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Abstract

 

i 

Abstract 

Autonomous driving has advanced rapidly during the past decades and has expanded its 

application for multiple fields, both indoor and outdoor. One of the significant issues 

associated with a highly automated vehicle (HAV) is how to increase the safety level. A 

key requirement to ensure the safety of automated driving is the ability of reliable 

localization and navigation, with which intelligent vehicle/robot systems could 

successfully make reliable decisions for the driving path or react to the sudden events 

occurring within the path. A map with rich environment information is essential to 

support autonomous driving system to meet these high requirements. Therefore, multi-

sensor-based localization and mapping methods are studied in this Thesis.  

Although some studies have been conducted in this area, a full quality control scheme to 

guarantee the reliability and to detect outliers in localization and mapping systems is still 

lacking.  The quality of the integration system has not been sufficiently evaluated. In this 

research, an extended Kalman filter and smoother based quality control (EKF/KS QC) 

scheme is investigated and has been successfully applied for different localization and 

mapping scenarios. An EKF/KS QC toolbox is developed in MATLAB, which can be 

easily embedded and applied into different localization and mapping scenarios. The major 

contributions of this research are: 

a) The equivalence between least squares and smoothing is discussed, and an 

extended Kalman filter-smoother quality control method is developed according 

to this equivalence, which can not only be used to deal with system model outlier 

with detection, and identification, can also be used to analyse, control and improve 

the system quality. Relevant mathematical models of this quality control method 

have been developed to deal with issues such as singular measurement covariance 

matrices, and numerical instability of smoothing.  

b) Quality control analysis is conducted for different positioning system, including 

Global Navigation Satellite System (GNSS) multi constellation integration for 

both Real Time Kinematic (RTK) and Post Processing Kinematic (PPK), and the 

integration of GNSS and Inertial Navigation System (INS). The results indicate 

PPK method can provide more reliable positioning results than RTK. With the 
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proposed quality control method, the influence of the detected outlier can be 

mitigated by directly correcting the input measurement with the estimated outlier 

value, or by adapting the final estimation results with the estimated outlier’s 

influence value. 

c) Mathematical modelling and quality control aspects for online simultaneous 

localization and mapping (SLAM) are examined. A smoother based offline SLAM 

method is investigated with quality control. Both outdoor and indoor datasets have 

been tested with these SLAM methods. Geometry analysis for the SLAM system 

has been done according to the quality control results. The system reliability 

analysis is essential for the SLAM designer as it can be conducted at the early 

stage without real-world measurement.  

d) A least squares based localization method is proposed that treats the High-

Definition (HD) map as a sensor source. This map-based sensor information is 

integrated with other perception sensors, which significantly improves 

localization efficiency and accuracy. Geometry analysis is undertaken with the 

quality measures to analyse the influence of the geometry upon the estimation 

solution and the system quality, which can be hints for future design of the 

localization system. 

e) A GNSS/INS aided LiDAR mapping and localization procedure is developed. A 

high-density map is generated offline, then, LiDAR-based localization can be 

undertaken online with this pre-generated map. Quality control is conducted for 

this system. The results demonstrate that the LiDAR based localization within 

map can effectively improve the accuracy and reliability compared to the 

GNSS/INS only system, especially during the period that GNSS signal is lost.  
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Chapter 1 Introduction 

1.1 Background  

Autonomous (also called self-driving, driverless, or robotic) vehicle is now at the heart 

of academic and industrial research. It has been predicted that the fully autonomous 

vehicles will be available for sale and become the major part of total vehicle sales in the 

next decades (Litman, 2015). The promotion of autonomous vehicles can bring many 

advantages, for instance, it can service the injured people, reduce driver’s stress and costs, 

increase road safety, increase road capacity by encouraging sharing cars, enhance fuel 

efficiency, and eliminate the need for conventional public transit services (Litman, 2015; 

Katrakazas et al., 2015). As human error is the primary reason for road traffic accidents, 

one main role of the advanced assistance system (ADAS) for autonomous vehicles is to 

replace humans to ensure vehicle and pedestrian safety.  

A typical autonomous vehicle system contains four key parts: localization, perception, 

planning, controlling (Figure 1.1). Positioning is a process that obtaining an object (e.g. 

moving or static objects)’s coordinates with respect to a given coordinate system. The 

coordinate system can be a local coordinate system or a geodetic datum such as WGS84. 

Localization is a process of estimating the object’s pose (position and attitude) related to 

a reference frame or a specific map while the perception system detects road environment 

around the host vehicle and identifies interested objects such as pedestrians, other vehicles, 

traffic light and sign, etc.  
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Figure 1.1 Functional components of an autonomous driving system. 

By achieving the coordinates of the surrounding environment and associating the location 

information of the surrounded entities, a map can be generated, this process is named as 

Mapping.  

Path planning is a step that utilizing the localization, mapping, and perception information 

to calculate and determine the optimal path in following driving epochs, guiding the 

moving platform (e.g. automated vehicle) from one location to another location.  This 

plan is then converted into action with controlling part, such as brake control before the 

detected traffic light or intersection line. All these mentioned parts are closely related. 

Accurate localization and perception information is essential for obtaining correct 

planning and controlling. 

1.2 Localization and Mapping for Autonomous Driving 

1.2.1 Sensors for Localization and Mapping 

Sensors, such as GPS receiver and Inertial Navigation System (INS), laser scanner, 

camera, odometer, and sonar, can be ‘eyes’ and ‘ears’ of a car. They will help build road 

3D map, detect obstacles, and support advanced driver assistance systems (ADAS). 

However, no sensor is perfect to suit all the applications. They have their own 

characteristics and application range. 

GPS or GNSS and INS are the traditional positioning methods and have been thoroughly 

studied. Nowadays, GNSS can provide very accurate absolute position information and 

millimeter to centimeter level relative ranging information (Kaplan and Hegarty, 2006). 
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However, GNSS alone is not enough for the autonomous driving application. GNSS error 

occurs when the GNSS signal is interrupted by heavy vegetation, urban canyon, tunnel, 

etc. Therefore, it is of great importance to locate the autonomous vehicles accurately when 

there is an outage of the GNSS signal. INS system can be used to estimate position 

information when the GNSS signal is lost, and it can provide velocity and altitude 

information. Inertial measurement bias needs frequent corrections, which can be done 

when the GNSS signal comes back. Therefore, the combination of GNSS and INS 

systems can complement each other and improve their performances on vehicle 

localization.  

However, GNSS/INS systems cannot percept the environment around the vehicle. As 

highly automated driving requires both the positioning information of the host vehicle 

and that of the surrounding environment entities, the perceptive sensors are often used as 

the main sensors for the purpose of mapping and navigation. LiDAR, as a perceptive 

sensor, which has been widely studied currently, can achieve the 3D point cloud directly 

and map the environment precisely with the aid of GPS and INS. For instance, Suganuma 

et al. (2015) use LiDAR and dead-reckoning position information to successfully localise 

the vehicle on urban road up to 13km with an accuracy of centimetre level. However, this 

system's application is limited for commercial vehicles due to its high cost and large size. 

Another promising perceptive sensor that can be used on an autonomous vehicle is camera, 

which, compared to LiDAR system, shows lower accuracy and has numerous error 

sources (Fuentes-Pacheco et al., 2015), but is much cheaper, with smaller size, requires 

less maintenance and less energy. Vision-based system can provide abundant 

environment information which is in vision form and is similar to what human eyes can 

percept, and can be fused with other sensors to give indications of the detected features.   

The mentioned onboard perceptive sensor technologies, such as camera, LiDAR, Radar, 

and ultra-sonic, and the infusion technology, have all been deeply studied. Some of them 

can achieve promising results for precise positioning and navigation. However, one big 

problem of these sensors is their limited sensing range. The autonomous vehicles need to 

recognise and react to the events that happen in a range of 200 meters around it or further 

(Seif and Hu, 2016), which is far beyond the range of currently used sensors. LiDAR can 
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capture features with a reliable resolution at the distance of up to100 meter (Seif and Hu, 

2016), camera is usable to detect closer environment about 30 meters and it needs a 

combination of multi-camera to acquire 360 degrees field of view, Radar has large sensor 

distance (200 m), however, it provides less information about the features and will be 

interrupt by the weather such as rain. Therefore, these perceptive sensors cannot satisfy 

the requirement of sensor range for autonomous driving. It is necessary to integrate 

different kinds of sensor to counteract the problems of each other.  

1.2.2 High-definition Map 

A map with rich road environment information is essential for the sensors mentioned 

above to provide accurate and robust localization and perception. Pre-stored road 

information makes autonomous driving robust to the changing environment and road 

dynamics. The recognition range requirement can be satisfied since an onboard map can 

provide timely information of the road network. Map-based localization and navigation 

have been studied using different types of map information. Google Map is one example 

as it offers worldwide map information, including images, topographic details and 

satellite images (He and Lai, 2010), and it is available via mobile phone and vehicle apps. 

However, the use of maps will be limited by the maps' accuracy, and in some selected 

areas the map’s resolution may be restricted. Hosseinyalamdary et al. (2015) considered 

low accuracy maps for navigation by combining data from other sensors. They detected 

moving objects using LiDAR data, and utilized a GNSS/IMU system with a coarse open 

source GIS map. Their results show their fusion technique can successfully detect and 

track moving objects. A precise curb-map based localization method that uses a 3D- 

LiDAR sensor and a high precision map is proposed by Wang et al. (2017). However, 

this method will fail when curb information is lacking or obstructed.  

Recently, so-called “high definition” (HD) maps have received considerable interest in 

the context of autonomous driving since they contain very accurate, and large volumes of 

road network information (Liu et al., 2020). According to some major players in the 

commercial HD map market, 10-20 cm accuracy has been achieved (HERE, 2017; 

TomTom, 2016), and it is predicted that in the next generation HD maps a few centimeter 

accuracy will be reached. Such maps contain considerable information on road 
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environment, not only the static road entities, such as road geometry (curvature, grades, 

etc), but also some traffic management information, such as traffic signs, traffic lights, 

speed limits, road markings, and so on. The autonomous car can use the HD map to 

precisely locate the host-car within the road lane and estimate the relative location of the 

car with respect to road objects by matching the landmarks, which are recognized by 

onboard sensors (such as cameras), with the pre-stored information within the HD map.  

Therefore, maps, especially HD maps, play several roles in support of autonomous 

driving, are able to meet the stringent requirements of accuracy, precision, recognition 

ranging, robust and information richness. The “map” application for autonomous driving 

is facilitated by techniques such as Simultaneous Localization and Mapping (SLAM).  

1.2.3 Integration of multi-sensor for localization and mapping 

There are many studies that focus on the integration of the multi-sensor for the dynamic 

system. Kalman filter (KF) and smoothing can be used to combine GNSS/INS. This initial 

solution of trajectory can then be introduced to bundle-adjustment to estimated camera 

sensor position and attitude, this process has no feedback to the navigation solution 

(Rouzaud and Skaloud, 2011). SLAM is another approach that can integrate the 

navigation solution (inertial odometry or GNSS/INS) with the optical observation from 

LiDAR or camera, which may feed back the trajectory estimation to the navigation 

solution. Some traditional SLAM approaches are also KF based. For most localization 

and mapping problem, the platform will move, and the perceptive sensors will match 

among same features observed at different times, which can be used as constraint to the 

platform trajectory. However, this kind of spatial constraint between the observed 

features at different epochs is indirectly observed at KF updating step (Rouzaud and 

Skaloud, 2011). Some studies proposed dynamic networks to deal with this integration 

system with time dependent and spatial dependent parameters. According to Colomina 

and Blazquez (2005), the static and dynamic observation equations were combined to 

build up a time dependent network or a dynamic network. Optimal estimation is 

performed to solve this network. Its work shows that a particular type of dynamic network 

can be solved with Kalman filtering and smoothing algorithm (Colomina and Blazquez, 

2005). In the work of Rouzaud and Skaloud (2011), the performance of KF, KS, dynamic 



Chapter 1 Introduction

 

6 

 

network is compared for a GNSS/INS/ LiDAR integration system. The dynamic network 

is solved by least squares optimization. Results show that the dynamic network’s solution 

will be corresponded to the smoother’s for case of GNS/INS integration or inertial 

navigation only. However, if LiDAR observation is integrated and an additional cross-

time constraint with tie-features is added to the dynamic network, the network solution 

will be improved, especially when GNSS is denied. For the field of SLAM, network-

based approach is also well established (Strasdat et al., 2010) and more interest is towards 

the inertial SLAM. Another study (Angelats and Colomina, 2014) solves the orientation 

and calibration of camera, laser, and camera-laser in a single, combined network 

adjustment.  The traditional bundle adjustment is replaced by dynamic network (Cucci et 

al., 2017). Cucci et al (2017) combined raw inertial observation directly to the bundle-

adjustment by driving a dynamic network in a form of factor-graph, and has demonstrated 

the superior of the proposed method, especially in challenging scenarios.  

1.3 Simultaneous Localization and Mapping 

SLAM is a process by which a moving platform builds a map of the environment and 

uses it to deduce its location simultaneously. SLAM, which is widely used in the robotic 

field, has been demonstrated (Bresson et al., 2017, Kuutti et al., 2018) as being applicable 

for autonomous vehicle driving since it can support not only accurate map generation but 

also online localization within a previously generated map.  

Since initially introduced in 1986 (Smith and Cheeseman, 1986), a variety of SLAM 

techniques have been developed. SLAM has its conceptual roots in geodesy and 

geospatial mapping (Agarwal et al., 2014).  

In general, there are two types of approaches to SLAM estimation: filter-based and 

optimization-based. Both approaches estimate the vehicle pose states and map states at 

the same time. The vehicle pose includes 3D or 2D vehicle position, but sometimes also 

velocity, orientation or attitude, depending on the sensor(s) used and on the application(s). 

In this study Xk represents the vehicle pose at time k. m is the map that consists of stored 

landmarks (f1-f4) with their position states. uk is the control inputs representing the 



Chapter 1 Introduction

 

7 

 

vehicle motion information between time epochs k-1 and k (which can be acquired from 

vehicle motion sensors such as wheel encoders or an inertial sensor). At some time epochs 

such as epoch k, the onboard sensors (such as camera, LiDAR, radar) will perceive the 

environment and detect one or more landmarks. The relative observations between the 

vehicle and all the observed landmarks are denoted as Zk. With this information, the 

vehicle pose and the map states can be estimated.  

Figures 1.2 and 1.3 illustrates two general SLAM implementations: online SLAM and 

offline SLAM. The rectangle with blue background represents the state variables that are 

estimated in these two implementations. It can be seen that for online SLAM, the current 

vehicle pose Xk+2 is estimated and the map is generated and updated with the most recent 

measurements (uk+2 and Zk+2). In the case of the offline SLAM implementation, the 

vehicle's trajectory is updated together with the whole map. All the available control and 

observation measurements will be utilized for the offline SLAM estimation. Many filter-

based and optimization-based SLAM methods have been developed.  

 

Figure 1.2 Description of online SLAM 
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Figure 1.3 Description of offline SLAM 

1.3.1 Online SLAM  

Filter-based SLAM recursively solves the SLAM problem in two steps. Firstly, the 

vehicle and map states are predicted with processing models and control inputs. In the 

next step, a correction of the predicted state is done with the current sensor observations. 

Therefore, the filter-based SLAM is suitable for online SLAM. 

Extended Kalman Filter based SLAM (EKF-SLAM) is a standard solution for the SLAM 

problem. It is derived from Bayesian filtering, in which all variables are treated as 

Gaussian random variables. It consists of two steps: time update (prediction) and 

measurement update (filtering). At each time epoch the measurement and motion models 

are linearized (using the current state with the first-order Taylor expansion). However, 

since the linearization is not made around the true value of the state vector, but around 

the estimated value (Dissanayake, 2011), the linearization error will accumulate and cause 

divergence of estimation. Therefore, inconsistency can occur.  

Another issue related to EKF-SLAM is the continuous expansion of map size, making the 

quadratic calculation process of large-scale SLAM impractical. For autonomous driving, 

the complex road environment and long driving period will introduce a large number of 

features, which makes real-time computation unavailable. Many algorithms have been 

developed to improve computational efficiency. For example, the Compressed Extended 
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Kalman Filter (CEKF) (Guivant and Nebot, 2001) algorithm can significantly reduce 

computations by focusing on local areas and then extending the filtered information to 

the global map. Algorithms with sub-maps have also been used to address the 

computation issues (Williams, 2001; Bailey, 2002; Paz et al., 2008, Chli and Davison, 

2009). New blank map is used to replace the old map when the old one reaches a 

predefined map size. A higher-level map is maintained to track the link between each sub-

map.  

There are some other filter-based SLAM approaches, such as some variants of Kalman 

filter. One of them, the Information Filter (IF), is propagated with the inverse form of the 

state error covariance matrix, which makes this method more stable (Thrun and Liu, 2005). 

This method is more popular in multi-vehicle SLAM than in single-vehicle systems.     

Another class of filter-based SLAM techniques are the Particle Filters (PF) which have 

become popular in recent years. PF execute Sequential Monte-Carlo (SMC) estimation 

by a set of random point clusters (or particles) representing the Bayesian posterior. The 

Rao-Blackwellized Particle Filter was proposed by Grisetti (2007). Fast SLAM is a 

widespread implementation which treats the robot position distribution as a set of Rao-

Blackwellized particles, and uses an EKF to maintain local maps. In this way, the 

computational complexity of SLAM is significantly reduced. Real-time application is 

possible with Fast SLAM (Eade and Drummond, 2006), making online SLAM possible 

for autonomous driving. Another advantage of FastSLAM over EKF is that the particle 

filters can cope with non-linear motion models (Thrun et al., 2004). However, according 

to Durrant-Whyte and Bailey (2006) and Bailey et al., (2006), FastSLAM suffers 

degeneration since it cannot forget the past. If marginalizing the map and when 

resampling is performed, statistical accuracy is lost. 

1.3.2 Offline SLAM  

Full offline SLAM estimates all the vehicle pose and map states using the entire sensor 

data. Similar to filter-based SLAM, a so-called “full SLAM” system consists of two main 

parts: the front-end and the back-end. In the front-end step, the SLAM system extracts 

the constraints of the problem with the sensor data, for example, by performing feature 
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detection and matching, motion estimation, loop closure detection, etc. Nonlinear 

optimization is then applied to acquire the maximum likelihood estimation at the back-

end. 

Graph SLAM is one of the main classes of full SLAM which uses graphical structure to 

represent the Bayesian SLAM. All the platform poses along the whole trajectory and all 

the detected features are treated as nodes. Spatial constraints between poses are encoded 

in the edges between the nodes. These constraints result from observations, odometry 

measurements and loop closure constraint. After the graph construction, graph 

optimization is applied to optimize the graph model of the whole trajectory and map. To 

solve the full optimization and calculate the Gaussian approximation of the posterior, 

many methods can be used, such as Gauss-Newton or Levenberg-Marquardt (Press, et al., 

1992).  

One advantage of graph-based SLAM over EKF SLAM is that its covariance matrix size 

and update time are constant after generating the graph. In contrast, for EKF SLAM these 

will be quadratic in relation to the number of map states and can grow dramatically. 

Therefore, graph SLAM has become popular for building large-scale maps. Reducing the 

optimization step’s computational complexity has become one of the leading research 

topics for practical implementations of the high-dimensional SLAM problem. The key to 

solving the optimization step efficiently is the sparsity of the normal matrix. The fact that 

each measurement is only associated with a very limited number of variables makes the 

matrix very sparse. With Cholesky factorization and QR factorization methods, the 

information matrix and measurement Jacobian matrix can be factorized efficiently, and 

hence the computational cost can be significantly reduced. Several algorithms have been 

proposed, such as TORO and g2o. The sub-map method is also a popular strategy to 

solving the large-scale problem (Wagner, et al., 2014; Ni et al., 2007; Huang, et al., 2009; 

Pinies, et al., 2009; Ho, et al., 2018). The sub-maps can be optimized independently and 

be relative to a local coordinate frame. The sub-map coordinates can be treated as pose 

nodes, linked with motion constraints or loop closure constraints. Thus, a global pose 

graph is generated. In this way, the computational complexity and update time will be 

improved.  
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Smoothing and Mapping (SAM), another typical optimization-based SLAM algorithm, is 

a type of nonlinear least squares problem. Such a least squares problem can be solved 

incrementally by Incremental Smoothing and Mapping (iSAM) (Kaess, et al., 2008) and 

iSAM2 (Kaess, et al., 2012). Online SLAM can be obtained with incremental SAMs as 

they avoid unnecessary calculations with the entire covariance matrix. iSAM2 is more 

efficient as it uses a Bayes tree to get incremental variable re-ordering and fluid re-

linearization.  

SLAM++ is another incremental solution for nonlinear least squares optimization-based 

SLAM which is very efficient. Moreover, for online SLAM implementations, fast state 

covariance recovery is essential for data association, obtaining reduced state 

representations, active decision-making and next best-view (Ila et al., 2015; Ila et al., 

2017). SLAM++ has an advantage as it allows for incremental covariance calculation 

which is faster than other implementations (Ila et al., 2017). 

Table 1 is a summary of the characteristics of some typical SLAM techniques. Note that 

Graph SLAM utilizes all available observations and control information and can achieve 

very accurate and robust estimation results. However, it can only be used for offline 

applications and its performance relies on a good initial guess. Filter-based SLAM is more 

suitable for small-scale environments when used for online estimation. The incremental 

optimization method that can do incrementally updating so as to provide an optimal 

estimation of a large-scale map with very high efficiency.     

Table 1.1 Characteristics of some typical SLAM techniques 

SLAM Type Advantages Disadvantages 

EKF 

SLAM 

Bayesian 

filter 

• Mature method, widely 

studied  

• Uncertainty is estimated 

• Suffers from 

linearization errors 

• No re-linearization step 

• Needs huge memory 

and computational 

resources for large maps 
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IF 

SLAM  

Bayesian 

filter 

• Already inversed covariance 

matrix 

• Faster and more stable than 

EKF 

• Suitable for multi-vehicle 

systems 

• Suffers from 

linearization errors 

• No re-linearization step 

CEKF 

SLAM 

Bayesian 

filter 

• Cost-effective 

• Outliers/errors only affect 

local maps 

• Auxiliary coefficient matrix is 

used for inactive parts  

• Needs correct link 

between local and 

global maps 

Fast 

SLAM 

Particle 

filter 

• Capable of updating with 

unknown data association 

• Less computation and 

memory cost than EKF 

• Suitable for nonlinear cases 

• Robust in cases where motion 

noise is high relative to 

measurement noise 

 

• Loses accuracy when 

marginalizing the map 

and resampling is 

performed 

Graph 

SLAM 

Batch least 

squares  

optimization 

• Suitable for nonlinear cases 

• More accurate 

• Can handle a large number of 

features 

• Not suitable for online 

applications 

• Relies on good initial 

values 

iSAM2 
Incremental 

optimization 

• Very fast 

• Suitable for nonlinear case 

• Allows re-linearization and 

data association correction 

• Complexity grows when 

graph become dense 
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1.3.3 Inertial SLAM 

New SLAM methods have appeared thanks to the advances in sensor technology and 

digital technology. These methods are also optimization based or filtered based. Inertial 

SLAM has become hot research topic. The inertial measurement units (IMUs) can be 

fused with the camera or LiDAR to support pose (position, velocity, attitude) estimation, 

which largely improve the SLAM accuracy. With IMU, the attitudes, especially the 

heading, are observable (Qin et al., 2017). The integration of IMU measurement can also 

improve the motion tracking performance during gap of observations. For instance, for 

Visual SLAM, illumination change, texture-less area, or motion blur will cause losses of 

visual tracks (Qin et al., 2017).  

Fusion can be loosely coupled (Falquez et al., 2016, Fang, et al., 2017) or tightly coupled 

(Lynen et al., 2015, Qin et al., 2017, Zhang et al., 2017, Chen and Zhu, 2018). For loosely 

coupled SLAM system, IMU is mainly used to provide orientation information, while for 

tightly coupled SLAM, inertial navigation data is fused with camera/LiDAR states to 

build up measurement models, and then performs state estimation (Chen et al., 2018). 

Therefore, for loosely coupled inertial SLAM system, the IMU is used as prior for the 

whole system, thus it could not use IMU measurements for further optimization. The 

loosely coupled method is normally more efficiently than the tightly coupled methods, 

however, it is less accurate science it takes the odometry part as a black box (Ye, et al., 

2019). For tightly coupled methods, a Kalman filter can be used to correct the IMU states, 

SLAM

++ 

Incremental 

optimization 

• Suitable for nonlinear case 

• Very fast estimation (faster 

than iSAM2) 

• Efficient uncertainty 

estimation 

• Suitable for large-scale 

mapping  

• Complexity grows with 

increasing number of 

observations 
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which shows ability of accurate navigation during long-range GPS denied period 

(Hemann et al., 2016).  

 

1.4 Application of SLAM in Autonomous Driving 

Depending on the different characteristics of SLAM techniques, there could be different 

applications for autonomous driving. One classification of the applications is: offline or 

online. A map satisfying a high-quality requirement is typically generated offline, such 

as the High Definition (HD) map (Liu et al., 2020). For this kind of high density 3D point 

cloud map, an offline map generation process ensures the map’s accuracy and robustness. 

Such maps can be pre-generated to support real-time operations of autonomous vehicles 

(Figure 1.4).  

 
Figure 1.4 An image from a high-definition map (HERE, 2017) 

1.4.1 High-definition Map Generation and Updating  

As stated earlier, SLAM can be used to generate digital maps used for autonomous driving, 

such as the HD map (Liu et al., 2020). Due to the stringent requirements, high quality 

sensors are used. LiDAR is one of the core sensors for automated cars as it can generate 

high density 3D point clouds. High-end GNSS and IMU sensors are also used to provide 
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accurate position information. Cameras can provide information that is similar to the 

information detected by human eyes. The fusion of sensor data and analysis of road 

information to generate HD maps needs considerable computational power, which is not 

feasible in current onboard vehicle systems. Therefore, the HD map is built-up offline, 

using techniques such as optimization-based SLAM. The offline map creation can be 

done by driving the road network several times to collect information, and then process 

together all the collected perceptive sensor information and position information to 

improve the accuracy and quality of the final map.  

The road environment and road rules may change, for instance, the speed limit may be 

reduced due to road work, road infrastructure may be changed due to building 

development, and so on. Therefore, the HD map needs frequent updates. Such updates 

can utilize the online data collecting from any autonomous cars. The data is transmitted 

to central (cloud) computers where the update computations are done. Other vehicles can 

receive such cloud-based updates and make a timely adjustment to driving plans. Jo et al. 

(2018) proposed a SLAM change update (SLAMCU) algorithm, utilizing a Rao-

blackwellized particle filter approach for online vehicle position and (new) map state 

estimation. In the work of Kim et al. (2018), a new feature layer of HD maps can be 

generated using Graph SLAM when a vehicle is temporally stopped or in a parking lot. 

The new feature layer from one vehicle can then be uploaded to the map cloud and 

integrated with that from other vehicles into a new feature layer in the map cloud, thus 

enabling more precise and robust vehicle localization.    

1.4.2 Small Local Map Generation 

SLAM can also be used for small local areas. One example is within parking areas. The 

driving speed in a parking lot is low, therefore the vision technique will be more robust 

than other high-speed driving scenarios. The parking area could be unknown (public 

parking lot or garage), or known (home zone) – both cases can benefit from SLAM. Since 

SLAM can be used without GNSS signals, it is suitable for vehicles in indoor or 

underground parking areas, using just the perceptive sensor and odometry measurements 

(velocity, turn angle) or IMU measurements. For unknown public parking areas, the 

position of the car and the obstacles, such as pillars, side-walls, etc, can be estimated at 
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the same time, guiding the parking system. For home zone parking, the pre-generated 

map and a frequent parking trajectory can be stored within the automated vehicle system. 

Each time the car returns home, re-localization using the stored map can be done by 

matching detected features with the map. The frequent trajectory could be used for the 

planning and controlling steps.    

An approach that utilizes multi-level surface (MLS) maps to locate the vehicle, and 

calculate and plan the vehicle path within indoor parking areas was proposed by 

Kummerle et al. (2009a). In this study, graph-based SLAM was used for mapping, and 

the MLS map is then used to plan a global path from the start to the destination, and 

robustly localize the vehicle with laser range measurements. In the work of Lee et al. 

(2018), a grid map and an EKF SLAM algorithm were used with W-band radar for 

autonomous back-in parking. In this work an efficient EKF SLAM algorithm was 

proposed to enable real-time processing. Im et al. (2019) proposed an around view 

monitor (AVM)/ LiDAR sensor fusion method to recognize the parking lane and provide 

rapid loop closing performance. The above studies have demonstrated that both filter-

based SLAM and optimization-based SLAM can be used to support efficient and accurate 

vehicle parking assistance (local area mapping and localization), even without GNSS.  

1.4.3 Localization within the Existing Map 

In map-based localization, a matching method is used to match “live” data with map 

information, using methods such as Iterative Closest Point (ICP), Normal Distribution 

Transform (NDT), etc (Liu et al., 2020; Zheng and Wang, 2017). These algorithms can 

be linked to the SLAM problem since SLAM executes loop closing and re-localization 

using similar methods. For a SLAM problem, the ability to recognize a previously 

mapped object or feature and to relocate the vehicle within the environment is essential 

for correcting the maps (Bresson et al., 2017). Therefore, the reuse of a pre-generated 

map to localize the vehicle can be considered as an extension of a SLAM algorithm. In 

other words, the pre-generated and stored map can be treated as a type of “sensor” to 

support localization.  
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However, matching live data with a large-scale pre-prepared map requires substantial 

computational time. Hence some methods have been proposed to increase computational 

efficiency. One method is to firstly narrow down the possible matching area from the map 

with position estimated from GNSS or GNSS/INS, and then do detailed matching of the 

detected features with the map (Li and Nashashibi, 2012).  

Due to the limited installation of LiDAR systems in commercial vehicles (high price of 

sensor and high power consumption), localization of a vehicle with a low-cost sensor (e.g. 

vision sensor) in a pre-generated HD map is of considerable practical interest. For 

instance, Wolcott and Eustice (2014) located a vehicle within a dense LiDAR-generated 

map using vision data, and demonstrated that a similar order of magnitude error rate can 

be achieved to traditional LiDAR localization, but with several orders of magnitude 

cheaper sensor technology. 

In addition, moving objects within the road environment will cause a drift of perception, 

localization and mapping for autonomous driving. SLAM can be used to address the 

problem of DATMO (detection and tracking of moving objects) (Wang et al., 2007), 

because one of the SLAM’s assumptions is that the detected features are stationary. As 

the static parts of the environment are localized and mapped by SLAM, the dynamic parts 

can be concurrently detected and tracked. Some approaches have dealt with dynamic 

obstacles (e.g., Vu, 2009; Wang et al., 2003; Fei, 2012). 

1.4.4 Challenge of Applying SLAM in Autonomous Driving 

1.4.4.1 Ensuring High Accuracy and High Efficiency 

Localization and mapping for automated vehicles need to be accurate and robust to any 

environment changes, and be executed with high efficiency. With rapidly developing 

sensor technology, the combination of different sensors can compensate for the 

limitations of a particular sensor. Examples include GNSS/IMU+LiDAR/camera SLAM, 

Radar SLAM, and so others. There is considerable research and developments associated 

with low-cost and/or miniturized LiDAR sensors. New LiDAR sensor concepts promise 

significant reduction in LiDAR systems' cost, with the potential for real-time 

implementation in future autonomous vehicles. For instance, RoboSense has unveiled a 
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new $200 LiDAR sensor combining MEMS sensors and an AI-based deep-learning 

algorithm to support high-performance autonomous driving applications (Miller, 2018).  

Choosing a SLAM approach should take into consideration of the different application 

scenarios. Optimization-based SLAM can provide more accurate and robust estimation. 

However, it is more suitable for offline estimation. EKF SLAM suffers from the quadratic 

increasing of the number of state variables, which restricts its online application in large-

scale environments. Although high-resolution map generation can be offline, real-time, 

or near-real-time, solutions are essential for map updating and map-based localization 

applications.  

Any change of road environment should be quickly updated in the map and transmitted 

to other road users. The emerging of 5G wireless technology can make the 

communication between vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), 

vehicle-to-cloud more reliable and with higher throughput (Kuutti et al., 2018).   

1.4.4.2 Expressing the Environment  

There are different types of maps that can be used to represent the road environment. The 

road environments are always very complex, and hence have large scale, resulting in high 

computational burden and storage requirements. For instance, the high-density point 

cloud maps generated using LiDAR and/or vision sensors can provide abundant features 

and 3D structure surrounding the vehicle. However, transmission, updating and 

processing this volume of data is burdensome. Some researchers have proposed the 

concept of “Road DNA” to represent the road environment and to deal with the Big Data 

problem (Li and Yang, 2016; TomTom, 2017). Road DNA technology converts a 3D 

point cloud road pattern into a compressed, 2D view of the roadway without losing details 

(TomTom, 2017), with the objective to reduce processing requirements.  

1.4.4.3 Issue of Estimation Drifts 

SLAM estimation drifts may be caused by accumulated linearization error, the presence 

of dynamic obstacles, noisy sensor data, wrong data association, etc. In most SLAM 

algorithms, nonlinear models are used to represent the vehicle motion pattern and the 

environment. EKF SLAM suffers from a divergence problem due to the accumulation of 
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linearization error. Biases may occur when linearization is performed using values of state 

variables that are far from their true values. For optimization-based SLAM, poor initial 

guess of variables will lead to poor convergence performance. Rotation may be the cause 

of nonlinearity and has a strong impact on the divergence of estimation (Huang et al., 

2010; Bresson et al., 2015). Thus, the accumulated vehicle orientation error will cause 

the inconsistency of the SLAM problem. One solution to the linearization challenge is the 

Linear SLAM algorithm proposed by Huang et al. (2010), which modifies the relative 

state vector and carries out “map joining”. Sub-map joining, which involves solving a 

linear least squares problem and performing nonlinear coordinate transformations, does 

not require an initial guess or iteration. Other methods have been proposed, such as using 

a local sub-map (re-initialization of local map), an alternative linearization method 

(Martinea-Cantin et al., 2005), and a nonparametric method (Thrun et al., 2004).  

Dynamic objects such as pedestrian, bicycles, other vehicles, may cause estimation drifts 

since the system may wrongly identify them as static road entities. There are some 

methods to avoid this. Probabilistic Maps that use probabilistic infrared intensity values 

has been proposed by Levinson and Thrun (2010). In this study, GNSS/INS and a 64-

beam LiDAR sensor were combined to achieve robust position RMS errors of 9cm in 

dynamic environments. However, this system suffers from high cost and high processing 

requirement. The 3D Object Tracker (Wangsiripitak and Murray, 2009) can be used to 

track moving objects in visual SLAM methods. Another algorithm proposed by Asmar 

(2006) uses Canny’s edge detector to find dominant edges in the vertical direction, of a 

tree trunk, and select these tree trunks as typical salient features. 

Another source of drifts are outliers within the sensor observations. Each sensor has its 

own error sources. For example, in the case of a camera, the fuzzy image due to high 

speed and poor light conditions may cause wrong identification of landmarks. LiDAR 

sensors are sensitive to weather conditions (such as rainfall), and large changes of the 

road environment. GNSS may suffer from signal blockage. FDI (Fault Detection and 

Isolation system) techniques can be used to detect measurement outlies and reject these 

outliers' influence on positioning and localization.  
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The aforementioned SLAM error sources may also result in wrong data association, 

which is an important process to associate measurement(s) to a specific landmark. Wrong 

data association may happen due to not only the noisy sensor data, inconsistency, wrong 

detection of dynamic objects, etc, but also to some specific road environments. For 

instance, the highway environment is sometimes visually repetitive and contains many 

similar features, making it difficult to recognize a previously explored area.  

Some researchers avoid the challenge of wrong data association directly at the front-end 

step of SLAM by using RANSAC (Kitt et al., 2010), which is commonly used in vision 

SLAM to reject outliers. Xie et al. (2017) proposed a middle layer, referred to as Graph-

Tinker (GTK), that can detect and remove false-positive loop closures. Artificial loop 

closures are then injected into the pose graph when using an Extended Rauch-Tung-

Striebel smoother framework. 

The data association challenge can also be addressed at the back-end step since there is 

still a chance that outliers are not totally eliminated. Early work by Huber (1981) has 

recognized the lack of robusteness in least squares estimator for outlier. Malis and 

Marchand (2006) using an academic example to demonstrate that the LS approach is not 

robust to outliers. The development of robust alternatives is promoted in the object of 

reducing the sensitivity of estimator to outliers. For instance, Least Trimmed Squares 

estimator, Least Median of Squares (LMS) (Rousseeuw and Leroy, 1987), M-estimators 

(generalizations of a Maximum Likelihood estimator), L-estimators (linear combinations 

of order statistics of the observations), R-estimators (estimator based on waste ranking) 

(Huber, 1981). Among them, M-estimators has played a central role in modern robust 

statistics (Bosse et al., 2013) with numerous approaches based on it. Unlike the 

aforementioned algorithm, RANSAC, which discards observations that are considered as 

outliers and thus suffered from information loss due to reduced sample size, robust 

statistical estimators, such as the M-estimators, can provide automatically way to deal 

with outliers without discarding them (Bosse et al., 2013).   

Agarwal (2015) proposed a Dynamic Covariance Scaling (DCS) method using principles 

of M-estimators. This method is robust to large front-end outliers while it also mitigates 

the effects of poor initializations (Agarwal, 2015). Olson and Agarwal (2012) proposed a 
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max mixture method which is robust to data-association outliers by allowing richer error 

models which allow the probability of a failure to be explicitly modelled. This mothed 

can be used to automatically identified loop closing errors and avoids exponential 

memory complexity. The concept of Switchable Constraints (SC) was introduced by 

Sünderhauf and Protzel (2012), that a switchable variable is introduced to each loop 

closure constraint. Once a constraint is considered as an outlier, it can be turned off during 

optimization. Latif et al. (2013) introduced an algorithm known as Realizing, Reversing, 

and Recovering (RRR), which is a consistency-based loop closure verification method. 

More recently, Carlone et al. (2014) used ℓ1_relaxation to select “reliable” measurements 

and Carlone and Calafiore (2018) used convex relaxations to solve the nonconvex 

problem without the need for an initial guess of unknown poses. The potential causes of 

SLAM drifts and the corresponding suggested solutions are summarized in Table 2. 

Table 1.2 Potential causes of SLAM drifts and solutions  

SLAM drift Solutions 

Linearization error • Alternative linearization method (Martinea-Cantin et 

al., 2005) 

• Nonparametric (Thrun et al., 2004) 

• Sub-map joining (Huang, et al., 2010) 

• DCS (Agarwal, 2015) 

Sensor outliers • Fault Detection and Isolation (Morales et al., 2008) 

• Sensor fusion to compensate for different sensor 

errors (Wei et al., 2013; Zhang and Singh, 2015) 

Dynamic objects • Probabilistic maps (Levinson and Thrun, 2010) 

• 3D Object Tracker (Wangsiripitak and Murray, 

2009) 

• Salient feature detection (Asmar, 2006) 

Wrong data 

association 
• RANSAC (Kitt et al., 2010) 

• Graph-Tinker (Xie, et al., 2017) 

• DCS (Agarwal, 2015) 

• Max mixture (Olson and Agarwal, 2012) 

• Switchable Constraints (Sünderhauf and Protzel, 
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2012) 

•  RRR (Latif et al., 2013) 

• ℓ 1_relaxation (Carlone et al. 2014), convex 

relaxations (Carlone and Calafiore, 2018)  

 

1.4.4.4 Lack of Quality Control  

The quantitative evaluation of the SLAM algorithms is another important challenge. 

There are some criteria to evaluate SLAM algorithms, such as their accuracy, scalability, 

availability, recovery (which is the ability to localize the vehicle inside a large-scale map), 

and updatability. Quantitative analysis of SLAM algorithms' performance is essential 

since they can provide numerical evaluation and provide a basis for comparison of 

different SLAM algorithms. 

