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Abstract 
	

 
Teaching mathematical concepts is often accompanied by the use of worked 
examples, and the use of manipulative materials. Worked examples have been 
shown to be an effective method of instruction with novice learners, as shown by 
higher test performance and shorter acquisition times. Often worked examples are 
accompanied by illustrations of manipulative materials, and the physical use of such 
materials. One such example is the use of Multi-base Arithmetic Blocks (MAB) to 
teach place value. Whilst the use of worked examples alongside illustrations of MAB 
in instructional material is common, their efficacy has not been investigated in young 
students. Using the concepts of cognitive load theory, which investigates how the 
learner’s limited working memory and vast long-term memory can be used to 
efficiently design educational material, this research examines the effects of using 
worked examples alongside MAB to teach place value to young students. 
Experiment 1 examined whether it was possible to facilitate a more efficient transition 
from the manipulative material to the abstract concept of place value. Using the 
abacus and MAB, and two methods of instruction, the results of Experiment 1 
showed no significant differences in student performance between the methods of 
instruction, or the manipulative materials. Using worked examples in Experiment 2, 
no significant differences in the performance of students using either the abacus or 
MAB, were found. Experiment 3 reduced the level of the reading comprehension in 
the instructional material. The control group, with no access to MAB, performed 
better in the post-test than the group using MAB. Experiment 4 examined whether 
the use of MAB produced a redundancy effect, by providing identical information in 
three different formats. No significant differences were found due to the complexity 
of the instructional material. In Experiment 5, the expertise of students with respect 
to the experimental materials was decreased. The non-MAB group performed better 
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in the post-test and the delayed test, than the group using MAB. Thus, despite the 
widespread use of MAB in primary school to teach place value, this research 
suggests that the blocks may produce a redundancy effect, leading to an increased 
extraneous load, and negatively affecting learning. 	
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1 Introduction 
 
 

Place value, defined as the numerical value that a digit has by virtue of its 
position in a number (A. Stevenson, 2010), is at the core of most basic arithmetic 
manipulations and procedures. Understanding place value is, therefore, a 
fundamental building block for the future mathematical understanding and 
performance of students (Kamii, 1986; Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 
2011; Nataraj & Thomas, 2007; Schmittau & Vagliardo, 2006). 

Currently, the teaching of place value concepts is often accompanied by the 
use of manipulative materials, such as Multi-base Arithmetic Blocks (MAB blocks), 
which are designed to provide a concrete representation for the number bases.  
However, it remains unclear whether the use of such materials increases the 
extraneous load on the student by requiring the student not only to understand the 
blocks and how to manipulate them, but also to comprehend the number concepts 
they are trying to represent. Herein lies a problem of dual representation, with 
students being required to translate between the concrete blocks and the meaning 
of number bases, using their limited cognitive resources. Thus, it remains unclear 
whether the use of MAB or other manipulative materials in early mathematics 
education is an efficient way to  assist students  in understanding place value 
concepts, due to the implications of cognitive load theory (Sweller, 2011). Children’s 
understanding of the base-10 number system emerges only with formal schooling 
and as a direct result of teaching. However, children do possess intuitive skills that 
involve the ability to bundle objects into sets. 

The aim of this research is to draw on notions of evolutionary educational 
psychology (Geary, 2008a) and on cognitive load theory and the associated effects 
(Sweller, van Merriënboer, & Paas, 1998), in order to examine whether certain 
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manipulative materials might present a more intuitive representation of number 
concepts for children or whether the use of such materials may negatively affect 
learning due to the high level of processing required by the student. The fundamental 
argument of this thesis is that using manipulative materials as part of instructional 
material may lead to the redundancy effect, which occurs when identical information 
is presented to the learner simultaneously, but in different formats. This could result 
in a negative impact on learning. In exploring this argument, worked examples were 
used as an instructional method. These have been shown to improve performance 
and learning outcomes when used with novice learners. Worked examples are also 
commonly used in mathematics education, and, therefore, provide a familiar format 
to students. Additionally, using worked examples in the instructional material 
ensured a consistent method of intervention across the different student groups.   
 The second chapter presents a discussion of human cognitive architecture, 
with consideration given to working and long-term memory concepts. Cognitive 
number processing is also discussed, as pertinent to the subject matter of this thesis. 
The chapter concludes with a general overview of evolutionary biological primary 
and secondary skills, as proposed by Geary (2008a) in his contribution to the body 
of knowledge of cognitive load theory.  
 Chapter 3 provides a general overview of cognitive load theory, including a 
discussion of the three types of cognitive load and of the potential measurement 
mechanisms for each. The chapter concludes by discussing the cognitive load 
effects relevant to this thesis.  
 Chapter 4 discusses the acquisition of the Hindu-Arabic number system, by 
explaining the basis of the system and the instructional materials currently used in 
place value mathematics education.  

The following chapter, Chapter 5, provides a brief overview of the literature 
relevant to this thesis. It presents a general overview of the series of experiments 
conducted as part of this thesis, which investigated the efficiency of teaching place 
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value concepts with manipulative materials, from the perspective of cognitive load 
theory.  

The experimental data and the results of these experiments are presented in 
Chapters 6-10. The results partially support the hypothesis and provide some 
evidence to question the use of MAB blocks as an aid in teaching place value 
concepts.  

Chapter 11 summarises the major findings of the study, taking into 
consideration the concepts and effects of cognitive load theory. The chapter also 
considers the limitations of this study and proposes future research directions. Both 
theoretical and practical implications for teaching place value, with the assistance of 
manipulative materials, are also presented in this chapter.  
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2 Human Cognitive Architecture 
 

 

2.1 Chapter Overview 
The system of cognitive architecture is defined by Langley, Laird and Rogers (2009, 
p. 141), as something that specifies the “…underlying infrastructure for an intelligent 
system…”. Similarly, human cognitive architecture refers to the structure and 
organisation of our cognitive resources that allows humans to integrate, process and 
use information (Sweller, 2011; Sweller et al., 1998). Human cognitive architecture 
is composed of memory structures that are fundamental to the human ability to think, 
learn and solve problems. Current research proposes two vital memory structures, 
working memory and long-term memory, as the basis of human cognitive 
architecture (Baddeley, 1998, 1999, 2000; Baddeley & Hitch, 1974). Understanding 
how these memory structures function can assist with designing the most effective 
instructional material. 

Working memory is essential for conscious thought, but is only able to process 
a small number of elements at the one time, with the number often placed at 7 ± 2 
(Miller, 1956). The limited working memory capacity can be improved through a 
process known as chunking, in which related elements are grouped together in long-
term memory to form meaningful structures. Long-term memory can hold an 
unlimited number of elements on a permanent basis (Sweller, 2011). Storage in long-
term memory occurs through the use of cognitive constructs, known as schemas, 
where related information is stored together for easy retrieval when required.   

Cognitive load theory refers to the total amount of cognitive load required in 
working memory to complete a specific task. The processing capacity of each 
individual differs, based on the extent of their knowledge held in long-term memory 
in regards to a specific task. Learners who have more in-depth knowledge and 
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understanding of a particular task are considered to be experts. Conversely, novices 
do not possess in-depth knowledge and understanding of the same task. This means 
that the cognitive load of an expert is often much lower than that of a novice when 
completing the same task. Catering for both expert and novice learners is an 
important consideration in the design of effective instructional material.  

The theory has recently been expanded to take into consideration an 
evolutionary perspective of the development of human cognitive architecture (Geary, 
2002, 2005, 2008a; Geary & Bjorklund, 2000; Muller, 2010; Paas & Sweller, 2011; 
Sweller, 2004, 2008). One of the primary goals of evolutionary educational 
psychology is to uncover inherent biases to learning, and to use knowledge of those 
biases for instructional design and reform. In his evolutionary framework, Geary 
(2008a) draws a clear line between two types of skills and knowledge, primary and 
secondary. Knowledge that is acquired effortlessly, and that humans have evolved 
to acquire naturally, is referred to as primary knowledge. This is in contrast to 
secondary knowledge, which requires specific instruction. Geary (1996) suggests six 
areas of primary mathematical knowledge: numerosity, ordinality, counting, 
estimation, basic arithmetic and geometry. He believes that building on an 
evolutionary knowledge can be more effective than using non-evolutionary 
instructional theories (Geary, 2007; Muller, 2010).  

Currently, early primary school education is not making full use of children’s 
primary spontaneous skills to facilitate the acquisition of secondary knowledge 
(Geary, 2008a; Muller, 2010). Educators should be more mindful of primary intuitive 
knowledge and how this knowledge may be exploited to help acquire secondary 
knowledge more effectively (Keil, 2008). The use of physical materials in the 
classroom could present one way of exploiting this primary knowledge. Physical 
materials, commonly referred to as manipulative materials, are widely used in the 
classroom to help students understand abstract mathematical concepts. Using such 
materials is inherently a primary skill.  Children may use the materials intuitively in 
their play in order to learn. Mix, Huttenlocher and Levine (2002, p. 130) state that 
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“…working with concrete materials serves to help children bridge the gap between 
conventional symbols and their pre-existing concepts. This suggests that educators 
should place greater emphasis on the connections between symbols and 
experiences rather than simply providing the experiences themselves.”. Whilst some 
manipulative materials may be a very useful tool in the classroom, they must be used 
correctly. For this to occur, children must have a basic understanding of the concept 
being taught and not simply play with the manipulative material (Smith, 2008). For 
this reason, research is still equivocal as to whether there is a clear and consistent 
benefit in using manipulative materials in the classroom rather than more traditional 
methods of teaching (Bartolini Bussi, 2011; Kaminski, Sloutsky, & Heckler, 2008; 
Sowell, 1989; Uttal, Scudder, & DeLoache, 1997; Wright, 2013).  

 

2.2 Memory and modeling memory 
An understanding of human cognitive architecture, composed of memory structures 
such as sensory memory, working memory and long-term memory, is essential in 
establishing the fundamentals of learning, problem solving and instructional design. 
A number of different memory models have been put forward. One of the initial 
propositions defining a memory model made up of multiple stores, was developed 
by Atkinson and Shiffrin (1968). It suggests a flow of information through the system 
in the following sequence (Figure 1). Incoming information enters the sensory 
register (sensory memory) and resides there for a brief period of time. From sensory 
memory, information flows onto the working memory store, where it can also only be 
kept for a short period of time. Through a process called rehearsal, information can 
then be moved into long-term memory. The long-term store is a permanent 
repository for information and cannot be easily accessed, although it allows for the 
retrieval of information from the long-term memory to the short-term memory, as 
required. Information that does not undergo the process of rehearsal is lost over a 
short period of time. 
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Figure 1: Memory Model composed of three different stores first proposed by Atkinson and Shiffrin 

(1968) 

The Atkinson-Shiffrin model (R. C. Atkinson & Shiffrin, 1968) was one of the 
most influential memory models of its time, in part because it laid out a 
comprehensive view of information processing in the memory system. However, this 
is a fairly simplistic model of  human cognitive architecture, and many improvements 
have been made to this model over the years. In particular, there has been a change 
in thinking about short-term memory function, and this shift is reflected in the use of 
the term working memory, instead of short-term memory, to describe what was once 
considered to be an extremely brief, unitary store.  

 

2.3 Working Memory 
Building on the initial research by Atkinson and Shiffner (1968), a working model of 
memory was proposed by Baddeley and Hitch (1974). It assumed that short-term 
memory is not only a unitary store, but it can also provide a workspace for complex 
cognitive activity. Baddeley and Hitch (1974) showed that working memory was 
composed of three basic parts: the central executive, the visuo-spatial sketch pad, 
and the phonological loop. The central executive is the driver of the overall system, 
assigning data to either of the two other components. It is also responsible for mental 
arithmetic and problem solving. The visuo-spatial sketchpad is where information 
presented in a visual or spatial format is stored and processed. Finally, the 
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phonological loop deals with spoken and written material, consisting of two further 
components: the phonological store, dealing with speech, and the articulatory control 
linked to speech production (Figure 2).  

 
Figure 2: The working memory model as proposed by Baddeley and Hitch (1974)  

Further research resulted in the addition of the fourth component to the 
working memory structure, the multimodal episodic buffer, which comprises a limited 
and temporary storage of information held in a multimodal code (Baddeley, 2000)  
(Figure 3). The episodic buffer is also controlled by the central executive, which is  
responsible for amalgamating information from multiple sources into a unitary 
episode. The buffer serves as a modeling space, separate from the long-term 
memory, but an important stage in long-term episodic learning (Baddeley, 2000).  
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Figure 3: Updated Model of Working Memory (Baddeley, 2000) 

The central aspect of the working memory model developed by Baddeley and 
Hitch (1974) is the ability of working memory to act as more than just a temporary 
storage space. According to the model, working memory is a dynamic construct, a 
system consisting of two temporary storage facilities, the first to process visual 
information, and the second to process auditory information, and, in addition, a 
system to control these stores. The central executive unit is the system that controls 
both visual and auditory processing. This is the component that most strongly 
differentiates current thinking about working memory from historical views of short-
term memory. The central executive is responsible for deciding what information is 
stored and where the information should be stored. Additionally, it is responsible for 
any integration, coordination and cognitive manipulation of the information held in 
the separate stores. This component determines how to maximize the cognitive 
resources available, and how to suppress irrelevant information that would overuse 
the resources (Baddeley, 1998). The model further differentiates between the 
processing of phonological and visual information. Audio-based information directly 
enters the phonological store, a passive storage facility within the phonological loop, 
and is held there until it decays a couple of seconds later. Written material must first 
be converted to articulatory code before it can enter the phonological store, and can 
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also be stored there for up to two seconds. The second part of the phonological loop, 
the articulatory control, rehearses the information from the phonological store and 
circulates the information until it is remembered. The articulatory control is also 
responsible for converting written material into audio code and transferring it into the 
phonological store (Baddeley, 1999) (Figure 4). 

 
Figure 4: Phonological Loop (Baddeley, 1998)  

The visuo-spatial sketchpad, a second temporary memory store, allows visual 
and spatial information to be held so that it can be processed. Research has shown 
that the visuo-spatial sketchpad can operate simultaneously with the phonological 
loop, allowing both visual and auditory information to be processed without one 
affecting the efficacy of the other (Cornoldi & Vecchi, 2004).   
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Sweller (2004) postulates against the existence of the central executive unit, 
and the lack of empirical evidence provides a strong indication against its existence. 
Sweller (Sweller, 2004) postulates that the central executive is not a general 
biological structure, but rather a specific learned structure, not available when 
processing novel information. He proposes that schemas, in long term memory, act 
as a central executive funtion for the working memory. If such a schema is not 
availble, as is the case with novel information, learners attempt a series of random 
combinations followed by tests to establish the effectiveness of those combinations, 
which can act as a substitute for the central executive function (Sweller, 2003, 2004).  

However, the model of working memory, consisting of two different storage 
buffers for visual and audio information, is strongly supported by dual-task studies, 
which require the concurrent performance of two tasks that could otherwise be 
performed separately (Baddeley & Hitch, 1974). In specific examples, verbal 
concurrent tasks affect the storage of verbal information, but not visuo-spatial 
information, whereas visuo-spatial tasks affect the storage of visuo-spatial 
information but not auditory information (Cocchini, Logie, Sala, MacPherson, & 
Baddeley, 2002; Olive, 2003).  

Novel information enters working memory via sensory memory and is then 
processed in the working memory structure. However, the ability to process complex 
information is hindered by the limited capacity of working memory. Miller (1956) 
suggests that most adults can only store in their short-term memory between five 
and nine (seven plus or minus two)  items that have not been previously learnt, and 
then only for a brief duration. This limit also applies to working memory, if  information 
storage or maintenance only is involved; if processing is also involved then this limit 
could be further reduced. If information needs to be processed or manipulated in any 
manner, the number of elements that can be kept in working memory could be as 
few as two or three (Cowan, 2001). If not rehearsed, novel information can only be 
held in working memory for about 15-30 seconds (Driscoll, 2005). These limitations 
have important implications for instructional design and the way new information is 
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taught to students. It is important that new information is taught in ways that 
compensate for the limited capacity and duration of working memory. Instructional 
design that requires students to process many elements of complex novel 
information at the same time will lead to failure in the learning of that material  
(Sweller, 2002). 

 Information that has already been learnt and is stored in long-term memory 
is available for processing only after it is first retrieved and transferred temporarily 
into working memory. Unlike information entering from sensory memory, information 
retrieved from long-term memory is not hindered by the limited processing capacity 
of working memory. Since information in the long-term memory is stored in an 
organised form, there may be no limits to the amount of such information (Sweller, 
2002). Consequently, there are further implications for instructional design based on 
whether students have prior knowledge of the material being taught. Students who 
have prior knowledge of new material that has already been organised in their long-
term memory will be able to process new information very quickly, as opposed to 
those students who are hearing or seeing this information for the very first time.  

 

2.4 Chunking Theory 
When discussing storage limitations of short-term memory, Miller (1956) suggested 
seven plus or minus two as the maximum number of chunks, or groups, that a person 
can hold. Chunking, initially proposed by Miller (1956) and de Groot (1965), and 
theorized by Chase and Simon (1973),  is an important mechanism in circumventing 
working memory limitations and increasing the ability to hold more information than 
a maximum of seven singular elements. Chunking involves combining together 
related pieces of information according to familiar patterns, in order to form a single 
chunk, which is then treated in working memory as one element. One of the most 
commonly used examples of chunking is the way phone numbers are grouped. A 
number such as 3412975837 might be hard to remember when each of the ten 
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numbers has to be remembered separately, but when chunked into three smaller 
singular units, such as 3412 975 837, it becomes possible and easier to remember, 
especially if some of the units contain familiar combinations of numbers (e.g., 
associated with some well-remembered dates, codes, et.).  

More recent research has focussed on the mechanisms of chunking. This 
research has cast some doubt over whether chunks are stored in working memory 
or in our long-term memory (Gobet, 2000; Guida, Gobet, Tardieu, & Nicolas, 2012). 
Gobet (2000) proposed that some of the information encoded as chunks is stored in 
long-term memory. A study by Ericsson, Chase and Faloon (1980) found that an 
average undergraduate college student, who had been engaged in performing 
memory span tasks for more than 230 hours, was able to increase his memory span 
from 7 digits to 79 digits. The student utilised a mnemonic technique to chunk the 
numbers into familiar structures. The use of mnemonics allowed the student to 
relieve the burden placed on his working memory through an association with the 
already existing knowledge of sports records in his long-term memory. For example, 
3492 was recorded by the student as “3 minutes and 49 point 2 seconds, near world-
record mile time” (Ericsson et al., 1980). The study led Ericsson and his colleagues 
(1980) to develop their theory of skilled memory and to conclude that, whilst it is not 
possible to increase the capacity of working memory with extended practice, it is 
possible to increase the memory span with the use of chunking, based on the related 
associations in long-term memory.  

To attain exceptional memory performance, prior knowledge must be used to 
encode and store items in long-term memory for later retrieval (Ericsson, Delaney, 
Weaver, & Mahadevan, 2004). With practice and rehearsal, the encoding and 
retrieval processes can be greatly sped up, causing dramatic improvements in 
memory performance. This is consistent with skilled memory theory and its 
generalization to long-term working memory (Ericsson et al., 2004). Recent studies 
have further confirmed that at least some of the information contained in chunks is 
stored in long-term memory, due to the absence of the effect of an interfering task 
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(Ericsson & Kintsch, 1995; Gobet & Simon, 1996; Kintsch, 1998). The study by 
Ericsson et al. (2004) proposed that some chunking information was stored in the 
long-term memory.  Their experiment looked at a person with superior memory 
abilities, and found that the subject’s encoding techniques were a result of 
memorizing the first 10,000 digits of π as numerous 10-digit groups, consistent with 
the chunking information residing in long-term memory (Ericsson et al., 2004). In the 
case of a domain expert, a process meant to be occurring solely in working memory 
can also involve storage and retrieval of chunks from long-term memory (Guida et 
al., 2012). Such studies further demonstrate that some chunking information can be 
stored in long-term memory, thereby greatly improving memory skills by overcoming 
the limited capacity of working memory. 

 

2.5 Working Memory and Mathematics 
Considerable research conducted in the last decade suggests that working memory 
plays a significant role in mathematical cognition (Alloway, Gathercole, Willis, & 
Adams, 2004; Ashcraft & Krause, 2007; Berg, 2008; Bull & Scerif, 2001; Geary, 
1990; Holmes & Adams, 2006; Passolunghi, Vercelloni, & Schadee, 2007; Siegel & 
Ryan, 1989; St Clair Thompson, Stevens, Hunt, & Bolder, 2010; Swanson & Sachse-
Lee, 2001; van der Sluis, van der Leij, & de Jong, 2005; Zheng, Swanson, & 
Marcoulides, 2011). Raghubar, Barnes, and Hecht (2010) noted that “…the very 
nature of many mathematical tasks would seem to require or at least be supported 
by working memory…”. Indeed, research has shown that children with a higher 
working memory capacity tend to learn early mathematics more efficiently (Hoard, 
Geary, Byrd-Craven, & Nugent, 2008; Passolunghi, Mammarella, & Altoè, 2008; 
Passolunghi et al., 2007; Passolunghi & Siegel, 2001, 2004).  

Hecht (2002) proposed that children use different strategies to solve maths 
problems, some of the strategies drawing heavily on working memory resources. 
Research by Lee, Ng and Ng (2009) used a multitask approach to examine whether 
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working memory is associated with generating a model of the problem and then 
solving the problem. They tested 255 students, all of them 11-years-old, using 
algebraic problem solving tasks, and found that differences in working memory 
capacity accounted for about a quarter of the variance in building a model of the 
problem and then solving that problem. Literacy, however, accounted for another 
10% of variability in algebraic problem solving skills (K. Lee et al., 2009). This is 
consistent with other research by Zheng, Swanson and Marcoulides (2011) who 
proposed that whilst all working memory components play significant roles in 
children’s ability to solve mathematics problems, reading skills can compensate for 
some of the gaps in working memory measures. Conversely, Swanson and Beebe-
Frankenberger (2004), using a large sample of first, second and third graders, found 
that in the area of word problems, working memory predicted solution accuracy 
independent of reading ability. A review of literature by LeFevre et al. (2005) 
supports the notion that working memory is heavily involved in problem solving, 
when the problems reach sufficiently high levels of complexity.  

There is, however, some debate as to the importance of the different 
components of working memory to the various mathematical skills (Ashcraft, 1992; 
Fürst & Hitch, 2000; Hecht, 2002; Raghubar et al., 2010). Meyer et al. (2010) 
suggested that the central executive and the phonological loop are vital in facilitating 
mathematical learning in the early stages (e.g., at Grade 2 level), whereas the visuo-
spatial sketchpad plays an increasingly vital role in later stages of learning 
mathematical skills. Another study that is consistent with these results (Passolunghi 
et al., 2007) tested 170 children at the beginning and at the end of Year 1, 
approximately aged 6-7 years. From the results, the research similarly proposed 
that, in the early stages of  mathematical learning at school, working memory and, 
specifically, the central executive unit, is a distinct and significant predictor of 
success. The study found no link to phonological ability as a predictor of 
mathematical success (Passolunghi et al., 2007).  
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In contrast to the above findings, other studies have found that school-aged 
children rely heavily on the phonological loop for subvocal rehearsal, ensuring 
accuracy during mental calculations involved in arithmetic problem solving (Logie, 
Gilhooly, & Wynn, 1994). Using a large sample of 8- to 11-year-olds, Adams and 
Hitch and Donlan (1998) found that the phonological loop is essential for the ability 
to solve arithmetic problems. The role of the visuo-spatial sketchpad is not as clear, 
although in more recent work, Holmes and Adams (2006) found that both the visuo-
spatial sketchpad and the central executive, but not the phonological loop, were 
excellent predictors of curriculum-based mathematical success in early numerical 
development.  

 

2.6 Long-Term Memory 
Long-term memory is an organised store of information, altered through the 
acquisition of knowledge and it is widely accepted that an unlimited number of 
elements related in meaning can be stored together in long-term memory on a 
permanent basis (Baddeley, 1999; Ericsson & Kintsch, 1995; Sweller, 2004).  

A series of experiments by De Groot (1965) examined the differences 
between chess grand masters and novice chess players. The chess grand masters 
were able to win almost all games, not because of their superior reasoning skills, but 
due to the fact that they were familiar with, and held in their long-term memory, the 
largest number of various chess board compositions from real game situations and 
their corresponding best moves. In this way, they were able to easily predict, with 
their prior experience, the best move from a large number of various board setups. 
A computer model built to replicate this process estimated that a chess grand master 
holds between 10,000 and 100,000 chess board configurations in his or her long-
term memory (H. A. Simon & Gilmartin, 1973).  

Later studies by Simon and Chase (1973) extended the experiment to include  
both real game positions and random positions. Their findings indicated that in 
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random positions, chess grand masters performed on par with novice players, whilst 
in real game positions, chess grand masters performed significantly better in 
choosing their next move. This further reinforced De Groot’s findings, linking long-
term memory to higher-level cognitive activities such as problem solving and thinking 
(Chi, Glaser, & Rees, 1982; Sweller, Ayres, & Kalyuga, 2011). These findings have 
been replicated in areas other than chess, such as algebra (Sweller & Cooper, 
1985), physics  (Chi, Feltovich, & Glaser, 1981), and mechanics (Reif & Heller, 
1982). Thus, it is widely accepted that expertise is heavily dependent on knowledge 
held in long-term memory (Sweller, 2002). 
 Tulving (1972) made one of the earliest distinctions between episodic, 
semantic and procedural long-term memories. Episodic memory is that part of long-
term memory responsible for storing episodes in our lives  associated with a certain 
time and place (Tulving, 1972). An example of episodic memory is recalling a city 
through memories of the last holiday taken there. Semantic memory is that part of 
long-term memory responsible for storing general information about the world, for 
example, basic knowledge of countries, continents and oceans, or knowledge 
required for the use of language. The above two types of knowledge are involved in 
conscious thought, if activated and retrieved into working memory. On the other 
hand, procedural memory does not require conscious thought and is that part of 
long-term memory responsible for motor skill memory, for example, the ability to ride 
a bicycle. The different types of memory differ greatly in the kind of prior experience 
involved: episodic and procedural memories require prior experience, whilst 
semantic memory does not (Greenberg & Verfaellie, 2010). Cohen (1980) was able 
to demonstrate a distinction between declarative and procedural knowledge in 
experiments with patients suffering from amnesia. Declarative knowledge is 
concerned with facts, and the recollection of this type of knowledge requires some 
degree of consciousness. Semantic and episodic memory structures are responsible 
for storing declarative knowledge. Conversely, procedural knowledge is based on 
motor skills and is automated; it does not require conscious thought for recollection. 
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Whilst amnesiac patients have trouble in acquiring new episodic or semantic 
information after the onset of amnesia, their knowledge of procedural information 
remains largely unaffected, and they are able to acquire new procedural skills (N. J. 
Cohen, 1980). 
 

2.7 Schemas 
Information in long-term memory is organised and stored in domain-specific 
structures, known as schemas. In their research, Rumerlhart and Ortony (1977) 
identified four essential characteristics of schemas, which work together to establish 
the efficient building blocks of memory. The first characteristic is that schemas have 
variations in their values, based on the context and environment of a specific 
situation. To demonstrate this point, Rumelhard and Ortony (1977) used the example 
of GIVE as a schema with three variables: a giver, a gift and a recipient. On different 
occasions, different variables will take on different values, whilst the relationships 
internal to the GIVE schema will remain constant. Another example is COMPUTER 
as a schema, which can include the motherboard, the shell, the graphics card, 
memory and RAM. Each of these variables can vary largely in their dimensions or 
other characteristics, but the schema itself remains consistent in that these variables 
are present.  

Secondly, schemas can embed one within the other (Rumelhart & Ortony, 
1977). To use the previous example of a COMPUTER schema, one of the elements, 
such as the shell, can form a sub-schema consisting of plastic, screws, clips, etc.  
This sub-schema is embedded within the dominating schema of the COMPUTER. 
There are certain advantages to embedding schemas, primarily the ability to look at 
the ‘big picture’ without the need to delve deeper into the internal structures. A 
second advantage is that a deeper understanding can be achieved if reference is 
made to the internal structure of the lower-level elements. This means that the 
COMPUTER schema can remain a simple schema with just the main elements, and 
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without the need to examine every screw and clip holding elements in place, that is, 
until these lower-level structures need to be accessed.  

The third characteristic is the ability of schemas to represent all levels of 
abstraction. This refers to the fact that schemas relate not only to concrete objects, 
such as the computer example used previously, but also to feelings and intangible 
concepts (Rumelhart & Ortony, 1977).  

Finally, the fourth characteristic of schemas is their ability to represent actual 
knowledge rather than simply dictionary-based definitions and to “…represent 
knowledge in the kind of flexible way which reflects human tolerance for vagueness, 
imprecision, and quasi-inconsistencies…” (Rumelhart & Ortony, 1977, p. 111).  

Schemas are engaged at all stages of cognitive processing. They not only 
allow the categorization of information based on similar elements, but also determine 
how that information will be used, thereby facilitating retrieval at a later stage when 
the information is required (Sweller et al., 1998). Basically, schemas are responsible 
for facilitating the flow of information through the cognitive processing system 
(Rumelhart, 1980) and are referred to as the “…building blocks of cognition…”  
(Rumelhart, 1980). Schemas help to reduce cognitive load by allowing a person to 
ignore any irrelevant information that would otherwise unnecessarily burden their 
working memory (Sweller & Chandler, 1994). For example, when one sees a dog, a 
schema allows the person to recognise the animal simply as a ‘dog’, despite there 
being many breeds of dogs. Because this information is stored in a schema in long-
term memory, working memory does not need to be burdened with the different 
breed-specific elements presented in a single dog.   

Although schemas are stored in the long-term memory, their construction 
occurs in working memory, where new material is first manipulated. Retrieval of 
relevant schemas from long-term memory depends on three factors, firstly, the 
strength of the information stored within the schema, secondly, the extent to which 
the incoming information matches with the information currently stored within the 
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schema, and, finally, how recently and frequently the necessary schema has been 
used (Thorndyke & Hayes-Roth, 1977).  

