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Abstract 

Water and wastewater treatment systems have key roles in protecting public health. To maintain 

public confidence, techniques are required to quantitatively validate their performance for 

achieving satisfactory water quality and to characterise system reliability. 

Water quality management, especially potable water reuse, is transitioning to a point where 

validation and reliability assessment will be essential. Quantitative validation and reliability 

analyses can assist in determining factors affecting performance, calculating system failure 

probabilities and supporting decision-making. However, current water quality management 

guidelines and practices do not promote validation and reliability assessment tools or methods. 

Research presented in this thesis identifies validation and reliability analysis tools and 

demonstrates their applicability for water and wastewater treatment. Following a review of 

commonly used candidate analysis tools, Bayesian Networks (BNs) and methods were identified 

as very promising for validation and reliability assessment. Applications of BNs and Bayesian 

methods were investigated in six diverse water and wastewater treatment settings (i.e. activated 

sludge, ultrafiltration, ozonation, chlorination, UV disinfection and a multiple barrier system). 

These cases considered a range of issues including evaluation of monitoring parameters for log 

reduction values (LRVs), optimising LRV calculations, system reliability assessment, and multi-

barrier evaluation. These were selected to represent problems and limitations encountered with 

water reuse.  

BNs and Bayesian methods were found to be flexible and applicable to a wide range of cases and 

problems. The tools were shown to be applicable to systems where high levels of assessment and 

understanding of water quality are essential. The findings should now serve as templates to 

facilitate validation and reliability assessment of full scale water reuse applications. 

In conclusion, it is proposed that my findings will be of significant value to the water industry 

and should aid in the further development of potable water reuse, while providing enhanced 

protection of public health to water supply customers.  
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Glossary 

Concept  Definition 

Akaike information criterion  Information-theoretic scoring function, 

which trades off the model’s goodness of fit 

with its complexity (Kjræulff & Madsen, 

2012). 

Application Programming Interface  Set of algorithms and functions for a 

specific application that can be used within 

a different software application. 

Area under the curve  Area Under the Curve for the receiver 

operating characteristic curve (Witten & 

Frank, 2005). 

Bayesian multilayer perceptron  A multilayer perceptron (see below for a 

definition) with parameters determined 

through Bayesian analysis (Vehtari et al., 

2000). 

Bayesian network  Probabilistic graphical models using direct 

acyclic graphs and Bayes’ rule to perform 

inference (Korb & Nicholson, 2011). 

Bayesian network augmented naïve Bayes  Semi-naïve Bayes model. Two or more arcs 

between attributes are allowed. 

Bow-tie analysis  System reliability technique used to model 

causes to an undesired event, preventive 

controls, mitigative controls and 

consequences (IEC/ISO, 2009). 

Copula  Multivariate probability distribution used to 

describe the dependence between random 

variables having fixed marginal 

distributions (Joe, 2014). 
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Deviance information criterion  Metric used to compare Bayesian models. It 

combines a measure of goodness of fit 

(mean deviance) with a measure of 

complexity or penalty term, (effective 

number of parameters) (Lunn et al., 2012). 

Direct potable reuse  Process used to augment drinking water 

supply from sewage without the use of an 

environmental buffer (Khan, 2013).  

Event tree analysis  System reliability modelling technique used 

to model sequential events. It includes an 

initiating event, pivotal events and 

consequences (ISO/TR, 2013). 

Fluorescence excitation emission matrix  Fluorescence intensities generated for 

different combinations of excitation and 

emission light wavelengths (Murphy et al., 

2013). 

Failure modes and effects analysis  System reliability technique to analyse 

failure modes, their consequences and 

controls (IEC/ISO, 2009). 

Failure modes effects and criticality analysis  System reliability technique to analyse 

failure modes, their consequences and 

controls including quantification of events 

(IEC/ISO, 2009). 

False negative rate  Rate of incorrect negative predictions. 

False positive rate  Rate of incorrect positive predictions. 

Fault tree analysis  System reliability modelling technique 

using events and logic gates to find causal 

events leading to a target event occurrence 

(IEC/ISO, 2009).  
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Hierarchical Bayesian model Type of Bayesian model on which 

parameters of the likelihood are treated as 

random variables with their own set of 

priors. 

Indirect potable reuse  Process used to augment drinking water 

supply from sewage with the use of an 

environmental buffer (Khan, 2013). 

Kappa statistic  Measures the agreement between model 

predictions and actual values as a metric in 

the range [-1,1] (Marcot, 2012). 

Layers of protection analysis  System reliability modelling technique used 

to model sequential events. It includes an 

initiating event, independent barriers and 

consequences (IEC/ISO, 2009). 

Log-likelihood  Measures how well the data fit each model. 

LRV  Log reduction value (or Log removal value). 

Mapping  Encode or transform a method using a 

different methodology. 

Markov analysis  Stochastic modelling technique used to 

model dynamic transitions between system 

states (IEC/ISO, 2009). 

Markov chain Monte Carlo  Simulation technique used to calculate 

complex integrals. Usually used within 

Bayesian analysis to calculate posterior 

distributions (Ntzoufras, 2011).  
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Multilayer perceptron Type of neural network composed of layers 

of neurons (elements that generate a 

transformation of the inputs) with an input 

layer, at least one hidden layer, and an 

output layer. In these models the inputs of 

the neurons in one layer come from the 

outputs of neurons in a previous layer. 

Neurons in one layer are connected to the 

previous layer through weighted 

connections (Priddy & Keller, 2005). 

Naïve Bayes model  Type of Bayesian network used for 

prediction in which the target node is the 

parent of all other nodes. This type of model 

does not assume any type of prior 

understanding of how the system works. 

Bayesian model  Mathematical model using prior 

distributions for parameters and Bayes’ rule 

to obtain posterior parameter distributions. 

Parallel factor analysis  Statistical technique used to decompose 

tridimensional data and derive independent 

underlying signals (Murphy et al., 2013).   

Receiver operating curve  Plot showing the relationship between the 

false positive rate (or 1-specificity) and the 

true positive rate (or sensitivity) for various 

decision thresholds (Witten & Frank, 2005). 

Region of practical equivalence  Small range of parameter values that are 

deemed to be equivalent to the null value 

when used in a particular application. Used 

for hypothesis testing during Bayesian 

analysis (Kruschke, 2014).  
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Reliability  Probability for an item to perform a required 

function under given conditions over a time 

interval (ISO, 2013a). 

Reliability block diagram  System reliability technique in which 

various system configurations can be 

analysed. It uses blocks and connections to 

depict the system (IEC, 2008). 

Reliability centred maintenance  System reliability technique used to reduce 

maintenance costs (IEC/ISO, 2009). 

Risk  A set of triplets comprising: 1) a scenario, 2) 

likelihood of that scenario and 3) 

consequence or measure of damage (Kaplan 

& Garrick, 1981). 

Semi naïve Bayes model  Type of Naïve Bayes model in which arcs 

between non-target nodes are allowed. 

Soft systems  These elements are used to capture high 

level interactions. They may incorporate 

organisation culture, resources, processes, 

and procedures (Fenton & Neil, 2012). 

Tree augmented naïve Bayes model  Type of Naïve Bayes model in which at 

most one arc between non-target nodes is 

allowed. 

True negative rate  Rate of correct negative predictions. 

True positive rate  Rate of correct positive predictions. 
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Uncertainty In a risk assessment context uncertainty 

relates to the lack of data or incomplete 

understanding of a phenomenon (Aven, 

2012). In a Bayesian modelling context 

uncertainty is reflected in the prior and 

posterior distributions of model parameters 

(Ntzoufras, 2011). 

Validation  Analysis used to ensure that a treatment 

system is performing adequately (ISO, 

2005). 

Variability  Variability relates to heterogeneity of data 

during an analysis. It cannot be reduced by 

further observations (Aven, 2012). 

Waikato Environment for Knowledge 

Analysis 

 A specific software package for Machine 

learning. 

Water reuse  Use of treated sewage for a purpose 

different from discharge to the environment. 

Uses can be for potable or non-potable 

applications (Khan, 2013). 
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Chapter 1: Introduction 
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1.1 Background 

The use of reclaimed water for augmentation of drinking water supplies is associated with 

potential exposure to water quality hazards including pathogenic subtsances in raw source waters. 

Potentially increased exposure to such hazards requires assessment and management of associated 

risks (see Table 1-1 for a detailed definition of the concept). Consequently, risk management has 

become a fundamental component within a number of international guidelines for water reuse 

(NHMRC et al., 2006; WHO, 2006; Health Canada, 2007).  

A key objective of water reuse treatment systems is to ensure that sufficient treatment is provided, 

often through the use of multiple barriers, to manage health risks to acceptable levels, particularly 

in respect to pathogens. Each of the multiple barriers contributes to the overall system removal of 

the targeted pathogens. The implemented technologies, their organisational functioning and 

interaction, and the impacts from external sources, such as environmental conditions all play a 

role in determining the overall treatment performance and reliability (see Table 1-1 for a detailed 

definition of the concept) (Figure 1-1). Performance and reliability requirements are also 

dependent upon the location of the system and the final intended use of product water. For 

example, Californian water reuse standards currently require treatment trains to achieve ≥12 log 

removal of enteric viruses from raw wastewater to drinking water (California Office of 

Administrative Law, 2017).  

Analysis of reliability in treatment processes can be considered as part of the risk assessment 

framework and involves understanding the interactions between the key operational parameters 

in the system. In this way, process performance can be monitored and the impact from system 

conditions can be evaluated. Although the mechanisms of removal are generally known, they may 

not always be able to be directly measured due to the lack of suitable (and affordable) analytical 

technologies. However, indirect measurements are often possible and these can be related to 

removal efficiencies by inference and statistical analysis. For example, pressure decay tests have 

been related to the performance of microfiltration membranes for protozoan removal (USEPA, 

2005).  
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Table 1-1: Key definitions for validation, risk and reliability 

Term Definition 

Validation This concept is defined as “confirmation, through the provision of objective 

evidence, that the requirement for a specific intended use or application have 

been fulfilled” (ISO, 2005). Validation is central to the approval and 

commissioning of reclaimed water treatment systems. The following 

definition of this concept relates to water treatment: “validation of processes 

is required to show that treatment processes can operate as required1. It can 

be undertaken during pilot stage studies, during initial implementation of a 

new or alternative water treatment system and is a useful tool in the 

optimisation of existing treatment processes” (WHO, 2005). From the point 

of view of pathogen removal performance, validation has also been defined 

as “the process of demonstrating that: 1) a treatment system can produce 

water of the required microbial quality under a defined range of operating 

conditions and 2) the system can be monitored in real time to provide 

assurance that the water quality objectives are being continuously 

met”(VDoH, 2013). 

Risk Many definitions of risk have been proposed depending on the context. A 

general definition describes risk as the “effect of uncertainty on objectives” 

(ISO, 2009). Risk has also been defined as a set of triplets comprising: 1) a 

scenario, 2) likelihood of that scenario occurring and 3) consequence or 

measure of damage if/when the scenario does occur (Kaplan & Garrick, 

1981). In a drinking water management context, risk has been defined as “the 

likelihood of identified hazards causing harm in exposed populations in a 

specified timeframe, including the magnitude of that harm and/or the 

consequences” (WHO, 2005). 

Reliability As in the case of risk, reliability has been the subject of multiple definitions. 

Reliability can be defined as the “probability for an item to perform a required 

function under given conditions over a time interval” (ISO, 2013a). For water 

treatment, the reliability concept has been defined slightly differently. In this 

                                                      
1 i.e. reliably 
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Term Definition 

context, reliability has been described as “the percentage of time at which the 

expected effluent concentrations comply with specified discharge standards 

or treatment targets” (Niku et al., 1979; Oliveira & Von Sperling, 2008). In 

accord with this latter definition, but considering risks, reliability has also 

been defined as “the ability of a water treatment system to provide water that 

consistently meets or exceeds the public health protection standard” (Pecson 

et al., 2015). 

One of the key current drivers for studying reliability in water treatment processes is an increased 

interest in direct potable reuse (DPR). In recent times, there has been a growing interest in DPR 

especially in the United States of America, Australia and South Africa which has led to an 

increasing research on its application on a larger scale (Khan, 2013). However, because DPR does 

not incorporate an environmental buffer as in indirect potable reuse, any available “time to 

respond” to failures is significantly reduced. Therefore, it is of paramount importance to 

understand and manage the system reliability and levels of risks in general and to validate such 

systems with these requirements in mind. 

Uncertainty and variability are key features of both water treatment performance and reliability 

monitoring data. Consequently, it is essential for risk assessment to effectively account for them. 

Validation (see Table 1-1 for a detailed definition of the concept) of systems can be viewed as the 

assessment of reliability by quantifying the frequency with which a system is performing within 

its intended operational boundaries and the expected pathogen removal is effectively achieved. 

Validation assessment is increasingly undertaken using models incorporating a variety of input 

data and expert opinion. 

Correct model representation is crucial for an adequate assignment of credits for pathogen 

removal. For example, in systems which operate parallel subsystems such as ultrafiltration 

“skids”, individual processes may be deemed as equal, dismissing any differences due to impacts 

of continuous operation. Alternatively, considering these systems as related but not equal would 

increase the variability of the predictions needed and increase uncertainty when only limited 

observations are available for some units.  

Reliability might also incorporate hardware, software and human reliability aspects affecting a 

determined outcome such as water quality related to pathogens. Although these three aspects of 
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reliability assessment are all influential, hardware, especially sensor performance is particularly 

crucial for a correct functioning of water treatment systems.  

Based on my reading of these issues and concepts a problem framework was developed (Figure 

1-1). This scheme shows how the various factors were initially seen as interacting within the 

context of reliability assessment with factors within a common block most likely to interact with 

each other. The top block represents the three major influences controlling the reliability of a 

system (i.e. system characteristics, environment and organisation) (Jackson, 2017). They in turn 

influence reliability domains within a system including hardware, software and human reliability 

(Jackson, 2017). These reliability domains further impact performance by establishing the 

conditions under which a system works.  

Securing a high level of process performance for water quality involves the application of a 

number of operational monitoring and process control measurements (Hamilton et al., 2006). 

Validation ensures the correct system functioning and removal performance, comprising efficient 

operational monitoring and process control. The aspects considered in this lower block provide 

information which is used as feedback for the factors impacting reliability and the overall 

reliability of the system. At every level of this scheme, appropriate tools for describing, 

quantifying and assessing the system are needed to support the management framework. 

 

Figure 1-1: Schematic diagram of the factors affecting reliability and their quantification 
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Statistical assessment, including the application of a variety of machine learning tools have 

previously been applied for process control and monitoring (Toifl et al., 2010; Haimi et al., 2013). 

However, only a few of them deal with pathogen removal. Additionally, a number of reliability 

tools exist to analyse systems and interactions between system components in a probabilistic 

fashion. These tools have been successfully applied in many other areas such as aircraft and 

nuclear industries (Dhillon & Balbir, 1999; Keller & Modarres, 2005; Liu et al., 2012a). However, 

only limited studies exist which assess the association between operational parameters, system 

state conditions and microbial removal in water reuse systems. Limitations related to water reuse 

applications include limited data and unknown (or poorly characterised) interactions between 

system variables. Therefore, analysis of reliability for water reuse systems should appropriately 

deal with these shortcomings.  

This study focused on the evaluation of potential tools for informing the risks and reliability status 

of water treatment systems increasing used for water reuse. The experimental and modelling work 

presented in this thesis concentrated on the quantitative assessment of performance and the 

impacts associated with system conditions. Methodology was developed to apply validation and 

operational monitoring data to constructing and informing the models. In this thesis a variety of 

terms are used which may be unfamiliar to some water scientists or engineers. To address 

potential ambiguity, an extensive Glossary is provided (see page 34). The thesis concludes with 

an assessment of the major findings and recommendations for future work. 

1.2 Formal research objectives  

The overall aim of this research project was to identify and select potential tools for reliability 

assessment. This aim would require an evaluation and demonstration of their utility for water 

reuse applications related to the validation of pathogen removal performance and process 

reliability estimation. A central assessment criterion was that these tools should be capable of 

analysing multivariate systems in a probabilistic fashion. Also, they should be able to include 

expert information and assess uncertainties explicitly. To address these overall objectives, a 

literature review was first undertaken to identify candidate tools, followed by diverse validation 

case studies, focused on a range of important water reuse treatment processes. The performances 

of these processes were assessed using the identified most promising tools. The following specific 

aims were addressed in the review and experimental and modelling parts of the thesis: 

• Identify, evaluate and compare various risk and reliability techniques for water reuse 

processes. 

o Literature review (Chapter 2) 
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• Identify and assess operational parameters affecting the reliability of removal of 

microorganisms and evaluate potential surrogate parameters. 

o During activated sludge treatment (Chapter 4) 

o During ozonation treatment (Chapter 6) 

• Analyse the validation data of systems to improve prediction of performance reliability 

and develop a method applicable to treatment systems with parallel subunits. 

o For ultrafiltration systems (Chapter 5) 

• Explore improving incorporation of uncertainty into pathogen removal efficiency 

estimation and promote reliability assessment. 

o For chlorination (Chapter 7) 

o For ultrafiltration (Chapter 5) 

• Quantify the reliability of a water reuse system using expert knowledge. 

o During UV disinfection (Chapter 8) 

• Develop and assess a method to analyse reliability in multi-barrier water reuse systems. 

o During advanced water treatment systems (Chapter 9) 

• Synthesise the main findings of this research and propose recommendations for future 

work. 

o Conclusions and future work (Chapter 10) 

1.3 Overview of chapters 

This thesis is divided into 11 chapters which were selected based on the areas of study covered in 

the National Validation Framework for Water Recycling (NatVal) project in Australia (Roser et 

al., 2015; Robillot et al., 2016). This project focused on the validation of individual and multi-

barrier systems using data available locally for water reuse treatment systems. These chapters 

support and illustrate by example how validation and reliability assessment can be performed with 

the proposed approaches.  

Chapter 1 provides an introduction, the background, and objectives of this research and 

summarises the structure of the thesis.  

Chapter 2 contains the main literature review including a comparison of quantitative reliability 

tools which have been previously employed in water and wastewater treatment for risk and 

reliability assessment. 

Chapter 3 describes the methods used repeatedly in different case studies and in particular 

explains the features, development and validation of Bayesian networks and Bayesian statistical 

models.  
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Chapter 4 reports the development, validation and use of Bayesian networks for the analysis of 

potential predictors of pathogen removal during activated sludge treatment of domestic 

wastewater. 

Chapter 5 presents and analyses the use of Bayesian hierarchical models in full-scale 

ultrafiltration systems operating in parallel for validation using virus removal. A particular focus 

is exploring how to incorporate and combine the different sources of variability in the units’ 

performance and quantify model uncertainty.  

Chapter 6 reports the identification and evaluation of parameters that can be used to monitor the 

pathogen reduction reliability during ozonation of secondary treated wastewater. Evaluation of 

potential predictors conducted through Bayesian methods is presented. 

Chapter 7 describes the development of methods to interpolate between target virus CT values 

for given turbidity and pH values during chlorination of secondary treated wastewater as well as 

inform uncertainty in their estimates to probabilistically estimate process reliability. 

Chapter 8 assesses reliability of UV disinfection, in particular the probability of undetected low 

dose hazardous events with a focus on sensor reliability. Model structure and parameters based 

on expert elicited data are described. 

Chapter 9 investigates a way to improve, representing and assessing pathogen removal 

performance reliability by a multi-barrier advanced water treatment system using published 

validation data.   

Chapter 10 summarises the major outcomes of this thesis and provides recommendations for 

future research activities. 

Chapter 11 presents the list of references used throughout this thesis. 

In addition, the main body of the main body of the thesis is supplemented with Appendices 

covering additional relevant information and data for: 

1. Chapter 4 (Appendix 1) 

2. Chapter 5 (Appendix 2) 

3. Chapter 6 (Appendix 3) 

4. Chapter 7 (Appendix 4) 
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Chapter 2: Literature Review: Tools for assessing 

reliability and validation of water and 

wastewater treatment processes.
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2.1  Introduction 

Reliability is a concept clearly relevant to incorporation within risk management frameworks for 

water reuse. Reliability can be analysed from two points of view, the intrinsic variability of a 

process (how much is it expected to vary?) and mechanical reliability (how likely is it to 

underperform?). A number of tools have been used in the past to evaluate reliability in water 

treatment systems. However, due to the specific characteristics of these systems, not all these 

tools may be equally applicable to efficiently analyse reliability. A rigorous and systematic 

assessment of the available tools for these applications is needed. The aim of this literature review 

was to identify and evaluate the current uses and development of reliability tools for assessing 

water treatment systems. 

There are a number of important concepts which are used in the following sections of this review 

and require proper definition. Other important concepts including reliability, safety and validation 

are defined in Section 2.2 and reproduced in the Glossary.  

• Hazard: in the context of water treatment refers to a biological, chemical, physical or 

radiological agent that has the potential to cause harm (WHO, 2011).  

• Hazardous event: refers to an incident or situation that can lead to the presence of a 

hazard (WHO, 2011).  

• Risk: is defined as the effect of uncertainty on objectives, with objectives covering 

different aspects (e.g. financial, environmental goals) and levels (e.g. strategic, 

organisation wide) (ISO, 2009). 

• Failure: represents the departure of an item from its required or intended operation, 

function, or behaviour (Ericson, 2005).  

• Repair: refers to the restoration of a failed component, item, subsystem, or system to an 

operational state (Ericson, 2005). 

 

2.2 Risk, reliability and validation in water management  

Risk and reliability are two closely related concepts. Multiple definitions have been put forward 

to describe risk (e.g. risk as defined in Section 2.1). In the context of water treatment and water 

management, risk is typically defined in terms of the likelihood and consequences of a hazardous 

event leading to exposure of hazards (NHMRC & NRMMC, 2011). Rational decision making 

requires a clear and quantitative way of assessing and expressing risk. Reliability, on the other 

hand is defined as the probability that a process or item will perform a required function under 
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specified conditions, without failure, for a specified period of time (Ericson, 2005). In most 

circumstances these concepts can be considered as complementary. Risk management and 

reliability engineering are both employed on strategies to reduce risk (Jackson, 2017). Reliability 

engineering involves quantitative or probabilistic risk assessment. While probabilistic risk 

assessment is concerned about scenarios, their probability of occurrence and their consequence, 

reliability engineering is concerned about failure mechanisms, their probability of occurrence and 

their consequences. Reliability engineering can be seen as a particular subset of the overall risk 

management process. Safety, another concept closely related to reliability and risk, deals only 

with dangerous failure modes. Safety and reliability use common methods and either one can 

inform the other. 

The management of risk refers to the practices, processes, systems, resources and culture 

embedded in an organisation’s management that allow risk to be managed (ISO/TR, 2013). Risk 

management has become the cornerstone of many international water recycling frameworks 

(NHMRC et al., 2006; WHO, 2006). Various agencies have developed formalised frameworks 

for the application of risk management to water supply systems. These include the development 

of Water Safety Plans (WSP) in the World Health Organization guidelines (WHO, 2005) and the 

Framework for the Management of Drinking Water Quality in the Australian Drinking Water 

Guidelines (NHMRC & NRMMC, 2011). There is also the Framework for management of 

recycled water quality and use (NHMRC et al., 2006). Risk management frameworks for water 

recycling seek to ensure that sufficient treatment is provided through multiple barriers and that 

risks are managed to acceptable limits. In the case of direct potable reuse increased risk to human 

health might be observed because of the elevated concentrations of chemicals and pathogens in 

source water. The principal difference between chemical and pathogen hazards is that potential 

risks produced by pathogens are more likely to be acute, severe and widespread (NRMMC et al., 

2008), with public health effects potentially occurring from as little as a single exposure (Haas & 

Trussell, 1998). Consequently, the major public health concern during water reuse is pathogens.  

When studying the reliability of a water treatment process there are two points of view to be 

considered: an inherent reliability (or intrinsic variability) and mechanical reliability (Eisenberg 

et al., 2001). Inherent reliability of wastewater reclamation and reuse can be defined as the 

probability of adequate performance for a specified period of time under specified conditions, 

where performance is determined by the ability to meet regulated water quality treatment 

objectives (Eisenberg et al., 2001; WHO, 2005). A slightly different definition of reliability 

relates to the ability of the system to meet or exceed the public health requirements (Pecson et al., 

2015). A proposed methodology for computing inherent reliability uses the concept of coefficient 

of reliability (COR) to help designers to set an adequate effluent concentration when defining 

53



plant performance (Niku et al., 1979). For inherent reliability, the general concepts of failure of 

compliance and inherent reliability can be defined by Equation 2-1and Equation 2-2 respectively. 

Failure = effluent concentration > effluent requirements Equation 2-1 

Reliability = 1 – P(failure)  

                 = 1 – P(effluent conc. > requirements) 

Equation 2-2 

 

Designing a process to meet certain standards requires the treatment process to produce an 

average effluent quality below the threshold limit considering its variability. Therefore, the issue 

here is to find a mean value (mx) that ensures that the effluent concentration is constantly meeting 

the maximum permitted limit with certain probability. To solve this problem the coefficient of 

reliability (COR) has been developed to probabilistically relate mean design values to the required 

standard value (Xs) as shown in Equation 2-3 (Niku et al., 1979). 

 

𝑚𝑥 = (𝐶𝑂𝑅)𝑋𝑠 Equation 2-3 

 

Where: 

mx: Mean effluent concentration  

Xs: A fixed standard 

COR: Coefficient of reliability  

The COR is a function of the coefficient of variation, which in turn is a function of the mean and 

standard deviation of the collected data. Although this approach was firstly used to assist on the 

design of activated sludge plants, it could be equally employed to calculate the reliability of an 

already operating treatment process (Niku et al., 1979). This tool has been employed to assess 

inherent reliability in diverse types of processes, such as trickling filters, septic tank + anaerobic 

filter, facultative pond, anaerobic pond + facultative pond, activated sludge, upflow anaerobic 

sludge blanket (UASB) reactors alone and UASB reactors followed by post-treatment (Niku et 

al., 1982; Oliveira & von Sperling, 2007; Oliveira & Von Sperling, 2008). This methodology 

highlights the importance of process performance variability and its importance of reliable 

process operation. 

Mechanical reliability is a function of how system components impact upon plant availability 

(interruption of supply) and effluent quality. Hardware configuration requirements to improve 

reliability include standby power supplies, redundant critical equipment, online monitoring, 
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flexible piping, and emergency storage or disposal options (Drewes & Khan, 2010). A further 

aspect of reliability that can be considered separately from these two concepts is human reliability. 

Investigations of numerous hazardous events have shown human reliability to be crucial for the 

correct functioning and overall reliability of water treatment plants (Hrudey & Hrudey, 2005). 

In general, the inherent reliability of water recycling systems is assessed by a process known as 

“validation”, which is a thorough analysis of the performance of the plant under various 

environmental conditions to assure their correct functioning and achievement of removal targets 

(WHO, 2005). Identification of influential factors affecting the efficacy of the treatment and 

identification of operational parameters as indicators of the performance of the system are also 

key steps during validation (VDoH, 2013). Validation should be conducted when a new system 

is implemented or new treatment processes are incorporated (VDoH, 2013). However, validation 

processes do not always utilise explicit quantitative tools for reliability analysis. This lack of 

quantitative information limits the ability to undertake any predictive or diagnosis assessment of 

underperformance.  

Reliability assessment and validation of processes for water recycling requires appropriate tools 

to identify the association between factors which impact upon multi-barrier performance 

considering multiple sources of information and uncertainty. Such tools should also allow 

incorporation of various reliability concepts, including inherent and mechanical reliability. 

Both qualitative and quantitative tools are fundamental for system reliability evaluation. 

Understanding the system and detailed assessment of the interactions between components and 

potential impacts need to be assessed qualitatively. A qualitative analysis is therefore needed as 

a precursor step for identifying the issues to be analysed and determining whether a detailed 

analysis is worth doing. Once that determination has been made, there may be a potentially very 

important role for quantitative risk analysis tools. 

2.3 Necessity of improvement of quantitative risk analysis tools and 

characteristics of an ideal tool to inform reliability 

Qualitative and semi-quantitative risk assessment methods such as risk matrices (i.e. heat maps) 

and risk registers are widely used in the water industry. Major strengths include their simplicity 

of construction and communication. Their aims are to compile and identify the most significant 

risks needing control. They are a valuable tool for risk management, especially during the design 

and operation phases. However, the use of these methods for describing complex incorporating 

interactions between system components is not adequate (Burgman, 2005). These events might 

include system component failures, human error or rare external events (e.g. flooding, terrorist 
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attack, chemical and biological spills). The effect on treated water by some of these events may 

be difficult to quantify intuitively. An analysis of multiple scenarios is therefore necessary to 

assess the effect on water quality and risks to consumers.  

Hazard Analysis and Critical Control Points (HACCP) is another tool that is often implemented 

in the water industry when a risk management approach is used (e.g. Dimmock (2000); Mullenger 

et al. (2002); Quinn and Marriott (2002); Hellier (2003); Howard (2003); Jagals and Jagals 

(2004); WHO (2005); Damikouka et al. (2007)). HACCP focuses on critical control points to 

control risks through system monitoring and corrective action (Havelaar, 1994; Quinn & Marriott, 

2002). This method relies heavily on monitoring, design of processes, training and correct 

procedures among others for correct implementation. HACCP begins by a qualitative assessment 

of the system, but once developed, it requires quantitative analysis of the collected monitoring 

data. These data are used to control the process and identify deviations of the critical control 

points from normal operational boundaries. Statistical process control, soft sensors, early 

monitoring and reliability assessment are all tools that can be considered as part of the HACCP 

process. The analysis of process monitoring parameters that correlate with the process 

performance is not necessarily straightforward, and requires the use of appropriate tools to inform 

their relationships. Therefore, this task relies upon other approaches such as complex machine 

learning and statistical methodologies.  

When risk assessment requires a broad consideration of factors affecting performance and quality 

of product water, various aspects of reliability can be considered when implementing a risk 

analysis, including mechanical, human, and software aspects. Modelling and process analysis are 

based on quantitative monitoring, uncertainty and probabilities. Evaluation of risks requires tools 

which aid the assessment of the associations between process controlling factors and performance. 

The nature and presence of hazards means that process performance is dynamic, and constant 

conditions are rarely achieved. Thus, we may only assert the probability of a system being in a 

specific state or condition given the observed parameters. A quantitative study permits prediction 

of desired or non-desired outcomes, and the importance of various factors or variables involved. 

Quantitative microbial risk assessment (QMRA) and more generally health risk assessment are 

also commonly applied and promoted by water quality management guidelines (WHO, 2005; 

NHMRC et al., 2006) to quantify risks and derive performance requirements of the treatment 

system.   

Consequently, it is concluded that the development of better tools for informing on and analysing 

risks more effectively should be vital for the water industry to improve safety and resilience to 

the point where direct potable recycling of water can be done with confidence. However, current 

guidelines and practices do not yet identify or promote a comprehensive range of tools suited to 
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quantitative reliability assessment. There are a number of characteristics which are likely to be 

essential for an ideal quantitative tool to be applied for water treatment reliability assessment 

(Table 2-1). This tool would also need to be applicable despite inherent limitations, such as data 

availability limitations of the water industry. The criteria used in Table 2-1 were derived from the 

characteristics of already applied tools in the water treatment sector and general desirable features. 

Quantitative outcomes and probabilistic assessment are both common features of QMRA and 

health risk assessment in general (WHO, 2004; NHMRC et al., 2006). Various sources of data is 

a desired characteristic because data are usually scarce and/or expensive to be obtained (Pollard, 

2008; Hokstad et al., 2009). Capability to deal with limited information refers to the ability of 

incorporating missing or censored values. These types of cases are common in water treatment 

and should be considered within any model development (Khan, 2010). Models should be simple 

to develop and communicate to be effective tools for risk management (Fenton & Neil, 2012). In 

the same line, representing associations between events or system components are important for 

an effective tool (Fenton & Neil, 2012). 

Table 2-1: Characteristics of an ideal tool for reliability analysis 

Characteristic Practical Description 

Quantitative outcome Numerical results 

Probabilistic assessment Results that describe the likelihood of various 

outcomes. 

Various sources of data Ability to incorporate quantitative data and 

more subjective expert knowledge 

Capability to deal with limited information Ability to manage missing values in dataset, or 

missing evidence. This also applies to censored 

values.  

Facility of development Ease of development would encourage its use 

and improvement 
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Characteristic Practical Description 

Representation of associations Causal representation is ideal if the interactions 

and impacts from variables are to be 

understood 

 

2.4 ISO 31010 and reliability standards 

There are many types of reliability analysis tools. For example  Ericson (2005) identified over 

100 different reliability analysis techniques in existence. However, only a number of them have 

been considered and reviewed in current international standards (IEC/ISO, 2009). The limited 

number of tools reviewed by international standard is because some techniques are rarely 

practiced and many consist of minor variations of other techniques. To focus on the most relevant 

and widely employed techniques, the scope of this review considered the techniques identified by 

ISO-IEC 31010-2009 Standard: Risk Management - Risk Assessment Techniques. This ISO 

standard is a supporting standard for ISO 31000 and provides guidance on selection and 

application of systematic techniques for risk assessment (IEC/ISO, 2009). Although the scope of 

the standard is for risk assessment in general, these tools have widely been used in system 

reliability analysis as is evidenced in well-known reliability assessment literature (Rausand & 

Høyland, 2004). Furthermore, the scope of this study was refined to only those techniques 

providing quantitative outcomes. From the refined list, reliability block diagrams were added. 

Reliability block diagrams were incorporated because they are commonly used in reliability 

assessment (Pollard, 2008). A discussion about machine learning tools applied in reliability 

assessment is also provided. This chapter includes a systematic analysis of the main developments 

and uses of these tools by the water industry and offers recommendations regarding the most 

adequate tools for validation of water treatment processes.  

Most of the tools evaluated in the following section have also been recommended as risk 

assessment and management tools for water supply systems within the TECHNEAU project in 

the European Union (Hokstad et al., 2009). The main focus on that project was risk analysis. 

However, some aspects of reliability analysis were also discussed. The outcomes from this project 

revealed that a single tool may not be adequate for the whole risk assessment process, and that 

application of a method will depend on the problem in question. Also, a single risk management 

method could not be recommended for all water utilities (Rosén et al., 2007).  
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2.5 Reliability/Validation and related risk assessment and management 

tools 

A selection of risk analysis tools mentioned in Section 2.4 were described and evaluated 

considering their advantages, limitations and their previous applications in water treatment 

processes. 

2.5.1 Human reliability assessment 

In real systems both hardware reliability and human reliability contribute to the overall system 

reliability. Human reliability can be defined as the probability that a task executed by personnel 

within a system’s operation is successfully achieved within a specified period of time (Pollard, 

2008). Human reliability analysis (HRA) can provide qualitative or quantitative outputs which 

are then used in probabilistic safety analyses or probabilistic risk assessment (Hollnagel, 2000). 

The former is used to identify potential erroneous human actions and their causes to reduce the 

probability of occurrence. Quantitatively, HRA provides data input regarding human failures for 

other reliability tools including fault tree analysis, event tree analysis, reliability block diagrams 

and Markov chain analysis (Dhillon & Balbir, 1999; IEC/ISO, 2009).  

A common HRA modelling method comprises three stages:  

1. the identification of human errors,  

2. the prediction of their likelihood, and  

3. the reduction of their likelihood, if required.  

HRA techniques are usually classified into two generations. The first concerns about the safety 

assessment of plants, whereas the second applies cognition assessment. First generation tools 

comprise tools known by their acronyms as THERP (Swain & Guttmann, 1983), HEART 

(Williams, 1986), SLIM (Embrey, 1984), ASEP (Swain, 1987), TESEO (Bello & Colombari, 

1980) and HCR (Hannaman et al., 1984). The second generation tools comprise ATHEANA 

(Cooper et al., 1996), CREAM (Hollnagel, 1998), or MERMOS (Bieder et al., 1998).  

Mathematical modelling of HRA has a number of recognised shortcomings. HRA treats 

individuals as components in a chain with an associated reliability. However, the models produced 

cannot predict human behaviour though they may attempt to characterise typical failure rates. 

Good HRA models incorporate the factors that allow for the operating conditions that may result 

in an error. These models still have shortcomings however in that they: (a) tend to focus on 

individual, rather than collective behaviours and the social interactions that inform them; (b) have 

yet to be fully validated; (c) tend to focus on equipment operators rather than individuals, 
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organisational policies or company rules higher in the organisational hierarchy (Pollard, 2008). 

Each specific technique to evaluate human reliability has strengths and limitations. An analysis 

of these tools and their advantages and disadvantages has previously been reported by Spurgin 

(2010). An analysis of HRA methods and their application to real accidents in various industries 

can also be found in Spurgin (2010). 

In quantitative HRA, access to relevant human reliability data can be problematic. If specific data 

are not acquired for the water treatment system, the analyses may be based on generic human 

reliability data from other industries (Hokstad et al., 2009). Reason (1990) has outlined four levels 

of human failure, each influencing the next (the Swiss cheese model):  

1. organizational influences,  

2. unsafe supervision,  

3. preconditions for unsafe acts and  

4. unsafe acts.  

The role of third parties has been proposed in water treatment schemes (Wu et al., 2009), therefore 

a fifth level can be added: 

5. errors of consumers and third parties. 

Note that levels 1-3 are considered latent errors (e.g. inadequate equipment, poor design, 

inadequate supervision, manufacturing defects, maintenance failures, etc.); whereas Level 4, 

unsafe acts, is regarded as active errors (i.e. human errors). For active errors, consequences can 

develop within a short period time. These errors can include omission or using the wrong rule and 

they are likely to be provoked by front-line operators. Consequences of latent errors might begin 

to appear after a period of time, or when other errors, or specific operational conditions lead to 

the failure to occur. Level 5, “errors of consumers and third parties”, may include both latent 

errors (pre-existing risk scenarios) and active errors (e.g. an unsafe act by a third party). 

Given the high responsibility of process operators, the nuclear energy industry was the first to 

develop and apply HRA (Kirwan, 1994). Other industry sectors which have now developed their 

own HRA include aviation and aerospace, rail, air traffic control, automotive, offshore oil and 

gas, chemical, and parts of the military (Kletz, 2001; Lyons et al., 2004). A review of the role of 

human error in maintenance across various industries (1981–2003) has been provided by Dhillon 

and Liu (2006). Limited information is available on the use of HRA to drinking water safety (Wu 

et al., 2009). 
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Human errors have been recognised to be among the major contributing factors to drinking water 

contamination incidents (Hrudey & Hrudey, 2005). However, it has been argued that it has not 

been sufficiently studied by the water quality management community (Tang et al., 2013). Wu et 

al. (2009) analysed 61 drinking water incident cases and categorised them into various types of 

human errors according to their circumstances and possible causes. A key outcome of this study 

was the conclusion that water quality incidents could comprise six “periods”, which they 

described as contamination, sensing, warning, recognition, inspection and recovery. Identification 

of common human errors could assist in the improvement of countermeasures. Later work 

conducted by Tang et al. (2013) complemented their earlier research with an analysis of 40 

drinking water incident cases and human errors in the initiation of each drinking water incident 

and the distribution of the human errors in each period. They also suggested improving resilience 

through different approaches such as active consumer complaints channels, cultivating a safety 

culture, collaboration and the use of preventive risk management tools. Cloete et al. (2013) 

investigated human-machine interface issues in water treatment systems using checklists, semi-

structured interviews, questionnaires, and observations of routine work of operators. Lack of 

human integration in system design and compliance with only 13 of 40 items selected for best 

practices were found in this study. It was also concluded that operator expertise was underutilised 

because of a lack of integration and user-centred design. The issue was reflected, for example, in 

the high allocation of work-hours to routine tasks such as data logging.     

2.5.2 Health risk assessment and quantitative microbial risk assessment 

Environmental and human health risk assessments (HHRA) are formalised mathematical 

procedures used to evaluate potential hazards introduced by pollutant emissions to human health 

and the environment. Formally, this risk assessment process comprises a sequence of well-

established steps (NRC, 1983; enHealth, 2012): (1) Hazard identification, (2) Exposure 

assessment, (3) Dose-response assessment, (4) Risk characterization. The US National Research 

Council publication, known as the “Red book”, represents the seminal source for this framework 

from which other adaptations have been based (NRC, 1983). Although the NRC document 

presents a holistic framework, over the last few decades, the approach has been refined by various 

agencies. The Australian health agency, enHealth has proposed a model with five stages as 

observed in Figure 2-1 (enHealth, 2012). 
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Figure 2-1: Environmental health risk assessment model (enHealth, 2012). 

Conventional drinking water guidelines values, such as those published in the Australian Drinking 

Water Guidelines (NHMRC & NRMMC, 2011) and WHO Guidelines for Drinking-Water 

Quality (WHO, 2011), have been generally derived based on the environmental health risk 

assessment concepts defined by the NRC (1983). Derivation of health-based target values for 

water quality takes into consideration both the exposure (for water consumption is generally 

assumed as 2 L/person/day) and dose response data. Incorporation of uncertainty factors (UFs) is 

also necessary for substances in which a threshold effect exists. UFs are used to account for inter-

species differences, use of LOAEL (Lowest observed adverse effect level) instead of NOAEL 

(No observed adverse effect level), intra-species differences, the severity of the adverse effect and 

quantity and quality of the scientific data (enHealth, 2012). 

Derivation of performance targets requires data regarding the source water quality to derive the 

necessary removal efficiency of the system. The most common application of performance targets 

is for control of microbial hazards (WHO, 2011).      

The application of Disability adjusted life years (DALYs) for defining levels of risk associated 

with exposure to pathogens was introduced in drinking water guidelines by WHO in the 2004 

revision of the Guidelines for Managing Drinking Water Quality (WHO, 2004). For this purpose, 
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the WHO established a tolerable risk level of 10-6 DALYs per person per year, commonly referred 

to as 1 microDALY (1 DALY). An important advantage of quantifying health risks using 

DALYs is that they include a measurement of the severity of the different impacts on human 

health from the infection and illness. The use of DALYs for pathogen risks was subsequently 

implemented in the Australian Guidelines for Water Recycling (NHMRC et al., 2006). 

Discussions regarding the implementation of DALYS in the ADWG are currently ongoing 

(WSAA, 2015). 

Setpoints and critical limits in the Risk Management Framework can be specified through HHRA 

including safety factors. In consequence, the system will comply with the established health-based 

targets (without excessive economic implications) even when hazardous events have affected the 

system. Thus, this technique provides the minimum performance requirements to reduce chemical 

contaminants or pathogens to below safe limits. In addition, it allows an assessment of the 

relevance of the different risks and indirectly of the barriers associated to each reduction. Thereby, 

consequences of hazardous events or system failure can be evaluated in terms of the reduced 

performance, the change in effluent quality and exposures that may be the consequence of the 

occurrence of hazardous events (Khan, 2010). This analysis determines the required inherent 

reliability of the treatment processes and assists in the identification of measures to improve 

performance. The outcomes may then inform where resources could most effectively be allocated.  

The NRC framework approach can be applied in either a deterministic or stochastic manner. 

Commonly, when a stochastic analysis is conducted, input values and model parameters are 

considered as probability distributions. The analysis is then typically performed by the aid of 

Monte Carlo simulation (Section 2.5.11) (Khan, 2010). The outcomes are then obtained in the 

form of probability distributions instead of point estimates. Incorporating uncertainty and 

variability within the calculation of risks have the advantage of providing more information. For 

example, by estimating the likely values a model input or output can take, representing 

uncertainties, and calculating probabilities of exceeding particular limits. Quantitative microbial 

risk assessment (QMRA) has been particularly concerned about stochastic analysis for risk 

assessment (Soller et al., 1999; Teunis & Havelaar, 1999; Haas et al., 2014).  

2.5.3 Fault tree analysis 

Fault tree analysis (FTA) is a tool used to analyse causal representations of system failures and is 

based on three main assumptions: (i) events are dichotomous, (ii) events are statistically 

independent, and (iii) logical Boolean gates (e.g. AND, OR, NOT and Voting) are used to 

represent the relationship between events. These assumptions also introduce some limitations to 

the method such as difficulties in modelling complex systems (e.g. sequential events, standby 
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configurations, redundancy, etc.), partial failure states of components cannot be modelled, and 

independency between events is not always a valid assumption (Dhillon & Balbir, 1999; Ericson, 

2005; Baig et al., 2013). FTA provides a quantitative outcome as well as a qualitative analysis 

through graphical representation (Figure 2-2) of the different events leading to a target event (Top 

event on Figure 2-2) (Ericson, 2011). The use of logical gates allows the evaluation of minimal 

cut sets which is the combination of failure events that can cause the top event to occur (Dhillon, 

2004). This step is useful as probabilities are not required for the analysis. One of the most 

important features of FTA is the identification of combinations of single failures, which by their 

own do not represent a threat, but together cause the system to fail (e.g. rare event). 

 In general, different combinations of component failures or events such as human errors, normal 

events, and environmental factors may cause a system malfunction. The identification of the 

events leading to a failure provides the basis for the implementation of safety barriers. It is 

important to add that the type of events in FTA can include not only failures in a particular 

component but also the occurrence of a breach regarding a parameter in the system. For example, 

it can be considered an event when the turbidity exceeds a certain limit.  

FTA has been used to analyse non-compliance of water quality, mechanical reliability, water 

supply failures, and conceptual modelling of failures. An important contribution to this topic was 

provided by Lindhe et al. (2009). They created a FTA model to estimate the risk as customer 

minutes lost, of quality and quantity failures in water production systems. In the study, dynamic 

gates were created to incorporate a scenario when the system recovers by itself. Failure and repair 

rates were elicited from experts as probability distributions and they were allowed updating 

through Bayesian methods (see Section 2.5.12). 

64



 

Figure 2-2: Classic representation of a FTA.  

FTA has been used to study the availability of full-scale reverse osmosis desalination plants using 

real operational data (Kutbi et al., 1982; Hajeeh & Chaudhuri, 2000; Bourouni, 2013).  A 

qualitative FTA was employed to analyse the operational failure and Cryptosporidium parvum 

oocysts presence in an UF plant which was constructed through an operators elicitation process 

(Beauchamp et al., 2010). This tool was also used to analyse the causes required for an outbreak 

including source of contamination, failure of treatment or distribution system, and inadequate 

detection or response to the drinking water contamination (Risebro et al., 2007). In a similar 

fashion, but including supply failures  a qualitative FTA was developed for failure scenarios in 

water production considering quantity and quality failures (Tchórzewska-Cieślak et al., 2011). 

This tool was also employed to analyse the main factors that affect the not compliance with certain 

parameter (e.g. BOD, turbidity) to ease the detection of deficiencies (Kelley & Allison, 1979; 

Kelley & Allison, 1981; Ravikrishna & Mhaisalkar, 1996). Similarly, the probability of non-

compliance based on BOD for a wastewater treatment plant has been assessed through a FTA. 

The basic events probabilities were estimated through operator’s consultation (Taheriyoun & 

Moradinejad, 2015). 

2.5.4 Event tree analysis 

Event Tree analysis (ETA) is a graphical technique (Figure 2-3) whose purposes are to assess the 

possible outcomes that can escalate from a particular initiating event (IE), and identify scenarios 

and their frequencies. It uses an inductive logic and can be applied both qualitatively and 

65



quantitatively (Stapelberg, 2008; IEC/ISO, 2009). The principal component in an ETA is the 

pivotal event which implies a question/condition with YES/NO (success/failure) outcomes 

(Stapelberg, 2008). The various possible alternatives are connected by paths, either to other 

pivotal events or to outcomes (Smith, 2011). The logical sequence can also be expressed with 

Boolean algebra. The pivotal events can represent barriers which can reduce the consequences of 

the initiating event. ETA can be used to model a whole system or process, with analysis coverage 

given to subsystems, components, software, procedures, environment, and human errors (Ericson, 

2005). This tool is useful for assessing facilities having engineered accident-mitigating 

characteristics to identify the events that follow the initiating event and generate given sequences. 

 

Figure 2-3: Classic event tree representation. 

A limitation in basic ETA is the inability to model partial failures. However, this issue can be 

solved by splitting the tree on more than two branches as within a decision tree. In these cases, 

the Boolean representation would not be possible (Modarres et al., 1999). It can also overlook 

subtle system dependencies when modelling the events and it would require multiple ETA when 

having multiple initiating events. ETA provides a natural language and representation for barriers 

and the probability of consequence events in case the barriers fail or not. Studies of usage of ETA 

in water utilities have been scarce. Gale (2002); Gale (2003) used ETA to illustrate the importance 

of bypasses or minor routes on risk events with high concentrations of microorganisms. ETA was 

used to model the routes of exposure and which pathways have the highest impacts. Although this 
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tool may appear different to FTA in the types of cases it can model, the same problems can be 

modelled using both techniques.   

2.5.5 Reliability block diagram 

Reliability block diagrams (RBD) are abstract system representations useful for both reliability 

prediction and maintenance optimization (Barlow, 1998). They depict the dependence (Figure 

2-4) of the various elements (pieces of equipment, components or functions of the plants) that 

contribute to the reliability requirements. Through a set of rules, RBD provides information about 

the impacts of the component failures on the satisfactory system operation (Ireson et al., 1996). 

RBD indicates the logical connections of working components required during a particular system 

function. When the system performs more than one function, separate analyses should be 

conducted individually for each function. RBDs are suitable for systems with non-repairable 

components and where the order sequence in which failures occur does not matter. For these 

cases, Markov methods (see Section 2.5.10) are commonly used (Rausand & Høyland, 2004).  

 

Figure 2-4: Reliability block diagram representation. 

Similar to FTA, RBD considers events as independent and only two states are allowed for each 

component. In addition, minimal cut sets can be defined in RBD. Unlike FTA, this method does 

not identify causes of failure explicitly through its structure.  

RBD has been assessed as a valuable technique for mechanical reliability assessment in water 

treatment utilities (Hokstad et al., 2009). It has also been shown that it can be used in the process 

of understanding the system functioning and analyse different configurations. For example, Cyna 
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(1997) used this methodology to represent a filtration and chlorination system and assess its 

unavailability. Modifications of the system might be performed to obtain a desirable 

unavailability. For example, Sydney Water created procedures for RBDs (SydneyWater, 2010b). 

They have applied these in complex works including wastewater pumping stations, chemical 

dosing units and non-gravity wastewater systems (SydneyWater, 2014). These procedures should 

be followed during the conceptual design and planning stage to develop contingency plans and 

manage risks. During the detailed design stage, they are used to identify monitoring requirements 

for assessed risks, identify spares to be kept by Sydney Water and develop and provide 

maintenance plans (SydneyWater, 2011).      

Bourouni (2013) assessed the availability of a reverse osmosis desalination plant through RBD 

and FTA techniques. He evaluated the complete system including pre-treatment, beachwell 

pumps, RO system and Post-treatment system. Four-year data for model validation and testing 

were taken from a RO plant in Kuwait. The results showed that the overall plant unavailability 

was very low and the components having higher unavailability in the plant were the RO modules 

and high-pressure pumps. To determine the components that influence most the overall plant 

availability, a sensitivity analysis was performed and the different components were classified in 

groups according to their influence. This study demonstrated the importance of RBD in assessing 

availability and their usefulness when considering standby components and r/n redundancies. 

A recent study in Australia was conducted to analyse the reliability of advanced water treatment 

plants from data collected in seven plants around the world (Tng et al., 2015). The aim of that 

study was to assess the reliability of a typical advanced water treatment system and identify the 

most important components affecting quantity and quality related failures based on a 10-year 

period. The analyses were performed using RBDs and Monte Carlo simulations on a proprietary 

software package. The results indicated that quantity failures were eight times more likely than 

quality failures. Moreover, from the 427 simulated failures in 10 years, only 5% were related to 

quality failures. Other scenarios were tested to evaluate maintenance strategies. For example, by 

reducing the maintenance response time, the number of quality failures per year can be reduced 

to less than one per year.        

2.5.6 Bow-tie analysis 

In the context of reliability analysis, a bow-tie is a logical structured technique that is employed 

to describe and analyse the associations between the causes of an undesired event, the progress 

of such events, the preventive controls for those events and mitigative controls for the potential 

consequences (Book, 2012; Khakzad et al., 2013a). Bow-tie analysis focuses specifically on the 

barriers in place (Figure 2-5). Some authors have considered bow-tie as effectively the same as 
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cause and consequence analysis in which the causes are investigated through FTA and the 

consequences are investigated through ETA (De Dianous & Fiévez, 2006; Ferdous et al., 2013; 

Khakzad et al., 2013a) (Figure 2-6). Bow-ties provide a useful tool to represent the links between  

risk controls and the management system (Book, 2012).  

 

Figure 2-5: Classic bow-tie representation. 

 

 

Figure 2-6: Bow-tie representation through FTA and ETA combined 
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The bow-tie method has been especially designed to show the influence of safety systems (e.g. 

technical or organisational) on the development of accident scenarios (De Dianous & Fiévez, 

2006). Prevention safety systems (to decrease frequency of an event) are found on the fault tree 

side, while mitigation systems (to decrease frequencies and/or consequences of dangerous 

phenomena) are found on the event tree side. Visualisation of what safety function (barrier 

function) applies on a particular scenario is facilitated through bow-tie analysis. The most critical 

causes or scenarios can be assessed through the use of frequencies of occurrences (De Dianous & 

Fiévez, 2006). Bow tie analysis can be used for conducting Layers of Protection analysis (See 

Section 2.5.7). This tool can be used for improving communication with stakeholders regarding 

risks and measures of prevention and mitigation (Markert et al., 2009). It also helps to target and 

allocate resources to critical or more relevant barriers.  

A safety function (“What is needed to increase safety”) represents a technical or organisational 

action, and not a tangible or a physical system. This action is realised through safety barriers 

(“how to implement safety functions”). The safety barriers can be either tangible (e.g. engineered 

systems) or abstract barriers (e.g. human actions based on specific procedures or administrative 

controls) which are sometimes interchangeable and/or work together (De Dianous & Fiévez, 

2006). A related concept is the “barrier system”, which is a system that performs one or more 

barrier functions. A barrier system depicts how a barrier function is performed. Provided that a 

barrier system is functioning, the barrier function will be as well. Four main categories of safety 

barriers can be defined which are useful for the evaluation of safety barrier management (De 

Dianous & Fiévez, 2006; Guldenmund et al., 2006): Passive barriers, Activated barriers, Human 

actions and Symbolic barriers. In the water industry, the use of this tool has been proposed by a 

number of authors (Rosén et al., 2007; Blackmore et al., 2008; Maxwell & Franssen, 2012), 

without the analysis of a real case scenario. 

Bow-tie has been applied during the risk assessment process for drinking water treatment systems 

from groundwater sources in NSW (Contos, 2014). The tool was applied to improve the system 

in place by identifying three most important hazardous events and their corresponding preventive 

measures. These events included the inability to maintain chlorine residuals, parameters above 

the guidelines, and ineffective chlorine operation. The bow-ties were constructed during a 

workshop through the participation of stakeholders.  

Bow-ties have been presented as a valuable tool to represent multiple barriers on water supply 

systems (Burlingame & Chalker, 2017). The aim of that article was to present this method to 

improve current practices and clearly visualise the barriers associated to preventive and mitigative 

controls. They stressed that barriers are not necessarily tangible factors, but also management 

related.  
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A modified bow-tie was used to represent the interactions between various risks within water 

supply systems (Fitzgerald et al., 2017). The authors named this approach “risk pathway method”. 

The developed method was semi-quantitative with risks evaluated through labels high, medium 

or low. The tool permitted clear visualisation of the interactions between causes, consequences 

and controls in place. 

2.5.7 Layers of protection analysis 

Layers of protection analysis (LOPA) is a semi-quantitative tool used to identify barriers that 

comply with the independent protection layer (IPL) criteria (Summers, 2003). Layers serve the 

purpose of reducing the risk to an acceptable level. An IPL can be defined as a device, system, or 

action capable of preventing an initiating causal event to its undesired consequence (Crowl, 2001). 

These IPLs reduce the frequency and/or the consequence of specific hazardous events. It is 

relevant to note that LOPA focuses one scenario at a time. LOPA and bow tie analysis present a 

number of important differences. For instance, they use different criteria for establishing the 

safety barriers and layers of protection and unlike LOPA, bow tie can incorporate more than one 

cause and consequence in the analysis.    

IPLs can be active or passive systems and they must comply with four different criteria: (1) 

specificity, (2) independence, (3) dependability and (4) auditability (Dowell Iii, 1998; Summers, 

2003). The independence criterion has the IPLs be independent of the causal event or any other 

layer of protection within the analysed scenario. LOPA is used to examine scenarios, often 

generated by other process hazard analysis tools, such as HAZOP, what-if, checklist or FMEA; 

as part of the Safety Instrumented Functions (SIF) design; or as part of a design study on a system 

to classify the various process alternatives and to select the best method (Crowl, 2001). Each 

scenario can comprise several “cause-consequence” pairs (Gowland, 2006).  

Bradshaw et al. (2013) investigated organizational and technical barriers (IPLs) and their 

effectiveness to inhibit incident propagation from over 400 incidents in a large water utility 

between 1997 and 2006. The identified IPLs contributed on reducing the public health impact of 

incidents. They observed that the utility effectively improved its organizational and incident 

management structure to handle customer impacts. A number of organisational attributes were 

considered IPLs, such as  strong organisational culture, staff competencies, and human 

redundancy among others (Bradshaw et al., 2013).   

Current risk management approaches for drinking water and water reuse are largely based on 

concepts consistent with the application of a LOPA method. Concepts such as independent 

multiple barriers, operational procedures, staff competence and communication and their impact 
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over risk reduction are already included in current frameworks of water management. 

Nevertheless, an analysis of the layers requires meeting the four criteria described above to ensure 

that they will act as independent protection layers. Defining the layers correctly will prevent an 

unsafe scenario from developing, even when the initiating event has occurred or another 

protection layer has failed. LOPA is generally only applicable in specific cases when there are 

single-cause hazardous events. In cases where multiple causes are relevant, bow tie analysis can 

be a more appropriate approach. The assessment might also include frequencies of initiating 

events and probabilities of failure for layers of protection which allow determining the event 

impact in case IPLs are not successful. However, these may be difficult to determine for a water 

treatment system. Identification of system failures, consequences and scenarios can be done for 

instance through hazard identification techniques. 

2.5.8 Failure modes and effects (and criticality) analysis 

Failure modes and effects analysis (FMEA) is a tool used for the collection and documentation of 

failure modes, mechanisms of failure and causes, preventive and mitigating mechanisms of failure 

and related failure effects for product or process functions (Stamatis, 2003). It is a qualitative 

inductive method, does not require any statistical knowledge and its application is 

straightforward. FMEA compiles a list of the expected failure modes during the system 

functioning, elements involved, mode of operation, operation specification, time constraints and 

the environment (Khan & Abbasi, 1998). Failure modes effects and criticality analysis (FMECA) 

complements FMEA to provide a failure ranking following their importance or criticality 

(IEC/ISO, 2009). The criticality analysis can be semi-quantitative or quantitative using actual 

failure rates.  

FMEA has been demonstrated to be a relevant risk assessment tool for the identification, analysis 

and treatment of potential failures in different systems. Its applicability in improving reliability is 

well recognized and it has been reported in numerous publications (Liu et al., 2012a). However, 

the fact that it neither quantifies reliability nor the interaction between failure modes limits its 

use, requiring criticality analysis to quantify risk or a fault tree analysis to account for multiple 

failure modes. Usually water or wastewater treatment trains consists of several processes with 

widely different characteristics, such as operating procedures, operating parameters, chemical 

requirements, mechanical and electrical needs among others which makes FMEA or FMECA 

suitable for this purpose.  

Applications of FMECA have been found in the water industry. At Sydney Water, for instance, 

FMECA is used in their facility assets to identify critical assets and maintainable units to develop 

the most cost-effective maintenance (SydneyWater, 2010a). At Scottish Water, operational level 
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FMECA studies have been applied (Lifton & Smeaton, 2003). In this application, various 

components of the water supply system and their failure modes were systematically studied. 

Dominguez-Chicas and Scrimshaw (2010) described the implementation of water safety plans for 

a pilot-scale indirect potable reuse (IPR) project following an FMEA approach. In this case, 

hazards, potential hazardous events and failure modes were described as part of the risk analysis 

for the IPR system. Such hazards and events can impact the system by challenging the treatment 

processes or generating operational malfunctions along the water supply chain. Failure modes in 

this case were analysed considering failures only in the sewage catchment and then classifying 

their effects into three groups. Six indicators related to the failure modes were presented which 

could be used for process control. A risk matrix with severity and occurrence was constructed to 

rank and prioritise the hazards instead of the risk priority number employed in FMEA. Démotier 

et al. (2002); (2003) presented a methodology for assessing the risk of producing non-compliant 

drinking water (i.e. one of the quality parameters exceeding the maximum values established by 

water quality standards), considering raw water conditions (i.e. concentrations of water quality 

parameters) and the process performance of the treatment plant (e.g. technology, different failure 

modes and corresponding failure rates). The approach consisted of five steps including the use of 

FMECA for assessing the failure modes, their unavailability and their effect on non-compliant 

drinking water, and FTA to calculate the probability of non-compliance using the probability of 

the basic events (i.e. unavailability of treatment steps and probability for the resource to exceed 

the different thresholds). FMECA was constructed from expert knowledge to determine for each 

failure mode: the causes, detection means, time to detect the failure, effect on quality and 

degraded transfer function (i.e. one minus the ratio between output and input concentrations). 

FMEA has also been used to evaluate the operational risks of retrofitting a water treatment plant 

with UV disinfection (Passantino & Owen, 2005). Information drawn from the FMEA was used 

along with engineering-related information to answer a number of questions about 

implementation issues (e.g. “What are the implementation issues associated with UV 

disinfection?”, “How are these issues addressed?”). The evaluated risks included pathogen risks 

because of operation outside of validated range. 