Estimation accuracy is a widely used quality analysis metric, but it can be difficult in 

practice for autonomous driving. Most approaches evaluate SLAM algorithms' 

performance by comparing the results to “ground truth” using, for example, an accurate 

ground truth map. However, a suitable ground truth map is seldom available, and 

furthermore the precise location of the vehicle trajectory on the actual road surface may 

not be always available. Vehicle pose Root Mean Square Error (RMSE) is normally used 

to indicate the SLAM trajectory estimation result's accuracy. Kummerle et al. (2009b) 

proposed a framework for analyzing the accuracy of SLAM by measuring the error of the 

corrected trajectory. Another widely used quality analysis method is the so-called Chi-

squared (χ2) test. According to Kurlbaum and Frese (2009), the Chi-squared test is a 

statistic test to quantify the quality of the provided covariance matrices for landmark 

measurements and odometry error. When the minimum χ2 error is nearly equal to the 

difference of the dimension of the measurement vector and the size of the state vector, 

the measure would be considered as being of good quality.  

Some researchers (Li et al., 2015; Cadena and Neira, 2009; Huang and Dissanayake, 2007) 

have considered the consistency of their SLAM algorithms. When the estimation error is 

beyond the uncertainty, it can be assumed that the estimation results are inconsistent. 

EKF-based SLAM suffers from such an inconsistency problem unless the Jacobians are 
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evaluated around the true system state. Whether inconsistency can be tolerated ultimately 

depends on the application of the SLAM results (Dissanayake, et al., 2011).  

The reliability of output of the localization, mapping and navigation system should also 

be checked. However, few studies have been made on the quantitative analysis of the 

reliability of SLAM. Some reliability studies for other localization systems (such as 

GNSS, GNSS/IMU) can be used as a reference to guide the SLAM community. The 

system reliability can be considered as two components: internal reliability and external 

reliability. The former identifies the ability of the system to detect faults, which is 

quantified by the Minimal Detectable Bias (MDB), and is indicated by the lower bound 

for detectable faults. The latter estimates the influence of undetected faults on the final 

solution (Wang and Knight, 2012; Yang et al., 2013; Zheng and Wang, 2017; Baarda 

1968; Li et al., 2016). When the MDB value is lower, the system is more reliable. 

Similarly, the reliability of the feature observation model and vehicle motion model can 

also be evaluated with these approaches.   

Integrity is critical, as it is an indicator of the “trustworthiness” of the information 

supplied by the localization system, and can provide timely warning of the risks caused 

by inaccuracy (El-Mowafy et al., 2019). Integrity measures are used to quantify 

localisation safety requirements and its concept was firstly established in aviation. The 

integrity assessment is undertaken with 4 attributes: Protection Level (PL), Alert limit 

(AR), Time-to-alert, and Integrity risk (Wörner et al., 2016; International Civil Aviation 

Organization, 2006; Tossaint et al., 2007, Speidel et al., 2013). PL is the estimated upper 

bound on the true position error.  An upper threshold (alert limit) for PL should be set and 

the error beyond the level should cause concern.  Time-to-alert is the time between PL 

surpassing the AR and issuing an alert. Integrity risk is the probability that the true 

position error is beyond the AR without an alert being issued (Wörner et al., 2016). A 

graphical tool developed by Tossaint et al (2007), the Stanford-ESA Integrity Diagram, 

can be used to validate the system’s integrity level. 

 Fault detection and isolation (FDI) is one of the most popular alert generation approaches 

for GNSS-based localization (Morales et al., 2008; Sundvall and Jensfelt, 2006; Hewitson 

and Wang, 2010). Receiver Autonomous Integrity Monitoring (RAIM) is based on FDI 
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and is the traditional integrity assessment technology developed for GPS signals in an 

aviation system.  

Integrity monitoring is mostly studied in the GNSS system, and the integrity navigation 

study has been expanded in application such as military aerospace operations, civilian 

airplane (Larson, 2010), autonomous underwater vehicles (Fauske et al., 2008), 

autonomous outdoor vehicle (Nebot and Durrant-Whyte, 1999), etc. Larson (2010) 

studied the integrity quantification of an image-based navigation system 

and inferred more adding measurements may have potential to improvement the image-

based integrity. The concept of integrity is therefore applicable to land vehicle 

localization (Wang and Ober, 2009).  

Due to the strict safety requirement of autonomous driving, there is an increasing attention 

on integrity by autonomous driving researchers. The localization and navigation of a self-

driving car is based on the use of multiple sensors, therefore the traditional integrity 

analysis methods for GNSS should be extended. Molina et al (2011) proposed a project 

that investigates the concept, characteristic, method of Autonomous Integrity Monitoring 

(AIM) for a multi-sensor UAV system, which is an extension of RAIM for multi-sensor 

application.   

1.5 Challenging Issues in Localization and Mapping for 

Autonomous Driving 

1.5.1 High Requirements for Autonomous Driving 

To achieve full automated driving, there are some key criteria that need to be taken into 

consideration for localization and perception steps and there are stringent requirements 

according to these criteria. The first criterion is accuracy. For autonomous driving, the 

information about where the road is and where the vehicle is within the lane can give the 

following systems the cue of where to go next. To realize these applications and ensure 

vehicle safety, there is some stringent requirements for position estimation at lane level 

(1-3 m) or even where-in-lane level, also called sub-lane level (<0.5 m) (Farrell et al., 

2016). Recognition range is also important since the planning and controlling steps need 
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enough processing time for the vehicle to react to any detected information, which should 

be up to 200 meter or farther (Seif and Hu, 2016) for the autonomous vehicle. Robustness 

means the localization and perception should be robust to any changes while driving, such 

as driving site (urban, high way, tunnel, far from city), light condition, weather or season, 

etc. Another requirement of the autonomous vehicle is to sensor the 3D environment other 

than 2D since the height of the objects and road surface will be useful for navigation. 

Therefore, according to the characteristics of aforementioned localization and mapping 

techniques, any standalone technique cannot meet all the strict requirements. A 

combination of multi-sensor and different techniques is significant for autonomous 

driving.  

1.5.2 Lack of Quality Control for Localization and Mapping System 

For most of the practical application of autonomous driving, ground truth is hard to 

achieve, resulting in a lack of Quantitative evaluation for estimation accuracy. Therefore, 

other criteria should be introduced to evaluate the system solutions quality in order to 

ensure integrity when ground truth is unavailable.   Since the outlier is unavoidable for 

any sensor-based systems, the method to mitigate the influence of the outliers should be 

further studies without losing the redundancy of the whole system.  

1.5.3 Lack of Geometry Analysis for Localization and Mapping System 

Geometry can significantly influence the estimation and quality evaluation of any 

localization and mapping system. This has been extensively researched by GNSS 

community. However, in localization and mapping by other sensor systems, it has not 

been fully studied.  The influence of geometry on Minimum Detectable Bias (MDB), 

Minimum Separable Bias (MSB) and External Reliability (ER) still needs further 

comprehensive analysis with respect to different systems.  
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1.5.4 Efficiency of Applying High Definition Map for Autonomous Driving 

High definition (HD) map is a new technique which is designed to support highly 

automated driving. However, its application for autonomous driving still faces some 

practical limitations. Such as the high burden of calculation, data transmission and real-

time updating.  An efficient and accurate procedure of applying HD map for autonomous 

driving is needed for investigating.  

1.6 Contributions of this Study 

To solve the issues in localization and mapping for autonomous driving, the research in 

this thesis acts as the major contributions, which can be summarized as the following 

aspects: 

a) The equivalence between least squares and smoothing for dynamic system is 

discussed. A new Kalman smoother based quality control method is developed 

according to this equivalence, which can be used to deal with system model outlier 

with detection, and identification, also can be used to analyse, control and improve 

the system quality. Some variant mathematical models of this quality control 

method have been developed to deal with issues such as singular covariance 

system, numerical unstable of smoothing step.  

b) Mathematical modelling aspects for GNSS multi constellation integration for both 

Real Time Kinematic (RTK) and Post Processing Kinematic (PPK) are 

investigated. The integration of GNSS and IMU system is developed. Quality 

control analysis is conducted for these positioning systems. PPK can provide more 

reliable positioning results for mapping since it can avoid re-convergence when 

geometry changes, and satellite is newly viewed and introduced to the state 

parameter vector. 

c) Mathematical modelling and quality control aspects for online simultaneous 

localization and mapping (SLAM) are examined. A smoother based offline  

SLAM method is firstly introduced for SLAM problem with quality control. Both 

outdoor and indoor dataset have been tested with these SLAM methods. Geometry 

analysis for the SLAM system has been done according to the quality control 
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results. The system reliability analysis is essential for the SLAM designer as it can 

be conducted at the early stage without real measurement.  

d) A localization method is proposed that utilizes the High Definition map as a sensor 

source to integrate with other perception sensors, which significantly improves 

localization efficiency and accuracy. Geometry analysis is undertaken with the 

MDB, MSB and ER value to analyse the influence of the geometry upon the 

estimation solution and the system quality, which can be hints for future design 

of the localization system.  

e) A GNSS/INS aided LiDAR mapping and localization procedure is developed. 

High-density map is generated offline, then, LiDAR based localization can be 

undertaken online with this pre-generated map. Quality control is conducted for 

this system. The results demonstrate that the LiDAR based Localization within 

map can effectively improve the positioning accuracy compared to GNSS/INS, 

especially during period that GNSS signal is lost.  

1.7 Thesis Outline 

In summary, this thesis consists of eight chapters and the specific contents of each chapter 

are outlined as follows:  

Chapter 1 gives a brief introduction to localization and mapping for autonomous driving 

and background of SLAM, including its principles, classification, current algorithms, and 

its applications. Furthermore, the critical issues and the main contributions of this thesis 

are stated. 

Chapter 2 describes the optimal estimation models and corresponding quality control 

algorithms. The relationship between filtering, smoothing and least squares is discussed. 

The quality control procedures for outlier detection, identification, adaption and system 

reliability analysis are presented for all the three optimal estimation approaches. 

Numerical analysis is presented to illustrate the procedures and performance of the quality 

control method.  
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Chapter 3 analyses the performance of the proposed Extended Kalman filter/smoother 

quality control for multiple difference positioning systems (PPK, RTK, GNSS/INS 

integration). Quality control test is conducted with a real-world urban driving dataset.  

Chapter 4 investigates the online EKF based SLAM algorithm with quality control. 

Numerical tests are presented with two real-world datasets, one indoor, and another 

outdoor. The influence of geometry upon the estimation reliability is investigated.   

Chapter 5 proposed a new smoothing based SLAM algorithm with quality control. The 

relationship between the EKF SLAM, KS SLAM and graph optimization SLAM is 

demonstrated. Performance and quality of this new algorithm is presented with two real-

world datasets. The results show the proposed KS SLAM is more reliable then filter based 

SLAM, and can achieve efficient quality control results for large scale map.  

Chapter 6 investigates the capabilities of pre-generated map as a sensor source to support 

efficient localization. MSB and correlation coefficients are utilized to explain the 

performance of outlier detection, identification, and correction methods in a case study. 

The influence of system geometry is investigated with considering the Internal Reliability 

(MDB) and External Reliability (ER).   

Chapter 7 designs an efficient multi-sensor mapping and localization framework for 

autonomous driving. On-board LiDAR/GNSS/IMU sensor is integrated to generate 

georeferenced road map offline. Online localization is then undertaken using the offline 

map as a sensor source. Road driving test is undertaken to examine the mapping and 

localization system. The proposed map-based localization method shows the advantage 

in supporting accurate localization, especially during period of GNSS blockage. Quality 

control is undertaken to monitor the quality of this proposed system.  

Chapter 8 summarizes the research findings, and make recommendations for future 

research.  
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Chapter 2 Statistical Quality Control Framework for 

Optimal Filtering and Smoothing 

2.1 Introduction 

Filtering, prediction and smoothing are approaches used for finding the optimal 

estimation of unknown parameters, such as velocity and position, et al., under the noisy 

dynamic system. Prediction expects the parameter value according to the previous 

observations, while filtering is performed to obtain estimates with both current and 

previous observations. Smoothing is done if reanalysis of the state is needed, by which 

all the observations obtained during the full-time interval are utilized (Sarkka 2013; Cross 

1994).  Although filtering has already made optimal estimation, smoothing has been 

demonstrated that outperforms filtering (Einicke 2012; Sarkka 2013; Kaniewski et al. 

2017; Wang 2012) as it uses all measurements for estimation. For some applications that 

require higher accuracy and precision, such as GPS positioning for automated vehicle or 

UAV, adding smoothing process will make the estimated solution of position and velocity 

much better and more reliable.   

Kalman filter is the mostly popular algorithm that contains time update and measurement 

update steps, which represent the prediction and filtering processes, respectively. By 

using a Kalman filter, the estimation can be done recursively in real-time. Most of the 

smoothing algorithms, the fixed-interval sequential smoother, the fixed-lag smoother and 

the ensemble smoother, are based on the Kalman’s hypotheses (Cosme et al. 2012). The 

most commonly used smoother, Rauch-Tung-Striebel smoother (RTS smoother, which is 

also called Kalman smoother) (Sarkka 2013), is a fixed-interval smoother constituted by 

forward and backward passes. The forward pass is a Kalman filter step, while the 

backward pass also depends on the predicted and estimated error covariance and 

transition matrix stored in the Kalman filter pass. Therefore, RTS smoother is simpler in 
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structure and easier to be used then other forms of smoothing. In this Chapter, all the 

derivation and analysis are based on Kalman filter and Kalman smoother.          

Since the initial development of Kalman filtering and smoothing algorithms, many 

extensions have been studied, for instance, the online smoothing that making estimation 

in real time or with acceptable delay (Pillonetto et al. 2010; Chiang et al. 2012; Kaniewski 

et al. 2017), the extended Kalman filter and smoother (EKF and ERTSS) that dealing with 

non-linear measurement model or dynamic model by linearization (Sarkka 2013; Einicke 

2012), the unscented Kalman filter and smoother (UKF and URTSS) that using the 

unscented transform (Sarkka 2013).   These extensions have been widely employed in 

various fields (Aravkin et al 2013; Sarkka 2013), such as navigation, tracking, aerospace 

engineering, space exploration, geophysical study and weather prediction. Many research 

studies focused on the algorithms' implementation and performance, such as improving 

the stability, reducing the computation time, and enhancing the robustness against bad 

measurements (Cipra and Romera 1997; Aravkin et al. 2011; Aravkin et al. 2013; Auger 

et al. 2013). However, the study of quality control of Kalman filter and smoother is less 

found.  

The occurring of error, or outlier, is somewhat not inhibited because the Kalman filter 

and smoother approaches are mainly used to treat the noisy measurement and dynamic 

system. The error may exist in the observations as a sudden outlier or systematic error. It 

can also be due to the improper system model or false modelled process noise and 

measurement noise (Wang 2008).  The unpredictable model errors will eventually result 

in a degradation of the final estimation of state parameters' accuracy and reliability.  

Therefore, controlling the system quality of Kalman filter-smoother process is imperative 

for the purpose of reducing the influence of system errors.  

One main part of Quality Control (QC) is the DIA method that dealing with the possible 

model errors with detection, identification and adaption. DIA method is a three steps 

procedure that firstly looks for the unspecified model errors, and then finds out the cause 

of the error and position of the error, therefore this model can recovery from these errors 

by the Adaption step (Teunissen 1990; Salzmanm 1993; Wang and Knight 2012). The 

evaluation of system performance is also part of quality control, including analysing the 
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reliability and separability.  Reliability is the capability that a system can detect outliers 

and then evaluate the influence of the outlier on the estimation. Reliability analysis 

includes two parts. The Internal Reliability refers to the model property of the lower 

bounds of outliers that can just be detected with the chosen test statistic for a given set of 

Type I (α) error and Type II (β) error (Knight, et al., 2010). Thus, Minimal Detectable 

Biases (MDB) is applied to represent the detectability of outliers within the measurement 

and system. Another is the External Reliability which evaluates how the nondetectable 

outlier at the low bound will affect the estimation. Separability analysis evaluates the 

correlation coefficients between the fault detection statistics for each observation 

(Hewitson and Wang 2006). 

These QC methods have been well tested in Global Navigation Satellite System (GNSS) 

community for GNSS positioning or GNSS/IMU integration (Alquarashi and Wang 2015; 

Wang and Knight 2012; Teunissen 2017). Teunissen (2017) explained how receiver-

satellite geometry affects the MDBs in Single Point Positioning (SPP), and how DIA 

working in Differential Global Positioning System (DGPS). Alquarashi and Wang (2015) 

tested four positioning strategies (GPS, GNSS, GPS/INS and GNSS/INS integrations) 

with multiple faults detection and isolation algorithm. The application of these QC 

methods can also be found in other positioning and navigation system. For instance, Li 

(2016) and Li (2017) demonstrated quality analysis for vision-based navigation, Zheng 

and Wang (2017) illustrated the control of a High Definition map based vehicle 

localization system. Most of the mentioned applications of the QC methods are utilized 

under least squares framework while else are under Kalman filter framework. The quality 

of Kalman smoothing step should also be analysed but seldom be studied.  

Therefore, this Chapter aims to investigate a new extended quality control method that 

monitors the Kalman filter-smoother procedure. The performance of the QC method is 

illustrated and explained by applying to selected examples. This Chapter's structure is as 

follows: Section 2.2 formulates the Kalman smoother as a least squares problem. Section 

2.3 briefly demonstrates the previous quality control algorithms under Kalman filter 

framework. Then, the proposed quality control method under the Kalman smoother 

framework is derived, including outlier detection, identification statistic, adaption 
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procedure, MDB and External Reliability analysis. Section 2.4 conducts numerical 

examples to demonstrate the function of the proposed the proposed quality control 

method. Section 2.5 proposed a Unified Least Square based quality control method that 

is suitable to deal with problems with ill-conditioned matrix. Section 2.6 summarizes the 

QC methods' performance and points out the issues that need to be explored further.  

2.2 Kalman Filter, Smoother and Least Squares  

2.2.1 Kalman Filter  

According to Cross (1994), the Kalman filtering, prediction, and smoothing acquire 

estimates by the least squares process.  In this Chapter, the dynamical system is described 

by the following dynamic model: 

 𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1) + 𝜏𝑘    𝑘 = 1,2, … , 𝑇 (2.1) 

and measurement model: 

 𝑦𝑘 = ℎ𝑘(𝑥𝑘) + 휀𝑘   𝑘 = 1,2, … , 𝑇 (2.2) 

where 𝑥𝑘  is the 𝑛𝑘 × 1 state parameter vector at epoch 𝑘, 𝑇 represents the last epoch, 

𝑓𝑘() is the function for state transition,  𝑦𝑘 is the 𝑚𝑘 × 1  measurement vector at epoch k, 

ℎ𝑘() is the function for measurement with its Jacobian matrix 𝐻𝑘 .  𝜏𝑘  and  휀𝑘  are the 

unknown errors in the dynamic and measurement models, respectively, with covariance 

matrices 𝑄𝑘 and 𝑅𝑘 . 𝑥0 is the initial state with uncertainty  𝑄𝑥0.  

During the Kalman Prediction process, the predicted values of the state parameters �̅�𝑘 

will be obtained by: 

 �̅�𝑘 = 𝑓𝑘(�̂�𝑘−1) (2.3) 

with Φk =
𝑑𝑓𝑘
𝑑𝑥𝑘
|
𝑥𝑘=�̂�𝑘−1

is the Jacobian of the process model from epoch k-1 to k; here the 

hat ‘ ̅ ’over 𝑥𝑘  represents the predicted value of state, ‘ ̂ ’ over 𝑥𝑘   represents the 
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estimated (filtered) value of state. Therefore, �̂�𝑘−1 is the optimal estimator of the state 

parameters acquired by Kalman filtering process at previous epoch k-1. The cofactor 

matrix of �̅�𝑘 is calculated as: 

 𝑄�̅�𝑘 = Φ𝑘𝑄�̂�𝑘−1Φ𝑘
T + 𝑄𝑘 (2.4) 

2.2.2 Solve Kalman Filter Estimation with Least Squares Theory 

Each specific epoch in KF process can be formed as a least square model as 𝑙𝑘 = 𝑀𝑘𝑥𝑘 +

𝜖𝑘, where 𝑙𝑘 = [
𝑧𝑘
�̅�𝑘
], 𝑀𝑘 = [

𝐻𝑘
𝐸
], 𝜖𝑘 = [

𝜖𝑦𝑘
𝜖�̅�𝑘
], 𝜖𝑘 is the residual vector; 𝐸 is the 𝑚𝑘 ×𝑚𝑘 

identity matrix. The corresponding stochastic model is described as:𝐶𝑙𝑘 = [
𝑅𝑘
0

0
𝑄�̅�𝑘

]. In 

the  𝑙𝑘 vector, the measurement model part 𝑧𝑘 is calculated by linearized the measurement 

model as: 

 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 휀𝑦𝑘 = 𝑦𝑘 − ℎ𝑘(�̅�𝑘) + 𝐻𝑘�̅�𝑘 (2.5) 

when the measurement model is linear, 𝑧𝑘 equals to 𝑦𝑘. 

Therefore, the Kalman filter estimation and the associated covariance matrix will be: 

 
�̂�𝑘 = (𝑀𝑘

T𝐶𝑙𝑘
−1𝑀𝑘)

−1
𝑀𝑘

T𝐶𝑙𝑘
−1𝑙𝑘 

= �̅�𝑘 + 𝐺𝑘(𝑧𝑘 − 𝐻𝑘�̅�𝑘) = �̅�𝑘 + 𝐺𝑘𝑑𝑦𝑘 

(2.6) 

 𝑄�̂�𝑘
𝑓 = (𝑀𝑘

T𝐶𝑙𝑘
−1𝑀𝑘)

−1
= 𝑄�̅�𝑘 − 𝐺𝑘𝑄𝑑𝑦𝑘𝐺𝑘

T (2.7) 

  𝑄𝑑𝑦𝑘 = 𝑅𝑘 + 𝐻𝑘𝑄�̅�𝑘𝐻𝑘
T,   𝐺𝑘 = 𝑄�̅�𝑘𝐻𝑘

𝑇𝑄𝑑𝑦𝑘
−1  (2.8) 

where 𝐺𝑘  is the Kalman gain matrix, 𝑑𝑦𝑘  is the innovation, and 𝑄𝑑𝑦𝑘  is its cofactor 

matrix.  

2.2.3 Kalman Smoother 

The smoothed state vector at time  k and its covariance matrix are derived as: 
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 𝑥𝑘
𝑠 = �̂�𝑘 + 𝐽𝑘(𝑥𝑘+1

𝑠 − �̅�𝑘+1) (2.9) 

 𝑄𝑥𝑘𝑠 = 𝑄�̂�𝑘 + 𝐽𝑘(𝑄𝑥𝑘+1𝑠 − 𝑄�̅�𝑘+1)𝐽𝑘
𝑇 (2.10) 

 

 𝐽𝑘 = 𝑄�̂�𝑘Φ𝑘+1
T𝑄�̅�𝑘+1

−1 (2.11) 

here the superscript ‘ s ’ represents the smoothing estimation, 𝐽𝑘is the Kalman smoother 

gain at epoch k. 

2.2.4 Full Least Squares Structure 

According to Cross (1994), the prediction, filtering, smoothing problems are to find the 

least squares estimates for 𝑥1 to  𝑥𝑇. Therefore, when doing the Full Least Squares (FLS) 

that utilize the whole available measurement and dynamic information, the solution is 

obtained by minimizing ∑ (휀𝑘
T𝑅𝑘

−1휀𝑘 + 𝜏𝑘
T𝑄𝑘

−1𝜏𝑘)
𝑇
𝑘=1 . 

To solve this, the simplified data structures are introduced that containing the entire 

measurement and dynamic information. As all the measurements and dynamic models 

are taken into consideration together within the FLS, the total measurement model 

number is 𝑚𝑎𝑙𝑙 = ∑ 𝑚𝑘
𝑇
𝑘=1 , and the total dynamic model number is ∑ 𝑛𝑘

𝑇
𝑘=1 . Therefore, 

the overall unknown parameter number is 𝑛𝑎𝑙𝑙 = ∑ 𝑛𝑘
𝑇
𝑘=1  and the overall function model 

number for FLS is 𝐹𝑎𝑙𝑙 = ∑ 𝑚𝑘
𝑇
𝑘=1 + ∑ 𝑛𝑘

𝑇
𝑘=1 . 

The state parameters and measurements from all the epochs are arranged in order 

respectively as vector X and vector Y, here: 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑇]
T  

and   

𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑇]
T  

For full least squares, an approximate value of the unknown 𝑋𝑎𝑝𝑝 is set and: 
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 𝑋 = 𝑋𝑎𝑝𝑝 + Δ𝑋 (2.12) 

the 𝑋𝑎𝑝𝑝  can be constituted by the predicted state parameters  �̅�1  to �̅�𝑇 , therefore the 

design matrix (𝐴 = [
𝐴𝑚𝑒𝑎𝑠
𝐴𝑑𝑦𝑛𝑐

]), vector (𝐿 = [
𝐿𝑚𝑒𝑎𝑠
𝐿𝑑𝑦𝑛𝑐

]) can be obtained by the approximate 

value.  𝐴𝑚𝑒𝑎𝑠 and 𝐿𝑚𝑒𝑎𝑠 represent the measurement model part of the design matrix and 

L vector, while 𝐴𝑑𝑦𝑛𝑐 and 𝐿𝑑𝑦𝑛𝑐  represent the dynamic model part of the design matrix 

and L vector, respectively. They can be obtained by the following equations: 

 𝐴𝑚𝑒𝑎𝑠 = [

𝐴1
0

0
𝐴2

⋯
⋱

0
⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐴𝑇

] (2.13) 

𝐴𝑘 is the design matrix of measurement model at epoch k and it equals to 𝐻𝑘 if using the 

KF predicted value of state parameters as the approximate value.  

 𝐴𝑑𝑦𝑛𝑐 = [

𝐼
−Φ2

0
𝐼

⋯
⋱

0
⋮

⋮ ⋱ ⋱ 0
0 ⋯ −Φ𝑇 𝐼

] (2.14) 

here I is the 𝑛𝑘 × 𝑛𝑘 Identity matrix.  

 𝐿𝑚𝑒𝑎𝑠 =

[
 
 
 
𝐿𝑚𝑒𝑎𝑠1
𝐿𝑚𝑒𝑎𝑠2
⋮

𝐿𝑚𝑒𝑎𝑠𝑇]
 
 
 

= [

𝑦1 − 𝐴1�̅�1
𝑦2 − 𝐴2�̅�2

⋮
𝑦𝑇 − 𝐴𝑇�̅�𝑇

] (2.15) 

 𝐿𝑑𝑦𝑛𝑐 =

[
 
 
 
 
𝐿𝑑𝑦𝑛𝑐1
𝐿𝑑𝑦𝑛𝑐2
⋮

𝐿𝑑𝑦𝑛𝑐𝑇]
 
 
 
 

= [

Φ1�̅�0 − �̅�1
Φ2�̅�1 − �̅�2

⋮
Φ𝑇−1�̅�𝑇 − �̅�𝑇

] (2.16) 

Since the measurement and the dynamic process are independent, the stochastic model, 

e.g., the covariance matrix, can be obtained from the measurement noise covariance 

matrix R and the process uncertainty Q (𝐷 = 𝜎0
2𝑃−1 = 𝜎0

2 [
𝑅
0

0
𝑄
]), here 𝑃  is the 

weight matrix, 𝑅 = 𝑑𝑖𝑎𝑔({𝑅𝑘}), 𝑄 = 𝑑𝑖𝑎𝑔({𝑄𝑘}) and 𝜎0
2 is the a priori variance factor.  
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If the initial value is unknown, the covariance matrix for the first dynamic model (𝑄1) 

should take into consideration of the uncertainty for the initial state parameters (𝑄𝑥0), and 

is equal to the covariance matrix of predicted state parameter at epoch 1 (𝑄�̅�1).  

2.2.5 Characteristic Least Squares Solution and Relationship to Kalman 

Smoothing 

Hence, to solve the full least squares problem, the solution of the least squares normal 

equation could be found: 

 (𝐴T𝑃𝐴)Δ�̂� = 𝐴T𝑃𝐿 (2.17) 

in here, for a dynamic system,  

 𝐴T𝑃𝐿 = 𝐴𝑚𝑒𝑎𝑠
T𝑅−1𝐿𝑚𝑒𝑎𝑠 + 𝐴𝑑𝑦𝑛𝑐

T𝑄−1𝐿𝑑𝑦𝑛𝑐 (2.18) 

 

 

𝐴T𝑃𝐴 = 𝐴𝑚𝑒𝑎𝑠
T𝑅−1𝐴𝑚𝑒𝑎𝑠 + 𝐴𝑑𝑦𝑛𝑐

T𝑄−1𝐴𝑑𝑦𝑛𝑐

=

[
 
 
 
𝐸1
𝐹2

𝐹2
T

𝐸2

0
⋱ 0

0 ⋱ ⋱ 𝐹𝑇
T

0 𝐹𝑇 𝐸𝑇]
 
 
 

 
(2.19) 

with 𝐸𝑘 and 𝐹𝑘 defined as: 

 
𝐸𝑘 = Φ𝑘+1

T𝑄𝑘+1
−1Φ𝑘+1 + 𝑄𝑘

−1 + 𝐴𝑘
T𝑅𝑘

−1𝐴𝑘 

𝐹𝑘 = −𝑄𝑘
−1Φ𝑘 

(2.20) 

when reach to the last epoch T, Φ𝑇+1
T𝑄𝑇+1

−1Φ𝑇+1 is a 𝑛 × 𝑛 null matrix. A similar 

structure can be found in some early research (Aravkin, et al, 2013; Fahrmeir and 

Kaufmann, 1991). 

By solving Equation 2.17 with the introduction structure in Equation 2.19 and 2.20, the 

Full Least Squares (FLS) estimation of correction to approximate state can be obtained: 
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 Δ�̂� = (𝐴T𝑃𝐴)−1𝐴T𝑃𝐿 (2.21) 

with (𝐴T𝑃𝐴)−1 being solved as: 

 

 

(2.22) 

here, 𝐽𝑘 = 𝑄�̂�𝑘Φ𝑘+1
T𝑄�̅�𝑘+1

−1  is the Kalman smoother gain at epoch k, and 𝑄𝑥𝑘𝑠 

represented the covariance matrix of the smoothed state parameters (see Equation 2.10, 

2.11). (𝐴T𝑃𝐴)−1  is also the covariance matrix of the FLS estimated parameters as: 

𝑄∆�̂� = (𝐴T𝑃𝐴)−1, therefore it can be clearly seen that the diagonal element of   𝑄∆�̂� from 

FLS estimation are equal to the covariance matrix of state after the smoothing step.  

𝐴T𝑃𝐿 is solved as: 

 

𝐴T𝑃𝐿 = 𝐴𝑚𝑒𝑎𝑠
T𝑅−1𝐿𝑚𝑒𝑎𝑠 + 𝐴𝑑𝑦𝑛𝑐

T𝑄−1𝐿𝑑𝑦𝑛𝑐 

 

(2.23) 

now the FLS correction can be obtained as: 
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Δ�̂� = (𝐴T𝑃𝐴)−1𝐴T𝑃𝐿 

=

[
 
 
 
 
 𝑑𝑥1

𝑓 + 𝐽1(𝑥2
𝑠 − �̅�2)

𝑑𝑥2
𝑓 + 𝐽2(𝑥3

𝑠 − �̅�3)
⋮

𝑑𝑥𝑇−1
𝑓 + 𝐽𝑇−1(𝑥𝑇

𝑠 − �̅�𝑇)

𝑑𝑥𝑇
𝑓 ]

 
 
 
 
 

=

[
 
 
 
 
 𝑑𝑥1

𝑓 + 𝐽1𝑑𝑥2
𝑠

𝑑𝑥2
𝑓 + 𝐽2𝑑𝑥3

𝑠

⋮

𝑑𝑥𝑇−1
𝑓 + 𝐽𝑇−1𝑑𝑥𝑇

𝑠

𝑑𝑥𝑇
𝑓 ]

 
 
 
 
 

 

(2.24) 

within Equation 2.24 𝑑𝑥𝑘
𝑓
 is defined as the correction to the predicted states during the 

Kalman filtering step that:  𝑑𝑥𝑘
𝑓 = �̂�𝑘 − �̅�𝑘 , while 𝑑𝑥𝑘+1

𝑠
 is defined as the correction 

to the predicted states during the Kalman smoothing step at next epoch, that:  𝑑𝑥𝑘+1
𝑠 =

𝑥𝑘+1
𝑠 − �̅�𝑘+1. 

If using the Kalman predicted state as the assigned approximate value of unknown in FLS, 

the final estimation of unknown will be: 

 

�̂� = 𝑋𝑎𝑝𝑝 + Δ�̂� =

[
 
 
 
 
�̅�1
�̅�2
⋮

�̅�𝑇−1
�̅�𝑇 ]

 
 
 
 

+

[
 
 
 
 

�̂�1 − �̅�1 + 𝐽1(𝑥2
𝑠 − �̅�2)

�̂�2 − �̅�2 + 𝐽2(𝑥3
𝑠 − �̅�3)

⋮
�̂�𝑇−1 − �̅�𝑇−1 + 𝐽𝑇−1(𝑥𝑇

𝑠 − �̅�𝑇)
�̂�𝑇 − �̅�𝑇 ]

 
 
 
 

=

[
 
 
 
 

�̂�1 + 𝐽1(𝑥2
𝑠 − �̅�2)

�̂�2 + 𝐽2(𝑥3
𝑠 − �̅�3)

⋮
�̂�𝑇−1 + 𝐽𝑇−1(𝑥𝑇

𝑠 − �̅�𝑇)
�̂�𝑇 ]

 
 
 
 

 

(2.25) 

�̂�𝑘 + 𝐽𝑘(𝑥𝑘+1
𝑠 − �̅�𝑘+1) is the formula of Kalman smoother’s estimated solution (Cross 

1994) as shown in Equation 2.9. 

therefore, a conclusion is coming out that the estimation solution and its covariance 

matrix by full least squares method, which deals with all the available measurements and 

dynamic information, is same to that calculated recursively by Kalman smoother if the 

FLS system uses the KF predicted state value as the approximately initial value.    
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2.3 Quality Control of Kalman Filtering, Smoothing, FLS 

2.3.1 Residual and its Cofactor Matrix 

The quality control methods contain two parts, first one deal with the outlier within the 

measurements or models by detecting and identifying the outlier. After that, the identified 

outlier can be removed from the measurement or its influence upon the final estimation 

can be mitigated. The second part of quality control method is reliability analysis, 

including the Internal Reliability (minimum detectable bias) and External Reliability 

analysis (influence of undetected bias). 

The proposed Quality Control (QC) methods are residual-based. After calculating the 

estimated states/variables and their covariance within the estimation process, each 

model's residuals and their covariance matrix can be obtained. 

For the filtering, residual of models can be acquired at every measurement update step. 

At the time k in the KF, the residual 𝑣𝑘𝑓 and its covariance 𝑄𝑣𝑘𝑓 will be: 

 
 

(2.26) 

 

 𝑄𝑣𝑘𝑓 = [
𝑅𝑘𝑄𝑑𝑦𝑘

−1 𝑅𝑘 −𝑅𝑘𝐺𝑘
𝑇

−𝐺𝑘𝑅𝑘 𝐺𝑘𝑄𝑑𝑦𝑘𝐺𝑘
] (2.27) 

𝑣𝑦𝑘𝑓  and 𝑣𝑥𝑘𝑓  represent the residual vector of the measurement 𝑦  and predicted sate 

parameters �̅� estimated by Kalman Filter (KF) step in epoch k . 

For the FLS the residual 𝑣 for the models and its covariance 𝑄�̂� can be acquired by: 

 𝑣 = [
𝑣𝑚𝑒𝑎𝑠
𝑣𝑑𝑦𝑛𝑐

] = 𝐴Δ�̂� − 𝐿 = [
𝐴𝑚𝑒𝑎𝑠Δ�̂� − 𝐿𝑚𝑒𝑎𝑠
𝐴𝑑𝑦𝑛𝑐Δ�̂� − 𝐿𝑑𝑦𝑛𝑐

]   (2.28) 

 

 𝑄�̂� = [
𝑄�̂�𝑚𝑒𝑎𝑠 𝑄�̂�𝑚𝑑
𝑄�̂�𝑑𝑚 𝑄�̂�𝑑𝑦𝑛𝑐

] = 𝐷 − 𝐴𝑄∆�̂�𝐴
T (2.29) 
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these estimated residuals for measurement model and dynamic model can be derived to: 

 

𝑣𝑚𝑒𝑎𝑠 =

[
 
 
 
 
 

−𝑅1𝑄𝑑𝑦1
−1 𝑑𝑦1 + 𝐴1𝐽1(𝑥2

𝑠 − �̅�2)

−𝑅2𝑄𝑑𝑦2
−1 𝑑𝑦2 + 𝐴2𝐽2(𝑥3

𝑠 − �̅�3)

⋮
−𝑅𝑇−1𝑄𝑑𝑦𝑇−1

−1 𝑑𝑦𝑇−1 + 𝐴𝑇−1𝐽𝑇−1(𝑥𝑇
𝑠 − �̅�𝑇)

−𝑅𝑇𝑄𝑑𝑦𝑇
−1 𝑑𝑦𝑇 ]

 
 
 
 
 

 

=

[
 
 
 
 
 

𝑣𝑦1𝑓 + 𝐴1𝐽1(𝑥2
𝑠 − �̅�2)

𝑣𝑦2𝑓 + 𝐴2𝐽2(𝑥3
𝑠 − �̅�3)

⋮
𝑣𝑦𝑇−1𝑓 + 𝐴𝑇−1𝐽𝑇−1(𝑥𝑇

𝑠 − �̅�𝑇)
𝑣𝑦𝑇𝑓 ]

 
 
 
 
 

=

[
 
 
 
 
𝑣𝑦1𝑠
𝑣𝑦2𝑠

⋮
𝑣𝑦𝑇−1𝑠
𝑣𝑦𝑇𝑠 ]

 
 
 
 

 

(2.30) 

 

𝑣𝑑𝑦𝑛𝑐 =

[
 
 
 
 
 
𝐺1𝑑𝑦1 + 𝐽1(𝑥2

𝑠 − �̅�2)

𝑄2𝑄�̅�2
−1(𝑥2

𝑠 − �̅�2)

𝑄3𝑄�̅�3
−1(𝑥3

𝑠 − �̅�3)

⋮
𝑄𝑇𝑄�̅�𝑇

−1(𝑥𝑇
𝑠 − �̅�𝑇) ]

 
 
 
 
 

=

[
 
 
 
 
𝑣𝑥1𝑓 + 𝐽1(𝑥2

𝑠 − �̅�2)

𝐵2(𝑥2
𝑠 − �̅�2)

𝐵3(𝑥3
𝑠 − �̅�3)
⋮

𝐵𝑇(𝑥𝑇
𝑠 − �̅�𝑇) ]

 
 
 
 

 

=

[
 
 
 
 
𝑣𝑑𝑦𝑛𝑐1𝑠

𝑣𝑑𝑦𝑛𝑐2𝑠

⋮
𝑣𝑑𝑦𝑛𝑐𝑇−1𝑠

𝑣𝑑𝑦𝑛𝑐𝑇𝑠 ]
 
 
 
 

   

(2.31) 

                                                                                     

in Equation 2.31, 𝐵𝑘 = 𝑄𝑘𝑄�̅�𝑘
−1; 

As FLS has the same solution of state parameters to Kalman smoothing process, their 

residuals are also the same, hence 𝑣𝑦1𝑠  and 𝑣𝑑𝑦𝑛𝑐1𝑠  are the residual vector of the 

measurement and the dynamic model estimated by Kalman Smoother (KS) at epoch k.  

At the last epoch, the smoothed states are equal to the filtered states. Hence they have the 

same residual of the measurements 𝑦𝑇 . 

