Mϕ0)− F (Dα)).

Since
∫ 2π

0
ϕ0(s)ds = 0, Lemma 7.4.1 implies that the operator Dα+Mϕ0 is unitary

equivalent to the operator Dα. Therefore, we have

tr(F (Dα +Mϕ)− F (Dα))

= tr(F (Dα + c)− F (Dα)) + tr(F (Dα +Mϕ0)− F (Dα)).
(7.4.7)

We claim that tr(F (Dα + Mϕ0) − F (Dα)) = 0. Prior to prove this equality,
we establish the following auxiliary result.

Lemma 7.4.6. If Ψ ∈ S(R), then Ψ(Dα) ∈ L1(L2[0, 2π]). Moreover, if ϕ0 ∈
C1[0, 2π] is such that ϕ0(0) = ϕ0(2π) and

∫ 2π

0
ϕ0(s)ds = 0, then tr(Mϕ0Ψ(Dα)) =

0.

Proof. Since Ψ ∈ S(R), there exists C ≥ 0, such that |Ψ(s)| ≤ C(1 +
s2)−1, s ∈ R. Therefore,

‖Ψ(Dα)‖1 =
∑
n∈Z

|Ψ(λn)| ≤ C
∑
n∈Z

1

1 + (n− α)2
<∞,

that is Ψ(Dα) ∈ L1.
By the unitary equivalence given in (7.4.2) we have

tr(Mϕ0Ψ(Dα)) = tr
(
UαMϕ0Ψ

(
D0 − α

)
U∗α
)

= tr
(
Mϕ0Ψ

(
D0 − α

))
. (7.4.8)

Denoting λn := λ0,n and en := e0,n (here, λ0,n and e0,n are given by (7.4.1)
with α = 0) for an arbitrary ξ ∈ L2[0, 2π] we can write(

Mϕ0Ψ
(
D0 − α

)
ξ
)

(t) =
∑
n1∈Z

ϕ̂0(n1)en1 ·
∑
n2∈Z

Ψ
(
λn − α

)
ξ̂(n2)en2

=
∑
n∈Z

en
∑

n1+n2=n

Ψ
(
λn − α

)
ξ̂(n2)ϕ̂0(n1),

where η̂(n) denotes the n-th Fourier coefficient of a function η ∈ L2[0, 2π], η(0) =
η(2π) and the series converge in L2[0, 2π] norm. That is

̂(
Mϕ0Ψ(D0 − α)ξ

)
(n) =

∑
n2∈Z

ξ̂(n2)Ψ
(
λn − α

)
ϕ̂0(n− n2).
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Hence, the matrix elements K(n, n2) of the operator Mϕ0Ψ(D − α) are given by
K(n, n2) = Ψ(λn − α)ϕ̂0(n− n2), and therefore,

tr
(
Mϕ0Ψ

(
D0 − α

))
=
∑
n∈Z

K(n, n) =
∑
n∈Z

Ψ
(
λn − α

)
ϕ̂0(0)

=
∑
n∈Z

Ψ
(
λn − α

) ∫ 2π

0

ϕ0(s)ds
(7.4.6)

= 0,

as required. �

Lemma 7.4.7. Let F be such that F ′ ∈ S(R) and let ϕ0 ∈ C1[0, 2π], ϕ0(0) =

ϕ0(2π) with
∫ 2π

0
ϕ0(s)ds = 0. Then tr(F (Dα +Mϕ0)− F (Dα)) = 0.

Proof. We set

H(t) = F (Dα + tMϕ0)− F (Dα), t ∈ R.
Since tϕ0 ∈ C1[0, 2π], tϕ0(0) = tϕ0(2π) for all t ∈ R, Proposition 7.4.4 implies
that H(t) ∈ L1(L2[0, 2π]) for all t ∈ R. We claim that the L1-valued function
H(t) is differentiable in L1-norm.