FMEA can be used to analyse the reliability of each major process in a treatment plant and identify 

any instance where a failure (e.g. electrical, instrumentation, mechanical etc.) or water quality 

condition would prevent the treatment system from meeting its goals. The FMEA risk technique 

provides a method for determining the most critical component and implementation issues by 

evaluating the severity, occurrence, and detection of the failure through calculating and 

comparing the component risk priority numbers. 
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2.5.9 Reliability centred maintenance 

Reliability Centred Maintenance (RCM) is a systematic approach which focusses on the reduction 

of maintenance costs by the selection of the most relevant components of a system for preventive 

maintenance by looking at their functions and failure modes, taking into account systems, 

subsystems and items (Bloom, 2006).  The RCM assessment can be performed as a sequence of 

tasks, with some of them being simultaneously applied (Vatn, 1996): “(1) study preparation, (2) 

system selection and definition, (3) functional failure analysis (FFA), (4) critical item selection, 

(5) data collection and analysis, (6) failure mode effects and criticality analysis (7) selection of 

maintenance actions, (8) determination of maintenance intervals, (9) preventive maintenance 

comparison analysis, (10) treatment of non-critical items, (11) implementation, (12) in-service 

data collection and updating”. 

Some of these activities can be aided by the incorporation of other reliability assessment tools. 

For example, functional failure analysis could be aided by functional block diagrams, reliability 

block diagrams, and fault trees (Bloom, 2006). Furthermore, in the critical item selection, 

importance ranking obtained from tools, such as fault tree analysis, reliability block diagrams, or 

Monte Carlo simulation may be suitable (Rausand & Høyland, 2004). FMECA is the central tool 

in this method, because it determines criticalities, failure causes, failure mechanisms, failure 

characteristics, among other important factors. After this analysis, preventive maintenance actions 

and their periodicity are selected (Rausand, 1998). An RCM analysis provides a thorough 

understanding of system functions, functional requirements, functional failures, and causes and 

consequences of functional failures.  

Fynn et al. (2007) investigated how water utilities can apply RCM to new and existing plants to 

assess the costs and benefits of implementing this approach. The outcomes of this research suggest 

that water utilities can derive extensive benefit (both improved reliability and monetary savings) 

from utilising this approach to develop optimised maintenance programs for their plants. The 

benefits were demonstrated by the RCM programs performed on two US water utilities and in the 

results obtained from pilot studies. The authors assert that benefits may vary depending on 

whether the project is well structured or not.  

2.5.10 Markov chain analysis 

Markov chain analysis (MCA) (Figure 2-7) is used to quantitatively model stochastic systems and 

the transition between their different states over time. This characteristic has made it a key 

technique for modelling systems with dependent failure and repair modes. Usually the failures 

and repairs are assumed with constant failure and repair rates (i.e. exponential failure and repair 
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time distributions) (Durga Rao et al., 2009). In addition, the requirement to solve a set of 

differential equations for large and complex systems can be problematic (Dhillon & Balbir, 1999). 

As a result, use of MCA is commonly limited to small system applications  (Ericson, 2005). Its 

principal aim is to model state transitions which allow the comprehension of system operation 

and calculation of precise failure state probabilities. 

 

Figure 2-7: Markov chain representation 

Weir et al. (2011) used MCA to model the fate and reduction of Cryptosporidium through a water 

reuse system for sprayparks (also known as “splash parks”) application. They provided a useful 

and structured way of visualizing the system and the relationship between performance and its 

configuration. The approach they described also linked the outcomes of an MCA with a QRMA 

by incorporating Monte Carlo analysis to use the concentration distribution of Cryptosporidium 

oocysts, along with a dose-response distribution, to model risk levels. This methodology can be 

used as a multiple barrier analysis and it would require obtaining treatment performance and 

concentration reduction data between the states defined. However, a typical application of this 

methodology does not consider degraded operating states or effect of other factors on treatment 

performance which can limit its predictive ability. Lindhe et al. (2012) applied MCA to model 

dynamic gates of fault tree analysis to consider dynamic redundancy when modelling the 

reliability of a water treatment system. MCA has also been used to simulate sensors with different 

failure modes such as excessive drift, complete failure, wrong gain and lack of calibration (Rosén 

et al., 2008). MCA was also used to analyse the performance of a wastewater treatment plant 

measured by the discharged BOD per day (Assezat, 1989). Each state in the model corresponded 

to a specific failure mode which is previously identified by FMEA procedure. The probability of 

the presence of each mode was calculated using mean time between failures, mean time to repair, 

and fault duration time. Mode effects are quantified by probabilities obtained and the discharged 

pollution as kg BOD/day during the failure mode.  
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2.5.11 Monte-Carlo simulation 

Monte Carlo Simulation (MCS) performs repeating sampling draws from a probability 

distribution which are then used as inputs on a defined model (Stapelberg, 2008). The model 

outputs are obtained in the form of probability distributions. By itself, MCS is not a risk analysis 

tool, but a technique that is used as an aid for other tools to provide probabilistic outcomes. MCS 

is computationally intensive because it requires numerous iterations to obtain approximate values 

of central tendency and confidence limit bounds. The distribution types for input variables are 

selected based on the conditions surrounding that variable and may include all kinds of probability 

distributional forms (e.g. normal, triangular, uniform, lognormal, Bernoulli, binomial and 

Poisson) (Smid et al., 2010). In general, MCS can be used for two distinct purposes (IEC/ISO, 

2009): (1) Uncertainty propagation on conventional analytical models and, (2) probabilistic 

calculations when analytical techniques are not feasible (e.g. complex problems).  

MCS has been used in the assessment of availability of complex systems as well as the monetary 

value of plant operations and maintenances (Durga Rao et al., 2009). MCS has been used 

extensively to quantify microbial risk by considering water quality parameters, exposure values 

and parameters for dose-response model stochastic estimation (Teunis & Havelaar, 1999; Barbeau 

et al., 2000; Fewtrell & Bartram, 2001; Medema et al., 2003; Soller et al., 2006; Lester et al., 

2007; Van den Akker et al., 2011; Haas et al., 2014). MCS has also been used for estimation of 

reliability, although it has not been explicitly referred to as a reliability method (Beauchamp, 

2008). Inherent reliability and process performance for multiple barriers in advanced water 

treatment have been evaluated by MC simulation to account for variability in the performance 

(Haas & Trussell, 1998; Tanaka et al., 1998; Nokes et al., 1999; Olivieri et al., 1999; Smeets & 

Medema, 2006; Neumann et al., 2007; Khan & McDonald, 2010; Khan, 2010). For example, the 

risk posed by Cryptosporidium in filtered water during potable water treatment could be assessed 

through repeated sampling of a distribution of influent concentrations and mathematically 

combining the results with values drawn from a distribution of filter performance denominated in 

logs of reduction through physical removal. Such analyses could then be adapted to also simulate 

disturbances in the removal process to evaluate the risks attributable to process failure (Passantino 

& Owen, 2005). Mathematical treatment of validation data is usually performed through MCS by 

fitting parametric distributions to the influent and effluent concentrations, and then calculating 

the log removal values (LRVs) from the logarithm of the ratio of values obtained from the 

sampled distributions (van den Akker et al., 2014; Branch et al., 2016). LRVs calculated in this 

fashion usually assume some degree of correlation between the influent and effluent 

concentrations ranks (Branch, 2016). In mechanical reliability, MCS is used to analyse the 

reliability of complex systems (e.g. including stand-by components) and the availability of 
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repairable systems. Simulation can incorporate preventive maintenance, corrective maintenance, 

any type of distribution for the failure and repair times, and crew availability.    

2.5.12 Bayesian networks and Bayesian methods 

Bayesian networks (BNs) are probabilistic graphical models represented by directed acyclic 

graphs (DAGs) which are formed by nodes (variables) and directed arcs (connections). Two 

variables are identified as “parent” and “child” nodes if there is an arc from the former to the latter 

(Korb & Nicholson, 2011). Each node is attached to a conditional probability table defined by the 

combination of states of its “parents” (Jensen & Nielsen, 2007). The structure of a BN encodes 

conditional independencies between the variables which allows a factorisation of the joint 

probability distribution, reducing the amount of required information to define it (Kjræulff & 

Madsen, 2012). BNs use Bayes theorem (Jensen & Nielsen, 2007) to update the values of target 

variables given a set of observed variables, using a process is known as “reasoning”. Three main 

types of reasoning arise from BNs (Kjræulff & Madsen, 2012): A deductive or causal analysis in 

which the occurrence of any node is computed from prior probabilities of root nodes and the 

conditional dependencies following the direction of the causal links; abductive or diagnostic 

reasoning which goes against the direction of the causal links and calculates posterior probabilities 

given some observation (or evidence) of the variables; and inter-causal reasoning which allows 

decreasing belief in unsupported node(s) by getting evidence that supports another hypothesis or 

node.  

BNs usually comprise discrete variables, continuous Gaussian variables or a mixture of both. 

However, BNs can be used with any type of continuous distribution by resorting to Monte Carlo 

simulation, specifically Markov Chain Monte Carlo, which is used to obtain joint and marginal 

posterior distributions (Scutari & Denis, 2014). Queries and inference are possible with this 

methodology. Also, uncertainty in queries is possible to be obtained with this technique (Donald 

& Mengersen, 2014), which is not possible with commonly used inference algorithms. 

BNs application has been extensive for some engineered processes, especially in the area of 

environmental modelling (Aguilera et al., 2011; Phan et al., 2016), and reliability and risk 

assessment as a decision making aid tool (Weber et al., 2012). However, the application of BNs 

in water and wastewater treatment processes remains limited. Some of the relevant applications 

in the water sector comprise inherent reliability assessment including troubleshooting (Chong & 

Walley, 1996; Sahely & Bagley, 2001; Guo et al., 2015b), and prediction of water quality  (Li et 

al., 2013). BNs for troubleshooting have been employed to identify the causes and predict upsets 

on biological treatment of wastewater.  Li et al. (2013) successfully applied BNs for predicting 

the effluent water quality (total phosphorous, total nitrogen and COD) from operating parameters 
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and water quality in a modified sequencing batch reactor. Most studies have used expert 

knowledge for the structure and real data for the parameter learning, or solely expert knowledge 

on both steps (Chong & Walley, 1996). BNs for QMRA in water treatment processes has also 

been an area of recent development (Beaudequin et al., 2015a; Beaudequin et al., 2015c; 

Beaudequin et al., 2017). A BN configuration to assess operational risks and their controlling 

factors and process indicators is presented in Figure 2-8. 

 

Figure 2-8: Operational risk control model DAG. Rs indicate the residual risks along the system, 

Cs indicate the risk controls, Is represent the impacts on the controls, and Os are the observations 

that can be used as indicators or causal factors to the impacts (adapted from Fenton and Neil 

(2012)).   

Toifl et al. (2010) reviewed a number of monitoring techniques for wastewater recycling systems. 

They claimed that BNs may be applicable for process control as they have the ability for structure 

learning. However, this technique often requires large datasets which can be a limitation. Zhu and 

McBean (2007) evaluated BNs augmented with decision and utility nodes (i.e. influence 

diagrams) for deciding what combination of processes (i.e. coagulation, filtration, and 

disinfection) provided the highest utility considering raw water quality, treatment effectiveness, 

cost of processes and health risk. They concluded that BNs can successfully model this type of 

decision problem incorporating uncertainty and decision makers’ preferences. The results 

obtained were consistent with intuition, but they were supported by a defensible decision-

theoretic basis.   

Cheon et al. (2008) developed a BN model for diagnosing and predicting abnormal quality (i.e. 

total phosphorous, ammonia and nitrates) during a five-stage step-feed enhanced biological 

phosphorus removal plant. The model’s structure was constructed from expert knowledge and the 

parameters were learned from real data from a full-scale system and then updated with a lab-scale 

reactor. The models considered water quality (e.g. alkalinity, dissolved oxygen, pH) and 

operational parameters (e.g. MLSS, SRT, sludge blanket height), as well as failure of mechanical 
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parts such as a diffuser and blower, as causal factors affecting dissolved oxygen and an inlet pump 

as a factor affecting ammonia and carbon concentration. The prediction results were satisfactory, 

allowing the correct prediction of abnormal conditions. With the exception of the study reported 

by Cheon et al. (2008), failure of mechanical parts or integrity issues of critical components in 

water utilities has generally not been included.  

Bayesian methods comprise statistical models which allow expressing variables and parameters 

as probability distributions and update those probabilities once data become available through the 

use of Bayes’ rule (Gelman et al., 2014). These models are able to incorporate prior information 

which may come from expert knowledge or previous measurements, define model parameters as 

random variables, and update information in the models based on new evidence. In the same 

manner as BNs, Bayesian methods can be graphically represented as a DAG. For instance, a 

graphical representation of the inference of parameters for a Gaussian distribution is presented in 

Figure 2-9 (Fenton & Neil, 2012). 

 

Figure 2-9: BN representation for inference of Gaussian parameters and posterior predictive 

distribution. Os represent observations and P is the predictive values. 

Bayesian methods have been shown to be valuable tools for compiling data from different sources 

when conducting a meta-analysis (Messner et al., 2001; Qian et al., 2004; Pouillot et al., 2015; 

Brooks & Field, 2016) or estimating uncertainty in model parameters (Sivaganesan et al., 2003; 

Petterson et al., 2007; Teunis et al., 2009). Multiple barriers have also been studied through 

Bayesian hierarchical models considering correlations between different genogroups of virus for 

the influent and removal efficiency (log reduction value, LRV), censored observations, and 

seasonality influence (Pouillot et al., 2015). Estimation of LRVs from validation data for 

wastewater treatment processes including left censored values have been studied using Bayesian 

methods (Kato et al., 2013; Ito et al., 2015; Ito et al., 2016; Kato et al., 2016). These studies have 
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also analysed the effect of the number of non-censored observations on the accuracy of LRVs and 

the influence on distribution parameters of pairing of influent to effluent samples.  

2.5.13 Summary  

To summarise the results presented in this section, the applicability of each tool to validation and 

reliability was indicated in Table 2-2. All reviewed tools were found to be suitable for reliability 

analysis. Each tool presented differentiated characteristics that made them useful for particular 

uses within reliability assessment. From the set of tools analysed, only some of them were shown 

to be appropriate for validation of water treatment processes. For validation, FTA, ETA, Bow-tie 

and MCA are methods able to model the association of variables in a systematic fashion which is 

useful to show the most important factors affecting performance and to understand the key 

functioning mechanisms. MCS has been widely used in validation to simulate scenarios and 

enhance through probabilistic assessment the analysis conducted with other methods. HHRA is 

useful for validation because it provides the means by which the performance and reliability of 

the multiple barrier system can be benchmarked against. BNs and Bayesian methods were shown 

to be very applicable for both validation and reliability tasks. They have been used to represent 

associations in a variety of settings and tasks. They have also shown to be useful because of their 

flexibility and inference capabilities.     

   

Table 2-2: Applicability of reliability tools for validation and reliability 

  Validation Reliability 

HRA  ✓ 

HHRA ✓ ✓ 

FTA ✓ ✓ 

ETA ✓ ✓ 

RBD 
 

✓ 

Bow-tie ✓ ✓ 

LOPA 
 

✓ 

FME(C)A 
 

✓ 

RCM 
 

✓ 

MCA ✓ ✓ 
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  Validation Reliability 

MCS ✓ ✓ 

Bayes ✓ ✓ 

 

2.6 Evaluation of status 

This section presents an initial assessment of the previously reviewed tools for validation and 

reliability assessment. It presents the most relevant techniques and a general comparison of their 

characteristics. 

2.6.1 Assessment of analysed literature 

Tools previously reviewed have demonstrated to be successful in their applications in other 

industry sectors where safety and reliability are the primary concern (e.g. aircraft, nuclear, 

aerospace) (Dhillon & Balbir, 1999; Keller & Modarres, 2005; Liu et al., 2012a). The literature 

analysed showed that all tools have been used or proposed as methods to measure and improve 

reliability. Each tool offers advantages that make it unique and useful for a particular purpose. 

The literature reviewed above indicates that while some reliability techniques are increasingly 

commonly applied in the assessment of water and wastewater treatment systems, others have not 

been fully explored. For example, none of the reviewed studies have quantitatively assessed 

human reliability in water treatment systems. Software reliability has also not being addressed in 

these studies. Given the importance of human decision on these systems and the reliance on 

multiple sensors along the process, they are crucial components within the reliability estimation 

of the process.  

FTA was revealed to have been one of the most common quantitative approach for studying 

reliability, availability, compliance scenarios and hazardous events. Some features that make this 

tool attractive include its explicit representation of causal associations and the generation of 

minimal cut-sets. But few studies have incorporated real failure data into their models, suggesting 

that data, such as failure times and repair times may not be readily available. Expert elicitation 

has been successfully employed for estimating failure rates and uncertainties when available data 

have been limited (Lindhe et al., 2009). In addition, a Bayes’ theorem has been shown to be useful 

for updating distribution parameters with real operational data when subjective data have been 

initially used. ETA is useful for determining the consequences that require further analysis, 
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treatment and devotion of resources. In addition, a valuable advantage of ETA is the sequential 

study of events, which is appropriate for water treatment and management processes.  

Bow-tie and LOPA appear to be highly applicable to water processes for analysis of all types of 

risks. Their focus on the barriers between the causes and the risk, and the risk and consequences 

make them very useful for a multiple barrier system. They can also be used to assess accident 

scenarios. When applying any of these two techniques, attention should be paid to not over-

simplify complex systems and as a result failing to consider interactions between multiple events. 

The attributes required to evaluate each barrier can be relevant for determining whether sufficient 

preventive and mitigating measures are in place in a water treatment and supply system. The main 

limitations of FTA, ETA, Bow-tie, LOPA and RBD are the difficulties of expressing multistate 

and dynamic outcomes. Special care should be taken when common cause failures affect the 

system as they increase the complexity in the model calculation.  

FMEA and FMECA are valuable tools for reliability assessment, especially for analysing several 

potential hazardous events. However, the analysis of rare events from the combination of different 

events occurring at the same time is not possible, nor is the analysis of dependencies. Because of 

this limitation, FMEA/FMECA should be complemented with quantitative system analysis tools 

such as FTA or ETA.  

Important outcomes from HHRA and QMRA are the derivation of water quality health based 

targets and performance targets for water treatment processes. MCS has been the preferred tool 

when analysing validation data as well as for enhancing HHRA and QMRA. In general, MCS 

serves as an add-on statistical method to enhance the analysis of other techniques by incorporating 

stochastic results and multiple scenarios through simulation. 

BNs and Bayesian methods were revealed to be more versatile tools than ISO 31010 suggested 

and hence appeared to have potential for application to a broad range of real problems and to 

encode other tools (Section 2.7). These conclusions have also drawn from studies evaluating the 

ability of BNs to provide a broad framework for reliability and risk analysis (Fenton & Neil, 2012; 

Roser et al., 2015). Their use in the water utility sector has focused mainly on biological systems 

because they present multivariate problems with complex relationships which make BNs suitable 

to be applied. Water treatment processes are dynamic and the monitoring incorporates variability 

and uncertainty. BNs and Bayesian methods are intrinsically probabilistic rather than 

deterministic which make them more convenient for decision support in this case. Because of the 

explicit graphical representation of BNs (and availability of user-friendly commercial software 

packages), they are able to summarise large amount of data and facilitate interpretation, requiring 

little statistical training. They also do not require detailed modelling for effective use.   
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The tools reviewed above can be assessed in terms of their ability to meet the needs of the 

proposed ideal tool as shown in Table 2-1. Although a number of tools incorporate many of the 

important characteristics (Table 2-3), BNs and Bayesian methods support all the features required 

by the ideal tool. These characteristics make these tools versatile and adequate for a large number 

of problems in reliability and decision reasoning. FTA, ETA and Bow-tie also possess a number 

of characteristics which make them attractive for a broad range of cases in reliability assessment 

(Table 2-3). HRA, RCM and MCS methods were not included because they are tools that need to 

be used in conjunction with other tools to be useful.      

Table 2-3: Strongly applicable reliability tools  
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QMRA ✓ ✓  ✓     
FTA ✓ ✓ ✓  ✓ ✓ ✓  
ETA ✓ ✓ ✓  ✓ ✓ ✓  
RBD ✓ ✓ ✓  ✓ ✓   
Bow-tie, CCA ✓ ✓ ✓  ✓ ✓ ✓  
LOPA ✓ ✓ ✓   ✓ ✓  
FMEA/FMECA   ✓  ✓    
MCA ✓ ✓  ✓  ✓   
Bayesian ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

2.6.2 Machine learning tools 

Machine learning tools have acquired prominence in the recent time because of their effectiveness 

in dealing with a broad range of decision making and prediction tasks. Such prediction tasks can 

also include reliability analysis. Machine learning tools within the water treatment domain have 

been largely used for prediction of water quality and performance. Various tools have been 
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proposed to predict the quality of water given operating and water quality parameters. Another 

topic which has brought significant attention is the use of statistical tools for process control and 

monitoring for fault detection in water treatment processes (Toifl et al., 2010; Haimi et al., 2013). 

Process control refers to the activities conducted to maintain a system working within normal 

conditions and avoid significant performance deviations. Process monitoring for fault detection 

is responsible for the diagnosis of the process and identifying failures of system components. In 

general, these tools have been shown to be problem-specific, meaning that one tool may be 

appropriate for a particular application, but not necessarily for another. They have also been 

applied in combination to extend their performance.  

Artificial Neural Networks (ANNs) are so far, one of the most popular tools for both water and 

wastewater treatment prediction tasks (Hadjimichael et al., 2016). ANNs are computational tools 

composed of a set of interconnected units called neurons. They are based on three types of neuron 

layers called input layer (i.e. independent variables), hidden layer (which acts as a feature 

detector) and an output layer (i.e. dependent variables). Khataee and Kasiri (2011) reviewed the 

application of ANNs for biological water and wastewater treatment processes. These models often 

fit biological systems’ data well because they can model complex interactions without the need 

of additional mechanistic information.  

In second place, following neural networks, clustering techniques have also been widely used 

within water and wastewater treatment (Hadjimichael et al., 2016). Other examples of applied 

methodologies include regression trees (Barca et al., 2016), support vector machines (Huang et 

al., 2009; Fang et al., 2011; Verma et al., 2013; Guo et al., 2015a; Mohammadpour et al., 2015), 

partial least squares (Lee et al., 2006; Singh et al., 2010; Qin et al., 2012; Flyborg et al., 2017), 

PCA (Tao et al., 2013; Wang et al., 2017), and multiple linear regression (Uyak et al., 2005; 

Singh et al., 2010; Dotan et al., 2017).  

BNs and Bayesian methods can be benchmarked against the previously mentioned machine 

learning tools. Some of these tools are potentially applicable especially for the validation of 

treatment process. However, the characteristics that make Bayesian methods unique also include 

the capabilities of representing causal relationships between variables, their transparency in 

showing explicitly the associations between variables, naturally handling missing and censored 

values, and the potential inclusion of both expert knowledge and empirical data.  

2.6.3 Interactions between tools 

It appeared that some of the tools reviewed in this chapter can be combined to work in conjunction 

with one another (Table 2-4), meaning that certain reliability techniques together can result in 
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more informative and complete outcomes (Khakzad et al., 2011; Khakzad et al., 2013a; Khakzad, 

2015). In some instances, combining tools may even provide new characteristics or features to 

the overall approach. An example of these new features is the use of MCS in conjunction with 

FTA, ETA, and Bow-Tie analysis. MCS provides the incorporation of uncertainty in parameters 

and facilitates the analysis of more potential scenarios. A brief description of each interaction is 

explained in Table 2-5. 

Table 2-4: Interactions between risk assessment tools 
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HRA  - ✓ ✓ ✓ - - ✓ - - - ✓ 
HHRA   - - - - - - - ✓ - ✓ 
FTA    ✓ ✓ - - - ✓ ✓ - ✓ 
ETA     ✓ - - ✓ - ✓ - ✓ 
Bow-tie      - - - - - - ✓ 
FME(C)A       ✓ - - - - - 
RCM        - - ✓ ✓ ✓ 
LOPA         - - - ✓ 
MCA           - ✓ 
MCS           ✓ ✓ 
RBD             ✓ 
Bayes                         
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Table 2-5: Rationale for perceived overlap/interactions between risk assessment tools 

Abbreviated names Description 

FTA-HRA Fault trees can be used in conjunction with human reliability analysis. 

Probabilities obtained from human reliability analysis can be 

incorporated into fault trees. 

ETA-HRA Event trees can be used in conjunction with human reliability analysis. 

Human reliability is used as one of the inputs for event tree analysis (e.g. 

initiating event, failure of barrier). 

ETA-FTA Fault trees can be used to estimate the probability of failure of a barrier 

in event tree analysis. 

Bow-tie-HRA Cause consequence has the same inputs as fault tree analysis and event 

tree analysis. 

Bow-tie-FTA Cause and consequence analysis incorporates both fault tree analysis and 

event tree analysis. 

Bow-tie-ETA Event trees are incorporated in cause and consequence analysis. 

RCM- FME(C)A FMEA/FMECA provides input information for reliability centred 

maintenance. 

LOPA-HRA Layers of protection analysis concerns the analysis of barriers, human 

reliability is important to keep barriers working. 

LOPA-ETA Layers of protection analysis uses event trees to depict the barriers and 

calculate the probability of undesired events.  

MCA-FTA Markov analysis is used to create the dynamic (time inclusion) version 

of the fault tree analysis or reliability block diagram. 
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Abbreviated names Description 

MCS- HHRA Monte Carlo simulation is used to include uncertainty and variability into 

health risk assessment. 

MCS- FTA Monte Carlo simulation is useful when common causes are present in the 

fault tree analysis and when complex configurations are present. It is 

used to sample from probability distributions of failure and repair time. 

MCS-ETA Monte Carlo simulation can be used to include uncertainty and variability 

in the calculation of undesired events during event tree analysis. 

MCS-RCM Monte Carlo simulation is used for analysis of reliability within specific 

tools that provide input to reliability centred maintenance. 

RBD-RCM Reliability block diagram provides input information for reliability 

centred maintenance. 

RBD-MCS It is used when complex configurations are present. It is used to sample 

from probability distributions of failure and repair times. 

Bayes-HRA BNs have been used to encode human reliability models and model 

dependencies between factors affecting human failure events. Bayesian 

methods can be used to incorporate subjective information during human 

reliability. 

Bayes- HHRA BNs and Bayesian methods give the same options as Monte Carlo for 

health risk assessment but also incorporating inference. 

Bayes-FTA BNs can model fault trees. Fault trees can be considered as a special case 

of BNs. Bayesian methods have been used to incorporate uncertainty into 

the fault tree analysis methodology. 

Bayes-ETA Event trees can be considered as a special case of BNs. Bayesian methods 

have been used to incorporate uncertainty into the methodology. 
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Abbreviated names Description 

Bayes-Bow-tie Cause and consequence analysis can be considered as a special case of 

BNs. Bayesian methods have been used to incorporate uncertainty into 

the methodology. 

Bayes-RCM BNs and Bayesian methods can be used to stochastically assess different 

maintenance strategies.    

Bayes-LOPA Layers of protection analysis (event tree part) can be performed through 

BNs. Bayesian methods have been used to incorporate uncertainty into 

the methodology. 

Bayes-MCA BNs can model Markov chains. Bayesian networks generalise them. 

Bayes-MCS Monte Carlo simulation can be used to perform inference in BNs. Useful 

for large and complex models. 

Bayes-RBD Reliability block diagrams can be modelled by BNs. Bayesian methods 

have been used to incorporate uncertainty into the methodology. 

 

2.7 Mapping other tools with Bayesian networks 

This section presents additional evidence of the potential of BNs as a versatile tool that can be 

applied to validation and reliability assessment and management in different settings. BNs have 

been used for different types of assessments even for mapping of classic reliability techniques 

such as FTA, ETA, bow-tie and RBD. BNs make the analyses more powerful and flexible, 

providing more information to the modeller. Tools which have been encoded into BNs are 

presented in Table 2-6.  
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Table 2-6: Tools mapped into Bayesian networks 

Mapped tool References 

HRA Mkrtchyan et al. (2015) 

FTA Bobbio et al. (2001); Montani et al. (2008); Fenton and Neil 

(2012) 

ETA Bearfield and Marsh (2005); Marsh and Bearfield (2008); Fenton 

and Neil (2012) 

Bow-tie, CCA  Khakzad et al. (2013a) 

RBD Torres-Toledano and Sucar (1998); Solano-Soto and Sucar 

(2001) 

LOPA Pasman and Rogers (2012); Pasman and Rogers (2013) 

MCA Weber and Jouffe (2003); Weber et al. (2004); (Montani et al., 

2005); Koller and Friedman (2009); (Cai et al., 2013) 

QMRA, ERA Smid et al. (2010); Liu et al. (2012b); Beaudequin et al. (2015b) 

 

Human reliability analysis (HRA) tools have been encoded through BNs to improve different 

aspect of the HRA methodology. Some of the applications of BNs into HRA include modelling 

of organizational factors, analysis of the relationships among failure influencing factors, BN-

based extensions of existing HRA methods, dependency assessment among human failure events, 

assessment of situation awareness (Mkrtchyan et al., 2015).    

When FTA and ETA methods are employed to assess system reliability, the focus is in the whole 

system reliability rather than individual components which make impossible to update individual 

component performance statistics (Martz & Waller, 1982). By the use of BNs, individual 

component reliability can be targeted, and evidence on any node in the network can provide 

information on all other nodes (Mahadevan et al., 2001).  

Fault trees can be considered special cases of BNs. Bobbio et al. (2001) published an algorithm 

that can be used to convert FTA to BNs.  In a similar fashion event trees  (Bearfield & Marsh, 

89



2005) and Bow-tie (Khakzad et al., 2013a) can be modelled by BNs. Reliability block diagrams 

has also been mapped into BNs including complex structures (Torres-Toledano & Sucar, 1998). 

Pasman and Rogers (2012); Pasman and Rogers (2013) studied the advantages of encoding a 

Layers of Protection Analysis models through BNs. 

The advantages of mapping to BNs have been recognised by many authors and applied to case 

studies in different fields (Liu et al., 2008; Lampis & Andrews, 2009; Duan et al., 2010; Khakzad 

et al., 2013b; Khakzad et al., 2013a; Leu & Chang, 2013). BNs have provided more transparency, 

offering multi-states, and explicitly representing event dependencies when encoding FTAs and 

ETAs. BNs can overcome some of the shortcomings common for these tools such as binary states, 

independent events assumption, redundancies, sequential and common causal events. In general, 

BNs require more computational effort than FTA, ETA or Bow-tie approaches. However, the 

additional effort permits the incorporation of backward propagation once evidence becomes 

available on any of the BN nodes (Mahadevan et al., 2001). An important application is also 

“probability adapting” which is used to update probabilities of consequences by belief updating 

on safety analysis (Khakzad et al., 2013a). The fact that BNs can be flexible enough to model 

fault or event trees is a proof that this tool can be used in several applications. This feature would 

allow taking advantage of the benefits of both tools in one application.  

Health risk assessment, specifically quantitative microbial risk assessment, has been reviewed by 

Beaudequin et al. (2015b) across different domains including water and food. The review 

comprised literature about BN modelling and hierarchical Bayesian analysis. Hierarchical 

Bayesian analysis is often expressed as DAGs in the same manner as BNs do. The advantage of 

Bayesian analysis is the use of either discrete or continuous distributions without limitation of on 

the distribution type. The models constructed in this fashion can incorporate prior knowledge and 

data. In addition, they also easily incorporate parameters explicitly in the model. However, they 

require defining the function and relationships between the variables in advance. BNs are 

particularly suitable for QMRA because of the explicit causal representation, incorporation of 

evidence and backwards reasoning.  

Markov chains allow modelling reliability in a dynamic fashion. They have been mapped into 

BNs using Dynamic Bayesian Networks (DBNs). Incorporation of the time variable permits 

modelling the change of a particular system variable through time, which is important when 

degradation of a system condition and repair need to be modelled including causal factors (e.g. 

failure of a mechanical component).        
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2.8 Conclusions 

In this review, reliability aspects have been considered in respect to water reuse systems including 

inherent reliability and mechanical reliability. Inherent reliability relates to the variability in 

system performance and through validation this aspect can objectively be evaluated. However, 

validation entails a number of tasks that need to be addressed also including the analysis of 

potential performance predictors and incorporation of uncertainties as well as censored or missing 

values into the reliability/risk estimations. Validation of treatment systems has traditionally been 

performed through Monte Carlo simulation. Although Monte Carlo simulation is a powerful 

technique, Bayesian methods offer the opportunity to incorporate priors, compile information 

from different sources, determine parameter uncertainties explicitly, and deal with missing and 

censored values. Few studies were found to assess or report applications of Bayesian analysis for 

water or wastewater treatment process validation. But there were sufficient studies to indicate the 

analysis was possible in principle and many potential opportunities from the application of 

Bayesian tools. 

In the case of mechanical reliability, the review of current literature revealed that the water reuse 

industry, including especially the potable water reuse sector, is currently exploring how to ensure 

reliability as a matter of priority. The study of reliability can be conducted at various levels of 

detail depending on the required scope. For example, a particular process could be evaluated in 

terms of its specific mechanical components to calculate the process reliability. For potable reuse 

systems, the analysis of the multiple barriers and their reliability appears a particularly important 

assessment task. However, few options exist to model reliability while effectively incorporating 

the inter-relationships between individual barriers of the multiple barrier system. Because of 

limited data availability and the large human integration within these systems, a participatory 

process, in which information from experts and real data could be incorporated, appears 

necessary. The reviewed literature indicated that these requirements could be well captured and 

modelled using BNs.  

A number of tools exist for performing risk and reliability analysis. From the variety of tools 

reviewed, it was found that only a few of them offer the flexibility required for the comprehensive 

assessment of reliability at diverse levels of abstraction and complexity. It was found that FTA 

was one of the most commonly applied reliability tool in water and wastewater treatment. An 

important characteristic of this tool is the capability for providing both cause-effect analysis and 

probabilistic analysis. The literature revealed that BNs and Bayesian methods could encode and 

enhance the features of FTA and other traditional reliability techniques. 
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Rigorous risk and reliability assessment is required to ensure high levels of water quality and 

compliance with risk management requirements imposed by regulatory agencies. Current 

practices and guidelines do not generally promote the use of quantitative reliability tools which 

makes the task difficult to manage. Reliability has an inherent mathematical meaning, therefore 

a quantitative assessment appears required if it is to be characterised, controlled, predicted and 

enhanced. In this sense, conventional qualitative tools, although useful, they are limited by the 

potential outcomes they can provide. 

BNs applications in the water management field have mainly been limited to biological systems 

and to the prediction of bulk water quality parameters. However, the characteristics of these tools 

suggest they are suitable for a much wider range of cases, including reliability analysis in water 

treatment systems. BNs in general provide prediction capabilities, representation of causality and 

uncertainty assessment which appear suited to undertaking most relevant aspects for assessing 

reliability and risk in water treatment systems. 

The following chapters of this thesis describe activities that were undertaken to confirm this 

promise in a practical and experimental way and so assess the operational usefulness of BNs and 

Bayesian methods in a number of water reuse systems applications. Chapters 4 to 7 present case 

studies for the problem of validation during activated sludge (Chapter 4), ultrafiltration (Chapter 

5), ozonation (Chapter 6) and chlorination (Chapter 7). Chapter 8 presents a reliability assessment 

for UV disinfection and Chapter 9 shows how a multi-barrier system can be modelled through 

BNs. 
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Chapter 3: Materials and methods 
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This chapter describes the analysis techniques used to develop the Bayesian networks (BNs) and 

Bayesian methods in this study. These tools were common to different chapters. Experimental 

settings, modelling and data inputs specific for each case study are explained within each 

particular chapter.  

There were multiple times in which terminology was repeated referring to different concepts 

depending on the context. These terms included: parameters and variables. To clarify their 

meaning and use they were defined in here. Parameters in a BN refer to the conditional (or 

marginal) probabilities associated to each node. In Bayesian analysis, parameters are the values 

defining the characteristics of a probability distribution. For example, for a normal distribution, 

the mean and standard deviation correspond to its parameters. In water treatment processes 

monitoring parameters refer to measurements made by instruments used to observe some 

characteristic of the process or water quality. Variable in the context of BNs is a synonym of 

node, so they can be used indistinctly. In Bayesian analysis, variables are the inputs and outputs 

of interest in a model. For example, in a model that is constructed to analyse system performance, 

the measured performance would be the output variable, whereas the values used to explain the 

performance would be the input variables.    

3.1 Bayesian networks 

As described in the literature review (Chapter 2, Section 2.5.12), BNs are probabilistic graphical 

models represented by “Directed Acyclic Graphs” (DAGs), which can model non-recursive 

causal relationships in complex systems and facilitate inferential reasoning. A BN structure is 

defined by directional connections, known as “arcs”, which specify the dependence and 

independence assumptions between random variables, termed “nodes” (Figure 3-1). These 

interdependencies determine what information is required to specify the probability distribution 

among the random variables of a network. Two variables are identified as related “parent” and 

“child” nodes if there is an arc from the former to the latter (Korb & Nicholson, 2011). When a 

variable has parents, a set of conditional probabilities must be defined in the child node for each 

combination of parent node “states” which may be categories, values or value ranges. Nodes 

without parents (root nodes) only require marginal probabilities. BNs reduce the quantity of 

information required to define a joint probability distribution through factorisation conducted 

using the chain rule as shown in Equation 3-1. 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑋𝑝𝑎[𝑖])

𝑛

𝑖=1

 Equation 3-1 

Where P(X1,X2,…,Xn) is the joint probability distribution of variables (X1, X2,…,Xn), Xi 

corresponds to a random variable represented by the node i in {1,…,n} and pa[i] denotes the 
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parents of node i, Xpa[i] indicates a set of random variables associated with pa[i]. Each node from 

a BN has mutually exclusive discrete states which are associated to marginal probabilities 

(indicated by the red filled rectangle in Figure 3-1). These marginal probabilities are obtained by 

marginalising the joint probability distribution. More detailed information about marginalisation 

can be found in Koller and Friedman (2009). 

 

Figure 3-1: Structure and main components of a Bayesian network 

3.1.1 Model construction approaches considered 

3.1.1.1 Types of connections 

Three types of connections exist in BNs including serial (Figure 3-2 a), converging (Figure 3-2 

b), and diverging (Figure 3-2 c) connections. These three types of structures have also been known 

as causal chain, common effect and common cause, respectively (Korb & Nicholson, 2011). The 

types of connections in a BN determine the conditional dependencies and the flow of information 

or influence between different nodes when evidence is provided. This characteristic is relevant as 

the network should represent the behaviour and influences of the modelled system. In the serial 

structure knowing that A has occurred does not provide information to C if B has already been 

observed. The conditional independence in this case can be written as 2A⫫C|B. In the converging 

structure, a node has n number of parent nodes which are marginally independent, but they 

                                                      
2 This reads A is conditionally independent of C given B  
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become dependent once an observation is provided for the common effect. Therefore, for this 

type of connection, the parents are conditionally dependent given B, which can be written as 3A

C|B. The diverging structure gives rise to the same conditional independence structure found in 

the serial connection, so the relationship can be represented as A⫫C|B. 

 

Figure 3-2: Types of connections in Bayesian networks. a) serial, b) converging and c) diverging 

connections. Grey nodes represent evidence that blocks information. 

3.1.1.2 Construction options employed 

A BN structure can be determined based on expert information, data or a combination of both. 

Although there is no universally accepted formal procedure for BN construction, some methods 

have been proposed for this task. For example, the use of expert information can be facilitated by 

the utilisation of idioms which are pre-defined BN structures modelling a particular system 

behaviour (Fenton & Neil, 2012). These idioms can be divided into five types including 

definitional, cause-consequence, measurement, induction, and reconciliation idioms. More 

detailed information about the use of idioms and their structure can be found in Neil et al. (2000). 

Another option for structuring models is using other traditional reasoning methods such as fault 

tree analysis, event tree analysis, Bow-tie to generate the basic structure of the network and then 

map such models into a BN including additional structures or connections (Leu & Chang, 2013).  

                                                      
3 This reads A is conditionally dependent of C given B 
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If the construction of the network is based on data or a combination of data and expert information, 

various options can be selected. The appropriate choice of options depends on the purpose of the 

model and, on the algorithms used for their construction. With regards to the purpose, if the model 

seeks to predict the outcomes of a particular variable, non-causal or naïve BNs can be used (Korb 

& Nicholson, 2011). Naïve BNs present a pre-defined structure in which the target node is the 

parent of all the attributes or explaining variables. Some modifications to this method have been 

incorporated, such as the inclusion of arcs between the attributes to improve prediction 

capabilities. Such models are known as semi-naïve BNs. When a “causal” representation or 

understanding of the conditional dependencies of the system is required, a “causal” type of 

network can be employed. In this case, connections are not forced in a particular configuration. 

However, an expert can provide input in the form of forbidden connections and forced 

connections between nodes which are known to exist in reality. Appendix 1 presents an example 

to illustrate the difference between naïve Bayes models and causal BNs. 

The issue of the second choice relates to the algorithms used to achieve the final model structure. 

A number of algorithms have been developed in which the data are used to generate the 

connections between the nodes. Two main types of algorithms exist for this purpose including 

score-based and constraint-based algorithms for structure learning. The first types of algorithms 

use a search procedure and a score function (Section 3.1.2) which is maximised. The second type 

uses conditional independence tests such as the mutual information test and 2 test for conditional 

independence (Scutari & Denis, 2014). A disadvantage of constraint-based algorithms is that arcs 

without direction can be produced by this method, which is not the case of score-based algorithms. 

More information about the different types of algorithms used for structure learning can be found 

in Jensen and Nielsen (2007); Koller and Friedman (2009); Korb and Nicholson (2011); Kjræulff 

and Madsen (2012); Scutari and Denis (2014).   

3.1.2 Model parameters 

Bayesian networks use marginal probabilities (for nodes without parents) and conditional 

probabilities (for nodes with parents) to define the parameters of the model. In the case of the 

model presented in Figure 3-1, two sets of parameters need to be obtained, one for node “A”  

(Table 3-1) and another one for node “B” (Table 3-2). Parameters for node “B” are conditional 

probabilities because there is an arc from “A” to “B”. It is important to note that each row in the 

parameters table must sum to 1. When data are used to estimate model parameters, each cell is 

populated by counting the number of occurrences for a particular condition. This algorithm is 

known as maximum likelihood estimation (MLE). When missing values are present, more 

sophisticated algorithms are required, in which inference is required as an intermediate step to 
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obtain an estimation of the probabilities. Algorithms for this type of computation include 

expectation maximisation and gradient descend (Koller & Friedman, 2009).  

Table 3-1: Parameters for parent node A  

P(A=Low) P(A=Medium) P(A=High) 

0.8 0.15 0.05 

 

Table 3-2: Parameters for child node B 

A P(B=Low|A) P(B=Medium|A) P(B=High|A) 

Low 0.90 0.10 0 

Medium 0.15 0.80 0.05 

High 0.05 0.10 0.85 

3.1.3 Network scoring for assessing BN quality 

In a BN context, likelihood is defined as the probability of a set of data given the parameters in 

the model (which is defined by the model structure G) (Equation 3-2) (Kjræulff & Madsen, 2012). 

Likelihood can be used as a goodness of fit metric for a BN. Because calculations of likelihoods 

imply a multiplication of probabilities, the logarithm of likelihoods (log-likelihood) is used to 

change the multiplication to summation and facilitate calculations. Therefore, the log-likelihood 

of the data D={c1,…,cN} given structure G is the sum of the contributions from each variable for 

each case. 

𝑙(𝐺: 𝐷) = ∑ 𝑙𝑜𝑔𝑃(𝑐𝑙)

𝑁

𝑙=1

 
Equation 3-2 
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= ∑ ∑ 𝑙𝑜𝑔𝑃(𝑋𝑖 = 𝑥𝑖
𝑙|𝑝𝑎(𝑋𝑖) = 𝑥𝑝𝑎(𝑋𝑖)

𝑙 , 𝑐𝑙)

|𝑉|

𝑖=1

𝑁

𝑙=1

 

Where (𝑥𝑖
𝑙 , 𝑥𝑝𝑎(𝑥𝑖)

𝑙 ) are the values of (𝑋𝑖, 𝑝𝑎(𝑋𝑖)) in the lth case cl of D. The number of nodes is 

represented by V. 

The structure of a network can usually be evaluated using score metrics which trade-off goodness 

of fit and complexity. Therefore, a more complex network (more connections) will require a high 

goodness of fit to be selected. Goodness of fit in this case is measured through the log-likelihood 

score whereas the complexity can be measured in different ways including the number of 

independent parameters required by the model and the size of the dataset. A common score used 

during network comparison is the Akaike Information Criterion (AIC) (Equation 3-3). AIC uses 

the independent number of parameters (k) for penalising the complexity in the network. In 

general, lower score values indicate better fit.    

𝐴𝐼𝐶 = 𝑙(𝐷; 𝜃, 𝐺) − 𝑘 

 

      Equation 3-3 

 

3.1.4 Model evaluation tools 

Two main types of evaluations can be conducted after a model is developed including hold-out 

testing and cross-validation. In hold-out testing the data are usually divided into two parts, one 

for fitting or training the model and the other one for testing its performance. Hold-out testing is 

usually performed when the amount of data is large so the size of the data to train the model does 

not affect its performance. When the data are scarce, cross-validation can be used to test the 

performance of the model. Cross-validation was used in this study. 

3.1.4.1 Cross-validation 

Typically, the type of cross-validation used on many BN studies corresponds to 10-fold cross-

validation (Koller & Friedman, 2009). This approach randomizes and partitions the data into 10 

equally sized sets and then 10 validations are made using 9/10th  and 1/10th  of the data for training 

and testing, respectively (Figure 3-3), every time with each portion of the data (Koller & 

Friedman, 2009). Cross-validation is performed to mitigate any bias produced by a particular 

sample chosen for training and testing. Cross-validations are usually used along with stratification 

randomisation. Randomised stratification means that the proportions within the classes of the 

class node are approximately the same in each fold. Another commonly used approach for 
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validation of models using cross-validation is the leave-one-out cross-validation (LOOCV). In 

this case, LOOCV consists of removing a single observation from the dataset (of size: n) and 

fitting the model using n-1 observations, and then using the removed observation to validate the 

model’s prediction of these data. The process is repeated n times, so all observations are used for 

model construction and testing. In this case, no stratification is required. 

 

Figure 3-3: Schematic representation of the 10-fold cross-validation. 

3.1.4.2 Performance metrics 

A number of metrics have been developed to estimate the performance of a BN after testing it 

against real data. Common metrics were employed in this study including prediction accuracy 

(Equation 3-4), Kappa statistic (Ks) (Equation 3-6), rates (i.e. false/true-negatives/positives) 

(Equation 3-11 to Equation 3-14), receiver operating curve (ROC) and its area under the curve 

(AUC). In general, using the metrics on their own is not sufficient and a combination of them is 

recommended to assess the real performance of a model (Marcot, 2012). The results of the 

performance of a BN for a two-outcome node can be represented by a contingency table as shown 

in Table 3-3. As observed, the real and predicted outcomes can be true or false. When the 

predicted outcome is true and the real outcome is also true, a true positive count is obtained, 

whereas when both the predicted and real outcomes are negative, a true negative count is obtained. 

A false positive is obtained when the predicted outcome is true, but the real outcome is false. 

Conversely, a false negative is found when the predicted outcome is false, but the real outcome 

is true. In Table 3-3, TP, FN, FP and FN represent the number of instances or counts which were 

found to be true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 
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Table 3-3: Contingency table for two outcomes 

        Real outcomes 

True False 

Pr
ed

ic
te

d True TP FP 

False FN TN 

 

Prediction accuracy measures the number of correctly estimated outcomes divided by the total 

number of outcomes (Equation 3-4) (Witten & Frank, 2005). This metric is commonly used when 

evaluating the BN prediction performance. However, one of its main limitations is providing high 

accuracies when only few cases are available for one of the real outcomes compared to the other(s) 

(this is known as an unbalanced outcome). Calculation of prediction accuracy generalised for g 

number of outcomes is presented in Equation 3-5. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Equation 3-4 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑ 𝑓𝑖𝑖

𝑔

𝑖=1

 Equation 3-5 

Where n is the total number of occurrences and fii is the number of occurrences in the diagonal of 

a square contingency matrix with g distinct outcomes. 

The Kappa statistic (Ks) metric (Equation 3-6) uses the prediction accuracy (Equation 3-7) but 

removes the agreement obtained by chance (Equation 3-8). Ks measures the agreement between 

model predictions and actual values as a metric in the range [-1,1]. KS = 1 means perfect 

agreement, KS = 0 means that agreement is equal to chance, and KS = −1 means “perfect” 

disagreement (Marcot, 2012). 

101



𝐾𝑠 =
Pr(𝑎) − Pr (𝑒)

1 − Pr (𝑒)
 Equation 3-6 

Pr(𝑎) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Equation 3-7 

Pr(𝑒) =
(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) ∙ (𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 Equation 3-8 

Where Pr(a) is the proportional agreement (same as prediction accuracy) and Pr(e) is the expected 

agreement. For any number of outcomes the Pr(a) is defined by Equation 3-9, while Pr(e) is 

defined by Equation 3-10.  

Pr (𝑎) =
1

𝑛
∑ 𝑓𝑖𝑖

𝑔

𝑖=1

 Equation 3-9 

Pr (𝑒) =
1

𝑛2
∑ 𝑓𝑖+ ∙ 𝑓+𝑖

𝑔

𝑖=1

 Equation 3-10 

Where fi+ is the total number of occurrences for the ith row and f+i is the total number of 

occurrences for the ith column. The true positive rate (TPR) is defined by Equation 3-11, false 

negative rate (FNR) by Equation 3-12, false positive rate (FPR) by Equation 3-13 and true 

negative rate (TNR) by Equation 3-14. When more than two outcomes are used, rates can be 

calculated by collapsing the remaining states into a single one. 

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 Equation 3-11 

𝐹𝑁𝑅 =
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)
 Equation 3-12 

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 Equation 3-13 
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𝑇𝑁𝑅 =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 Equation 3-14 

The receiver operating characteristic curve is used to analyse the relationship between the false 

positive rate (or 1-specificity) and the true positive rate (or sensitivity) for various decision 

thresholds (Figure 3-4). In a two-outcome case, this threshold is commonly assumed at 0.5. From 

this curve, the most adequate threshold can be selected considering the required false positive rate 

and true positive rate. The curve is also used to calculate the area under its curve or AUC. AUC 

ranges between 0 and 1, where 1 represents perfect matching, 0.5 reflects totally random models, 

and <0.5 indicates models generating predominantly inaccurate predictions (Korb & Nicholson, 

2011). In the case of more than two outcomes, ROC and AUC can be computed by collapsing the 

remaining states in a single one.  

 

Figure 3-4: receiver operating curve. Diagonal line represents complete uncertainty. 

 

3.1.4.3 Inference 
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Inference algorithms are very important because inference reasoning is one of the main 

advantages of BNs (Korb & Nicholson, 2011). Bayesian networks, as their name indicates, make 

use of the Bayes rule (Equation 3-15) to update the information in the network once evidence is 

provided. A number of inference algorithms have been developed to facilitate this process 

including Junction tree, loopy belief propagation,  and likelihood weighting, with the most 

common being the Junction tree algorithm (Korb & Nicholson, 2011). Junction tree algorithm is 

an exact algorithm, whereas the other two are approximate. The advantage of using approximate 

methods is their capability for managing larger models for which Junction tree would require 

greater computational capabilities. These algorithms are commonly integrated in commercially 

available software packages. Furthermore, inference algorithms are freely available for their use 

in programming languages such as R, MatLAB and Python, therefore their development is not 

generally required. Explanation of the functioning of these algorithms can be found in Jensen and 

Nielsen (2007); Koller and Friedman (2009).  

In a BN context, the marginal distributions observed in a BN when there is no incorporation of 

evidence are called prior probabilities. Once evidence is input to the model, the variables which 

were not observed will potentially have a change in their marginal probabilities. This new set of 

marginal probabilities is called posterior probabilities. Variables for which there is an interest for 

evaluating its results after some evidence is entered are called query nodes. 

Using the example in Figure 3-1, inference in a BN can be illustrated. In this case, the Bayesian 

inference is used to determine the posterior distribution for “A” given an observation in “B” 

(B=High) (Equation 3-15). The posterior distribution for “A” P(A|B=High) given the observation 

B=High is obtained using the prior distribution for “A” P(A) and the conditional probability 

distribution P(B=High|A) specified in the model. 

𝑃(𝐴|𝐵 = 𝐻𝑖𝑔ℎ) =
𝑃(𝐵 = 𝐻𝑖𝑔ℎ|𝐴)𝑃(𝐴)

𝑃(𝐵 = 𝐻𝑖𝑔ℎ)
 Equation 3-15 

 

3.1.4.4 Entropy and mutual information 

In BNs, the strength of association between a pair of variables can be quantified non-

parametrically by mutual information. Mutual information (Equation 3-17) measures how much 

uncertainty or entropy (Equation 3-16) is reduced in a target variable when information is known 

about a second variable. Mutual information is usually used to compare which variables are more 
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important for a particular target variable given some evidence. Mutual information between two 

variables depends on both the structure and the parameters of the network.  

𝐻(𝑋) = − ∑ 𝑃(𝑥) ∙ 𝑙𝑜𝑔𝑃(𝑥)

𝑥

 Equation 3-16 

𝐼(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥, 𝑦) ∙ 𝑙𝑜𝑔
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
𝑦𝑥

 Equation 3-17 

Where H(X) is the entropy of variable X, P(x) is the probability of the variable x. I(X,Y) 

represents the mutual information between X and Y, P(x,y) is the joint probability of the variables 

x and y, P(x) is the probability of x and P(y) is the probability of y. 

Usually, mutual information is normalised to make results comparable between model 

alternatives. Relative mutual information for a target node is defined as the ratio between the 

mutual information of the target node and any other node, and the marginal entropy of the target 

node.   

 

3.1.4.5 Difference and lift 

Difference and lift are used to evaluate the change in the marginal probabilities of a node given 

some evidence. The difference is defined as the subtraction between the posterior and prior 

probabilities for a particular node state (Equation 3-18). Lift or normalised likelihood is defined 

as the ratio between the posterior and prior probabilities for a particular node state (Kjræulff & 

Madsen, 2012) (Equation 3-19). 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑃(𝑥|휀) − 𝑃(𝑥) Equation 3-18 

𝐿𝑖𝑓𝑡 =
𝑃(𝑥|휀)

𝑃(𝑥)
 Equation 3-19 

Where x is the probability of the state for the target node and ε is the evidence. 

 

3.1.4.6 Sensitivity analysis 
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Two main types of sensitivity analysis can be performed during the BN development including 

sensitivity to evidence (or sensitivity to findings) and sensitivity to parameters. Sensitivity to 

evidence can be conducted through the use of mutual information (or relative mutual information) 

(Section 3.1.4.4). An alternative to the use of mutual information is evaluating the marginal 

probabilities of a target node when evidence is input into the model. One or a group of nodes can 

be manipulated to analyse the effect on the target node (Korb & Nicholson, 2011). “Sensitivity to 

parameters” measures how sensitive the results of propagation of evidence are to the influence of 

changes in parameters (i.e. marginal or conditional probabilities associated to a node). Although 

it is possible to perform a sensitivity analysis to any number of parameters, it has been 

recommended for practical purposes that only one-way or at most two-way parameter sensitivity 

analysis is considered (Kjræulff & Madsen, 2012). In this section one-way and two-way 

sensitivity analysis are explained. Both types of sensitivity analysis are based on the observation 

that the probability of the evidence changes linearly to one or two parameters in the model. For 

the one-way analysis Equation 3-20 is used, while for two-way sensitivity analysis Equation 3-21 

is used. In the one-way sensitivity equation, the single variable “t” is analysed, whereas for the 

two-way sensitivity equation, t1 and t2 are analysed. The parameters of the functions (i.e. , , , 

, 1, 2, 1, 2, 1, 2, 1, 2) are determined by propagating the evidence under different values 

of the parameter to be analysed. Further information about the derivation and use of sensitivity to 

parameter functions can be found in Jensen et al. (2002); Kjræulff and Madsen (2012)            

𝑓(𝑡) = 𝑃(ℎ|휀)(𝑡) =
𝑃(ℎ, 휀)(𝑡)

𝑃(휀)(𝑡)
=

𝛼 ∙ 𝑡 + 𝛽

𝛾 ∙ 𝑡 + 𝛿
 Equation 3-20 

𝑓(𝑡1, 𝑡2) = 𝑃(ℎ|휀)(𝑡1, 𝑡2) 

=
𝑃(ℎ, 휀)(𝑡1, 𝑡2)

𝑃(휀)(𝑡1, 𝑡2)
 

=
𝛼1 ∙ 𝑡1 ∙ 𝑡2 + 𝛽1 ∙ 𝑡1 + 𝛾1 ∙ 𝑡2 + 𝛿1

𝛼2 ∙ 𝑡1 ∙ 𝑡2 + 𝛽2 ∙ 𝑡1 + 𝛾2 ∙ 𝑡2 + 𝛿2
 

Equation 3-21 

Where “f()” is the sensitivity function, tn represent the parameter(s) to be analysed for n 

parameters, h is the target node, and  ε is the evidence. , , , and  are the parameters of the 

one-way sensitivity function, while 1, 2, 1, 2, 1, 2, 1, and 2 are the parameters of the two-

way sensitivity function.    
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3.1.5 Modelling software for BNs 

A number of commercially available BN software packages exist as shown in Table 3-4. The 

main differences between them are the incorporation of continuous nodes, structure learning 

capabilities and the number of inference engines they have available. In this study four BN 

software packages were used, including NeticaTM (Norsys, 2015), Bayes Server (Bayes Server, 

2017), WEKA (Hall et al., 2009), and bnlearn (Scutari, 2010). NeticaTM provides a simple 

graphical interface to construct and evaluate BNs. Inference is performed through junction tree 

algorithm. Bayes Server provides a graphical interface to construct and analyse BNs having a 

number of options for sensitivity analysis. WEKA includes machine learning algorithms for data 

mining and provides various tools for data processing and evaluation of algorithm optimality 

(Witten & Frank, 2005). WEKA also has a module for BN construction and evaluation. However, 

WEKA is limited in terms of the algorithms for parameter learning (only MLE available) and 

flexibility in model construction. Bnlearn is a package available for the programming language R 

and can be used to construct, infer and evaluate BNs. This package contains a number of structure 

learning algorithms and also permits exportation of files compatible with NeticaTM.   

3.1.6 Other types of Bayesian networks 

Alternative BN modelling techniques have been developed to deal with some of the more 

challenging issues of BNs including continuous variables and explicit definition of correlations 

between variables. An approach that incorporates these characteristics is the non-parametric BNs. 

This technique uses conditional rank correlations to measure the associations between the 

variables and normal copulas to define the joint probability distributions. A software package, 

Uninet has been developed to construct and evaluate these types of models (Cooke et al., 2007). 

Uninet offers a user interface and an Application Programming Interface (API) to model non-

parametric BNs. The program supports both probabilistic and functional nodes. Probabilistic 

nodes can be defined from a collection of nine common parametric distributions or determined 

directly from data. Functional nodes can be the child of probabilistic or other functional nodes, 

but they cannot have probabilistic children. The user then specifies the DAG and the rank 

correlations either from data or expert knowledge. Stochastic modelling in Uninet is performed 

through Monte Carlo tools which samples the entire joint distributions. More information about 

this technique and software package can be found in Hanea et al. (2015).This model technique 

was used in Chapter 9 to model a multi-barrier system. 

 

107



 Table 3-4: C
om

parison of available features of a num
ber of com

m
only used B

N
 softw

are packages w
hich w

ere used or provisionally trialled 

Package 
C

ontinuous 
nodes 

Param
eter 

learning 

N
um

ber 
of 

structure 
learning 

algorithm
s 

D
ynam

ic 
B

N
s 

N
um

ber 
of 

engines 
aV

isualisation 
Price 

(U
SD

) 
License 
period 

aSupport 
W

ebsite 

N
etica 

 
✓


1
 

✓


1
 

✓
✓
✓

 
685 

Perpetual 
✓


w
w

w
.norsys.com

 

G
eN

Ie 
 

✓


>1 
✓


>
1
 

✓
✓


Free 
bN

A
 

✓


w
w

w
.bayesfusion.com

 

H
ugin 

✓


✓


>1 
✓


1
 

✓
✓


4,240 
Perpetual 

✓
✓
✓


w
w

w
.hugin.com

 

B
ayesiaLab 

 
✓


>1 
✓


>
1
 

✓
✓


c24,620 
Perpetual 

✓
✓


w
w

w
.bayesia.com

 

A
genaR

isk 
 

✓


 
 

1
 

✓
✓


3,000 
1 year 

✓
✓
✓


w
w

w
.agenarisk.com

 

B
ayes 

Server 
✓


✓


>1 
✓


>
1
 

✓
✓


623 
Perpetual 

✓
✓
✓


w
w

w
.bayesserver.com

 

W
eka 

✓


✓


>1 


1
 

✓


Free 
N

A
 

✓


w
w

w
.cs.w

aikato.ac.nz/m
l/w

eka/ 

U
ninet 

✓


✓


 


1
 

✓
✓


Free 
N

A
 

✓
✓


w
w

w
.lighttw

ist.net/w
p/uninet 

a B
ased on ow

n experience. 

b N
ot applicable. 

c: O
ther price options available depending on the period of tim

e. 

108



 

3.2 Bayesian models 

Bayesian models are statistical models which allow expressing variables and parameters as 

probability distributions and update those probabilities once data become available. The 

fundamental concept behind Bayesian models is Bayesian inference.  