For a specific epoch during Kalman smoothing, use epoch k as an example, the residual 

will be: 
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 𝑣𝑘
𝑠 = [

𝑣𝑦𝑘𝑠
𝑣𝑑𝑦𝑛𝑐𝑘𝑠

]                                                                     (2.32) 

with the residuals for measurement and dynamic model be formulated as: 

 

𝑣𝑦𝑘𝑠

= {
𝑣𝑦𝑘𝑓 + 𝐴𝑘𝐽𝑘(𝑥𝑘+1

𝑠 − �̅�𝑘+1) = 𝑣𝑦𝑘𝑓 + 𝐴𝑘𝐽𝑘𝑑𝑥𝑘+1
𝑠, 𝑘 < 𝑇

𝑣𝑦𝑘𝑓 ,                                                                                             𝑘 = 𝑇
 

(2.33) 

 𝑣𝑑𝑦𝑛𝑐𝑘𝑠 = {
𝑣𝑥𝑘𝑓 + 𝐽𝑘(𝑥𝑘+1

𝑠 − �̅�𝑘+1) = 𝑣𝑥𝑘𝑓 + 𝐽𝑘𝑑𝑥𝑘+1
𝑠, 𝑘 = 1

𝐵𝑘(𝑥𝑘
𝑠 − �̅�𝑘) = 𝐵𝑘𝑑𝑥𝑘

𝑠,                                              𝑘 > 1
 (2.34) 

therefore, these two equations also show the relationship between the residuals estimated 

by the three methods (FLS, KF and KS).   

𝑄�̂� is consisted by 4 parts, the diagonal parts are 𝑄�̂�𝑚𝑒𝑎𝑠  and 𝑄�̂�𝑑𝑦𝑛𝑐 that are the cofactor 

matrix associated to 𝑣𝑚𝑒𝑎𝑠 and 𝑣𝑑𝑦𝑛𝑐 individually. 𝑄�̂�𝑚𝑒𝑎𝑠  and 𝑄�̂�𝑑𝑦𝑛𝑐 are formulated as: 

 

 

(2.35) 

 

 

(2.36) 

here 𝐵𝑘 = 𝑄𝑘𝑄�̅�𝑘
−1 ; 𝑑𝑄𝑥𝑘 = 𝑄�̅�𝑘 − 𝑄𝑥𝑘𝑠 represents the difference between the smoothed 

state covariance and predicted state covariance at epoch k.  

Because  𝑣𝑚𝑒𝑎𝑠  and 𝑣𝑑𝑦𝑛𝑐  are correlated to each other, according to the law of error 

propagation, the off-diagonal part of 𝑄�̂� will be 𝑄�̂�𝑚𝑑  and 𝑄�̂�𝑑𝑚, here 𝑄�̂�𝑑𝑚 = 𝑄�̂�𝑚𝑑
T.  
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(2.37) 

the diagonal matrix of 𝑄�̂�𝑚𝑒𝑎𝑠  and 𝑄�̂�𝑑𝑦𝑛𝑐  from FLS is equal to the covariance matrix of 

residual estimated from Kalman smoothing for each epoch, therefore, when smoothing 

back to an epoch (epoch k as example), the residual covariance for measurement and 

process model will be: 

 𝑄�̂�𝑦𝑘
𝑠 = 𝑅𝑘 − 𝐴𝑘𝑄𝑥𝑘𝑠𝐴𝑘

T (2.38) 

 

 𝑄�̂�𝑑𝑦𝑛𝑐𝑘
𝑠 = 𝐵𝑘𝑑𝑄𝑥𝑘𝐵𝑘

T (2.39) 

 

2.3.2 Outlier Detection 

Detection is a model test that is used to diagnose whether an unspecified model error 

occurred. In order to test if there is a model error (∇), the corresponding null and 

alternative hypotheses are formed as: 

 𝐻0:  𝐸(𝑙) = 𝐴∆𝑋 (2.40) 

 𝐻𝑎:  𝐸(𝑙) = 𝐴∆𝑋 + ∇ (2.41) 

for the full least squares, the 𝑇𝑡𝑒𝑠𝑡 test statistic can be expressed with the FLS residual 

and be formulated as (Knight et al. 2010): 

 𝑇𝑡𝑒𝑠𝑡 =
𝑣T𝑃𝑣

𝑟𝜎02
 (2.42) 

here r is the number of redundancy which equals to ∑ 𝑚𝑘
𝑇
𝑘=1 .  
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This expression however is not in a form that facilities recursive testing. Since the P 

matrix is a block diagonal matrix as 𝑃 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑅1
−1, … , 𝑅𝑇

−1, 𝑄1
−1, … , 𝑄𝑇

−1), 𝑇𝑡𝑒𝑠𝑡 

for KF and KS step at epoch k can be respectively expressed as: 

 𝑇𝑡𝑒𝑠𝑡𝑘
𝑓

=
𝑣𝑦𝑘
𝑓𝑇
𝑅𝑘
−1𝑣𝑦𝑘

𝑓
+ 𝑣𝑥𝑘

𝑓𝑇
𝑄�̅�𝑘
−1𝑣𝑥𝑘

𝑓

𝑟𝑘𝜎0
2 =

𝑑𝑦𝑘
𝑇𝑄𝑑𝑦𝑘

−1 𝑑𝑦𝑘

𝑟𝑘𝜎0
2  (2.43) 

 

 𝑇𝑡𝑒𝑠𝑡𝑘
𝑠 =

𝑣𝑦𝑘
𝑠𝑇𝑅𝑘

−1𝑣𝑦𝑘
𝑠 + 𝑣𝑑𝑦𝑛𝑐𝑘

𝑠𝑇 𝑄𝑘
−1𝑣𝑑𝑦𝑛𝑐𝑘

𝑠

𝑟𝑘𝜎0
2  (2.44) 

During these recursive tests, the redundancy number 𝑟𝑘 will equal to the local 

redundancy 𝑚𝑘 at each epoch.  

2.3.3 Identification 

According to Hewitson and Wang (2010), a fault/outlier in the measurement or the 

predicted states in the KF process can be estimated as: 

 ∇̂k,i
𝑓
= {

(𝑒𝑘,𝑖
T 𝑄𝑑𝑦𝑘

−1 𝑒𝑘,𝑖)
−1
𝑒𝑘,𝑖

T𝑄𝑑𝑦𝑘
−1 𝑑𝑦𝑘, (1 ≤ 𝑖 ≤ 𝑚𝑘)

(𝑓𝑘,𝑖
T 𝐻𝑘

T𝑄𝑑𝑦𝑘
−1 𝐻𝑘𝑓𝑘,𝑖)

−1
𝑓𝑘,𝑖
T 𝐻𝑘

T𝑄𝑑𝑦𝑘
−1 𝑑𝑦𝑘,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

  (2.45) 

with the variance of its estimated error in a measurement model as: 

 𝑄
∇̂k,i

𝑓 = {
(𝑒𝑘,𝑖

T 𝑄𝑑𝑦𝑘
−1 𝑒𝑘,𝑖)

−1
, (1 ≤ 𝑖 ≤ 𝑚𝑘)

(𝑓𝑘,𝑖
T 𝐻𝑘

T𝑄𝑑𝑦𝑘
−1 𝐻𝑘𝑓𝑘,𝑖)

−1
,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

  (2.46) 

here 𝑒𝑘,𝑖 and 𝑓𝑘,𝑖 are the 𝑚𝑘 × 1 and 𝑛𝑘 × 1 vector with the ith element in them equals 

to one, and other elements equal to zero. 

Then, the fault/outlier identification statistic (w test) can be formulated as follows:  
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 𝑤𝑘,𝑖
𝑓 =

∇̂k,i
𝑓

𝜎
∇̂k,i

𝑓
=

{
  
 

  
 

𝑒𝑘,𝑖
T𝑄𝑑𝑦𝑘

−1 𝑑𝑦𝑘

𝜎0√𝑒𝑘,𝑖
T 𝑄𝑑𝑦𝑘

−1 𝑒𝑘,𝑖

, (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝑓𝑘,𝑖
T 𝐻𝑘

T𝑄𝑑𝑦𝑘
−1 𝑑𝑦𝑘

𝜎0√𝑓𝑘,𝑖
T 𝐻𝑘

T𝑄𝑑𝑦𝑘
−1 𝐻𝑘𝑓𝑘,𝑖

,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 (2.47) 

here, k represents the current time epoch, i represent the index of measurement or state 

parameter. 𝑚𝑘 and 𝑛𝑘 are the number of measurement model and state parameter, and 𝜎0 

is the priori variance factor. 𝐻𝑘 is the design matrix of Kalman filter that relating the 

measurements to the state parameters. If the largest |𝑤𝑘,𝑖| is larger than 3.29, it indicates 

there may be an outlier in the ith measurement (Wang and Knight 2012).  

Similarly, the possible error/outlier can also be estimated through the KS or FLS process. 

In the step of Identification of FLS, the alternative hypothesis in Equation 2.41 is 

decomposed into: 

 𝐻𝑎𝑖:  𝐸(𝑙) = 𝐴∆𝑋 + ℎ𝑖∇𝑖                                               (2.48) 

here, ℎ𝑖 is the 𝐹𝑎𝑙𝑙 × 1 vector with its ith element equal to one and all other elements equal 

to zero; ∇𝑖 is the size of the model error in the functional model 𝑙𝑖, and 𝑖 = 1,2, … , 𝐹𝑎𝑙𝑙. 

During the full least squares process, the estimated error and its cofactor will be: 

 ∇̂𝑖= 𝑄�̂�𝑖ℎ𝑖
𝑇𝑃𝑄𝑣𝑃𝐿 (2.49) 

 Q∇̂i = (ℎ𝑖
𝑇𝑃𝑄𝑣𝑃ℎ𝑖)

−1 (2.50) 

in case the alternative hypotheses are related only to the model errors in the measurements 

models, or in the dynamic models, the structure of the vector ℎ𝑖 is further expressed as: 

 ℎ𝑖 = {
(ℎ𝑚𝑖

, 0),                                                              ( 1 ≤ 𝑖 ≤ 𝑚𝑎𝑙𝑙)

(0, ℎ𝑑𝑗),                                  ( 𝑗 = 𝑖 − 𝑚𝑎𝑙𝑙 , 𝑚𝑎𝑙𝑙 < 𝑖 < 𝐹𝑎𝑙𝑙)
 (2.51) 
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where ℎ𝑚𝑖
 and ℎ𝑑𝑗 are the 𝑚𝑎𝑙𝑙 × 1 and 𝑛𝑎𝑙𝑙 × 1 vector with its ith element in ℎ𝑚𝑖

 and 

jth element in ℎ𝑚𝑖
 are equal to one and all other elements equal to zero. Equation 2.49 

and 2.50 will be solved as: 

 

∇̂𝑖  

= {
(ℎ𝑚𝑖

T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅
−1ℎ𝑚𝑖

)
−1
ℎ𝑚𝑖
T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅

−1𝐿𝑚𝑒𝑎𝑠 ,               (1 ≤ 𝑖 ≤ 𝑚𝑎𝑙𝑙)

(ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1ℎ𝑑𝑗)
−1

ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1𝐿𝑑𝑦𝑛𝑐 ,   (j = 𝑖 − 𝑚𝑎𝑙𝑙 , 𝑚𝑎𝑙𝑙 < 𝑖 < 𝐹𝑎𝑙𝑙)
  

(2.52) 

 

 

Q∇̂𝑖  = (ℎ𝑖
𝑇𝑃𝑄𝑣𝑃ℎ𝑖)

−1 

= {
(ℎ𝑚𝑖

T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅
−1ℎ𝑚𝑖

)
−1
,               (1 ≤ 𝑖 ≤ 𝑚𝑎𝑙𝑙)

(ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1ℎ𝑑𝑗)
−1

,   (j = 𝑖 − 𝑚𝑎𝑙𝑙 , 𝑚𝑎𝑙𝑙 < 𝑖 < 𝐹𝑎𝑙𝑙)
  

(2.53) 

The w test for FLS will be: 

 𝑤𝑖 =
∇̂𝑖
Q∇̂𝑖

=

{
  
 

  
 

ℎ𝑚𝑖

T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅
−1𝐿𝑚𝑒𝑎𝑠

𝜎0√ℎ𝑚𝑖
T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅

−1ℎ𝑚𝑖

, (1 ≤ 𝑖 ≤ 𝑚𝑎𝑙𝑙)

ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1𝐿𝑑𝑦𝑛𝑐

𝜎0√ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1ℎ𝑑𝑗

,   (j = 𝑖 − 𝑚𝑎𝑙𝑙 , 𝑚𝑎𝑙𝑙 < 𝑖 < 𝐹𝑎𝑙𝑙)

 (2.54) 

these expressions will be the basis for recursive identification, e.g. conducting error 

identification procedure recursively under the KS process with introducing  𝑒𝑘,𝑖 and 𝑓𝑘,𝑖, 

similar to that in KF. Equation 2.52 and 2.53 will be further derived as followed: 

 

∇̂k,i
𝑠

= {
(𝑒𝑘,𝑖

T (𝑄𝑑𝑦𝑘
−1 + 𝐶𝑘𝑑𝑄𝑥𝑘+1𝐶𝑘

𝑇)𝑒𝑘,𝑖)
−1
𝑒𝑘,𝑖

T(𝑄𝑑𝑦𝑘
−1 𝑑𝑦𝑘 − 𝐶𝑘𝑑𝑥𝑘+1

𝑠), (1 ≤ 𝑖 ≤ 𝑚𝑘)

(𝑓𝑘,𝑖
T 𝑄�̅�𝑘

−1𝑑𝑄𝑥𝑘𝑄�̅�𝑘
−1𝑓𝑘,𝑖)

−1
𝑓𝑘,𝑖
T 𝑄�̅�𝑘

−1(−𝑑𝑥𝑘
𝑠),   (1 ≤ 𝑖 ≤ 𝑛𝑘),                       (1 ≤ 𝑖 ≤ 𝑛𝑘)

  
(2.55) 

 

 𝑄 ∇̂k,i
𝑠 = {

(𝑒𝑘,𝑖
T (𝑄𝑑𝑦𝑘

−1 + 𝐶𝑘𝑑𝑄𝑥𝑘+1𝐶𝑘
𝑇)𝑒𝑘,𝑖)

−1
,                   (1 ≤ 𝑖 ≤ 𝑚𝑘)

(𝑓𝑘,𝑖
T 𝑄�̅�𝑘

−1𝑑𝑄𝑥𝑘𝑄�̅�𝑘
−1𝑓𝑘,𝑖)

−1
,   (1 ≤ 𝑖 ≤ 𝑛𝑘),        (1 ≤ 𝑖 ≤ 𝑛𝑘)

  (2.56) 

The 𝐶𝑘 matrix is defined as: 𝐶𝑘 = 𝑅𝑘
−1𝐻𝑘𝐽𝑘.  
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The Corresponding w test in KS will be: 

 

𝑤𝑘,𝑖
𝑠 =

∇̂k,i
𝑠

𝜎
∇̂k,i

𝑠

=

{
  
 

  
 

𝑒𝑘,𝑖
T(𝑄𝑑𝑦𝑘

−1 𝑑𝑦𝑘 − 𝐶𝑘𝑑𝑥𝑘+1
𝑠)

𝜎0√𝑒𝑘,𝑖
T (𝑄𝑑𝑦𝑘

−1 + 𝐶𝑘𝑑𝑄𝑥𝑘+1𝐶𝑘
𝑇)𝑒𝑘,𝑖

, (1 ≤ 𝑖 ≤ 𝑚𝑘)

−𝑓𝑘,𝑖
T 𝑄�̅�𝑘

−1𝑑𝑥𝑘
𝑠

𝜎0√𝑓𝑘,𝑖
T 𝑄�̅�𝑘

−1𝑑𝑄𝑥𝑘𝑄�̅�𝑘
−1𝑓𝑘,𝑖

,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 

(2.57) 

2.3.4 Adaption 

Once the specific model error is identified, its influence on the state parameter estimation 

should be removed, which can be performed by estimating the state parameters based on 

Equation 2.41.  Therefore, the full least squares estimators of the adapted state parameters 

can be derived as: 

 ∆𝑋𝑖
𝑖𝑛𝑓 = 𝑄∆�̂�𝐴

T𝑃ℎ𝑖∇̂𝑖,   𝑖 = 1,2, … , 𝐹𝑎𝑙𝑙 (2.58) 

here ∆𝑋𝑖
𝑖𝑛𝑓 represents the influence of the estimated error in the ith functional model (𝑖 =

1,2, … , 𝐹𝑎𝑙𝑙) on the estimated correction by FLS. Therefore, the adapted results will be: 

 �̂�𝑎 = 𝑋𝑎𝑝𝑝 + Δ�̂� − ∆𝑋𝑖
𝑖𝑛𝑓

 (2.59) 

while the KF adapted state parameters can be derived as: 

 𝑥𝑘
𝑓𝑎 = {

�̂�𝑘 − 𝐺𝑘𝑒𝑘,𝑖∇̂𝑘,𝑖
𝑓
, (1 ≤ 𝑖 ≤ 𝑚𝑘)

�̂�𝑘 − (𝐼 − 𝐺𝑘𝐻𝑘)𝑓𝑘,𝑖∇̂𝑘,𝑖
𝑓
,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 (2.60) 

here 𝐺𝑘 is the Kalman gain matrix which is defined in Equation 2.8. 

 For the KS process, the adapted state parameters are: 
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 𝑥𝑘
𝑠𝑎 = {

𝑥𝑘
𝑠 − 𝑄𝑥𝑘𝑠𝐻𝑘

T𝑅𝑘
−1𝐻𝑘𝑒𝑘,𝑖∇̂𝑘,𝑖

𝑠
, (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝑥𝑘
𝑠 − 𝑄𝑥𝑘𝑠𝑄�̅�𝑘

−1𝑓𝑘,𝑖∇̂𝑘,𝑖
𝑠
,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 (2.61) 

their cofactor matrix read as: 

 𝑄∆�̂�
𝑎 = 𝑄∆�̂� + 𝑄∆�̂�𝐴

T𝑃ℎ𝑖𝑄∆�̂�ℎ𝑖
T𝑃𝐴𝑄∆�̂� , 𝑖 = 1,2, … , 𝐹𝑎𝑙𝑙  (2.62) 

and for KF: 

 𝑄�̂�𝑓
𝑎 = {

𝑄𝑥𝑘𝑓 + 𝐺𝑘𝑒𝑘,𝑖Q∇̂k,i
𝑓𝑒𝑘,𝑖

T𝐺𝑘
T,                                            (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝑄𝑥𝑘𝑓 + (𝐼 − 𝐺𝑘𝐻𝑘)𝑓𝑘,𝑖Q∇̂k,i
𝑓𝑓𝑘,𝑖

T
(𝐼 − 𝐺𝑘𝐻𝑘)

T,               (1 ≤ 𝑖 ≤ 𝑛𝑘)
 (2.63) 

And for KS: 

 

𝑄�̂�𝑠
𝑎

= {
𝑄𝑥𝑘𝑠 + 𝑄𝑥𝑘𝑠𝐻𝑘

T𝑅𝑘
−1𝐻𝑘𝑒𝑘,𝑖𝑄�̂�𝑘,𝑖

𝑠𝑒𝑘,𝑖
T𝐻𝑘

T𝑅𝑘
−1𝐻𝑘𝑄𝑥𝑘𝑠 , (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝑄𝑥𝑘𝑠 + 𝑄𝑥𝑘𝑠𝑄�̅�𝑘
−1𝑓𝑘,𝑖𝑄�̂�𝑘,𝑖

𝑠𝑓𝑘,𝑖
T𝑄�̅�𝑘

−1𝑄𝑥𝑘𝑠 ,                       (1 ≤ 𝑖 ≤ 𝑛𝑘)
 

(2.64) 

2.3.5 Reliability 

Two reliability measures will be taken into consideration. MDB is the minimum 

detectable bias. The MDB in the ith measurement or predicted states in KF step can be 

obtained as: 

 𝑀𝐷𝐵𝑘,𝑖
𝑓 =

{
  
 

  
 

𝛿𝑑𝜎0

√𝑒𝑘,𝑖𝑇𝑄𝑑𝑦𝑘
−1 𝑒𝑘,𝑖

, (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝛿𝑑𝜎0

√𝑓𝑘,𝑖
𝑇 𝐻𝑘

𝑇𝑄𝑑𝑦𝑘
−1 𝐻𝑘𝑓𝑘,𝑖

,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 (2.65) 

here δd is the shift of the outlier statistic determined by Type I and Type II errors [Knight 

and Wang, 2010]. 

According to the MDB concept, there could be an outlier with the size very close to the 

MDB value and could not be detected. However, this outlier may still influence the final 
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estimation solution of position. This influence, so-called External Reliability is critically 

important in evaluating the reliability of the dynamic system, such as the localization 

system for autonomous driving. External Reliability can be determined by evaluating the 

effect of the MDB on the estimated parameters as:  

 𝐸𝑅𝑘,𝑖
𝑓 = {

𝐺𝑘𝑒𝑘,𝑖𝑀𝐷𝐵𝑘,𝑖
𝑓 , (1 ≤ 𝑖 ≤ 𝑚𝑘)

(𝐼 − 𝐺𝑘𝐻𝑘)𝑓𝑘,𝑖𝑀𝐷𝐵𝑘,𝑖
𝑓 ,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

                (2.66) 

similarly, the MDB and ER in the FLS and KS step can be derived as: 

for FLS, the MDB is derived as: 

 𝑀𝐷𝐵𝑖 =
𝛿𝑑𝜎0

√ℎ𝑖
𝑇PQ𝑣Pℎ𝑖

=

{
  
 

  
 

𝛿𝑑𝜎0

√ℎ𝑚𝑖
T 𝑅−1𝑄�̂�𝑚𝑒𝑎𝑠𝑅

−1ℎ𝑚𝑖

,                         ( 1 ≤ 𝑖 ≤ 𝑚𝑎𝑙𝑙)

𝛿𝑑𝜎0

√ℎ𝑑𝑗
T 𝑄−1𝑄�̂�𝑑𝑦𝑛𝑐𝑄

−1ℎ𝑑𝑗

,   (𝑗 = 𝑖 −𝑚𝑎𝑙𝑙 , 𝑚𝑎𝑙𝑙 < 𝑖 < 𝐹𝑎𝑙𝑙)

 (2.67) 

 𝐸𝑅𝑖 = 𝑄∆�̂�𝐴
T𝑃ℎ𝑖𝑀𝐷𝐵𝑖                                                         (2.68) 

thus for KS: 

 𝑀𝐷𝐵𝑘,𝑖
𝑠 =

{
  
 

  
 

𝛿𝑑𝜎0

√𝑒𝑘,𝑖𝑇(𝑄𝑑𝑦𝑘
−1 + 𝐶𝑘𝑑𝑄𝑥𝑘+1𝐶𝑘

T)𝑒𝑘,𝑖

, (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝛿𝑑𝜎0

√𝑓𝑘,𝑖
𝑇 𝑄�̅�𝑘

−1𝑑𝑄𝑥𝑘𝑄�̅�𝑘
−1𝑓𝑘,𝑖

,   (1 ≤ 𝑖 ≤ 𝑛𝑘)

 (2.69) 

 𝐸𝑅𝑘,𝑖
𝑠 = {

𝑄𝑥𝑘𝑠𝐻𝑘
T𝑅𝑘

−1𝑒𝑘,𝑖𝑀𝐷𝐵𝑘,𝑖
𝑠 , (1 ≤ 𝑖 ≤ 𝑚𝑘)

𝑄𝑥𝑘𝑠𝑄�̅�𝑘
−1𝑓𝑘,𝑖𝑀𝐷𝐵𝑘,𝑖

𝑠,   (1 ≤ 𝑖 ≤ 𝑛𝑘)
 (2.70) 



Chapter 2 Statistical Quality Control Framework for Optimal Filtering and Smoothing

 

49 

 

2.4 Numerical Analysis for the proposed Quality Control Method  

2.4.1 Linear Position Estimation Case 

The first numerical test is taken with a simulated 2D positioning case with measured 

position and constant velocity dynamic model (case 1). The tracked object moves with a 

sensor on it to give measurements of the target’s position in Cartesian coordinates x and 

y. The state variables contain the position (𝑥𝑘, 𝑦𝑘), velocities (𝑣𝑥𝑘 , 𝑣𝑦𝑘) on the epoch k. 

The data used in this case is simulated. This is a linear KF/KS case and the measurement 

matrix is set to: 

 𝐻𝑘 = [
1 0 0
0 1 0

0
0
] (2.71) 

and the state transition matrix is set as: 

 Φ𝑘 = [

1 0 𝛥𝑡
0 1 0
0 0 1

0
𝛥𝑡
0

0 0 0 1

] (2.72) 

The measured positions have a standard deviation of 1 meter while the covariance of 

system driving noise is set as diag(0.1). In this simulation case, the time interval is 1s, 

thus 𝛥𝑡 = 1. Kalman filtering and smoothing are processed recursively under the above 

assumption for 20 epochs, and full least squares is done with the measurement and 

dynamic information within all the 20 epochs. The following figures show the estimation 

results by the three methods (KF, KS and FLS). 

2.4.1.1 KF, KS and FLS estimation results 

The following 4 figures show that the FLS and KS method has exactly the same 

estimation results, indicating the equivalence of Kalman smoother and full least squares. 

According to the first two figures, Kalman smoother’s result are smoother and more 

accurate than Kalman filter’s. The root mean squared estimated errors (RMSE) between 

the estimated and referenced position are 0.764 and 0.545 meters by KF and KS, 

respectively. The results also prove the advantage of Kalman smoothing to filtering in the 

precision of estimation, which can be obviously seen from Figure 2.3 and Figure 2.4 that 
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KS has lower standard deviation value of the final estimation than KF. It should be 

noticed, when the measurements are more accurate (e.g. lower 휀𝑘), the estimation results 

by KF and KS are getting closer to each other. 
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Figure 2.1 Measured position and estimated position states by KF, KS and FLS 
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Figure 2.2 Estimated velocity states by KF, KS and FLS. [Top] velocity on x axis. 

[Bottom] velocity on y axis 
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Figure 2.3 Standard deviation of estimated position [Top] x axis. [Bottom] y axis 

 

 

Figure 2.4 Standard deviation of estimated velocity [Top] x axis. [Bottom] y axis 

2.4.1.2 DIA results with original setting 

Figure 2.5 and Figure 2.6 shows the original simulated dataset does not contain 

unacceptable error/outliers with w test value all under 3.29.  
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Figure 2.5 T test of simulated dataset by KF and KS 

 

Figure 2.6 W test by KF and KS with simulated dataset. [Top] w statistic test of error in 

measurement model. [Bottom] w statistic test of error in dynamic state model 

KS has better reliability. It has lower MDB value for both measurement and dynamic 

models, which means the KS method can detect error/outlier with lower value than the 

KF method. One thing needs to be noticed is that the w statistic test results for dynamic 

model part in Figure 2.6 only show the test of the position states related models in KF 

and KS step. The state model in KF step is as: 
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�̅�𝑘 = �̅�𝑘  + 𝜖�̅�𝑘 

�̅�𝑘 = �̅�𝑘 + 𝜖�̅�𝑘 

𝑣𝑥̅̅ ̅𝑘 = 𝑣𝑥̅̅ ̅𝑘 + 𝜖𝑣𝑥̅̅̅̅ 𝑘 

𝑣𝑦̅̅̅̅ 𝑘 = 𝑣𝑦̅̅̅̅ 𝑘 + 𝜖𝑣𝑦̅̅̅̅ 𝑘 

(2.73) 

equation (2.73) is obtained according to section 2.1 and it can be found that the predicted 

velocity states cannot be tested in KF process as they are not directly measured and there 

are also not correlated to the predicted position state within the specific epoch. Therefore, 

the w test results for these velocity predicted states are Nan in KF process. However, in 

KS process, the w statistic test for states is done with the dynamic process model, e.g. 

 

𝑥𝑘 = 𝑥𝑘−1 + ∆𝑡𝑣𝑥𝑘 + 𝜏𝑥𝑘 

𝑦𝑘 = 𝑦𝑘−1 + ∆𝑡𝑣𝑦𝑘 + 𝜏𝑦𝑘 

𝑣𝑥𝑘 = 𝑣𝑥𝑘−1 + 𝜏𝑣𝑥𝑘  

𝑣𝑦𝑘 = 𝑣𝑦𝑘−1 + 𝜏𝑣𝑦𝑘                                              

(2.74) 

hence the velocity model can be tested as the velocity states are correlated to the position 

states. An example of the correlation coefficient value between the state model can be 

found in Table 2.1. 

Table 2.1Correlation Coefficient value between states by KF method or KS method in 

epoch 4 

 KF   KS 

States 𝑥 𝑦 𝑣𝑥 𝑣𝑦  States 𝑥 𝑦 𝑣𝑥 𝑣𝑦 

𝑥 1 0 Nan Nan  𝑥 1.0000 0 -0.5381 0 

𝑦 0 1 Nan Nan  𝑦 0 1.0000 0 -0.5381 

𝑣𝑥 Nan Nan Nan Nan  𝑣𝑥 -0.5381 0 1.0000 0 

𝑣𝑦 Nan Nan Nan Nan  𝑣𝑦 0 -0.5381 0 1.0000 
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2.4.1.3 DIA with simulated additional outlier 

An additional outlier can be added to the measurement to illustrate our quality control 

(QC) method performance. After adding one outlier of 10 meters at measured position y 

in epoch 4, the detection and identification results are shown in the following figures. 

It can be found from Figure 2.7 and Figure 2.8 that the T test value and W test value are 

all significantly getting higher at epoch 4 after adding the 10 meters outlier in measured 

position y. For KS method, the detected outlier only exists in epoch 4 with an estimated 

value of 9.57 meters. However, for KF method, outlier can also be detected and identified 

in epoch 5, which means the additional outlier in epoch 4 will also cause error in the 

following epochs. The estimated error value (9.49 meters) in epoch 5 is even higher than 

that in epoch 4 (9.05 meters) and its influence on the filtered state of position y is 6.34 

meters and -6.09 meters in epoch 4 and 5 (Table 2.2). If the additional error value is larger, 

this undesirable influence will be higher and exist longer.     

0 5 10 15 20
0

5

10

15

20

25

30

 

 

 KF

 KS

T

Epoch

 

 

 

Figure 2.7 T test after adding a 10 meters outlier in measurement of position y at epoch 

4 
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Figure 2.8 W test after adding a 10 meters outlier in measurement of position y at epoch 

4. [Top] for measurement model. [Bottom] for dynamic state model 

 

Table 2.2 Influence of the estimated error (exists in epoch 4 measured y) onto the KF 

and KS estimated state (Position y) result (unit: meter) before and after adding 10 

meters outlier 

Epoch 4 5 6 7 

Before 

adding 

error 

KF -0.7232 0.1928 -0.2389 -0.4189 

KS -0.1096 -0.3103 0.1609 0.3816 

After 

adding 

error 

KF 6.3409 -3.4187 -1.9062 -0.9795 

KS 2.4186 2.5176 1.5763 0.9470 

 

Similarly, in the KF step, the w test has same results on measured position and predicted 

position due to the close to 1 correlation coefficient (CC) value between the measured 

and predicted position in this case, therefore, it cannot identify whether the estimated 

error is in the measurement or in the predicted states. Such as for the test results in epoch 

5 by KF, the w value for both measured 𝑦 and state 𝑦 are 5.90, therefore it cannot exactly 
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determine whether the detected error is originally existed in the measurement or it is 

caused by the influence of the additional outlier in epoch 4.  

For KS method, the results are better as the CC value between measurement and dynamic 

model is lower. Hence in epoch 4 the w test value for measurement (8.27) is larger than 

that for dynamic model (5.40). In contrast, in epoch 5, the w value for measurement (1.40) 

is lower than that for dynamic model (4.93), means the outlier is in the measurement in 

epoch 4. Suppose the outlier is big enough that its influence would be detected in the 

following epochs. In that case, the KS QC method can still identify it within a dynamic 

model rather than within the measurement model.   

According to Table 2.2, it can also be found that before adding 10 meters outlier, the 

estimated error by KF and KS method are the random errors exist in the simulated dataset. 

Their influences on the final estimation of position y are about 0.1-0.7 meters. With the 

additional outlier of 10m, it caused about 6.34 meters bias of position estimation on y 

direction by the KF method, and its influence will store in the predicted states and will 

continue cause bias larger than 1 meter until epoch 7. To comparison, KS method is more 

robust to this additional error as its influence on position estimation are much lower than 

by KF step. It is because KS process has utilized the measurement and dynamic 

information after epoch 4 to estimate the states at epoch 4, thus the redundancy is higher, 

while in KF step, the estimation in epochs 4 and 5 cannot use the following more accurate 

measurements to correct the bias caused by the additional outlier.  

If these influences caused by the additional outlier can be removed (with Adaptation), it 

can be found that KS has estimation of y closer to the reference trajectory. The estimated 

error can also be removed from the measurement. After removing the error estimated by 

KS method (9.57 meters in measured y), the T test and W test results (Figures 2.9 and 

2.10) at epoch 4 and 5 are better than results before adding the outlier (Figures 2.5 and 

2.6).  



Chapter 2 Statistical Quality Control Framework for Optimal Filtering and Smoothing

 

57 

 

 

Figure 2.9 T test after removing the outlier estimated by KS 

 

Figure 2.10 W test after removing the outlier estimated by KS. [Top] for measurement 

model. [Bottom] for dynamic state model 

It should also be noticed that as the outlier is added to the measured position, it will also 

influence the estimation on velocity and cause bias on velocity estimation.  By KF method 

the influenced or biased value is 2.74 m/s, about 5 times of the KF estimated STD value, 
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by KS, it is 0.26 m/s (Figure 2.11). As the state positions are observed directly while the 

velocities indirectly, the accuracy of velocity is depended on the accuracy of position 

measurement. Therefore, the outlier in position measurement will influence the velocity 

estimation accuracy. KS method is more robust against this influence (Figure 2.11) 

because the indirectly observed velocity states have more measurements and dynamic 

information to amend this influence.  

 

Figure 2.11 Estimated velocity y before and after adding additional outlier in measured 

y in epoch 4. [Top] for measurement model. [Bottom] for dynamic state model 

2.4.1.4 Reliability analysis  

Figure 2.12 shows the internal reliability (MDB) results of the original simulated dataset. 

According to this figure, it can be found the MDB values estimated by KS are always 

lower than that by KF until the last epoch. The MDB value by KF method reaches to 

about 6.4 meters for both measurement and state parameters after epoch 6, while for KS 

method, the MDB value converges quickly to around 5.6-6 meters at epoch 2. Therefore, 

the quality control method with KS step can successfully detect and identify error lower 

than with KF.  
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Figure 2.12 MDB by KF and KS with simulated dataset. [Top] for measurement model. 

[Bottom] for dynamic state model 

The additional outlier in the previous section was 10 meters, larger than the MDBs in 

epoch 4 by both KF and KS. Therefore, the statistic tests in both steps have indicated the 

outliers (Figure 2.7 and 2.8). As KS has lower MDBs, if adding an outlier of 6 meters in 

the position measurement in epoch 4, the results will be shown in Figure 2.13 and Figure 

2.14. 

 

Figure 2.13 T test results after adding an outlier of 6 meters in the 𝑦 measurement in 

epoch 4 
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Figure 2.14 W test results after adding an outlier of 6 meters in the 𝑦 measurement in 

epoch 4. [Top] for measurement model. [Bottom] for dynamic state model 

The KF DIA method does not detect an outlier in epoch 4 but detects and identifies an -

5.63 meters outlier with w test value 3.35 (>3.29) in epoch 5. Hence the additional outlier 

at this level (6 meters <MDB of KF) cannot be detected by the KF QC method. The 

successful DIA may be delayed as the outlier’s influence will be stored in the filtered and 

predicted states, thus may cause mis-localization of the outlier. However, as discussed in 

the previous Section, the DIA results in epoch 5 by KF cannot precisely identify whether 

the detected outlier is in the measurement or is coming from the previous epoch. These 

problems can be solved with the KS method. As shown in Figure 2.13 and 2.14, the KS 

DIA method can successfully detect and identify the outlier in epoch 4.    

Similar to the w test result, Figure 2.12 only shows the MDB results for the state of 

position as for the KF method, the predicted state of velocity cannot be tested and the 

MDB value for them are Infinite. But for the KS method, the dynamic models for velocity 

can be tested, the MDB of them are around 2.9-13 m/s except that in last epoch. For the 

last epoch, there are no further dynamic and measurement model to be used to examine 

the quality in the velocity state parameter at the last epoch. Hence the w test result of  𝑣𝑦𝑘 

is close to zero and the MDB value are large to 108 meters at the last epoch. 
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Suppose there are errors with a value just lower than MDB value and cannot be detected. 

In that case, its influence on the final state estimation is called the External Reliability 

(ER). With the original simulated dataset, the ER values caused by MDB with KS step 

are also much lower than that with KF step, indicating if there are undetected errors, the 

KS process largely reduces their influence.  

The MDB and ER values and trends do not change after adding or removing errors, since 

the system's geometry is not changed, indicating the error will not influence the 

Reliability of the system.   

2.4.2 The Influence of Initial Value 

In some other papers (Aravkin et al 2013), the initial values are assumed to be known and 

it is directly used in the first dynamic model as 𝑥1 = 𝑥0 + 𝜏1, it does not consider the 

uncertainty and error in the initial values. Our method can be used to analyse and test the 

initial condition with a small modification, that considering an additional 𝑋0 model 𝑥0 =

𝑥0 + 𝜏0. Therefore, the 𝑥0 and its uncertainty are further estimated in the KS method.  

2.4.2.1 Difference between Known and Unknown Initial Values 

As considering the 𝑥0 with initial uncertainty 𝑄𝑥0 =diag(10), the estimation of the state 

parameters is not change much. The estimation's precision changed slightly expect the 

initial one or two epochs by KF method for velocity states when compare Figure 2.15 to 

Figure 2.3 and 2.4. Table 2.3 shows the changing rate of standard deviation of estimated 

states before and after considering the 𝑥0 uncertainty. In Table 2.3, only the first 10 epoch 

are shown because after 10 epochs, the influence of 𝑄𝑥0 are nearly zero. It can be found 

in Table 2.3 that for KF step, whether to consider the 𝑥0  with uncertainty will 

significantly influence the precision of velocity estimation in the initial 1 to 3 epochs, 

especially up to -26% changing rate in epoch 1. This influence will reduce with time. KS 

method seems less influenced by the initial value uncertainty, with only -2 to -2.5% 

change at epoch 1 for all states estimation precision. The precision of estimated velocity 

seems more sensitive than that of position estimation and becomes much better after 

considering the uncertainty of 𝑋0 model, indicating this is a good way to increase the 



Chapter 2 Statistical Quality Control Framework for Optimal Filtering and Smoothing

 

62 

 

estimation precision of indirectly observable state parameters for the initial several 

epochs. Although for the KS method, this kind of improvement is not very much.  

 

Figure 2.15 STD of estimated states after considering 𝑥0 with uncertainty 

Table 2.3 The changing rate (%) of STD between with and without considering the 

uncertainty of initial value 𝑥0 

Epoch 1 2 3 4 5 6 7 8 9 10 

KS 

𝑥 -2.007 -0.321 0.187 0.0555 -0.0556 -0.0697 -0.0449 -0.0205 -0.00688 -0.00149 

𝑦 -2.007 -0.321 0.187 0.0555 -0.0556 -0.0697 -0.0449 -0.0205 -0.00688 -0.00149 

𝑣𝑥 -2.535 -1.54 -0.581 -0.103 0.0131 0.0106 -0.0027 -0.0066 -0.00496 -0.00252 

𝑣𝑦 -2.535 -1.54 -0.581 -0.103 0.0131 0.0106 -0.0027 -0.0066 -0.00496 -0.00252 

KF 

𝑥 2.365 -2.002 -1.638 -0.957 -0.495 -0.217 -0.0746 -0.0175 -0.00122 0.000911 

𝑦 2.365 -2.002 -1.638 -0.957 -0.495 -0.217 -0.0746 -0.0175 -0.00122 0.000911 

𝑣𝑥 -26.78 -11.48 -4.328 -1.454 -0.38302 -0.061 0.00476 0.00529 -0.00089 -0.00294 

𝑣𝑦 -26.78 -11.48 -4.328 -1.454 -0.38302 -0.061 0.00476 0.00529 -0.00089 -0.00294 
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The quality control results for measurement model and dynamic model of position 

parameters are not much affected whether considering 𝑋0 model or not, except the QC 

tests for the first epoch (Figure 2.16, 2.17, 2.18). For KF method, its MDBs for 

measurement and predicted states will increase about 40% from 13.70 meters to 18.97 

meters at epoch 1, and get reduced at the following epochs. Therefore, the uncertainty 

within the initial value will make the estimation of directly observed states of epoch 1 

less reliable, but for the following 2 to 4 epochs, it will become more reliable. For the 

indirectly observed variable, such as velocity, its estimation will be more reliable within 

all the epoch with the 𝑋0 model. The MDBs for the velocity dynamic model between 

epoch 1 and 0 will be reduced by 25.5% from 13.18 m/s to 9.81 m/s. Therefore, the 

consideration of 𝑋0  model may improve the quality of the estimation of indirectly 

observed variables.  

