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A Category Theory Approach to Cognitive Development1 
 

GRAEME S. HALFORD AND WILLIAM H. WILSON 
University of Queensland 

 
The category theory concept of a commutative diagram is used to construct a model of the way in which 
symbolic processes are applied to problem solving. The model provides for a relationship between symbolic 
processes and the problem which depends on structural isomorphism and consistency, but is independent of 
similarity between symbol elements and problem elements. It is then shown that several different levels of 
thought can be distinguished within the basic model. More information is needed to assign symbolic 
processes to a problem in a consistent way with higher-level thought processes than with lower-level 
processes. These information-processing requirements permit the approximate age of mastery of each level 
to be predicted, thereby offering an alternate theory of cognitive developmental stages. Two experiments 
designed to test the theory are reported. 

 
The purpose of this paper is to offer a new approach to the definition and explanation of 

cognitive developmental stages. Four major stages or age groupings of cognitive development 
have been distinguished empirically, detailed descriptions of which are available in many 
general works (e.g., Flavell, 1977). The first occupies the period from birth to 1-2 years of age 
and has been called the sensorimotor stage by Piaget (e.g., 1950, 1953), the enactive stage by 
Bruner (1964), or a stage without the second signal system (Luria, 1961). This is basically a 
stage in which behaviour is not regulated by symbolic or representational processes. 

The second main age grouping occupies approximately the period from 2 to 5 years, and 
has been called the preoperational period by Piaget (1950), the iconic period by Bruner 
(1964), a period without the “analytic system of elective significative connections which are 
produced by speech” (Luria, 1961), and an associative stage (White, 1965). 

The period from about 5 to 10 years has been characterized by Piaget (1950) as concrete 
operational, as symbolic (Bruner, 1964), and as cognitive (White, 1965). The final period 
beginning somewhere between the ages of 11 and 15 years depending on which of a variety of 
criteria are adopted, has been called the formal operational stage by Piaget (e.g., Inhelder & 
Piaget, 1958), and does not appear to have been redefined by any other theorist. 

Despite the popularity of the stage concept among developmental theorists, the large data 
base which has accumulated in the last two decades has cast doubt on all existing stage 
theories, and even on the stage concept itself (e.g., Brainerd, 1977; Flavell, 1977; Kessen, 
1962). An equally important problem is that we have no adequate theoretical basis for stages, 
with the result that we have difficulty accounting for even those stage-like phenomena for 
which we do have good evidence. The most elaborate stage theory, that of Piaget, has been 
shown to have serious flaws (Lunzer, 1965; Osherson, 1974; Sheppard, 1978). So long as we 
have no adequate, general theory of cognitive developmental stages, we cannot predict what 
the characteristics of each stage should be, with the result that proper empirical tests are 
impossible. Since there is good evidence that discontinuities in cognitive development do 
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occur (e.g., White, 1965), there are grounds for trying to develop a new theoretical basis for 
stages. 

According to the approach adopted in this paper, the reason why stages exist relates to the 
nature of the symbolic or representational function in cognitive processes. The essence of the 
argument is that, since symbolic representations must be general or transferable from one 
situation to another, symbols must represent different objects or events in the environment on 
different occasions. When the problem of symbolic representation is examined, it turns out 
that valid representations are those which are structurally isomorphic to the particular segment 
of the environment to which they are applied. The achievement of isomorphic representations 
imposes certain information-processing demands on the organism, and these demands are 
greater with more complex representations. Cognitive developmental stages are postulated to 
occur because younger children lack the information-processing capacity to achieve 
isomorphic representations in the case of more complex processes. In order to develop this 
argument then we will first consider the nature of symbolic representation in cognition. 

 
 

SYMBOLIC REPRESENTATION 
 

One function of cognitive processes is to provide a symbolic representation of the 
environment as a guide to the behaviour of the organism. Representations which are used in 
thought must be general so that they can be applied to situations not previously experienced. 
Generality in this sense is defined operationally by transfer, so representations are general to 
the extent that they can be transferred from one situation to another. 

These considerations leave us with the problem of finding a principle which governs the 
selection of symbols to represent objects and events in the environment. Purely “pictorial” 
representations, in which there is a topographical correspondence between representation and 
referent, are too rigid and too limited in generality to serve the functions of thought. Any 
principle by which the same symbol always represented the same feature of the environment 
would also be inadequate, because the requirement that symbols must be transferable would 
not be met. Therefore we need a principle which permits any symbol to represent different 
objects or events in the environment on different occasions, but which does not rely on purely 
arbitrary assignment of symbols. We will therefore examine the literature to see what 
solutions have been proposed for this problem. 

Newell and Simon (1972) have considered the representation problem and have proposed 
that symbolic processes have two main constituents: symbol tokens, which are essentially 
what we will call symbol elements, and symbol relations. Symbol structures are built up out 
of symbol tokens and relations. The problem space within which the problem-solving process 
operates is defined by the person's internal representation of the problem. Accordingly, the 
representation selected must influence the problem-solving process, and we can determine 
what representation a person is using for a task because of the effects that it has on the actual 
solution processes. Newell and Simon have developed a theory of problem-solving processes 
which includes representations which meet the requirements we have outlined. However they 
do not appear to have defined a set of principles governing the operation of representations 
which we can use as a general criterion of representational adequacy. 

One step toward the formulation of a set of principles governing representations has 
however been taken by Shepard, Kilpatrick, and Cunningham (1975). These authors used 
multidimensional scaling of similarity judgments in order to investigate the internal 
representation of numbers. This work was guided by the principle of second-order 
isomorphism, enunciated by Shepard and Chipman (1970), according to which the important 
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aspect of the representational processes consists of relations between representations, rather 
than the representations themselves. In effect, there should be a parallelism between relations 
among representations and relations among the corresponding external objects. 

Both this approach and that of Newell and Simon (1972) emphasize structural 
correspondence between representations and the corresponding external objects and events. 
This constitutes considerable progress toward a theory of representations, but still does not 
provide us with a succinct and generally applicable set of principles governing 
representations. It turns out however that such a set of principles is provided within the 
context of measurement theory (Coombs, Dawes, & Tversky, 1970; Suppes & Zinnes, 1963), 
so we will examine that formulation next. 

The problem of representation in measurement theory is similar to the representation 
problem in cognition insofar as both are concerned with providing a valid model of the world, 
or of some segment of it which happens to be important for a particular purpose. In both cases 
a model of the world is valid if it reflects the structure of the world. 

In measurement theory the structure of any aspect of the world is represented by a 
relational system, defined as <A,R1,..., Rn> where A is a (non-empty) set and R1,..., Rn are 
relations defined on the elements of A (Coombs et al., 1970, p. 10). 

The concept of a relational system is a general one and is quite applicable to cognitive 
psychology. In fact a theory of cognitive representations already exists which provides a 
clear-cut example of a relational system. Trabasso (1975) has proposed than n-term series 
(transitivity) problems are represented internally by an ordered array. For example, if 
participants are given five sticks varying in length, and are then told that a > b, b > c, c > d, d 
> e, they encode this information in the form of an image of the five sticks arranged in order 
from longest to the shortest. Such an ordered set is a simple case of a relational system. The 
set A consists of the sticks a, b, c, d, e and the relations R1,..., Rn consist of the relations 
“larger than,” “smaller than” defined on the sticks. More generally, we can think of virtually 
any aspect of the environment as a relational system. For instance, there are social systems 
consisting of organisms and their interrelations, and there are physical systems consisting of 
objects and their interrelations. 

A particular aspect of the environment is represented if there exists a system which 
corresponds to it. Representations have been defined formally by Coombs et al. (1970) as 
follows: 

 
a system α = <A, R> is said to be represented by another system β = <B, S> if there exists a function 
f from A into B (which assigns, to each x in A, a unique f(x) in B) such that for all x, y in A 
 

x R y implies f(x) S f(y). 
 
Thus α is represented by β if there exists a correspondence f that maps A into B in such a way that if 
the relation R holds between some x and y in A then the relation S holds between f(x) and f(y) in B, 
where f(x) and f(y) are the images of x and y, respectively. (Coombs et al., 1970, p. 11, original 
authors' italics) 

 
This definition is useful to our argument insofar as it specifies certain basic criteria which 

must be met before one system can be regarded as representing another. Later we will 
incorporate these criteria in another definition of representations which is more appropriate 
for use in cognitive psychology. 

As applied to cognition, this definition of representation would imply that the symbolic 
processes of the organism must comprise systems which are in structural correspondence to 
the environment systems which they represent. The definition is quite general, and can apply 
equally to imaginal and verbal representations. Notice also that representations which 
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conform to this definition need not consist of elements which resemble the corresponding 
environmental elements in any way. Furthermore, any element of a representation may be 
mapped into a number of different elements on different occasions, provided that the criterion 
of structural correspondence between the representational system and the environment system 
is observed on every occasion. 

This definition appears then to have the main properties which we require in a theory of 
cognitive representations. In the next two sections we want to develop the argument along 
lines which are essentially parallel to, but eventually go beyond, those in this section. By so 
doing we will provide a simple and readily applicable criterion of representational adequacy 
of cognitive processes. We can do this by developing a theory of cognitive representations 
based on certain concepts from category theory, to which we will now turn. 

 
CATEGORIES 

 
Since category theory (Arbib & Manes, 1975; Maclane, 1972) does not appear to have been 

used in psychology except for some discussions by Piaget (1970) and Piaget, Grize, 
Szeminska, and Vinh-Bang (1968) we will begin with the definition of a category. 

Informally, a category is a collection of “objects” a, b, c, ..., and “arrows” a → b, . . . , with 
rules for combining the arrows. If there is more than one arrow a → b, these are distinguished 
by labels f1: a → b, f2: a → b, etc. Arrows are also known as morphisms. 

Formally a category C consists of: 
(i) a set Ob C of objects, 
(ii) for each ordered pair (a,b) of objects, a set ArrC(a,b) of arrows from a to b, and 
(iii) a composition operation: if f:a→b and g:b→c then there must exist an arrow g°f:a→c. 
Further 
(iv) there must be, for each object a an identity arrow Ia:a→a, such that if  f:a→b, then 

Ib°f = f°Ia = f:a→b, and 
(v) if  f:a→b,  g:b→c,  h:c→d, then 
 h ° (g ° f) = (h ° g) ° f : a→d (1) 

is required to hold (associativity property). 
The general thrust of category theory is to describe concepts in terms of arrows rather than 

in terms of objects. This makes it suitable for modelling concepts which are invariant across 
several situations, because the set of arrows may remain constant while the objects vary, as 
illustrated in Fig. 1. In this case the concept of transitivity is modelled by a set of three arrows 
representing the relations aRb, Mc, and aRc. The set of arrows can be applied to any 
transitivity problem, and two examples of such application are shown. The person's symbolic 
representation of transitivity is modelled by the set of arrows, which can be applied to any 
problem with which it is structurally isomorphic. When the representation is transferred from 
one problem to another, the set of arrows remains constant, but the problem elements may 
change completely. 

A concept from category theory which is of major importance to the argument of this paper 
is that of the commutative diagram. This is best described by means of an example, as shown 
in Fig. 2. This diagram consists of objects and arrows connecting objects to at least some 
other objects. We can form the composites v ° u: A→D and g ° f: A→D. If these are equal, we 
say the diagram is commutative. Less formally, we might say that the paths (A→C, C→D) 
and (A→B, B→D) must yield the same result. 
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Application 1

Application 2

Patti

b

a c

Jane Ruth

Symbolic

level

Environment 

(problem) level

John

b

a c

Mark Stanley

Symbolic

level

Environment 

(problem) level

smarter smarter

taller taller

(?)

(?)
 

 
FIGURE 1. The concept of transitivity defined as a set of three arrows, and applied to two problems in turn. 

 
The convention used here is that a labelled arrow represents a defined set of mappings or 

assignments. In principle any set of mappings can be represented, but an example would be a 
mathematical operation such as addition. Addition of (say) integers is defined by a set of 
mappings of the form {(a,b → c)} where all a,b,c, are members of the set of integers; e.g., 
{(4,5 → 9)}. 

 

A B

C D

f

u

v

g

 
FIGURE  2. Commutativity 

 
A single labelled arrow is employed to represent all the mappings in the set: a, b →+ c. The 

label + specifies which set of mappings is intended. 
Any rule, algorithm, or system can be written as a set of mappings. Thus the statement 

above is equivalent to asserting that an addition algorithm is a procedure for assigning ordered 
pairs of numbers to other numbers. The characteristics of the algorithm are defined by the 
mappings; e.g., since every ordered pair of numbers is assigned to one and only one number 
in the specified set of mappings the algorithm is one which provides a unique result to each 
addition problem. 

The composition of arrows represents the performance of one operation followed by 
another. 

It is important that the definition of commutativity should not be confused with its meaning 
in mathematical operations, where for instance a + b = b + a but a – b ≠ b – a. As the 
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definition in Fig. 2 shows, the meaning of commutativity in category theory is different from 
the usual meaning. 

 
COGNITIVE SYSTEMS 

 
Now we will use the category theory concepts just outlined to construct a model of 

cognitive processes. Since our theory is concerned with how symbolic processes are matched 
to the environment in order to solve problems, we have to define symbolic processes, 
environment processes, and the relations between the two. 

Symbolic processes are defined as symbol systems, where a symbol system is any set of 
internal symbolic processes which are organized in some way. 