Let t, t0 ∈ R. Since
∫ 2π

0
ϕ0(s)ds = 0, it follows that

∫ 2π

0
t0ϕ0(s)ds = 0 for

all t0 ∈ R, in particular, the operator Dα + t0Mϕ0 is unitarily equivalent to the
operator Dα via the operator Mψt0

, where ψt0(ν) = exp(−i
∫ s

0
t0ϕ0(s)ds). In

addition, since Mψt0
commutes with Mϕ0 , we also have that Dα + t0Mϕ0 + (t −

t0)Mϕ0 = Mψt0
(Dα + (t− t0)Mϕ0)Mψ̄t0

. Therefore,

H(t)−H(t0) = F (Dα + tMh)− F (Dα + t0Mh)

= F
(
Dα + t0Mh + (t− t0)Mh

)
− F (Dα + t0Mh)

= Mψt0

(
F (Dα + (t− t0)Mh)− F (Dα)

)
Mψ̄t0

= Mψt0
H(t− t0)Mψ̄t0

.

Thus, it is sufficient to prove differentiability of H(t) at t0 = 0 only.
Let t be small. Setting G = F ◦ g−1, we have that the function G is infinitely

differentiable on [−1, 1], in particular, Theorem 2.1.6 implies that G(oL1(t)) =
oL1(t). Now, by Remark 7.4.5 we have

H(t) = G
(
g(Dα + tMϕ0)

)
−G(g(Dα)) = G(g(Dα) + tV )−G(g(Dα)) + oL1(t).

Since V ∈ L1(L2[0, 2π]) (see Proposition 7.4.4) we can write

H(t) = T
g(Dα),g(Dα)

G[1] (tV ) + oL1(t).

Hence,
d

dt
H(t)

∣∣∣
t=0

= T
g(Dα),g(Dα)

G[1] (V ),

that is, the function H(t) is differentiable in L1-norm.
Next, Proposition 2.3.2 we have

tr(F (Dα +Mh)− F (Dα)) = tr(H(1)) = tr
(∫ 1

0

d

dt
H(t)dt

)
=

∫ 1

0

tr(T
g(Dα),g(Dα)

G[1] (V ))dt

= tr(T
g(Dα),g(Dα)

G[1] (V )) = tr(G′(g(Dα))V ) (7.4.9)

where the last equality follows from (2.1.4) and (2.1.5).
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It remains now to compute the trace tr(G′(g(Dα))V ). Recall that

V = Mϕ
1

(D2
α + 1)3/2

−
∫ ∞

0

dλ

λ1/2

(
R−,λ[Dα,Mϕ]R2

−,λ +R∗−,λ[Dα,Mϕ](R2
−,λ)

∗),
where every separate term is a trace-class operator. Since the function G′ ◦ g is a
Schwartz function, it follows from Lemma 7.4.6 that G′(g(Dα)) ∈ L1(L2[0, 2π]).
Therefore, again using Lemma 7.4.6 we have

tr(G′(g(Dα))V ) = tr
(
G′(g(Dα))Mϕ0

1

(D2
α + 1)3/2

)
−
∫ ∞

0

dλ

λ1/2
tr
(
G′(g(Dα))R−,λ[Dα,Mϕ0 ]R

2
−,λ

)
−
∫ ∞

0

dλ

λ1/2
tr
(
G′(g(Dα))R∗−,λ[Dα,Mϕ0 ](R

2
−,λ)

∗
)
.

(7.4.10)

Since G′(g(Dα)) ∈ L1(L2[0, 2π]), we have that

tr
(
G′(g(Dα))Mϕ0

1

(D2
α + 1)3/2

)
= tr

(
Mϕ0G

′(g(Dα))
1

(D2
α + 1)3/2

)
= 0,

where the last equality follows from Lemma 7.4.6. Using similar argument (while
opening the commutator) one can show that the second and third terms in (7.4.10)
are also 0. Hence, we infer from (7.4.9) that

tr(F (Dα +Mϕ0)− F (Dα)) = 0.

�

Now, we are ready to prove compute explicitly the spectral shift function
ξ(·;Dα +Mϕ, Dα).

Theorem 7.4.8. Let Dα = d
idx

with α-twisted periodic boundary conditions

on [0, 2π], α ∈ [0, 2π), and let ϕ ∈ C1[0, 2π], ϕ(0) = ϕ(2π), c =
∫ 2π
0 ϕ(s)ds

2π
. Then

ξ(·;Dα +Mϕ, Dα) = sgn(c)
∑
n∈Z

χ(λα,n,λα,n+c) a.e.,

where notation χ(λα,n,λα,n+c) stands for characteristic function of the set (λα,n +
c, λα,n) if c < 0.