 

 

Figure 2.16 W test with considering 𝑋0. [Top] for measurement model. [Bottom] for 

dynamic state model 
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Figure 2.17 MDB with considering 𝑋0. [Top] for measurement model. [Bottom] for 

dynamic state model 

 

Figure 2.18 T test with considering 𝑋0 
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2.4.2.2 Influence of fault in initial value 

If there is an outlier in the initial value assumption, this outlier will also affect the 

estimation and DIA test of the following epochs. Table 2.4 and 2.5 show that if the 

additional outlier is in the state of position 𝑥 in the assumed 𝑋0 vector, it will not cause 

any change of the w test result of the measured position 𝑦 and the states that related to 

the position 𝑦. But for the measured and predicted position 𝑥 and velocity 𝑣𝑥, an outlier 

is detected and identified at epoch 1. For KS method, the possible outlier is identified in 

the dynamic model between states parameter position 𝑥0  and 𝑥1  with the maximal w 

value of 4.549, and in the following epoch, the maximal w come from the state 𝑣𝑥. The 

reason is that the error stored in the position state 𝑥1 can be corrected with the 

measurement of position in epoch 1, whereas 𝑣𝑥 cannot be directly corrected and the 

influence of the additional error in the initial value of 𝑋0 will keep longer.  

For KF method, the w statistic test results for measurement and predicted states are the 

same. Therefore, it is hard to identify exactly where the outlier is. Also, KF cannot be 

used to test the indirectly observed state variable.  

When the period is longer, the influence of the outlier in 𝑋0 model will be negligible. 

Therefore, Table 2.4 and Table 2.5 only show the results of the initial 10 epochs. This 

length of the influence period depends on the initial outlier's size and the accuracy and 

redundancy of the following epochs.  
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Table 2.4 W test results for the measured position of KS and KF with/without additional 

15 meters outlier in 𝑋0 position 𝑥 

 

Table 2.5 W test results for the dynamic model of KS or predicted state of KF 

with/without additional 15 meters outlier in 𝑋0 position 𝑥 

Epoch 1 2 3 4 5 6 7 8 9 10 

w results: 𝑿𝟎 without additional outlier 

KS 

𝑥 0.987 0.182 0.210 0.728 1.297 0.133 0.0586 0.0299 0.721 0.888 

𝑦 0.00878 0.695 0.433 0.148 0.603 0.319 0.756 0.7826 0.0588 1.095 

𝑣𝑥 -0.658 0.509 0.497 0.0332 0.650 0.705 0.669 0.684 0.297 -0.180 

𝑣𝑦 0.0104 0.592 0.695 0.6778 0.953 0.762 0.354 0.0657 0.097 0.686 

Epoch 1 2 3 4 5 6 7 8 9 10 

w results: 𝑿𝟎 without additional outlier 

KS 

𝑥 0.251 0.0261 0.739 0.483 0.944 0.161 0.075 0.644 0.143 0.684 

𝑦 0.663 0.199 0.220 0.375 0.758 0.377 0.0273 0.619 0.888 0.0593 

 

KF 

𝑥 0.716 0.504 0.021 0.430 1.112 0.153 0.380 0.0808 -0.527 0.894 

𝑦 0.121 0.289 0.130 0.520 0.331 0.377 0.652 0.839 0.504 0.458 

 

w results:  𝑿𝟎 with additional outlier of 15 meters in position x 

KS 

𝑥 1.434 0.447 0.895 0.479 1.014 0.244 0.004 0.696 0.176 0.665 

𝑦 0.663 0.199 0.220 0.375 0.758 0.377 0.0273 0.619 0.888 0.0593 

  

KF 

𝑥 3.329 2.274 1.228 1.247 1.661 0.210 0.156 0.206 0.47 0.875 

𝑦 0.121 0.289 0.130 0.520 0.331 0.377 0.652 0.839 0.504 0.458 
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KF 

𝑥 0.716 0.504 0.021 0.430 1.112 0.153 0.380 0.0808 0.527 0.894 

𝑦 0.121 0.289 0.130 0.520 0.331 0.377 0.652 0.839 0.503 0.459 

𝑣𝑥 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

𝑣𝑦 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

 

w results:  𝑿𝟎 with additional outlier of 15 meters in position x 

KS 

𝑥 4.549 0.546 0.021 1.1535 1.705 0.447 0.152 0.155 0.6575 0.86253 

𝑦 0.00878 0.695 0.433 0.148 0.603 0.319 0.756 0.783 0.0588 1.09534 

𝑣𝑥 3.051 2.111 1.507 0.671 0.266 0.495 0.573 0.656 0.302 0.162 

𝑣𝑦 0.0104 0.592 0.695 0.678 0.953 0.762 0.354 0.0657 0.0972 0.686 

  

KF 

𝑥 3.329 2.274 1.229 1.247 1.661 0.21 0.156 0.206 0.468 0.875 

𝑦 0.121 0.289 0.130 0.520 0.331 0.377 0.652 0.839 0.504 0.459 

𝑣𝑥 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

𝑣𝑦 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

 

Estimation standard deviation and reliabilities, however, are not influenced by the outlier 

in the initial values.  

2.5 Unified Least Squares based Quality Control for Ill 

Conditioned Covariance Problem   

A unified least square based quality control method is investigated to deal with model 

that has covariance matrix which is ill-conditioned, such as being singular. This kind of 

matrix is invertible since its condition number is very large or equal to infinity. A singular 
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noise covariance will increase the possibility of numerical problems during optimization.  

The singular model will happen in the localization and navigation systems, such as for 

the IMU system. According to the error propagation model of the IMU system, the 

diagonal elements of Qk matrix for position states can be set as zero (Skog and Handel, 

2005). For some other states such as gyro bias and acceleration bias can also be set as 

zero. Therefore, for any navigation systems that rely on IMU with least squares 

optimization, it will be a singular system. When there is a constraint on an observation, it 

will also cause the system to be singular, such as walking to a known point, there will be 

a constraint model with zero covariance value. Since the singularity will influence the 

least squares estimation and quality control results, another approach of LS estimation for 

the measurements with singular covariances is needed. Unified least squares method, 

which was suggested by Rao and Mitra (1971), is chosen as it can handle both conditions 

that the covariance is singular and non-singular. The corresponding quality control 

method is investigated under this unified least squares framework.  

2.5.1 Unified Least Squares Estimation Model 

The weight matrix P of the full least squares is replaced by another matrix T which can 

be used in least squares estimation to get best linear unbiased estimation (BLUE) of 

variable x in any case, whether singular or non-singular, regardless of the rank of matrix 

D (Rao and Mitra, 1971).  The new weight Pu will be the general inverse of the matrix T 

where: 

 𝑇 = 𝐷 + 𝐴𝑈𝐴𝑇  (2.75) 

 𝑃𝑢 = (𝑇)
𝑔 = (𝐷 + 𝐴𝑈𝐴𝑇)𝑔,   𝑇𝑃𝑢𝑇 = 𝑇 (2.76) 

here superscript g represents g-inverse, U is a symmetric matrix, which can be simply 

chosen as an identity matrix. According to James (1978), to solve a solution of equation 

Ax=b with a generalised inverse of A matrix, the solution exists if and only if AAgb=b. 

If A matrix has full column rank, the solution is unique. 
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Here, for our derivations below for a special case of ULS, we assume that  

a) the T matrix in our study is squared and has full rank, thus 𝑃𝑢𝑇 = 𝐼, 

b) A matrix has full rank; 

c) (𝐴T𝑃𝑢𝐴)
𝑔𝐴T𝑃𝑢𝐴 = 𝐼; 

where I is an identity matrix. Therefore, the solution of the unified least squares method 

could be found: 

 (𝐴T𝑃𝑢𝐴)Δ�̂� = 𝐴
T𝑃𝑢𝐿                                                                  (2.77) 

the solution for the ULS under the special conditions will be: 

 Δ�̂� = (𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐿  (2.78) 

𝐴T𝑃𝑢𝐴  matrix will be squared and have full rank, it will have regular inverse. The 

corresponding covariance matrix of the estimated variables will be: 

 

𝑄∆�̂� = (𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐷[(𝐴

T𝑃𝐴)−1𝐴𝑇𝑃𝑢]
𝑇   

= (𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢(𝑇 − 𝐴𝑈𝐴

𝑇)[(𝐴T𝑃𝐴)−1𝐴𝑇𝑃𝑢]
𝑇   

= [(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝑇 − (𝐴

T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐴𝑈𝐴

𝑇] ∗ (𝑃𝑢𝐴(𝐴
T𝑃𝐴)−1)   

= (𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝑇𝑃𝑢𝐴(𝐴

T𝑃𝑢𝐴)
−1 − 

     (𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐴𝑈𝐴

𝑇𝑃𝑢𝐴(𝐴
T𝑃𝐴)−1  

= (𝐴T𝑃𝑢𝐴)
−1 − 𝑈                                                              

(2.79) 

2.5.2 Quality Control for Unified Least Squares under Special Conditions 

The quality control model can be derived under the Unified Least Square framework with 

a procedure similar to the normal Least Squares framework in Section 2.3.  

2.5.2.1 ULS Residual and its Cofactor Matrix 

The ULS residuals and the associated cofactor matrix can be written as: 
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 𝑣 = 𝐴Δ�̂� − 𝐿 = A(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐿 − 𝐿 = (A(𝐴T𝑃𝑢𝐴)

−1𝐴T𝑃𝑢 − 𝐼)𝐿                         (2-80) 

 

 

𝑄�̂� = (A(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢 − 𝐼)𝐷(A(𝐴

T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢 − 𝐼)

𝑇          

= (A(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢 − 𝐼)(𝑇 − 𝐴𝑈𝐴

𝑇)(𝑃𝑢A(𝐴
T𝑃𝑢𝐴)

−1𝐴T − 𝐼) 

= (A(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝑇 − A(𝐴

T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢𝐴𝑈𝐴

𝑇 − 𝑇 + 𝐴𝑈𝐴𝑇) ∗ 

(𝑃𝑢A(𝐴
T𝑃𝑢𝐴)

−1𝐴T − 𝐼) 

= (A(𝐴T𝑃𝑢𝐴)
−1𝐴T − A𝑈𝐴𝑇 − 𝑇 + 𝐴𝑈𝐴𝑇) ∗ (𝑃𝑢A(𝐴

T𝑃𝑢𝐴)
−1𝐴T − 𝐼) 

= (A(𝐴T𝑃𝑢𝐴)
−1𝐴T − 𝑇) ∗ (𝑃𝑢A(𝐴

T𝑃𝑢𝐴)
−1𝐴T − 𝐼) 

= A(𝐴T𝑃𝑢𝐴)
−1𝐴T𝑃𝑢A(𝐴

T𝑃𝑢𝐴)
−1𝐴T − A(𝐴T𝑃𝑢𝐴)

−1𝐴T 

     −𝑇𝑃𝑢A(𝐴
T𝑃𝑢𝐴)

−1𝐴T + 𝑇 

= A(𝐴T𝑃𝑢𝐴)
−1𝐴T − A(𝐴T𝑃𝑢𝐴)

−1𝐴T − A(𝐴T𝑃𝑢𝐴)
−1𝐴T + 𝑇 

= 𝑇 − A(𝐴T𝑃𝑢𝐴)
−1𝐴T                           

(2-81) 

In order to test if there is a model error (∇), the corresponding null and alternative 

hypotheses are formed as: 

 𝐻0:  𝐸(𝑙) = 𝐴∆𝑋                                                                          (2.82) 

 𝐻𝑎:  𝐸(𝑙) = 𝐴∆𝑋 + ∇                                                               (2.83) 

for the unified least squares, the 𝑇𝑡𝑒𝑠𝑡 test statistic can be expressed with the ULS residual 

and be formulated as: 

 𝑇𝑡𝑒𝑠𝑡 =
�̂�T𝑃𝑢�̂�

𝑟𝜎02
                                                                        (2-84) 

here r is the redundancy number. 
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2.5.2.2 Outlier Identification 

For the purpose of achieving a local test of outlier detection to locate the outlier within 

the measurements and to estimate the outlier size (also called Identification of outlier), 

the alternative hypothesis in Equation 2.83 will be decomposed into: 

 𝐻𝑎:  𝐸(𝑙) = 𝐴∆𝑋 + ℎ𝑖∇𝑖 (2.85) 

where ℎ𝑖 in (25) is the  𝑚 × 1 vector within which the 𝑖𝑡ℎ  element equals to 1 and all 

other elements equal to zero. 𝑖 is the model error in the 𝑖𝑡ℎ model. There the residual 

model will be: 

 𝑣 = 𝐴ΔX + ℎ𝑖∇𝑖 − 𝐿 = [𝐴 ℎ𝑖] [
ΔX
∇𝑖
] − L  (2.86) 

Here let matrix [𝐴 ℎ𝑖] as B, under the unified LS structure, the unknown variable vector is: 

𝑋𝑜 = [
ΔX
∇𝑖
], a 𝑈_𝑎𝑙𝑙 = 𝑑𝑖𝑎𝑔(𝑈,  𝑈2), 

 the new matrix for g-inverse is: 

 𝑇2 = 𝐷 + 𝐵𝑈_𝑎𝑙𝑙𝐵
𝑇 = 𝐷 + 𝐴𝑈𝐴𝑇 + ℎ𝑖𝑈2ℎ𝑖

𝑇  (2.87) 

 𝑃𝑢2 = (𝑇2)
𝑔  (2.88) 

𝑈2 is a m×m symmetric matrix, which can be simply chosen as an identity matrix. To 

achieve the minimal 𝑣T𝑃𝑢2𝑣, we will get solution as: 

 [
𝐴𝑇𝑃𝑢2𝐴 𝐴𝑇𝑃𝑢2ℎ𝑖

ℎ𝑖
𝑇𝑃𝑢2𝐴 ℎ𝑖

𝑇𝑃𝑢2ℎ𝑖
] [
ΔX𝑜
∇𝑖
] = [

𝐴𝑇𝑃𝑢2𝐿

ℎ𝑖
𝑇𝑃𝑢2𝐿

] = [
𝐴𝑇𝑃𝑢2

ℎ𝑖
𝑇𝑃𝑢2

]𝐿 (2.89) 

To solve this model, let a new phi matrix equals to: 

 𝑝ℎ𝑖 = [
𝐴𝑇𝑃𝑢2𝐴 𝐴𝑇𝑃𝑢2ℎ𝑖
ℎ𝑖
𝑇𝑃𝑢2𝐴 ℎ𝑖

𝑇𝑃𝑢2ℎ𝑖
] (2.90) 

Therefore, similar, the phi matrix is also a squared full rank and has regular inverse. 
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𝑝ℎ𝑖−1

= [
(𝐴T𝑃𝑢2𝐴)

−1
+ (𝐴T𝑃𝑢2𝐴)

−1
𝐴𝑇𝑃𝑢2ℎ𝑖𝑄𝑛2ℎ𝑖

𝑇𝑃𝑢2𝐴(𝐴
T𝑃𝑢2𝐴)

−1
−(𝐴T𝑃𝑢2𝐴)

−1
𝐴𝑇𝑃𝑢2ℎ𝑖𝑄𝑛2

−𝑄𝑛2ℎ𝑖
𝑇𝑃𝑢2𝐴(𝐴

T𝑃𝑢2𝐴)
−1

𝑄𝑛2
] 

(2.90a) 

 Multiply the regular inverse of 𝑝ℎ𝑖 to the right part of Eq. 2.89： 

 

𝑋�̂� = 𝑝ℎ𝑖
−1 ∗ [

𝐴𝑇𝑃𝑢2
ℎ𝑖
𝑇𝑃𝑢2

] ∗ 𝐿 

= [
(𝐴T𝑃𝑢2𝐴)

−1𝐴𝑇𝑃𝑢2 + (𝐴T𝑃𝑢2𝐴)
−1𝐴𝑇𝑃𝑢2ℎ𝑖𝑄𝑛2ℎ𝑖

𝑇𝑃𝑢2𝐴(𝐴T𝑃𝑢2𝐴)−1𝐴𝑇𝑃𝑢2− (𝐴T𝑃𝑢2𝐴)
−1𝐴𝑇𝑃𝑢2ℎ𝑖𝑄𝑛2ℎ𝑖

𝑇𝑃𝑢2 

𝑄𝑛2(−ℎ𝑖
𝑇𝑃𝑢2𝐴(𝐴T𝑃𝑢2𝐴)−1𝐴𝑇𝑃𝑢2+ ℎ𝑖

𝑇𝑃𝑢2)
]𝐿 

= [
(𝐴T𝑃𝑢2𝐴)

−1𝐴𝑇𝑃𝑢2(𝐼 + ℎ𝑖𝑄𝑛2ℎ𝑖
𝑇𝑃𝑢2𝐴(𝐴T𝑃𝑢2𝐴)−1𝐴𝑇𝑃𝑢2 − ℎ𝑖𝑄𝑛2ℎ𝑖

𝑇𝑃𝑢2)

𝑄𝑛2ℎ𝑖
𝑇(𝑃𝑢2 − 𝑃𝑢2𝐴(𝐴T𝑃𝑢𝐴)−1𝐴𝑇𝑃𝑢2)

]𝐿 

= [
(𝐴T𝑃𝑢2𝐴)

−1𝐴𝑇𝑃𝑢2(𝐼 + ℎ𝑖𝑄𝑛2ℎ𝑖
𝑇(𝑃𝑢2𝐴(𝐴T𝑃𝑢2𝐴)−1𝐴𝑇𝑃𝑢2− 𝑃𝑢2))

𝑄𝑛2ℎ𝑖
𝑇𝑄𝑇2

]𝐿 

= [
(𝐴T𝑃𝑢2𝐴)

−1𝐴𝑇𝑃𝑢2(𝐼 − ℎ𝑖𝑄𝑛2ℎ𝑖
𝑇𝑄𝑇2)

∇̂𝑖
]𝐿 

= [
(𝐴T𝑃𝑢2𝐴)

−1𝐴𝑇𝑃𝑢2(𝐼 − ℎ𝑖
𝑇∇̂𝑖)

∇̂𝑖
]𝐿                                                                                          

(2.91) 

Here 𝑄𝑇2 and 𝑄𝑛2 are two new introduced matrixes for derivation: 

 

𝑄𝑇2 = 𝑃𝑢2 − 𝑃𝑢2A(𝐴
T𝑃𝑢2𝐴)

−1𝐴T𝑃𝑢2 

𝑄𝑛2 = (ℎ𝑖
𝑇𝑄

𝑇2
ℎ𝑖)

−1
 

(2.92) 

In the lower part of𝑋�̂�, ∇̂𝑖 is the estimated outlier, thus: 

 ∇̂𝑖= (ℎ𝑖
𝑇𝑄𝑇2ℎ𝑖)

−1ℎ𝑖
𝑇𝑄𝑇2𝐿 = 𝑄𝑛2ℎ𝑖

𝑇𝑄𝑇2𝐿 (2.93) 

The corresponding variance value can be estimated as: 

 Q∇̂i = (ℎ𝑖
𝑇𝑄𝑇2ℎ𝑖)

−1 − 𝑈2(𝑖,𝑖) (2.94) 

The w test for ULS will be: 
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𝑤𝑖 =

∇̂𝑖
𝜎�̂�𝑖

=
(ℎ𝑖

𝑇𝑄𝑇2ℎ𝑖)
−1ℎ𝑖

𝑇𝑄𝑇2𝐿

𝜎√(ℎ𝑖
𝑇𝑄𝑇2ℎ𝑖)−1 − 𝑈2(𝑖,𝑖)

 
(2.95) 

2.5.2.3 Reliability for ULS under Special Conditions 

the MDB and ER in the ULS can be derived as: 

for the Unified LS: 

 
𝑀𝐷𝐵𝑖 =

𝛿𝑑𝜎0

√(ℎ𝑖
𝑇𝑄𝑇2ℎ𝑖)−1 − 𝑈2(𝑖,𝑖)

 
(2.96) 

 

 𝐸𝑅𝑖 = (𝐴T𝑃𝑢2𝐴)
−1
𝐴
𝑇

𝑃𝑢2ℎ𝑖
𝑇𝑀𝐷𝐵𝑖 (2.97) 

2.5.3 Numerical Evaluation for the Unified Least Squares and its Corresponding 

Quality Control ULS under Special Conditions 

A numerical case study (Figure 2.19) is conducted to test the proposed unified least 

squares quality control method. In this simulated localization case study, a platform is 

moving from initial point X0 (𝑥0 = 0, 𝑦0 = 0) to other 3 points with measure the position 

displacement and turn angle (𝑑𝑖𝑗 , 𝑤𝑖𝑗).  A known feature (𝑓) is in the middle and is 

detected by the moving platform. Finally, the platform is moving back to the initial point.  

After moving back to the initial point, a constraint model can be used by insisting that the 

position of X4 is equal to X0, thus the unknown variable (𝑥4, 𝑦4) satisfy a linear equation 

𝑑40: (𝑥0, 𝑦0) = (𝑥4, 𝑦4). Therefore, the measurement models between the moving points 

and between the points and the feature are combined together with the constraint model 

to build a full least square problem, which, can be solved by the unified least squares. 

Kalman smoothing is carried out to compare the solutions. Normal full least squares with 

Singular Value Decomposition (SVD) to solve the singular D matrix is also conducted to 

do comparison. 
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Firstly, it is numerically checked that this case study has a squared full rank 𝑇 matrix, a 

full rank 𝐴 matrix and 𝑃𝑢𝑇 = 𝐼.  

 

Figure 2.19 A simulated constrained localization case with constraint model: x4=x0, 

y4=y0 

Table 2.6 shows the estimation solutions of the simulated singular constrained case with 

three mentioned methods. Although our KS equations are derived from the normal Full 

least squares framework, the KS and ULS have the same estimation results to this singular 

case, but different to the FLS/SDV results. Both KS and ULS can meet the constraint that 

X4 equals to the initial (0,0) point, whereas FLS’ X4 still has a bias to the initial point. 

What’s more, if the FLS results for this constrained case are compared with a non-

constrained case (which means the constraint model is not added to the system), they will 

have almost same estimation and quality control results.  
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Table 2.6 Estimated position by ULS, KS, FLS for a singular constrained case 

point X1 X2 X3 X4 

ULS 

x/ 

meter 
9.9074 19.9491 9.8749 0 

y/ 

meter 
9.9378 0.03631 -9.9578 0 

KS 

x/ 

meter 
9.9074 19.9491 9.8749 0 

y/ 

meter 
9.9378 0.03631 -9.9578 0 

FLS 

x/ 

meter 
9.9202 19.9597 9.9256 0.0261 

y/ 

meter 
9.9249 0.01243 -10.0233 -0.1239 

 

Similar consequence can be acquired from the estimation standard deviation (STD) 

results (Figures 2.20 and 2.21), for the normal FLS estimation with SVD, the STD value 

will increase with the moving steps. However, since we make a constraint to the last step 

that point X4 has the exact same position to X0, its estimated STD will be zero by the KS 

and ULS (not viewed in Figure 2.20, Figure 2.21 since their values of STD X4 are zero). 

Because the least squares optimization and the KS both take all the available observations 

and models into consideration, the zero covariance of the constraint model will also 

influence the estimated STD of other variables, such as STD for position of X1 to X3. 

Therefore, it can be found that the STD value are much lower than the normal FLS. STD 

of X2 is slightly higher than other points because it is less correlated to the constrained 

point X4, and is less influenced by the constraint model.  
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Figure 2.20 Standard deviation of estimated x by three methods 

 

Figure 2.21 Standard deviation of estimated y by three methods 

Quality control can be done under this unified least squares framework. Compared to the 

KS and FLS results, the ULS QC results are the same as the KS results. Since this 

simulated dataset only contains random noise, no outlier is detected by the three methods.  
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Figure 2.22 and Figure 2.23 show the MDB value of the three methods on the observation 

of the feature. It is found that by the KS and ULS for this singular case, the MDB values 

for the observation at the points near to the constrained point will be lower to that of the 

points that are far away, which indicating that the singular constrained model will affect 

nearby points more since they are more correlated. For the FLS estimation, since the 

constraint model is not usable, the ability of detecting outlier will be reduced along the 

moving, a loop closure or constraint may be needed to enhance this detection ability.  

 

Figure 2.22 MDB of observation displacement model between moving point (i=1,2,3) 

and known feature (f) by three methods 

 

Figure 2.23 MDB of observation angle model between moving point (i=1,2,3) and 

known feature (f) by three methods 
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For the FLS results, since the constraint model is not numerically used for point X4, the 

MDB value for that constraint model by FLS will be huge or infinite (thus cannot be 

plotted in the Figure 2.24), which means if only deal the singular matrix with pseudo-

inverse, this system cannot monitor the quality of the singular models, possible outliers 

within these models cannot be detected. Therefore, KS or ULS method is needed to test 

the singular models.  

 

Figure 2.24 MDB of constraint model between moving point X4 and known initial point 

X0 by three methods 

Figure 2.25 and Figure 2.26 shows the MDB results of the dynamic model between each 

moving steps. Similarly, the models near the constrained point X4 are more reliable. For 

the FLS results, since the constraint model is not taken effect, and there are no other 

observations at this point, the MDB value for the last dynamic step (X3 to X4) will be 

huge or infinite (thus not shows in the Figure 2.25 and Figure 2.26). This is a normal 

situation for cases that a tested epoch is only related to a dynamic model, but without any 

observation models, such as pose-graph SLAM. Without the examination of the 

observation model between the predicted position and other measurements (such as the 

GPS positioning or feature detection), the dynamic model’s quality cannot be estimated 

by our quality control method.  
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Figure 2.25  MDB of dynamic model of position displacement between moving points 

by three methods 

 

 

Figure 2.26 MDB of dynamic model of turn angle between moving points by three 

methods 
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2.6 Summary 

In this Chapter, the equivalence of Kalman smoother and least squares for dynamic 

systems is discussed with a full least square structure. An extended Kalman filter-

smoother quality control method is then developed according to this equivalence. It can 

be used to deal with outliers with detection, identification, adaptation (DIA) method, also 

can be used to analyse, control and improve the system quality. This quality control 

method is for the first time that applying the DIA method and Reliability analysis for the 

smoothing process. 

With the tests of the proposed Extended Kalman filter-smoother quality control approach 

with different numerical examples containing Kalman filtering and smoothing steps 

(Section 2.4), our method shows the possibility of successfully analysing, controlling, and 

monitoring the noisy dynamical system. The quality control results demonstrate that the 

Kalman smoothing approach has some advantages over the Kalman Filtering. Firstly, the 

DIA process in KS has better performance as it can directly figure out where the fault 

happens. However, in the KF process, there are sometimes misidentification due to the 

high correlation coefficient between the outlier detection statistic, or delayed detection 

since the fault in one epoch may cause adverse influence on the estimation of the 

following epochs by the KF estimation. Secondly, the KS method can achieve more 

accurate and more reliable estimation for the states parameter that are indirectly observed. 

For instance, when the velocity parameter is not observed during the localization process, 

its quality will not be able to be tested by the KF method, but can be solved by the KS 

method.  

The influence of the unknown initial values is also tested and discussed in this Chapter 

(see Section 2.4.2). Overall, the uncertainty of the initial value has been analysed. The 

Kalman smoother is less influenced by the uncertainty and outliers in the initial values 

than the filter.  

The proposed ULS estimation and quality control method has also been demonstrated that 

it is suitable for a model with constraints which can be statistically monitored for their 

reliability. The state-constrained systems are often met when dealing with engineering 
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fields such as robotics and navigation. For example, when a robot travels and comes back 

to a known visited point, a known functional relation will exist among the unknown state 

parameters. Therefore, it can be used as constraints within the states. The test results have 

shown our ULS method can achieve same results with the proposed KS method for the 

constrained model. In contrast, the FLS method that can only treat the singular matrix 

with pseudo-inverse will make the constraint model ineffective. 
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Chapter 3 GNSS/INS Integration for Positioning and 

Georeferencing with Quality Control 

3.1 Introduction 

To achieve precise and reliable localization and navigation ability, on-board sensors 

system plays an important role and has caught attention of many research groups, such as 

GPS/INS system (Zhao, 2013; Lee, 2014), LiDAR system (Xiao et al., 2016), vision 

system (Paz et al., 2008; Klein and Murray, 2007), etc. GPS technology is traditionally 

applied on aviation positioning and has been fully studied for decades (Seo et al, 2011; 

Han et al., 2015). The accuracy of GPS has been increased to decimetre or centimetre 

level with the advanced GPS method such as double differencing GPS and Precise Point 

Positioning (Garcia et al, 2005; Cheng, 2017). GPS can provide accurate and continuous 

position information in open-sky conditions as it is easy to track more than 4 satellites. 

However, in land applications, especially for HAV positioning, GPS signals can be easily 

blocked or altered due to the high density of building and trees that may obstruct the sky 

or cause multi-path signal. In order to improve the satellite availability for accurate 

positioning, adding other GNSS satellites to the system is essential, such as the Chinese 

BeiDou Navigation Satellite System (Han, et al., 2015), Russian GLONASS system, the 

European global navigation satellite system (Galileo). However, in the complex road 

environment, there are still areas where GNSS signals are unavailable, such as in the 

tunnel. Therefore, other aiding methods are needed in this GNSS signal denied 

environment.  

IMU/GNSS integration is a popular integrated localization and navigation method applied 

for aviation and vehicle application (Zhao, 2013; Lee, 2014; Farrell et al, 2000). Inertial 

measurement is attractive as it is self-contained, high sampling rate (100-200 Hz) and no 

external information is needed for position, therefore it can provide the localization and 

navigation solution during GNSS signal blockage periods. However, inertial navigation 

solutions may suffer time-dependent growth of sensor errors. Such sensor errors can be 

corrected when GNSS measurements are available, thus the integration of IMU and 
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GNSS can complement each other, thus improving the localization and navigation 

performance.  

Therefore, in this study, the mathematical models for GNSS and INS integration is 

investigated. The comparison of Real Time Kinematic (RTK) and Post Processing 

Kinematic (PPK) positioning method is discussed. The quality control method, including 

outlier detection and identification, system reliability analysis, is introduced to the 

positioning methods. The structure of this Chapter is as follows: Section 3.2 presents the 

mathematical models for GNSS and GNSS/INS integration methods. Numerical analysis 

of this methods is undertaken in Section 3.3 with quality control. Section 3.4 summarizes 

the performance of the RTK, PPK, GNSS/INS integration methods.  

3.2 Mathematical Models for GNSS and INS Integration 

3.2.1 Basic Measurement Model of GNSS 

GNSS receivers usually outputs raw measurements such as code pseudo-ranges, carrier-

phase measurements, Doppler measurements. Pseudo-ranges and carrier-phase are 

basically used for positioning, while Doppler measurement can be used to determine the 

velocity.  

Basic observation equations of pseudo-range, carrier-phase and Doppler are listed as 

follows [Hofmann-Wellenhof et al., 2001; Hauschild, 2017; Groves, 2013]: 

 𝑝𝑟,𝑗
𝑠 = ρ𝑟

𝑠 + 𝑐𝛿𝑡𝑟 − 𝑐𝛿𝑡
𝑠 + 𝐼𝑟,𝑗

𝑠 + 𝑇𝑟
𝑠 + 𝛿𝑚 + 휀𝑝 (3.1) 

 𝜆𝑗ϕ𝑟,𝑗
𝑠 = ρ𝑟

𝑠 + 𝑐𝛿𝑡𝑟 − 𝑐𝛿𝑡
𝑠 − 𝐼𝑟,𝑗

𝑠 + 𝑇𝑟
𝑠 + 𝛿𝑚 + 𝜆𝑗𝑁𝑟,𝑗

𝑠 + 휀ϕ (3.2) 

 𝜆𝑗D𝑟,𝑗
𝑠 = ρ𝑟

𝑠 + 𝑐𝛿𝑡𝑟 − 𝑐𝛿𝑡
𝑠 − 𝐼𝑟,𝑗

𝑠 + 𝑇𝑟
𝑠 + 휀D (3.3) 

where: 

• Subscript 𝑟 denotes the receiver where the measurement generated;  
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• Superscript 𝑠 denotes the satellite;  

• Subscript 𝑗 denotes the frequency band of the observation, here, 𝑗 = 1 for L1, 

𝑗 = 2 for L2;  

• 𝑝𝑟,𝑗
𝑠  is the code measurement from satellite s to receiver r on jth frequency; 

• ϕ𝑟,𝑗
𝑠  is the carrier phase measurement from satellite s to receiver r on jth 

frequency; 

• D𝑟,𝑗
𝑠  is the  Doppler measurement; 

• ρ is the geometric distance between satellite and receiver; 

• c is the speed of light; 

• 𝛿𝑡 denotes the clock error for satellite or receiver; 

• T denotes troposphere delay; 

• I denotes ionosphere delay; 

• 𝜆𝑗 is the wavelength on jth frequency; 

• 𝑁 integer ambiguity; 

• 𝛿𝑚 denotes multipath error in measurement; 

• 휀𝑝 is code measurement noise; 

• 휀ϕ is carrier phase measurement noise; 

• 휀D is Doppler measurement noise . 

3.2.2  GNSS Double Differencing Positioning 

Since there are many error sources in the GNSS measurements that will influence the 

accuracy of GNSS absolute positioning, relative positioning can achieve centimeter-level 

to millimiter-level accuracy by conducting differencing between measurements. Double 

differencing is conducted between two satellites and between two receivers to mitigate 

the impacts errors, such as the clock errors. The code measurement and phase 

measurement are mostly used for positioning with double differencing. The measurement 

model of the double differencing GNSS method can be described as:  

 ∆𝛻𝑝𝑟𝑏,𝑗
𝑠𝑝 = ∆𝛻ρ𝑟𝑏

𝑠𝑝 + ∆𝛻𝐼𝑟𝑏,𝑗
𝑠𝑝 + ∆𝛻𝑇𝑟𝑏

𝑠𝑝 + ∆𝛻휀𝑝 (3.3) 
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 𝜆𝑗∆𝛻ϕ𝑟𝑏,𝑗
𝑠𝑝 = ∆𝛻ρ𝑟𝑏

𝑠𝑝 − ∆𝛻𝐼𝑟𝑏,𝑗
𝑠𝑝 + ∆𝛻𝑇𝑟𝑏

𝑠𝑝 + 𝜆𝑗∆𝛻𝑁𝑟,𝑗
𝑠 + ∆𝛻휀ϕ (3.4) 

 

here ∆∇ refers to a double-differenting, the Subscript 𝑏 denotes a stationary base station, 

whose coordinates are known. Superscript 𝑝 denotes a chosen reference satellite. In the 

short baseline case, the effects of the ionospheric (Iion) bias and tropospheric (Ttrop) bias 

are significantly reduced.  Therefor the above equation can be reduced to: 

 ∆𝛻𝑝𝑟𝑏,𝑗
𝑠𝑝 = ∆𝛻ρ𝑟𝑏

𝑠𝑝 + ∆𝛻휀𝑝 (3.5) 

 𝜆𝑗∆𝛻ϕ𝑟𝑏,𝑗
𝑠𝑝 = ∆𝛻ρ𝑟𝑏

𝑠𝑝 + 𝜆𝑗∆𝛻𝑁𝑟,𝑗
𝑠 + ∆𝛻휀ϕ (3.6) 

 

In real-time applications of kinematic positioning with double differencing, Real Time 

Kinematic (RTK) positioning is well known which can achieve centimeter-level accuracy 

with proper integer ambiguity resolutions.  

3.2.3 IMU Sensor Error Model 

Inertial navigation comprises accelerometers and gyroscopes to carry out navigation tasks. 

The output of an inertial measurement unit (IMU) are incremental angles and velocities. 

An inertial navigation system (INS) can be used to estimate the platform’s pose: position, 

velocity and attitude. The error model for IMU measurements in this Thesis is the 15 

states model, including nine navigation error states, three gyro sensor bias and three 

accelerometer sensor bias. The details of INS error states are given as follows: 

• φ = [ 𝜑𝐸  𝜑𝑁 𝜑𝐸]
𝑇:  mathematical platform misalignment angles. 

• 𝛿𝑣 = [ 𝛿𝑣𝐸
𝑛 𝛿𝑣𝑁

𝑛  𝛿𝑣𝑈
𝑛]𝑇: velocity errors; 

• 𝛿𝑝𝑜𝑠 = [ 𝛿𝐿 𝛿𝜆 𝛿ℎ]𝑇:  latitude, longitude and height errors respectively; 

• 휀𝑏 = [ 휀𝑥
𝑏 휀𝑦

𝑏 휀𝑧
𝑏]𝑇:  gyro drift errors expressed in body frame;  

• 𝛻𝑏 = [ 𝛻𝑥
𝑏 𝛻𝑦

𝑏 𝛻𝑧
𝑏]𝑇:  accelerometer biases expressed in body frame; 

• Superscript n represent2 the ‘east-north-up’ navigation n-frame; 
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• Superscript b represents the ‘right-forward-up’ body b-frame; 

• Subscript [E, N, U] represents the ‘east-north-up’, respectively; 

• Subscript [x, y, z] represents the axis ‘x-y-z’ in body b-frame. 

The IMU error update models are shown as (Baritzhack and Berman, 1988; Yan et al, 

2015):  

 �̇� = −𝜔𝑖𝑛
𝑛 × 𝜑 + 𝛿𝜔𝑖𝑛

𝑛 − 𝐶𝑏
𝑛𝛿𝜔𝑖𝑏

𝑏  (3.6) 

 �̇� = 𝑓𝑠𝑓
𝑛 × 𝜑 − (2𝜔𝑖𝑒

𝑛 + 𝜔𝑒𝑛
𝑛 ) × 𝛿𝑣𝑛 + 𝑣𝑛 × (2𝛿𝜔𝑖𝑒

𝑛 + 𝛿𝜔𝑒𝑛
𝑛 ) + 𝐶𝑏

𝑛𝛿𝑓𝑠𝑓
𝑏  (3.7) 

 
𝛿�̇� =

1

𝑅𝑀ℎ
𝛿𝑣𝑁

𝑛 −
𝑣𝑁
𝑛

𝑅𝑀ℎ
2 𝛿ℎ 

(3.8) 

 
𝛿�̇� =

sec 𝐿

𝑅𝑁ℎ
𝛿𝑣𝐸

𝑛 +
𝑣𝐸
𝑛 sec 𝐿 tan 𝐿

𝑅𝑁ℎ
𝛿𝐿 −

𝑣𝐸
𝑛 sec 𝐿

𝑅𝑁ℎ
2 𝛿ℎ 

(3.9) 

 𝛿ℎ̇ = 𝛿𝑣𝑈
𝑛 (3.10) 

Here: 

• 𝜔𝑖𝑒  is the Earth’s angular rate; 

• 𝜔𝑖𝑛 is the angular rate vector of the true coordinate system with respect to the 

inertial frame; 

• 𝜔𝑒𝑛  is the angular rate vector of the true coordinate system with respect to the 

Earth; 

• 𝜔𝑖𝑏 and 𝑓𝑠𝑓 are gyro sensed angular rate and accelerometer sensed specific force, 

respectively; 

• 𝑅𝑀ℎ  and 𝑅𝑁ℎ  can be calculated according to the Earth’s semi-major axis, the 

Earth’s flattening and latitude at this position. 
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3.2.4 Procedure and Flowchart of Integration Methodology 

 

Figure 3.1 Flowchart of the loosely coupled GNSS/INS  

Figure 3.1 shows the implementation of the loosely coupled GNSS/INS, while a similar 

model structure can be developed for tightly coupled GNSS/INS integration, which is not 

the focus of studies in this thesis. In this multi-sensor localization and navigation system, 

Extended Kalman Filter (EKF) is used to fuse measurement information from different 

sensor. Smoothing can also be used to improve the estimation precision and accuracy for 

integration. Strapdown inertial navigation system is used to update vehicle pose (Altitude, 

Velocity, Position - AVP) with high frequency. When GNSS signal is available, the 

GNSS observations of base station and rover station is used to do double-differencing. 