Schemas play an important role in increasing the capacity of working memory. 
Complex schemas, which store many elements of related information, can be treated 
in working memory as a single entity. This results, firstly, in an increased memory 
capacity and, secondly, in the ability to overcome the limitations of working memory 
that apply to new material with no associated schemas (Kirschner, Sweller, & Clark, 
2006). Experts possess more complex and developed schemas in their long-term 
memory (van Merriënboer & Ayres, 2005) than non-experts, which is one of the 
factors differentiating a novice from an expert learner. This could be due to the fact 
that domain expertise has to be acquired slowly over years of deliberate practice 
(Ericsson, Krampe, & Tesch-Römer, 1993). As an example of this, a chess expert 
requires at least ten years of consistent and continuous practice to be able to store 
tens of thousands of board configurations in their long-term memory (H. A. Simon & 
Gilmartin, 1973). Another example is an algebraic schema, which allows a domain 

expert to easily transform "# = % into & = '%. Despite the fact that there are three 

elements and a set of relationships between them, this equation can be easily 
transformed by anyone with basic algebraic knowledge, due to the fact that the 
elements and relations are grouped into, and stored in, a single schema in long-term 
memory. Schema acquisition is directly related to the capacity of working memory 
and also to whether the cognitive load resulting from the material being learnt is in 
line with the cognitive capacity of the learner (Verhoeven, Schnotz, & Paas, 2009). 
Once acquired, schemas make processing in working memory a relatively simple 
task, because a schema acts as only one element, in contrast to the several 
elements present in the initial algebraic equation (Pollock, Chandler, & Sweller, 
2002). The construction and automation of schemas are essential to the process of 
gradually transforming novices into experts (Verhoeven et al., 2009).  
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2.8 Schema Automation 
Once a schema has been constructed, it needs to be practiced in order to promote 
automation (Kalyuga, Ayres, Chandler, & Sweller, 2003; van Merriënboer & Sweller, 
2005). Schema automation occurs when information stored in schemas can be 
processed automatically with no conscious effort, bypassing the need to be 
processed within the working memory structure. To successfully achieve schema 
automation, a task requires much practice and repetition, and an automated schema 
can only develop if the task is consistent across a range of different problem 
situations (Schneider & Shiffrin, 1977; van Merriënboer & Sweller, 2005). An 
example of task consistency is the use of software applications, such as word 
processing tools, where the user makes use of the same functionality, located in the 
same area of the application, and produces the same result each time, allowing for 
maximized efficiency in task performance due to schema automation. In an early 
experiment looking at the effects of automation, Schneider and Shiffrin (1977) 
showed that the ability to differentiate letters from numbers is an automated skill in 
an adult. Approximately 2100 trials were required for participants to be able to 
differentiate between letters and letters as fast as they could differentiate between 
letters and numbers.  

Automation allows familiar tasks to be performed quickly and efficiently without 
mistakes, and is an important element of instructional design. Efficient instructional 
design should, therefore, encourage both schema construction and schema 
automation (van Merriënboer & Sweller, 2005), as both these processes are 
essential for successful learning, “…Cognitive mechanisms of schema acquisition 
and transfer from consciously controlled to automatic processing are the major 
learning mechanisms and foundation of our intellectual ability and skilled 
performance…” (Kalyuga, 2010, p. 61).   
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2.9 Cognitive Architecture of Numerical Processing 
Number competence in humans begins in early infancy and develops over time to 
encompass more complex number processing and manipulation skills (Geary, 
1995). Various models of numerical cognition have been proposed, and have caused 
much debate (Jamie I. D. Campbell & Epp, 2004). 

2.9.1 Modeling number cognition 
McCloskey, Caramazza and Basili (1985) proposed a basic model of the cognitive 
architecture for numerical processing. The model examined three cognitive 
mechanisms involved in number processing: number comprehension, number 
production, and the execution of simple calculations. The model considered the 
functions of numerical comprehension and numerical production to be independent 
of each other (Figure 5). Basically, the model proposes a modular presentation of 
number cognition: comprehend numbers first, then perform number manipulations , 
and finally produce the result. An expanded model with all the components included 
is shown in Figure 6. 

 
Figure 5: The functions of numerical comprehension and numerical production are independent to 

each other (McCloskey et al., 1985) 
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Figure 6: Cognitive Architecture for numerical processing (McCloskey et al., 1985) 

Numeric comprehension and numeric production elements also distinguish between 
numbers spoken or written in alphabetical form, e.g. one hundred and thirty-two and 
numbers written in digital form, e.g. 132. Within both forms of comprehension and 
production there is a distinction between lexical and syntactic processing 
components. Lexical processing involves the comprehension or production of 
individual elements in a number, such as the digit 3 or the word three (McCloskey et 
al., 1985). Syntactic processing involves the processing of the relationships amongst 
the different elements in order to produce the number as a whole. For example, using 
the number 132 again, lexical processing requires the understanding of the separate 
digits 1, 3, and 2 in the number, whereas syntactic processing ensures that the 
relationship between the positions of the digits determines the complete numeral. 
The model assumes a single ‘abstract’ semantic quantity code that is common to all 
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the components (Jamie I. D. Campbell & Epp, 2004). Therefore, as an example, 
when a person is presented with a mathematical problem, the input (digital or verbal) 
needs to be translated into an abstract code, then the problem needs to be solved, 
and finally, the abstract code translated back into an output code (digital or verbal) 
(García-Orza, León-Carrión, & Vega, 2003). Accordingly, in mathematics, difficulties 
with reading numbers aloud could be independent from actual errors in calculations. 
Thus, this model assumes that mathematical processes, such as number production, 
number estimation and memory for number facts, operate independently of the way 
in which numerals are represented (written, verbal or Arabic). However, Campbell & 
Epp (2004), in their study examining the encoding approach in Chinese-English 
bilinguals, have argued against this model and have proposed that there are indeed 
mechanisms for format specific number judgements and calculations (Jamie I. D. 
Campbell & Epp, 2004; Dehaene, 2004).  

In contrast to the abstract code model (McCloskey et al., 1985), an encoding-
complex hypothesis has been proposed (Jamie I. D. Campbell, 1994). The 
hypothesis is based on empirical evidence of the existence of format-specific 
retrieval in number processing (Bernardo, 2001; Blankenberger & Vorberg, 1997; 
Jamie I. D. Campbell, 1994; Jamie I. D. Campbell & Epp, 2004; Sciama, Semenza, 
& Butterworth, 1999). According to this model, numerical skills are based on two 
factors: the modality of the representation, as opposed to abstract code, and the 
number processing tasks that are required and which involve common cognitive 
mechanisms. This means that number skills would be based on multiple forms of 
internal representation of number and realized in a variety of different ways 
(Thevenot & Barrouillet, 2006). Based on this hypothesis, another model, proposing 
a different view of number cognition, has been presented by Dehaene (1992), and 
is referred to as the triple-code model (Figure 7). The triple-code model proposes 
that number processing is based on three types of code: visual Arabic form, an 
auditory-verbal code, and an analog-magnitude representation (Dehaene, 2004). 
The triple-code model is, therefore, modular in respect to the representational code, 
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in contrast to the abstract mode model, which is modular in respect to numerical 
function. The auditory-verbal code facilitates verbal number input and output, some 
counting processes, and the retrieval process for simple addition and multiplication 
facts. García et al. (2003) considers the multiplication tables to be the best examples 
of using verbal code for calculation, because the tables would be retrieved as 
automatic verbal associations, due to the rote learning of tables. The visual digital 
form mediates input and output, parity judgements and certain multi-digit operations, 
whereas the analog-magnitude form provides the basis for number comparisons and 
approximate calculation and estimation, and is also thought to contribute to subitising 
capabilities (Jamie I. D. Campbell, 1994; Dehaene, 1992). This model, unlike the 
abstract code model, assumes that the form in which the numbers are presented 
could affect numerical manipulation and calculation (Jamie I. D. Campbell & Epp, 
2004).  For example, extensive work with Arabic-based digits would develop an 
Arabic-specific inhibitory process, which would reduce reading-based interference in 
arithmetic (Jamie I. D. Campbell & Epp, 2004).  
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Figure 7: The triple-code model (Dehaene, 1992) 

This research maintains consistent representations of number in its instructional 
material and uses only familiar systems of Arabic numerals and their associated 
place value. This was done to reduce any negatory preffects on numerical 
manipulation and calculation required within the proposed tasks.  
 

2.10 Biologically Primary and Secondary Knowledge 
Early numerical competence in humans has only recently become the subject of 
research in developmental psychology. Previously, this field was dominated by the 
theories of Piaget, who argued that young children do not possess any conceptual 
understanding of number and largely undertake activities such as counting by rote 
(Geary, 1994c). The notion of arithmetic in the first year of human life was 
unthinkable (Dehaene, 1997). Recently, David Geary (Geary, 1994a, 1994d, 1996, 
2008a) proposed an evolutionary-based framework that accounted for early 
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numerical skills. This framework can assist in the understanding of biological and 
cultural influences on children’s cognitive and academic development. Geary’s 
theory proposes the presence in humans of an innate understanding, on a basic 
level, of psychology, biology and physics (folk domains), which ensured evolutionary 
human survival. Human folk domains comprise a set of innate motivations for 
learning, which can provide a framework for formal education to build upon. The 
ability to suppress the intuitive knowledge that comes with the human folk domain 
ensures that humans are able to create and learn evolutionary novel information 
(Geary, 2008a). This leads to the presence of two forms of knowledge: biologically 
primary knowledge, such as defined by the human folk domains, and biologically 
secondary knowledge, that is, evolutionary novel knowledge that is acquired beyond 
the intuitive innate motivations.  
 Biologically primary knowledge is the knowledge that we are born with, or that 
is easily acquired and which has undergone selection pressure. Biologically primary 
abilities are evolved abilities that allowed our ancestors to survive. It is this intuitive 
knowledge that allows humans to effortlessly learn how to speak, despite the high 
motor complexity of the task. This kind of knowledge requires minimal instruction 
and is thought to be acquired with very little effort.  
 In contrast, biologically secondary knowledge is acquired through explicit 
instruction and effort. This knowledge is harder to acquire and relies on the culture 
and environment of the child, and is introduced to deal with novel ecological 
problems that our ancestors never faced. It involves such skills as reading, writing, 
and higher mathematics. The cognitive processes associated with the acquisition of 
secondary knowledge rely heavily on conscious processing of information in working 
memory. Cognitive load theory, therefore, primarily deals with instructional aspects 
of the acquisition of secondary knowledge (Sweller, 2011). 
 This distinction between primary and secondary knowledge has direct 
consequences for instruction both in the classroom and outside. First, due to their 
evolved mechanisms, biologically primary abilities are universal and are typically the 
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same in all normally developed humans across cultures and nationalities (Geary, 
1995). The acquisition of biologically secondary abilities depends on the culture and 
motivation of the child. Whilst biologically primary skills are endogenous and do not 
require much external motivation, biologically secondary skills require external 
reinforcement. Children must often be coerced into practicing biologically secondary 
skills, such as mathematics (Geary, 1994d). Learning about children’s extrinsic 
motivations can help to develop better strategies to teach evolutionary novel or 
biologically secondary knowledge.  
 The ability to rely on more primary forms of learning, intuitive to children, with 
subtle guidance from teachers, could prove to be effective in teaching novel 
concepts. It is, therefore, vital that we examine what these primary forms of learning 
are and how these can be used in the classroom. In mathematics education, of 
particular interest is the relationship between primary systems and the learning of 
the base-10 number system used globally, which Geary (2007) believes is essential 
for modern mathematics. Resnick (1984, p. 126) has stated that “...the initial 
introduction of the decimal system and positional notation system based on it is, by 
common agreement of educators, the most difficult and important instructional task 
in mathematics in the early school years...”. One such difficulty in teaching place 
value occurs due to the conceptual nature of the number structure and the difficulty 
in knowing what students are thinking with regard to the numbers.  
 Biologically primary knowledge is composed of many different skills, in the 
fields of both numeracy and literacy. This research focusses only on numeracy skills. 
Geary (Geary, 1994a) suggested six potential categories for biologically primary 
mathematical abilities, clustered together in a coherent numerical domain. Each of 
these categories emerges early in childhood, and evidence shows that these 
biologically primary abilities are gender neutral (Geary, 1996; E. S. Spelke, 
2005). These are: 
i. Numerosity – the ability to determine small sets of items without actually counting 

them; 
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ii. Ordinality – basic understanding of ordinal relationships in terms of more than or 
less than; 

iii. Counting – there appears to be a preverbal counting system for very small subsets 
of numbers, up to perhaps three or four items; 

iv. Simple Arithmetic – a sensitivity to increases or decreases in number groups, 
again this sensitivity is limited to small subsets 

v. Estimation - inexact estimation of magnitude or size 
vi. Geometry - implicit understanding of shapes and spatial relationships 
 The following sections will examine each of the mathematical categories for 
biologically primary skills in more detail.  

2.10.1 Numerosity 
Recent studies have provided sufficient evidence to show that children are indeed 
born with core cognitive skills in mathematics that provide some basic numerosity 
understanding (Dehaene, 1997; Geary, 2008a). Numerosity, or subitising, refers to 
the ability to recognise small quantities without the need to count. Subitising allows 
for the exact recognition of up to four items by infants and plays an important role in 
numerical development (Kroesbergen, Van Luit, Van Lieshout, Van Loosbroek, & de 
Rijt, 2009; Peucker & Weißhaupt, 2013). In fact, Baroody (1986) views subitising as 
a fundamental skill in children’s further development of number concepts. Adults and 
some animals are able to discriminate and estimate numerosities larger than three 
or four (Dehaene, 1997; Xu & Arriaga, 2010). However, the accuracy of estimation 
is dependent on the geometrical pattern of the items to be subitised. For instance, 
the number of objects tends to be overestimated when they are consistently spread 
out, and underestimated when they are inconsistently distributed, a function of our 
visual system parsing the objects into small groups (Dehaene, 1997; Frith & Frit, 
1972; Ginsburg, 1976). The ability to quickly and accurately determine small 
numerosities is evident in infants in their first week of life (Geary, 1996). By six 
months of age, and from at least four months of age, infants are able to perceive and 
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represent small numbers of objects (S. E. Antell & Keating, 1983; Mandler & Shebo, 
1982; Starkey & Cooper, 1980; Strauss & Curtis, 1981; Van Loosbroek & Smitsman, 
1990).  

In a number of experiments by van Loosbroek and Smitsman (1990), infants 
were visually habituated to a static display of a small number of items, from one to 
four. After habituation, infants were presented with a different display each varying 
in the number of items. Typically, collections would differ in their colour, density and 
configuration. In their study, van Loosbroek and Smitsman (1990) showed that 
infants would focus longer on displays containing different numbers of items, rather 
than on the new displays of the habituated number. These results indicate infants’ 
sensitivity to changes in numerosity and an early perception of subitising small 
numerosities.  

2.10.2 Ordinality 
Ordinality describes the basic understanding of ordinal relationships, that is, 
discriminating between number relationships that are ‘greater than’ or ‘less than’. 
Research has shown that basic ordinality is evident in 18-month old infants (Strauss 
& Curtis, 1981). In one of the first experiments testing only for ordinal relationships, 
Cooper (1984) habituated infants to successively presented pairs of displays. Each 
pair maintained a constant ordinal relationship, with varying absolute values 
between trials, the values ranging from 1 to 4. On habituation, infants were always 
shown a small number followed by a larger number, or vice versa. Then, during the 
experiment, infants were shown a series of relationships that were presented in one 
of three ways: the same way as the habituation, opposite to the habituation or with 
equal numerical values. The trend showed that 10- to 12-month-old infants looked 
longer at equal numerical relationships, but failed to look longer at the reversed 
relationship to the habituation. Conversely, 14- to 16-month-old infants looked longer 
at both the equal numerical relationships and at the reversed relationships to the 
habituation (R. G. Cooper, 1984). The results of this study could indicate a basic 
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understanding of ordinality in infants, in particular infants older than 12 months of 
age. However, the results were not controlled for surface area of displays and 
elements shown on displays (Brannon, 2002).  

Two more recent studies have found evidence of basic ordinality at ten 
months of age (Feigenson, Carey, & Hauser, 2002) and at eleven months of age 
(Brannon, 2002). In their experiment, Feigenson et al. (2002) had 10- to 12-month-
old infants choose between two quantities of crackers. The infants watched an 
experimenter sequentially hide two different quantities of crackers in either of two 
baskets, first using one cracker in one basket and two in the other, and then two 
crackers in one basket and three crackers in another basket. With these choices, 
infants always chose the larger quantity of crackers. However, when the numbers 
were increased in a 3 v 4 ratio, 2 v 4 ratio, and 3 v 6 ratios, the infants chose randomly 
among the quantities (Feigenson et al., 2002). This study has been reproduced with 
similar results (Siegler & Opfer, 2003; Xu & Arriaga, 2010), showing that infants 
possess an innate rudimentary understanding of ordinality, both in phylogeny and 
ontogeny (Brannon, 2002).  

2.10.3 Counting 
There appears to be an initial set of principles that allows children to count some 
small subsets of numbers, up to three or four, before knowledge of number words 
can develop. One of the first experiments that established that babies could 
recognise small numbers was conducted by Starkey and Cooper (1980). In these 
series of experiments, a number of slides were presented to a total of 72 babies, 
aged between 16 and 30 weeks. The slides contained either two or three dots, 
arranged in different patterns and with a variety of spreads (Figure 8).  
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Figure 8: The series of slides presented to babies in a series of experiments determining the basic 

ability to count (Starkey & Cooper, 1980). H1 and H2 represent the habituation slides, whereas PH is 
the post-habituation slide. 

The babies were habituated with a slide containing the same number of dots until 
such time as each of the babies started losing interest in this repetitive stimulus. 
However, once a different slide with three dots were presented to the babies, the 
fixation time, 1.9 seconds prior to the switch, changed to 2.5 seconds on the first 
different slide, showing that the baby is able to detect a change in number, and 
therefore have a very basic principle of counting (Starkey & Cooper, 1980). A few 
years later, Antell and Keating (1983) demonstrated a similar result, but with 
newborns. Their experiments demonstrated that babies are able to discriminate 
between small numerosities even a few days after birth. Another series of 
experiments conducted by Strauss and Curtis (1981) used arrays of commonly 
observed objects as opposed to just dots to demonstrate that the ability to count to 
small numbers does not rely only on object recognition, but also on the numerosity 
of the image itself. The objects pictured in the photographs were all different, 
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photographed at different angles and from various distances. None of this variation 
in object representation modified the behavior of babies, who were able to notice the 
change in number. Using moving objects, van Loosbroek and Smitsman (1990) 
demonstrated that infants in the first few months of life were able to count objects 
even in a moving environment.  

All of the above experiments relied heavily on the visual perception of babies. 
To investigate the ability of babies to discriminate between numerosities associated 
not just with changes in visual stimuli, a follow-up experiment by Starkey, Spelke 
and Gelman (1983) was designed to take into account audio sequences. In this 
experiment, 6-, 7- and 8-month old babies were provided with two visual stimuli from 
two separate projectors. One of the slides would show two common objects, 
whereas the second slide would show three objects randomly arranged. 
Simultaneously, the baby was presented with an audio sound of a drumbeat. The 
results of this study demonstrated that after habituation, the babies were more 
attentive to those slides that matched the numerosity of the drumbeats. This 
experiment implied that numerical representation in infants is not a result of visual 
or auditory perception (Dehaene, 1997). Two recent studies (Izard, Sann, Spelke, & 
Streri, 2009; Izard & Spelke, 2009), further confirmed the ability of infants to 
discriminate between small numerosities. Their experiment first introduced auditory 
sequences with a fixed number of syllables, followed by images of the same and 
different numbers of items. The results of the study showed that newborns focused 
their gaze consistently longer on displays that were in ratio 3:1 with the auditory 
representation during the habituation stage of the experiment (Izard et al., 2009). As 
in the previous study, babies were able to differentiate between varying 
numerosities, providing further evidence for abstract numerical representation early 
in life (Izard et al., 2009).   
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2.10.4 Simple Arithmetic 
Some research suggests that 5-month old infants are aware of basic addition and 
subtraction, in particular of the effect of adding or subtracting one item from a small 
set of items. Wynn (1992) used puppets to demonstrate basic addition and 
subtraction. An infant was shown one puppet on a stage, a screen was then put up 
and a second puppet placed behind the screen, thereby producing a simple ‘1 + 1 = 
2’ equation. In one of the displayed outcomes (“impossible outcome”), infants were 
never shown the two puppets together, and when the screen was lowered, only one 
puppet could be seen on stage (Figure 9 demonstrates the setup used in the 
experiments). 
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Figure 9: The setup with puppets to demonstrate the innate ability to do basic addition and subtraction 

in infants (Wynn, 1992)  

The time spent focusing on the stage was measured and compared for the possible 
outcome, i.e. 1 + 1 = 2 and for the impossible outcome, i.e. 1 + 1 = 1. The results 
indicated that infants spent on average a second longer looking at the impossible 
outcome (1 + 1 = 1) in comparison to the possible outcome (1 + 1 = 2). The 
experiment then looked at the subtraction component of simple arithmetic, using the 
same setup as for addition. It was found that infants spent as much as three seconds 
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longer looking at an impossible outcome (2 - 1 = 2), than the possible outcome (2 - 
1 = 1). The study has been replicated with 2- and 3-year-olds (Houdé, 1997), and 
further evidence exists from other studies, demonstrating that infants are concerned 
not by the variability in the object being added or subtracted, but rather by the 
impossibility of some arithmetic operations (Kobayashi, Hiraki, Mugitani, & 
Hasegawa, 2004; Koechlin, 1997; McCrink & Wynn, 2004; T. J. Simon, Hespos, & 
Rochat, 1995). A study by Kobayashi (2004) used both auditory and visual 
modalities, and the results suggested that infants formed expectations about 
numerosity behind a screen based on both the visual stimuli presented and the 
auditory tones that they heard, thereby again replicating and further extending on 
Wynn’s (1992) initial findings regarding innate arithmetical abilities.  

2.10.5 Estimation 
The hypothesized primary mathematical ability of estimation refers to the ability to 
approximate quantities, magnitudes or sizes. Estimation is a process that many 
children find difficult within the confines of the school curriculum, but this process is 
essential for future mathematical success (Siegler & Opfer, 2003). Current research 
suggests that the number representations found in human infants depend on a 
mechanism for estimating, but not determining, exact numerosities (Xu & Spelke, 
2000). Prior to the development of language and number words, a language-
independent representation of number magnitude is used for quantity manipulation 
and estimation (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; McCrink & 
Wynn, 2007). In fact, research using brain imaging evidence (Dehaene et al., 1999) 
suggested that estimation relies on non-verbal visuo-spatial cerebral networks, in 
line with infants’ developing language skills.  

Xu and Spelke (2000) attempted to directly test whether infants are capable 
of representing approximate numerosities, a direct function of estimation. Their study 
found that, provided the difference between two numerosities is sufficiently large, 
infants are able to distinguish between an 8- and a 16-element display, when all 
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other variables of the display are controlled. However, when the difference between 
numerosities was reduced, infants could no longer discriminate between the two. 
This result is in line with prior research by Starkey and Cooper (1980), which also 
found that infants were unable to discriminate four from six elements. These findings 
also complement an experiment conducted by Wynn and Bloom (1999) studying 
infant ability to enumerate a collection of elements. This research was replicated 
using auditory stimuli as well, with similar results (Lipton & Spelke, 2004).  

Further expanding on this work, a more recent study by McCrink and Wynn 
(2004) examined ratio abstraction in 6-month-old infants. Infants were presented 
with multiple examples of the same ratio during the habituation phase, using images 
of Pac-man and pellets. They were then presented either with new ratios or with the 
habituated ratio, and were successfully able to discriminate two ratios that differed 
by at least a factor of 2. The results of this study support the concept of an 
approximate magnitude-estimation system in infants (McCrink & Wynn, 2004). 
Sections 2.10.1 Numerosity and 2.10.3 Counting looked in more detail at an infant’s 
ability to infer small numerical subsets and estimate quantities and magnitudes. The 
next section describes the ability to estimate sizes of objects.  

2.10.6 Geometry 
Core geometry knowledge refers to the implicit understanding of shapes and spatial 
relationships, and is one of the hypothesized primary mathematical abilities. Indeed, 
sensitivity to geometric information is essential for the development of mathematical 
knowledge, including identifying objects and establishing locations (Dehaene, Izard, 
Pica, & Spelke, 2006). Over the last few decades, research has found that human 
infants are sensitive to length, angle and direction in visual format (S. E. G. Antell & 
Caron, 1985; Bomba & Siqueland, 1983; Izard & Spelke, 2009; McGurk, 1972; 
Schwartz, Day, & Cohen, 1979; Slater, Mattock, Brown, & Bremner, 1991; E. Spelke, 
Lee, & Izard, 2010). Slater et al. (1991) investigated infant sensitivity to angles only 
a few hours after birth, and their results suggested that infants were indeed sensitive 
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to angle variations. A more recent study showed that 5½-month-old infants were 
capable of using geometric cues to differentiate different corners of an isosceles 
triangle, implying a basic understanding of angles (Lourenco & Huttenlocher, 2008). 
Similar experiments also demonstrated that infants were sensitive to variations in 
length (Newcombe, Huttenlocher, & Learmonth, 1999) and, specifically, could 
differentiate lines of different lengths (Slater, Mattock, & Brown, 1990). Sensitivity to 
length in infancy was observed even after objects had changed orientation or 
position (Izard & Spelke, 2009).  

A number of experiments have also revealed that infants are capable of 
extracting object shape even from partly occluded objects (Kellman & Spelke, 1983; 
Slater, Morison, et al., 1990). Schwartz and Day (1979) demonstrated that infants 
could recognise differences between squares and rectangles, even when the 
orientation or the angular relationship of the shape had changed. Expanding on this 
work, Bomba and Siqueland (1983) used a series of dot patterns placed together to 
form shapes, to demonstrate that infants are also capable of distinguishing a triangle 
shape and treating it as a different object from a rectangle. 

Baillargeon and Graber (1987) demonstrated that infants are able to 
distinguish between the sizes of different objects. In this experiment, infants were 
presented with short and tall objects, which moved behind a screen with a window 
in it, allowing infants to see the taller objects moving, but not the shorter objects. 
Results of the study showed that 5½-month-old infants looked significantly longer if 
the window in the screen showed a shorter object moving through, but not a taller 
object, indicating sensitivity to the size of the objects. Expanding on these 
experiments further, Baillargeon (1991; 1987) used a block hidden behind a screen, 
which was rotated in an arc formation in relation to the block. In a possible case, the 
screen was rotated only until it reached the top of the block, while in an impossible 
case, the screen was rotated unhindered by the block, either in a full 180° arc or 
partway through the top of the block. The results showed that, whereas 6½-month-
old infants looked longer at both impossible events, 4½-month-old infants only 



	 39 

looked longer at one of the impossible events, the 180° arc rotation. This indicated 
a difference in the way height is distinguished by infants of different ages (Lourenco 
& Huttenlocher, 2008), consistent with earlier findings by Huttenlocher, Newcombe 
and Sandberg (1994) showing infant sensitivity to height.  

2.10.7 Biologically primary skills and the base-10 system 
A better way to design instructional material that involves secondary skills is to base 
such material on the foundation of children’s intuitive primary skills. However, 
whether base-10 instructional material can be designed giving consideration to such 
intuitive skills has not yet been explored in depth. Geary (2007) believes that in the 
case of place value, or the base-10 system, the secondary mathematics is too far 
removed from the primary skills to be easily and intuitively learnt. Explicit instruction 
is required if these concepts are to be attained. Similarly, Sweller (Sweller, 2012), 
mentions that it is an error to assume that the difficulty in acquiring secondary 
knowledge can be alleviated or eliminated by using techniques that are appropriate 
for primary knowledge. It might therefore not be possible to eliminate the dificulties 
that children often face when learning the base-10 number system, but this issue 
does require further research. However, materials that are designed on the 
foundations of primary skills could provide a more efficient transition by learners to 
secondary skills.   
 There are some primary abilities that can potentially underlie the attainment of 
the base-10 system. For example, infants and young children implicitly organise 
collections of objects into sets; however, the sets are not clustered around the 10 
set. One of the prime examples of this, often used by children as a basic learning 
strategy, is counting with fingers, grouped into two groups of 5. The primary 
understanding of the number line, and the decomposition of the number line into sets 
of ten, with the sets organised into clusters, may therefore facilitate the learning of 
the base-10 system.  
 Additionally, the ability to physically interact with the environment at large is a 
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natural primary ability, and could thus be helpful in acquiring secondary skills. 
Children are inherently motivated to engage in play activities, facilitating the 
development of primary skills (R J Sternberg & Ben-Zeev, 2012). However, it is not 
clear whether such activities would be sufficient for the acquisiton of secondary skills. 
In the arena of the base-10 system, manipulative materials are often used as 
physical objects that may allow for an easier translation to abstract mathematical 
concepts. Tools such as blocks and other counting objects are frequently used in 
both free play and organised play activities to establish deeper understanding of 
place value concepts. However, Geary (2008b) mentions that whilst free play is an 
important component of education, and is one of the most effective ways for building 
on pre-exisiting evolutionary based cognitive structures to enhance primary skills, it 
does have instructional limitations. Formal direct instruction is still the most effective 
approach in teaching complex secondary knowledge (Geary, 2008b; Sweller, 2012).  
The base-10 system is considered to be biologically secondary knowledge. Hence, 
it is a skill that requires specific instruction. However, the level of understanding of 
the concept of place value can vary greatly. One factor that can affect understanding 
and subsequent learning of place value is the first language of the student. Research 
shows that children from Asian language backgrounds find it easier to comprehend 
number concepts, compared to children from European-derived languages (Miura, 
Okamoto, Kim, Steere, & Fayol, 1993). This is largerly due to the direct 
correspondence between the number word for values greater than 10, and the place 
value of that number (Fuson, 1990; Miura & Okamoto, 1989; Miura et al., 1993).
 Predominantly, however, children’s knowledge of the base-10 system, globally, 
emerges in a formal school setting and only as a result of teaching practices that are 
designed to impart this knowledge to the child. 
  