We define a set S of symbols s1,..., sn. We now define a symbol system as:2 
 S×...×S → S (2) 
 
This definition maps the Cartesian product S×...×S into S. It is equivalent to asserting that 

there is a process within the organism by which symbolic processes generate other symbolic 
processes. The arrow f represents all mappings which correspond to such generative 
processes. Any generated symbol S may be produced by varying numbers of generating 
symbols. Thus in an expression such as S × S →S each generated symbol S is produced by a 
combination of two other symbols S × S. 

An example of a symbol system would be a person's representation of the three-term series 
or transitivity rule. This rule implies that given aRb and bRc the person can generate a 
symbolic expression aRc. In our notation this rule is simply written aRb,  bRc → aRc. 

 
In order to model environment processes, we first define a set E of environmental elements 

e1,..., eN. The process by which environmental events generate other environmental events can 
then be written as: 

 f: E×...× E→ E 
 f (e1,..., eN) = d (where d∈E) (3) 
 
This expression specifies an environment system, i.e., any organized set of events in the 

environment. 
S!...!S S

E

aa!...!a

E!...!E  
FIGURE  3: A Symbol System 

 
We now define a cognitive system which is composed of a symbol system, an environment 

system, and the relations between the two, as shown in Fig. 3. The vertical arrows represent 
the application of the symbolic processes to the environment. The environment is included 
because insofar as environmental processes influence cognitive processes, they are part of the 
cognitive system. The diagram also represents varying orders of systems. That is, we could 

                                                             
2 Formally, a system should be defined to be the ordered pair (S, f), where f is as in Eq. (2), but the present 

notation is clearer in this context, and is always translatable into the formal notation. 
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have a system S→S, S×S→S, S×S×S→S etc. Each order of system belongs to a different 
category. 

We can now define the category of all nth order systems: 
Let us define an nth order system to be a set A together with a function: 
 

 f: A×...× A→ A (4) 
 

Such systems form the objects of a category C whose morphisms are given as follows: a 
morphism K: (A, f) → (B, g) is a function K:A → B such that the diagram in Fig. 4 commutes: 
It can easily be verified that this construction satisfies the rules (i) to (v) for a category. We 
can express the cognitive system model in Fig. 3 in these terms, as shown in Fig. 5. Therefore, 
the set of all cognitive system models also satisfies the rules for a category. 

 
A!...!A A

B

KK!...!K

B!...!B  
FIGURE 4 

 
The mathematical interpretation of consistency in a cognitive system can be defined as 

follows. In order for an internal representation or symbol system (S,f) of our environment 
(E,g) to be consistent, we want it to be true that the processes in the symbol system exactly 
reflect the corresponding process in the environment system. This is interpreted 
mathematically by saying that there is an isomorphism of systems i:(S,f) → (E,g), that is, that 
there is a bijective function i:S→E such that the diagram in Figure 6 commutes. Thus 
consistency is expressed by a commutative diagram. (A function i is bijective if it has an 
inverse function i–1 such that if a is mapped into b by i then b is mapped into a by i–1. In none 
of the applications which follow however does the inverse function i–1 have any implications 
which differ from those of i, and the inverse is mentioned here merely to complete the 
mathematical definition.) 

 

S!...!S S

E

ii!...!i

E!...!E

f

g

i: (S,f) " (E,g)  
FIGURE 5 

 
Essentially then a commutative diagram defines an appropriate application of symbolic 

processes to a particular segment of the environment. The commutative diagram provides a 
simple and fairly direct test of representational adequacy of cognitive processes, as a number 
of examples to be given later will illustrate. 

The discussion referring to Eq. (4) and to Figs. 4-6 provides the necessary mathematical 
basis of our argument. Now let us consider what Fig. 3 means in psychological terms. The 
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vertical arrows represent all the ways in which a particular symbol system may be applied to 
one or more environments. That is, the vertical arrows, like the other arrows, represent sets of 
mappings, and not individual mappings. This implies that a symbol element need not 
represent any one environment element. Thus symbolic processes do not represent specific 
features of the environment, but the symbols are general or transferable from one set of 
environment elements to another. 

 

S!...!S S

E

ii!...!i

E!...!E

f

g  
FIGURE 6 

 
The applications of symbols to environment may vary from one situation to another, and 

there may even be different applications within one situation which will conform to the 
commutative diagram, but all mappings must be invariant within any one application. 

In order to provide an example of a cognitive system diagram for a specific task, the 
commutative diagram for transitivity is shown in Fig. 7. The arrow T specifies a set of 
mappings in which two relations, aRb and bRc, are mapped into the third relation aRc. The 
actual representation used could take a number of forms, but all of them could be expressed 
by the set of mappings defined in Fig. 7. For instance, the triangular set of arrows in Fig. 1 
can be expressed in this notation, as can the ordered array representation proposed by 
Trabasso (1975) for n-term series representations as mentioned earlier. Thus the commutative 
diagram model specifies a class of systems, and systems within a specific class may show 
some variation in the nature of the elements which they comprise. How ever, all systems 
belonging to a particular class would be expected to share certain common properties not 
shared with systems of different classes, and we will explore this aspect of the theory in the 
next two sections. 

 

S      !S S

E

aa!a

E     !E

T

T

aRb bRc aRc

aRb bRc aRc  
FIGURE 7 

 
ALGORITHMS, MAPPINGS, AND CONSISTENCY 

 
For a cognitive system to be commutative, the symbol system must be isomorphic to the 

environment system. This means that all mappings of symbol elements into environment 
elements must be invariant throughout the system. A consistency check must be made in order 
to insure this; i.e., a check must be made to ensure that each symbol element is mapped into 
one and only one environment element and vice versa. 
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A question which is of importance for the argument which follows concerns the number of 
elements which must be checked to insure consistency. Because of the constraints which exist 
between elements of a system, it is not necessary to check every element. 

For illustrative purposes, let us consider the number of elements which is needed to insure 
that the cognitive system for transitivity is commutative. The symbol system and environment 
system each have three elements, a, b, c, with relations defined on them. If we examine every 
case, it turns out that if a and b are mapped correctly, then c must be mapped correctly also. 
Therefore the consistency check in this case needs to be based on two and only two elements. 

Determinations of this kind can be made on a mathematical basis. For instance the outcome 
of the argument above could have been predicted simply on the basis that transitivity is a 
partial binary operation, and a binary operation is a system the elements of which are defined 
in pairs. Therefore a consistency check must be applied to pairs of elements and only to pairs. 

The utility of this whole approach is that it permits us to construct arguments which are 
valid for classes of systems. Our convention of representing rules and algorithms by sets of 
mappings means that we can sort processes into equivalence classes on the basis of the form 
of mapping which is needed to express them. We can then construct arguments which are 
valid for all the processes in a particular class. In the example given in Fig. 7 we found that 
transitivity requires two elements to be applied for a consistency check to be carried out. 
Transitivity is one of the class of systems called binary operations, or more generally still, 
bivariate functions, and the fact that elements have to be interpreted (or applied) in pairs is 
true for all systems in that class. This fact in turn has implications psychologically for the 
information-processing load imposed on the performer. 

Our next step will be to define several classes or levels of systems based on different forms 
of mappings. In effect, this defines a particular dimension of system complexity which we 
propose is related to cognitive developmental stages. 

 
LEVELS OF COGNITIVE SYSTEM 

 
We will define three levels of cognitive system, which differ in terms of the number of 

elements needed to define the system. In a level 1 system elements are defined singly; S → S 
or E → E. In level 2 systems elements are defined in pairs, S×S → S or E×E→ E while at 
level 3 elements are defined in sets of three; S×S×S → S or E×E×E → E. Each level 
corresponds to a family of mathematical systems and also to a family of psychological tasks. 
We will consider each level in turn. 

A level 1 cognitive system has a commutative diagram with the form shown in Fig. 8. This 
level of cognitive system comprises a family of mathematical concepts all of which are 
defined in terms of ordered pairs, and which includes binary relations, functions, and unary 
operators. We will define each of these in turn. 

A binary relation R on set A is a subset R of the set A × A of ordered pairs of elements of A. 
For example, if A = {1, 2, 3, 4} and R is the relation “>” or “is greater than” then > = {(4,3), 
(4,2), (4,1), (3,2), (3,1), (2, 1)}. We say a1 R a2 if (a1, a2) ∈R. Alternatively, a binary relation 
R on a set A can be thought of as a function ρ:A → ℘(A) where ℘ (A) is the power set of A. 
(The power set of the set A consists of all possible subsets of A, including the empty set and A 
itself.) Thus ρ(4) = {3,2,1}, ρ(3) = {2, l}, etc. This definition is more convenient for some of 
the derivations which follow. 

A function from a set A to a set B is a set f of ordered pairs (a, b) (where a∈A, b∈B) such 
that for each element a of A there is precisely one b∈B such that (a,b) ∈f. It is usual to think 
of a function f from A to B as a “rule” or “machine” which associates with each a∈A an 
“output” b∈B. 
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A unary operator u on a set A is a function u:.A → A. For example the unary operator of 
negation on the set of integers: u(m) = –m. This example should be distinguished from the 
binary operation of subtracting one number from another. 

A unary operator is a special type of function; a function in which each element of a set is 
mapped into a unique element of the same set. In effect, a function from a set A to a set B 
becomes a unary operator if sets A and B are identical. 

 
S S

EE  
FIGURE 8 

 
A unary operator and a binary relation on a set are related in that both consist of mappings 

from elements of the set to other elements of the same set. The difference is that these 
mappings are unique in the case of a unary operator, but not in the case of a binary relation. A 
function differs from both a unary operator and a binary relation in that elements of one set 
are mapped into elements of a second set, where the two sets may or may not be identical. 

Binary relations, functions, and unary operators share a common level of complexity in that 
all are defined as sets of ordered pairs. Therefore we have called systems of this type level 1 
and they may be defined in terms of the concepts of category theory in the following way. 

Let s, u denote a system which a person is using to predict or understand environment E 
whose structure includes the unary operator U:E → E. The correspondence between the 
objects of the system and those of the environment will be denoted by i for “interpretation” in 
the mathematical sense, and corresponds to what psychologists would usually call 
“application” or “representation.” The person's interpretation or representation of the 
environment is consistent if the diagram shown in Fig. 9 is commutative. 

 
S S

EE

U

U

i

i

 
FIGURE 9 

 
A similar diagram describes consistency for a cognitive system to represent a function. Let 

f: S1 → S2 be a symbol system representing an environment involving a function g, and let 
i1:S1 → E1 and i2:S2 → E2 be the interpretations or correspondence between the symbol and the 
environment. The person has consistently cognized this environment if the diagram shown in 
Fig. 10 is commutative. 

A person's cognitive system to represent an environment whose structure corresponds to a 
binary relation can be expressed by defining a function from a set A to the power set of A. Let 

 
fρ,s: As  → ℘(A)s  

be the person's cognitive system to represent environment 
 

fρ,e: Ae  → ℘ (A)e 
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then the person's cognition of this environment is consistent if the diagram in Fig. 11 is 
commutative. 

 
S S

EE

f

g

i i

1 2

1 2

1 2

 
FIGURE 10 

 
In effect all symbol systems at this level may be thought of as some kind of univariate 

function, or as partial univariate functions. (We note that a partial function comprises 
mappings of the same form as a function, the only difference being that in a partial function or 
operation only some mappings are defined, whereas in a function or operation all possible 
mappings are defined.) 

 

A

A

f

f

i

s

e

a

!,s

!,e

"(A)
s

"(A)
e

"(i)

 
FIGURE 11 

 
Level 2 cognitive systems are obtained when the symbol system consists of mappings of the 

form; {(S×S → S), ... }. Mathematically these concepts can be regarded as binary operations, 
binary actions, functions of two variables, and ternary relations. Every symbol system at level 
2 may be thought of as a type of bivariate function or partial bivariate function, with a 
commutative diagram of the form shown in Fig. 12. 
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A binary operation * on a set A is a function from the set A×A of ordered pairs of elements 

of A, into A. In arrow notation, *: A×A → A. If (a1,a2) belongs to A×A, the result of applying 
the operation * to (a1,a2) is usually written a1*a2, and a1*a2 ∈ A. A binary action is a function 
A×R → A, where R is a right action map. A function of two variables is a function f:A×B → C, 
similar to the function defined earlier, the only difference being that the set on the left of the 
arrow is itself a Cartesian product. The model in Fig. 7 is an example of this level of system. 

At level 3 we have those symbol systems which can be defined by mappings of the form: 
{(S×S×S → S), ... }. This would include compositions of binary operations, quaternary 
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relations, and trivariate functions. Examples would be fields and rings, since both are 
structures on which the two binary operations of addition and multiplication are defined. Any 
cognitive system at this level could be thought of as a trivariate function or partial trivariate 
function, and it would be consistent if the diagram in Fig. 13 was commutative. 
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In practice, when any cognitive process is being assigned to a level, it is important that it be 

converted to its least complex expression; i.e., all redundancies should be eliminated. If this is 
done, then a level 3 system cannot be reduced to level 2, which cannot be reduced to level 1. 
This is what makes the system levels mathematically distinct. 

We have then three distinct levels of cognitive system, each with a different commutative 
diagram. More than one type of system is possible at each level and of course, there are an 
infinite number of possible systems of each type, but all the systems at any one level are 
characterized by a common level of complexity. At level 1 all symbol systems can be 
expressed as univariate functions, whereas at level 2 all systems must be expressed as 
bivariate functions, and at level 3 as trivariate functions. 