After the Kalman filter measurement update, the estimated states of AVP error, gyro bias 

and accelerometer bias will be used to amendment the INS estimated AVP pose and 

sensor parameters.  

3.2.5 IMU Sensor Characteristics 

The IMU sensor used in this study, ‘Polynav 2000e’, is a Tactical grade sensor. The 

characteristics of this sensor are shown in Table 3.1.  

 



Chapter 3 GNSS/INS Integration for Positioning and Georeferencing with Quality 

Control

 

88 

 

Table 3.1 IMU sensor characteristic  

 Gyro Accelerometer 

Bias 20 deg/hr 100 ug 

Random walk 0.15 deg/root-hr 0.5 m/s/root-hr 

 

For this study, the initial attitude is achieved by doing initial alignment with the 

Novatel IE software. This attitude value is then be used as an initial attitude for the 

Extended Kalman filter based GNSS/INS integration system with quality control. The 

EKF uncertainty setting for the heading value is set as 0.3 degree.  

3.3 Numerical Experiments and Analysis with Fault Detection 

and Reliability measures 

An urban road testing was undertaking on 13/12/2020 in Sydney, Australia to test the 

RTK and fusion system with INS. Since the GNSS observation quality in urban area will 

be influenced due to the complex driving condition, smoothing method can be used to 

improve the GNSS positioning accuracy. Since smoothing is mostly done offline, this 

method can be called as Post processing kinematic (PPK), which can be more accurate 

than real-time kinematic methods. PPK results are commonly used for mapping.   

 
Figure 3.2 Vehicle Trajectory in local coordinate for testing GNSS, GNSS/INS 
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Because there is no ground truth for the driving test, an online navigation solution 

estimated by a commercial software (Polynav) is used as a reference to analyse our RTK, 

PPK and GNSS/INS solution. There are three sections of trajectory selected to do 

comparison to the reference solution, during which the online GNSS status is integer-

ambiguity fixed. The whole trajectory is between GPS time 40550s to 41100s, about 9 

minutes. The selected time periods are for coordinate comparison are GPS time:40609s-

40748s, 40801s-40906s, 40908s-41100s. Figure 3.2 shows the whole driving trajectory. 

The multi-constellation dual-frequency RTK/PPK code is developed from an open-

sourced single frequency GPS based RTK toolbox (Realini and Reguzzoni, 2013), then 

integration of GNSS/INS code is developed. EKFQC toolbox developed in this thesis is 

modified and embedded for quality control.  

3.3.1 GNSS Double Differencing 

In this test both GPS and GLONASS signals were utilized for double difference GNSS 

positioning. Only one signal frequency for each navigation satellite system is taken into 

consideration in this study. The GNSS measurement frequency is 1 Hz. Both float and 

fixed solution for RTK and PPK is compared and analysed with quality control. 

3.3.1.1 DD Ambiguity Float Results 

Figure 3.3 and Figure 3.4 show the coordinate difference to the reference trajectory of 

float RTK and PPK results for the three selected sections. It is found that overall, the float 

solution has a centimeter to decimeter differences from the reference solutions. 

Smoothing method (PPK) can improve the filter-based (RTK) estimation results, such as 

shown in the red box in Figure 3.3 and Figure 3.4. 

   
Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 3.3 Coordinate differences between the GNSS KF float solution and the 

reference trajectory 

 

Trajectory Section 1 Trajectory Section 2 

 
Trajectory Section 3 

Figure 3.4 Coordinate differences between the GNSS KS float solution and the 

reference trajectory 

One reason for this improvement of the post processing step is that the double differenced 

ambiguity (N) is more stable than the real-time N since the KS step utilize all 
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measurements to estimate the N. For the real-time case, at each time epoch when one 

satellite is initially viewed, its N value will be initialized, and it will take some time to 

get convergent. However, for the backward smoothing, it will use the ambiguity value 

which is very closed to the final converged N value at the last epoch of this viewed period, 

although this N may be still not converged to an integer. Figure 3.5 and Figure 3.6 show 

the double difference Ambiguity value by the RTK and PPK. 

It is found there are some sudden jumps of N value in Figure 3.5 and Figure 3.6, this is 

due to the change of reference satellites. This may happen both for the GPS and the 

GLONASS systems. 

 
(a) (b) 

Figure 3.5 Double differenced Ambiguity in float RTK solution: (a) GPS; (b) 

GLONASS of the whole driving trajectory 

 

(a) (b) 

Figure 3.6 Double differenced Ambiguity in float PPK solution: (a) GPS; (b) 

GLONASS of the whole driving trajectory 

Figure 3.7 shows the Standard Deviation results of the position in this ambiguity float 

case. Overall, PPK has better accuracy than RTK. It is found the lost and newly viewed 
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satellites will influence the accuracy of the position estimation, because the geometry is 

changed. 

 

(a) (b) 

Figure 3.7 Standard deviations of the position states in ambiguity float solutions: (a) 

RTK solution; (b) PPK solution of the whole driving trajectory 

Figure 3.8 and Figure 3.9 are the Standard Deviation results of the ambiguity in this 

ambiguity float RTK and PPK cases. It can be found that the satellite geometry change 

will cause reconvergence for any newly viewed satellites in RTK, but for PPK, this 

uncertainty value is stable as all the measurements are used together. 

 

(a) (b) 

Figure 3.8 Standard deviations of the Double differenced Ambiguities in float RTK 

solution: (a) GPS; (b) GLONASS of the whole driving trajectory 
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(a) (b) 

Figure 3.9 Standard deviations of the Double differenced Ambiguity in float PPK 

solutions: (a) GPS; (b) GLONASS of the whole driving trajectory 
 

3.3.1.2 DD Ambiguity Fixed Results 

Figure 3.10 and Figure 3.11 shows the ambiguity fixed solutions for the RTK and PPK, 

which are compared with the reference trajectory. It is found if with proper integer 

ambiguity resolutions, the accuracy will be improved to centimeter level. The fixed RTK 

and fixed PPK will get almost same solutions. This is due to the fact that, once DD 

ambiguities are fixed into their correct integers, RTK and PPK are essentially the 

individual epoch-based solutions. However, the epoch with very poor geometry strength 

in the GNSS only solutions has about 0.1 meters difference from the GNSS/IMU 

integration-based reference. Such a difference happened during the epochs in which less 

than 5 satellites being tracked. 

 

Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 3.10 Coordinate differences between the GNSS KF fixed solution and the 

reference trajectory 

  

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.11 Coordinate differences between the GNSS KS fixed solution and the 

reference trajectory 



Chapter 3 GNSS/INS Integration for Positioning and Georeferencing with Quality 

Control

 

95 

 

3.3.1.3 Quality Control for the GNSS Double Differencing Method 

Quality control can be done for both RTK and PPK.  Both float RTK and PPK has 

detected some outliers (Figure 3.12 and Figure 3.13). 

  
Trajectory Section 1 Trajectory Section 2 

 
Trajectory Section 3 

 Figure 3.12 Statistic test results of the float RTK measurements 

 

Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 3.13 Statistic test results of the float PPK measurements 

Since our quality control method is residual based, and after ambiguity resolution (AR), 

the residual can be re-calculated with the new fixed states, the residual results before and 

after ambiguity fixing can be used to show the influence of AR. Figure 3.14 to 3.17 shows 

the residual results of both Pseudo Range and Carrier Phase measurements. It is found for 

both float RTK and PPK, there are some big jumps of Carrier Phase, which is up to 15 

cm, indicating that the float Ambiguity will influence the estimation. The PPK has slightly 

more stable residual value for some satellites, but still contains the jumps.  If ambiguity 

integers are fixed, it can be found the residual values of Carrier Phase are much stabler 

than the float cases, however, due to the fact that less number of unknown parameters in 

ambiguity-fixed solutions, some remaining systematic errors, such as multipath, will 

show up in the residuals which appears to be less random, in comparison with the 

residuals from the ambiguity float solutions. 

  

(a) (b) 
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(c) (d) 

Figure 3.14 Residual results of the float RTK measurement: (a) Pseudo Range of GPS; 

(b) Pseudo Range of GLONASS; (c) Carrier Phase of GPS; (d) Carrier Phase of 

GLONASS of the whole driving trajectory 

   

(a) (b) 

  

(c) (d) 

Figure 3.15 Residual results of the float PPK measurement: (a) Pseudo Range of GPS; 

(b) Pseudo Range of GLONASS; (c) Carrier Phase of GPS; (d) Carrier Phase of 

GLONASS of the whole driving trajectory 
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(c) (d) 

  

(c) (d) 

Figure 3.16 Residual results of the fixed RTK measurement: (a) Pseudo Range of GPS; 

(b) Pseudo Range of GLONASS; (c) Carrier Phase of GPS; (d) Carrier Phase of 

GLONASS of the whole driving trajectory 

  

(a) (b) 
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(c) (d) 

Figure 3.17 Residual results of the fixed PPK measurement: (a) Pseudo Range of GPS; 

(b) Pseudo Range of GLONASS; (c) Carrier Phase of GPS; (d) Carrier Phase of 

GLONASS of the whole driving trajectory 

Reliability analysis has been done for the Double Differencing case. It can be found the 

change of geometry will influence the MDB value of both Pseudo Range (Figure 3.18) 

and Carrier Phase measurement (Figure 3.19). Each time one satellite is newly viewed, 

its MDB value will restart the converging.   Geometry change will also influence the 

Reliability of predicted N. In poor geometry periods, there will be very high MDB for N 

value. 

   
(a) (b) 

Figure 3.18 MDB values of the Pseudo Range measurement for (a) GPS, and (b) 

GLONASS in RTK of the whole driving trajectory 
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(a) (b) 

Figure 3.19 MDB values of the Carrier Phase measurement for (a) GPS, and (b) 

GLONASS in RTK of the whole driving trajectory 

The predicted states of position and ambiguity N can also be tested with the Reliability 

(Figure 3.20 and Figure 3.21). It should be noticed that since in RTK and PPK, the 

position dynamic processing is treated as a random walk, therefore, the covariance of the 

dynamic model is set as very high. In this case, the MDB value of the predicted state of 

position is also high, up to 413 meters.  

 

Figure 3.20 MDB values of the predicted position states in RTK of the whole driving 

trajectory 

The MDB value of the predicted Ambiguity states can get converged very quickly down 

to 0.2-0.4 cycle, but still higher than the estimation uncertainty. 



Chapter 3 GNSS/INS Integration for Positioning and Georeferencing with Quality 

Control

 

101 

 

  

(a) (b) 

Figure 3.21 MDB values of the predicted double difference ambiguity states for (a) 

GPS, and (b) GLONASS in RTK of the whole driving trajectory 

PPK can do Reliability analysis for the measurement model and the dynamic model. The 

MDB for Pseudo Range is closed to the RTK case (Figure 3.22), while for the Carrier 

Phase (Figure 3.23), the PPK MDB value are more stable and lower. The dynamic model 

is also less sensitive to the geometry change, especially for the case of low satellite 

number (Figure 3.25).  

 

(a) (b) 

Figure 3.22 MDB values of the Pseudo Range measurement for (a) GPS, and (b) 

GLONASS in PPK of the whole driving trajectory 
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(a) (b) 

Figure 3.23 MDB values of the Carrier Phase measurement for (a) GPS, and (b) 

GLONASS in PPK of the whole driving trajectory 

 

Figure 3.24 MDB values of the dynamic position model in PPK of the whole driving 

trajectory 

  

(a) (b) 

Figure 3.25 MDB values of the dynamic double difference ambiguity state model for (a) 

GPS, and (b) GLONASS in PPK of the whole driving trajectory 
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3.3.2  GNSS/INS Integration  

The fixed double differencing results are used to integrate with the IMU measurements.  

3.3.2.1 GNSS/INS Estimation Results 

Figure 3.26 and Figure 3.27 shows the coordinate differences of the loose-coupled 

integration strategy by KF and KS with respect to the reference trajectory. The overall 

accuracy is at centimeter level while at some epoch, the accuracy is reduced to sub-meter 

level which may be due to low accuracy of input GNSS measurements. It is found that 

the backward smoothing method has slightly better accuracy, especially for the Trajectory 

Section 3.  

 

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.26 Coordinate differences between the GNSS/INS KF integration solution and 

the reference trajectory  
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Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.27 Coordinate differences between the GNSS/INS KS integration solution and 

the reference trajectory 

Figure 3.28 is the estimation Standard Deviation for the 9 navigation error sates and 6 

IMU sensor bias states by KF. Quick convergence can be achieved for position, velocity 

and pitch and roll. However, the heading STD value has some increasing period, which 

may because the heading angle error is unobservable when the horizontal specific force 

components are zero (Farrell, and Wendel., 2017). The heading angle error cannot be 

affected by the velocity errors in such condition. As a consequence, the uncertainty of the 

heading error state will grow with time when the platform is static or driving in 

nonaccelerating motion (Farrell, and Wendel., 2017). Since the driving tests will have 

some period static, such as waiting for the traffic light, it will cause the increase of heading 

uncertainty.     
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(a) (b) 

   
(c) (d) 

 
(e) 

Figure 3.28 Standard deviations of the KF GNSS/INS integration solution for states: (a) 

position error; (b) velocity error; (c) attitude error; (d) accelerometer biases; (e) gyro 

drifts  

Figure 3.29 is the estimation Standard Deviation for the 9 navigation error sates and 6 

IMU sensor bias states by KS. It is found that much better estimation precision can be 

achieved by the backward smoothing methods. The STD values keep quict stable, 

especially for the accelemeter bias states and gyro drift states.  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3.29 Standard deviations of the KS GNSS/INS integration solution for states: (a) 

position error; (b) velocity error; (c) attitude error; (d) accelerometer biases; (e) gyro 

drifts 

3.3.2.2 Quality Control for GNSS/INS Integration 

Figure 3.30 shows the W values for GNSS measurements are mostly less than 3.29, 

indicate no outlier within it for most of the time, except for some epochs, indicating some 

outlier detected in such epochs, especially in Trajectory Section 3 by KF.  
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Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.30 Statistic test results of the KF GNSS/INS measurement 

Figure 3.31 is the statistic test results by KS. It is found that a smaller number of outliers 

are found by the KS method than the KF method, especially for the Trajectory Section 3 

part. By checking the Coordinate difference results in Figure 3.26 and 3.27, it is also 

found that KS has better accuracy than KF at the period that KF has many outliers detected. 

Therefore, the possible outliers may not exist in the GNSS measurements, but are within 

the KF predicted states. These outliers may be due to the influence of some outliers in 

GNSS measurement before this period.  

Since for this Loosely Coupled integration system, the GNSS measured and predicted 

position are highly corelated, the w test has almost same results on measurement and 

predicted position, therefore, it cannot exactly identify whether the outlier in within the 

measurement model or within the KF predicted states, which may cause misidentification 

of measurement outlier. For the KS method, it utilized the measurements after the epoch 
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with measurement outliers to do full optimization, therefore estimation for the period after 

that epoch will be less influenced by the outlier.  

 

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.31 Statistic test results of the KS GNSS/INS measurements 

With the detection and identification results, the outlier influence can be mitigated with 

the quality control results. There are two ways to mitigate the influence of outliers. Firstly, 

the Adaption method can be used to achieve adapted state parameters. Secondly, the 

estimated outlier value is directly used to correct the measurements. Figure 3.32 and 

Figure 3.33 are the coordinate difference results with respect to the reference trajectory 

with the adapted KF and KS solution. It is found the KF results in Trajectory Section 3 is 

improved during period that outliers are detected.  
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Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.32 Coordinate differences between the Adapted GNSS/INS KF integration 

solutions and the reference trajectory 

 

Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 3.33 Coordinate differences between the Adapted GNSS/INS KS integration 

solutions and the reference trajectory 

Figure 3.34 and Figure 3.35 is the coordinate difference results with respect to the 

reference trajectory by correcting the input measurement directly during the KF step with 

the KF estimated outlier value. It is found for the KF, the results in Trajectory Section 3 

are improved during period that outliers are detected. However, for the KS, this period’s 

results are getting worse, which may be due to the outlier value used for correction is 

estimated by KF. Hence for the offline KS method, it should use the KS estimated outlier 

value to correct the measurement and then do KF and KS again to achieve corrected KS 

solutions. 

 

Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 3.34 Coordinate differences between the Corrected GNSS/INS KF integration 

solutions and the reference trajectory 

 

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 3.35 Coordinate differences between the Corrected GNSS/INS KS integration 

solutions and the reference trajectory 
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the mean value and std value of the coordinate difference of original solutions and 

solutions with Adaption and Correction of the estimated outliers is summarised in Table 

3.2. 

Table 3.2 Mean and standard deviation for the differences between the GNSS (KF and 

KS) results and the reference online GNSS/INS localization results before and after 

adaption or correction the influence of detected outliers 

 

Reliability analysis is also made for this integration system. Figure 3.36 and Figure 3.37 

are the MDB results for the measurements and the predicted states or dynamic model of 

position. For the KF method, it will have almost same MDB values between the 

measurement model and the predicted position states. KS method has lower MDB values 

(around 0.16 meters) for the measurement models than the KF method (around 0.18 

meters), indicating that KS step can detect smaller outliers and is more reliable.  

 

Section 1 Section 2 Section 3 

Before 

correction 

After 

correction 

With 

Outlier 

Adaption 

Before 

correction 

After 

correction 

With 

Outlier 

Adaption 

Before 

correction 

After 

correction 

With 

Outlier 

Adaption 

KF 

Mean 

(m) 

E  -0.0020 -0.0020 -0.0023 0.0178 0.0164 0.0155 0.0322 0.0216 0.0246 

N 0.0082 0.0082 0.0079 0.0060 0.0061 0.0061 -9.22×10-4 -0.0013 

-9.066 

×10-4 

U 0.0057 0.0057 0.0057 -0.0044 -0.0044 -0.0045 0.004275 0.0084 0.0081 

Stdev 

(m) 

E 0.0170 0.0170 0.0169 0.0140 0.0139 0.0163 0.0172 0.0238 0.0230 

N 0.0226 0.0226 0.0226 0.0261 0.0261 0.0261 0.0275 0.0263 0.0275 

U 0.0199 0.0199 0.0199 0.0204 0.0204 0.0204 0.0177 0.0165 0.0175 

KS 

Mean 

(m) 

E  0.0017 0.0017 0.0016 

-1.387 

×10-4 

-1.387 

×10-4 

-0.0023 0.0011 0.0011 -0.0065 

N 0.0165 0.0165 0.0163 0.0063 0.0062 0.0066 0.0080 0.0080 0.0080 

U 0.0137 0.0137 0.0137 -0.0045 -0.0045 -0.0042 0.0042 0.0042 0.0057 

Stdev 

(m) 

E 0.0125 0.0125 0.0126 0.0197 0.0197 0.0200 0.0180 0.0180 0.0253 

N 0.0215 0.0215 0.0216 0.0245 0.0241 0.0240 0.0252 0.0252 0.0252 

U 0.0152 0.0152 0.0152 0.0191 0.0183 0.0183 0.0169 0.0169 0.0158 
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(a) (b) 

Figure 3.36 MDB values of the measurement for GNSS/INS integration: (a) KF, (b) KS 

  

(a) (b) 

Figure 3.37 MDB values of (a) the predicted position state KF, and (b) the position 

dynamic model KS for GNSS/INS integration 

In addition, since the KF quality control method cannot test the states which are not 

directly observed by the measurement model, the other states in this system: velocity, 

attitude, accelemeter bias, gyro drifts, etc., will not be tested by the KF method. However, 

the KS method can directly test the dynamic model for both directly observed states, such 

as vehicle inertial position, and indirectly observed state parameters, such as vehicle 

attitude, velocity, acceleration bias, gyro bias.  

The next 6 figures are the External Reliability results of the KF/KS method, which show 

the influence of the undetected outliers within different types of measurement model upon 

the position, velocity and attitude states estimation.  

For KF method, the undetected outlier within its input latitude and longitude measurement 

will leads to around 0.1 meters’ influence upon the final latitude and longitude estimation, 
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which is around 5 times higher than the estimation uncertainty. But for vertical estimation, 

the influence is only around 0.04 meters, around 2 times of its uncertainty. For velocity 

estimation, the ER value is around 0.03-0.04 m/s, around 3 times of the velocity 

uncertainty. For attitude estimation, it is found that the heading is more sensitive to the 

outliers than pitch and roll. But the outlier in the position measurement will cause very 

low influence on the final attitude estimation with respect to the estimated Standard 

Deviation value.  

If more types of observations are utilized by the Loosely Coupled integration, such as the 

velocity estimated by GNSS and inertial navigation progress, the influence of outlier 

within them can also be analysed with their ER value.  

 
(a) (b) 

 

(c) 

Figure 3.38 External Reliability values of the undetected outlier within KF GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward position error states 
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(a) (b) 

 

(c) 

Figure 3.39 External Reliability values of the undetected outlier within KF GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward velocity error states 

 

(a) (b) 
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(c) 

Figure 3.40 External Reliability values of the undetected outlier within KF GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward attitude error states 

For the KS method, lower External Reliability results can be achieved than the KF 

method. The ER for position states is around 0.022-0.025 meters, around 2 times of the 

estimation uncertainty. The ER values for velocity and attitude are both lower than their 

corresponding STD values.  

   

(a) (b) 

 

(c) 

Figure 3.41 External Reliability values of the undetected outlier within KS GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward position error states 
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(a) (b) 

 

(c) 

Figure 3.42 External Reliability values of the undetected outlier within KS GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward velocity error states 

  

(a) (b) 
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(c) 

Figure 3.43 External Reliability values of the undetected outlier within KS GNSS/INS 

integration measurement models (a) Latitude differences, (b) longitude differences, (c) 

height differences toward attitude error states 

3.4 Summary  

In this Chapter, a real-world urban driving dataset is used to test some positioning 

strategies, including RTK, PPK, and GNSS/INS. For the testing with RTK and PPK, 

centimeter to decimeter level accuracy can be obtained with the ambiguity float double 

differencing method. If proper integer ambiguity resolutions can be achieved, the fixed 

RTK and PPK accuracy will be improved to centimeter level. By integrating GNSS and 

inertial system, centimeter level accuracy can be achieved.  

Reliability analysis has been done for the Double Differencing RTK/PPK cases. 

Geometry change will influence the MDB value of both Pseudo Range measurement and 

Carrier Phase measurement and also the dynamic models. Since in this urban driving 

testing, there is very frequently appearing and disappearing of satellites. Each time one 

satellite appears, its ambiguity is treated as a new state parameter, therefore, its value, 

uncertainty and reliability will converge again during RTK. The smoothing based PPK 

will have more stable reliability for the ambiguity state’s model and is less sensitive to 

the geometry change.  

Outlier can be detected by our quality control methods in this positioning testing. The 

influence of the outlier towards to the final estimation can be mitigated by directly 

correcting the input measurement with the estimated outlier value, or by adapting the final 

estimation results with the estimated outlier influence value.  With these methods, the 
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accuracy of the estimation can be improved. However, for case like GNSS/INS loosely 

coupled system, the measurement model and the position states are highly correlated, 

which make the KF system has the potential of misidentification and mis-correction, 

which can be avoided by smoothing system since it deals with both measurement model 

and dynamic processing model, not the predicted state parameters.   
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Chapter 4 Quality Control for Online SLAM  

4.1 Introduction 

Simultaneous localization and mapping (SLAM) is an effective and well-known 

technique in the field of autonomous robotics. Localisation is a process of estimating an 

object’s pose (position and attitude) related to a reference frame while mapping refers to 

the gathering of interested features, such as the landmarks and obstacles around the object. 

As a chicken-and-egg problem, SLAM is comprised of processes that a moving platform 

travels to an unknown environment, builds a map of the environment and uses the map to 

deduce its location in it simultaneously (Durrant-Whyte and Bailey, 2006; Cadena, et al., 

2016). SLAM technique is of great importance for the navigation purpose. According to 

the vehicle/robot pose information and its location information within the environment, a 

planning step for the following path and a controlling step of the next action can be done. 

For instance, the offline SLAM can be used to generate high precision and high definition 

map of the road environment with the multiple sensor information acquired on a vehicle. 

This map will be a powerful tool for achieving navigation of autonomous driving by 

supporting online localization. SLAM can also be used to detect obstacles to avoid 

accident.     

Over the last decades, numerous works have been done to solve the SLAM problem. 

Mapping the environment requires the use of perceptive sensors which can provide the 

relative location information between the platform and the environments, while 

localization, also sensory based, is to provide the position and orientation of the platform 

within the built map. Increasing types of sensors (camera, laser, radar, IMU, car sensors 

etc.) and platforms (robot, UAV, automated car) are utilized to provide data with different 

characteristics and to create new types of maps (Bresson, et al., 2017). The application of 

SLAM has expanded to both indoor and outdoor system, both online and offline.  



Chapter 4 Quality Control for On-line SLAM

 

121 

 

The various SLAM estimation algorithms can be divided into two mainstreams: Filter-

based and Optimization based approaches. Extended Kalman Filter SLAM (EKF SLAM) 

is the first solution for the SLAM problem and has been widely used and studied. It can 

achieve online estimation with focusing on the most recent robot pose based on the last 

sensor information (Bresson, et al., 2017). Therefore, in this Chapter which focusing on 

online estimation of SLAM, EKF SLAM is studied.  

Despite the huge developments made by the SLAM research communities, there are still 

some open problems that adversely affect the behaviour of the SLAM approaches. The 

presence of outliers is one of the unsolved problems that limit robust operation of SLAM 

approaches, especially in practical applications due to the unavoidable presence of 

outliers (Bresson, et al., 2017). The occurring of outliers is not inhibitable as SLAM 

system is sensor based. It may exist in the sensor observations (or called measurements) 

as a sudden jump, or due to the improper system model or falsely modelled process. Since 

the SLAM system usually uses the odometry measurements (such as those collected by 

odometers and inertial sensors) to describe the movement between the robot poses and 

uses the perception measurements (such as those collected by Laser, camera, radar) to 

represent the relationship between the robot and the environment, the erroneous or faulty 

measurements will severely corrupt the quality of the estimation. For instance, if there are 

outliers in the odometry measurements, the predicted position in filter SLAM may drift 

from the true trajectory. The outliers in the observations (perception measurements) will 

cause wrong correction of the predicted or initial guessed trajectory and landmark 

position. These faults in measurements may also result in wrong data association or loop 

closure, which in turn will cause introducing of spurious measurements, resulting in 

wrong final estimations.  

Some studies have been devoted to improving the robustness of their SLAM systems to 

the outliers, by rejecting the outliers or mitigating the effect of wrong data association 

(Wangsiripitak and Murray, 2009; Xie, et al., 2017). RANSAC is commonly used in 

vision SLAM to reject the outliers (Kitt, et al., 2010). Although these studies focus on 

rejecting outlier and making robust loop closure detection at the front end in the graph 

SLAM, or before measurement update in the filtered SLAM, there are still chance that 
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spurious measurements are fed to the final estimation step. Even with all the correct loop 

closures and data association introduced, the outlier within the measurements or with the 

system models may still causes wrong final estimation, which drive the SLAM system to 

failure. Some studies introduce their robust SLAM algorithms that can recognize and 

reject outliers during the optimization (Sünderhauf and Protzel, 2012; Latif et al., 2013). 

However, they focus on the outliers caused by wrong data association or loop closure, the 

problem of sensor measurement outliers is still not solved. Fault Detection and Isolation 

(FDI) system has been introduced to the localization and navigation to deal with different 

kind of faults, such as from sensors, models, etc (Dedeoglu, et al., 2000). However, 

isolating or rejection measurement with outlier will reduce the system redundancy and 

affect the reliability of estimation. Therefore, our study here has proposed an outlier 

detection and identification method that can directly deal with the measurement outliers 

at the measurement update step for the Extended Kalman Filter (EKF) SLAM. The 

influence of the outlier can be corrected with the estimated outlier value rather than 

rejecting the faulty measurement.   

Although most of the studies are devoted to achieving efficient and robust estimation of 

SLAM, the reliability of their estimation and system is seldom studied. Reliability 

analysis is essential for the SLAM designer as it can be conducted at the early stage 

without real measurement. Only with the given system structure is enough to acquire the 

knowledge of the impact of the possible errors. Therefore, an appropriate SLAM system 

can be designed based on the reliability analysis to fulfil its requirement and application, 

such as design the redundancy of sensor, the size of loop, the geometry of landmark, the 

precision of sensors.     

Therefore, in this study, a quality control method, including outlier detection and 

identification, system reliability analysis, is introduced to the final estimation step of 

online SLAM. The structure of this Chapter is as follows: Section 4.2 presents the 

mathematical models for online SLAM methods. The proposed online SLAM quality 

control system is tested with two real-world SLAM datasets in Section 4.3. Section 4.4 

summarizes the performance of the EKF online SLAM and its quality control system.  
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4.2 Mathematical Models for Online SLAM Methods  

The Extended Kalman Filter (EKF) SLAM algorithm is a standard SLAM algorithm and 

has been widely studied and used for mapping and localization. The time update 

(prediction) and measurement update (filtering) steps used in this research follow the 

conventional EKF algorithm.  

The state vector at time k is denoted as  

 ( ) ( ) ( ) ( ) ( ) ( )1
( ; ) ( ; ; ; )

qr f r f fk k k k k kX X X X X X= =
                                               

(4.1) 

where 𝑋𝑟(𝑘)are the robot or vehicle states including robot position, and sometimes also 

robot velocity, orientation or attitude depends on the used sensor and on the applications, 

at the current time k, 𝑋𝑓(𝑘) are the gathering of landmark states with  𝑋𝑓(𝑘) =

(𝑋𝑓1(𝑘); … ; 𝑋𝑓𝑞(𝑘)) the positions of the total q landmarks at the current map. The 

dimension and constitutes of 𝑋𝑟(𝑘) and 𝑋𝑓(𝑘) are dependent on the specific measurement 

types and map type in the SLAM problem, such as for the 2D laser SLAM, 𝑋𝑟(𝑘) =

(𝑥𝑟(𝑘); 𝑦𝑟(𝑘); 𝜙𝑟(𝑘))contains robot horizontal position and orientation (or heading), while  

𝑋𝑓𝑞(𝑘) = (𝑥𝑓𝑞(𝑘); 𝑦𝑓𝑞(𝑘))is the horizontal position of the qth landmark.  

The prediction step of the robot states from time k to k+1 is described by the odometry 

model: 

 ( )( )( 1) ( ) ( ),r k r k kkX f X u + = +
                          

(4.2) 

here 𝑓( )  is the non-linear state transition function from time k to k+1 with Jacobian 

matrix Φ𝑟(𝑘+1) and 𝑔(𝑘+1) w.r.t the robot state vector 𝑥𝑟(𝑘) and the control noise, 

respectively, 𝑢(𝑘)is the control input at time k, 𝜏(𝑘)is the control noise errors in the process 

model with covariance matrix 𝑃𝜏(𝑘).   

The Landmarks are assumed to be static, hence their process model is: 
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 ( 1) ( ) , 1, , .
i if k f kX X i q+ = =

                              
(4.3) 

Therefore, after prediction, the predicted whole state vector will be: 

 ( )
( )

( )

( 1) ( )
( 1) ( )

( 1)

( , )
( , ,0)
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k k k

f k f k
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X X
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+

= = =

                            

(4.4) 

here the hat ‘ ’over 𝑋 represents the predicted value of state, ‘ ’ over 𝑋 represents the 

estimated (filtered) value of state. The total Jacobians for  𝐹( ) in Equation 4.4 will be: 

 
( 1) ( 1)

( 1) ( 1)

0
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0 0

r k k
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+ +
+ +


 = =

 

(4.5) 

here E is the identity matrix. The covariance matrix of state will be given by Equation 4.6 

after prediction: 

 
( )( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( 1), here 

k k

T T
k k k k k k kX X

P P Q Q G P G+ + + + +=   + =
                           

(4.6) 

Then solve the SLAM with standard EKF measurement updating.  

The EKF based quality control method demonstrated in Chapter 2 is used in this Chapter 

to monitor the quality of the online SLAM. 

4.3 Experiments and Analysis 

4.3.1 Two publicly available SLAM Datasets 

Two real-world SLAM datasets, the Victoria Park dataset (Guivant et al., 2002), and the 

DLR dataset (Kurlbaum and Frese, 2009) are used to test the proposed quality control 

methods in different SLAM estimation frameworks. The overview of the two datasets can 

be found in Figure 4.1. 
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(a) (b) 

Figure 4.1Overview of the real-world SLAM dataset, (a) the Victoria Park dataset map 

and trajectory (Kaess, et al., 2008) and (b) the DLR dataset trajectory (Kurlbaum and 

Frese, 2009)  

The Victoria Park dataset contains an approximately 4 kilometers long trajectory within 

an outdoor park in Sydney, Australia. The detected landmarks are tree features with laser 

observation of ranging and bearing. The DLR dataset was recorded with a camera at the 

DLR building in Germany, which covers a region of 60m x 45m, and the robot path 

consists of three large loops within the building (plus a small outside path) with a total 

length of 505 meters. On the way the robot visits 29 rooms with artificial circle landmarks 

on the ground along the trajectory (Kurlbaum and Frese, 2009). 

4.3.2 Kalman Filter Estimation Result 

Extended Kalman Filter based SLAM can be conducted with these two real world datasets 

efficiently. Figure 4.2 shows the path and feature estimation results by Extended Kalman 

Filter based SLAM (EKF SLAM) for both two datasets, and the corresponding estimation 

uncertainty. Overall, the uncertainty results of the vehicle/robot will increase when keep 

moving into an unknown environment with new landmarks.  
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Figure 4.2  EKF estimated SLAM trajectory, feature position estimated at last epoch 

and their corresponding standard deviation values for two real-world datasets 

((a)Victoria Park dataset, and (b)DLR dataset) 

4.3.3 Kalman Filter Quality Control for Victoria Park Dataset 

The outdoor Victoria Park dataset is tested with the proposed Extended Kalman Filter 

Quality Control (EKFQC) method. Firstly, possible outliers are identified, and their 

influences are corrected. Then, the Reliability of the EKF SLAM system for this dataset 

is analysed.  

According to Figure 4.3, there are some possible outliers that can be detected during the 

whole trajectory. The outlier seems mostly exist within the observations (landmark 

detection measurements), not the predicted state model, since the W test (outlier statistic 

test) results of the predicted states (Figure 4.3b) are always below the threshold of 3.29. 
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Overall, with this EKF statistic test, there are 13 identified outliers and all of the outliers 

are in the bearing measurements. These bearing outliers will cause biases of the final 

estimation of parameters.  

 
Figure 4.3 Outlier statistic test for outlier identification within (a) landmark detection 

model, and (b) for predicted vehicle state by EKF for the Victoria Park dataset  

Figure 4.4 shows the influence of each outlier upon the vehicle pose (position and heading) 

estimation at the epoch that it is identified. The identified outliers within the observation 

of the Victoria Park dataset will cause relatively low influence upon the estimation with 

respect to the estimation uncertainty. These influence values upon position estimation are 

between -0.1 to 0.2 meters, around 0.5-57% of the position estimation uncertainty, while 

that upon heading are between -0.6 to 0.5 degree, around 16-92% of the heading 

estimation uncertainty. 

 
Figure 4.4  Influences by the EKF identified outliers upon the final vehicle pose (upper: 

position xr and yr; down: heading фr) estimation for the Victoria Park dataset 
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One detailed example is the first detected outlier, which is within the bearing 

measurement at epoch 170 with a W statistic test result of 3.47. This outlier can be directly 

located at the bearing measurement of the landmark lm34. The possible error size can 

also be calculated with the Extended Kalman Filter Quality Control (EKFQC) method, 

which is about 4 degrees. As according to Figure 4.4, this outlier will cause about 1.5 cm 

and -3.6 cm drifts onto the vehicle horizontal position estimations, and -0.62 degree onto 

the orientation estimation.  

After the identification step, the influence of this outlier can be corrected and do filtering 

again. No outlier will be detected and identified at that epoch any more after correcting, 

the new W statistic test result (Figure 4.5) for this measurement of lm34 will be closed to 

zero. For other measurements at the same epoch, their W statistic test values are also 

reduced since the measurements are correlated to each other.  

 

Figure 4.5 Outlier statistic test after correction of the influence of identified outliers for 

(a) landmark detection model, and (b) for predicted vehicle state by EKF for the 

Victoria Park dataset 

Outliers at other epochs can also be detected, and identified with this EKFQC method, 

the process can be done automatedly during the extended Kalman filter online estimation, 

and the influence of the outlier can be corrected and mitigated in time, thus will not affect 

the following epochs of state prediction and estimation. Figure 4.5 shows that with the 

automatic correction step, no outlier will be detected and identified anymore after 

correction. 
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 Figure 4.6 shows the difference of vehicle pose estimation with and without the outlier 

correction step. It should be noticed that although at this test, if without the proposed 

correction step, an identified outliers will cause relatively low influence upon the filtered 

results at the identified epoch (as shown in Figure 4.4), its influence will be accumulated 

and affect the following prediction and filtering epochs, especially for large loop case that 

trajectory drift cannot be corrected with the loop closure. It can be found, increasing 

position difference (up to 0.4 meter for each horizontal direction) between with/without 

outlier correction will be achieved between epoch 5728 and epoch 6050 (Figure 4.6), 

during this time period the vehicle is travelling into an unknown environment (see red 

box in Figure 4.2a), and then the difference reduced after the vehicle travelling back. 

Since the estimation uncertainty is also increased during the travelling in the unknown 

place, this accumulated influence of outlier is still lower than the uncertainty. Overall, our 

proposed EKFQC method will improve the estimation accuracy, especially for the large 

loop case.  

 

Figure 4.6 Differences in the estimated vehicle pose ((a) position xr and yr; (b) heading 

фr) with and without correcting the influence caused by EKF identified outliers for the 

Victoria Park dataset 

The reliability of the EKF SLAM system for the Victoria Park dataset is also tested. 

Figure 4.7 and Figure 4.8 represent the change of system internal reliability (MDB) along 

the whole vehicle journey. In overall the MDB results are stable with some peaks. For the 

landmark detection measurement (Figure 4.7), the minimum bound that an outlier can be 

detected is fluctuating between 2-5 meters for ranging and 4-6 degrees for bearing. For 
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the predicted state model (Figure 4.8), the MDB value for vehicle position and heading 

states are around 0.5-1 meters and 2.5-4 degrees, respectively. Relatively higher MDB 

value of predicted states model will happen when the vehicle is travelling into unknown 

environments.  

 

Figure 4.7 Minimum detectable bias (MDB) results for the landmark detection models 

of (a) ranging and (b) bearing measurement by method EKF for the Victoria Park 

dataset 

 

Figure 4.8  Minimum detectable bias (MDB) results for the vehicle predicted states of 

vehicle states (a) xr and yr and (b) heading фr by method EKF for the Victoria Park 

dataset 

There are also some jumps of the MDB value, such as in Figure 4.7b, there is a very high 

MDB value up to 16.4 degrees at epoch 3522 (within red box in Figure 4.7b), which is 

around 16 times higher than the measurement noise at this epoch. The measurement that 

has huge MDB value is the bearing measurement of Landmark lm62. This means if there 
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is an outlier that is lower than 16.4 degrees within the bearing measurement of Landmark 

lm62, it will not be able to be detected with the statistic test during this extended Kalman 

filter SLAM process, this measurement is not reliable.      