2.11 Summary of Chapter 
This chapter provided a summary of human cognitive architecture, taking into 
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account the evolutionary framework proposed by Geary (Geary, 1996, 2000, 2008b). 
Human cognitive architecture is composed of two distinct memory constructs: 
working memory and long-term memory. Working memory is where conscious and 
effortful processing occurs. This structure is limited in its capacity and can only hold 
a small number of elements simultaneously (Miller, 1956). This is in contrast to long-
term memory, which appears to be limitless in its capacity and is the basis of the 
human ability to solve complex problems. The limitless capacity of long-term memory 
is due to the acquisition and subsequent storage of cognitive constructs, known as 
schemas, in long-term memory. Schema acquisition and schema automation are 
critical for efficient and fluent learning. Their importance to learning should be 
considered in instructional design. The automation of schemas allows their efficient 
and effortless retrieval from long-term memory, without putting further burden on the 
limited capacity of working memory.  
 An evolutionary-based framework for learning was proposed by Geary (Geary, 
1996, 2000, 2008b), drawing a distinction between primary skills, which are effortless 
to learn and can be acquired spontaneously, and secondary skills, which require 
effort and direct instruction for acquisition. A series of mathematical biologically 
primary skills has been hypothesized by Geary (1994a), and includes:  

i. Numerosity as the ability to determine small sets of items without actually 
counting them;  

ii. Ordinality, the basic understanding of ordinal relationships;   
iii. Counting, a pre-verbal counting system for small subsets of numbers; 
iv. Simple arithmetic, a sensitivity to basis increases or decreases in small 

numbers;  
v. Estimation, inexact estimation of magnitude or size; and  
vi. Geometry, a basic sensitivity to different shapes, angles and spatial 

relationships.  
These primary skills are spontaneously learnt and often appear in infanthood. During 
formal schooling, primary skills are built upon to acquire secondary skills. It is vital 
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that children’s spontaneous primary abilities are considered when designing 
instructional material, as this can lead to more efficient and fluent learning models. 
 Chapter 3 will discuss cognitive load theory and how it aims to improve 
instructional design, in order to encourage a more efficient facilitation of schema 
acquisition and automation (Sweller et al., 1998).  
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3 Cognitive Load Theory 
	

	

3.1 Introduction 
Cognitive Load Theory (CLT) is based on the assumption that human cognitive 
architecture consists of a limited working memory interacting with an unlimited long-
term memory. The theory proposes that instructional design be developed on this 
basis, with consideration given to the implications of limited working memory (P. 
Chandler & Sweller, 1991; Sweller, 1989, 2002, 2004; Sweller et al., 2011).  

One of the most important elements in the learning process is schema 
construction and automation, a process that occurs in the working memory. 
Accordingly, one of the main goals of instruction is to aid in the successful 
construction and automation of schemas in working memory. Work within the 
cognitive load framework has largely concentrated on the design of instructional 
methods that make efficient use of working memory (Paas, Renkl, & Sweller, 2003). 
Instructional methods developed on the basis of CLT have proven successful in a 
variety of different fields (Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Sweller, 
1999, 2004; van Merriënboer & Ayres, 2005). In contrast, instructional materials that 
do not take CLT into account have proven to be less efficient, requiring more time 
and mental effort for the learning process to take place. 
 

3.2 Cognitive Load Types 
The ease with which information can be processed in working memory depends on 
the cognitive load imposed by the task. Cognitive Load Theory proposes three 
different types of cognitive load: intrinsic, extraneous and germane cognitive load. 
Working memory may, therefore, be affected by intrinsic cognitive load, based on 
the nature of the material itself, extraneous cognitive load, based on the way in which 
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the material is presented, and germane load, which is the load imposed by the actual 
learning process. Intrinsic and extraneous cognitive loads are considered to be 
additives. This means that if there is low intrinsic load, then a high extraneous load 
might not make a difference to the learning process, due to the overall cognitive load 
being within the boundaries of working memory capacity. When added together, they 
provide the overall cognitive load on the working memory during a task. In order for 
material to be efficiently learned, the amount of cognitive load cannot exceed the 
working memory capacity available for learning (Figure 10). This theory drives the 
development of alternative instructional formats and methods.  

 
Figure 10: Cognitive Load Theory suggests three types of cognitive load, of which intrinsic and 

extraneous are additive. Germane load is representative of the working memory resources allocated to 

dealing with intrinsic load. 

Research suggests that learner understanding and performance improve if 
extraneous load is reduced, in particular when intrinsic load is high (P. Chandler & 
Sweller, 1991; Kirschner et al., 2006; Richard E Mayer & Moreno, 2003; Sweller et 
al., 1998; van Merriënboer & Ayres, 2005; van Merriënboer & Sweller, 2005, 2010; 
Verhoeven et al., 2009). 

The next section will examine the three types of cognitive load in more detail.  
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3.2.1 Intrinsic Cognitive Load 
Intrinsic cognitive load is measured by the number of elements that must be 
processed simultaneously and their interconnectedness to each other, commonly 
referred to as element interactivity, within the context of the instructional material 
(Sweller et al., 1998; van Merriënboer & Sweller, 2005). Element interactivity 
depends on the difficulty of the material that needs to be learnt and the expertise of 
the learner (Gerjets & Scheiter, 2003; Kalyuga, 2011; Sweller et al., 1998). The 
inherent complexity of the material that needs to be learnt is, therefore, directly 
related to the amount of intrinsic cognitive load placed on the working memory.  

Tasks that are low in element interactivity, that is, which do not contain many 
elements that need to be amalgamated, but rather elements that can be learnt in 
isolation to each other, impose a relatively low load on the working memory (Ayres, 
2006). This is in contrast to high element interactivity material, requiring users to deal 
simultaneously with several complex elements that cannot be learnt in isolation. High 
element interactivity causes high cognitive load and can reduce the capacity of 
working memory available for optimal schema construction (van Merriënboer & 
Sweller, 2005, 2010).   

Intrinsic cognitive load is hard to control. It cannot be altered by instructional 
intervention, without actually modifying the material that needs to be learnt, which is 
not a feasible solution in the majority of cases (Ayres, 2006; van Merriënboer & 
Sweller, 2010). However, intrinsic load is essential in learning and understanding 
instructional material, and, therefore, it is vital to accommodate this load without 
exceeding working memory capacity (Kalyuga, 2011).  

Traditionally, intrinsic cognitive load has been regarded as independent of the 
specific instructional design methods (Kalyuga, 2011), making it difficult to manage. 
One strategy for managing intrinsic cognitive load is to manipulate learning material 
based on the individual learner’s level of expertise. As expertise develops in a 
particular domain, it is possible to decrease the intrinsic cognitive load, due to the 
fact that the task interactions become incorporated into schemas and become 
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automated (Ayres, 2006). Gerjets, Scheiter and Catrambone (2006) argue that there 
are instructional-based manipulations that can be carried out to achieve a reduction 
in intrinsic cognitive load and suggest using a modular-example approach, focussing 
on the role of smaller individual meaningful units of the overall problem. Additionally, 
Kalyuga (2011) provides the example of achieving a reduction in intrinsic cognitive 
load by either substituting the original material with a simpler task, or by removing 
complex elements from the original material during the initial stages of learning.  

Another strategy to reduce the amount of intrinsic cognitive load was first 
explored by Pollock et al. (2002), and involved teaching isolated elements to begin 
with, before combining the elements together to teach  the complete concept.  
Clarke, Ayres and Sweller (2005) similarly demonstrated better information transfer 
in the learning of spreadsheet skills, by firstly teaching novice spreadsheet users 
how to use spreadsheets, thereby isolating those elements, and only then attempting 
mathematical tasks. Consistent with these results, Ayres (2006) examined how 
intrinsic cognitive load can be reduced in algebra. His results found that learners 
showed improvements in algebra performance when  elements of the material were 
isolated and then learnt  prior to  the material being presented as a whole (Ayres, 
2006). Furthermore, Ayres (2006) demonstrated that low-expertise learners benefit 
from an initial reduction in interactivity when learning mathematical tasks. 
Conversely, high-expertise learners benefit from an initial high-level interactivity 
(Ayres, 2006), a factor attributed to the decrease in germane cognitive load (See 
3.2.3 Germane Cognitive Load for more information). Both these studies relied on 
improved schema acquisition through prior learning. Previous studies also 
demonstrated the efficiency of prior training (a pre-training method) in reducing 
intrinsic cognitive load, with learners being provided with specific prior knowledge 
before the intended materials were learnt (Clarke et al., 2005; Richard E Mayer, 
Mathias, & Wetzell, 2002; Richard E Mayer & Moreno, 2003).  

In their research, Mayer and Moreno (2003) discussed a better information 
transfer when students first had to study the components making  up a system before 
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being introduced to the system as a whole and its operation. Clarke et al. (2005) 
similarly found that the learning process was enhanced when students were 
provided with prior training in relevant elements before being introduced to the full 
element interactivity. These strategies do not directly affect the intrinsic cognitive 
load of a particular task, but they do manipulate the task to reduce its complexity in 
the initial learning stages.  

3.2.2 Extraneous Cognitive Load 
Cognitive load theory and many of the cognitive load effects were initially developed 
in an attempt to reduce or eliminate the amount of extraneous cognitive load in tasks 
with a high level of intrinsic cognitive load (Kalyuga, 2011). In contrast to intrinsic 
cognitive load, which is generated by the instructional material, extraneous cognitive 
load is generated by the manner in which the instructional material is presented to 
the learner. Extraneous cognitive load is detrimental to learning. It is caused by 
inappropriately designed instructional material that fails to take into consideration 
human cognitive architecture and the limited capacity of working memory, and is not 
essential in achieving instructional goals (Sweller & Chandler, 1994). For example,  
the presentation to learners of redundant information, the processing of which 
requires extra working memory resources, can impact the overall capacity available 
for processing the required instructional information.  

Most cognitive load effects (see 3.3 Cognitive Load Effects for more 
information) arise from the need to reduce extraneous cognitive load, and have been 
demonstrated to exist only where high intrinsic cognitive load is present (R. Carlson, 
Chandler, & Sweller, 2003; Sweller, 2002). Instruction designed to reduce 
extraneous load has no effect on learning simple material, or material with low 
intrinsic load. However, for teaching complex material, it is essential that extraneous 
cognitive load is kept to a minimum, freeing up valuable memory resources to deal 
with intrinsic cognitive load, thereby inducing germane load to achieve the goals (van 
Merriënboer & Sweller, 2010) (Figure 11) 
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Figure 11: The additive nature of cognitive load, demonstrating an overload on the working memory 

(top), a decrease in extraneous load freeing up more resources for intrinsic load processing (middle), 
and optimised germane load, allowing for optimal learning with the presence of high intrinsic load to 

occur (bottom) (van Merriënboer & Sweller, 2010)  

3.2.3 Germane Cognitive Load 
The concept of germane cognitive load was added into cognitive load framework at 
a later time by Sweller et al. (1998). Germane cognitive load is considered to be an 
effective or positive load, as working memory resources are engaged in processing 
intrinsic cognitive load, leading directly to learning through schema acquisition and 
automation. Van Merriënboer and Sweller (2005, p. 152) suggest that “…Effective 
instructional methods encourage learners to invest free processing resources to 
schema construction and automation, evoking germane cognitive load…”  
Interestingly, it has been found that an increase in effort or motivation can also lead 
to an increase in cognitive resources allocated to a particular task, and this can 
directly translate to germane cognitive load, if the resources are being used in 
schema acquisition and automation (Paas, Renkl, et al., 2003; van Merriënboer & 
Sweller, 2005).  

Cognitive load theory aims to optimise germane load in order to enhance the 
process of learning (Figure 11, bottom). A number of design guidelines for 
instructional material have been proposed, aiming to optimise germane load in 
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learning. Germane cognitive load was first proposed to help account for the effects 
in variability of instructional materials (Sweller et al., 1998). Variability in problem 
content and context, as applied to problem conditions, encourages learners to 
acquire and construct schema (van Merriënboer & Sweller, 2005). Problem 
variability ensures that when learners are confronted with similar problems, they are 
able to identify similar features and distinguish relevant information required to solve 
the problem. Initially, high variability increases cognitive load during practice, but 
thereafter it leads to schema construction and transfer of learning (van Merriënboer 
& Sweller, 2005). Another kind of possible variability known as contextual 
interference, refers to the interference resulting from practising various problem 
situations within the same context of practice. For example, if a series of problems 
performed one after another rely on exactly the same set of skills, then the contextual 
interference is low. Conversely, if a series of problems performed one after another 
rely on  different skill sets, i.e. different problems presented to the learner in a random 
practice schedule, then interference is high. Van Merriënboer et al. (2002) have 
reported a number of studies that examine the role of context interference. Research 
suggests that a high context interference stimulates the construction of schema (van 
Merriënboer et al., 2002). However, for high context interference to be effective, 
learners are required to mentally integrate a large quantity of newly acquired 
knowledge during practice (van Merriënboer et al., 2002). 

The use of self-explanations is another design guideline that aims to optimise 
germane load. This guideline states that worked examples should be enriched with 
prompts for self-explanations from learners. In their study of probability based 
problems, Renkl and Atkinson (2003) used worked examples that guided learners 
by asking them which probability rule was applied during each step within the 
solution. They found a strong effect on transfer test performance for learners who 
received self-explanation prompts in comparison to the learners who did not (Renkl 
& Atkinson, 2003), suggesting the efficiency of the self-explanation principle in 
inducing germane load.    



	 50 

The introduction of germane cognitive load into the cognitive load framework 
(Sweller et al., 1998) was not based on empirical evidence. It was used as a way to 
account for the intentional cognitive effort required for learning to take place, and the 
associated demands on working memory. More recently, it has been postulated that 
germane cognitive load is not an independent source of cognitive load, but rather 
pertains to the working memory resources associated with intrinsic cognitive load 
(Kalyuga, 2011; Sweller, 2010). This new conceptulisation aims to remove the 
germane cognitive load from the framework and instead refers to the use of 
‘germane resources’, such as variability in practice or self-explanation, associated 
with allocating working memory resources to learning (Kalyuga, 2011; Leppink, 
Paas, Gog, Vleuten, & Merriënboer, 2014; Sweller, 2010).   

 

3.3 Cognitive Load Effects 

3.3.1 Worked Example Effect 
The worked example effect was initially described in relation to cognitive load theory 
by Sweller and Cooper (1985), and it is probably one of the most recognised of the 
cognitive load theory effects (Sweller, 2011). The effect describes the ability of 
learners to learn more by studying a problem and its solution, as opposed to just 
being presented with the problem alone (Figure 12). 
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Figure 12: An algebra example of a worked-example effect, where the problem and solution are 
presented together to the learner for optimal schema formation 

In their research, Sweller and Cooper (1985) compared two groups of 
students with a  limited knowledge of algebraic transformations, i.e. problems that 
require  students to change the subject of a formula. One group was involved with  
conventional problem solving techniques, whereas the second group was given a 
series of problems, with the first problem in each series having a worked example. 
The results of the study (Sweller & Cooper, 1985) suggested that, in a situation 
where the students were required to complete four pairs of similar problems, the 
worked example group required significantly less time than the conventional problem 
solving group to complete the acquisition phase. Additionally, the worked examples 
groups performed better and made significantly fewer errors in the test phase, when 
both groups were subjected to a number of problems similar to those encountered 
in the acquisition phase (Sweller & Cooper, 1985). This initial research seemed to 
indicate the ability of worked examples to facilitate the acquisition of schemas 
(Sweller & Cooper, 1985).    

Further research has shown that for novices, worked examples are more 
effective for learning and transfer, with less mental effort expended in the process of 
learning (R. K. Atkinson, Derry, Renkl, & Wortham, 2000; Rourke & Sweller, 2009; 
van Gog, Kester, & Paas, 2011; van Gog & Rummel, 2010). Conversely, learners 
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with a higher level of expertise no longer required worked examples, and research 
has found that, for such learners, worked examples could be ineffective and even 
have a negative effect on learning when compared to problem solving (Kalyuga et 
al., 2003; Kalyuga, Chandler, Tuovinen, & Sweller, 2001). Conventional instruction 
that consists only of presenting the learner with the problem  forces that learner to 
resort to problem solving strategies, such as means-ends analysis, where the learner 
is constantly searching for an operator to reduce the difference between the 
problems state and the goal state (Sweller, 1988). Despite being able to arrive at the 
correct solution to a problem using means-ends analysis,  it remains a weak strategy, 
due to the high extraneous load imposed on working memory. The high extraneous 
load does not contribute to schema acquisition, and therefore reduces learning 
efficiency. The worked examples strategy allows the learners to focus their limited 
working memory on studying each step of the solution and thereby developing a 
schema to assist in solving similar problems in the future (Sweller & Cooper, 1985).   

Another study showing the benefits of worked examples was conducted by 
Zhu and Simon (1987). In this study, the researchers found that a three-year 
mathematics curriculum could be completed in two years if a worked examples 
strategy was utilised, as opposed to conventional problem solving. Further to this, 
the study found that students in the worked examples groups performed slightly 
better in subsequent tests than the conventional problem solving group (Zhu & 
Simon, 1987). 

Schema acquisition, using  the worked-examples strategy, can go beyond the 
ability to  solve the specific type of problem; it has been shown that general rules 
can be abstracted from examples, and parts of the solutions can be adapted to other 
problems (J. R. Anderson & Fincham, 1994; J. R. Anderson, Fincham, & Douglass, 
1997; G. A. Cooper & Sweller, 1987; Rourke & Sweller, 2009). The worked examples 
effect can therefore be a powerful tool in improving the efficiency of instructional 
design, leading to improved learning.    
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3.3.2 Split-Attention Effect 
Section 3.3.1 Worked Example	Effect reviewed the benefits that worked examples 

can provide to the design of instructional material and to learning. However, many 
worked examples consist of two or more sources of mutually referring information 
(P. Chandler & Sweller, 1992). For a worked example to be effective, it needs to be 
presented in such a way as to take into consideration the limited capacity of working 
memory. One cognitive load phenomenon that needs to be of concern when 
presenting two or more sources of mutually referring information is the split-attention 
effect. Split-attention effect refers to the need to mentally integrate information, which 
is physically presented apart. A common example of the effect can be seen often in 
the area of geometry, where a diagram and a set of statements are presented to the 
learner (Figure 13).   

 
Figure 13: An example of a conventional geometry worked example, where the diagram and the 

accompanying set of statements are physically separated (Tarmizi & Sweller, 1988) 
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Mental integration of information presented in such a way requires  the learner 
to search and match each statement with the diagram. In accordance with cognitive 
load theory, this process of searching and matching text to diagram has the same 
cognitive repercussions as searching for operators to solve a problem during means-
ends analysis (P. Chandler & Sweller, 1992). Both cases require a process that is 
not essential to learning, such as searching and matching, which uses up the limited 
cognitive capacity available for learning. For example, in a study of the effectiveness 
of worked examples, Tarmizi and Sweller (1988) investigated the use of worked 
examples in the area of circle geometry. The nature of content, in particular geometry 
or science-based content, often requires both a diagram and a set of descriptive 
statements, with both elements being essential for learning. Results showed that 
there was no significant difference in the time taken to solve the presented problems 
between the worked examples group and the control group (Tarmizi & Sweller, 
1988). In fact, in the acquisition phase, students in the worked examples group spent 
the same amount of time on the question solutions as the conventional problem-
solving group, and in the test phase the worked-examples group spent longer on the 
questions than the control group with equivalent scores on all questions rewritten 
(Tarmizi & Sweller, 1988). Other research has confirmed the hypothesis that worked 
examples requiring mental integration of physically separate information are no more 
effective than conventional problem-solving strategies (Berends & van Lieshout, 
2009; Kalyuga, Chandler, & Sweller, 1999; Ward & Sweller, 1990; Yeung, Jin, & 
Sweller, 1997). Therefore, for optimal learning, the worked example used in Figure 
13, should be presented without the need to mentally integrate physically separated 
information (Figure 14).  
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Figure 14: Worked example that does not require mental integration of spatially separated material 

(Tarmizi & Sweller, 1988) 

However, to transition from a spatially separated format to a format that 
integrates both sources of information requires more than just a  change in spatial 
proximity (P. Chandler & Sweller, 1992). Indeed, in order to integrate a set of 
statements into a diagram, the text needs to be segmented and the relevant  
segments positioned in close proximity to the related element in the diagram, thereby 
labeling elements of that diagram. In previous work, it has been demonstrated that 
segmentation of learning material facilitates learning (Clark & Mayer, 2011; Richard 
E Mayer, 2005). It would appear that the structure of the text is able to guide the 
learner’s attention during reading. Segmentation of text is able to provide learners 
with information about which text elements hold meaning, thereby facilitating a more 
efficient learning process (Florax & Ploetzner, 2010). Florax and Ploetzner (2010) 
examined whether the split-attention effect in instructional material is the result of 
physical integration of  text and image, or whether it is due to the labelling of the 
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image and segmentation of text to accomplish this physical integration. The results 
of the study replicated the effects of split-attention in retention of material, with the 
only significant effect on learning outcomes due to text segmentation (Florax & 
Ploetzner, 2010). This provides evidence for the positive effect of segmented 
material to learning.  

Split-attention effect occurs when a combination of images and text are 
spatially separated. The effect has  been replicated in several other situations, 
including  computer manuals, where a user is required to read a paper manual to 
learn the function of particular menu options before  looking at the screen to see the 
necessary menu options on the device itself (Sweller & Chandler, 1994). The users 
must split their attention between the device and/or program itself, and the manual 
and then mentally integrate these two sources, in order to learn how to use the new 
device or programme. Chandler and Sweller (1996) found that for instructional 
formats involving  high element interactivity, a self-contained manual that physically 
integrated the necessary pieces of information was superior to other instructional 
formats involving continual interaction with the computer program. 

Huff, Bauhoff and Schwan (2012), examined the split-attention effect in 
learning tasks requiring comparison and mental integration of two pictures. Building 
on previous work (Huff & Schwan, 2010), Huff et al. (2012) examined troubleshooting 
tasks, where learners are required to find an error in a mechanical device and 
compare it to a working reference device or a picture in a manual of a working 
reference device.  The research used vexing images for the first group, presenting 
two pictures in such a way that learners were able to switch between the images just 
by moving their heads. This meant that learners in the ‘vex mode’ group were able 
to still see the second representation, just by moving their head but keeping their 
eyes fixed on the same point. The second group was given the images on two 
separate screens, requiring them to split their attention between the two screens, 
positioned directly next to each other. The results indicated that it was not the 
separation of the two images that was responsible for the split-attention effect, but 
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the re-orientation process after the visual focus was switched. This meant that in the 
troubleshooting tasks,  the performance of the learners using the split screens was 
inferior to that of the learners using the ‘vex mode’ images.  

The prevention of the split-attention effect is regarded as a basic design 
guideline in developing material with high element interactivity. The elimination of 
this effect results in more cognitive resources being available for schema acquisition 
and automation, thereby supporting the process of learning.   

3.3.3 Redundancy Effect 
Another basic design guideline in creating instructional material is the prevention of 
the redundancy effect. The redundancy effect occurs when the same information is 
presented more than once, or in different formats that are not required for learning. 
The effect has been demonstrated in a number of studies (Bobis, Sweller, & Cooper, 
1993; P. Chandler & Sweller, 1991, 1996; Kalyuga et al., 1999; Sweller & Chandler, 
1994). Chandler and Sweller (1991) found that learning can be improved by 
removing textual statements describing the contents of a diagram. The study 
involved thirty Year 9 students who had no previous knowledge of blood circulation 
around the heart, lungs and body. The students were split into a diagram-only group 
(Figure 15), a conventional group (Figure 16) or a modified group, where the diagram 
and textual statements were integrated (Figure 17). 
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Figure 15: Diagram only group (P. Chandler & Sweller, 1991)  

 
Figure 16: Conventional group: diagram and accompanying text spatially split (P. Chandler & Sweller, 

1991) 
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Figure 17: Modified - diagram and text integrated (P. Chandler & Sweller, 1991) 

The diagram contained labels showing the different parts of the heart, and the arrows 
within the diagram indicated the direction of blood flow. The textual statements in the 
modified diagram of the heart reproduced the information that was already evident 
from the arrows and the labelling of the parts of the heart, and was, therefore,  
redundant. The study found that students presented with the diagram only learnt 
more than those students presented either with the conventional diagram and 
accompanying textual statements (spatially split), or the modified diagram and 
accompanying textual statements (spatially located together). In the conventional 
and modified diagrams, processing the redundant textual statements required extra 
cognitive resources to carry out the task, thereby leaving fewer cognitive resources 
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available for the essential learning process of schema acquisition and automation. 
Indeed, whether the text and diagram were integrated or separated had no positive 
influence on learning, since the textual elements in each experimental condition were 
redundant and the diagram could be used in isolation for learning.   
 Kalyuga et al. (1999) also demonstrated the redundancy effect using 
multimedia computer-based training material. In their research, thirty-four trade 
apprentices and trainees were separated into three groups for the purpose of 
learning how to use fusion diagram and solder. The first of the groups was provided 
with a visual explanatory text only, the second group with auditory instructions only 
and the third group was provided with both the visual and the auditory instructions, 
with the auditory instructions being a direct replica of the visual explanatory text. The 
auditory instructions only group outperformed the auditory and visual instruction 
group, due to the replicated material inhibiting learning through the increased 
cognitive load. The dual-mode presentation of the material resulted in the worst  
performance  out of all three cases, evidence that the redundancy effect overrode 
all benefits of the dual-mode presentation (Kalyuga et al., 1999).  

Berends and van Lieshout (2009) examined the effects of different types of 
illustrations in arithmetic word problems. Four different types of illustrations were 
used, the “Bare” contained no accompanying illustrations for the word problem, the 
“Useless” contained a graphic that did not in any way contribute to problem solving, 
the “Helpful” contained a pictorial representation of the problem and the “Essential” 
contained information necessary to solve the problem in conjunction with the word 
problem itself (Figure 18).  
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Figure 18: Four types of illustrations used in the experiment (Berends & van Lieshout, 2009)  

The results indicated that it took longer to reach the correct solution to a word 
problem if the problem was accompanied by the ‘Useless’ illustration, than it did if 
the problem was produced without an illustration, or ‘Bare’. However, in both cases 
the time take to reach a correct solution were not affected by the excessive demands 
on the working memory, due to the simple nature of the problems (Berends & van 
Lieshout, 2009). The ‘Helpful’ illustration contained redundant information, with the 
diagram being accompanied by a word problem repeating the already relevant 
information, yet the redundant information did not have a significant effect, with 
response times and accuracy remaining the same as those for the ‘Useless’ group. 
This contradicted the hypothesis of the study, which was that ‘Bare’ type of 
illustration would provide the best influence on the speed and accuracy of 
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performance, followed by the ‘Useless’, ‘Helpful’, and ‘Essential’ types in that order. 
Such a hypothesis was based on the influence of the redundancy effect, where 
information that is duplicated leads to a higher extraneous load and therefore more 
cognitive resources being used on processing. The contradiction of such a 
hypothesis does not necessarily mean that illustrations are detrimental to learning, 
but rather, demonstrate that illustrations can slow down overall processing (Berends 
& van Lieshout, 2009).  

It has been established that the level of expertise of the learner in a particular 
domain impacts the effect of redundancy on learning (Kalyuga, Chandler, & Sweller, 
1998). Kalyuga et al. (1998) found that novice learners benefitted the most from an 
instructional design that included  both a diagram and physically integrated text. 
However, as the level of expertise increased, the best results were then obtained 
from instructional material that included diagrams only, with all text having been 
eliminated (Kalyuga et al., 1998). Similar findings were obtained in the area of 
language comprehension and vocabulary learning (Yeung et al., 1997). Yeung et al. 
(1997) found that as language comprehension increased, the learner’s ability to 
comprehend a passage decreased, when the passage included vocabulary 
definitions physically integrated into the text. This further validated the findings that 
with increasing expertise, some information becomes redundant and has a negative 
impact on learning. These findings are indicative of the process of schema 
acquisition – as schemas form, the inclusion of some explanatory text becomes 
redundant, and the replicated/redundant information uses up valuable cognitive 
resources on processing, thereby hindering the process of learning.  

3.3.4 Modality Effect 
Modality effect refers to the presentation of two pieces of information that cannot be 
learnt in isolation, in two different modalities, such as visually and orally, thereby 
facilitating mental integration of material. The effect can only be obtained if the two 
sources of information cannot be processed and learnt in isolation. The split-



	 63 

attention effect (3.3.2 Split-Attention Effect) is evident when two sources of visually 
presented information are spatially separated and require mental integration. Both 
sources of information rely on the visuo-spatial sketchpad to process the information, 
thereby causing overload of scarce cognitive resources. However, there is evidence 
that presenting information in dual modalities can increase the effective capacity of 
working memory (Brünken, Plass, & Leutner, 2004; for full meta-analysis, see Ginns, 
2005; Jeung, Chandler, & Sweller, 1997; Richard E Mayer, Bove, Bryman, Mars, & 
Tapangco, 1996; Richard E Mayer & Moreno, 1998; Mousavi, Low, & Sweller, 1995).  

For instance, Mayer and Moreno (1998) demonstrated that students receiving 
auditory explanations concurrently with a computer animation outperformed 
students who received the same computer animation accompanied by textual 
statements. In fact, their research found that multimedia learners can integrate 
diagrammatical and textual information more efficiently if the text is delivered via 
audio (Richard E Mayer & Moreno, 1998).   
 Mousavi et al. (1995) examined the effects of dual instructional mode in the 
context of geometry education. In their research, Mousavi et al. (1995) used two 
groups, both groups working through geometry worked examples. One of the groups 
received a diagram with an auditory explanation, while the second group received a 
diagram accompanied by written text. The first experiment did not control for learning 
time, and allowed all the students to study the worked examples at their own pace, 
with the diagram/auditory explanation group taking a longer time to learn the 
geometry problem (due to listening to the narration from the beginning to the end). 
In the testing phase, the students in the diagram/auditory group consistently solved 
problems faster than the diagram/text group (Mousavi et al., 1995). In the second 
set of experiments, the learning time variable was controlled, but the modality effect 
remained (Mousavi et al., 1995), suggesting that dual modality instruction can lead 
to more effective learning.  
 In a series of experiments, Tindall-Ford, Chandler and Sweller (1997) also 
investigated the modality effect with worked examples within an adult learning 
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setting, using elementary electrical engineering instructions. The results reinforced 
previous findings that, for learning,  an audio narration with an illustration was 
superior to a purely visual illustration.  
 Harskamp, Mayer and Suhre (2007) examined the modality effect in the 
context of science education. The research used twenty-seven secondary school 
students, who received a web-based multimedia lesson in biology. Some of the 
students received a science lesson composed of a series of illustrations 
accompanied by written text, whilst the others received a series of illustrations 
accompanied by concurrent narration. Students who received the illustrations 
accompanied by concurrent narrations outperformed the students receiving the 
illustrations with concurrent text on subsequent transfer tasks (Harskamp et al., 
2007). Additionally, the study found an interaction effect in the post-test scores 
between the learning times spent on each module and the modality of presentation. 
The illustration and concurrent narration group outperformed the illustration and 
concurrent text group once more, but only for students who required less time to 
learn (Harskamp et al., 2007).  Mayer (2005) found that the modality effect is 
strongest in a situation where the images and words are presented quickly with no 
opportunity to replay the presentation. For those learners who move at a slower 
pace, replaying of the material is available, thereby allowing more time to rehearse 
the text and the images. This can lead to a higher expertise level in the domain, 
which would help to compensate for visually presented material.  