 
INFORMATION PROCESSING AND LEVELS OF COGNITIVE SYSTEMS 

 
Three levels of cognitive system have been defined, and it will now be shown that 

achievement of consistency requires more information to be processed for higher level than 
for lower level systems. It will be proposed that this fact imposes limitations on the level of 
cognitive system which children can learn at a given age. A new account of cognitive 
developmental stages results from these considerations. 

Consistency depends on the appropriate diagram being commutative. Therefore the 
information which must be used to determine whether a cognitive system has been applied to 
a task environment consistently can be determined by examining how commutativity is 
ensured. The information which is required to ensure commutativity is the information which 
is required to ensure consistency. 

In order to estimate the information required at each level, we will trace through the 
calculation which would be needed to test for commutativity, and record the number of 
separate information units or chunks which are involved at each step. This procedure will tell 
us not the number of chunks which an actual human participant would need to hold in store at 
each step, but the minimum number of chunks which is mathematically necessary. The 
number of chunks which a subject would require cannot however be less than the minimum 
which is mathematically necessary, so we will know the minimum information necessary for 
a human subject at each level. This is useful because it tells us the information-processing 
demands which would be imposed on a subject who was using the most efficient strategy 
which was theoretically possible. Later these findings will be related to the actual strategies 
which people use. 

The estimation of the information-processing demand of commutativity-checking depends 
on the following assumptions: 
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(1) Access to chunks in memory is random, not ordered. This is equivalent to saying that 
the subject cannot put the chunks into some kind of “push-down” store or stack which would 
permit him to remember only the top item on the stack. The reason is that the procedure under 
discussion is for use in discovering or testing algorithms, rather than in applying well-known 
algorithms, and there would therefore be no way of knowing how the information should be 
organized ahead of time. Thus whereas cognition can utilize redundancies, metacognition is 
concerned with the discovery of those very redundancies, and cannot use them until they are 
discovered, at which time it ceases to be metacognition by definition. 

(2) Calculation is serial, not instantaneous. 
(3) Results from earlier calculation steps which will be needed for later steps must be held 

in STM. 
(4) The properties of the symbol system are stored in LTM. This is equivalent to asserting 

that the essential relationships in the problem have been learned by past experience. It does 
not assume however that the subject knows how to operate on the relationships so as to solve 
problems. This distinction is operationalised in the experiments to be reported later in this 
paper. 

The psychological validity of these assumptions will be considered later. 
Some prior explanation is needed about the calculations presented below. A check for 

commutativity requires that we begin with the element on the top left of the diagram, then 
proceed first by one path and then the other to the element on the bottom right of the diagram. 
If the results obtained by each of the two paths are the same, the diagram is commutative; 
otherwise it is not. To make the presentation of the calculation clearer, we will number the 
vertices of the diagram as follows: 1 is at the top left, 2 at the top right, 3 at the bottom left, 
and 4 at the bottom right. Each step in the calculation involves converting elements at one 
vertex into elements at the next. Information from any step which must be used for later steps 
is held in store (Assumption 3), so the information which would be in temporary store at each 
vertex is shown. The number of chunks in store at each vertex can be determined, and the 
maximum information load can be read off. 

The commutativity calculation can be made in two ways, depending on which path is taken 
first. Starting at Vertex 1 of the commutative diagram (element S for the level 1 diagram 
below) we can proceed vertically to i(S) then horizontally to u(i(S)). (Here i(S) is the element 
which results from interpreting S, and u(i(S)) is the element which results from operation of 
the environment system on i(S).) Alternatively we can proceed horizontally from S to u(S), 
then vertically to i(u(S)). These procedures, which we call Method 1 and Method 2, 
respectively, exhaust the methods which involve proceeding in the one direction until the end 
of that path is reached; i.e., they exhaust all calculation procedures which involve passing 
through each vertex other than the first and last once only. The calculation will be made in 
both ways even though in some cases the result is the same. 
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For level 1 we have the commutative diagrams shown in Fig. 14, the more general form of 

the expression being that on the right. For commutativity to hold at level 1, u(i(S)) must be 
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equal to i(u(S)). The check for commutativity involves calculating each of these. The steps in 
Method 1 are as follows. 

 
  Information in 
 Vertex temporary store Number of chunks 

 
 1 S 1 
 3 i(S), S 2 
 4 u(i(S)), S 2 
 2 u(i(S), u(S) 2 
 4 u(i(S), i(u(S)) 2 

 
This method interprets the symbols first, then computes the result corresponding to the 

operation or action map. However the second method reverses the order of these steps. 
 
  Information in 
 Vertex temporary store Number of chunks 

 
 1 S 1 
 2 u(S), S 2 
 4 i(u(S)), S 2 
 3 u(i(S), i(S) 2 
 4 u(i(S), u(i(S)) 2 
 

With level 1 systems these two methods differ only trivially, and the peak information load, 
two chunks, is the same for both methods. However this is not the case at the higher levels as 
we will see. 

For level 2 we have the commutative diagrams shown in Fig. 15. For commutativity to hold 
at level 2, i(S1)*i(S2) must equal i(S1*S2). The steps in Method 1 are as follows. 

 
  Information in 
 Vertex temporary store  Number of chunks 

 
 1 S1,S2 2 
 3 i(S1),i(S2), S1, S2 4 
 4 i(S1) * i(S2), S1, S2 3 
 2 i(S1) * i(S2), S1 * S2  2 
 4 i(S1) * i(S2), i(S1 * S2) 2 

 
Here the peak information load is 4 chunks. Now using Method 2, the steps are as follows. 

 
  Information in 
 Vertex temporary store Number of chunks 

 
 1 S1, S2 2 
 2 S1*S2, S1, S2 3 
 4 i(S1*S2), S1, S2 3 
 3 i(S1*S2), i(S1), i(S2) 3 
 4 i(S1*S2), i(S1) * i(S2)  2 

 
Here the peak information load is 3 chunks, so at level 2 the two methods produce different 

information-processing demands. 
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At level 3 the commutative diagrams are as shown in Fig. 16. For commutativity to hold at 
level 3, f(i(S1),i(S2),i(S3)) must equal i(f(Sl,S2,S3)). The steps in Method 1 are as follows. 

 
  Information in 
 Vertex temporary store Number of chunks 

 
 1 S1,S2,S3 3 
 3 i(S1),i(S2), i(S3), Sl, S2, S3 6 
 4 f(i(S1),i(S2), i(S3)), Sl, S2, S3 4 
 2 f(i(S1),i(S2), i(S3)),f(Sl, S2, S3) 2 
 4 f(i(S1),i(S2), i(S3)), i(f(Sl, S2, S3))  2 
 

Here the peak information load is 6 chunks. Now using Method 2, the steps are as follows. 
 
  Information in 

 Vertex temporary store Number of chunks 
 

 1 S1,S2,S3 3 
 2 f(S1,S2,S3),  Sl, S2, S3 4 
 4 i(f(S1,S2,S3)), Sl, S2, S3 4 
 3 i(f(S1,S2,S3)), i(S1), i(S2), i(S3) 4 
 4 i(f(S1,S2,S3)), f(i(S1), i(S2), i(S3)) 2 
 

Here the maximum information-load is four chunks. 
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It is clear from this exercise that, provided the method of calculation is level independent, 

the information load is always higher for higher-level systems than for lower-level systems. 
This is inevitable because of the fact that level 1 systems are actually defined by a single 
variable (in the sense that any level 1 system can be expressed as some kind of univariate 
function), level 2 systems are defined by two variables (bivariate functions), and level 3 by 
three variables. Therefore it is inevitable that more information will be needed to check the 
consistency of application of a higher-level symbol system to the environment than a lower-
level system. 
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To summarize the argument so far, we have defined a symbol system as an organized set of 
elements which is internal to the organism. An environment system is an organized set of 
elements in the environment. A symbol system represents an environment system if the 
former can be mapped into the latter so that the resulting cognitive system conforms to a 
commutative diagram. We have defined three levels of cognitive systems, and have shown 
that more information needs to be processed to insure commutativity of higher-level cognitive 
systems than for lower-level cognitive systems. Our next step is to relate this argument to the 
performance of human organisms performing cognitive tasks. In the next section we will 
consider where the symbol system is stored, and the processes which are involved in mapping 
the symbol system into the environment system so as to form a commutative cognitive 
system. 

 
COGNITIVE PROCESSES AND MEMORY STORAGE 

 
A person's representation of a problem consists of a symbol system, as we have already 

stated, and such a system must be stored somewhere in memory. Certain considerations make 
it seem likely that a symbol system would be stored in long-term memory (LTM). First, 
problem solving is often a protracted process, and since the symbol system contains the 
person's representation of the problem it would need to be continuously available. Second, if 
symbol systems are stored in long-term memory (LTM) this would leave short-term memory 
(STM), or working memory, free for the problem-solving task. Third, symbol systems may be 
used for a number of problems in succession, perhaps spread over a considerable time, and 
storage in LTM would make them available for this purpose. 

On the other hand it is unlikely that the actual data of a new problem are stored in LTM. 
Klahr and Wallace (1976) considered this possibility in the context of certain cognitive 
developmental tasks and concluded that the problem-solving process was too fast to permit 
transfer to LTM. There are exceptions. For instance, Bryant and Trabasso (1971) 
systematically taught the comparisons of a n-term series problem to children, so that the 
actual relations between the stimuli, a > b, b > c, etc. were stored in LTM. Such a procedure is 
unusual however in a problem-solving context, where one or two trials only are normally 
used. In general, we can say that the actual problem elements are not stored in LTM. 

It would follow from these considerations that when a problem is presented the problem 
elements and relations are not stored in LTM, but a structurally isomorphic situation in LTM is 
used to serve as a model of the problem. This is made possible by the fact that the symbol 
system need not contain elements which resemble those in the problem. Structural 
correspondence is all that is required, which means that any problem can, in principle at least, 
be represented by any structurally isomorphic system stored in LTM. For example, a 
transitivity problem could be represented by any three objects from the past experience of the 
problem solver which happen to form an ordered set. 

The whole problem-solving process cannot however take place in LTM because, as we 
pointed out before, problem solving must entail dealing with new situations. Any process 
which cannot draw on LTM is therefore likely to draw on STM. That is, STM is the work 
space within which those aspects of problem solving which are essentially new are carried 
out, but this process draws on representations of the problem stored in LTM. This argument is 
essentially similar to the proposals of Greeno (1973), Hunt (1978), and Klahr and Wallace 
(1976) that problem solving draws on STM but utilizes data stored in LTM. 

One aspect of problem solving which is likely to draw on STM is the assignment of a 
symbol system to a new problem. Where the same representation has been repeatedly applied 
to a particular problem, an algorithm for assigning the symbol system to the environment 
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system may be acquired and stored in LTM, but this would not be the case when a new 
problem was being attempted. The situation where a child first makes the transition from one 
level of thought to another would inevitably be of the kind where the assignment of symbol 
system to environment system draws on STM. 

This suggests that STM limitations may well impose constraints on the process of applying 
a symbolic representation or symbol system to a new problem. Since higher-level systems 
impose higher information processing requirements, this may limit the highest level of system 
with which children can operate. Since we have a set of estimates of the number of chunks of 
information which must be used when assigning a symbol system to an environment system, 
we may be able to predict the highest level of system with which children can operate from 
STM considerations. 

One question which needs to be considered first is whether the assignment of symbol 
system to environment system is the only process which would draw on STM. We are mainly 
concerned with predicting the age of transition to a new level, and it seems likely that this 
transition would first be made in the most familiar situations. In such cases all performance 
aspects of the task would probably be well learned, and would therefore be stored in LTM, so 
they would make little or no demand on STM. In order to predict the earliest point at which a 
given level of cognitive system could be developed in any context, it would therefore seem 
most appropriate to assume that task performance makes no demand on STM. This permits us 
to assume that the whole of STM capacity is available for the process of assigning a symbol 
system to an environment system. 

The argument above implies that we should be able to predict the earliest age at which 
children could construct a cognitive system at any given level if we can measure the short-
term memory capacity which children have at each age. One difficulty in making this 
prediction is that we in effect have one free parameter in our estimates of the number of 
“chunks” of information required for a given level. This parameter corresponds to the 
distinction between Method 1 and Method 2 in the previous section. However, we can make 
two sets of predictions, one for each method, then test to see which method yields the best 
predictions. If the same method is consistently valid, we will in effect have estimated this 
parameter from the data. 

There is little doubt that performance on STM tasks increases with age, but there is 
widespread disagreement as to the nature of the underlying processes which yield this 
increase. On the one hand it is argued that the increase is due, not to an underlying increase in 
capacity, but to the development of better mnemonic strategies (e.g. Flavell, 1971; Dempster, 
1978). A slightly different view is presented by Simon (1974) who suggests that the number 
of chunks remembered is constant over age, but chunk size increases. Although we are 
perfectly willing to accept the evidence that children develop better mnemonic strategies as 
they grow older, this does not of itself argue that capacity does not increase as well. In those 
studies where strategies have been controlled, capacity differences related to age and 
intelligence have been found (Cohen & Sandberg, 1977; Friedrich, 1974; Huttenlocher & 
Burke, 1976; Lyon, 1977). A further point is that the mnemonic strategies which have been 
found to occur in recall tasks may not be applicable in problem solving, as pointed out by 
Hunt (1978). 