Proof. Let F be an arbitrary function with F ′ ∈ S(R). By (7.4.5) we have

tr(F (Dα +Mϕ)− F (Dα)) =

∫
R
F ′(s)ξ(s;Dα +Mϕ, Dα)ds. (7.4.11)

By equality (7.4.7) and Lemma 7.4.7 we have that tr(F (Dα + Mϕ) − F (Dα)) =
tr(F (Dα + c) − F (Dα)), and therefore, it is sufficient to compute the trace
tr(F (Dα + c)− F (Dα)). We have

tr(F (Dα + c)− F (Dα)) =
∑
n∈Z

(
F (λα,n + c)− F (λα,n)

)
=
∑
n∈Z

∫ λα,n+c

λα,n

F ′(s)ds.
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Therefore, for an arbitrary F such that F ′ ∈ S(R) we have∫
R
F ′(s)ξ(s,Dα +Mϕ, Dα)ds =

∑
n∈Z

∫ λα,n+c

λα,n

F ′(s)ds (7.4.12)

= sgn(c)

∫
R

∑
n∈Z

χ(λα,n,λα,n+c)(s)F
′(s)ds.

Since F is an arbitrary function with F ′ ∈ S(R), it follows from (7.4.12) that

ξ(·, Dα +Mϕ, Dα) = sgn(c)
∑
n∈Z

χ(λα,n,λα,n+c) a.e..

�

Having computed explicitly the spectral shift function ξ(·, Dα + Mϕ, Dα) we
now compute the Witten index and spectral flow.

Everywhere below we denote by b·c the floor function (that is, bxc is the
largest integer which less than or equal x ∈ R) and {x} = x− bxc, x ∈ R.

Theorem 7.4.9. Let ϕ ∈ C1[0, 2π], ϕ(0) = ϕ(2π), let θ satisfies (3.5.1) and
let Dα = d

idx
on L2[0, 2π] with α-twisted periodic boundary conditions, α ∈ [0, 2π).

Introduce

c =
1

2π

∫ 2π

0

ϕ(s)ds.

Then the Witten index W (DA) exists and we have the following

(i) If α = 0, then the operator DA is not Fredholm for any ϕ and

W (DA) =


bcc, if c ∈ Z

bcc+
1

2
sgn(c), otherwise

.

(ii) If α 6= 0, then the operator DA is Fredholm if and only if c /∈ α+Z. In
this case

W (DA) = index(DA) =

{bcc+ sgn(c), {c} > α

bcc, {c} < α.
.

If c ∈ α + Z, then the operator DA is not Fredholm and

W (DA) = bcc+
1

2
sgn(c).

Proof. If α = 0, then 0 ∈ σ(D), hence, by Theorem 3.1.7 the operator DA

is not Fredholm. If α 6= 0, then 0 /∈ σ(Dα), and therefore DA is Fredholm if and
only if 0 /∈ σ(Dα +Mϕ). By Remark 7.4.2 we have that

σ(Dα +Mϕ) =
{
n− α + c, n ∈ Z

}
.

Hence 0 ∈ σ(Dα +Mϕ) if and only if c ∈ α+Z. Thus, if α 6= 0, the operator DA

is Fredholm if and only if c /∈ α + Z.
Now, we turn to computing the index of the operator DA. It follows from

Theorem 7.4.8 that the spectral shift function ξ( · ;Dα + Mϕ, Dα) is piecewise
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constant, and therefore, 0 is a right and a left Lebesgue point of ξ( · ;Dα +
Mϕ, Dα). By Theorem 6.2.3 the Witten index W (DA) exists and equals

W (DA) = [ξL(0+;Dα +Mϕ, Dα) + ξL(0−;Dα +Mϕ, Dα)]/2

= [ξ(0+;Dα +Mϕ, Dα) + ξ(0−;Dα +Mϕ, Dα)]/2. (7.4.13)

By Theorem 7.4.8 we have

ξ(·;Dα +Mϕ, Dα) = bcc+ sgn(c)
∑
n∈Z

χ(λα,n,λα,n+{c}),

and therefore

ξ(0±;Dα +Mϕ, Dα) = bcc+ sgn(c)χ(λα,0,λα,0+{c})(0±). (7.4.14)

Now we consider the cases α = 0 and α 6= 0 separately. Assume first that
α = 0, then by (7.4.14) we have

ξ(0±;Dα +Mϕ, Dα) = bcc+ sgn(c)χ(0,{c})(0±).