3.2.1 Bayesian inference 

Bayesian inference in Bayesian models is commonly used to learn about probabilities of 

unobservable parameters. In this case Bayes’ theorem is employed in a slightly different fashion 

as in Bayesian networks as shown in Equation 3-22. P() is the prior distribution for  (i.e. vector 

of parameters) and represents the uncertainty about the values of  before incorporating the 

observed data. P(|y) indicates the posterior distribution for  and represents the uncertainty of  

after conditioning on the data y. The term p(y|) indicates how the data depend on the parameter 

values. P(y) is used as normalising factor and ensures that the posterior probability integrates to 

1. Usually, this normalising factor is not required to be calculated, so the Bayes’ theorem can be 

written as shown in Equation 3-23. Because p(y|) is actually a function of  for a fixed y so this 

term can be expressed as L(;y) (Equation 3-24). p(y|) or L(;y) are generally known as the 

likelihood. Therefore, the Bayes’ theorem can be stated as posterior  likelihood x prior. 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃) ∙ 𝑝(𝜃)

𝑝(𝑦)
 Equation 3-22 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃) ∙ 𝑝(𝜃) Equation 3-23 

𝑝(𝜃|𝑦) ∝ 𝐿(𝜃; 𝑦)

∙ 𝑝(𝜃) 
Equation 3-24 

The updated posterior parameters can be used to make predictions about future outcomes (�̃�) 

which are called posterior predictive distributions. Posterior predictive distributions are calculated 

using Equation 3-25. 

𝑝(�̃�|𝑦) = ∫ 𝑝(�̃�| 𝜃) ∙ 𝑝(𝜃|𝑦)𝑑𝜃 Equation 3-25 

109



 

 

3.2.2 Markov Chain Monte Carlo 

Calculation of posterior probability distributions in Bayesian models commonly requires solving 

complicated integrals. When solving these integrals, common numerical methods such as Monte 

Carlo integration are usually not effective and other more advanced techniques are required. One 

of these techniques is Markov Chain Monte Carlo (MCMC). In a Bayesian context, MCMC 

algorithms are a general class of computational methods used to generate samples from the 

posterior distribution. The objective of MCMC is to simulate values from a posterior distribution 

of a parameter vector. MCMC produces random walks over a probability distribution. When 

sufficient steps from the random walks are taken, various regions of the distribution are visited in 

proportion to their posterior probabilities. Once the samples obtained approximate to the target 

distribution, it is said that the sampled distribution has converged. Various MCMC algorithms 

have been created including the Metropolis algorithm, the Gibbs sampler, Hamiltonian method, 

and Metropolis-Hastings algorithm (Gelman et al., 2014). From these algorithms, the Gibbs 

sampler is one of the most widely used to simulate Markov Chains (Lunn et al., 2012).  

3.2.2.1 Gibbs sampler 

The success of MCMC algorithms usually depends on the choice of the proposal distribution 

which is an important step during the fine-tuning of the sampler. This proposal distribution is 

problem-specific and can become difficult to define. The Gibbs sampler is a particular case of the 

Metropolis-Hastings algorithm and facilitates the issue of the proposal distribution by avoiding 

its use (Ntzoufras, 2011). The Gibbs sampler splits the vector of multiple parameters into 

subvectors for each individual parameter, conditional on the remaining parameters (Lunn et al., 

2012). The advantage of Gibbs sampling is that simulation from a complex, high-dimensional 

joint posterior distribution is reduced to a sequence of algorithms for sampling from one- or low-

dimensional distributions. This algorithm can be represented as follows (Lunn et al., 2012). 

 “Given a vector of unknown parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘): 

1. Choose arbitrary starting values 𝜃1
(0)

, 𝜃2
(0)

, … , 𝜃𝑘
(0) for each component, where subscripts 

denote sub-components of  and superscripts denote the iteration number (iteration zero 

being the initial state of the Markov chain). 

2. Sample new values for each element of  by cycling through the following steps: 

a. Sample a new value for 1, from the full conditional distribution of 1 given the 

most recent values of all other elements of  and the data. 
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𝜃1
(1)

~𝑝 (𝜃1|𝜃2
(0)

, 𝜃3
(0)

, … , 𝜃𝑘
(0)

, 𝑦) 

b. Sample a new value 𝜃2
(1) for the second component of , from its full conditional 

distribution 𝑝 (𝜃2|𝜃1
(1)

, 𝜃3
(0)

, … , 𝜃𝑘
(0)

, 𝑦). Note that as a new value for 1 has 

already been sampled, it is this “most recent” value that is conditioned upon, 

together with the starting values for all other elements of .” 

3.2.3 Modelling software for Bayesian models 

A number of software packages have been created to facilitate Bayesian analysis. One of the most 

popular is WinBUGS which uses the Gibbs sampler to perform MCMC analysis (Lunn et al., 

2000). Other programs include OpenBUGS (Spiegelhalter et al., 2007) and JAGS4 (Plummer, 

2013) which have been developed using similar algorithms and language syntax (i.e. BUGS5 

language). Stan (Stan-Development-Team, 2016) is another package which uses a different type 

of language and performs Hamiltonian MCMC. Additional improvements include the creation of 

packages to run the models through programming languages such as R and Python. Some of these 

packages include R2jags, rjags, R2Winbugs. This study used R2jags which provides an R 

software interface to JAGS including the same functionalities as the JAGS toolbox. In this work 

JAGS was employed because of the simplicity it provides for model definition and the capability 

it has for dealing with variable data formats. 

3.2.4 Model construction in BUGS 

By the use of JAGS, the model construction and evaluation is facilitated. BUGS language allows 

definition of likelihood functions and priors using a number of available parametric discrete and 

continuous probability distributions (Plummer, 2015). In the case of having to define a new type 

of probability distribution, techniques have been presented to effectively deal with this issue. A 

common BUGS model syntax to generate a linear model is presented in Figure 3-5. As observed, 

the model requires defining a likelihood function and prior distributions for the model parameters. 

The code includes a for loop which goes from 1 to N. In this case N represents the number of 

cases (i.e. data points) in a data file. After running the code the program updates the priors defined 

for each model parameter (i.e. alpha, beta and tau) using the data and generates posterior values 

for such parameters which are stored in a new data file. These data represent the results of the 

                                                      
4 JAGS stands for Just Another Gibbs Sampler 
5 BUGS stands for Bayesian Inference Using Gibbs Sampler 
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model. In case posterior predictive distributions are required this can be obtained by using the 

posterior parameters to generate new predictive outcomes (y.pred in Figure 3-5). 

 

Figure 3-5: Example of model definition in BUGS language 

3.2.4.1 Hierarchical models 

Bayesian models are particularly suitable for a type of modelling technique known as hierarchical 

modelling. These models are useful to predict new instances when data are gathered about similar 

(but not equal) units (e.g. treatment process performance). Hierarchical models are used to 

represent models with multiple levels of parameters in which prior distributions have been also 

defined on the prior parameters associated with the likelihood parameters (Ntzoufras, 2011). 

Therefore, parameters for each particular unit are conditionally independent between them given 

“population” parameters. Hierarchical models can be considered as a step in between completely 

independent parameters (i.e. all units different) and identical parameters (i.e. all units equal). 

More information about hierarchical models can be found in Lunn et al. (2012); Gelman et al. 

(2014).  
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3.2.5 Model evaluation 

This section describes the model evaluation tools used for checking the model correctness in terms 

of its convergence and performance. In the next sub-section, a number of convergence check tests 

are outlined including some not used in this thesis. Only the convergence tests used in this thesis 

are described. Performance metrics described next were all used in this thesis.     

3.2.5.1 Convergence check 

The success of an MCMC calculation needs to be checked to provide evidence that convergence 

has been achieved and that the results are representative of the posterior distribution with 

sufficient accuracy and stability. Various metrics and tests have been created to check the 

convergence of the chains in a MCMC including visual inspection of the chains (i.e. traceplots), 

level of autocorrelation and convergence tests (e.g. Gelman-Rubin diagnostic, Raftery-Lewis 

diagnostic, Heidelberger-Welch diagnostic, and Geweke convergence test) (Ntzoufras, 2011). In 

this thesis, four methods were used to check the convergence of the chains including visual 

inspection of the chains, level of autocorrelation, the Gelman-Rubin diagnostic, and the Geweke 

convergence test. 

Visual inspection is performed by plotting the posterior parameters over the iteration number and 

checking that the traceplots overlap when more than one chain is used. If any of the chains varies 

only within a limited range of values or changes its values very gradually, this behaviour is taken 

as an indication of failure to convergence (Kruschke, 2014). Informally speaking, the chains have 

been described as looking like a “fat hairy caterpillar” (Lunn et al., 2012) (Figure 3-6 a). 

Assessing autocorrelation in the chains is done by measuring the correlation within a chain for 

different lag values (Figure 3-6 b). The desired outcome for the autocorrelation is to obtain a value 

close to zero. The effective sample size can also be obtained from the autocorrelation coefficients 

by using Equation 3-26. The shrink factor or Gelman-Rubin diagnostic (Figure 3-6 c) comprises 

checking the convergence of two or more parallel chains. It performs the test using ANOVA type 

diagnostic, providing a shrink factor. Shrink factors close to one indicate convergence. The 

Geweke convergence test uses a single chain to test the convergence and applies a Z test to check 

whether the means of two different subsamples of the chain are equal (beginning and end of the 

chain). If the hypothesis for the two sample-means being equal does not fail to be rejected, 

convergence cannot be assumed (Ntzoufras, 2011) . More details about its calculation and use of 

the Gelman-Rubin and Geweke tests can be found in Ntzoufras (2011).        
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Figure 3-6: Diagnostics used for checking convergence including a) traceplots, b) autocorrelation, 

c) Gelman-Rubin statistic, d) comparison of densities between chains.  

𝐸𝑆𝑆 = 𝑁/ (1 + 2 ∑ 𝐴𝐶𝐹(𝑘)

∞

𝑘=1

) Equation 3-26 

Where ACF is the autocorrelation factor for a k lag value and N is the number of iterations for 

the chain. 

3.2.5.2 Performance metrics 

In the same way as BNs are evaluated through the log-likelihood or AIC, Bayesian models can 

also be evaluated using similar approaches. A common metric used for Bayesian models is the 

Deviance Information Criterion (DIC) score which combines a measure of goodness of fit or mean 

deviance (�̅�) with a measure of complexity or penalty term, (pD or the effective number of 

parameters). The number of effective parameters term (pD) is used because the number of 

parameters in a Bayesian model cannot commonly be defined as in the case of BNs. Lower DIC 

values indicate a better, more parsimonious fit to the data. The deviance (D) is defined as 

presented in Equation 3-28. 
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𝐷𝐼𝐶 = �̅� + 𝑝𝐷 

= 𝐷(�̅�) + 2 ∙ 𝑝𝐷 
Equation 3-27 

𝐷(𝜃) = −2𝑙𝑜𝑔 𝑝(𝑦|𝜃) Equation 3-28 

𝑝𝐷 = �̅� − 𝐷(�̅�) Equation 3-29 

The models developed through Bayesian analysis have continuous outcomes requiring different 

types of metrics compared to BNs. The metrics used to compare the performance of the Bayesian 

analysis models in this thesis included adjusted determination coefficient (R2), and mean squared 

error (MSE). To evaluate the models under instances not used during model construction, cross-

validation (Section 3.1.4.1) was employed. R2
adjusted (Equation 3-30) ranges between 0 and 1 and 

describes the proportion of variation in the response that is explained by the predictors.  

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 − (1 − 𝑅2) [

𝑛 − 1

𝑛 − (𝑘 − 1)
] Equation 3-30 

Where R2 is the coefficient of determination, n is the sample size and k is the number of 

independent variables in the regression equation. Because a stochastic result for R2
adjusted is 

obtained during Bayesian analysis, the average R2
adjusted under posterior was used to compare the 

models.  

𝑀𝑆𝐸 =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 Equation 3-31 

To perform a proper comparison of the models’ performances, the evaluated data were normalised 

(0-1) (Equation 3-32) before computing the metrics so that results could be compared without 

having the effect from data ranges. 

𝑥𝑛𝑜𝑟𝑚,𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 Equation 3-32 
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Where xnorm,i is the normalised observation i, xi is the observation i, xmin is the minimum value for 

x, and xmax is the maximum value for x. 

3.3 Developed chapters and applied methodologies 

Six case studies were carefully selected to cover a range of validation and reliability topics using 

the methodologies explained above. Each case study and its corresponding chapter and topic is 

presented in Table 3-5. The range of processes covered by the case studies comprised activated 

sludge treatment (CS-1), ultrafiltration membranes (CS-2), ozonation (CS-3), chlorine 

disinfection (CS-4), UV disinfection (CS-5) and an advanced multi-barrier treatment system (CS-

6). The selected topics were aligned with the areas of study covered in the National Validation 

Framework for Water Recycling (NatVal) project in Australia (Roser et al., 2015; Robillot et al., 

2016).  

Table 3-5: Cases studies their corresponding topics in this thesis 

Case study, chapter Topic 

Case study 1 (CS-1), 

Chapter 4 

Assessment of parameters affecting Log10 reduction values achieved 

by activated sludge treatment 

Case study 2 (CS-2), 

Chapter 5 
Validation of ultrafiltration processes using Bayesian analysis 

Case study 3 (CS-3), 

Chapter 6 
Parameters for ozonation performance assessment 

Case study 4 (CS-4), 

Chapter 7 

Probabilistic assessment of chlorination performance targets for 

secondary treated wastewater using Bayesian analysis 

Case study 5 (CS-5), 

Chapter 8 

Assessing reliability by using Fault tree analysis and Bayesian 

networks during UV disinfection 

Case study 6 (CS-6), 

Chapter 9 

Improving the quantification multi-barrier system Log Reduction 

Values using Bayesian networks 

BNs were applied in case studies CS-1, CS5 and CS6. Specific methods applicable to BNs used 

in each case study are detailed in Table 3-6. Bayesian methods were used in case studies CS-2, 

CS-3 and CS-4. Particular methods relevant to each chapter are specified in Table 3-7.    
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Table 3-6: Chapters trialling BN models and applied methods 

Used methods CS-1 CS-5 CS-6 

Automated structure learning ✓

  

Elicited structure 
 

✓ ✓

Parameter learning ✓

  

Elicited parameters 
 

✓ ✓

Validation of model with data ✓

  

Sensitivity to evidence ✓ ✓ ✓

Sensitivity to parameters 
 

✓

 

 

Table 3-7: Chapters trialling Bayesian methods and applied methods 

Used methods CS-2 CS-3 CS-4 

Hierarchical model ✓



✓ 

Non-hierarchical model ✓ ✓ 


Validation of model with data ✓ ✓ ✓

 

3.4 Unsuccessful application case studies 

Four other case studies were planned and executed to analyse further applications of BNs and 

Bayesian methods. However, the results were unsuccessful in responding the proposed research 

questions. A brief description of the aim of the case studies is presented in Table 3-8. The issues 

encountered on these case studies and the lessons learned from them are discussed in the 

Conclusions (Chapter 10).  
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Table 3-8: Description of unsuccessful case studies  

Case study Description 

Case study 7 
Analyse the relationship between direct integrity test data and 

turbidity during a full-scale ultrafiltration using SCADA data. 

Case study 8 
Investigate the use of alternative predictors for LRV during 

full-scale ozonation of secondary treated sewage.  

Case study 9 
Analyse predictors for LRV during full-scale activated sludge 

treatment. 

Case study 10 
Model impacts on reverse osmosis treatment performance 

using elicited information. 
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Chapter 4: Assessment of parameters affecting 

Log10 reduction values achieved by activated 

sludge treatment 

 

This chapter has been published in the following journal article: 

Carvajal, G., Roser, D. J., Sisson, S. A., Keegan, A., & Khan, S. J. (2015). Modelling pathogen 

log10 reduction values achieved by activated sludge treatment using naïve and semi naïve Bayes 

network models. Water research, 85, 304-315. DOI: 10.1016/j.watres.2015.08.035 
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4.1 Introduction 

Activated Sludge (AS) is widely employed at municipal wastewater treatment plants to achieve 

secondary treated effluent quality sufficient for environmental discharge or further treatment. The 

primary objective of AS is large reductions in biochemical oxygen demand (BOD5). Concurrent 

nitrogen removal has also been targeted by AS. Key process control parameters include solids 

retention time (SRT), mixed liquor suspended solids (MLSS), hydraulic retention time (HRT) and 

temperature. Performance verification is focused on water quality parameters including BOD5, 

chemical oxygen demand (COD) ammonium (NH4
+), nitrite (NO2

- ) and nitrate (NO3
-), total 

Kjeldahl nitrogen (TKN), alkalinity, pH, turbidity and total Suspended Solids (SS) (Metcalf & 

Eddy Inc. et al., 2014).  

Pathogen reduction has not generally been a key aim of AS. However, with increased interest in 

water reuse, there has been growing interest in understanding and optimising the performance of 

AS for the improvement of microbial water quality (Wen et al., 2009). 

Several studies have now reported qualitative and semi-quantitative relationships between AS 

operational performance monitoring data and pathogen LRVs (Stadterman et al., 1995; Robertson 

et al., 2000; Suwa & Suzuki, 2001). However, there is still no consistent methodology for 

quantitatively relating process performance parameter data to LRVs, such as when assigning and 

validating LRV credits. A likely reason is the limited degree to which the relationships between 

AS operational parameters and LRV outcomes have been defined. Developing models to predict 

LRVs from commonly monitoring parameters would allow assessment of when the system is 

operating reliably and define safe operational envelopes, which is essential for process validation. 

This chapter explored the use of Bayesian networks (BNs) as tools for explaining, quantifying 

and predicting AS pathogen removal efficiency where a substantial operating and water quality 

parameter data set is available. In this study “naïve” and “semi-naïve” Bayes models (NB and 

SNB respectively) were constructed using C. parvum and G. lamblia LRVs as target variables. 

Models were evaluated for their predictive capacity using various performance metrics. The best 

models describing LRV variance in response to reactor operating conditions were then identified. 

Relevant AS operating and monitoring parameters to predict pathogen LRVs were evaluated. 

Finally, practical use and model interpretation of BNs were conducted.  
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4.2 Methods 

The stepwise modelling approach developed for this study is summarized in Figure 4-1. This 

approach is expected to be generally applicable to data collected for other water treatment 

processes. A central aim was to assess the predictability of the class nodes/variables of interest 

(pathogen LRVs in the present case) based on water treatment system control parameters, water 

quality monitoring and derived parameters. This procedure provides a basis for constructing 

models systematically and selecting the best from those available after implementing step 4). 

Common terminology, acronyms and abbreviations used in this chapter are presented in Table 

4-1. For convenience these terms are also reproduced in the Glossary. Bayesian networks were 

used for this study because they permit the analysis of multiple variables for prediction without 

the need of parametric assumptions. BN model construction and evaluation were introduced in 

Section 3.1. 
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Figure 4-1: Flowchart for model development, evaluation and selection. 
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Table 4-1: Key Bayesian Network abbreviations and terminology relevant to model validation 

Abbreviation 

/Acronym 

Meaning Explanation / Use /Comments Reference 

PA Prediction 

Accuracy 

Quantifies the number of correctly 

predicted values divided by the total 

number of cases. 

(Witten & 

Frank, 2005) 

KS Kappa statistic Measures the agreement between model 

predictions and actual values as a metric 

in the range [-1,1]. KS = 1 means perfect 

agreement, KS = 0 means that agreement 

is equal to chance, and KS = −1 means 

“perfect” disagreement. 

(Marcot, 

2012) 

AUC Area Under the 

Curve for the 

receiver operating 

characteristic 

curve 

AUC ranges between 0 and 1, where 1 

represents perfect matching, 0.5 reflects 

totally random models, and <0.5 

indicates models generating 

predominantly inaccurate predictions. 

(Korb & 

Nicholson, 

2011) 

LL Log-Likelihood 

score 

Measures how well the data fit each 

model. Used to compare models with the 

same variables and dataset but different 

node/arc structure. Higher scores reflect 

a better fit. 

(Koller & 

Friedman, 

2009) 

TPR True positive rate Rate of correct positive predictions (high 

reductions).  

 

FPR False positive rate Failure to detect low reductions when 

they occurred.  

 

TNR True negative rate Rate of correct negative predictions (low 

reductions).  

 

FNR False negative rate Failure to detect high reductions when 

they occurred.  

 

NB Naïve Bayesian 

Network 

Bayesian network with a class node as 

the only parent of the remaining nodes. 
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Abbreviation 

/Acronym 

Meaning Explanation / Use /Comments Reference 

SNB Semi-Naïve 

Bayesian Network 

Naïve Bayesian network in which 

attribute nodes are allowed to be 

connected one another. 

 

AIC Akaike 

Information 

Criterion score,  

Information-theoretic scoring function, 

which trades off the model’s goodness of 

fit with its complexity.  

(Kjræulff & 

Madsen, 

2012) 

ZeroR - Baseline model, it can be seen as a 

network without arcs. 

 

BAN Bayesian network 

augmented naïve 

Bayes 

Semi-naïve Bayes model. Two or more 

arcs between attributes are allowed. 

 

TAN Tree Augmented 

naïve Bayes 

Semi-naïve Bayes model. At most one 

arc between attributes is allowed. 

 

IDEA Intermittently 

Decanted 

Extended Aeration 

Semi-batch activated sludge reactor with 

cycles of influent feeding, aeration, 

decanting and effluent withdrawal.  

 

Attributes - Variables hypothesized as related to a 

class node in a NB and SNB models. 

 

 

4.2.1 AS system  

The used data were obtained from a study of a 150 litre working volume Intermittently Decanted 

Extended Aeration (IDEA) AS pilot plant (Figure 4-2) (Flapper et al., 2012). During that study 

many physicochemical, microbial and operational data were collected.  
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Figure 4-2: Scheme of the activated sludge reactor 

Key features of the pilot plant study were as follows: Primary effluent was collected from a full 

scale wastewater treatment plant in Victoria, Australia and used as influent for the pilot plant. The 

reactor was operated in a three-stage cycle comprising: i) (top up) influent feed and aeration, ii) 

settling and iii) (partial) supernatant decanting. The reference operating conditions for the reactor 

were HRT=24 hours and SRT=15 days (three experimental runs). Additional operating conditions 

investigated were: HRT=24 hours and SRT= 10 days (three experimental runs); HRT=24 hours 

and SRT= 20 days (one experimental run); HRT= 7.5 hours and SRT=15 days (two experimental 

runs) (Flapper et al., 2012). C. parvum oocysts were added to the influent tank (3.6 log10 

oocysts/L) to ensure effluent concentration data were uncensored and sufficient for estimating 

LRVs. The mixed liquor dissolved oxygen (DO) concentration was maintained at 1.5 mg.L-1 and 

the reactor was operated at 14.6-27.1 oC (Flapper et al., 2012). Key operating and water quality 

parameters, measured or controlled in this study, included: three reactor operating parameters 

(SRT, MLSS, HRT), seven microbial water quality parameters (F-RNA bacteriophage, E. coli, 

Total coliforms, enterococci, C. perfringens, G. lamblia, C. parvum) and eleven physicochemical 

parameters (COD, BOD5, NH4
+, NO2

-, NO3
-, TKN, Alkalinity, pH, Turbidity, SS, Temperature). 

Pathogen and indicator LRVs were computed from temporally matched concentrations in the 

reactor inlet and outlet. A total of 98 records were available for the BN analysis. Unlike regression 

analyses which require complete data sets, BN construction was able to use records with missing 

values. 
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4.2.1.1 Modelling software 

Four candidate models were constructed and evaluated using a variety of performance measures. 

The models were designed to quantify the influence of operating and water quality parameters on 

confirmed C. parvum and G. lamblia LRVs. Models were designed and evaluated using the 

Waikato Environment for Knowledge Analysis (WEKA) data mining software v. 3.6.11 (Hall et 

al., 2009). Final model usage was performed in NeticaTM Bayesian modelling software (Norsys, 

2015). Models were also constructed without the naïve assumption using bnlearn package in R 

(Scutari, 2010). In this case, hill-climbing algorithm with Akaike Information Criterion (AIC) 

score and various arc restrictions were used as input before the structure was automatically 

learned.  

The database was formatted to facilitate processing using WEKA and NeticaTM. The data were 

first compiled in a single spreadsheet table comprising records (rows) and variables (columns). 

For each model, initial WEKA processing then involved selection of a class node and its manual 

discretisation into 2 states. Because WEKA ignores missing values for the class node, records 

lacking C. parvum and G. lamblia data were removed when learning NB and SNB structures.  

The final LRV datasets consisted of 88 and 75 records for C. parvum and G. lamblia respectively. 

The remaining data records still included some missing values for other reactor operational and 

water quality parameters: MLSS and Temperature (5-16% of records) and SS, pH, NO3
-, TKN 

and COD (2-3% of records). The Expectation Maximization (EM) imputation method in WEKA 

was used to replace the missing values. EM uses a multivariate normal model to impute missing 

values. The reliability of WEKA was confirmed by also running  the EM multiple imputation 

methods in AMELIA II package in R (Honaker et al., 2011) which offers several options for data 

pre-processing. 

The model designs generated by WEKA were exported as .XML files and imported into NeticaTM. 

4.2.2 Model design  

An NB model and three SNB (two TAN and one BAN) models were constructed for each of the 

two pathogens. WEKA’s automated structure learning tool defined the arcs and nodes’ states in 

the networks, using the dataset of Flapper et al. (2012). The two TAN model structures were 

developed by applying the Chow and Liu (1968) (TAN (1) model) and the K2 Hill Climbing 

(TAN (2) model) (Cooper & Herskovits, 1992) algorithms. K2 algorithm requires a fixed ordering 

of the variables in the dataset as input. The variable ordering and the explanation for such selection 

can be found in Appendix 1. The BAN model was constructed in the same manner as the TAN 
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(2) model but up to two nodes were allowed as parents in addition to the class node. In this 

approach, the learning processes are treated as optimisation problems where WEKA’s search 

algorithms maximise a scoring function applicable to BNs, in this case, the AIC (Kjræulff & 

Madsen, 2012). The AIC scoring function trades off the model’s goodness of fit with its 

complexity. “Structured learning” as employed by WEKA is designed to find the BN structure 

that best describes the statistical relationship between variables. The rationale for using structured 

learning was to develop models in a systematic and objective fashion. These models were also 

compared with their baseline model (ZeroR) equivalents. ZeroR models predict the mode (most 

repeated state) for a nominal class or the mean for a numeric class (Witten & Frank, 2005). When 

viewed as a Bayesian network a ZeroR model appears as a set of nodes without connections.  So 

for example, in the case of C. parvum, the class node had two states (LRV<1 and LRV1) which 

were distributed 51.1% (LRV<1) and 48.9% (LRV1) and ZeroR would always predict LRV<1.  

4.2.3 Model parameters, discretisation and learning 

The most appropriate number of states for the remaining nodes (i.e. their discretisation) of each 

model was also determined by WEKA. WEKA optimises thresholds of the attributes based on the 

class variable (i.e. C. parvum and G. lamblia LRV node) using the minimum description length 

principle (Fayyad & Irani, 1993). Where only one state was defined for a variable, the 

corresponding node was concluded not to contribute to the classification process and was 

discarded from the NB model. The same nodes and states were also used by WEKA to define the 

TAN and BAN models.  

Although NeticaTM has a TAN learning wizard based on the Chow and Liu algorithm, the 

algorithm was not used to initially learn model structures because NeticaTM did not permit 

comparison to other models and cross-validation. The final nodes and states of the two NB models 

are presented in Figure 4-3. The best SNB (TAN(2)) models are shown in Figure 4-4. The 

remaining SNB (TAN (1), BAN) models are presented in Appendix 1. 
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Figure 4-3: Naïve Bayes models for C. parvum LRV (top) and G. lamblia LRV (bottom) showing 

discretisation ranges. 
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Figure 4-4: Optimum semi-Naïve Bayes net for C. parvum LRV (BAN) (top) and G. lamblia 

(BAN) (bottom). 
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4.2.4 Model evaluation and validation 

Due to the low ratio of data records to nodes (ca 5:1 and 10:1 for C. parvum and G. lamblia 

respectively), stratified 10-fold cross-validation was performed to confirm model stability when 

undertaking validation using WEKA.  

During the cross-validation test, WEKA updated the probabilities of the network with each case, 

except for the unobserved class nodes (LRV nodes), and then generated state probabilities for 

those nodes which were then compared against their actual values. The output of this analysis was 

a comparison of predicted and the real data (metrics in Table 4-2 and Table 4-3). Of the two 

possible LRV states the higher value was taken as the “positive” result for error calculation 

purposes. WEKA was also used to estimate prediction accuracy for LRV nodes using single 

(Table 4-3), and multiple node groups, such as the different coloured operational, control and 

monitoring groups in Figure 4-3. 

Eight different performance gauging measures recommended for BNs were used to compare the 

NB, SNB and ZeroR models: i) 3 model prediction performance metrics -  prediction accuracy 

(PA), Kappa statistic (KS), area under the curve (AUC) for the receiver operating characteristic 

curve; ii) one goodness of fit metric - log-likelihood score (LL); and iii) four error matrix metrics 

- true positive rate (TPR), false positive rate (FPR), true negative rate (TNR) and false negative 

rate (FNR) (Witten & Frank, 2005; Korb & Nicholson, 2011; Marcot, 2012). Ten-fold cross 

validation was performed ten times to assess the variation in the metric estimates from different 

data randomizations. A one-way sensitivity to findings analysis was also performed. This analysis 

consisted of assessing the effect that each variable had on a target variable and is presented in 

Appendix 1. 

A statistical analysis of the performance metrics’ results was performed by nonparametric 

methods in Minitab 16 (Minitab, 2010). The Kruskal-Wallis test was conducted to determine 

whether there was a significant difference among the five models’ performance metrics medians. 

When the Kruskal-Wallis test indicated significant differences, Dunn’s Test was used for the 

multiple comparisons (n=10) among the individual groups with a family alpha probability of 0.1 

equivalent to an individual pairwise comparison alpha probability of 0.01 (type I error). 
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4.3 Results and discussion 

4.3.1 Identifying the best models 

A comparison of nine performance metrics is presented in Table 4-2 (for acronym description see 

Table 4-1). These were calculated using the 10-fold cross validation procedure for the four 

candidate models and the baseline ZeroR model. All four refined models performed significantly 

better (P. < 0.01) than the baseline ZeroR in almost all metrics with the exception of TNR and 

FPR for C. parvum, and TPR and FNR for G. lamblia. Because a threshold of 1 LRV splits the 

data in 51.1% (LRV<1) and 48.9% (LRV1) for C. parvum, ZeroR always predicted the removal 

to be LRV<1. This result meant that the testing cases where LRV<1 were always predicted 

correctly (TNR=1) and no false positives were obtained (FPR=0) (predicting LRV1 when testing 

cases LRV<1) but the true positive rate was 0%. An equivalent analysis was undertaken for G. 

lamblia. Excluding the LL score, no significant differences (P. >0.01) in performance were 

observed between the metrics for the C. parvum NB and three SNB models.  

Table 4-2: Arithmetic mean ± standard deviation of performance measures from the 10-fold cross 

validation for C. parvum and G. lamblia for the naïve and semi-naïve models. 

Pathogen 

Performance 

measure NB TAN (1) TAN (2) BAN ZeroR 

C. parvum 

PA 93.2±7.90a 88.6±8.79 91.1±8.26 91.5±8.24 51.1±4.87 

KS 0.86±0.16 0.77±0.18 0.82±0.17 0.83±0.16 0.00±0.00 

AUCb 0.96±0.07 0.95±0.08 0.95±0.09 0.95±0.08 0.52±0.15 

LLc -755±42 -564±43 -583±44 -582±43 -1131±52 

TPRb 0.98±0.07 0.90±0.13 0.95±0.10 0.96±0.10 0.00±0.00 

FNRb 0.02±0.07 0.09±0.13 0.05±0.10 0.04±0.10 1.00±0.00 

TNRb 0.89±0.14 0.87±0.15 0.88±0.15 0.88±0.14 1.00±0.00 

FPRb 0.11±0.14 0.13±0.15 0.12±0.15 0.12±0.14 0.00±0.00 

G. lamblia 

PA 81.0±12.6 83.2±13.5 82.6±12.7 84.4±12.9 70.7±4.41 

KS 0.54±0.33 0.59±0.33 0.57±0.32 0.60±0.33 0.00±0.00 

AUC 0.87±0.17 0.86±0.18 0.87±0.17 0.86±0.17 0.35±0.19 
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Pathogen 

Performance 

measure NB TAN (1) TAN (2) BAN ZeroR 

LL -413±60 -345±37 -350±39 -347±38 -491±76 

TPR 0.85±0.14 0.88±0.16 0.88±0.15 0.91±0.14 1.00±0.00 

FNR 0.15±0.14 0.12±0.16 0.12±0.15 0.09±0.14 0.00±0.00 

TNR 0.72±0.31 0.72±0.32 0.70±0.32 0.70±0.32 0.00±0.00 

FPR 0.28±0.31 0.28±0.32 0.30±0.32 0.30±0.32 1.00±0.00 

a Standard errors were calculated considering a sample size n=100 

bAUC and rates were computed considering LRV1 as the target range  

c Log-likelihood score (LL) was computed from the complete dataset, therefore no std. error was 

estimated 

The AUC metric for both pathogens indicated good classification and adequate prediction 

performances with a high ratio of true positive to false positive results.  The fourth metric, log 

likelihood (LL), indicated the NB networks were significantly inferior to the semi-naive models 

(P<0.01). SNB models for both pathogens showed no significant differences in the LL score 

(P<0.01), indicating similar fit to the data. 

Overall, these metrics indicated a significant improvement in the prediction results in the NB and 

SNB models over the ZeroR model for both pathogens and the SNBs over their NB equivalents 

based on the LL scores. However, the G. lamblia model metrics showed ≈2 times greater 

variability (standard deviation) compared to the C. parvum models. 

The final 4 metrics measured True negative rate (TNR), False Positive Rate (FPR) (Type I error), 

True Positive Rate (TPR) and False Negative Rate (FNR) (Type II error). All C. parvum NB and 

SNB models and the G. lamblia BAN model especially predicted reductions very well when they 

occurred (TPR metric). However, the FPR metric (crediting a plant with a LRV1 when the 

opposite occurred) was nearly 3 times greater in the case of G. lamblia (FPR=0.28-0.30). 

Another criterion for comparing SNBs was whether the network structures were causally valid 

and logical. Though the metrics were comparable, WEKA created a C. parvum TAN (1) model 

which included illogical arcs which were absent from the TAN (2) and BAN models, for example 

ammonia controlling HRT and bacteriophage LRV controlling temperature (see Appendix 1). 
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Similarly, there was an illogical arc from SRT to HRT in the three G. lamblia models (see 

Appendix 1). Supporting the conclusion, they provided comparable descriptions, the TAN (2) and 

BAN models had similar structures for both pathogens (see Appendix 1), possibly due to them 

using the same search algorithm and score function (the AIC).  

Increased uncertainty was observed in the attribute nodes’ probability distributions when these 

were connected to each other in the SNBs. This uncertainty was reflected in the attribute nodes 

conditional probability tables as uniform distributions for combinations of parent node states not 

found in the data. This behaviour was expected as the dataset was limited in size but was not seen 

as significant problem sinc these networks were primarily designed to estimate classification 

LRVs and not estimate other parameters given these LRVs.   

WEKA also allowed generating “learning curves” for the two NB models by sequentially adding 

or removing 10% of the data during model construction and testing. During BN learning, the 

average KS (prediction agreement) metric for C. parvum remained stable at 0.86 once more than 

70 percent of the training data were incorporated and was 0.8 even when only 20 percent of the 

data had been incorporated. Similarly, for G. lamblia, the KS statistic plateaued at 0.54 once 80 

percent of the data had been incorporated. These stable plateaus indicated the data sets were 

sufficiently large for predicting the correct LRV range and obtaining models which were as 

accurate as possible given the data available.  

The results of the model development and evaluation, using five different imputed datasets, 

indicated that the variation in the model performance was negligible (<1% difference) for both 

pathogens. This result meant that the missing value imputation method did not significantly affect 

the measured performance of the models. The acceptable proportion of missing values in a dataset 

will depend on the specific context, including the degree of correlation between the variables. To 

quantify the influence of different proportions of missing values on model performance, the 

dataset was split into training (80%) and testing (20%) datasets and then a percentage of values 

was randomly removed from the training dataset. The effect on performance was assessed using 

AUC scores. The naïve Bayes model for C. parvum returned an AUC score of 0.95 or higher 

provided less than 30% of values were missing. It was concluded that the number of missing 

values in the actual data sets was insufficient to substantially influence the final model 

performance.          

Overall, it was concluded that for C. parvum, all NB and SNB models performed similarly for 

most of the metrics in Table 4-2. Consequently, LL and qualitative model assessment (logical 

structure) was used in this case to discriminate between the models. The C. parvum TAN(2) model 
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(Figure 4-4) achieved similar LL to the other SNBs (Table 4-2), but unlike TAN(1) its structure 

provided more insights into the system’s behaviour (see Appendix 1). On the other hand, it is 

possible that BAN model may have been overfitted by the number of permitted connections. Thus 

TAN(2) was selected as best for predicting C. parvum LRVs. For G. lamblia, the same results as 

for C. parvum were obtained when comparing the models. The TAN(2) (Figure 4-4) model was 

also selected as the best model for G. lamblia. 

4.3.2 Operational control and monitoring parameters as predictors of protozoan 

LRVs 

As well as informing overall model performance, the PA and FPR metrics can be used to assess 

the predictive capacity of individual nodes alone (Table 4-3). 

Table 4-3: Individual attributes evaluation through AUC score (mean±standard deviation) for C. 

parvum and G. lamblia. 

Predictor C. parvum G. lamblia 

Baselineb 0.52±0.15a  0.35±0.19a  

SRT 0.89±0.09  0.76±0.17  

HRT 0.71±0.13  0.55±0.15  

MLSS 0.75±0.13  0.67±0.17  

Temperature 0.61±0.11  -c  

SS 0.85±0.10  -  

Turbidity 0.90±0.10  -  

COD 0.72±0.13  0.78±0.13  

BOD5 0.81±0.13  -  

pH 0.58±0.11  0.71±0.16  

Alkalinity 0.84±0.11  0.70±0.16  

NO2 0.70±0.13  0.81±0.14  

NO3 0.89±0.09  0.66±0.13  

NH4
+ 0.81±0.15  -  

TKN 0.71±0.13  -  
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Predictor C. parvum G. lamblia 

Bacteriophage LRV 0.71±0.13  0.66±0.14  

C. perfringens LRV 0.70±0.13  -  

Total coliforms LRV 0.91±0.09  -  

E. coli LRV 0.91±0.10  -  

Enterococci LRV 0.90±0.10  0.66±0.10  

a mean AUC based on 10-fold cross validation repeated 10 times  

b “No evidence” no attributes are considered in the evaluation (Zero R model) 

C attribute was not included in the NB or SNBs 

Bolded values indicate good predictor nodes.  

In the case of C. parvum there were several instances where AUC scores were comparable to 

those obtained using all nodes (Table 4-2). Turbidity, enterococci, E. coli LRV and total coliforms 

LRV returned high AUC scores (0.9). SRT, SS and nitrate also generated a high (0.85-0.9) 

scores. SRT association with LRV indicated manipulating this variable might be used to maximise 

LRVs. 

For G. lamblia, none of the attributes obtained an AUC > 0.9. The two highest scores were 

achieved with nitrite (AUC=0.81), COD (AUC=0.78), and SRT (AUC=0.76). These results were 

consistent with the poorer overall G. lamblia model performance. 

The predictive potential of groups of reactor and physicochemical parameters, and microbial 

indicator LRVs was assessed by selecting only the variables in such groups (coloured groups in 

Figure 4-3) during the model construction phase. For C. parvum, the three reactor settings, SRT, 

HRT and MLSS together achieved an AUC of 0.93±0.07. Similar predictive power was obtained 

using a combination of all five microbial indicators (AUC=0.95±0.07) and the eleven 

physicochemical water quality parameters together (AUC=0.94±0.10). 

Disappointingly, for G. lamblia the three reactor parameters together were much less accurate in 

their prediction potential (AUC=0.67±0.17) while the two microbial indicators combined yielded 

only a slightly better AUC of 0.71±0.13. All five physicochemical parameters (Figure 4-3) 

provided a prediction comparable to the complete model (AUC=0.84±0.18). This performance 

evaluation showed that it is possible to predict the removal of G. lamblia for a threshold of 1 LRV 
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under the given set of operating conditions. However, the performance metrics were not as good 

as the ones obtained for C. parvum. Moreover, it was not possible to obtain single operating or 

water quality parameters with an average AUC higher than 0.80, except from nitrite (AUC=0.81). 

It was concluded that operating parameters included in this study were not good indicators of the 

G. lamblia removal mechanisms in the activated sludge system. This weak relationship could also 

be observed in the scatterplots which do not evidence trends or clustering as in the case of C. 

parvum and indigenous microbial indicators (Figure 4-5). A possible reason is high G. lamblia 

input concentrations variability compared to C. parvum. This is discussed further below.       

Finally, PA and FPR were also calculated for all 171 possible combinations of two predictors for 

C. parvum and 45 for G. lamblia. Some high accuracy combinations were identified. However, 

their usefulness was unclear. Because of the relatively small number of input data records high 

accuracy could have occurred by chance so the results are shown for information only in 

Appendix 1.  

The absence of useful microbial indicator parameters for predicting of G. lamblia LRVs reflected 

the weak association between G. lamblia and indicator LRVs generally (Figure 4-5).  The 

correlation between the variables can be more clearly seen through the locally weighted Kernel 

smoothers included on each scatterplot (Figure 4-5). The randomness of the scatter in all G. 

lamblia LRV plots is consistent with low model prediction power, for example, between 

bacteriophage and enterococci LRVs. Conversely, the clear correlation between C. parvum and 

E. coli LRVs (as well as enterococci and total coliforms – not shown) is also evident. This 

outcome is consistent with the high predictive power of the full C. parvum models (Table 4-2).  
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Figure 4-5: Scatterplot matrix for bacteriophage LRV, C. perfringens LRV, E. coli LRV, C. 

parvum LRV and G. lamblia LRV. Graph includes a linear regression fit, smoothers and their 

95% confidence intervals. 

 

4.4 Estimating log10 reduction credits of protozoan pathogens for activated 

sludge 

4.4.1 Use of semi-Naïve Bayes Net models to estimate log credits 

Both the optimized TAN(2) models and the presented modelling approach have potential 

applications and implications for setting AS operational and monitoring parameters and 

predicting protozoan pathogen reductions for the selected ranges. The C. parvum TAN(2) model 

quantified i) how operational, physicochemical microbial indicators related to removal and 

process settings for maintaining a removal range given by the model, and  ii) what log10 credit 

might be assigned where AS is optimised for BOD5 and nitrogen removal instead.  

The model can be used to determine when the process is operating reliably for reducing pathogen 

numbers i.e. when the conditions for which the LRV1. These conditions are not necessarily the 
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maximum pathogen reductions the system could achieve, but the performance that the model is 

able to reliably predict based on the available data.  

By contrast the G. lamblia model and metrics indicated that its reduction is less well understood, 

and operating and monitoring parameters cannot as yet be tuned to optimize G. lamblia removal. 

That being said the average LRV was 1 indicating log credit assignment is still possible for AS 

even though indirect monitoring and removal optimization is not yet possible.  

The C. parvum AUC score also suggested that a high degree of LRV prediction was possible 

using only one monitoring parameter including total coliform LRV, E. coli LRV, enterococci 

LRV, and turbidity. Most usefully this list includes a real-time predictor, turbidity. 

The achievement of ≈1 log10 removal for G. lamblia or C. parvum was not as striking as the >3 

LRV reductions achieved with purpose designed disinfection agents. However, the result was 

robust. Not only did the model show the reduction was real but the prediction metrics confirmed 

the model reflected real trends in monitoring variables and were not the result of overfitting. This 

outcome indicates that in the future, AS systems may be further optimised for improved pathogen 

removal, and the techniques described in this study will be suitable for demonstrating any 

increased pathogen reduction. Separately this study demonstrates how robust treatment targets 

can be robustly estimated for other novel or unconventional disinfection and contaminant 

treatment processes.   

The optimum discretisation thresholds and sizes of datasets to obtain high levels of model 

performance (e.g. prediction accuracy > 0.9) will depend on the specific model, process, 

characteristics of the process, the number of nodes and dataset. Such data set characterization is 

undertaken as part of the initial data mining by statistically experimenting with the data set and 

subsets on a case by case basis. The option for estimating minimum data set size adopted in this 

case was the use of “learning curves” (Frank et al., 2000) where prediction performance metrics 

are determined for increasing sample sizes until a stable plateau is reached. It was found that > 

61 data records were required to obtain stable performance for both the simplest C. parvum and 

G. lamblia (NB) models Other machine learning and data mining techniques (e.g. decision trees) 

can also inform on whether datasets are sufficiently large for models to be robust (Witten & Frank, 

2005).    

Node state discretisation threshold, though was necessarily defined arbitrarily. It was required to 

consider the influence of between state boundaries on prediction accuracy, while ensuring there 

were sufficient records corresponding to each state to permit to estimate the performance credibly. 

Because of this issue, state thresholds currently need to be defined empirically and selecting a 
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threshold where almost all observations are allocated to one state must be avoided if possible. In 

this study the impact of the protozoan thresholds being 1.0, 1.5 and 2.0 LRV was also assessed. 

The AUC scores indicated that all models maintained good performance. However, PA was not 

adequate for LRVs of 1.5 and 2.0, as these returned negligible improvements over their equivalent 

ZeroR models. Put another way, it could be possible to construct models able to predict higher 

LRVs using the higher thresholds, however, the states to be predicted became too “unbalanced”, 

and the models tended to over-predict the majority class.  

Using the “Enter findings” NeticaTM function the most likely conditions (posterior probabilities) 

when LRVs were ≥1 were identified. This analysis was visualised in a tornado chart (see 

Appendix 1). Consistent with expectations, for C. parvum LRVs ≥1 were obtained when turbidity, 

SS, COD, TKN and alkalinity were in their lower ranges (P > 0.9) and microbial indicator LRVs 

(E. coli, enterococci, FRNA bacteriophage, C. perfringens and total coliforms) were in their 

higher ranges (P. > 0.9). The optimal reactor parameter settings (SRT, MLSS and HRT) when C. 

parvum LRV was ≥1 and BOD5 and ammonia were - MLSS (1140-1571 mg/L), lowest SRT (10 

days), and higher HRT (24 hours), their lowest, lowest and higher ranges respectively.  

Recognizing the limitations of the G. lamblia model, it also noted that the conditions most 

associated with G. lamblia LRV ≥1 were high range pH (P > 0.95) and alkalinity (P > 0.96) and 

low range MLSS (P = 0.73). But counterintuitively these conditions were also associated with 

lower bacteriophage and enterococci LRVs and higher range COD. In light of these puzzling 

results and the poor model performance it was concluded that G. lamblia reduction needs further 

investigation. 

Few studies have investigated the association between protozoa LRVs by AS and operational and 

microbial indicator variables. However, comparison with a recent literature review indicated that 

the BN model pathogen and indicator LRVs were consistent with other research and protozoan 

removal is inversely correlated with SRT, effluent organic carbon and effluent SS (Flapper et al., 

2010). A constraint on the C. parvum model’s value is that LRVs are more difficult to measure 

than concentrations as both influent and effluent data are required. Accordingly, the use of 

effluent indicator concentrations in place of LRVs was also evaluated and similar trends were 

observed.   

The reproducibility of the C. parvum data was likely enhanced by seeding of standardized C. 

parvum oocysts into the influent of the test reactor at 3.6 log10 oocysts/L. The results of seeding 

these microorganisms contrast with the highly variable oocyst numbers and biotypes that would 

normally be encountered in wastewater influent but was essential within the earlier study to ensure 
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valid LRVs would be established. C. parvum numbers in real wastewater influent are much more 

variable ranging from 101-104 oocysts/100L (Harwood et al., 2005). Conceivably this increase 

and stability of oocyst numbers could have improved the model by reducing this source of 

variance in the LRV estimates and accounted for the contrasting performance of the C. parvum 

and G. lamblia models.  This said G. lamblia cysts are generally present at higher numbers than 

C. parvum (104-105.5 cyst per 100L in influent) (Harwood et al., 2005) and vary less between 

seasons. 

4.4.2 Finding relationships without the naïve assumption 

A model for C. parvum was constructed without forcing the naïve assumption during the structure 

learning. The final network (Figure 4-7) could be grouped into four groups of variables slightly 

different from the groups defined in Figure 4-3. The outcomes could be interpreted as the reactor 

setting and sludge environment as distinct causes of the removal performance for both indicators 

and pathogens. Variables indicative of these two groups were assumed to determine or reflect 

whether the system achieved high or low removal of indicators and pathogens. 

 

Figure 4-6: Relationships between groups of variables for “causal” model. 

The BN in Figure 4-7 shows the specific arcs found by the hill-climbing algorithm through bnlearn 

(see Appendix 1). As observed, the activated sludge conditions and reactor operating settings 

influence all the microbial LRVs. Because the pathogen LRV is a child node in this case (treated 

not as a target as in the naïve case), more diverse types of queries can be explored (e.g. influence 

on other microbial indicators). The arcs determined from the structure learning provided insights 

about the most important variables for each variable.  

Pathogen removal efficiency (LRV)Indicators LRV

Reactor activated sludge

Reactor operating settings
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4.4.3 Sensitivity analysis for model without naïve assumption 

One way sensitivity analysis was performed to identify the most influential variables for C. 

parvum LRV through relative mutual information (Figure 4-8). In general, sensitivity analysis is 

directly influenced by the structure of the network and the estimated parameters. A node which 

is far away from a target node having many intermediate nodes will have less effect than a node 

which is directly connected. In this case, for example turbidity has an arc to C. parvum LRV, 

whereas pH, the least influential, is only indirectly connected. In this model, C. parvum LRV can 

be potentially influenced by any node given this particular structure. But the results of the 

sensitivity analysis clearly identify the most useful monitoring parameters. The most influential 

variables were also found to be the most relevant for the prediction of C. parvum according to the 

results presented in Table 4-3 for the naïve models.  

 

Figure 4-8: Sensitivity to findings for removal efficiencies according to operating parameters. 
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4.4.4 Semi-naïve v. causal Bayesian modelling of water treatment processes 

The models presented in this study were not primarily designed to reflect cause-effect 

relationships. That is, they are not “causal” BN models. However, they were shown to provide 

stable credible prediction of C. parvum LRVs. Among the reasons the semi-naïve Bayes approach 

was trialled, rather than a causal network approach, was the limited size of the available dataset 

compared to the number of possible variables, ease of model construction, avoidance of human 

bias and limited prior knowledge of the likely associations among the variables.  

Causal models have advantages and different potential uses. For example, they would allow the 

whole system to be represented by a single network and conceptually provide insights to the 

system behaviour. In causal models, derived numerical probabilities can be considered as 

representations of the probabilities of occurrence of a particular event. However, a disadvantage 

of causal models is that where a system is not well understood mechanistically and there are many 

dependent and independent nodes variables, the number of plausible models multiplies rapidly 

making parsimony a concern.  

Semi-naïve Bayes models, on the other hand, allow the strong assumption of node independency 

given the target variable to be relaxed. These models are an intermediate step between the naïve 

Bayes model and a causal model and empirical experience in other fields has shown they can be 

very reliable (Korb & Nicholson, 2011). This approach also allowed dispassionate model 

construction using various performance metrics in a stepwise fashion based on rules developed 

for BNs generally. WEKA allowed assessing whether there were sufficient data records to 

generate stable model structures and what were credible discretisation thresholds. The 

performance metrics provided information about which nodes were most likely to influence 

LRVs. The metrics also allowed comparison of i) different model options, ii) their respective 

predictive power, and iii) assessment of whether the best models were credible or provided no 

improvement over the ZeroR model. 

Real world activated sludge plants will differ in many respects for the pilot AS including SRT 

ranges, HRT ranges, temperature ranges, and MLSS concentration ranges and different data sets. 

So although the LRVs estimated here are valuable per se it may be preferable to repeat the model 

development process in such systems rather than use the models themselves uncritically. 

Nevertheless, the method used here can be adapted to this task of constructing new candidate 

models and determining which if any validly describe the system being characterised.   
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4.5 Conclusions 

A conceptual alternative to directly measuring pathogen removal efficiency is to predict LRVs 

using cost effective microbial and physicochemical monitoring, control parameters system 

operating conditions. However, conventional parametric statistical analyses have not yielded 

sufficiently convenient tools which describe AS processes and relate variables. In this 

investigation, naïve and semi-naive Bayes models to predict and manage pathogen reductions 

were developed and assessed. A real-world data set was used to evaluate and quantify significant 

relationships between operating and monitoring parameters and estimate removal of two 

pathogens. The developed methodology is objective, systematic and applicable to analysing water 

treatment processes more generally. This study also identified operational parameters potentially 

useful for the prediction of C. parvum removal efficiency. Conversely the lack of success in 

modelling G. lamblia suggested that its removal by AS is not sufficiently understood and cannot 

yet be quantified based on removal of microbial indicators, even though assignment of average 

reduction credits of ≥1 log10 is still reasonable judging by the raw LRV probability density 

function. 

Key outcomes from this study included: 

• Useful predictors for C. parvum reduction included turbidity, SS, total coliform bacteria 

LRV and enterococci LRV. 

• SRT, COD and nitrite were potential predictors of G. lamblia LRV. However, their 

AUC score was less than or equal than 0.81 indicating more work is needed before they 

can be reliably applied to this task. 

• No microorganisms alone were reliably correlated with, or good predictors, of G. 

lamblia. This result highlighted the need to better understand the relationship between 

the removal of G. lamblia and other AS microbes.  

• Naïve and semi-naive Bayes modelling of a real AS plant could reduce the costs of 

direct pathogen monitoring and encourage the gathering of informative process data 

which would permit LRV credits to be linked to the system’s operating conditions. 
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• NB and SNB models can be used to understand whether optimal LRVs can be achieved 

concurrently with satisfactory BOD5 and nitrogen removal.   

Although causal BNs were not constructed, the non-causal models provide a reference and 

starting point for such modelling by identifying those variables most likely to be useful when 

constructing causal models with the minimum of nodes. The SNB models provide an objective 

way of estimating the maximum accuracy that is possible with a causal Bayes model. The models 

are relatively easy to understand which should assist uptake by non-experts in Bayesian networks. 

Finally, the method here can reduce disagreements between model developers about what form 

BNs should take.  

  

145



 

 

 

 

146



 

 

Chapter 5: Validation of ultrafiltration processes 

using Bayesian analysis 

 

This chapter has been published in the following journal article: 

Carvajal, G., Branch, A., Sisson, S.A., Roser, D.J., van den Akker, B., Monis, P., Reeve, P., 

Keegan, A., Regel, R. and Khan, S.J. (2017). Virus removal by ultrafiltration: Understanding 

long-term performance change by application of Bayesian analysis. Water research. 122, 269-

279. DOI: 10.1016/j.watres.2017.05.057 
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5.1 Introduction 

The work presented in this chapter was undertaken to develop a new application of BNs to assess 

the reliability and effectiveness of and ultrafiltration (UF) process for advanced water treatment. 

This assessment was undertaken by examining multiple UF skids operating in parallel and their 

change over time. Data obtained were used to calculate and compare individual and aggregated 

virus log reduction values for the multiple skids. The results obtained demonstrate how treatment 

can be effectively quantified using Bayesian hierarchical modelling analyses. 

Through size exclusion, UF membranes provide an effective barrier against waterborne pathogens 

such as Cryptosporidium and viruses (Asano et al., 2007). Although there is no established online 

monitoring system to directly test integrity issues of relevance to particles as small as viruses 

(Antony et al., 2012), challenge testing with representative virus surrogates, such as MS2 

bacteriophage (MS2), can be conducted to attribute an LRV to a UF process during treatment 

performance validation (USEPA, 2005). During challenge testing, feed and filtrate samples are 

taken over the course of a filtration cycle and analysed to determine the virus LRV. When MS2 

challenge testing is performed at full scale, common practise is to select UF skids for testing 

individually to minimise the effects of uncontrolled variables and assess both single skid and 

between-skid LRV variation. Challenge testing provides an instantaneous measure of LRV, which 

may confirm that a UF skid can meet required performance targets. In the past, LRVs have been 

typically derived by water quality analysis of time-matched samples preceding and following a 

treatment process of interest (Smeets et al., 2008); as in this study, analysis of UF feedwater and 

filtrate, taken at the same time. When considering inherent LRV variability of the process, 

parametric distributions may be fitted to these data or bootstrapping may be used to generate 

descriptive statistics without assuming an underlying distribution (Smeets et al., 2008). However, 

uncertainties in the parameters of these distributions are often not considered and historical 

challenge testing information is usually not incorporated. Incorporation of historical test data is 

particularly relevant when re-validation (i.e. a repeat of challenge testing on the same skid) is 

mandated as part of a water safety plan. 

When validation of membrane systems are conducted, individual and overall skid performances 

need to be estimated from skid-specific data and combined into an overall LRV by pooling 

challenge test data as described by USEPA (2005) methods. Determination of LRV for the whole 

UF system in this manner assumes two somewhat contradictory approaches: 1) considering total 

independence between skids for the individual performance and 2) completely equal performance 

for the overall LRV. The first assumption disregards any similarities between the skids which 

could be employed during the performance estimation, while the latter assumption discounts the 

148



 

impact of historical events that are confined to sub-units, or in this case, to individual skids. 

Although the methodology is commonly used and can provide reasonable outcomes, it neglects 

the incorporation of parameter uncertainty and the information that other skids in the system could 

provide to improve individual skid LRV estimates. As a consequence, less accurate results may 

be generated if predicting new outcomes.  

A more complete approach would be to consider all skids performing in a similar, but not 

necessarily in the same fashion, and functioning as inputs to an overall performance model. This 

desired model characteristic may be achieved when a Hierarchical Bayesian Model (HBM) is 

employed. A HBM consists of a Bayesian model on which prior distributions have been also 

defined on the prior parameters associated with the likelihood parameters (Ntzoufras, 2011). The 

work presented in this chapter applied a HBM to address the above needs. A number of model 

assumptions were tested using real UF challenge test data, from a full-scale plant, taken across 

multiple skids and also at five years apart. The optimised model was applied to compare LRVs of 

individual skids for the same and different years, quantify uncertainty in the distribution 

parameters and generate skid-specific and skid-independent predictive distributions.  

5.2 Materials and methods 

5.2.1 Ultrafiltration system 

The UF system of a full-scale water reuse treatment plant in South Australia (36 ML/d maximum 

capacity) was used to collect data for this study. This system was initially validated in 2010 and 

then re-validated after five years for virus removal, using MS2 as a microbial surrogate (Reeve et 

al., 2016). To minimise the impact of feedwater variability, and due to the typically low densities 

of autochthonous F-RNA bacteriophage, challenge testing was conducted using a laboratory-

grown stock of MS2 F-RNA bacteriophage. Preparation of MS2 and dosing into the UF system 

has previously been reported by Reeve et al. (2016).  Briefly, MS2 stock was dosed from a 

premixed batching tank upstream (suction side) of the UF skid feedwater pump, at a flowrate 

sufficient to achieve a challenge concentration of 105 plaque forming units per mL of feedwater 

(PFU mL-1). Dosing commenced 10 – 30 min prior to challenge testing to allow mixing and 

equilibration throughout the UF skid, and continued for the entire test duration (4 hours). 

The current UF system comprised 8 parallel skids, each containing 120 membrane modules 

(Figure 5-1). These were hollow fibre polyvinylidene difluoride (PVDF) membranes with a 

nominal pore size of 0.04 μm, an asymmetric structure, and filter flow from outside to inside. The 

plant has a design flux of 52.1 L m−2 h−1 and a maximum design flow of about 1500 m3 h−1. The 
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UF system processes chlorinated secondary effluent which is further pre-chlorinated to minimise 

biological fouling. Following UF, pathogens are further reduced by UV and chlorine disinfection. 

End uses for the product water include unrestricted municipal irrigation, industrial applications, 

and dual reticulation. The LRV accredited for the UF system when first validated upon installation 

was 2.5 log10 for viruses (Reeve et al., 2016). Accreditation of this performance was subject to 

compliance with process control parameters including pressure decay rate (PDR) (<4.8 kPa 

min−1), resulting from daily pressure decay testing (PDT) and effluent turbidity (daily average 

<0.15 NTU and not >0.3 NTU for 30 continuous minutes). Compliance for these CCPs was 

derived in consultation with the regulatory agency, which oversees the operation of this plant (SA 

Health). These turbidity requirements were based on performance of the membranes during the 

initial validation exercise when new. 

5.2.2 Data collection 

Challenge testing was performed in three non-consecutive days (17 June, 8 July and 28 July) for 

2010, during commissioning with newly installed membranes (9-months since installation), and 

in one day (17 June) for 2015. For the purposes of challenge testing the secondary effluent was 

not pre-chlorinated. The intention of the initial validation study, was to obtain a conservative set 

of virus LRV, that the UF unit could continuously be expected to achieve, to assure safe water 

supply for end users (Reeve et al., 2016). Indeed, membranes will foul over time and this 

accumulated fouling layer will likely enhance observed virus removal (Antony et al., 2012). 