In order to predict ability to construct cognitive systems of level n, we need to know how 
many chunks can be held in short term store. According to Miller (1956) adults can hold 7 ± 2 
chunks, but Broadbent (1975) suggests the number is really 3. Broadbent does seem to 
suggest however that there are two types of short-term memory, each of which can hold 3 or 
possibly 4 chunks, so that the capacity of adult STM would be functionally equal to about 7 
chunks. 
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While recognizing that STM itself is an immensely complex and as yet little-understood 
phenomenon, in this argument we are really only concerned with the functional size of STM. 
That is, we are only concerned with the number of chunks which a person can hold in short-
term store at one time, irrespective of the precise mode of storage. For our present purposes, it 
is sufficient to define a chunk as an independent item of information which may vary in size; 
i.e., two signals cannot be combined into one chunk if they vary independently of each other. 

The traditional memory span test, such as the digit span tests used in psychometric 
intelligence tests, probably provides a fairly good approximate measure for this purpose. The 
digits are presented in a way which is independent according to our definition, because runs 
or other sequential constraints are eliminated as far as practicable. This task also has the 
advantage that age norms are available, which is not yet the case for the more esoteric 
measures. The digit span test can be regarded as measuring functional STM capacity, for 
ordered sets of items. It may seem inappropriate to use memory for ordered items in order to 
predict ability to construct cognitive systems, because the information required to check the 
consistency or commutativity of such systems is not ordered. On the other hand, the 
information required for commutativity checking is tagged, in the sense that each item of 
information is distinguished from the others. Therefore, while the items are not ordered, they 
are individually identified. Now if we regard ordering as simply one way of identifying items, 
it is possible that the extra demand imposed by ordering is similar to the demand imposed by 
identification. On the whole then it seems that, while digit span might not be an ideal measure 
with which to predict capacity to acquire any specific level, it probably is the most 
appropriate and practical measure available at present. 

The decision to use digit span as a predictor of commutativity is broadly consistent with a 
number of other proposals in the recent literature to the effect that span is related to problem 
solving (Baddeley & Hitch, 1974; Hitch, 1978; Hunt, 1978; Hunt, Frost & Lunneborg, 1973; 
Keating & Bobbitt, 1978). One qualification concerning this association should however be 
mentioned. Baddeley and Hitch (1974) used an interference technique to demonstrate the 
relationship between letter span and a simple reasoning problem. Interference with reasoning 
was found if participants were required to hold 6 letters in STM, but not if 3 were held. This 
may suggest that interference only occurs if the number of items in STM is near the 
maximum, and casts doubt on the proposition that STM and reasoning processes normally 
share a common storage space. However the reasoning task used by Baddeley and Hitch was 
quite simple, and amounted to requiring the participants to decide whether a statement about 
the order of occurrence of 2 letters was true or false. Interestingly, this is a level 1 reasoning 
task because it requires one relation (the order of the letters) to be represented internally and 
related to the stimulus. Such a task, according to our theory, would require 2 chunks for the 
representation to be applied to the problem. Since adult participants have a memory span of 
about 7, interference would not be expected if 3 items were already in STM, but it would be 
expected if 6 items were in STM. It appears then Baddeley and Hitch's data are consistent with 
our argument. 

In assessing digit span norms, children are frequently assigned a score which relates to the 
longest series remembered correctly in a given number of trials. For instance, children may be 
given two series of each length, and given a score equal to the longest series which is recalled 
correctly in one trial. This procedure is used to guard against scores being depressed by 
distraction or through failure to perceive all the elements. Although it is a somewhat crude 
way of controlling for these extraneous factors, it is quite appropriate for our purposes, 
because we are only concerned with the maximum number of chunks which children can 
store, irrespective of whether they can do so on every trial. If a child requires n chunks of 
information in store to check commutativity of a given cognitive system, then if she fails on 
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one occasion, she may succeed on another. We are not concerned with predicting the specific 
trial on which success will be achieved, but only with whether it can be achieved. 

We will now relate the information-storage demands of commutativity checking to STM 
norms. According to Method 1, a memory span of 2 would be required for level 1, 4 for level 
2, and 6 for level 3. According to Stanford-Binet and Wechsler forms, average children 
acquire an STM capacity of 2 at age 2 years, 4 at age 4.5 years, and 6 at 10.5 years. These 
should therefore be the ages at which 50% of children can acquire the respective levels of 
systems. According to Method 2 on the other hand levels 1, 2, and 3 would require spans of 2, 
3, and 4, respectively. These levels should therefore be attainable at age 2, 3, and 4.5 in each 
case. Evidence from studies by Halford (1978) suggests that the ages of mastery correspond to 
those predicted by Method 1. This is corroborated by detailed study of protocols, which 
suggests that Method 1 does indeed correspond to the process which subjects actually employ. 

We now have a set of predictions concerning the earliest age at which a given level of 
cognitive system can be attained. In a later section we will attempt to relate the system levels 
which have been defined to known cognitive developmental phenomena. If we can identify 
known performances which children can perform with cognitive system levels, we can predict 
the earliest age at which those performances can be acquired. If successful, this would permit 
us to explain cognitive developmental stages which have been identified empirically. 

We are also able to derive a prediction about the nature of stages from the foregoing 
argument. This is that stage acquisition should be gradual, rather than sudden. This follows 
because the number of children with the information-processing capacity required for any 
given level of thought increases gradually with age; i.e., all children do not acquire memory 
spans of 4 immediately they reach the age of 4.5 years, but the number of children with a span 
of 4 increases gradually with age. Therefore we can use cumulative frequency curves for 
growth of memory span to predict the proportion of children in the population who should be 
capable of reaching any specific level. For instance, the curve for memory span of 6 shows 
that level 3 tasks should be learnable by 20% of 8-year-olds, 35% of 10-year-olds, 75% of 13-
year-olds, etc. 

This section completes the theoretical formulation of this paper. Our next step is to present 
empirical evidence concerning the validity of the theory. If the theory is found to be 
supported, we can then apply it to the task of explaining stage-related performances. 

 
EMPIRICAL EVIDENCE 

 
Both the experiments to be reported aim to externalize the process of constructing a 

cognitive system which is commutative. Basically this is done by requiring the child to 
arrange elements of the task in a way which is consistent with a previously learned system. A 
consistent arrangement corresponds to a commutative diagram, while an inconsistent 
arrangement does not. 

Both studies are based on training which was carried out in three main phases, designed to 
make gradually increasing cognitive demands. The first phase, called symbol system training 
(SST), is designed to simply teach the task system. The second phase, called operator 
application training (OAT), is designed to teach participants to use level 1 cognitive systems, 
and to ease the transition to the final phase. The third phase, called cognitive system training 
(CST), is criterial, and is designed to manipulate the level of cognitive system which the child 
is required to employ, in order to study the interaction of this factor with age. 
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FIGURE  17. Environment used in Experiment 1. The letters are shown for convenience in exposition, but the 
corners were unmarked on the apparatus. The sides of the square measured 35.5 cm. 

 
TABLE 1 

Task Systems Used in Experiment 1 
 

 System A System B 
 

 Operators Operators 
 

States N C A States N C  D 
 

 p p q s p p q r 
 q q r p q q r s 
 r r s q r r s p 
 s s p r s s p  q 

 
 

The logic of the experiment need only be described for Experiment 1, since it is basically 
the same for both experiments. Experiment 1 utilized a cardboard square as shown in Fig. 17, 
and children were taught to move a toy truck around the square in accordance with one of the 
systems shown in Table 1. Each system consists of states p, q, r, s, and three of the four 
operators, N, C, A, D. In the first two phases of training (SST and OAT), the states were 
identified with the corners of the square as shown in Fig. 17 so that operator N was null and 
meant to remain in the same place; C meant a clockwise movement from p to q, q to r, etc., A 
meant an anticlockwise movement from p to s, s to r, etc., and D meant a diagonal movement 
from p to r, r to p etc. Each operator was represented by a geometric figure (triangle, circle, 
dumbbell, etc.). A white cardboard house was placed at each corner of the square, and a toy 
truck was placed in front of one of the houses. The child was shown a cue card containing a 
geometric figure representing one of the operators, and had to learn by trial and error to move 
the toy truck in accordance with the operator represented by the card. For instance, if triangle 
represented operator D, and if the house was placed at q, then the correct response is to move 
the truck to s. Learning of one problem was complete when the child could consistently 
interpret all cue cards in accordance with the operators they represented. Three new cue cards 
were then randomly allocated to the operators, and training on a new problem was carried out 
in the same way. Thus a learning set procedure was used to teach the child a concrete 
embodiment of the system. The aim was to insure that the child stored the system in long-
term memory. That is, the child should have learned the four states and the way in which each 
operator effects a change from one state to another. At the conclusion of this training, the 
child should have a symbol system containing information equivalent to system A or system B 
(depending on which one was used for that child) in Table 1. 

The criterial phase of the task (M) required the child to relate the symbol system to a 
problem with the same structure as those previously learned, but with new elements. Each 
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problem began with three unknown cue cards, and the states were represented by different 
coloured houses, only one of which was placed on the board by the experimenter. However 
the four colours were in fact randomly allocated to the states in a different way for each 
problem, although this allocation was known only to the experimenter when each problem 
began. A sample problem is shown in Table 2. 

In this phase the operators were defined as changes from one colour to another. This meant 
that the child was required to learn, and was given feedback about, movements from one 
colour to another. For example, in Table 2 the child would have to learn that cross meant to 
go from red to green, green to blue, etc. It was up to the child to place the houses (except the 
first one) around the square in an appropriate way. Furthermore, he was given no feedback for 
the way he did this; the only feedback was for saying that a cue card meant to go from a house 
of one colour, to a house of' another colour. The sole criterion of a correct arrangement of 
houses around the square therefore is consistency with the system. 

 
TABLE 2 

Example of Problem Based on System B in Table 1 
 

Cue cards 
 

 House colours Circle Cross  Star 
 

 Red Red Green Blue 
 Green Green Blue Yellow 
 Blue Blue Yellow Red 
 Yellow Yellow Red Green 

 
 

Of the 24 possible arrangements of houses around the square, 8 are consistent with the 
system. To consider the example problem in Table 2, it would be consistent with the system if 
red was placed at p, green at q, blue at r, and yellow at s. (The reader will probably find it 
helpful in following this argument if he/she draws a sketch of the square, and writes in the 
house colours as the argument proceeds.) With such an arrangement, cross will mean to go 
one step clockwise, star one step anticlockwise, and so on. Another consistent arrangement 
would be if all houses were moved one step clockwise; i.e., with red at q, green at r, etc. 
Alternatively, the houses could be arranged anticlockwise, with red at p, green at s, blue at r, 
and yellow at p. Cross would now mean to go one step anticlockwise, etc. 

For an example of an inconsistent arrangement, consider placing red at p, blue at q, green at 
r, yellow at s. Cross now means to go diagonally from red to green and anticlockwise from 
green to blue; i.e., it has no consistent meaning in terms of the previously learned operators. 

If a consistent arrangement is chosen, it is easy to predict the correct house colour for any 
operator, and the task would therefore be easy to learn. With an incorrect arrangement, 
prediction and learning are difficult. Therefore, although the child is given no feedback about 
the arrangements as such, the requirement of learning to predict the house colour which 
results from any operator provides a strong incentive to make a consistent arrangement. 
Children were permitted to rearrange the houses as often as they wished in order to find one 
which was consistent. 

Now we will show how this task requires the child to construct a cognitive system which 
commutes. The symbol system which the child must use is the previously learned system A or 
system B as shown in Table 1. (The system would probably be stored in memory as images of 
movements clockwise, diagonally, etc., or as verbal rules like - “... go this way ...” but our 
concern here is only with the fact that the child has stored in memory a system equivalent to 
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one of those in Table 2) The environment system is the set of elements used in any specific 
task, together with the relations between these elements. Thus, in the example we have been 
using, the environment system is summarized in Table 2. Now we will show how a consistent 
arrangement corresponds to a diagram which commutes. 

The consistent arrangement mentioned earlier corresponds to the following set of 
mappings. 

 
 p q r s 
 ↓ ↓ ↓ ↓ 
 red green blue yellow 

 
 N C D A 
 ↓ ↓ ↓ ↓ 
 circle cross star triangle 

 
Now we consider operator C applied to q, and the resulting commutative diagram is shown 

in Fig. 18. Going along the top line, C applied to q produces r, and a second application of C 
produces s (Table 1). Going along the bottom line, one application of cross to green produces 
blue, and a second application produces yellow (Table 2). Since s is interpreted as yellow, 
both paths yield the same answer, or the diagram is commutative. 

 
(q, C) r, C s

(blue, cross) red ! yellowyellow, cross

aa ! a

 
FIGURE 18 

 
The inconsistent arrangement mentioned earlier can be represented as the following set of 

mappings.  
 p q r s 
 ↓ ↓ ↓ ↓ 
 red blue green yellow 
 
 N C D A 
 ↓ ↓ ↓ ↓ 
 circle cross star triangle 

 
For the example of operator C applied to q, the commutative diagram would be as shown in 

Fig. 19. Going along the top line, one application of C to q produces r, and a second 
application produces s. Going along the bottom line, one application of cross to blue produces 
yellow, and a second produces red (Table 2). However since s is not mapped into red, the 
interpretation is inconsistent and the diagram is not commutative. 