Thus,

ξ(0+;Dα +Mϕ, Dα) =

{bcc+ sgn(c), {c} 6= 0,

bcc, otherwise
.

and

ξ(0−;Dα +Mϕ, Dα) = bcc.
Hence, for the case, when α = 0 we infer from (7.4.13) the following

W (DA) =


bcc, if c ∈ Z

bcc+
1

2
sgn(c), otherwise

.

Now, let α 6= 0. Then by (7.4.14) we have

ξ(0±, Dα +Mϕ, Dα) = bcc+ sgn(c)χ(−α,−α+{c})(0±).

Thus,

ξ(0+, Dα +Mϕ, Dα) =

{bcc, {c} ≤ α

bcc+ sgn(c), {c} > α
,

and

ξ(0−, Dα +Mϕ, Dα) =

{bcc, {c} < α

bcc+ sgn(c), {c} ≥ α
.

Combining these two equalities with equality (7.4.13) we obtain the following
precise value of the Witten index of the operator DA

W (DA) =


bcc, {c} < α

bcc+
1

2
sgn(c), {c} = α

bcc+ sgn(c), {c} > α

�

Remark 7.4.10. (i) It follows from Theorem 7.4.9, that if α 6= 0 and
c /∈ α+Z, then we are in the purely Fredholm situation (i.e. the operator
Dα +Mϕ, Dα and DA are Fredholm) with discrete spectra as in [70].
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(ii) It is worth noting that in this special compact case the Witten index
W (DA) can take only half-integer values, while for the locally compact
case (i.e. the operator D = d

idx
acts on L2(R)) the Witten index W (DA)

could be any real number (see [29], [26]). �

Finally, we would like to discuss connections with spectral flow. By Theorem
6.3.9 we have that

sf(Dα, Dα +Mϕ) = ξ(0, Dα +Mϕ, Dα) +
1

2

(
tr(ker(Dα +Mϕ))− tr(ker(Dα))

)
,

where the value of the spectral shift function ξ(·, Dα + Mϕ, Dα) at discontinuity
points is defined as a half-sum of the left and the right limits.

We again consider the cases α = 0 and α 6= 0 separately. First let α = 0. It
is clear that dim(ker(Dα)) = 1. By Remark 7.4.2 we have

dim(ker(Dα +Mϕ)) = dim(ker(Dα + c)) =

{
1, if c ∈ Z
0, otherwise.

Thus, combining these equalities with Theorem 7.4.9 we obtain

sf(Dα, Dα +Mϕ) =


bcc, c ∈ Z

bcc+
1

2
sgn(c)− 1

2
otherwise.

Now, let α 6= 0. If c 6= α + Z, then 0 ∈ ρ(Dα) ∩ ρ(Dα + Mϕ), and therefore,
tr(ker(Dα + Mϕ)) = tr(ker(Dα)) = 0. In addition, by Theorem 7.4.9 we are in
the Fredholm situation and have the equality

W (DA) = index(DA) = sf(Dα, Dα +Mϕ),

which is consistent with the result of [47, Theorem 9.13]. If c = α + Z, then
tr(ker(Dα +Mϕ)) = 1, and by Theorem 7.4.9 we obtain

sf(Dα, Dα +Mϕ) = bcc+
1

2
sgn(c) + 1/2.

Thus, we have the following

Theorem 7.4.11. Let ϕ ∈ C1[0, 2π], ϕ(0) = ϕ(2π), let θ satisfies (3.5.1) and
let Dα = d

idx
on L2[0, 2π] with α-twisted periodic boundary conditions, α ∈ [0, 2π).

Introduce

c =
1

2π

∫ 2π

0

ϕ(s)ds.

Then

(i) If α = 0, then

sf(Dα, Dα +Mϕ) =


bcc, c ∈ Z

bcc+
1

2
sgn(c)− 1

2
otherwise.