 In order to find out the reason of this huge MDB value, the geometry of the measurement 

is checked with Figure 4.9, which shows the path of vehicle from the initial point to a 

specific time epoch, location of all the stored landmarks, including the previously 

detected, and the current detected landmarks.  

 

Figure 4.9 Geometry of measurements when a high MDB value or External Reliability 

value is detected during the EKF SLAM process at (a) epoch 3522, and at (b) epoch 169 

for the Victoria Park dataset 

As looking into Figure 4.9a, ‘*’ represent the Landmark lm62, whose bearing 

measurement has the huge MDB value at epoch 3522. There are in total 6 landmarks 

being detected at this epoch. Thus, the low reliability at this epoch seems not related to 

the redundancy. When analysing the whole trajectory, it can be found the epoch 3522 is 

the only time that Landmark lm62 is recognised as an old feature after added to the state 

vector. Other landmarks around this landmark had been redetected many times after their 

first detections, their revisits happened very quickly just after being added to the state 

vector. Therefore, the lack of quickly redetection and correction after the initial visit and 
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the long blank period are the reasons why the measurement of Landmark lm62 is much 

less reliable.  

This example indicates that if the SLAM designers want to achieve reliable estimation, 

their choice of revisited landmarks should be more careful. The measurements of 

landmarks that has been seldom revisited for a long period (such as Landmark lm62) 

maybe not be reliable and whether to use this measurement for estimation needs to be 

decided with considering the MDB value. However, the resulting influence on the final 

estimation can also affect the decision of whether to use this measurement. The influence 

caused by the outlier that has a value of the MDB is the External Reliability (ER) (Figure 

4.10). For instance, although the MDB value of Landmark lm62 bearing measurement is 

16.2 degrees high, its influence on the final estimation is not very large. Its ER values for 

this measurement are around 7 and 18 centimeters for the vehicle horizontal position 

estimations and 0.34 degree for the orientation estimation, which are no more than 2 times 

of their corresponding uncertainty. These ER values caused by the undetected bias within 

the observations could be acceptable, depending on the specific requirements and the 

applications of the SLAM approach.      

There are also some other reasons that may cause low reliability of the measurement and 

system. Poor geometry strength and low redundancy may both result in nonreliable 

estimation. One example is at epoch 169 during which only 1 landmark is detected (Figure 

4.9b), the MDB value of the predicted state at this epoch is up to 5.2 degrees (7 times 

higher than the noise, see green box in Fig.8b), which will cause 4.1 degrees bias of the 

final estimation of vehicle orientation (5 times higher than the uncertainty). Another 

example is at epoch159 (see red box in Figure 4.8a), during which not only a low number 

of landmarks are detected, the geometry is also very poor as one of the detected landmarks 

is far away from the vehicle and from other named features. The possible undetected bias 

within the vehicle position states may cause 2.0 meters drift of final estimation (see red 

box in Figure 4.10d), about 12 times higher than the position uncertainty. Furthermore, 

the continuing travelling into an unknown environment will also cause the EKF SLAM 

system unreliable, such as the increase MDB and ER values after epoch 4000 that the 

vehicle is travelling into a new part of the Victoria Park.  
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The estimation of landmark position is also influenced by the outliers within the 

observation and state models (Figure 4.10 c and f). It can be found, for landmark position 

estimation, low reliability will happen when it is an initial detection or revisit. When a 

landmark is invisible, its ER value caused by undetected outlier within current 

measurements and models will be close to zero, indicating no influence from the current 

measurement outliers to its estimation.  
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Figure 4.10 The External Reliability results: influence of outlier with MDB value within 

landmark detection measurement upon the final vehicle (a) position, (b) heading and (c) 

landmark lm1 position estimation; Influence of outlier with MDB value within the 

predicted state model upon the final vehicle (d) position, (e) heading and (f) landmark 

lm1 position estimation of the Victoria Park dataset by EKF SLAM. 
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4.3.4 Kalman Filter Quality Control for DLR Dataset 

The indoor DLR dataset’s quality is also analysed under the EKF SLAM framework. 

 

Figure 4.11 Outlier statistic test for outlier identification test for (a) the landmark 

detection model, and for (b) predicted vehicle state by EKF for the DLR dataset 

The outliers within the measurements and predicted state models of the DLR dataset are 

also tested with the extended Kalman filter quality control method. It is clearly that 

according to Figure 4.11, no outlier is detected from the landmark detection models and 

there are 5 detected outliers within the predicted states along the whole trajectory period, 

among them, 3 outliers are within the predicted robot state xr, and another 2 are within 

the predicted robot state yr. These outliers within the predicted states will cause bias of 

the estimation, which can be mitigated with the proposed quality control method.  

Figure 4.12 shows the influence of the identified outliers upon the estimation at the 

identified epochs. These influences are around 0.3-120% of the corresponding estimation 

uncertainty. It is also found from Figure 4.12 that a possible outlier within one type of 

predicted state models will have relatively higher influence upon the estimation of the 

same type of state parameters than upon other types of parameters. This is due to the low 

correlation between different state parameters.  
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Figure 4.12 Influences by the identified outliers within the predicted robot state to the 

final estimation by EKF for the DLR dataset. (Influences caused by the outliers (a) 

within the predicted xr, and (b) within the predicted yr) 

After corrections, no outlier is identified anymore during the EKF SLAM process (Figure 

4.13). A change of estimation can be achieved after conducting the correction of the 

influence from the identified outliers (Figure 4.14). 

 

Figure 4.13 Outlier statistic test after correction of the influence of identified outliers for 

(a) landmark detection model, and (b) for predicted vehicle state by EKF for the DLR 

dataset 
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Figure 4.14 Differences in the estimated vehicle pose ((a) position xr and yr; (b) heading 

фr) with and without correcting the influence caused by identified outliers by EKF for 

the DLR dataset 

However, referring to the estimated trajectory shown in Figure 4.2b, drifted trajectory and 

an unnormal displacement of vehicle trajectory (see red box in Figure 4.2b) can be found, 

and this divergence of trajectory is not solved with the proposed EKFQC method. This is 

because this divergence is mainly caused by accumulated large odometry error, especially 

being accumulated during the period the robot travels outside of the building with no loop 

closing and no overlapping landmark. But according to our statistic test results, only 5 

outliers are identified, and the drift of trajectory still exists after correcting the influence 

of the identified outliers. For the EKF quality control method, the statistic test is done for 

the observation and the predicted state model at one specific epoch. The dynamic process 

from previous to current epoch is not directly tested. Therefore, if an outlier is within a 

robot dynamic (odometry) model, it may cause a fault of the prediction result, this faulted 

predicted result is then being tested at the measurement update step. If the fault caused by 

the outlier in odometry information is lower than the identify ability, it will not be 

identified. Such a problem may be addressed in Kalman Smoother SLAM.   

The MDB results are shown in Figure 4.15 and Figure 4.16. Overall, the MDB values of 

landmark observations (Figure 4.15) are around 0.4-0.8 meters, which are around 5-8 

times higher than the corresponding observation uncertainty.  
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Figure 4.15 Minimum detectable bias (MDB) results for the landmark detection models 

for the DLR dataset by EKF 

 

 
Figure 4.16 Minimum detectable bias (MDB) results for the predicted states of vehicle 

states (a) position xr, yr and (b) heading фr for the DLR dataset by EKF 

There are some epochs which have sudden increase of observation’s MDB and ER values, 

which indicating low reliability at these epochs. The reason of this low reliability may be 

due to the low geometry strength, such as low feature detected number, and poor 

distribution of landmark. According to the discussion of the Victoria Park dataset in 
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Section 4.3.3, high MDB value within the SLAM system may also due to the revisit of an 

old position after a long journey, or due to the detection of a long missing landmark. 

These reasons can also be demonstrated with this DLR dataset EKF results. One example 

of the sudden increased MDB happened at epoch 1148 (green box in Figure 4.15), when 

the MDB of landmark detection measurements are up to 2.8 meters with External 

Reliability value of 2.13 and 1.62 meters for robot x and y (green box in Figure 4.18a). 

Fig.17a shows the geometry at epoch 1148. At this epoch, landmark lm10 was revisited 

for the first time after epoch 16. Another similar high MDB and ER values occurred at 

epoch 2937 for landmark lm170 (geometry of this epoch is shown in Figure 4.17b). 

Similarly, this landmark was added to the map as a new landmark at epoch 806 and after 

this epoch, it has not been detected until epoch 2937 at when 7.34 meters MDB happens 

(red box in Figure 4.15) and will cause up to 5.75 meters bias (red box in Figure 4.18a) 

of the final vehicle position estimation. Hence, the tests of the two SLAM datasets both 

prove that revisiting an old environment after a long journey and redetecting a landmark 

that is invisible for a long time may result in low reliability of the system.  

 

Figure 4.17 Geometry of measurements when a high MDB value or External Reliability 

value is detected during the EKF SLAM process at epoch (a)1148, and at epoch (b) 

2937 for the DLR dataset 
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For the predicted states, the outliers within the orientation states are harder to be detected 

than the robot position states (Figure 4.16). The low bond of outlier value that can be 

successfully detected is about 12 to 50 times higher than the uncertainty. Since no angle 

related observation of the robot orientation is provided by the DLR dataset, the orientation 

states are indirectly observed and are corrected indirectly by the position related 

observation. Thus, they are less reliable than other states.   

The external reliability results of the influence caused by outlier with MDB value within 

different kinds of measurements upon robot pose and landmark position estimation for 

the DLR dataset are shown in Figure 4.18. Overall, the landmark observation outlier with 

a MDB value will cause influence upon the position estimation of both vehicle and 

landmark mostly around mm level to cm level and are much lower than the estimation 

uncertainty. However, for the robot orientation (heading) estimation, the minimal 

detectable outlier within the camera measurement will cause 1-25 degrees bias. This 

relatively high ER value results of the orientation estimation may be due to the fact that 

the landmark detection measurement is range only measurement, no angle related 

measurement is provided in this DLR case, therefore, the orientation of the robot is 

indirectly observed by the landmark detection measurement which causes lower 

reliability than that of position estimation.  

The estimation of landmark position will also be influenced by the outliers within the 

observations and the predicted states, using landmark lm1 as an example (Figure 4.18c 

and Figure 4.18f), when the lm1 is not visible during the trajectory, the outlier within the 

landmark detection measurement and predicted state of the EKF measurement update step 

will not influence the estimation of this invisible landmark. However, when the landmark 

is initially added to the state or revisited after a long journey for the first time, its 

estimation is largely adversely influenced by the measurements and the predicted states. 

This influence will be quickly reduced during the following detection. Therefore, for 

landmark estimation with the filtered based SLAM, the low reliability should be carefully 

considered when the landmark is initially detected or revisited. 
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Figure 4.18 The External Reliability results: influence of outlier with MDB value within 

landmark detection measurement upon the final vehicle (a) position, (b) heading and (c) 

landmark lm1 position estimation; Influence of outlier with MDB value within the 

predicted state model upon the final vehicle (d) position, (e) heading and (f) landmark 

lm1 position estimation of the DLR dataset by EKF SLAM. 
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4.4 Summary 

The EKF based only SLAM algorithms is tested with two real-world datasets. The 

precision of the estimation is getting worse when moving into new environment, and 

getting improved after travelling back to pre-visited area. Quality control has been 

conducted along with the estimation. Several outliers can be detected and identified with 

the quality control methods and their influence can be corrected immediately after 

identification, which indicating one of the advantages of our method, that it can mitigate 

the influence of the outliers without removing any measurements and without reducing 

the system redundancy.  

Similar to the trend of the uncertainty, the Internal Reliability (MDB) value of the SLAM 

system will get higher when continues moving in new environment, which means the 

ability to detected outliers are reduced. Therefore, a frequent loop travelling is essential 

to maintain good reliability for online SLAM.  

There are some other factors that may influence the reliability, especially cause some 

sudden jumps of MDB value. According to the numerical results and geometry analysis, 

it is found a redetection of a feature which is missing for a long period will cause the 

MDB of this measurement very high. The statistic test of this feature’s measurement 

model will be unreliable. Other possible factors may be the redundancy of the systems, 

or the geometry strength.  

Although MDB value will have some jumps, the undetected outlier may not always cause 

unacceptable results upon the final estimation. The External Reliability should also be 

taken into consideration. According to the numerical results, the undetected outlier in 

some high MDB periods may only cause less than 2 times of uncertainty value. Whether 

to accept these models with high MDB will depends on the requirement and applications 

of the SLAM system.  
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Chapter 5 Quality Control for Offline SLAM  

5.1 Introduction 

Offline SLAM, or full SLAM, which provides optimal estimation solutions with all 

available control and observation measurement, has become popular for building large-

scale maps. The least squares based SLAM (such as graph-SLAM) treats all the robot 

pose along the whole trajectory and all the detected features as nodes. Spatial constraints 

between poses are encoded in the edges between the nodes. These constraints are resulting 

from observations or from odometry measurements (Grisetti, et al., 2010). The most 

likely trajectory and landmark position is then obtained by optimization.  

Similar to the online SLAM case introduced in Chapter 4, offline SLAM also suffers from 

the unavoidable outliers within the measurements. It is essential to monitor outlier 

situation and reliability of the offline SLAM system.  

Many studies for full SLAM are focusing on enhancing the efficiency and robustness of 

the optimization. However, due to the sparsity and singularity of the normal matrix in the 

optimization step, the uncertainty of the estimation is hard to achieve. For this reason, the 

property of precision is normally not evaluated in many full SLAM studies. As mentioned 

in Chapter 2, Unified LS (ULS) can be an alternative to dealing with ill conditioned matrix, 

however, the calculation of uncertainty and quality control criteria will be computation 

costly due to the introduce of the assisted non-singular matrix to replace the normal matrix, 

which makes the application of ULS impracticable for large scale map building. 

Therefore, a more efficient quality evaluation method is essential for offline SLAM. 

Some researchers mentioned fix-lag smoothing method to achieve incremental smoothing 

with most recent poses and map (Dellaert and Kaess, 2017; Sünderhauf, 2012). When a 

lag of 1 is chosen, the robot state variables before the current pose are all marginalized 

out, that it corresponds a standard Kalman filter SLAM (Dellaert and Kaess, 2017). In 
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case of keeping smoothing back to the initial epoch, a full SLAM updating of the whole 

trajectory and the whole map will be achieved. Therefore, if quality control can be 

conducted recursively along with the Kalman Smoothing (KS) to the initial pose, the 

quality of the whole trajectory and map can be obtained simultaneously.  

In this Chapter, a Kalman Smoothing based offline SLAM (KS SLAM) algorithm is 

proposed. The equivalence between the KS SLAM and a Graph SLAM is demonstrated. 

The recursively quality control for the whole offline system is tested based on this KS 

SLAM framework. The structure of this Chapter is as follows: Section 5.2 presents the 

mathematical models for offline SLAM methods. A simulated numerical testing is 

undertaken in Section 5.3 to show the relationship of EKF, KS, Graph SLAM. The 

proposed offline KS SLAM quality control system is tested with two real-world SLAM 

datasets in Section 5.4. Section 5.5 summarizes the performance of the KS online SLAM 

and its quality control system.  

5.2 Mathematical Models for Offline SLAM Methods 

5.2.1 Kalman Smoothing SLAM 

The most commonly used smoother, Rauch-Tung-Striebel smoother (RTS smoother, 

which is also called Kalman smoother) (Sarkka, 2013), is a fixed-interval smoother that 

constituted by forward and backward passes. The forward pass is an Extended Kalman 

filter step, while the backward pass also depends on the predicted and estimated 

covariance and transition matrix stored in the Kalman filter pass. Therefore, RTS 

smoother is simpler in structure and easy to use. In this thesis, a Kalman Smoother (KS) 

based SLAM estimation framework is introduced to recursively solve the full SLAM 

problem offline. 

As according to Chapter 2, the smoothed state vector at time k and its covariance matrix 

are derived as: 

 ( ) ( ) ( )( ) 1( ) 1( )s s
k kkk kX X J X X ++= + −

                                               
(5.1) 
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(5.2) 

here the superscript ‘ s ’ represents the smoothing estimation. 

5.2.2 Full Least Squares SLAM 

Another estimation framework used in this work is a graph-based least squares 

optimization SLAM, here the front-end part is not discussed as this work mainly focuses 

on the back-end optimization step. As this SLAM algorithm aims to solve the least 

squares problem with full update of all the robot poses along the whole trajectory and all 

the detected maps, in this work, ‘Full Least Squares (FLS)’ is used to refer to this SLAM 

framework.  

The node of the FLS SLAM is 𝑋 = (𝑋𝑟; 𝑋𝑓) = (𝑋𝑟(1); …𝑋𝑟(𝑡); 𝑋𝑓; …𝑋𝑓(𝑡))with last time 

t and total observed landmark number p, here we can see, 𝑋𝑓(𝑘) ∈ 𝑋𝑓. There are two types 

of edges. The first edge represents the odometry displacements of robot pose, which 

corresponds the motion model of the robot or vehicle states in Chapter 4. Another edge 

represents the observation of the landmarks, which corresponds the measurement model 

in the EKF framework. The information matrix of the FLS is 𝑃 = 𝑏𝑙𝑘𝑑𝑎𝑔𝑒(𝑄−1, 𝑅−1) =

𝑏𝑙𝑘𝑑𝑎𝑔𝑒(𝑄(1)
−1, … , 𝑄(𝑡)

−1, 𝑅(1)
−1, . . , 𝑅(𝑡)

−1). After given a predicted value  �̿� of the 

node variables (also called approximate value), the FLS SLAM is to solve Equation 5.3: 

 ( )T TA PA X A Pl =
                                               

(5.3) 
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here 𝐻𝑟(𝑘)  and 𝐻𝑟(𝑘), 𝑘 = 1, … , 𝑡 is the Jacobians of the measurement model w.r.t the 

robot node at time k and the landmark nodes. The solution and its covariance matrix of 

FLS SLAM will be: 

 �̂� = �̿� + ∆�̂�                                               (5.6) 

 𝑄�̂� = (𝐴𝑇𝑃𝐴)−1                                              (5.7) 

According to the formulation, the full least squares SLAM is equivalent to the recursively 

estimation of Kalman Smoother SLAM if it uses the KF prediction state value as the 

approximate value. Unified LS estimation can be applied in this FLS SLAM problem to 

deal with singular covariance matrix.  Quality control method presented in Chapter 2 can 

be used to test the full SLAM problem. 
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5.3 Optimal Estimation and Quality Control Methods for Offline 

SLAM applications 

5.3.1 Importance of Incremental Update of Full LS SLAM  

Solving variables with a sparse matrix is efficient in the FLS case. However, our quality 

control method is residual-based, the calculation of the covariance matrix of residual (Qv) 

is essential, which is calculated according to the estimated variable covariance 𝑄�̂� and 

the observation Jacobian matrix A. For the large scale least squares optimization, the 

inverse step of the normal (ATPA) matrix to achieve 𝑄�̂� matrix is very time consuming 

and requires extensive memory. After achieving the full Qv matrix, the further calculation 

with the Qv matrix is also very costly due to the low number of zero elements in the Qv 

matrix.  

Figure 5.1 shows the visualization of matrixes used during the calculation of quality 

control.  For the ATPA matrix, the nonzero elements’ locations are concentrated along the 

diagonal and two sides, while for the Qv and PQvP matrix, they are full matrix with most 

elements nonzero. Therefore, the computation and memory requirement will be huge for 

the large-scale SLAM case.   

 

(a) (b) 
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(c) 

Figure 5.1 Visualization of matrixes during the calculation of quality control ((a) ATPA, 

(b) Qv, (c) PQvP) 

Due to the low efficiency and huge memory cost of the calculation with full matrix 𝑄�̂�, 

Qv, incremental estimation of the system quality is preferred. To achieve this, incremental 

smoothing (Kalman smoothing) method and its quality control method are introduced to 

the full optimization SLAM.  

5.3.2 Demonstrating Equivalence between KS and FLS SLAM 

Some research mentioned fig lag smoothing method can be used to achieve incremental 

smoothing with most recent poses and map (Dellaert and Kaess, 2017; Sünderhauf, 2012). 

When a lag of 1 is chose, the robot state variables before the current pose are all 

marginalized out, that it corresponds a standard Kalman filter SLAM (Dellaert and Kaess, 

2017). In case of smoothing back to the initial epoch, a full slam update of the whole 

trajectory and whole map will be achieved. Therefore, if quality control can be conducted 

recursively along with the Kalman Smoothing (KS) to the initial pose, the quality of the 

whole trajectory and map can be obtained simultaneously.  

A small simulated numerical case is used to show the equivalence between the Kalman 

smoothing and a full least squares optimization based graph SLAM. This simulated case 
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study can also be used to show the performance on outlier detection, identification, and 

correction of the three systems, since these added outliers’ value can be controlled and 

the ground truth is known. This numerical case has a similar mode of control and 

observation model to the one tested in Chapter 2, Section 2.5. In this simulation case, the 

initial point is a known point X0. By walking to point 1, a feature f is detected at the first 

time from the platform. Therefore, the feature state is added to the graph structure as a 

new node. In the following epochs, the feature is detected by 4 times. Finally, the platform 

walks back to the initial point. The Constraint between X0 and X8 can be added for the 

situation that the loop is to be closed.  

 

Figure 5.2 A simulated SLAM case 

5.3.2.1 Estimation by EKF, KF, Graph SLAM for simulated SLAM Case 

There will be two scenarios for the estimation, one is no Loop closure case, another is 

considering X8=X0, which makes the loop closed. The estimated pose results by EKF, 

KS, Graph SLAM and the ground truth is shown in Table 5.1. In this table, only the results 

of non-closure case are shown. It is found KS SLAM and Graph SLAM have the same 

estimation results.  
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Table 5.1 Estimated pose (position and heading) by EKF, KS, Graph SLAM and the 

ground truth of the simulated SLAM case (no Loop Closed case) 

point X1 X2 X3 X4 X5 X6 X7 X8 

EKF 

x/ meter 7.071 17.038 27.018 34.093 27.025 17.025 6.993 0.0033 

y/ meter .0391 7.071 7.056 -0.0117 -7.086 -7.091 -6.977 0.0487 

Heading/ 

degree 
0 -0.052 -44.972 -134.972 -179.972 -179.972 134.698 44.191 

KS 

x/ meter 7.071 17.035 27.193 34.092 27.016 17.019 7.021 0.0033 

y/ meter 7.071 7.070 7.550 -0.0153 -7.078 -7.055 -7.023 0.0487 

Heading/ 

degree 
-0.0046 -0.0873 -44.990 -135.054 -180.131 -180.186 134.782 44.191 

Graph 

x/ meter 7.071 17.035 27.193 34.092 27.016 17.019 7.021 0.0033 

y/ meter 7.071 7.070 7.550 -0.0153 -7.078 -7.055 -7.023 0.0487 

Heading/ 

degree 
-0.0046 -0.0873 -44.990 -135.054 -180.131 -180.186 134.782 44.191 

Ground 

Truth 

x/ meter 7.071 17.071 27.071 34.142 27.071 17.071 7.071 0 

y/ meter 7.071 7.071 7.071 0 -7.071 -7.071 -7.071 0 

Heading/ 

degree 
0 0 -45 -135 -180 -180 135 45 
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Table 5.2 RMSE of estimated pose (position and heading) by EKF, KS, Graph SLAM 

with respect to the ground truth of the simulated SLAM case 

RMSE 

EKF KS Graph 

x/ 

meter 

y/ 

meter 

Heading/ 

degree 

x/ 

meter 

y/ 

meter 

Heading/ 

degree 

x/ 

meter 

y/ 

meter 

Heading/ 

degree 

No 

Loop 

Closed 

0.0457 0.0391 0.307 0.0429 0.0263 0.309 0.0429 0.0263 0.309 

Loop 

Closed 
0.0451 0.0351 0.110 0.0269 0.0572 0.165 0.0269 0.0572 0.165 

 

The RMSE value with respect to the ground truth (Table 5.2) also shows that KS and 

Graph SLAM can achieve same estimation results, for both non-closure case and closed 

case.  The smoothing and least squares optimization has better accuracy (Table 5.2) and 

better precision (Figure 5.3 and 5.4) for the estimation of platform position and heading.  

 

(a) 
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(b) 

 

Figure 5.3 Standard deviations of estimated position by EKF, KS, graph SLAM of the 

simulated case ((a) not loop closed; (b) loop closed) 

 

(a) 
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(b) 

 

Figure 5.4 Standard deviations of estimated heading by EKF, KS, graph SLAM of the 

simulated SLAM case ((a) not loop closed; (b) loop closed) 

Here in the testing with the case of closed loop, the X0 in this simulated case is a known 

point with known position values, its uncertainty is zero. Therefore, uncertainty of the 

last point X8 will recovered to near to zero. Much better of estimation precision will be 

achieved by the smoothing or LS optimization under this condition (Figures 5.3 b and 5.4 

b). 

 

5.3.2.2 Quality Control by EKF, KF, Graph SLAM for simulated SLAM Case 

Quality control procedure is also tested with this simulated SLAM case. Since in the 

original simulation, only random error is added to the measurement models, the outlier 

detection statistic test results of the models will be very small, no outlier is detected. In 

order to have a more clearly explanation of the quality control performance, a 0.8 meters 

additional outlier is added to the range measurement between point X2 and the feature. 

The outlier statistic testing results is shown in figure 5.5. 
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(a) 

 

(b) 

Figure 5.5 Outlier statistic test results for (a) range and (b) turn angle observation model 

of the simulated SLAM case 

According to Figure 5.5, since an additional outlier is added to the range observation at 

point X2, all the three estimation methods has detected outliers in range measurement 

model (Figure 5.5a) with Wk value higher than 3.29. KS and Graph SLAM have same 

quality control results. However, for the EKF method, the detected outlier is not found in 
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point X2, but in X3. The reason for this delayed outlier detection may be due to the value 

of the additional outlier (0.8 meters) is lower than the minimal detectable outlier value 

for the EKF system at epoch 2, which is 0.983 meters (Table 5.3). Since the additional 

outlier cannot be successfully detected by EKF method at the position it is added, it will 

influence the following epochs. Misdetection happens for these simulated cases by EKF 

quality control method. However, for the KS and FLS method, since they have lower 

MDB value, the outlier can be successfully detected and identified in epoch 2. For the KS 

or FLS Wk results, they also show the influence of the addition outlier on the following 

epochs after epoch 2, which may because the exist of outlier will influence the prediction 

results of the following states.  

Table 5.3 MDB results of observation model by EFK, KS, Graph SLAM of the 

simulated SLAM case 

MDB Range/ meter Turn angle /degree 

X2 X3 X7 X8 X2 X3 X7 X8 

EKF 0.983 0.733 2.951 0.933 9.565 9.474 13.554 10.068 

KS 0.628 0.678 1.163 0.933 9.139 9.903 9.139 10.068 

Graph 0.628 0.678 1.163 0.933 9.139 9.903 9.139 10.068 

 

According to the Outlier statistic test results, the corresponding estimated outlier values 

can be obtained for the models with Wk value higher than the threshold of 3.29. These 

estimated outlier values can be used to correct the measurements and mitigate the 

influence of the detected outlier. Figure 5.6 shows the estimation results with and without 

correcting for the estimated outlier. It is found that the EKF mis-detected outlier value 

can only be used to mitigate a few parts of the influence of the real added outlier (Figure 

5.6c). With a more accurate detection and identification of the outlier by the KS/FLS 

method, more accurate outlier value can be estimated, and more accurate final solution 

will be acquire with the outlier correction method (Figure 5.6d). 
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(a) (b) 

 

(a) (b) 

Figure 5.6  Estimated trajectory and feature position in case of (a) no additional outlier; 

(b) adding additional outlier in epoch 2; (c) correcting influence of outlier estimated by 

EFK at point X3; (d) correcting influence of outlier estimated by KS at point X2  

Kalman smoothing based SLAM and full least squares based SLAM can acquire the same 

estimation and quality control results for the simulated SLAM case study. Because KS 

method is much more efficient than the full least squares one since it is doing full 

estimation recursively, the KS method is suitable for the estimation and quality 

controlling for the large-scale SLAM problem. The result of EKF step can be improved 

by the smoothing step on both accuracy and precision. Additional Outliers within the 

SLAM system can be successfully detected and their influences on the estimation are 

mitigated according to these numerical results.  
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For next section, two standard real-world SLAM datasets have been fully analysed with 

the proposed Kalman smoothing SLAM method. The tests and analysis with Victoria 

Park dataset and DLR dataset are used to demonstrate how the estimation is improved by 

the smoothing method and how the proposed quality control method will perform during 

the KS estimation. 

5.4 Experiments and Analysis 

The two publicly available real-world SLAM datasets, which were used in Chapter 4, 

will be analysed here with the proposed offline KS SLAM system. 

5.4.1 Kalman Smoothing Quality Control for Victoria Park dataset 

Victoria Park dataset is tested with the Kalman Smoothing SLAM (KS SLAM) method 

with quality control. The KS estimated trajectory has about up to 20-40 cm difference to 

the EKF results of estimated trajectory, and smoothed results has much lower and more 

smooth uncertainty results (Figure 5.7b), which indicating better estimation precision. 

Some increase of uncertainty can be found as a result of continuing travelling in unknown 

environment. The estimation precision will fall down when visit a pre-visited place.  

 

Figure 5.7 (a) Estimated trajectory and estimated landmark position by Kalman 

smoothing SLAM and (b) their uncertainty for the Victoria Park dataset  
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Kalman Smoothing based Quality Control (KS QC) test is undertaken to analyse the 

Victoria Park dataset. The quality control methods for the two SLAM estimation 

algorithms (EKF SLAM and KS SLAM) are different when testing the dynamic 

information. For the EKFQC, the predicted states are tested within the measurement 

update step, the processing of prediction is not tested. Therefore, if there is an outlier 

within the odometry model, the EKFQC method cannot directly detect this outlier, but 

will only detect the possible influence caused by this outlier upon the prediction state 

parameters. However, the KSQC will directly test the dynamic model with the odometry 

measurement and detect the possible outlier within this kind of model.   

According to the outlier detection and identification results of the smoothing based 

SLAM estimation for the Victoria Park dataset (Figure 5.8), more outliers, both in 

observations and in odometry measurements, are detected by KSQC than by EKFQC, 

indicating the smoothing based method is more sensitive to the outliers and is more likely 

to detecting them. According to the filter results, the detected outliers are all within the 

bearing measurements, not within the ranging measurements or the predicted state models, 

whereas for the smoothed result, there are also possible outliers within the ranging 

measurement and the odometry measurements other than the bearing measurements that 

can be detected and identified.  

 

Figure 5.8 Outlier statistic test (W statistic test for outlier identification (a) within 

landmark detection model, (b) within vehicle odometry model) by KS for the Victoria 

Park dataset 
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Figure 5.9 shows the influence of the identified outliers within ranging and bearing 

measurements upon the final vehicle pose estimations. It is found these identified outliers 

will cause very low influence of the final estimation when compared to the KS SLAM 

estimation uncertainty. These influence values upon position estimation are around 0.01-

45% of the position estimation uncertainty, while that upon heading are around 3.3-124% 

of the heading estimation uncertainty. These identified outliers will also influence the 

vehicle position parameters at neighbourhood epochs since the models are correlated. 

This influence will reduce when the time gap increases.  

 

Figure 5.9 Influence of KS identified outliers within (a) ranging and (b) bearing 

measurement upon the final vehicle pose (position xr and yr and heading фr) estimation 

for the Victoria Park dataset 

Figure 5.10 and 5.11 show the results after correcting the outliers identified by KSQC 

method. Thus, the influence of identified outliers can be successfully mitigated with the 

proposed KSQC method.  
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Figure 5.10 Outlier statistic test after correction of the influence of identified outliers for 

(a) landmark detection model, and for (b) odometry model by KS for the Victoria Park 

dataset  

 

Figure 5.11 Differences in the estimated vehicle pose ((a) position xr and yr; (b) heading 

фr) with and without correcting the influence caused by KS identified outliers for the 

Victoria Park dataset  

Figure 5.12 and Figure 5.13 show the Reliability of the Victoria Park dataset under the 

KS SLAM framework. The smoothing based method has slightly lower MDB values for 

the landmark detection measurements (ranging and bearing) than the EKF SLAM results, 

indicating the KS method has the capability to detect outlier with lower value within the 

detection measurement. This can also be proved by the outlier detection results that KS 

method has detected more outliers than the EKF method with higher W test values.  
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Figure 5.12 Minimum detectable bias (MDB) results for the landmark detection models 

of (a) ranging measurement and (b) bearing measurement by KS for the Victoria Park 

dataset   

 

Figure 5.13  Minimum detectable bias (MDB) results for the vehicle dynamic model of 

(a) dx and dy and (b) orientation dф by KS for the Victoria Park dataset 

The significant improvement by KS methods for the system reliability happens during the 

period with long loop closing, and also some other periods that have poor geometry 

strength (such as low feature number, revisiting of landmark after a long travel as 

mentioned in Section 4.3.3) (compare Figures 4.7 and 4.8 with Figures 5.12 and 5.13). 

For instance, according to Figure 5.13, the smoothing based SLAM system’s reliability 

are less influenced by the large loop with long travel into unknown area (epoch 4500 to 
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6700), which is because it can utilize the revisiting measurements after the loop closed. 

Therefore, the KS SLAM is more reliable than EKF SLAM 

The smoothing based method also has better External Reliability results (Figure 5.14) 

than the filter-based method. The influences of the undetected biases within the landmark 

detection and odometry measurements upon the vehicle states are smaller. However, for 

the landmark position estimation, the EFK results show no impact of measurement outlier 

when a landmark is not detected at a current period. The smoothing results are different, 

since all the observation and odometry information are used together for offline 

optimization, and since the landmarks are correlated between each other, the outlier 

within the observation and odometry measurement at one epoch will affect the final 

estimation of all the visited landmarks (Figure 5.14c and Figure 5.14f).  
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Figure 5.14 The External Reliability results: Influence of outlier with MDB value within 

landmark detection measurement upon the final vehicle (a) position, (b) heading and (c) 

landmark lm1 position; Influence of outlier with MDB value within vehicle odometry 

model upon the final vehicle (d) position, (e) heading and (f) landmark lm1 position 

estimation of the Victoria Park dataset by KS SLAM 
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Although smoothing based SLAM can enhance the system quality, the performance of 

the EKF based SLAM estimation results may be acceptable during most of the travelling 

epochs according to different application requirements. It is because during the EKF 

process for the Victoria Park dataset, there are many small loop closures that can 

frequently enhance the EKF estimation. The next section with testing the DLR dataset 

will show how smoothing based estimation and quality control method will improve the 

EKF based SLAM for case of large loop closure.    

5.4.2 Kalman Smoothing Quality Control for DLR dataset 

The DLR dataset is also analysed with the KS SLAM method. Figure 5.15 shows the 

estimated trajectory and its uncertainty by the smoothing method for the DLR dataset. 

The estimated trajectory with the DLR dataset by EKF method (Figure 4.2b) is 

significantly improved by the smoothing based SLAM, better accuracy (Figure 5.15b) 

can be acquired than that acquired by the EKF results. EKF results are inconsistency at 

some travelling periods, especially the period that the robot combing back to the building 

after a journey outside of the building with no overlapping landmarks, whereas for the 

smoothing based estimation, the estimated trajectory is smoother and thus no unnormal 

displacement is found.   

 

Figure 5.15 (a) Estimated trajectory and estimated landmark position by Kalman 

smoothing SLAM and (b) their uncertainty for the DLR dataset  
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For the Kalman Smoother (KS) based SLAM dealing with the DLR dataset, its quality 

control results also show no outlier is detected within the observation model (Figure 5.16a) 

which is similar to the online EKF test.  

 

Figure 5.16 Outlier statistic test for outlier detection within (a) landmark detection 

model, and (b) within robot odometry model by KS for the DLR dataset 

As aforementioned, the EKF method cannot test the odometry measurements, its quality 

control results for the predicted states are correlated to the landmark detection 

measurement. With EKF QC, only isolated outliers are detected within the predicted 

states. However, for the KS case, the W test results show that many outliers may exist 

within the odometry measurements along the whole trajectory (Figure 5.16b). These 

odometry outliers will cause the drift of the whole trajectory estimation but can be 

corrected.  

With the KS outlier identification method, there are in total 440 odometry measurements 

with statistic test value higher than the threshold value (3.29) over the whole 3295 

odometry models, these 440 measurements can be divided into several groups since some 

of them are within the continued time epochs, not isolated outliers. An outlier within one 

odometry measurement will influence the odometry model at the neighbourhood epochs 

due to the correlation between the models, especially for this DLR case that robot is 

travelling into new places with a small number of overlapping landmarks, and there is a 

very low number of loop closings to bound the accumulated trajectory error. The possible 

outlier within one odometry model will contaminate other models’ statistic test results 
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and will cause misidentification of outliers at other epochs. Therefore, not all the 440 

measurements with W value higher than 3.29 in this test are truly containing outliers. The 

measurements with the peak W test value within a group are the most possible places of 

outliers. Therefore, there are possibly 21 outliers within the robot odometry model with 

peak W test results. The values of these outliers can then be estimated together due to the 

high correlation between the outlier statistics for the odometry models. 

Figure 5.17 shows the distribution of the identified outliers and their influence upon the 

final estimation of robot pose parameters at the epoch there are identified. These 

influences caused by outliers within odometry measurements are around 0.1-46% of the 

KS estimation uncertainty.  

 

Figure 5.17 Influence of the KS identified outliers within (a) dx and (b) dy odometry 

measurement upon the final vehicle pose (position xr and yr and heading фr) estimation 

for the DLR dataset 

Figure 5.18 shows the difference between trajectory estimations with and without outlier 

correction by the KSQC method, the differences are around  0.25 meters for position 

estimation and -0.5 to 2.5 degrees for heading estimation. After corrections for the 

identified outliers, no more outliers are detected (Figure 5.19). 
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Figure 5.18 Differences in the estimated vehicle pose ((a) position xr and yr; (b) heading 

фr) with and without correcting the influences caused by the KS identified outliers for 

the DLR dataset 

 

Figure 5.19 Outlier statistic test after correction of the influence of the identified outliers 

for (a) landmark detection model, and for (b) odometry model by KS for the DLR 

dataset 

When compared to the reliability results of the EKF SLAM, lower MDB values (Figure 

5.20, Figure 5.21) can be acquired with the Kalman smoother system, in average, the 

outlier value that can be detected from the landmark detection measurement is around 0.8 

meters by EKF and 0.4-0.65 meters by KS. These outliers are around 4-5 times higher 

than the measurement noise which means this system can detect outliers within the 

measurement much lower than that with the EKF method, especially during the period 

when EKF faces poor geometry and has very high MDB values.  
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Figure 5.20 Minimum detectable bias (MDB) results for the landmark detection models 

px py measurements by KSfor the DLR dataset  

 

Figure 5.21 Minimum detectable bias (MDB) results for the robot odometry models of 

(a) distance dx and dy (a) and (b) turn angle dф measurement by KS for the DLR 

dataset  

The External Reliability results of the smoothing based system are more stable and better 

with ER value (Figure 5.22) 2-5 times lower than that acquired by the EKF method. It is 

because the Full SLAM (least squares based or Kalman smoothing based) SLAM uses all 



Chapter 5 Quality Control for Off-line SLAM

 

169 

 

the measurement information and geometric constraints (loop closures). Therefore, it is 

less sensitive to the outlier and the poor geometry at a single epoch.  

 

Figure 5.22.  The External Reliability results: Influence of outlier with MDB value 

within landmark detection measurement upon the final vehicle (a) position, (b) heading 

and (c) landmark lm1 position estimation; Influence of outlier with MDB value within 

the robot odometry model upon the final vehicle (d) position, (e) heading and (f) 

landmark lm1 position estimation of the DLR dataset by KS SLAM 
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As aforementioned, when a landmark is not detected at one epoch for the EKF SLAM, 

the outliers within the measurements and predicted states at this epoch will not influence 

this landmark. However, for KS SLAM, this landmark will be influenced by other epochs’ 

measurements. Here landmark lm1 is used to show this influence (Figure 5.22c and Figure 

5.22f). Over the whole trajectory period, lm1 is only being detected around epoch 5-14, 

and epoch 2344-2395, therefore, it is found, during the period it is not viewed, its 

estimation is still influenced by the outliers. The influence of outlier within the odometry 

model will keep stable during the invisible period.   