 
(q, C) r, C s

(blue, cross) red ! yellowyellow, cross

aa ! a

 
FIGURE 19 
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Now we can express these commutative diagrams, in general form. First, we will define the 

environment for the sample task (Table 2), consisting of state elements (Es) and operator 
elements (Eo): Es = red, green blue, yellow, Eo = circle, cross, star, triangle. 

Secondly, we define the symbol elements, comprising states (Ss) and operators (So): Ss = 
p,q,r,s, So = N,C,D,A. 

Table 1 expresses all the information in the symbol system, while the environment 
contingencies corresponding to one specific problem are expressed by Table 2. 

 
S

a ! a

o
!

a

S
s S

s

E!E E
sos  

FIGURE 20 
 

If the interpretations of Ss as Es and So as Eo are consistent, the diagram Fig. 20 would be 
commutative. It is possible within this paradigm to vary the system level while holding the 
procedure constant. In fact system A in Table 1 is a level 1 task and system B is a level 2 task. 
The reason for this is that in system B the operators must be interpreted in pairs in order to 
decide whether an arrangement is consistent or not. The reader will probably have noticed that 
in the commutative diagrams in Figs. 18 and 19 the operators were interpreted in pairs (i.e., 
two occurrences of C are used in both cases) and the reason is that the diagrams were based 
on the assumption that C came from system B, and two occurrences of the operator are needed 
to check commutativity in this system. 

An example will make this clear: suppose there is a red house at position q, a cue card 
containing a cross is shown, and the correct response is a green house (red, cross → green). If 
green is placed at r, this is tantamount to interpreting cross as C. If green is placed at s, cross 
is interpreted as D. It is impossible to tell which interpretation is correct. They can however 
be distinguished on the basis of two trials jointly; e.g., red, cross → green; green, cross → 
yellow jointly imply that cross must be interpreted as C. Cross cannot be D because this 
interpretation would imply a return to the starting point. Notice also that operators only are 
interpreted because, since states and operators are defined relative to one another, it is only 
necessary to interpret one or the other, but not both. Thus if both cross cues are interpreted, 
this implies an interpretation of the colours which will be consistent with the system. 
Alternatively we could have interpreted the colours, with the operator interpretations being 
implied. The former is chosen simply because it is more consistent with subject protocols. 
However it is true that, whichever style of interpretation is chosen, task elements have to be 
interpreted in pairs. This is what makes the system level 2. 

The reason why system A does not impose this requirement, and therefore is not level 2, is 
that operators A and C are interchangeable. This is in fact what enables the information-
processing requirements of the system A task to be reduced while holding the number of items 
constant. The result is that there is no sense in which it is an error to interpret a cue card as A 
when it was designed to be C or vice versa, since both are consistent with the system. A single 
trial is sufficient to determine whether a cue represents the null or one of the non-null 
operators (if it means to go from one colour to another, it must be the latter). A house 
placement in terms of either a C or an A operator will then be sufficient to insure consistency 
with the system. 
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It is interesting to note that hypotheses about the meanings of cue cards in level 2 tasks 
cannot be tested by interpreting less elements than the level of system requires; i.e., since a 
level 2 system has its elements defined in pairs, hypothesis testing must proceed on the basis 
of pairs of elements. Let us consider what might happen if an attempt were made to 
circumvent this requirement, as for instance if participants tried to interpret one element at a 
time: given an item such as red, star → blue, where star really represents D, the child who 
hypothesizes that star represents operator C might place red at p and blue at q. He might then 
recognize that movement from q to p on the second occurrence of star is inconsistent with rule 
C, since he interprets C as a clockwise movement. This could be overcome by reversing the 
houses, but the first movement would then be wrong. Thus the attempt to interpret the task 
elements one at a time only leads to further inconsistencies. 

Clearly therefore the level 2 CST task requires elements to be interpreted in pairs. This 
follows in a general sense from the theory, and is illustrated for a specific case in the example 
above. It implies that two symbol elements would have to be matched to two task elements in 
order to make an interpretation. The information load therefore is four chunks: two symbol 
elements and two task elements. This is in accord with line 2 of the Method 1 calculation of 
the information load for level 2 tasks in an earlier section. On the other hand, it is possible 
that, in accordance with Method 2, the peak information load could be reduced to three 
chunks by first combining the two operators into the single operator to which they are 
equivalent (cf. the Method 2 calculation for level 2, line 2). The information processing load 
for the level 1 task peaks at two chunks, whichever method is used. Either way therefore the 
minimum age of attainment should be higher for level 2 than for level 1. It is proposed to test 
this prediction in an experiment using two levels of age and two levels of task. If the ages are 
appropriately chosen, so as to span the transition point for level 2 capability, we should obtain 
an age by task levels interaction with a specific form: both age groups should succeed on level 
1, but only the older age group should succeed on level 2. 

 
EXPERIMENT 1 

 
Method 

 
Participants. There were 40 preschool children ages 4.0 to 4. 11 (mean age = 4.6) and 40 

Grade 1 children ages 5.5 to 6.5 (mean age = 6.0). Both the preschool and the primary 
(elementary) school were in a middle-class socioeconomic suburb of Brisbane, Australia. The 
schools were physically close together and drew their pupils from the same section of the 
community. Half of each sample was allocated to the system A (level 1) condition, and half to 
the system B (level 2) condition at random. 

Procedure. Subjects were tested individually in from 9 to 14 sessions, whose length varied 
from 5 to 15 min, depending on subject interest. The experiment consisted of four phases: 
symbol system training (SST), operator application training (OAT), cognitive system training 
(CST), and a CST transfer test. Each child was taught either system A or system B throughout. 

SST began by placing four white cardboard houses on the corners of the square. The toy 
truck was placed in front of one of the houses selected at random, and the child was shown a 
cue card which represented one of the operators. She/he then moved the truck according to 
what she/he thought the cue card meant. If this was incorrect, she/he was so informed and 
invited to try again, and so on until the correct movement was found. 

The training procedure included several features designed to maximize learning: 
(1) The movements corresponding to each operator were carefully explained and 

demonstrated before training began. 
(2) The child was asked to imitate each movement. 
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(3) At the end of each trial the child was taught to verbalize the movement (clockwise, 
anticlockwise, diagonal, etc.) which was correct for each eve card, or to indicate it by gesture. 

(4) Participants were encouraged to name the cue cards to enhance discriminability. 
(5) Only one step (p to q, q to r, etc.) was required on each trial, but the trials were 

organized into sets which made the nature of the operator clear. Thus a sequence using 
operator C might comprise four trials with movements from p to q, q to r, r to s, and s to p. 

Training continued on the single SST problem for 144 trials, or until 12 error-free trials 
occurred. Three OAT problems were then given. 

Each OAT problem began with an SST problem, which was learned to the same criterion as 
before. The cue cards used in the SST phase of the problem were retained, but the white 
houses were replaced by the coloured houses, which were not placed on the board prior to the 
beginning of the problem. The operators were now defined as movements from one colour to 
another, so the child had to learn to specify the correct colour of house to which the truck 
should go in response to each cue card. The child then had to place the houses on the board in 
a way which was consistent with the previous meaning of the cue cards. 

To see how this works, suppose that the green house had been placed at p on the square, 
and the cue card representing operator C had been defined as a movement from the green 
house to the blue house, from blue to red, red to yellow, and yellow to green. Then with the 
truck at green, the correct response to this cue card would be blue, and the blue house should 
be placed at q. Similarly, the red house should be placed at r and yellow at s. A different 
random allocation of houses to states in the system was made for each problem. 

If the subject's placement was incorrect, the experimenter said: “is that the way this 
message (card) told the truck to go when we had the white house”. The subject was then 
asked to “... fix it up so that this message will be like it was when we had the white houses” 
(prompting procedure). If the child still did not succeed in making correct arrangement, the 
experimenter demonstrated the necessary shifts and explained how the houses were then 
arranged to that the messages meant the same as before (demonstration procedure). 

On the first OAT problem the placements were corrected item by item, but on subsequent 
problems correction was made after all four houses had been placed. In the event that the 
child had managed to arrange the houses correctly without any assistance, the experimenter 
placed them incorrectly at the conclusion of the problem, and then used the procedure above 
to illustrate how such an incorrect arrangement would have been corrected. This was to insure 
that all participants knew how to correct inappropriate arrangements. 

Notice that in OAT the states are still, in effect, defined as locations because there is only 
one arrangement of the houses which is consistent with the immediately preceding SST 
problem. This is because the cue cards have already been learned as specific movements; 
clockwise, diagonal, etc. 

Following OAT three problems of CST were given. CST was similar to OAT except that the 
subjects did not have the opportunity to learn the meaning of the cue cards beforehand. Each 
problem began with three unknown cue cards, and with the four coloured houses randomly 
allocated to the states, p, q, r, s. The procedure began by placing a randomly selected house at 
the appropriate point on the square. The child was given the other three houses to hold. A cue 
card was shown, and the child was asked to choose the house to which the truck should go. 
When the correct house was chosen (sometimes after trial-and-error), the child was told it was 
correct and was then asked to place it on whatever corner of the square he thought was 
appropriate. The truck was then placed in front of that house, another cue card was presented, 
and the procedure repeated for the next trial. No feedback was given for the placements, but it 
was emphasized that the subject was free to rearrange the houses whenever he wished, and 
that the houses should be arranged so that the cue cards would mean the same as the messages 
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in all the previous games. Each CST problem was continued for 72 trials or until 12 
consecutive error-free trials occurred. 

A correct response was defined as a correct prediction of house colour. Suppose for 
instance that, in a particular problem, the green house was in position at location q, a cross 
cue was shown, and the correct response (from Table 2) was for the truck to go to the blue 
house (green, cross → blue). The child is credited with a correct response if the correct 
colour, blue, is predicted for the combination of green with cross. The child is credited with 
succeeding on a given problem if 12 consecutive correct predictions are made. 

Since participants were encouraged to rearrange the houses, there is clearly a possibility of 
a correct arrangement being made by chance, and the probability of this happening increases 
with the number of rearrangements made. However, it is essential both to encourage 
rearrangement and to use a large number of trials to maximize the chance of reaching criterion 
in order to insure that even the youngest participants had ample opportunity to learn. 
Nevertheless, provided we only use the CST task to examine the age by task levels interaction, 
the spuriously high success rate will not affect the validity of the experiment. In fact, since 
previous work (Halford, 1978) has shown more rearrangements in the system B condition, 
owing to the greater difficulty of finding a consistent arrangement in that task, then a 
spuriously high performance will be most likely in that condition. It will also be higher for 4-
year-olds because they will have greater difficulty finding a correct application of the system 
to the task. Therefore this factor works against finding a significant interaction, and 
consequently works against the authors’ hypothesis. 

Since the absolute level of performance on the system B task is also of interest, a transfer 
test is used to assess it. Ten trials are used, which means that the information necessary to 
correctly arrange the houses is provided four times to each subject. From previous work it is 
known that one or two rearrangements will be made in this time by most children, with the 
result that it is unlikely that a correct arrangement will be made by simply shifting houses 
around until one is stumbled upon. A chance correct initial arrangement is also eliminated by 
making the first house placed incorrect. For instance, if a problem begins with an item such as 
red, triangle → blue, with red at p, then if the child places blue at r (effectively interpreting 
triangle as operator D), triangle will be made to represent operator C, so that blue will have to 
be shifted to either q or s. 

In the system B condition this does not conflict with anything the child has learned, because 
this condition is designed to require a level 2 cognitive system, with the result that there is 
insufficient information in one trial to determine the correct interpretation of a cue. In the 
system A condition one trial does provide sufficient information to place a house owing to the 
fact that the system A CST task is designed to require only a level 1 cognitive system. 
Therefore it would conflict with previous information if a house placed in accordance with the 
first trial was subsequently found to be incorrect. 

Accordingly, three 10-trial transfer problems were given in the system B condition 
following CST. The first placement was made incorrect as described above. In other respects 
the procedure was the same as for CST. The sole criterion of success was whether a correct 
arrangement was made. 

Each participant was given a digit span test designed to separate subjects with digit spans of 
less than 4 from those with spans of 4 or more, making maximum allowance for errors due to 
distraction. This was done by crediting subjects with having passed the longest series which 
they correctly recalled on three or more trials out of six. Error types and frequencies had been 
determined in a previous unpublished study using 93 subjects and it was found that the chance 
of obtaining three out of six correct by guessing ≈ 0.08. Therefore this criterion allows 
participants up to three errors due to distraction, while requiring them to perform better than 
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chance at an acceptable level of confidence. Re-test reliability, also using the earlier sample of 
93 subjects, was found to be 0.73 after 3 months. 

A tape-recorded, ungrouped, monotone presentation was used at the rate of one digit per 
second. Each participant was given six series of each length, starting at length three. If three 
out of six were passed, the next longest set was given, until a set was failed. 

 
Predictions 

 
The cognitive systems which are required at each phase of the task are summarized in 

Table 3. No cognitive system is required in SST because all the information required for the 
interpretation of the task elements is provided by the procedure, and the participant does not 
have to use an internal representation of the system to interpret them. The houses are already 
in position, and full feedback is provided concerning the meaning of the operators. In OAT the 
houses must be arranged in a way which is consistent with cue cards which represent known 
unary operators, so level 1 systems are required. In CST system B requires a level 2 cognitive 
system and system A a level 1 cognitive system as explained earlier. 