Kalyuga, Chandler and Sweller (2000) demonstrated that the modality effect 
is only applicable for novice learners; as expertise starts to build, the advantages 
given by the modality effect virtually disappear and can even lead to detrimental 
effects to learning. In a set of experiments using instructions for industrial 
manufacturing machinery, novice learners benefitted the most from receiving 
instructions in visual format with concurrent auditory explanations. However, once 
expertise started to build, the modality effect reversed and the group with the visual 
only presentations started learning more efficiently. The auditory explanations 
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became redundant information (Kalyuga et al., 2000). This is referred to as the 
expertise reversal effect (Kalyuga et al., 2003).  The reverse modality effect was 
demonstrated in a series of experiments by Leahy and Sweller (2011). Two 
experiments were conducted as part of the research. Both experiments tested the 
ability of primary school students to read graphs showing temperature variations 
throughout the day, using a visual only presentation and a visual presentation 
accompanied concurrently by audio explanations.  In the first experiment, complex 
statements were used to explain the visual illustration, whilst in the second 
experiment, exactly the same information was presented as segmented text in a 
simpler format. Results of the first experiment indicated a reverse modality effect, 
whereas the second set of experiments indicated a conventional modality effect. It 
was hypothesized that  the reverse modality effect was due to the use of  complex 
instructions. The transitory nature and the length of the auditory explanations meant 
they could not be  easily and effectively processed in the working memory. This 
contrasted with the written information presented, which was permanent and 
therefore could be more effectively processed in working memory.  

3.3.5 The Expertise Reversal Effect 
When designing instructional material, the expertise of the learner must be given 
careful consideration, as it may influence the effectiveness of this material (Kalyuga 
et al., 2003, 1998). The expertise referred to is the learner’s  prior experience and 
knowledge of the domain being taught. Thus, a novice learner is someone with very 
little or no prior knowledge of a specific domain. A novice learner lacks the schemas 
necessary to process complex information using limited working memory capacity 
and requires instructional guidance to help bridge the gap of the missing schemas 
and aid in schema construction. This is in contrast to an expert learner, who is able 
to activate relevant schemas, due to their prior knowledge and experience of a 
specific domain. Expert learners do not benefit from additional instructional 
guidance, and, in fact, such guidance can lead to “…an overlap between schema-
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based and the redundant instruction-based components of guidance… “ (Kalyuga et 
al., 2003, p. 24). As a direct result of such redundancy caused by the superfluous 
instructional guidance, the expert learner may be subjected to cognitive overload 
whilst attempting to deal  with information that they already have schemas for. More 
experienced learners may benefit from the elimination of instruction-based guidance, 
thereby reducing cognitive load and increasing learning efficiency. This is known as 
the expertise-reversal effect, whereby instructional techniques that are highly 
effective for novice learners, can lose their effectiveness, or even have a negative 
effect on learning, when used with experts (Kalyuga et al., 2003). Numerous studies 
have provided evidence that the expertise-reversal effect can be extended to a 
variety of instructional methods and a wide array of learners (Bokosmaty, Sweller, & 
Kalyuga, 2014; Kalyuga et al., 2003; Leslie, Low, Jin, & Sweller, 2011). Accordingly, 
instructional material must be tailored to suit the learner’s level of expertise (Kalyuga 
& Sweller, 2004). 
 

3.4 Summary of Chapter 
The goal of cognitive load theory is to use the knowledge of human cognitive 
architecture to develop  effective instructional design. The theory utilises the 
knowledge of limited working memory, the limitless capacity of long-term memory 
and the knowledge of how schema acquisition and automation occur to achieve its 
goal. The theory was first proposed with regards to designing instructional material 
in the 1980s (Sweller, 1988), and since then has used aspects of human cognition 
to generate instructional effects that can assist in more efficient instructional design.  
 Cognitive load theory has identified three different types of load: intrinsic, 
extraneous and germane. Intrinsic load refers to that type of load found in the 
material itself, and is dependent on the complexity of the material that needs to be 
learnt. Intrinsic load is very hard to control without changing the very information that 
needs to be learnt. Extraneous load is the load that the majority of cognitive load 
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theory effects are concerned with. It is the load that is extraneous to the learning 
process and is encountered as a result of badly presented or designed instructional 
material. Extraneous load interferes with the process of schema acquisition and 
automation, thereby reducing the efficiency of learning. Germane load is the load 
produced by the learning process itself, complementing intrinsic and extraneous 
loads. It describes the working memory resources allocated to dealing with intrinsic 

load, and is considered to have a positive influence on learning. Accoding to the 
dual model of working memory that considers the additive property of intrinsic and 
extraneous loads, germane load is “…generated by intentional additional activities 
designed to further enhance schema acquisition beyond that associated with 
intrinsic load…” (Kalyuga, 2011, p. 9)  
 Some of the effects that have been established as a result of cognitive load 
theory include: the redundancy effect, the split-attention effect, the modality effect 
and the worked examples effect. Each of these effects should be considered in order 
to create the most efficient forms of instructional material. The worked-examples 
effect occurs when the learner is presented with a worked example of a problem and 
its solution, thereby freeing up limited working memory resources for learning. This 
is in contrast to using the more conventional means-ends analysis to solve a 
problem, where the user is presented with a problem and must successfully reach a 
solution, thereby using all available cognitive resources on processing potential 
steps for a solution. The worked examples effect is the most efficient when presented 
to novice learners, but has been found to hinder learning when expertise is built up 
in a particular domain.  

Split-attention effect occurs when two independent but related sources of 
information are presented to the learner spatially separated, but still requiring mental 
integration. The learner must  search and match statements, the processing required 
being similar to that needed for conventional means-ends analysis. The need to 
process redundant information uses up cognitive resources that would otherwise be 
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used for learning. This has the effect of hindering schema acquisition and 
automation, thereby preventing effective learning.  

Using two different modalities to present information to a learner utilises the 
working memory more efficiently, because different modalities are linked to different 
areas of working memory. The modality effect is experienced by novice learners, 
studying two sources of material that cannot be understood in isolation to each other.  
 The expertise-reversal effect occurs both when instructional methods that are 
more effective for novice learners are not effective for expert learners, and also, 
when instructional methods effective for expert learners are found to be ineffective 
for novices.  

The next chapter discusses the concept of number sense in young primary-
aged children, and the design of instructional material that is used to teach number 
sense, specifically place value characteristics of the base-10 number system; this is 
then related to cognitive load theory and the cognitive load effects discussed thus 
far.  
  



	 69 

4 Acquisition of the Hindu-Arabic number system 
	

	

4.1 Introduction 
The Hindu-Arabic number system, commonly referred to as the base-10 number 
system, is the most universally used number system in the world. Indeed, its 
simplicity has been one of the main reasons why it is considered “…one of the 
greatest inventions of the human mind…” (Zhang & Norman, 1995, p. 272) There 
are three main features that help to clearly define the base-10 number system:  

1) The system is composed of digits 0-9, that can be used in combination to 
represent all possible numbers); 

2) The system groups its numbers by sets of ten (Figure 19); 

 
Figure 19: The system groups its numbers by sets of ten 

3) The system uses place value (based on powers of 10) to assign a value to a 
digit based on that digit’s position within a number  (Figure 20). 

Another defining characteristic of the Hindu-Arabic number system is the use of 
the zero, which is vital to being able to represent a placeholder in the place value 
notation. For example, in the number 105, the 0 in the tens column indicates that 
there are no tens in this number, however, the zero still holds a place between the 1 
and the 5 to indicate the total value of the number is in the hundreds.  

A decimal point in a number signifies that the digits to the left are whole numbers, 
whereas the numbers to the right of the decimal point are fractional portions of a 
whole number. From any place in the system, the next position to the left is 10 times 
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greater and the position to the right is one tenth greater than the previous place 
value.  

These features make it possible to write all known numbers in an expanded 
form, as the sum of the digits multiplied by the place value of each of the digits. For 
example the number 6424 is represented in Figure 20. 

Place Value Thousands Hundreds Tens Ones 
Digit 6 4 2 4 

Expanded Form 6	×1000 4×100 2×10 4×1 
Figure 20: Representing the number 6424 using the base-10 number system 

Children’s understanding of number grows over time. Very early number 
sense is developed with language, through the use of rhymes, songs and everyday 
language in a social environment. Children learn the Hindu-Arabic number system 
early by learning how to count objects and record the numerals. When children first 
construct number, they construct a system of ones, where 16 would be a collection 
of 16 ones (Chandler & Kamii, 2009). Early number counting is based on rote 
learning, the simple memorization of all the number words without an association 
with the meaning of each of the numbers (Kennedy, Tipps, & Johnson, 2007). 
Children at this stage are not yet able to think about tens and ones simultaneously 
(Chandler & Kamii, 2009).  

Rational counting occurs later and involves children connecting actual 
quantities with the words. Counting is a complex cognitive task, requiring five key 
principles to come together:  

1) The one-to-one principle – objects can only be counted once for each item;  
2) The stable order principle – numbers that are counted are arranged in a 

sequence that does not change with any number of counts; 
3) The cardinal principle – the cardinal number is represented by the last number 

in a sequence and represents the number of objects in a set;  
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4) The order-irrelevance principle – the order in which objects are counted is 
irrelevant; 

5) The abstraction principle – any collection of real or imagined objects can be 
counted. 

Throughout the primary years of education, children start learning about place 
value notation, and how to manipulate large numbers with the help of that notation.  

 

4.2 Place Value 
Place value refers to the positional value of a digit within a set of digits and is one of 
the defining characteristics  of the base-10 number system. The value of a  digit as 
written depends entirely on the position of that digit within a string of digits. For 
example, whilst numbers 72 and 27 utilise the same digits, the position of the digits 
determines the actual value of the final number. The concept of positional relevance 
in building numbers is powerful, as it can be expanded or contracted to represent 
very large or very small numbers without difficulty. Before formal education 
commences, children think of numbers larger than 10 as a collection of ones, not as 
a collection of tens and ones, or of hundreds, tens, and ones, etc. (Mix, Prather, 
Smith, & Stockton, 2014). Formal schooling is needed in order to develop the 
concept of tens and ones  and of place value in general (Fuson, 1990; Fuson et al., 
1997; Rouder & Geary, 2014), which in turn provides children with the ability for more 
efficient number processing and manipulation in the future.  
 A lot of emphasis is currently being placed on teaching place value in Australian 
primary schools. The Australian Curriculum Board (National Curriculum Board, 
2009, p. 8) describes the role of place value as important in order to “…develop deep 
understanding of whole numbers to build reasoning in fractions and decimals and 
develop their conceptual understanding of place value. With these understandings, 
students are able to develop proportional reasoning and flexibility with number 
through mental computation skills. These understandings extend students’ number 
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sense and statistical fluency…”. The Australian Mathematics Syllabus expects 
students to develop an understanding of place value in Stage 1 (Years 1 and 2), 
“...applying an understanding of place value and the role of zero to read, write and 
order two-digit numbers; state the place value of digits in two-digit numbers...”. At 
this stage, students are also expected to be able to count by tens on and off the 
decade, this ability made much simpler with a more concrete understanding of place 
value.  
 Using the latest available data from the Growing Up in Australia: The 
Longitudinal Study of Australian Children (LSAC), Daragonova and Ainley (2012) 
examined the teacher ratings of student performance in the area of place value 
understanding. An examination of the teacher ratings used in the LSAC study 
showed that students displayed difficulty grasping place value concepts.  Results in 
early primary years (6-7 year olds, with an average age of 6 years and 10 months) 
showed only 31% of children demonstrated place value skills competently and 
consistently, while 29% displayed average competence. The remaining 40% of 
children were either not competent in the skill (7%), just beginning to demonstrate 
place value understanding (12%), or demonstrated place value skills below average 
competence (21%) (Daraganova & Ainley, 2012). Similarly, these statistics did not 
differ much in the middle primary school years (8-9 year olds, with an average age 
of 8 years and 10 months), where 37% of children showed an above average 
understanding of place value and 31%  demonstrated average competence with 
place value. The remaining 32% displayed place value skills that were below 
average (Daraganova & Ainley, 2012).  
 The mimimum standards for numeracy in Year 3, as defined by the National 
Assessment Program (NAPLAN, 2016), state that students should be able to 
compare and order whole two-digit numbers. In addition, children should be able to 
use place value knowledge up to the hundreds to interpret representations of whole 
numbers. This demonstrates a very basic understading of place value. Such a level 
of knowledge does not cover three-digit and larger numbers, even though at that  
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level students are expected to know how to manipulate numbers well into the 
thousands. Studies show that children who use decomposition in multi-digit 
computation tasks, such as breaking up a number based on its positional properties, 
have overall improved mathematical performance (Geary, Hoard, Byrd-Craven, & 
Catherine DeSoto, 2004; Geary, Hoard, Nugent, & Bailey, 2013; Laski, Ermakova, 
& Vasilyeva, 2014).  This type of number processing and manipulation requires 
students to have a much more in-depth understanding of place value. The results of 
the numeracy component of the National Assessment Program – Literacy and 
Numeracy (NAPLAN) indicate that 95.5% of students in Australia scored at or below 
the national minimum standard, a level that only requires children to order and 
compare two-digit numbers. This demonstrates  a very basic understanding of place 
value. Ordering and comparing three-digit numbers is a Band 3 requirement in the 
NAPLAN, and only 62.5% of students in Australia were able to meet this level of 
achievement (“NAP - Results,” n.d.).  
 Understanding place value concepts involves building connections between 
key ideas, including quantifying sets of objects by grouping them into 10s and 
treating those groups as units (Fuson, 1990; Steffe, Cobb, & von Glasersfeld, 1988), 
and using the structure of the written notation to capture this information about 
groupings. The introduction of multi-digit numbers in school could be difficult to 
understand even for relatively advanced students (Mix et al., 2014). However, 
understanding the positional properties or the place value feature of the Hindu-
Arabic number system can greatly enhance learning subsequent secondary 
mathematics material and is essential for understanding and applying multi-digit 
numbers in further arithmetic and everyday life situations (Bailey, 2015; Chan & Ho, 
2010; Chan, Au, & Tang, 2014; Dietrich, Huber, Dackermann, Moeller, & Fischer, 
2016; Fuson, 1990; Ho & Cheng, 1997; Kamii, 1986; Mann, Moeller, Pixner, 
Kaufmann, & Nuerk, 2012; Moeller et al., 2011; Nataraj & Thomas, 2007; Ross, 
1989).  
 Additionally, a significant correlation has been shown between children’s place 
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value skills in early primary school and subsequent problem solving ability  (Mix et 
al., 2014). Schmittau and Vagliardo (2006, p. 590) have emphasised the importance 
of understanding the system of place value, a concept which “...not only [does it] 
connect[s] to many important concepts... [but] it is also a prerequisite for any real 
understanding of the base-10 system...”. Mix et al. (2014, p. 1306) refer to place 
value concepts as “…the gateway for conceptualizing large quantities and more 
complicated mathematical operations…”. For example, when multi-digit addition or 
subtraction is started at school, prior to trading being introduced in the more complex 
equations,  children are often taught to align their numbers to the right for both 
numerals that they are adding or subtracting. However, they are often not taught why 
there is a need to align those digits. It would be better for  children to understand 
that each place in the base-10 system needs to be aligned underneath each other 
perfectly in order to  complete the sum easily. This ensures that not only trading 
becomes easier once it is taught, but also that there is good understanding when 
decimal place value is introduced. The same rule will still apply to the decimal place 
value system: line up each of the ones, tens, hundreds etc columns to get the correct 
answer. Lining up numbers based on the place of each digit in the number would 
show a good conceptual understanding that the number 20, for example, does not 
simply refer to a set which is composed of 20 objects, but rather that it also  has 2 
tens and 0 ones. The understanding that multi-digit numbers represent place value 
groups of units, tens, hundreds, etc can further influence the sophistication of the 
problem-solving strategies that the child can use to solve complex arithmetic 
problems  (Geary, 1994d).  
 Fuson (1990) proposed that the difficulty young children find with place value 
notation could be related to the vast differences in the spoken and written number 
systems. These differences make it difficult to see the relationship between written 
and spoken numbers, without explicit instruction. In fact, research has shown that 
the base-10 system is more obvious to Asian students, who develop a much better 
conceptual understanding of place value early in school (Bjorklund & Pellegrini, 
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2002; Fuson, 1990; Geary, 1994a, 1996; Moeller et al., 2011; Ngan Ng & Rao, 2010). 
This is due to language differences in the way numbers are spoken out loud. In 
particular, counting in an Asian language promotes an understanding of numbers 
that is directly related to the presentation of numbers in the traditional base-10 
system (Miura et al., 1993). For example, in Japanese the teen numbers, such as 
11, 12, 13 etc. are spoken as “ten-one”, “ten-two”, “ten-three” and so on. The number 
30 is spoken as “three-ten”. This means that Asian children have a better 
understanding of number concepts and have been shown to use more sophisticated 
techniques to solve complex mathematical problems earlier in their education 
(Geary, 1996; Ngan Ng & Rao, 2010). English and most European and Slavic 
languages experience the problem of the words not truthfully representing the 
positional properties of the base-10 system, making it very hard for speakers of those 
languages to understand the concept of place value and leading to further problems 
in mathematics. The earlier and more complete conceptual understanding of place 
value by Asian students is one of a number of factors including  educational and 
social influences, often leading to higher mathematical achievement in these 
students, observed as early as the middle of the first year of schooling (Miura et al., 
1993; H. W. Stevenson, Chen, & Lee, 1993).  
 Other studies have proposed that children simply lack the logical capacity at a 
young age to comprehend the complexity of the place value notation (Chandler & 
Kamii, 2009). However, research has indicated that children do not enter the early 
primary years without some understanding of numbers, or sensitivity to statistical 
patterns in multi-digit numerals and corresponding verbal names. This sensitivity and 
prior knowledge comes from the child’s everyday environment, and includes such 
things as phone numbers, page numbers in books, and street addresses (Mix et al., 
2014). Consistent with this idea of prior knowledge is a study by Barrouillet, Thevenot 
and Fayol (2010), which found that, prior to entering school, children may be able to 
differentiate between legal and illegal strings of lexical primitives, for example when 
comparing three hundred and forty nine to three nine forty hundred. A recent study 



	 76 

conducted by Byrge, Smith and Mix (2013) reinforced these findings by 
demonstrating that preschool children have the ability to write multi-digit numbers 
with some success, for the most part only making ‘intelligent’ errors. For example, 
the number 113 would be written as 10013, with the children writing one hundred 
and then followed by the number 13. Whilst not correct, it directly relates the spoken 
number to its written abstraction. Whilst Moeller et al. (2011) refer to such errors as 
precursors for later difficulties in mathematics, Byrge et al. (2013) suggests that 
these types of errors are only a precursor to later difficulties in mathematics if the 
expanded writing persists in the face of formal place value instruction. In fact, Byrge 
et al. (2013) have shown that expanded number writing, or ‘intelligent’ errors, may 
provide another important milestone in the development of a child’s understanding 
of place value, as they are based on the children’s initial and early understanding of 
multi-digit numbers. This type of understanding could then present a potential 
foundation upon which formal instruction of place value could begin.  
 Whilst the reasons for the difficulties experienced in learning place value 
concepts by children are many and varied, it is evident that the concept of place 
value itself requires instruction for mastery and is not intuitive knowledge. It could be 
highly beneficial to base any such formal instruction upon a child’s intuitive 
knowledge and understanding of the place value notation (Byrge et al., 2013).  
 Various researchers have attempted to describe the progressive stages that 
apply to children’s understanding of two-digit place value (Chan et al., 2014; Cobb, 
1995; Fuson, 1990; Fuson et al., 1997; Fuson & Briars, 1990; Miura & Okamoto, 
1989; Miura et al., 1993; Resnick, 1984; Steffe et al., 1988; Young-Loveridge, 2002). 
The authors have not always been in complete agreement on the stages involved in 
place value understanding. Ross (1989) and Fuson et al. (1997) agree on five stages 
of conceptual understanding of place value, with a similar approach to each of the 
stages: unitary multi-digit, decade and ones, sequence tens and ones, separate tens 
and ones, and finally an integrated sequence and separate tens. This thesis will use 
the five-stage conceptual understanding framework described by Ross (1989) to 
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assess place value understanding in children, according to the following stages 
(Table 1).  
Table	1:	Five	stages	of	place	value	understanding,	as	described	by	Ross	(1989)	

Stage Description 

Stage 1: Whole numerals No meaning assigned to individual digits in a 
number; number is seen as a whole. 

Stage 2: Positional 
properties 

Meaning is assigned to individual digits in a 
number; however, despite knowing that the digit on 
the right is ones and the digit of the left is tens, the 
meaning of these does not yet encompass 
quantities.  

Stage 3: Face value Interpret each digit as representing a number 
indicated by its face value. Students do not yet 
recognise that the number represented by the tens 
column is a multiple of ten.  

Stage 4: Construction zone Tentative knowledge that the number in the tens 
column is not just a number but is a set of tens. 

Stage 5: Understanding Students understand that the individual digits in 
multi-digit numbers represent a part of the whole 
quantity split into ones, tens, hundreds and so on. 

 

4.3 Teaching Place Value 

4.3.1 Use of manipulative materials 
Manipulative materials in mathematics have long been used to help teach 
conceptual information that requires physical demonstration. Hynes (1986, p. 11) 
defines manipulative materials, as “…concrete models that incorporate 
mathematical concepts, appeal to several senses, and can be touched and moved 
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around by students…”. However, a more recently proposed definition of 
manipulative materials also includes the concept of engagement with the materials 
being used, “…A manipulative material is an object that can be handled by an 
individual in a sensory manner during which conscious and unconscious 
mathematical thinking will be fostered…” (Swan & Marshall, 2010, p. 14). 
Manipulative materials can serve as a useful tool that can enhance learning and 
understanding. Early research suggests that the act of manipulation itself can aid the 
students in experiencing the patterns and relationships that are the focus of 
mathematics (Adler, 1966). For example, the NSW Mathematics K-10 Syllabus 
(Board of Studies Teaching and Educational Standards - NSW, n.d.) recommends 
using models, such as base 10 material, interlocking cubes and bundles of sticks to 
help teach place value (Australian Curriculum/Maths/Number and Algebra/028 
(ACMNA028) Requirement: Group, partition and rearrange collections of up to 1000 
in hundreds, tens and ones to facilitate more efficient counting). Using physical 
objects and physical actions to represent the world is intuitive, and there are many 
instances where this is demonstrated in the context of real-life (Marley & 
Carbonneau, 2014). For example, building a model of a house, using paddle-pop 
sticks and other material, is often the preferred method of explaining and 
demonstrating certain structures in architecture class.  
 Many studies have advocated the use of manipulative materials, such as base-
10 blocks or bundling sticks, to teach place value concepts (Baroody, 1990; Fuson, 
1990; Hiebert & Wearne, 1992; Nataraj & Thomas, 2007; Ross, 1989). However, 
there has also been other research that has suggested that manipulative materials 
could only be used at the children’s own level of abstraction. That is, a child must 
first understand the concept before manipulative materials could be used to 
represent that concept (Fosnot & Dolk, 2001). In the case of place value, a child 
must first understand the basic principles of tens and ones to further benefit from the 
use of manipulative materials (Chandler & Kamii, 2009). Some of the research that 
opposes the use of manipulative materials in teaching the base-10 system includes 
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the work of Kamii (2000; Kamii & Joseph, 2004) and Fosnot and Dolk (2001). Fosnot 
and Dolk (2001) consider the use of manipulative materials with the base-10 
structure already built-in to be non-beneficial to the learning process. “…Building 
structure into manipulatives is not always beneficial by itself…abacus, Cuisenaire 
rods … Base-10 blocks all have a base-10 structure built in. The problem with these 
materials is that while the structures in them are apparent to adults, they are not 
always apparent to children… If a child has not constructed the idea [of tens and 
ones], she does not see the rod as one ten; she sees it simply as a unit…” (Fosnot 
& Dolk, 2001, pp. 103–104). 
 Despite  opposing views as to whether or not manipulative materials can aid in 
learning the place value notation of the base-10 system, one study showed that 
81.9% of 820 teachers in over 250 schools in Western Australia used base-10 blocks 
as a teaching aid in the classroom, and considered them to be one of the three most 
important tools (Swan & Marshall, 2010). However, individual teacher interviews 
conducted in the same study found that whilst teachers believed that manipulative 
materials could assist in learning, they could not identify the exact elements of the 
materials that were responsible for the learning process (Swan & Marshall, 2010). 
This could potentially indicate a lack of training for the educators using the materials, 
or a gap in understanding how to teach children to translate effectively between the 
representational manipulative material and the abstract mathematical concepts.  
 To be effective, manipulative materials cannot  be used in an erratic manner. 
The use of the materials must be accompanied by clear and relevant explanations 
and instruction from teachers, ensuring that the link between the manipulative 
material used and the mathematical concept being taught is explicit (Stein & 
Bovalino, 2001; Swan & Marshall, 2010).  
 This study will utilise two different manipulative materials, the abacus and base-
10 blocks, as aids in the understanding of place value concepts.  
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4.3.1.1 Base-10 blocks 

The pioneering work of Dienes (1961) related to the structured materials developed 
to support children as they learnt about place value, referred to as Multibase 
Arithmetic Blocks (MAB). The MAB are composed of units, small cubes of wood; 
longs, made up of as many units long as the base being used; flats, representing the 
square of the base being used; and blocks, representing the cube of the base being 
used (Figure 21).  

 
Figure 21: MAB blocks 

 These blocks remain one of the most popular manipulative materials in the 
classroom (English & Halford, 1995; Marshall & Swan, 2013; Swan & Marshall, 
2010). Base-10 blocks come in four standard sizes, depicting the ones, tens, 
hundreds and thousands columns. Arguably, base-10 blocks are good at relating the 
value of the number to the size of the block, making it apparent that as size increases 
so does the magnitude of the number. Base-10 blocks are good at showing children 
the magnitude of numbers, although it is hard to relate this back to the positional 
property of the base-10 system. The concept of place value is based on the position 
of the digit within a number.  It is the position of that digit within the number that 
affects the digit’s magnitude and not the other way around,  as the base-10 blocks 
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may suggest. Base-10 blocks are arguably effective at demonstrating an initial 
understanding of trading, where ten single blocks can be swapped for a block of ten, 
and this can be useful in children’s learning of place value (English & Halford, 1995). 
However, despite the common use of this manipulative, there have been 
contradictory findings in the literature about the effectiveness of base-10 blocks in 
teaching place value (Fuson, 1990; Resnick, 1984). A more recent study by Mix et 
al. (2014) explored the use of base-10 blocks to teach place value to 24 kindergarten 
students, with an average age of 4 years and 9 months. The children were divided 
into two equal groups, one of the groups using base-10 blocks to teach place value 
and the second group using symbols-only training for teaching place value. The 
study found that base-10 blocks were not particularly transparent to children. In fact, 
the results  indicated that the potential correspondence between the differently sized 
blocks and the place value of the numbers that the blocks were meant to represent 
was not clear, with performance in block-based tasks consistently poor (Mix et al., 
2014). Whilst training with the symbols-only method led to consistent improvements 
on certain tasks, base-10 block training did not lead to any improvements at all. The 
results go so far as to imply that perhaps the use of base-10 blocks requires prior 
knowledge of the written place value system, in order to be successful as a 
manipulative material intended for improving understanding of place value mix (Mix 
et al., 2014).  
 One of the most common ways to test understanding of place value in schools 
is to show  children different combinations of base-10 blocks, arranged in order of 
magnitude, or canonical order, and asking them to represent the numbers that these 
blocks symbolize.  The problem with this approach is that children commonly rote 
learn how to perform this type of task. They simply count up the different blocks and 
then put the two numbers together, whilst perhaps still not having a good concept of 
actual place value notation. Performing such a task correctly would appear to 
indicate that a child understands the concept of place value and the positional 
notation represented by digits in a number, although this might not actually be the 
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case; the child may simply have learnt by rote how to put together base-10 blocks, 
without any real understanding of the magnitude of the digits within a number (Ross, 
1989). Chan et al. (2014) proposed modifying this type of testing and using a method 
referred to as strategic counting. Using the strategic counting testing method, 
students would be given base-10 block representations arranged in non-canonical 
order, thereby requiring an understanding of base-10 properties in order to rearrange 
and group sets together to produce meaningful answers.  
 The contradictions in the efficiency of base-10 blocks as a training tool to teach 
place value could be attributed to a number of  factors, incuding the child’s first 
language, the quality of the teaching material accompanying the use of the 
manipulatives, teachers’ understanding of place value, and the length of time spent 
on the topic.  