Therefore, it was expected that challenge testing with a membrane with fouling removed should 

yield results that represent conservative, worst case removal performance. Challenge testing 

immediately following chemical cleaning is also recommended in the USEPA membrane 

filtration guidance manual, for the same reasons (USEPA, 2005).  Accordingly, prior to challenge 

testing, the membranes were backwashed and chemically cleaned to minimise the potential of 

accumulated fouling leading to increased LRV. As such, the MS2 LRVs presented are considered 

to be conservative. Onsite chemical cleaning involved a clean in place (CIP) regime that included 

a five-hour sequential soak, circulate and rinse stages, with sodium hypochlorite (200 mg/L w/v) 

or sulphuric acid (0.1% w/v) and citric acid (0.5% w/v). A membrane rinse followed using potable 

water. The chemical cleaning success was corroborated by the increase in skid flow, and decreases 

in transmembrane pressure and resistance, post clean.  Prior to sampling, PDT was conducted to 

confirm that the membrane PDR was below the limit value of 3.5 kPa min−1, indicating nominal 

membrane integrity.  Grab samples were collected at UF skid feed and filtrate sampling taps. 

Sampling was performed at four equally time-spaced points in a single filtration cycle. As 

presented in Figure 5-1, a total of 43 paired samples (i.e. membrane feed and filtrate) were 

collected from 4 skids (skids 2,4,5 and 6) during the commissioning testing in 2010, while a total 
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of 19 paired samples were collected for 5 skids (skids 2,4,5,6 and 8) during re-validation in 2015. 

All data observations were above the limit of detection (LOD) of 1 PFU/100 L. However, some 

of the observations for 2010 were close to the limit of detection with few counts per plate (10 

PFU) and were considered unreliable. Therefore, the limit of quantification of the method was 

used, which was defined as 10 PFU/100 L (ISO, 2013b). Counts obtained below the limit of 

quantification were considered censored in this study. Because LRVs were calculated as the 

log10(influent concentration)-log10(effluent concentration), some right censored values with 

multiple censored limits were obtained. During initial challenge testing in 2010, all skids were 

operated at a flux of 52 L m−2 h−1 with a filtration run time of 30 minutes. After 5 years of 

operation, some irreversible fouling had accumulated on the membranes. As a consequence, the 

membranes would require more frequent backwashing and CIP. For the re-validation testing in 

2015 it was necessary to decrease flux to 41-47 L m−2 h−1 to provide a filtration cycle of 20 

minutes. Samples were collected in triplicate and analysed on the same day of collection. MS2 

were quantified using the plaque assay double-agar layer method with Escherichia coli Famp 

(ATCC700891) as host (USEPA, 2001).  

 

Figure 5-1: Sample points for the validation and re-validation testing. ny is the number of samples 

taken at a particular sample point during sample period in year y. Numbers in parentheses indicate 

the number of uncensored observations.  
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5.2.3 Software for Bayesian analysis 

Parametric Bayesian analysis was used in this study because of its suitability to facilitate model 

construction and interpretation of hierarchical models. Bayesian analysis also permits to explore 

uncertainty and variability explicitly. Model construction and evaluation for Bayesian models 

were explained in Section 3.2. 

The Bayesian models for validation were implemented using the JAGS software package 

(Plummer, 2003) using Markov Chain Monte Carlo (MCMC) methods. The process of model 

construction and inference was conducted in R through the open source r2jags package (Su & 

Yajima, 2015). More information can be found in Chapter 3, Materials and Methods. 

5.2.4 Model design for validation for processes in parallel 

The validation model for parallel UF processes was constructed using a Bayesian approach to 

compare process performance between skids and years, and to predict the performance of new 

skids. For the evaluation of performance of a UF process, which consists of a set of parallel 

membrane skids, a hierarchical Bayesian model (HBM) was employed, which was named HBMµσ 

(Table 5-1) as shown in the directed acyclic graph (DAG) in Figure 5-2. The graphical 

representation of the model as a DAG provides the basis for calculation by indicating the joint 

relationship between the variables in the model through local relationships. In a DAG, nodes 

(ellipses) represent variables and arrows represent direct dependence between variables. Two 

variables are identified as “parent” and “child” nodes if there is an arc from the former to the latter 

(Korb & Nicholson, 2011). In this diagram, data (yi,j,k) are represented as a small rectangle. The 

rectangular “plates” indicate repetition. Application of a HBM was considered to be appropriate 

because all skids are subject to the same process conditions incorporating the same membrane 

characteristics, and so they can be expected to perform similarly, but there will also be skid-

specific variations in performance. In the HBMµσ, global and individual skid performance 

parameters were used to characterise the system. This HBMµσ configuration allowed learning 

about the performance characteristics of the skids, not only from the data originating from a 

particular skid, but also through incorporation of information observed from the remaining 

parallel skids. The HBMµσ assumed that parameters from the different skids are neither identical, 

nor completely independent. The HBMµσ provided information about the degree of similarity 

between skids, which was then used to predict the performance for non-observed skids. The 

HBMµσ was appropriate for these data, because it estimated the underlying performance of each 

membrane skid while simultaneously estimating the overall performance and consistency of the 

group. The HBMµσ had three distinct levels (i,j,k), which corresponded to sample number (i), skid 
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number (j) and year of sampling campaign (k) out of a total number of samples (m), skids (n) and 

years (o), respectively. Parameters for the distributions were positioned on different levels with 

global parameters for the whole system located in the uppermost level, indicating that they are 

unique. Comparison of data for individual units and years against normal probability plots 

returned correlations higher than 0.92 (Appendix 2) indicating that normality assumption was 

adequate for these data. Therefore, the data (yijk) were assumed to follow a normal distribution 

with parameters mean (�̇�
𝑗𝑘

) and standard deviation (�̇�𝑗𝑘) (Equation 5-1). 

𝑦
𝑖𝑗𝑘

~𝑁𝑜𝑟𝑚𝑎𝑙(�̇�
𝑗𝑘

, �̇�𝑗𝑘) Equation 5-1 

Each skid was assumed to have individual (but not independent) mean and standard deviation 

parameters. A potential location shift of the parameters between the two campaigns of analysis 

for each skid j was captured through δj for the mean (Equation 5-2), and εj for the log of the 

standard deviation (Equation 5-3). Values of the shifts (δj and εj) would reveal any change in skid 

performance captured by a shift in the distribution or change in the variability. In this manner, it 

can be written: 

�̇�
𝑗𝑘

= 𝜇
𝑗

+ 𝐼(𝑘) ∙ 𝛿
𝑗
 Equation 5-2 

 

log (�̇�𝑗𝑘) = log (𝜎𝑗) + 𝐼(𝑘) ∙ 휀𝑗 Equation 5-3 

where  

𝐼(𝑘) = {
0, 𝑘 = 1
1, 𝑘 = 2

   Equation 5-4 

Equation 5-4 is an indicator function, taking the value 0 in the first year of analysis (k=1) and 1 

in the second year (k=2). Normal distributions were also assumed for the mean (j) (Equation 

5-5), its shift (j) (Equation 5-6), logarithm of standard deviation (log(σj)) (Equation 5-7) and its 

shift (εj) (Equation 5-8). The parameters for these distributions are located on the top level 

providing the connection between the skids’ performances. The logarithm of the standard 

deviation was used as suggested by Lunn et al. (2012) because it can take any real value instead 

of only positive values as in the case of the standard deviation. This consideration is important as 

the logarithm of the standard deviation can be parameterised using a normal distribution, which 
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is convenient in this case. A second option is parameterising the standard deviation directly as an 

inverse Gamma distribution with parameters alfa and beta. Both approaches are generally 

considered valid and accepted (Lunn et al., 2012). 

𝜇
𝑗
~𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇

𝜇
, 𝜎𝜇) Equation 5-5 

𝛿𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇
𝛿
, 𝜎𝛿) Equation 5-6 

log (𝜎
𝑗
)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇

𝜎
, 𝜎𝜎) Equation 5-7 

휀𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇
휀
, 𝜎휀) Equation 5-8 

When interpreting results, j and j+ j represent the distribution mean of the j-th skid in the first 

and second campaigns respectively, and  and + represent the distribution means of all skids 

in the first and second campaigns respectively. Similar interpretations are available for the other 

parameters. Diffuse prior distributions for the parameters presented in Equation 5-5 to Equation 

5-8 were defined as Normal(0,100) for µµ, µδ, µσ and µε, and Gamma(0.001,0.001) for 𝜎𝜇
−2, 𝜎𝛿

−2, 

𝜎𝜎
−2 and 𝜎−2 (Lunn et al., 2012). Such a normal prior distribution is practically flat within the 

values of interest for this problem (i.e. 0-5). The Gamma(0.001, 0.001) distribution is commonly 

employed as a prior for the precision ( = σ-2) of the normal distribution because it functions as 

an approximation to the Jeffrey’s prior PJ () ∝ -1, thereby favouring large values of standard 

deviation in an adequate fashion (Lunn et al., 2012).  

The HBMµσ model represents the most flexible model in which each skid was permitted to have 

individual (but not unrelated) parameters for the level of performance (mean) and variability 

(standard deviation). Four nested variations of the HBMµσ (Appendix 2) were also considered as 

shown in Table 5-1, to identify the most appropriate model for the observed data. These models 

corresponded to variations of the fully hierarchical model resulting from different assumptions 

on the standard deviation of the hyperparameters (σµ, σδ, σσ, σε). Full details are presented in 

Appendix 2. Summary characteristics of each model are also included in Table 5-1. A comparison 

between these models is useful to demonstrate the ability of HBMs to adequately analyse LRV 

data. 
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While the normal distribution is frequently used for describing LRVs (Haas & Trussell, 1998), 

other parametrisations are also possible including the use of  gamma distributions and Pareto 

(Haas & Trussell, 1998; Teunis et al., 1999; Teunis et al., 2009).  

 

Figure 5-2: Full hierarchical validation model with exchangeable parameters for  and σ. 

Table 5-1: Models evaluated and main assumption 

Figure Model type Assumptions Abbreviation 

Figure 5-2 Hierarchical model  

( and σ exchangeable) 

Population distribution for 

parameters  and σ 

HBMµσ 

Figure A4 a Hierarchical model 

(only  exchangeable) 

Population distribution for 

parameter  and identical σ 

HBMµ 

Figure A5 a Hierarchical model  

(only σ exchangeable) 

Population distribution for 

parameter σ and identical  

HBMσ 

Figure A6 a Non-hierarchical  

(identical  and σ) 

Same  and  across skids NHBMsame 

Figure A7 a Non-hierarchical 

(independent  and σ) 

Unique  and  for each skid NHBMindep 

a Appendix 2  
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The first model variation (HBMµ) assumes that the variability in the skids’ performance is the 

same in each year, but the level of performance was specific to each skid. That is, the HBMµ has 

exchangeable parameters only for the means, and identical standard deviations for the skids 

sampled during the same year (Appendix 2, Figure 12-4). This configuration is equivalent to 

letting the standard deviations, σσ and σε  approach zero in the fully hierarchical model. The second 

model variation (HBMσ) assumes skid-specific variability but the same level of performance 

across all skids for each year. This configuration means that the HBMσ assumes exchangeable 

parameters only for the standard deviation, and identical means for the skids sampled during the 

same year (Appendix 2, Figure 12-5).  As before, the HBMσ represents a variation of the HBMµσ 

in which the standard deviations related to the mean, σµ and σδ, tend to zero. The third model 

option was a non-hierarchical Bayesian model (NHBM). NHBMsame assumed that all the skids 

had the same level of performance and variability, which is equivalent to pooling all skid-specific 

data within a year and fitting a normal distribution. This model results from letting all 

hyperparameter standard deviations in HBMµσ approach zero (Appendix 2, Figure 12-6). The final 

model NHBMindep assumes individual (and independent) parameters for the level of performance 

and variability for each skid. This model arises when all hyperparameter standard deviations for 

the hyperparameter become large and approach infinity (Appendix 2, Figure 12-7).Deviance 

Information Criterion (DIC) (Spiegelhalter et al., 2002) was used to compare the goodness of fit 

between the proposed HBM and NHBM models.  

Pairwise comparisons were used to assess the differences in performance between skids for the 

same year and the decrease in performance after five years of operation. The comparisons were 

performed by using the parameter estimation approach (Kruschke, 2013; Kruschke, 2014). This 

method uses a concept known as the Region Of Practical Equivalence (ROPE), which indicates a 

small range of parameter values that are deemed to be equivalent to the null value when used in 

a particular application. When the 95% credible interval (CI) is completely contained within the 

ROPE it may be interpreted that the null value cannot be rejected, whereas when the 95% CI 

interval excludes the ROPE it can be interpreted that there is strong evidence that the null value 

can be rejected. In this study the ROPE for the null hypothesis was defined as -0.1 to 0.1. 

Therefore, an increase or decrease in 0.1 LRV was considered to be enough to result in an 

improvement or deterioration of the performance. The range was considered to be sufficiently 

large to capture the case when there are no differences and sufficiently small to capture real 

differences. A sensitivity analysis to the selected ROPE was also conducted to test the importance 

of this assumption.   
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5.3 Results and discussion 

5.3.1 Model comparison 

The five candidate models were compared by their DIC score, with additional consideration of 

the model goodness of fit and the effective number of parameters for each case (Table 5-2). In 

all, these results suggest that the model with exchangeable parameters for the mean (HBMµ) is 

the most appropriate model; this model was used to analyse the system. It has been suggested that 

a magnitude of more than five DIC points indicates a substantial difference between models (Lunn 

et al., 2012). The results presented in Table 5-2 indicated that the NHBM with independent 

parameters (NHBMindep) and the HBM with hierarchical parameters for the mean and standard 

deviation (HBMµσ ) had the best fit according to the mean deviance. This outcome is not 

unexpected, as using more parameters to describe a dataset will usually result in a better fit to the 

data. However, the large number of effective parameters used in the NHBMindep resulted in a 

comparatively large DIC score compared to the other candidate models. The hierarchical model 

with exchangeable parameters for the mean alone (HBMµ) had similar fit to the fully independent 

NHBM and fully hierarchical HBM according to the mean deviation. However, the larger 

effective number of parameters for the HBMµσ produced an increase in the DIC of about one unit 

compared to the HBMµ. The hierarchical model with exchangeable parameters for the standard 

deviation (HBMσ) had the second worst fit according to both the mean deviance and DIC score, 

indicating substantial evidence for mean performance differences between skids. The identical 

parameters model (NHBMsame) showed the worst fit according to the mean deviance. At the same 

time, this model had the lowest number of effective parameters.  

Table 5-2: Analysed model variations, their abbreviations and results for mean deviance (�̅�), 

effective number of parameters (pD) and deviance information criterion (DIC). 

Model Abbreviation �̅� pD DIC 

Exchangeable parameters for  and σ HBMµσ 33 11 44 

Exchangeable parameters for  HBMµ 35 8 43 

Exchangeable parameters for σ HBMσ 43 7 50 

Identical parameters NHBMsame 46 4 50 

Independent parameters NHBMindep 33 19 52 

�̅�: mean deviance, pD: effective number of parameters, DIC: deviance information criterion. 
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5.3.2 Ultrafiltration validation results 

Data were fitted to normal distributions and summary statistics were computed as shown in Table 

5-3.  The results indicated that for 2010 the sample mean and standard deviation of skids 5 and 6 

were lower than the sample mean and standard deviation of skids 2 and 4. For 2015, the sample 

mean performance was similar across skids. However, sample standard deviations obtained for 

skids 6 and 8 were lower than the standard deviations for skids 2, 4 and 5. The results of fitting 

HBMµ (Appendix 2, Figure 12-4) are presented as box plots and probability density functions. 

Box plots were modified to depict the 2.5th, 25th, 50th, 75th, and 97.5th percentiles (with the box 

representing the usual quartiles, and the whisker the extent of the central 95% of the probability 

distribution). In this study, 2.5th and 97.5th percentiles were used in place of more commonly 

reported 5th and 95th percentiles, to maintain consistency and avoid confusion with material 

presented in Section 5.3.3 (pairwise comparisons part) that required the use of the 95% credible 

interval. The results obtained from the analysis include skid-specific posterior predictive 

distributions (Figure 5-3), and skid-specific posterior distributions for the parameter means 

(Figure 5-4) and standard deviations (Figure 5-5). Additional results include distributions for the 

differences in performance between years for the means and for the logarithm of the standard 

deviations (see Appendix 2). Skid-independent posterior predictive distributions were also 

generated for both analysed years (Figure 5-8). 
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Figure 5-3: Skid-specific posterior predictive distribution with observed data points 

superimposed. Void circles indicate right censored values. 

Table 5-3: Summary statistics for the data assuming normal distribution   

Unit 2010 2015 

 Mean(95% CI) SD b Mean(95% CI) SD 

2 3.09(2.35, 3.83) 0.38 2.11(1.85, 2.37) 0.13 

4 3.16(2.34, 3.96) 0.41 1.78(1.46, 2.08) 0.16 

5 2.68(2.49, 2.87) 0.10 1.97(1.69, 2.24) 0.14 

6 2.78(2.50, 3.06) 0.14 2.04(1.93, 2.14) 0.05 

8 NAa NA 1.90(1.74, 2.06) 0.08 

a Not available 

b Standard deviation 
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It is observed from Figure 5-3 that there was a marked decrease in the performance between years 

in all skids. The superimposed data reveals a credible fit to the posterior distributions for each 

skid. The difference in performance means for each skid between years (j) was above zero for 

less than 0.1% of observations (Appendix 2, Figure 12-1), which suggests a decrease in the mean 

performance. Similarly, the logarithm of the standard deviations between years (ε) was less than 

zero for less than 0.1% of observations (Appendix 2, Figure 12-2) suggesting a decrease in 

variability between years. It is possible that the difference in variability between samples for the 

two years may have been affected by the size of the data. However, the uncertainty in the posterior 

parameters is usually increased when data are limited. The decrease in uncertainty in this case is 

more likely due to consistent observed performance. The removal performance differences 

between years for each skid can be further observed by the large differences in skid specific 

distribution means (Figure 5-4) and standard deviations (Figure 5-5). The posterior mean of the 

overall performance for all skids obtained from the hyperparameters ( and ) was 3.1 and 2.0 

log10 removal units for the years 2010 and 2015, respectively. The posterior mean of the overall 

difference for all skids () was -1.1 (95% credible interval (CI): (-1.4, -0.7)), while the difference 

in the logarithm of the standard deviation (ε) had a mean of -1.4 (95% CI: (-1.9, -0.9)). The mean 

difference between standard deviations (Figure 5-5) was -0.37 (95% CI:(-0.60, -0.23)). 

UF membranes are vulnerable to physical damage (i.e. cuts and abrasion of fibres) from foreign 

bodies in feed water, as well as chemical degradation from regular exposure to cleaning solutions 

used to reduce fouling or prolonged storage. Depending on the membrane materials, chemical 

exposure can result in changes in membrane surface chemistry (i.e. surface charge and 

hydrophobicity), mechanical strength and also pore size (Childress et al., 2005; Arkhangelsky et 

al., 2007; Puspitasari et al., 2010). Regardless of the failure mode, cumulative integrity failure is 

expected in UF systems after a prolonged operational period, with one estimate suggesting 1 

broken fibre per 100,000 fibres per year to be typical (Gijsbertsen-Abrahamse et al., 2006). 

Increased levels of integrity failure would be expected to reduce the effectiveness of size 

exclusion and result in decreased removal capacity of the UF system, which corresponds with the 

decrease in mean performance observed within HBMµ. 
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Figure 5-4: Skid specific mean (�̇�
𝑗
) distributions. 

 

 

Figure 5-5: Year specific standard deviation (�̇�𝑘) posterior distributions. 
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5.3.3 Pairwise comparisons 

Pairwise comparisons to analyse differences in the mean between skid performances during the 

same year (�̇�
𝑗=𝑎,𝑘

− �̇�
𝑗≠𝑎,𝑘

) (Table 5-4) indicated that for 2010 none of the skid comparison 

differences were below zero less than 5% of the time (Table 5-5, “Year 2010”, “%<0 column”) 

or above zero less than 5% of the time (Table 5-5, “Year 2010”, “%>0 column”). However, the 

ROPE analysis showed that the credible differences were approximately zero (Table 5-4, “Year 

2010” column), but that there was uncertainty in the estimation leading to only between 50% and 

65% of the posterior distribution being contained within the ROPE. Measuring what percentage 

of the distribution is below or above zero provides information about the level of difference in 

performance between pairs of skids. For 2015, the paired differences between skids 4 and 2 (4-

2), 4 and 5 (4-5), and 4 and 6 (4-6) were less than 5% of the time above zero (Table 5-5, “Year 

2015” column), providing some evidence that there was lower performance from skid 4. 

Considering the ROPE, in all cases the ROPE overlapped with the 95% CI (Table 5-4, “Year 

2015” column). However, the ROPE of the difference between skids 4 and 2 barely overlapped 

with the 95% CI. For 2015, the ROPE contained between 3.8% and 68% of the posterior 

distribution indicating that the results were uncertain about the difference in performance. As 

described by Reeve et al. (2016), skid 4 was subjected to a turbidity spike which was defined as 

a hazardous event as it exceeded the maximum limit of the turbidity analyser. However, skid 5 

was also exposed to this event, without showing any evident detrimental change on its 

performance, except for the difference in performance compared to skid 2 (2-5) (7.6% of the time 

below zero). The results from analysis with HBMµ suggest that factors other than the confined 

turbidity spike may have affected the performance of skid 4. The performance decrease measured 

as the difference in the means between years of each skid (𝛿𝑗) was also used to compare skid 

performance (𝛿𝑗=𝑎 − 𝛿𝑗≠𝑎). The differences between skid 4 and 2 (4-2), and 4 and 6 (4-6) were 

below zero less than 5% (but higher than 1%) of the time (Table 5-5, “Difference” column) 

suggesting that skid 4 had a larger decrease in performance than skids 2 and 6. The third largest 

difference was obtained from the comparison between skids 4 and 5 (4-5) which was almost 10% 

below zero. In all cases the ROPE partially or completely overlapped with the 95% CI (Table 5-4, 

“Difference” column) and contained between 14% and 56% of the posterior distribution. The 

evidence presented in this section suggested that there was a lower performance from skid 4 in 

2015. However, in all cases for that year the ROPE only partially excluded the 95% CI, indicating 

that no strong conclusions regarding the difference in performance can be drawn from these 

results. Although with some uncertainty, the evidence suggested that all skids performed similarly 

and that no large differences were observed during the 2010 validation period. Widening the 

ROPE would have yielded the same conclusions for the year 2010 and produced an increased 
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uncertainty regarding the decrease in performance for skid 4 in 2015 by a larger overlap between 

the ROPE and the 95% CI.   

Table 5-4: Median (95% credible interval) for the difference in mean performance between skids 

(“Year 2010” and “Year 2015”) and difference between decrease in performance between years 

(“Difference”).  

Skids comparison Year 2010 Year 2015 Difference 

2-4 0.03(-0.24,0.31) 0.29(0.07,0.47) -0.24(-0.60,0.03) 

2-5 0.06(-0.14,0.39) 0.13(-0.05,0.31) -0.05(-0.32,0.27) 

2-6 0.09(-0.08,0.49) 0.07(-0.10,0.25) 0.03(-0.20,0.43) 

4-5 0.02(-0.19,0.41) -0.16(-0.33,0.02) 0.18(-0.06,0.60) 

4-6 0.05(-0.18,0.52) -0.22(-0.39,-0.02) 0.27(-0.01,0.78) 

5-6 0.03(-0.18,0.34) -0.06(-0.22,0.11) 0.08(-0.14,0.43) 

 

Table 5-5: Percentage of the distribution lower than zero (%<0) and higher or equal to zero (%≥0) 

for the difference in mean performance between skids (“Year 2010” and “Year 2015”) and 

difference between decrease in performance between years (“Difference”).  

Skids comparison Year 2010 Year 2015 Difference 

 %<0 %≥0 %<0 %≥0 %<0 %≥0 

2-4a 37.2 62.8 0.05* 99.5 96.9 3.1* 

2-5 25.1 74.9 7.6 92.4 81.1 18.9 

2-6 17.1 82.9 19.9 80.1 45.7 54.3 

4-5 40.4 59.6 96.2 3.8* 10.3 89.7 

4-6 32.4 67.6 98.1 1.9* 2.2* 97.8 

5-6 38.3 61.7 76.1 23.9 15.6 84.4 

a: if the order of the subtraction is reversed, the distribution below and above zero changes 

conversely 

*Lower than 5 percent 
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5.3.4 Comparison between HBMµ and NHBMindep 

Box plots comparing the skid-specific posterior predictive distributions using the hierarchical 

model and the completely independent model (no common hyperparameters) are presented in 

Figure 5-6 for year 2010 and Figure 5-7 for year 2015. Compared to the predictive distributions 

of the independent model, those of the hierarchical model are pulled towards a common mean 

value (which is the primary assumption behind the hierarchical model, and the predictive 

uncertainty of some skids (notably skid 6) has increased as a result. With application of the 

HBMµ, skids with fewer available LRV data points were supplemented by the information in the 

hyperparameters, which were estimated using additional LRV data points from all parallel skids. 

This outcome means that the skids with fewer data points borrow information from the remaining 

skids, through the hierarchical structure of the model. In general, the skids contributed to the 

population parameters in proportion to the amount of data available from each. This behaviour is 

especially advantageous when each skid has few data points or when limited data are collected 

for some skids, whereas larger numbers of records are available for other skids. In general, for 

HBMs, group-specific parameters (i.e. skid specific parameters) are pulled together closer to the 

mode of the population-level parameters (i.e. µµ, µδ, 𝜎𝜇
−2 and 𝜎𝛿

−2), which is known as 

“shrinkage”. Shrinkage is a desirable property provided that the parameter estimates are 

potentially less affected by random sampling noise compared to a NHBM. The shrinkage pulls in 

the estimates of accidental outliers thereby reducing potential false alarms (Kruschke, 2014). In 

2010 it was observed that skid 5 returned a broader 95% credible interval when assuming 

complete independence compared to the hierarchical model. The hierarchical effect on the model 

generated shrinkage in the variability of the estimates. The opposite effect was also observed in 

2015 for skid 6. In this case, the variability was increased by the connection to the other measured 

skid performances. Skid 6 presented a very narrow distribution when the parameters were 

estimated independently from the other skids. The tight distribution indicated a very consistent 

performance. However, four data points to generate the posteriors might not be sufficient for a 

reliable prediction and the HBM would play a key role in improving the estimates by widening 

the 95% credible interval. 

164



 

 

Figure 5-6: Skid-specific posterior predictive distribution comparisons between the hierarchical 

and completely independent models in 2010. 

 

Figure 5-7: Skid-specific posterior predictive distribution comparisons between the hierarchical 

and completely independent models in 2015. 

165



 

5.3.5 Skid-independent posterior predictive distributions 

HBMµ was used to produce skid-independent posterior predictive probability density functions 

(Figure 5-8 bottom row) – i.e., a predicted distribution of an as yet unobserved skid. Data from 

the observed skids have been superimposed (open circles for uncensored values and vertical lines 

for censored values) to visualise their location with respect to this distribution. A fifth skid, not 

previously challenge tested in 2010, was measured during the 2015 sampling campaign (Figure 

5-1) and included on the comparison as black triangles. All measured data points were located 

inside the interval located between the 2.5th percentile and 97.5th percentile. It can be observed 

that the distribution is more concentrated near the median for 2015 with a narrower interquartile 

range (IQR: 1.8-2.2) compared to the year 2010 (IQR: 2.7-3.4). The 2.5th percentile for both 

distributions indicates that predicted performance in 2015 was inferior compared to 2010. Note 

that the observed data points appear to be more narrowly distributed in 2015 than in 2010, as the 

credible interval extends further than the data range. The underlying reason for this behaviour 

was linked to the variability in performance between skids for year 2015. In addition, a limited 

number of data points can lead to higher uncertainty in the estimated posterior parameters as in 

the case of 2015 data, which can lead to greater predictive uncertainty.  The data for 2015 are 

narrowly distributed compared to the posterior predictive distribution obtained from the selected 

hierarchical model. In this case the variability in the distribution comes from both the between-

skid and between-sample variance. Few observations for each skid can potentially increase the 

uncertainty in the estimations by affecting the variability at any of these two levels (between-skid 

and/or between-sample). The posterior predictive distributions for the model with identical 

parameters were also generated for comparison as shown in Figure 5-8 (top row). For the year 

2010 the difference between the probability distributions was minimal, whereas for the year 2015 

the probability distribution had a wider credible interval for the HBM, which provided more 

conservative estimates. It is likely that the full range of uncertainty of future skid performance is 

incorporated into this prediction. Incorporating additional uncertainty is desirable for QMRA 

because larger variability allows addressing conditions in which low or no microbial reduction is 

achieved (Ito et al., 2016). 
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Figure 5-8: Posterior predictive distributions for 2010 and 2015 with superimposed data points 

using NHBMsame (top row) and HBMµ (bottom row). The horizontal axis shows the LRV. Open 

circles are the data points used in the model, black triangles are data points from skid 8 (only 

measured in 2015) and vertical black lines are right censored values. The 2.5th and 97.5th 

percentiles are also indicated on each tail of the probability distribution. 

The simulated parameters for the skid-independent distributions were used to generate cumulative 

distribution functions with 95% credible intervals (Figure 5-9). The narrower credible interval in 

2010 indicates less uncertain results compared to 2015. These results are useful to estimate 

uncertainty for the percentiles of the distribution. In this case, the 95% credible interval for the 

2.5th percentile was between ~1.5 and ~2.5 log10 for 2010 and between ~1 and ~2.5 log10 for 2015. 
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Figure 5-9: Posterior predictive cumulative distribution functions for 2010 and 2015 with 95% 

credible intervals. 

5.3.6 Variance partition coefficient 

The Variance Partition Coefficient (VPC) measures the proportion of total variation attributable 

to higher level units of the model indicating the importance of the hierarchical structure (Goldstein 

et al., 2002). In this case VPC is defined as follows 

𝑉𝑃𝐶 =
𝜎𝜇

2+𝜎𝛿
2

𝜎𝜇
2+𝜎𝛿

2+�̇�2  Equation 5-9 

VPC values close to 1 reveal the importance of the hierarchical model to the quality of the model 

(Ntzoufras, 2011).  The posterior distribution of the VPC (Figure 5-10) indicates that for the year 

2010 the variability between skids is small compared to the variability within sets of samples for 

a particular skid, as the majority of the posterior distribution is located at small proportions (VPC: 

mean=0.090, 95% CI: (0.002, 0.514)). For 2015, the VPC posterior showed the opposite 

behaviour compared to 2010, with the variability between the skids strongly contributing towards 

the total variability (VPC: mean=0.731, 95% CI: (0.215, 0.984)). Accordingly, the overall 

conclusion from consideration of the VPC, is that the hierarchical structure of the model was less 

important in 2010 than in 2015. This outcome can also be observed in the comparison between 

the NHBMsame and the HBMµ presented in Figure 5-8 for both years. In the case where the 

NHBMsame is used to construct the skid-independent predictive distributions for 2015 instead of 

the HBMµ, this distribution resulted in much more optimistic predictions for performances based 

on 2.5th or 5th percentiles than can realistically be expected to occur. Although the skid-

independent distributions generated in both cases (NHBMsame and the HBMµ) contain the 

observations within the 95% credible interval, the distribution generated by HBMµ incorporates 

variability between skids. This variability is not considered by NHBMsame so more precision is 
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expected in this case. The issue with this aspect is that the prediction of performance of skids not 

measured can be observed outside of the 95% credible interval for NHBMsame, if inter-skid 

variability is not taken into account. 

 

Figure 5-10: Posterior distribution of the variance partition coefficient for the HBMµ in 2010 and 

2015. 

5.3.7 Censored data 

It is important to note that the sample results can be either censored (right, left or interval) or not 

censored values. It is common when evaluating LRV data to encounter right censored data (i.e. a 

lower bound on the LRV), because a well operated process will often remove the target 

microorganism to below the available limit of detection (LOD) in the treated water, particularly 

when there is a low density in the feed water. Missing and/or censored values typically increase 

the uncertainty of the estimated parameters and complicate statistical analysis and inter-temporal 

comparison. Censored data are occasionally omitted or replaced by half the limit of detection 

(Brown & Mac Berthouex, 2002; Helsel, 2005). However, in this study, censored data are easily 

managed in this analysis by integrating the respective Normal density term over the censored 

region, which implies that censored observations are considered in the calculation of distribution 

parameters. Simply removing or replacing the censored values produces biased estimates of both 

mean and standard deviation (Brown & Mac Berthouex, 2002). Other methods have been 
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proposed to deal with this issue including the “trimmed mean”, “Winsorized mean”, graphical 

methods and maximum likelihood, among others. Methods including substitution of censored 

values are only useful when less than 15% of the data are censored in the case of trimmed mean 

method or less than 25% of the data are censored in the case of Winsorized mean (Brown & Mac 

Berthouex, 2002). In cases where uncertainty needs to be estimated for the distribution 

parameters, maximum likelihood and Bayesian methods are required. Bayesian estimation of 

LRVs from validation data for wastewater treatment processes including left censored values have 

been studied by Kato et al. (2013); Ito et al. (2015); Ito et al. (2016), and Kato et al. (2016). These 

studies have also analysed the effect of the number of non-censored observations on the accuracy 

of LRVs and the influence on distribution parameters of pairing of influent to effluent samples.  

5.4 Conclusions 

The Hierarchical Bayesian model (HBM) presented in this study provided a number of advantages 

over independent skid analyses, or analyses based on pooling data over skids. These included the 

use of individual skid data to inform population parameters, mutual sharing of information 

between individual skids, a simple comparison of performance between skids and years, and skid 

independent prediction of future performance. In this work, five candidate model forms (three 

HBM and two NHBM) were proposed and evaluated for prediction of virus LRV originating from 

UF challenge test data. Of the candidate model forms evaluated, HBMµ (exchangeable parameters 

for u) appeared to be the most appropriate based on consideration of DIC, alongside goodness of 

fit and effective number of parameters, indicating the significant potential in application of HBMs 

for analysis and prediction of challenge test data. The HBMµ was then applied to compare the 

LRV obtained for the UF system when new, and after 5 years of operation. As expected, UF LRV 

performance had decreased after 5 years of operation with a posterior mean of the overall 

difference between years for all skids () of -1.1 (95% CI: (-1.4, -0.7)). The difference on log 

standard deviation between years (ε) had a mean of -1.4 (95% CI: (-1.9, -0.9)). Both of these 

outcomes are significant, as although membrane ageing may be expected to result in lower 

removal performance, the results presented here suggest that this loss in performance may remain 

more stable after prolonged operational periods.   
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Chapter 6: Parameters for ozonation performance 

assessment 

This chapter has been published in the following journal article: 

Carvajal, G., Branch, A., Michel, P., Sisson, S.A., Roser, D.J., Drewes, J. E. and Khan, S.J. 

(2017). Robust evaluation of performance monitoring options for ozone disinfection in water 

recycling using Bayesian analysis. Water research. DOI: 10.1016/j.watres.2017.07.079 
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6.1 Introduction 

Ozonation of wastewater provides effective reduction of colour, odour, UV254 absorbance (Ni et 

al., 2002; Paraskeva & Graham, 2005), and trace organic chemicals (Hübner et al., 2015). In 

addition, ozone can be an effective disinfectant of more resistant pathogens such as 

Cryptosporidium and Giardia (Gamage et al., 2013). It complements biological filtration by 

transforming finer and recalcitrant organic matter into more biodegradable compounds (Reaume 

et al., 2015). In ozonation of secondary treated sewage, removal efficiencies for microbial 

indicators in log10 reduction value (LRV) units have been reported to range from 2 to 8 LRVs for 

E. coli (Ni et al., 2002; Paraskeva & Graham, 2005; Tripathi & Tripathi, 2011; Gerrity et al., 

2012; Gamage et al., 2013), 0-1.7 LRVs for C. perfringens (Xu et al., 2002), and 1-8 LRVs for 

FRNA coliphage (Xu et al., 2002; Gerrity et al., 2012; Gamage et al., 2013; Merlo et al., 2015). 

Similar indicative LRVs have been reported for pathogenic species of enteric bacteria (2-6 LRV), 

enteric viruses (3-6 LRV), Giardia (2-4 LRV), and Cryptosporidium (1-2 LRV) (NRMMC et al., 

2008). Despite common and accepted usage, it has been reported that concentration integrated 

over contact time (CT) may not correlate well with LRV following ozonation due to the rapid 

depletion of ozone in the presence of oxidisable organic matter (Xu et al., 2002). Alternative 

water quality parameters have been proposed, including change in UV254 absorbance (ΔUVA), 

change in total fluorescence (ΔTF), and ozone demand (ratio of ozone dose to total organic carbon 

(O3:TOC) or dissolved organic carbon  (O3:DOC)), that indirectly indicate the oxidation demand 

of organic material and reliability of the system for microbial disinfection (Gerrity et al., 2012; 

Gamage et al., 2013). Although removal of trace organic compounds has been more reliably 

predicted using these control parameters, predicting the inactivation of microorganisms remains 

uncertain. In response ozone demand (O3:TOC or O3:DOC ratio) has been recommended as a 

parameter to compare potential ozonation effectiveness on water of different origins (Buffle et 

al., 2006). Alternatively formation of bromate has been proposed as a potential predictor for 

microbial disinfection during drinking water ozonation by Von Gunten et al.(2001). However, 

low concentrations of bromide and interferences during quantification (i.e. via ion 

chromatography) produced by the presence of high concentrations of chloride in the treated 

wastewater matrix restrict the use of bromate as a surrogate. Some recent studies have attempted 

to find a general relationship between non-microbial surrogates and microorganism LRV by 

combining data obtained from different plants around the world (Gerrity et al., 2012) and within 

the United States (Gamage et al., 2013). These studies were interrelated with the data used by 

Gamage et al. (2013) being included in the study conducted by Gerrity et al. (2012). Although 

uncertainty was large, statistically significant correlations between microbial and non-microbial 

surrogates were reported in both studies. Although not measured, there was still unfortunately 
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appreciable uncertainty in these latter studies (Gerrity et al., 2012; Gamage et al., 2013). The 

work employed seeded, laboratory-cultivated, standard microorganism rather than autochthonous 

species. Also seeded microorganism could be less resilient to disinfection chemicals because they 

may not be as shielded by particles or biofilms. In addition, only one strain of each target 

microbial group was  used in seeded studies in comparison to autochthonous microorganisms 

which are necessarily more diverse (Shelton et al., 2006; Nenonen et al., 2012). Other potential 

sources of uncertainty are variations between analytical methods, including detection limits, 

analysis times, potential interferences and storage and handling requirements. All of these can 

increase uncertainty when attempting to quantify associations between microbial and non-

microbial surrogates and disinfectant effectiveness. To appropriately incorporate the resulting 

uncertainty, robust methods are needed which assess relationships between key disinfection 

variables and capture the influence of these uncertainties.  

Bayesian data analysis techniques are one potential approach which meets these needs. They can 

incorporate prior information from multiple known variables, and provide estimates of the 

magnitudes and likelihoods of candidate variables. The application of Bayesian analysis 

techniques to water treatment processes is relatively new, having been applied to incorporate 

uncertainty and interpolate CT values during chlor(am)ination of secondary effluent (Carvajal et 

al., 2017) and to predict microbial disinfection rates during UV disinfection (Qian et al., 2004) 

and chlorination (Sivaganesan et al., 2003) for drinking water treatment. This study has assessed 

the applicability of Bayesian analysis to wastewater ozonation using a bench scale ozonation 

system. In addition, for comparison, the proposed method and findings have been applied to 

results obtained by Gamage, Gerrrity and colleagues. In this present study, autochthonous somatic 

coliphages, Clostridium perfringens, Escherichia coli, and total coliforms indigenous to 

secondary treated effluent were analysed. This approach compares with Gamage, Gerrity and 

colleagues’ selection of type strain E. coli and MS-2 F-RNA coliphage. In line with previous 

work, surrogate parameters assessed for monitoring  microbial removal efficiency included ozone 

demand, ΔUVA, ΔTF, and components concentrations obtained from Fluorescence excitation 

emission matrices (EEMs) through Parallel Factor (PARAFAC) analysis (Harshman, 1970). This 

study evaluated the sensitivity of the removal efficiency with the predictors and generated 

regression models to test their reliability. A Bayesian analysis was used to estimate the uncertainty 

related to regression parameters. Predictive capabilities of the predictors were evaluated through 

a number of metrics including the Deviance Information Criterion (DIC) score, adjusted R 

squared (R2
adjusted), mean squared error (MSE) using leave-one-out cross-validation, and visual 

assessments of posterior predictive distributions. 
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6.2 Materials and methods 

6.2.1 Bench-scale ozonation 

Experiments were conducted using an ozone batch reactor with a maximum working capacity of 

3 L, which was equipped with inline sensors capable of monitoring ozone concentration and flow 

rate on gas inlet and exhaust streams (Figure 6-1). The reactor included temperature control which 

was maintained at 20 C and a constant stirring speed of 700 rpm for all experiments. A simple 

condenser was used as a dehumidifier on the ozone gas outlet of the reactor (BMT DH 3b, 

Germany), to remove known measurement interferences due to liquid water prior to entering the 

ozone analyser. Given the dehumidifier was a simple, low surface area condenser it is unlikely 

that significant loss of ozone occurred due to its installation. In the unlikely event that ozone loss 

occurred due to the dehumidifier, the results would estimate a higher than true ozone dosage 

required to achieve a certain LRV. In this regard, the obtained results are believed to be 

conservative. The ozone generator (BMT 803 BT, Germany) produced ozone from pure oxygen. 

Ozone concentrations were measured via UV ozone photometers (BMT 964, Germany) installed 

on the gas inlet and the exhaust pipework of the reactor. A LabVIEW virtual instrument (National 

Instruments, USA) was used to process sensor data and calculate the applied (Equation 6-1) and 

consumed ozone dosages (Equation 6-2) (mg/L).  

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑧𝑜𝑛𝑒 [
𝑚𝑔

𝐿
] = ∫

[𝑂3]𝑖𝑛 ∙ 𝑄𝑔𝑎𝑠

𝑉𝐿
∙ 𝑑𝑡

𝑡

0

 
Equation 6-1 

 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑜𝑧𝑜𝑛𝑒 [
𝑚𝑔

𝐿
] = ∫

([𝑂3]𝑖𝑛 − [𝑂3]𝑜𝑢𝑡) ∙ 𝑄𝑔𝑎𝑠

𝑉𝐿
∙ 𝑑𝑡

𝑡

0

 
Equation 6-2 

 

Where [O3]in and [O3]out are the concentration of ozone in the inlet and outlet gas streams, 

respectively; Qgas is the gas flowrate, and VL is the volume of liquid in the reactor; and t represents 

the reaction time. 

Prior to each experiment, the reactor was filled with 1.5 L of secondary treated wastewater 

obtained from a full-scale wastewater treatment plant in Garching, Germany, which had been 

filtered through a 4-7 µm cellulose filter (Macherey-Nagel MN 1672) to simulate tertiary filtration 

to minimise the potential interference of variable solids size and loading. Five sets of experiments 

were conducted, with each one including five different applied ozone dosages (2, 4, 6, 8 and 10 
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mg/L). The first set of experiments used applied ozone dosages 1.6, 3.2, 4.8, 6.4 and 8 mg/L. 

Although they were different to the values used in the other experiments, they were also included 

in the dataset. The inclusion of these data was considered valid as the purpose of this study was 

to find relationships between LRVs and monitoring parameters using a continuous range of values 

rather than discrete point conditions. The duration of each experiment was approximately 10 

minutes including ozone injection, which lasted between 30 and 120 seconds. To summarise 

reactor mixing performance and ozone adsorption behaviour, applied and consumed ozone 

dosages were averaged for each run and included in Appendix 3. 

 

Figure 6-1: Process diagram of the bench-scale ozonation system 

6.2.2 Measures of water quality 

UV absorbance at 254 nm for each sample was measured using a Shimadzu UV-1601 (Shimadzu 

Europa GmbH) UV/visible spectrometer. Fluorescence excitation emission matrices (EEMs) 

were obtained using a Horiba Aqualog Fluorescence spectrophotometer (Horiba Instruments Inc., 

Edison, NJ, USA). The scanning wavelength ranges were 230-599 nm for both excitation and 

emission wavelengths. Interfiltering effects were expected to be small as UV absorbance at 254 

nm was less than 0.16 absorbance units for all samples. Due to the low expected level of 

interfiltering, EEM measurements were performed on undiluted filtered samples. EEM intensities 

were standardised by subtraction of a blank, normalisation to Raman units (R.U.) and corrected 

for interfiltering effects using Aqualog software and then processed using PARAFAC (Harshman, 
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1970) with the software package Solo (Eigenvector Research Inc. Manson, USA). PARAFAC is 

a statistical tool used to decompose 3D-EEM data and allow the identification and quantification 

of independent underlying signals known as “components” (Murphy et al., 2013). DOC samples 

were collected in glass vials, filtered through 0.45 m cellulose nitrate filters (Sartorious 11306-

47-N) and acidified to pH < 3 (with hydrochloric acid) prior to analysis in Vario TOC cube 

(Elementar GmbH). Turbidity was quantified using a Hach 2100 QiS turbidity meter (HACH, 

USA).  

The obtained EEM data were supplemented with comparable data obtained from the full-scale 

wastewater treatment plant Munich Gut Marienhof for the PARAFAC analysis, to increase the 

dataset size and improve model resilience and accuracy. The generated model included 90 

wastewater samples from different sections of the treatment process, covering water matrices 

obtained from the plant influent, after biological nutrient removal, denitrifying tertiary granular 

media filtration, UV disinfection, and an advanced oxidation process (UV/H2O2). To assure 

PARAFAC model accuracy, three diagnostic metrics were used, including Core Consistency, 

Split Half Analysis, and Total Variance. The use of only one metric can often provide misleading 

information, therefore more than one metric is usually recommended (Murphy et al., 2013). Core 

consistency indicates the appropriateness of the model with values ranging between 0% and 

100%, where 100% represents the perfect score (Kompany-Zareh et al., 2012). The split half 

analysis measures the agreement between excitation and emission loading modelled for the 

calibration and test datasets. Total variance measures the percentage of variability explained by 

the generated model. 

Somatic coliphages were quantified using the double agar layer technique (SM 9224 C) (APHA, 

2005), using E. coli CN-13 (American Type Culture Collection #700609) as the host and Phi 

X174 coliphage (ATCC # 13706-B1) as the positive control. C. perfringens were enumerated 

using the tryptose sulphite cycloserine (TSC) agar (Merck 1.11972.0500), and incubated 

anaerobically at 37 C for 24 h. C. perfringens samples were pre-treated at 60 C for 15 minutes 

to inactivate vegetative bacteria (ISO, 2013b). Chromocult (Merck 1.10426.0500) was used to 

enumerate both E. coli and total coliforms, which were incubated at 37 C for 24 h. Bacterial 

indicators after ozonation were quantified using the membrane filtration inoculation technique 

(Method 9215D, (APHA, 2005)). In this case a desired volume of sample (typically 5, 50 and 100 

mL) was filtered through a 47 mm diameter, 0.45 m gridded filter membrane (Millipore, S-Pak, 

type HA). The filter membrane was then transferred onto the surface of a well dried plate of 

selective agar. For C. perfringens, the filter was overlaid with a layer of molten TSC agar cooled 

to below 40 C to prevent colony decolouration by oxygen exposure. C perfringens, E. coli and 
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total coliforms were quantified in colony forming units per 100 mL (CFU/100mL) and somatic 

coliphages in plaque forming units per 100 mL (PFU/100mL).  

6.2.3 Sample collection 

After performing the experiment and once the ozone concentration in the off-gas was determined 

to be negligible (0.01 mg/L), the ozone purging (with oxygen) was stopped and the sample was 

taken from the sample port. Microbial analyses were performed the same day and the analysis of 

bulk organic parameters was performed within 48 h. 

6.2.4 Parameters of ozone effectiveness 

As discussed in the introduction, there are a number of possible primary and derived 

measurements proposed for assessing ozonation disinfection including ΔUVA, ΔTF, ozone 

demand and bromate formation. Previous studies have shown that some of them are more 

promising for predicting the removal of microorganisms during ozonation of wastewater. In this 

study ΔUVA, ΔTF and ozone demand were selected based on the studies conducted by Gamage 

et al. (2013) and Gerrity et al. (2012). Additionally, reductions in “component” concentrations 

obtained through PARAFAC processing were also estimated. 

Somatic coliphages were chosen because they are usually present in secondary treated effluent in 

higher numbers than the commonly used FRNA coliphage. C. perfringens spores have been 

recommended as a suitable indicator for ozonation due to their high oxidant resistance (Tyrrell et 

al., 1995; Xu et al., 2002). E. coli and total coliforms were selected as they represent common 

enteric bacterial pathogens and are proven indicators of faecal contamination (Asano et al., 2007). 

LRVs were calculated by taking the Log10 ratio for each different microorganism density assayed 

before and after ozone exposure. Total fluorescence (TF) was obtained from the summation of all 

the intensities for each EEM. Delta TF and UVA were obtained from the subtraction of the initial 

measurement value and the after-treatment measurement, all divided by the initial measurement 

value.  

Data from previous studies (Gerrity et al., 2012; Gamage et al., 2013) were extracted into a .CSV 

file using the WebPlotDigitizer tool (Rohatgi, 2011) which permits extraction of data from  plots. 

6.2.5 Data analysis software and Bayesian analysis 

Parametric Bayesian analysis was used in this study because generation of an equation to define 

the association between operational parameters and process performance is necessary. Bayesian 
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analysis also allows the inclusion of priors and assess uncertainty and variability explicitly. 

Bayesian analysis for this type of models was introduced in Section 3.2. 

Bayesian methods for analysing regression models were implemented using the JAGS software 

package (Plummer, 2003). Model construction and inference were conducted in R through the 

open source r2jags package (Su & Yajima, 2015). The data were analysed using linear and non-

linear regression models to compare the results between studies and check the fit to the data. All 

models assumed normal distribution of the errors. Accordingly, the response variable (y) is 

normally distributed with mean () (dependent on the predictor x) and standard deviation (). In 

mathematical notation this is yi~Normal(i,σ) for i=1,..,n. Diffuse prior distributions for the 

parameters were specified as Normal(0,100) for the parameters of the linear or non-linear 

relationships and Gamma(0.001,0.001) for the precision ( = σ-2)  (Lunn et al., 2012). Scatterplots 

showing the association in the data, model fit and 95% posterior predictive intervals were 

constructed for each combination of microbial indicators and surrogate parameters. The Deviance 

information criterion (DIC) (Spiegelhalter et al., 2002), adjusted coefficient of determination 

(R2
adjusted), and mean squared error from leave-one-out cross validation (LOOCV) were employed 

to compare the performance of the predictor variables. DIC is used to compare the goodness of 

fit between the proposed models. LOOCV was used to test the model with observations not 

previously used in the construction of the model. In this case the metric used to quantify the 

model’s predictive abilities was the MSE. Mean squared error measures the deviation of the 

predicted values �̂�𝑖 from the real values yi, with higher MSE values indicating larger error in the 

prediction. The average MSE under posterior was used to compare the models. As part of this 

procedure, the data were normalised (0-1) before computing the metrics so that results could be 

compared across microorganisms and different studies. 

6.3 Results 

6.3.1 Water quality measures 

Common water quality parameters for the secondary effluent used in the ozonation experiments 

are summarised in Table 6-1. Nitrite was not measured because the water was stored for 3 to 5 

hours after the filtration step before being used for the ozonation experiments. Additionally, at 

the initial phase of each experiment, the water was aerated with oxygen to zero the O3 sensors. 

Nitrite concentration was measured during one of the trials to confirm its low value (< 0.02 mg/L). 
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Table 6-1: Summary of secondary treated wastewater quality measurement  

Parameter (units) Rangeb,c 

DOC (mg/L) 6.2-14 

pH  7.4-8.0 

Turbidity (FNU) 0.8-2.4 

Conductivity (mS/cm) 1.13-1.22 

Alkalinity (mg/L as CaCO3) 216-250 

UVA influent 0.13-0.16 

UVA reduction, UVA  (%) 10-48 

TF reduction,  TF (%) 32-77 

Ozone demand (O3:DOC) (mg O3/mg) 0.08-0.67 

E. coli (log10 (CFU/100 ml))a 2.8-5.0 

Total coliforms (log10 (CFU/100 ml)) 4.2-7.0 

C. perfringens (log10 (CFU/100 ml)) 2.5-3.1  

Somatic coliphage (log10 (PFU/100 ml)) 3.2-3.5  

a CFU: colony forming units 

b Five batches of wastewater were each analysed. 

c For each reduction e.g.  TF, LRV; 25 measurements were made per analyte. 

EEMs were processed and two components were found to be present through PARAFAC 

analysis. The methods and analytical adjustments were based on the work conducted by 

Stahlschmidt et al. (2016). The three diagnostic metrics indicated that the PARAFAC model was 

valid and sufficiently resilient to be applied. The core consistency for the two-component model 

achieved 100% for the calibration dataset and 95% for test dataset (i.e. data used in this study). 

The split half analysis resulted in 93% indicating a satisfactory agreement. The total variance 

score was 83.6%, suggesting that the model was able to explain a large proportion of the variance 

in the data. The received Excitation/Emission peak combinations for each identified component 

were ex/em=233/442 nm (component 1) and ex/em=230/349 nm (component 2) as shown in the 

component contour plot in Figure 6-3. Fluorescence intensity was gradually reduced for the five 
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increasing O3:DOC ratios as observed in Figure 6-2. The components found through PARAFAC 

analysis suggested that the organic matter can be associated to humic acid-like compounds (Peak 

A) (Coble, 1996) and tryptophan-containing compounds (Peak T2) (Hudson et al., 2007). 

 

Figure 6-2: Extract of results of initial EEM spectra for the initial secondary effluent water matrix 

(a) and EEM for the five different ozone dosages , 2 (b), 4 (c), 6 (d), 8 (e) and 10 mg/L (f). Peaks 

A and T2 are indicated on (a). 
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Figure 6-3: Extracted results of the model components ( a = component 1, b = component 2) 

6.3.2 Quantifying the relationships between ozone parameters  

Ozone demand (O3:DOC or O3:TOC) was plotted against ΔUVA and ΔTF (Figure 6-4 a-d). The  

ozonation parameters showed a positive relationship between these variables with low uncertainty 

in fitted power functions (y = a.Xb) as used by Gamage et al. (2013) and Gerrity et al. (2012). 

The decreasing slope with increasing ozone demand (Figure 6-4) can be explained by the 

depletion of reactive moieties by organic matter (Buffle et al., 2006). The coefficients for the 

power function for this current study and the study conducted by Gamage et al. (2013) are 

presented in Table 6-2. Coefficients include their 95% credible interval (CI) in parentheses. The 

empirical model fitted the data of both studies well, with an average R2
adjusted for UVA of 0.89 

for this current study and 0.90 for the previous study (Gamage et al., 2013), and an average 

R2
adjusted for TF of 0.86 for this current study and 0.85 for the previous study (Gamage et al., 

2013).     

Table 6-2: Coefficients of the fitted curve for the relationship between water quality parameters 

Variables Coefficients for this study  

a(95% CI), b(95% CI) 

Coefficients for Gamage et al. (2013)a  

a(95% CI), b(95% CI) 

O3:DOC (TOC) -UVA 0.71(0.63 ,0.80), 0.75(0.63, 0.88) 0.48(0.46, 0.51), 0.53(0.44, 0.63) 

O3:DOC (TOC) -TF 0.98(0.90,1.07), 0.46(0.38, 0.55) 0.87(0.83, 0.91), 0.29(0.24, 0.36) 

a Gerrity et al. (2012) did not report their results for the relationship between ozone parameters. 
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The relationships between ozone demand, ΔUVA, and ΔTF for this current study (Figure 6-4 a 

and b) and the study conducted by Gamage et al. (2013) (Figure 6-4 c and d) indicate that for the 

present study, the mean ratio of the consumed ozone to the applied ozone was approximately 

50%. For the experimental ranges of ozone demand used in the present study, the maximum 

achieved removals were 48% for UVA and 77% for TF while Gamage et al. (2013) achieved a 

maximum removal of 63% for UVA and 95% for TF. Although, this current work suggested 

significant differences to the previous studies (Gerrity et al., 2012; Gamage et al., 2013) in terms 

of operational settings, the ozonation effects were still of similar magnitudes. Also, the data 

analyses provided a comparison of the sensitivity of nominally similar microorganisms to ozone 

and estimates of the uncertainty obtained by fitting the models. These results were achieved 

despite using a lower ozone demand range.  

 

Figure 6-4:  Relationship between ozone demand (O3:DOC) and ΔUVA and TF for this current 

study (a-b) and O3:DOC and ΔUVA and TF obtained from Gamage et al. (2013) (c-d). The 

dotted line indicates the power function model calculated from the median of the posterior 

predictive distributions of the corresponding data set. Shaded region indicates the 95% posterior 

predictive invervals. 
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6.3.3 Relationship between ozonation parameters and disinfection performance 

6.3.3.1 Analysis of predictors from the current study 

Standard linear models with (y=a+bx+cx2) and without a quadratic term (y=a+bx) were fitted 

through Bayesian methods to the data, using the surrogate parameters and LRV for each microbial 

indicator. The results showed similar fits between all three surrogate parameters and LRVs for all 

the indicators (Figure 6-5, Figure 6-6). In general, models incorporating a quadratic term provided 

similar fit to the univariate linear regression models. Therefore, for simplicity, only the detailed 

results for the linear models are presented here. All 95% credible intervals for the posterior 

distributions of the slopes of the linear models excluded zero and were positive, indicating strong 

evidence of a positive association between the surrogates and microbial indicator LRVs. For E. 

coli, TF and UVA showed better predictive capabilities than ozone demand according to the 

assessment metrics applied (DIC, R2
adjusted and MSE) (Figure 6-5 a-c). The models’ slopes 

revealed that a 23% (95% credible interval (CI): (18, 29)) change in TF corresponded to a one 

unit change in LRV (Figure 6-5 b), while a 20% (95% CI: (15, 27)) change in UVA corresponded 

to a unit change in LRV (Figure 6-5 c), which implies that TF may be more sensitive for 

detecting LRV change than ΔUVA.  
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Figure 6-5: Scatterplots with linear fit between LRV for E. coli and ozone demand (a), TF (b) 

and UVA (c); and scatterplots with linear fit between between LRV for total coliforms and ozone 

demand (d),  TF (e) and UVA (f). The dotted line indicates the linear regression model 

calculated from the median of the posterior predictive distributions of the corresponding data set. 

The dashed line indicates the quadratic regression model calculated from the median of the 

posterior predictive distributions of the corresponding data set. Shaded region indicates the 95% 

posterior predictive invervals for the linear regression model. 
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For total coliforms, the assessment metrics (Figure 6-5 d-f) presented similar fits with all 

ozonation parameters. From the model, 18% (95% CI: (15, 24)) of change in TF corresponded to 

a one unit change in LRV, while a 15% (95% CI: (12, 20)) in UVA corresponded to a unit change 

in LRV. Total coliforms behaved similarly to E. coli. The lowest MSE of all the microorganisms 

were obtained for total coliforms across all three predictors.  

For C. perfringens the assessment metrics suggested a better association with TF and UVA 

than ozone demand (Figure 6-6 a-c). C. perfringens was more resistant than the other studied 

microorganisms with a maximum of approximately 1 LRV. Based on the models’ slopes, a 71% 

(95% CI: (53, >100)) reduction in TF corresponds to a unit change in LRV while for UVA, a 59% 

(95% CI: (43, 91)) reduction corresponds to a unit change in LRV. Similar to E. coli and total 

coliforms, TF was more sensitive to change in LRV of C. perfringens than UVA.  
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Figure 6-6: Scatterplots with linear fit between LRV for C. perfringens and ozone demand (a), 

TF (b) and UVA (c); and scatterplots with linear fit between between LRV for somatic 

coliphages and ozone demand (d), TF (e) and UVA (f). Open circles indicate removal is higher 

than the recorded value due to censored data. The dotted line indicates the linear regression model 

calculated from the median of the posterior predictive distributions of the corresponding data set. 

The dashed line indicates the quadratic regression model calculated from the median of the 

posterior predictive distributions of the corresponding data set. Shaded region indicates the 95% 

posterior predictive invervals for the linear regression model. 
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For somatic coliphages the removal efficiency was sufficiently high that 52 percent of 

observations post-treatment, were below the detection limit of 10 PFU/100mL, resulting in a high 

proportion of censored data. Nonetheless, using the Bayesian analysis techniques, it was still 

possible to generate the linear regression coefficients by integrating the respective Normal density 

term over the non-detected region. In this case, the assessment metrics indicated a similar fit for 

all the surrogate parameters (Figure 6-6 d-f). It can be observed in Figure 6-6 (d-f) that there was 

a positive relationship between the evaluated predictors and the somatic LRV. According to the 

slope results, a 14% (95% CI: (10, 23)) of change in TF corresponds to a unit change in LRV. In 

the case of UVA, an 11% (95% CI: (7, 17)) change corresponds to a unit change in LRV. 

6.3.3.2 Use of components of EEM spectra to predict microbial removal 

The two model components found through PARAFAC were analysed separately and together for 

their predictive capabilities using univariate and multivariate linear regression models, 

respectively. The results (Table 6-3) indicated that component 1 reduction (ex/em=233/442 nm) 

provided a better fit than component 2 reduction (ex/em=230/349 nm) for all studied 

microorganisms except from E. coli. The assessment metrics results for component 1 provided 

similar conclusions to the results obtained for TF (Figure 6-5, Figure 6-6) except from C. 

perfringens. No improvement was observed when using both components together. Overall 

PARAFAC analysis provided no better indication of LRV magnitude than the other ozonation 

measures. 