The predictions from the theory would be that there will be no age difference in success 
rate in SST or OAT because these require either no cognitive system or a system which is 
within the capacity of participants in both age groups. The same would be true for the system 
A CST task. There should however be age-related differences in success rate in the system B 
CST task, because this requires a level 2 cognitive system which should be beyond the 
capacity of 4-year-old children. Thus the age by task levels interaction predicted by the theory 
should be observed in the CST task. 

 
TABLE 3 

Level of Cognitive System Required in Each Phase of Experiment 1, for Each Task System 
 

Phases 
 

 SST OAT CST Transfer 
 

System A No cognitive Level 1 cognitive  Level 1 cognitive No transfer 
 system required system required system required task possible 
System B No cognitive Level 1 cognitive  Level 2 cognitive Level 2 cognitive 
 system required system required system required system required 

 
 

If there are any 4-year-olds who succeed on the system B CST task by making chance-
correct arrangements, they should not succeed on the transfer task, since the transfer task 
procedure would make chance successes very unlikely. Accordingly the transfer task should 
give a reliable indicator of the absolute levels of success which are possible for 4-year-olds. 

These predictions have been based on the assumption that consistency checking by subjects 
will be carried out by a process which is equivalent to Method 1. This is because previous 
work (Halford, 1978) revealed protocols which were more consistent with Method 1 than 
Method 2, and this was supported by the approximate age norm obtained. If this assumption is 
incorrect, we should find that 4-year-olds will master level 2 tasks, since their information-
processing capacity should be equal to that which would be required for Method 2 
calculations at level 2. It would then be appropriate to carry out a further experiment 
contrasting 2- and 3-year-olds on level 1 and level 2 tasks. 
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Results 
 
Each participant was given one point for each CST problem on which criterion was 

reached, and these scores were subjected to analysis of variance. This yielded a significant 
effect of age, F(1, 76) = 7.56, p < 0. 01, and of task levels, F(1, 76) = 19.72. There was also a 
significant age by task levels interaction, F(1, 76) = 5.41, p < .025. The number of CST 
problems on which criterion was reached is shown in Table 4. The correlation between 
reaching criterion and making a correct arrangement of the houses was 0.83. 

 
TABLE 4 

 
Number of Cognitive System Training Problems on Which Criterion Was Reached 

 
 System A  System B 

4-year-olds 2.95  2.15 
5- to 6-year-olds 3.00 2.75 

 
 

These data show that the main prediction of the theory with respect to age by levels 
interaction is confirmed. The transfer data, as shown in Table 5, again show the 5- to 6-year-
olds to be better than the 4-year-olds (χ2(1) = 13.74, p < 0.001). We also see that, if we define 
success as two correct arrangements out of three, only four subjects, or 20% of the 4-year-olds 
mastered this task. This result was not due to the 4-year-olds making insufficient attempts to 
arrange the houses. In fact the 4-year-olds made a total of 89 attempts, of which 17 were 
correct, whereas the 5- to 6-year-olds made 80 attempts of which 43 were correct. 

 
TABLE 5 

Frequency with Which Correct Arrangements Were Made on System B Transfer Task 
 

Number of correct arrangements 
 

 0 1 2 3 
 

4-year-olds 8 8 3 1 
5- to 6-year-olds 2 3 5  10 

 
 

Although the above analysis is all that is required to test the predictions of the theory, for 
the sake of completeness, and to give more insight into the overall behaviour of the children 
on this (relatively novel) task, performance data from the other phases should also be 
reported. Since all participants reached criterion on all SST and OAT tasks, error and trials to 
criterion data will be analysed. 

In SST there was a significant effect of age in errors, F(1, 76) = 28.02, p < 0.001, and in 
trials, F(1, 76) = 36.15, p < .001. In errors the preschool mean was 25.78 and the Grade 1 
mean was 11.43, while the corresponding means in trials were 84.60 and 48.00. Task level 
and the interaction of task level with age were both nonsignificant in SST. These results 
reflect simply more rapid learning by the older subjects. 

In OAT there was a significant effect of age in errors, F(1, 76) = 5.76, p < 0.02, and in 
trials, F(1, 76) = 8.61, p < 0.005. In errors the preschool mean was 2.53 and the Grade 1 mean 
was 1.97, while for trials the means were 25.44 and 23.16, respectively. These scores reflect 
merely the time taken to arrange the coloured houses in relation to the rules which were 
already known, hence the small number of both errors and trials. Task was significant in 
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trials, F(1, 76) = 4.71, p < 0.05, but not in errors. Trial means were 25.08 for system A and 
23.40 for system B. The interaction between age and task was significant in errors, F(1, 76) = 
7.61, but not in trials. The error means were as follows: for preschool subjects, system A was 
2.23 and system B was 2.80; for Grade 1 subjects the system A mean was 2.35 and system B 
was 1.60. The effect of problems was not significant. Again, the only consistently reliable 
differences in OAT reflect simply age differences in learning rate. 

On the first OAT problem it was not possible to assess the children's ability to arrange the 
houses, because the amount of help given by the experimenter was too large in some cases. 
However, on Problems 2 and 3, all subjects were able to find the correct arrangement without 
the need for the experimenter to demonstrate. Thirty-three of the eighty subjects needed 
prompting to draw their attention to the fact that their initial arrangement was incorrect on 
both problems, and nine needed prompting on one problem. There was no significant 
association between either task level or age and the number of prompts needed. 

The digit span scores of four of the 5- to 6-year-olds could not be used because of an 
experimental error. The data for the remaining subjects showed that only four of the twenty 4-
year-olds and all sixteen of the remaining 5- to 6-year-olds had spans of four or more. 
However, all but one of the 4-year-olds had spans of three or more. The first conclusion then 
is that capacity to learn level 2 systems requires a span of four rather than a span of three, 
since the majority of the 4-year-olds did not succeed on the level 2 task. Second, since the 
majority of the 5- to 6-year-olds had spans of no more than four and mastered the level 2 task, 
it seems that a span of four predicts the age mastery of level 2 systems quite well. It seems 
reasonable to assume that most or all of the remaining 5- to 6-year-olds would also have had 
spans of four or better, since the ability of the sample was clearly above average. 

Of the 16 subjects with digit spans of less than four, 2 achieved the criterion of two or more 
problems passed in the transfer test. Of the 20 subjects with spans of four or more, 14 reached 
this criterion. This difference is significant χ2(1) = 11.90, p < 0.01. This relationship also 
corresponds to the 4) coefficient of 0.57. It would be interesting to carry out further 
correlational analysis, but since the age distribution is bimodal and is not continuous, the risk 
of spurious results is too great. 

 
Discussion 

 
The results of the experiment show an interaction which has a form consistent with our 

predictions as stated earlier; i.e., both age groups readily attain level 1 tasks, but the level 2 
tasks are much harder for the 4-year-olds than for 5- and 6-year-olds. The 4-year-olds mostly 
had digit spans of less than four chunks, whereas the 5- and 6-year-olds had spans of four 
chunks or more, so the interaction has a form consistent with that predicted by applying 
Method 1 to the problem of calculating the information-processing capacity required for a 
commutative cognitive system. 

On the other hand, it is true that an appreciable number of 4-year-olds reached criterion on 
level 2 CST tasks, but this was anticipated because it is possible to find a correct arrangement 
of houses around the square by trial-and-error. Allowance was made for this by including a 
transfer task which was designed to avoid correct arrangements occurring by trial-and-error. 
On this task, as shown in Table 5, only four out of twenty 4-year-olds reached the criterion of 
finding a correct arrangement on two out of three problems. This proportion is consistent with 
the proportion who had digit spans of four. Therefore the absolute level of performance on the 
level 2 task by 4-year-olds is also consistent with the theory. 

The lower level of performance of the 4-year-olds on the level 2 CST task is made more 
significant by the fact that two lines of evidence show that they can learn level 1 tasks. Thus 
they perform perfectly on the CST task using system A, showing that it is not the CST 
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procedure which is responsible for the deficit with system B in the CST task. They also 
perform adequately in the OAT procedure with system B, showing that it is not the individual 
elements of the system which are responsible. It seems clear therefore that the only 
interpretation which fits the total pattern of the data is that 4-year-olds can use level 1 but not 
level 2 cognitive systems. 

Detailed examination of protocols indicated that most participants performed the CST task 
by hypothesizing a specific movement to be performed in response to each cue card. The 
houses would be placed on the board in a way which was appropriate to this movement, and 
the hypothesis would be changed following disconfirming evidence. This hypothesis testing 
procedure is equivalent to calculation Method 1. That is, testing hypotheses means 
interpreting the elements, then calculation the result and testing for consistency. 

 
EXPERIMENT 2 

 
Experiment 2 sought to determine the age at which children could learn level 3 cognitive 

systems. The design was similar to that used in Experiment 1, with two levels of age and two 
levels of system (level 2 and level 3). 

 
Method 

 
Apparatus. The apparatus included a set of paths forming a hexagon on a white cardboard square as shown 

in Fig. 21. The pathways which corresponded to each of the operators were coloured to facilitate discrimination 
between different operators. There were also six identical white cardboard houses, and one house of each colour 
red, brown, pink, purple, gold, and orange. The white square measured 51 cm to a side. The houses, toy truck, 
and cue cards were similar to those used in Experiment 1. 

 
p

q

rt

u
green

yellow

blue

 
 

FIGURE. 21. Hexagonal array used in Experiment 2. The letters are shown for convenience in exposition, but the 
corners were unmarked on the apparatus. 

 
Subjects. There were 20 primary (equivalent to USA elementary) school children ages 8.0 to 9.5 (sample 

mean = 8.10) and 20 ages 9.6 to 10.11 (sample mean = 10.4), from a middle class area of Brisbane, Australia. 
The mean I.Q. of the sample, based on either the ACER Junior Nonverbal test or the ACER revision of the 
Jenkins Nonverbal test, was 120. The approximate mean mental age of the younger sample would therefore be 
10.6 and for the older sample would be 12.4. 

Systems used. The systems used in Table 6 were employed. The level of cognitive system required at each 
phase for system C and system D is shown in Table 7. 
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The explanation of cognitive system levels required in SST and OAT is the same as in Experiment 1. 
However, in the system C condition CST requires that operator 1 be distinguished from operator 3, which can be 
done by considering two items jointly. For instance, if a cue card means to go from red to brown and brown to 
red it must represent operator 3, because this is the only operator which matches these two actions. The symbol 
system required then is essentially the same as for the level 2 task in Experiment 1. 
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color, cue  * cue  * cuex x x cue y  
FIGURE 22 

 
In the system D condition however operator 2 must be distinguished from operator 1, and this can only be 

done by considering three items jointly. For instance, if a cue card means to go from red to brown, brown to 
purple, and purple to red it represents operator 2, whereas if it means to go from red to brown, brown to purple, 
and purple to gold it represents operator 1. Matching a composition of three operators to three cue cards requires 
a symbol system which is equivalent to a ternary operation. The cognitive system required could be represented 
by diagrams in Fig. 22. 

Procedure. The procedure was basically the same as in Experiment 1. Each participant was given two 
problems of SST, two problems of OAT, and five problems of CST. A transfer task was unnecessary because 
there are 720 possible arrangements in this task of which only 12 are correct. There is therefore only a very small 
probability of obtaining a correct arrangement by chance. The number of sessions required varied from 5 to 10, 
and the length of sessions varied from 15 to 30 min. 

 
TABLE 7 

Level of Cognitive System Required in Each Phase of Experiment 2, for Each Task System 
 

 Phases 
 

 SST OAT CST 
 

System C No cognitive Level 1 cognitive Level 2 cognitive 
 system required system required system required 
 
System D No cognitive Level 1 cognitive Level 3 cognitive 
 system required system required system required 

 
 

On the first SST problem, participants were trained for six blocks of 16 trials or until criterion of 10 error-free 
trials occurred, and on the second SST problem they were trained for a maximum of four blocks of 16 trials. In 
OAT four blocks of trials were used, and six blocks in CST. 

In this experiment it is possible to use the procedure of making participants' initial house placements wrong in 
CST problems with the C and D systems. For example, suppose that a problem began with a red house at p, and a 
triangle cue card which meant to go from red to brown. If the child placed the brown house at q, he/she would in 
effect by hypothesizing that triangle represented rule 1. For that problem then, triangle would be made to 
represent rule 2 or 3, depending on the condition to which the participant was assigned. 
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Results 
 

Participants were given one point for each CST problem on which criterion was reached. 
Both age groups obtained perfect scores in the system C condition, but in the system D 
condition the mean number of successful problem attempts was 2.70 for the 8.0-9.5 age group 
and 4.60 for the 9.6-10.11 age group. Analysis of variance of these scores showed a 
significant effect of age, F(1, 36) = 7.65, p < 0.01, a significant effect of level, F(1, 36) = 
15.44, p < 0.001, and a significant interaction, F(1, 36) = 7.56, p < 0.01. There was a perfect 
correlation between reaching criterion and making a correct arrangement. 

An analysis of the other phases was carried out for the sake of completeness. In SST the 
only significant effect was for problems; F(2, 72) = 3.68, p < 0.05, in errors, but this effect 
was not significant for trials. The mean errors were: Problem 1, 1.58; Problem 2, 1.03; 
Problem 3, .83. The SST phase of the first OAT problem is able to be included in this analysis 
because it is effectively continuous with the SST procedure. In OAT there was a significant 
effect of problem number on trials, F(1, 36) = 7.50, p < .01, but not on errors. The mean trials 
were: Problem 1, 15.3; Problem 2, 14.08. The effect of age and level were nonsignificant for 
both errors and trials. Thus there were no consistently reliable effects in the first two phases. 
All participants reached criterion on all SST and OAT problems. 