.

(ii) If α 6= 0, then

sf(Dα, Dα +Mϕ) =


bcc, {c} < α

bcc+
1

2
sgn(c) +

1

2
, {c} = α

bcc+ sgn(c), {c} > α
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7.5. Discrete differentiation operator

In this section we consider the easiest example of discrete (one-dimensional)
differentiation operator. This example is essentially commutative and therefore,
the argument is substantially simpler.

Let d be ’differentiation’ operator on l2(Z) given by multiplication operator
by the sequence {n}n∈Z, that is

d(y) = {nyn}n∈Z, y = {yn}n∈Z ∈ dom(d)

dom(d) = {x = {xn}n∈Z ∈ l2(Z) : {nxn}n∈Z ∈ l2(Z)}.

It is clear that

σ(d) = {n : n ∈ Z}, (7.5.1)

where every eigenvalue has multiplicity one.
Since d acts by multiplication by the sequence {n}n∈Z, it follows that d com-

mutes with any operator Mx given by multiplication by a bounded sequence
x ∈ l∞(Z), that is

[d,Mx] = 0. (7.5.2)

As before, in order to compute the spectral shift function ξ(·; d + Mx, d), we
verify firstly that Proposition 7.2.1 holds in this setting. The proof of this fact
can be proved by an agriment similar to Proposition 7.4.4. We omit the proof.

Proposition 7.5.1. Let x ∈ l∞(Z). Then the operator g(d + Mx) − g(d) is
trace-class and

‖ · ‖1 − lim
n→∞

(g(d+ PnMxPn)− g(d)) = g(d+Mx)− g(d).

Hence, by Proposition 7.2.1 we infer that

tr(F (d+Mx)− F (d)) =

∫
R
ξ(s; d+Mx, d)F ′(s)d(s) (7.5.3)

for any F with F ′ ∈ S(R). The following proposition gives explicit formula for
the spectral shift function ξ(·; d+Mx, d).

Proposition 7.5.2. Let d be ’differentiation’ operator on l2(Z) acting by mul-
tiplication on the sequence {n}n∈Z and let x = {xn} ∈ l∞(Z). Then

ξ(·; d+Mx, d) =
∑
n∈Z

sgn(xn)χ(n,n+xn) a.e.,

where the notation χ(n,n+xn), n ∈ Z stands for characteristic function of the set
(n+ xn, n) if xn ≤ 0.

Proof. As usual, in order to compute the spectral shift function ξ(·, d +
Mx, d) we compute the trace tr(F (d+Mx)−F (d)) on the left-hand side of (7.5.3)
for an arbitrary admissible function F (that is, F is such that F ′ ∈ S(R)). We
have

tr(F (d+Mx)− F (d))=
∑
n∈Z

(
F (n+ xn)− F (n)

)
=
∑
n∈Z

∫ n+xn

n

F ′(s)ds.
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Therefore, for an arbitrary F such that F ′ ∈ S(R) we have∫
R
F ′(s)ξ(s; d+Mx, d)ds

(7.5.3)
=

∑
n∈Z

∫ n+xn

n

F ′(s)ds (7.5.4)

=

∫
R

∑
n∈Z

sgn(xn)χ(n,n+xn)(s)F
′(s)ds.

Since F is an arbitrary function with F ′ ∈ S(R), it follows from (7.4.12) that

ξ(·; d+Mx, d) =
∑
n∈Z

sgn(xn)χ(n,n+xn) a.e..

�

Proposition 7.5.3. Let x ∈ l∞(Z), let θ satisfies (3.5.1) and let d be the
operator on l2(Z) be the operator acting by multiplication on the sequence {n}n∈Z.
Then the operator DA is not Fredholm, the Witten index W (DA) exists and

W (DA) =
∑

xn:|xn|>−n
n<0

sgn(xn) +
1

2

∑
xn:|xn|=−n

n<0

sgn(xn) +
1

2
sgn(x0).

Proof. Since 0 ∈ σ(d), Theorem 3.1.7 implies that the operator DA is not
Fredholm.