5.5 Summary 

This chapter has proposed a new Kalman smoothing based SLAM algorithm which can 

conduct SLAM estimation and quality control recursively. A simulated numerical case 

study has shown the relationship between the EKF SLAM, KS SLAM and graph SLAM. 

The numerical results prove the equivalence between the KS SLAM and the ULS aided 

graph SLAM. The quality control results for this simulated case study also shows KS and 

graph SLAM can achieve same quality control results. These two methods can estimate 

the possible outlier value more accurate than EKF SLAM. By correcting the influence of 

the estimated outlier, KS/graph SLAM will achieve better estimation results. Therefore, 

the KS SLAM can replace the batch updated graph SLAM to evaluate the quality of the 

SLAM system and dataset, since it does quality control recursively and is much efficient.  

According to the analysis with two real-word datasets, the smoothing based method has 

better Internal Reliability and External Reliability results than the filter-based method. 

The influence of undetected bias within the landmark detection and odometry 

measurement upon the vehicle/ robot related variables is lower and more stable. However, 

for the landmark position estimation, the EFK results show no impact of odometry error 

when a landmark is not detected at a current period. The smoothing results are different, 

since all the observation and odometry information are used together, and since the 

landmarks are correlated to each other, the outlier within the odometry measurement at 

one epoch will affect the final estimation of all the stored landmarks.  
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For the case of Victoria Park dataset test, although the smoothing based SLAM can 

enhance the quality of the extended Kalman filter based SLAM at poor geometry periods, 

the performance of the EKF based SLAM estimation results may be acceptable at most 

of the period according to the requirement of SLAM applications. It is because during the 

EKF process of Victoria Park dataset, there are many small loop closures that can 

frequently corrected the EKF estimation drift. The DLR dataset, however, contains a large 

loop. The Kalman smoothing method can significantly improve the estimation and quality 

of the full system with large loops.  

The loop closure information applied in KS step is just same to the EKF at the same epoch, 

therefore, although the loop closure can correct the estimation of feature afterward during 

the EKF, the spatial relationship of feature and platform is not fed back to the previous 

epochs’ measurement models by KS, but only the position information is fed back. The 

FLS SLAM in this thesis is also built up according to these spatial conditions at different 

time. In this research, the quality control on data association is not studied, which may 

need future study. 
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Chapter 6 Integration of High-definition Maps and 

Multi-Sensors for Localization- A Geometric Analysis  

6.1 Introduction 

Maps are often integrated with the sensors to provide road trend within a long distance. 

However the application of current commercial map is limited by its low accuracy and 

simple representation of road network. One of the emerging autonomous driving 

technologies is the High-definition map which is a reality-based map that provides high 

precision intelligence on the road features, and may be an optimal selection to fulfill the 

range and accuracy requirements of autonomous driving. Some mapping companies, such 

as HERE, TOMTOM, Google, Apple, have joined the study of HD map. HERE has 

already built up the mapping platform and provide HD mapping data to vehicle companies 

and research groups to test their highly automated vehicle (HERE, 2017). Unlike the 

coarse 2D maps currently used by vehicles, the HD map can provide detailed and precise 

3D map of the road and surrounding environment and the map information is used by the 

navigation system, not by human driver. LiDAR, GPS/IMU, camera technologies are 

combined to generate the HD maps, therefore this kind of map can not only provide high 

density point cloud of the road environment with accurate position data, but also show 

the road network information, such as slope and curvature, lane marking types, roadside 

objects and intersection (HERE, 2017). The HD map can also be real-time or nearly real-

time as it can be updated about the moving objects’ (pedestrian or other car) information 

with the captured sensor data from the host autonomous vehicle. Hence, HD map shows 

high possibility of supporting very high accuracy vehicle localization and navigation 

ability for autonomous driving.  

SLAM technique is currently one of the mostly studied strategies for autonomous driving 

with HD maps (Seif and Hu, 2016) as it can determine the location of the host vehicle 

and the relationship between the host vehicle and other entities around it at the same time. 

SLAM technique can also contribute to the update of the HD map in cloud with the real-
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time road condition.  However, SLAM requires high computing power and huge storage 

space. Real/near real-time map updating also depends on quick data transmission ability. 

Since the HD map is already containing very detailed road information, it shows potential 

of being utilized as a sensor to provide accurate position information of the static objects 

without very frequently updating. Therefore, a more reliable and lower computational 

cost vehicle localization strategy which using on-board HD map as a sensor is 

investigated in this study. Here, ‘utilized as a sensor’ means the map is only used to 

provide information, no map updating is conducted during this proposed HD map 

localization system. A perceptive sensor is used to detect landmarks and features around 

the vehicle, and the HD map will provide the position information of the detected features. 

As an initial study, the whole system will temporarily not use the GPS/IMU information. 

Least squares technique is used to perform vehicle localization.  

Although HD map provides a vast amount of position information with high accuracy 

(10-20 cm) and can be used to estimate exact vehicle position, the study of vehicle 

localization with HD map is still in early stages. Mere localization computation without 

quality control is not enough to ensure acquiring expected lane level or even sub-lane 

level accuracy. The quality control technique is needed that contains outlier detection, 

reliability analysis and integrity monitoring which can be evaluated by reliability and 

separability (Wang and Knight 2012). The system reliability can be considered in two 

approaches, internal reliability and external reliability. The former one tests the ability of 

the system to detect a fault (MDB), while the latter one measures the influence of 

undetected fault upon the final solution. Wang and Knight (2012) have developed a new 

outlier separability test, which determines the minimum bias that can be separated for 

every pair of observations.  In this study, the quality of the HD map based localization 

system will be evaluated by these quality control techniques.  

The geometry of a positioning/localization system will significantly influence the final 

quality of the localization solutions. As the HD map is newly introduced and applied into 

the autonomous vehicle localization research field, the relationship between the geometry 

of the HD map based vehicle localization system and the quality of the results has not 

been well studied.  
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Therefore, this chapter aims to investigate a HD map-based vehicle localization system 

for highly automated driving. The influence of geometry to localization system is 

evaluated with different scenarios. The structure of this Chapter is as follows: Section 6.2 

presents a brief introduction on mathematical models in vehicle localization with HD map 

and present the concept of Correlation Coefficient and MSB. Section 6.3 conducts a 

simulated analysis with different scenarios. Section 6.4 summarizes the geometry’s 

influence on quality in HD map based localization and points out the problems that need 

to be explored further. 

6.2 Mathematical Models for HD Map and Multi-Sensor 

Integration 

Figure 6.1 shows the principle of the HD map based localization system. In the system, 

the vehicle is equipped with HD map to provide the position information of detected 

features, and also with an external perceptive sensor (laser) capable of measuring the 

relative position (for instance, d1- d6 in Figure 6.1) between the vehicle and its 

environmental features. The features could be trees, traffic light, traffic sign, buildings, 

etc. The mathematic relationship between the distance and 3D coordinates of vehicle and 

features can be used to estimate the vehicle position (xveh, yveh, zveh) by least squares theory. 

Sign

x2, y2, z2

x1, y1, z1

x3, y3, z3

x4, y4, z4

xv, yv, zv

x5, y5, z5

x6, y6, z6

 

Figure 6.1The HD map based vehicle localization principle 
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The functional model for vehicle localization can be expressed as: 

 𝑑𝑖 = √(𝑥𝑖 − x𝑣𝑒ℎ)2 + (𝑦𝑖 − y𝑣𝑒ℎ)2 + (𝑧𝑖 − z𝑣𝑒ℎ)2 (6.1) 

where xi, yi, zi, i are the 3D coordinates and the identification of the features respectively. 

In order to estimate the position of the vehicle, more than 3 features are needed to be 

detected.  xveh, yveh, zveh are the 3D coordinates of the host vehicle. di is the distance 

between the vehicle and the feature (i) measured by the external sensor, such as laser. In 

this equation, the coordinates of the features are provided by the HD map and are treated 

as known values. The coordinates of vehicle are unknown.  

Stochastic model represents the statistical properties of the errors in measurements and/or 

functional models by the variance-covariance matrix (VCV matrix). The stochastic model 

is: 

 𝐷 = 𝜎0
2𝑄 = 𝜎0

2𝑃−1    (6.2) 

where 𝜎0
2 is the priori variance factor which is set to one in this study. 𝑄 is the cofactor 

matrix, within which the diagonal elements have same values because only one type of 

measurement is tested, the off-diagonal elements is zeros. 𝑃 is weight matrix and is the 

inverse of 𝑄 . 

As using least squares to estimate the position information, the equation should be 

linearized and reasonable initial values (xveh0, yveh0, zveh0) should be assigned to the vehicle 

coordinates. Therefore, for each captured feature, the model equation at approximate 

coordinates will be: 

 𝑓𝑖 = √(𝑥𝑖 − x𝑣𝑒ℎ0)2 + (𝑦𝑖 − y𝑣𝑒ℎ0)2 + (𝑧𝑖 − z𝑣𝑒ℎ0)2 − 𝑑𝑖   (6.3) 

Now, the design matrix A and l vector can be obtained by Equations 6.4 and 6.5: 

 𝐴 =

(

 

𝜕𝑓1

𝜕𝑥𝑣𝑒ℎ0

𝜕𝑓1

𝜕𝑦𝑣𝑒ℎ0

𝜕𝑓1

𝜕𝑧𝑣𝑒ℎ0

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥𝑣𝑒ℎ0

𝜕𝑓𝑛

𝜕𝑦𝑣𝑒ℎ0

𝜕𝑓𝑛

𝜕𝑧𝑣𝑒ℎ0)

                                     (6.4) 
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 𝑙 = (−𝑓1, …−𝑓𝑛)
𝑇                                         (6.5) 

where n is the number of features. 

Then, the correction v of the coordinates can be estimated by the following equation: 

 𝑣 = 𝐴𝑋 − 𝑙                                            (6.6) 

here 𝑋 is the estimated corrections of the initial vehicle coordinates. 

Least squares quality control method presented in Chapter 2 is used to test this HD map 

based localization problem. Further-more, when two outlier detection statistics, 𝑤𝑘 and  

𝑤𝑖, are tightly correlated, outlier in one measurement may influence the analysis of other 

measurement. Therefore, the correlation coefficient of every two measurements’ outlier 

detection statistics should also be taken into consideration when doing outlier detection. 

The correlation coefficient between the kth and ith outlier detection statistics can be 

obtained as (Förstner, 1983): 

 𝜌𝑖𝑘 =
ℎ𝑘

𝑇𝑃𝑄𝑣𝑃ℎ𝑖

√ℎ𝑘
𝑇𝑃𝑄𝑣𝑃ℎ𝑘√ℎ𝑖

𝑇𝑃𝑄𝑣𝑃ℎ𝑖

                               (6.7) 

As aforementioned, two outlier detection statistics may have high correlation coefficient 

value which will cause contamination of “good” measurement. This contamination may 

confuse the outlier detection statistics and manifest the “good” measurement as an outlier. 

(Hewitson and Wang,2006). Therefore, it is important to separate the contaminated and 

the “good” measurements so as to eliminate the influence of the outlier. Separability can 

be quantified by MSB, which stands for Minimal Separable Bias and is determined by: 

 𝑀𝑆𝐵𝑖𝑘 =
𝛿𝑠𝜎0√2

√ℎ𝑖
𝑇𝑃𝑄𝑣𝑃ℎ𝑖(1−|𝜌𝑖𝑘|)

               (6.8) 

where 𝛿𝑠 is the mean shift of the separability statistics determined by Type I and Type II 

errors (Wang and Knight, 2012). 𝜌𝑖𝑘 is obtained by Equation 6.7.
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6.3 Experiments and Analysis 

6.3.1 Different Vehicle Localization Scenarios 

Two different scenarios were simulated and tested in order to analyse the influence of 

geometry on the estimation’s quality. For both scenarios, the red vehicle is the host 

vehicle driving on the road. There are road signs, trees and buildings along the road and 

they may be on one side or both sides of the road. In Scenario 1, the detected features are 

on one side of the road (Figure 6.2a), and in Scenario 2, there are features from both road 

sides to be detected (Figure 6.2b). For each scenario, three factors (feature distribution 

type, feature number, and distance between the host vehicle and the feature) were taken 

into consideration that may affect the geometry of vehicle localization system. There are 

four types of feature distributions, including centrally distributed with features closed to 

each other (sub-meter level) (Figure 6.3a), distributed features with similar height level 

(Figure 6.3b), distributed features with similar horizontal level (Figure 6.3c), and 

randomly distributed (various horizontal and height level, meter level depart with each 

other) (Figure 6.2). In Scenario 2, the pair of features on one side of road can be treated 

as randomly distributed to the pair of features on another side, also, when analysing the 

influence of feature distribution type, this study considers that the features have the same 

type of distribution at each side. In each scenario, different number (5, 10, 15) of detected 

features will be tested. For scenario 2, the number of features on different side was set to 

be similar, for example, the left side has 7 features, right side has 8, therefore, the total 

number is 15.  As assuming the external sensors on the vehicle can have a sensing range 

up to 150 m (such as Laser), we consider the situation that the vehicle detects some 

features with different distances from 150 m to 15 m. 
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(a) 

Sign

 

(b) 

Figure 6.2 (a) Scenario 1: vehicle detects features from one side of the road; (b) 

Scenario 2: vehicle detects features from both sides of the road 

 

 

Sign
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Sign

 

(c) 

Figure 6.3 (a) The detected features are clustered and centralized; (b) Features are 

distributed with similar height; (c) Features are distributed with similar horizontal level 

Figure 6.4 shows the overall simulated trajectory of the vehicle and the distribution of 

feature for different types of distribution. For different feature number cases and different 

scenarios, the corresponding feature set can be selected from these features.   

 
Figure 6.4 Vehicle trajectory and feature distribution with 4 different distribution types 
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6.3.2 Outlier Detection Statistics Analysis 

For the majority of the laser scanners currently used in mobile device research, the 

distance accuracy is at centimeter level (Olsen et al., 2012), for instance, Velodyne 

LiDAR sensor has accuracy of less than 2 cm (Velodyne LiDAR, 2017). Therefore, in 

the simulated environment, the noise on the detection of feature was modeled as random 

error with a standard deviation of 2 cm. An example of Scenario 1 was introduced to 

illustrate the outlier detection test, Correlation Coefficient, MDB, and MSB. In this 

example, there are 5 features detected with a centralized distribution type, the distances 

between the features and vehicle are about 50 meters. 

As for measurement 1, the minimal detected bias is 0.134m (Table 6.1), if an outlier of 

0.05 m and 0.5 m is introduced into measurement 1, respectively, the outlier detection 

test results are shown in Table 6.2. It can be seen that the w value of measurements are 

all lower than 3.29 when the outlier of 0.05 m is lower than MDB value. Therefore, the 

system cannot identify the added outlier. For the outlier of 0.5 m, both measurement 1 

and measurement 3 are possible of containing outliers with a high w value (16.991), and 

these two cannot be confidently separated, which may due to the high correlation between 

them (Table 6.3). According to Table 6.3, the pair of measurement 2, 4 and 5 is also not 

separable as they have correlation coefficient close to 1. Therefore, the Minimal 

Separable Bias (MSB) should be taken into consideration (Table 6.4). As the minimal 

separable bias to separate measurement 1 from measurement 3 is 2.823 m, an outlier 

higher than 2.823 m is introduced to measurement 1, and the outlier detection statistics 

test result is shown in Table 6.5, w1 is the largest one, indicating that the outlier is in 

measurement 1. This identified outlier is corresponding with the true outlier.  

Table 6.1 MDBs for all measurements in Example 1 

Measurement 

ID 
1 2 3 4 5 

MDB (m) 0.134 0.143 0.105 0.106 0.310 

 

 

 



Chapter 6 Integration of HD maps and Multi-Sensors for Localization

 

182 
 

Table 6.2 Outlier statistics for added outlier of 0.05 meters and 0.5 meters in 

measurement 1 

 

Outlier (m) 

Measurement ID 

1 2 3 4 5 

0.05 2.500 1.731 2.308 2.243 1.762 

0.5 16.991 1.964 16.991 1.619 1.765 

 

Table 6.3 Correlation Coefficients between outlier detection statistics 

Correlation 

Coefficients ρik 

Measurement ID 

1 2 3 4 5 

M
ea

su
re

m
en

t 
ID

 

1 1.0000 0.0683 -0.9955 0.1422 0.0565 

2  1.0000 -0.1629 -0.9778 0.9999 

3   1.0000 -0.0475 -0.1512 

4    1.0000 -0.9802 

5     1.0000 

 

Table 6.4 MSB (Minimal Separable Bias) between each pair of measurements 

MSBik (m) 
Measurement ID 

1 2 3 4 5 

M
ea

su
re

m
en

t 
ID

 

1 0 0.1968 2.8228 0.2052 0.1956 

2 0.2093 0 0.2208 1.3559 24.2005 

3 2.2154 0.163 0 0.1528 0.1619 

4 0.1624 1.0099 0.1541 0 1.0695 

5 0.4512 52.5127 0.4757 3.1158 0 
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Table 6.5 Outlier statistics for an outlier of 3 meters in measurement 1 

Outlier (m) Measurement ID 

1 2 3 4 5 

3 92.839 7.400 92.519 12.153 6.307 

  

6.3.3 Geometry Analysis 

6.3.3.1 Feature Distribution Type 

When analysing the influence of feature distribution type on the quality of position 

estimation, 5 features were set to be detected with road sign about 40 meters ahead of the 

vehicle. For Scenario 1 and 2, when comparing the average value of MDBs of each 

measurement with different distribution types (Table 6.6), it can be found that each 

distribution type has a similar mean MDBs value, errors in the measurements that are 

larger than 13 to 15 cm can be detected by the outlier detection test. Some measurements 

in Scenario 2 have relatively low redundancy numbers in the Similar Height distribution 

case, which cause the average MDB values in this case slightly higher than that in 

Scenario 1. As MSB can be used to quantify the minimal bias that could be separated for 

each two measurements, it is observed that the distribution type does not have significant 

effect on MSB, similar to MDB. Decimeter to meter level bias in one measurement can 

be successfully separated from another measurement.  

Table 6.6 Average values of MDBs contributed by features with different distribution 

types 

Average 

MDB (m) 

Distribution Type 

Centralized 
Similar 

Height 

Similar 

Horizontal 
Random 

Scenario 

1 0.137 0.140 0.151 0.142 

2 0.136 0.156 0.136 0.139 
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However, when comparing the external reliability (Table 6.7) for Scenario 1, the first 

three distribution types have very high mean external reliability values on all 3D 

coordinates, which means the minimal detected bias in the measurements can 

significantly influence the final position estimation, especially when the detected features 

are clustered together with very close distance (sub-meter level), the maximum external 

reliability values for 3D coordinates are 44.763 m, 32.094 m, and 89.880 m, respectively, 

much higher than the results from other distribution types. For the results in the second 

column (Similar height case), the external reliability value of z coordinate is far higher 

than that of x and y coordinates, while in the third column (Similar horizontal case) has 

opposite results, indicating that in order to get reliable position estimation for autonomous 

driving, the detected 5 features should not have very similar height level or horizontal 

level. This can also be demonstrated by the results of random feature distribution case, 

where the mean external reliability values are all less than 1 meter.  

Table 6.7 External Reliability contributed by MDBs values with different feature 

distribution types 

Distribution 

Type 

Coordinates 

Scenario 1 Scenario 2 

Centralized 
Similar 

Height 

Similar 

Horizontal 
Random Centralized 

Similar 

Height 

Similar 

Horizontal 
Random 

X 

(m) 

average 25.254 14.150 4.784 0.486 3.400 0.712 0.788 0.151 

max 44.763 23.371 10.356 1.170 4.534 2.235 1.369 0.351 

min 9.298 6.204 0.742 0.132 0.436 0.017 0.075 0.040 

Y 

(m) 

average 17.844 1.509 5.478 0.530 0.457 0.286 0.491 0.082 

max 32.094 3.892 10.165 0.948 0.712 0.654 0.975 0.121 

min 6.256 0.077 1.189 0.116 0.005 0.076 0.025 0.062 

Z 

(m) 

average 60.770 66.960 2.724 0.863 21.852 4.787 5.390 1.238 

max 89.890 106.930 6.193 1.420 29.265 14.486 9.521 2.655 

min 21.291 15.167 0.285 0.292 2.728 0.086 0.435 0.571 
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The external reliability results for Scenario 2 are similar to those of Scenario 1 that 

random feature distribution has best estimation quality. The influence of undetected bias 

on the horizontal coordinate estimation is much lower in Scenario 2 due to the large 

horizontal distance between the road signs. However, for the last two feature distribution 

types, the external reliability of vertical coordinate estimation is higher than that in 

Scenario 1, which indicates in this case that detected features from different road sides 

can improve the quality of horizontal coordinates estimation, but not vertical.  The reason 

of this phenomenon is mainly due to the shape of the left sign. In our test, the left sign is 

much narrower than the right sign. Most of the randomly distributed or Similar Horizontal 

distributed features detected in left sign have height range around 22-24 meters, which is 

less diversity than that in right sign (19-24 meter). When combining the two signs as 

feature source, the variation on feature height is smaller than choosing the same number 

of feature only from the right sign.  

6.3.3.2 Feature Number 

The influence of feature number on the reliability and separability was analysed with 

various feature numbers from 5 to 15. For Scenario 1, it is observed that with more 

features being detected, the average MDB values and MSB values are getting smaller. 

More detected features can also reduce the influence the undetected bias onto the final 

position estimation (Table 6.8 and Table 6.9), which may be due to the higher redundancy 

of the system that makes the system more reliable. When comparing Table 6.8 and Table 

6.9, it can be found that random distribution has surpassed centralized feature distribution 

type. If the features are centrally distributed, even when 15 features are detected by the 

sensor at this vehicle-feature distance (40 m), the undetected bias in the measurement 

may still cause meter level influence on position estimation, while for the random feature 

distribution, 10 features are enough to limit the influence of the undetected bias within 

the sub-lane level. Scenario 2 has similar results of Scenario 1 and has better estimation 

quality for horizontal coordinate estimation. When the features are randomly distributed, 

5 features being detected are enough to acquire system external reliability at sub-lane 

level. Similar in Section 6.3.3.1, for vertical estimation, only detected feature from one 

side is better than from both sides.  
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Table 6.8 External Reliability contributed by MDBs values with different feature 

numbers when centrally distributed 

Feature 

Number 

Coordinates 

Scenario 1 Scenario 2 

5 10 15 5 10 15 

X (m) 

 

average 25.254 3.900 1.655 3.400 0.428 0.339 

max 44.763 13.263 5.703 4.534 1.038 1.091 

min 9.298 0.089 0.387 0.436 0.008 0.0001 

Y (m) 

average 17.844 3.202 1.555 0.457 0.073 0.063 

max 32.094 9.847 4.638 0.712 0.147 0.153 

min 6.256 2.106 0.206 0.005 0.008 0.005 

Z (m) 

average 60.770 7.060 2.409 21.852 2.801 2.236 

max 89.880 24.907 8.547 29.265 6.741 7.016 

min 21.291 0.815 0.077 2.728 0.205 0.024 

 

Table 6.9 External Reliability contributed by MDBs values with different feature 

numbers when randomly distributed 

Feature Number 

Coordinates 

Scenario 1 Scenario 2 

5 10 15 5 10 15 

X (m) 

 

average 0.486 0.170 0.102 0.151 0.047 0.027 

max 1.170 0.293 0.169 0.351 0.095 0.073 

min 0.132 0.056 0.029 0.040 0.011 0.007 

Y (m) 

average 0.530 0.171 0.106 0.082 0.022 0.014 

max 0.948 0.350 0.182 0.121 0.051 0.029 
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min 0.116 0.049 0.023 0.062 0.002 0.004 

Z (m) 

average 0.863 0.247 0.153 1.239 0.337 0.193 

max 1.420 0.515 0.275 2.656 0.719 0.522 

min 0.292 0.093 0.048 0.571 0.040 0.031 

 

6.3.3.3 Detection Distance 

MDB and MSB values change slightly when the vehicle has different distances to the 

features (Table 6.10). However, when the vehicle is far from the features, the external 

reliability values are large. It is interesting to find that when the vehicle is close (in this 

case, less than 20 meters) to the detected features, the External Reliability values are 

significantly larger than that at other distance (Table 6.11). This phenomenon can be 

found in all cases tested in Scenario 1. The reason may be that the distance would 

influence the redundancy number of each measurement. When the vehicle is close to the 

features, the redundancy number values of some measurements are less than 0.1 or very 

close to 0.1, which indicates very large MDB value for those measurements and will cause 

high external reliability. This influence of close distance on position estimation quality 

has been improved in Scenario 2 (Table 6.12), when the features are detected from both 

sides of the road. In that case, the vehicle has different distances to the two road signs at 

x and y directions, respectively, the redundancy number values for each measurement are 

all at an acceptable range. 

Table 6.10 The average MDBs value contributed by features with different distance 

Feature Distribution 

Type and Number 

Vehicle Distance (m) 

17 25 40 60 114 141 

S
ce

n
a
ri

o
 1

 

Centralized 

feature 

5 0.194 0.137 0.137 0.137 0.137 0.137 

10 0.111 0.102 0.102 0.101 0.101 0.101 

5 0.142 0.144 0.143 0.142 0.142 0.142 
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Random 

distributed 

feature 

10 0.010 0.099 0.099 0.099 0.099 0.099 

S
ce

n
a
ri

o
 2

 

Centralized 

feature 

5 0.143 0.136 0.136 0.136 0.137 0.137 

10 0.104 0.108 0.110 0.111 0.113 0.113 

Random 

distributed 

feature 

5 0.144 0.138 0.139 0.139 0.139 0.139 

10 0.103 0.099 0.099 0.099 0.099 0.099 

 

 

Table 6.11 External Reliability contributed by MDBs with different vehicle-feature 

distance in Scenario 1 (5 Features) 

Coordinates Vehicle-Feature Distance (m) 

Centrally Distributed Randomly Distributed 

17 25 40 60 114 141 17 25 40 60 114 141 

X 

(m) 

 

ave 234.037 25.777 25.254 28.464 37.449 42.162 6.052 0.461 0.486 0.586 0.837 0.964 

max 482.362 46.012 44.763 50.294 66.064 74.360 14.182 1.178 1.170 1.342 1.811 2.055 

min 15.642 6.629 9.298 12.835 20.318 23.966 0.894 0.139 0.132 0.148 0.198 0.225 

Y 

(m) 

ave 74.312 8.927 17.844 30.694 60.431 76.088 1.735 0.307 0.530 0.866 1.655 2.073 

max 144.788 16.269 32.094 54.841 107.422 135.093 4.299 0.506 0.948 1.595 3.112 3.915 

min 4.907 1.570 6.256 12.755 27.684 35.537 0.116 0.070 0.116 0.186 0.352 0.440 

Z 

(m) 

ave 20.463 41.487 60.770 91.988 165.625 204.399 0.344 0.570 0.863 1.330 2.428 3.007 

max 60.754 63.302 89.880 135.843 244.103 301.070 0.738 0.955 1.421 2.164 3.927 4.858 

min 1.246 15.593 21.291 31.217 54.994 67.567 0.076 0.190 0.292 0.452 0.827 1.025 
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Table 6.12External Reliability contributed by MDBs with different vehicle-feature 

distance in Scenario 2 (5 Features) 

Coordinates Vehicle-Feature Distance (m) 

Centrally Distributed Randomly Distributed 

17 25 40 60 114 141 17 25 40 60 114 141 

X 

(m) 

 

ave 2.994 2.909 3.400 4.076 5.422 6.079 0.027 0.144 0.151 0.167 0.203 0.223 

max 4.823 4.152 4.534 5.452 7.605 8.631 0.073 0.310 0.351 0.405 0.525 0.588 

min 0.689 0.496 0.436 0.396 0.375 0.380 0.007 0.050 0.040 0.033 0.021 0.015 

Y 

(m) 

ave 2.487 1.213 0.457 0.829 4.136 5.940 0.014 0.066 0.082 0.139 0.271 0.340 

max 3.956 1.809 0.712 1.251 5.998 8.653 0.029 0.106 0.121 0.234 0.616 0.815 

min 0.538 0.162 0.005 0.168 0.415 0.517 0.004 0.00722 0.062 0.061 0.052 0.048 

Z 

(m) 

ave 5.042 13.092 21.852 35.535 67.899 84.994 0.193 0.811 1.238 1.888 3.394 4.184 

max 7.936 18.722 29.265 46.473 93.046 117.848 0.522 1.693 2.655 4.023 7.121 8.735 

min 1.167 2.213 2.728 3.269 4.142 4.523 0.031 0.332 0.571 0.928 1.759 2.195 

 

6.4 Summary 

High-definition map can be used to act as an on-board sensor and assist autonomous 

vehicle localization with high accuracy. The geometry of HD based vehicle localization 

system can significantly affect the quality of position estimation of vehicle.  Therefore, 

the analysis of geometry influence can provide reference for the further development of 

vehicle localization system to acquire appropriate geometry components. To meet the 

requirement of accuracy and reliability, factors like feature distribution type, number of 

detected feature and the distance between the vehicle and the features should be taken 

into consideration together. MDB and MSB are mostly influenced by the last two factors.  

Generally, random distribution of features achieves better results. When the vehicle is 

close to the features, double-road-side feature detection is required to guarantee suitable 
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external reliability. It is obvious that more features being detected can enhance the quality 

of position estimation, however, it also leads to higher computational burden.  
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Chapter 7 LiDAR/GNSS/INS Integrated Mapping and 

Localization with Quality Control 

7.1 Introduction 

With the high demand of localization and navigation information such as high accuracy, 

high precision, long perception range, high data rate and within all kinds of road 

environment, standalone localization and navigation technique can hardly meet all these 

strict requirements for practical applications of autonomous driving. Light Detection and 

Ranging (LiDAR) system can obtain high density 3D point cloud with high sensing rate 

and high accuracy, which can provide high-quality localization and navigation 

information. The LiDAR based Simultaneous Localization and Mapping (SLAM) 

technology is widely studied and used for the robotics fields. Normally, the SLAM system 

contains estimation errors which may increase over time and distance travelled, thus it 

needs loop closure to correct the errors.  Loop closure is much easier to form in indoor 

applications, or small-outdoor applications. However, it is hard to achieve in some large-

scale outdoor applications, such as for driving on a highway, or long one-way trajectory 

in urban area, without a chance for loop closure. In addition, the LiDAR-only SLAM will 

only provide the relative localization information, and thus cannot provide the absolute 

localization information. Therefore, the combination of GNSS/INS to the LiDAR SLAM 

will effectively reduce the dependence of loop closure and provide the absolute position 

information. Furthermore, a LiDAR system can also support localization using existing 

HD maps when GNSS signal is not available.  

Computation efficiency is one of the main factors that limit the practical application for 

autonomous driving. The high-quality map, such as the High Definition (HD) map can 

be generated offline by utilizing all the available sensor data and road information, which 

is less limited by the efficiency. However, for some online application, such as 

localization during driving, or HD map updating with real-time road detection results, 
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there may be not enough computation ability and storage size to support online SLAM 

for a long driving. As discussed in Chapter 6, a pre-generated HD map can be used as 

sensor source to support online Localization, a pre-generated map aided 

LiDAR/GNSS/INS localization system is proposed in this Chapter. An efficient 

dynamically loading method of pre-generated global map is utilized to reduce the 

estimation calculation burden.  

Another issue that associated to the application of localization and navigation for 

autonomous driving is the lack of quantitative evaluation of the estimation quality of the 

system. Some criteria results are hard to achieve for the real-word application. For 

instance, the ground truth of road map or an urban driving trajectory is mostly not 

available for the case of autonomous driving, especially the ground truth of a dense map 

for the complex road environment. Therefore, the accuracy of the localization and 

mapping system cannot be properly evaluated. There are some other qualities that may 

need to evaluate in order to ensure the safety of driving without knowing the accuracy, 

which can be monitored by the proposed quality control method.  

In this Chapter, a modernized SLAM procedure combines Light Detection and Ranging 

(LiDAR)/ Global Navigation Satellite System (GNSS)/ Inertial Navigation System 

(INS)/High Definition (HD) map as a sensor is proposed and implemented. The whole 

procedure of offline mapping and online localization is represented. Quality control is 

undertaken within this integration system to monitor the quality of the mapping and 

localization process. The structure of the Chapter is as follows: Section 7.2 displays the 

experiment setup of a road driving test. In Section 7.3, the procedure of proposed offline 

LiDAR/GNSS/INS mapping system is explained, and the generated road map is shown. 

In Section 7.4, the pre-generated road map is utilized to demonstrate the proposed online 

LiDAR/GNSS/INS localization system with analysing the system quality.  

7.2 Experiment setup 

Land vehicle tests were conducted in Sydney to test the proposed LiDAR/GNSS/INS/HD 

map integration system. The vehicle was equipped with a VLP-16 LiDAR, a IMU sensor 
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and two GNSS antennas (Figure 7.1). The second antenna is also active as the function 

of dual antenna aided heading update is chosen by the online localization system. The 

sampling rate of LiDAR was 10 Hz, the sample rate of GNSS was 1 Hz, and for IMU it 

was 100 Hz.  

 

 

Figure 7.1 Experimental platform for road test 

A road test was carried out in urban areas of Sydney, Australia. The trajectory is shown 

in Figure 7.2. The vehicle was driving from the University of New South Wales (UNSW) 

Kensington Campus to La Perouse (Section A), and then driving back to UNSW (Section 

B). In this study, the forward driving from UNSW to La Perouse was used to produce 

high precision 3D point cloud map of the road, and the backward driving from La Perouse 

to UNSW was used to test the performance for LiDAR/3D point cloud map-based 

localization method. 
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Figure 7.2 The road test trajectory (in blue) on Google map 

In order to do quantitative analysis of the localization performance, 3 sections of the 

whole trajectory were selected (Figure 7.3), which is same to the selected sections used 

in Chapter 3. For each of the three selected sections on the driving trajectory, the GNSS 

RTK status for the forward driving and backward driving were both integer-ambiguity 

fixed, therefore the offline mapping results are expected to be accurate at about 5cm, and 

on the backward driving from La Perouse to UNSW, the selected sections will have highly 
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accurate GNSS/INS positioning results as a reference to evaluate the performance of the 

LiDAR/3D point cloud map-based localization method.  

 

Figure 7.3 GNSS/INS localization of the whole trajectory with RTK positioning status 

7.3 LiDAR/GNSS/INS Mapping with Road Test Dataset 

7.3.1 Basic Technique used for Mapping 

The acquired dataset of Section A was used to generate a georeferenced global point cloud 

map for the road environment. The georeferenced mapping was done based on LiDAR 

odometry frame-to-frame matching and GNSS/INS integration. Figure 7.4 shows the 

overview of the offline mapping system architecture. 
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Figure 7.4 Overview of the proposed LiDAR/GNSS/INS mapping system architecture  

7.3.1.1 GNSS/INS system and georeferencing 

The GNSS/INS system can provide the geodetic positioning and attitude information. 

Since this map building was done offline, an optimal GNSS/INS trajectory can be 

obtained with a smoothed GNSS/ INS integration. The position and attitude results of 

GNSS/INS were used as the initial value of the frame-frame matching to transfer the 

newly merged point cloud to the referenced frame. Therefore, the point cloud can be 

georeferenced. Once the GNSS dataset is lost during driving, the Inertial navigation 6-

DOF pose results can be used to generate the initial transformation until the GNSS signals 

come back.  

There are several coordinate systems involved in this LiDAR/GNSS/INS system and need 

to be considered when doing georeferencing. The information from different sensor 

should be fused by different coordinate systems:  

1) Vehicle body frame (b-frame): the testing vehicle’s body frame, with X-forward, 

Y-right and Z-down pointing orientations. 

2)  Inertial Coordinate frame (i-frame): in this test the inertial frame is align to the 

body frame.  

3) e-frame: ECEF(Earth-Center-Earth-Fix) frame is a Cartesian coordinate system 

with origin point as the center of mass of Earth.  
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4) n-frame: local navigation reference frame, with E-N-U (East-North-Up) pointing 

orientations. 

5) LiDAR coordinate system (L-frame): the LiDAR coordinate system is moving 

with the vehicle. In this case study, y axis is toward the back of the vehicle, x axis 

for left and z axis for up direction of the vehicle. 

The geo-referencing formula that describes the transformation of the LiDAR point cloud 

from the laser scanner frame to the ECEF frame will be: 

 𝑝𝑒𝑐𝑒𝑓 = 𝑅𝑛
𝑒𝑐𝑒𝑓

𝑅𝑖
𝑛(𝑟, 𝑝, ℎ) (𝑅𝐿

𝑖 (𝜑,𝜔, 𝜅)) 𝑝𝐿 + 𝐿𝐴𝑙
𝐼) + 𝑝𝑛

𝑒𝑐𝑒𝑓
 (7.1) 

Here 𝑝𝑒𝑐𝑒𝑓 is the positioning vector of the estimated current point in the ECEF frame; 

𝑅𝑛
𝑒𝑐𝑒𝑓

is the rotation matrix from the navigation frame to the ECEF frame; 

𝑅𝑖
𝑛 is the rotation matrix from inertial frame to the local navigation frame with 𝑟, 𝑝, ℎ the 

roll, pitch, heading angle providing by GNSS/INS system;  

𝑅𝐿
𝑖  is the boresight matrix that rotate the LiDAR frame to the navigation frame with 

𝜑,𝜔, 𝜅 the boresight angles between the laser scanner and the IMU sensor; 

𝑝𝐿 is the position of points in LiDAR frame 

𝐿𝐴𝑙
𝐼 is the lever arm between the LiDAR scanner and the center of the inertial frame in 

the IMU frame.  

𝑝𝑛
𝑒𝑐𝑒𝑓

 is the position of the vehicle in ECEF frame.  

7.3.1.2 LiDAR Odometry 

When doing LiDAR Odometry, each current frame was matched to the previous frame 

with Normal Distributions Transform (NDT) scan matching algorithm with the initial 

transformation information provided by GNSS/INS.  
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The point clouds were firstly pre-processed to remove the ground plane point (Figure 7.5) 

before matching by NDT to improve the accuracy of registration.  

    

(a) (b) 

Figure 7.5 Scan views of a LiDAR scan frame (a) the original scan view; (b) the view 

after pre-processing 

Figure 7.6 show two scan views before being matched.  It appears that these two scan 

views have slightly difference on the features (Figure 7.7).  

 

 

(a) (b) 

Figure 7.6 Scan views of two sequenced LiDAR scan frames ((a) previous scan frame; 

(b) current scan frame) for scan matching 
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Figure 7.7 Comparison of the two sequenced LiDAR scan frames, green points: 

previous scan frame; red points: current scan frame 

The matched point cloud from the two scan views can be generated (Figure 7.8).  

 

Figure 7.8 Generated map point cloud after matching two sequenced LiDAR scan frames 

(unit: meter) 

By doing LiDAR odometry one by one with all the available LiDAR scans, the newly 

matched point cloud can be merged to the previously generated point cloud maps and 



Chapter 7 LiDAR/GNSS/INS Integrated Mapping and Localization with Quality 

Control

 

200 
 

finally the accumulated map of the whole trajectory can be obtained and georeferenced 

(Figure 7.9).  

 

  

Figure 7.9 Global georeferenced road map from UNSW to La Perouse (frame: ECEF, 

unit: meter) the 3D point cloud based map for Section A dataset 

By enlarging Figure 7.9, details of the road map can be seen, and its corresponding real-

world road view can be found in Google Earth since this map is georeferenced. Figure 

7.10 shows a comparison of one enlarged section of this generated map and its real view 

in google earth. 
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(a) (b) 

Figure 7.10 (a) A section of the generated map and (b) the google earth view for the 

same location 

Pose graph optimization can be run after trajectory estimation with sufficient number of 

loops to reduce the drift in trajectory estimation, and to generate more accurate final map. 