Table 6-3: linear model comparison according to DIC score, R2
adjusted and MSE for this study using 

components 

Microorganism Component(s) DIC R-squared MSE 

E. coli 

 

1 22 0.75 0.058 

2 20 0.78 0.053 

1 and 2 21 0.78 0.058 

Total coliforms 

 

1 32 0.76 0.038 

2 38 0.70 0.047 

1 and 2 35 0.74 0.042 

C. perfringens 

 

1 -11 0.51 0.089 

2 -10 0.48 0.094 
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Microorganism Component(s) DIC R-squared MSE 

1 and 2 -9 0.46 0.099 

Somatic coliphage 

 

1 31 0.72 0.100 

2 34 0.66 0.112 

1 and 2 33 0.72 0.153 

 

6.3.3.3 Analysis of predictors from previous studies 

When Bayesian techniques were applied to the data reported from previous studies, the fitted 

linear models indicated that in all cases the 95% credible interval for the posterior distributions 

on the slopes excluded zero and were positive, as in this current study. Unlike the data collected 

by Gamage et al. (2013), the results reported by Gerrity et al. (2012) included right-censored 

values (16% for E. coli and 40% for MS2). R2
adjusted and MSE results (Figure 6-7 and Figure 6-8) 

and indicated higher uncertainty in the models fitted to seeded E. coli in both previous studies 

(Gerrity et al., 2012; Gamage et al., 2013) compared to the microbial indicators from the 

experiments conducted in this study. In contrast, MS2 models produced more adequate model 

fits, and provided comparable results to the results obtained in this current study (Figure 6-7 and 

Figure 6-8). For Bacillus subtilis spores, most of the values were close to zero and after reaching 

a specific change of UVA and TF, a positive relationship was observed, leaving too few data 

points to fit the model. The resulting metrics (Figure 6-7 and Figure 6-8) suggested that for E. 

coli, all three predictors were similar in their predictive potential, whereas for MS2 both TF and 

UVA provided better prediction than the O3:TOC ratio. Models with a quadratic term were also 

fitted to the data, resulting in a similar fit to the linear models according to R2
adjusted and MSE for 

E. coli and R2
adjusted for MS2. 
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Figure 6-7: Scatterplots with linear fit between surrogate parameters O3/TOC, ΔTF and ΔUVA 

and LRV for E. coli (a-c) and MS2 (d-f) for data collected by Gamage et al. (2013). Open circles 

indicate removal is higher than the recorded value due to censored data. The dotted line indicates 

the linear regression model calculated from the median of the posterior predictive distributions of 

the corresponding data set. The dashed line indicates the quadratic regression model calculated 

from the median of the posterior predictive distributions of the corresponding data set. Shaded 

region indicates the 95% posterior predictive invervals for the linear regression model. 
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Figure 6-8: Scatterplots with linear fit between LRV for E. coli and MS2 with surrogate 

parameters ΔTF and ΔUVA for E. coli LRV (a-b), and MS2 LRV (c-d) for Gerrity et al. (2012). 

The dotted line indicates the linear regression model calculated from the median of the posterior 

predictive distributions of the corresponding data set. The dashed line indicates the quadratic 

regression model calculated from the median of the posterior predictive distributions of the 

corresponding data set. Shaded region indicates the 95% posterior predictive invervals for the 

linear regression model. 

Slope results from the models fitted to the data reported by Gamage et al. (2013) showed that to 

achieve a unit change in LRV for E. coli, corresponded to a 8% (95% CI: (5, 15)) TF reduction, 

while a 7% (95% CI: (5, 11)) UVA reduction corresponded to the same microbial removal 

performance. For MS2, an 8% (95% CI: (6, 10)) reduction in TF corresponded to a unit change 

in LRV, while the same removal performance was associated with a 6% (95% CI: (5, 9)) UVA 

reduction (Figure 6-8). Similar slope results were obtained from the models fit to the data reported 

by Gerrity et al. (2012). The maximum achieved LRVs for the Gamage and Gerrity studies were 

much higher than for this present study (E. coli 5 log10, total coliforms: 3.3 log10, C. perfringens: 

3.1 log10, and somatic coliphages: 3.5 log10) with values exceeding 7.5 log10 approximately for 

both seeded MS2 and E. coli. 
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6.4 Discussion 

6.4.1 Comparison of model parameters 

In this study the effectiveness of ozonation with that reported by two earlier studies were 

compared using the slope parameter of the regression models (Table 6-4). From the results 

obtained, it appears that, based on the posterior mean and 95% CI of the slope parameters, the 

sensitivity to disinfection of the indigenous microbial indicators to ozone treatment is lower than 

for seeded microorganisms (i.e. autochthonous species were more resistant). This result is 

consistent with previous studies, which have shown that environmental populations of 

microorganisms can be more resistant to disinfection than cultured populations (Smeets, 2010). 

Gerrity et al. (2012) also performed a full-scale investigation to validate the results of correlations 

found between LRVs and water quality parameters. However, they found that achieving high 

levels of inactivation was increasingly difficult when the influent concentrations were low 

(compared to a spiked experiment) possibly due to the effect of shielding.   

Table 6-4: Posterior slope parameter for the fitted regression modelsa,b   

M.I This study (Gamage et al., 2013) (Gerrity et al., 2012) 

O3:DOC TF UVA O3:TOC TF UVA O3:TOC TF UVA 

ECc 
3.6 

(2.4,4.9) 

4.4 

(3.4,5.5) 

5.1 

(3.7,6.6) 

5.2 

(3.1,7.6) 

13 

(6.7,19) 

15 

(8.9,22) 

- 9.3 

(7.1,12) 

13 

(9.7,16) 

TCc 
5.1 

(3.9,6.3) 

5.5 

(4.2,6.7) 

6.7 

(5.1,8.2) 

- - - - - - 

CPc 
1.2 

(0.7,1.7) 

1.4 

(0.9,1.9) 

1.7 

(1.1,2.3) 

- - - - - - 

MS2c 
- - - 5.6 

(3.1,7.6) 

13 

(9.9,17) 

16 

(12,22) 

- 11 

(9.6,12) 

14 

(12,16) 

SCc 
7.4 

(4.7,11) 

6.9 

(4.4,10) 

9.2 

(5.9,14) 

- - - - - - 

a A larger slope, indicates greater possible demonstration of organism LRV per unit change in 

monitored parameter.  
b Values in parentheses are the 95% CIs. 
c EC: E. coli, TC: total coliforms, CP: C. perfringens spores, MS2: MS2 coliphages, SC: somatic 

coliphages. 
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The posterior distributions of the slopes for the three studies using ΔUVA as a predictor for E. 

coli removal are shown in Figure 6-9. The slope coefficients for both this present work and the 

previous studies (seeded 1 and 2 in Figure 6-9) showed similar values with greater spread in the 

case of the data from Gerrity et al. (2012) compared to the data from Gamage et al. (2013). These 

results are expected as a larger dataset reduces the standard error of the coefficient. In the current 

study, it could be observed that the probability distribution for the slope coefficient was narrower 

with a mean of 5 units. Two reasons the results from the two previous studies were similar are 

likely to be, common authors and hence methodology, and because one dataset was contained 

within the other (i.e. Gerrity et al. (2012) incorporated data from Gamage et al. (2013)). Also, the 

higher uncertainty observed in these previous studies for E. coli may be a consequence of using 

heterogeneous water samples from different sites. The current study showed that it is possible to 

reduce the uncertainty of the outcomes by generating data from a single site. To address this 

source of variance, where data are obtained from different treatment plants, a hierarchical model 

could be constructed to account for random effects associated with different sites and estimate the 

uncertainty of population parameters. 

 

Figure 6-9: Posterior density plots comparing the slope coefficient from the fitted linear models 

for indigenous microorganisms and seeded from previous studies. Seeded 1 represents the data 

obtained by Gamage et al. (2013) and Seeded 2 represents the data obtained by Gerrity et al. 

(2012).    
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6.4.2 Evaluation of parameters of ozone effectiveness 

Initial water quality tests showed low concentrations of indigenous FRNA coliphage in the 

secondary treated wastewater (10 pfu/10 ml) which made this measure unsuitable for the present 

study. In its stead, somatic coliphages were used which are usually more abundant in wastewater 

samples and present similar sensitivity to ozone compared to FRNA coliphages (Tyrrell et al., 

1995). Although C. perfringens spores are more resistant than vegetative bacteria and coliphages, 

the results indicated that they possessed appreciable sensitivity to ozone and that O3:DOC ratio, 

TF, and UVA can be used to predict their removal. When comparing results from this study 

with previous studies using seeded microbial indicators (Gerrity et al., 2012; Gamage et al., 

2013), it appeared that indigenous microorganisms showed lower sensitivity to ozone which 

results in a more conservative estimate of removal performance. This finding needs further 

investigation as it has a bearing on ozone disinfection validation which increasingly use seeded 

microorganisms. 

Assignment of removal credits to treatment processes is subject to the reliable monitoring of 

operational parameters which should be able to indicate when the system is not performing 

correctly and corrective actions are required (NRMMC et al., 2008). In general, the data presented 

a better fit to the models constructed with Peak A (humic acid-like), TF, and UVA than when 

fitted to ozone demand. For the same target LRV, a higher reduction in TF is necessary when 

compared to UVA, which means that UVA can potentially demonstrate higher LRVs. 

Although, Peak A, TF and UVA were all useful for monitoring ozonation performance, 

fluorescence measurements are potentially less suitable when compared to UVA when 

considered on the basis of maximum possible demonstrated LRV. In addition, UV transmittance 

sensors which typically measure at 254 nm are already commercially available for monitoring 

UV disinfection systems, which means that UVA is a more readily available technique to be 

incorporated online in real time monitoring of water recycling systems. UVA is already widely 

applied for monitoring ozone performance (usually for colour removal or DOC oxidation prior to 

BAC). However, a quantitative relationship with disinfection performance is not typically 

available or applied in full-scale water treatment applications. The present work suggests such 

surrogate measures though are quite practical. 

6.4.3 Advantage of using Bayesian analysis to evaluate predictors 

The data analysed in this study could have been interpreted using non-Bayesian techniques such 

as conventional linear and non-linear regression analyses. However, Bayesian analysis provided 

two unique advantages including posterior distributions and incorporation of censored values. 
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Bayesian posterior distributions can be interpreted as true probability statements about unknown 

parameters (Hamada et al., 2008). Therefore, information stating the range of values and their 

probability of occurrence for a particular parameter truly represent the uncertainty in that 

parameter. Instead, from a classical approach point of view, confidence intervals must be 

constructed from repeated sampling of the data. In terms of propagating the uncertainty in the 

parameters of a model to estimate posterior predictive distributions, Bayesian analysis can 

effectively handle such tasks. This feature is important during monitoring as there will always be 

uncertainty when inferring a performance from operational or water quality parameters. With 

Bayesian analysis, the full probability distribution reflecting the uncertainty of an outcome can 

be obtained.  

Censored data are commonly wrongly omitted or replaced by half of the limit of detection (Helsel, 

2005). Censored values also have an influence on the fitting of models and affect the uncertainty 

of the estimations. Through the use of Bayesian analysis, this study was able to incorporate the 

influence of censored values into the estimation of model parameters. Instead of making 

assumptions about the censored values, Bayesian analysis uses all the information available for 

them which is defined by the assumed probability distribution (i.e. normal distribution in this 

case). 

6.5 Conclusions  

Conventional use of the monitoring parameter CT during wastewater ozonation becomes 

problematic when ozone rapidly reacts with organic matter and its dissolved residual 

concentration cannot be accurately or continuously measured. Alternative surrogate parameters 

have been proposed including ozone demand (O3:DOC (TOC) ratio), ΔUVA, and ΔTF. Previous 

studies using seeded microorganisms have found positive associations between the removal of 

microorganisms and these alternative parameters. However, high uncertainty and potentially 

optimistic results may have been obtained from these experiments. This study focused on the 

monitoring of ozonation of secondary treated wastewater using the previously proposed 

surrogates and indigenous microorganisms. Results of this work were compared to previous 

findings in terms of uncertainty and disinfection performance. Key outcomes from this study 

included: 

• Ozone demand, ΔUVA, and ΔTF were all correlated with removal of indigenous 

microorganisms 
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• In general, the data presented better fit to the models constructed with TF and ΔUVA 

than those constructed with ozone demand with ΔUVA the most cost effective and 

simple, and hence promising on line measure, of LRV. 

• Clostridium perfringens spores presented higher resistance to ozone treatment compared 

to coliform bacteria and somatic coliphages.  

Experiments performed on a single wastewater source in this study possibly resulted in a lower 

uncertainty than the models developed over multiple sources from previous studies. Although 

global surrogate correlations are possible, it is recommended that the generated models should be 

site-specific to decrease excessive uncertainty. Further investigation into the correlation of non-

microbial surrogates with pathogens is also needed to assess whether microbial indicators are 

appropriately conservative indicators of the process performance is also advisable. Bayesian 

methods are recommended because they facilitate the uncertainty measurement in the model 

parameters, incorporate censored values and generate posterior predictive distributions. 

  

195



 

 

196



 

Chapter 7: Probabilistic assessment of 

chlorination performance targets for secondary 

treated wastewater using Bayesian analysis 

 

This chapter has been published in the following journal article: 

Carvajal, G., Roser, D.J., Sisson, S.A., Keegan, A. and Khan, S.J. (2017). Bayesian belief 

network modelling of chlorine disinfection for human pathogenic viruses in municipal 

wastewater. Water research 109, 144-154. DOI: 10.1016/j.watres.2016.11.008 
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7.1. Introduction 

Disinfection dose requirements for water and wastewater treatment are conventionally expressed 

as the product of disinfectant concentration and contact time (CT), required to achieve a 

predetermined reduction in microbial numbers. Achievement of target CT values is dependent 

upon meeting various factors for each pathogen type, including pH, temperature, disinfectant 

concentration, ionic strength, and suspended particles (Jensen et al., 1980; LeChevallier & Au, 

2004). Consequently, assigning log reduction value (LRV) credits depends on optimising such 

variables as well as ensuring the primary CT product.  

Previous work has sought to establish CT values necessary to achieve LRVs for various pathogens 

in biologically treated (activated sludge) municipal wastewater (Keegan et al., 2012).The 

products of that research included a number of linear models and tables which related target CTs 

to various pH and turbidity combinations (VDoH, 2013). This approach to deriving and 

representing CT-LRV relationships is in line with international best practice for defining the 

disinfection CT requirements for drinking water (USEPA, 2003). However, as the number of 

disinfection controlling factors increases, interpolating values between experimental data points 

and communicating the information in tabular form or as linear models becomes increasingly 

problematic. Further, the increasing popularity of Quantitative Microbial Risk Assessment (US-

EPA & USDA/FSIS, 2012) means that in future, LRV point estimates may not be sufficient, and 

measures of model uncertainty and variability will be needed.  

Bayesian networks (BNs) offer an alternative approach for relating chlorination LRVs to CT and 

wastewater quality parameters and incorporate parameter uncertainty and variability. They also 

offer a convenient means for performing scenario exploration and inference, and hence prediction 

of disinfection performance under diverse conditions. Continuous BNs are models which involve 

the use of continuous variables without the need for discretisation. 

To facilitate interpolation and CT estimation and prediction, the use of Bayesian multilayer 

perceptron (BMLP) models were investigated to derive continuous relationships between virus 

LRV, pH, turbidity and CT, and perform interpolation considering uncertainty in the model 

parameters. The Bayesian integration within the BMLP model transforms this model into a BN, 

introducing features such as stochastic representation of the parameters and predictions, as well 

as computation of queries on target variables given a set of observations. A multilayer perceptron 

(MLP) model is a type of neural network composed of layers of neurons (elements that generate 

a transformation of the inputs) with an input layer, at least one hidden layer, and an output layer 

(Priddy & Keller, 2005). In MLP models the inputs of the neurons in one layer come from the 
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outputs of neurons in a previous layer. Neurons in one layer are connected to the previous layer 

through weighted connections. These models can solve non-linear problems and perform 

prediction with high accuracy in multivariate settings.  

This study assessed the application of a continuous BN for estimating chlorination and 

chloramination LRVs for human virus removal during wastewater treatment, while accounting 

for the influence of pH, turbidity and CT variance. The broader aim of the study was to investigate 

the utility of BNs for quantifying the effectiveness of chlorination of treated wastewater in a 

multivariate context and to present a simple and practical tool for interpolation of CT values and 

incorporation of uncertainty and variability. 

7.2. Materials and methods 

7.2.1. Data extraction and model construction 

Chlorine disinfection data were obtained from a previously published project report of bench-

scale batch experiments using secondary treated wastewater from the Bolivar Wastewater 

Treatment Plant in Adelaide, South Australia (Keegan et al., 2012). This wastewater was seeded 

with two viruses, Coxsackievirus B5 for estimating free chlorine LRVs, and Adenovirus 2 for 

estimating monochloramine LRVs. These viruses were selected because they are known to exhibit 

high resistance to chlorine and monochloramine inactivation respectively (Liu et al., 1971; 

Payment et al., 1985). Two parameters, pH and turbidity, were varied to determine CT values for 

virus inactivation under a range of conditions.  

Inactivation experiments were conducted at pH 7.0, 8.0 and 9.0, and at three turbidity values (2, 

5, 20 NTU), at a constant low (conservative) temperature of 10°C. Both viruses were seeded at 

concentrations of ca 105/mL to allow measurement of up to at least 4 logs inactivation. The 

datasets produced by Keegan et al. (2012) consisted of 226 records for Adenovirus and 154 

records for Coxsackievirus. CT values were calculated from the integrals (areas under the curves) 

of residual free and combined chlorine concentrations vs. sample contact time. Unlike the original 

study, in the present analysis the disinfection conditions and corresponding LRV data were not 

obtained from fitted linear models, but by using the raw replicated LRV measurements obtained 

in that study. The aim for Keegan et al. (2012) was to construct CT tables for specific whole-

number LRV values (1, 2, 3 and 4) in line with conventional past practice (USEPA, 2003). This 

work presents the construction of a BN, which can produce a target CT value for any combination 

of input variables. 
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Prior to analysis, the raw data (Appendix 4) were extracted and arranged in a table (.CSV file) 

with columns representing variables and rows presenting the experimental cases. This 

arrangement was used to facilitate importation to R programming (R-project, 2014) environment 

and BMLP model construction. The process of model construction and parameter definition was 

conducted in R using JAGS through the freely available R2jags package (Plummer, 2013).  

The two overall structurally identical but parametrically different models, one for each virus, 

represented the conventional procedure followed by the US Environment Protection Agency 

(USEPA, 2003). The models were constructed considering three continuous variables, target 

LRV, pH and turbidity as predictors of target CT. The BN model is represented in Figure 7-1, 

which shows the choice of distributions for each identified node using JAGS nomenclature. 

Explanation of each variable in the model is provided in Table 7-1.  

 

Figure 7-1: Bayesian network for chlorination model. For model nodes and consistency with 

JAGS notation, dunif indicates a uniform distribution, and dnorm indicates a normal distribution. 
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Table 7-1: Variables/Nodes considered in the study and their description 

Variables Description Adenovirus 

Monochloramine 

Range 

Coxsackievirus 

Free chlorine 

Range 

Observed pH Measured pH during disinfection 

operation  

7 – 9 7 - 9 

Observed 

turbidity 

Measured turbidity during disinfection 

operation 

2 – 20 2 - 20 

Target LRV Desired target LRV   0 – 4.7 0 – 5.3 

Observed CT Measured CT during disinfection 

operation 

≥0 ≥0 

Target CT Required CT to achieve a given target 

LRV 

71 - 11488 2.3 – 53  

Calculated 

LRV 

Computed from the multiplication of 

inactivation ratio and Target LRV 

≥0 ≥0 

Inactivation 

ratio 

Ratio of observed CT and target CT 

(predicted) 

≥0 ≥0 

 

Other water quality parameters may also affect chlorination LRV. However, such variables were 

controlled throughout these experiments by the use of the same biologically treated wastewater 

matrix in all experiments. The model thus assumes that target LRV, pH and turbidity are 

conditionally dependent given target CT. This means that without knowing the value of the target 

CT, a modification to any of these three nodes will not produce any change to the other two.  

A BMLP model was employed to capture the relationships between the variables. BMLP model 

use enabled consideration of pH and turbidity as continuous variables and therefore facilitated 

interpolation of values intermediate with the selected experimental settings. In this model, the 

error estimates in the target CT were assumed normally distributed. Normal distribution was also 

preferred due to its simplicity. This assumption has been previously used to derive confidence 

intervals in the predicted outcomes of multilayer perceptron (Chryssolouris et al., 1996; He & Li, 

2011). That is 
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𝐶𝑇~𝛮(𝜇; 𝜎2) Equation 7-1 

where  is the predicted dependant value (target CT) as a function of the target LRV, turbidity 

and pH, and  is the standard deviation of the model errors. Unlike the conventional neural 

network approach, the BMLP model considers uncertainty in the model parameters which 

introduces an additional source of uncertainty for the CT value estimation. The resulting model 

is presented in Section 7.2.3. Inactivation ratio (IR) and actual LRV (LRV.act) are variables which 

were computed from the outcomes of stochastic variables using Equation 7-2 and Equation 7-3 

respectively (USEPA, 2003). 

   IR =
CT.obs

CT.target
 Equation 7-2 

LRV. calc = LRV. target ∙ IR  Equation 7-3 

where CT.obs is the CT measured from the chlorine disinfection process, CT.target represents the 

target CT from the model, LRV.target is the target LRV from the model and LRV.calc is the 

calculated LRV. 

The model (Figure 7-1) can be used to query information for LRV, CT, pH or turbidity given one 

or more variables observed. Depending on the case, these variables can be seen as target or 

observed variables as explained in Table 7-1. The target CT is used along with the CT of the 

process (observed CT) to estimate a LRV using Equation 7-2 and Equation 7-3. Explanation of 

model queries and observations is provided in Appendix 4.    

7.2.2. Use of JAGS for BN construction and inference 

Inference in continuous BNs was performed through Markov Chain Monte Carlo (MCMC) which 

is used to obtain joint and marginal posterior distributions (see Chapter 3, Materials and methods). 

In this study, JAGS was employed because of its simplicity in model definition and capability of 

dealing with different types of data formats (Plummer, 2013). The model definition and model 

inference steps in JAGS, used to obtain posterior distributions were as follows, while the code is 

presented in detail in Appendix 4. The key steps were:  

1. Model definition: Arcs between nodes and distributions are defined in Figure 7-1. 

Uninformative priors are defined. 
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2. Incorporation of model and data into JAGS: see Appendix 4. 

3. Model updating with 2E5 samples and generation of 2E6 samples from the model. 

4. Convergence checking to verify that the output was valid: Visual inspection of trace 

plots and Geweke convergence test.  

7.2.3. Bayesian Multilayer Perceptron model structure 

The BMLP model was constructed using R2jags in R and consisted of an “n” number of neurons 

in a single hidden layer as shown in Figure 7-2. A single hidden layer was used to avoid overfitting 

and because a single hidden layer is capable of approximating any nonlinear function (Hornik et 

al., 1989). Each neuron in this layer was defined by the softplus function (Nair & Hinton, 2010) 

shown in Equation 7-4. The output layer was defined as a linear combination of a specific number 

of hidden neurons as presented in Equation 7-5. All input variables were normalised in the range 

[0,1] using Equation 7-6 to minimise the bias in the model for one variable over another (Priddy 

& Keller, 2005). Posterior distributions for the parameters (i.e. weights and biases) in the BMLP 

model were found through Bayesian inference using MCMC Gibbs sampling (Geman & Geman, 

1984) and assuming non-informative priors (see Appendix 4). The model also included a 

hierarchical structure for the weights and biases to regularise the estimates as defined by 

Lampinen and Vehtari (2001). Due to lack of identifiability in the parameters, order constraints 

for the parameters were included (Müller & Insua, 1998). A preliminary comparison between 

models including two, three, four and five neurons indicated that three neurons provided better fit 

to the data for both the Adenovirus and Coxsackievirus models according to the deviation 

information criterion score (Lunn et al., 2012). Initial values were defined as recommended by 

Vehtari et al. (2000) and ten random seeds were tested through the DIC score. 

𝑛𝑒𝑢𝑟𝑜𝑛𝑗 = ln (1 + 𝑒 ∑ 𝑤𝑖∙𝑥𝑖+𝑤0𝑗𝑖  )   𝑓𝑜𝑟 𝑖 = 1,2,3 𝑎𝑛𝑑 𝑗 = 1, …,n Equation 7-4 

𝑛𝑒𝑢𝑟𝑜𝑛0 = ∑(𝑤0 + 𝑤𝑗 ∙

4

𝑗=1

𝑛𝑒𝑢𝑟𝑜𝑛𝑗) Equation 7-5 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =
𝑢𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − min
 

Equation 7-6 
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where wi and wj represents weights, w0 and w0j are bias terms,  and xi represents a normalised 

variable  

 

Figure 7-2: Multilayer perceptron diagram with n neurons in hidden layer 

An advantage of neural networks is their flexibility to model variable relationships without the 

need for an underlying mechanism or complete understanding of the process. However, this 

flexibility also entails the possibility of more than one model providing suitable results for the 

analysed problem. In this study, the selection process permitted a unique model for each 

microorganism. An alternative solution is the averaging of several models’ outputs. The approach 

used in this study did not follow this option to keep the modelling process simple.    

7.2.4. Sensitivity analysis 

The Adenovirus and Coxsackievirus models were assessed for their sensitivity to turbidity, pH 

and residual concentration times time. The methodology employed for this analysis consisted of 

selecting specific values for LRV and varying the turbidity while keeping pH constant and varying 

pH while keeping turbidity constant. A tridimensional plot was also constructed by changing pH 

and turbidity at the same time for a defined LRV value of 3 logs. 
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7.3. Results 

7.3.1. Bayesian MLP model development and performance 

The Bayesian multilayer perceptron model parameters (i.e. the weights and biases) were obtained 

for Adenovirus (monochloramine) and Coxsackievirus (free chlorine). High correlation 

coefficient (r>0.96) was found with the models of both viruses between the actual LRV and the 

posterior predictive LRV mean (Figure 7-3). The correlation and visual check of the predictions 

against actual LRVs indicated that the model correctly fitted the data and that the fitted values 

(Figure 7-3) closely match the ideal outcome (line= 1 to 1 relationship). The proportion of 

standardised residuals lying outside the (-2,2) range was 6.1% for the Adenovirus model and 4% 

for the Coxsackievirus model, while the proportion of the residuals lying outside the (-3,3) was 

0.5% for the Adenovirus model and 0.7% for the Coxsackievirus model. These results supported 

the normality assumption used in the models (Ntzoufras, 2011). 

 

 

Figure 7-3: Scatter plot of observed LRV versus predicted LRV using BMLP model for a) 

Adenovirus and b) Coxsackievirus. Vertical bars indicate the 2.5th and 97.5th percentiles from the 

predicted values. 

7.3.2. Calculation of LRV 

The use of CT tables during monitoring is based on the comparison of observed CT values versus 

the target CT. The ratio of these two estimates, the inactivation ratio IR, indicates whether the 

process is achieving the target LRV (IR≥1) or not (IR<1). Further, IR itself can be probabilistic 

allowing the confidence that treatment is satisfactory to be estimated. After computing the IR, 
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LRV estimation can be performed by multiplying the IR by the target LRV. To model this 

scenario in the BN model, the variables “target CT”, “inactivation ratio” and “calculated LRV” 

were incorporated. To illustrate, the Coxsackievirus model was used to derive information about 

the calculated LRV from a target LRV of 4 log for a turbidity of 5 NTU, with CT and pH defined 

by distributions from real operational chlorination clear-well data (Walker et al., 2016). The 

distribution for pH was normal (mean=6.99, standard deviation=0.139, Figure 7-4 a), while the 

distribution for CT was lognormal (location=4.51, scale=0.148, Figure 7-4 b). Under this 

scenario, the inactivation ratio was always higher than 1, with a mean of 16.6 (Figure 7-4 d). The 

associated LRV mean was 66 (5th percentile=34), which reflected an operation in which the 

chlorine addition far exceeded the requirements for this target microorganism. When specific 

conditions need to be evaluated, the water quality parameters pH and turbidity can also be used 

as deterministic values. The model could be used to determine the CT in the process required to 

achieve a specific exceedance probability for the desired LRV performance. The CT could be 

obtained by selecting the desired percentile value from the target CT distribution. The observed 

CT has then to be aimed for that particular value. For example, if the 5th percentile of a target CT 

is 20 mg.L-1.min for a LRV of 3 logs, then if the observed CT is set to this same value of 20 mg.L-

1.min, the 5th percentile obtained from the calculated LRV will correspond to the desired 3 logs 

target.  
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Figure 7-4: LRV estimation using, a) observed pH  and, b) CT distributions during a real 

chlorination process (Walker et al., 2016).  The target CT c) is obtained from the BMLP model 

and the inactivation ratio d) is the ratio between the observed CT and target CT. 

7.3.3. Inferring pH and turbidity given target operating conditions.  

To investigate the capabilities of the model for inferring water quality conditions (i.e. pH and 

turbidity) required to achieve a target LRV given a target CT, two queries were assessed. The first 

query consisted of inferring the turbidity required to achieve a LRV of 4 with a CT of 20 mg.L-

1.min and pH 9 for the Coxsackievirus model (Figure 7-5 a). The prior distribution for turbidity 

was assumed to be uniform between 2 and 20 NTU reflecting the choice of uniform distribution 

or full uncertainty (if the turbidity probability distribution for the water is not available). The 

results for the posterior distribution are presented in Figure 7-5 (a). The simulation results 

indicated that to achieve these targets, the turbidity should be low with a 95% probability of being 

below 2.8 NTU. Additionally, using the training dataset, it was observed that turbidity less than 

or equal to 5 NTU was associated with these operating conditions of pH, CT and LRV. The second 
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query involved obtaining the posterior distribution for pH given a CT of 20 mg.L-1.min, LRV of 

4 and turbidity of 20 NTU for a uniform prior pH distribution between 7 and 9. As observed in 

Figure 7-5 (b), this query indicates that pH is required to be close to 7.0 to achieve this LRV for 

this high turbidity value.  

 

Figure 7-5: Posterior distribution for turbidity and pH after observing CT=20 mg.L-1.min and 

LRV 4 with pH=9 (a) and turbidity 20 NTU (b) for free chlorine. 

7.3.4. Sensitivity analysis 

A sensitivity analysis was performed to study the impacts of pH and turbidity variation 

individually on target CT. To perform the sensitivity analysis, the posterior median target CT 

values were estimated while varying turbidity and holding pH fixed at 7.0, and while varying pH 

and fixing turbidity at 2 NTU. Three levels of target LRV were considered for both 

monochloramine and free chlorine (LRV=2, 3, 4). The results are presented in Figure 7-6. As is 

visually apparent, pH has a greater effect on mean CT than turbidity, given the conditioned values 

of each variable, for both Adenovirus and Coxsackievirus. As can be observed, the relationships 

between pH and CT, and turbidity and CT are clearly nonlinear, which is an important 

consideration during interpolation when using kinetic constants as in Chick-Watson’s model 

(Haas & Heller, 1989) or CT tables. The impact of pH on Adenovirus target CT was considerably 

greater than the impact of turbidity. For Adenovirus, at higher values of target LRV the effect of 

increasing pH intensified, whereas the effect of turbidity remained stable. For Coxsackievirus, 

the impact of turbidity was minor for LRV of 2, whereas for LRVs of 3 and 4 there was a steeper 

increase in the target CT values. For this same virus, the impact of pH showed a large increase on 

the target CT values for the three LRVs.  
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Figure 7-6: Sensitivity of target CT to turbidity and pH for LRV 2, 3 and 4. Sensitivity to, a) pH 

for Adenovirus and chloramination, b) turbidity for Adenovirus, c) pH for Coxsackievirus and 

chlorination and d) turbidity for Coxsackievirus.  

The combined effect of turbidity and pH on CT at LRV=3 for both the Coxsackievirus and 

Adenovirus models can be seen using a 3-D plot (Figure 7-7). For Adenovirus (Figure 7-7 a) the 

effect of pH on CT was clearly influenced by the turbidity value. At turbidity 20 NTU, there was 

a marked increase in CT from pH 7 to 9. By contrast, as the turbidity was reduced, the steepness 

of the surface declined. For Coxsackievirus (Figure 7-7 b) the pH effect on CT had a lesser impact 

at lower turbidity values. Three dimensional plots were also constructed by interpolating the target 

CT values at specific conditions of turbidity and pH defined by the experiments using simple 

interpolation techniques (i.e. linear or quadratic models). These results were used to compare the 

result obtained by the BMLP model with the actual data. The model usefully provided reasonable 

interpolations for the range of turbidity values at which no data were available (between 5 NTU 

and 20 NTU). In the present instance it was possible to illustrate the interrelationship graphically. 
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But where more parameters were incorporated a model would be necessary to efficiently identify 

optimum water quality conditions. 

 

Figure 7-7: Combined effect of pH and turbidity on a) Adenovirus target CT (for LRV 3 ) and b) 

Coxsackievirus target CT (for LRV 3). 

7.3.5. Impact of pH and turbidity on target CT and comparison to guidelines 

Similar to the approach used for CT tables, in the proposed model the target CT value can be 

obtained from water quality conditions (e.g. pH and temperature) and the target LRV. The 

influence of observed turbidity and pH on target CT given a fixed target LRV was analysed 

through two scenarios assuming best and worst pH and turbidity conditions for both disinfection 

models. The scenarios assessed were pH=7 and turbidity=2 NTU for best conditions, and pH=9 

and turbidity=20 NTU for worst conditions. Both scenarios were evaluated for a target LRV of 4. 

The difference between the optimum and worst operational conditions was approximately 10-fold 

for free chlorine and 5-fold for monochloramine (Figure 7-8).  

210



 

 

Figure 7-8: CT posterior probability distribution for optimum and worst conditions of pH and 

turbidity with a LRV of 3. Panels indicate Adenovirus under a) optimum (pH=7, turbidity=2), 

and b) worst (pH=9, turbidity=20) conditions, and Coxsackievirus under c) optimum (pH=7, 

turbidity=2), and d) worst (pH=9, turbidity=20) conditions. 

The target CT results for the defined levels of turbidity, pH and LRV adopted in the Victorian 

state recycled water guidelines (Keegan et al., 2012; VDoH, 2013) were compared to the results 

of the models as shown Table 7-2. In only five cases (one for Adenovirus and four for 

Coxsackievirus) was the recommended CT not inside the estimated 2.5th-97.5th percentile range 

in this study. Minor discrepancies between these estimates were expected as the input for the 

model estimation was the raw triplicate data instead of their mean values as in the case of CT 

table estimates. Determination coefficients between the table values and model median estimates 

were 0.98 for Adenovirus and 0.94 for Coxsackievirus indicating good agreement between the 

CTs obtained from the models and tables. Model estimates were considered more informative 

than CT tables due to their capability for interpolation and estimating uncertainty in the model 

outputs. 
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Table 7-2: Comparison between CT values from Victorian guidelines (VDoH, 2013) and this 

study for monochloramine and free chlorine disinfection. 

NTU pH LRV 

Monochloramine Free chlorine 

CT 

mg.min/L 

Table 

CT 

mg.min/L 

This study 

Mean (P2.5th,P97.5th) 

CT 

mg.min/L 

Table 

CT 

mg.min/L 

This study 

Mean (P2.5th,P97.5th) 

2 

7 

1 977 1091 (468,1742) 3 3.5 (0.3,6.5) 

2 1681 1609 (985,2262) 4 4.2 (1.1,7.4) 

3 2386 2010 (1153,2850) 5 4.4 (1.2,7.5) 

4 3090 2728 (2098,3350) 6 5.1 (2.1,8.2) 

8 

1 1494 1727 (1107,2363) 7 4.8 (1.7,7.9) 

2 2318 2466 (1853,3128) 10 7.5 (4.4,10.7) 

3 3141 3153 (2526,3785) 13 11.2 (8.1,14.3) 

4 3965 3903 (3291,4531) 16 14.4 (11.4,17.5) 

9 

1 3154 3360 (2721,4010) 10 8.1 (4.9,11.3) 

2 4393 4726 (4102,5385) 16 14.2 (11.2,17.5) 

3 5631 6048 (5422,6704) 21 21.2 (18.1,24.5) 

4 6870 7556 (6911,8226)* 27 26.2 (23,29.5) 

5 

7 

1 1201 1153 (530,1808) 3 2.9 (0,5.9) 

2 1914 1692 (1070,2343) 4 4.3 (1.2,7.4) 

3 2628 2232 (1621,2869) 5 5.8 (2.8,9) 

4 3341 2844 (2229,3485) 7 7.6 (4.6,10.7) 

8 

1 1596 1848 (1225,2493) 9 4.7 (1.6,7.8)* 

2 2541 2633 (2017,3286) 13 8.5 (5.3,11.6)* 

3 3486 3359 (2756,4019) 18 13.6 (10.5,16.6)* 

4 4431 4167 (3565,4816) 23 18.1 (15.1,21.2)* 
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NTU pH LRV 

Monochloramine Free chlorine 

CT 

mg.min/L 

Table 

CT 

mg.min/L 

This study 

Mean (P2.5th,P97.5th) 

CT 

mg.min/L 

Table 

CT 

mg.min/L 

This study 

Mean (P2.5th,P97.5th) 

9 

1 4400 4253 (3635,4902) 10 8.6 (5.4,11.8) 

2 5967 5889 (5284,6547) 16 16 (13,19.2) 

3 7535 7442 (6838,8112) 23 24.3 (21.1,27.6) 

4 9102 9127 (8452,9852) 29 30.2 (27.1,33.4) 

*CT from guidelines outside obtained interval 

7.4. Discussion 

7.4.1. Regression models versus multilayer perceptron 

The methodology employed on this study relied on neural networks to describe the nonlinear 

relationships between the input variables and LRV. The major advantage of neural networks is 

their capability to model those relationships without imposing any structure on the relationship 

between the interacting factors. Simpler models including multiple linear regressions with and 

without non-linear terms were also tested for their fit. However, preliminary results using 

conventional least squares for the regression and backpropagation for the multilayer perceptron 

indicated that the MLP fitted the data better with a higher determination coefficient (R2 regression: 

CB5=0.72, AD2=0.81; R2 MLP: CB5=0.98, AD2=0.98) and smaller root mean squared error 

(RMSE regression: CB5=5.2, AD2=990; RMSE MLP: CB5=2.1, AD2=446). Another alternative was 

the model developed by Smith et al. (1995). However, while the model provided adequate fit for 

the Coxsackievirus data (R2 Smith: 0.96, RMSE Smith: 2.1), the Adenovirus data were not very well 

fitted (R2 Smith: 0.82, RMSE Smith: 1007). The alternative models were checked by Bayesian 

inference and plots with the model fits are presented for comparison in Appendix 4.        

7.4.2. Developing models from experimental results 

Development of models to describe the relationship between LRVs and independent variables is 

central to probabilistic use of water quality monitoring data in the prediction of process 

performance e.g. for QA/QC and QMRA purposes. Building a model with the variables presented 
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in this study enabled the interpolation of experimental trial data and the capacity to investigate a 

broader range of disinfection scenarios for a continuous target variable compared to the fixed 

experimental conditions. The BMLP model enabled to obtain estimate probability distributions 

for both their input and output variables considering both uncertainty in the parameters and 

variability of the measurements. Further, the use of the Bayesian inference capabilities allowed 

backwards (e.g. prediction of pH, turbidity provided CT and LRV are observed) as well as 

forward reasoning (e.g. prediction of CT provided pH, turbidity and/or LRV are observed) to be 

performed. The BMLP model used in this study permitted defensible interpolation of CT, 

turbidity, pH and LRV values, while treating all variables as continuous. Moreover, it provided 

tools for predicting the variability of target CTs during chlor(am)ination. The Bayesian aspect of 

the model allowed querying target variables including CT, pH or turbidity given a set of observed 

evidence. In the scenarios presented in this study, the prior distributions for the query variables 

were uniform reflecting full uncertainty in their estimates. As the choice of prior affects the results 

of the posterior distributions, the particular measured water quality probability density functions 

for pH and turbidity during chlorination should be included as priors. Incorporating these priors 

would allow obtaining a posterior distribution specific to the analysed process.  

While a number of data mining tools for process monitoring during wastewater treatment have 

been reported (Toifl et al., 2010; Dürrenmatt & Gujer, 2012; Haimi et al., 2013), the use of BNs 

in this area is currently limited. However, the potential application of this BN based learning 

offers a number of important advantages, which conventional statistical tools do not. Another 

possible BN application involves development of predictors of pathogen removal by wastewater 

treatment processes (Carvajal et al., 2015).  

The relationship between LRVs and CTs is usually defined for fixed water quality conditions 

especially temperature, pH and turbidity. Disinfection models for the analysis of these data 

commonly use kinetic constants and parameters which are defined separately for each condition 

(Haas, 2004). Previously, multivariate regression models have been generated to perform 

interpolation for potable water chlorination (Clark et al., 1989; Smith et al., 1995). However, this 

approach has been limited to predicting a single LRV corresponding to a single CT, which must 

then be linearly extrapolated to an LRV corresponding to an observed CT. The approach does not 

usually include uncertainty in the model parameters. Haas (2004) highlighted the uncertainties 

introduced by interpolation and investigated the use of neural networks to predict inactivation of 

Giardia lamblia by free chlorine in drinking water. Neural networks have also been developed to 

predict the inactivation of Cryptosporidium parvum using ozone and chlorine dioxide (Janes & 

Musilek, 2007b) as well as bacteria using free chlorine and chloramine (Janes & Musilek, 2007a). 

These models were all designed for the purpose of predicting microbial inactivation considering 
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variation in pH, temperature, residual concentration and contact time. Assessment of uncertainty 

and variability in the model prediction was not assessed on these studies. 

7.4.3. Need for stochastic prediction 

The modelling illustrated here offers a way for maintaining the traditional use of CTs in managing 

disinfection while making the outputs more probabilistic in line with the movement toward more 

quantitative methodology (e.g. US-EPA and USDA/FSIS (2012)). Conventional Monte Carlo 

style probabilistic models are one possible approach. However, Bayesian inference for model 

definition outperforms conventional Monte Carlo simulation in terms of naturally defining 

uncertainty in the model parameters, allowing interaction between data and parameters and 

producing estimates from backwards inference (Smid et al., 2010). The alternative analysed in 

this study exploits the power of Bayesian inference and neural networks without sacrificing the 

benefits of continuous distribution. BMLP models can efficiently represent large amounts of 

information, such as might be collected in a water quality monitoring database table, in a compact 

and efficient manner. Though the model structure is strictly “acyclic” the flow of information in 

BMLP models is not limited to the direction of the arcs (Korb & Nicholson, 2011).  

Current guidelines for chlorine disinfection promote a conservative estimation of LRVs reflecting 

peak flowrates, minimum operating volumes and free chlorine residual concentration at peak 

flows at the effluent of the reactor. At the same time, the tables which are central to predicting 

target CTs cannot easily incorporate interpolation or the uncertainty associated with CT and LRV 

point estimates. Similarly, tabulated CT values provide a conservative estimate for the required 

removal by rounding or using a point estimate from the confidence interval for CT after fitting a 

model (Clark & Regli, 1993; Sivaganesan & Rice, 2003). In combination, these effects lead to a 

highly conservative calculation for the achieved LRVs. This conservative dosage of disinfectant 

may lead to excessive amounts of by-products formation. 

Treating CT and LRV estimates as probability density functions has a number of advantages. It 

provides an effective means for evaluating quantifying inherent reliability of disinfection 

processes while explicitly acknowledging the variability and uncertainty of the process data and 

models and the vulnerability of systems operating outside specifications. In this manner, the 

probability that a treatment target has or has not been achieved can be estimated closer to reality 

and the assumptions and uncertainties underlying these estimates become clear. That said, the 

models developed in this study still reflect the limits of the available data and there were two 

important constraints which need recognition. Firstly, other well documented influences on 

chemical disinfection were not included such as temperature. Secondly, the input data are 
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necessarily restricted in the validation experiment ranges they cover. Although temperature was 

not analysed, the CT measurements were undertaken at a low (conservative) temperature. The 

model used in this study was constructed from experimental data considering specific ranges for 

the input and output variables. Therefore, the data define an envelope in which the model is known 

to behave correctly. Using the model outside this envelope does not necessarily mean that the 

estimates will be incorrect, but that they are not possible to be verified. Extending these ranges 

would also extend the envelope for the model to reliably predict. Incorporating new data records 

or variables would be a simple task by using the existing algorithms for BMLP model construction 

used in this study. 

Experimental bench-scale batch reactor analysis to obtain CT values has been the common way 

of defining the chlorination requirements as this is equivalent to an ideal plug flow reactor. The 

reasons are of practical implication, especially the lower cost compared to full-scale experiments. 

Bench-scale reactor experiments have proven to be more reliable and more controllable than full-

scale settings (Gyürék & Finch, 1998). Due to the specific hydraulic characteristics of the full-

scale reactors, obtaining data would be very specific for that particular configuration, making it 

difficult to generalise their results. The non-ideal reactor flow conditions are usually considered 

by assuming the contact time as the T10 or the time it takes for 10 % of the water pass through the 

reactor. 

A related additional benefit of the BMLP modelling was that the probabilistic form of the input 

and predicted CT values captures the uncertainty more effectively than conventional algorithm 

based models. Even when a conventional model has been fitted to a widely accepted algorithm 

format such as Chick-Watson (LeChevallier & Au, 2004), the kinetic parameters incorporate a 

level of uncertainty and/or confidence intervals. Reflecting this uncertainty, a minimum target CT 

and accompanying safety factor, instead of a single point estimate, has been recommended by 

Sivaganesan et al. (2003). The approach to modelling presented here eliminates the need for such 

conservatism and provides a method for making implementation of this recommendation routine.  

The proposed approach does not attempt to change the methodology currently employed in 

regulations and guidelines. This study seeks to solve the issues of interpolation and incorporation 

of probabilistic estimation during chlorine disinfection. Interpolation of water quality 

characteristics is useful when log credits change over time because of changing operational 

conditions. In this case, there is no need for worst case scenario assumptions when the CT values 

are obtained from the tables at conditions not previously tested. Moreover, a continuous 

estimation of the process performance can be obtained with the BMLP model. Stochastic 

estimates permit the calculation of exceedance probabilities instead of compliance/not 
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compliance cases. All models have a degree or error; in this case it is observed that the model 

does not match the estimates from the tables published by DOH (2013) in some instances 

(turbidity 5 NTU and pH 8). A simple model was fitted with the data for the latter conditions at 

which the models presented discrepancies. The model was found to fit the data closely with a 

determination coefficient of 0.97. Using this model to find the CT values at specific LRVs, it was 

observed that the BMLP model produced the same or very similar values. It is possible that these 

differences are due to very conservative assumptions used during the CT table construction.  

7.5. Conclusions 

The influence of water quality parameters including pH and turbidity in treated wastewater for 

recycling must be quantified and considered in CT calculations to ensure efficient disinfection of 

target pathogens. This study has demonstrated that BN models can be used to jointly model the 

effect of three variables (target LRV, pH and turbidity) during chlor(am)ination on the target CT 

value estimation. 

Key outcomes from this study included: 

• The combined/overall model provided a tool for obtaining LRV distributions for multiple 

scenarios and estimating CTs for target LRV given certain or uncertain pH and turbidity.  

• The sensitivity analyses showed that pH had higher impact on LRV than turbidity within 

the ranges covered by the CT experiments.  

• The use of the Bayesian multilayer perceptron model permitted interpolation between the 

defined levels of pH and turbidity avoiding the use of manual interpolation and 

conservative assumptions. 

Incorporating the uncertainty in the model parameters plus the variability of the operational 

process parameters in this way resulted in a more realistic characterisation of chlor(am)ination 

disinfection process. 

Further improvements to the conceptual model could incorporate the effect of other water matrix 

characteristics including temperature, dissolved organic matter and ionic strength. Conventional 

tools for communicating and representing this information and data rely primarily on tables which 

do not incorporate probabilities, or achieve full graphical representation and parameter interaction 

and analyse multiple scenarios and queries. By contrast BNs address this and offer further 

advantages in knowledge representation including explicit association between the variables and 

probabilistic outcomes. 
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Chapter 8: Assessing reliability by using Fault tree 

analysis and Bayesian networks during UV 

disinfection 
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8.1 Introduction 

Reliability for water reuse treatment systems must be quantitatively understood to ensure that an 

appropriate level is achieved to match the consequences of failure. Quantitative reliability 

assessment requires appropriate tools such as Bayesian networks (BNs) to undertake structured 

evaluation of failure modes and likelihoods. However, few studies have explored this subject with 

regard to water treatment processes, revealing the need for further investigation.  

The aim of this case study was to evaluate the use of BNs for analysing the reliability of a UV 

reactor treatment for water reuse. UV systems are commonly found during tertiary treatment and 

represent an important barrier for pathogens and trace chemicals when used for advanced 

oxidation. Models were constructed based on information found in published literature and by 

communication with practitioners. The analysis included the model construction, reliability 

estimation and factors influencing the reliability of the system. 

Fault tree analysis (FTA) was used to define the causal structure of the BN model. Fault tree 

analysis was previously outlined in Section 2.5.3. In a FTA causal factors are deductively 

identified and organised in a logical manner using a tree diagram (IEC/ISO, 2009). Logical gates 

are used to represent the relationships between the causal factors and the top event. Mapping FTA 

into BNs has previously been applied in several studies (Bobbio et al., 2001; Montani et al., 2005; 

Khakzad et al., 2011) as described in Chapter 2. However, these applications were not related to 

water treatment systems. 

UV systems comprise components that can be repaired. In this case, to analyse the reliability of 

the UV system, repair has to be considered. In repairable systems, availability is used instead of 

reliability. Availability is defined as the fraction of time a component or system is able to perform 

its required function (O'Connor & Kleyner, 2012). Long term availability is computed by 

considering the mean time between failures (MTBF) and mean time to repair (MTTR). In this 

study, the probability that sensors were in a failed condition was estimated using unavailability 

(i.e. the complement of availability). 

Due to data limitations constraints, this study focused on a theoretical analysis. Even though the 

study was conceptual, the focus in this chapter was to demonstrate the usefulness of BNs for water 

reuse reliability analysis. Therefore, it is important to consider that there were a number of 

occasions where illustrative data are used. 
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8.2 Materials and methods 

8.2.1 Bayesian network, software and evaluation 

Bayesian networks were used in this study because the interactions between the various 

components in the UV system need to be evaluated. BNs permit explicit representation and 

assessment of probabilistic associations between variables. BNs methodology was introduced in 

Section 3.1. 

Models were constructed and evaluated in Bayes Server 7.18 (Bayes Server, 2017). This software 

package has the special feature of permitting various types of analyses (see Section 3.1.5 for 

explanation). The model was evaluated using the mutual information, lift, difference and 

sensitivity to parameters described in Sections 3.1.4.5 and 3.1.4.6 (Kjræulff & Madsen, 2012). 

Evidence was entered on different nodes to assess their impact to the target variable. These 

analyses were undertaken using the methodology previously explained in Section 3.1.4.  

8.2.2 System explanation and model construction 

This study was undertaken based on the assessment of a theoretical UV system for the purpose of 

investigating a conceptual reliability analysis. The configuration of the theoretical UV system 

was based on a real system (operating at Glenelg water reuse plant in South Australia), but with 

some minor modifications. In the real system, six trains are used, whereas in the analysed model, 

only two trains were considered. The theoretical system was assumed to consist of two trains with 

two reactors per train and forty lamps per reactor. Each reactor has a UV intensity (UVI) sensor, 

while each train has a flowrate sensor. UV transmissivity (UVT) is measured before the water 

enters the process. The sensors influence the control of parameters including flowrate and UVI, 

except for UVT which depends on the performance of upstream processes. As observed in Figure 

8-3 and Figure 8-4, the sensors affect the reliability of the system (system dose) through a low 

UVI, low UVT or high flowrate. Included model variables and their descriptions are presented in 

Table 8-1. All variables have been selected to correspond to one of two states, Yes or No. 
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Table 8-1: Description and states of variables in the model 

Variable Description 

Low dose not detected? A low UV system dose has not been detected.  

Train low dose not detected? A low UV train dose has not been detected. 

Reactor low dose not detected? A low UV reactor dose has not been detected. 

Low UVI not detected? Low UVI was not detected causing a hazardous event. 

UVI sensor giving too high values? UVI sensor fails giving higher values than reality. 

Too high flowrate not detected? High flowrate is not detected by the monitoring system 

causing a hazardous event. 

Flowrate sensor fails giving too low 

values? 

The flowrate sensor fails giving lower values than 

reality. 

Low UVT upstream affecting dose? Low UVT is not detected and affected UV dose 

producing a hazardous event. 

Low UVT Low UVT from upstream processes. 

UVT sensor giving too high values? UVT sensor fails giving higher values than expected. 

 

A flowchart diagram was constructed to explain the steps of model development (Figure 8-1). As 

observed, model construction was an iterative process at which each step was checked before 

continuing to the next. The first step (“Define model objective”) consisted of defining the purpose 

or aim of the model. In this case the objective was not detecting a low UV dose. The second step 

consisted of defining the structure of the model. In this case the structure was based on a FTA 

approach using expert elicited information and technical literature as explained in Section 8.2.4. 

The third step was used to define the parameters of the model from expert elicited data (Section 

8.3.2). The fourth step consisted of evaluating the model through sensitivity and scenario analysis 

as explained in Sections 0 to 8.3.5. Finally, the model was checked to decide whether it was 

accepted or not. If the model was not accepted, modifications to the parameters or structure would 

need to be made. It is important to note that by incorporating changes to the structure, 

modification of model parameters would be necessary.  
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Figure 8-1: Flowchart diagram for BN model development 

8.2.3 Available data and estimation of parameters 

Reliability data for advanced water treatment processes are scarce with only a few reports 

gathering information regarding failure and repair rates from full-scale systems (Forss & Ander, 

2011; Tng et al., 2015). The datasets from these reports contain data in the form of failure rates 
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and repair times for a number of components on advanced water treatment systems. However, the 

available identified data for UV systems were not sufficiently detailed to generate a model to 

analyse reliability. To develop a reliability model, the required information should include data 

about subcomponents, such as sensors and lamps. To address this limitation, one possible 

appropriate approach is to collect these data through an expert knowledge elicitation process 

(Lindhe et al., 2009; Lindhe et al., 2012). The consulted expert in this study is the Product and 

Application Manager for UV & Ozone of one of the leading water technology companies 

worldwide (Xylem Water Solutions Australia). He possesses more than eleven years of 

experience on UV system design and validation for water treatment. The elicitation approach 

consisted of asking the qualified expert to provide his “best guess” regarding specific parameters, 

in this case, both failure rates and repair times. A common approach for eliciting values consists 

of requesting the expert(s) to specify two or three values, commonly the 5th percentile, median 

and 95th percentile (Lindhe et al., 2009; Lindhe et al., 2012; Morris et al., 2014). Then, these 

values are used to fit a probability distribution through a maximisation method. In this study, 5th 

percentile, median and 95th percentiles were requested from the expert. The expert thus had the 

freedom between providing two or three values. To keep the model simulation simple, a point 

estimate (mean) of the fitted distribution was used.  

Availability (Equation 8-1) was used to compute the probability of having a component working 

in the system. 

𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
=

𝜇

𝜇+𝜆
             Equation 8-1 

𝜇 =
1

𝑀𝑇𝑇𝑅
 Equation 8-2 

𝜆 =
1

𝑀𝑇𝐵𝐹
 Equation 8-3 

Where A is the availability,  is the repair rate,  is the failure rate. In these equations the rates 

are considered constant (exponential failure and repair times). Unavailability (�̅�) is defined as 1-

availability (1-A).  

An OR gate in a FTA (Figure 8-2 a) is used to represent an event which occurs if and only if at 

least one the n basic events (E1,…, En) occurs. For the case of system unavailability this can be 

represented by Equation 8-4: 
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�̅� = 1 − ∏(1 −  𝐴�̅�) = Pr(𝐸1𝑈 … 𝑈𝐸𝑛)

𝑛

𝑖=1

 

= 1 − ∏(1 −  Pr (𝐸𝑖))

𝑛

𝑖=1

 

Equation 8-4 

An AND gate (Figure 8-2 b) is used to represent an event which occurs if and only if the n 

events (E1,…,En) occur simultaneously. The system unavailability in this case is represented by 

Equation 8-5: 

�̅� = ∏ 𝐴�̅� = Pr(𝐸1 ∩ … ∩ 𝐸𝑛) = ∏ Pr (𝐸𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 Equation 8-5 

 

Figure 8-2: Representation of gates of FTA used in this study. a) OR gate, b) AND gate. 

8.2.4 Fault tree analysis representation 

The UV reliability model was constructed based on technical guidance for the operation and 

assessment of UV disinfection systems (USEPA, 2006) and expert elicitation with a UV 

disinfection expert (as described above). In this analysis, a hazardous event was defined to occur 

when any of the sensors related to the dose calculation indicate better performance than reality, 

so both the system and operator would be unable to detect an underperformance. The aim of this 

model was to assess the likelihood of obtaining a non-detected low system dose. The model 

assumed that providing that the sensors work properly, events impacting the dose, such as fouling 

of the lamp sleeves, ageing and failure of lamps can be diagnosed and corrected by the operator 

in a timely manner. In the case of UVT falling below the threshold value, the corrective action 
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after the sensor captures the event, is to cease water production. At the plant used as the basis for 

this model, if UVT falls to below 50% for more than 30 min, an automatic plant shutdown is 

triggered (GPA Engineering, SA Water, AllWater, 2011).  

Fault tree analysis (Figure 8-3) was used to generate the base model for the BN reliability model. 

FTA provides the causal structure and the type of associations between the variables through the 

logic gates. In this case, two types of gates including OR and AND gates (see Section 8.2.3) were 

used. The FTA model aids in targeting specific causal factors for a particular undesired event. 

Considering the objective of the model, the top event in the FTA (Figure 8-3) was defined as [Low 

system dose not detected?]. This event occurs when both trains have low dose (event: [Train low 

dose not detected?]). Train low dose is produced if any of the reactors presents a low dose ([Low 

reactor dose not detected?]). A low reactor dose occurs if the flowrate is too high ([Too high 

flowrate not detected?]), if the UV intensity is too low ([Low UVI not detected?]) or if there is 

low UVT ([Low UVT affecting dose?]). Low UVI takes place if the [UVI meter fails giving too 

high values] (Figure 8-4). Flowrate is too high if the [flowrate sensor fails giving too low values] 

(Figure 8-4). Low UVT causes issues to the trains UV dose when there is a [low UVT] and the 

[UVT sensor fails giving too high values]. As observed in Figure 8-3 there are common cause 

events in the system (represented by the same colour). These events in the FTA are repeated on 

various parts of the model. The FTA model in Figure 8-3 was encoded into a BN (Figure 8-4).   
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8.3 Results and discussion 

8.3.1 Bayesian network model 

The BN derived in this study was represented as a directed acyclic graph (DAG) (Figure 8-4), 

which shows the causal relationships between the different variables in the system. As observed, 

the target variable is [Low system dose not detected?]. However, any variable in the model can be 

assessed. Each variable in the model had states Yes and No. The BN model is presented in Figure 

8-5. 

 

Figure 8-4: DAG for UV system reliability assessment 
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8.3.2 Elicited values as parameters distributions 

The elicited values for the time between failures (Table 8-2) were fitted to Gamma distributions 

(Table 8-3). Gamma distributions were selected because of their flexibility and because they can 

only take positive values. Furthermore, Gamma distribution can be used as a conjugate prior to 

the exponential distribution (Gelman et al., 2014). Once real data (number of failures and the 

specific time period) are collected, they can be used to update the prior Gamma distribution. 

Repair times were considered constant and equal to 24 hours when maintenance logistics are 

optimum. Repair times are often heavily dependent on the logistics of the company. Therefore, a 

worst case-scenario was considered in which maintenance delays affected the repair times. Repair 

times under delayed conditions were obtained by expert elicitation (Table 8-3). The BN model 

can incorporate this information and assess its impact over the target variable. A variable with 

name [Maintenance] and two states (optimum and delayed) was included in the model as a parent 

variable of [UVI meter fails giving too high values],  [flowrate sensor fails giving too low values] 

and [UVT sensor fails giving too high values] to capture its impact. The failure rates () were 

estimated as the inverse of the mean time between failures (1/MTBF) (Table 8-4). In the same 

manner, the repair rates were calculated as the inverse of the constant repair time (1/MTTR). For 

[Low UVT], the threshold was defined as 50% (GPA Engineering, SA Water, AllWater, 2011). 

UVT was assumed to be 99.9% of the time above the threshold considering a consistent 

performance of filtration before UV disinfection. This value was based on real UVT data from a 

water reuse scheme in Alice Springs using sand media filtration (Figure 8-6). These unpublished 

data were provided by the expert consulted in this study. It is important to note that capturing out 

of specification circumstances is rare in well operated systems like the one producing these data. 