4.3.1.2 The Slavonic abacus 

Another manipulative, widely used in Asian countries and Eastern Europe, is the 
abacus. Throughout history, the abacus has played a part in showing the positional 
representation of numbers (Barbarin & Wasik, 2009). The simplified Slavonic abacus 
is composed of a hundred beads and allows counting up to one hundred ( 
Figure 22).  
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Figure	22:	Slavonic	abacus	

 When the beads are positioned on the right, they are ‘off’ and are therefore not 
forming a number. Pushing beads to the left switches them ‘on’ and this is how 
numbers are represented on the abacus. There are ten rows altogether, with each 
row grouping beads into tens. This grouping in a row is then halved again with each 
half of the beads in different colours. This  correlates to the number of fingers on 
each hand, and may therefore aid in subitising. Additionally, the first five rows will 
differ in colour to the last five rows, so as to allow easy subitising for each group of 
fifty. For example, the number 37 can be displayed on an abacus using the 
movement of beads in Figure 23. 
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Figure 23: Abacus showing the number 37 (with its complement to a 100 of 63 clearly and easily 

subitised) 

 The main advantage of using a Slavonic abacus is that it clearly encourages 
the grouping of numbers in sets of ten, one of the properties of the Hindu-Arabic 
number system. It also does not require a prior understanding of multi-digit numbers; 
it is enough for students to know the verbal sequence of numbers to be able to count 
the beads on the Slavonic abacus.  
 Additionally, each row of the Slavonic abacus is made up to two sets of five 
beads, each set in different colours. The use of the small number of beads in different 
colours and its direct correlation to the number of fingers on each hand can support 
the child’s ability to subitise. Subitising, or the ability to automatically recognise small 
numerosities without counting is an innate ability, and is therefore considered to be 
a biologically primary skill (Geary, 1994e). Furthermore, our biological ability to make 
sets of numbers is also supported, as there are two sets  of five on each row, and a  
set of ten on each wire. This also reflects clearly the base-10 property of the Hindu-
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Arabic number system. The Slavonic abacus physically lends itself to counting in the 
base-10 setting, where each full line of an abacus is called a ’ten line’ and a 
maximum of nine beads are allowed to be placed on a line. This setup helps to 
facilitate mental visualisation of a group of ‘ten’, as each row reresents a group of 
ten and allows to the child to count in a base-ten setting. The abacus can then 
facilitate the understanding of place value, by physically representing, for example, 
that the number seventy-six is made up of 7 tens, or seventy, and 6 ones. Such a 
visualisaition can potentially improve schema formation for the base-10 property of 
number.   
 A recent longitudinal study examined whether using a mental abacus, a 
technique used to perform mathematical calculations using a mental image of an 
abacus, can improve students’ mathematical abilities and lead to improvements in 
basic cognitive capacities, such as working memory (Barner, Alvarez, Sullivan, & 
Frank, 2016). Using a mental abacus relies primarily on the visuospatial working 
memory, as well as some motor procedures that are learnt during training with a 
physical abacus. The technique is based around the structure of the abacus, which 
is consistent with known working memory limits. The results of the study suggested 
that mental abacus training did not lead to consistent gains in the cognitive abilities 
of the students (Barner et al., 2016). However, mental abacus training did lead to 
measurable gains in ability to perform accurate mathematical computations. These 
gains emerged after a single year of training with a physical abacus, prior to the 
students learning the mental abacus technique. Towards the conclusion of this 
study, Barner et al. (2016) found that physical abacus expertise was significantly 
correlated with higher mathematical performance.  

4.4 Summary of Chapter 
Evolutionary educational psychology focusses on the ideas that relate evolutionary 
principles to educational foundations (Muller, 2010). The goals of evolutionary 
educational psychology are to determine what motivates learning and what 
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motivational biases influence a child’s ability to acquire evolutionary novel 
knowledge, as demanded by our system of schooling. Achieving these goals would 
result in more effective teaching methods and the ability to teach children in a way 
that is more naturally aligned to their intuitive skills and knowledge. Evolutionary 
educational psychologists claim that currently there is a great disparity between the 
way that we teach children and how  children actually prefer to be taught (Muller, 
2010).  
 Mathematics is an important area where educators need to be able to 
understand how children prefer to be taught, but, to date, we do not  fully understand 
the mechanisms that influence children’s mathematical learning (Geary, 1994b). Of 
particular interest are the motivational biases that can influence the way children 
come to an understanding of the abstract concept of number and its relationship to 
its symbolic representation, a concept which appears to be very difficult to grasp for 
children (Baroody, 1990; Fuson, 1992; Hiebert & Wearne, 1992). In particular, the 
positional property of the Hindu-Arabic number system, or the base-10 system,  
causes the most difficulty. Understanding the positional notation of our number 
system is essential to the development of number sense, and also forms the basis 
for four fundamental number operations (Jordan, Kaplan, Ramineni, & Locuniak, 
2009). Chan et al. (2014, p. 78) refer to place value as “…crucial in learning 
arithmetic…” Understanding  the base-10 system in early primary school years is 
essential, as research has shown that flawed understanding of the place-value 
positions of tens and units in first grade is related to difficulties in later arithmetic 
performance (Chan & Ho, 2010; Chan et al., 2014; Dietrich et al., 2016; Fuson, 1990; 
Ho & Cheng, 1997; Jordan et al., 2009; Moeller et al., 2011).  
 Place value errors are often syntactic, with children often using expanded 
notation to write down numbers, for example, the number 326 written as 300206. 
These mistakes then follow through to multi-digit addition and subtraction (Fuson, 
1990). There are a number of different ideas relating to the conceptual structures in 
place value understanding. This thesis will be using the conceptual structures 
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proposed by Ross (1989) and will examine place value understanding in five different 
stages. The first stage has the children assign no meaning to the individual digits in 
a number, whilst the second stage sees meaning assigned to individual digits, 
although the number 23 is still seen as 23 ones. The third stage sees an 
understanding of the face value of digits, and the fourth stage sees the tentative 
knowledge about tens and ones. The final stage sees the understanding of a multi-
digit number as individual digits split into ones, tens, hundreds and so on.   
 The use of manipulative materials is common in teaching concepts in 
mathematics, although there is some debate as to the efficiency of manipulative 
materials in teaching place value notation in particular. A very common manipulative 
used to teach place value concepts are base-10 blocks. Base-10 blocks are good at 
showing children the magnitude of numbers;  however, it is often difficult to relate 
this back to the positional property of the base-10 system, as the blocks differ in size 
only. Another manipulative widely used in Asian and Eastern European countries is 
the abacus.  The main advantage of the Slavonic abacus is that it clearly encourages 
grouping of numbers in sets of ten, one of the key properties of the Hindu-Arabic 
number system. It also does not require a prior understanding of multi-digit numbers; 
it is enough for students to know the verbal sequence of numbers to be able to count 
the beads on the Slavonic abacus.  
 This thesis will utilise base-10 blocks and a Slavonic abacus as manipulative 
materials to aid in teaching the concepts of place value. The next chapter looks at 
the literature pertinent to this thesis and provides a broad overview of the series of 
experiments conducted as part of this study.  
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5 Research in the field 
	

	

5.1 Research pertinent to this thesis 
Multi-digit numbers present a complex cognitive challenge to children, and the 
understanding of their functionality is only just starting to emerge (Nuerk, Moeller, 
Klein, Willmes, & Fischer, 2011). Interest in children’s learning and processing of 
multi-digit numbers has increased  significantly over the last  few years (Mann, 
Moeller, Pixner, Kaufmann, & Nuerk, 2011). Not only is place value and its 
relationship to multi-digit numbers a difficult concept  for young children to grasp, but 
the abstract mathematical idea of place value is also a challenging topic to teach 
(Bailey, 2015). Von Aster and Shalev (2007), in their research, present the idea that 
children are first introduced to multi-digit numbers as an expansion of single digit 
numbers, at a time when they start to acquire the compound number words of two-
digit numbers. It is, therefore, vital that place value instruction starts in early 
education. However, it still leaves the question of how to best teach such concepts 
at a young age. Development of multi-digit number understanding and processing in 
children is vital, not simply to their ability to count, but also as an important  stepping 
stone to other basic numerical tasks including transcoding, estimation, magnitude 
comparison and generalization to basic arithmetic operations (Nuerk et al., 2011).  

Manipulative materials are concrete objects that are often used around the 
world to assist with learning and understanding new mathematics concepts. Such 
materials offer students the opportunity to explore concepts at  both the visual and  
tactile level, through hands-on experience (McNeil & Jarvin, 2007). Research into 
the use of manipulatives in the classroom to teach mathematics concepts has shown 
mixed results. Some manipulatives have  been found to help students under some 
conditions (Aburime, 2007; Mix et al., 2016), whilst other studies have shown there 
to be no benefit from using manipulative materials. Still others have shown that the 
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use of such manipulative materials can actually hinder learning under particular 
conditions (McNeil & Jarvin, 2007). Carbonneau, Marley and Selig (2013) provided 
a good meta-analysis of the current state of research into the use of manipulatives 
in the classroom in primary and high schools. The meta-analysis covered some very 
early studies by Fennema (1972) and similarly by Friedman (1978), who showed 
that manipulatives can lose their value after the first year of schooling. However, 
despite the mixed results of recent studies, the popularity of manipulative materials 
in the classroom remains strong. The use of manipulatives can pose a cognitive 
challenge to students’ limited cognitive resources, in the form of dual representation, 
where a given manipulative not only needs to be represented as an object on its 
own, but also as a transparent symbol of whatever mathematical concept it is 
intended to explain (Uttal et al., 1997). Some early work by Boulton-Lewis (1998) 
found that when children interacted with manipulatives, their limited cognitive 
resources were all focused on representing and manipulating the objects, leaving no 
resources to establish actual understanding of concepts. It is, therefore, vital to 
continue research into how the use of manipulatives could affect students’ limited 
cognitive resources and how this may impact learning and understanding in the 
mathematics domain.   

Another common way in which novel information is presented in mathematics 
workbooks is with the help of worked examples. Worked examples present the 
learner with a problem and also the worked-out solution showing the steps that need 
to be taken to reach a goal state. This method of presentation means that a learner 
can dedicate all their cognitive resources to developing a schema for solving similar 
problems. Worked examples are particularly beneficial with novice learners in 
comparison to other standard problem solving techniques, provided the examples 
are well designed (van Loon-Hillen, van Gog, & Brand-Gruwel, 2012). For example, 
an early study by Tarmizi and Sweller (1988) found that if the worked example 
presented information in a split-attention format, the worked example effect was not 
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observed,  and was only observed again when the same information sources were 
presented in an integrated manner.  
 Worked examples in mathematics have been widely researched (Chen, 
Kalyuga, & Sweller, 2015; G. A. Cooper & Sweller, 1987; Spanjers, Gog, & van 
Merriënboer, 2011; Sweller & Cooper, 1985; Takir, 2012; Zhu & Simon, 1987); 
however, these have been, for the most part, conducted with high school or early 
university students. Only a handful of known studies have focused on the efficiency 
of worked examples when used with primary school children, (Hu, Ginns, & Bobis, 
2015; Mwangi & Sweller, 1998; van Loon-Hillen et al., 2012). Van Loon-Hillen et al. 
(2012) found that the only difference between groups that had access to worked 
examples and those groups that did not was in the acquisition time, the time taken 
to study the presented material. However, in the study conducted by van Loon-Hillen 
et al. (2012), students were subjected to a realistic maths teaching environment 
within their classroom curriculum, with access to worked examples, which they could 
chose to use or not. This made it very difficult to measure accurately the benefits to 
learning of the worked example, which was a limitation of that study (van Loon-Hillen 
et al., 2012). Previous research by Mwangi & Sweller (1998), and more recent work 
by Hu (2014; Hu et al., 2015), had also shown positive learning outcomes when the 
worked example was utilised in primary school mathematics instruction. The efficacy 
of using such worked examples was dependent on the structure and content of 
instructional material.    
 

5.2 Rationale for study 
NAPLAN results indicate that Australian children have great difficulty learning the 
characteristics of the base-10 number system (Daraganova & Ainley, 2012), in 
particular the concept of place value, which is essential for understanding expanded 
notation, multi-digit addition and subtraction, and other basic concepts. Children in 
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early primary years often do not understand that the number is made up of a series 
of quantifiable ones, tens and hundreds (and so on).  

The goal of this research project is to investigate whether there is a more 
efficient way to teach the properties of the base-ten system to early primary school-
aged children, based on contemporary understanding of the characteristics and 
origins of human cognitive architecture. The research project looks at the role that 
manipulative materials, such as MAB blocks, and other base-10 materials, play in 
teaching place value concepts, from the viewpoint of cognitive load theory. This is 
done with the help of worked examples, which are used throughout the study to 
present novel concepts to students. It is envisaged that the use of the worked 
example strategy will aid in reducing the imposed extraneous load, and lead to a 
more consistent instructional design across the many groups of students tested. The 
main research question of this study therefore is:  

 
Do base-10 manipulative materials represent a biologically primary skill that can be 
used to efficiently transition to secondary knowledge of the base-10 system, thereby 
improving children’s understanding of number and place value?  
 

The general hypothesis of this thesis is that the use of base-10 manipulative 
materials for teaching place value may create the redundancy effect, thereby 
minimising any positive effect that the use of such materials might have on learning. 
Whilst the use of base-10 materials may have its foundations in children’s 
biologically primary skills, the fact that the use of such materials must be 
accompanied by explicit guidance, in order  to provide any benefit to learning, may 
mean that such tools are not an efficient way to transfer between primary and 
secondary knowledge.  
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5.3 An introduction to the experiments in the thesis 
The previous chapters have discussed the difficulty with teaching and learning the 
concepts of number and place value. The current study was designed with the 
intention of making a further contribution  to this discussion, by investigating the ways 
in which place value is taught and the effect this has on student cognitive resources.  

This thesis used five experiments to test the hypothesis that using base-10 
manipulative material, and in particular MAB blocks, within the construct of a worked 
example, can lead to the redundancy effect and, therefore, to a lack of improvement 
in learning. This could be due to the fact that MAB blocks, one of the most commonly 
used manipulative materials for teaching place value in the Australian classroom, do 
not correspond to our primary biological knowledge. Such tools require children to 
learn the abstract connection between the meaning of the blocks and the actual 
number system. Learning both the concepts of the blocks and the number system 
represent biologically secondary knowledge and require effort and skill to learn. This 
is unlike the common and intuitive use of blocks to build or play with, which represent 
biologically primary knowledge. Thus, the use of the manipulative material requires 
additional learning, not only of the function and meaning of the manipulative material 
but also the relationship that the material has to the number system, which places 
an even higher load on children’s limited cognitive resources.  

Experiment 1 investigated whether a positive impact on learning the concept 
of place value could be achieved using different manipulative materials, and, 
specifically, whether a particular manipulative material could more neatly fit with our 
biologically primary knowledge, thereby providing a more intuitive way of grasping 
the concept of place value. Students were randomly assigned to one of four groups: 
groups 1 and 2 were given MAB blocks to assist with place value learning, with group 
1  learning the five different stages of place value understanding gradually and group 
2  learning only the fifth stage of place value understanding, without focusing on the 
preceding stages. Groups 3 and 4 were given Slavonic abaci to assist in learning, 
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with group 3 learning the five stages of place value understanding gradually, and 
group 4 learning only the fifth stage without focusing on the preceding stages. 
Students spent the day undertaking place value related activities using the relevant 
manipulative material to assist them in learning. One of the hypotheses proposed 
that using the abacus, instead of the MAB blocks would lead to better performance 
in learning place value concepts, due to the more intuitive structure of the abacus.  

Experiment 2 was designed to remove the real-life teaching bias found in 
Experiment 1, by utilizing the concept of worked example based learning, with the 
assistance of the same two manipulative materials used in Experiment 1, and the 
addition of a control group which was not provided with any manipulative materials 
to assist them in completing the set  tasks. The aim of this experiment was to 
establish whether worked examples with certain manipulative materials were more 
beneficial than standard worked examples that did not use any manipulative 
materials.  

Experiment 3 reduced the complexity of the worked examples by reducing the 
amount of literacy required in question comprehension and once again used worked 
examples with MAB blocks, Abacus or control groups (no manipulative materials) to 
see whether worked examples with particular manipulative materials are more 
beneficial to learning. It was argued that worked examples that do not utilise the 
images or the physical element of the manipulative materials would result in better 
performance in comparison to manipulative materials being used.  

Experiment 4 once again utilised the concept of teaching/learning with worked 
examples, but reduced the sample size to only using one manipulative material, as 
no differences were found in Experiments 1, 2 or 3 for the different manipulative 
materials in learning the concepts of place value. This experiment was designed to 
test the hypothesis that the use of MAB blocks is in fact detrimental to learning the 
concepts of place value as it causes a Redundancy Effect both when presented on 
paper for the student to study in their own time and as a physical manipulative 
material.  
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Experiment 5 used more advanced learners with more complex learning material 
to again test whether MAB blocks, often used to assist students in gaining the early 
concepts of place value, may in fact hinder learning, as they pose a Redundancy 
Effect both when presented in their physical form and also as images within the 
worked examples.  
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6 Experiment 1 - Place Value 
	

	

6.1 Introduction 
The series of experiments making up this thesis aimed to investigate whether the 
current methods of teaching place value with the aid of manipulative materials could 
be improved, based on cognitive load theory. Experiment 1 was designed to explore 
whether teaching place value could be improved with a more gradual approach to 
number understanding established first, and also whether teaching with MAB blocks 
as is the current standard, is superior to teaching with any other manipulative 
material, such as a Slavonic abacus.  

It was predicted that the gradual transition using the abacus, where each stage 
of place value understanding was covered and practised individually before the 
following stage was introduced, would produce better results in genuine 
understanding of the place value topic than using the MAB blocks in an identical 
transition. Similarly, using an abacus to teach place value in an integrated fashion 
from the beginning, without first focussing on the separate stages, was predicted to 
produce better outcomes than using MAB blocks in an identical transition. This would 
reflect the gradual building of schemas during the intervention/acquisition phase, 
and thus lower levels of the inherent intrinsic cognitive load. It was hypothesized that 
the use of the Slavonic abacus would be more intuitive to the students’ basic 
understanding of number construction due to its one-to-one correspondence with 
counting, i.e. one bead counts as one object. This is in contrast to MAB blocks, that 
do not represent number correspondence intuitively but attempt to do it visually 
through object size.  
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6.1.1 Participants 
Experiment 1 was conducted with sixty Year 2 and remedial Year 3 students, aged 
7-8, picked at random from two Sydney Eastern Suburbs tutoring centres. The 
children were a mix of both genders, and a range of private and public schools. The 
centre specialises in both remedial education and gifted students, so there was a 
range of students with different academic abilities. Students who chose to participate 
were randomly assigned to one of four groups:  

1) Gradual transition group with the abacus as a tool (n = 15) 
2) Gradual transition group with base-10 blocks as a tool (n = 15) 
3) All-at-once transition with the abacus as a tool (n = 15) 
4) All-at-once transition with base-10 blocks as a tool (n = 15) 

6.1.2 Materials and Procedure 
A 2 (manipulative materials: abacus vs. base-10 blocks) × 2 (method of instruction: 
gradual transition vs. all-at-once transition) mixed factorial design was used with 15 
participants in each of the groups (Table 2). 
Table 2: A 2×2 mixed factorial design in Experiment 1 

 Gradual Transition All-at-once Transition 
Abacus 15 15 
Base-10 blocks 15 15 

 
Children were invited to participate in the study throughout the Term 1 period, 

and were then tested in Term 2 of the school year, after they had covered basic 
number concepts at school but before they have had an opportunity to study place 
value concepts in depth. The study took place over four consecutive weekends, with 
each session lasting the whole day. All the materials used as part of this 
experimental setup can be found in Appendix A: Experimental materials used in 
Experiment 1. Prior to commencing teaching, children were given a pre-test, 
examining their prior knowledge and current understanding of place value concepts 
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(up to 45 minutes in length). This was followed by one of four intervention strategies, 
with regular breaks given to the children. The day was structured to include five 
sessions of half an hour in length each with a 10-minute break between sessions 
and a longer lunch break. Each session involved one teacher, who was conducting 
the lesson, and a second teacher, to assist with class control and any administrative 
matters. The same two teachers were used for all sessions. 

There were two types of manipulative materials used: the Slavonic abacus 
(one-hundred frame) and MAB blocks. The Slavonic abacus is made up of ten rows 
of ten beads each; with each group of five beads on any single row of the abacus in 
a different colour to ensure that efficient subitising is possible. The MAB blocks were 
familiar to the children, as they used them during their normal school time activities 
in developing their understanding of place value. Each set used in the experiment 
consisted of shorts (units), longs (tens) and flats (hundreds). When making numbers 
in the thousands, children were asked to put together the necessary number of flats 
to show understanding of number magnitude.  

Children in two of the groups received a gradual instruction of the base-10 
system, providing a segmented approach to learning based on each stage of 
learning place value, as described by Ross (1989). Accordingly, each of the five half-
hour sessions covered each individual stage of understanding of place value (Table 
3).  
Table 3: Stages of place value understanding in the pre-test and post-test 

Stage Description Task to test 
understanding 

Example of 
question 

Stage 1: 
Whole 
numerals 

No meaning 
assigned to 
individual digits in a 
numeral, number is 
seen as a whole. 

Transcoding – 
Question 1 (6 items) 

Numbers are read 
out loud to 
students who are 
required to write 
them down (up to 
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and including 
hundreds) 

Stage 2: 
Positional 
properties 

Meaning is assigned 
to individual digits in 
a numeral, however, 
despite knowing that 
digit on the right is 
ones and digit of the 
left is tens, the 
meaning of these 
does not yet 
encompass 
quantities.  

Number 
Patterns/Counting - 
Question 2 (4 items) 
 

12, 22, 32, ? 
 
 
 
 

Stage 3: Face 
value 

Interpret each digit 
as representing a 
number indicated by 
its face value. 
Students do not yet 
recognise that the 
number represented 
by the tens column 
is a multiple of ten.  

Basic Maths 
operations –  
Question 3 (10 
items) 
 

12 + 52 = ? 
74 – 31 = ? 

Stage 4: 
Construction 
zone 

Tentative 
knowledge that the 
number in the tens 
column is more than 
just a number but is 
a set of tens. 

Representation of 
numbers - 
Question 4 (7 items) 
and Question 5 (8 
items) 

Write the number 
32 in words. 
 
Write the number 
‘one hundred and 
three’ in numbers. 
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Stage 5: 
Understanding 

Students 
understand that the 
individual digits in 
multi-digit numbers 
represent a part of 
the whole quantity 
split into ones, tens, 
hundreds and so on. 

Expanded Notation - 
Question 6 (4 items) 
 
Face Value –  
Question 7 (4 items) 
 
Place Value - 
Question 8 (3 items) 

Write the following 
in expanded 
notation:  
341 =? + ? + ? 
 
What is the face 
value of the tens in 
the number 652?  
 
What is the total 
value of the tens in 
the number 349? 

	

The first session focussed on transcoding numbers, starting from smaller and 
building up to greater numbers. The students practised saying numbers out loud, 
covering numbers from one-digit to three- or four- digits. The use of zero as a 
placeholder was also discussed and used. The relevant manipulative materials, 
either the Slavonic abacus or the MAB blocks were also used as part of this activity 
to aid in understanding. The second session discussed the different place value 
positions in a number, starting on the right and from the lowest possible unit and 
building up to larger three digit numbers. The next session focussed on using 
numbers up to three digits and on being able to specify face value for a required digit 
within a number. In the fourth session, the children began to construct numbers, and 
discussed what makes up a two-, three- or greater digit number. Starting from a one-
digit number and building up to a three-digit number, the students participated in 
activities that involved deconstructing the numbers into ones, tens and hundreds. 
Finally, the last session brought all these concepts together, with the children being 
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able to deconstruct numbers and easily understand the difference between face 
value of numbers and total value of numbers.  

Children in the remaining two groups received an all-at-once lesson, which 
covered the last stage of understanding without focussing separately on the 
preceding stages. Their material was delivered also in five half-an-hour sessions; 
however, the lesson was continuous in determining place value in specific numbers. 
A discussion of numbers starting with one-digit numbers and continuing up to three-
digit numbers was undertaken, using place value to write and record numbers, but 
without specifically discussing the total values of digits within a two- or more digit 
number. For example, the children in the gradual groups worked on transcoding 
numbers in the first session, discussing place value positions in the second session, 
specifying face value in the third session, constructing numbers in the fourth session 
and finally working with deconstructing and constructing numbers in the last session 
by specifying what place value each digit represented. This is in contrast to the 
children in the all-at-once group, who worked on construction and deconstruction of 
numbers with one digit in the first session, two-digit in the second session and three-
digit numbers in the third session. The fourth and fifth sessions were used to work 
through different number deconstruction, with children specifying what place value 
each digit in a number represented.   

After the lesson, children were tested again to establish any benefits they 
might have received from either of the interventions in understanding the base-10 
system. The post-test was composed of ten questions, and used similar questions 
to the ones used in each of the interventions, and in the pre-test. The questions in 
the test were divided according to particular areas of understanding they measured, 
based on the five stages of place value understanding (Ross, 1989). Each test item 
was marked as either correct or incorrect, with no partial marks being given. The 
stage of place value understanding was deduced from the results of each test.  
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 It was predicted that the gradual transition, where each stage of place value 
understanding was covered and practiced individually before the following stage was 
introduced would produce better results in genuine understanding of the place value 
topic than if the place value was simply taught in an integrated way from the 
beginning without focussing on the separate stages first.  

 

6.2 Data Analysis 
To check the approximate normality of distribution, values of skewness and kurtosis 
were examined. These values were converted to z-scores by dividing them by their 
standard error, if the resulting score was greater than 1.96, a potential violation of 
the independent groups t-test assumption of normality was evident (Field, 2007). 
The Shapiro-Wilks test of normality was also used to test for parametric distribution 
assumptions.  Where normality assumption was not violated, the independent 
groups t-test assumption of equality of variances was examined using Levene’s test. 
Non-significant results of this test meant that analysis with a standard independent 
groups t-test was undertaken. However, a significant Levene’s test result led to the 
use of the t-test suitable for heterogenous variances within the SPSS software 
package. The experimental data reported as part of this thesis combined tests of 
significance, controlling the Type 1 error rate at 0.05, with estimates of the 
standardised mean difference effect size (d). This thesis uses the benchmarks for 
effect size magnitude as defined by Cohen (1988), “small, d = .2,”, “medium, d = .5,” 
and “large, d = .8 and above”.  
	

6.3 Results 
The scores received by each of the students in the pre-test were measured and 
analysed to understand base-line knowledge in all the groups, and to ensure that 
there were no significant differences in the cohorts of students between the Abacus 
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(n = 30, M = 79.97, SD = 12.11) and MAB blocks (n = 30, M = 76.93, SD = 15.62), 
F (1, 59) = .714, p = .402.  
 The independent variables in this experiment were the types of materials and 
the method of instruction, while the dependent variables under analysis were total 
post-test scores. Table 4 shows the means and standard deviations of each of the 
variables. 

Table 4: Descriptive statistics for place value understanding 

  Pre-test % Post-test % 

Abacus    

(N = 15) Gradual 77.87 (12.94) 81.13 (14.03) 
(N = 15) All-at-once 82.07 (11.27) 82.67 (14.13) 

(N = 30) Total 79.97 (12.11) 81.9 (13.85) 
MAB    

(N = 15) Gradual 73.40 (20.61) 78.87 (18.46) 
(N = 15) All-at-once 80.47 (7.33) 84.0 (6.89) 

(N = 30) Total 76.93 (15.62) 81.43 (13.94) 
Total    

(N = 30) Gradual 75.63 (17.06) 80.0 (16.15) 
(N = 30) All-at-once 81.27 (9.38) 83.3 (10.94) 

(N = 60) Total 78.45 (13.94) 81.67 (13.78) 

  
 
Using a two-way ANCOVA with the pre-test total scores used as a covariate, to take 
into account variations in children’s understanding of concepts prior to the 
instructional session, it was found that there were no statistically significant 
differences in the post-test mean marks between the abacus or the MAB blocks 
groups, F(1, 59) = 1.146, p = .289, ηр² = .020 (small effect size) – i.e. no significant 
main effect of the type of materials. Similarly, there was no statistically significant 
difference in post-test total mean marks between the gradual transition and the all-
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at-once transition instructional methods, F(1, 59) = .527, p = .471, ηр² = .009 (small 
effect size) – i.e., no significant main effect of the instructional method.  

Additionally, there was no significant interaction between the manipulative 
material (abacus v. MAB blocks) and the method of instruction (gradual v. all-at-
once), F(1, 59) = .088, p = .768, ηр² = .002 (small effect size).  
 A brief examination of any potential gender effects, using the independent 
samples t-test, indicated that there were no statistical differences in the performance 
of males and females in either the pre-test scores, t(58) = 1.000, p = .322, or the 
post-test scores, t(58) =0.647, p = .520 in the overall marks across all four strategies 
of teaching. 
 No other statistically significant differences were detected between the different 
materials or instructional methods used, or any interactions between the materials 
and methods.  
 

6.4 Discussion 
Experiment 1 was designed to test the hypothesis that teaching place value with the 
aid of MAB blocks would be inferior to teaching place value with a Slavonic abacus. 
It was hypothesized that because blocks do not directly translate to the numbers that 
they represent, it would be more beneficial to use an abacus. When using MAB 
blocks, the student is expected to decide which block is bigger based on the size of 
the block. No direct counting is involved, and choosing the correct block size can be 
easily learnt by rote. In contrast, each bead of the abacus is the same size and is 
counted as one, with beads arranged in groups of ten. This could reflect a more 
dirrect correlation between the physical object and counting. Additionally, the 
experiment attempted to establish whether a gradual teaching method (Ross 1989), 
would be more beneficial to students than an all-at-once transition.  

The results of this experiment did not support the hypothesis. There were no 
significant differences in the use of MAB blocks or the abacus to teach the concepts 
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of place value and there were no significant differences in the methods of teaching. 
Additionally, no interactions between the method of teaching and the materials used 
were found. This result could be due to the children’s familiarity with MAB blocks, a 
material that they often use within the setting of their normal classroom. 
Observationally, children were able to use the MAB blocks in such a way that showed 
that they had simply “memorised the answer”, that is, they knew how to use the 
blocks to construct the necessary numbers, without actually making the connection 
between the blocks and numbers, and showing no inherent understanding of the 
concept of place value. Some issues were also observed with children using the 
Slavonic abacus. The abacus was used to help the children count out numbers; 
however, all counting was mostly done in ones and the logical tens mapping of each 
line was not used by the students for the most part. This lack of connection between 
the meaning of each number and the deconstruction of each number into its relevant 
base-10 values was evident in the common mistakes made by the children in their 
post-tests. A small number of children had trouble writing numbers such as “one 
hundred and two” and would write these numbers as “12”. This was repeated in the 
representation task in both the pre- and post-tests, where children did not include 
the zero placeholders when converting words to numerals (Figure 24). This 
demonstrated a very early stage of place value understanding, where no meaning 
was assigned to the actual values that each digit within a particular number 
represented.  
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Figure 24: Example of mistakes made in the representation task, converting words to numerals 

An inability to bridge the 100s when counting off the decade was another common 
mistake made by more than half (58.3%) of all the children tested (Figure 25) in their 
post-test results. This mistake indicated stages 1 or 2 in the level of understanding; 
however, this was specifically observed with three-digit numbers only.  
 