Now, we turn to computing the index of the operator DA. It follows from
Proposition 7.5.2 that the spectral shift function ξ( · ; d + Mx, d) is piecewise
constant, and therefore, 0 is a right and a left Lebesgue point of ξ( · ; d+Mx, d).
By Theorem 6.2.3 the Witten index W (DA) exists and equals

W (DA) = [ξL(0+; d+Mx, d) + ξL(0−; d+Mx, d)]/2

= [ξ(0+; d+Mx, d) + ξ(0−; d+Mx, d)]/2. (7.5.5)

For the right-limit at zero we have that

ξ(0+; d+Mx, d) = card{xn, n < 0 : xn > −n} − card{xn, n > 0 : xn ≤ −n}+ δ+,
(7.5.6)

where δ+ = 1 if x0 > 0 and δ+ = 0 if x0 ≤ 0. For the left-limit at zero we have

ξ(0−; d+Mx, d) = card{xn, n < 0 : xn ≥ −n} − card{xn, n > 0 : xn < −n} − δ−,
(7.5.7)

where δ− = 1 if x0 < 0 and δ− = 0 if x0 ≥ 0. Since the sequence x = {xn}n∈Z is
bounded, it follows that cardinality of all sets above are finite.

Therefore,

W (DA) = card{xn, n < 0 : xn > −n} − card{xn, n > 0 : xn < −n}

+
1

2

(
card{xn, n < 0 : xn = −n} − card{xn, n > 0 : xn = −n}

)
1

2
sgn(x0).

�

Finally, we would like to discuss connections with spectral flow.
By Theorem 6.3.9 we have

sf(d, d+Mx) = ξ(0, d+Mx, d) +
1

2

(
tr(ker(d+Mx))− tr(ker(d))

)
,
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where the value of spectral shift function ξ(·, d+Mx, d) at discontinuity points is
defined as a half-sum of the left and the right limits.

It is clear that dim(ker(d)) = 1 and

dim(ker(d+Mx)) = dim(ker(M{n+xn}n∈Z)) = card{xn : xn = −n, n ∈ Z}.
Since the sequence x = {xn}n∈Z is bounded, it follows that dim(ker(d+Mx)) <∞.

Thus, combining these equalities with (7.5.6) and (7.5.7) we obtain

sf(d, d+Mx) = card{xn, n < 0 : xn > −n} − card{xn, n > 0 : xn < −n}

+
1

2

(
card{xn, n < 0 : xn = −n} − card{xn, n > 0 : xn = −n}

)
+

1

2
sgn(x0) +

1

2
(card{xn : xn = −n, n ∈ Z} − 1)

= card{xn, n < 0 : xn > −n} − card{xn, n > 0 : xn < −n}

+ card{xn, n < 0 : xn = −n}+
1

2
(δx0 + sgn(x0)− 1).
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APPENDIX A

Explicit computation of some integrals

In the appendix we explicitly compute the Bochner integrals used in Section
4.3 and in 7.3.

Let D be a self-adjoint operator in a Hilbert space H. Recall that, when
α > −1, β > α + 1, we have∫ ∞

0

λα(1 + λ+D2)−β dλ = B(α + 1; β − α− 1)(1 +D2)α−β+1, (A.1)

where B(· ; ·) denotes the Beta function
We denote (cf. (4.3.4))

R0,λ = (D + i(1 + λ)1/2)−1, λ > 0.

A simple computation shows that

R0,λ =
D

1 + λ+D2
− i (1 + λ)1/2

1 + λ+D2
,

R2
0,λ =

D2 − (1 + λ)

(1 + λ+D2)2
− 2i

(1 + λ)1/2D
(1 + λ+D2)2

, (A.2)

Lemma A.1. We have

(i)

1

2

∫ ∞
0

dλ

λ1/2
Re(R2

0,λ) = −π(1 +D2)−3/2

(ii) ∫ ∞
0

dλ

λ1/2
Re(R3

0,λ) = −3π

2
D(1 +D2)−5/2.

Proof. To prove the first equality using (A.2) we obtain

1

2

∫ ∞
0

dλ

λ1/2
Re(R2

0,λ) =

∫ ∞
0

dλ

λ1/2

( D2 − (1 + λ)

(1 + λ+D2)2

)
= (D2 − 1)

∫ ∞
0

λ−1/2(1 + λ+D2)−2 dλ−
∫ ∞

0

λ1/2(1 + λ+D2)−2 dλ

(A.1)
=

π

2
(D2 − 1)(1 +D2)−3/2 − π

2
(1 +D2)−1/2 = −π(1 +D2)−3/2.