Because the objective is studying reliability, the interest is in potentially very rare occurrences 

which are unlikely to have been captured in a normal data acquisition or process monitoring 

period. Using long term data can assist in capturing events affecting the reliability of the system. 
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Figure 8-6: Smoothed histogram for the influent UVT 

Table 8-2: Raw elicited values for sensors failure times (from expert elicitation) 

Component Elicited 50th percentile Elicited 95th percentile 

UV intensity sensor 2 years 3 years 

Flowrate sensor 4 years 6 years 

UVT sensor 2 years 5 years 

 

Table 8-3: Failure times and repair times for the components in the UV system 

Component Elicited Failure time Repair time 

optimum 

Repair time 

delayed 

UV intensity sensor Gamma(14.6,7.13) years 24 hours 60 days 

Flowrate sensor Gamma(14.6,3.56) years 24 hours 15 days 

UVT sensor Gamma(2.60,1.14) years 24 hours 30 days 
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Table 8-4: Mean failure rates, repair rates used in the BN 

Component Failure rate  Repair rate 

optimum  

Repair rate 

delayed  

UV intensity sensor 6E-05 hour-1 4 E-02 hour-1 7E-04 hour-1 

Flowrate sensor 3E-05 hour-1 4E-02 hour-1 3E-03 hour-1 

UVT sensor 5E-05 hour-1 4E-02 hour-1 1E-02 hour-1 

 

Two types of impacts to [Reactor low dose not detected?] were tested including an OR gate and 

the noisy-OR gate. A noisy-OR gate in BNs makes the assumption of independence between the 

causal factors to decrease the number of parameters required to define the conditional probability 

table. For this target event, any of the three causal factors can result in the reactor producing a 

low dose. Therefore, a noisy-OR gate would be adequate in this case. The effect of each causal 

variable over the event has to be determined individually with one probability. The noisy-OR 

assumption relaxes the assumption taken by the OR gate. Therefore, the occurrence of an event 

does not necessarily provoke the target event to occur with 100% probability. The required 

parameters for the noisy-OR gate are presented in Table 8-5. These parameters were assumed and 

not based on real data due to data limitations constraints. Noisy-OR can also incorporate an 

inhibition factor, which can be understood in this case, as the probability of having an out-of-

specification dose given that none of the causal factors are present. In this case, the leak was as 

assumed to be zero.  

The BN model using OR gates indicated that the probability of having a [Low system dose not 

detected=yes] was 1E-05 (0.001%), while the probability for this same outcome obtained for the 

model using noisy-OR gates was 9E-06 (0.0009%). These results indicate a very reliable system 

with a yearly failure time of around 5 to 6 minutes. 
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Table 8-5: Parameters used in the noisy-OR gate for the event [Reactor low dose not detected?] 

Conditional probability Value 

P(Reactor low dose not detected? =yes|Too high flowrate not detected=yes) 0.5 

P(Reactor low dose not detected? =yes|Low UVI not detected=yes) 0.9 

P(Reactor low dose not detected? =yes|Low UVT upstream affecting 

dose=yes) 

0.8 

 

8.3.3 Sensitivity to evidence 

Mutual information and relative mutual information were used to evaluate the sensitivity of the 

node [Reactor low dose not detected?] to the other model variables. Higher values of mutual 

information and relative mutual information indicate higher reduction of uncertainty. The results 

for the model using OR gates and noisy-OR gates are presented in Table 8-6. As observed, the 

sensitivity results were similar for both types of models. From the three sensors considered in this 

model, the UVI sensor had the highest impact on the system UV dose with relative mutual 

information of 14% (14% for the noisy-OR model). The other two sensors produced relative 

mutual information of 7% (5% for the noisy-OR model) for the flowrate sensor and 3% (3% for 

the noisy-OR model) for the UVT sensor. Sensitivity to evidence is a function of both the 

parameters and structure of the model. Even though there are two UVI sensors per train (one for 

each reactor), their relative mutual information was double the one obtained for the flowrate 

sensors. Because any of the two reactors failing can cause the train to fail, they do not provide 

real redundancy to the system. The impact shown by the UVT sensor can be explained by the fact 

that its impact largely depends on the probability of having low UVT. Modifying the probability 

of [Low UVT?=no] from 0.001 to 0.01 produced an increase in the relative mutual information of 

[UVT sensor giving too high values?] of 24%. This sensitivity is relevant to consider because 

UVT is not a controlled parameter and depends on the performance of upstream processes. 

Therefore, the UVT sensor reliability becomes more important as the performance of the previous 

processes is reduced.  
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Table 8-6: Mutual information (MI) and relative mutual information (RMI) for model using OR 

and noisy-OR gates 

 OR gate Noisy-OR gate 

Variable MIa RMIb MI RMI 

Train low dose not detected? 7.0E-05 46% 5.6E-05 47% 

Reactor low dose not detected? 4.1E-05 27% 2.8E-05 24% 

Low UVI not detected? 2.1E-05 14% 1.7E-05 14% 

UVI sensor giving too high values? 2.1E-05 14% 1.7E-05 14% 

Low UVI not detected? 2.1E-05 14% 1.7E-05 14% 

Low UVT upstream affecting dose? 1.4E-05 9% 1.3E-05 10% 

Too high flowrate not detected? 1.0E-05 7% 6.6E-06 5% 

Flowrate sensor giving too low values? 1.0E-05 7% 6.6E-06 5% 

Low UVT? 4.4E-06 3% 4.3E-06 4% 

UVT sensor giving too high values? 4.2E-06 3% 4.1E-06 3% 

a: Mutual information 

b: Relative mutual information 

Under delayed maintenance conditions, the probability of having [Low system dose not 

detected=yes] increased to 0.023 (2.3%) using the OR gate model. The mutual information under 

delayed maintenance increased for all nodes except for [UVT sensor giving too high values?] 

compared to the optimum maintenance conditions (Table 8-7). Despite the higher mutual 

information for the delayed conditions, the relative mutual information reduced for [Flowrate 

sensor giving too low values?] and [UVT sensor giving too high values?]. This result implies that 

although the variables provide information about the target event, this amount of information is 

low compared to the uncertainty of the target variable.  
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Table 8-7: Mutual information (MI) and relative mutual information (RMI) when considering 

optimum maintenance and delayed maintenance 

 Optimum Delayed 

Variable MIa RMIb Variable MIa 

Train low dose not detected? 7.0E-05 46% 4.5E-02 41% 

Reactor low dose not detected? 4.1E-05 27% 1.7E-02 16% 

Low UVI not detected? 2.1E-05 14% 1.5E-02 14% 

UVI sensor giving too high values? 2.1E-05 14% 1.5E-02 14% 

Low UVI not detected? 2.1E-05 14% 1.5E-02 14% 

Low UVT upstream affecting dose? 1.4E-05 9% 1.3E-04 0% 

Too high flowrate not detected? 1.0E-05 7% 1.7E-03 2% 

Flowrate sensor giving too low values? 1.0E-05 7% 1.7E-03 2% 

Low UVT? 4.4E-06 3% 1.8E-05 0% 

UVT sensor giving too high values? 4.2E-06 3% 7.0E-07 0% 

a: Mutual information 

b: Relative mutual information 

8.3.4 Sensitivity to parameters 

Sensitivity to parameters was used to test the influence of individual (one-way sensitivity 

analysis) and pairs of variables parameters (two-way sensitivity analysis) over the target variable 

[Low system dose not detected?]. The results can be presented as a curve for the case of individual 

variables or as a surface for the case of a pair of variables. The results for individual parameters 

for the sensors and [Low UVT] (Figure 8-7) on one train indicated that the target variable ([Low 

system dose not detected?]) was slightly impacted by the change in parameters of the tested 

variables. Increasing the marginal probabilities for the state Yes for the tested variables had a 

positive increase in the probability of having a [Low system dose not detected=yes]. The largest 

influence was observed for the [UVI sensor giving too high values] and [flowrate sensor giving 

too low values] (Figure 8-7) with a maximum value of 0.0035 approximately (0.35%). [Low UVT] 

and [UVT sensor giving too high values?] presented the lowest influence over the target variable.  
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Sensors failing individually in one train had little influence on the reliability of the whole system. 

An explanation of this behaviour is that the system provides redundancy by requiring the two 

trains to fail for the system to fail. Therefore, having only one train failing because of failure in 

flowrate or UVI sensor does not cause a system failure. Similarly, low UVT and UVT sensor 

failure must occur simultaneously to generate a low dose in the system.   

 

Figure 8-7: Sensitivity of Low system dose not detected? to parameters for sensors and Low UVT. 

No evidence was incorporated. 

Two pairs of variable parameters were analysed for their influence on the target variable ([Low 

system dose not detected=yes]). The two pairs of parameters included [UVT low=yes] and [UVT 

giving too high values=yes], and [flowrate sensor T1 giving too low values=yes] and [flowrate 

sensor T2 giving too low values=yes] (Figure 8-8). The results reveal that any particular variable 

by its own does not generate a high impact on the target variable. However, a simultaneous change 

on the parameters of both variables produces a substantial impact on the probability of the target 

variable. Similar behaviour was observed for both pairs of variables. This latter outcome is 

important to consider, for example when using the same types of sensors on each train sharing 

common manufacturing or installation defects or limitations.  
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Figure 8-8: Sensitivity of Low system dose not detected? to pair of parameters a) UVT low and 

UVT sensor giving too high values and b) Flow sensors T1 and T2 giving too low values. No 

evidence was incorporated. 

8.3.5 Evaluating scenarios 

The BN model was used to generate and evaluate scenarios. An interesting scenario consists of a 

[Low UV system dose not detected=yes] and a [Low UVT upstream affecting dose=no] under 

optimum conditions of maintenance (assuming there is prior probability of having optimum or 

delayed maintenance of 0.5 for each one). According to the model, given the evidence, the 

probability of this scenario is 6E-06 (0.006%) for the model with OR gates and 8E-06 (0.0008%) 

for the model with noisy-OR gates. The probabilities indicate that this is a very unlikely scenario. 

The posterior probabilities, lift and difference for the query variables in the previous scenario are 

presented in Table 8-8 for the model using the OR gate.  As observed, the outcomes indicate that 

the probability of the state=yes had an increase between 10.6 and 12.9 approximately. Bayes 

factor (or ratio of the lift between two query variables) for [Flowrate sensor giving too low 

values?] and [UVI sensor giving too high values?] was 3.6 (i.e. 37.8/10.6), suggesting that the 

observations provide more support for [Flowrate sensor giving too low values?] as the most likely 

cause.     
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Table 8-8: Probability, lift and difference of nodes given evidence [Low system UV dose not 

detected=yes] and [Low UVT upstream affecting dose=no] 

Variable 
Probability  

(state=yes) 

Lift  

(state=yes) 

Difference  

(state=yes) 

Low system UV dose not detected? 1 86.8 9.8E-01 

Low UVT upstream affecting dose? 0 0 -1.8E-05 

UVT sensor giving too high values? 0.0012 0.067 -1.7E-02 

Low UVT? 0.001 0.999 -1.2E-06 

Train low dose not detected? 1 12.9 9.2E-01 

Reactor low dose not detected? 0.6 12.9 5.6E-01 

UVI sensor giving too high values? 0.4 10.6 3.6E-01 

Low UVI not detected? 0.4 10.6 3.6E-01 

Flowrate sensor giving too low values? 0.2 37.8 1.9E-01 

Too high flowrate not detected? 0.2 37.8 1.9E-01 

 

The number of UV trains in parallel defines the level of reliability by providing redundancy to 

the system. By increasing the number of parallel trains, the probability of [Low UV dose not 

detected] decreased as depicted in Figure 8-9. The results revealed that three or more trains 

provided equivalent reliability values for the system, without a significant improvement when 

incorporating 4 or more trains. These outcomes can assist in designing optimum systems to 

balance reliability with cost from over-engineering. 
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Figure 8-9: Probability of low UV dose not detected=yes vs the number of trains 

A limitation of this scheme is that formal validation for this model would require long term failure 

data to test the accuracy of the model predictions. In fact, any meaningful failure statistics would 

require data collected from several plants. Due to the limited real data available for this system, 

the sensitivity and scenario analyses were deemed as partial validation procedures for testing the 

correct behaviour of the model. The model presented in this chapter can be used as a base to 

evaluate the reliability of similar UV systems. Collection of site-specific data would be required 

to update the parameters of the network. 

A more sophisticated method could incorporate the whole probability distribution and simulate 

the results many times through Monte Carlo simulation. This methodology would require 

programming, for example such as which could be undertaken through the Application 

Programming Interface (API) available for Bayes Server 7.18 (Bayes Server, 2017).  

8.4 Conclusions 

Bayesian networks were used to model the event of having an undetected Low UV system dose. 

The model was based on a fault tree analysis and then mapped into a BN. The model structure 

was based on literature and the parameters obtained by expert elicitation. The BN targeted UVI, 

UVT and flowrate sensors as the crucial components of the UV system, determining the reliability 

of the system by informing the system or operators about malfunctions. From this illustrative 

analysis, the modelled system reliability was high with approximately 5-6 min of 
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undetected low dose per year. From the sensitivity analysis, UVI sensor reliabilities were the 

identified as the most important variables, followed by flowrate sensor reliabilities and UVT 

sensor reliability and UVT variability. When using two trains, special account should be taken 

for failures occurring to sensors close in time on both trains as a consequence of common 

manufacturing or installation defects or limitations. Three trains in parallel were found to provide 

effectively equivalent reliability to four or more trains in parallel. Such insight provides valuable 

information for system design optimisation. BNs facilitated scenario analysis and the assessment 

of potential system variations to improve reliability. Through the use of noisy-OR gates it was 

possible to relax the assumptions of the OR logic gate used in FTA, potentially incorporating 

more realistic representation of system behaviour. 
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Chapter 9:  Improving the quantification multi-

barrier system Log Reduction Values using 

Bayesian networks
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9.1 Introduction 

Advanced water treatment plants, used to control water quality risks in water reuse systems, are 

composed of multiple treatment barriers. Each of these treatment barriers can be regarded as 

having a distinct level of performance in terms of the contribution it makes to chemical or 

pathogen removal or inactivation. Meaningful estimation of the magnitude and variability of 

pathogen removal efficiencies is required to assess exposure of these hazards to people, by for 

example quantitative microbial risk assessment (QMRA).  

Some authors have dealt with QMRA calculations through the use of Monte Carlo simulations 

(Chaudhry et al., 2017; Pecson et al., 2017; Soller et al., 2017) or Bayesian networks (BNs) 

(Beaudequin et al., 2015b). When applied effectively, the main advantages of BNs over Monte 

Carlo simulations are the interactive graphical representations and inference capabilities (Smid et 

al., 2010). However, previous researchers have shown that the resolution achieved by BNs may 

not be sufficiently high to represent full probability density functions, resulting in a loss of 

information (Beaudequin et al., 2015a; Beaudequin et al., 2017). High resolution is particularly 

relevant when very low concentrations and PDF tail probabilities are required to be calculated. 

However, these problems can potentially be solved through the use of non-parametric 

continuous/discrete BNs (Cooke et al., 2007).    

The main aim of this study was to stochastically model a multiple barrier advanced water 

treatment system for the reduction (i.e. LRV) of three common index pathogens (i.e. Norovirus, 

Salmonella spp., and Cryptosporidium spp) using non-parametric BNs. The model incorporated 

the reduction performances and the change of the microbial concentrations across the system. 

Dose-response and ingested volumes were not included in the model for simplicity. Consequently, 

the model provides a probabilistic assessment of LRV performance variability across the multiple 

barrier system, which may then serve and an input to QMRA calculations. The BN model was 

constructed based on previously published LRV performance data (Chaudhry et al., 2017). A 

number of scenarios were tested to evaluate the impact of common factors affecting all the barriers 

simultaneously. This common factor could simulate the effect of high level organisational aspects 

affecting system performance at all levels. The BN was used to evaluate the influence and 

importance of each barrier LRV on the final effluent concentration. The model permitted to use 

the results from validation studies to estimate LRV and estimate the reliability of the system by 

computing the final effluent pathogen concentration. 

A secondary aim of this study was to evaluate the use of non-parametric BNs for modelling 

pathogen reduction based on empirical models relating LRVs to operational parameters. The 
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model evaluated the use of chlorine disinfection model based on pH, temperature and free chlorine 

residual on Giardia LRV.  

9.2 Methods 

9.2.1 Model development 

Models were constructed and evaluated using the commercially available BN software, Uninet 

(version 2.95.47) (Cooke et al., 2007). This software package has the useful feature of supporting 

continuous, discrete and function nodes using non-parametric conditional correlations (i.e. 

conditional rank correlations) to capture dependencies between the variables. The joint 

probability distribution is constructed through a normal copula to define the dependence relations 

between the nodes. A copula is a mathematical structure used to generate multivariate 

distributions using any parametric marginal probability distribution and their dependence through 

a joint distribution (i.e. the copula) (Joe, 2014). A more detailed explanation of the functioning of 

Uninet can found in Chapter 3.   

Continuous variables were used to model concentrations and performance of the barriers. The 

multiple barrier system for the water treatment processes consisted of six barriers including 

biological treatment, microfiltration, reverse osmosis, advanced oxidation and chlorination 

(Figure 9-1). Concentration reduction along the system is a function of the performance of each 

barrier and the concentration from the previous treatment step. The model, was designed so there 

was also a common factor connecting the barrier performances. This common cause node can be 

thought of as impacts associated with high level organisational aspects, for example, maintenance 

management, power supply, procedures, and training (Reason, 2016) that can affect the system 

performance at all levels. This common factor node also makes each barrier performance 

conditionally independent. Therefore, even if nothing is known about the common factor, having 

information from any one barrier’s performance provides relevant information about the others. 

This behaviour occurs provided the common factor has a correlation factor greater than zero.  

The use of BNs for modelling Giardia chlorination inactivation performance from operational 

parameters was also investigated. The BN incorporated an empirical model with dependent 

variable CT (i.e. residual free chlorine concentration times retention time) and independent 

variables pH, temperature and residual free chlorine concentration (Smith et al., 1995). LRV 

calculation was performed through the inactivation ratio method (USEPA, 2003). This method 

computes the inactivation through the ratio of the measured CT and the required CT. Measured 

parameters (i.e. pH, temperature and residual free chlorine concentration and hydraulic retention 
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time), obtained from real operational data in a drinking water treatment plant in the USA, were 

fit to parametric probability distributions (Walker et al., 2016).       

9.2.2 Definition of barrier performance 

Performance data for the barriers (Table 9-1) (secondary treatment, microfiltration, reverse 

osmosis, UV disinfection and chlorination) and influent concentrations for three pathogens 

(Norovirus, Salmonella spp. and Cryptosporidium spp.) were collected from a number of 

previously published articles (Chaudhry et al., 2017). The three pathogen removals were 

modelled using the approach presented herein. The data used for the removal performance are 

presented as log10 reduction values (LRVs) for Norovirus (Table 9-1), Salmonella spp. (Table 

9-2), and Cryptosporidium spp. (Table 9-3), while the influent concentrations are presented in 

Table 9-4. Influent concentrations were modelled through lognormal distributions. 

Table 9-1: LRV distributions used in the multi-barrier model for Norovirus 

Process Norovirus Source reference 

Secondary treatment normal(2.1,0.78) Lodder and de Roda Husman (2005) 

Microfiltration normal(0.6,0.1) Matsushita et al. (2013) 

Reverse osmosis normal(4.3,0.34) Governal and Gerba (1999) 

UV disinfection normal(4.96,0.85) Sherchan et al. (2014) 

Chlorination normal(1.68,0.24) Francy et al. (2012) 

 

Table 9-2: LRV distributions used in the multi-barrier model for Salmonella spp. 

Process Salmonella spp. Source Reference 

Secondary treatment normal(3.32,0.76) Ottoson et al. (2006) 

Microfiltration normal(5.96,1.47) Hong et al. (2001) 

Reverse osmosis normal(6,0.6) Gerba et al. (1997) 

UV disinfection normal(3.82,0.34) Francy et al. (2012) 

Chlorination normal(2.57,0.35) Francy et al. (2012) 
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Table 9-3: LRV distributions used in the multi-barrier model for Cryptosporidium spp. 

Process Cryptosporidium spp. Source Reference 

Secondary treatment normal(1.58,1.3) Ottoson et al. (2006) 

Microfiltration normal(4.6,0.96) Hong et al. (2001) 

Reverse osmosis normal(4.5,0.73) Adham et al. (1998) 

UV disinfection normal(2.2,1.17) Craik et al. (2001) 

Chlorination normal(0.41,0.4) Rose et al. (1996) 

 

 Table 9-4: Influent concentrations used in the multi-barrier model for the three pathogens 

Pathogen Units Parameters of lognormal Reference 

Norovirus gene copies/L =9.095, =1.413E-3 Eftim et al. (2017) 

Salmonella spp. number/L =7.171, =2.985 

Koivunen et al. (2003); 

Lemarchand and 

Lebaron (2003) 

Cryptosporidium spp. number/L =2.262, =0.944 Rose et al. (1996) 
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Figure 9-1: B
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on factor node. Equivalent m
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ere generated for N
orovirus 
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onella spp.. 
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9.2.3 Model evaluation 

The influence from the variability of each barrier LRV was measured by its rank correlation with 

the final log10 effluent concentration. The impact of each barrier LRV magnitude was measured 

by removing a specific barrier LRV at a time and calculating the difference of the final log10 

effluent concentration with and without the barrier LRV. To simulate the absence of a barrier 

LRV, the model incorporated a selector. The selector is a discrete variable used to “switch off” a 

specified barrier in the case that credits for that barrier are assumed to have been lost. The selector 

could also be used to simulate failures of individual barriers. 

9.3 Results and discussion 

9.3.1 Impact of barrier variability 

The sensitivity of the effluent pathogen concentrations to each barrier performance and the 

common influence node was measured through rank correlations (Table 9-5). Three different 

correlations between the common influence and the barrier performances were tested (i.e. 0, 0.5, 

1) to analyse their effect on the sensitivity. Considering uncorrelated barriers, (i.e. correlation zero 

row) the barriers presented dissimilar importance depending on the pathogen. In general, the 

importance of each node depends on its assumed variability. Furthermore, the importance is 

relative so it also depends on the importance of the other variables. Therefore, a node with the 

highest variability will have the largest importance. For Norovirus, the log10 influent 

concentration and microfiltration presented lower variability than the other variables, returning 

substantially lower correlation coefficients. For Salmonella spp., the effect of the log10 influent 

concentration was greater than the effect of other barriers except microfiltration. The two least 

influencing variables were UV disinfection and chlorination. For Cryptosporidium spp., the 

greatest impact was observed for secondary treatment, while the least impact was observed for 

chlorination and log10 influent concentration. 
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Table 9-5: Rank correlation between variables in the model and pathogen log10 concentrations 

Pathogen RC CI ILC ST MF RO UV Cl 

Norovirus 0 0.00 -0.01 -0.61 -0.09 -0.26 -0.67 -0.18 

0.5 -0.74 -0.01 -0.73 -0.42 -0.52 -0.76 -0.48 

1 -0.99 -0.01 -0.99 -0.99 -0.99 -0.99 -0.99 

Salmonella spp. 0 0.00 0.56 -0.32 -0.64 -0.25 -0.14 -0.15 

0.5 -0.65 0.45 -0.53 -0.73 -0.49 -0.42 -0.42 

1 -0.93 0.33 -0.93 -0.93 -0.93 -0.93 -0.93 

Cryptosporidium spp. 0 0.00 0.17 -0.57 -0.43 -0.31 -0.51 -0.17 

0.5 -0.77 0.12 -0.70 -0.62 -0.56 -0.67 -0.48 

1 -0.99 0.08 -0.99 -0.99 -0.99 -0.99 -0.99 

RC: rank correlation between common influence and barriers; CI: common influence; ILC: 

influent log10 concentration; ST: secondary treatment effluent log10 concentration; MF: 

microfiltration effluent log10 concentration; RO: reverse osmosis effluent log10 concentration; 

UV: UV disinfection effluent log10 concentration; Cl: chlorine disinfection effluent log10 

concentration. 

The increase in the rank correlation coefficient between the common influence and the barriers 

produced a rise in the impact of all variables, and conversely a reduction in the impact from the 

influent log10 concentration. These results indicated that, when the barriers were assumed 

independent, each one presented specific importance proportional to its variability. This effect 

gradually dissipated as higher correlations were assumed, levelling up completely at a correlation 

of 1. Haas et al. (2014) have indicated that correlations should be considered when modelling 

risks. They stated that the existence of correlations between variables will have an impact on the 

outcomes derived from such variables. Usually the impact becomes more important at the 

extremes of the distribution. They present copulas as a useful methodology to deal with this issue.  

The effect of correlated barrier performances was evaluated using three different rank correlation 

values (i.e. 0, 0.5 and 1) and the results are presented in Table 9-6. The results revealed that the 

variability in the effluent log10 concentration was higher as the assumed correlation between the 

performances increased. These scenarios are relevant as they could increase the calculated risk 

during QMRA. An actual degree of correlation between barriers can be investigated from 
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empirical data using non-parametric BNs through a data-driven approach. In such case, it is 

important to collect data during the same time intervals at which the system could be affected by 

common cause conditions. This approach could also be used to generate the performance 

distributions without the necessity to assume a parametric distribution.     

Table 9-6: Summary statistics for the effluent log10 concentration for variable correlations 

between the common influence and barriers 

Pathogen RC 5th percentile Median 95th percentile Standard deviation 

Norovirus 0 -11.7 -9.68 -7.65 1.23 

0.5 -12.3 -9.68 -7.07 1.60 

1 -13.4 -9.71 -5.86 2.31 

Salmonella spp. 0 -22.2 -18.6 -14.8 2.24 

0.5 -23.1 -18.5 -14.1 2.73 

1 -24.7 -18.6 -12.4 3.74 

Cryptosporidium spp. 0 -15.9 -12.3 -8.65 2.21 

0.5 -17.3 -12.3 -7.30 3.03 

1 -19.8 -12.3 -4.69 4.57 

 

9.3.2 Common influence effect on barrier performances 

The hypothetical common influence was assumed with a uniform distribution over a range of 0 

to 1. This variable can represent a measured factor affecting the performance of the barriers as a 

common cause. As presented in Table 9-6, various correlations were assumed to analyse the effect 

of this variable on the model performance. In this case, the variable common influence was not 

observed so the barriers were conditionally dependant. If this variable is observed, it affects the 

barriers simultaneously depending on the defined correlation. Two cases were modelled both 

assuming a correlation of 0.5 between the common influence and the barriers. The first case 

resulted from the assumption of a low value in the common influence, 0.1. This configuration can 

be conceptualised as a low level of performance in “operational management” of the plant. As 

observed in Figure 9-2, all the barrier performances and the total LRV decrease (grey shadows 

represent the previous distributions). As a consequence, all the log10 concentrations across the 
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multi-barrier system were increased. The opposite effect was achieved when the common 

influence was assumed to be 0.9. This outcome can be thought of as a high level of performance 

in “operational management” of the plant, conceptually reflecting such factors as regular 

maintenance, personnel training, proactive response to alarms, etc. In this case, the LRVs were 

increased and, as a result, the log10 concentrations were decreased.  
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Figure 9-3: Effect of com
m

on influence over barriers, positive effect from
 assum

ption C
I=0.9. 
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9.3.3 Impact of individual barriers on effluent concentration 

The impact of each barrier on the process performance was assessed by “switching off” each 

barrier, one at a time, using the “selector” node and obtaining the mean and standard deviation of 

the effluent log10 concentration for Norovirus (Figure 9-4), Salmonella spp. (Figure 9-5), and 

Cryptosporidium spp. (Figure 9-6). The assessment employed the model without associations 

between the barrier performances (i.e. correlation coefficient of zero). The influence of each 

barrier performance was dependent upon both the magnitude and variability of the LRV assigned 

to it. The impact was measured as the probability of having an increase in the final plant effluent 

log10 concentration. For Norovirus, the probability of having an increase in the effluent log10 

concentration resulting from not considering the LRVs credited to any one of secondary 

treatment, reverse osmosis or UV disinfection was greater than 0.95 (Table 9-7). The lowest 

influence was obtained for microfiltration (probability: 0.82). The variability in the log effluent 

concentration was not substantially impacted with standard deviations ranging from 0.9 to 1.2 in 

all cases.   

Table 9-7: Percentage of the distribution lower than zero for the difference in log effluent 

concentrations from “switching off” a particular treatment step. Probabilities higher than 0.95 are 

presented in bold. 

Removed process step Norovirus Salmonella spp. Cryptosporidium spp. 

Secondary treatment (ST) 0.98 0.86 0.71 

Microfiltration (MF) 0.82 0.98 0.94 

Reverse osmosis (RO) >0.99 0.97 0.93 

UV disinfection (UV) >0.99 0.89 0.77 

Chlorination (CL) 0.94 0.79 0.55 
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Figure 9-4: Impact of individual process removal for Norovirus. ST is secondary treatment; MF 

is microfiltration; RO is reverse osmosis; UV is UV disinfection, and Cl is chlorination. Error 

bars indicate standard deviation. 

For Salmonella spp., the probability of having an increase in the effluent log10 concentration was 

higher than 0.95 only for microfiltration and reverse osmosis (Table 9-7). The third greatest 

impact was obtained for UV disinfection. The least impact was observed when chlorination was 

not included in the treatment (probability: 0.79). The variability in the log effluent concentration 

ranged between 1.7 and 2.2. For Cryptosporidium spp., none of the barriers produced an increase 

in the log effluent concentration with a probability higher than 0.95. However, as observed in 

Table 9-7, the greatest effects were observed for microfiltration (probability: 0.94) and reverse 

osmosis (probability: 0.93). By not considering chlorination, the probability of increasing the log 

effluent concentration was only 0.55. This result was expected as chlorine disinfection is not very 

effective for Cryptosporidium spp. inactivation. The variability in the effluent log concentration 

was not substantially impacted with standard deviations ranging from 1.8 to 2.2.      
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Figure 9-5: Impact of individual process removal for Salmonella spp.. ST is secondary treatment; 

MF is microfiltration; RO is reverse osmosis; UV is UV disinfection, and CL is chlorination. 

Error bars indicate standard deviation. 
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Figure 9-6: Impact of individual process removal for Cryptosporidium spp.. ST is secondary 

treatment; MF is microfiltration; RO is reverse osmosis; UV is UV disinfection, and CL is 

chlorination. Error bars indicate standard deviation. 

9.3.4 Modelling pathogen reduction using operational parameters from the 

literature  

When operational data can be related to pathogen LRVs through pre-established empirical or 

mechanistic relationships such as in chlorination, these relationships can be easily modelled 

through BNs. A model was constructed to simulate the Giardia LRVs during chlorination based 

on the inactivation ratio method in a drinking water treatment plant in the USA (Walker et al., 

2016) (Figure 9-7). Daily records between 2008 and 2009 were used to fit distributions for 

temperature, pH, free chlorine residual (C) and contact time (T10) for the chlorination clearwell. 

From the values of C and T10, CT values (i.e. concentration times time) were calculated 

(CT_actual). The previous study found that C and CT_actual could be best fit to lognormal 

distributions, while pH could be best fit to a normal distribution. Temperature and contact time 

(T10) were fit to generalised Beta distributions (Walker et al., 2016). Based on the value of C, 

Temperature and pH, a required CT to achieve 3 LRVs (CT_required) can be computed using an 

empirical model (Equation 9-1 and Equation 9-2) (Smith et al., 1995). The CT_actual was used 

to calculate the LRV through the inactivation ratio (i.e. LRV=3* CTactual/CTrequired). Rank 

correlations were determined from the data between the variables T10 and CT_actual (RC: 0.9), 
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C and CT_actual (RC: 0.61), and T10 and C (-0.64). These correlation values indicate that 

CT_actual presents a higher influence from T10 than C. Also, T10 and C are inversely associated, 

so when there is short contact time, the residual concentration needs to be high to achieve a 

specific CT value.  

𝐹𝑜𝑟 𝑇𝑒𝑚𝑝 < 12.5: 

𝐶𝑇3−𝑙𝑜𝑔,𝐺𝑖𝑎𝑟𝑑𝑖𝑎 = (0.353 ∙ 𝐼)(12.006

+ 𝑒2.46−0.073∙𝑡𝑒𝑚𝑝+0.125∙𝐶+0.389∙𝑝𝐻) 

Equation 9-1 

𝐹𝑜𝑟 𝑇𝑒𝑚𝑝 ≥ 12.5: 

𝐶𝑇3−𝑙𝑜𝑔,𝐺𝑖𝑎𝑟𝑑𝑖𝑎 = (0.353 ∙ 𝐼)(−2.261

+ 𝑒2.69−0.065∙𝑡𝑒𝑚𝑝+0.111∙𝐶+0.361∙𝑝𝐻) 

Equation 9-2 

Where I=3 represents the required log removal of Giardia, C is the free chlorine residual 

concentration (mg/L) and temp is the temperature in C. 
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Figure 9-7: Chlorination LRV model for Giardia 

Based on this model, various inference queries can be performed as shown in Figure 9-9 to Figure 

9-12 and Table 9-9 to Table 9-12. The results indicate the effects of conditionalization on the 

marginal distributions of the remaining variables. Marginal distributions for the nodes without 

any evidence incorporated into the network can be observed in Figure 9-8. Four scenarios were 

studied by observing four different nodes, one for each scenario. The base case (i.e. no 

observations) is shown in Table 9-8 and Figure 9-8 which presents the same marginal distributions 

as in Figure 9-7. 

Table 9-8: Median, 5th and 95th percentiles for the marginal distributions without observations 

Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

5th 1.2 40 71 1 6.8 35 1.2 

50th 1.6 56 91 15 7 86 3.1 
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Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

95th 2.3 65 115 28 7.2 229 7.9 

 

 

Figure 9-8: Marginal distributions without input evidence 

The first scenario presents a case where the conditions leading to a LRV<2 need to be determined 

(Table 9-9 and Figure 9-9). The results indicated that the most impacted variables with this 

observation were Temperature and CT_required. Free residual chlorine (C), CT_actual and pH 

were not largely affected revealing that these variables are not very important for the LRV under 

these conditions.   

Table 9-9: Median, 5th and 95th percentiles for the marginal distributions after observing 

Giardia_LRV<2 

Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

5th 1.1 40 70 0.2 6.8 137 1 

50th 1.6 55 88 3.3 7 194 1.4 

95th 2.3 65 111 8.4 7.2 250 1.8 
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Figure 9-9: Marginal distributions with evidence LRV<2 

When conditioning pH to lower than 7, only minor changes were observed for CT_required and 

Giardia_LRV confirming the little influence of this variable over chlorination performance in this 

case (Table 9-10 and Figure 9-10). The slight effect of pH could be a consequence of the narrow 

range of conditions in which the chlorination process worked in this case. It is expected that under 

pH values higher than 7.5, the effectivity of chlorination would present a higher decrease 

(AWWA & ASCE, 2005).  

 

Table 9-10: Median, 5th and 95th percentiles for the marginal distributions after observing pH<7 

Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

5th 1.2 40 71 1 6.7 34 1.2 

50th 1.6 55 91 15 6.9 83 3.2 

95th 2.3 65 115 28 7 216 8.3 
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Figure 9-10: Marginal distributions with evidence pH<7 

By observing Temperature higher than 15 C, the impact on CT_required and Giardia_LRV was 

substantially higher than in the case of pH with an increase of 43% in the median value for 

Giardia_LRV (Table 9-11 and Figure 9-11). By the observed effect of pH and temperature on the 

acid/base dissociation of hypochlorous acid, it is generally expected that the effectiveness would 

be more largely affected by pH than temperature (AWWA & ASCE, 2005). However, in this case 

also the range of conditions under which the chlorine disinfection works would have an effect on 

the results of the queries. Given the possible range of temperatures on which this system can 

work, it becomes increasingly important to correctly control the residual chlorine concentration 

and contact time during cold seasons. 

Table 9-11: Median, 5th and 95th percentiles for the marginal distributions after observing 

Temperature>15 C 

Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

5th 1.1 40 70 16 6.8 34 3.1 

50th 1.6 55 91 23 7 51 5.4 

95th 2.3 65 116 29 7.2 84 8.4 
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Figure 9-11: Marginal distributions with temperature>15 C 

The last scenario shows the case when the free residual chlorine (C) is lower than 1 (mg/L) (Table 

9-12 and Figure 9-12). This observation had a large impact on CT_actual as a consequence of 

their observed rank correlations. However, the impact over Giardia_LRV was only minor with a 

decrease in the LRV of 13% approximately. As observed in Figure 9-12, the shapes of the 

distributions look more variable than in previous cases. The reason of this behaviour is because 

the model conditioning is performed through sample-based conditioning. Therefore, the shape 

would depend on the number of samples imposed by the condition. Fewer samples would produce 

the behaviour observed in Figure 9-12.   

Table 9-12: Median, 5th and 95th percentiles for the marginal distributions after observing C<1 

Percentile C T10 CT_actual Temperature pH CT_required Giardia_LRV 

5th 0.8 59 58 1.2 6.8 32 1.0 

50th 0.9 66 71 18 7.0 79 2.7 

95th 1.0 68 86 29 7.2 209 6.7 
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Figure 9-12: Marginal distributions with C<1 mg/L 

9.3.5 Comparison with other BN approaches 

Various types of BNs can be used to model pathogen reductions a multi-barrier system. The major 

limitation of these models is often the low resolution obtained because of the discretisation 

commonly used in these models. In discrete BNs, this issue has been successfully managed by 

using dynamic discretisation (Fenton & Neil, 2012), which optimises the thresholds every time 

an inference is performed. Although high resolution is obtained through this method, learning of 

parameters and representation of correlations is not possible. Furthermore, a large number of 

parameters would be required to represent the dependencies from impact factors on barriers. A 

continuous Bayesian network (Scutari & Denis, 2014) can also be constructed through JAGS 

(Plummer, 2003) or Bugs (Lunn et al., 2000). In this case, there is no necessity of discretisation 

thresholds to be defined. However, the probability distributions need to be previously selected 

and the models do not employ correlations directly. The approach presented in this chapter has 

the advantage of permitting the definition of the associations between the variables through 

correlation coefficients. The model presented in this chapter can also be analysed through a 

conventional BN after selecting the discretisation thresholds while keeping the same structure as 

the original non-parametric BN. To capture the associations between the variables, simulated data 

would need to be obtained from the non-parametric BN. Subsequently these samples would be 

used to learn the parameters of the model through parameter learning algorithms. 
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9.3.6 Importance of BNs to validation and reliability 

Models presented in this chapter showed the case when the whole multiple barrier system needs 

to be modelled to measure its reliability. Such model implies determining that specific targets are 

met even when one or more barriers’ performances are compromised. Inputs for the model 

included LRVs for index pathogens and influent concentrations. These data could be provided 

from validation studies or estimated through empirical or mechanistic models using operational 

data. The developed models were capable of representing the whole system performance and 

measure the importance of each barrier for the final effluent quality. 

9.4 Conclusions 

Microbial risks have previously been modelled through a multiple barrier approach using Monte-

Carlo simulations and BNs. Although both approaches have been shown to be useful in a range 

of circumstances, there remain limitations, such as lack of inference capabilities in the case of 

Monte Carlo simulations and low resolution in the case of BNs. This chapter presents new ways 

of using BN software to model a multi-barrier system using non-parametric continuous/discrete 

BNs through Uninet.  

The approach was demonstrated to be suitable for performing inference and calculating 

probability distributions with high resolution. The BN could model multiple barriers with 

interactions and incorporate correlations explicitly. A sensitivity analysis to the modelled effluent 

log10 concentration with respect to each barrier was measured using correlations. The outcomes 

indicated that by considering correlated performances, the variability in the log effluent 

concentration increased. Because the results of this approach serve as inputs for risk analysis, they 

should be evaluated during QMRA calculations. Incorporating correlated barriers generated a 

higher sensitivity across all the barriers. The impact of each barrier was assessed probabilistically 

through this model. In this case the parameter used was the probability of obtaining an increase 

in the log10 effluent concentration when a barrier was not considered in the model. This approach 

was also suitable to model probabilistic LRV outcomes calculated from empirical equations using 

stochastic inputs. From this model a number of queries can be performed to assess scenarios and 

most important variables. As observed in this chapter, the graphical and stochastic representation 

of the system through BNs allows effective communication of the LRV performance and the 

different factors affecting pathogen effluent concentration used during exposure analysis. 
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Chapter 10: Conclusions and future work 
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10.1 Conclusions 

The aim of the work presented in this thesis was to review and assess appropriate tools for 

validation and reliability assessment of water treatment processes especially those likely to be 

used for direct and indirect potable water reuse. The key findings of this research project in 

relation to the aims in Section 1.2 are presented in Table 10-1. Validation and reliability were 

studied from the point of view of pathogen removal because pathogens usually represent the most 

important hazards requiring control for safe water reuse. The literature review (Chapter 2) 

revealed that commonly used techniques for reliability assessment generally involved causal 

representation of events and probabilistic assessment of outcomes. It was found that for 

validation, Monte Carlo has commonly been used as this allows performing calculations with full 

probability distributions. Various other advanced statistical or machine learning tools were also 

found to have been applied for treatment process prediction during system control and monitoring. 

However, these methods were limited in their ability to represent causal associations between 

variables and in their capacity to facilitate user interaction. The outcomes of the literature review 

indicated that BNs and Bayesian methods were tools which could be applied to the diverse 

validation and reliability assessment tasks identified. Useful features of Bayesian tools included 

explicit representation of uncertainties, probabilistic assessment and inferential reasoning. 

Through their use, other useful methodologies for reliability assessment such as fault tree analysis, 

event tree analysis, reliability block diagrams and bow-tie analysis could be either encoded or 

enhanced.  

Table 10-1: Aims and related key findings of this research study 

Aim Key findings 

Identify, evaluate and compare different risk 

and reliability techniques for water reuse 

processes. 

• Relevant tools were identified from 

standards and technical reliability 

assessment literature. 

• Twelve tools were compared and 

evaluated for their use in water 

treatment processes. 

• Machine learning tools were also 

discussed. 
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Aim Key findings 

• BNs and Bayesian analysis were 

selected due to their wide range of 

useful features.  

Identify and assess operational parameters 

affecting the reliability of removal of 

microorganisms and evaluate potential 

surrogate parameters. 

• BNs were used to identify and 

evaluate relevant parameters for 

pathogen removal during activated 

sludge treatment. 

• Effect of operating conditions on the 

reliability of system was evaluated. 

• Bayesian analysis was used for 

comparing the reliability of 

operational parameters to predict 

pathogen reduction during ozonation. 

Analyse the validation data of systems to 

improve prediction of performance reliability 

and develop a method applicable to treatment 

systems with parallel subunits. 

• A full-scale ultrafiltration system with 

units in parallel was studied for its 

virus removal reliability. 

• Hierarchical Bayesian models showed 

to improve the predictions of 

pathogen removal for the system. 

Explore improving incorporation of 

uncertainty into pathogen removal efficiency 

estimation and promote reliability assessment. 

• LRVs were modelled incorporating 

uncertainty in models parameters 

during chlorination and ultrafiltration. 

• Outcomes allowed direct calculation 

of probabilistic LRVs. 

Quantify the reliability of a water reuse 

system using expert knowledge. 

• Expert knowledge was used to 

develop a model for reliability 

estimation for a UV system. 
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Aim Key findings 

• The model focused on the importance 

of sensors for the reliability of the 

system. 

Develop and assess a method to analyse 

reliability in multi-barrier water reuse 

systems. 

• Non-parametric BNs were used to 

model an advanced treatment system 

train.  

• Model captured probabilistic 

associations between the system 

components. 

• The BN allowed measuring the 

importance of each treatment barrier 

in relation to the whole reliability of 

the system. 

 

The review also showed that traditional reliability analysis has been used to assess component 

failures and system failures. Such failures are usually represented by a yes/no type of event. For 

water and wastewater treatment processes, though, failures are generally observed as located on 

a continuum. In these systems, degraded states would be generally perceived by their effect on 

system performance. Inherent reliability (or performance) and mechanical reliability appear 

closely related. Validation to investigate system performance is therefore an important task to 

determine its reliability. 

My research then studied the application of BNs to reliability and validation assessment in water 

and wastewater treatment processes. BNs on their own were found to be somewhat limited for the 

full range of applications considered. Although BNs have special characteristics that make them 

unique, they share multiple features with Bayesian statistical methods more generally. These 

features include inferential reasoning through the Bayes rule, explicit representation of 

uncertainties, and capability of handling censored and missing values. Consequently, it was 

decided appropriate to broaden the analysis to include Bayesian models in general, comprising 

both BNs and Bayesian statistical methods.  
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Through the development and assessment of six case studies, BNs and Bayesian methods were 

evaluated and interrogated using a combination of experimentally-derived data, full scale 

operational data, and expert elicited data. These six cases covered a range of applications 

including evaluation of monitoring parameters for LRVs, improving LRV calculations, 

assessment of system reliability and multi-barrier system evaluation. Because these were selected 

and designed to comprise common tasks encountered during risk analysis in water reuse systems, 

they may now serve as examples to facilitate application to full-scale real systems. The outcomes 

of this work will provide valuable alternatives for improving and informing risk assessment in a 

robust and transparent manner. The work undertaken produced conclusions, described below, 

relating to validation and reliability assessment. 

10.1.1 Bayesian models for validation and inherent system reliability assessment 

Reliability can be analysed from various perspectives depending on the specific purpose. From 

the point of view of LRV performance, variability or inherent reliability is important because it 

has an impact on the mitigation of risks. Validation is a relevant step that checks that the system 

is performing appropriately and provides information about how the system could be monitored. 

Among the most important aspects to consider during treatment process performance validation 

is the exploration and definition of adequate parameters to monitor LRV performance. BNs were 

first used to identify and validate potential predictors of pathogen LRV during activated sludge 

treatment. Next, alternative predictors of LRVs during ozonation were assessed, but in this case 

using Bayesian analysis. The activated sludge investigation showed that BNs were adequate to 

predict LRV, assess scenarios and potential predictive parameters. The activated sludge study 

(Chapter 4) reflects the case where large datasets with many variables are obtained or available, 

but there is uncertainty about the relative value of the variables monitoring with different 

objectives (e.g. prediction of LRVs). This case is a common situation when large operational 

datasets are collected over several years and it is subsequently desired to find associations 

between the variables to improve system oversight. An example of this situation is where 

operators wish to fine tune a system based on long term experience and have collected extensive 

supervisory control and data acquisition (SCADA) data. For the Chapter 4 study BN models were 

constructed and validated using data collected during experiments on a well-controlled pilot scale 

reactor. The BN approach proved suitable for a dataset containing missing and censored values 

which are commonly encountered in real applications. It was found that suspended solids, 

turbidity and SRT were important operational predictors for C. parvum LRVs. G. lamblia removal 

was also modelled through BNs. However, the analysis showed its reduction could not be 

predicted using the parameters monitored with high reliability in contrast to C. parvum. Low 

predictive potential predictors for this pathogen included SRT and COD, but interestingly not 
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microbial indicators or Cryptosporidium spp. and not optimal reactor operating configuration was 

identified.  

In the third case study, ozonation (Chapter 6), the potential predictors considered included ozone 

to dissolved organic carbon ratio, difference in UV254nm, difference in total fluorescence and 

difference in components concentrations from PARAFAC analysis. These were selected based 

on previous literature. The study used measurements of indigenous indicator microorganisms 

which have been previously shown to be more resistant than seeded ones during disinfection. The 

study sought to validate previous findings and also assess and compare the uncertainty of previous 

and current results. Uncertainty was estimated using linear and non-linear models through 

Bayesian analysis. Although all the analysed predictors were shown to be useful for prediction of 

LRVs during ozonation, the difference in UV254nm was most promising because this is a commonly 

measured parameter and more affordable to collect compared to most of the others. The analysis 

took into account that all predictors showed equivalent predictive potential. Censored values were 

also encountered in this study. Bayesian analysis was again able to deal with this type of data and 

incorporate this information into the model parameter estimates.  

Incorporation of uncertainty in model outcomes is important to consider during risk analysis 

because the full probability distribution could be used to calculate exceedance from specific 

thresholds. Bayesian analysis proved adaptable for this task because it can estimate uncertainties 

on model parameters. This model application was demonstrated by the fourth case study on 

chlorination and chloramination of secondary treated sewage (Chapter 7).  In this case study, 

experimentally derived data were used to create empirical models using Bayesian analysis. The 

model outputs were a distribution of values instead of a point estimate as is commonly 

encountered in other modelling approaches (e.g. mechanistic modelling using inactivation rates). 

In this case, the model was used to estimate required CT values to achieve a specified level of 

pathogen inactivation under specified ambient conditions (turbidity and pH). These required CT 

values were then used to calculate performance LRVs from the measured CTs. Further 

improvements to the conceptual model could incorporate the effect of other water matrix 

characteristics including temperature, dissolved organic matter and ionic strength. 

Case study 2 (Chapter 5) looked at ultrafiltration. UF units are commonly challenge tested through 

seeded bacteriophages to estimate LRVs. Because of their modular design and the fact that 

planning and conducting full-scale experiments usually implies large financial costs, it is 

important to make efficient use of the data for performance estimation (i.e. reliability). Bayesian 

analysis was used in this case to estimate predictive LRVs from a number of UF units in parallel 

to obtain system LRVs which combined all data. A number of model variations were evaluated 
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with a real UF validation dataset. The evaluation indicated that of the four variants assessed, 

hierarchical Bayesian models were the most appropriate for LRV estimation of the whole system. 

The models were also useful for improving the LRV distribution estimates of each individual unit 

where the numbers of measurements were necessarily limited as well as the overall LRV of the 

system for prediction purposes. For future applications, the type of hierarchical Bayesian model 

selected will depend on the particular system and conditions, therefore the analysis for a system 

was seen as a model for how treatment systems with multiple parallel modules could be validated 

and revalidated. This study did not attempt to be prescriptive, but to show how it can assist in the 

data analysis during challenge testing. The data evaluated in this study were obtained from real 

full-scale validation and revalidation work and had to deal with the limitations typically 

encountered in such operational monitoring campaigns, including censored values, limited 

observations and differences in performance between units in parallel. 

Quantitative microbial risk assessment requires the estimation of multiple barrier performance 

and concentrations of reference pathogens to estimate exposure assessment. This task is 

increasingly conducted in a probabilistic format through Monte Carlo simulation. Although 

Monte Carlo simulation has high resolution and flexibility, it lacks capabilities for post-simulation 

interaction and inference investigations. BNs have also been used to model multiple barrier 

systems. However, the resolution found on these models is low, which is problematic when very 

low probabilities need to be estimated. Non-parametric BNs were used to model a multiple barrier 

system using data obtained from published literature. This type of BN uses normal copulas and 

conditional rank correlations to model the dependencies between the variables. In case study 6 

(Chapter 9), a BN model was developed to estimate potential scenarios, measure the importance 

of each barrier and represent correlated performances. The results indicated that when correlations 

are found between barrier performances, it can increase the variability of the effluent pathogen 

concentration. It was found that the higher the correlation the higher the contribution of the 

barriers to the variability of the effluent concentration. By “switching off” each barrier 

sequentially it was possible to estimate the impact of each barrier to the whole process 

performance. The impact was measurable as the probability of obtaining an increase in the final 

effluent concentration. The influence of each barrier depended on its magnitude, variability and 

the reference pathogen for which it provides reduction estimates. It is expected that this approach 

could be incorporated in common risk evaluation as it provides more capabilities and valuable 

characteristics than Monte Carlo simulation. Usefully, the BN methodology is able to model 

distributions without the need for assuming a parametric distribution and capture the correlations 

between the variables automatically.   
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It is important to note that although BNs and Bayesian models in general can deal with missing 

values, the data still needs to be of good quality. This characteristic conversely implies that large 

data gaps would probably have an influence on the model outcomes or generate misleading 

results. Also, data pre-processing is required to remove erroneous information that can affect 

outcomes. BNs are generally adequate for observational studies, so they are particularly useful 

for systems subject to uncontrolled factors where uncertainty is present. Water treatment systems 

represent a typical example of an observational study where factors such as water quality and 

environmental conditions are random. Long term data analysis through BNs can assist in 

determining indicators for system performance and evaluate the most important variables for 

system optimisation. 

10.1.2 Bayesian models for traditional hardware reliability assessment 

Hardware reliability also needs to be adequately assessed on water reuse systems. Studying how 

the failure of system components could affect the removal performance is crucial to understand 

the mechanism of the precipitating hazardous events. Such information is also important to 

consider during validation of treatment systems. To conduct an appropriate analysis, 

understanding how the system components interact is fundamental. For such tasks, expert 

elicitation becomes relevant because the systems are designed to interact with people. Fault tree 

analysis is one of the commonly used tools to identify causal factors affecting a particular 

undesired outcome. A UV disinfection system was studied by first targeting the crucial 

components and then modelling their interactions. A fault tree was constructed based on expert 

information and literature and model parameters were elicited. The model was then encoded as a 

BN. The BN facilitated probability calculations because of the presence of common cause events. 

During the model development stage, it was determined that sensors were fundamental for the 

correct functioning of the UV system and that under specific failures, hazardous events can be 

encountered. The hazardous event targeted in this case was a non-detected low UV dose. The 

results showed that a UVI sensor was the most informative of the system’s reliability and that 

UVT sensor impact depended on the influent UVT from upstream processes. Bayesian networks 

offered flexibility and a clear representation of the system with explicit causal associations 

between the system components. One of the useful features trialled was the use of noisy gates 

which can relax the assumptions made with the conventional logic gates (e.g. AND and OR gates). 

The type of information obtained in this case-study, once the model has been tested and validated 

on different plants, should be beneficial to organisations such as a water quality regulator to adapt 

their requirement on disinfection and dual protection barriers. It can also be part of a risk analysis 

to determine the needs regarding investing in extra water treatment structures or stand by 

equipment. Similar analyses can be conducted for other treatment processes where sensors are 
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similarly crucial but whose relative importance is unclear. Elicitation of data for reliability 

assessment in this case was necessary because the available data were not adequate or not existing. 

Lack of reliability data is a general problem within the water treatment sector when data are not 

stored in an appropriate fashion and therefore become difficult to gather and analyse. 

Furthermore, data specific for water treatment systems are not commonly found in databases or 

published material which makes expert elicitation essential. Presenting instances where reliability 

data can be used to assess a system and improve its performance should help the water authorities 

to re-think what the important parameters are for them to register for their future analysis of plant 

and cost optimisation.   

10.1.3 Opportunities for future application by water utilities and their regulators 

The ongoing evolution of better management practices in the water treatment sector requires the 

investigation of more versatile tools that can improve the understanding and management of risks 

and reliability. Modifying the application of conventional methodologies could be a difficult task 

given the limited number of tools being generally recommended in guidelines and reports. One 

way of encouraging the interest and implementation of promising approaches is by illustrating 

their use and utility for addressing current relevant problems and analysing existing systems and 

data sets. This thesis presents instances of model applications for BNs and Bayesian analysis to 

real problems and datasets and also shows limitations encountered during analysis of water 

treatment processes. 

The application of new tools by water utilities could also be driven by factors such as how much 

these methods have been implemented in the wider industry. Generating the interest of water 

utilities will be crucial in facilitating the more widespread application of new tools. The successful 

transfer of knowledge across the industry will also be linked to willingness and incentives to share 

information and communicate models. Transfer of knowledge is one way the industry could 

benefit and improve in terms of more rigorous risk analysis which it may have not fully exploited 

so far. The structured representation of BNs and Bayesian methods address such issue by 

facilitating validation and reliability communication between water utilities and their regulators. 

The creation of DAGs to understand the systems and how the variables interact would be 

beneficial for managing specific problems common to the whole sector. Implementing new 

approaches such as BNs and Bayesian methods has limitations including the need for 

incorporating new analytical capabilities. In order for these proposed methods to be effectively 

deployed, it will be necessary to promote water engineers and scientists having a stronger 

understanding of both system functioning and construction of probabilistic models. They could 

then work as facilitators and in turn change the way stakeholders generally think about or visualise 
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treatment systems. Such facilitation would also assist in the elicitation process which would be 

required particularly in the first stages of model development prior to implementation especially 

the ability to think causally and probabilistically which is the way risk analysis generally works. 

BNs and Bayesian analysis are tools that particularly deal with these types of challenges, 

providing explicit representation of associations and uncertainty.   

10.1.4 Lessons learned from unsuccessful case studies 

Four case studies based on full-scale processes (three based on operational data and one in elicited 

information) were also planned and implemented in part. However, the analyses proved 

unsuccessful in acquiring sufficient information for addressing the proposed research questions 

and objective. For this reason, these have not been detailed in the case studies above. 

Nevertheless, the likely reasons behind the negative results were themselves instructive and 

identified to a degree. This section briefly identifies lessons learnt and opportunities for 

improvement when similar problems are assessed in the future. 

10.1.4.1 Studies with using collected process operation data 

The first unsuccessful case study investigated the association between turbidity and direct 

integrity testing data in an ultrafiltration process in Western Australia. In this case study a large 

SCADA dataset was obtained including records every ten minutes during one year. Additionally, 

a more limited microbial validation data set was also obtained. The SCADA dataset was able to 

be pre-processed to remove any invalid information. However, the timeseries results also 

suggested that there were other influences in the performance of the turbidity sensors as well as 

in the results of the pressure decay tests which would be hard to incorporate into a data analysis 

without much greater knowledge of the system which had been a pilot one and had ceased 

operation prior to data receipt. For example, there was evidence of sensor drifting and increasing 

noise. Unfortunately, the information about possible causative malfunctions and maintenance was 

not available in a form which could be retrieved from the databases. This issue represents a clear 

example of the necessity of having more accessible systems for data management. Collecting such 

information would require large resource allocation.  

The second unsuccessful case study was similar to the study in Chapter 6 in which alternative 

predictors for LRVs were investigated. A full-scale ozonation process in Melbourne was 

intensively sampled during a 3-day campaign. Selected predictors included turbidity, UV254nm, 

ozone dose to TOC ratio, suspended solids and bromate. The results in this case suggested that 

despite expectations, none of the predictors provided strong associations to LRVs. However, the 

bench scale experimental results revealed that associations exist between UV254nm and LRV, and 
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ozone dose to TOC ratio and LRV. The negative results could be explained by the effect of 

particulate matter which had a wide size distribution and variable characteristics. Suspended 

solids are known to affect the resistance of microorganisms by shielding and also contribute to 

the ozone demand. Characterisation and analysis of the effect of suspended solids on removal 

performance is therefore recommended. Both these first and second unsuccessful studies 

illustrated the limitations of mining large sets of data without full details of treatment process set 

ups. 

A third case study endeavoured to assess predictors for LRVs during full scale activated sludge 

treatment. Data were collected from four treatment plants within Australia including microbial 

concentrations for E. coli, adenovirus, polyomavirus and microviridae. Considered predictors 

were MLSS, turbidity, pH, temperature, dissolved oxygen, conductivity, ammonia, COD, BOD 

and suspended solids. The data were analysed through BNs and linear models. However, no clear 

associations were found for any of the variables with the microbial concentrations or LRVs. Some 

of the potential causes for the negative results were the large data gaps for the operating 

parameters. Also, other important predictors such as solids retention time and hydraulic retention 

time were not collected. Although there are techniques for data imputation, when the values are 

not randomly missing the mechanisms should be studied beforehand increasing the complexity 

of the study. It is recommended when studying potential predictors for microbial removal to 

minimise the occurrence of missing values. Furthermore, to decrease the sources of uncertainty, 

it is preferable to study a single plant with a larger dataset than a number of plants with small 

datasets each.     

10.1.4.2 Elicitation 

Eliciting expert judgment may appear simple as it involves discussions with experts and 

requesting estimated values for a particular problem. However, elicitation is a complex topic 

which requires preparation from both the interviewer and the domain expert. There are a number 

of techniques which seek to avoid common expert biases. Elicitation is usually a lengthy process 

which requires several hours or even days communicating to the domain experts. Elicitation was 

successfully employed in Chapter 8 to study the hazardous events associated to sensor failures 

during UV disinfection. Another case study was prepared to develop the BN structure to analyse 

the impacts associated to reverse osmosis performance. The general model was visualised in a 

structured fashion using the diagram in Figure 10-2. The elicitation process consisted of asking a 

series of questions, such as: 

• How does the system remove pathogens? 
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• What operational settings, inputs can affect pathogen removal performance of the 

system? 

• What impacts can affect pathogen removal? (5 most important) 

• What measurements and how they are used in this system to (indirectly) check pathogen 

removal? 

• What impacts can affect these measurements? 

• How do operators or the SCADA react to deviations on the measurements related to 

pathogen removal? 

• What impacts can affect the interpretation of results? 

• What is the understood relationship between monitoring and performance? 

The interviews included an operator and a plant manager each one working on different water 

reuse plants in New South Wales (one for industrial reuse and the other for discharge into the 

river and subsequent downstream potable use). One of the main encountered problems was that 

even though pathogen removal was important during the process operation, it was not directly 

considered or related to changes in operational conditions. Also, the analysed systems had almost 

zero non-compliance, so there were limited examples of potential impacts affecting its 

performance. As a consequence, it was difficult to obtain information about hypothetical 

hazardous scenarios and their effect on the system. It was believed that other reasons for the 

difficulty in developing the model was the purpose of the plants’ operation. None of these two 

plants had a direct potable use objective so the health risks associated to pathogens were not of 

primary importance. In general, each plant also works in different ways depending on the required 

water quality, type of configuration and logistics. Considering the problems encountered in this 

case study, an alternative strategy to obtain hazardous events information from experts should be 

used. An optional approach would be to develop a thorough list of the potential impacts obtained 

from technical literature and membrane systems suppliers. Then, such list can be used to ask 

experts working on treatment plants, whether those events apply or not on a particular process 

operation. The experts can also provide information about how the impacts relate to each other 

and operational variables. Membrane systems are particularly challenging for this type of 

modelling approach because it is difficult to diagnose and detect failures. Furthermore, there are 

no general established tools to efficiently detect pathogen breaches. Expert elicitation is an 

important field within BNs and should also be considered as a valid data input for the models. 

Further investigation of the applicability of elicited expert knowledge on BNs for water treatment 

risk analysis is recommended.  
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10.2 Recommendations for future work 

The work presented in this thesis has described investigations of the use of BNs and Bayesian 

methods for validation and reliability assessment on water and wastewater treatment processes. 

In doing so, numerous additional avenues for future research have been identified considering 

other aspects of reliability and knowledge gaps derived from this investigation. These encompass 

a broad range of areas including analysis of the various types of risks (i.e. not only microbial 

risks), use of Bayesian networks for data mining, impact of degraded states on performance, 

investigation of sensor performances, application of soft systems in multi-barrier systems, 

incorporation of human reliability assessment and anomaly detection. 