One of the most common mistakes made was in specifying expanded notation 
of a number. A large majority of children in their post-test, specifically 78.3% of all 
children tested, were not able to complete this question, or could not complete it 
correctly. The mistakes made while attempting this question showed a lack of 
understanding of how numbers are built, and that each digit within a number 
represented a given quantity based on its location (Figure 26).  

Figure 25: Mistakes showing an inability to bridge the 100's when counting off the decade in the post-test 
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Stage 5 of understanding, where children are easily able to determine what 
place value is, expand a particular number based on place values for both single 
and multi-digit numbers, was only attained by 8% of the children tested in the post-
test. The remainder of the children mostly left this section blank or attempted to 
complete this section with mistakes, which showed a lack of understanding of the 
concept (Figure 27).  
  

 

Figure 26: Common mistakes made in expanding a number 
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Figure 27: Mistakes made by children in specifying place value in numbers 

All these mistakes were made despite the fact that, throughout the 
intervention, children were able to successfully use MAB blocks and the Slavonic 
abacus to construct numbers. Thus, observationally, whilst children understood what 
the different MAB blocks represented, they were not actually associating the blocks 
with the numerical values. Similarly, the children were not exploting the base-10 
characteristics of the Slavonic abacus. The children had simply learnt how to build 
the numbers correctly using the blocks or to count out the numbers using individual 
beads, without any actual understanding of the quantities that the numbers and 
blocks or the lines of beads represented. It appeared that for those children who 
could easily construct numbers, and who had a good understanding of place value, 
the representative MAB block sizes actually correlated easily to the numerical value 
desired. Similarly, children with a good understanding of place value were able to 
count in tens on the Slavonic abacus by using a whole line of beads at once. 
However, for those children who had not yet made number associations, MAB blocks 
or the Slavonic abacus, did not appear to help bridge the gap between the physical 
objects and their meaning. Children were able to construct numbers more quickly 
using the Slavonic abacus, as each bead represented a single count, an association 
that was easier to make for the children and requiring fewer of the limited cognitive 
resources. This was in contrast to the MAB blocks, where patterns in the structure 
of the blocks and the association between the blocks and the numbers, were difficult 
to construct using three different sized blocks.   
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7 Experiment 2 – The Worked Example and Place Value 
	

	

7.1 Introduction 
The results of the first experiment showed no significant differences in student 
performance between the gradual or all-at-once transition or the two different 
manipulative materials used (abacus vs. MAB blocks). The lack of any differences 
could be attributed to the real-time method of instruction in the classroom. Whilst 
great care was taken to ensure consistency across all the groups with the same 
teachers and the same material presented to the students during instruction, there 
were still differences that could not be controlled, due to the real-time nature of 
classroom instruction. These included differences in questions posed by children, 
and the differing personalities of the children themselves, with some children more 
willing to ask questions to improve their understanding as necessary. In order to 
achieve a more consistent approach in the acquisition stage of the experimental 
setup, Experiment 2 based its instructional materials on the worked example effect, 
which states that providing worked examples is a more efficient way to teach novice 
students, in comparison to straight problem solving (G. A. Cooper & Sweller, 1987; 
Sweller, 1988).  

The children in Experiment 1 demonstrated a lack of place value knowledge, 
in particular, when attempting number decomposition. The students scored an 
average mark of 60.9% in post-test scores and an average mark of 55.6% in pre-
test scores in this area. Experiment 2 thus focussed on expanded notation (number 
decomposition), an area that children had little or no prior knowledge in, and was 
therefore the most likely area to produce the worked example effect.  

The aim of Experiment 2 was to test the hypothesis that a worked example 
using the students’ primary skills of movement and grouping knowledge and 
representation of number, when using an abacus, would be superior to that of using 
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the MAB blocks as the manipulative material, in learning  the secondary skills of 
place value and number knowledge, particularly when focussing on problems 
involving expanded notation and face value. 

 

7.2 Method 

7.2.1 Participants 
Experiment 2 was conducted with forty-eight Year 2 students, from a selection of 
three private schools in the Eastern Suburbs, and Northern Suburbs of Sydney. My 
School website (www.myschool.edu.au) was used to better understand the 
backgrounds of each of the schools. School 1, located in metropolitan Sydney, had 
a student population of 2044, with 17% of students having a language background 
other than English. My School classified 83% of the students as being in the top 
quartile of the Index of Community Socio-Educational Advantaged. It is therefore 
considered to be a very advantaged school. School 2, also categorised as 
‘metropolitan’, had a student population of 753, with 83% of students having a 
language background other than English. My School classified 36% of the students 
as being in the top quartile of the Index of Community Socio-Educational 
Advantaged. It is therefore considered to be a less advantaged school. The last 
school, School 3, also a metropolitan school, had a student population of 861, with 
2% of students having a language background other than English. My School does 
not report the data for the Index of Community Socio-Educational Advantaged for 
this school.	Students were all aged approximately 7-8 years, and were randomly 
assigned to three groups of sixteen students each: Abacus worked example, MAB 
blocks worked example, No visuals worked example (control).  

7.2.2 Materials and Procedure 
Students were tested in groups of three, with one student using an Abacus worked 
example and having access to an abacus, the second student using an MAB blocks 
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worked example and having access to MAB blocks to aid them, and the third student 
in each test group using the No visuals worked example with no access to any of the 
manipulative materials. All the materials used as part of this experimental setup can 
be found in Appendix B: Experimental materials used in Experiment 2. Prior to 
commencing the testing, students were given a pre-test to establish their current 
understanding of place value. The pre-test was composed of eight questions, with 
questions focussed on the areas of expanded notation, face value and total value of 
place value. Following this, students were tested in two phases: the acquisition 
phase and the test phase. In the acquisition phase, students were presented with 
four sets of place value questions, each set consisting of a worked example followed 
by a similar question for the students to solve. Each student was given four minutes 
for each set of questions: two minutes to study the worked example and a further 
two minutes to solve the similar question. Therefore, for completing all four sets of 
problems, each student needed 16 minutes in total. Students in all of the three 
groups were given the same amount of time in the acquisition phase of the 
experiment. Students were asked to follow the worked example solution when 
solving the similar question, with the worked example available to students at all 
times in the acquisition phase. Students were allowed to have as many attempts as 
needed at a particular question, as long as their total time per question did not 
exceed two minutes.  

The acquisition phase was followed by the test phase, in which a common test 
was used to examine the effect, if any, of the acquisition phase on learning the 
concept of place value. The test phase was composed of seven questions, without 
any worked examples but similar to the problems used in the acquisition phase. Each 
student was given a maximum of one minute to solve each of the 7 questions, for a 
total of 7 minutes. If a question remained unsolved after 1 minute, the child was 
guided to the next question. The time taken by each student to solve the questions 
was measured. Each correct answer was worth 1 mark, resulting in a total possible 
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score of 7 marks. Children did not have access to the worked examples during the 
testing phase.  

 

7.3 Results 
The time taken to complete the pre-test and the score received by each of the 
students in the pre-test were measured and analysed to understand base-line 
knowledge in all the groups, and to ensure that there were no significant differences 
in the cohorts of students between the Abacus (n = 16, M = 33.04, SD = 20.68), MAB 
blocks (n = 16, M = 34.82, SD = 22.72), and Control (n = 16, M = 33.93, SD = 26.53) 
groups, F (2, 45) = 0.023, p = .977.  

In addition, in the acquisition phase, the variables under analysis were the 
learning times, and also the learning scores. In the test phase, the variables under 
analysis were the testing time and the total test scores. The total learning time was 
another dependent variable used in analysis, and measured the amount of time each 
student spent studying the worked examples in the acquisition task. Table 5 shows 
the means and the standard deviations of each of the variables.  
Table 5: Descriptive Statistics for the variables 
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 Abacus 
(N=16) 

MAB blocks 
(N=16) 

Control 
(N=16) 

Total  
(N=48) 

Pre-Test Time (mins) 3.64 (1.21) 3.37 (0.92) 3.22 (1.10) 3.41 (1.07) 
Pre-Test Score % 33.04 

(20.68) 
34.82 (22.72) 33.93 (26.53) 33.93 (22.95) 

Learning Time (mins) 12.29 (1.83) 12.63 (1.30) 8.80 (0.72) 11.24 (2.20) 
Acquisition Phase 
Score % 

68.75  (1.06) 60.94 (1.26) 64.06 (0.96) 64.58 (1.09) 

Testing Phase Time 
(mins) 

2.7 (1.38) 2.57 (1.42) 2.55 (1.36) 2.61 (1.36) 

Testing Phase Score % 50.0 (31.73) 47.32 (32.04)  58.93 (22.05) 52.08 (28.80) 

 
A one-way between groups analysis of variance was conducted to explore the 
impact of the manipulative material used on place value learning, as measured by 
the testing phase scores, testing times, learning times and acquisition phase scores. 
Using the pre-test mark as a covariate, there were no significant differences in the 
mean testing phase scores between the abacus (n = 16, M = 50.0, SD = 31.73), 
MAB blocks (n = 16, M = 47.32, SD = 32.04), and Control (n = 16, M = 58.93, SD = 
22.05) groups, F (2,44) = 1.135, p = .331, ηр² = .049. 

There were also no significant differences in the mean acquisition phase 
scores between the Abacus (n = 16, M = 68.75, SD = 1.06), MAB blocks (n = 16, M 
= 60.94, SD = 1.26), and Control (n = 16, M = 64.06, SD = 0.96) groups, F (2,44) = 
0.046, p = .955, ηр² = .002. 

No significant differences were also found in the mean testing phase time 
across the three different groups, Abacus (n = 16, M = 2.7, SD = 1.38), MAB blocks 
(n = 16, M = 2.57, SD = 1.42), and Control (n = 16, M = 2.55, SD = 1.36) groups, F 
(2,44) = 0.364, p = .697, ηр² = .016. 
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However, there was a statistically significant difference in the mean learning 
times, that is, the time taken during acquisition to study the worked examples, 
between the three groups of Abacus (n = 16, M = 12.29, SD = 1. 83), MAB blocks (n 
= 16, M = 12.63, SD = 1.30), and Control (n = 16, M = 8.80, SD = 0.72) groups, F 
(2,44) = 40.124, p < 0.0005, ηр² = .646. A Tukey post-hoc test showed that the 
increase in learning times from 8.8 ± 0.72 in the control group to 12.63 ± 1.3 in the 
MAB blocks group was statistically significant (p < 0.0005); d = 8.45. Additionally, 
the increase in learning times from the control group (8.8 ± 0.72) to 12.29 ± 1.83 in 
the Abacus group was also statistically significant (p < 0.0005); d = 6.12. This meant 
that the students in the control group took less time to study and learn the worked 
examples, than the students in those groups using manipulative materials.  

 

7.4 Discussion 
Informed by the lack of significant findings in Experiment 1, Experiment 2 modified 
the mode of instructional guidance by using worked examples. Additionally, based 
on the results in Experiment 1 pre- and post-test scores, the test materials in 
Experiment 2 were modified to include only face value and expanded notation 
questions, which were the areas that the learners had the most difficulting in 
grasping. The procedure of Experiment 2 was subsequently also changed to 
accommodate the inability of such young students to focus for a prolonged period of 
time on the same task. It was hypothesized that these changes would result in a 
significant difference in the use of materials when teaching place value, and, in 
particular, that using the abacus would be more intuitive to students than the MAB 
blocks in place value problem solving.  

The results of the experiment did not support the hypothesis. There were no 
significant differences found in the use of either MAB blocks or abacus to support 
place value instructional material, as indicated by the post-test scores in the testing 
phase. Throughout the experiment, it was observed that learners were having great 
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difficulty comprehending the highly text-based instructions given to them for each of 
the conditions. Some of the students even required explanations of the English terms 
used in the questions. The difficulty reading the textual information prior to even 
attempting the mathematical question, possibly resulted in an increase in extraneous 
load and fewer cognitive resources remaining to cope with the presented 
mathematical problem. Whilst there were no significant differences between the two 
manipulative materials, the finding that students took less time to study and learn the 
worked examples in the control group, in comparison to both the MAB blocks and 
the Abacus group could be easily explained. The students in the control group were 
only required to contend with the text-based information, as opposed to the 
combination of text, pictures and physical material. Therefore the worked examples 
within the instructional material presented to the learner, even without visuals or 
manipulative materials, presented such a high cognitive load, that the worked 
examples were not able to act as substitute schemas to aid in construction of 
students’ own schemas (Kalyuga et al., 2001), and therefore were not effective in 
producing any improvements in learning.  
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8 Experiment 3 – The Worked Example and Place Value 
(Simplified comprehension) 

	

	

8.1 Introduction 
The results of Experiment 2 indicated that there were no significant differences in 
the performance of students using different manipulative materials. This result can 
be attributed to the high level of reading comprehension required to understand the 
mathematical problems presented as worked examples. An assumption based on 
the results and observations made in Experiment 2 is that the worked examples 
provided to the students were too complex and were causing a cognitive overload 
prior to the children attempting to understand the concept of place value.  

Therefore, Experiment 3 aimed to reduce the reading comprehension required 
for the children by presenting the place value problems in a more readable manner, 
with simplified instructions and explanations. This was expected to help reduce the 
extraneous load on the students, thereby allowing their limited cognitive resources 
to be used in understanding and familiarising themselves with the place value 
worked example.  

Additionally, students were tested in groups of three with all three students 
using the same manipulative material at the same time. This was done to ensure 
limited distractions for the students, and to avoid any disappointment when no 
manipulative materials were provided.  

The hypothesis of Experiment 3 remained the same as that of Experiment 2. 
However, the method differed in the instructional material and the way groups were 
formed. It was hypothesized that a worked example using the child’s primary skills 
of movement and grouping, with the abacus as the manipulative material, would be 
superior to that of using the MAB blocks as the manipulative material, in learning the 
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secondary skills of place value and number knowledge, particularly when focusing 
on problems involving expanded notation and face value. 
 

8.2 Method 

8.2.1 Participants 
Experiment 3 was conducted with forty-five Year 2 students, selected from three 
private schools in the Eastern and Western suburbs of Sydney. School 1 had a 
student population of 1206, with 46% of students having a language background 
other than English. My School (www.myschool.edu.au) classified 81% of the 
students as being in the top quartile of the Index of Community Socio-Educational 
Advantaged. It is therefore considered to be a very advantaged school. School 2 had 
a student population of 2036, with 21% of students having a language background 
other than English. My School classified 50% of the students as being in the top 
quartile of the Index of Community Socio-Educational Advantaged. It is therefore 
also considered to be a fairly advantaged school. The third school had a student 
population of 1012, with 68% of students having a language background other than 
English. My School classified 79% of the students as being in the top quartile of the 
Index of Community Socio-Educational Advantaged. It is therefore considered to be 
a very advantaged school.	Students were all aged approximately 7-8 years, and 
were randomly assigned to three groups: Abacus worked example (15 students), 
MAB blocks worked example (15 students), No visuals worked example (15 
students).  

8.2.2 Materials and Procedure 
Students were tested in groups of three, with each group of three students having 
access to either an abacus (Abacus worked example group), MAB blocks (MAB 
blocks worked example group), or no manipulative materials at all (No visuals 
worked example). In addition to having access to the physical materials, the 
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students’ worked examples contained  illustrations of the relevant manipulative 
materials for each of the examples. All the materials used as part of this experimental 
setup can be found in Appendix C: Experimental materials used in Experiment 3. 

Prior to commencing the testing, students were given a pre-test, composed of 
7 place value questions, to establish their current understanding of place value. 
Following this test, students were tested in two phases: the acquisition phase and 
the test phase. In the acquisition phase, students were presented with four sets of 
place value questions, each set consisting of a worked example followed by a similar 
question for the students to solve. Each student was given four minutes for each set 
of questions: two minutes to study the worked example and a further two minutes to 
solve the similar question. Therefore, for completing all four sets of problems, each 
student needed 16 minutes in total. Students in all of the three groups were given 
the same amount of time in the acquisition phase of the experiment. Students were 
asked to follow the worked example solution when solving the similar question, with 
the worked example available to students at all times in the acquisition phase. 
Students were allowed to have as many attempts as needed at a particular question, 
as long as their total time per question did not exceed two minutes.  

The acquisition phase was followed by the test phase, in which a common test 
was used to examine the effect, if any, of the acquisition phase on learning the 
concept of place value. The test phase was composed of 7 questions, without any 
worked examples but similar to the problems used in the acquisition phase. Each 
student was given a maximum of one minute to solve each of the 7 questions, for a 
total of 7 minutes. If a question remained unsolved after 1 minute, the child was 
guided to the next question. The time taken by each student to solve the questions 
was measured. Each correct answer was worth 1 mark, resulting in a total possible 
score of 7 marks. Children did not have access to the worked examples during the 
testing phase.  
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8.3 Results  
The score received by each of the students in the pre-test was measured and 
analysed to understand base-line knowledge in all the groups, and to ensure that 
there were no significant differences in the cohorts of students between the Abacus 
(n = 15, M = 51.67, SD = 14.07), MAB blocks (n = 15, M = 44.17, SD = 28.69), and 
Control (n = 15, M = 52.5, SD = 32.46) groups, F (2, 44) = 0.457, p = .636. 
Additionally, the interaction of the treatment and three different schools used was 
also found to be non-significant, F (2,44) = 1.127, p = .359). 

In the acquisition phase, the variables under analysis were the learning times, 
the amount of time each student spent studying the worked examples in the 
acquisition phase, the number of attempts made per question by each of the three 
groups, and the learning scores. In the test phase, the variables under analysis were 
the time taken to complete the test and the total test scores. Table 6 shows the 
means and standard deviations of each of the variables.  
Table 6: Descriptive Statistics for the variables 

 Abacus 
(N=15) 

MAB blocks 
(N=15) 

Control 
(N=15) 

Total  
(N=45) 

Pre-test Score % 51.67 (14.07) 44.17 (28.69) 52.50 (32.46) 49.44 (25.97) 

Learning Time (mins) 12.44 (1.39) 11.58 (1.30) 9.55 (0.71) 11.25 (1.69) 
Acquisition Phase Score 
% 

91.67  

(20.41) 

91.67 (15.43) 100 (0.00) 94.44 (14.97) 

Testing Phase Time 
(mins) 

2.33 (1.21) 1.63 (0.81) 2.22 (1.64) 2.06 (1.27) 

Testing Phase Score % 72.5 (20.70) 65.0 (31.05)  86.31 (17.92) 74.60 (25.00) 

Question 1 Attempts 1.2 (0.56) 1.27 (0.59) 1.07 (0.26) 1.18 (0.49) 
Question 2 Attempts 1.87 (0.74) 1.40 (0.63) 1.27 (0.59) 1.51 (0.69) 

Question 3 Attempts 1.07 (0.26) 1.27 (0.46) 1.27 (0.46) 1.20 (0.40) 
Question 4 Attempts 1.27 (0.46) 1.33 (0.82) 1.33 (0.49) 1.31 (0.60) 
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A one-way between groups analysis of variance was conducted to explore 
the impact of the use of manipulative materials on place value learning, as measured 
by the testing phase scores, testing times, and learning times and acquisition phase 
scores. Using the pre-test mark as a covariate, there were significant differences in 
the mean testing phase scores between the Abacus (n = 15, M = 72.5, SD = 20.7), 
MAB blocks (n = 15, M = 65.00, SD = 31.05), and Control (n = 15, M = 86.31, SD = 
17.92) groups, F (2, 44) = 3.180, p = .05, ηр² = .134. A follow up Tukey post-hoc test 
was run to find that the significant difference was between the MAB and Control 
groups, with p = .049. Additionally, using the learning time as another covariate, 
there were significant differences in the mean test phase scores between the Abacus 
(n = 15, M = 72.5, SD = 20.7), MAB blocks (n = 12, M = 68.75, SD = 33.5), and 
Control (n = 13, M = 84.2, SD = 18.4) groups, F (2, 39) = 3.315, p < .05, ηр² = .159. 
A follow up post-hoc test using the LSD adjustment was run to discover the 
significant difference between the Abacus and Control group with p = .024, and MAB 
and Control group with p = .022.   

There were no significant differences in the mean acquisition phase scores 
between the Abacus (n = 15, M = 91.67, SD = 20.41), MAB blocks (n = 15, M = 
91.67, SD = 15.43), and Control (n = 15, M = 100, SD = 0) groups, F (2,44) = 1.424, 
p = .252, ηр² = .065. 

Additionally, no significant differences were found in the mean testing phase 
time across the three different groups, Abacus (n = 15, M = 2.33, SD = 1.21), MAB 
blocks (n = 15, M = 1.63, SD = 0.81), and Control (n = 15, M = 2.22, SD = 1.64) 
groups, F (2,44) = 0.67, p = .201, ηр² = .075. 

However, there was a statistically significant difference in the mean learning 
times, that is the time taken during acquisition phase to study the worked examples, 
between the three groups of Abacus (n = 15, M = 12.44, SD = 1. 39), MAB blocks (n 
= 15, M = 11.58, SD = 1.30), and Control (n = 15, M = 9.55, SD = 0.71), F (2,44) = 
21.207, p < .01, ηр² = .541. A Tukey post-hoc test showed that the increase in 
learning times from 9.55 ± 0.71 in the Control group to, 11.58 ± 1.30 in the MAB 
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blocks group was statistically significant (p < .01). Additionally, the increase in 
learning times from the Control Group (9.55 ± 0.71) to 12.44 ± 1.39 in the Abacus 
group was also statistically significant (p < .01). This could indicate that it took less 
time to study the worked examples presented in the control group, than those groups 
that used manipulative materials. 

 

8.4 Discussion 
Experiment 3 was designed to replicate Experiment 2, with modifications to the 
learning materials given to the students in the acquisition phase. Students were 
required to solve place value problems using either an abacus, MAB blocks, or no 
manipulative materials for the control group. All students were first presented with 
worked examples of place value problems, that were also illustrated by using an 
abacus, MAB blocks or no manipulative materials, depending on the group they were 
assigned to. It was hypothesized that, with the reduced reading comprehension 
required, students would be able to use their limited cognitive resources to process 
the instructional place value material. This increase of working memory resources 
available to students was expected to be reflected in better post-test performance. 
Additionally, it was anticipated that due to the greater one-to-one correspondence of 
the abacus beads in relation to countable objects, and the intuitive grouping of the 
beads in tens, the abacus would make a superior reprepresenation of place value in 
comparison to MAB blocks.  

The results of Experiment 3 only partially supported this hypothesis. Firstly, the 
reduced time taken by the control group, in comparison to both MAB block and 
abacus groups, to study the worked examples, can be explained. Because the 
instructional material for the control group was not accompanied by the use of 
manipulative materials, or relevant illustrations, the group was required to process  
less information. Since children were only subjected to numerical information, they 
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were able to process the information faster due to an increase in their available 
working memory resources.  

Secondly, whilst no differences were found between the use of the MAB blocks 
and an abacus in number decomposition tasks, a Tukey post-hoc test showed a 
significant difference in the post-test results between the group using MAB blocks 
and the control group. The students in the control group, who were given no access 
to physical manipulative material or their visual representation, performed better in 
the post-test than those students that had access to, and were given visual 
representations of, MAB blocks to represent place value problems. Such a difference 
could be due to the potential redundancy effect the MAB blocks may have caused 
to the student. The numerical information and the visual representation of the MAB 
blocks were each sufficient on their own to allow the student to understand the 
concept, yet they are often presented in conjunction with each other in the classroom 
and in instructional material. This leads to the basis of Experiment 4, which aims to 
explore whether the use of MAB blocks, both visually and physically, may lead to the 
redundancy effect, which in turn may have a negative impact on learning.   
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9 Experiment 4 – The Worked Example, Place Value and 
Manipulative Material Redundancy 

	

	

9.1 Introduction 
The results of Experiment 3 indicated that worked examples without MAB 
manipulatives may be beneficial to young primary-aged children establishing their 
early understanding of place value concepts. However, these worked examples 
needed to be sufficiently simple in terms of the language and reading comprehension 
skills required not to overwhelm the student’s limited cognitive resources, and yet 
appropriately difficult to activate the learning pathways.  

Students in the MAB block worked example group were provided with 
illustrations of blocks to demonstrate number deconstruction and were also allowed 
to use physical MAB blocks to help construct and manipulate given numbers. 
Similarly, children in the Abacus worked example group were provided with 
illustrations of an abacus to demonstrate number deconstruction and were also 
allowed to use the physical abacus to help construct and manipulate given numbers. 
The third group of children, the Control worked example group were provided with 
no illustrations or manipulative materials to assist with number construction and 
manipulation. The children in the Control worked example group performed better in 
the post-test, in comparison to the students in the MAB worked example group. 
There were no significant differences between the Abacus worked example group 
and the MAB block group, or the Abacus worked example group and the Control 
worked example group.  

Since no significant differences in performance were found between the two 
types of manipulative materials used, it was decided that, in Experiment 4, only MAB 
blocks will be utilised. The MAB blocks were chosen due to their popularity and 
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widespread use in Australian classrooms. It was also observed in Experiment 3, that 
the large quantity of blocks required to construct three- and four-digit numbers would 
often interfere with students being able to keep track of such numbers and their 
associated blocks. Students using blocks often made counting and handling errors. 
These errors were likely related to the amount of information that was required to be 
processed by their working memory at any one time. Keeping track of both the blocks 
necessary for the numerical deconstruction and also the concept of place value that 
the blocks represent, may have resulted in the complete exhaustion of their limited 
cognitive resources. The instructional material, in the form of worked examples, was 
therefore modified in Experiment 4, to include simpler numbers that did not require 
a large number of blocks in construction.  

Experiment 4 aimed to explore the impact on children’s learning and acquisition 
of the concept of place value, specifically number deconstruction, when using MAB 
blocks in worked examples, both illustratively and physically. It was hypothesized 
that children who did not have access to any manipulative materials would perform 
better in the testing phase, as measured by the post-test, post-test transfer and 
delayed test, than those children given access to MAB blocks.  
 

9.2 Method 

9.2.1 Participants 
Experiment 4 was conducted with fifty-two Year 2 students, selected from two private 
schools in the Eastern suburbs of Sydney. According to the My School website 
(www.myschool.edu.au), the first school had a student population of 1029, with 14% 
of students having a language background other than English. My School classified 
76% of the students as being in the top quartile of the Index of Community Socio-
Educational Advantaged. It is therefore considered to be a very advantaged school. 
School 2 had a student population of 777, with 7% of students having a language 
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background other than English. My School classified 77% of the students as being 
in the top quartile of the Index of Community Socio-Educational Advantaged. It is 
therefore considered to be a very advantaged school, similarly to the first school. 
Students were all aged approximately 7-8 years, and were randomly assigned to two 
groups: MAB blocks worked example (24 students), No visuals worked example (28 
students).  

9.2.2 Materials and Procedure 
Students were tested in groups of three, with each group of three students having 
access to either the MAB blocks (MAB blocks worked example group), or no 
manipulative materials at all (No visuals worked example). Students in the MAB 
blocks group, had access to the physical materials as well as illustrations of MAB 
blocks in the paper-based worked examples. The second group, No visuals worked 
example group, were provided with the same worked examples, except no access 
was given to physical blocks, and no illustrations were included with their examples. 
All the materials used as part of this experimental setup can be found in Appendix 
D: Experimental materials used in Experiment 4. 

Prior to commencing the testing, students were given a pre-test, composed 
of 7 place value questions, to establish their current understanding of place value. 
Following this test, students participated in two phases: the acquisition phase and 
the test phase. In the acquisition phase, students were presented with 9 place value 
statements, each of which detailed how to deconstruct a number up to a hundred, 
increasing by tens, such as 19, 29, 39, and so on. There were no paired questions 
associated with these worked examples during the acquisition phase. Each student 
was given two minutes per statement to study the worked example, and to construct 
the number using MAB blocks, if they were in the MAB block group. Therefore, for 
completing all nine problems, each student needed 18 minutes in total. Students in 
all of the three groups were given the same amount of time in the acquisition phase 
of the experiment. Students were allowed to have as many attempts as needed to 
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construct a particular numerical value within a question, so long as their total time 
per question did not exceed two minutes. At the conclusion of their allocated 
question time, if the student had not constructed the correct numerical value, a 
solution was demonstrated to them.  
 The acquisition phase was followed by the test phase, in which a common 
test was used to examine the effect, if any, of the acquisition phase on learning the 
concept of place value. The test phase was composed of 10 post-test questions, 
without any worked examples, but similar to the problems used in the acquisition 
phase using different numerical values. Each student was given a maximum of 1 
minute to solve each of the 10 questions, for a total of 10 minutes. If a question 
remained unsolved after 1 minute, the child was guided to the next question. Each 
question was worth 1 mark, resulting in a total possible score of 10 marks. Children 
did not have access to the worked examples during the testing phase. The post-test 
was then followed up by a post-transfer test, where 6 questions needed to be 
answered. The questions were different in structure to the worked examples, but in 
answering them, a student may be able to use information that could have been 
learnt from the worked examples. Each student was again given 1 minute for each 
question, and were able to make as many attempts as needed, as long as the overall 
time did not exceed 1 minute.  
 One week later, a delayed test was given to the participating students to 
ascertain whether any delayed place value knowledge existed. The delayed test was 
composed of sixteen questions. The first 10 questions directly related to the worked 
examples that were given to the students a week earlier. The subsequent 6 
questions did not directly relate to the worked examples, but required the knowledge 
from the worked examples to be extended. Each student was given 1 minute per 
question, for a total of sixteen minutes to be spent on the delayed test. The students 
were allowed to make as many attempts as they needed to respond to the questions, 
as long as their overall time did not exceed 1 minute per question, with sixteen 
minutes in total to complete the test.  
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9.3 Results 
The score received by each of the students in the pre-test was measured and 
analysed to understand base-line knowledge in all the groups, and to ensure that 
there are no significant differences in the cohorts of students between the MAB 
blocks (n = 24, M = 69.79, SD = 27.783), and Control (n = 28, M = 79.76, SD = 
16.582) groups, F (1, 51) = 2.551, p = .117, ηр² = .049.  