However, since our quality control method cannot monitor the dynamic model without 

any supported observation, the quality of the pose graph optimization cannot be tested.  

7.4 Localization with LiDAR Scans and the geo-referenced 3D 

Point Cloud Map matching  

The geo-referenced 3D Point cloud map produced from the data of Section A (the forward 

driving from UNSW to La Perouse) can then be used to support the LiDAR based 

localization for Section B (the backward driving from La Perouse to UNSW) by matching 
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the LiDAR scans to the map. The procedure of the online LiDAR/3D map matching based 

localization method is shown in Figure 7.11. 

 

Figure 7.11 Overview of the proposed LiDAR/3D map matching based localization 

system architecture 

7.4.1 Estimation Results of LiDAR/3D Map based Localization System 

Since there is no ground truth information for this urban road test, the LiDAR/map 

matching based solutions are compared with the reference GNSS/INS solution within the 

three selected Trajectory Sections (Figure 7.12), during which the RTK status is fixed.  

  
Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

 

Figure 7.12 Coordinate difference between the proposed LiDAR/Map matching based 

localization method and the reference GNSS/INS localization solution 

 

Table 7.1 Mean and standard deviation for the difference between LiDAR/Map 

matching based localization and the reference GNSS/INS localization results (remove 

periods with outlier) 

 Trajectory 

Section 1 

Trajectory 

Section 2 

Trajectory 

Section 3 

Mean 

(m) 

East  0.020 -0.036 0.051 

North -0.035 0.0031 -0.048 

Up -0.084 0.140 -0.189 

Stdev 

(m) 

East 0.142 0.099 0.128 

North 0.162 0137 0.188 

Up 0.182 0.151 0.123 

Table 7.1 shows the comparison between the LiDAR/Map matching based localization 

and the reference GNSS/INS localization results. The differences are fluctuated around 

zero, and their mean values are around centimeter to decimeter level. The standard 

deviation for all the three sections is around 0.1-0.2 meters, therefore we treat the 

coordinates difference larger than 0.6 meters as possible outliers. The epochs that have 

outliers is about 1.7% of the total testing period, which means the happen of outliers are 

rare. The reason of the outlier will be discussed in next Section.  
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7.4.2 Quality Analysis of the Numerical Results 

The details of measurements during the epochs with big jumps (such as during red boxes 

Figure 7.12) are checked to find out the possible reasons for this kind of outliers detected. 

For Trajectory Section 1, it is found that when driving around a roundabout, there were 

some big outliers (red boxes Figure 7.12 Trajectory Section 1). The trajectory of the 

LiDAR/Map system and the GNSS/INS solution around this roundabout and their views 

in google map are shown in Figure 7.13. It can be seen the reference GNSS/INS solution 

are smoother at this area since GNSS integer-ambiguities are fixed, while the 

LiDAR/Map solution has some differences to this reference trajectory.  

  

Figure 7.13 Trajectory of LiDAR/Map matching based localization (blue) and the 

reference GNSS/INS localization (red) 

Figure 7.14 shows the LiDAR view at this roundabout. It is found from Figure 7.14 that 

the structure of the pre-generated map at the driving side of the road is not very clear 

since it is lack of features around the trajectory.  The roundabout is located at a parking 

area of tourist attraction. There is no building or very few trees around this area. Since 

the testing was undertaken in the evening, there were even not many parking vehicles 

which could be used as features. Therefore, the quality of matching step may be poor, 

which results in poor localization accuracy.  
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(a) (b) 

Figure 7.14 (a) A section of the generated map and (b) the google earth view for the 

same location at the La Pereous Roundabout 

Figure 7.15 shows the LiDAR scan view at this point with a range threshold of 20 meters, 

it can be seen, this LiDAR scan has not much usable features, especially after pre-

processing. Similar road environment with less feature can be found when another cluster 

of outliers happened in Trajectory Section 1 (green box) shown in Figure 7.12.  

 

 

(a) (b) 

Figure 7.15 Scan frame at epoch 40647 s with big outlier in Trajectory Section 1 ((a) the 

original scan view; (b) the view after pre-processing) 
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Another major source of outliers is the other moving entities around the host vehicle. 

Figures 7.16 to 7.18 shows the LiDAR views when there are big outliers in the 

localization stage.  

No matter the other moving vehicle is at the same side of the road or at the opposite road 

side, such a moving vehicle will influence the LiDAR/Map matching-based localization 

quality. When the moving vehicle is at the same road side of the host vehicle, it will result 

in bad estimation when it is initially detected, has different speed of the host vehicle, or 

when it turns and drives to another road, which makes it no longer detectable anymore 

(red box in Figure 7.12 Trajectory Section 2 and Figure 7.16).  

 

          

(a) (b) 

Figure 7.16 Scan frame at epoch 40854s with big outlier in Trajectory Section 2: a 

following vehicle is driving to another road ((a) LiDAR scan; (b) google view) 

 

Once the host vehicle detected an opposite driving vehicle, the localization estimation 

errors could reach to 1-1.5 meters (green box in Figure 7.12 Trajectory Section 2 and 

Figure 7.17).   
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(a) (b) 

Figure 7.17 Scan frame at epoch 40888s with big outlier in Trajectory Section 2, an 

opposite driving vehicle is detected ((a) LiDAR scan; (b) google view) 

The type of moving elements will also influence the happening of outliers. For most of 

time, vertical position estimation is less influenced by the moving elements. But when 

checking the red box in Trajectory Section 3 (Figure 7.12), it was found that the 

differences on vertical direction are much higher than other sections. By looking at the 

details of LiDAR view, it is found that, at that section, a tall bus was driving passed the 

host vehicle (Figure 7.18), which means these vertical differences of current LiDAR scan 

and the pre-generated map might have caused some systematic vertical biases.  

     

(a) (b) 

Figure 7.18 Scan frame at epoch 41103s with big outlier in Trajectory Section 3 with 

one tall bus driving passed ((a) LiDAR scan; (b) google view) 



Chapter 7 LiDAR/GNSS/INS Integrated Mapping and Localization with Quality 

Control

 

208 
 

The moving objects within the road environment will be a major source of measurement 

outlier because the system treated the pre-generated map as a fixed reference map. 

Therefore, if there are any moving objects that cause the structures of the pre-generated 

map and the current scan frame different, it will cause outliers. The moving objects, such 

as other vehicles, may exist in both the previous road mapping stage and in the current 

road scans for use in localization. For the step of offline HD map generation, this kind of 

moving objects should be carefully identified and removed from the static 3D point cloud 

maps. For the online step, with the aiding of some quality control method, the influence 

of the possible detected moving objects could be eliminated, or the possible road 

environment change could be updated to the global map to enhance the accuracy of future 

driving around the same road path.  

7.5 EKF based LiDAR/GNSS/INS/3D Map Localization within 

the pre-generated Global Map 

Apart from directly using the INS pose information to support LiDAR/3D map 

localization, the LiDAR/map solution can also be used to correct the inertial system with 

under an Error-state EKF system. Figure 7.19 shows the architecture of the proposed EKF 

based LiDAR/GNSS/INS/Map localization system.  

 
Figure 7.19 Overview of the proposed LiDAR/GNSS/INS localization system 

architecture within pre-generated map. 



Chapter 7 LiDAR/GNSS/INS Integrated Mapping and Localization with Quality 

Control

 

209 
 

The localization system mainly contains two parts: scan matching and Error-state EKF 

updating. Here the Error-state EKF is an indirect Kalman filter that its measurement is 

not the directly IMU output, such as from gyro or accelerometer sensors, but is the 

difference between the IMU data and the external source data (GNSS data or LiDAR pose) 

(Roumeliotis et. al., 1999). This error-state EKF will estimate the errors in the inertial 

navigation results.   

Firstly, if the inertial navigation information is not available, the frame-to-frame LiDAR 

odometry can be used to support localization. After initializing the Error-state EKF, the 

estimated pose of the inertial navigation will provide a rough pose for the current LiDAR 

scan frame, the LiDAR odometry can be shut down to save computation. With the rough 

position provided by the INS, a local map is searched and selected from the pre-generated 

global map in order to improve the matching efficiency. NDT based scan matching 

between the current LiDAR frame and then the local map is undertaken with the inertial 

based initial Transformation matrix. The LiDAR estimated vehicle posed can be achieved. 

A new real-time road map can also be generated during this real-time localization system 

with the SLAM algorithm.  

After achieving the LiDAR pose, the difference between the LiDAR pose and the inertial 

propagation pose can be obtained and the error within the inertial navigation information 

is estimated by the Error-state EKF and fed back to the inertial system to achieve fine 

pose results. When GNSS information is available, the positioning results of GNSS, such 

as RTK position results, can also be used to correct the inertial navigation information in 

order to improve the accuracy and reliability of the localization system. Quality control 

methods presented in Chapter 2 can be used to monitor this proposed localization system 

under the framework of the Error-state EKF.  

7.5.1 Estimation Results of the EKF LiDAR/GNSS/INS/3D Map based 

Localization System 

The Section B dataset of the road test can be used to test with the proposed EKF 

LiDAR/GNSS/INS/3D map-based localization system.  In this testing, the LiDAR 



Chapter 7 LiDAR/GNSS/INS Integrated Mapping and Localization with Quality 

Control

 

210 
 

frequency is 10 Hz, GNSS is 1 Hz, and IMU 100 Hz, therefore, it will output three sort 

of pose solutions: the LiDAR estimated pose (10 Hz), the LiDAR/INS (10 Hz), the 

GNSS/INS pose (1 Hz). Since there is no ground truth information for this urban road 

test, the estimated position solutions are compared to the reference GNSS/INS solutions 

used in Section 7.4 for analysis. The setting of measurement uncertainty is 20 cm for 

LiDAR based measurement and 0.02 cm for GNSS based measurement according to the 

results from Chapter 3 and Section 7.4. 

Figure 7.20 shows the LiDAR estimated position results that using the online INS pose 

for initial Transformation matrix and for local map matching. It is found in this EKF 

based localization system, the epochs in which outliers occur are at the similar times as 

shown in Section 7.4. This LiDAR estimated position is then be used as measurement for 

the inertial EKF system.  

 
Trajectory Section 1 Trajectory Section 2 

 
Trajectory Section 3 

Figure 7.20 Coordinate differences between the LiDAR estimated position by the 

proposed LiDAR/GNSS/INS/Map method and the reference GNSS/INS localization 

solution 
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Figure 7.21 and Figure 7.22 compare the 10 Hz LiDAR based INS localization solution 

and 1 Hz GNSS based INS localization solution from this EKF LiDAR/GNSS/INS/Map 

system to the referenced GNSS/INS only system. By comparing Figures 7.21 and 7.22, it 

is found GNSS based solution has better accuracy (within 0.1 meters) than the LiDAR 

based accuracy (within 0.1-0.2 meters). Therefore, the final INS position is improved 

when GNSS measurement is coming in.  

   

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 7.21 Coordinate differences between the final estimated INS position based on 

LiDAR measurement input by the proposed LiDAR/GNSS/INS/Map localization 

method and the reference GNSS/INS localization solutions 
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Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 7.22 Coordinate differences between the final estimated INS position based on 

GNSS measurement input by the proposed LiDAR/GNSS/INS/Map localization method 

and the reference GNSS/INS localization solution 

Since the GNSS signals may be frequently lost during driving within the urban area, a 

GNSS signal blockage period of 1 minutes was simulated between testing epoch of 

40700s to 40760s. Therefore, the online GNSS/INS results during that simulated GNSS 

blockage period will have drifts to the referenced non-blockage GNSS/INS trajectory 

(Figure 7.23), these drifts, up to 20 meters, will be corrected once the GNSS signal comes 

back (see the red box in Figure 7.23). The LiDAR aided EKF solution has a much 

smoother trajectory during that period of simulated bad GNSS condition, indicating that 

the LiDAR based localization method can help to maintenance the localization accuracy 

when GNSS signal is lost (Figure 7.23).  
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(a) (b) 

Figure 7.23 Estimated trajectory by the proposed localization method and the 

GNSS/INS localization method with simulated GNSS signal blockage period: trajectory 

viewed  (a) on Google map; (b) on Local coordinates  

The uncertainty results of the estimated states are shown in Figure 7.24-7.26. In this 

testing, since GNSS measurements have much higher precision than the LiDAR based 

measurements, much higher measurement covariance value is set for the LiDAR 

measurement. Therefore, when GNSS measurement available, it will make the EKF 

estimation’s uncertainty significantly reduced, but during the 1s period, the LiDAR EKF 

results will have increasing uncertainty due to its higher uncertainty setting. The Standard 

Deviation trend of the EKF system will be like zigzag (Figure 2.24).  

Frequently jumps can be seen when the host vehicle has a change on heading, such as 

turning. Heading has higher STD value than pitch and roll. According to Figure 7.26, 

Pitch and roll get convergent very quickly, while for heading, its STD has some increasing 

period, which may because the heading angle error is unobservable when the horizontal 

specific force components are zero (Farrell, and Wendel., 2017). The heading angle error 
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cannot be affected by the velocity errors in such condition. As a consequence, the 

uncertainty of the yaw error state will grow with time when the platform is static or 

driving in nonaccelerating motion (Farrell, and Wendel., 2017).     

 

Figure 7.24 Standard deviations of estimated position error state by the proposed EKF 

LiDAR/GNSS/INS localization system within a pre-generated map 

  

Figure 7.25 Standard deviations of estimated velocity error state by the proposed EKF 

LiDAR/GNSS/INS localization system within a pre-generated map 
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Figure 7.26 Standard deviations of estimated attitude error state by the proposed EKF 

LiDAR/GNSS/INS localization system within a pre-generated map 

A real-time map can be generated simultaneously during the localization. Figure 7.27 is 

a comparison of the real-time generated map and the pre-generated map of around a 

position within the trajectory.  As we can see from Figure 7.27, the pre-generated map 

has more features at the right lane, while the online map has more at the left lane. This is 

because in this test, for both of the mapping and localization steps, only one way driving 

trajectory is utilized, since there is no loop for this driving, the LiDAR view of the other 

side of road will be sparser than its driving side. Therefore, in the purpose of ensuring 

online localization accuracy and reliability, a forward-backward trajectory is needed for 

the offline mapping, or using the online real-time generate map to update the whole map, 

so that this update map can be serviced for future localization or for other road driving 

vehicles. Furthermore, since the road environment contains changing elements, such as 

temporary parked vehicle along road sight. This kind of real-time map from the real-time 

autonomous driving can be used to update the pre-generated map, or pre-stored HD map 

about this dynamic changing. However, for purpose of improving computation efficiency 

and reducing storage size, the real-time map can also be chosen to not be estimated and 

stored during driving. 
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(a) (b) 

 

(c) 

Figure 7.27 A section of real-time generated road map from La Perouse to UNSW when 

doing localization within a pre-generate map ((a) real time generated map; (b) pre-

generated map; (c) real world road view in google earth)  
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7.5.2 Quality Control Results of the proposed Localization for Road Test 

dataset 

Quality control can be conducted for this proposed EKF based localization method to 

monitor the quality of this urban road test. According to the outlier statistic test results, 

around 3-5% of the LiDAR based measurements have a W test value larger than 3.29. 

There are some jumps of W test results (Figure 7.28). Since the epoch with high Wk value 

is mostly corresponding to the epoch with outlier in Section 7.4, the possible reason of 

the outlier has already discussed in Section 7.4.  Low number of features or the moving 

objects within the road environment will be a major source of measurement outlier 

because the system treated the pre-generated map as a fixed reference map. Therefore, if 

there are any moving objects that cause the structure of the pre-generated map and the 

current scan frame different, it will cause system outliers and will be detected by our 

Quality control system.  

   
Trajectory Section 1 Trajectory Section 2 

  
Trajectory Section 3 

Figure 7.28 Outlier statistic test result of the proposed EKF localization method for the 

LiDAR/map matching-based position measurements  
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Figure 7.29 shows the outlier statistic test results for the GNSS based measurements 

during the EKF LiDAR/GNSS/INS/Map localization process. It is found many outliers 

are detected, which is more than the case of GNSS/INS only system (Chapter 3). The 

reason may be due to the higher LiDAR measurement uncertainty that will influence the 

whole integration system.   

 

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 7.29 Outlier statistic test result of the proposed EKF localization method for the 

GNSS based position measurement 

 For the proposed online EKF based localization step, with the aiding of the quality 

control method, the influence of the detected moving objects can be eliminated. Figure 

7.30 and Figure 7.31 shows the coordinate difference results after correcting any 

influence from the detected outliers during the proposed EKF LiDAR/GNSS/INS/Map 

localization system with the Adaption method. It is found LiDAR based solutions are 
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very slightly improved under this system after mitigating all the possible influence of the 

outliers. While for the GNSS based solution, it achieves much better improvements.   

  

Trajectory Section 1 Trajectory Section 2 

 

Trajectory Section 3 

Figure 7.30 Coordinate differences between the final estimated INS position based on 

LiDAR measurement input by the proposed LiDAR/GNSS/INS/Map localization 

method and the reference GNSS/INS localization solution after correction with the 

Adaption method 

  

Trajectory Section 1 Trajectory Section 2 
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Trajectory Section 3 

Figure 7.31 Coordinate differences between the final estimated INS position based on 

GNSS measurement input by the proposed LiDAR/GNSS/INS/Map localization method 

and the reference GNSS/INS localization solution after correction with the Adaption 

method 

Table 7.2 and Table 7.3 is the mean and Standard deviation values.  

Table 7.2 Mean and standard deviation for the differences between LiDAR 

measurement-based LiDAR/GNSS/INS/Map localization results and GNSS/INS 

localization results before and after correcting the influence of detected outliers with the 

Adaption method 

 Section 1 Section 2 Section 3 

Before 

correction 

After 

correction 

Before 

correction 

After 

correction 

Before 

correction 

After 

correction 

Mean 

(m) 

East  -0.0026 -0.0030 0.0358 0.0356 0.0571 0.0566 

North -0.0052 -0.0043 -0.0221 -0.0212 -0.0371 -0.0359 

Up 0.0041 0.0041 -0.0250 -0.0248 -0.0228 -0.0225 

Stdev 

(m) 

East 0.0556 0.0551 0.0466 0.0462 0.0503 0.0498 

North 0.0605 0.0585 0.0530 0.0528 0.0574 0.0575 

Up 0.0481 0.0480 0.0410 0.0410 0.0486 0.0485 
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Table 7.3 Mean and standard deviation for the difference between GNSS measurement-

based LiDAR/GNSS/INS/Map localization results and GNSS/INS localization results 

before and after correcting the influence of detected outliers with the Adaption method 

 Section 1 Section 2 Section 3 

Before 

correction 

After 

correction 

Before 

correction 

After 

correction 

Before 

correction 

After 

correction 

Mean 

(m) 

East  0.0158 0.0128 0.0070 0.0070 0.0312 0.0260 

North 0.0371 0.0232 0.0511 0.0274 0.0343 0.0236 

Up 0.0051 0.0051 -0.0208 -0.0208 -0.0141 -0.0132 

Stdev 

(m) 

East 0.0210 0.0190 0.0225 0.0217 0.0216 0.0219 

North 0.0397 0.0228 0.0310 0.0216 0.0325 0.0250 

Up 0.0171 0.0171 0.0181 0.0180 0.0194 0.0175 

Figure 7.32 shows the Minimum Detectable Bias (MDB) of the proposed EKF 

LiDAR/INS/GNSS localization method within the pre-generated map. It is found the 

MDB can converge very quickly from initial 2.3 meters to around 1 meter, indicating that 

around 1 meter outlier in the LiDAR based measurement can be detected by our quality 

control system. GNSS measurement has MDB value around 0.17 meters after 

convergence, which is slightly higher than the GNSS/INS only system in Chapter 3 (0.18-

0.2 meters), indicating the aiding of LiDAR measurement may improve the GNSS/INS’s 

reliability.  
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(a) 

 

(b) 

 

Figure 7.32 MDB values for the proposed LiDAR/GNSS/INS/Map localization method: 

(a) LiDAR based measurements, (b) GNSS based measurements 

Any possible outliers within the EKF measurement model of the difference between 

inertial propagated position and LiDAR estimated position will cause bias on the final 

position estimations, no matter whether detected or not detected. The External Reliability 

(ER) results of the LiDAR based measurement models are shown in Figures 7.33-7.35, 



Chapter 7 LiDAR/GNSS/INS Integrated Mapping and Localization with Quality 

Control

 

223 
 

indicating the influence of the undetectable outliers (with a value same to MDB value) 

upon the final error states’ estimation. According to Figure 7.33, this influence upon 

latitude and longitude estimations will converge quickly to around 0.02m. The overall ER 

value is about 1-2 times of the STD value (sigma-range). The estimation of height states 

is less influenced by the outliers with ER value around 1 sigma-range. This means the 

estimation of vertical states is more reliable than that of the horizontal states.  

The outliers within the measurement model will also influence other error states that are 

not directly observable, such as the velocity and attitude. But these states are more robust 

to the outliers than the directly observed states (position). The ER values for velocity 

states are around 1 sigma-range, and for attitude states are 0-1 sigma-range. Heading is 

more likely to be influenced by the outliers than pitch and roll.  
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(a) 

 
(b) 

  
(c) 

Figure 7.33 External Reliability values of the undetected outlier within EKF LiDAR 

based measurement models (a) Latitude difference, (b) longitude difference, (c) height 

difference toward position error states 
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(a) 

 
(b) 

   
(c) 

Figure 7.34 External Reliability values of the undetected outlier within EKF LiDAR 

based measurement models (a) Latitude difference, (b) longitude difference, (c) height 

difference toward velocity error states 
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(c) 

Figure 7.35 External Reliability values of the undetected outlier within EKF LiDAR 

based measurement models (a) Latitude difference, (b) longitude difference, (c) height 

difference toward attitude error states 
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7.6 Summary 

This Chapter presents a LiDAR/GNSS/INS/Map based Localization and mapping system 

for autonomous driving. LiDAR based SLAM technology is applied in the proposed 

system. The proposed LiDAR/GNSS/INS/Map system contains two steps. Firstly, 

LiDAR frame-to-frame Odometry mapping is aided with the optimal GNSS/INS 

trajectory to generate an offline map. Pose-graph optimization is used to optimize the 

final trajectory and point cloud map with enough number of loop closure. Secondly, the 

pre-generated offline map can be used as a ‘sensor’ to support the online localization at 

the same driving environment to provide high accuracy and robust position information, 

even during the period in which GNSS signal is lost.  

An urban road testing is undertaken to test the proposed mapping and localization system. 

A point cloud map with clear road structure can be generated offline with this real-world 

dataset, which is then used to support the online localization for a car with driving in the 

same urban road. 

There are two ways of doing LiDAR/map based localization, one is based on INS pose 

aided scan/map matching, another is under an error-state EKF system, thus LiDAR/map 

results will be used to feed back the inertial navigation system.  

Due to the lack of ground truth information, the online localization LiDAR/map trajectory 

results are compared to the GNSS/INS results during the periods in which the GNSS RTK 

status is integer-ambiguity fixed. The results show that the first INS posed aided map-

based LiDAR localization can achieve about 10-20cm accuracy, but with some big jumps 

which may be caused by outliers. For the EKF based system, centimeter lever accuracy 

can be achieved for the integration of the INS with both the high frequency LiDAR 

measurements and the lower frequency GNSS measurements.  

A simulation of GNSS signal blockage has been tested, demonstrating that the 

LiDAR/map aided system are more stable and smoother during the period that GNSS 

signal is in bad conditions, indicating the LiDAR and map-matching based localization 

method is superior in the complex urban area.  
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Outliers within the LiDAR-Map-matching based position measurements have been 

detected for this road test. It is found that any dynamic objects, such as other moving 

vehicles on the road nearby, or sharp changing of road environments may cause outliers 

in the position measurements.  The proposed EKF based localization system has the 

ability to detect outliers around value of 1 meter in the LiDAR-Map-matching based 

position measurements and 0.17 meters in the GNSS-RTK position measurements. 

Fortunately, the undetected outlier will only cause small position drifts. Any outliers 

above the MDB values can be detected with the defined success rate (power of the 

statistical testing) and their influence upon the final estimation can be eliminated with the 

correction by our quality control method.  
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Chapter 8 Conclusions and Recommendations 

8.1 Conclusions 

8.1.1 Quality Control Framework for optimal Filtering and Smoothing 

Since smoothing estimation has very much potential for providing accurate and robust 

solution for various fields, such as navigation, a new Kalman smoothing based quality 

control procedure has been proposed to assist the smoothing method to deal with the 

faulty measurements and dynamic variations. The extended Kalman filter-smoother 

quality control method is developed according to the equivalence between the Kalman 

smoother and full least squares for a dynamical system. This quality control method is for 

the first time that applying the outlier detection, identification method and Reliability 

analysis for the smoothing process. 

The numerical case studies in Chapter 2 have demonstrate the equivalence between the 

proposed smoothing method and the full least squares method, also the quality control 

results show these approaches are more robust to outliers, and have better reliability than 

the Kalman filter approaches. Other than the observation measurement model, the 

dynamic models can also be directly tested with the smoothing based quality control 

procedure, whereas the filtering-based procedure can only test the predicted states’ 

quality.  

A further variant of least squares quality control procedure (ULS QC) is developed for 

dealing with systems with ill conditioned matrix. For some practical applications, the 

system matrix may be singular, or constrained, such as the SLAM problem with constraint 

of loop closure. Since the condition number of the ill conditioned matrix are sometimes 

huge, it is sensitive to the inverse calculation, which may lead to wrong estimation 

solution and quality control results. With the proposed method, one new full rank 

covariance matrix is introduced to replace this ill conditioned matrix. By comparing the 
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three approaches, KS QC, ULS QC and FLS QC with SDV, with a simulated constrained 

system, the results demonstrate that the ULS method can successfully solve this singular 

system and is equivalent to the KS method under this special condition.  

For the future test, the proposed quality control method can be used to analyse how 

geometry changes in the measurement setup could affect the Kalman filter-smoother 

estimation. Therefore, the analysis of geometry influence with quality control method can 

provide reference for the further development of dynamical system to acquire appropriate 

geometric strength components and estimation quality. 

However, one drawback of the smoother method is that the KS method is generally 

applied as post-processing as it is a reanalysis process with measurement and dynamic 

information in future epochs. Therefore, for applications that need real time or near real 

time estimation and control, such as autonomous driving localization and navigation, the 

smoother method can only be used when a post data analysis is permitted, or a slightly 

delayed estimation is acceptable. For instance, this method can be applied for the offline 

map building to achieve better accuracy and quality, and then utilized this generated map 

to assist future real time positioning task. Therefore, more possible applications of the 

Kalman filter-smoother procedure and our extended quality control method was 

investigated in the following studies, such as achieving simultaneous localization and 

mapping (SLAM) with smoothing.  

8.1.2 GNSS/INS Integration with Quality Control 

Chapter 3 has discussed the application of the proposed EKF/KS system with quality 

control to some positioning strategies, such as RTK, PPK, and GNSS/INS with a real-

world urban driving dataset. The smoothing based post processing GNSS double 

differencing method (PPK) can improve the estimation accuracy, precision, and reliability 

by utilizing a converged stable ambiguity resolution.  

Different outlier influence mitigation strategies are also discussed in Chapter 3. The 

estimated influence of the identified outliers can be used to directly adapt to the final 

estimation results, or it can be used to correct the input measurement models. For most of 
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the cases, the mitigation method with outlier Adaption or outlier Correction will achieve 

similar final estimation results. However, since both the predicted state model and the 

measurement model may contain outliers, the predicted states may be illuminated by the 

outliers existing in the previous observations. If the system cannot successfully 

distinguish the outliers in the measurement model and the Kalman filter predicted state 

models, such as in some cases in which the outlier detection statistics for these models 

are highly correlated, just like the GNSS/INS loosely coupled integration system, 

misidentifications may happen. Therefore, the KF based quality control method may have 

mis-correction of these outliers which is not within the observation models, thus will 

influence the accuracy of the backward smoothing results.    

8.1.3 Quality Control for Online and Offline SLAM 

A quality control method is proposed in Chapter 4 and Chapter 5 for SLAM problems to 

deal with outliers within observation measurements and dynamic models and to evaluate 

the system reliability. This method can be applied for both online SLAM and offline post-

processing. Kalman smoother SLAM is newly introduced in this study that can do 

estimation and quality control recursively and replace the full batch optimization based 

SLAM approach for large scale datasets.  

Outliers within the measurements and the system model may seriously affect the 

performance of the SLAM approach and cause a failure of SLAM estimation. The quality 

analysis for two standard and widely used real-world SLAM datasets has demonstrated 

that outlier detection test statistic can successfully detect and identify the outlier within 

the measurements. The influence of the outlier on the final estimation can be mitigated 

by correcting the influence of the identified outlier with its estimated value. The results 

of the two tested datasets show that the proposed method is effective especially for the 

case in which it is hard to achieve drift correction by loop closure.  

Reliability is an important system quality which is the capability of a system to detect 

outliers and evaluate the influence of the outliers towards final estimation. The reliability 

of the SLAM algorithm is analysed with Internal and External Reliability. The results 

show the reliability of a SLAM system depends on the geometry, redundancy, feature 
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revisiting and loop closing of the system. A detection of a long-term unobserved feature 

will have a high MDB value. Thus, an outlier within its observation will cause significant 

influence upon the SLAM estimation. 

Three SLAM estimation methods are tested: 1) the Extended Kalman Filter SLAM, 2) 

Kalman Smoothing (KS) SLAM and 3) Full Least Square (FLS) SLAM. The performance 

of these three different SLAM frameworks can be compared with analysing the quality 

of the system. Therefore, the proposed quality control method can be applied as a 

benchmark method that gives quantified measure of the quality of different SLAM 

algorithms for evaluation and comparison. According to the results, Kalman smoothing 

(KS) SLAM and Full Least Squares (FLS) SLAM are equivalent and have the same 

results of both estimation and quality control if the FLS SLAM uses the EKF predicted 

state value as the initial approximate value. The offline systems are more reliable than 

filter-based system since they can detect outliers with lower value within both observation 

and odometry information, and achieve lower influence towards the final estimation 

results. The EKF SLAM has an advantage that it can detect the outlier and remove its 

influence online, the influence of the detected outlier to the following trajectory’s 

prediction will be mitigated, while for smoothing or full least squares, the outlier detection 

can only be undertaken when all the data association has been done, this may contain 

some wrong statistic test results due to the contamination by the outlier, especially in the 

case that has high correlation between the outlier detection statistics for the odometry 

models. Thus, a multi-outlier detection and identification method should be utilized in 

this kind of cases after acquiring the possible number and location of the likely outliers.  

This proposed quality control method can also be served to the SLAM designer at early 

stage of SLAM system application, as the reliability analysis can be used to evaluate the 

system based on the given system structure, such as the graph structure of full least 

squares SLAM, without having the real measurements available. For instance, the 

reliability results show that keeping frequently small loop closures can significantly 

increase the reliability of the EKF SLAM, which makes this online method suitable for 

large scale dataset with acceptable estimation and be less sensitive to the measurement 

outlier. Thus, more loop closures can be designed for a SLAM application when online 
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estimation is needed. The number and structure of the loop closure and the geometry of 

the measurement can also be chosen with analysing the possible outlier influence to match 

the requirement of the specific applications. 

This study has demonstrated that the proposed quality control methods can be 

successfully utilized for both online and offline SLAM problem. It also has the potential 

to carrying out for delayed SLAM when best estimation is required, and additional 

computation is tolerable for every on-line step. Part of the variables can be marginalized 

out with the fixed-lag smoother approaches and quality control can be conducted within 

the smoothing lag.   

8.1.4 HD Map based Localization with Quality Control and Geometry Analysis 

High-definition (HD) map which is a reality-based high density map that provides high 

precision intelligence on the road features, may be an optimal selection to fulfill the range 

and accuracy requirements of autonomous driving. The main approach of generating and 

utilizing HD map is based on SLAM. This is suffered from the high cost of computation, 

storage space and transmission rate and limits the SLAM approach from online HD map 

application. However, HD map still has a potential to service as a sensor source to provide 

road feature location information and to support accurate and efficient online localization 

for autonomous driving.  

Chapter 6 investigates a localization method that utilize the HD map as on board sensor 

to integrate with other perception sensors. MDB, MSB and correlation coefficients are 

utilized to support the explanation of the performance of outlier detection, identification, 

exclusion method in a case study.  

The geometry will significantly affect accuracy of localization, mapping and navigation 

solution and performances of outlier statistics, including detectability of observations and 

reliability of outlier statistics. Therefore, the influence of the system geometry for this 

HD map-based localization system is essential to be comprehensively analysed. 

Geometry factors like feature distribution type, number of detected feature and the 

distance between the vehicle and the features were taken into consideration together in 
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this study. MDB and MSB are mostly influenced by the last two factors. Sparse random 

distribution of feature will contribute to decreasing MDB and ER value. More detected 

features and close distance between the host vehicle and the features may also contribute 

to good quality of vehicle position estimation. 

According to the results, ER value seems more sensitive to the geometry change than the 

MDB and MSB. The results show with slight change of MDB and MSB value, the 

influence of the undetectable outliers upon the final position estimation are changing 

more dramatically. Therefore, the External Reliability should attract more attention when 

evaluating and judging the potential influence of the geometry when designing a HD map 

localization system. 

The position estimated in this study is the relative position of the host vehicle within the 

HD map, not within the reality environment. As all the road network system is displayed 

within the HD map, the relative location between the host vehicle and the road network 

can also be estimated, such as the distance between the vehicle and the stop line. 

Therefore, this relative location information can be used to perform vehicle navigation. 

However, when there is a moving entity which is detected by the external sensor in real 

time but not displayed in the HD map, for example, another vehicle in front of the host 

vehicle, the relative location information should be estimated with considering the error 

of the HD map. In this situation, the influence of geometry on the relative location is also 

of importance to be studied and will be investigated in the future study. 

When the vehicle is driving along the road, there may be situations where the external 

sensors cannot detect enough number of features with desired distribution type at an 

appropriate distance, therefore, the quality of vehicle localization would not be acceptable. 

As this study only consider laser and HD map as sensors for vehicle localization, other 

sensors such as camera, IMU, may be added into our HD map based vehicle localization 

system to overcome the problem of low geometric strength.  

In this part of our study, the 3D features are treated as individual known points with the 

HD map, while such 3D features may not be enough, 3D point cloud-based features may 

be useful for localization as has been demonstrated in Chapter 7. In the future study, the 



Chapter 8 Conclusion and Recommendations

 

235 
 

geometry influence of other sensors and the combination of different sensors will be 

further explored. 

8.1.5 LiDAR/GNSS/INS integrated Mapping and Localization 

Since each sensor and technique have their own advantages and drawbacks, the 

combination of multi sensors and different localization techniques are essential for 

fulfilling the high requirements of autonomous driving. A LiDAR/GNSS/INS integrated 

mapping and localization method is proposed in Chapter 7.  

A LiDAR/GNSS/INS sensor system was set up on a vehicle and road testing was 

conducted for this study. SLAM algorithm can be used to generate an offline high density 

road map with the collected real-world dataset. The procedure of the map building is 

discussed in Chapter 7, including the LiDAR Odometry, GNSS/INS aided map matching, 

geo-referencing, pose-graph optimization. A road point cloud map with around 800 

meters of driving trajectory was built up for further analysis of the localization and 

mapping performances. 

Two localization systems are proposed by combining the LiDAR, GNSS, inertial 

navigation with the pre-generated HD map. One is directly using GNSS/INS pose 

solution to support LiDAR/Map matching based localization, the other one is an EFK 

based system that integrates Inertial navigation with both LiDAR and GNSS 

measurements. Estimation results show the proposed two online localization systems can 

both successfully and precisely locate the host vehicle with the aiding of LiDAR/map 

matching, especially during periods of GNSS single blockage. Therefore, this system is 

suitable for driving within a complex urban road environment. The EKF based system’s 

solution has better accuracy, especially during period with outliers.   

Quality of these two localization systems is analysed. It is found that other moving or 

changing entities along the road environment may be a source of outliers. Therefore, the 

dynamic entities should be detected and removed before conducting localization. The 

EKF based quality control method is used to quantitative test and monitor the 

performance of the proposed EKF based LiDAR/GNSS/INS/Map localization system.  
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Efficiency of the online localization can be improved by applying a proposed dynamic 

local map loading method. The local point cloud map is selected and extracted from the 

global map with the information of current GNSS/INS information and pre-set LiDAR 

distance threshold. Although the proposed online localization method can generate online 

point cloud map at the same time, the new map can be chosen not to be updated or stored 

for the purpose of efficiency. However, if for a more mature autonomous driving system, 

frequently updating of the global HD map with the dynamic road information from all of 

the available real-time map building candidates (automatic cars driving on the road) is 

necessary to support the safety and efficiency of the whole smart transportation system. 

Therefore, a cleverer online mapping and localization updating system should be 

considered for autonomous driving, such as updating and storing the real-time map on 

Cloud to avoid local platform calculation and storage burden.  

8.2 Recommendations 

Based on the research made in this thesis, the following recommendations can be made: 

8.2.1 Near-real Time Optimization Estimation and Quality Control 

According to the theorical analysis and numerical results, the smoothing based results are 

equivalent to that of the full batch update of least squares, and can achieve estimation 

with better robustness and reliability than the filtering method. However, this optimal 

solution can only be achieved offline since it uses the whole available measurements and 

models. For some applications that accept near real-time or small delayed optimal 

solution, the smoothing method can also be suitable to apply. For instance, a submap can 

be optimized with quality control firstly, and the optimal results can be used to enhance 

the estimation once loop closed for this optimized sub-map. In future, the application of 

smoothing based quality control for near real-time application should be studied.  

8.2.2 Iterative Kalman Filtering and Smoothing 

In this thesis, the equivalence between the Kalman smoothing and full least squares for a 

dynamic system has been proved by different localization or mapping systems. However, 
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it should be noticed that the least squares method can achieve optimal estimation results 

after a few iterations for the non-linear systems. If the initial approximate values for the 

variables are poor, it will take more iterations to achieve convergency and optimal 

solutions. For the proposed KS method, the EKF predicted state value is used as the initial 

approximate value. However, if the EKF stage does not converge, the initial KS results 

will not meet the final least squares results. Therefore, the iterative KF/KS system needs 

further investigations to achieve optimal solutions for various complex application 

scenarios. The influence of the iteration and the quality control results should also be 

evaluated and analysed for better understanding of the system.  

8.2.3 Multiple Fault Detection for Smoothing based Localization and Mapping 

The EKF based system can corrected the outlier immediately after being detected, and its 

influence upon the next epochs’ estimation will be largely mitigated. However, for 

smoothing based system, since the estimation is undertaken offline with all the available 

models, the outliers within a model will contaminate the statistic testing of all other 

models. When the Correlation Coefficient between the outlier detection statistic for these 

models are low, the proposed single outlier detection, identification and correction or 

adaption method can work well to solve the outlier issue, such as outliers existing in the 

measurements of GNSS/INS system. However, if these models are highly correlated, such 

as the dynamic model in a SLAM system with no loop closure, the contamination of the 

outlier will mislead the quality control method, especially when there are multi-outliers 

occur. Therefore, a multi-outlier detection, identification and correction method is needed 

to be further investigated for this situation. Some earlier study on such topics may be 

found in, e.g., Wang and Knight (2012) and Knight et al. (2010).  

8.2.4 Efficiency of HD Map Updating 

Although the HD map can support accurate online localization, the dynamic of road 

environment will still influence the localization accuracy. An efficient HD map updating 

strategy is needed to upload timely information on some environmental changing, such 

as changing of parking entities, to ensure the autonomous driving. Since the proposed 

multi-sensor localization system has the ability to store the aligned point cloud with the 



Chapter 8 Conclusion and Recommendations

 

238 
 

trajectory estimation, the accumulated point cloud map may be optimized and uploaded 

after a few driving periods and when parked. The procedure of this efficient HD map 

updating method will need investigation too.  
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