10.2.1 Other types of risks 

In this thesis, the focus was on reduction of pathogenic risks through various water treatment 

processes that are increasingly used for water reuse applications. The potential applications of 

Bayesian analysis tools however are much more extensive, including other types of risks and 

processes which operate indirectly. For example, for the water reuse sector, relevant risks that 

could be similarly investigated include organisational risks, trace chemical risks, and loss of 

reputation risks.  

10.2.2 Bayesian networks for data mining 

Understanding how the variables interact in a system is crucial to identifying the most important 

factors and optimising processes. In the water industry sector, large amount of data is generated 

and archived every day, sometimes without giving additional value. BNs are practical tools for 

discovering and characterising associations between variables in a system or process. Dedicated 

algorithms have been developed to deal with structure learning and parameter learning. In this 

thesis, structure learning algorithms were not fully explored, except from Chapter 4 in which 

some structure learning algorithms were tested. However, there are greater opportunities within 

the water industry sector to exploit all the features of BNs. These models could be used to improve 

risk management practices which could be based on data-driven approaches.      

10.2.3 Impact of degraded states on performance 

Performance of treatment systems is usually studied under normal operating conditions without 

considering potential degraded states or hazardous conditions. The work presented in this thesis 

studied the impact of operational variables (Chapter 4, 6 and 7) and ageing (Chapter 5) on 

performance. However, there are still knowledge gaps about the effect of software failure and 
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degraded hardware conditions on removal efficiency. In this case it is important to investigate 

whether the impacts have an effect over the magnitude and/or variability of the performance. 

Collecting data from multiple plants having different equipment qualities would provide valuable 

information in the development of empirical models to understand the effect of degradation.   

10.2.4 Sensor performance 

Sensors are fundamental for correctly monitoring the performance of a treatment system. In 

Chapter 8, sensor performances were used to investigate a hazardous event. In this case, expert 

elicited data were used to derive the parameters of the BN. However, real data should be used if 

a particular system requires evaluation.  Because only specific sensor failures can potentially 

affect specific hazardous events, the frequency of the occurrence of each failure mode needs to 

be recorded. Additional information to evaluate sensor performance includes false positive rates 

and false negative rates. For example, during porous membrane filtration, when a direct integrity 

test (e.g. pressure decay test) result is higher than a certain threshold, it triggers further inspection 

such as sonic testing. Any of these tests would not have a hundred percent success rate of 

detection. Therefore, there may be instances where failures in membranes are inadvertent. Further 

investigations in this area are recommended.    

10.2.5 Application of soft systems to assess multi-barrier reliability impacts  

A number of cases were analysed to identify novel applications of Bayesian methods to validation 

and reliability analysis. From the point of view of reliability of treatment systems, an important 

future work would be the development of models to study the impacts affecting a multi-barrier 

system (Figure 10-1). Work presented in Chapter 9 showed how a hypothetical common cause 

impact can affect the performance of the system. Investigating what types of impacts can affect 

barriers simultaneously is important for hazardous events analysis. In such models, impacts on 

the treatment performance and indicators should be included. However, considering the 

complexity of the problem and the limited data available, soft systems could be a solution. Soft 

systems can be used to capture high level interactions without the need of a detailed causal 

analysis involving all components (Fenton & Neil, 2012). They may incorporate organisation 

culture, resources, processes, and procedures among others. These high level aspects have been 

considered as important causal latent factors that have produced accidents in the past. These 

factors can inactivate barriers and have an impact on multiple barriers simultaneously. Finding 

correct indicators for system performance is also crucial to reliably estimating the state of a system 

at any point of time. These system performance indicators can be operational indicator, but also 

be higher level indicators, for example similar to key performance indicators. Such indicators 
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could reflect the maturity of the organisation in terms of management of risk, operational control, 

training of operators, quality of crucial equipment, quality of maintenance. It is important to 

incorporate as well any potential associations between the barrier performances. These are 

important as they can affect the magnitude or variability of the risks. 

 

Figure 10-1: Proposed multi-barrier reliability model  

 

10.2.6 Incorporation of human reliability assessment 

Given the importance of people to the reliability of water reuse systems during design, operation 

and the interpretation of monitoring data, human reliability assessment should be of primary 

concern. Although human reliability analysis has progressed and evolved over the years, using 

some of the older types of analyses would be a large step ahead and an important start that can 

facilitate more advanced human reliability analysis in the future. Because human reliability 

analysis is an area of rapid progress it seems desirable to develop improved human reliability 

models for water treatment systems. In this manner the gap between what is currently being done 

in the industry and what is required to be done does not continue widening.  

A suggested framework is presented in Figure 10-2 to represent the importance of human 

reliability in the flow of information in a treatment system. The model incorporates input and 

output information, impacts and feedbacks. The three blocks represent the main components 

during measurement of a parameter and the subsequent resulting action. The system provides a 

barrier against specific hazards. Measurement refers to the sensors that use the system real outputs 

to provide a measured value which could be precise or biased. Interpretation refers to machine or 

human interpretation after the sensors have provided the measurements. The interpretation block 
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generates a reaction which can then be used as feedback for the system or measurement blocks. 

Human reliability is crucial in the interpretation block because it can produce an erroneous 

reaction when hazardous events are occurring. It is important to study what factors can impact the 

human interpretation of measurements. In this regard, BNs have also been found to potentially 

provide valuable support for human reliability analysis due to its ability to systematise problem 

scoping and quantification. 

 

Figure 10-2: Proposed flow of information model for human reliability analysis 

10.2.7 Anomaly detection 

Plant managers and operators commonly face the problem of how to interpret data to make 

decisions within process operation. This process involves processing a large amount of data and 

analysing trends. However, incorrect behaviour is not always evident and only statistical tools 

can assist diagnosing some problems. Bayesian networks have been used in the past to detect 

when there is an incorrect behaviour in a system. This approach involves detecting when a very 

unlikely or conflicting outcome is occurring. The network in this case could be trained with data 

corresponding to a system working under normal conditions and then inference is performed with 

online data. The likelihood of the outcomes can then be calculated. Such methodology can be 

used in any setting within the water reuse system to identify poor performance and minimise 

hazardous events.     
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10.2.8 Opportunities and barriers for the implementation of BNs in regulatory 

practice 

Scoping how to implement BNs and Bayesian methods as regular tools to calculate and 

characterise risks should be considered as the next step for a more robust risk management. 

Understanding the opportunities and barriers for their implementation feasibility should be 

investigated. Although some opportunities are clear including defensible decision making, better 

communication and transparency, there are still a number of barriers and questions which need to 

be addressed. These barriers include perceived lack of incentives, need for expertise and 

collection of required data. Finding the right incentives in the industry is fundamental to 

encourage the use of more sophisticated tools. These incentives can involve the allocation of 

higher LRV credits when more robust tools are used, inclusion of tools in national guidelines and 

technical advice from regulators. Expertise in system functioning and model construction is 

required to convince interested parties that BNs and Bayesian methods are a valuable approach. 

Collection and interpretation of data are important for effective risk management. However, some 

data are not easily accessible and are only available if time and resources are allocated for their 

collection. Considering this issue, it is highly relevant to investigate the benefits of more 

appropriate data management and associated costs.  

It is to be expected that variable local conditions and regulatory paradigms will lead to variable 

implementation outcomes. As such, assessment of the opportunities and barriers for 

implementation of BNs in regulatory practice can be expected to be undertaken in multiple 

jurisdictions worldwide. Some aspect of implementation may prove to be more appropriate and 

effective in some parts of the world, while other aspects are better suited to different geographic, 

social and regulatory environments.  

  

281



 

  

    

  

282



 

Chapter 11: References 

283



 

Adham, S., Gagliardo, P., Smith, D., Ross, D., Gramith, K. and Trussell, R. (1998) Monitoring 
the integrity of reverse osmosis membranes. Desalination, 119(1-3), 143-150. 

Aguilera, P., Fernández, A., Fernández, R., Rumí, R. and Salmerón, A. (2011) Bayesian networks 
in environmental modelling. Environmental Modelling & Software, 26(12), 1376-1388. 

Antony, A., Blackbeard, J. and Leslie, G. (2012) Removal efficiency and integrity monitoring 
techniques for virus removal by membrane processes. Critical Reviews in Environmental 
Science and Technology, 42(9), 891-933. 

APHA (2005) Standard Methods for the Examination of Water and Wastewater. Washington, 
DC, USA. 

Arkhangelsky, E., Kuzmenko, D. and Gitis, V. (2007) Impact of chemical cleaning on properties 
and functioning of polyethersulfone membranes. Journal of Membrane Science, 305(1–
2), 176-184. 

Asano, T., Burton, F., Leverenz, H., Tsuchihashi, R. and Tchobanoglous, G. (2007) Water Reuse: 
Issues, Technologies, and Applications. McGraw-Hill, New York. 

Assezat, C. (1989) Probabilistic reliability analysis for biological wastewater treatment plants. 
Water Science and Technology, 21(12), 1813-1816. 

Aven, T. (2012) Foundations of risk analysis. John Wiley & Sons, Hoboken, USA. 

AWWA and ASCE (2005) Water Treatment Plant Design. 4th Ed., McGraw-Hill, New York. 

Baig, A. A., Ruzli, R. and Buang, A. B. (2013) Reliability analysis using fault tree analysis: a 
review. International Journal of Chemical Engineering and Applications, 4(3), 169-173. 

Barbeau, B., Payment, P., Cle, B. and Pre, M. (2000) Evaluating the risk of infection from the 
presence of Giardia and Cryptosporidium in drinking water. Quantitative Microbiology, 
2(1), 37-54. 

Barca, E., Del Moro, G., De Sanctis, M., Mascolo, G., Passarella, G. and Di Iaconi, C. (2016) 
Managing the touristic pressure: performances prediction of an advanced biological 
system by means of regression trees. Biochemical Engineering Journal, 111, 43-53. 

Barlow, R. E. (1998) Engineering  Reliability. Society for Industrial and Applied Mathematics 
(SIAM), Philadelphia, Pennsylvania. 

Bayes Server.  (2017),Website: https://www.bayesserver.com/  Bayes Server Ltd. Bayesian 
network software,  Accessed: May 2017. 

Bearfield, G. and Marsh, W. (2005) Generalising event trees using Bayesian networks with a case 
study of train derailment. In: 24th International Conference on Computer Safety, 
Reliability, and Security (SAFECOMP) (Eds, Winther, R., Gran, B. A. and Dahll, G.) 
Springer, Fredrikstad, Norway, pp. 52-66. 

Beauchamp, N. (2008) Methods for estimating reliability of water treatment processes: an 
application to conventional and membrane technologies, A thesis presented to University 
of British Columbia, Vancouver. Degree: Master of Applied Science. 

284

https://www.bayesserver.com/


 

Beauchamp, N., Lence, B. J. and Bouchard, C. (2010) Technical hazard identification in water 
treatment using fault tree analysis. Canadian Journal of Civil Engineering, 37(6), 897-
906. 

Beaudequin, D., Harden, F., Roiko, A. and Mengersen, K. (2015a) Utility of Bayesian networks 
in QMRA-based evaluation of risk reduction options for recycled water. The Science of 
the Total Environment, 541, 1393-1409. 

Beaudequin, D., Harden, F., Roiko, A. and Mengersen, K. (2017) Potential of Bayesian networks 
for adaptive management in water recycling. Environmental Modelling & Software, 91, 
251-270. 

Beaudequin, D., Harden, F., Roiko, A., Stratton, H., Lemckert, C. and Mengersen, K. (2015b) 
Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian 
networks. Environment International, 80, 8-18. 

Beaudequin, D., Harden, F., Roiko, A., Stratton, H., Lemckert, C. and Mengersen, K. (2015c) 
Modelling microbial health risk of wastewater reuse: A systems perspective. 
Environment International, 84, 131-141. 

Bello, G. and Colombari, V. (1980) The human factors in risk analyses of process plants: The 
control room operator model ‘TESEO’. Reliability Engineering, 1(1), 3-14. 

Bieder, C., Le-Bot, P., Desmares, E., Bonnet, J. and Cara, F. (1998) MERMOS: Electricite de 
France (EDF) New Advanced HRA Method.  Springer-Verlag, New York. 

Blackmore, J., Wang, X., Wang, C.-H., Yum, K.-K., Diaper, C., Zhou, M. and McGregor, G. 
(2008) Risk assessment and management: a guide for integrated urban water systems, 
eWater Technical Report. eWater Cooperative Research Centre, Canberra. 

Bloom, N. (2006) Reliability Centered Maintenance: Implementation Made Simple. McGraw-
Hill, New York. 

Bobbio, A., Portinale, L., Minichino, M. and Ciancamerla, E. (2001) Improving the analysis of 
dependable systems by mapping fault trees into Bayesian networks. Reliability 
Engineering & System Safety, 71(3), 249-260. 

Book, G. (2012) Lessons learned from real world application of the bow-tie method. In: SPE 
Middle East Health, Safety, Security, and Environment Conference and Exhibition Abu 
Dhabi. 

Bourouni, K. (2013) Availability assessment of a reverse osmosis plant: Comparison between 
reliability block diagram and fault tree analysis methods. Desalination, 313, 66-76. 

Bradshaw, R. A., Illaszewicz, G. L. and Avrahamson, Y. G. (2013) Introducing layer of protection 
analysis for water safety risk assessments. Water Quality Research Journal of Canada, 
48(1), 76-84. 

Branch, A. (2016) Validation of membrane bioreactors for water recycling. A thesis in fulfilment 
of the requirements for the degree of Doctor of Philosophy, A thesis presented to UNSW, 
The University of New South Wales. Degree: PhD. 

Branch, A., Trinh, T., Carvajal, G., Leslie, G., Coleman, H. M., Stuetz, R. M., Drewes, J. E., 
Khan, S. J. and Le-Clech, P. (2016) Hazardous events in membrane bioreactors–Part 3: 

285



 

Impacts on microorganism log removal efficiencies. Journal of Membrane Science, 497, 
514-523. 

Brooks, L. E. and Field, K. G. (2016) Bayesian meta-analysis to synthesize decay rate constant 
estimates for common fecal indicator bacteria. Water research, 104, 262-271. 

Brown, L. C. and Mac Berthouex, P. (2002) Statistics for Environmental Engineers. CRC press, 
Boca Raton, Florida. 

Buffle, M.-O., Schumacher, J., Meylan, S., Jekel, M. and von Gunten, U. (2006) Ozonation and 
advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO•-scavengers on 
ozone decomposition and HO• generation. Ozone: Science and Engineering, 28(4), 247-
259. 

Burgman, M. (2005) Risks and Decisions for Conservation and Environmental Management. 
Cambridge University Press, Cambridge. 

Burlingame, G. A. and Chalker, R. T. (2017) Risk Management Is Vital to Providing Safe Water. 
Opflow, 43(8), 20-23. 

Cai, B., Liu, Y., Zhang, Y., Fan, Q. and Yu, S. (2013) Dynamic Bayesian networks based 
performance evaluation of subsea blowout preventers in presence of imperfect repair. 
Expert Systems with Applications, 40(18), 7544-7554. 

California Office of Administrative Law.  (2017),Website: 
https://govt.westlaw.com/calregs/Index?transitionType=Default&contextData=%28sc.D
efault%29  California Code of Regulations, Title 22: Social Security, Division 4: 
Environmental Health, Chapter 3: Water Recycling Criteria.,  Accessed: May 2017. 

Carvajal, G., Roser, D. J., Sisson, S. A., Keegan, A. and Khan, S. J. (2015) Modelling pathogen 
log10 reduction values achieved by activated sludge treatment using naïve and semi naïve 
Bayes network models. Water Research, 85, 304-315. 

Carvajal, G., Roser, D. J., Sisson, S. A., Keegan, A. and Khan, S. J. (2017) Bayesian belief 
network modelling of chlorine disinfection for human pathogenic viruses in municipal 
wastewater. Water Research, 109, 144-154. 

Chaudhry, R. M., Hamilton, K. A., Haas, C. N. and Nelson, K. L. (2017) Drivers of microbial 
risk for direct potable reuse and de facto reuse treatment schemes: the impacts of source 
water quality and blending. International Journal of Environmental Research and Public 
Health, 14(6), 635. 

Cheon, S.-P., Kim, S., Kim, J. and Kim, C. (2008) Learning Bayesian networks based diagnosis 
system for wastewater treatment process with sensor data. Water Science and 
Technology, 58(12), 2381-2393. 

Childress, A. E., Le-Clech, P., Daugherty, J. L., Chen, C. and Leslie, G. L. (2005) Mechanical 
analysis of hollow fiber membrane integrity in water reuse applications. Desalination, 
180(1–3), 5-14. 

Chong, H. and Walley, W. J. (1996) Rule-based versus probabilistic approaches to the diagnosis 
of faults in wastewater treatment processes. Artificial Intelligence in Engineering, 10(3), 
265-273. 

286

https://govt.westlaw.com/calregs/Index?transitionType=Default&contextData=%28sc.Default%29
https://govt.westlaw.com/calregs/Index?transitionType=Default&contextData=%28sc.Default%29


 

Chow, C. and Liu, C. (1968) Approximating discrete probability distributions with dependence 
trees. Information Theory, IEEE Transactions on Information Theory, 14(3), 462-467. 

Chryssolouris, G., Lee, M. and Ramsey, A. (1996) Confidence interval prediction for neural 
network models. Neural Networks, IEEE Transactions on Neural Networks, 7(1), 229-
232. 

Clark, R. M., Read, E. J. and Hoff, J. C. (1989) Analysis of inactivation of Giardia lamblia by 
chlorine. Journal of Environmental Engineering, 115(1), 80-90. 

Clark, R. M. and Regli, S. (1993) Development of Giardia C· t values for the surface water 
treatment rule. Journal of Environmental Science & Health Part A, 28(5), 1081-1097. 

Cloete, S., Horberry, T. and Head, B. (2013) Urban water system safety: A human factors 
investigation. Water: Journal of the Australian Water Association, 40(8), 56. 

Coble, P. G. (1996) Characterization of marine and terrestrial DOM in seawater using excitation-
emission matrix spectroscopy. Marine Chemistry, 51(4), 325-346. 

Contos, A. (2014) Narrandera Shire Council Drinking Water Management System.Website: 
http://www.narrandera.nsw.gov.au/cp_content/resources/06.1%20-
%20Drinking%20Water%20Management%20System%20-%20ATTACHMENT.PDF   
Accessed: June 2017. 

Cooke, R., Kurowicka, D., Hanea, A., Morales, O., Ababei, D., Ale, B. and Roelen, A. (2007) 
Continuous/discrete non parametric bayesian belief nets with unicorn and uninet. In: 
Proceedings of Mathematical Methods in Reliability, Glasgow. 

Cooper, G. F. and Herskovits, E. (1992) A Bayesian method for the induction of probabilistic 
networks from data. Machine Learning, 9(4), 309-347. 

Cooper, S. E., Wreathall, J., Thompson, C., Drouin, M. and Bley, D. (1996) Knowledge-base for 
the new human reliability analysis method, A Technique for Human Error Analysis 
(ATHEANA), Brookhaven National Lab., Upton, NY (United States). 

Craik, S. A., Weldon, D., Finch, G. R., Bolton, J. R. and Belosevic, M. (2001) Inactivation of 
Cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation. 
Water Research, 35(6), 1387-1398. 

Crowl, D. A. (2001) Layer of Protection Analysis: Simplified Process Risk Assessment. Center 
for Chemical Process Safety of the American Institute of Chemical Engineers, New York. 

Cyna, B. (1997) Reliability analyses of water treatment plants. Water Supply, 15(2), 65-74. 

Damikouka, I., Katsiri, A. and Tzia, C. (2007) Application of HACCP principles in drinking water 
treatment. Desalination, 210(1-3), 138-145. 

De Dianous, V. and Fiévez, C. (2006) ARAMIS project: A more explicit demonstration of risk 
control through the use of bow–tie diagrams and the evaluation of safety barrier 
performance. Journal of Hazardous Materials, 130(3), 220-233. 

Démotier, S., Denœux, T. and Schön, W. (2003) Risk assessment in drinking water production 
using belief functions. In: Symbolic and Quantitative Approaches to Reasoning with 
Uncertainty Springer, 319-331. 

287

http://www.narrandera.nsw.gov.au/cp_content/resources/06.1%20-%20Drinking%20Water%20Management%20System%20-%20ATTACHMENT.PDF
http://www.narrandera.nsw.gov.au/cp_content/resources/06.1%20-%20Drinking%20Water%20Management%20System%20-%20ATTACHMENT.PDF


 

Démotier, S., Odeh, K., Schön, W., Charles, P., Footohi, F. and Allioux, J. (2002) Risk assessment 
for drinking water production process. In: Proceedings of European Conference on 
System Dependability and Safety, Lyon, France, pp. 544-550. 

Dhillon, B. and Liu, Y. (2006) Human error in maintenance: a review. Journal of Quality in 
Maintenance Engineering, 12(1), 21-36. 

Dhillon, B. S. (2004) Reliability, Quality, and Safety for Engineers. CRC Press, Boca Raton. 

Dhillon, B. S. and Balbir, S. D. (1999) Design Reliability: Fundamentals and Applications. CRC 
Press, Boca Raton. 

Dimmock, N. (2000) The Application of HACCP to the Water Industry. In: Proceedings of the 
3rd Queensland Environmental Conference: Sustainable Environmental Solutions for 
Industry and Government; a Focus of Sound, Practical and Economically Viable 
Solutions for Industry and Government Environmental Engineering Society (Queensland 
Chapter), pp. 311. 

Dominguez-Chicas, A. and Scrimshaw, M. D. (2010) Hazard and risk assessment for indirect 
potable reuse schemes: An approach for use in developing Water Safety Plans. Water 
Research, 44(20), 6115-6123. 

Donald, M. R. and Mengersen, K. L. (2014) Methods for constructing uncertainty intervals for 
queries of Bayesian nets. Australian & New Zealand Journal of Statistics, 56(4), 407-
427. 

Dotan, P., Tal, A. and Arnon, S. (2017) A simple model for estimating the concentrations of 
natural estrogens in raw wastewater. Science of The Total Environment, 575, 588-594. 

Dowell Iii, A. M. (1998) Layer of protection analysis for determining safety integrity level. Isa 
Transactions, 37(3), 155-165. 

Drewes, J. and Khan, S. (2010) Water reuse for drinking water augmentation, Chapter 16. In: 
Water Quality & Treatment: A Handbook on Drinking Water. (Ed. Edzwald, J. K.) 
McGraw-Hill, AWWA, New York. 

Duan, R., Tu, J. and Dong, D. (2010) A novel hybrid approach of fault tree and Bayesian networks 
for fault diagnosis. Journal of Computational Information Systems, 6(11), 3605-3612. 

Durga Rao, K., Gopika, V., Sanyasi Rao, V., Kushwaha, H., Verma, A. K. and Srividya, A. (2009) 
Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety 
assessment. Reliability Engineering & System Safety, 94(4), 872-883. 

Dürrenmatt, D. J. and Gujer, W. (2012) Data-driven modeling approaches to support wastewater 
treatment plant operation. Environmental Modelling & Software, 30, 47-56. 

Eftim, S. E., Hong, T., Soller, J., Boehm, A., Warren, I., Ichida, A. and Nappier, S. P. (2017) 
Occurrence of norovirus in raw sewage–A systematic literature review and meta-analysis. 
Water Research, 111, 366-374. 

Eisenberg, D., Soller, J., Sakaji, R. and Olivieri, A. (2001) A methodology to evaluate water and 
wastewater treatment plant reliability. Water Science & Technology, 43(10), 91-99. 

288



 

Embrey, D. (1984) Development of slim-maud: a multi-attribute utility approach to human 
reliability evaluation (NUREG/CP--0048-Vol6). In: Proceedings of the eleventh water 
reactor safety research information meeting. Washington, DC. 

enHealth (2012) Environmental Health Risk Assessment: Guidelines for assessing human health 
risks from environmental hazards, Environmental Health Standing Committee (enHealth) 
Australia. 

Ericson, C. A. (2005) Hazard Analysis Techniques for System Safety. John Wiley & Sons, Inc., 
Hoboken, New Jersey. 

Ericson, C. A. (2011) Fault Tree Analysis Primer. CreateSpace Inc., Charleston, NC. 

Fang, F., Ni, B., Li, W., Sheng, G. and Yu, H. (2011) A simulation-based integrated approach to 
optimize the biological nutrient removal process in a full-scale wastewater treatment 
plant. Chemical Engineering Journal, 174(2), 635-643. 

Fayyad, U. M. and Irani, K. B. (1993) Multi-interval discretization of continuous-valued attributes 
for classification learning. In: Proc. IJCAI93, Chambery, France, pp. 1022-1027. 

Fenton, N. and Neil, M. (2012) Risk Assessment and Decision Analysis with Bayesian Networks. 
CRC Press, Boca Raton, Florida. 

Ferdous, R., Khan, F., Sadiq, R., Amyotte, P. and Veitch, B. (2013) Analyzing system safety and 
risks under uncertainty using a bow-tie diagram: An innovative approach. Process Safety 
and Environmental Protection, 91(1), 1-18. 

Fewtrell, L. and Bartram, J. (2001) Water Quality: Guidelines, Standards, and Health: Assessment 
of Risk and Risk Management for Water-Related Infectious Disease. IWA Publishing, 
London, UK. 

Fitzgerald, S., Owens, C., Angles, M., Hockaday, D., Blackmore, M. and Ferguson, M. (2017) 
Reframing risk: a risk pathway method for identifying improvement through control and 
threat analysis. Water Science and Technology: Water Supply, ws2017098. 

Flapper, T., Campbell, B., Deere, D., Blackbeard, J. and Halliwell, D. (2010) Quantifying 
pathogen log reduction in Australian activated sludge plants. Water (Australian Water 
Association), February, 56-62. 

Flapper, T., Campbell, B., O'Connor, N. and Keegan, A. (2012) Quantification of pathogen 
removal in Australian Activated sludge plants (Phase 1 and 2).Website: 
http://clearwater.asn.au//user-data/research-projects/swf-files/72m---7104-
quantification-of-pathogen-removal-in-activated-sludge-plant_final_report_.pdf   
Accessed: January 2015. 

Flyborg, L., Björlenius, B., Ullner, M. and Persson, K. M. (2017) A PLS model for predicting 
rejection of trace organic compounds by nanofiltration using treated wastewater as feed. 
Separation and Purification Technology, 174, 212-221. 

Forss, M. and Ander, H. (2011) Microbiological Risk Assessment of the Water Reclamation Plant 
in Windhoek, A thesis presented to Department of Civil and Environmental Engineering, 
Division of Water Environment Technology, Chalmers University of Technology 
Göteborg, Sweden. Degree: Master of Science. 

289

http://clearwater.asn.au/user-data/research-projects/swf-files/72m---7104-quantification-of-pathogen-removal-in-activated-sludge-plant_final_report_.pdf
http://clearwater.asn.au/user-data/research-projects/swf-files/72m---7104-quantification-of-pathogen-removal-in-activated-sludge-plant_final_report_.pdf


 

Francy, D. S., Stelzer, E. A., Bushon, R. N., Brady, A. M., Williston, A. G., Riddell, K. R., 
Borchardt, M. A., Spencer, S. K. and Gellner, T. M. (2012) Comparative effectiveness of 
membrane bioreactors, conventional secondary treatment, and chlorine and UV 
disinfection to remove microorganisms from municipal wastewaters. Water Research, 
46(13), 4164-4178. 

Frank, E., Trigg, L., Holmes, G. and Witten, I. H. (2000) Technical note: Naive Bayes for 
regression. Machine Learning, 41(1), 5-25. 

Fynn, C., Basson, M., Sinkoff, S., Moubray, A. and Nadeau, R. (2007) Applicability of 
Reliability-Centered Maintenance in the Water Industry. American Water Works 
Association, Denver, Colorado. 

Gale, P. (2002) Using risk assessment to identify future research requirements. Journal of the 
American Water Works Association, 94(9), 30-2, 34, 36. 

Gale, P. (2003) Using event trees to quantify pathogen levels on root crops from land application 
of treated sewage sludge. Journal of Applied Microbiology, 94(1), 35-47. 

Gamage, S., Gerrity, D., Pisarenko, A. N., Wert, E. C. and Snyder, S. A. (2013) Evaluation of 
process control alternatives for the inactivation of Escherichia coli, MS2 bacteriophage, 
and Bacillus subtilis spores during wastewater ozonation. Ozone: Science & Engineering, 
35(6), 501-513. 

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2014) Bayesian Data Analysis. Chapman 
& Hall/CRC Boca Raton, FL, USA. 

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian 
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(6), 721-741. 

Gerba, C. P., Naranjo, J. E. and Hansan, M. N. (1997) Evaluation of a combined portable reverse 
osmosis and iodine resin drinking water treatment system for control of enteric 
waterborne pathogens. Journal of Environmental Science & Health Part A: 
Environmental Science and Engineering and Toxicology 32(8), 2337-2354. 

Gerrity, D., Gamage, S., Jones, D., Korshin, G. V., Lee, Y., Pisarenko, A., Trenholm, R. A., Von 
Gunten, U., Wert, E. C. and Snyder, S. A. (2012) Development of surrogate correlation 
models to predict trace organic contaminant oxidation and microbial inactivation during 
ozonation. Water Research, 46(19), 6257-6272. 

Gijsbertsen-Abrahamse, A. J., Cornelissen, E. R. and Hofman, J. A. M. H. (2006) Fiber failure 
frequency and causes of hollow fiber integrity loss. Desalination, 194(1–3), 251-258. 

Goldstein, H., Browne, W. and Rasbash, J. (2002) Partitioning variation in multilevel models. 
Understanding Statistics: Statistical Issues in Psychology, Education, and the Social 
Sciences, 1(4), 223-231. 

Governal, R. and Gerba, C. (1999) Removal of MS-2 and PRD-1 bacteriophages from an 
ultrapure water system. Journal of Industrial Microbiology & Biotechnology, 23(3), 166-
172. 

290



 

Gowland, R. (2006) The accidental risk assessment methodology for industries (ARAMIS)/layer 
of protection analysis (LOPA) methodology: A step forward towards convergent 
practices in risk assessment? Journal of Hazardous Materials, 130(3), 307-310. 

GPA Engineering, SA Water, AllWater (2011), Glenelg to Adelaide Parklands Recycled Water 
System (GAP). Operations Manual, Adelaide. 

Guldenmund, F., Hale, A., Goossens, L., Betten, J. and Duijm, N. J. (2006) The development of 
an audit technique to assess the quality of safety barrier management. Journal of 
Hazardous Materials, 130(3), 234-241. 

Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J.-p., Kim, J. H. and Cho, K. H. (2015a) 
Prediction of effluent concentration in a wastewater treatment plant using machine 
learning models. Journal of Environmental Sciences, 32, 90-101. 

Guo, L., Zhao, Y. and Cui, F.-y. (2015b) A new fault diagnosis method based on Bayesian 
network model in a wastewater treatment plant of northern China. Desalination and 
Water Treatment, 1-10. 

Gyürék, L. L. and Finch, G. R. (1998) Modeling water treatment chemical disinfection kinetics. 
Journal of Environmental Engineering, 124(9), 783-793. 

Haas, C. N. (2004) Neural networks provide superior description of Giardia lamblia inactivation 
by free chlorine. Water Research, 38(14), 3449-3457. 

Haas, C. N. and Heller, B. (1989) Statistics of microbial disinfection. Water Science and 
Technology, 21(3), 197-201. 

Haas, C. N., Rose, J. B. and Gerba, C. P. (2014) Quantitative Microbial Risk Assessment. 2nd 
Ed., Wiley, New Jersey. 

Haas, C. N. and Trussell, R. R. (1998) Frameworks for assessing reliability of multiple, 
independent barriers in potable water reuse. Water Science and Technology, 38(6), 1-8. 

Hadjimichael, A., Comas, J. and Corominas, L. (2016) Do machine learning methods used in data 
mining enhance the potential of decision support systems? A review for the urban water 
sector. AI Communications, (Preprint), 1-10. 

Haimi, H., Mulas, M., Corona, F. and Vahala, R. (2013) Data-derived soft-sensors for biological 
wastewater treatment plants: An overview. Environmental Modelling & Software, 47, 88-
107. 

Hajeeh, M. and Chaudhuri, D. (2000) Reliability and availability assessment of reverse osmosis. 
Desalination, 130(2), 185-192. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H. (2009) The 
WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 
10-18. 

Hamada, M. S., Wilson, A. G., Reese, C. S. and Martz, H. F. (2008) Bayesian Reliability. 
Springer, New York. 

291



 

Hamilton, P. D., Gale, P. and Pollard, S. J. (2006) A commentary on recent water safety initiatives 
in the context of water utility risk management. Environment International, 32(8), 958-
966. 

Hanea, A., Napoles, O. M. and Ababei, D. (2015) Non-parametric Bayesian networks: Improving 
theory and reviewing applications. Reliability Engineering & System Safety, 144, 265-
284. 

Hannaman, G., Spurgin, A. and Lukic, Y. (1984) Human Cognitive Reliability Model for PRA 
Analysis, EPRI-RP-2170-3. Electronic Power Research Institute, Palo Alto, CA. 

Harshman, R. A. (1970) Foundations of the PARAFAC procedure: Models and conditions for an" 
explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84. 

Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R. and Rose, 
J. B. (2005) Validity of the indicator organism paradigm for pathogen reduction in 
reclaimed water and public health protection. Applied and Environmental Microbiology, 
71(6), 3163-3170. 

Havelaar, A. (1994) Application of HACCP to drinking water supply. Food Control, 5(3), 145-
152. 

He, S. and Li, J. (2011) Confidence Intervals for Neural Networks and Applications to Modeling 
Engineering Materials. INTECH Open Access Publisher, Rijeka, Croatia. 

Health Canada (2007), Canadian Guidelines for Household Reclaimed Water for Use in Toilet 
and Urinal Flushing, Working Group on Domestic Reclaimed Water of the Federal-
Provincial-Territorial Committee on Health and the Environment, Ottawa, Ontario. 

Hellier, K. (2003) HACCP at Melbourne Water–Implementation from catchment to tap. Water 
Safety, 29. 

Helsel, D. R. (2005) Nondetects and Data Analysis. John Wiley and Sons, New York. 

Hokstad, P., Røstum, J., Sklet, S., Rosén, L., Pettersson, T., Lindhe, A., Sturm, S., Beuken, R., 
Kirchner, D. and Niewersch, C. (2009) Methods for risk analysis of drinking water 
systems from source to tap–Guidance report on Risk Analysis, Techneau Report, 
SINTEF, Chalmers University of Technology, TZW, KWR, RWTH Aachen, EU. 

Hollnagel, E. (1998) Cognitive Reliability and Error Analysis Method (CREAM). Elsevier, 
Amsterdam. 

Hollnagel, E. (2000) Human reliability analysis. In: International Encyclopaedia of Ergonomics 
and Human Factors (Ed. Karwowski, W.) CRC Press., Boca Raton. 

Honaker, J., King, G. and Blackwell, M. (2011) Amelia II: A program for missing data. Journal 
of Statistical Software, 45(7), 1-47. 

Hong, S., Miller, F. and Taylor, J. (2001) Assessing pathogen removal efficiency of 
microfiltration by monitoring membrane integrity. Water Science and Technology: Water 
Supply, 1(4), 43-48. 

Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer feedforward networks are universal 
approximators. Neural Networks, 2(5), 359-366. 

292



 

Howard, G. (2003) Water safety plans for small systems: a model for applying HACCP concepts 
for cost-effective monitoring in developing countries. Water Science and Technology, 
47(3), 215-220. 

Hrudey, S. E. and Hrudey, E. J. (2005) Safe Drinking Water: Lessons from Recent Outbreaks in 
Affluent Nations. Wiley Online Library, New York. 

Huang, Z., Luo, J., Li, X. and Zhou, Y. (2009) Prediction of effluent parameters of wastewater 
treatment plant based on improved least square support vector machine with PSO. In: 
Information Science and Engineering (ICISE), 2009 1st International Conference on 
IEEE, pp. 4058-4061. 

Hübner, U., von Gunten, U. and Jekel, M. (2015) Evaluation of the persistence of transformation 
products from ozonation of trace organic compounds–A critical review. Water Research, 
68, 150-170. 

Hudson, N., Baker, A. and Reynolds, D. (2007) Fluorescence analysis of dissolved organic matter 
in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 
631-649. 

IEC (2008) IEC 61078 Analysis techniques for system reliability—Reliability block diagram and 
Boolean methods.  Standards Australia GPO, Australia. 

IEC/ISO (2009) Risk management–Risk assessment techniques. IEC/ISO 31010: 2009-11 
IEC/ISO, Switzerland. 

Ireson, W. G., Coombs, C. F. and Moss, R. Y. (1996) Handbook of Reliability Engineering and 
Management. Perennial (HarperCollins), New York. 

ISO (2005) ISO 9000 Quality management systems — Fundamentals and vocabulary (Third 
edition).  ISO, Switzerland. 

ISO (2009) Guide, ISO 73: 2009. Risk management—Vocabulary.  ISO, Switzerland. 

ISO (2013a) ISO 12489 Petroleum, petrochemical and natural gas industries — Reliability 
modelling and calculation of safety systems.  ISO Switzerland. 

ISO (2013b) ISO 14189 Water quality — Enumeration of Clostridium perfringens — Method 
using membrane filtration.  ISO Switzerland. 

ISO/TR (2013) Risk management–Guidance for the implementation of ISO 31000, technical 
report.  ISO/TR, Switzerland. 

Ito, T., Kato, T., Hasegawa, M., Katayama, H., Ishii, S., Okabe, S. and Sano, D. (2016) Evaluation 
of virus reduction efficiency in wastewater treatment unit processes as a credit value in 
the multiple-barrier system for wastewater reclamation and reuse. Journal of Water and 
Health, 14(6), 879-889. 

Ito, T., Kato, T., Takagishi, K., Okabe, S. and Sano, D. (2015) Bayesian modeling of virus 
removal efficiency in wastewater treatment processes. Water Science and Technology, 
72(10), 1789-1795. 

Jackson, C. (2017) Reliability Engineering and Management. Amazon Digital Services LLC. 

293



 

Jagals, C. and Jagals, P. (2004) Application of HACCP principles as a management tool for 
monitoring and controlling microbiological hazards in water treatment facilities. Water 
Science and Technology, 50(1), 69-76. 

Janes, K. R. and Musilek, P. (2007a) Modeling the disinfection of waterborne bacteria using 
neural networks. Environmental Engineering Science, 24(4), 471-482. 

Janes, K. R. and Musilek, P. (2007b) Neural network models of Cryptosporidium parvum 
inactivation by chlorine dioxide and ozone. Journal of Environmental Engineering and 
Science, 6(5), 477-482. 

Jensen, F., Kjærulff, U. B., Lang, M. and Madsen, A. L. (2002) Hugin-the tool for bayesian 
networks and influence diagrams. Probabilistic Graphical Models, 212-221. 

Jensen, F. V. and Nielsen, T. D. (2007) Bayesian Networks and Decision Graphs. Springer, 
Berlin. 

Jensen, H., Thomas, K. and Sharp, D. (1980) Inactivation of coxsackieviruses B3 and B5 in water 
by chlorine. Applied and Environmental Microbiology, 40(3), 633-640. 

Joe, H. (2014) Dependence modeling with copulas. CRC Press, Boca Raton, Florida. 

Kaplan, S. and Garrick, B. J. (1981) On the quantitative definition of risk. Risk Analysis, 1(1), 11-
27. 

Kato, T., Kobayashi, A., Ito, T., Miura, T., Ishii, S., Okabe, S. and Sano, D. (2016) Estimation of 
concentration ratio of indicator to pathogen-related gene in environmental water based 
on left-censored data. Journal of Water and Health, 14(1), 14-25. 

Kato, T., Miura, T., Okabe, S. and Sano, D. (2013) Bayesian modeling of enteric virus density in 
wastewater using left-censored data. Food and Environmental Virology, 5(4), 185-193. 

Keegan, A., Wati, S. and Robinson, B. (2012) Chlor(am)ine disinfection of human pathogenic 
viruses in recycled waters. Smart Water Funded Report, SWF 62M-2114.,Website: 
http://clearwater.asn.au/user-data/research-projects/swf-files/62m---2114-chlorine-
disinfection-of-human-pathogenic-viruses-_final_report.pdf   Accessed: May 2015. 

Keller, W. and Modarres, M. (2005) A historical overview of probabilistic risk assessment 
development and its use in the nuclear power industry: a tribute to the late Professor 
Norman Carl Rasmussen. Reliability Engineering & System Safety, 89(3), 271-285. 

Kelley, D. L. and Allison, R. C. (1979) Fault tree analysis for wastewater treatment. Journal of 
the Environmental Engineering Division, 105(6), 1105-1112. 

Kelley, D. L. and Allison, R. C. (1981) Fault tree analysis and treatment plant instrumentation. 
Journal Water Pollution Control Federation, 43-47. 

Khakzad, N. (2015) Application of dynamic Bayesian network to risk analysis of domino effects 
in chemical infrastructures. Reliability Engineering & System Safety, 138, 263-272. 

Khakzad, N., Khan, F. and Amyotte, P. (2011) Safety analysis in process facilities: Comparison 
of fault tree and Bayesian network approaches. Reliability Engineering & System Safety, 
96(8), 925-932. 

294

http://clearwater.asn.au/user-data/research-projects/swf-files/62m---2114-chlorine-disinfection-of-human-pathogenic-viruses-_final_report.pdf
http://clearwater.asn.au/user-data/research-projects/swf-files/62m---2114-chlorine-disinfection-of-human-pathogenic-viruses-_final_report.pdf


 

Khakzad, N., Khan, F. and Amyotte, P. (2013a) Dynamic safety analysis of process systems by 
mapping bow-tie into Bayesian network. Process Safety and Environmental Protection, 
91(1), 46-53. 

Khakzad, N., Khan, F. and Amyotte, P. (2013b) Quantitative risk analysis of offshore drilling 
operations: A Bayesian approach. Safety Science, 57, 108-117. 

Khan, F. I. and Abbasi, S. (1998) Techniques and methodologies for risk analysis in chemical 
process industries. Journal of Loss Prevention in the Process Industries, 11(4), 261-277. 

Khan, S. and McDonald, J. (2010) Quantifying human exposure to contaminants for multiple-
barrier water reuse systems. Water Science and Technology, , 61(1), 77-83. 

Khan, S. J. (2010) Quantitative chemical exposure assessment for water recycling schemes, 
Waterlines Report Series 27, National Water Commission, Canberra. 

Khan, S. J. (2013) Drinking Water Through Recycling. Australian Academy of Technological 
Sciences and Engineering, Melbourne, Australia. 

Khataee, A. R. and Kasiri, M. B. (2011) Modeling of biological water and wastewater treatment 
processes using artificial neural networks. CLEAN–Soil, Air, Water, 39(8), 742-749. 

Kirwan, B. (1994) A guide to practical human reliability assessment. CRC Press, Boca Raton, 
Florida. 

Kjræulff, U. B. and Madsen, A. L. (2012) Bayesian Networks and Influence Diagrams: A Guide 
to Construction and Analysis. Springer Science & Business Media, New York. 

Kletz, T. (2001) Learning from Accidents. 3rd Ed., Gulf Profesional Publishing, Oxford. 

Koivunen, J., Siitonen, A. and Heinonen-Tanski, H. (2003) Elimination of enteric bacteria in 
biological–chemical wastewater treatment and tertiary filtration units. Water Research, 
37(3), 690-698. 

Koller, D. and Friedman, N. (2009) Probabilistic Graphical Models: Principles and Techniques. 
MIT press, Massachusetts. 

Kompany-Zareh, M., Akhlaghi, Y. and Bro, R. (2012) Tucker core consistency for validation of 
restricted Tucker3 models. Analytica Chimica Acta, 723, 18-26. 

Korb, K. B. and Nicholson, A. E. (2011) Bayesian Artificial Intelligence. Second Ed., Chapman 
& Hall/CRC Press, London. 

Kruschke, J. (2014) Doing Bayesian Data Analysis: a Tutorial with R, Jags, and Stan. Academic 
Press, Amsterdam. 

Kruschke, J. K. (2013) Bayesian estimation supersedes the t test. Journal of Experimental 
Psychology: General, 142(2), 573. 

Kutbi, I. I., Sabri, Z. A. and Husseiny, A. A. (1982) Reliability analysis of reverse osmosis plant. 
Desalination, 42(3), 291-313. 

Lampinen, J. and Vehtari, A. (2001) Bayesian approach for neural networks—review and case 
studies. Neural Networks, 14(3), 257-274. 

295



 

Lampis, M. and Andrews, J. (2009) Bayesian belief networks for system fault diagnostics. Quality 
and Reliability Engineering International, 25(4), 409-426. 

LeChevallier, M. W. and Au, K.-K. (2004) Water Treatment and Pathogen Control: Process 
Efficiency in Achieving Safe Drinking-Water. IWA Publishing, London, UK. 

Lee, D. S., Lee, M. W., Woo, S. H., Kim, Y.-J. and Park, J. M. (2006) Nonlinear dynamic partial 
least squares modeling of a full-scale biological wastewater treatment plant. Process 
Biochemistry, 41(9), 2050-2057. 

Lemarchand, K. and Lebaron, P. (2003) Occurrence of Salmonella spp. and Cryptosporidium spp. 
in a French coastal watershed: relationship with fecal indicators. FEMS Microbiology 
Letters, 218(1), 203-209. 

Lester, R. R., Green, L. C. and Linkov, I. (2007) Site‐Specific Applications of Probabilistic Health 
Risk Assessment: Review of the Literature Since 2000. Risk Analysis, 27(3), 635-658. 

Leu, S.-S. and Chang, C.-M. (2013) Bayesian-network-based safety risk assessment for steel 
construction projects. Accident Analysis & Prevention, 54, 122-133. 

Li, D., Yang, H. Z. and Liang, X. F. (2013) Prediction analysis of a wastewater treatment system 
using a Bayesian network. Environmental Modelling & Software, 40, 140-150. 

Lifton, G. and Smeaton, P. (2003) Asset risk management in Scottish Water. In: Proc. of the 
ICE/CIWEM Conference: Risk and reward in asset management delivery–who is best 
prepared for the challenges ahead? London, UK. 

Lindhe, A., Norberg, T. and Rosen, L. (2012) Approximate dynamic fault tree calculations for 
modelling water supply risks. Reliability Engineering & System Safety, 106, 61-71. 

Lindhe, A., Rosén, L., Norberg, T. and Bergstedt, O. (2009) Fault tree analysis for integrated and 
probabilistic risk analysis of drinking water systems. Water Research, 43(6), 1641-1653. 

Liu, H.-C., Liu, L. and Liu, N. (2012a) Risk evaluation approaches in failure mode and effects 
analysis: A literature review. Expert Systems with Applications, 40(2), 828-838. 

Liu, K. F.-R., Lu, C.-F., Chen, C.-W. and Shen, Y.-S. (2012b) Applying Bayesian belief networks 
to health risk assessment. Stochastic Environmental Research and Risk Assessment, 
26(3), 451-465. 

Liu, O., Seraichekas, H., Akin, E., Brashear, D. and Katz, E. (1971) Relative resistance of twenty 
human enteric viruses to free chlorine in Potomac water.  Virus and water quality: 
occurrence and control. In: 13th Water Quality Conference (Ed, Snoeyink, V.) 
Department of Civil Engineering, University of Illinois, Urbana-Champaign, pp. 171-
195. 

Liu, X., Li, H. and Li, L. (2008) Building method of diagnostic model of Bayesian networks based 
on fault tree. In: Seventh International Symposium on Instrumentation and Control 
Technology International Society for Optics and Photonics, pp. 71272C-71272C-6. 

Lodder, W. J. and de Roda Husman, A. M. (2005) Presence of noroviruses and other enteric 
viruses in sewage and surface waters in The Netherlands. Applied and Environmental 
Microbiology, 71(3), 1453-1461. 

296



 

Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2012) The BUGS Book: a 
Practical Introduction to Bayesian Analysis. CRC press, Boca Raton, Florida. 

Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000) WinBUGS-a Bayesian modelling 
framework: concepts, structure, and extensibility. Statistics and Computing, 10(4), 325-
337. 

Lyons, M., Adams, S., Woloshynowych, M. and Vincent, C. (2004) Human reliability analysis in 
healthcare: A review of techniques. The International Journal of Risk and Safety in 
Medicine, 16(4), 223-237. 

Mahadevan, S., Zhang, R. and Smith, N. (2001) Bayesian networks for system reliability 
reassessment. Structural Safety, 23(3), 231-251. 

Marcot, B. G. (2012) Metrics for evaluating performance and uncertainty of Bayesian network 
models. Ecological Modelling, 230, 50-62. 

Markert, F., Engebø, A. and Nielsen, S. (2009) A barrier analysis of a generic hydrogen refuelling 
station. In: 3rd International Conference on Hydrogen Safety. 

Marsh, D. and Bearfield, G. (2008) Generalizing event trees using Bayesian networks. 
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and 
Reliability, 222(2), 105-114. 

Martz, H. and Waller, R. (1982) Bayesian Reliability Analysis. Wiley, New York. 

Matsushita, T., Shirasaki, N., Tatsuki, Y. and Matsui, Y. (2013) Investigating norovirus removal 
by microfiltration, ultrafiltration, and precoagulation–microfiltration processes using 
recombinant norovirus virus-like particles and real-time immuno-PCR. Water Research, 
47(15), 5819-5827. 

Maxwell, S. and Franssen, I. (2012) Risk Management Framework for Water Planning and 
Management.Website: 
https://www.waterconnect.sa.gov.au/Content/Publications/DEWNR/Risk%20Managem
ent%20Framework%20for%20Water%20Planning%20and%20Management.pdf   
Accessed: November 2013. 

Medema, G., Hoogenboezem, W., van der Veer, A., Ketelaars, H., Hijnen, W. and Nobel, P. 
(2003) Quantitative risk assessment of Cryptosporidium in surface water treatment. 
Water Science & Technology, 47(3), 241-247. 

Merlo, R., De Las Casas, C., Henneman, S., Witzgall, R., Yu, W., Ramberg, S., Parker, D. and 
Ohlinger, K. (2015) Process performance of secondary effluent granular media filtration 
with and without preozonation. Water Environment Research, 87(7), 595-606. 

Messner, M. J., Chappell, C. L. and Okhuysen, P. C. (2001) Risk assessment for Cryptosporidium: 
a hierarchical Bayesian analysis of human dose response data. Water Research, 35(16), 
3934-3940. 

Metcalf & Eddy Inc., Tchobanoglous, G., Stensel, D., Tsuchihashi, R. and Burton, F. (2014) 
Wastewater Engineering: Treatment and Resource Recovery. Fifth Ed., McGraw-Hill, 
New York. 

Minitab (2010) Minitab 16 statistical software. Minitab Inc., State College, Pennsylvania, USA. 

297

https://www.waterconnect.sa.gov.au/Content/Publications/DEWNR/Risk%20Management%20Framework%20for%20Water%20Planning%20and%20Management.pdf
https://www.waterconnect.sa.gov.au/Content/Publications/DEWNR/Risk%20Management%20Framework%20for%20Water%20Planning%20and%20Management.pdf


 

Mkrtchyan, L., Podofillini, L. and Dang, V. N. (2015) Bayesian belief networks for human 
reliability analysis: A review of applications and gaps. Reliability Engineering & System 
Safety, 139, 1-16. 

Modarres, M., Kaminskiy, M. and Krivtsov, V. (1999) Reliability Engineering and Risk Analysis: 
a Practical Guide. CRC press, Boca Raton, Florida. 

Mohammadpour, R., Shaharuddin, S., Chang, C. K., Zakaria, N. A., Ab Ghani, A. and Chan, N. 
W. (2015) Prediction of water quality index in constructed wetlands using support vector 
machine. Environmental Science and Pollution Research, 22(8), 6208-6219. 

Montani, S., Portinale, L. and Bobbio, A. (2005) Dynamic Bayesian networks for modeling 
advanced fault tree features in dependability analysis. In: Proceedings of the 16th 
European Conference on Safety and Reliability, Leiden, The Netherlands, AA Balkema, 
pp. 1415-1422. 

Montani, S., Portinale, L., Bobbio, A. and Codetta-Raiteri, D. (2008) Radyban: A tool for 
reliability analysis of dynamic fault trees through conversion into dynamic Bayesian 
networks. Reliability Engineering & System Safety, 93(7), 922-932. 

Morris, D. E., Oakley, J. E. and Crowe, J. A. (2014) A web-based tool for eliciting probability 
distributions from experts. Environmental Modelling & Software, 52, 1-4. 

Mullenger, J., Ryan, G. and Hearn, J. (2002) A water authority's experience with HACCP. Water 
Science and Technology: Water Supply, 2(5-6), 149-155. 

Müller, P. and Insua, D. R. (1998) Issues in Bayesian analysis of neural network models. Neural 
Computation, 10(3), 749-770. 

Murphy, K. R., Stedmon, C. A., Graeber, D. and Bro, R. (2013) Fluorescence spectroscopy and 
multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557-6566. 

Nair, V. and Hinton, G. E. (2010) Rectified linear units improve restricted boltzmann machines. 
In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 
pp. 807-814. 

Neil, M., Fenton, N. and Nielson, L. (2000) Building large-scale Bayesian networks. The 
Knowledge Engineering Review, 15(3), 257-284. 

Nenonen, N. P., Hannoun, C., Larsson, C. U. and Bergström, T. (2012) Marked genomic diversity 
of norovirus genogroup I strains in a waterborne outbreak. Applied and Environmental 
Microbiology, AEM. 07350-11. 

Neumann, M. B., von Gunten, U. and Gujer, W. (2007) Uncertainty in prediction of disinfection 
performance. Water Research, 41(11), 2371-2378. 

NHMRC, EPHC and AHMC (2006) Australian Guidelines for Water Recycling: Managing 
Health and Environmental Risks (Phase 1), Natural Resource Management Ministerial 
Council, Environment Protection and Heritage Council, Australian Health Ministers' 
Conference, Canberra. 

NHMRC and NRMMC (2011) Australian drinking water guidelines paper 6 national water 
quality management strategy, National Health and Medical Research Council, National 
Resource Management Ministerial Council, Commonwealth of Australia, Canberra. 

298



 

Ni, C., Chen, J., Tsai, Y., Chen, W. and Chen, C. (2002) Ozonation of domestic secondary effluent 
for recycling and reuse-a pilot plant study. Water Science and Technology, 46(4-5), 361-
366. 

Niku, S., Schroeder, E. D. and Haugh, R. S. (1982) Reliability and stability of trickling filter 
processes. Journal (Water Pollution Control Federation), 129-134. 

Niku, S., Schroeder, E. D. and Samaniego, F. J. (1979) Performance of activated sludge processes 
and reliability-based design. Journal (Water Pollution Control Federation), 2841-2857. 

Nokes, C., Fenton, E. and Randall, C. (1999) Modelling the formation of brominated 
trihalomethanes in chlorinated drinking waters. Water Research, 33(17), 3557-3568. 

Norsys (2015) Norsys Software Corp. - Bayes Net Software. Available at: 
https://www.norsys.com/. 

NRC (1983) Risk Assessment in the Federal Government: Managing the Process. National 
Academy Press, Washington, DC, USA. 

NRMMC, EPHC and NHMRC (2008) Australian Guidelines for Water Recycling: Managing 
Health and Environmental Risks (Phase 2), Augmentation of Drinking Water Supplies, 
Environment Protection and Heritage Council, the National Health and Medical Research 
Council and the Natural Resource Management Ministerial Council, Canberra. 

Ntzoufras, I. (2011) Bayesian Modeling Using Winbugs. John Wiley & Sons, Hoboken, New 
Jersey. 

O'Connor, P. D. and Kleyner, A. (2012) Practical Reliability Engineering. John Wiley & Sons, 
Chichester, UK. 

Oliveira, S. and von Sperling, M. (2007) Reliability analysis of stabilisation pond systems. Water 
Science & Technology, 55(11), 127-134. 

Oliveira, S. C. and Von Sperling, M. (2008) Reliability analysis of wastewater treatment plants. 
Water research, 42(4), 1182-1194. 

Olivieri, A., Eisenberg, D., Soller, J., Eisenberg, J., Cooper, R., Tchobanoglous, G., Trussell, R. 
and Gagliardo, P. (1999) Estimation of pathogen removal in an advanced water treatment 
facility using Monto Carlo simulation. Water Science and Technology, 40(4), 223-233. 

Ottoson, J., Hansen, A., Björlenius, B., Norder, H. and Stenström, T. (2006) Removal of viruses, 
parasitic protozoa and microbial indicators in conventional and membrane processes in a 
wastewater pilot plant. Water Research, 40(7), 1449-1457. 

Paraskeva, P. and Graham, N. (2005) Treatment of a secondary municipal effluent by ozone, UV 
and microfiltration: microbial reduction and effect on effluent quality. Desalination, 
186(1-3), 47-56. 

Pasman, H. and Rogers, W. (2012) Risk assessment by means of Bayesian networks: A 
comparative study of compressed and liquefied H 2 transportation and tank station risks. 
International Journal of Hydrogen Energy, 37(22), 17415-17425. 

299

https://www.norsys.com/


 

Pasman, H. and Rogers, W. (2013) Bayesian networks make LOPA more effective, QRA more 
transparent and flexible, and thus safety more definable! Journal of Loss Prevention in 
the Process Industries, 26(3), 434-442. 

Passantino, L. and Owen, D. (2005) Integrating UV Disinfection into Existing Water Treatment 
Plants. AWWA Research Foundation, American Water Works Association, Washington 
DC. 

Payment, P., Tremblay, M. and Trudel, M. (1985) Relative resistance to chlorine of poliovirus 
and coxsackievirus isolates from environmental sources and drinking water. Applied and 
Environmental Microbiology, 49(4), 981-983. 

Pecson, B. M., Triolo, S. C., Olivieri, S., Chen, E., Pisarenko, A. N., Yang, C.-C., Olivieri, A., 
Haas, C. N., Trussell, R. S. and Trussell, R. R. (2017) Reliability of pathogen control in 
direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced 
treatment train. Water Research. 

Pecson, B. M., Trussell, R. S., Pisarenko, A. N. and Trussell, R. R. (2015) Achieving reliability 
in potable reuse: the four Rs. Journal-American Water Works Association, 107(3), 48-
58. 

Petterson, S. R., Signor, R. S. and Ashbolt, N. J. (2007) Incorporating method recovery 
uncertainties in stochastic estimates of raw water protozoan concentrations for QMRA. 
Journal of Water and Health, 5(S1), 51-65. 

Phan, T. D., Smart, J. C., Capon, S. J., Hadwen, W. L. and Sahin, O. (2016) Applications of 
Bayesian belief networks in water resource management: A systematic review. 
Environmental Modelling & Software, 85, 98-111. 

Plummer, M. (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs 
sampling. In: Proceedings of the 3rd international workshop on distributed statistical 
computing, Vol. 124 Vienna, pp. 125. 

Plummer, M. (2013) rjags: Bayesian Graphical Models using MCMC/2013.Website: 
https://cran.r-project.org/web/packages/rjags/index.html   Accessed: May 2015. 

Plummer, M. (2015) JAGS Version 4.0. 0 user manual.Website: 
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x   Accessed: May 2016. 

Pollard, S. (2008) Risk Management for Water and Wastewater Utilities. IWA publishing, 
London, UK. 

Pouillot, R., Van Doren, J. M., Woods, J., Plante, D., Smith, M., Goblick, G., Roberts, C., Locas, 
A., Hajen, W. and Stobo, J. (2015) Meta-Analysis of the Reduction of Norovirus and 
Male-Specific Coliphage Concentrations in Wastewater Treatment Plants. Applied and 
Environmental Microbiology, 81(14), 4669-4681. 

Priddy, K. L. and Keller, P. E. (2005) Artificial Neural Networks: an Introduction. SPIE Press, 
Bellingham. 

Puspitasari, V., Granville, A., Le-Clech, P. and Chen, V. (2010) Cleaning and ageing effect of 
sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Separation and 
Purification Technology, 72(3), 301-308. 

300

https://cran.r-project.org/web/packages/rjags/index.html
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x


 

Qian, S. S., Donnelly, M., Schmelling, D. C., Messner, M., Linden, K. G. and Cotton, C. (2004) 
Ultraviolet light inactivation of protozoa in drinking water: a Bayesian meta-analysis. 
Water Research, 38(2), 317-326. 

Qin, X., Gao, F. and Chen, G. (2012) Wastewater quality monitoring system using sensor fusion 
and machine learning techniques. Water Research, 46(4), 1133-1144. 

Quinn, B. and Marriott, N. (2002) HACCP plan development and assessment: a review. Journal 
of Muscle Foods, 13(4), 313-330. 

R-project (2014) R: a language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2012.Website: https://cran.r-project.org/   
Accessed: May 2015. 

Rausand, M. (1998) Reliability centered maintenance. Reliability Engineering & System Safety, 
60(2), 121-132. 

Rausand, M. and Høyland, A. (2004) System Reliability Theory: Models, Statistical Methods, 
and Applications. 2nd Ed., John Wiley & Sons, Hoboken, New Jersey. 

Ravikrishna, P. and Mhaisalkar, V. (1996) Fault tree analysis for conventional water and 
wastewater treatment systems. Journal of the Institution of Engineers (India): 
Environmental Engineering Division, 7-13. 

Reason, J. (1990) Human Error. Cambridge University Press, Cambridge. 

Reason, J. (2016) Managing the Risks of Organizational Accidents. Routledge, Abingdon-on-
Thames. 

Reaume, M. J., Seth, R., McPhedran, K. N., da Silva, E. F. and Porter, L. A. (2015) Effect of 
media on biofilter performance following ozonation of secondary treated municipal 
wastewater effluent: sand vs. GAC. Ozone: Science & Engineering, 37(2), 143-153. 