The variables under analysis in the test phase were the scores for the post-
test, the post-test transfer, and the delayed test scores. Table 7 shows the means 
and standard deviations of each of these variables.  
Table 7: Descriptive Statistics for the variables 

 MAB blocks 
(N=24) 

Control 
(N=28) 

Total  
(N=52) 

Pre-test Mark % 69.79 (27.78) 79.76 (16.58) 75.16 (22.78) 

Post-test Mark % 86.39 (30.07) 87.8 (20.18) 87.15 (24.98) 

Post-test Transfer Mark % 73.04 (30.46) 77.19 (24.26) 75.27 (27.1) 
Delayed Test Mark % n = 19 

79.79 (29.98) 

n = 25 

81.44 (18.33) 

n = 44 

80.73 (23.75) 

 
A one-way between groups analysis of variance was conducted to explore the 
impact of the redundancy effect on place value learning, as measured by the testing 
phase scores, including the post-test scores, post-test transfer scores and the 
delayed test scores. Using the pre-test mark as a covariate, there were no significant 
differences in the mean testing phase scores in the post-test between the MAB 
blocks (n = 24, M = 86.39, SD = 30.07), and Control (n = 28, M = 87.8, SD = 20.18) 
groups, F (1, 51) = 0.688, p = .411, ηр² = .014. Additionally, there were no significant 
differences in the post-test transfer results between the MAB blocks (n = 24, M = 
73.04, SD = 30.46), and Control (n = 28, M = 77.19, SD = 24.26) groups, F (1,51) = 
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0.420, p = .520, ηр² = .008. The delayed test was completed the week after the post-
test and the post-test transfer. Due to absences of some children on that day, the 
delayed test could only be given to 44 children, 19 of those in the MAB worked 
example group and 25 of those in the Control group. Similarly to the post-test and 
the post-test transfer results, no significant differences were found in the delayed 
test results between the MAB block group (n = 19, M = 79.79, SD = 29.98) and the 
Control group (n = 25, M = 81.44, SD = 18.32), F (1, 43) = 2.139, p = .151, ηр² = 
.050. 
 
 

9.4 Discussion 
Experiment 4 was designed to test the hypothesis that the utilisation of MAB blocks 
in worked examples in Year 2 place value material may induce a redundancy effect 
and could therefore lead to difficulties in learning the concept of place value 
effectively. Students were asked to study worked examples that demonstrated 
numbers up to the hundreds jumping in groups of tens. All students were instructed 
to say these number skips out loud and, if in the MAB blocks group, were also 
required to construct the numbers using the MAB blocks. It was expected that 
students not using the MAB blocks would perform better than those students that 
had access to MAB blocks, as measured by the post-test, the post-test transfer and 
the delayed test scores in the testing phase.  

The results of Experiment 4 did not support this hypothesis. The high scores 
of the students in the pre-test, post-test, post-test transfer and delayed test in the 
testing phase of the experiment indicated a high level of prior knowledge. This 
demonstrates the presence of the ceiling effect, with students unable to acquire any 
further knowledge. The high level of student performance in the test phase meant 
that a better alignment between the difficulty of the material and the expertise of the 
students was necessary. The New South Wales Mathematics K-10 Syllabus (Board 
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of Studies Teaching and Educational Standards - NSW, n.d.), defines the ability of 
students to count collections to a hundred by partitioning the numbers using place 
value, as an outcome required from Stage 1.2 (Year 2). However, since the 
experimental data was collected in the later stages of Year 2 (at the conclusion of 
Term 3 and Term 4), students might have already built up enough prior knowledge 
to learn the concepts easily. This prior knowledge would have meant that they were 
able to complete the questions in the pre-test and the test phases without a a great 
deal of learning taking place in the acquisition phase. This was one possible reason 
for misjudging the prior knowledge base of the students. 

It was expected that repeating this experiment with a different cohort of 
learners and using a more complex set of questions would yield significant 
differences between the MAB worked example group and the control group. By using 
learners who are at Stage 2.1 of schooling (end of Year 3), and increasing the 
complexity of the testing material to the expected learning outcome of Stage 2.2 
(Year 4) to ‘use place value to partition numbers of up to five digits and recognise 
this as 'expanded notation'’ (Board of Studies Teaching and Educational Standards 
- NSW, n.d.; NESA, 2015), could circumvent the ceiling effect observed in 
Experiment 4. This hypothesis was tested in Experiment 5.   
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10 Experiment 5 - The Worked Example, Place Value and 
Manipulative Redundancy (increased expertise and 

complexity of instructional material) 
	

	

10.1 Introduction 
Experiment 4 demonstrated no statistical significance between the group using MAB 
blocks, illustratively and physically, and the control group. One possible explanation 
for this lack of significance could be a higher level of prior topic knowledge than was 
initially observed with children at this stage of schooling. This indicated that either 
the level of expertise of the students needed to be changed to include more novice 
learners, or the complexity of the material needs to be increased, so that students 
were provided with new material, of which they had little or no prior experience.  

In Experiment 5, the complexity of the material was increased to include 
number decomposition into the tens of thousands. This level of number 
comprehension was associated with Stage 2.2 (end of Year 4) of learning, as 
prescribed by the New South Wales Mathematics K-10 Syllabus (NESA, 2015). Due 
to the extreme complexity of material, students were selected at the conclusion of 
Year 3 to participate in the experiments in the first two weeks of Term 1 of Year 4. 
This was done to ensure that numbers of such magnitude had not yet been covered 
in the classroom and that students had no prior knowledge of how to decompose 
and bridge such numbers into the thousands and the tens of thousands. This was to 
be established by the pre-test. The learning materials of Experiment 5 were modified 
not only to include the more complex number deconstructions, but also to add a 
paired problem to each of the worked examples to help with concept acquisition. It 
was hypothesized in Experiment 5 that the students who were presented with 
illustrations of MAB blocks and required to use physical MAB blcoks, to assist with 
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number construction and decomposition, would be hindered in their learning by the 
redundancy effect caused by the blocks.   
 

10.2 Method 

10.2.1 Participants 
Experiment 5 was conducted with thirty-eight Year 4 students, selected from two 
private schools in the Eastern suburbs of Sydney. According to the My School 
website (www.myschool.edu.au), the first school had a student population of 1029, 
with 14% of students having a language background other than English. My School 
classified 76% of the students as being in the top quartile of the Index of Community 
Socio-Educational Advantaged. It is therefore considered to be a very advantaged 
school. School 2 had a student population of 777, with 7% of students having a 
language background other than English. My School classified 77% of the students 
as being in the top quartile of the Index of Community Socio-Educational 
Advantaged. It is therefore considered to be a very advantaged school, similarly to 
the first school. Students were all aged approximately 8-9 years, and were randomly 
assigned to two groups: MAB blocks worked example (20 students), No visuals 
worked example (18 students).  

10.2.2 Materials and Procedure 
Students were tested in groups of three, with each group having access to either 
MAB blocks (MAB blocks worked example group), or no manipulative materials (No 
visuals worked example). The MAB blocks groups was given both illustrations and 
physical MAB blocks to manipulate. The Control group did not have any illustrations 
included with their acquisition text, but in all other respects the questions and text 
were identical to the MAB blocks group. All the materials used as part of this 
experimental setup can be found in Appendix E: Experimental materials used in 
Experiment 5. 
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Prior to commencing the testing, students were given a pre-test, comprised 
of 7 place value questions, in order to establish their current understanding of place 
value. Following this test, students participated in two phases: the acquisition phase 
and the test phase. In the acquisition phase, students were presented with 10 
questions based on number expansion in place value and the solutions thereto. Each 
question and solution detailed how to deconstruct a number up to tens of thousands. 
Each worked example was followed by a paired question, using different numerical 
values but otherwise the same as the worked example. Students were allowed to 
refer back to the worked example when solving the paired problem. Each student in 
the MAB blocks group was given 2 minutes per question to study the worked 
example and then to construct the illustrated number using MAB blocks. Students in 
the Control group were given 2 minutes to study each worked example. A further 1 
minute was provided to students in both groups to solve the paired problem. 
Therefore, for completing all 10 paired sets of problems, each student needed thirty 
minutes in total. Students in the two groups were given the same amount of time in 
the acquisition phase of the experiment. Students were allowed to have as many 
attempts as needed at constructing a particular numerical value within a question, 
as long as their total time per question did not exceed two minutes. At the conclusion 
of their allocated question time, if the student had not constructed the correct 
numerical value, a solution was demonstrated to them. 
 A test phase followed the acquisition phase, in which a common test was 
used to examine the effect, if any, of the acquisition phase. The test phase was 
comprised of a post-test, with 10 questions, similar to the problems used in the 
acquisition phase, but using different numerical values and without any worked 
examples. Each student was given a maximum of 1 minute to solve each of the 10 
questions, for a total test time of 10 minutes. If a question remained unsolved after 
1 minute, the child was guided to the next question. Each question was worth one 
mark, resulting in a total possible score of 10 marks. Children did not have access 
to the worked examples during the testing phase. The post-test was then followed 
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up by a post-transfer test, where 6 questions needed to be answered. The questions 
were different in structure to the worked examples, but in answering them, a student 
may be able to use information that could have been learnt from the worked 
examples. Each student was again given 1 minute for each question, and were able 
to make as many attempts as needed, as long as the overall time did not exceed 1 
minute. 
 One week later, a delayed test was given to the participating students to 
ascertain whether any delayed place value knowledge existed. The delayed test was 
composed of sixteen questions. The first 10 questions directly related to the worked 
examples that were given to the students a week earlier. The subsequent 6 
questions did not directly relate to the worked examples, but required the knowledge 
from the worked examples to be extended. Each student was given 1 minute per 
question, for a total of sixteen minutes to be spent on the delayed test. The students 
were allowed to make as many attempts as they needed to respond to the questions, 
as long as their overall time did not exceed 1 minute per question, with sixteen 
minutes in total to complete the test.  
 

10.3 Results 
The variables under analysis in the test phase were the scores for the post-test, the 
post-test transfer, and the delayed test scores. Table 8 shows the means and 
standard deviations of each of these variables.  
Table 8: Descriptive Statistics for the variables 

 MAB blocks 
(N=20) 

Control 
(N=18) 

Total  
(N=38) 

Post-test Mark % 74 (0.883) 91.1 (0.758) 82.1 (1.189) 

Post-test Transfer Mark % 62.5 (1.803) 62.2 (2.045) 62.4 (1.895) 
Delayed Test Mark % 79.0 (1.252) 95.6 (0.784) 8.68 (1.338) 
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A one-way between groups analysis of variance was conducted to explore the 
impact of the redundancy effect on the use of manipulative materials in place value 
learning, as measured by the testing phase scores, including the post-test scores, 
post-test transfer scores and the delayed test scores. Using the pre-test mark as a 
covariate, there were statistically significant differences in the mean testing phase 
scores in the post-test between the MAB blocks (n = 20, M = 74.0, SD = 0.883), and 
Control (n = 18, M = 91.1, SD = 0.758) groups, F (1, 37) = 52.883, p < 0.01. There 
were no significant differences in the post-test transfer results between the MAB 
block group (n = 20, M = 62.5, SD = 1.803), and Control group (n = 18, M = 62.2, SD 
= 2.045), F (1, 37) = 0.005, p = .946. The delayed test was completed a week 
following the post-test transfer. There were no children absent in this instance and 
all children who participated the previous week were able to complete the delayed 
test. Statistically significant differences were found in the delayed test performance 
marks between the MAB block group (n = 20, M = 79.0, SD = 1.252) and the Control 
group (n = 18, M = 95.6, SD = 0.784), F (1, 37) = 25.872, p < 0.01. 
 

10.4 Discussion 
The purpose of Experiment 5 was to test whether the use of MAB blocks, both 
visually within worked examples, and physically when students are using these 
materials hands-on, could lead to a redundancy effect that could have a negative 
impact on learning outcomes. The method used in Experiment 5 repeated that of 
Experiment 4, but used testing material that was higher in complexity. This was done 
to ensure that the worked example effect could be obtained, which could only occur 
if the presented material was adequately complex for the learner.  

The results of Experiment 5 showed improved performance of the control 
group in the testing phase, as measured by the mean post-test and the delayed test 
marks. Within the cognitive load theory framework, this finding could be explained 
by the redundancy effect (Sweller, 2012). The use of manipulative materials, in the 
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form of MAB blocks, to explain place value, could lead to an increased extraneous 
load and therefore could be detrimental to learning. According to the redundancy 
effect, if learners are presented with a diagram and text simultaneously that provide 
exactly the same information, the redundancy effect may be triggered, causing a 
lack of working memory resources to process the necessary information (P. 
Chandler & Sweller, 1991). Since Experiment 5 used illustrations and textual 
information, in addition to physical use of blocks, this could have triggered the 
redundancy effect and led to a high extraneous load on the student, based on the 
instructional material. Learners were not able to ignore the partly split information, 
potentially neutralizing the redundancy effect caused by the MAB block illustrations, 
because they were also required to construct the number decompositions with the 
physical blocks, using both the illustrative and written numerical information. 
Students were thus subjected to the potential redundancy of the blocks with each of 
the questions in the acquisition phase. The sources of information presented to the 
learner were self-contained, that is they could each be understood on their own, 
which would imply the presence of the redundancy effect. However, these types of 
questions are often presented to the student in this way in their normal learning 
environment, in an Australian classroom. In this instance, the use of MAB blocks in 
place value instructional material may have presented a redundancy to student 
learning. The objects increased the extraneous load by repeatedly drawing 
children’s attention away from the task, thereby consuming limited working memory 
resources.  
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11 General Discussion 
 
 

11.1 Summary of key findings 
Mathematics curricula are generally designed on the assumption that instruction 
based on manipulative materials should precede instruction using mathematical 
symbols. Accordingly, formal manipulative materials are frequently employed in the 
classroom from the very early stages of education. Instructional techniques using 
manipulative materials give students the opportunity to interact with physical objects 
to learn more about abstract mathematical concepts. However, literature remains 
ambivalent on the advantages of such materials. Gürbüz (2010) and Sherman & 
Bisanz (2009) carried out studies which found the use of these materials to be an 
effective approach to improving student’s achievement in mathematics. Other 
studies, however, have found that the use of manipulative materials either made no 
difference to students’ performance or actually inhibited their performance (Canobi 
et al., 2003; Carbonneau, Marley & Selig 2013a; Uttal et al., 1997; Sowell 1989; 
McNeil et al., 2009; Amaya et al., 2008). These contradictions in research results 
may arise due to the variability in the types of manipulative materials used, the 
method of instructional guidance and in potential characteristics of the learning 
environment and the learner (Carbonneau, Marley & Selig 2013b; Carbonneau & 
Marley 2015).  

One of the possible problems posed by the use of manipulative materials is 
their dual representation (Uttal et al., 1997). The materials not only have to be seen 
as objects in their own right, but also have to symbolise the concept or procedure 
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they are attempting to demonstrate. Translating between these physical objects and 
the abstract concepts they demonstrate can be a difficult process, and one that 
requires intensive use of the limited cognitive resources that children possess. When 
children interact with manipulative materials, they are largely focused on the objects 
in their hands, thereby committing their cognitive resources to manipulating them, 
and understanding the abstract concept represented by the manipulative materials. 
This process may not leave sufficient cognitive resources for the processes required 
to understand the actual mathematical concepts (Boulton-Lewis 1998).  

MAB blocks are one of the most common manipulative materials used in the 
classroom. These blocks are designed to assist in the teaching of place value, with 
blocks grouped into ones, tens, hundreds, thousands and so on. These groups are 
based on the size of the block, and are often referred to as a ‘unit’ for a single block, 
a ‘long’ for a group of ten blocks, and a ‘flat’ for a group of a hundred blocks. Students 
are not always aware that there are ten blocks stuck together in a long, and a 
hundred blocks stuck together in a flat or a thousand small cubes stuck together to 
make a thousand block. Using  language such as ones, longs, flats is also not helpful 
in developing a link between the relevant block and the number that it is meant to 
represent. This can lead to a further disconnection between the manipulative 
material and the mathematical concept that it aims to represent.  

Another example of a base-10 manipulative material is a Slavonic abacus. 
The Slavonic abacus is made up of ten rows of beads, with ten beads on each of the 
rows. The beads are coloured in such a way, that each row and each column is 
made up of five beads of one colour and five beads of another colour. Each row of 
beads corresponds to the fingers on the children’s hands, that is, five beads of one 
colour can count as the fingers on one hand, and the second colour beads on the 
same row represent the fingers on the second hand. This ensures that children are 
easily able to subitise both in the ones and in the tens, up to one hundred. The 
Slavonic abacus can offer children a way to envision a number, as a whole, with 
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each beads correlating to one single count. This may provide a more intuitive way to 
count and to represent numbers up to one hundred.   

This thesis proposes that MAB blocks are not intuitive to students’ basic 
number schemas and can, therefore, lead to the redundancy effect. Students often 
learn to copy a particular procedure, such as number expansion, to reach a specific 
goal using  MAB blocks, and do not relate these objects to the numbers themselves. 
With the aim to contribute further to the body of research on the use of manipulative 
materials in learning mathematical concepts, this study specifically focused on 
investigating the use of manipulative materials in learning the concept of place value, 
taking into consideration cognitive load theory and its associated effects (Sweller et 
al., 1998).  

Five experiments were carried out with students in Years 2 to 4 as 
participants. Experiment 1 investigated the impact a gradual (one stage at a time) or 
an all-at-once (all stages at the same time)  transition had with two types of 
manipulative materials, an abacus or MAB blocks, on learning the concept of place 
value. Students were randomly assigned to one of four groups, in a 2 (gradual vs. 
all-at-once transition) ´ 2 (abacus vs. MAB blocks) mixed factorial design. It was 
proposed that using an abacus as a manipulative material, and using a gradual 
transition across the five stages of place value understanding, would be a more 
effective way to learn the concept. The proposition was based on the argument that  
the abacus would be a more intuitive material that could aid in schema construction, 
due to its easy representation of the base-10 system. In addition, it was proposed 
that the gradual transition would ensure no cognitive overload in learning. However, 
these arguments were not supported by the findings, showing that there were no 
significant differences in the results regardless of the variables under test.  
 Experiment 1 showed no significant differences between the gradual 
intervention and the all-at-once teaching intervention. Experiment 2, therefore, built 
on this finding by instead using the worked example effect to provide a consistent 
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intervention across the groups of students. Three groups of students were used in 
this experiment. The first group was assigned the abacus, the second group used 
MAB blocks and the control group was not given any manipulative materials. The 
test material focused on only the last stage of place value understanding, number 
expansion and decomposition, which was the area where students had the most 
difficulty in Experiment 1. Experiment 2 was designed to investigate whether using 
the abacus in learning place value would be a more effective method for schema 
construction due to its one-to-one count correspondence and easy division into 
groups of tens beads. The results of this experiment did not support the hypothesis, 
as no significant differences were found amongst the three groups.  
 Experiment 3 was based on the observation that the worked examples 
presented to the students in Experiment 2 were too cognitively demanding, in terms 
of the level of English comprehension required, thereby causing cognitive overload 
before any learning could take place. Accordingly, Experiment 3 repeated 
Experiment 2, but with worked examples that did not require a high level of English 
comprehension. As in Experiments 1 and 2, Experiment 3 was designed to compare 
the efficiency of using an abacus versus MAB blocks to learn the concept of place 
value. The results of the experiment showed that the control group (no manipulative 
materials) performed better than the group using MAB blocks. There were no 
significant differences found between the group using an abacus and the group using 
MAB blocks. Additionally, no significant differences were observed between the 
group using an abacus and the control group. This result thus led to the proposition 
that the use of MAB blocks could potentially lead to the redundancy effect, thereby 
causing ineffective learning.  
 In order to further investigate the difference found in Experiment 3 between 
the group using MAB blocks and the control group, Experiment 4 was designed to 
include a delayed learning test in addition to an immediate post-test, given to the 
students a week after the intervention. Instructional material was modified to include 
more questions that focused on expanded number notation, thereby forcing the 
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students to interact with the MAB blocks. The rationale of this experiment was based 
on the assumption that the use of MAB blocks led to the redundancy effect and 
therefore hindered effective learning of the concept of place value. Based on this, it 
was predicted that the students in the control group would perform better than those 
using the MAB blocks, leading to better outcomes in the post-test and the delayed 
learning test. The results did not support this argument, showing no significant 
differences between the group using MAB blocks and the control group. However, 
this result could be due to the ceiling effect observed throughout this experiment. 
Children scored very highly on both the pre-test and the post-test, thereby indicating 
that no actual learning had taken place. Due to the timing of this experiment at the 
conclusion of the school year, students had already become familiar with the 
concepts used in the acquisition phase, and so the worked examples did not display 
novel concepts for these students. Since the worked examples did not present novel 
information, no learning could take place.  
 Experiment 5 then built on this information by increasing the expertise of 
students and increasing the complexity of the instructional material. This was done 
by using more difficult worked examples, with numbers into the thousands and tens 
of thousands, and additionally breaking them up in unconventional ways to test for 
a deeper understanding of the concept of place value. Students were tested at the 
beginning of term 1 of the following school year and, therefore, had not yet learnt the 
material included in the worked examples. Two groups were used as part of this 
experiment, one group using MAB blocks, and the second group using no 
manipulative materials. The argument proposed by this experiment, similar to that of 
Experiment 4, was that MAB blocks, used both in worked examples and physically, 
could lead to the redundancy effect in the instructional material, resulting in 
ineffective learning. The findings of this final experiment showed significant 
differences in the performance of those students using MAB blocks and those not 
using any manipulative materials. Students performed better in the post-test and the 
delayed test when no manipulative materials were used to support the worked 
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examples. This could indicate that the use of MAB blocks, physically and as part of 
worked examples, might have led to the redundancy effect and to less effective 
instructional material. In addition, it was observed that MAB blocks were often used 
in a task-irrelevant way, distracting the student. This could also result in the 
redundancy effect being observed. This is the most significant finding to emerge 
from this study showing that learning to handle manipulative materials, specifically 
MAB blocks, when learning the concept of place value, may not lead to a deeper 
understanding of this concept and improvements in student performance. The  
finding is grounded in cognitive load theory, as the use of MAB blocks may result in 
the redundancy effect and cause difficulty for students translating between the 
blocks and the concept of place value they are designed to demonstrate, due to the 
limited cognitive resources available to the student.  
 

11.2 Theoretical Implications  
Recent work by Mix et al. (2016) found mixed results when using MAB blocks to help 
teach children the concept of place value. The study found that, for some children, 
there was a clear advantage using the blocks, whilst for others, the blocks were only 
beneficial once they had already learnt the concept of place. The study found that 
one factor influencing the benefits of using the blocks was the number of years that 
children had been trained in their use. The more training the chidren had had, the 
more beneficial it was to use the blocks. Another study (Mix et al., 2013), found the 
meaning of MAB blocks was not always obvious to children, requiring some prior 
knowledge of number to be explicit in the student’s mind, before the blocks could be 
understood. This defeats the purpose of using blocks to teach the concept of place 
value, if children might need to have a basic understanding of place value in order 
to learn how to use the blocks.  

The aim of this study was to consider the manipulative materials, specifically 
MAB blocks, from the viewpoint of cognitive load theory. Based on the findings of 
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this study, there are two implications arising from the use of MAB blocks in teaching 
mathematical concepts. Firstly, research has shown that children may find it very 
difficult to transfer knowledge from the manipulative material to its symbolic written 
form they are meant to represent. This is in line with the current research showing 
that knowledge gained in one context may not transfer to another context, because 
of the mismatch between the format in which the material was first encoded and the 
way in which it is needed to be recalled (Uttal et al., 2013). The difficulty of such a 
general transfer in memory is also linked to the well-documented difficulty of 
maintaining the dual representation of a concrete object and the abstract concept it 
is demonstrating (Uttal et al., 1997; DeLoache 2000; Uttal et al., 2013). It was 
observed throughout the experimentation phase that children would often not use 
the blocks for their intended purpose, to help them solve a particular question. In 
fact,  the children were often observed noting an answer down and then,  as an 
afterthought, because the question required them to do so, constructing the number 
expansion using blocks. Often, the block response would be correct, but would not 
match the abstract symbolic representation written on paper by the student. This 
indicated, firstly, that blocks and symbols were seen as concepts in their own right 
and not linked, and, secondly, that difficulties were experienced translating between 
blocks and their symbolic place value representation.    

 The results of this research also extend the findings of some recent studies on 
the efficacy of manipulative materials in teaching mathematical concepts at an early 
stage of education (Uttal et al., 2013; Kamina & Iyer, 2009; Carbonneau & Marley, 
2015; McNeil & Jarvin 2007; Moyer & Jones, 2004; Uttal et al., 1997) by examining 
them in the context of cognitive load theory. Recent research (K J Carbonneau & 
Marley, 2015) indicates that the use of manipulative materials can also be ineffective 
due to problems with dual representation. In addition, the current study has shown 
that the use of MAB blocks to teach the concept of place value may also contribute 
to the redundancy effect, which may reduce their efficacy in teaching this concept. 
In particular, Experiment 5 indicated that the students in the control group (without 
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any manipulative materials) performed better solving place value problems of 
number expansion and decomposition, due to the potential redundancy effect 
created by the MAB blocks in the second group. Therefore, cognitive load factors 
should be considered when selecting optimal instructional strategies in this area. 

 

11.3 Educational Implications  
The results of this study may challenge the well-established practice of using MAB 
blocks to demonstrate the concept of place value to children to help them understand 
the base-10 number system. Firstly, there was an issue with dual representation. 
Students perceived the blocks as objects in their own right, without having any 
association with the number concepts that the blocks were meant to demonstrate. 
Hence, a problem with translating from a concrete object to the abstract concept of 
number was observed. Construction with blocks including bundling and grouping is 
a primary skill, and the process of using the blocks in this way comes intuitively. 
However, in this study the blocks did not directly translate to the secondary skill of 
mastering the base-10 number system. Such a system needs to be explicitly taught 
as a concept in its own right.  

Alternatively, teaching such a concept requires instructional material 
comprising three components: learning to play with the blocks, learning how the 
number system is structured and, thirdly, translating between these two 
representations.  Indeed, when using either the blocks or the abacus, it was often 
observed that children engaged in task-irrelevant activities, such as using blocks for 
construction, and making music with an abacus. It could be beneficial to abandon 
the use of these manipulative materials and persevere with explicit instruction in how 
the number system works. From observations of students  in Year 2, it would appear 
that they might not yet have the general schemas required to build any deep 
understanding of the base-10 number system. It could be appropriate for such 
concepts to be taught at a later stage and, in the meantime, there could be a greater 
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focus on creating better number schemas in memory, that could aid in the 
construction, manipulation and processing of numbers at later stages.  

It was observed in the experiments of this study that children could 
successfully  carry out routine tasks, such as pointing to a number in the tens or 
hundreds column,  without actually understanding the concept of number. It was 
obvious that children had simply learnt by rote the processes required to complete 
such tasks, without showing any deep understanding of the concept of place value. 
For example, the link between MAB blocks and their direct numerical representation 
should not be assumed knowledge in young children. Learners did not understand 
the concept that the blocks were designed to illustrate, instead treating the blocks 
independently of the numbers. Students  manipulated the blocks, based purely on 
their knowledge of blocks, as opposed to any relationship that these blocks might 
have had to the numbers.  

The results of this study might also have more general educational 
implications, which leads to the second, and perhaps most important, point. This 
study has indicated that using MAB blocks with worked examples may lead to the 
redundancy effect, and, therefore, their use may be detrimental to learning. Worked 
examples are often presented in this way in instructional material for students. 
Although the redundancy effect and its repercussions are well researched in 
literature, there is not much data dealing with this effect in younger students. This 
study has indicated that using simple worked examples, requiring simple reading 
comprehension skills, and with no redundant illustrations, could be the most 
beneficial means for a young student learning the concept of place value. The need 
for simple instructions that require only basic comprehension skills can be attributed 
to young learners still developing their secondary skill of reading. Complicated 
instructions that require complex comprehension skills use up limited cognitive 
capacity that would otherwise be used in learning mathematical concepts. The 
efficacy of not using redundant illustrations or tools to teach place value concepts 
was demonstrated in Experiment 5. Students performed better in their post- and 



	 144 

delayed- tests, in the group that did not use MAB blocks. The improved performance 
in the delayed test could also be an indication of better schema construction, 
encouraged by the use of simple worked examples without the distraction of the 
MAB blocks. In this situation, students were able to focus all their cognitive resources 
on the concept of place value.  

 

11.4 Limitations of Study and Future Research Directions 
Some of the limitations of this research may be utilised to inform future research 
directions exploring the use of manipulative materials in teaching place value, from 
the perspective of cognitive load theory. Firstly, only two manipulative materials (the 
abacus and MAB blocks) were used in the experiments. Other materials, such as 
cuisenaire rods, place value mats, grouped paddle-pop sticks and others can also 
be used in order to manipulate the concepts of place value in a concrete way. 
However, these other materials were not used as part of this study. The results would 
have been more generalized if a greater variety of manipulative materials could have 
been used to teach the concept of place value.  
 Secondly, due to the time constraints imposed by school timetables, only a 
limited number of worked examples was presented to the students in each of the 
experimental situations. Therefore, advantage could not be taken of the fact that 
more worked examples could have been used for students to acquire more general 
and robust schemas.  

Thirdly, it is important to consider that there are variations in school curriculum 
milestones. Therefore, when students from different schools were used as part of 
the same experimental group, it could have been possible that some of their prior 
learning outcomes had affected their ability to solve questions and understand the 
concepts presented in this study.  

Fourthly, this study did not measure the cognitive load placed on each 
student, as it is very difficult to measure cognitive load in children under 15 years of 



	 145 

age (H. Lee, 2014; H. Lee, Plass, & Homer, 2006). Because the students in this 
experimental study were all so young, with the oldest aged just 8 years, no attempt 
were made to measure the levels of cognitive load using, for example, subjective 
rating scales (Paas, Tuovinen, et al., 2003). Some alternative measures could 
possibly be used with this category of students. The ability to provide a valid and 
reliable estimation of the amount of load experienced whilst completing a task is a 
complex undertaking, even more so when it concerns such a young cohort of 
students (H. Lee, 2014). A small number of studies have used a modified subjective 
scale with cartoon faces to help young students rate their cognitive load whilst 
solving questions (Hu et al., 2015; van Loon-Hillen et al., 2012). However, no known 
studies have used such scales with children as young as 6-7, as used in this series 
of experiments. From converstations with students after the experiments have taken 
place, it appeared that the young students were keen to label any task undertaken 
as ‘easy’. This was observed even when it was clear that the students found the 
questions and the content to be difficult. Thus, it could be possible that measuring 
cognitive load, with the use of a subjective scale, in such a young cohort of students 
could be not possible. This could present an interesting area for further research.  