Seven of twenty 8.0-to-9.5-year-old children had digit spans of six or more, whereas fifteen 
of twenty 9.6-to-10. 11-year-old children had spans of six or greater. This difference is 
significant χ2(1) = 6.46, p < 0.02. The biserial correlation between digit span of six or more 
versus a span of less than six and number of CST problems on which criterion was reached is 
0.74, df = 18, p < 0.01. When age is partialled out this becomes 0.64, df = 17, p < 0.01. 

An attempt was made to probe further the subjects' strategies on the level 3 task, in order to 
obtain information relevant to the question of why failures occurred at this level. The 
appropriateness of subjects' attempts to rearrange the houses when they changed hypothesis 
was analysed. An arrangement was considered to be appropriate if, on changing hypothesis, 
the subject rearranged all relevant houses in a way which was consistent with the three 
preceding trials which provided relevant information. In most cases this was in fact the three 
immediately preceding trials, but it occasionally happened that there was one uninformative 
trial in the last three, in which case this trial was ignored and the three preceding informative 
trials were considered. 

The mean number of problems on which an appropriate arrangement was made by the 8.0 
to 9.5 age group was 0.8 and by the 9.6 to 10.11 groups was 2.7, t(18) = 2.94, p < 0.01. Thus 
when the appropriateness of the rearrangements made by participants is taken into account, 
the younger age group has a very low level of performance on the level 3 task. 

This finding is consonant with an observation which was made during training. Some of the 
participants appeared to use a strategy of simply changing operators if they were not 
succeeding on the task. This is a way of achieving a correct arrangement, and thereby 
reaching criterion for the problem, while circumventing the need to apply a level 3 cognitive 
system. This strategy would not however result in rearrangements which were appropriate as 
defined above. Therefore the scores of appropriate rearrangements are probably a truer 
reflection of the absolute levels of success achieved by the two age groups. On this reasoning 
success would be virtually negligible for the 8.0-9.5 age group. 

 
Discussion 
 

The predicted interaction between age and system level is again observed. The point at 
which children become capable of using level 3 cognitive systems is predictable from 
memory span requirements derived by Method 1 insofar as it is associated with a digit span of 
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six chunks. Experiments 1 and 2 are therefore consistent in showing that memory span 
requirements of commutativity checking are best predicted by Method 1. 

The finding of the predicted age by level interactions is made more significant by the fact 
that two recent studies (Brainerd, 1977; Mpiangu & Gentile, 1975) have shown that 
interactions predicted by Piagetian theory are not in fact observed. In both cases if was found 
that the expected interaction between cognitive developmental stage, measured in terms of 
Piagetian concrete operational performance, and ability to profit from training in further 
concrete operational tasks was not observed if appropriate tests were used. 

The absolute level of performance of the younger group on the level 3 task is fairly high, 
but this could be achieved partly by the strategy of simply switching operators, as explained 
previously. When the appropriateness of rearrangements accompanying the switch is taken 
into account this age group achieved only 0.8 correct problems out of 5, compared with 2.7 
for the older group. Since this measure eliminates correct solutions achieved by switching, it 
probably provides a fairer indication of the absolute level of performance of the two groups. 

 
RELATION OF THEORY TO EXISTING LITERATURE 

 
In this section we will consider how the theory relates to certain topics in the contemporary 

cognitive development literature. We will also consider two topics, conditional discrimination 
and oddity learning sets, which have not been previously considered within cognitive 
developmental stage theory, because the current theory is able to generate some new 
predictions concerning them. 

 
Relationship to Work of Pascual-Leone and Case 

The theory offered differs from that proposed by Pascual-Leone (1970) and Case (1972, 
1974) in the amount of information which it regards as necessary for the attainment of each 
level. A more important difference however is in the way information-processing limitations 
operate. Case and Pascual-Leone consider that the representations themselves occupy “central 
computing space,” which is equivalent to a type of working memory. That is, working 
memory must be capable of holding all the chunks necessary to represent the task. The 
present theory, by contrast, provides for the task elements to be mapped into isomorphs stored 
in LTM. Demands are made on STM in order to ensure that this mapping process is consistent. 
Thus STM limitations operate on the consistency checking process, rather than on the 
representational process as such. 

This difference implies that the information-processing limitations postulated by the 
present theory will operate only where it is necessary to check the consistency of a 
representation. Where a person already knows how to represent a task, there will be no need 
to check consistency and the limitation will not operate. Thus the STM limitation will act as a 
kind of “gate” through which the person must pass when acquiring a new concept, or when 
first learning to represent a situation. By contrast, Pascual-Leone and Case postulate that 
central computing space limitations will operate whenever a task is performed. The 
information processing requirements of a task may be modified by experience (e.g., through 
chunking), but the limitations continue to operate in some form, whereas in the present theory 
they do not. 

 
Relationship to Piaget's Theory 

In an overall sense, there is a clear correspondence between Piaget's four major stages and 
the four levels defined here. Piaget (e.g., 1950) has always insisted that the sensorimotor stage 
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differed from later stages in that the former was devoid of symbolic representation. Level 0 as 
defined here is also a stage without symbolic representation. 

In their more recent work Piaget and his collaborators have argued that the preoperational 
stage is defined in terms of function logic (e.g., Piaget et al., 1968). There are considerable 
differences between the way they define functions and the mathematical definition given here, 
and the complex methods used by Piaget et al. to investigate function logic seem in some 
cases to demand far more than the understanding of a univariate function. Nevertheless it is 
worth noticing that there is some correspondence between the present definition of level 1 
concepts and Piaget' s definition of preoperational thought in this respect. Piaget has also 
argued that preoperational children can cognize one (binary) relation at a time, but cannot 
coordinate relations (e.g., Piaget, 1950). This also is quite consistent with level 1 thinking as 
defined in the present theory. 

One type of level 1 concept which Piaget does not appear to have considered is the unary 
operator. Indeed there is one performance, which appears to involve a unary operator, which 
has often been regarded as an embarrassment to Piagetian theory. This is the finding by Berko 
(1958) that preschoolers understand elementary grammatical transformations, such as 
singular-plural, positive-negative, past-present, etc. Although we cannot consider the complex 
problems of grammatical development here, it is worth noticing that these simple rules, taken 
alone, can be expressed as unary operators. To this extent then Berko's finding is consistent 
with the present theory. 

Piaget has defined concrete operational thought in terms of his theory of groupings (see 
Baldwin, 1967, for a lucid explanation). However, Osherson (1974) and Sheppard (1978) 
have argued convincingly that the theory of groupings is unworkable. However, many of the 
tasks which Piaget uses as indicators of concrete operational thought really correspond to 
binary operations. Transitivity, a concrete operational performance, is a partial binary 
operation as we have already pointed out. Piaget's class inclusion task depends at least partly 
on disjunctive classification, the truth table for which has the form of a binary operation. The 
task which Piaget calls multiple classification depends on conjunctive classification, which is 
another binary operation. Since all concepts which have the form of binary operations are 
level 2 tasks in terms of this theory, then there is considerable correspondence between level 2 
thought and Piagetian concrete operational thought. 

It should however be noted that the minimum age at which children are predicted to be 
capable of acquiring level 2 concepts is 2 to 3 years lower than the age at which Piaget 
believes children acquire concrete operations. On the other hand the recent literature contains 
many studies which strongly suggest that children have, or can acquire, concrete operational 
concepts from the age of 5 years. For instance, Gelman (1978) has suggested that most 
children used in Piagetian concrete operational training studies probably already have the 
concept in covert form when training begins. Since most training studies use children between 
4.5 and 7 years, this would suggest that concrete operational concepts are available at this age. 
To the extent that concrete operations involve level 2 reasoning, this would be consistent with 
our theory. 

Piagetian formal operational theory is based partly on the idea of relations between certain 
logical operations. For instance, Piaget (1957) contends that formal operational children 
understand the 16 binary operations of propositional logic, and can relate one operation to 
another in a way which conforms to the INRC group. Each element of the INRC group defines 
a relation between binary operational forms: Element I defines the relation of each form to 
itself; Element N relates each element to its inverse; e.g., N(A ∨ B) = not A & not B; Element 
R relates each element to its reciprocal; e.g., R(A ∨ B) = not A ∨ not B; Element C defines a 
relation which corresponds to N*R or R*N; e.g., C(A ∨ B) = A & B. Each element I, N, R, or C 
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is equivalent to a unary operator applied to 1 of the 16 binary operations. The application of a 
set of unary operators to a set of binary operations is tantamount to creation of a system which 
is equivalent to a ternary operation, which is a level 3 system in our terms. To some extent 
then basic formal operational thinking corresponds to level 3 as we have defined it. 

It should be clear however that our argument provides an entirely different theoretical basis 
for stages than does Piaget's theory. The levels we have defined do not depend on logico-
mathematical structures which form part of the inherent structures of the mind, but arise 
because of the problem of relating representations to segments of the environment in a 
consistent way. Stage limitations relate to information-processing limitations, rather than to 
absence of any specific structures. Structure is still important in our theory, but the structures 
are internal representations of environmental systems, stored in LTM, and acquired through 
interaction with the environment. 

 
Understanding of Quantitative Relations  

Bullock and Gelman (1977) have elegantly demonstrated that 2.5-to-4-year-old children 
can represent relations between small sets and can transfer the representation to a new 
problem. The children were first taught to discriminate between one toy animal and a set of 
two small animals. They were then tested for transfer to a discrimination between a set of 
three animals and a set of four animals. The 3-year-olds performed the transfer reliably, as did 
the 2.5-year-olds under certain conditions. This is a clear example of a level 1 cognitive 
system, and can be represented as a commutative diagram, as shown in Fig. 23. 

 

{set of one}

{set of three}

{set of two}

{set of four}

larger

larger
 

 
FIGURE 23 

 
The symbol system consists of an internal representation of the original discrimination, 

which is no longer present in the transfer task, but the essential elements and relationships in 
which are presumably stored in LTM. The environment system consists of the stimuli, a set of 
three, and a set of four, which are present in the transfer task. The relation “larger than” exists 
between the elements of both systems. In order to match the symbol system to the 
environment system, the symbol element {set of one} must be mapped into the environment 
element {set of three}. If this is done then the symbol element {set of two} must be mapped 
into the environment element {set of four}. Commutativity can be achieved by mapping only 
one symbol element into one environment element. Hence the system is level 1, and it is 
entirely consistent with the present theory that it should be available to children between 2 
and 5 years, as Bullock and Gelman (1977) found. 

 
Transitivity  

So far we have talked in abstract terms about the symbol system used in transitivity, but a 
considerable amount of recent research has been devoted to the nature of the actual 
representational process which people employ. Strong evidence has emerged that a common 
form of representation consists of an ordered array, and the evidence for this has been 
reviewed by Trabasso (1975, 1977). Much of this evidence comes from n-term series 
problems, in which participants are shown a set of stimuli, a, b, c, d, e, and are taught that (for 
instance) a > b, b > c, c > d, d > e. Several different lines of evidence converge on the 
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conclusion that such a task is represented as an ordered array, a, b, c, d, e (see Trabasso, 
1975). 

Now we want to relate the ordered array representation to our concept of a symbol system. 
The first point is that an ordered array conforms to the definition of a system. It consists of a 
set on which a function is defined, where the function consists of mapping each element in the 
system into every element smaller than it: a → b, a → c, ... , d → e. If the system was defined 
only in terms of relations between each element and every other element, it would be level 1, 
but compositions of relations are also defined in the system. For instance, the relation aRb and 
bRc are defined, but so is the relation aRc; therefore it is possible to read off from the system 
the fact that the relation aRc corresponds to the composition of aRb and bRc. A system on 
which a composition of binary relations is defined is a level 2 system, as defined earlier. 

In effect an ordered array incorporates the transitivity principle, because transitivity of an 
asymmetrical relation is the defining property of an ordered set. Since transitivity is a partial 
binary operation, it is a level 2 system, so from this point of view too, an ordered array is a 
level 2 system. 

Several points can be made from these considerations. The first is that our characterization 
of a level 2 system as a set of mappings of the form S,S → S or E,E → E specifies a general 
structural property belonging to a class of systems, but there are numerous symbolic and 
environmental systems which might conform to this definition. On the other hand, once the 
particular representation used to solve a problem is known, and can be expressed clearly as a 
set of mappings, there is no difficulty about deciding the level to which it belongs, provided 
of course only one kind of mapping is involved. For instance, an end-anchor representation of 
an n-term series problem might be expressed as A → a, A → b, A → e, where A is the end 
anchor and a, b, ... , e, are the task elements. In this case each element is defined by a single 
binary relation, its relation to the end-anchor, and the system is level 1. It is doubtful whether 
any adult participants ever use the end-anchor representation exclusively, but there is 
evidence that it is used in combination with other representations under certain conditions 
(see Trabasso, 1975). 

A further point concerns the age at which the ordered array representation can be used. 
Trabasso (1975) has argued that the findings of research on n-term series representations 
argue against cognitive developmental stage theory because all age groups from 6 years to 
adulthood use the same representation. Since however an ordered array is a level 2 system, 
and should be available to children over 4.5 years, this is precisely what we would expect in 
terms of the current theory. What we should not expect is that the same representation would 
be used by children under 4.5 years, because a level 2 system should be beyond the capacity 
of average children below this age. 