Reeve, P. J., Regel, R., Dreyfus, J., Monis, P., Lau, M., King, B. and Van den Akker, B. (2016) 
Virus removal of new and aged UF membranes at full-scale in a wastewater reclamation 
plant. Environmental Science: Water Research & Technology. 

Risebro, H. L., Doria, M. F., Andersson, Y., Medema, G., Osborn, K., Schlosser, O. and Hunter, 
P. R. (2007) Fault tree analysis of the causes of waterborne outbreaks. Journal of Water 
and Health, 5, 1. 

Robertson, L., Paton, C., Campbell, A., Smith, P., Jackson, M., Gilmour, R., Black, S., Stevenson, 
D. and Smith, H. (2000) Giardia cysts and Cryptosporidium oocysts at sewage treatment 
works in Scotland, UK. Water Research, 34(8), 2310-2322. 

Robillot, C., Le-Clech, P., Pype, M.-L., Sidhu, J., Khan, S. and Monis, P. (2016) National 
Validation Framework for Water Recycling: Overview of Priority Research, 
192220272X, Australian Water Recycling Centre of Excellence, Brisbrane, Australia. 

Rohatgi, A. (2011) WebPlotDigitizer.Website: http://arohatgi.info/WebPlotDigitizer/   Accessed: 
April 2017. 

301

https://cran.r-project.org/
http://arohatgi.info/WebPlotDigitizer/


 

Rose, J. B., Dickson, L. J., Farrah, S. R. and Carnahan, R. P. (1996) Removal of pathogenic and 
indicator microorganisms by a full-scale water reclamation facility. Water Research, 
30(11), 2785-2797. 

Rosén, C., Rieger, L., Jeppsson, U. and Vanrolleghem, P. (2008) Adding realism to simulated 
sensors and actuators. Water Science and Technology, 57(3), 337-344. 

Rosén, L., Hokstad, P., Lindhe, A., Sklet, S. and Røstum, J. (2007) Generic framework and 
methods for integrated risk management in water safety plans, Deliverable number D, 
KIWA and LNEC EU. 

Roser, D., Carvajal, G., van den Akker, B., Keegan, A., Regel, R. and Khan, S. (2015) National 
Validation Guidelines for Water Recycling: Comprehensive Bayesian Recycled Water 
Validation, 1922202703, Australian Water Recycling Centre of Excellence, Brisbane, 
Australia. 

Sahely, B. S. and Bagley, D. M. (2001) Diagnosing upsets in anaerobic wastewater treatment 
using Bayesian belief networks. Journal of Environmental Engineering, 127(4), 302-310. 

Scutari, M. (2010) R package, bnlearn: Bayesian network structure learning.Website: 
http://www.bnlearn.com/   Accessed: June 2015. 

Scutari, M. and Denis, J.-B. (2014) Bayesian Networks: with Examples in R. CRC Press, Boca 
Raton, Florida. 

Shelton, D. R., Karns, J. S., Higgins, J. A., Van Kessel, J. A. S., Perdue, M. L., Belt, K. T., Russell-
Anelli, J. and DebRoy, C. (2006) Impact of microbial diversity on rapid detection of 
enterohemorrhagic Escherichia coli in surface waters. FEMS Microbiology Letters, 
261(1), 95-101. 

Sherchan, S. P., Snyder, S. A., Gerba, C. P. and Pepper, I. L. (2014) Inactivation of MS2 coliphage 
by UV and hydrogen peroxide: Comparison by cultural and molecular methodologies. 
Journal of Environmental Science and Health, Part A, 49(4), 397-403. 

Singh, K. P., Basant, N., Malik, A. and Jain, G. (2010) Modeling the performance of “up-flow 
anaerobic sludge blanket” reactor based wastewater treatment plant using linear and 
nonlinear approaches—a case study. Analytica Chimica Acta, 658(1), 1-11. 

Sivaganesan, M. and Rice, E. W. (2003) Estimation of Giardia Ct values at high pH for the surface 
water treatment rule. Journal of Environmental Science and Health, Part A, 38(9), 1959-
1970. 

Sivaganesan, M., Rice, E. W. and Mariñas, B. J. (2003) A Bayesian method of estimating kinetic 
parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide 
and ozone. Water Research, 37(18), 4533-4543. 

Smeets, P. and Medema, G. (2006) Combined use of microbiological and non-microbiological 
data to assess treatment efficacy. Water Science & Technology, 54(3), 35-40. 

Smeets, P., Medema, G., Dullemont, Y., Van Gelder, P. and Van Dijk, J. (2008) Improved 
methods for modelling drinking water treatment in quantitative microbial risk 
assessment; a case study of Campylobacter reduction by filtration and ozonation. Journal 
of Water and Health, 6(3), 301-314. 

302

http://www.bnlearn.com/


 

Smeets, P. W. (2010) Stochastic Modelling of Drinking Water Treatment in Quantitative 
Microbial Risk Assessment. IWA Publishing, London, UK. 

Smid, J., Verloo, D., Barker, G. and Havelaar, A. (2010) Strengths and weaknesses of Monte 
Carlo simulation models and Bayesian belief networks in microbial risk assessment. 
International Journal of Food Microbiology, 139, S57-S63. 

Smith, D. B., Clark, R. M., Pierce, B. K. and Regli, S. (1995) An Empirical Model for 
Interpolating C*T Values for Chlorine Inactivation of Giardia lamblia. J. Water 
SRTAqua, 44(5), 203-211. 

Smith, D. J. (2011) Reliability, Maintainability and Risk: Practical Safety-Related Systems 
Engineering Methods. Butterworth-Heinemann, Oxford, UK. 

Solano-Soto, J. and Sucar, L. E. (2001) A methodology for reliable systems design. In: 
Engineering of Intelligent Systems, 14th International Conference on Industrial and 
Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2001 
(Eds, Monostori, L., Váncza, J. and Ali, M.) Springer, Budapest, Hungary, pp. 734-745. 

Soller, J., Eisenberg, J. and Olivieri, A. (1999) Evaluation of pathogen risk assessment 
framework, International Life Sciences Institute, Risk Science Institute, Washington, DC. 

Soller, J., Olivieri, A., Eisenberg, J., DeGeorge, J., Cooper, R. and Tchobanoglous, G. (2006) A 
public health evaluation of recreational water impairment. Journal of Water and Health, 
4, 1-19. 

Soller, J. A., Eftim, S. E., Warren, I. and Nappier, S. P. (2017) Evaluation of microbiological risks 
associated with direct potable reuse. Microbial Risk Analysis, 5, 3-14. 

Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2007) OpenBUGS user manual, version 
3.0. 2. MRC Biostatistics Unit, Cambridge. 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures 
of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology), 64(4), 583-639. 

Spurgin, A. J. (2010) Human Reliability Assessment Theory and Practice. CRC Press, Boca 
Raton, Florida. 

Stadterman, K., Sninsky, A., Sykom, J. and Jakubowski, W. (1995) Removal and inactivation of 
Cryptosporidium oocysts by activated sludge treatment and anaerobic digestion. Water 
Science and Technology, 31(5), 97-104. 

Stahlschmidt, M., Regnery, J., Campbell, A. and Drewes, J. E. (2016) Application of 3D-
fluorescence/PARAFAC to monitor the performance of managed aquifer recharge 
facilities. Journal of Water Reuse and Desalination, 6(2), 249-263. 

Stamatis, D. H. (2003) Failure Mode and Effect Analysis: FMEA from Theory to Execution. 
American Society for Quality Press, Milwaukee, Wisconsin. 

Stan-Development-Team (2016) Stan Modeling Language Users Guide and Reference Manual, 
Version 2.9.0. 

303



 

Stapelberg, R. F. (2008) Handbook of Reliability, Availability, Maintainability and Safety in 
Engineering Design. Springer, Berlin. 

Su, Y. and Yajima, M. (2015) R2jags: Using R to run ‘JAGS’. R package version 0.5-7. 

Summers, A. E. (2003) Introduction to layers of protection analysis. Journal of Hazardous 
Materials, 104(1), 163-168. 

Suwa, M. and Suzuki, Y. (2001) Occurrence of Cryptosporidium in Japan and counter-measures 
in wastewater treatment plants. Water Science & Technology, 43(12), 183-186. 

Swain, A. D. (1987) Accident sequence evaluation program: human reliability analysis procedure, 
Sandia National Labs., Albuquerque, NM (USA); Nuclear Regulatory Commission, 
Washington, DC (USA). Office of Nuclear Regulatory Research, United States. 

Swain, A. D. and Guttmann, H. E. (1983) Handbook of human-reliability analysis with emphasis 
on nuclear power plant applications. Final report, Sandia National Labs., Albuquerque, 
United States. 

SydneyWater (2010a) Failure Mode Effects and Criticality Analysis (FMECA) 
procedure.Website: 
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/z
grf/mdq2/~edisp/dd_046414.pdf   Accessed: October 2013. 

SydneyWater (2010b) Reliability Block Diagram (RBD) procedure.Website: 
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/z
grf/mdq2/~edisp/dd_046415.pdf   Accessed: January 2014. 

SydneyWater (2011) Maintenance related clauses for capital and operational projects, version 
5.Website: 
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/webasset/zg
rf/mdq3/~edisp/iconn_ud_dd_047294.doc   Accessed: January 2014. 

SydneyWater (2014) Standards and Specifications.Website: 
http://www.sydneywater.com.au/SW/plumbing-building-
developing/building/providers/standards-and-specifications/index.htm   Accessed: 
January 2014. 

Taheriyoun, M. and Moradinejad, S. (2015) Reliability analysis of a wastewater treatment plant 
using fault tree analysis and Monte Carlo simulation. Environmental Monitoring and 
Assessment, 187(1), 1-13. 

Tanaka, H., Asano, T., Schroeder, E. D. and Tchobanoglous, G. (1998) Estimating the safety of 
wastewater reclamation and reuse using enteric virus monitoring data. Water 
Environment Research, 70(1), 39-51. 

Tang, Y., Wu, S., Miao, X., Pollard, S. J. and Hrudey, S. E. (2013) Resilience to evolving drinking 
water contamination risks: a human error prevention perspective. Journal of Cleaner 
Production, 57, 228-237. 

Tao, E., Shen, W., Liu, T. and Chen, X. (2013) Fault diagnosis based on PCA for sensors of 
laboratorial wastewater treatment process. Chemometrics and Intelligent Laboratory 
Systems, 128, 49-55. 

304

http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq2/~edisp/dd_046414.pdf
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq2/~edisp/dd_046414.pdf
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq2/~edisp/dd_046415.pdf
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq2/~edisp/dd_046415.pdf
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/webasset/zgrf/mdq3/~edisp/iconn_ud_dd_047294.doc
http://www.sydneywater.com.au/web/groups/publicwebcontent/documents/webasset/zgrf/mdq3/~edisp/iconn_ud_dd_047294.doc
http://www.sydneywater.com.au/SW/plumbing-building-developing/building/providers/standards-and-specifications/index.htm
http://www.sydneywater.com.au/SW/plumbing-building-developing/building/providers/standards-and-specifications/index.htm


 

Tchórzewska-Cieślak, B., Boryczko, K. and Eid, M. (2011) Failure scenarios in water supply 
system by means of fault tree analysis. In: Advances in Safety, Reliability and Risk 
Management (Ed. Soares, G.) CRC Press, Boca Raton, Florida, 2492-2499. 

Teunis, P., Evers, E. and Slob, W. (1999) Analysis of variable fractions resulting from microbial 
counts. Quantitative Microbiology, 1(1), 63-88. 

Teunis, P. and Havelaar, A. (1999) Cryptosporidium in drinking water: Evaluation of the ILSI 
quantitative risk assessment framework, National Institute of Public Health and the 
Environment (RIVM), Bilthoven, The Netherlands. 

Teunis, P., Rutjes, S., Westrell, T. and de Roda Husman, A. (2009) Characterization of drinking 
water treatment for virus risk assessment. Water Research, 43(2), 395-404. 

Tng, K., Currie, J., Roberts, C., Koh, S., Audley, M. and Leslie, G. L. (2015) Resilience of 
Advanced Water Treatment Plants for Potable Reuse, 1922202347, Australian Water 
Recycling Centre of Excellence, Brisbane, Australia. 

Toifl, M., Diaper, C., O’Halloran, R. and Conscience, W. (2010) Review of process and 
performance monitoring techniques applicable to large and small scale wastewater 
recycling systems, CSIRO: Water for a Healthy Country National Research Flagship. 

Torres-Toledano, J. G. and Sucar, L. E. (1998) Bayesian networks for reliability analysis of 
complex systems. In: Progress in Artificial Intelligence—IBERAMIA 98 (Ed. Coelho, 
H.) Springer, Lisbon, Portugal, 195-206. 

Tripathi, S. and Tripathi, B. (2011) Efficiency of combined process of ozone and bio-filtration in 
the treatment of secondary effluent. Bioresource Technology, 102(13), 6850-6856. 

Tyrrell, S. A., Rippey, S. R. and Watkins, W. D. (1995) Inactivation of bacterial and viral 
indicators in secondary sewage effluents, using chlorine and ozone. Water Research, 
29(11), 2483-2490. 

US-EPA and USDA/FSIS (2012) Microbial Risk Assessment Guideline: Pathogenic 
Microorganisms with Focus on Food and Water.  US Environmental Protection Agency 
(EPA); US Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) 
Washington, DC, USA. 

USEPA (2001) Method 1601: Malespecific (F+) and somatic coliphage in water by two step 
enrichment procedure, EPA number 821-R-01-030,. Washington, DC. 

USEPA (2003) LT1ESWTR Disinfection Profiling and Benchmarking Technical Guidance 
Manual, Office of Water, United States Environmental Protection Agency, USA. 

USEPA (2005) Membrane filtration guidance manual, United States Environmental Protection 
Agency, USA. 

USEPA (2006) Ultraviolet disinfection guidance manual, United States Environmental Protection 
Agency Washington, USA. 

Uyak, V., Toroz, I. and Meric, S. (2005) Monitoring and modeling of trihalomethanes (THMs) 
for a water treatment plant in Istanbul. Desalination, 176(1-3), 91-101. 

305



 

van den Akker, B., Trinh, T., Coleman, H. M., Stuetz, R. M., Le-Clech, P. and Khan, S. J. (2014) 
Validation of a full-scale membrane bioreactor and the impact of membrane cleaning on 
the removal of microbial indicators. Bioresource Technology, 155, 432-437. 

Van den Akker, B., Whiffin, V., Cox, P., Beatson, P., Ashbolt, N. and Roser, D. (2011) Estimating 
the risk from sewage treatment plant effluent in the Sydney catchment area. Water 
Science and Technology, 63(8), 1707. 

Vatn, J. (1996) Maintenance optimization: models and methods, A thesis presented to Department 
of Production and Quality Engineering, Norwegian University of Science and 
Technology, Trondheim, Norway. Degree: PhD. 

VDoH (2013) Guidelines for validating treatment processes for pathogen reduction, Supporting 
Class A recycled water schemes in Victoria, Department of Health, Victoria, Australia, 
Victoria, Australia. 

Vehtari, A., Sarkka, S. and Lampinen, J. (2000) On MCMC sampling in Bayesian MLP neural 
networks. In: Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, Vol. 1 IEEE, pp. 317-322. 

Verma, A., Wei, X. and Kusiak, A. (2013) Predicting the total suspended solids in wastewater: a 
data-mining approach. Engineering Applications of Artificial Intelligence, 26(4), 1366-
1372. 

Von Gunten, U., Driedger, A., Gallard, H. and Salhi, E. (2001) By-products formation during 
drinking water disinfection: a tool to assess disinfection efficiency? Water Research, 
35(8), 2095-2099. 

Walker, T., Stanford, B., Alexander, K., Snyder, S., Khan, S. and Robillot, C. (2016) Critical 
Control Point Assessment to Quantify Robustness and Reliability of Multiple Treatment 
Barriers of a DPR Scheme, Water Environment & Reuse Foundation, USA. 

Wang, X., Ratnaweera, H., Holm, J. A. and Olsbu, V. (2017) Statistical monitoring and dynamic 
simulation of a wastewater treatment plant: A combined approach to achieve model 
predictive control. Journal of Environmental Management, 193, 1-7. 

Weber, P. and Jouffe, L. (2003) Reliability modelling with dynamic bayesian networks. In: 5th 
IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes 
(SAFEPROCESS'03), IFAC, Washington, DC, USA, pp. 57-62. 

Weber, P., Jouffe, L. and Munteanu, P. (2004) Dynamic Bayesian Networks modelling the 
dependability of systems with degradations and exogenous constraints. In: 11th IFAC 
Symposium on Information Control Problems in Manufacturing, INCOM'04 IFAC, 
Salvador-Bahia, Brazil. 

Weber, P., Medina-Oliva, G., Simon, C. and Iung, B. (2012) Overview on Bayesian networks 
applications for dependability, risk analysis and maintenance areas. Engineering 
Applications of Artificial Intelligence, 25(4), 671-682. 

Weir, M. H., Pepe Razzolini, M. T., Rose, J. B. and Masago, Y. (2011) Water reclamation 
redesign for reducing Cryptosporidium risks at a recreational spray park using stochastic 
models. Water Research, 45(19), 6505-6514. 

306



 

Wen, Q., Tutuka, C., Keegan, A. and Jin, B. (2009) Fate of pathogenic microorganisms and 
indicators in secondary activated sludge wastewater treatment plants. Journal of 
Environmental Management, 90(3), 1442-1447. 

WHO (2004) WHO Guidelines for Drinking-Water Quality. Third Ed., World Health 
Organization, Geneva, Switzerland. 

WHO (2005) Water Safety Plans: Managing Drinking-Water Quality from Catchment to 
Consumer. Water, Sanitation and Health, Protection and the Human Environment, World 
Health Organization, Geneva, Switzerland. 

WHO (2006) Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Policy and 
Regulatory Aspects. World Health Organization, United Nations Environment 
Programme, Geneva, Switzerland. 

WHO (2011) Guidelines for Drinking-Water Quality. Geneva: World Health Organization. 

Williams, J. (1986) HEART– a proposed method for assessing and reducing human error. In: 9th 
Advances in Reliability Technology Symposium University of Bradford, Bradford. 

Witten, I. H. and Frank, E. (2005) Data Mining: Practical Machine Learning Tools and 
Techniques. Third Ed., Morgan Kaufmann, Massachusetts. 

WSAA (2015) Drinking Water Source Assessment and Treatment Requirements. Manual for the 
Application of Health-Based Treatment Targets. WSA 202—2015-1.2 Water Services 
Association of Australia. 

Wu, S., Hrudey, S., French, S., Bedford, T., Soane, E. and Pollard, S. (2009) A role for human 
reliability analysis (HRA) in preventing drinking water incidents and securing safe 
drinking water. Water Research, 43(13), 3227-3238. 

Xu, P., Janex, M.-L., Savoye, P., Cockx, A. and Lazarova, V. (2002) Wastewater disinfection by 
ozone: main parameters for process design. Water Research, 36(4), 1043-1055. 

Zhu, Z. J. and McBean, E. A. (2007) Selection of water treatment processes using Bayesian 
decision network analyses. Journal of Environmental Engineering and Science, 6(1), 95-
102. 

 

307



Appendices 

308



 
 

A.1 Appendix 1 

A.1.1  Naïve and Causal BNs 

The following example illustrates the difference between naïve and causal BN models in terms 

of their structure and information required to populate their contingency probability tables 

(Figure A-1). Note that these models were constructed only as examples and may not reflect the 

real system. The same variables and states were defined for both models. For simplicity each 

node is assumed to have two states. The first model is a naïve Bayes model with E. coli log 

reduction value (LRV) as the variable (or class node) to be predicted or classified through three 

attribute nodes. These attribute nodes have conditional probabilities associated with each 

combination of states of the class node and attribute nodes. E. coli LRV has a marginal 

probability, not requiring conditional probabilities as it is a root node. In the second example, 

the E. coli LRV node is a child of three parent nodes. In this case, the model represents a causal 

network in which causal connections follow the direction of the arcs. None of the parent nodes 

are assumed to be directly associated with one another, but are viewed as conditionally 

independent from one another. As it can be seen, the combination of parent nodes states defined 

a large conditional probability distribution for the E. coli LRV node.  

 

Figure A-1: Non-causal a) and causal Bayesian networks b). Nodes indicate variables and bars 

indicate the frequencies of each state. Conditional and marginal probabilities are shown in 

tables. 
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A.1.2 A.2 Semi-Naïve Bayesian Network Models 

The three different SNB models for C. parvum (Figure A-2) and G. lamblia (Figure A-3) are 

presented here for comparison. The model nodes are represented as labelled boxes and therefore 

in this format do not show the probabilities associated to each variable. The TAN(1) and 

TAN(2) models were obtained with two different search algorithms, whereas the TAN(2) and 

BAN models were obtained with the same search algorithm but allowing a maximum of two 

connections between attributes in the case of the TAN (2) models and three in the case of the 

BAN models.  
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Figure A-2: SNB models for C. parvum. Variable categories are presented with distinct colour. 

Categories include: Reactor parameters in green, physicochemical parameters in pink, microbial 

indicators in yellow and C. parvum LRV in light blue. 
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Figure A-3: SNB for G. lamblia. Variable categories are presented with distinct colour labels. 

Categories include: Reactor parameters in green, physicochemical parameters in pink, microbial 

indicators in yellow and G.lamblia LRV in light blue. 
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A.1.3 Sensitivity Analysis 

A one-way sensitivity analysis was performed to investigate the effect of the most important 

predictors on the variance of the predicted pathogen LRVs as shown in Figure A-4. Consistent 

with the PA analysis for C. parvum (Figure A-4 a), the highest influence was observed for 

enterococci LRV, followed by total coliforms LRV and E. coli LRV. For G. lamblia (Figure A-4 

b), alkalinity and SRT showed the highest influence. 

The sensitivity analysis is illustrated using tornado charts where the changes in the target node 

for LRV  1 are obtained by altering the probability of each attribute over the probability space. 

In the cases shown the BAN C. parvum and G. lamblia models were analysed as they were the 

selected optimum models. The line that divides the chart represents the prior probability for the 

class node which was 0.49 for C. parvum and 0.70 for G. lamblia approximately. The figures 

also present the state of the attribute corresponding to the minimum or maximum probabilities. 

For instance, for the C. parvum case, when enterococci LRV is below 1.78 the probability of a 

LRV higher than 1 would be approximately 0.06. In contrast, when enterococci LRV is above 

2.13, the probability of a LRV higher than 1 would be approximately 0.9. It is important to note 

that effluent water quality parameters included here were in their highest state when the 

probability of C. parvum LRV  1 was minimal. On the other hand, LRV for enterococci, total 

coliforms and E. coli were on their lowest range state when the probability of LRV  1 was 

minimal. A SRT of 15 and an alkalinity in the highest range concentration were associated to a 

minimal LRV 1 probability for C. parvum, whereas these produced the opposite effect on the 

G. lamblia LRV. 
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Figure A-4: Sensitivity to findings for removal efficiencies according to most important 

operating parameters for C. parvum BAN model (a) and G. lamblia BAN model (b). Bar lengths 

represent the change in the probability of the state LRV1. 

Notes: 

314



 
 

The vertical line dividing the bars in two in both graphs indicates the prior probability of the 

class node. Values next to the bars indicate the state of the attribute for the minimum and 

maximum LRV probabilities. 

A.1.4 Order of variables in dataset 

K2 algorithm for structure learning depends on a fixed ordering of the variables in the dataset. 

The ordering used in the present analysis is shown in Table A-1. This arrangement allows the 

algorithm to search for the best structure by testing the addition of arcs from operating and 

water quality parameters to microbial indicators and pathogens.   

Table A-1: Ordering of variables in datasets for C. parvum and G. lamblia 

Column number C. parvum G. lamblia 

1 SRT SRT 

2 HRT HRT 

3 MLSS MLSS 

4 SS SS 

5 pH pH 

6 Temperature Temperature 

7 Turbidity Turbidity 

8 Alkalinity Alkalinity 

9 NH4
+ NH4

+ 

10 NO2 NO2 

11 NO3 NO3 
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Column number C. parvum G. lamblia 

12 TKN TKN 

13 COD COD 

14 BOD5 BOD5 

15 Bacteriophage Bacteriophage 

16 C.perfringens LRV C.perfringens LRV 

17 Total coliforms LRV Total coliforms LRV 

18 E. coli LRV E. coli LRV 

19 Enterococci LRV Enterococci LRV 

20 G. lamblia LRV C. parvum LRV 

21 C. parvum LRV G. lamblia LRV 
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A.1.5 Individual attributes evaluation  

Individual attributes evaluation was analysed through PA and FPR as presented in Table A-2. 

The results indicate that some of the attributes have good PA but also high FPR, which is not 

appropriate for this prediction task. From these results there is no clear conclusion about the 

best predictors. A better outcome can be obtained through the AUC score. 

Table A-2: Individual attributes evaluation through prediction accuracy (PA) and false positive 

rate (FPR) for C. parvum and G. lamblia. Results are presented as arithmetic mean ± standard 

deviation 

Predictor C. parvum G. lamblia 

 

PA FPR PA FPR 

No Evidenceb 51.1±4.87a 0.00±0.00a 70.7±4.41a 1.00±0.00a 

SRT 89.7±9.51 0.07±0.12 76.0±9.61 0.77±0.28 

HRT 70.5±13.2 0.58±0.25 70.7±4.41 1.00±0.00 

MLSS 76.1±12.8 0.10±0.15 70.0±13.9 0.44±0.39 

Temperature 61.5±12.0 0.12±0.25 -c - 

SS 85.2±10.6 0.27±0.19 - - 

Turbidity 90.3±9.52 0.15±0.16 - - 

COD 71.3±13.0 0.56±0.25 63.7±10.1 0.66±0.45 

BOD5 79.8±13.2 0.18±0.20 - - 
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Predictor C. parvum G. lamblia 

 

PA FPR PA FPR 

pH 57.3±10.6 0.51±0.33 82.7±9.66 0.59±0.32 

Alkalinity 83.6±11.8 0.32±0.23 81.5±9.89 0.59±0.32 

NO2 70.6±12.3 0.12±0.16 78.4±13.7 0.15±0.25 

NO3 88.7±9.51 0.07±0.12 70.1±11.6 0.78±0.32 

NH4
+ 80.0±15.6 0.35±0.29 - - 

TKN 69.1±13.9 0.53±0.26 - - 

Bacteriophage LRV 70.1±13.3 0.53±0.25 68.9±11.3 0.46±0.38 

C. perfringens LRV 69.7±13.2 0.54±0.26 - - 

Total coliforms LRV 91.2±8.57 0.15±0.16 - - 

E. coli LRV 90.5±9.79 0.16±0.18 - - 

Enterococci LRV 86.8±9.94 0.08±0.13 69.7±6.96 0.93±0.18 

a mean PA and FPR based on 10-fold cross validation repeated 10 times  

b “No evidence” no attributes are considered in the evaluation 

C attribute was not included in the NB or SNBs 
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High PA and FPR can be explained with a simple example to show under which conditions 

these results can be obtained. Suppose 25 cases need to be tested of which 15 correspond to 

TRUE and 10 to FALSE. The model predicts the cases as shown in Table A-3. 

 

Table A-3: results of prediction for example of high PA and FPR 

 Predicted TRUE Predicted FALSE 

Actual TRUE 15 (TP) 0 (FN) 

Actual FALSE 5 (FP) 5 (TN) 

 

This model would return a false positive rate of 0.5 (FP/(FP+TN)) and a prediction accuracy of 

80% ((TP+TN)/(TP+TN+FP+FN)).  

A.1.6 Construction of the model without the naïve assumption 

The BN model without the naïve assumption was constructed using the bnlearn package in R. 

The following code was used to generate the model using the same automated discretisation 

algorithm and data used in NB and SNB models. A blacklist (i.e. restricted arcs) (Table A-4) 

was also incorporated to account for arcs that should not be present in the network. An 

automated structure-learning algorithm (hill-climbing) was used with AIC score to find the BN 

structure. 
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#Load bnlearn and RWeka packages 

library(bnlearn) 

library(RWeka) 

 

#Import data and blacklist 

 

datalearning = read.csv("data.csv") 

blacklist = read.csv("blacklist.csv") 

 

#Discretise data automatically using WEKA algorithm 

#Microbiallrv is the target microorganisms already discretised 

 

discretedata= Discretize(microbiallrv~.,data=datalearning) 

 

#Remove columns with one state 

n.col=ncol(discretedata) 

for (i in 1:n.col){ 

   

  if (toString(discretedata[1,i])=="'All'"){ 

     

    discretedata = discretedata[,-i] 

 

  }else{ 

     

  } 

  } 

 

#Create network using the discrete data and blacklist as inputs of the 

hill-climbing algorithm 

 

dag1 = hc(discretedata, score="aic",blacklist=blacklist) 

 

#Learn parameters of the network 

bn1 = bn.fit(dag1,discretedata) 

 

#Export network in Netica's compatible format 

write.dsc(bn1,file="BN.dsc") 

 

Table A-4: Blacklist used for the hill-climbing structure learning algorithm 

from to from to 
clostrilrv SRT enterococcilrv NH3out 
clostrilrv HRT enterococcilrv NO2out 
clostrilrv SSML enterococcilrv NO3out 
clostrilrv SSout enterococcilrv TKNout 
clostrilrv pHout enterococcilrv CODout 
clostrilrv temperatureout enterococcilrv BODout 
clostrilrv turbidityout cryptoconlrv SRT 
clostrilrv alkalinityout cryptoconlrv HRT 
clostrilrv NH3out cryptoconlrv SSML 
clostrilrv NO2out cryptoconlrv SSout 
clostrilrv NO3out cryptoconlrv pHout 
clostrilrv TKNout cryptoconlrv temperatureout 
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from to from to 
clostrilrv CODout cryptoconlrv turbidityout 
clostrilrv BODout cryptoconlrv alkalinityout 
coliformlrv SRT cryptoconlrv NH3out 
coliformlrv HRT cryptoconlrv NO2out 
coliformlrv SSML cryptoconlrv NO3out 
coliformlrv SSout cryptoconlrv TKNout 
coliformlrv pHout cryptoconlrv CODout 
coliformlrv temperatureout cryptoconlrv BODout 
coliformlrv turbidityout coliformlrv clostrilrv 
coliformlrv alkalinityout ecolilrv clostrilrv 
coliformlrv NH3out enterococcilrv clostrilrv 
coliformlrv NO2out cryptoconlrv clostrilrv 
coliformlrv NO3out phagelrv clostrilrv 
coliformlrv TKNout clostrilrv coliformlrv 
coliformlrv CODout ecolilrv coliformlrv 
coliformlrv BODout enterococcilrv coliformlrv 
phagelrv SRT cryptoconlrv coliformlrv 
phagelrv HRT phagelrv coliformlrv 
phagelrv SSML clostrilrv ecolilrv 
phagelrv SSout coliformlrv ecolilrv 
phagelrv pHout enterococcilrv ecolilrv 
phagelrv temperatureout cryptoconlrv ecolilrv 
phagelrv turbidityout phagelrv ecolilrv 
phagelrv alkalinityout clostrilrv enterococcilrv 
phagelrv NH3out coliformlrv enterococcilrv 
phagelrv NO2out ecolilrv enterococcilrv 
phagelrv NO3out cryptoconlrv enterococcilrv 
phagelrv TKNout phagelrv enterococcilrv 
phagelrv CODout clostrilrv phagelrv 
phagelrv BODout coliformlrv phagelrv 
ecolilrv SRT ecolilrv phagelrv 
ecolilrv HRT cryptoconlrv phagelrv 
ecolilrv SSML enterococcilrv phagelrv 
ecolilrv SSout clostrilrv cryptoconlrv 
ecolilrv pHout coliformlrv cryptoconlrv 
ecolilrv temperatureout ecolilrv cryptoconlrv 
ecolilrv turbidityout enterococcilrv cryptoconlrv 
ecolilrv alkalinityout phagelrv cryptoconlrv 
ecolilrv NH3out HRT SRT 
ecolilrv NO2out SSML SRT 
ecolilrv NO3out SSout SRT 
ecolilrv TKNout pHout SRT 
ecolilrv CODout temperatureout SRT 
ecolilrv BODout turbidityout SRT 
enterococcilrv SRT alkalinityout SRT 
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from to from to 
enterococcilrv HRT NH3out SRT 
enterococcilrv SSML NO2out SRT 
enterococcilrv SSout NO3out SRT 
enterococcilrv pHout TKNout SRT 
enterococcilrv temperatureout CODout SRT 
enterococcilrv turbidityout BODout SRT 
enterococcilrv alkalinityout SRT HRT 
enterococcilrv NH3out SSML HRT 
enterococcilrv NO2out SSout HRT 
enterococcilrv NO3out pHout HRT 
enterococcilrv TKNout temperatureout HRT 
enterococcilrv CODout turbidityout HRT 
enterococcilrv BODout alkalinityout HRT 
enterococcilrv SRT NH3out HRT 
enterococcilrv HRT NO2out HRT 
enterococcilrv SSML NO3out HRT 
enterococcilrv SSout TKNout HRT 
enterococcilrv pHout CODout HRT 
enterococcilrv temperatureout BODout HRT 
enterococcilrv turbidityout   
enterococcilrv alkalinityout   

 

A.2 Appendix 2 

A.2.1 R code for model construction  

The various models tested in this study were constructed in Jags using the following codes. The 

first code shows the model specification for the fully hierarchical model, arrangement of data 

and model initialisation. The code for the other model alternatives only indicates the structure 

for the model module specified by “model{…}”. The model used the offset method (Lunn et al. 

2012) to account for the different size of data in 2010 and 2015. 

A.2.1.1 Fully hierarchical validation model with exchangeable parameters for  and σ 

 

#Call the libraries 

library(reshape2) 

library(R2jags) 
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modelstring=" 

model{ 

 

for (k in 1:2){ #k is the year analysed 

for (i in 1:offset[k]){ #i is the observation analysed 

 

y[i,k]~dnorm(mu.dot[skid[i,k],k],tau.dot[skid[i,k],k])  #Likelihood 

ycen[i,k] ~ dinterval(y[i,k],ycenlim[i,k])  #Incorporation of censored 

values into the likelihood 

 

 

} 

} 

 

for (j in skids.num){ #Skid identification 2,4,5 and 6 

 

for (k in 1:2){ 

 

#Conditional structure for the mean depending on the year 

mu.dot[j,k]<-ifelse(k==1,mu[j],mu[j]+delta[j])  

 

#Conditional structure for the standard deviation depending on the 

year 

log.sigma.dot[j,k]<-ifelse(k==1,log.sigma[j],log.sigma[j]+epsilon[j]) 

 

#Transforming standard deviation to precision 

tau.dot[j,k]<-1/(sigma.dot[j,k])^2 

       

log(sigma.dot[j,k]) <-log.sigma.dot[j,k] 
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} 

#Skid specific means 

mu[j]~dnorm(mu.mu,tau.mu) 

 

#Difference between skids' means 

delta[j]~dnorm(mu.delta,tau.delta) 

 

#Skid specific standard deviation 

log.sigma[j]~dnorm(mu.sigma,tau.sigma) 

log(sigma[j])<-log.sigma[j] 

 

#Difference between skids' standard deviations 

epsilon[j]~dnorm(mu.epsilon,tau.epsilon) 

 

 

 

 

} 

 

   

  #Transforming precisions to standard deviation for inspection  

  sigma.mu<-1/sqrt(tau.mu) 

  sigma.delta<-1/sqrt(tau.delta)  

  sigma.sigma<-1/sqrt(tau.sigma) 

  sigma.epsilon<-1/sqrt(tau.epsilon)   

 

  #Definition of prior distributions 

  mu.mu~dnorm(0,0.0001) 

  tau.mu~dgamma(0.001,0.001) 

  mu.delta~dnorm(0,0.0001) 
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  tau.delta~dgamma(0.001,0.001) 

  mu.sigma~dnorm(0,0.0001) 

  tau.sigma~dgamma(0.001,0.001) 

  mu.epsilon~dnorm(0,0.0001) 

  tau.epsilon~dgamma(0.001,0.001) 

   

 

} 

" 

writeLines( modelstring , con="modellrv" ) 

 

 

 

#Data processing 

 

data<- read.csv("data.csv") 

 

# Preparing data for model with offsets method 

data2010 <-subset(data,year==2010 & unit<=6) 

offset.1<-dim(data2010)[1] 

data2010.sub <-data.matrix(data2010[,"lrv"]) 

data2010.iscen<-data.matrix(data2010[,"isCensored"]) 

data2010.cenlim<-data.matrix(data2010[,"censorLimitVec"]) 

data2010.unit<-data.matrix(data2010[,"unit"]) 

 

data2015 <-subset(data,year==2015 & unit<=6) 

offset.2<-dim(data2015)[1] 

data2015.sub <-data.matrix(data2015[,"lrv"]) 

data2015.iscen<-data.matrix(data2015[,"isCensored"]) 

data2015.cenlim<-data.matrix(data2015[,"censorLimitVec"]) 
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data2015.unit<-data.matrix(data2015[,"unit"]) 

 

 

add.col<-function(df, new.col) {n.row<-dim(df)[1] 

length(new.col)<-n.row 

cbind(df, new.col) 

} 

  

y<-data.frame(add.col(data2010.sub,data2015.sub)) 

names(y)<-c("year1","year2") 

 

ycen<-data.frame(add.col(data2010.iscen,data2015.iscen)) 

names(ycen)<-c("year1","year2") 

 

ycenlim<-data.frame(add.col(data2010.cenlim,data2015.cenlim)) 

names(ycenlim)<-c("year1","year2") 

 

skid<-data.frame(add.col(data2010.unit,data2015.unit)) 

names(skid)<-c("year1","year2") 

skids.num<-unique(unique(subset(data, unit<=6))$unit) 

 

 

offset<-c(offset.1,offset.2) 

 

datalist = 

list(y=y,ycen=ycen,ycenlim=ycenlim,skid=skid,skids.num=skids.num,offse

t=offset) #Data to be used in the model 

 

#Running the model 
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parameters = 

c("mu.dot","mu","mu.mu","sigma.mu","delta","mu.delta","sigma.delta","s

igma.dot", 

               

"sigma","epsilon","log.sigma","log.sigma.dot","tau.mu","tau.delta","ta

u.dot", "mu.sigma","sigma.sigma", 

               "mu.epsilon","sigma.epsilon") # The parameters to be 

monitored 

 

 

 

 

burnin = 1000            # Number of steps to burn-in the chains 

n.chains = 2               # Number of chains 

n.savedsteps=1000        #Number of steps to be saved 

thinning=10              #Thinning rate 

nIter = ceiling( ( n.savedsteps * thinning) / n.chains )  #Number of 

iterations to run 

 

set.seed(123)  #Set seed 

 

#Running the chains 

jagsfit.p <-jags(data=datalist, parameters.to.save=parameters, 

                 n.iter=nIter, 

model.file="modellrv",n.chains=n.chains,n.burnin = 

burnin,n.thin=thinning) 

                  

A.2.1.2 Partially hierarchical validation model with exchangeable parameters for  

 

model{ 

 

for (k in 1:2){ #k is the year analysed 

for (i in 1:offset[k]){ #i is the observation analysed 
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y[i,k]~dnorm(mu.dot[skid[i,k],k],tau.dot[k])  #Likelihood 

ycen[i,k] ~ dinterval(y[i,k],ycenlim[i,k])  #Incorporation of censored 

values into the likelihood 

 

 

} 

} 

 

for (j in skids.num){ #Skid identification 2,4,5 and 6 

 

for (k in 1:2){ 

 

#Conditional structure for the mean depending on the year 

mu.dot[j,k]<-ifelse(k==1,mu[j],mu[j]+delta[j])  

 

} 

#Skid specific means 

mu[j]~dnorm(mu.mu,tau.mu) 

 

#Difference between skids' means 

delta[j]~dnorm(mu.delta,tau.delta) 

 

} 

 

  for (k in 1:2){ 

 

#Conditional structure for the standard deviation depending on the 

year     

log.sigma.dot[k]<-ifelse(k==1,log.sigma,log.sigma+epsilon) 

 

#Transforming standard deviation to precision 
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tau.dot[k]<-1/(sigma.dot[k])^2 

 

log(sigma.dot[k]) <-log.sigma.dot[k] 

 

 

  } 

 

 

  log(sigma)<-log.sigma 

   

  #Transforming precisions to standard deviation for inspection  

  sigma.mu<-1/sqrt(tau.mu) 

  sigma.delta<-1/sqrt(tau.delta)  

   

  #Definition of prior distributions 

  mu.mu~dnorm(0,0.0001) 

  tau.mu~dgamma(0.001,0.001) 

  mu.delta~dnorm(0,0.0001) 

  tau.delta~dgamma(0.001,0.001)  

  log.sigma~dnorm(0,0.0001) 

  epsilon~dnorm(0,0.0001) 

   

 

} 
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A.2.1.3 Partially hierarchical validation model with exchangeable parameters for σ 

 

model{ 

 

for (k in 1:2){ #k is the year analysed 

for (i in 1:offset[k]){ #i is the observation analysed 

 

y[i,k]~dnorm(mu.dot[k],tau.dot[skid[i,k],k])  #Likelihood 

ycen[i,k] ~ dinterval(y[i,k],ycenlim[i,k])  #Incorporation of censored 

values into the likelihood 

 

 

} 

} 

 

for (j in skids.num){ #Skid identification 2,4,5 and 6 

 

for (k in 1:2){ 

 

#Conditional structure for the standard deviation depending on the 

year  

 

log.sigma.dot[j,k]<-ifelse(k==1,log.sigma[j],log.sigma[j]+epsilon[j]) 

 

#Transforming standard deviation to precision 

tau.dot[j,k]<-1/(sigma.dot[j,k])^2 

 

log(sigma.dot[j,k]) <-log.sigma.dot[j,k] 

} 

 

log.sigma[j]~dnorm(mu.sigma,tau.sigma) 
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log(sigma[j])<-log.sigma[j] 

 

#Difference between skids' standard deviations 

epsilon[j]~dnorm(mu.epsilon,tau.epsilon) 

 

} 

 

  for (k in 1:2){ 

 

#Conditional structure for the mean depending on the year 

mu.dot[k]<-ifelse(k==1,mu,mu+delta)  

 

  } 

 

  #Definition of prior distributions 

  mu.sigma~dnorm(0,0.0001) 

  tau.sigma~dgamma(0.001,0.001) 

  mu.epsilon~dnorm(0,0.0001) 

  tau.epsilon~dgamma(0.001,0.001) 

  mu~dnorm(0,0.0001) 

  delta~dnorm(0,0.0001) 

 

} 
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A.2.1.4 Non-hierarchical model with identical parameters µ and σ for all skids 

 

model{ 

 

for (k in 1:2){ #k is the year analysed 

for (i in 1:offset[k]){ #i is the observation analysed 

 

y[i,k]~dnorm(mu.dot[k],tau.dot[k])  #Likelihood 

ycen[i,k] ~ dinterval(y[i,k],ycenlim[i,k])  #Incorporation of censored 

values into the likelihood 

 

 

} 

} 

for (k in 1:2){  

 

#Conditional structure for the mean depending on the year 

mu.dot[k]<-ifelse(k==1,mu,mu+delta)  

 

#Conditional structure for the standard deviation depending on the 

year 

log.sigma.dot[k]<-ifelse(k==1,log.sigma,log.sigma+epsilon) 

 

 

tau.dot[k]<-1/(sigma.dot[k])^2 

       

log(sigma.dot[k]) <-log.sigma.dot[k] 

 

y.sim[k]~dnorm(mu.dot[k],tau.dot[k]) 

 

} 
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log(sigma)<-log.sigma 

#Priors 

mu~dnorm(0,0.0001) 

delta~dnorm(0,0.0001) 

log.sigma~dnorm(0,0.0001) 

epsilon~dnorm(0,0.0001) 

 

   

 

} 
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A.2.1.5 Independent validation model with independent parameters µ and σ for each 

skid 

model{ 

 

for (k in 1:2){ #k is the year analysed 

for (i in 1:offset[k]){ #i is the observation analysed 

 

y[i,k]~dnorm(mu.dot[skid[i,k],k],tau.dot[skid[i,k],k])  #Likelihood 

ycen[i,k] ~ dinterval(y[i,k],ycenlim[i,k])  #Incorporation of censored 

values into the likelihood 

 

 

} 

} 

 

for (j in skids.num){ #Skid identification 2,4,5 and 6 

 

for (k in 1:2){ 

 

#Conditional structure for the mean depending on the year 

mu.dot[j,k]<-ifelse(k==1,mu[j],mu[j]+delta[j])  

 

#Conditional structure for the standard deviation depending on the 

year 

log.sigma.dot[j,k]<-ifelse(k==1,log.sigma[j],log.sigma[j]+epsilon[j]) 

 

 

tau.dot[j,k]<-1/(sigma.dot[j,k])^2 

       

log(sigma.dot[j,k]) <-log.sigma.dot[j,k] 
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} 

#Skid specific means 

mu[j]~dnorm(0,0.0001) 

 

#Difference between skids' means 

delta[j]~dnorm(0,0.0001) 

 

log.sigma[j]~dnorm(0,0.0001) 

 

epsilon[j]~dnorm(0,0.0001) 

 

log(sigma[j])<-log.sigma[j] 

 

} 

   

} 
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A.2.2 Distributions for the differences in performance between years for the 

means (δj)and for the logarithm of the standard deviations (ε) 

 

The model provided information for the change in performance means between years for each 

skid (Figure A-5). The results indicated that there was a decrease in performance across all the 

skids with a larger change observed on skid 4. 

 

Figure A-5: Box plot for the difference in means between years for each skid (δj) 

 

The model also provided information about the change in the log standard deviations between 

the years (ε) (Figure A-6). The results show that there was a decrease in performance variability 

after 5 years of operation.  
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Figure A-6: Box plot for the difference in log standard deviation between years (ε) 
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A.2.3 Bayesian model development 

The Bayesian model analysis can be represented by five distinct steps summarised in Figure 

A-7. In step 1 the model structure and distributions were defined. In Step 2, the priors were 

defined for the unknown stochastic model parameters for which posterior distributions would be 

obtained. In step 3, data were collected and arranged in a suitable format to be incorporated into 

the model. In Step 4, the MCMC technique was employed to approximate the posterior 

distributions using the information from steps 1-3. Finally, in step 5 simulated values of the 

updated parameters were used to generate distributions of future data points, which could then 

be used for prediction purposes.   

 

 

Figure A-7: Construction of posterior and predictive distributions under the Bayesian 

framework. 
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A.2.4 Alternative hierarchical and non-hierarchical models 

Directed acyclic graphs with the different model options analysed in this study are presented in 

Figure A-8, Figure A-9, Figure A-10 and Figure A-11. 

 

Figure A-8: Partially hierarchical validation model with exchangeable parameters for . 
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Figure A-9: Partially hierarchical validation model with exchangeable parameters for σ. 

 

 

Figure A-10: Non-hierarchical validation model with identical parameters µ and σ for all skids. 
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Figure A-11: Independent validation model with independent parameters µ and σ for each skid. 

 

A.2.5 Normality assumption check  

Normality was tested through Minitab 16 (Minitab 2010) using probability plots generated from 

the Reliability/survival option for right censored data. Probability plots show the observations 

values vs. the percentage of values in the sample that are less than or equal to it. Correlation 

(“Corr”) on Figure A-12 (2010) and Figure A-13 (2015) indicates the Pearson’s correlation 

between the fitted normal distribution and the actual data. The results indicated that the normal 

distribution is supported by the data with correlation higher than 0.92 for both years.   
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Figure A-12: Probability plot for 2010 data considering censored values. Mean is the average of 

the observations, StDev is the standard deviation of the observations, “Corr” is the correlation, 

“U” is the number of uncensored observations and “C” is the number of censored observations.    
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Figure A-13: Probability plot for 2015 data considering censored values. Mean is the average of 

the observations, StDev is the standard deviation of the observations, “Corr” is the correlation, 

“U” is the number of uncensored observations and “C” is the number of censored observations.   
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A.3 Appendix 3 

A.3.1 Ozonation experimental results 

The following plots show information regarding the ozonation experiments in terms of the inlet 

ozone in the gas stream (Figure A-14), outlet ozone in the gas stream (Figure A-15), applied 

ozone dose (Figure A-16), and consumed ozone dose (Figure A-16).  The first run of 

experiments was also considered for the calculation of the mean values. Although the set-points 

of applied ozone for this first run were slightly lower than the rest of the experiments, the 

information was considered appropriate as the plots were used to present and compare the 

relative behaviour of the reactor conditions during each set of experiments. As observed in 

Figure A-14, the inlet ozone concentration experiences a sharp drop after the system reaches the 

applied ozone set-point which is produced by the reactor control system automatically stopping 

the ozone production.  

 

Figure A-14: Average inlet ozone concentration in the gas stream over time 

 

Ozone in the outlet gas stream (Figure A-15) showed a gradual increase and decrease with a 

single peak. This behaviour was experience because the non-reacting ozone took some time to 

be stripped from the reactor. Each experiment run was stopped once the outlet ozone 

concentration was 0.01 mg/L as indicated by the sensor.     
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Figure A-15: Average outlet ozone concentration in the gas stream over time 

 

The applied ozone obtained from Equation 6-1 is presented in Figure A-16. As observed, the 

applied ozone increased steadily until reaching the set-point dose. Once the set-point was 

reached it did not increase further because the ozone generation was ceased.  
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Figure A-16: Average applied ozone over time   

 

The consumed ozone calculated from Equation 6-2 is shown in Figure A-17. The consumed 

ozone increased linearly until reaching a peak to then decreasing gradually. The final value was 

used to calculate the ratios of ozone to DOC. As observed, the consumed ozone changed over 

time. This was expected as the non-reacting ozone was removed from the system gradually.  
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Figure A-17: Average consumed ozone over time 

 

For the calculation of the consumed ozone to DOC ratios, the consumed ozone and DOC 

concentrations in Table A-5 were employed. As observed the DOC values ranged between 6 

and 14 mg/L approximately indicating certain variability in the organic concentrations. The 

consumed ozone was much lower than the applied ozone. This indicated that only some 

proportion of the injected ozone reacted. The ratio of the consumed ozone to applied ozone was 

approximately 0.5.  

 

Table A-5: DOC influent concentrations, applied and consumed ozone for the five samples used 

during the experiments 

Sample DOC (mg/L) Applied ozone (mg/L) Consumed ozone (mg/L) 

Sample 1 9.2 1.5; 3.3; 5.0; 6.6; 8.2 0.9; 1.7; 2.5; 3.3; 3.9 

Sample 2 14 2.1; 4.2; 6.2; 8.3; 10 1.1; 2.4; 3.2; 4.3; 5.4 
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Sample DOC (mg/L) Applied ozone (mg/L) Consumed ozone (mg/L) 

Sample 3 6.2 2.1; 4.3; 6.2; 8.3; 10 1.1; 2.1; 2.9; 3.5; 4.1 

Sample 4 7.7 2.2; 4.4; 6.0; 8.3; 10 1.2; 2.3; 2.7; 3.8; 4.3 

Sample 5 8.2 2.2; 4.2; 6.2; 8.3; 10 1.1; 2.0; 2.8; 3.5; 4.2 
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A.4 Appendix 4  

A.4.1 Equations for model construction 

The proposed model in this study used the structure of a neural network with one hidden layer 

and k neurons, three input variables (p=3) and a single dependent variable (Equation A-2).  

𝑦 = 𝑓(𝑥; 𝜃𝑤) + 𝑒 Equation A-1 

𝑓(𝑥, 𝜃𝑤) = 𝑤𝑘0 +∑𝑤𝑘𝑗 ∙ 𝜙𝑗 (𝑤𝑗0 +∑𝑤𝑖𝑗 ∙ 𝑥𝑖

𝑝

𝑖=1

)

𝑘

𝑗=1

 Equation A-2 

𝑒~𝑁(0, 𝜎2) Equation A-3 

 

The w denotes all the parameters wij, wj0, wkj, wk0 which are the hidden layer weights and 

biases, and the output layer weights and biases, respectively (Equation A-2). The independent 

variables are represented as x and the dependent variable by y. The random variable e is the 

model residual (Equation A-1 and Equation A-3). Where N(0,2) denotes a normal distribution 

with mean 0 and variance 2 (Equation A-3) 

 

The input variables were normalised in the range [0,1] by using Equation A-4. 

𝑥𝑖 =
𝑥𝑖
𝑢 −𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖
 

Equation A-4 

 

Where 𝑥𝑖𝑢 denotes the unnormalised variable i, mini is the minimum value for the variable i, and 

maxi is the maximum value for the variable i.  

 

The activation function  is the softplus function as shown in Equation A-5. 
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𝜙𝑗(𝑥) = ln(1 + 𝑒𝑥)  Equation A-5 

Weights and biases were defined with normal distributions with Gaussian distributions as 

shown in Equation A-6, Equation A-7, Equation A-8 and Equation A-9. 

 

𝑤𝑘0~𝑁(0, 𝜆𝛼
−1)  Equation A-6 

𝑤𝑗0~𝑁(0, 𝜆𝛼
−1)  Equation A-7 

𝑤𝑘𝑗~𝑁(0, 𝜆𝛽
−1)  Equation A-8 

𝑤𝑖𝑗~𝑁(0, 𝜆𝛾
−1)  Equation A-9 

 

 

Where -1’s are the variance hyperparameters.   

The fixed values for the highest level hyperparameters for the variances were defined by 

Equation A-10, Equation A-11, Equation A-12 and Equation A-13. 

𝜆𝛼~𝐺𝑎𝑚𝑚𝑎(𝑟𝛼, 𝜆𝛼)  Equation A-10 

𝜆𝛽~𝐺𝑎𝑚𝑚𝑎(𝑟𝛽 , 𝜆𝛽)  Equation A-11 

𝜆𝜆~𝐺𝑎𝑚𝑚𝑎(𝑟𝜆, 𝜆𝜆)  Equation A-12 

𝜎−2~𝐺𝑎𝑚𝑚𝑎(𝑟𝜎 , 𝜆𝜎)  Equation A-13 
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Where r’s are the r and  are the parameters of the Gamma distribution.   

 

A.4.2 Comparison of BMLP with other alternative models 

Alternative models were tested for their fit to the data including multiple linear models and 

models with nonlinear terms. The tested equations are presented in Equation A-14, Equation 

A-15 and Equation A-16.A Bayesian approach was used to fit the data in order to find the 

posterior parameters. The comparison between observed and predicted CT values is presented in 

Figure A-18.As it can be observed, the Smith equation provided an adequate fit to the 

Coxsackievirus data (Figure A-18 c), but poor fit to the Adenovirus data with large residual 

errors (Figure A-18 d).    

𝐶𝑇 = 𝛽0 + 𝛽1 ∙ 𝑝𝐻 + 𝛽2 ∙ 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 + 𝛽3 ∙ 𝐿𝑅𝑉 Equation A-14 

𝐶𝑇 = 𝛽0 ∙ 𝑝𝐻
𝛽1 ∙ 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝛽2 ∙ 𝐿𝑅𝑉𝛽3 Equation A-15 

𝐶𝑇 = 𝛽0 ∙ 𝐿𝑅𝑉 ∙ (𝛽1 + exp(𝛽2 + 𝛽3 ∙ 𝑝𝐻 + 𝛽4 ∙ 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦))  Equation A-16 

 

Where 0, 1, 2, 3, 4 denote the parameters of the models. CT is the dependent variable, 

whereas pH, Turbidity and LRV are the independent variables.  
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Figure A-18: Comparison of fits for alternative models. Multiple linear regression models with 

a) non-transformed variables, b) log-transformed variables. Smith equation fitted to c) 

Coxsackievirus data and d) Adenovirus data.   

 

A.4.3 Jags code for model development 

 

model{ 

for (r in 1:p){ 

gamma[1,r] ~ dnorm(0,taugamma) 

 

for (l in 2:k){ 

gamma[l,r]<-gamma[(l-1),r]+delta.gamma[(l-1),r] 

} 

 

352



 
 

for (m in 1:(k-1)){ 

delta.gamma[m,r]~dnorm(0,0.01)T(0, ) 

} 

} 

 

for (j in 1:k){ 

bias[j]~dnorm(0,taubias) 

beta[j] ~ dnorm(0,taubeta) 

} 

 

for (i in 1 : n){ 

y[i] ~ dnorm(ct.mean[i],tau.y) 

y.pred[i]~dnorm(ct.mean[i],tau.y) 

 

for (j in 1 : k){ 

p.eq[i,j] <- beta[j]*log(1+exp(bias[j]+gamma[j,1]*(x[i,1]-

min.tu)/(max.tu+min.tu)+gamma[j,2]*(x[i,2]-min.ph)/(max.ph-

min.ph)+gamma[j,3]*(x[i,3]-min.lrv)/(max.lrv-min.lrv))) 

} 

ct.mean[i] <- beta0+sum(p.eq[i,]) 

} 

 

taubeta ~ dgamma(0.001,0.001) 

taugamma ~ dgamma(0.001,0.001) 

tau.y ~ dgamma(0.001,0.001) 

taubias ~ dgamma(0.001,0.001) 

beta0 ~ dnorm(0,taubias) 

} 

 

#Initial values 
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list("taubeta"=0.01,"taugamma"=0.01,"tau.lrv"=0.01,"taubias"=0.01,"bet

a0"=0) 

 

A.4.4 R2Jags implementation in R 

#Load required packages 

library(R2jags) 

library(coda) 

 

#Import data 

data<- read.csv("data.csv") 

 

#Starting values 

inits.mlp=function(){ 

  

list("mu.mubeta"=0,"taubeta"=0.01,"taugamma"=0.01,"tau.lrv"=0.01,"mubi

as"=0,"taubias"=0.01,"beta0"=0) 

} 

 

#Input data 

x=as.matrix(data[,c(1,2,4)]) 

y=data$ct 

 

 

#Number of neurons in hidden layer 

k=3 

 

#Number of input variables 

p=3 

 

#Input parameters for the model 

datalist <- list( 
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  k=k, 

  p=p, 

  n=dim(data3)[1], 

  x=x, 

  y=y, 

  min.tu=min(data$turbidity), 

  max.tu=max(data$turbidity), 

  min.ph=min(data$ph), 

  max.ph=max(data$ph), 

  min.lrv=min(data$lrv), 

  max.lrv=max(data$lrv) 

   

) 

 

jags.params = 

c("gamma","beta","beta0","tau.y","taubeta","taugamma","taubias") # The 

parameters to be monitored 

 

#Run model, "model.txt" is the model which is saved as a separate file 

jagsfit.p <-jags(data=datalist, 

parameters.to.save=jags.params,inits=inits.mlp, 

                 n.iter=2.2E6, model.file = 

"model.txt",n.chains=1,n.burnin = 2E5,n.thin=1000) 

 

#Visualise traceplots                 

traceplot(jagsfit.p) 

 

#Show summary of the results 

print(jagsfit.p) 

 

 

#Geweke diagnostics 
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jagsfit <- as.mcmc(jagsfit.p) 

autocorr.diag(jagsfit) 

gewe=geweke.diag(jagsfit) 

gewe2=sapply(gewe, "[[", "z") 

 

pnorm(abs(gewe2),lower.tail=FALSE)*2 

 

#Plot autocorrelation plots 

autocorr.plot(jagsfit) 
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A.4.5 Types of queries performed in the model 

A number of queries were analysed in this study depending on the observations provided and 

the target variable to be assessed. The first example illustrates when it is needed to query a 

required CT (Target CT) given the values of observed pH, observed turbidity and desired target 

LRV (Figure A-19). 

 

Figure A-19: Scheme of query for target CT given observations of pH, turbidity and LRV. 

The second example displays the case when it is required querying the turbidity required to 

achieve a target LRV given the values of observed pH and CT (Figure A-20). This same type of 

query is used for pH variable. 

 

Figure A-20: Scheme of query for required turbidity given observations of pH, required LRV 

and observed CT. 
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The final instance shows the case when it is required an estimation of a LRV for an observed 

CT in the system (Figure A-21). For the estimation, a desired target LRV is selected and pH and 

turbidity are observe to obtain the target CT. The observed CT from the process is then used to 

calculate the ratio between the required CT and observed CT (inactivation ratio). Finally, the 

calculated LRV is computed from the multiplication of the selected LRV (e.g. 4 logs) and the 

inactivation ratio.  

 

 

Figure A-21: Scheme of query for inactivation ratio and calculated LRV when the CT is 

exceeding the range of the study. The required observations are pH, turbidity, target LRV and 

observed CT. 

  

358



 
 

A.5 Appendices references 

Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2012) The BUGS Book: a 

Practical Introduction to Bayesian Analysis. CRC press, Boca Raton, Florida. 

Minitab (2010) Minitab 16 statistical software. Minitab Inc., State College, Pennsylvania, USA. 

 

 

359


	Title page : Assessing validation and reliability of water and wastewater treatment processes using Bayesian techniques
	Acknowledgements
	Abstract
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Glossary
	List of publications
	Chapter 1 : Introduction
	Chapter 2 : Literature Review: Tools for assessing reliability and validation of water and wastewater treatment processes
	Chapter 3 : Materials and methods
	Chapter 4 : Assessment of parameters affecting Log10 reduction values achieved by activated sludge treatment
	Chapter 5 : Validation of ultrafiltration processes using Bayesian analysis
	Chapter 6 : Parameters for ozonation performance assessment
	Chapter 7 : Probabilistic assessment of chlorination performance targets for secondary treated wastewater using Bayesian analysis
	Chapter 8 : Assessing reliability by using Fault tree analysis and Bayesian networks during UV disinfection
	Chapter 9 : Improving the quantification multi-barrier system Log Reduction Values using Bayesian networks
	Chapter 10 : Conclusions and future work
	Chapter 11 : References
	Appendices