Finally, only private school children were tested in Experiments 2, 3, 4 and 5. 
It is not possible to say whether these results can be generalized across the category 
of schools: private, public, catholic and independent schools.  
 Despite these limitations, the results do appear to have a solid theoretical 
grounding in already well-established cognitive load theory and, therefore, may have 
significant implications for the current widespread use of MAB blocks. Further work 
in the area could be undertaken both to reinforce, and to expand on, these findings.  

Some research has already shown that objects high in perceptual detail are 
not effective in establishing deep mathematical understanding of concepts 
(Goldstone & Sakamoto 2003; Sloutsky et al., 2005). Children often use all of their 
limited cognitive resources to focus on the details of the manipulative material, with 
no resources left to establish the connection between the manipulative material and 
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the concept it is attempting to represent. However, MAB blocks do not present a rich 
perceptual experience, as the blocks are simple cubes devoid of shape or interesting 
structure. McNeil (2007) proposed that this aspect of MAB blocks could make it 
easier for students to view them as mathematical tools, and to focus on the concepts 
that the blocks are trying to teach. However, the findings of this research do not 
indicate this to be the case. It was often observed that children would use these 
blocks in task irrelevant ways, using them to build and play with, instead of 
understanding that they represented mathematical concepts. A possible further area 
of research could examine whether the different types of blocks could make a 
difference. For example, there are coloured blocks available, or blocks that are able 
to divide into units and click together to make longs, flats, and so on, thereby 
potentially encouraging a more fluent translation between the dual representations. 
Additionally, it would be interesting to investigate whether using the physical blocks 
only or being given visual representations of the blocks, or a combination of both, 
would lead to a change in student performance and understanding. This could further 
lead into examination of whether using blocks as part of animated simulation is 
beneficial to student learning. Because simulations are able to break up the cubes 
and, therefore, show that a long is made of 10 small unit blocks, there is potential 
that it would aid in a better dual representation of the concept and not cause a 
cognitive overload.  

This study examined the use of blocks and an abacus as manipulative 
materials with students in their second and fourth year of schooling. It would be 
beneficial to investigate whether the expertise of the student impacts the way MAB 
blocks and other manipulative materials are used and whether they provide more 
value at the beginning of schooling or at later stages. For example, the blocks could 
be used at later stages of schooling to expand upon a concept once the concept has 
already been learnt. This is in contrast to using the blocks at the beginning of 
schooling to teach the concept initially.  
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 Lastly, a longitudinal study would be of benefit to examine whether long-term 
cognitive benefits can be obtained by the use of manipulative materials, or whether 
the concept of dual representation and its effect on basic and initial schema 
construction would hinder the learning process. It would be interesting to start at the 
beginning of a child’s formal education, and then track the frequency of the use of 
such material and its effects. A control class would run in parrallel and be given no 
access to manipulative materials. Such a study would have to be carried out in a 
real-life context, with no formal interventions. Each class would be provided with 
worked examples of place value questions at varying stages of the year.  
 

11.5 Conclusion 
The present thesis argues that the use of manipulative materials (such as MAB 
blocks or an abacus) in the early primary school curriculum does not support the 
creation of number composition schemas in the young learners, and may, indeed, 
hinder learning. This has implications for the design of instructional materials that 
incorporate both illustrations and the physical use of MAB blocks and other base-10 
material, when teaching individual components of number deconstruction.  

The results suggest that the use of MAB blocks in worked examples, both 
illustratively and physically, may cause an increased cognitive load on the student, 
and generate a redundancy effect. The findings of the present research may thus 
lead instructional designers and primary school teachers to create learning activities 
that do not incorporate the use of MAB blocks, whether as illustrations or physical, 
into teaching the concept of place value.  

The study demonstrated that cognitive load factors are essential to be 
considered while designing or selecting instructional materials for this area of 
education. Established cognitive load theory techniques could be used to improve 
learning outcomes. 
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Appendices 
	

Appendix A: Experimental materials used in Experiment 1 
	

Pre-test 
	

1) Please complete the following counting sequences:  

1, 2, 3, 4, 5, ___, ___, ___ 

7, 8, 9, ___, ___, ___ 

27, 28, 29, ___, ___, ___ 

10, 20, 30, 40, ___, ___, ___ 

23, 33, 43, ___, ___, ___ 

145, 155, 165, ___, ___, ___ 

2) Please answer the following questions: 

7 + 3 =  

15 – 3 =  

8 + 6 =  

12 + 10 =  

22 + 8 =  

10 + 4 =  

35 – 31 =  

35 – 15 =  

10 + 25 =  

31 + 40 =  

3) Please write these numbers as numerals:  

Twenty three      

___________________________________________________ 

Two hundred and three     

___________________________________________________ 

Ninety nine      

___________________________________________________ 
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Seventeen       

___________________________________________________ 

Seventy one     

___________________________________________________ 

Seven hundred and twenty two  

___________________________________________________ 

Ten      

___________________________________________________ 

Fifteen      

___________________________________________________ 

 

4) Please write these numerals in words: 

9  

___________________________________________________ 

19 

___________________________________________________ 

99  

___________________________________________________ 

91  

___________________________________________________ 

138  

___________________________________________________ 

831 

___________________________________________________ 

402 

___________________________________________________ 

5) Please complete the following:  

55 = _ + 5 

60 = 60 + _ 

17 = _ + 7 

102 = _ + _ + 2 



	 186 

230 = 200 + _ + _  

6) What is the total value of the highlighted number? 

93 = _________ 

59 = _________ 

102 = _________ 

370 = _________ 

7) What is the number of tens in 342? _________ 

8) What is the number of hundreds in 587? _________ 

9) What is the number of ones in 324? _________ 

Post-test 
	

1) The following numbers are to be written down to dictation: 6, 8, 3, 9, 7, 13, 28, 32, 57, 12, 21, 

65, 42, 88, 24, 301, 147, 741, 205, 502 

2) Please complete the following counting sequences:  

3, 4, 5, _, _, _ 

17, 18, 19, _, _, _ 

37, 38, 39, _, _, _ 

20, 30, 40, _, _, _ 

123, 133, 143, _, _, _  

175, 185, 195, _, _, _ 

3) Please answer the following questions: 

6 + 4 =  

17 – 3 =  

5 + 6 =  

22 + 10 =  

52 + 8 =  

10 + 9 =  

37 – 32 =  

38 – 18 =  

10 + 15 =  

28 – 17 =  
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41 + 20 =  

4) Please write these numbers as numerals:  

Thirty three     _________ 

Four hundred and three    _________ 

One hundred and ninety nine  _________ 

Nineteen     _________ 

Ninety one    _________ 

Four hundred and one   _________ 

Seven hundred and fifty five  _________ 

Two hundred and twenty two  _________ 

Twenty    _________ 

Sixteen    _________ 

5) Please write these numerals in words: 

9 ______________________________________________ 

19 ______________________________________________ 

99 ______________________________________________ 

91 ______________________________________________ 

15 ______________________________________________ 

51 ______________________________________________ 

127 ______________________________________________ 

721 ______________________________________________ 

502 ______________________________________________ 

808 ______________________________________________ 

6) Please complete the following:  

77 = _ + 7 

20 = 20 + _ 

13 = _ + 3 

104 = _ + _ + 4 

100 + _ + _  

7)What is the total value of the highlighted number? 

73 = _ 
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56 = _ 

306 = _ 

52 = _ 

220 = _  

8) What is the number of tens in 152? 

9) What is the number of hundreds in 227? 

10) What is the number of ones in 362?	 	
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Appendix B: Experimental materials used in Experiment 2 
	

Pre-test 
	

1) Write the following using expanded notation:  

25 = � + � 

2) Write the following using expanded notation:  

905 = � + � + � 

3) What is the face value of the digit 5 in the number 25? 

___________________________________ 

4) Circle the numbers that have a face value of 6 in the tens. 

 106  6 63   66  616  67 

5) What is the total value of the digit 9 in the number 39? 

 

___________________________________ 

6) What is the total value of the digit 5 in the number 507? 

 

___________________________________ 

7) What number is made up of 300, and 20 and 2?  

 

___________________________________ 

8) I have 9 hundreds, and 9 ones, what number am I? 

 

___________________________________ 

Acquisition phase – abacus 
 

Background:  
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Use a one hundred-frame with ten lines 

and ten beads on each of the lines. 

The abacus has all its beads in the ‘off’ 

position on the right. To switch the 

beads on we will move them from the 

right to the left. Notice that one line 

has 10 beads on it.  

	
	
Question: 

1) Please write the following using expanded notation:  

36 = � + � 

Solution:  

 

Use place value to construct numbers.  

 

The number 36 is made up of 3 tens 

which is 30 ones. In addition there are 

6 ones. 

 

	

So to expand 36, we will write:  

36 = 30 + 6 

	

	
	
Question:  

2) Now, use the worked example to solve this question, by writing the following using expanded notation:  

 

47 = � + � 
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Question:  

3) Create a three-digit number that has a hundreds face value of 1, tens face value of 7, and a ones face 

value of 5 

 

Solution:  

 

Use place value to construct numbers.  

 

We need a number that has a hundreds 

face value of 1, which is 100 ones. In 

addition we need a tens face value of 

7, which is 70 ones, and a ones face 

value of 5. 

	

	

	
 

So a number that has a hundreds face 

value of 1, a tens face value of 7, 

and a ones face value of 5, is a 

number that is made of 100, 70 and 

5, equal to 175.  

 

	

	
Question: 

  

4) Now, use the worked example to solve this question. Create a three-digit number that has a ones face value 

of 9, a tens face value of 4, and a hundreds face value of 2.   
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Question:  

5) What is the total value of the digit 5 in the number 259? 
 

Solution:  

 

Use place value to construct numbers.  

 

The number 259 is made up of 2 hundreds, 

which is equal to 200 ones; 5 tens equal to 

50 ones, and 9 ones. 

	

	
 

So the total value of 5 in the number 259, is 

5 tens, which is equal to 50.  
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Question:  

6) Now, use the worked example to solve this question. What is the total value of the digit 4 in the number 

843?  

	
Question:  

7) I have 1 hundreds and 6 tens, what number am I? 

	
Solution:  

 

Use place value to construct numbers.  

 

1 hundreds means that there are 1 lots of 100, 

which is equal to 100 ones. In addition 6 tens means 

that there are 60 ones. 

	

	
 

So a number that has 1 hundreds and 6 tens, is made 

up 100 + 60, which is 160  

	

	
	

 

Question:  

8) Now, use the worked example to solve this question. I have 8 tens and 2 ones, what number am I? 	

Acquisition phase – MAB  
	
Background:  
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We use the bigger blocks for the 

digits on the left and the smaller 

blocks for the digits on the right. 

Notice that a long block is made 

up of ten small blocks joined 

together.  

	
	

	
	
Question: 

1) Please write the following using expanded notation:  

36 =    
Solution:  

 

Use place value to construct numbers.  

 

The number 36 is made up of 3 tens which is 30 

ones. In addition there are 6 ones. 

 

	
 

So to expand 36, we will write:  

36 = 30 + 6 

	

	

Question:  



	 195 

2) Now, use the worked example to solve this question, by writing the following using expanded notation:  

 

47 =    
	
Question:  

3) Create a three-digit number that has a hundreds face value of 1, tens face value of 7, and a ones 

face value of 5. 

	
Solution:  

 

Use place value to construct numbers.  

 

We need a number that has a hundreds face 

value of 1, which is 100 ones. In addition 

we need a tens face value of 7, which is 70 

ones, and a ones face value of 5. 

	

	

	
 

So a number that has a hundreds face value 

of 1, a tens face value of 7, and a ones 

face value of 5, is a number that is made of 

100, 70 and 5, equal to 175.  

 

	

	
	
Question:  

4) Now, use the worked example to solve this question. Create a three-digit number that has a ones face 

value of 9, a tens face value of 4, and a hundreds face value of 2.  

Question:  
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5) What is the total value of the digit 5 in the number 259? 
 

Solution:  

 

Use place value to construct numbers.  

 

The number 259 is made up of 2 hundreds, which 

is equal to 200 ones; 5 tens equal to 50 ones, and 

9 ones. 

	

	
 

So the total value of 5 in the number 259, is 5 

tens, which is equal to 50.  

 

	

 

Question:  

6) Now, use the worked example to solve this question. What is the total value of the digit 4 in the 

number 843?  
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Question:  

7) I have 1 hundreds and 6 tens, what number am I? 

	
Solution:  

 

Use place value to construct numbers.  

 

1 hundreds means that there are 1 lots of 100, 

which is equal to 100 ones. In addition 6 tens means 

that there are 60 ones. 

	

	
 

So a number that has 1 hundreds and 6 tens, is made 

up 100 + 60, which is 160  

	

	

 

Question:  

8) Now, use the worked example to solve this question. I have 8 tens and 2 ones, what number am I? 	

Acquisition phase – no visuals 
	
Question: 

1) Please write the following using expanded notation:  

36 =    
Solution:  

 

Use place value to construct numbers.  

 

The number 36 is made up of 3 tens which is 30 

ones. In addition there are 6 ones. 

 

	

 

So to expand 36, we will write:  

36 = 30 + 6 
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Question:  

2) Now, use the worked example to solve this question, by writing the following using expanded notation:  

 

47 =    
	
Question:  

3) Create a three-digit number that has a hundreds face value of 1, tens face value of 7, and a ones 

face value of 5. 

	
Solution:  

 

Use place value to construct numbers.  

 

We need a number that has a hundreds face value 

of 1, which is 100 ones. In addition we need a 

tens face value of 7, which is 70 ones, and a 

ones face value of 5. 

	

	

 

So a number that has a hundreds face value of 

1, a tens face value of 7, and a ones face value 

of 5, is a number that is made of 100, 70 and 

5, equal to 175.  

 

	

	
Question:  

4) Now, use the worked example to solve this question. Create a three-digit number that has a ones face 

value of 9, a tens face value of 4, and a hundreds face value of 2.  

	
Question:  

5) What is the total value of the digit 5 in the number 259? 
 

Solution:  

 

Use place value to construct numbers.  

 

The number 259 is made up of 2 hundreds, which is 

equal to 200 ones; 5 tens equal to 50 ones, and 9 

ones. 
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So the total value of 5 in the number 259, is 5 

tens, which is equal to 50.  

 

 

Question:  

6) Now, use the worked example to solve this question. What is the total value of the digit 4 in the 

number 843?  

	
Question:  

7) I have 1 hundreds and 6 tens, what number am I? 

	
Solution:  

 

Use place value to construct numbers.  

 

1 hundreds means that there are 1 lots of 100, 

which is equal to 100 ones. In addition 6 tens means 

that there are 60 ones. 

 

	

	

 

So a number that has 1 hundreds and 6 tens, is made 

up 100 + 60, which is 160  

	

	

 

Question:  

8) Now, use the worked example to solve this question. I have 8 tens and 2 ones, what number am I? 	

Post-test  
	

1) Write the following using expanded notation:  

25 =    
 

2) Write the following using expanded notation:  

905 =     
 

3) What is the face value of the digit 5 in the number 25? 
___________________________________ 

 
4) Circle the numbers that have a face value of 6 in the tens.  

106 6 63   66  616  67 
 

5) What is the total value of the digit 9 in the number 39? 
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6) What is the total value of the digit 5 in the number 507? 
 
___________________________________ 

 
7) What number is made up of 300, and 20 and 2?  

 
___________________________________ 

 
8) I have 9 hundreds, and 9 ones, what number am I? 

 
___________________________________	 	
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Appendix C: Experimental materials used in Experiment 3 
	

Pre-test 
 

1) Expand:  

 

25 = ____ +    ____ 

905 = ____ +    ____ +    ____ 

2) State the value of the bold number in 25  
 

_______________________________________________________ 
 

3) Circle the numbers that have 6 in the tens (there can be more than one number!).  

 

106 6 63 66 616 67 

 

4) State the value of the bold number in 939 
 

_______________________________________________________ 
 

5) State the value of the bold number in 507 
 

_______________________________________________________ 
 

6) What number is made up of 300, and 20 and 2?  

 

_______________________________________________________ 
 

7) I have 9 hundreds, and 9 ones, what number am I? 

 

_______________________________________________________ 
 

Acquisition phase – abacus 
	
1) Expand the numbers. The first one has been done for you. 

	
 
36 = 30 + 6 
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47 = ___ + ___ 

 
 

	
2) Guess what the numbers are. The first one has been done for you. 	
	
 

What is a three-digit number that has a Hundreds face value of 1; Tens face value of 7; Ones face value of 5 
	
The number is 175 

	
 

What is a three-digit number that has a Ones face value of 9; Tens face value of 4; Hundreds face value of 2 
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The number is _____________ 

	

	
 

 

3) State the value of the bold number. The first one has been done for you 

	
259 
 

The value of the number 5 is 50   
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175 
 

The value of the number 7 is  ________ 

 

	
4) Guess what the numbers are. The first one has been done for you. 	
	
I have 1 hundreds and 6 tens, what number am I? 

 

I am 160 
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I have 3 hundreds and 7 ones, what number am I? 

	
I am __________________	
	

	
	
	

Acquisition phase – MAB 
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1) Expand the numbers. The first one has been done for you. 

	
 
36 = 30 + 6 

	
	
 
47 = ___ + ___ 
 

 

	
2) Guess what the numbers are. The first one has been done for you. 	
	
 

What is a three-digit number that has a Hundreds face value of 1; Tens face value of 7; Ones face 
value of 5 

	
The number is 175 

 
	



	 207 

 

What is a three-digit number that has a Ones face value of 9; Tens face value of 4; Hundreds face 
value of 2 

 

The number is _____________ 
	

	
	
	
3) State the value of the bold number. The first one has been done for you 

	
259 
 

The value of the number 5 is 50   
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342 
 

The value of the number 4 is  ________ 
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4) Guess what the numbers are. The first one has been done for you. 	
	
I have 1 hundreds and 6 tens, what number am I? 

 

I am 160 

	
	
 

I have 3 hundreds and 7 ones, what number am I? 

	
I am __________________	
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Acquisition phase – no visuals 
	
1) Expand the numbers. The first one has been done for you. 

	
 
36 = 30 + 6 
	
 
47 = ___ + ___ 
 

 

	
2) Guess what the numbers are. The first one has been done for you. 	
	
 

What is a three-digit number that has a Hundreds face value of 1; Tens face value of 7; Ones face 
value of 5 

	
The number is 175 
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What is a three-digit number that has a Ones face value of 9; Tens face value of 4; Hundreds face 
value of 2 

 

The number is _____________ 
	
	
	
3) State the value of the bold number. The first one has been done for you 

	
259 
 

The value of the number 5 is 50   
	
	
 

342 
 

The value of the number 4 is  ________ 
 

 

4) Guess what the numbers are. The first one has been done for you. 	
	
I have 1 hundreds and 6 tens, what number am I? 

 

I am 160 
	
 

I have 3 hundreds and 7 ones, what number am I? 

	
I am __________________	
	
	
	

Post-test 
	

1) Expand:  

 

72 = ____ +    ____ 

380 = ____ +    ____ +    ____ 

2) State the value of the bold number in 37  
 

_______________________________________________________ 
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3) Circle the numbers that have 3 in the ones (there can be more than one number!).  

 

136 36 63 273 532 13 

 

4) State the value of the bold number in 249 
 

_______________________________________________________ 
 

5) State the value of the bold number in 932 
 

_______________________________________________________ 
 

6) What number is made up of 500, and 60 and 7?  

 

_______________________________________________________ 
 

7) I have 3 hundreds, and 4 ones, what number am I? 

 

_______________________________________________________ 
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Appendix D: Experimental materials used in Experiment 4 
	

Pre-test 
	

9)  Circle the numbers that have 6 in the tens (there can be more than one number!).  

 

106 6 63 66 616 67 

 

10) Circle the numbers that have 1 in the hundreds (there can be more than one number!).  
 

106 1016 16 2166    616    61 

 
11) What number is made up of 300, and 20 and 2?  

 

_______________________________________________________ 
 

12) I have 9 hundreds, and 9 ones, what number am I? 
 

_______________________________________________________ 
 

13) Expand:  
 

25 = ____ tens +    ____ ones 

14) Expand:  
 

931 = ____ +    ____ +    ____	

Acquisition phase – MAB 
	

1) What number am I? I have a 5 in the ones column, the number of tens is 7 and there are 2 in the 

hundreds column. 

 

I have 2 in the hundreds, 
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7 in the tens,  

 

 

5 in the ones 

 
 

So I am 275 

 

2) Expand the number 95:  

 

95 = 9 tens  

 

+ 5 ones  

 

 

95 = 90 + 5 

 

 

3) Expand the number 342:  

 

342 = 3 hundreds  

 

+ 4 tens + 2 ones  
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342 = 300 + 40 + 2 

 

  

4) What number am I? I have a 3 in the ones column. The number in the tens column is 4. I have 1 

hundreds. 

 

I have 1 in the hundreds, 

 

4 in the tens  

 

 

3 in the ones 

 
 

So I am 143 

 
5) What number am I? I have a 2 in the tens column, 7 in the ones column and I have 5 in my hundreds 

column.  

 

I have 5 in the hundreds, 

 

2 in the tens  
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7 in the ones 

 
 

So I am 527 

 

6) Expand the number 263:  

 

263 = 2 hundreds  

 

+ 6 tens + 3 ones  

 

263 = 200 + 60 + 3 

 

Acquisition phase – no visuals 
 

1) What number am I? I have a 5 in the ones column, the number of tens is 7 and there are 2 in the 

hundreds column. 

 

I have 2 in the hundreds,  

7 in the tens  

5 in the ones 

So I am 275 

 

2) Expand the number 95:  
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95 has 9 tens and 5 ones, so  

95 = 9 tens +   5 ones 

3) Expand the number 342:  

 

342 has 3 hundreds, 4 tens and 2 ones, so  

342 = 3 hundreds + 4 tens + 2 ones 

4) What number am I? I have a 3 in the ones column. The number in the tens column is 4. I have 1 

hundreds. 

 

I have 1 in the hundreds 

4 in the tens 

3 in the ones 

So I am 143 

 
5) What number am I? I have a 2 in the tens column, 7 in the ones column and I have 5 in my hundreds 

column.  

 

I have 5 in the hundreds, 

2 in the tens 

7 in the ones 

So I am 527 

6) Expand the number 263:  

 

263 has 2 hundreds, or 200, 6 tens or 60 and 3 ones or 3, so 

263 = 200 + 60 + 3	

Post-test 
	

1) What number am I? I have a 9 in the ones column, the number of tens is 2 and there are 8 in the 

hundreds column. 

 

I am __________________ 

 

2) What number am I? I have a 7 in the ones column. The number in the tens column is 2. I have 2 

hundreds. 

 

I am __________________ 
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3) What number am I? I have a 1 in the ones column. My hundreds column has 6 and I have 3 in my tens 

column.  

 

I am __________________ 

 

4) What number am I? I have a 4 in my hundreds column, an 8 in my tens column and my ones column has 

2.  

 

I am __________________ 

 

5) Expand:  

 

34 = _______ + _______ 

6) Expand:  

 

416 = _______ + _______ + _______ 

7) Expand:  

 

999 = _______ + _______ + _______ 

Post-test transfer 
	

1) Expand:  

 

17 = _______ tens + _______ ones  

2) Expand:  

819 = _______ hundreds + _______ tens + _______ ones 

3) Expand:  

1252 = _______ + _______ + _______ + _______ 

4) Expand: 

3124 = _______ + _______ + _______ + _______ 

5) Circle the numbers that have 2 in the hundreds (there can be more than one number!).  

 
1226 142 23 219 2052 202 
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6) What number am I? I have a 7 in my hundreds column. My tens column has 3 less than the hundreds. 

And my ones column has 2 less than the hundreds column.  

 

I am __________________ 

 

Delayed test 
	

1) What number am I? I have a 4 in my hundreds column, an 8 in my tens column and my ones column has 

2.  

 

I am __________________ 

 

2) Expand:  

 

417 = _______ hundreds + _______ tens + _______ ones  

3) Expand:  

904 = _______ hundreds + _______ tens + _______ ones 

4) Expand:  

3419 = _______ + _______ + _______ + _______ 

5) Expand: 

9999 = _______ + _______ + _______ + _______ 

6) Circle the numbers that have 6 in the hundreds (there can be more than one number!).  

 
6266 602 1623 6006 4056 6606 

 
7) What number am I? I have an 8 in my hundreds column. My tens column has 2 less than the hundreds. 

And my ones column has 4 less than the hundreds column.  

 

I am __________________ 
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Appendix E: Experimental materials used in Experiment 5 
	

Pre-test 
1)  Circle the numbers that have 6 in the tens (there can be more than one number!).  

 

106  1 663    616  67 

 

2) Circle the numbers that have 1 in the hundreds (there can be more than one number!).  

 

1 016  2 166  611   161 

 
3) Circle the numbers that have 7 in the thousands (there can be more than one number!).  

 

7 316  71 777  1 732  17 356 

 

4) What number is made up of 3 000, and 10 and 2?  

 

_______________________________________________________ 
 

5) I have 9 thousands, and 9 ones, what number am I? 

 

_______________________________________________________ 
 

6) Arrange the following numbers in order from largest to smallest: 

1 346, 942, 1 326, 924, 10 002, 9 009 

 

_______________________________________________________ 
 

_______________________________________________________ 
 

7) Arrange the following numbers in order from smallest to largest: 

10 987, 10 978, 1 724, 724, 6 002, 6 020 

 

_______________________________________________________ 
 

_______________________________________________________ 

 

Acquisition phase – MAB 
	

1) Expand the number 4 307:  

4 307 has  
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4 thousands (4 000)  

 

3 hundreds (300) 

 

0 tens (0)  

and 7 ones (7) 

 

This means: 4 307 = 4 000 + 300 + 0 + 7 

 

2) Now solve a similar problem 

Expand the number 8 031: 

 

3) Expand the number 3 584  

3 584 has  

3 thousands (3 000)  
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5 hundreds (500) 

 

8 tens (80) 

 

and 4 ones (4) 

 

This means: 3 584 = 3 000 + 500 + 80 + 4 

 

4) Now solve a similar problem 

Expand the number 9 929: 

 

5) Expand the number 9 075 

9 075 has  
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9 thousands (9 000)  

 

0 hundreds (0) 

7 tens (70) 

 

and 5 ones (5) 

  

This means: 9 075 = 9 000 + 0 + 70 + 5 

 

6) Now solve a similar problem 

Expand the number 7 380: 
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7) Expand the number 6 444 

6 444 has  

6 thousands (6 000)  

 

4 hundreds (400) 

 

4 tens (40) 

 

and 4 ones (4) 

 

This means: 6 444 = 6 000 + 400 + 40 + 4 
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8) Now solve a similar problem 

Expand the number 3 888: 

Acquisition phase – no visuals 
	

1) Expand the number 4 307:  

 

4 307 has  

4 thousands (4 000) 

3 hundreds (300) 

0 tens (0)  

and 7 ones (7)  

This means: 4 307 = 4 000 + 300 + 0 + 7 

2) Now solve a similar problem 

Expand the number 8 031:  

 

3) Expand the number 3 584 

 

3 584 has  

3 thousands (3 000) 

5 hundreds (500) 

8 tens (80) 

and 4 ones (4)  

This means: 3 584 = 3 000 + 500 + 80 + 4 

4) Now solve a similar problem 

Expand the number 9 929:  

 

5) Expand the number 9 075 

 

9 075 has  

9 thousands (9 000) 
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0 hundreds (0) 

7 tens (70)  

and 5 ones (5)  

This means: 9 075 = 9 000 + 0 + 70 + 5 

6) Now solve a similar problem 

Expand the number 7 380: 

 

7) Expand the number 6 444 

 

6 444 has  

6 thousands (6 000) 

4 hundreds (400) 

4 tens (40)  

and 4 ones (4)  

This means: 6 444 = 6 000 + 400 + 40 + 4 

8) Now solve a similar problem 

Expand the number 3 888: 

 

Post-test 
	

1) Expand:  

 

934 = _______ + _______ + _______ 

2) Expand:  

 

1 416 = _______ + _______ + _______ + _______ 

3) Expand:  

 

1 999 = _______ + _______ + _______ + _______ 

4) Expand:  

 

9 499 = _______ + _______ + _______ + _______ 
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5) Expand:  

 

7 351 = _______ + _______ + _______ + _______ 

6) Expand:  

 

4 099 = _______ + _______ + _______ + _______ 

7) Expand:  

 

5 930 = _______ + _______ + _______ + _______ 

8) Expand:  

 

2 024 = _______ + _______ + _______ + _______ 

9) Expand:  

 

6 004 = _______ + _______ + _______ + _______ 

10) Expand:  
 

9 999 = _______ + _______ + _______ + _______ 

Post-test transfer 
	

1) Expand:  

5 819 = _______ thousands + _______ hundreds + _______ tens + _______ ones 

2) Expand: 

13 124 = _______ + _______ + _______ + _______ + _______ 

3) 9 000 + 600 + 0 + 4 = ___________ 

 

4) 4 + 500 + 80 + 3 000 = ___________ 

 

5) 700 + 0 + 9 + 7 000 = ___________ 

 

6) A number has 13 tens and 6 ones. What is the number? 

_______________________________________ 

 

7) 5 thousands + 32 tens + 8 ones = ______________ 
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8) 11 thousands + 8 hundreds + 37 ones = ______________ 

 

9) Fill in the missing number:  

 

2088 + ______ = 2188 

 

10) Fill in the missing number:  
 

6 109 + ______ = 6 149 

	

Delayed test 
	

1) Expand:  

 

692 = _______ + _______ + _______ 

2) Expand:  

 

4 111 = _______ + _______ + _______ + _______ 

3) Expand:  

 

7 916 = _______ + _______ + _______ + _______ 

4) Expand:  

 

2 008 = _______ + _______ + _______ + _______ 

5) 6 000 + 600 + 60 + 6 = __________ 

 

6) 9 + 600 + 70 + 2 000 = __________ 

 

7) A number has 18 tens and 7 ones. What is the number? ____________________ 

 

8) 32 hundreds + 9 tens + 6 ones = __________ 

 

9) Fill in the missing number: 4 508 + __________ = 4 538 

 

10) 3 thousands + 21 tens + 4 ones = __________ 
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