For the second equality, appealing to the definition of R0,λ (see (4.3.4)), and
by computing of the real and imaginary parts of the complex number

(
t+ i(1 +

λ)1/2
)−3

, we obtain that

Re(R3
0,λ) =

(
D3 − 3D(1 + λ)

)
(1 + λ+D2)−3.

133



134 A. EXPLICIT COMPUTATION OF SOME INTEGRALS

Consequently, applying (A.1), we obtain the identity

(∫ ∞
0

dλ

λ1/2
Re(R3

0,λ)
)

= (D3 − 3D)

∫ ∞
0

λ−1/2(1 + λ+D2)−3 dλ− 3D
∫ ∞

0

λ1/2(1 + λ+D2)−3 dλ

=
3π

8
(D3 − 3D)(1 +D2)−5/2 − 3π

8
D(1 +D2)−3/2 = −3π

2
D(1 +D2)−5/2.

�

Now, let D denote the two-dimensional Dirac operator on R2, see (7.1.1).

Lemma A.2. We have

∫ ∞
0

dλ

λ1/2

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

=
π

2
[D, γk ⊗ 1](1 +D2)−3/2 − 3π

2
{D, γk ⊗ 1}(1 +D2)−5/2,

where {·, ·} denotes the anticommutator.

Proof. Fixing k = 1, 2, by expanding and cancelling similar terms, we obtain

R0,λ(γk ⊗ 1)R2
0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)

2

(A.2)
=
( D

1 + λ+D2
− i (1 + λ)1/2

1 + λ+D2

)
(γk ⊗ 1)×

×
( D2 − (1 + λ)

(1 + λ+D2)2
− 2i

(1 + λ)1/2D
(1 + λ+D2)2

)
+
( D

1 + λ+D2
+ i

(1 + λ)1/2

1 + λ+D2

)
(γk ⊗ 1)×

×
( D2 − (1 + λ)

(1 + λ+D2)2
+ 2i

(1 + λ)1/2D
(1 + λ+D2)2

)
= 2

D
1 + λ+D2

(γk ⊗ 1)
D2 − (1 + λ)

(1 + λ+D2)2

− 4(1 + λ)
1

1 + λ+D2
(γk ⊗ 1)

D
(1 + λ+D2)2

=
2D(γk ⊗ 1)(D2 − 1)− 2D(γk ⊗ 1)λ− 4(γk ⊗ 1)D(1 + λ)

(1 + λ+D2)3
,
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where in the last line we used the fact that D2 commutes with γk⊗ 1. Hence, for
k = 1, 2, by (A.1), we get that

1

2

∫ ∞
0

dλ

λ1/2

(
R0,λ(γk ⊗ 1)R2

0,λ +R∗0,λ(γk ⊗ 1)(R∗0,λ)
2
)

=
(
(1 +D2)− 2

)( ∫ ∞
0

λ−1/2(1 + λ+D2)−3 dλ
)
D(γk ⊗ 1)−

−
(∫ ∞

0

λ1/2(1 + λ+D2)−3 dλ
)
D(γk ⊗ 1)−

− 2(γk ⊗ 1)D
(∫ ∞

0

λ−1/2(1 + λ+D2)−3 dλ
)

− 2(γk ⊗ 1)D
(∫ ∞

0

λ1/2(1 + λ+D2)−3 dλ
)

(A.1)
=

3π

8

(
(1 +D2)− 2

)
(1 +D2)−5/2D(γk ⊗ 1)

− π

8
(1 +D2)−3/2D(γk ⊗ 1)−−3π

4
(γk ⊗ 1)D(1 +D2)−5/2

− π

4
(γk ⊗ 1)D(1 +D2)−3/2

=
π

4

(
D(γk ⊗ 1)− (γk ⊗ 1)D

)
(1 +D2)−3/2

− 3π

4

(
D(γk ⊗ 1) + (γk ⊗ 1)D

)
(1 +D2)−5/2.

�
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