There is evidence that 4-year-olds do solve n-term series problems, but there is also 
evidence that they do not use an ordered array representation, but instead use a type of 
labelling representation (DeBoysson-Bardies & O'Regan, 1973). More importantly perhaps, 
most of the studies which have investigated the representation used in n-term series problems 
have used participants over 5 years of age (Trabasso, 1975). What is needed is an extension of 
this research to children under 4.5. The present theory predicts that evidence will not be found 
for ability to use ordered array representations in this age range, provided children of superior 
intelligence are not used. 

 
Seriation  

Seriation is a performance in which children are required to order a set of objects. 
Transitivity with asymmetry is the defining property of an ordered set. If the ordering relation 
is already given, then transitivity is the only requirement to be met. Since, as we have already 
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shown, transitivity is a level 2 system, then seriation should be a level 2 performance also. 
Seriation may be thought of therefore as an application of the transitivity concept. On the 
other hand seriation may be easier, as some evidence suggests that it is (e.g., Murray & 
Youniss, 1968; Youniss & Dennison, 1971; Achenbach & Weisz, 1975) because the child is 
aided by an image of the seriated set, as with a set of rods varying in height. Where such 
imagery is precluded, as with the hidden stick seriation task (Baylor & Leymoyne, 1975), the 
age of mastery is considerably higher. At the least, seriation requires the coordination of two 
relations, and a composition of two relations is a binary operation, and therefore a level 2 
system. Furthermore, it appears to be precisely in this area of coordination of relations that 
preschool children tend to go wrong, which is quite consistent with the view that they can 
apply a representation of only one relation to the task, as this theory would predict. 

 
Conservation  

While we are wary of seeming to oversimplify the complex and subtle problem of 
conservation, we would like to indicate how it might be conceptualized within the framework 
presented here. Basically conservation may be seen as a matter of recognizing that a particular 
class of transformations (such as pouring liquid from one vessel to another, rearranging 
elements of a set, etc.) is quantity conserving in character. Furthermore, such recognition must 
take place in the absence of supportive, direct evidence, since the evidence from the 
immediate situation is either inadequate or misleading. 

There are really three classes of transformations which may be applied to quantities: 
conserving transformations, which neither add nor remove anything; addition transformations, 
which increase quantity; subtraction transformations, which decrease quantity. In some cases 
it is difficult to tell the class to which a transformation belongs from its immediate effects; 
e.g., a conserving transformation may appear to increase quantity, etc. However an incorrect 
interpretation of a transformation will lead to inconsistencies in the long term. For example, if 
we incorrectly conclude that a transformation, which was really conserving in character, 
increased quantity, then sooner or later we will find that the amount we have is not consistent 
with its having been increased by that transformation. This is because, if any transformation 
does in fact increase a quantity, then that quantity must be more on all future occasions than it 
would have been if that transformation had not been performed. If it is not more, then the 
transformation cannot have been an addition transformation. 

Now we will consider a possible conceptualisation of quantity which would permit such 
inconsistencies to be detected. Basically, we can consider quantities as collections of units 
added together. This receives some psychological justification from evidence by Bearison 
(1969) that teaching children to regard quantity as composed of units tends to induce 
conservation. Therefore we might conceptualize quantity as a set of units, or elements, on 
which an addition operation is defined, as shown below. 

 

Q, Q Q
!

q, q q
!

i " i i 

 
FIGURE 24 

 
If we consider a quantity dimension consisting of quantities qa, qb, ..., qn, then we define an 

addition operation qa, qb, →γ qab. If we define symbols representing quantities by Qa, Qb, ..., Qn, 
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then recognition that quantities are composed of other quantities added together can be 
expressed by the addition operation: Qa, Qb, →γ Qab. The operation γ is a stored set of 
mappings of units into their sums; i.e., it represents the knowledge that quantity is composed 
of units which combine additively. The interpretation of a quantity-problem situation would 
then correspond to the diagram in Fig. 24. 

 

Q  , Q Q
!

q  , q q
!
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FIGURE 25 

 
A quantity-conserving transformation would be equivalent to adding nothing, so a quantity-

conserving transformation applied to a quantity qa, would be represented by qaq0 →γ qa,. A 
conservation performance would then be represented by the diagram in Fig. 25. 

A non-conservation performance would correspond to the diagram in Fig. 26. Thus a non-
conservation performance corresponds to a diagram which does not commute. In effect the 
non-commutativity of the cognitive system is equivalent to asserting that there is an 
inconsistency between quantities as they exist in the environment, i.e., as an additive system 
of units in which the specific class of transformation q0 is conserving, and the person's 
interpretation of the observed transformation as an addition transformation. 
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FIGURE 26 

 
Dimension-Abstracted Oddity Learning Sets  

It is possible to show that, provided certain criteria outlined below are met, the dimension-
abstracted oddity learning set task would be level 2 according to the theory. An oddity 
problem, reduced to its minimal components, has three stimuli, two of which are the same on 
one dimension and one is different. We will call these S1, S2, and O. The oddity concept 
consists of three elements which are defined by their relations to the other elements as 
follows: S1 is the same as S2, and vice versa. The odd element, O, is defined as different from 
S1 and different from S2. Each relation between any element and any other element is a binary 
relation; that is, the relations same as and different from can be written as sets of ordered 
pairs. The oddity concept is defined as a composition of these two relations; i.e., it must be 
composed of a set of stimuli which are the same as other stimuli, plus one stimulus which is 
different from the others. A problem in which all the stimuli were the same or all different 
would not be an oddity problem. Since a composition of binary relations is mathematically 
equivalent to a partial bivariate function, then the oddity concept is level 2. 

If a person has an internal representation of the oddity concept, he/she can decide which is 
the odd object on the first trial of a new problem. For example, if the three stimuli of a 
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problem consist of two circles and a triangle, then triangle can immediately be selected as 
odd. Notice however that, in this simple problem, it is possible to adopt a simpler mode of 
solution. If we know in advance that every problem contains two identical stimuli and one 
different stimulus, then any stimulus which is different from the other two is odd. The choice 
can be made by considering only one relation, which can be expressed as a set of ordered 
pairs as follows: d = {(triangle, circle 1), (triangle, circle 2)}, where d is the relation of 
difference between the triangle and the two circles. This discrimination is based on a single 
binary relation, and accordingly would become a level 1 task. 

It has become the practice in the literature therefore to use two dimensions in order to force 
choice on the basis of the oddity principle. This is the familiar dimension-abstracted oddity 
problem, an example of which could be constructed by using the following stimuli: red circle, 
blue triangle, green triangle. This prevents selection of the odd object by considering only one 
difference relation. For instance, green triangle differs from blue triangle in colour, but green 
triangle is not the odd object in this set. Since all the stimuli differ in colour, this dimension 
does not define the odd object. However, since two of the stimuli are the same shape and one 
is different, oddity is defined in terms of the shape dimension, and circle is therefore the odd 
object in the set. The dimension-abstracted oddity problem therefore forces the participant to 
select the odd object by considering both the same and difference relations. It therefore 
requires a level 2 cognitive system, as we will show below. 

The oddity concept can be conveniently expressed as three elements, with arrows between 
them representing the same and difference relations, as shown in Fig. 27. This system can be 
mapped into either dimension of any oddity problem. If it is mapped into the dimension which 
defines oddity for that problem, a consistent match is obtained. This is illustrated in Fig. 27a, 
where the system defining the oddity concept is mapped into the shape dimension in the 
example given below. If the system is mapped into the irrelevant dimension (i.e., the one 
which does not define oddity), then no consistent match can be achieved. This is illustrated in 
Fig. 27b, where the system is matched into the colour dimension of the same example. In this 
case the relations in the symbol system sometimes correspond to those in the problem, but in 
other cases they do not, so the mapping is inconsistent and the cognitive system does not 
commute. 

It follows from the argument in this section that correct first-trial performance on a 
dimension-abstracted oddity learning set task should be subject to the same age constraints as 
other level 2 tasks; i.e., it should not be achieved before 41/2 years in average children. This 
specific prediction does not appear to have been tested in the literature. It is perfectly testable 
however, but there are two precautions which should be observed. 

The first is that the relevant dimension must vary from problem to problem in learning set 
training. If this is not done the irrelevant dimension may be ignored later in training. The 
result would be that, if participants attend to only the relevant dimension, the odd object can 
be selected by considering only one relation, as described above for simple, unidimensional 
oddity problems, which would reduce the task to level 1. The second precaution is that the 
practice of placing the odd object on either the left or the right, with the centre stimulus 
position never being odd, must not be used. The odd object should vary randomly over all 
three stimulus positions from trial to trial. If the centre position is never odd, it is again 
possible to adopt a simpler mode of solution. This is because, with such a procedure, it turns 
out that any stimulus which is different from the centre stimulus is necessarily odd, which 
means that it can be selected by considering only one relation, again reducing the task to level 
1. Provided these precautions are observed, the theory does predict that the minimum age of 
attainment of the oddity concept, as measured by correct first-trial performance on dimension-
abstracted oddity learning set tasks, will be as for other level 2 tasks. 
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Conditional Reaction Learning Set  

Another performance which would require a level 2 cognitive system would be first-trial 
transfer in a conditional reaction learning set. Normally a conditional reaction task consists of 
two binary stimulus dimensions, with responses assigned to stimuli so that a1, b1 → R+, 
a1, b2 → R–, a2, b1 → R–, and a2, b2 → R+. This concept is clearly level 2 since it has the form 
of a binary operation. Once this scheme has been learned it is possible to perform perfectly on 
the first trial of a new problem after feedback has been received for one item of that problem. 
Suppose for instance that the stimulus values of a new problem are red, green, triangle, and 
square. Once it is found that, for instance, red triangle is positive, it follows that red square 
and green triangle must be negative, while green square must be positive. In order to 
demonstrate that the child has the system, first-trial transfer to a new problem would have to 
be significantly higher than could be achieved with a less complex rule. Selection of an 
appropriate baseline against which to measure transfer is therefore important. 

Gollin and Liss (1962) and Gollin (1964, 1965, 1966) have studied the conditional reaction 
problem with children, and found that preschool children had difficulty learning it. 
Nevertheless with special “help” procedures 3- and 4-year-olds did succeed in some cases, 
and even showed some transfer. However no baseline was used and the absolute level of 
transfer is not reported in detail. It does not appear that transfer was sufficient to demonstrate 
that the children were applying a representation of the conditional reaction concept to the 
transfer tasks. 

 
CONCLUDING COMMENTS 

 
We have provided what amounts to a new formulation for cognitive developmental stage 

theory. The basis of the formulation is that symbolic representations may be defined in terms 
of three formally distinct levels of systems. We have also argued that the use of symbolic 
representations requires the internal representation, or symbol system, to be mapped into a 
problem in a way which is consistent, defined by a commutative diagram. The process of 
insuring commutativity imposes higher information-processing loads with higher-level 
systems than with lower-level systems, and we suggest that this factor may limit the highest 
level of systems which children can use in problem solving. Some empirical work which 
supports this argument is presented. 

In effect the argument defines a dimension of task difficulty, system level, which 
corresponds in certain respects to those cognitive developmental stages which have already 
been observed. The theory is not limited however to explaining preexisting phenomena on an 
ad hoc basis, and we have illustrated this both by means of a new empirical paradigm, and by 
predicting as yet unobserved constraints on learning in the dimension-abstracted oddity and 
conditional reaction learning set tasks. 

No claim is made that the theory incorporates all the characteristics of preexisting cognitive 
developmental stage theories. Indeed, in some respects the stages we have defined are 
decidedly different in character from those of, say, Piaget. One example of this was pointed 
out earlier when we said that stage transitions would not occur abruptly across a whole 
population, but there would be a gradual increase in the proportion of children capable of 
reaching a particular level as age increases. This “gradual” transition is more consistent with 
the data base than is the Piagetian idea of abrupt transitions, because there is more evidence 
for gradual than for abrupt transitions (e.g., Flavell, 1977). The theory is still a stage theory 
however in the sense that formally distinct levels of thought have been defined, the levels are 
rank ordered with respect to difficulty, and should be attained in a sequence which 
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corresponds to this ordering. Furthermore, the approximate minimum age of mastery of each 
level has been predicted. 

Although this article has been addressed primarily to cognitive developmental phenomena, 
we should mention that there may be implications for the issue of symbolic representations as 
well. We have provided a criterion, commutativity, for deciding whether a representation is 
valid or not, and this criterion may find uses in cognitive theory outside the developmental 
area. Although the issue of whether, and how, symbolic representations are used to mediate 
behaviour has a long history in psychology, there has been little attempt to base any such 
arguments on a precise definition of representations. Thus many consequences which 
logically follow from the use of representations have been overlooked. In this article we have 
explored one set of such consequences which happen to be relevant to the cognitive 
development area. There must however be many other consequences which could be derived 
from representation theory, and which could find application in relation to other cognitive 
issues. For that matter, the delineation of levels of thought is a concept whose relevance is by 
no means exclusively developmental. We hinted at wider applications earlier when discussing 
the work of Baddeley and Hitch (1974) where we pointed out that the fact that level 1 
reasoning tasks were used may affect the interpretation of their work. The existence of a 
dimension of task difficulty which corresponds to levels of thought probably has potential for 
wider application in investigations of cognitive processes. 
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